[‘ /
47\ R

|
B [B\)| AN | =

2
/7
7
gl |
P 5
fo 7 \
T
A
//»// |
Z |

$13.95 A SPECTRUM BOOK m

Richard Haskell holds a Ph.D. from Rensselaer Poly-
technic Institute and is an engineering professor at
Oakland University in Michigan. In addition, he has
designed numerous microprocessor-based systems
for industrial application and written four other books
in the Prentice-Hall computer series entitled PET/
CBM BASIC, APPLE BASIC, APPLE BASIC: 6502 As-
sembly Language Tutor, and TRS-80 Extended Color
BASIC. .

ATARI BASIC

RICHARD HASKELL

UUUUUUUUUUUUU

PRENTICE-HALL, INC.
Englewood Cliffs, NJ 07362

Library of Congress Cataloging in Publication Data

Haskell, Richard E.
Atari basic.

“A Spectrum Book."”

Includes index.

1. Atari (Computer)—Programming. 2. Basic
(Computer program language) 1. Title

QA76.8.A82H37 1983 001.64'24 82-25070
ISBN 0-13-049809-2
ISBN 0-13-049791-6 (pbk.)

This book is available at a special discount when ordered in bulk
quantities. Contact Prentice-Hall, Inc., General Publishing Divi-
sion, Special Sales, Englewood Cliffs, N.J. 07632.

©1983 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey
07632. All rights reserved. No part of this book

may be reproduced in any form or by any means

without permission in writing from the publisher. A SPECTRUM
BOOK. Printed in the United States of America

10 9 8 7 6 5 4

Editorial/production supervision by Cyndy Lyle Rymer
Interior design by Frank Moorman

Page layout by Fred Dahl

Manufacturing buyer Cathie Lenard

ISBN 0-13-049791-k {PBK.}

ISBN 0-13-049809-2

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand
Editora Prentice-Hall do Brasil Ltda., Rio de Janeiro

CONTENTS

Preface, xi

1

LEARNING TO USE THE ATARI KEYBOARD, 1

THE ATARI KEYBOARD/3 MAKING GRAPHIC FIGURES/4 REVERSE VIDEO/5 STRINGS AND
THE PRINT STATEMENT/6 DEFERRED MODE OF EXECUTION/7 EDITING USING THE
BACKSPACE, DELETE, AND INSERT KEYS/8 STRING VARIABLES/9 LINE LENGTH/10

2

LEARNING TO PROGRAM IN BASIC, 12

THE BASIC PROGRAMMING LANGUAGE/12 SAVING YOUR PROGRAMS/13 STOPPING
PROGRAM EXECUTION/15 THE STRUCTURE OF A BASIC PROGRAM/16

3

LEARNING MORE ABOUT PRINT, 19

THE ATARI AS A CALCULATOR/19 NUMERICAL VARIABLES/21 REVERSE VIDEO AND
LOWER-CASE LETTERS/26 SOME BUILT-IN FUNCTIONS/26

4

ENTERING DATA FROM THE KEYBOARD—LEARNING
ABOUT INPUT, 31

THE INPUT STATEMENT/31 SUM OF TWO NUMBERS/32 AREA OF A
RECTANGLE/32 AREA OF A CIRCLE/33 GAS MILEAGE/33 NAME AND ADDRESS/34
MAKING SOUNDS/35

5

A REPETITION LOOP—LEARNING ABOUT
FOR ... NEXT, 36

THE FOR . . . NEXT LOOP/36 NESTED FOR . . . NEXT LOOPS/39 SOUND
EFFECTS/40 PLOTTING GRAPHIC PATTERNS/41

6

MAKING CHOICES—LEARNING ABOUT IF ... THEN, 43

THE IF . . . THEN STATEMENT/43 RELATIONAL OPERATORS/46 LOGICAL
OPERATORS/47 WEEKLY PAY PROGRAM/48 AREA OF A TRIANGLE/49 FLOWCHARTS
AND PSEUDOCODE/51

7

LEARNING TO USE LOW-RESOLUTION GRAPHICS—
DISPLAYING THE FLAG, 55

PLOTTING DOTS AND LINES USING THE PLOT AND
DRAWTO STATEMENTS/55 DISPLAYING THE FLAG/64

3

LEARNING MORE ABOUT LOOPS—ANOTHER LOOK AT
IF ... THEN, 66

THE REPEAT WHILE LOOP/66 TRIANGLE PROGRAM/67 RANDOM STRIPE
PATTERNS/68 RANDOM CHECKERBOARD PATTERN/70 DIFFERENT TYPES OF LOOPS/71

9

SUBROUTINES: LEARNING TO USE GOSUB
AND RETURN, 75

THE GOSUB AND RETURN STATEMENTS/75 PLOTTING MULTIPLE FIGURES/77 PLOTTING
YOUR NAME/79 USING THE GAME PADDLES/81 USING THE JOYSTICKS/83

10

MAKING BAR GRAPHS — LEARNING ABOUT
READ ... DATA, 84

THE READ, DATA, AND RESTORE STATEMENTS/84 HORIZONTAL BAR
GRAPHS/87 VERTICAL BAR GRAPHS/89

11

LEARNING TO USE ARRAYS, 94

ARRAYS/94 SIMULATING STRING ARRAYS/96 BAR GRAPHS USING ARRAYS/97

12

MORE ABOUT STRINGS, 102

MANIPULATING STRINGS/102 THE NUMERIC/STRING FUNCTIONS VAL
AND STR$/103 THE ASCIl CODE FUNCTIONS ASC AND CHR$/104 PRINTING DOLLARS
AND CENTS/106 PLAYING CARDS/109

13
LEARNING TO USE HIGH-RESOLUTION GRAPHICS, 116

ATARI GRAPHICS MODES/116 GRAPHICS MODE 8/117 PLOTTING HIGH-RESOLUTION
GRAPHIC FIGURES/119

14

LEARNING TO PEEK AND POKE, 128

THE STATEMENTS PEEK AND POKE/128 READING THE KEYBOARD/130 TEXT MODES 1
AND 2/131 DEFINING YOUR OWN CHARACTER SET/137

15

LEARNING TO PUT IT ALL TOGETHER, 141

HANGMAN/141 STORING DATA ON A DISKETTE/149 ATARI
ORGAN/155 CONCLUSION/162

APPENDICES, 164

INDEX, 171

PREFACE

Anyone planning to teach a BASIC programming
course using ATARI computers is faced with the prob-
lem of selecting an appropriate text. Programming
manuals provided by the manufacturer are generally
more suitable for reference than for teaching.
Standard textbooks on BAsIC programming will de-
scribe a BAsIC language enough at variance with
ATARI BAsIC to lead to considerable frustration on the
part of the student. Such texts will be of no help in
learning to use the graphics capability of the ATARI
computer. Since many interesting programs on the
ATARI will involve graphics, these texts will be of lit-
tle value.

This book is designed to be used as a text for learn-
ing to program in BASIC using the ATARI computer. It
should be suitable for introductory programming
courses at the high school, junior college, or univer-
sity levels. It can also be used for self-study with an
ATARI computer.

Three companion texts entitled PET/CAM BASIC,
APPLE BASIC, and TRS-80 EXTENDED COLOR BA-
SIC are also available for use with these computers.

The strategy of this book is “/learning by doing.”
Step by step the student is led through all aspects of
BASIC programming on an ATARI computer. All ex-
amples are illustrated with many photographs taken
from the computer’s TV screen. Many of the funda-
mental programming ideas are developed using ex-

amples involving graphics. This has the advantage of
providing a direct visual picture of what the program
is doing. In addition, it provides examples that will be
useful for anyone wishing to write programs in a spe-
cific applications area.

Chapter 1 introduces the ATARI keyboard and the
idea of string variables. Chapter 2 talks about the gen-
eral nature of BASIC programs and covers the opera-
tion of the cassette tape recorder and floppy disk
drive.

Chapter 3 covers numerical variables, arithmetic
expressions, and the ATARI’s built-in functions. The
INPUT statement is covered in Chapter 4 with exam-
ples that include making sounds. Chapter 5 intro-
duces the FOR . . . NEXT loop with programs to pro-
duce several sound effects. Chapter 6 introduces the
IF . . . THEN statement and relational and logical op-
erators.

The use of low-resolution graphics is introduced in
Chapter 7, where the American flag is displayed on
the screen. A more complete discussion of loops is
given in Chapter 8. The use of subroutines is covered
in Chapter 9, where the student learns to draw multi-
ple figures of varying size and to use the game pad-
dles and joysticks.

The READ . . . DATA statement is introduced in
Chapter 10, which covers the method of drawing bar
graphs. The topic of arrays is discussed in Chapter 11.

Strings and string functions are described in detail in
Chapter 12 with examples given for dealing a hand of
cards. High-resolution graphics is covered in Chapter
13, including examples showing how to plot circles
and polygons. Chapter 14 describes the use of the
PEEK and POKE statements, including how to use
graphics and text modes 1 and 2, how to read the
keyboard, how to define your own character set, and
how to write text on the high-resolution graphics
screen. Chapter 15 describes the development of two
complete programs: the HANGMAN word game and
an ATARI organ that plays four octaves of music from
the ATARI keyboard. This chapter also includes ex-
amples of how to store data on a floppy disk.

Students who complete this text will have a solid
foundation in fundamental programming techniques
and will have acquired the particular skill of being
able to program the ATARI computer using BASIC.

It is a pleasure to acknowledge my students of
many years who had to learn to program on a large
computer with none of the graphics capability of the
ATARI computer, but on whom many of the ideas in
this book were first tested. Invaluable help in using
the ATARI computer was received from Anne
Jaworski and Laura Snider-Feldmesser. Special thanks
go to Sharon Rix, who typed the manuscript with
skill, patience, and good humor.

ATARI BASIC

i |
Sl

LR

s = ol F
W ."'.1-_ I" I:\." L
' i a_,ﬂil‘ '1;_‘..“' Hy
g '}—.-IH p.’r,:‘ -_t-'l.uﬂ-".' _II.. P A
' LR LS

LEARNING TO USE
THE ATARI KEYBOARD

There is only one way to learn how to program a
computer. You must write programs and run them on
a computer. It is not possible to learn to program by
reading about it. Programming is an action activity.
You must do it! This book is designed to help you
learn how to program in the BASIC programming lan-
guage by actually using an ATARI computer.

The ATARI computer is one of several popular per-
sonal computers (such as the PET, the Apple Il, and
the TRS-80) that are finding their way into an
increasing number of homes and schools. All of these
personal computers will run programs written in the
BASIC programming language. However, this lan-
guage is implemented somewhat differently on each
of these various computers. This is particularly true
with respect to how graphics programming is done.
This means that a BAsIC program written for an Apple
Il computer will not, in general, run on an ATARI
without some modification. It also means that if you
are learning BAsIc for the first time, it will be easier for
you if you use a book written specifically for the kind
of computer you are using. In this way you will not
become frustrated by all of the little ““exceptions’” that
apply only to your computer.

This book is written with the assumption that you
have an ATARI 800 or ATARI 400 computer available
for you to use.

The programs shown in this book were all written
on an ATARI 800 computer, shown in Figure 1.1.
However, most of the programs will run on an ATARI
400.

In this chapter you will become familiar with the
use of the ATARI keyboard. In particular you will
learn the meaning of the special keys shown in Figure
1.2. In the process you will learn how to draw simple
graphic figures.

You will also learn

1. to use the PRINT statement

FIGURE 1.1

The ATARI 800 computer.

ATARIEOO

FIGURE 1.2 Special keys discussed in this chapter.

2. what strings and string variables are

3. the difference between the immediate and de-

ferred modes of execution

4. to use the LIST and RUN commands
5. to edit a statement.

THE ATARI KEYBOARD

Begin by turning on your ATARI computer. This is
done with the switch on the right side of the com-
puter, shown in Figure 1.3. If you're using a disk
drive, turn the disk drive on first, insert a master
diskette, and then turn on the computer. The TV
screen should have the display shown in Figure 1.4.

FIGURE 1.3 Turni

FIGURE 1.4
computer.

Initial screen display using an ATARI

Your ATARI computer contains a read only mem-
ory cartridge, called a ROM, that contains the BASIC
interpreter. This cartridge can be seen by opening the
lid above the keyboard, as shown in Figure 1.5. An-
other ROM cartridge is located under the ATARI’s
main cover. This cartridge contains a collection of
systems programs called an operating system. The lo-
cation of this ROM cartridge is shown in Figure 1.6.

FIGURE 1.5 ROM cartridge containing the BASIC
interpreter.

LTI TR TR ARG

L]
LT

) CLEAR 1 INSERT OELETE
BRE
< ~

BACK S

FIGURE 1.6 Cartridges containing read/write

memory (RAM) and the ATARI’s operating system
(ROM).

In addition to the read only memory (ROM), your
ATARI computer also contains some read/write mem-
ory, called RAM for random-access memory. These
RAM cartridges are also shown in Figure 1.6. The dif-
ference between ROM and RAM is that you can
change the contents of a RAM location, while the
contents of a ROM location are fixed and can’t be
changed. Also, when you turn the power to your
ATARI computer off, the contents of the RAM loca-
tions are lost, while the contents of the ROM loca-
tions are retained. This is why the BAsIC interpreter,
located in ROM, is always there every time you turn
your computer on. On the other hand, every program
you write is stored in RAM and is lost whenever you
turn the power off. This is why you must save your
programs on a cassette tape or diskette if you wish to
run them at a later time without having to type in the
entire program again.

The amount of RAM you can have in your ATARI
depends on the number and size of the RAM car-
tridges you have. Each cartridge may be either an 8K
or 16K RAM cartridge. The more RAM you have, the
larger the programs you can run and the more data
you can store in the computer. If you have 16K of
RAM, your ATARI contains 16,384 bytes of RAM
(1K = 1,024 bytes). A byte is 8 bits, where a bitis a 1
ora0. Thus, forexample, 10101101 is a byte. It takes
1 byte to store a character in the ATARI. If your ATARI
contains 32K bytes of RAM, you really have 32,768
bytes of RAM. Three 16K cartridges would give your
ATARI 48K or 49,152 bytes of RAM.

When the TV screen contains the word READY fol-
lowed (on the next line) by a square cursor, the com-
puter is ready and waiting for you to type in some-
thing. Try typing your name and then press the
RETURN key. If your name is JOHN you should see
something like the display shown in Figure 1.7.

READY
JOHN
ERROR—
John
ERROR—
|

JOHNE
Fohn

FIGURE 1.7 An ERROR occurs when you type an
invalid BASIC command.

Note that the message
ERROR- JOHN

appeared on the screen when you pressed the RE-
TURN key. This is because JOHN is not a valid BAsIC
command and the computer can only respond to
BASIC commands that it understands. You will learn
all of these valid BAsIC commands in this book. If you
still type an invalid command because of misspelling,
for example, the ATARI will respond with an ERROR
message. You cannot hurt the computer by pressing
the wrong key. If it doesn’t like what you typed, it will
let you know.

When you turn on the ATARI it will print letters in
upper case (CAPS). All Basic statements must be
typed in all caps. If you want to type lower-case let-
ters, press the CAPS/LOWR key located on the right
side of the keyboard (see Figure 1.2). Then type
JOHN again as shown in Figure 1.7. Note that you
still get an ERROR, but this time the ATARI does not
even recognize the first letter because it is lower case.
To return to all caps, press the CAPS/LOWR key
while holding down the SHIFT key.

Graphic Keys

All letter keys (and some punctuation keys) have
graphic symbols associated with them. These are
shown in Figure 1.8 as they are positioned on the
keyboard.

FIGURE 1.8 Graphic symbols can be printed by
holding down the CTRL key.

These symbols can be typed on the screen by hold-
ing down the CTRL key while pressing the particular
graphic key. For example, if you press keys P . , ;
while holding the CTRL key down you will display
the spade, heart, diamond, and club used in playing
cards, as shown in Figure 1.9.

FIGURE 1.9 Playing card graphic symbols.

Note that when you press RETURN after typing
only graphic symbols you also get an ERROR. Try
typing some of the graphic symbols to see what they
look like. They are shown in Figure 1.10.

Cursor Keys

The four keys labeled cursor keys in Figure 1.2 con-
tain four arrows on small white squares. If you press
any of these keys while holding the CTRL key down,
the cursor will move in the direction of the arrow. Try
it.

Graphic Graphic Graphic

Key Symbol Key Symbol Key Symbol
comma 3 J ™ T 0
A [H K 8] U]
B] L ") v 13}
C 4] M ta W v
D 4 N - X]
E 4] o) u | Y ®
F P (2] z w
G Q] Period O
H (4] R] semicolon 8

! ® S

FIGURE 1.10 Graphic symbols available on the
keyboard.

If you continue to hold a cursor key down (while
also holding the CTRL key down) the cursor will con-
tinually move across the screen. Try this. In fact, all
keys on the keyboard will repeat if they are held
down.

Note that if you move the cursor above the top of
the screen, it will come in at the bottom. Similarly, if
you move it below the bottom of the screen it will
come in at the top. Moving the cursor past the right
edge of the screen will cause it to come in at the left
on the same line. Similarly, moving it off the left edge
of the screen causes it to come in at the right edge on
the same line. Try this.

CLEAR Key

The CLEAR key is located on the top row of keys. The
word CLEAR appears over the < symbol (see Figure
1.2). If you press this key while holding down the
SHIFT key, the screen will clear. Try this. The screen
will also clear if you press the CLEAR key while hold-
ing down the CTRL key.

MAKING GRAPHIC FIGURES

The graphic keys and the cursor keys can be com-
bined to form graphic figures. For example, clear the
screen (by pressing SHIFT CLEAR); then move the
cursor down near the center of the screen. Now type
the following keys. (CTRL Q directs you to type the
graphic symbol on key Q.)

CTRL Q
CTRL E

CTRL |
CTRL «
CTRL «
CTRL Z
CTRL C

You should have generated a square figure, as shown
in Figure 1.11.

FIGURE 1.11

Square figure generated used
keys, Q, E, Z, and C.

Similar shapes can be made using other graphic
keys. For example, in Figure 1.12 the solid square is
made using the graphics on keys |, O, K, and L. The
diamond is made using the graphics on keys F and G.
Try making these figures.

FIGURE 1.12 Hollow square generated using
keys Q, E, Z, and C; solid square generated using
keys |, O, K, and L; diamond generated using keys
F and G.

REVERSE VIDEO

The ATARI key shown in Figure 1.2 is used to turn the
reverse video on and off. Clear the screen, press the
ATARI key, and then type

THIS IS REVERSE VIDEO

The result should be as shown in Figure 1.13. To turn
the reverse video off, press the ATARI key again.

FIGURE 1.13 Example of reverse video.

HIS IS5 REVERSE VIDEO

The reverse video key can be useful when making
certain graphic figures. For example, the graphic fig-
ure in Figure 1.14 can be made by typing the follow-
ing keys:

CTRL H

CTRL J

CTRL |

CTRL «

CTRL «

REVERSE VIDEO ON (ATARI KEY)
CTRL J

CTRL H

REVERSE VIDEO OFF (ATARI KEY)

FIGURE 1.14 Graphic figure generated using
keys H and J plus reverse video.

Try making this figure.

EXERCISE 1.1
Try to generate the graphic figure shown in Figure
1.15.

FIGURE 1.15 Graphic figure for Exercise 1.1.

5

STRINGS AND THE PRINT STATEMENT

Clear the screen and type

PRINT “THIS IS A STRING"

followed by RETURN. The result should be as shown
in Figure 1.16. Note that the computer immediately
printed the words THIS IS A STRING. Any sequence
of characters enclosed between quotation marks (** ')
is called a string. If you type the word PRINT followed
by a string, the computer will immediately print this
string (without the quotation marks) on the screen.
This is called the immediate mode of execution.

FIGURE 1.16 Using the PRINT statement in the
immediate mode of execution.

PRINT''THIS
THIS IS A

READY
n

STRING"

IS A
STRING

When writing a BASIC statement, spaces are nor-
mally ignored by the computer. Thus, for example,
you could have included a space following the word
PRINT in Figure 1.16. However, when included as
part of a string (that is, between quotation marks)
spaces are not ignored.

A string may include the graphic characters. For
example, try printing the playing card symbols as
shown in Figure 1.17 (keys P . , ;;).

FIGURE 1.17 Printing graphic symbols using the
PRINT statement.

PRINT'209e'’
+099

READY
[

A string may also include the cursor moves. This
may seem a little strange at first, but as you will see,
this is what allows you to prestore an entire graphic
figure as a string. If you press the ESC key (see Figure
1.2) before you press one of the cursor keys in a string
(that is, after you have typed one quotation mark) the
cursor movement does not take place at that time. In-
stead, the cursor arrow is printed in the string. Later,

when this string is printed, the cursor movements will
occur in the order in which they appear in the string.

For example, suppose that you want to print the
square graphic figure shown in Figure 1.11. Just in-
clude the key strokes

CTRL Q
CTRL E
ESC CIRL |
ESC CTRL «
ESC CTRL «
CTRL Z
CTRL C

as a string in a PRINT statement. The result will look
like Figure 1.18. Try it. Note that when the PRINT
statement is executed, it is just as if you typed all the
keys, including the cursor moves, very rapidly.

FIGURE
moves.

1.18 PRINT statement using cursor

PRINT' ' m4€ebd it

a

The arrows that appear in a string when you press
the ESC key before typing the cursor key are simply
used to tell the ATARI what to do with the cursor
when the PRINT statement is executed.

EXERCISE 1.2

Use the PRINT statement to generate the graphic fig-
ure shown in Figure 1.14. Your result should look like
Figure 1.19.

FIGURE 1.19 Answer to Exercise 1.2.

PRINT "M+ €€ W

DEFERRED MODE OF EXECUTION

If a BAsIC statement such as PRINT is preceded by a
line number (such as 10), the statement is not exe-
cuted immediately but rather its execution is deferred
until the command RUN is typed. For example, Fig-
ure 1.20 shows how to print the playing card symbols
using the deferred modes of execution. When BAsIC
statements have line numbers, these statements are
“stored”” in the computer. They can be run at any
time. If you type RUN again the computer will again
display the playing card symbols. Try it.*

FIGURE 1.20 PRINT statement using the deferred
mode of execution.

10 PRINT''2¢we'

Note that you must press RETURN at the end of
each statement (such as PRINT) or command (such as
RUN). The ATARI does not look at what you have
typed on a line until you press RETURN. The ATARI
then deciphers what you typed on the line and de-
cides what to do.

You can always look to see what BAsIC statements
you currently have stored in the ATARI by typing
LIST. Try it. You should have listed the single PRINT
statement number 10 shown in Figure 1.21.

FIGURE 1.21 The LIST command will list all BAsIC
statements stored in memory.

10 PRINT''ewe!''

18 PRINT ''Seve'’

READY
|

*Type NEW before typing the statement in Figure 1.20. See
Chapter 2 for a discussion of the command NEW.

You can now edit this PRINT statement by using
the cursor keys. Suppose that you want to print the
word HEAR instead of the playing card symbols.
Using the cursor keys, move the cursor over the club
in the PRINT statement. Then type HEAR followed by
RETURN. Now move the cursor down below READY
and type RUN. The result should be as shown in Fig-
ure 1.22.

FIGURE 1.22 (a) Editing a PRINT statement; (b)
running edited program.

LIST
186 PRINT
REaADY

YHEDS'

(@)

LIST
16 PRINT
READY

RUN
HEAR

IIHEQRII

READY
n

(b)
The question mark (?) can be used as an abbrevia-
tion for the word PRINT. Try typing
2"THIS WILL STILL PRINT"”
In the deferred mode, if you type
10 2 “HELLO"
RUN

the word HELLO will be printed. Note that if you now
type LIST, a space will be inserted after the question
mark (see Figure 1.23).

?"THIS HWIL
THIS HWILL

READY
1967"HELLO"

18 ? “HELLO"

READY
|

FIGURE 1.23 The question mark (2) can be used
as a substitute for the word PRINT.

You can clear the screen in a BASIC program by
including the keystrokes ESC SHIFT CLEAR in a string
in a PRINT statement. For example, try the statement

10 2”ESC SHIFT CLEAR”

Note that a special arrow symbol that points up and
to the left is displayed between the double quotes.
When you execute this statement by typing RUN the
screen will clear. Try it.

EDITING USING THE BACKSPACE, DELETE, AND INSERT KEYS

The backspace key contains the words DELETE/BACK
S; it is located above the RETURN key. When you
press the backspace key the cursor moves one space
to the left and erases any character that may have
been located at that position on the screen. For exam-

ple, type
PRINT ““ABCSEF"

but do not press the RETURN key. Now press the
backspace key four times so that SEF”” is erased. Now
retype DEF”’ and then press RETURN. The letters
ABCDEF should be printed on the screen. If you press
the DELETE/BACK S key while holding down the
SHIFT key, the entire current line will be erased.

Suppose that you have already pressed the RE-
TURN key before you notice a mistake. There are a
couple of things you can do. You can just type the en-
tire line over again. Any time you type a BASIC state-
ment beginning with a particular line number, this
new statement will replace any previous statement
having the same line number. This is also an easy
way to erase an entire line in a BASIC program. For ex-
ample, if you type the number 50 and then press the
RETURN key immediately, line 50 will be completely
erased from the program.

You can also edit a line by using the INSERT and
DELETE keys while holding down the CTRL key. For
example, suppose that you want to change the word
HEAR in the PRINT statement in Figure 1.22 to
HEARING. First list the statement by typing LIST.
Then move the cursor over the last quotation mark.
While holding the CTRL key down press the INSERT
key three times. This will move the quotation mark
over three places. Now you can type ING followed

by RETURN. If you now move the cursor down and
type RUN, the computer should print the word
HEARING, as shown in Figure 1.24.

FIGURE 1.24 Inserting ING into “HEAR.”

LIST
18 PRINT ""HEARE '
READY

(@)

LIST

10 PRINT '"'HEARING'
RUN

HEARIHNG

READY
]

(b)

LIST
10 PRINT "JJEARING'’
READY

(@
FIGURE 1.25 Deieting HEA from "HEARING.”

Suppose that you now want to change HEARING
to RING. Type LIST (this isn’t necessary but it mini-
mizes the distance you have to move the cursor) and
then move the cursor over the letter H in HEARING.
Hold down the CTRL key and press the DELETE key
three times. You should have deleted the letters HEA.
Note that pressing the DELETE key while holding

LIST
10 PRINT °''RING'

(b)

down the CTRL key will delete the character at the lo-
cation of the cursor. Now press RETURN, move the
cursor down, and type RUN. The word RING should
be printed on the screen, as shown in Figure 1.25.

The INSERT and DELETE keys can be used to edit
any BASIC statement.

STRING VARIABLES

As you have seen, any sequence of characters en-
closed between quotation marks is called a string.
Thus, for example, the following are strings:

""HELLO"

1% %%k %11

“THIS IS A STRING"”

Any character or graphic symbol can be included in a
string. To the ATARI a blank space is just another
character when it is included in a string.

A string can be given a special name and then can
be referred to by this name. These string names are
sometimes called string variables. The name of a
string must start with a letter and end with a dollar
sign ($); it can contain from 1 to 120 alphanumeric
characters. Thus, the following are valid string
names:

A$
B3%
AXE$
HOUSE$
FIVE$
The ATARI has a number of reserved words that it is

constantly looking for. For example, RUN and LIST
are reserved words. A complete list of reserved words

is given in Appendix A. If a variable name starts with
one of these reserved words, your program may not
run properly. Thus, it is probably a good idea to keep
your names short. Shorter names will also use less
memory.

A string variable such as A$ can be assigned a par-
ticular string such as “THIS IS A STRING”’. This string
contains 16 characters (including all blanks). Before
this string can be assigned to A$, the variable A$ must
be dimensioned to 16 using the DIM statement.*

10 DIM A$(16)
This statement will reserve 16 character positions for
the string A$.

The equal sign (=) can be used in BASIC to assign a
particular string to a particular string variable or
name. Thus, for example, you could type **

10 DIM A$(16)
20 A$="THIS IS A STRING"

*This use of the DIM statement in ATARI BAsIC differs
from the more common use of the DIM statement in
other versions of BAsIC to dimension string arrays.
**Some versions of BASIC require you to use the word
LET in an assignment statement. Thus, you would
write

From now on the name A$ is considered to be the
same thing as the string “THIS IS A STRING”. You
can, for example, print it with the PRINT statement.

30 PRINT A$

Try this. You should get the result shown in Figure
1.26.

FIGURE 1.26 Using string variables in a PRINT
statement.

LIST

S DIM aA5(1i6)
10 A5=""THIS IS5 A STRING"
20 PRIMT AS

REGLDY
RUM
THIS I35 A STRING

READY
|

If you change line 10 in Figure 1.26 to
10 DIM A$(12)

then only the first 12 characters of the string will be
printed. Try it. You can always dimension a string
with a larger value than the actual number of charac-
ters in the string.

Of course, you can include graphic characters and
cursor moves in your definition of a string variable.
Thus, for example, to draw the square figure in Figure
1.18 you could define a string variable A$, as shown
in Figure 1.27.

FIGURE 1.27 Defining a graphic figure as a
string variable.

You can also define more than one graphic figure
and then print them all. For example, the three
graphic figures shown in Figure 1.12 can be defined
as the following three string variables:

A$ = hollow square
B$ = solid square
C% = diamond
Figure 1.28 shows a program that defines each of

these string variables and then prints each figure.
Type in this program and run it.

FIGURE 1.28 String variable definitions of the
figures in Figure 1.12.

-
]
(V)]
-

€7),Cc$c¢?)

NN =

200

Ar e
aamorirnnx
EE -D
)]U‘r
EEn
LK RN |

S i et ol
(il

IRNOODO

J TN
OO0

(UG ET)

E
L

LINE LENGTH

Each line on the ATARI screen contains 38 character
positions. (There are really 40 character positions on
the screen but the printing starts in the third column.)
However, the computer is able to process up to three

10

screen lines per BAsIC statement. Thus, for example, if
you are defining a string using a statement such as

10 A$="-emmm

and you get to the end of the line on the screen, you
just keep on typing. DO NOT PRESS RETURN. The
ATARI will automatically continue the statement on
the next line. When you finish the statement you must
then press RETURN.

EXERCISE 1.3
Write and run a BAsIC program that will draw each of
the following graphic figures on the screen:

20 LET A$="THIS IS A STRING"

The use of the word LET is optional in ATARI BAsIC. We
will not use it.

11

LEARNING TO PROGRAM IN BASIC

In Chapter 1 you became familiar with using your
ATARI keyboard. You also learned how to draw sim-
ple graphic figures. We will now begin to look at
some of the ideas associated with writing BASIC pro-
grams.

In this chapter you will learn

1. how to use a cassette tape recorder and/or disk
drive to save your programs

2. to use the commands, NEW, CSAVE, CLOAD
and CONT

3. to use the BREAK key
4. the general structure of a BASIC program

5. to use the statements GOTO, STOP, END, and
REM.

THE BASIC PROGRAMMING LANGUAGE

The programming language BASIC was developed at
Dartmouth College in 1963. The word BAsIC stands
for Beginners All-purpose Symbolic Instruction Code,
and the language was designed to be easy to learn
and easy to use. Over the years the BAsIC language
has been extended and modified by various manufac-
turers. ATARI BASIC is similar to the BAsIC that is found
on most microcomputers today.

The main advantages of using BASIC are that it is
simple to use and is available on a cartridge for your
ATARI. For all its simplicity, you will find that ATARI
BASIC is quite powerful, allowing you to write high-
performance programs fairly easily.

12

There are, however, certain drawbacks to ATARI
BASIC. First of all, it is slow. You probably won’t no-
tice this until you try to draw a large picture quickly.
The reason it is slow is that the ATARI contains a BASIC
interpreter in its ROM cartridge. This means that each
time you run your program the ATARI decodes and
executes each of your BAsIC statements one by one.
This takes time.

Assembly Language

If you want to really speed up the execution time of a
program you must write the program in assembly

language rather than Basic. This is a lower-level lan-
guage that the ATARI can execute directly. The
“brain’’ of the ATARI is a 40-pin chip called a 6502
microprocessor. It is this chip, shown in Figure 2.1,
that can decode and execute a 6502 assembly lan-
guage program. Any microcomputer that uses the
6502 microprocessor can execute programs written
in 6502 assembly language. The Apple Il and PET
computers also use a 6502 microprocessor. Radio
Shack TRS-80 Level Il and Level Ill computers use the
Z80 microprocessor, which executes a completely
different assembly language. The TRS-80 Color Com-
puter uses a 6809 microprocessor, which executes
still a different assembly language. We will not con-
sider assembly language programming further in this
book.

FIGURE 2.1 The 6502 microprocessor is the
“brain” of the ATARI.

11

8107

Structured Programming

You may hear that BASIC is not a very “‘well-struc-
tured” language and that other languages such as
PASCAL are “better’” in some sense. While it is true
that PASCAL almost forces you to write well-structured
programs, it is also true that well-structured programs
can be written in any language, including BAsIC. In
this book we will try to minimize any bad program-
ming habits that BASIC might encourage and show you
how to write good programs in BASIC.

Learning the Language

There are two aspects to learning computer
programming. The first is to learn a programming lan-
guage. This is the easy part. The second is to learn
how to write programs to accomplish a particular
task. This is the hard part. Learning a computer lan-
guage consists of learning the syntax and semantics of
the various statements that make up the language.
Syntax refers to the rules for forming the various state-
ments. For example, the PRINT statement must be
spelled PRINT and a string must be enclosed between
quotation marks. We will look at more details of the
PRINT statement in the next chapter. Semantics refers
to what it is that a particular statement does. For ex-
ample, the statement PRINT followed by a string will
print the string on the screen.

Learning How to Write Programs

Learning how to write a program to accomplish a par-
ticular task is the hard part of computer program-
ming. You must determine what you have to tell the
computer in order for it to do what you want. You
will find that the computer always does exactly what
you tell it to do. However, often what you tell it to do
is not what you think you are telling it to do. This will
lead to errors that are sometimes hard to find. The
best way to avoid many of these errors is to think
through the problem carefully before you start to
write any BASIC statements. Understanding exactly
what you want to do is a major step in solving a prob-
lem.

It turns out that there are only a few basic rules for
telling a computer what to do. Computers like to do
the same thing over and over again. This is accom-
plished in a computer program by means of a loop.
We will look at a simple loop later in this chapter.
More detailed discussions of loops are given in Chap-
ters 5 and 8. The other thing computers like to do is to
make a simple choice between two alternatives. This
process of making choices will be described in Chap-
ter 6. Any computer program can be constructed by
combining loops with the process of making simple
choices.

SAVING YOUR PROGRAMS

Your ATARI may have either a cassette tape recorder
or a floppy disk drive connected to it. These devices
are used to store your programs on either a cassette
tape or a floppy disk. A floppy disk drive is more ex-
pensive than a cassette tape recorder, but it is much

more convenient. You can store many programs on a
floppy disk and retrieve any one quickly by name. In
this section we will show you how to save a program
on either a cassette tape or a floppy disk.

13

NEW

Type NEW followed by RETURN. This will clear any
BASIC program that you have stored in the computer.
You should type NEW before you begin typing in a
new program. Failure to do this may cause parts of
old programs to be combined with your new pro-
gram.

Now type in the following program:

5 DIM A$(3), B$(6), C$(9)
10 A$="333"

20 B$="666666"

30 C$="999999999"

40 <¢A$
50 ¢2¢B$
60 2C$

This program listing and its execution are shown in
Figure 2.2.

FIGURE 2.2 This program prints three strips of
numbers.

DT

IR0

DI
a
B
C
Z
e
i

Aty T 2 2D

Cassette Tape Recorder

Suppose that you wish to save the program shown in
.Figure 2.2 on a cassette tape. First make sure that the
tape recorder is properly connected to the ATARI and
is plugged in. Rewind the tape (if necessary) and then
type
CSAVE

followed by RETURN. You should hear two ““beeps,”’
indicating that you should press the PLAY and RE-

14

CORD buttons on the recorder. Do this and then
press the RETURN key on the ATARI keyboard. The
tape should start moving. This means that the ATARI
has started to store your program on the cassette tape.
When it has finished writing your program on the
tape (usually less than a minute), the READY message
will reappear on the screen.

Your program is now stored on the cassette tape.
In order to verify this, type NEW, which will clear
your BASIC program in the ATARI. For example, if you
now type LIST you will find that nothing gets listed. In
order to retrieve your program, you must load it in
from the cassette tape.

Rewind the tape and type

CLOAD

followed by RETURN. You should hear a single
“beep,” indicating that you should press the PLAY
button on the recorder. Do this and then press the RE-
TURN key on the ATARI keyboard. The tape should
start moving. Your program is now being loaded into
the ATARI. When the READY message returns to the
screen, the tape will stop and your program will have
been completely loaded. You can see the program
listing now by typing LIST; you can execute the pro-
gram by typing RUN.

You can store more than one program on each side
of the tape and can use the counter on the recorder to
position the tape to the proper location before using
CLOAD or CSAVE.

Floppy Disk Drive

If your ATARI has a floppy disk drive connected to it,
you can save your program on a floppy disk by typing

SAVE ““D:NUMBERS"”

where NUMBERS is the name of the program. You
can make up any name containing up to eight letters
or digits (the first character should be a letter) option-
ally followed by a suffix, .XXX. The top red light on
the disk drive will light up and the disk drive will
make a whirring sound for a few seconds while your
program is being written on the disk.

After the top red light on the disk drive goes out,
type DOS followed by A RETURN RETURN. This will
list all of the programs that are stored on the disk. This
list should now contain the name

NUMBERS

To verify that your program is really on the disk, type
NEW, which will clear your BAsIC program in the
ATARI. If you now type LIST you will find that noth-
ing gets listed. In order to retrieve your program from
the disk, type

LOAD ““D:NUMBERS”

The top red light on the disk drive will come on and
you will hear the whirring sound again. Your program
is being loaded into the ATARI memory from the disk.
When the top red light goes out, your program will be
completely loaded. You can see the program listing
by typing LIST and execute the program by typing
RUN.

It is possible to both load and run a program with a
single command. If you type

RUN “D:NUMBERS"”

the ATARI will first load the program NUMBERS from
the floppy disk and then execute the program as soon
as it is completely loaded into the ATARI memory.

STOPPING PROGRAM EXECUTION

Add the statement
70 GOTO 40

to the program shown in Figure 2.2. If the program in
Figure 2.2 is in the computer memory, you can add
this statement by simply typing it as shown. Type LIST
in order to see the entire program. It should look like
Figure 2.3.

FIGURE 2.3 Program to display a continuous se-
quence of number strings.

SODIM ASCE) BE(L) ,CE (D)

10 A= EEEY

20 BE="HAELELHEL"

S0 CE="R0999990000

40 7 A%

a0 T B

&0 P C#

70 GOTO 40

The statement
70 GOTO 40

means exactly what it says. When statement number
70 is executed it simply branches back and executes
statement number 40 again. This is a loop that contin-
ues indefinitely, as shown in Figure 2.4.

FIGURE 2.4 An indefinite loop that prints num-
bers until your press BREAK.

40 2A$ prints three 3s
50 2B$ prints six 6s
60 2C$ prints nine 9s
70 GOTO 40

Now run this program. As you can see, the three
strings A$, B$, and C$ are being printed endlessly. In
order to stop this program, press the BREAK key lo-
cated above the RETURN key. Note that you get a
BREAK message, as shown in Figure 2.5.

FIGURE 2.5 Stopping a program by pressing
BREAK.

CONT

The program shown in Figure 2.3 displays three 3s,
six 6s, and nine 9s over and over again. Each time the
program is run it will always start with the three 3s.
This can be seen in Figure 2.6, where the program
was stopped by pressing BREAK just after displaying
the six 6s. Note that the program starts again by
displaying the three 3s.

If a program has been stopped, the statement
CONT can be used to continue the program from the
place where it left off. This is illustrated in Figure 2.7,
where the program was again stopped just after
displaying the six 6s. Note that after typing CONT the
program restarts at the point of displaying the nine 9s.

15

]
L]
0

0
0
W

W
W
W

W
W
0

6
2
6
2
6
2
&
2
&
9

Wwith sadh o W Wi wo

W
LX)
W

AT LINE 596

AT LINE 68

FIGURE 2.6 RUN causes the program to start at
the beginning.

STOP

The statement STOP can be included in a BASIC pro-
gram. This will have the same effect as pressing
BREAK. This can be very useful in debugging (finding
the errors in) a program that doesn’t work properly.
You can just insert a STOP statement, check what the
program has done up to that point, and then resume
execution of the program by typing CONT.

)
w0
W

W
W
W

3
6
2
3
6
2
I
&
2
&

Wi M 9;m
oWt M O
o s Wi wo

W0

W

W0

STOPPED

E] AT LINE
|

FIGURE 2.7 CONT causes the program to start
from the place where it left off.

END

The END statement is traditionally used to stop a
BASIC program at the end of the program. It does not
cause a BREAK message as the STOP statement does.
In ATARI BAsIC the END statement is optional. As you
have seen, we have not been using the END state-
ment in our programs. A BASIC program in the ATARI
will automatically stop if there are no more state-
ments to execute.

THE STRUCTURE OF A BASIC PROGRAM

Sequence Numbers

A BASIC program consists of a sequence of BASIC state-
ments. Each line of a BASIC program must begin with a
sequence number. When the program is executed,
the statement with the lowest sequence number is ex-
ecuted first. Additional statements are then executed
in order of increasing sequence number. Sequence
numbers can be any integer between O and 32767.

When you write a BASIC program, you should in-
crement your sequence numbers by 10. The program
should look like this:

10 first statement
20 second statement
30 third statement

16

etc.

This is done so that if you later want to insert a new
statement between the second and third statement,
you can just type

25 new statement

and this new statement will be inserted between
statement 20 and statement 30. If you hadn't left any
room between the second and third statements, you
would have had to renumber all of your statements.

If you think that you may want to add some new

OREM OPROGRAM TO FRINT
= DIM A (3 ,BE (L) ,CH S
10 Ad="EES"

20 BE="4HELHLL

=0 PR
40 T A%
=0T RE

&HO T CH
TOOEOTO 40

THREE STRINGS OF

NUMRERS

FIGURE 2.8 Use of the REM statement to make

remarks in a program.

statements at the beginning of your program, it would
be a good idea to start your program with a higher se-
quence number, such as 100, and then continue with
110, 120, 130, and so on.

REM

A good statement to include at the beginning of your
program is a remark statement. This statement
consists of the three letters REM. The remainder of the
line can then be used for any kind of remark. These
remarks are ignored by the ATARI when the program
is executed. Their only purpose is to make the pro-
gram easier to understand. For example, in the pro-
gram shown in Figure 2.3 you may want to add the
statement

3 REM PROGRAM TO PRINT THREE
STRINGS OF NUMBERS

as shown in Figure 2.8.

As mentioned earlier, any BASIC statement can use
more than one screen line. When you type the re-
mark in Figure 2.8 and reach the end of the first line,
you must keep on typing. Do not type RETURN at the
end of the first line or you will terminate the statement
at that point. You must then start the next line with a
new sequence number and another REM statement.
R. or .(SPACE) can be used as an abbreviation for
REM. They will both be changed to REM when the
program is listed.

Multiple Statements per Line

ATARI BAsIC allows you to write more than one BASIC
statement per line by separating the statements with a
colon (:). By a line we mean the characters from the
line (or sequence) number to the RETURN, which
may consist of up to three screen lines. This can be an
advantage for a number of reasons: (1) It allows you
to group a number of short related statements to-
gether; (2) it allows you to include remarks on the
same line as a BASIC statement; and (3) it saves some
memory by reducing the number of sequence num-
bers in the program. Only the first BASIC statement on
a line has a sequence number. The remaining BASIC
statements on the line are simply separated from the
preceding one by a colon.

There are, however, some disadvantages to writ-
ing more than one statement per line. If it is done in-
discriminately, it can result in a program that is very
difficult to read and understand. You will not be able
to branch a statement (for example, with a GOTO
statement) that starts in the middle of a line, since it
will not have a sequence number. Finally, it is more
difficult to insert a new statement between existing
multiple statements. You should, therefore, be care-
ful when writing multiple statements on a single line.

One good use of the multiple statement capability
is to include remarks that help to tell what is going on
in the program. For example, in Figure 2.9 we have
added three remarks that tell what each PRINT state-
ment prints. Note that a colon (:) is used to separate
multiple statements on a single line.

FIGURE 2.9 Multiple statements on a single line

are separated by a colon (:).
EOREM PROGRAM TO FPRINT
S ODIM AR I BE (L), CE ()
100 A= EEEY

20

)

B S EHLGAHLA"

40077 A% REM FRIMT
20 7 By REM FRINT
T OCH:REM FRINT
HOTO 40

SIXES
MNINES

&0

70

THREE STRINGS

THREES

OF NUMBERS

17

More about LIST FIGURE 2.10 Examples of the LIST statement.

We have seen that the command LIST will list the en-
tire BASIC program that is stored in memory.
It is also possible to list only selected parts of a pro-
gram. For example, if you type LIsTs0
386 €£5$=""999999999n
LIST 30

only the line with the sequence number 30 will be
printed on the screen.
You can also list lines 20 through 40 by typing

LIST 20,40

These examples are shown in Figure 2.10.

READY
|

. LIST 20,40
Memory Locations 20 BS5="66 "

6666
and Computer Programs 38 C$=''999999999"
48 7 a5

A computer program is like a train going on a trip. READY
The seats in the train are the memory locations or
memory cells in the computer. Each seat has an “‘ad-
dress’” or name that identifies it. These names corre-
spond to the variable names in a BASIC program. For
example, three different seat names could be A$, B$,
and C$. Each seat would have a different name.

Whoever or whatever is in a particular seat corre- FigURE 2.11
sponds to the contents of a particular memory loca-
tion in the computer. For example, if “JOHN"" is sit-
ting in seat A$, then the BAsIC statement

A$="JOHN"

can be interpreted as meaning: Put “JOHN"’ in seat
A$. It is very important to clearly distinguish between
the name of the memory location or seat on the train
(A$) and the contents of that memory location or seat
("JOHN""). See Figure 2.11.

Up to now all of our memory locations have con-
tained strings and have had names that end with a
dollar sign. If a memory cell name does not end with
adollar sign, the computer will assume that the mem-
ory cell contains a number. The use of memory cells
containing numbers will be discussed in the next
chapter.

Memory locations are like seats on
a train.

18

LEARNING MORE ABOUT PRINT

In the first two chapters of this book you have written
short programs that print strings. In this chapter you
will see how the ATARI can work with numbers as
well as strings. You will find that the ATARI can serve
as a very good calculator.

In this chapter you will learn

1. how to use the ATARI as a calculator

2. to write arithmetic expressions involving addi-
tion, subtraction, mutliplication, division, and
exponentiation

3. how to use the comma and semicolon in a
PRINT statement

4. how to use the TAB key in a PRINT statement
5. to use the POSITION statement

6. how to display letters in reverse video and
lower case

7. some of the built-in functions in the ATARI.

THE ATARI AS

A CALCULATOR

By using the PRINT statement in the immediate mode
of execution you can use your ATARI as a calculator.
You can add, subtract, multiply, divide, and raise a
number to a power.

Addition
If you type
PRINT 5+3

the ATARI will respond with 8. You can use the ques-
tion mark as an abbreviation for PRINT. Thus if you

type

25+3

the ATARI will also respond with 8, as shown in Fig-
ure 3.1. Try it.

Subtraction

If you type
212-5

the ATARI will respond with 7, as shown in Figure
3.1. Try it.

19

FIGURE 3.1
mode.

Using the ATARI in the calculator

Multiplication
The symbol for multiplication in BAsIC is the asterisk
(*). Thus, if you type
23*4

the ATARI will respond with 12, as shown in Figure
3.1. Try it.

Division
The symbol for division in BAsIC is the slash (/). Thus,
if you type
215/3

the ATARI will respond with 5, as shown in Figure
3.1. Try it.

Exponentiation

The symbol for exponentiation in BAsIC is the upward
arrow (/\); to print it press the same key as the asterisk
(*) while holding the SHIFT key down. Thus, if you
want to raise 2 to the power of 3 (2 cubed) you would
type

22/\3

and the ATARI should respond with 8. Try it. As you
can see, the ATARI displays 7.99999991 due to trun-
cation errors. Note that when the exponent is an inte-
ger, exponentiation is equivalent to repeated multi-
plication. Thus,

2/\3=2*2*2

20

Arithmetic Expressions

The arithmetic operators +, —, *, /, and /\ can be
combined in a single arithmetic expression. For ex-
ample, if you type

25+3-2

the ATARI will respond with 6. What do you think the
ATARI will display if you type the following expres-
sion?

26+12/2+4

Try it. Did it display what you thought it would?
You have found that the ATARI gave the answer
16. This is because the ATARI does division before
addition. All computer languages don’t work this
way. For example, the language APL evaluates all ex-
pressions from right to left. Thus, it would give the
preceding expression a value of 8. Do you see why?
In BAsIC, arithmetic expressions are evaluated ac-
cording to the following order of precedence:

1. All exponentiations, /\, are evaluated first.

2. All multiplications, *, and divisions, /, are eval-
uated next.

3. All additions, +, and subtractions, —, are eval-
uated last.

Within each level of precedence, the expression is
evaluated from left to right. Parentheses can always
be used to change the order of precedence. In this
case expressions within the innermost parentheses
are evaluated first.

Try to evaluate each of the following arithmetic ex-
pressions and then type them on the ATARI to check
your results. The answers are shown in Figure 3.2.

FIGURE 3.2 Evaluation of arithmetic expressions
on the ATARI.

?28-3+4/2
7

READY
23%2-5+8/4
3

REGDY
?28+1/3
8.23333333

REAGDY
ZLZ+4I%(6—-3)

28—3+4/2
23*2—-5+8/4
28+1/3
2(3+4)*(6—-3)
220/2/5

Did you guess the correct answer to the last expres-
sion? Remember that the two divisions are evaluated
from left to right, so the correct result is

202 _ 10 _
5 5

and not

20 _ 20*5 _

— 50
2/5 2

If you want the second result you can type
220/(2/5)

Try it.

Note that in the next to the last example in Figure
3.2 it is necessary to use the multiplication symbol *.
Although (3 + 4)(6 — 3) is used to imply multiplica-
tion in ordinary algebra it does not imply multiplica-
tion to the ATARI. Any time you want to multiply any-
thing on the ATARI you must use the multiplication
symbol *.

NUMERICAL VARIABLES

We have seen that strings such as “JOHN" can be
stored in memory cells with names such as S3%. If a
memory cell name does not end with a dollar sign,
the ATARI will assume that the memory cell contains
a numerical value. For example, if you type

A=3

2A

the ATARI will respond with 3, as shown in Figure
3.3. Similarly, if you type

A=5

B=3

2A*B
the ATARI will respond with 15, as shown in Figure
B3

FIGURE 3.3 Numerical variables can be used in
the immediate mode of execution and in arithme-
tic expressions.

Note that these examples use the immediate mode
of execution. The deferred mode of execution can
also be used, as shown in Figure 3.4.

FIGURE 3.4 Use of numerical variables in the
deferred mode of execution.

LIST

18
20 B=3
38 PRINT Aa*B

READY

RUN
15

READY
E

How many digits of a number does the ATARI
display? Try typing

21/3
and

¢2/3

as shown in Figure 3.5. Note that 10 digits are dis-
played (excluding the leading zero) with any re-
maining digits truncated.

FIGURE 3.5 The ATARI displays 10 digits.

?24/3
9.333IIIIIIII
READY

?22/3
8.6666666666

READY
|

21

Scientific Notation

What happens if you type in a number containing 11
or more digits? Try typing

2112233445566

as shown in Figure 3.6. Note that the ATARI has
rewritten the number in a form that contains an E.
This is called scientific notation. The number after the
E is the number of places you must move the decimal
point in order to obtain the correct number. If the
number after the E is positive, move the decimal point
to the right. If the number after the E is negative, move
the decimal point to the left. Try typing

¢.00123

as shown in Figure 3.6.
FIGURE 3.6 Scientific notation is used by the

ATARI for numbers greater than 9999999999 and
less than 0.01.

241223

4
4

The ATARI uses scientific notation for numbers
greater than 9999999999 and less than 0.01. You
can use scientific notation if you want; the ATARI will
convert it to standard notation if your number is be-
tween 0.07 and 9999999999. Some examples are
shown in Figure 3.7. Note that the ATARI printed ER-
ROR when we tried to print TE98.

If you try to store a number larger than 1E97 you
will get an error. Also, any number with a magnitude
smaller than 1E-98 will be stored in the ATARI as 0.
However, only two digits can be used in the expo-
nent when using scientific notation.

FIGURE 3.7 You can use scientific notation in
your programs.

?22.0E3
2000

READY
?.123456E4
1234.56

READY
?-7.8ES
-788000

READY
?551234E—-4
55.1234

READY
?1.E98
ERROR— 2A.

CONTROLLING PRINTED OUTPUT

When you use the PRINT statement you can control
where on the screen the output is printed by using
commas, semicolons, the TAB key, and the POSI-
TION statement.

Comma

The comma has a special meaning in BAsIC. It cannot
be used in the customary way to separate every three
digits in a large number. For example, in BASIC the
number 3,526,489 must be written without commas
as 3526489.

Try printing the number 3,526,489 with the com-
mas by typing

23,526,489

22

FIGURE 3.8 The comma acts like a tabin a PRINT
statement.

23,526,489
3 526

READY

as shown in Figure 3.8. Note that instead of printing
one number the ATARI thought you wanted to print
the three numbers 3, 526, and 489. In a PRINT state-
ment the comma is used to move to the next fixed tab
position. The fixed tab positions are located in col-
umns 2, 12, 22, and 32, where the screen columns
are numbered 0 through 39. (The first print position
on the screen is really column number 2, as you will
see.) If you try to print more than four numbers on a
line, separated by commas, the extra numbers will be
printed on the next line, as shown in Figure 3.9 (ex-
ample 1). Note in the second example of Figure 3.9
that the negative sign in a negative number is printed
at the tab position. If the number contains more than
eight digits, a second number is moved to the next tab
position, as shown by the third example of Figure
3.9. One or more commas can precede a number in
order to skip tab positions, as shown in the last two
examples of Figure 3.9.

FIGURE 3.9 Using the comma as a tab.

?21,2,3,4,5,6
1 2

S 6
READY
?-22,-66,-77,—-33
-22 -66
READY

2122456789, 444
122456789

READY
2,45

3

READY
7,248

READY
a

The comma can also be used with strings, as
shown in Figure 3.10. Note that up to eight charac-
ters can be included in a string before a tab position is
skipped prior to printing a second string. Also note
that strings begin printing in column number 2 and at
the start of all other tab positions (12, 22, and 32).

FIGURE 3.10 Using the comma tab with strings.

2::QBCD", "'EFGH'"
ABCD EFGH

READY
?''12345678"',''1234"
12345673 1234

REAGLDY
?''12Z456789"',''1234""

1224567389 1234

READY
|

The comma can be used in PRINT statements to
separate strings from numerical variables, as shown
in Figure 3.11. Note that after the string “A=""is
printed, the comma causes a tab to column number
12 before the value of A (3) is printed. This looks a
little awkward. This gap can be eliminated by using a
semicolon instead of a comma.

FIGURE 3.11 Using the comma to separate
strings and numerical variables.

LIST

- 18 A=3
20 PRINT ‘''Aa=‘'',
380 PRINT "'THE VALUE OF A IS'".,na

READY
RUN

A= 3
THE VaLUE OF A IS
READY

|

Semicolon

If numerical values are separated by semicolons in-
stead of commas, then no space is inserted after each
value, as shown in Figure 3.12. Note that commas
and semicolons can be mixed in a single PRINT state-
ment.

FIGURE 3.12 Using the semicolon to separate
numerical values.

READY /
?11;22;23;44;55
11222324455

READY
|

When it is used with strings the semicolon leaves
no blank spaces between two strings, as shown in
Figure 3.13. When strings and numerical variables
are combined, the semicolon can be used to elimi-
nate unsightly gaps, as shown in Figure 3.14. Note
that you need to include a blank space at the end of
the string in line 30 of Figure 3.14 in order to leave a
space before the number.

23

FIGURE 3.13 The semicolon leaves no blank

spaces between strings.

2QBCD'' ; ""EFGH"'
ABCDEFGH

READY
@

FIGURE 3.14 Using the semicolon to separate
strings and numerical variables.

LIST

10 A=3
286 PRINT ''a="';A
38 PRINT "'THE VALUE OF A IS '':a

READY
RUMN
A=z

THE YalUE OF A IS 3

REGDY
|

The TAB Key

The TAB key is located on the left side of the key-
board just below the ESC key. Press this key several
times. The cursor should move across the screen,
stopping at various tab positions. The cursor will
eventually be tabbed to the beginning of the next
line.

Any of these tab positions can be cleared by mov-
ing the cursor to the tab position (pressing the TAB
key) and then pressing the TAB key while holding
down the CTRL key (CTRL TAB). To set a new tab po-
sition, move the cursor to the desired location and
then press the TAB key while holding down the SHIFT
key (SHIFT TAB).

If you press the ESC key before any of these
keystrokes and include them all in a string in a PRINT
statement, then these tab operations can be per-
formed in a BAsIC program. For example, the state-
ment

102”ESC TAB ESC CTRL TAB ESC
TAB ESC CTRL TAB”

will clear the first two tab positions on a line. This
statement will appear on the screen as shown in line
10 in Figure 3.15. Type this statement.

24

FIGURE 3.15 Using the TAB key in PRINT state-

ments.

LIST

S5 REM USING THE TAB KEY
19 7 'G'G”

28 7 u a all

38 7 "'"arBIC"

The statement

202""SPACE SPACE SPACE SPACE ESC
SHIFT TAB SPACE SPACE SPACE SPACE
ESC SHIFT TAB”

will set two tabs at screen columns 6 and 10 (remem-
ber that the printing starts at column 2). This state-
ment will appear on the screen as shown in line 20 in
Figure 3.15. Type this statement.

The statement

30 ¢“A ESC TAB B ESC TAB C”

will print the letter A, tab to the next tab position,
print the letter B, tab to the next position, and print
the letter C. This statement will appear on the screen
as shown in line 30 in Figure 3.15. Type this state-
ment and run the program. The result should be as
shown in Figure 3.15.

The POSITION Statement

Sometimes you may want to print something at a par-
ticular location on the screen. This can be done using
the POSITION statement before a PRINT statement.
The screen contains 24 rows of 40 characters for a to-
tal of 960 different print locations.

The statement

POSITION X,Y

will move an “invisible’” cursor to column number X
(0-39) and row number Y (0-23). A PRINT statement
containing a string will then print the string starting at
location X,Y.

As an example, suppose that you want to print the
message shown in Figure 3.16. You can use the PO-
SITION statement to move to the starting location for
each string, as shown in the program listing in Figure
3.17. Statement 5 in Figure 3.17a will clear the
screen. It is typed by pressing the keys

0 5 10 15 20 25 30 35

0
5

WIE|L |C|O|M|E
10

T|O H|E
15

A|TIAIR]I C|OIM|PJUITIE|R

20

FIGURE 3.16 Screen layout for POSITION statement.

5 ¢”ESC SHIFT<”

In the POSITION statement the screen coordinates
X,Y can be variables, and numerical as well as string
variables can be printed. For example, if X = 10,
Y = 6, and A = —2, then the statements

POSITION X,Y
PRINT A

will print the value —2 at the screen location 10,6.

(b)

FIGURE 3.17 The PRINT statement can be used
following the POSITION statement to print a string
anywhere on the screen.

(@)

15 r". n‘ "

10 FOSITION 16,8

2007 "WELCOME"

O OFOSITION 16,12

40 2 "TO THE"

5O POSITION 12,16

HO 7 "ATARY COMFUTER"

HELCOME

ATARI COMPUTER

25

REVERSE VIDEO AND LOWER-CASE LETTERS

You saw in Chapter 1 that pressing the ATARI logo
key will change to reverse video. Pressing it again
will change back to normal video. You can include
reverse video characters in a string in a PRINT state-
ment. For example, type the statement

10 2 “THIS IS REVERSE VIDEO”
Z;)ress ATARI key here

as shown in Figure 3.18. Note that all the letters are
displayed in reverse video.

You can type lower-case letters by pressing the
CAPS/LOWR key on the right of the keyboard. The

SHIFT key can then be used to type capital letters as
on a regular typewriter. To return to all caps, press
the CAPS/LOWR key while holding down the SHIFT
key.

As an example, type the statement

20 2 “This is UPPERﬂnd lower case”
L Press CAPS/LOWR key here?

as shown in Figure 3.18. Note that when the program
in Figure 3.18 is run, the two strings including the re-
verse video and lower-case letters are printed on the
screen.

FIGURE 3.18 Reverse video and lower-case let-
ters can be included in PRINT statements.

LIST

SLBNARMTHIS TS REVERSE UIDEOHE

20 7 "This

READY
RLUMH

THIS I5 REVERSE UIDEO

his

READGY
g

is UPPER and lower

case!

is UPPER and lower case

SOME BUILT-IN FUNCTIONS

The ATARI has a number of built-in functions that
simplify many calculations. You may use any of these
you care to in your programs.

The Functions ABS, INT, and SGN

The absolute value of a number is the magnitude of a
number without regard to its sign. The absolute value
of a number can be found by using the built-in func-
tion ABS(X). Thus, for example, if X = —7 the value
of ABS(X) will be 7.

The value of the function INT(X) is equal to the in-
teger part of X. Thus, if X = 3.25, then INT(X) is

26

equal to 3. When computing INT(X) the ATARI will
round to the next lower signed number. Thus, if
X = —3.25, the value of INT(X) will be — 4.

The function SGN(X) can be used to determine the
sign of a number. It can have the following three
values:

+1ifX>0
0IrX =10
—1ifX<O0

SGN(X) =

Examples using ABS, INT, and SGN are shown in Fig-
ure 3.19.

?2aB5(¢—-3.2)
3.2

READY
2INT(3.23
3

READY
2INTC-3.2)
-4

REGDY
|

(@)

FIGURE 3.19 Finding the absolute value ABS, the
integer part INT, and the sign SGN of a number.

Random Numbers

In many programs, particularly game programs, it is
useful to be able to generate random numbers. These
can be used to simulate dealing cards, rolling dice, or
creating other unpredictable results. ATARI BASIC has
a built-in function called RND that uses hardware to
generate a random number.

Type in and run the following program twice as
shown in Figure 3.20.

10 2 RND(0)
20 2 RND(0)
30 2 RND(0)

FIGURE 3.20 The function RND(0) produces a
random number between 0 and 1.

The function RND(0) will return a pseudorandom
number between 0 and 1. Each time RND(0) is called
it produces a different number between 0 and 1. The
argument O is of no particular significance. Any num-
ber could be used.

o
?2SGN(C3.2)
1

READY
?SGN(-3.2)
=1

REGDY

25GH L8]

a

READY
n

(b)

Square Root

The square root of a number can be found by using
the BAsIC function

SQR(X)
where X is a positive number. For example, to find
the square root of 16, type

2SQR(16)

as shown in Figure 3.21a. To find the hypotenuse R of
the right triangle shown in Figure 3.22, you could use
the program shown in Figure 3.21b. Note that the use
of the exponentiation operator /\ resulted in a trunca-
tion error. The exact value of the hypotenuse is 5.

FIGURE 3.21
SQR.

Use of the square root function

?SOR(16)
4

READY
|

(@

LIST
H=3Z

R=SOR CXAZ+YA2)

PRINT °'‘THE HYPOTENUSE IS EQUAL TO '

READY
R

UN
THE HYPOTENUSE IS EQUAL TO 4.99999294

READY
n

(b

27

= 2 2
R \} X2+ Y e

X=3

FIGURE 3.22 Finding the hypotenuse of a right
triangle.

Trigonometric Functions

The ATARI contains the following built-in trigono-
metric functions:

ATARI Function Value of Function

SIN(X) sine of X
COS(X) cosine of X
ATN(Y) arctangent of Y

In these expressions, X is a numeric constant, varia-
ble, or expression that represents the value of an an-
gle. The angle X is normally expressed in radians.
You can change this so that X is expressed in degrees
by executing the statement DEG. Once DEG has
been executed, you must execute the statement RAD
in order to go back to radians. The value of ATN(Y) is
expressed in either radians (with RAD set) in the
range *+ 1.57, or in degrees (with DEG set) in the
range = 90. The argument Y is a numeric constant,
variable, or expression.

The definition of a radian is shown in Figure 3.23.

FIGURE 3.23 Definition of a radian.

X = s radians
R

7

1 radian = angle for which S = R
= 57.3 degrees
7 radians = 180 degrees
T = 3.14159265...

To convert degrees to radians, multiply by 7/180. Ex-
amples using the trigonometric functions are shown
in Figure 3.24.

28

PI=3.1415926

READY
?2S5INCAS*PI/180)
8.7071067759

FIGURE 3.24 Using the trigonometric functions
SIN, COS, and ATN.

Natural Logarithms and the
Exponential Function

Consider the equation
y = b

In this expression x is called the logarithm of y to the
base b and is written

x = logpy

If the base b is equal to e = 2.718281 . . ., we say
that y is the exponential function y = e* and x is the
natural logarithm of y:

x=1Iny

In BASIC €* can be computed using the function
EXP(X), and In X can be computed using the function
LOG(X). If the base b is 10, the logarithm to the base
10 can be computed using the function CLOG(X).
The following properties of logarithms are
illustrated in the examples shown in Figure 3.25:

LOG(A*B)=LOG(A)+LOG(B)
LOG(A/B)=LOG(A)-LOG(B)
LOG(AAK)=K*LOG(A)

When the rate at which a quantity grows is propor-
tional to the amount of the quantity, we have expo-
nential growth. The amount of money in a savings ac-
count that is compounded continuously grows
exponentially. Thus D dollars invested at P percent
annual interest compounded continuously will yield
X dollars after T years, where

2L0G (3%*4)
2.48490663

READY
?2LO0G(3) +LOG(C4)
2.48490664

READY
?2L0G(9/2)
1.50407739

READY

?2LOG(C(2)-LOG(C2)
1.584087739

READY
|

(a)
FIGURE 3.25 Properties of logarithms.

X = DePT”OO

For example, to find the amount of money you would
earn in 7 years by investing $3,000 at 9.5 percent in-
terest compounded continuously, type

¢3000*EXP(9.5*7/100)

as shown in Figure 3.26.

FIGURE 3.26 Examples related to the exponen-
tial function.

23000%EXP (9 .5%7/100)
5833.47147

READY :
2100%L0G(C2)
69.31471808

READY
|

Note that the answer is more than $5,833 or al-
most double your original investment. A character-
istic of exponential growth is a constant doubling
time T,. From the equation for X we see that X will be
equal to 2D in the time T4 where

?2L0G(2.52~3)
2.74887215

READY
23I#LO0GC2.5)
2.74887219

READY
&

(b)
PTy
2D =De '
or
Pl
2 = @100

Taking the natural logarithm of both sides of this
equation and using the third property of logarithms
illustrated in Figure 3.25, we obtain

PT
In(2) = 1—08 In(e)
= Plg
100
or
7, = 100 In(2)
P

Note that In(e) = 1. Try typing LOG(2.718281).
In order to see how long this doubling time is type

2100*LOG(2)

as shown in Figure 3.26. We therefore see that the
doubling time is approximately 70 divided by the per-
centage growth rate, or

Td =~ 70/P

Thus, for example, a 10 percent inflation rate will
double prices every 7 years.

29

EXERCISE 3.1
Let the variables A, B, C, and D have the following
values:

A=2,B=3,C=4D-=5

Use the ATARI to evaluate the following expressions:

0.5
1. X=<A—E>
D

30

2 Z=
D(B* — 1)

; (A + B)
T D - A

4. R = V(A + B/D — A

ENTERING DATA FROM THE KEYBOARD—
LEARNING ABOUT INPUT

In earlier chapters of this book you learned how to
use the PRINT statement to make the ATARI output
various forms of data on the screen. In this chapter
you will learn how to make the ATARI accept various
forms of data that you type on the keyboard. You do
this by using the INPUT statement in a BASIC program.
You will learn how to use this INPUT statement by
studying sample programs that will show you how to

add two numbers

compute the area of a rectangle
compute the area of a circle
calculate gas mileage

display your name and address
make sounds with the ATARI.

Al U U .

THE INPUT STATEMENT

The INPUT statement can only be used in the de-
ferred mode of execution. The following are valid
forms of the INPUT statement:

10 INPUT R
10 INPUT A,B
10 INPUT A$

When the first INPUT statement is executed, the
ATARI will print a question mark and then wait for
you to enter some numerical value from the key-
board. When you press the RETURN key the value
that you typed on the screen will be stored in the

memory cell R. The next statement in the BASIC pro-
gram will then be executed.

When the second INPUT statement is executed,
the ATARI will expect you to enter two numerical
values, separated by a comma. If you press RETURN
after entering only one value, the ATARI will print an-
other question mark and wait for you to enter the sec-
ond value. These two values will then be stored in the
two memory cells A and B.

The third form of the INPUT statement shown will
store whatever you type on the screen in the string
variable A$. The use of the INPUT statement will be
illustrated in the following sample programs.

31

10
15
20
20
40
45
S0

55

&HO
70

SUM OF TWO NUMBERS

Figure 4.1 shows a listing and sample run of a pro-
gram that will add two numbers entered from the key-
board and display the sum. Type in this program and
run it.

Lines 20 and 25 print the message ENTER 2 NUM-
BERS SEPARATED BY A COMMA. Line 30 prints a
question mark on the next line and then waits for you
to enter two numbers. In the first example in Figure
4.1b, the two number 5 and 9 were entered from the
keyboard. Line 40 then printed the value stored in A
(5) followed by a plus sign, followed by the value
stored in B (9), followed by an equal sign, followed
by the sum of A + B (14). Line 50 is a PRINT state-
ment with nothing following the word PRINT. The
only purpose of this statement is to skip a line on the
screen. Line 60 causes the program to branch back to
line 20, which asks for another two numbers to be en-
tered.

In the second example in Figure 4.1b, the value 8
was entered for the first number. But then the RE-
TURN key was pressed. Note that the ATARI re-
sponded with another question mark asking you to
enter the second number. In this example — 3 was
then entered.

In the third example the RETURN key was pressed
without entering any data. This caused the ERROR- 8
message. All error codes are given in Appendix C.

This program will continue to ask you for two

FIGURE 4.1 Sample program to add two num-
bers.

10 REM FROQGRAM TO SUM TWO NUMBERS
20 FRINT "ENTER 2 NUMBERS"

25 FRINT "SEFARATED RY A COMMAY
Z0OOINFUT a8

40 FRIMT Ay "+"gBg =" A+R

S0 FRINT

&0 GOTOD 20 (a)

RUN

ENTER 2 NUMBERS
SEPARATED BY A COMMA
25,9

5+9=-14

ENTER 2 NUMBERS

ganRﬂTED BY A COMMA

2-3

8+-3=5

ENTER 2 NUMBERS
SEPARATED BY A COMMA

ERROR— 8 AT LINE 30

(b)

more numbers. To stop the program, press the BREAK
key.

Experiment with this program to see how it be-
haves. Study the program carefully and make sure
you understand what every statement does.

AREA OF A RECTANGLE

Figure 4.2 shows the listing and a sample run of a
program that computes the area of a rectangle, where
the lengths of the two sides are entered from the key-
board. Type in this program and run it.

The main difference between this program and the
previous one is that the prompt message in line 20

ends with a semicolon. Note that when you do this,
the question mark follows the prompt messsage and
the cursor remains on the same line as the message.
Thus, you enter the data on the same line as the
prompting message.

FIGURE 4.2 Program to calculate the area of a rectangle.

REM FROGRAM TO COMFUTE THE

REM AREA OF A RECTANGLE

T MENTER 2 S8IDES OF RECTANGLE "gj
INFUT X,Y

? "THE AREA OF A RECTANGLE"

? "WITH SIDES ";

? Xz" AND "3V
?OUIS EQUAL TO "iXkY
GOTO 20

32

ENTER

HITH SIDES 3.6
IS EQUAL TO 27

ENTER 2 SIDES OF RECTANGLE 7?6,
8 AT LINE 30

ERROR-
|

AREA OF A CIRCLE

The area of a circle of radius r is given by
b)
area = mr°

where 7 (pi) is approximately equal to 3.14159265.
Figure 4.3 shows the listing and a sample run of a
program that computes the area of a circle whose ra-
dius is entered from the keyboard. Type in this pro-
gram and run it.

Line 35 calculates the area of the circle. The value

of pi has been defined in line 15. Note that in the sec-
ond example after RUN two values, 6 and 3, were
entered. But the ATARI was expecting only one
value. It therefore used only the first value (6) and ig-
nored the second value (3).

In the third example after RUN a value of 2.5E51
was entered. But this results in a value of the area A
that is larger than 1E98; therefore, an overflow error
message occurred. (See Figure 3.7.)

FIGURE 4.3 Program to calculate the area of a

circle.

10 REM PROGRAM TO COMPUTE THE AREA OF A CIRCLE
15 FI=3,141392465

2007 "ENTER A RADIUS 'Mj

IO OINFUT R

28 A=FPIYRTE

4¢ 2 "THE AREA OF THE CIRCLE IS "14

007

HO BATO 20

RUN
ENTER A RA
THE AREA

0
ENTER A RA

IUuSs ?3S.
THE CIR
us

?6,3

D
F
D

I

THE AREA OF THE CIRCLE

4
CLE

IS 3892.558831

IS 113.697228

ENTER A RADIUS ?2.SES1

ERROR-
|

11 AT LINE 35S

GAS MILEAGE

The program shown in Figure 4.4 computes gas mile-
age in miles per gallon (MPG). The reading of the
odometer (the device that displays the mileage on the
dashboard) at the last fillup is stored in memory cell
M1 in line 25. The odometer reading at the present
fillup is stored in memory cell M2 in line 35. The
number of gallons it takes to fill the tank is stored in
memory cell G in line 45. The total miles traveled
since the last fillup is equal to M2 — M1. Therefore,
the number of miles per gallon is given by (M2 — MT1)
/ G. This is calculated in line 50 and stored in the
memory cell MPG. It is printed on the screen in line
60.

FIGURE 4.4 Program for computing gas mile-
age.

10 REM GAS MILEAGE FROGRAM

20 7 "ENTER FREVIOUS ODOMETER READING"
2% INPUT M1
07T "ENTER
SECINFUT M2
40 7 "ENTER
4% INFUT &
30 MRPGE={M2-M1) /G
A0 P "EAS MILEAGE:

NEW ODOMETER READING"

GALLONS SINCE LAST FILLUP"
"3MFG; " MPG"

33

A sample run is shown in Figure 4.5a. The answer
is printed as 19.55696202 MPG. This answer con-
tains many more digits after the decimal point than
are meaningful. After all, because of variations in fill-
ing the tank it probably only makes sense to compute
the MPG to the nearest tenth. How can we have the
ATARI display the MPG to the nearest tenth? The fol-
lowing steps will do it:

1. Multiply the present value by 10:
19.55696202 X 10 = 195.5696202
2. Add 0.5:

195.5696202 + 0.5 = 196.0696202
3. Take the interger part of the result:
INT(196.0696202) = 196

4. Divide by 10:

196/10 = 19.6

Although this may look complicated, it can all be
done with the following single BAsIC statement.

55 MPG=INT(MPG*10+0.5)/10

Note that the result is stored back in memory cell
MPG. Therefore, if you add this statement to the pro-
gram shown in Figure 4.4 and run the program with
the same values used in Figure 4.5a, the result will be
as shown in Figure 4.5b.

The example shown in Figure 4.5c shows that if
you mistakenly press RETURN when the INPUT state-
ment is waiting for a value for the gallons G in line
45, the ATARI will produce the ERROR- 8 message.

RUN

_ENTER _PREVIOUS ODPOMETER READING
212345

ENTER NEW ODOMETER READING
212654

E:;Eg GALLONS SINCE LAST FILLUP

GAS MILEAGE: 19.55696202 MPG
READY)
|

RUN .

ENTER PREVIOUS ODOMETER READING
212345

ENTER NEW ODOMETER READING
212654 .

E!;Eg GALLONS SINCE LAST FILLUP

GAS MILEAGE:

19.6 MPG

READY
|

] ;
;ggsPREUIOUS ODOMETER READING
TER NEW ODOMETER READING

212654
ENTER GALLONS SINCE LAST FILLUP

ERROR-
‘A

8 AT LINE 4S

FIGURE 4.5 Sample runs of gas mileage pro-
gram.

NAME AND ADDRESS

The INPUT statement can be used to enter string data
as well as numerical data into the computer. The
statement

INPUT A%

will assign whatever characters you type to the string
variable A$. As an example, consider the program
shown in Figure 4.6. Line 15 contains the statement
PRINT ““ESC CTRL CLEAR”, which clears the screen.
Line 30 will assign whatever you type for your name
to the string variable N$. Line 50 will assign whatever
you type for your street address to the string variable
S$. Line 70 will assign whatever you type for your
city, state, and zip code to the string variable C$.
Lines 80—100 will then print these three strings on
three separate lines.

A sample run of this program is shown in Figure
4.7. Note that only one string variable can be used in
an INPUT statement. This is because a comma,
which is normally used to separate two numerical in-

34

puts, will just be assigned to the first string variable,
as is shown for the city and state in Figure 4.7. Quota-
tion marks will also be assigned to the string variable
and can therefore be printed on the screen.

FIGURE 4.6 Program to display your name and
address.

10
1o
1

15

20 7

30
40
a0
&0
70
a0
20

FEM NAME AND ADDRESS

DIM NE CRO) , 8% (20) , CE (50)
-":'j |1ﬂ_ "

» "ENTER
INFUT N
7 OUENTER
INFUT S%
T OUENTER
INFUT C#%
TONE

?BE%

YOUR NAME"
YOUR STREET ADDRESS"

YOUR CITY, STATE,

190 ¥ G

AND ZIF"

MAKING SOUNDS

You can make a single tone on your TV speaker by
using the statement

SOUND V,P,D,L

In this expression V is a voice number between 0 and
3, P is a pitch value between 0 and 255, D is a distor-
tion number (an even number between 0 and 14),
and L is a volume or loudness value between 1 and
15.

A value of P = 1 gives the lowest tone and a value
of P = 255 gives the highest tone. A value of L = 1
gives the weakest tone and a value of L = 15 gives
the loudest tone. The tone will stay on until another
SOUND statement (or an END statement) is exe-
cuted. To turn a sound off, execute a SOUND state-
ment with the same voice value V used to create the
sound and a loudness value of 0.

In order to try out some notes, turn up the volume
on your TV set and type in and run the following pro-
gram:

10 REM MAKING SOUNDS

20 PRINT “ENTER PITCH AND LOUDNESS"”
30 INPUT P,L

40 SOUND 0, P, 10, L

50 INPUT A$

60 SOUND 0, 0,0, 0

70 GOTO 20

After the sound is turned on in line 40, the program
will wait at line 50 until you press RETURN. Line 60
will then turn the sound off.

Try several different values for P and L. The value
of 10 used for the distortion D produces a “pure”
tone. Try changing this to other values.

FIGURE 4.7 Sample run of program shown in
Figure 4.6.

EXERCISE 4.1

The temperature in degrees Celsius (°C) is related to
the temperature in degrees Fahrenheit (°F) by the for-
mula

°C = 2(F - 32)

3
9
Write a program that will input a temperature in °F

and print on the screen the temperature in both °F and
G

EXERCISE 4.2

Four different sounds corresponding to the four voice
numbers 0—3 can be played at the same time. Write a
program that will ask you to enter a pitch, distortion,
and loudness value for each of four voices and then
play the four sounds simultaneously. Have one sound
at a time stop each time you press the RETURN key.

35

A REPETITION LOOP—LEARNING
ABOUT FOR ... NEXT

In Chapter 2 you learned how to use the GOTO state-
ment to form a continuous loop. There is a looping
structure available in Basic, called a FOR . . . NEXT
loop, which is particularly useful when you know the
number of times you want to go through a loop.

In this chapter you will learn

1. how to form a FOR . . . NEXT loop

2. to draw dashed lines using the FOR . . . NEXT
loop

3. how to use nested FOR . . . NEXT loops.

THE FOR ... NEXT LOOP

The general form of a FOR . . . NEXT loop is shown
in Figure 5.1. When statement 10 is executed, the
value of | is equated to M1 and statements 20, 30,
and 40 are executed. If M3 > 0, then when statement
50 is executed the value of | will be incremented by
M3, and if | is less than or equal to M2, statements
20, 30, and 40 will be executed again. This process
continues until | becomes greater than M2, at which
point the program branches to line 60. Every time
around the loop | is incremented by M3. In line 10
the phrase STEP M3 is optional. If it is omitted, an in-
crement of 1 is assumed.

If M3 < 0, then when statement 50 is executed,
the value of | will be decremented by M3, and state-
ments 20, 30, and 40 will continue to be executed
until 1 becomes less than M2.

36

FIGURE 5.1
loop.

General form of the FOR ... NEXT

10 FOR =M1 TO M2 STEP M3
20

30

40

50 NEXT |

60

Immediate Mode Execution of the
FOR . .. NEXT loop

In order to see how the FOR . . . NEXT loop works,
try typing in the following examples in the immediate
mode.

10

7

STEP 2:7I, :NEXTI
S 7

P20 NEXTI

STEP —-1:7?I, :NEHTI
8 7

5
)

4 3

FIGURE 5.2 Using the FOR...NEXT loop in the

immediate mode.

FOR I1=1 TO 10:2l, :NEXTI

FOR I=1 TO 10 STEP 2:2l, :NEXTI
FOR I=1 TO 10:2"*", :NEXTI

FOR I1=10 TO 1 STEP —1:2l, :NEXTI

These examples are shown in Figure 5.2.

Drawing Lines Using POSITION X,Y
Review the use of the POSITION statement in Chap-

ter 3. By including the statements

POSITION X,Y
PRINT “X";

in a FOR . . . NEXT loop, we can print a series of
“’X"’s on the screen. The relative position of the “’X"’s
will depend upon how the values of X and Y are in-
cremented in the FOR . . . NEXT loop.

For example, Figure 5.3 shows a horizontal, verti-
cal, and diagonal line drawn on a screen layout. The
horizontal line can be drawn by letting X vary from 4
to 30 in steps of 1 as shown in Figure 5.4. The state-
ment

70 GOTO 70

is used to prevent the ready message from returning to
the screen. Press BREAK to stop the program.

FIGURE 5.3 A horizontal, vertical, and diagonal
line to be drawn using the POSITION statement.

0 5 10 15 20 25 30 35
0[x X ¢ T X DX X X I I I T XX X X XX XX [X[X X [X
X |
X il
XX
x| |X
5 X X 5
X X
X X
X X
X X
10 X X
X X
X X
X X
X X
15 X X
X X
X X
X X
X X
20 X X
X
X
X

37

10 REM HORIZONTAL LIRNE Vertical and horizontal lines can be combined to

Ay o nfn form a border, as shown in Figure 5.7.

A0 FOR X=4 TO 30

A DR - FIGURE 5.6 Drawing a diagonal line using PO-
£)4 T X W

e e il SITION X,Y

éé NEXT ¥ 10 REM DIAGONAL LLINE

70 GOTO 70 20 7 “§"

0 FOR X=0 TO 23
35 Y=X

40 POSITION X,V
50 P XY

&0 NEXT X

70 GOTO 70

FIGURE 5.4 Drawing a horizontal line using PO-
SITION X,0.

The vertical line can be drawn by letting Y vary
from 3 to 20 in steps 1 as shown in Figure 5.5.

FIGURE 5.5 Drawing a vertical line using POSI-
TION 2,Y.

1O REM VERTICAL LINE
207 "R

I0 FOR ¥Y=3 TO 20

40 FOSITION 2.Y

S P onxn

HO NEXT Y

70 {OTO 70

FIGURE 5.7 Drawing a border using POSITION
X Y.

10 REM RORDER

a0 ||5 "

20 FOR X=2 TQ 27
40 POSITION X, 1
=D o nyn 5

60 FOSITION X,22

[e e e e o e e e e e e o o e S

70 P "X"y
80 NEXT X

Q0 FOR Y=2 TO 21

100 FOSITION 2,V

110 7 nyny

120 FPOSITION Z7,Y
The diagonal line can be drawn by letting X vary 120G %7 "X "y

from 0 to 23 in steps of 1 with Y = X, as shown in 140 NEXT V¥

Figure 5.6. 1530 GOTO 190

38

P g e e e e o e ope e o e e e b o d- b 4 4

X

KRHHHHHHHHHHXHHHHHKKHHHHHHHHHHHHHKHH

Bx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

P o o e g o e B R

EXERCISE 5.1
Draw a border around the message

WELCOME
TO THE
ATARI COMPUTER

shown in Figure 3.16.

EXERCISE 5.2

Draw your name in block letters using asterisks and
the POSITION statement.

FIGURE 5.7 (cont.)

NESTED FOR ... NEXT LOOPS

FOR . . . NEXT loops may be nested. This means that
we can put one FOR ... NEXT loop completely
within another one. When this is done the inner
FOR . . . NEXT loop is executed completely during
each pass through the outer loop. This makes it easy
to perform fairly complex operations.

Plotting an Array of Points

Clear the screen and type, in the immediate mode,
Y=20
FOR X=2 TO 32 STEP
5:POSITION X,Y:2"*":NEXTX

A line of seven asterisks spaced five positions apart
should appear near the bottom of the screen, as
shown in Figure 5.8.

If you now let Y vary from 2 to 20 in steps of 3 you
can plot seven rows, each. containing seven asterisks.
The program shown in Figure 5.9 will do this. Lines
30-60 form the FOR NEXT loop used to plot a
single row of asterisks, as shown in Figure 5.8. The
outer FOR . . . NEXT loop starting at line 20 plots
seven of these rows as Y varies from 2 to 20 in steps of
3.

Note that every time through the outer FOR . . .
NEXT loop (lines 20—70) the inner FOR . . . NEXT
loop (lines 30—60) is executed completely. That is,
the inner loop loops seven times (and therefore plots
.seven asterisks) every time the outer loop loops once.
Since the outer loop also loops seven times, a total of
7 X 7 = 49 asterisks will be plotted on the screen.

FIGURE 5.9 Program to plot an array of points.
10 REM ARRAY OF FOINTS

15 7 "§

20 FOR Y=2 TO 20
S0 FOR X=2 TO 22
40 FOSITION XY
ll*“

HO NEXT X
TOONEXT Y

STEF =
STEF 5

a0 7

FIGURE 5.8 Plotting a single row of seven asterisks.

v=20
READY : i T, e

FOR X=2 TO 32 STEP S:POSITION H,Y:?2"%"
NEXTH : SRR

39

Type in this program and run it. You should obtain
the array of asterisks shown in Figure 5.10. Modify
this program by changing the number of rows, the
number of points plotted in each row, and the spac-
ing between the points.

FIGURE 5.10 Array of points plotted using the
program in Figure 5.9.

* *

* *

* *

Changing Screen Colors

As another example of nested FOR . . . NEXT loops,
consider the program shown in Figure 5.11. This pro-
gram will continually change the color of the screen
every second.

10 REM CHANGING COLORS
15 7 IIEII

20 FOR C=0 T0O 15

70 SETCOLOR 2,C,10

40 FOR I=1 TO ZI503sNEXT I

S5O ONEXT C

60 BOTO 20

FIGURE 5.11 Program to change the color of the

screeen every second.

The statement SETCOLOR 2,C,10 changes the
background screen color to the hue value C, where C
is @ number between 0 and 15. We will discuss the
statement SETCOLOR in Chapter 7. For now, type in
the program in Figure 5.11 and run it.

Line 15 clears the screen. The outer FOR . . .
NEXT loop (lines 20-50) changes the screen color C
from 0 to 15. Line 30 actually changes the screen to
the color C. Line 40 is an inner FOR . . . NEXT loop
that just uses up some time. Letting | increment from
1 to 350 will use up about 1 second. To make a
longer delay just change 350 to a larger number. To
make a shorter delay, change 350 to a smaller num-
ber. Line 60 branches back to line 20, which runs the
program again.

Press the SYSTEM RESET key to stop the program.
Change the length of time that each color is dis-
played.

SOUND EFFECTS

Type in the following line in the immediate mode:
FOR P=1TO 255:SOUND 0,P,10,10:NEXTP:END

You will hear the speaker produce all possible pitch
values one after the other. This should give you an
idea of how to add sound effects to your programs.
Let's look at some examples.

Producing Multiple Clicks

The program shown in Figure 5.12 will produce N
clicks with pitch P and a separation of S seconds.
Lines 70—100 loop N times; a click is produced each
time line 80 is executed. Line 90 is a delay equal to
about S seconds.

Run the program and set P = 150, S = 0.5, and
N = 10. You should hear 10 clicks occurring every
half-second. Enter different values of N, S, and P to

40

FIGURE 5.12 Program to produce N clicks with
pitch P and a separation of S seconds.

10 REM FRODUCE N CLICKS WITH
20 REM SFACING § AND FITCH P
25 7 "ENTER FITCH F "3

=0 INFUT P
IE 7 "ENTER SEFARATION (SEC) "y
40 INFUT &

5 7 “ENTER NUMEER
50 INFUT N

LHO =10

70 FOR I=1 TO N

80 SOUND O,F,10,L
85 SOUND 0,0,0,0
Q0 FOR J=1 TO ZSOKS:NEXT J
100 NEXT I

i 2

120 GOTO 25

OF CLICKS ";

produce different clicking effects. Press the BREAK
key to stop the program. The loudness of the clicks
can be changed by changing the value of L in line 60.

Producing a Phaser Noise

If you repeatedly execute SOUND 0,P,10,10 with
different pitch values P, you can produce a variety of
effects. For example, the program shown in Figure
5.13 produces a “phaser’’ noise consisting of NC cy-
cles of a sound in which the pitch varies from P1 to
P2 in steps of DP.

To hear what this noise sounds like, type in the
program and run it for values of NC = 6, P1 = 10,
P2 = 220, and DP = 5. Try a variety of different
values for NC, P1, P2, and DP. Press the BREAK key
to stop the program.

FIGURE 5.13 Program for making a “phaser”
noise.

10 REM FHASER NOISE

20 REM NC=# CYCLES

Z0 REM F1=8TARTING FITCH

40 REM F2=ENDING FITCH

S0 REM DF=FITCH INCREMENT

60 7 "ENTER # OF CYCLES "3

&S INFUT NC

70 7?7 "ENTER STARTING FITCH "3
75 INFUT P11

80 7 "ENTER ENDING FITCH "3
85 INFUT FZ2

Q0 7 V"ENTER FITCH INCREMENT "j
25 INFUT DF

100 .=10

110 FOR J=1 TO NC

120 FOR P=F1 TO P2 STEF DF
125 SOUND O,F, 10,1

130 NEXT F

135 NEXT J

140 SOUND O0,0,0,0

145 7

150 GOTO &0

Producing a Siren Sound

A siren noise can be produced by repeatedly
executing SOUND 0,P,10,L first with increasing

values of P and then with decreasing values of P, as
shown in Figure 5.14. The outer FOR . . . NEXT loop
from lines 110 to 160 produces NC complete cycles
of the siren sound. The loop in lines 120-135 pro-
duces the increasing sound and the loop in lines
140-155 produces the decreasing sound. Each of
these loops executes SOUND 0,P,10,10, and pro-
duces a tone of pitch P and duration T. The
FOR . . . NEXT loops in lines 130 and 150 produce
delays (while the tone is on) proportional to T.

Type in this program and run it for values of
NC =5, P1 =20, P2 =220, DP =3, and T = 1.
Try changing the values of NC, P1, P2, DP, and T to
produce different siren sounds. Press the BREAK key
to stop the program.

FIGURE 5.14 Program to produce a siren sound.

10 REM SIREN NOISE

20 REM NC=# CYCLES

0 REM F1=GTARTING FITCH

40 REM P2=ENDING FITCH

50 REM DF=FITCH INCREMENT

60 7 "ENTER # OF CYCLES "j

&5 INFUT NG

70 7 "ENTER STARTING PITCH "j
75 INFUT Fi

80 7 "ENTER ENDING FITCH ";

as INFUT P2

90 7 "ENTER FITCH INCREMENT ";
95 INFUT DF

100 7 "ENTER HOLDING TIME "j
105 INFUT T

110 FOR J=1 TO NC

120 FOR P=F1 TO P2 STEF DP

125 SOUND O,F, 10,10

130 FOR E=1 TO T:NEXT K

1735 NEXT F

140 FOR P=F2 TO F1
145 SOUND O,F, 10,10
150 FOR K=1 TO T:NEXT K
155 NEXT F

160 NEXT J

170 SOUND 0,0,0,0

175 7

180 BOTO &0

STEF ~DF

PLOTTING GRAPHIC PATTERNS

As another example of using nested FOR . . . NEXT
loops, consider the program shown in Figure 5.15.
Line 15 dimensions the string variable G$, which

contains a graphic symbol entered through the key-
board in line 30. This graphic symbol is printed as a
10 X 10 array using the nested FOR . . . NEXT loops

41

FIGURE 5.15 Program to produce graphic pat-
terns.

10 REM GRAFHIC FICTURES

15 DIM G$(1)

20 7 "ENTER A GRAFHIC SYMEOL"
IO INFUT G$

40 FOR Y=1 TO 10

=0 FOR X=1 TO 10

&0 7 Bé;

70 NEXT X

a0 7

9C NEXT Y

in lines 40-90. The inner loop in lines 5070 prints
10 copies of the graphic symbol on a single row. The
PRINT statement(?) in line 80 moves the cursor to the
next screen line. The outer loop in lines 40-90 plots
10 rows of the graphic strip plotted by the inner loop.

Type in this program and run it. A sample run is
shown in figure 5.16. Try different graphic symbols to
produce a variety of patterns.

42

FIGURE 5.16 Sample run of program in Figure
<M

RUN
ENTER a4 GRAPHIC SYMBOL
2

EXERCISE 5.3

Modify the program in Figure 5.15 so that G$ con-
tains a string of three different graphic symbols en-
tered from the keyboard. Have the resulting pattern
contain 20 rows.

MAKING CHOICES—LEARNING
ABOUT IF ... THEN

Up to this point all of the programs that we have writ-
ten have consisted of a sequence of instructions and
simple loops. However, the thing that makes comput-
ers appear to be smart is their ability to make a deci-
sion based on the current state of affairs. The primary
decision-making statement in BASIC is the IF . ..
THEN statement. This statement allows the ATARI to
branch to one of two possible statements depending
upon the truth or falsity of a particular logical expres-

sion. A logical expression is an expression that can be
either true or false.
In this chapter you will learn

1. touse the IF . . . THEN statement to make sim-
ple choices

2. the meaning of the ATARI's relational operators
3. the meaning of the ATARI’s logical operators
4. about flowcharts and structured flowcharts.

THE IF ... THEN STATEMENT

The IF . . . THEN statement in BAsIC allows your pro-
gram to conditionally execute some statements or to
conditionally branch to some other statement. The
following are three different forms of the
IF . .. THEN statement:

50 IF logical expression THEN statement

50 IF logical expression THEN statement 1:
statement 2: . . .

50 IF logical expression THEN line number

In each of these forms the logical expression is
some BASIC expression that is either true or false.

These expressions will normally contain relational
operators (such as <) and/or logical operators (such
as OR). These operators will be defined and dis-
cussed in detail in a later section of this chapter.

In the first form of the IF . . . THEN statement, if
the logical expression is true, the statement following
the word THEN is executed. This can be any BASIC
statement that can be executed conditionally. If the
logical expression is false, the statement with the next
line number is executed.

The second form of the IF ... THEN statement
behaves in a similar way to the first form. However, if
the logical expression is true, all of the statements fol-

43

lowing the word THEN are executed. Remember that
if the logical expression is false, the statement with
the next line number is executed.

In the third form of the IF . . . THEN statement, if
the logical expression is true, the program will branch
to “line number.” This form is equivalent to the first
form, where the statement is a GOTO statement.
Thus, for example, the following two statements are
equivalent:

50 IF A<O THEN 90
50 IF A<0 THEN GOTO 90

We will illustrate the use of the IF . . . THEN state-
ment by adding some conditional statements to the
programs we wrote in Chapter 4.

Gas Mileage Program

In the gas mileage program shown in Figure 4.4. of
Chapter 4, M1 is the old odometer reading and M2 is
the new odometer reading. Now to make any sense,
M2 must be greater than M1 (M2 > M1). It is always

FIGURE 6.1
an IF ... THEN statement.

a good idea when writing computer programs to
check the data entered through the keyboard to try to
detect any typing errors. For example, if after you
have entered the value of M2 in line 35, M1 is greater
than M2, then a typing error has probably been
made. In any event M2 is too small to make sense.
Thus, we could add the statements

37 IF MT>M2 THEN PRINT “READING
TOO SMALL":GOTO 20

to the program in Figure 4.4, as shown in Figure 6.1.

A sample run of this new program is shown in Fig-
ure 6.2. Note that during the first execution the last
digit of the new odometer reading was omitted. This
made M2 < MT; statement number 37 caught it,
printed the message READING TOO SMALL, and
then branched back to statement number 20, where
the program started over again.

In statement number 37 you might have branched
back to statement number 30 and only asked to enter
the new odometer reading. However, the error may
have occurred when entering M1 (you may have
typed an extra digit); therefore, it's better to reenter
both odometer readings.

Gas mileage program containing

10 REM GAS MILEAGE PROGRAM

20 7
25 INFUT M1
s B
55 INFUT M2

E7OIF M1IEM2 THEN 7
40 P "ENTER GALLONS
4% INFUT &

S0 MPG=(M2-M1) /G

HE MP G

HO O "EAR MILEAGE:

"ENTER NEW ODOMETER

"ENTER FREVIOUS ODOMETER READING

READING"

"READING TOO SMALLY:GOTO 20
SINCE LABRT FILLUPY

INT(MPEXLO+0,5) /10
Wa P

R

FIGURE 6.2 Program will check to make sure

that M2 is greater than M1.

RUN
ENTER PREVIOUS ODOMETER READING

212345

ENTER MEW ODOMETER READING

21265
READIHG TOO SMAL

ENTER PREVIOUS ODOHETER READING

212245

ENTER HEW ODOMETER READING

712654

ENMTER GALLOMNS SINCE LAST FILLUP

?15.8
Gas HMILEAGE:

READY
i

44

192.6 HMPG

Circle Program

In the circle program shown in Figure 4.3, the radius
should obviously be positive. Actually, it you only
want to calculate the area of the circle given by mr*, a
negative radius will give the same answer as the same
positive radius. On the other hand, if you also calcu-
late the circumference of the circle given by 2mr, the
radius must be positive. We can calculate the circum-
ference by adding the two statements

45 C=2*PI"R
47 PRINT “CIRCUMFERENCE=";C

to the program in Figure 4.3. We can then test to see
if the radius is negative by adding the statement

32 IF R<0 THEN PRINT “RADIUS MUST BE
POSITIVE”:GOTO 20

If the value of R entered in the INPUT statement in
line 30 is less than 0, then the message RADIUS
MUST BE POSITIVE will be printed and the program
will branch back to line 20 and ask for another radius
to be entered.

We saw in Figure 4.3 that if the radius is too large
an overflow error will occur when the area is com-

puted in line 35. Since the value of the area A cannot
be greater than 1.E97, the largest radius R that will
not result in an overflow can be found as follows:

A = mr* < 1.E97
r? < 1.E97/m

r < V1.E97/%

Thus, if
R > SQR(1.E97/Pl)

the area will be greater than 1.E97 and cause an over-
flow. We can test this by adding the following state-
ment to the program:

33 IF R>SQR(1.E97/Pl) THEN PRINT
“RADIUS TOO LARGE":GOTO 20

The complete revised program is shown in Figure
6.3 and a sample run is shown in Figure 6.4. Note the
use of the two IF . .. THEN statements in lines 32
and 33. The first IF . . . THEN statement checks to
see if R is less than 0. If this is false (in other words, if
R is positive), the next IF . . . THEN statement on line
33 is executed. If R is not greater than SQR(1.E97/PI),
then the program will continue on line 35.

FIGURE 6.3 Modified circle program that checks

the value of the radius R.

10 REM FPROGRAM TO COMPUTE THE AREA OF A CIRCLE

15 FI=3. 14159265
20 7 "ENTER A RADIUS i
=0 INFUT R

Z2 IF ReO THEN 7
T IF RESOR (1. OE+97/FI1)
5 A=FIKRSE

40 7 "THE AREA OF THE CIRCLE IS
4% C=2%P IR

47 7 "CIRCUMFERENCE="3(C

S0 7

HO GOTO 20

"RADIWUS MUST BE FOSITIVE":GOTQ 20
THEN 7

"RADIUS TOO LARGE":GOTO 20

“;’:‘\9

FIGURE 6.4 Sample run of program in Figure 6.3.

ENTER a RabDIUs 20

98.52834424

45

10 REM FROGRAM TOQ COMPUTE
15 REM AREA OF A RECTANGLE
20 7 VENTER 2 8IDES OF
F0OOINFUT X, Y

THE

RECTANGLE "g

25 IF X<0 OR Y<0 THEN ? "VALUES MUST BE FOSITIVE":GOTO 20

40 72

45 7 "WITH SIDES "y

SO X" AND My

D P IS EQUAL TO MiXxy
&0 7

70 GATO 20

"THE AREA OF A RECTANGLE"

FIGURE 6.5 ThelF...THEN statementin line 35

contains a compound logical expression.

RUN
ENTER 2 S5IDES
VALUES MUST BE

IS EGUualL TO 48

ZO-O-0-0
D=H=H= -

RE
SI
RE
S5I
RE
ST
RE
TA
8

|71

mzmzmzmz
o o

R i e
mmmm

rDCDCDCD

EMTER Z SIDES OF RECTANGLE

FIGURE 6.6 Sample run of program in Figure 6.5.

Rectangle Program

As another example of using the IF . . . THEN state-
ment to check data entered with the INPUT state-
ment, consider the program shown in Figure 4.2 that
computes the area of a rectangle. It is clear that both
sides of a rectangle must be positive. Thus, if either of
the two values entered in the INPUT statement on
line 30 is negative, the program should print an error
message and ask for new inputs. We can do this by
adding the following single IF . . . THEN statement:

35 IF X<0 OR Y<0 THEN PRINT “VALUES
MUST BE POSITIVE”:GOTO 30

The resulting program is shown in Figure 6.5 and a
sample run is shown in Figure 6.6. Note from this
sample run that the ATARI will not allow the program
to continue if either value entered is negative or if
both are negative. Thus, the meaning of the logical
expression X < 0 OR Y < 0 is that it is true if either
X <0orY <0 is true, or if both are true.

In this logical expression the symbol < is one of
the relational operators. The word OR is one of the
logical operators. Relational operators and logical op-
erators will be discussed in more detail in the follow-
ing two sections.

RELATIONAL OPERATORS

A relational operator is used to form a logical expres-
sion by comparing two arithmetic expressions. (An
arithmetic expression can be a numerical constant,
variable, or expression.) Thus, for example,

A<O

46

is a logical expression (it is either true or false) formed
using the relational operator < (“less than’). If the
contents of memory cell A are less than 0, this logical
expression is true; otherwise, it is false.

The ATARI stores the logical value ““false’” as 0. It

FIGURE 6.7 The ATARI stores “true’’ as 1 and
“false’ as 0.

stores the logical value ““true’”” as 1. You can see this
by typing

A<0

and

A=-3
?2A<0

as shown in Figure 6.7. Note that you can print the
value of logical expressions such as A < 0.

26-2=4
1

READY
75%24{>10
a :

REAGLY
?FLT~Z
i .

REGEY
243 25/5
a3

READY
E

FIGURE 6.8 Examples of logical expressions
formed using the relational operators.

The relational expressions used in the ATARI are
given in Table 6.1. Figure 6.8 shows some examples
using these relational operators. You should try some
examples of your own.

TABLE 6.1 Relational Operators
Operator Meaning

= equal to
<>or>< not equal to

< less than

> greater than
<=or=< less than or equal to
> = or= 2 greater than or equal to

LOGICAL OPERATORS

In addition to the relational operators =, <>, <, >,
< =, and > =, the ATARI uses the three logical oper-
ators NOT, AND, and OR. The meanings of these op-
erators are shown in Table 6.2.

TABLE 6.2 Logical Operators

A and B are logical expressions

A NOT A

true false

false | true
A B A AND Bl A OR B
false false || false false
false true false true
true false || false true
true true true true

NOT

The logical operator NOT is a unary operator—that
is, it operates on a single logical expression, A. If A is
true, then NOT A is false. If A is false, then NOT A is

true. Examples using the logical operator NOT are
shown in Figure 6.9. Because of certain peculiarities
in ATARI BAsIC it is always a good idea to include a
NOT operation in parentheses. Under certain rare
conditions, your program may otherwise bomb out.

FIGURE 6.9 Using the logical operator NOT.

2C(NOT 33=3
2

READY !
2CNOT 5342
H 1

READRY :
ZCNOT 183 {>5+2
A i

READY
Z{NOT €142
8

READY
|

47

AND

The logical operator AND is a binary operator that
operates on two logical expressions. Note from Table
6.2 that A AND B is true only if both A and B are true.
It is false if either A or B is false, or if both are false.
Examples using the logical operator AND are shown
in Figure 6.10.

FIGURE 6.10 Using the logical operator AND.

?2=2 AND 3=3
1

READY
52:2 aND 3> 4

READY
?74=5 AND 8410

9

REGDY
74<5 AND (NOT 7(S)

READY
B

OR

The logical operator OR is, like AND, a binary opera-
tor. Note from Table 6.2 that A OR B is false only if
both A and B are false. It is true if either A or B is true,
or if both are true. Examples using the logical opera-
tor OR are shown in Figure 6.11.

Note that the third example in Figure 6.11 is false
while the fourth example is true. The only difference
between the two is the inclusion of the parentheses in
the third example. The reason the fourth example is
true is that the AND operation is performed before the
OR operation. There is thus an order of precedence
for logical and relational operators as well as arithme-
tic operators (see Chapter 3). When the ATARI evalu-
ates an expression it uses the order of precedence

shown in Table 6.3. Within each level of precedence
the expression is evaluated from left to right.

FIGURE 6.11 Using the logical operator OR.

?5<3 OR 6>=S
1
NOT 6=6) OR 7<>7

OR 3=3) AND 1=2

¢ OR 3I=3 AND 1=2

TABLE 6.3 Order of Precedence for Evaluating
Expressions

Operator Meaning

() Parenthesis
=,<>,<, > <=,>= Relational operators used
with string variables
Unary negative or
positive
Exponentiation
Multiplication and
division
Addition and substraction
> = Relational operators used
with arithmetic
expressions

_I+
A\
ﬁ/

+, —
=, &>, L >, L=

’

NOT Logical complement
AND Logical AND
OR Logical OR

WEEKLY PAY PROGRAM

As another example of the IF . . . THEN statement,
consider the problem of calculating the weekly pay of
an employee whose hourly rate is $4.00 per hour and
who receives time and a half for overtime. Suppose
that the total hours worked per week cannot exceed
60 hours. Thus, we want to write a program that will

1. ask for the number of hours worked to be en-
tered from the keyboard

2. check to make sure that the number of hours
entered is not greater than 60

48

3. check to make sure that the number of hours
entered is not negative

4. compute the pay at $4.00 per hour for the first
40 hours and at $6.00 per hour for any hours over
40

5. print the total amount of pay.

The program to do this is shown in Figure 6.12.
Lines 20 and 30 ask for the number of hours to be IN-
PUT,; the value is stored in H. Line 40 checks to make

10 REM FPROGRAM TO COMPUTE WEEKLY WAGES

26 2
=0 INFUT H

40 IF H:60 THEN 7
50 IF HI0 THEN 7

"ENTER NUMERER OQF HOURES WOREED"

"TOO MANY HOURS": GOTOQ 20
TINVALID DATA": GOTO 20

60 IF Hu=40 THEN M=H¥4:GOTO Q0

TO =40
B0 M=40X4+0QVX4

O M=INT(MEL1OO+0.E) /100

100 7

"WEEKELY FAY= $

“EM

FIGURE 6.12 Listing of weekly pay program.

sure that H is not greater than 60. Line 50 checks to
make sure that H is not negative.

Line 60 will compute the total pay to be M=H*4 if
H is less than or equal to 40. Note that this line ends
with the statement GOTO 90, which will branch to
statement 90. Line 90 rounds the value of M to two
places after the decimal point. Line 100 prints the
amount of pay.

If H is greater than 40, the logical expression
H<=40 in line 60 will be false and line 70 will be
executed next. Line 70 computes the number of over-
time hours OV (to be paid at $6.00 per hour). Line 80
computes the total pay, M, consisting of the first 40
hours at $4.00 per hour plus the remaining overtime
hours at $6.00 per hour. That is, M=40*4+0OV*6.
Line 90 and 100 will then round and print the total
pay.

Sample runs of this program are shown in Figure
6.13. Note that trailing Os are not printed on the
screen. Thus, for example, $233.50 is printed at

$233.5. In a later chapter (Chapter 12), we will see
how to make the total cents always appear on the
screen.

FIGURE 6.13 Sample runs of program in Figure
6.12.

RUN
gggen MUMBER OF HOURS WORKED
WEEKLY PaAY= $ 128

READY

RLIN ;
ENTER HUMBER OF HOURS HORKED
?252.25

MEEKLY PAY= & 233.5

EMTER HMUMBER OF HOURS WORKED
747 .34
HEEKLY PAY= § 2084.04

READY
|

AREA OF TRIANGLE

The area of the triangle shown in Figure 6.14 can be
calculated from the formula

AREA = [S(S—A)(S—B)(S—C)]%>
= VS(S—A)(S—B)(S—C)

where A, B, and C are the sides of the triangle and

S = (A+B+0C)/2

is the semiperimeter.
In BAsIC the formula for the area can be written as

AREA=(S*(S—A)*(S—B)*(S—C))/\0.5

or

AREA=SQR(S*(S—A)*(S—B)*(S—C))

FIGURE 6.14 Finding the area of a triangle.

S

C

Semiperimeter, S = (A + B + C)/2
Area = [S(S — A)(S — B)(S — C)]°5

Remember that the multiplication symbol * must al-
ways be explicitly typed and every left parenthesis
must have an accompanying right parenthesis.

We want to write a program that will ask the user
to enter the three sides of the triangle from the key-
board and will then display the area of the triangle on
the screen. It should be clear that not all combina-
tions of three numbers can represent the sides of a tri-
angle. For example, a triangle cannot be formed hav-

49

ing the three sides 10, 5, and 3, as shown in Figure
6.15. From this figure you can see that to form a trian-
gle the sum of the two sides A + B must be greater
than C, where C is the longest side. This is equivalent
to requiring C to be less than the semiperimeter S =
(A + B + C)/2. Note that if this were not true, the for-
mula for the area would involve taking the square
root of a negative number, which is not a real value.

FIGURE 6.15 To form a triangle the following
relations must be true: A+B>C and C<S =
(A+B+C)/2

Therefore, our program should check to make sure
that the three numbers entered from the keyboard can
really represent the sides of a triangle. Thus, we need
to check to make sure that C < S. But which side is C?
It is the longest side. But the longest side may be the
first, second, or third number to be entered from the
keyboard. If the program uses the INPUT statement

INPUT A,B,C

then the longest side may actually be stored in mem-
ory cell A, B, or C. Therefore, the program must find
the longest side, L, and then make sure that L is less
than the semiperimeter S.

We can determine the largest number stored in
memory cells A, B, and C by using the following pro-
cedure:

FIGURE 6.16
angle.

1. Compare A and B:

If A>B
then set

L=A
else set L = B

2. Compare C and L:

fC>1L
then set L = C

You should convince yourself that this algorithm, or
step-by-step procedure, will, in fact, result in the
memory cell L containing the largest value. This
value of L can then be compared to the semiperimeter
S to see if a triangle is possible.

The BAsIC program to do all this is shown in Figure
6.16. Line 20 asks for the three sides of the traingle to
be entered and line 30 stores these three values in A,
B, and C. Line 40 compares A and B; if A is greater
than B, it stores the value of A in L and branches to
line 60. If A is not greater than B, line 50 will store the
value of B in L. Thus, when line 60 is executed, L will
contain the larger of A and B. Line 60 compares C
and L; if C is greater than L, it stores the value of C in
L. Therefore, by the time that line 70 is executed, L
will contain the largest number stored in A, B, and C.

Line 70 computes the semiperimeter S, and line 80
compares L and S to see if a triangle is possible. If L is
greater than S, the message NO TRIANGLE POSSIBLE
is printed and the program branches back to line 20
and asks for three new sides. On the other hand, if L
is not greater than S line 90 is executed, which com-
putes the area of the triangle. Line 100 prints the re-
sult. Line 110 skips a line and line 120 branches back
to line 20 to run the program again. A sample run of
this program is shown in Figure 6.17.

Program to find the area of a tri-

10 REM PROGRAM TOQ FIND THE

15 REM AREA OF A
"ENTER THE THREE
IO OINFUT ARC

2 7

TRIANGLE
SIDES OF

A TRIANGLE"

40 IF AR THEN L=A:GOTO &0
30 =R
&0 IF Cxle THEN L=(C

70 S=(A+R+C) /2
a0 IF L>8 THEN 7
0 AREA=
100 2 "THE AREA OF
1107

120 6OTO 20

THE

50

"NO TRIANGLE POSEIRLE":GOTO 20
SX{(8-A) ¥ (8-E) % (5-C) 0,5
TRIANGLE I8

" AREA

RU
?5,18,3

N
ENTER THE THREE SIDES OF A TRIANGLE

NO TRIANGLE POSSIBLE ;
ENTER THE THREE SIDES OF a TRIANGLE

?18,3,5

MO TRIAMGLE POSSIBLE
ENTER THE THREE SIDES OF A TRIANGLE

?23,4,5
THE AREA OF THE TRIANGLE IS5 5.23399988

E;TEE THE THREE SIDES OF A TRIAMNGLE

FIGURE 6.17 Sample runs of the program in Figure 6.16.

FLOWCHARTS AND PSEUDOCODE

In this chapter we have used the Basic IF . . . THEN
statement in the form of an if . . . then . . . else state-
ment. For example, in the program to find the area of
atriangle, we used the following algorithm to find the
largest value in A, B, and C and store it in L:

if A>B
then L = A
else L =B
ifC>1L
then L = C

In Chapter 8 we will use the BasiC IF . . . THEN state-
ment to form various loops. The if . .. then ... else
statement is one of these “good’’ statements that is
available in structured programming languages such
as PASCAL.

In Chapter 2 we said that a computer program is
like a train going on a trip. The seats in the train are
like memory locations with unique names or ad-
dresses that distinguish one seat from another. The
seats may contain strings (like the name of the person
sitting in the seat) or numerical values (like the age of
the person sitting in the seat).

As the train goes along the track it can come to a
station where new people can get on, some people
can get off, or others can exchange seats or add things
to their seats. This is equivalent to executing BASIC
statements such as PRINT, INPUT, and A=B+C.

The if . .. then ... else statement is like a switch
in the track that allows the train to go on one of two
different paths, as shown in Figure 6.18. These two
paths lead to two different stations and then
recombine on the other side of the stations. If the logi-
cal expression following if is true, the train will follow
the track to station 1 where the then statements will

be executed. If the logical expression following if is
false, the train will follow the track to staticn 2 where
the else statements will be executed. Note that the
train can only go to station 1 or station 2. It cannot go
to both stations.

FIGURE 6.18 The if...then. .. else statement
takes the train to one of two possible stations.
if

then
== else

[TTTTTTTTITT

STATION 1 STATION 2

[TIXTTTTITIITITTTT

51

Flowcharts have traditionally been used to express
a computer algorithm. The if . . . then . . . else state-
ment illustrated in Figure 6.18 can be represented as
a flowchart, as shown in Figure 6.19. The similarity
to Figure 6.18 is obvious. If the logical expression in
the diamond-shaped box is true, then the path to
statements A will be followed. Otherwise, the path to
statements B will be followed.

FIGURE 6.19 Flowchart representation of the
if...then ... else statement.

True logical False

expression

then

statements A

else

statements B

The algorithm for finding the largest value in A, B,
and C is expressed as a flowchart and in pseudocode
(that is, using if...then...else) in Figure 6.20.
Many people find the pseudocode representation
shown in Figure 6.20b to be simpler and just as easy
to understand as the flowchart shown in Figure
6.20a. In addition, it is easy to generate flowcharts
that end up looking like “bowls of spaghetti.” For
these reasons the use of flowcharts has declined in re-
cent years.

FIGURE 6.20 (a) Flowchart and (b) pseudocode
for algorithm to find the largest value in A, B, and

true false if A>B
Y s A then L=A
=A =g else L=B

if C>L
true false then L=C
Y Y

(b)

L=C

(a)

For those who still like to have some type of
graphic representation of an algorithm without
creating a ““bow! of spaghetti’’ that is hard to under-
stand, structured flowcharts are available.

52

Structured Flowcharts

A structured flowchart, also called a Nassi-
Schneiderman chart, after the people who introduced
it, is an alternate representation of an algorithm that
consists of various nested ““boxes’” without the con-
necting lines that are shown in Figure 6.20. Two
alternate representations of the if...then...else
statement are shown in Figure 6.21. We will use the
form shown in Figure 6.21b. Using this structured
flowchart, we can represent the algorithm given in
Figure 6.20 as shown in Figure 6.22.

FIGURE 6.21 Two forms of a structured
flowchart that represents the if...then... else
statement.

if logical expression

then else

statements A statements B

(a)

if logical expression

then else

statements A statements B

(b)

FIGURE 6.22 Structure flowchart representation
of algorithm to find the largest value in A, B, and
€

if A>B
then else
L= =B
it C>L
then else
. T

Flowcharts and pseudocode are just different ways
of representing an algorithm to try to make it easier to
understand. When you are first developing a com-
puter program it is generally easier to express the pro-

if H>60
then else
print “too many hours" if H<0
then else
print “invalid data" if H<=40
then slse
M=H"4 OV=H—-40
M=40"4+0V*6
M=INT(M*100+0.5)/100
print “weekly pay=$ ";M
(@)
(c)

if H>60
then print “too many hours”
else if H<O0
then print “invalid data”
else if H<=40
then M=H*4
else OV=H—40
M=40*4+0V*6
M = INT(M*100+0.5)/100
(b) print “weekly pay = $” ;M

10O REM FROGRAM TO COMPUTE WEEKLY WAGES

20 7 "ENTER NUMRBER OF HOURE WORRKED!
S0OINFUT H

40 IF Hx&0 THEN 7 "TOO MANY HOURS": GOTO 20
S0 IF HCO THEN P U"INVALID DATA": GOTA 20

HO O IF He=40 THEN M=HYXd4:GATO 20

70 (V=H-40
B0 M=40% 40084

QO M=INT (MXLOO+0,5) /100

100 7

FIGURE 6.23 (a)

TWERERLY FAY= %

H ; M
Structured flowchart; (b)

pseudocode of weekly pay program; (c) BASIC list-

ing of weekly pay program.

gram in the form of a flowchart, structured flowchart,
or pseudocode, and then to convert this algorithm to
BASIC.

The structured flowchart and pseudocode for the
weekly pay program discussed earlier in this chapter
are shown in Figure 6.23a and 6.23b. The BASIC list-
ing of this program is shown in Figure 6.23c. You
should carefully compare these three representations
of the same program.

The advantage of the structured flowchart repre-
sentation is that it clearly displays the logic of the pro-
gram in a graphic form. The advantage of the
pseudocode is that it describes the algorithm in a sim-
ple and straightforward manner. Note the importance
of the indentation in the pseudocode description. The
advantage of the BASIC representation is that it can be
executed on the ATARI.

Some people have devised a variety of indentation
conventions that will make a BAsIC program easier to
understand. You can use indentation in your program
on the ATARI at the expense of using up more mem-
ory. You should always keep a written version of your
programs on a piece of paper. This version can in-
clude indentation, pseudocode, structured flow-
charts, or anything else that will help you to under-
stand the program.

The complete structured flowchart for the program
to find the area of a triangle is shown in Figure 6.24a.

The BasIC listing of this program is shown in Figure
6.24b. You should compare the structured flowchart
carefully with the BasicC listing. Note that the GOTO
statement in line 120 is represented in the structured
flowchart as an “‘outer loop’’ that continues forever
(or until the program is stopped by pressing the
BREAK key).

In Chapter 8 we will take a closer look at loops. In
particular you will learn how to stop a loop any time
you want.

FIGURE 6.24 (a) Structured flowchart and (b)
BASIC listing of program to find the area of a trian-

gle.

print “Enter the three sides of a triangle
input A, B, C
if A>B
then else
T =A —l_ =B -
ifC>L
then else
— s _I_ _— e s e
S=(A+B+C)/2
if L>8
then else
_print “no triangle possible"— l calculate & print ar: _
continue this loop forever

53

10 REM FROGRAM TO FIND

THE

15 REM AREA OF A TRIANGLE

20 2

0 INFUT AR, C

"ENTER THE THREE SIDES OF A TRIANGLE"

40 IF AR THEN L=A:GOTO &O

S0 =R
HO TF Gkl THEN L=
70 5= (A+R+C) 2

80 IF L>8 THEN 7

"NOQ TRIANGLE FOSSIRLE":GATO 20

0 AREA= {8 (8-A) ¥ (8-E) ¥ (8-) 0.5

100

110 7
120 GOTO 20
FIGURE 6.4 (cont.)

EXERCISE 6.1

For married taxpayers filing joint returns with a taxa-
ble income between $20,200 and $24,600, the fed-
eral income tax is $3,273 plus 28 percent of the
amount over $20,200. Write a program that will in-
put a taxable income, check that it is between
$20,200 and $24,600, and then compute and print
the income tax on the screen.

EXERCISE 6.2

Write a program to compute take-home pay. The pro-
gram should input an hourly wage and the number of
hours worked. Assume that 6.65 percent of the gross
pay is deducted for Social Security taxes, 14.8 per-

54

OUTHE AREA OF THE TRIANGLE I8

"1 AREA

cent of the gross pay is deducted for federal income
taxes, and 4 percent of the gross pay is deducted for
state income taxes. The program should print out the
wage rate, the number of hours worked, the amount
deducted for Social Security, federal, and state in-
come taxes, and the take-home pay.

EXERCISE 6.3

Write a program that will continuously input a series
of test scores. When a negative score is entered the
program should print the number of scores entered,
the largest score, the smallest score, and the average
of the test scores.

LEARNING TO USE LOW-RESOLUTION
GRAPHICS—DISPLAYING THE FLAG

In this chapter you will learn how to draw colored
pictures on the screen using one of the low-resolution
graphics modes of the ATARI. A high-resolution
graphics mode that is also available will be described
in Chapter 13.

In this chapter you will learn

1. how to plot various colored dots by using the
statement PLOT X,Y

2. how to plot lines using the statement DRAWTO
X, Y

3. to draw dashed lines using the FOR . . . NEXT
loop

4. to draw areas and arrays of points

5. how to display the American flag on the TV
screen.

PLOTTING DOTS AND LINES USING
THE PLOT AND DRAWTO STATEMENTS

Type
GR. 5

This is an abbreviation for GRAPHICS 5, which sets
the graphics mode 5. When you do this the screen
will clear to black except for a four-line text window
at the bottom of the screen.

Graphics mode 5 is a low-resolution graphics
mode in which the screen is considered to be divided
into a grid made up of 40 rows and 80 columns, as
shown in Figure 7.1. The column positions of the grid
are numbered 0 through 79 from left to right. This is

called the X position or X coordinate. The row posi-
tions of the grid are numbered 0 through 39 from top
to bottom. This is called the Y position or Y
coordinate. Any one of 3,200 (40 X 80 = 3,200)
small squares or blocks on the grid can be identified
by giving its X and Y coordinates. For example, in
Figure 7.1 the shaded block is located at the
coordinates X = 25,Y = 15.

You can plot a colored spot at any of the 3,200
grid positions on the screen. These spots can be one
of 16 different color hues. The possible color hues are
given in Figure 7.2. In addition to the 16 color hues a

55

X=79 —|

Y=156 —o

Y=39 —

FIGURE 7.1
divides the screen into an 80x40 grid.

The low-resolution graphics mode 5

0 Gray 8 Light blue

1 Light orange(gold) 9 Dark blue

2 Orange 10 Turquoise

3 Red-orange 11 Green-blue

4 Pink 12 Green

5 Purple-blue 13 Yellow-green
6 Blue 14 Orange-green
7 Blue 15 Light orange

Hue value (0—17 Yminance value (0-14, even)

H o] L]

Color register No. 0

FIGURE 7.2 Sixteen colors numbered 0-15 can
be plotted using low-resolution graphics.

spot can have one of 8 different values of color lumi-
nance. The luminance value is an even number be-
tween 0 and 14. A luminance value of 0 is very faint;
a value of 14 is very bright. A color is determined by
the combination of its hue value (0-15) and its lumi-
nance value (0-14). An odd luminance value has the
same effect as the next lower even value.

The 16 hues and 8 luminances give rise to 128
(16 x 8) different colors that can be displayed. To
display a particular color, the hue and luminance
value must be stored in a color register. The color reg-
ister contains both the hue value and the luminance
value, as shown in Figure 7.3.

The ATARI contains five color registers that con-
tain different colors (hue—luminance combinations).
These resigers are numbered 0—4 as shown in Figure
7.4. The statement

SETCOLOR RH,L

56

FIGURE 7.3 A color register contains the hue and
luminance values for a particular color.

will store the color hue value H and the luminance L
in color register R. For example,

SETCOLOR 0,0,14

FIGURE 7.4 SETCOLOR R,H,L stores the color
hue H and luminance L in color register R.

SETCOLOR RH,L

_ COLOR Numbers
Register No. (mode 5)
0 HIL 1
1 HL 2
2 H|L 3
3 H|L —
4 H|L | O (Background

and border)

will set the color in register 0 to gray with a lumi-
nance of 14.

To plot a spot on the screen we must tell the ATARI
which color register to use to determine the color.
Graphics mode 5 allows four different colors corre-
sponding to the color registers 0, 1, 2, and 4. Color
register 4 controls the color of the background. The
default value of color register 4 is black. (SETCOLOR
4,0,0). The statement

COLOR N

tells the ATARI which color register to use. For graph-
ics mode 5, the value of N must be 1, 2, 3, or O corre-
sponding to color registers 0, 1, 2, and 4, as shown in
Figure 7.4. Therefore, if you want to use the color
stored in color register 0, you must execute the state-
ment

COLOR 1
Now type
SETCOLOR 0,0,14:COLOR 1

This will set color register 0 to white and identify
color register 0 (COLOR 1) as the color to use.

The text window at the bottom of the screen is
controlled by the GR. 0 mode. In this mode color reg-
ister 2 contains the color of the background and color
register 1 controls the color of the text. The hue value
in color register 1 (the text color) is always the same
as the background (color register 2). Only the [umi-
nance can be different. Type

SETCOLOR 2,0,0

This will set the background of the text window to
black (gray hue with O luminance). Now type

SETCOLOR 1,0,14

This will set the text color in the text window to white
(the same gray hue as the background but with maxi-
mum luminance).

Once you have set the color, you can plot a spot
located at coordinates X,Y by typing

PLOT X,Y
For example, if after typing

GR. 5
SETCOLOR 0,0,8:COLOR 1
you type
PLOT 25,15

then a white spot located at coordinates X = 25,
Y = 15 will be plotted, as shown in Figure 7.5.

PLOT 25,15
READY
|

FIGURE 7.5 PLOT 25,15 will plot a spot at loca-
tion X =25, Y = 15.

In order to get out of the low-resolution graphics
mode 5, type

GR. 0

This will cause the ATARI to return to the full-screen
text mode (24 lines of 40 characters each), which is
the same as graphics mode 0.

Whenever a GRAPHICS statement is executed the
color registers are set to their default values. These
default values are shown in Table 14.4 in Chapter 14.

Return to the low-resolution graphics mode 5 by
typing GR. 5 again. Now type

SETCOLOR 0,0,14:COLOR 1

SETCOLCR 2,0,0:SETCOLOR 1,0,14
PLOT 20,20:PLOT 21,21:PLOT 22,22

The screen should display three spots located along a
diagonal line, as shown in Figure 7.6.

FIGURE 7.6 Multiple spots can be plotted using
multiple PLOT statements.

PLOT 28,208:PLOT 21,21:PLOT 22,22
READY
|

57

Now type
DRAWTO 24,20

Notice that the two spots at 23,21 and 24,20 are
plotted as shown in Figure 7.7. The statement
DRAWTO X,Y can be used to plot a line from the
most recently plotted spot to the location X,Y.

DRAHTO 24,20
READY
|

FIGURE 7.7 Plotting a line using DRAWTO X,Y.

The graphics commands can be used in the de-
ferred mode of execution by including them in a BASIC
program. For example, return to the text mode by
typing GR. 0 and then type in the following program:

10 GRAPHICS 5

15 SETCOLOR 4,0,0

20 SETCOLOR 0,0,14:COLOR 1

25 SETCOLOR 2,0,0:SETCOLOR 1,0,14
30 PLOT 15,5:DRAWTO 50,5

40 DRAWTO 50,30

50 DRAWTO 15,5

This program should plot the triangle shown in Figure
7.8.

FIGURE 7.8 Triangle plotted using DRAWTO

statements.

58

EXERCISE 7.1
Plot the following horizontal lines on the screen:

1. a blue line from X =10to X =35atY = 3

2. avyellow line eight spots long starting at column
number 10 on row number 12

3. a pink line all the way across the top of the
screen.

EXERCISE 7.2
Plot the following vertical lines on the screen:

1. a green line fromY =3toY =15at X = 2

2. apurple line 15 blocks high with the top at row
10 and located in column 18

3. a blue line along the entire right edge of the
screen.

Drawing Your Name

Suppose that you want to draw your name in large
block letters on the screen. The first step is to draw
your name on quadrille paper the way you want it to
appear on the 80x40 grid on the screen. For exam-
ple, Figure 7.9 shows the name JEFF sketched on a
grid. Some of the column and row numbers are writ-
ten next to each letter.

From Figure 7.9 you can see that to plot the letter
the computer must execute the statements

PLOT 2,19

PLOT 2,20:DRAWTO 8,20
DRAWTO 8,10

Similarly, to plot the letter E the statements

PLOT 11,10:DRAWTO 11,20
DRAWTO 17,20

PLOT 12,15:DRAWTO 15,15
PLOT 12,10:DRAWTO 17,10

must be executed. The statements

PLOT 20,20:DRAWTO 20,10
DRAWTO 26,10
PLOT 21,14:DRAWTO 24,14

will plot the first F; the second F can be plotted with
the statements
PLOT 29,20:DRAWTO 29,10
DRAWTO 35,10
PLOT 30,14:DRAWTO 33,14

You can type these statements in the immediate
mode and watch each letter being plotted one seg-

0 5 10 15 20 25 30 35
0 i 1 1 1 T T T 1 T T T T T T]] I I I I I I 1 I 1 1 T T
I
5 -
i 8 11 17 20 26 29 35
10 NYAZZ 7 N A A
f &
N N
] N N N N
I N | N N N2
i N S
i RN N
N N
o N N \
N
w0 Yy 77 ZERN N
25(

FIGURE 7.9 Sketch your name on an 80x40 grid

in order to define the coordinates of all letter seg-

ments.

ment at a time. Alternatively, you can return to the
GR. 0 mode and type in the entire program using line
numbers. Then you can execute the program by
typing RUN.

A listing of this program, to be run in the deferred
mode, is shown in Figure 7.10. Line 20 enters the
low-resolution graphics mode 5. Each different letter
is plotted in a different color. Lines 30—60 plot a
green J. Lines 70-110 plot a yellow E. Lines 120-150
plot a pink F, and lines 170-190 plot another pink F.
The result of running this program is shown in Figure
701,

Note that to plot three different colors on the
screen we must store three different colors in the
three different color registers 0, 1, and 2. (Recall that
color register 4 stores the color of the background.)
This is because each spot that we plot on the screen
has associated with it the color number (1-3) that we
used when we plotted the spot. Color number 1 al-
ways points to color register 0. If you change the
color (H and L values) stored in color register O the
color of the] will change. To see this, type

SETCOLOR 0,3,8

The) should change from green to red. Similarly, if
you type

SETCOLOR 2,98

the two Fs will change from pink to dark blue. Try
this. Change the values stored in the various color
registers (by executing the SETCOLOR statement) and
watch the colors of the four letters and background
change.

FIGURE 7.10 Listing of program to plot the name
JEFF in block letters.

20 GRAFHICS &

S0 SETCOLOR O, 12, 8:COALAR 1
40 FLOT 2,19

S0OPLOT 2, 20:DRANTO &, 20

HO DRAWTO 8,10

70 QETCOLOR 1,13,8:COL0R 2
g0 FLOT 11,10:DRAWTO 11,320
Q0 DRAWTO 17,20

100 FLOT 12,15:DRAWTO 15,15
110 FLOT 12, 10:DRAWTO 17,10
120 SBETCOLOR 2,4,: COL0R &
1230 FLOT 20, 20: DRAWTE 20, 10
140 DRAWTQ 26,10

150 FLOT 21, 14: DRAWNTO 24, 14
170 FLOT 29,20: DRAWTO 29,10
180 DRAWTO 25,10

190 FLAOT 20, 14: DRAWTO 35, 14

59

| lﬁ:ﬂ:ﬂ"" .IIII""

T

FIGURE 7.11
shown in Figure 7.10.

EXERCISE 7.3

Write a program that will plot your name in block let-
ters on the screen. Use three different colors for the
letters.

Drawing Dashed Lines

Enter the low-resolution graphics mode 5 by typing

GR. 5
SETCOLOR 0,0,14:COLOR 1
SETCOLOR 2,0,0:SETCOLOR 1,0,14

Result of running the program

Now type
FOR X=12 TO 40 STEP 2:PLOT X,5:NEXTX

This will plot the horizontal dashed line shown in Fig-
ure 7.12.

The vertical line shown in Figure 7.12 can be
plotted by typing

FOR Y=10 TO 30 STEP 3:PLOT X,Y:NEXTY

Note that seven spots are plotted in this vertical line
corresponding to Y values of 10, 13, 16, 19, 22, 25,
and 28. Another step of 3 would produce a value of Y
equal to 31, which is greater than 30. Therefore, the
FOR . . . NEXT loop is exited.

FIGURE 7.12 Plotting dashed lines using the

FOR ... NEXT loop.

FOR Y=18 TO 30 STEP 3I:PLOT H,7:NEXTY

READY
|

60

10 REM FLOT AREA

20 BRAFHICS S:SETCOLOR 2,9.8:COLOR =

30 FOR ROW=0O TO 20

40 FLOT O, RQW: DRAWTO 24, ROW

50 NEXT ROW
(a)

(b)

FIGURE 7.13 Program shown in (a) will plot area

shown in (b).
Drawing Areas

The program shown in Figure 7.13a will plot the blue
area shown in Figure 7.13b. This area is plotted by
drawing 21 rows (0-20) of horizontal lines, each 25
units long.

Type in this program and run it. Modify the pro-
gram so that it will draw a square area 20 units on a
side with the upper-left-hand corner of the square at
the coordinates X = 10, Y = 10.

Plotting an Array of Points

Earlier you saw (see Figure 7.12) that in the low-
resolution graphics mode the FOR . . . NEXT loop

FOR X =12 TO 40 STEP 2:PLOT X,5:NEXTX

will plot 15 spots in a horizontal row with a blank
space between adjacent spots. If you change the
statement PLOT X,5 to PLOT X,Y and then let Y
change in an outer FOR . . . NEXT loop, you can
produce several rows of these dashed lines. The pro-
gram shown in Figure 7.14 will do this.

Line 20 enters the low-resolution graphics mode 5
and sets the color to white. The inner FOR . . . NEXT
loop starting at line 40 produces one row of 15 spots
at line number Y. The outer FOR . . . NEXT loop
starting at line 30 plots 15 rows of these dashed lines
as Y varies from 6 to 34 in steps of 2.

FIGURE 7.14 Program to plot an array of points.
10 REM SRRAY OF FOINTS

20 GRAFHICS SeSETCOLOR 0,0, 14: COLOR

30 FOR Y=6 TO Z4 STER 2
40 FOR X=12 T0O 40 STERF 2
S0 FLOT X, Y

HO O NEXT XsNEXT Y

FIGURE 7.15 Array of plots plotted using the
program in Figure 7.14.

61

1

Type in this program and run it. You should obtain
the array of spots shown in Figure 7.15. Modify this
program by changing the number of rows, the num-
ber of points plotted in each row, and the spacing be-
tween the spots.

Plotting the Star Field

When we display the flag later in this chapter we will
need to plot the star field. We will do this by plotting
an array of low-resolution graphic spots. These will
be arranged according to the pattern shown in Figure
7.16.

FIGURE 7.16 Pattern used to display the star
field in the flag.

0 5 10 15 20 25

0

20

If you look carefully at this pattern you will see that
it consists of two rectangular arrays of points: a 5X6
array and a 4X5 array. These two rectangular arrays
will be plotted separately.

The first rectangular array can be plotted using the
following statements:

230 FOR Y=2 TO 18 STEP 4

240 FOR X=2 TO 22 STEP 4

250 PLOT X,Y:NEXT X:NEXT Y
The second rectangular array can be plotted using the
following statements:

260 FOR Y=4 TO 16 STEP 4

270 FOR X=4 TO 20 STEP 4

280 PLOT X,Y:NEXT X:NEXT Y
You should convince yourself that these two sets of

statements will, in fact, produce the pattern shown in
Figure 7.16.

62

A program that will plot this star field is shown in
Figure 7.17a. The result of running this program is
shown in Figure 7.17b.

FIGURE 7.17 (a) BASIC program to display star
field; (b) star field displayed by executing pro-
gram in (a).

215 REM FLOT STAR FIELD

217 GRAFHICES S CE=0

220 SETCOLOR 0,C2,8:COLOR 1
230 FOR Y=2 T0O 18 STEF 4
240 FOR X=2 TO 22 STEF 4
250 FLOT X, Y:NEXT X:NEXT Y
260 FOR Y=4 TO 14 STEF 4
270 FOR X=4 TO 20 STEF 4
280 PLOT X, Y:NEXT X:NEXT Y
290 END

(a)

(b)

Making Stripes

The one further thing we need to learn in order to
display our flag is how to make stripes. In this section
we will write a general program that can display any
size striped pattern made from any two colors. The
program will ask the user to enter the following
values from the keyboard:

the number of stripes, N, to be plotted
the width of each stripe, W
the length of each stripe, L

. the two colors, C1 and C2, from which the
stripes will be formed.

2w N =

Given these variables, Figure 7.18 shows an algo-
rithm that will display N stripes, each of width W and
length L, starting with the C1 color in color register 0.

In this algorithm the inner NL for . . . next loop will
plot one stripe consisting of W rows of lines, each
with a length L. The color of the first stripe will be C1

.....

40
4%
50

[
\--.l \--l

a7
&HO
&HE
70
75
20
0
100
110
120
130
140

(color number R=1). After the NL for . . . next loop is
completed the value of R is changed to the other
color register number using the if...then ... else
statement. The outer NS for . . . next loop will con-
tinue to plot stripes until N stripes have been plotted.

A listing of the BASIC program corresponding to this
algorithm is shown in Figure 7.19. You should type in
this program and run it. A sample run of the program
is shown in Figure 7.20. You should try making differ-
ent kinds of stripes using this program. Another
sample run of this program is shown in Figure 7.21.
We will use the values shown in this example to help
display our flag.

FIGURE 7.18 Algorithm for displaying N stripes,
each of width W and length L, starting with the
color C1 in color register 0.

clear screen
SETCOLOR 0,C1,8: SETCOLOR 1,C2,8
ROW = 0:R =1
for NS =11to N
COLORR
forNL=1to W
PLOT 0,ROW: DRAWTO L-1, ROW
ROW = ROW + 1
next NL
ifR =1
then R = 2
elseR =1
next NS

FIGURE 7.19 BAsIC listing of program to make
stripes.

REM FROGRAM TO MAKE STRIFES

TOUENTER NUMBER QF STRIFES "j
ITNFUT N

?OUENTER WIDTH OF EACH STRIFE ";
INFUT W

?OUENTER LENGTH QF EACH STRIFE ";
INFUT L.

TOVENTER TWQ COLORE (O-135) "y

INFUT C1,C2
GRAFHICS &
SETCQLOR 0,01,8:8ETCOLOR 1,C2,8
ROW=C Re=1
FOR Ng=1
CQ.OrR R
FOR NL=1 TO W
FLOT O,ROW:DRAWTO LL—1,R0OW
ROW=ROW+1
NEXT ML
IF R=1 THEN R=2:GQTQ 140
R==1
NEXT N&

TO N

FIGURE 7.20 Sample run of program shown in
Figure 7.19.

FIGURE 7.21
Figure 7.19.

A second run of program shown in

63

0 0

FIGURE 7.21 (cont.)

DISPLAYING THE FLAG

The American flag has 13 stripes. If we use 3 graphics
5 lines for each stripe, we will require 39 lines. Since
there are 40 rows in the graphics 5 mode, this will
work out well. The star field shown in Figure 7.16 is
21 rows high, which corresponds to the top 7 stripes
of the flag. This is the correct size of the star field.

The BAsic program shown in Figure 7.22 will
display the 13 stripes of the flag. Lines 50—150 are
just the algorithm shown in Figure 7.18 with N = 13,
W = 3, and L = 71. This will produce a somewhat
shortened version of the 13 stripes shown in Figure
7.21b.

We now need to add the blue field to Figure
7.21b. This will be done by plotting a 21x25 blue
area in the upper-left-hand corner of the screen. The
following algorithm will do this:

set color to blue
for ROW = 0 to 20

Plot from 0 to 24 at ROW
nextROW

This algorithm is accomplished by adding lines
170-210 to our program, as shown in Figure 7.23.
The result of executing this new program is shown in
Figure 7.24.

We now need to add the star field. This is done by
adding lines 215-290 as shown in Figure 7.25. (See

64

Figure 7.17a.) The resulting flag is shown in Figure
7.26.

FIGURE 7.22 Program to display the 13 stripes of
the flag.

10 REM FROGRAM TO DISFLAY FLAG
20 SETCOLOR 0,4, 6:REM RED

20 BETCOLOR 1,0,14:REM WHITE
40 SETCOLOR 2,9,6:REM BLUE
90 GRAFHICS 5

60 ROW=0:R=1

70 FOR Ng=1 TO 13:REM RED %
80 COLOR R

0 FOR NL=1 TO 3

100 PLOT O,ROW: DRAWTO 70, ROW
110 ROW=ROW+1

120 NEXT NL

120 IF R=1 THEN R=2:60T0 1350
140 R=1

180 NEXT NS

FIGURE 7.23 Subroutine to add the blue field to
the flag.

170 REM FLOT RBLUE FIELD

180 COLOR X

190 FOR RQOW=0 TO 20

200 FLOT O,ROW: DRAWTO 24, ROW

2300
210 NEXT ROW

WHITE STRIFES

FIGURE 7.25 Program to add the star field to the

flag.
e
220
230
240
250
el=ts)
270
280
S50

1

IHHHHIHHIIHIHiIIl|IIIII|IIIIIIIH!IIIIlII!IIHHIU|I||Ill!lllilllililiiiiﬁiiilif
Qi

FIGURE 7.24 Result of executing program shown

in Figures 7.22 and 7.23.

REM FLOT STAR FIELD

COLOR 1sREM WHITE STARS

FOR Y=2 T0Q 18 BTEF 4
FOR X=2 TO 22 STEF 4
FLOT X, YeNEXT XaNEXT Y
FOR Y=4 T0O 1& STER 4
FOR X=4 TOQ 20 &TEF 4
FLOT X, YaNEXT XaMEXT Y
END

EXERCISE 7.4

Write a program that will draw a large 8 X8 red and
blue checkerboard on the screen suitable for playing

a game of checkers.

EXERCISE 7.5

Write a program that will plot a large 3X3 red and
blue checkerboard for playing tic-tac-toe. Each
square of the checkerboard should contain 12x12
low-resolution plotting spots. Plot a yellow X on
square 1,) if you input I,],X. Plot a green O on square
1,J if you input1,),0O. For example, if you input 1,2,X a
large yellow X should be plotted in the second square
of the first row. If you input 2,2,0, a large green cir-
cle should be plotted in the center square. Make the
large circle occupy 88 squares. Make the large X
occupy 7 X7 squares.

FIGURE 7.26 Flag produced by program shown

in Figures 7.22, 7.23, and 7.25.

FLE Dy

|
]

65

LEARNING MORE ABOUT LOOPS—
ANOTHER LOOK AT IF. .. THEN

In Chapters 5 and 7 we used the FOR and NEXT state-
ments to form loops. In this chapter we will form dif-
ferent types of loops by using the IF . . . THEN state-
ment. In Chapter 6 we used the IF...THEN
statement to make simple choices between two alter-
natives. We saw that this use of the IF ... THEN
statement was equivalent to using an if...then
... else statement. In this chapter we will use the
IF ... THEN statement for a completely different
purpose—that of forming loops. Since you are using
the same IF . . . THEN statement, you may think that
there is no difference between using IF . . . THEN to
form loops and using it to form an if . . . then . . . else
construct. But this is not so. An if...then...else
statement merely makes a decision between two dif-
ferent paths. A loop, on the other hand, implies repe-
tition, in which the same statements are executed

over and over again until (or while) some condition is
met.
In this chapter you will learn

1. to repeat a loop while an affirmative answer is
given to a question

2. to use the IF . . . THEN statement to form a re-
peat while loop

3. to make nested loops using the IF . . . THEN
statement

4. the difference between a repeat while, a repeat
until, a do while, and a do until loop and how to
implement these loops in BASIC

5. how to implement a loop...exit if...
endloop and a loop . .. continue if ... endloop
construct in BASIC.

THE REPEAT WHILE LOOP

Very often you will have a sequence of BASIC state-
ments that you will want to repeat as long as a partic-
ular logical expression is true. For example, you may
wish to do the following:

30—

66

40
50
60—
repeat lines 30—-60 while A > 0

You can do this with the following statement:
70 IF A>0 THEN 30

Lines 30-70 form a loop that is exited only when
A > 0 becomes false—that is, when A < = 0. Ob-

viously, in order to get out of the loop there must be
something in lines 30-60 that will eventually cause A
to become less than or equal to 0.

Later in this chapter we will look at other types of
loops. For now, let’s look at some examples.

TRIANGLE PROGRAM

The program to find the area of a triangle was dis-
cussed in Chapter 6; the BAsIC listing is given in Figure
6.16. Because of the GOTO statement in line 120,
this program executes over and over again until the
BREAK key is pressed in response to the INPUT state-
ment. A better way to end the program would be to
ask the user if he or she wants to continue. This can
be done by replacing the GOTO 20 statement on line
120 with the following statements:

17 DIM A$(5)

120 2 “DO YOU WANT TO CONTINUE (Y,N)";
125 INPUT A$

130 IF A$(1,1)="Y" THEN 20

140 END

Line 120 displays the message “DO YOU WANT
TO CONTINUE (Y,N) and line 125 then waits for a
response to be entered from the keyboard. This re-
sponse is stored in the string A$, which is dimen-
sioned to a length of 5 in line 17. Line 130 compares
the first letter of this string to “Y” and if

FIGURE 8.1

A$(1,1) = “’Y” the program branches back to line 20
and the area of another triangle is found. Any other
response will terminate the program.

The string A$(l,)) is the substring of A$ that starts at
character number | and continues through character
number J. Thus, A$(1,1) is the first letter in A$. There-
fore, line 120 will branch to line 20 if either “/Y"" or
“YES" was typed in line 125. (The string A$(l) is the
substring consisting of the characters in A$ starting at
location | and continuing to the end of the string.)

The Basic listing of this modified program is shown
in Figure 8.1 and a sample run is shown in Figure 8.2.
Remember that if the response to an INPUT statement
is expected to be a nonnumeric value, then a string
variable must be used in the INPUT statement. If the
INPUT statement contains a numerical variable and
the user types in a letter or other nonnumeric value,
the ATARI will respond with the message ERROR- 8
and exit the program.

An INPUT statement containing a string variable
will accept any input but will treat it as a string. Thus,
in line 130 in Figure 8.1 the substring A$(1,1) must be
compared to the string “'Y".

BASIC listing of modified triangle program.

10 REM FROGRAM TO FIND THE
15 REM AREA OF A TRIANGLE

17 DIM A% (S
20 7 "ENTER THE THREE
S0 INFUT AR, C

40 IF AXR
=0 L=R
6O IF Gl THEN L=(
70 8=(A+R+0C) /2
80 IF L>8 THEN 7

SIDES OF A TRIANGLE"

THEN L=A:GE0TO &0

"NO TRIANGLE FOSSIRLE":GOTO 20

PO AREA= (8% (8—-A) X {5-F) ¥ (&G-CH)"0, &

100 7 "THE AREA OF THE TRIANGLE I8 "j;AREA
110 7

120 72 "DO YOU WANT TO CONTINUE (Y,.N) "3
125 INFUT A%

130 IF A (1, 1) ="Y" THEN 20

140 END

67

RLUN

ENTER THE THREE SIDES OF A TRIANGLE

76,8,

9
THE AREaA OF THE TRIANGLE IS 23 .525252

DO YOU HaMWT TO CONTINUE
ENTER THE THREE SIDES OF

74,656,858

(Y,NIZY

A TRIAMGLE

THE AREA4 OF THE TRIANGLE IS 11.6i83499

YOU HAWT TO CONTINUE

READY

(Y, HI7H

FIGURE 8.2 Sample run of program shown in

Figure 8.1.

RANDOM STRIPE PATTERNS

In this section we will write a program that will draw
a random horizontal stripe pattern. The pattern will
contain 40 horizontal lines each 80 spaces long. In
other words the picture will take up the entire 80 x40
screen area in the low-resolution graphics mode 5.
Each stripe that is plotted will have a 50/50 chance of
being one of two possible colors. These two colors
can be specified by the user.

A pseudocode description and a structured
flowchart for this program are shown in Figure 8.3.
After clearing the screen the user specifies two color
numbers C1 and C2 in the INPUT statement. The var-
iable Y is used to specify the line number (0-39) at
which a particular horizontal line is drawn.

Each time through the inner repeat while loop a
single stripe is drawn. The line number Y is increased
by 1 each time through this loop. The color of each
stripe is determined by the value of a random number
R. The value of this random number is between 0 and
1. If it is less than 0.5 (there will be a 50/50 chance of
this), then the color in color register 0 (COLOR 1) is
used for the next stripe. Otherwise, the color in color
register T (COLOR 2) is used. This loop is repeated
while Y< = 39. After the stripe pattern is plotted, the
user is asked if another picture is wanted. If so, the
screen is cleared and the entire program is executed
again. Otherwise, the screen is cleared and the pro-
gram terminates.

A BAsIc listing of this program is shown in Figure
8.4. Compare this listing carefully with the
pseudocode and structured flowchart representations
of the program shown in Figure 8.3. Note in particu-

68

lar how the repeat while and if . . . then . . . else con-
structs are implemented in BAsIC. Line 120 will cause
the screen to be cleared of the previous stripe pattern.

You should type in this program and run it. A
sample run is shown in Figure 8.5.

EXERCISE 8.1

Use a FOR . . . NEXT loop to implement the random
stripe algorithm in Figure 8.3. Run the program and
compare the result with Figure 8.5.

FIGURE 8.3 (a) Pseudocode of program to draw
random stripes; (b) structured flowchart for pro-
gram to draw random stripes.

clear screen

loop: input 2 colors C1, C2
GR. 5: SETCOLOR 0,C1,8
SETCOLOR 1,C1,8
Y=0
loop: R = RND(0)

ifR<0.5

then COLOR 1

else COLOR 2

Draw horizontal line at Y

Y=Y+1

repeat while Y < = 39

input “another picture?2”;A$

clear screen to green

repeat while A$(1,1) = "Y"

10 REM RANDOM STRIFES

clear screen 15 DIM A% (5)
input 2 colors C1, C2 26 9 "§o
set up graphics 30 7 "ENTER 2 COLORS (0-1%) "3
Y=0 25 INFUT C1,C2
40 GRAFHICS S5:8ETCOLOR 0,C1,8:8ETCOLOR 1,C2,8
R = RND(0) 45 Y=
S0 R=RND (0)
R <0.5 60 IF R<OLS THEN COLOR 1:G0OTO 70
then ’ else 65 COLOR 2
| “coom1 T T T T Color2 | 70 FLOT O,Y:DRAWTD 79,V
80 Y=Y+1
Draw horizontal line at Y 70 IF Y=39 THEN S0
Y=Y+1 100 2?7 "ANOTHER PICTURE (Y,.N)"3
110 INFUT A%
repeat while Y<=39 120 GRAFHICS O
1720 IF A$(1,1)="Y" THEN O
input ““another picture?’’;A$ 140 END

clear screen

FIGURE 8.4 BAsIC listing of program to produce
repeat while A$(1,1)="Y" a random stripe pattern.

FIGURE 8.3 (cont.)

FIGURE 8.5 Sample run of program shown in
Figure 8.4.

ENTER 2 COLORS (¢8-15) <20, 40

G R e R T T A AT T TR R L
L S S T T T TP LT A A

69

RANDOM CHECKERBOARD PATTERN

In this section we will modify the program in Figure
8.4 to plot a random checkerboard pattern rather
than a stripe pattern. This can be done by adding an-
other inner loop that will plot a single spot rather than
a horizontal line. Each spot will have a 50/50 chance
of having one of two possible colors.

Pseudocode and structured flowchart representa-
tions of this program are shown in Figure 8.6. Com-
pare these algorithms with the corresponding pro-
gram descriptions given in Figure 8.3 for the random
stripe program. Note that for each line plotted on the
screen (which occurs within the repeat while Y< =
39 loop) there is another nested repeat while X< =
79 loop. This inner loop will plot 80 spots (with ran-
dom color) on each line. Note that the value of X
must be initialized to O at the beginning of this inner
loop (that is, at the beginning of each new line).

The Basic listing of this program is shown in Figure
8.7. Compare this listing carefully with the program
descriptions shown in Figure 8.6. Make sure you un-
derstand clearly how each of the nested repeat while
loops is implemented in BAsiC and what its function is
in the execution of the program.

Type in this program and run it. A sample run is
shown in Figure 8.8. This program is a good example
of how “slow’” Basic is. It will take over a minute to
plot one random checkerboard.

EXERCISE 8.2

Use FOR . . . NEXT loops to implement the random
checkerboard algorithm given in Figure 8.6. Run the
program and compare your result with Figure 8.8.

FIGURE 8.7 BAsIC listing of program to plot ran-
dom checkerboard pattern.

10 REM RANDOM CHECKERBOARD

15 DIM A%(S)

20 7 nv_ "

Z0 7 "ENTER 2 COLORS (0-13) "j

35 INFUT C1,C2

40 GRAPHICS S5:SETCOLOR ©,C1,8:85ETCOLOR 1,C2,
45 Y=0

47 X=0

90 R=RND (0Q)

60 IF R<0O.5 THEN COLOR 1:60T0 70

65 COLOR 2

70 PLOT X,V

72 X=X+1

75 IF X<=79 THEN 50

80 Y=Y+1

Q0 IF Y«<=I9 THEN 47
100 7 "ANOTHER PICTURE
110 INFUT A%

120 GRAFHICS ©

130 IF A$(1,1)="Y" THEN 30
140 END

(YoN) "3

70

FIGURE 8.6 (a) Pseudocode and (b) structured
flowchart for program to plot a random checker-
board pattern.

clear screen

loop: input 2 colors C1, C2
set up graphics
Y=0
loop: X =0
loop: R = RND(0)
ifR<0.5
then COLOR 1
else COLOR 2
plot one square
X=X+1
repeat while X < =79
Y=Y+1

repeat while Y < = 39
2 "another picture?’’;
input A$
clear screen
repeat while A$(1,1) = “Y”
(a)

clear screen

input 2 colors C1, C2
set up graphics

Y=0
X=0
R=RND(0)
if R<0.5
then else _4
COLOR 1 TbOLOHZ
plot one square
X=X+1

repeat while X <=79

Y=Y+1

repeat while Y<=39

? "another picture?”’;
input A$
clear screen

repeat while A$(1, 1)="Y"

(b)

ENTER 2 COLORS

Fr
'" “ ﬁﬁ""""u“"“

it
4

F i I“II'

i ; " i ff
[k !!!!"ff..""".-

i
£ II(!""""u " n

,,,n{lll “"“;;" n

i l'lll l ll"

i ““I ":: ll

(6—-15)

4

"l
“uu“::!f" :

"Ji"" ¥ u ol

2?4, 00

T
ulun"!!::;:liﬂm
;iﬂ“ll

m I |
ot

b

1l "
“ i m"u"!'ll

“"‘;il "Il] !! tH

ll
s

SI

il
anllin

FIGURE 8.8 Sample run of program shown in

Figure 8.7.

DIFFERENT TYPES OF LOOPS

There are really four different elementary loop struc-
tures that are available. You can test the logical ex-
pression at the beginning of the loop or at the end of
the loop. In addition, you can branch out of the loop
when the logical expression is either true or false. We
will call the two loops with the test at the end of the
loop the repeat while and repeat until loops. We will
call the two loops with the test at the beginning of the
loop the do while and the do until loops. In addition
to these elementary loops, it is possible to use a more
general loop structure in which the test of the logical
expression is done in the middle of the loop. De-
pending upon whether the loop is exited when the
logical expression is true or false we will call these

two general loop structures the loop . . . exit if ...
endloop and the loop...continue if...end-
loop loops.

All of these loop structures can be implemented in
BASIC. As we will see, some are easier to implement
than others. Most good programmers use only two or
three of these loop structures in all of their programs.
The choice of which ones to use depends on the
programming language being used and to some ex-
tent on personal preference.

The Repeat While Loop

This is the loop that we have been using in all of the
programs in this chapter. Its general form is shown in
Figure 8.9. In this figure logical exp. is any logical ex-
pression that is either true or false. This loop is re-
peated while the logical expression is true. Figure

FIGURE 8.9 The repeat while loop: (a) pseudo-
code; (b) BAsIC implementation; (c) structured
flowchart; (d) train track equivalent.

10

loop:

20

30

repeat while logical exp.

(a)

40 IF logical expression THEN 10
(b)

repeat while logical exp.

(c)

71

8.9d shows what this loop looks like in our train track
model of a computer program. Note that the train
continues to loop around through the station as long
as the logical expression is true.

The Repeat Until Loop

The general form of the repeat until loop is shown in
Figure 8.10. Note that in this case the loop is exited if
the logical expression is true. That is, the loop is re-
peated until the logical expression is true. In general
you should choose to use either the repeat while or
the repeat until loop in your programs. This will help
you to avoid logical errors because you will always
be thinking either while or until. Many people prefer
the repeat until and some languages implement this
loop directly.

FIGURE 8.10 The repeat until loop: (a) pseudo-
code; (b) BAsIC implementation; (c) structured
flowchart; (d) train track equivalent.

loope o —— 10
20
30

repeat until logical exp. 40 IF logical expression THEN 60
50 GOTO 10

60

(a)

repeat until logical exp.

(c)

However, by comparing Figures 8.9 and 8.10 you
can see that it is easier to implement a repeat while
loop in BAsic. The repeat until implementation re-
quires an additional GOTO statement. For this rea-
son, any time we form a loop with the test at the end
of the loop we will make it a repeat while loop. After
you finish this book you can use whichever loop
structure you want.

The Do While Loop

The do while loop is one of those ‘good”
programming statements that is found in newer lan-
guages such as PASCAL. Its general form is shown in

72

Figure 8.11. In this loop the test of the logical expres-
sion is done at the beginning of the loop. This means
that if the logical expression is initially false, the train
will never go to the station. That is, the statements
within the loop will never be executed. Note that the
BASIC implementation of the do while loop requires
two GOTO statements, one following the IF
. . . THEN statement to skip over the loop statements
if the logical expression is false, and one at the end of
the loop to branch back to the IF . . . THEN state-
ment.

FIGURE 8.11 The do while loop: (a)
pseudocode; (b) BASIC implementation; (c) struc-
tured flowchart; (d) train track equivalent.

do while logical exp. 10 IF logical expression THEN 30
20 GOTO 70
30
40
enddo 50
60 GOTO 10
70

(a) (b)

logical exp.

do while logical exp.

false

(c)

The Do Until Loop

The fourth elementary loop structure is the do until
loop, whose general structure is shown in Figure
8.12. In this loop the test of the logical expression is
also done at the beginning of the loop. However, the
statements within the loop are only executed if the
logical expression is false—that is, until the logical
expression is true. Note that if the logical expression
is initially true, the train will never get to the station
and the statements within the loop will never be exe-
cuted.

Note also that the BAsIC implementation of the do
until loop requires only one GOTO statement rather
than the two needed for the do while loop. For this
reason we will normally implement the do until loop
rather than the do while loop when we need a test at
the beginning of the loop.

do until logical exp. 10 IF logical expression THEN 60
20
30
40
enddo 50 GOTO 10
60

(a) (b)

logical exp.

do until logical exp.

©) (C)
FIGURE 8.12 The do until loop: (a) pseudocode;

(b) BAsIC implementation; (c) structured flowchart;
(d) train track equivalent.

People who write structured programs using a
““good"’ structured programming language use the do
while and the repeat until loops. As we have seen it
will save us some code (and therefore some memory)
if instead we use the do until and the repeat while
loops. However, any of these loops can be used with-
out much difficulty.

The Loop . . . Exit If . ..
Endloop Loop

Occasionally it is convenient to use a more general
looping structure. Such a loop is the loop . . . exit
if .. .endloop construct, whose general form is
shown in Figure 8.13. This is really a generalized un-
til loop. That is, if the exit if statement is at the top of
the loop, it reduces to the do until loop. If the exit if
statement is at the bottom of the loop, it reduces to
the repeat until loop.

FIGURE 8.13 The loop... exit if...endloop
loop: (a) pseudocode; (b) BASIC implementation;
(c) structured flowchart; (d) train track equivalent.

loop: — 10
20
30

exit if logical exp. 40 IF logical expression THEN 80

50

60

70 GOTO 10

80

(a) (b)

endloop

STATION 1
logical exp.
true z
] false
exit if logical exp. STATION 2
(c) (d)

The Loop . . . Continue
If ... Endloop Loop

In order to complete the discussion of loops, we will
show the general form of the loop ... continue
if ... endloop in Figure 8.14. This is really a general-
ized while loop. That is, if the continue if statement is
at the top of the loop, it reduces to the do while loop.
If the continue if statement is at the bottom of the
loop, it reduces to the repeat while loop.

Any of the loops that have been described can be
used in your programs, but as we have seen, the
easiest ones to implement in BASIC are the repeat
while, the do until, and the loop .. .exit if...
endloop structures.

FIGURE 8.14 The loop... continve if...end-
loop loop: (a) pseudocode; (b) BASIC implementa-
tion; (c) structured flowchart; (d) train track equiv-
alent.
loops —— 10

20

30

continue if logical exp. 40 IF logical expression THEN 60

50 GOTO 90
60
endloop 70
80 GOTO 10
(a) (b) 90

STATION 1

continue if logical exp. true logical exp.

false

STATION 2

(c)

73

EXERCISE 8.3
The dimensions, in feet, of a tract of land are shown
in the following figure:

150

Modify the program shown in Figure 8.1 to calcu-
late the acreage of this tract of land. The total acreage
can be found by computing the area of each of the
four triangles, adding these results, and using the fact
that 1 acre = 43,560 square feet.

EXERCISE 8.4

Suppose that the tract of land shown in Exercise 8.3
contains a circular pond 200 feet in diameter com-
pletely within its boundaries. Write a program that
will compute the acreage of the land excluding the
water.

EXERCISE 8.5
The Fibonacci sequence

1123581321...

has the property that each number in the sequence
(starting with the third) is the sum of the two immedi-
ately preceding numbers. Write a program that will
display on the screen all numbers in the Fibonacci se-
quence that are less than 1,000.

EXERCISE 8.6

You decide to deposit an amount of money, D, in a
savings account each month. The account pays P per-
cent interest compounded monthly. Write a program
that will input D and P; then determine the number of
years (and months) that it will take for you to accumu-
late a million dollars.

The amount of interest added to the account each
month is determined in the following way. If B is the
balance in the account at the beginning of the month,
then at the end of the month an amount of interest
B * MR is added to the account, where MR is the
monthly interest rate (equal to 0.01 * P/12). Thus, the

74

total amount of money in the account at the end of
the month will be equal to B + B * MR.
Run the program for the following case:

1. Deposit $500 per month at 8 percent interest.

2. Deposit $1,000 per month at 10 percent inter-
est.

3. Deposit $1,000 per month at 12 percent inter-
est.

EXERCISE 8.7

Manhattan Island was purchased from the Indians in
1626 for $24. If that $24 had been deposited in a
bank in 1626 paying 4 percent interest compounded
annually, what would it be worth today?

EXERCISE 8.8

If you deposit $100 each year in a bank account
paying 5 percent interest compounded annually, how
much money will you have after 10 years?

EXERCISE 8.9

Population growth. In 1974 the U.S. birth rate was
14.9 births per 1,000 population, the death rate was
9.1 deaths per 1,000 population, and the net migra-
tion rate was 1.7 per 1,000 population. Assume that
these rates will remain constant in the future and that
the population of the United States at the beginning of
1976 was 214,398,000. Also assume for the purpose
of simulating this process on the computer that all
births, deaths, and migrations take place on the last
day of each year. Write and run a program that will
determine in which year the population of the United
States will reach 300,000,000.

EXERCISE 8.10

A rocket is fired vertically into the air with an initial
velocity of V ft/s. The height H of the rocket above the
ground at any time T is given by

H=-162T% + VT
Write a program that will

1. input a value of V
2. print the letters T and H for a table heading

3. compute H for values of T starting at 0 and
increasing by 1 second until the rocket hits the
ground

4. print the values of T and H in the form of a ta-
ble.

Run the program using a value of V = 200 ft/s.

SUBROUTINES: LEARNING TO USE
GOSUB AND RETURN

Often you will have a sequence of BASIC statements
that you would like to execute at several different lo-
cations within a program. Instead of having to repeat
this same sequence of statements every time you
want to use it, you can write the statements only once
as a subroutine and then call the subroutine each
time you want to execute these statements.
Subroutines are also useful as a means of writing
programs in a modular fashion. This becomes more
and more important as the size of a program grows.
Program segments that perform particular functions
can be written as subroutines and then called when
that function needs to be performed. The ATARI
screen can display a maximum of only 22 program
lines (leaving two lines at the bottom for the cursor);
therefore, if you can keep your main program and all
subroutines less than 22 screen lines long, you will be

able to read and study a complete program segment
without having to scroll the screen. This technique of
modularizing your program will simplify the process
of debugging and modifying your program. It is the
secret that allows you to write long programs with al-
most the same ease with which you write short pro-
grams.
In this chapter you will learn

1. how to use the GOSUB and RETURN state-
ments

2. to plot the same figure at different locations on
the screen

3. to plot figures of varying sizes

4. how to display your name anywhere on the
screen

5. to use the game paddles and joysticks.

THE GOSUB AND RETURN STATEMENTS

The general form of the GOSUB statement is
GOSUB line number

When this statement is executed, the program
branches to the statement at line “line number.”” For

example, the statement GOSUB 500 will cause the
program to branch to line 500. It looks as if GOSUB
500 behaves the same way as GOTO 500. However,
there is an important difference. The ATARI remem-
bers where the statement GOSUB 500 is located in

75

the program. Line number 500 is the first line of a
subroutine that is just a collection of BAsIC statements
that perform a particular task. At the end of this
subroutine you must include the statement

RETURN

When the RETURN statement is executed, the pro-
gram will then branch back to the next statement fol-
lowing GOSUB 500. This process is shown in Figure
9.1

FIGURE 9.1 Forming a subroutine using GOSUB
and RETURN.

50
60 GOSUB 500 1

70,
o |

500)
Subroutine { 510
520 RETURN -

Now it looks as if you would accomplish the same
result in Figure 9.1 by using the two statements

60 GOTO 500
and
520 GOTO 70

Although this would be true in Figure 9.1 it would not
work if you wanted to call the same subroutine from
two different locations in the program as shown in
Figure 9.2. In this case the statement

60 GOSUB 500

will branch to the subroutine at line 500, then return
to line 70.
However, the statement

90 GOSUB 500

will also branch to the subroutine at line 500 but will
then return to line 100. Recall that the ATARI always
remembers the point from which it branched to a
subroutine and it will always return to that point.

76

50

60 GOSUB 500 —
09— &
80

90 GOSUB 500 —
100

HO—‘47

500 | |<
Subroutine § 510
520 RETURN =

FIGURE 9.2 Calling a subroutine from two dif-
ferent locations within a program.

You can even call a subroutine from within an-
other subroutine. The ATARI will always find its way
back by retracing its steps as shown in Figure 9.3.

FIGURE 9.3 One subroutine can call another
subroutine.

50__
60 GOSUB 500

70
o |

500 -

505

510 GOSUB 600
520 RETURN ——

600
610
| 620 RETURN

Line 60 branches to the subroutine at line 500. Line
510, which is within this subroutine, branches to a
second subroutine at line 600. The RETURN state-
ment on line 620 will branch back to line 520, the
statement following the GOSUB 600 statement. This
happens to be the RETURN statement of the
subroutine that begins at line 500. It will then branch
back to line 70, the statement following the GOSUB
500 statement.

PLOTTING MULTIPLE FIGURES

The graphic figure shown in Figure 9.4a can be
plotted using the subroutine in Figure 9.4b. All points
in this figure are defined relative to the X,Y
coordinate of the upper-left-hand corner of the figure.
Lines 105—-130 in Figure 9.4b draw the box in a
clockwise fashion starting at the position X,Y. Line
140 plots the two eyes. Line 150 plots the nose and
the mouth is drawn in lines 160—170. Note that line
180 is the RETURN statement. Study the subroutine
in Figure 9.4b carefully and make sure you under-
stand how it draws the face in Figure 9.4a.

FIGURE 9.4 (a) Definition of graphic figure; (b)
subroutine to plot the figure in (a).
(a) X X+3 X+6 X+9
l | ! |
y—Ll.

wd | O O

we{ |

Y47 —

Y+9—

(b)

100 REM FLOT FACE

105 FLOT X, Y:DRAWTO X+9,Y

110 DRAWTO X+9,Y+9

120 DRAWTO X, Y+9

130 DRAWTO X,Y

140 FLOT X+3,Y+2:PLOT X+6,Y+2
180 FLOT X+4,Y+4: PLAT X+5,¥Y+4
160 FLOT X+2, Y+5: DRAWTO X-+4,Y+7
170 FPLOT X+5,Y+7: DRAWTO X+7, Y+5
180 RETURN

This subroutine must have valid values for X and Y
before it is called. In order to test this subroutine, type
itin as shown in Figure 9.4b. Then in the immediate
mode, type

GR. 5:SETCOLOR 0,0,8:COLOR 1

This will put you into the low-resolution graphics
mode 5. Now type

X=10:Y=10:GOSUB 100
This should display the figure shown in Figure 9.5.

K=10:¥=10:GOSUB 100

READY
a

FIGURE 9.5 Test of subroutine given in Figure
9.4b.

Note that you can execute the statement GOSUB 100
in the immediate mode. This is very useful for testing
subroutines.

Now that you know that the subroutine works, you
can plot multiple faces by simply calling this
subroutine several times with different values for X
and Y. The program shown in Figure 9.6 calls the
statement GOSUB 100 nine times using a nested
FOR . . . NEXT loop. This loop will produce the fol-
lowing nine pairs of values for X and Y:

X Y
0 0
15 0
30 0
0 15
15 15
30 15
0 30
15 30
30 30

These nine pairs of values will correspond to the
coordinates of the upper-left-hand corner of the nine
faces.

You should type in and run the program shown in
Figure 9.6. (If you already have the subroutine typed
in you only need to add lines 10-60.) The result of
executing this program is shown in Figure 9.7.

Modify this program to plot only four faces. Note
that the END statement in line 60 is required to pre-
vent the subroutine at line 100 from being executed
an extra time without being called from a GOSUB
statement.

77

10
20

g
e e

=0

40

0

GO

100
105
110
120
17350
140
150
1&0
170
180

REM MULTIFLE FIGURES
GRAFHICS S 8ETCOLOR ©,0, 14: COLOR

: SETCOLOR 2,0,0: SETCOLOR 1,0,14

FOR Y=0 TO
FOR X=10 TO
EOSLIE
END
REM FLOT FACE

FLOT X, Y:DRAWTO X+9,Y
DRAWTD X+9,Y+9

DRAWTD X, Y+9

DRAWTO X, Y

PLOT X+3, Y425 FLOT Xté, Y+2
FLOT X+4,Y+4: FLOT X+5,Y+4
FLOT X+2, Y+5: DRAWTO X+4, Y+7
FLOT X+5,Y+7: DRAWTD X+7, Y+5
RETURN

0 8TEFR 18
S5O OTER 20
1002 NEXT XaNEXT VY

FIGURE 9.6 Program to plot nine faces on the

screen.

Plotting Different-Sized Figures

In addition to making the location of a figure variable,
you can also change the size of a figure. For example,
Figure 9.8a shows a square centered at X,Y whose
width is 2 * H + 1. The subroutine shown in Figure

9.8b will plot this square.

Type in this subroutine and then test it by typing

GR. 5:SETCOLOR 0,0,8:COLOR 1

FIGURE 9.8
H + 1; (b) subroutine to plot the square in (a).

(@) X—H X X+H
l 1 |
YoH— }
|
l
|
|
Y—ft——|]—— — —e
Y+H—

L7W=2xH+1——>

(b)

200
210
o Tan

e '::)

REM SOUARE OF WIDTH 2¥H+1
DRAWTO
DRAWTO
DRAWTO

RETURN

XM, Y+H
X~H, Y+H
X~H, Y=H

D
240

250

78

1

(a) Definition of square of width 2 *

FLOT X-=H, Y-H: DRAWTO X+H,Y-H

FIGURE 9.7 Result of executing the program
given in Figure 9.6.

to enter the low-resolution graphics mode 5, fol-
lowed by

X=40:Y=20:H=10:GOSUB 200

This should display the figure shown in Figure 9.9.

You can now plot multiple squares of different
sizes by calling the subroutine in Figure 9.8b with dif-
ferent values of H. For example, the program shown
in Figure 9.10 will plot seven concentric squares, all
centered at X = 40, Y = 20.

You should type in this program by adding lines
10-60 to the “‘square’” subroutine in Figure 9.8b. If
you run the program you should obtain the figure
shown in Figure 9.11. Try running this program after
changing the step size in line 40 to 2, 4, 6, and 1.

FIGURE 9.9 Test of subroutine given in Figure
9.8b.

K=48:Y=28:H=18:GOS5SUB 266

READY
|

FIGURE 9.10 Program to plot concentric
squares.
10 REM CONCENTRIC SQUARES

20 GRAFHICS 5:SETCOLOR 0,0, 14:COLOR 1
25 SETCOLOR 2,0,0:SETCOLOR 1,0,14

SO X=403Y=20
40 FOR H=1 TOQ 19 8TER =
S0 G0sUR 200 NEXT H
&0 END
200 REM SOQUARE OF WIDTH 2%H+1
210 FLAOT X-H,Y-H: DRAWTO X+H,Y-H
220 DRAWTO X+H, Y+H
230 DRAWTO X—H, Y+H
240 DRAWTO X-H,Y-H FIGURE 9.11 Result of running the program
250 RETURN shown in Figure 9.10.
PLOTTING YOUR NAME
You can use the ideas described in the previous sec- tal bar in the F is located at row number
tions of this chapter to plot your name anywhere on Y + (H — 1)/2. If H is an odd number the horizontal
the screen using letters of varying sizes. The trick is to bar will be placed at the middle of the F. Also note
define each letter in terms of the X,Y coordinate of its that the length of this bar is (W — 1)/2.
upper-left-hand corner and the width, W, and height, Figure 9.14a defines the letter E. The subroutine in
H, of the letter. Then you can plot each letter wher- Figure 9.14b begins by plotting an F in line 410. Line
ever you want by using subroutines. 420 then adds the bottom horizontal bar to produce
As an example, Figure 9.12 shows a subroutine an E.
that will plot the letter). In this figure W is the width In order to test these subroutines, type in the lines
of the letter and H is its height. The upper-left-hand shown in Figures 9.12b, 9.13b, and 9.14b. Then en-
corner of the HXW rectangle containing the letter de- ter the low-resolution graphics mode 5 by typing
fines the position. XfY of the letter. Study the GR. 5:SETCOLOR 0,0,8:COLOR 1
subroutine shown in Figure 9.12 and make sure you
understand how lines 210230 plot each part of the). You can then plot a J by typing
In a similar way, Figure 9.13 shows a subroutine AT A A AL, B
that will plot the letter F. Note that the short horizon- SIS =Cin =SS U 200
e as shown in Figure 9.15. In order to test the
FIGURE 9.12 (a) Definition of the !eﬂer Ji (b) subroutines for plotting the F and the E, type
subroutine to plot the letter J shown in (a).
() X X+W—1 X=20:GOSUB 300
” ! 7— FIGURE 9.13 (a) Definition of the letter F; (b)
subroutine to plot the letter F shown in (a).
2
g (a) X+IW2
X | X+w—1
ViH-2— IS
Y+H—1— —r* |
(b) b o Bl t H
200 REM FLOT A J (H X W) ?
210 FLOT X+W-1,Y:DRAWTO X+W—1,Y+H~1
220 DRAWTO X, Y+H—-1 s
250 PLOT XgY+H-2
240 RETURN [P

79

300 REM FLOT AN F (H X W)
Z10 FLOT X+W—-1,Y:DRAWTO X,Y

Z20 DRAWTO X, Y+H-1

FEO OFPLOT X+1,Y+(H-1)/2: DRAWNTA X+ (W-1) /2, Y+ (H-1) /2

40 RETURM

FIGURE 9.14 (a) Definition of the letter E; (b)
subroutine to plot the letter E shown in (a).

W—1
(@) 3 x+| 5
X | x+w—1
Jl [
Y— s |
1
T
|
Y+H—;—1— | H
Y+H—1—
_Yv

(b) L—w——j

400 REM FLOT AN E (H X W)

410 GOSUR Z00:REM FLOT F

420 FLOT X+1,Y+H-1: DRAWTO X+W-1,Y+H-1
430 RETURN

FIGURE 9.15 Testing the subroutine shown in
Figure 9.12.

K=18:¥=18:MW=3I:H=5:G0OSUB 2686
READY
|

FIGURE 9.16 Testing the subroutine to plot indi-
vidual letters.

X=38:GOSUB 460
READY
|

80

and
X=30:GOSUB 400

as shown in Figure 9.16.

Figure 9.17 shows a subroutine that will combine
the letters J, E, and F to plot the name JEFF. Before
calling this subroutine, X, Y, W, and H must have
been assigned values. Line 510 plots a J at location
X,Y. Line 520 plots an E where the X location has
been increased by W + 2. This will leave a blank
column between the | and the E. Similarly, lines
530-540 plot the two Fs.

A main program that plots three JEFFs of different
sizes is shown in Figure 9.18. Lines 20-30 will plot
the name with 5x3 letters. Lines 40-50 will plot the
name at a different location using 7x5 letters.
Finally, the name with 15X 11 letters is plotted in
lines 60—70. The result of running this program is
shown in Figure 9.19.

FIGURE 9.17 Subroutine to plot the name JEFF.
500 REM FPLOT JEFF (H X W)

S10 GOsSUR 200:REM J

G20 X=X+W+2: GOSUR 400:REM E

D30 X=X+W+2:GOBUR ZTO0:REM F

540 X=X+W+32: E08UR Z00:REM F

S50 RETURN

FIGURE 9.18 Main program that plots the name
JEFF three times.

1O REM FLOT ZF JEFFS

15 GRAFHICS S:S8ETCOLOR 0,0, 14: COLOR
17 SETCOLOR 2,0,0:8ETCOLOR 1,0,14
20 X=12:Y=23W=FH=5

20 GO8UR SO0

40 X=152Y=103W=5EsH=7

20 GOsUR S00

G0 X=10:Y=201W=111H=15

70 GOSUR SO0

a0 END

EXERCISE 9.1

Write a program that will plot your name at two dif-
ferent locations on the screen. The size of the two
names should be different.

EXERCISE 9.2
Write a program that will plot a set of seven concen-
tric diamonds.

1

FIGURE 9.19 Result of running the program
shown in Figure 9.18.

USING THE GAME PADDLES

The ATARI game paddles can be plugged into any of
the four controller jacks on the front of the computer
below the keyboard. The game paddles come in pairs
with two paddles connected to a single plug. The
plugs are numbered 1 to 4 from left to right.

The value of a paddle is read using the paddle
function PADDLE(N). The argument N is a number
between 0 and 7. This value will depend on which
controller jack the paddles are connected to, as
shown in Figure 9.20. For example, if we connect the
paddles to controller jack 3, then the two functions
PADDLE(4) and PADDLE(5) will read the two pad-
dles.

To see this, connect the paddles to jack 3, type the
following one-line program and run it.

10 2PADDLE(4),PADDLE(5):GOTO 10

FIGURE 9.20 Eight paddles can be connected to
the ATARI through the four controller jacks.

Two columns of numbers will scroll off the screen.
Turn the two paddles. Note that the values change
from O to 228 as the paddles are rotated. The value of
228 occurs when the paddles are rotated completely
counterclockwise.

Now type in the program shown in Figure 9.21.
Line 20 sets the low-resolution graphics mode 5 with
a white color. Line 30 assigns X an integer value be-
tween 0 and 76 depending upon the position of the
knob on paddle 4. Note that the maximum possible
value is 228/3 = 76. This is done so that in the PLOT
statement in line 50 the maximum value of X will be
76. Similarly, line 40 assigns Y an integer value be-
tween 0 and 38 depending upon the position of the
knob on paddle 5.

The PLOT statement in line 50 causes a white dot

Controller Jack

/N S

PADDLE(0) PADDLE(2)
PADDLE(1) PADDLE(3)

\ 3
PADDLE(4)
PADDLE

il vl
PADDLE§6)
5) PADDLE(7)

81

10 REM USTHG THE PADDLES 10 REM MOVING SFOT WITH FADDLES
20 GRAPHICS S SETCOLOR 0,0, 14:COLOR 1 GRAFHICS S S8ETCOLOR 0,0, 14: COLOR 11

Z0 X=TMT (FADDLE (4) 7735 S0 X=TINT (FADDLE (4) /7))

40 Y=INT(FADDLE (50 /&) 4O Y INT (FADDLE (&) /&)

S0 PLOT X, ¥ 50 FLOT XY

& GOTO 30 HO X 1=TINT (FADDLE (4) /759
FIGURE 9.21 Program to draw figures using the ~ ** Y1=INT (FADDLE (5 /62

game paddles.

to be plotted on the screen. The exact position of the
dot will depend on the position of the two paddle
knobs. Line 60 branches back to line 30 and the two
paddles are read again. Thus, this program should
continually display new spots on the screen as the
paddle knobs are turned.

A sample run of this program is shown in Figure
9.22. You should try running this program. Press the
BREAK key to stop the program.

FIGURE 9.22 Sample run of program shown in
Figure 9.21.

The function PTRIG() (| = 0 — 7) is used to tell if
the paddle trigger button on paddle number J is being
pressed. The value of PTRIG()) will be 0 only if the
trigger button on paddle number | is being pressed.

Suppose that you want to move a single 'spot
around the screen in response to the game paddles.
The program shown in Figure 9.23 will do this. Type
it in and run it.

Lines 20-50 are the same as in Figure 9.21. After
the first white spot is plotted in line 50, the paddles
are read again in lines 60—70. The new values are
stored in X1 and X2. If these are the same as X and Y
measured in lines 30—40, the paddles are read again.
This test is made in line 80. As soon as one of the pad-
dles is rotated the test in line 80 will fail and line 90
will be executed. The statement COLOR 0 will point

82

8O ITF X1=X AND Yi=Y THEN &0
GO COLOR O3 PFLOT X,Y

LlaY=Y1

110 COLOR 1s307T0O 80

FIGURE 9.23 Program to move a single spot
around the screen.

to color register 4, which contains the default back-
ground color black. The statement PLOT X,Y will
therefore plot a black spot at the same location (X,Y)
at which the white spot was plotted in line 50. This
will erase the spot. Line 100 then assigns the new
screen location X1,Y1 to the values X and Y. Line 110
resets the color to white by pointing to color register 0
and then branches back to line 50, where a new
white spot is plotted at X,Y.

An alternate way of writing this program is to read
the paddles, plot a white spot, erase the spot, and re-
peat this process. However, this will result in a blink-
ing spot when the paddles are not being turned. The
technique illustrated in Figure 9.23 in which a new
spot is plotted only when the paddles are rotated will
prevent the spot from blinking.

If the PLOT statements in lines 50 and 90 in Figure
9.23 are replaced with GOSUB statements, larger fig-
ures can be moved around the screen. (See Exercise
9.3.)

EXERCISE 9.3
Write a program that will plot the following 3x3
cross in the center of the screen:

Have the cross move around the screen in response to
rotating the game paddles.

EXERCISE 9.4

Modify the program in Figure 9.21 so that the figure
on the screen is erased each time the paddle trigger
button is pressed.

EXERCISE 9.5

Modify Exercise 9.3 so that it uses a joystick instead
of game paddles. Change the color of the cross each
time the trigger button is pressed.

USING THE JOYSTICKS

An ATARI joystick can be plugged into one of the four
controller jacks on the front of the computer (see Fig-
ure 9.20). The value of the joystick is read using the
stick function STICK(N), where N is the joystick num-
ber 0—3. Stick number 0 is plugged into the leftmost
controller jack and stick number 3 is plugged into the
rightmost controller jack.

The function STICK(N) can only take on the values
shown in Figure 9.24, depending on the position of
the stick.

The program in Figure 9.25 shows how to produce
the same type of figure as the one shown in Figure

FIGURE 9.24 Possible values of the function
STICK(N).

14
A
10 &
11 =€ 15 —>» 7
9 5
Y
13

9.22 by moving the joystick. The joystick is assumed
to be plugged into the rightmost controller jack. If you
press the stick trigger button, the value of the function
STRIG(N) will be 0. Line 90 in Figure 9.25 checks to
see if you are pressing the trigger button; if you are,
the program branches to line 20, which erases the
screen. Otherwise it will continue to plot a new point
in line 40.

Type in this program and run it. Modify the pro-
gram so that diagonal lines are plotted when the
value of the function STICK(N) is 6, 5, 9, or 10 (see
Figure 9.24).

FIGURE 9.25 Program to draw figures using a
joystick.

10 REM FLOTTING WITH & JOYSTICE

20 GRAFPHICE S:S8ETCOLOR O, 0, 14: COLOR 1
IO X=RO3Y¥=20

EEOIF X779 THEN X=79

EAHOIF X THEN X=0

a2 IF 3G9 THEN Y=39

A28 OIF YOO THEN Y=0

40 FLAT X, %

S IR STICK (Ey=7 THEM X=X+1:GQT0Q 90
O TF STICK (Z)=173 THEN Y=Y+1:G0TO 90
TOOIF STICKE (2 =11 THEN X=X-1:G60T0 90
Q0 IF STICKE (Z)=14 THEN Y=Y-—1

0 IF 8TRIGEE) =0 THEN 20

100 GOTO Z5E

83

MAKING BAR GRAPHS—LEARNING
ABOUT READ ... DATA

You know two ways to assign a value to a memory
cell name. One is to use an assignment statement
such as A = 3. The second is to use an INPUT state-
ment such as INPUT A. In the last case the value is
entered through the keyboard.

In this chapter you will learn another method of as-
signing values to memory cell names. The values to
be assigned are stored in the program in DATA state-
ments. They are assigned to memory cell names by
using a READ statement.

In this chapter you will learn

1. to use the READ, DATA, and RESTORE state-
ments

2. to make horizontal bar graphs

3. to make vertical bar graphs containing multiple
bars

4. to scale and label bar graphs.

THE READ, DATA, AND RESTORE STATEMENTS

The DATA statement must be used in the deferred

mode. Although the READ and RESTORE statements

are normally used in the deferred mode we will

illustrate their use by storing data in a DATA state-

ment (in the deferred mode) and then using the READ

and RESTORE statements in the immediate mode.
Type in the following statement:

10 DATA 5,10
and then type

84

RUN
READ A
2A
READ A
2A
READ A
as shown in Figure 10.1 The first time you typed

READ A, the first data value in the DATA statement
(5) was stored in A. The second time you typed READ

18DATA 5,10
RUN

READY

READ A
READY

20

5

REALDY
REGD a

READY
7ha
i8

READRY
READ A

ERROR-—
|

FIGURE 10.1 The READ statement reads succes-
sive values from a DATA statement.

A, the second data value in the DATA statement (10)
was stored in A. The third time you typed READ A, an
error message, ERROR- 6, was displayed. This is an
out of data error because there were no more data
values in the DATA statement to use.

When a program is executed, a pointer points to
the first data value in the DATA statement. (More than
one DATA statement in a program will be treated as a
single long DATA statement.) As data values are
“used up”’ by being read in READ statements, the
pointer keeps moving along to the next unused data
value. If the pointer gets to the end of the data values
in the DATA statement and another READ statement
is executed, then the ERROR- 6 message will be dis-
played.

The pointer can be reset at any time to the first data
value in the DATA statement by using the statement

RESTORE

Also, more than one value can be read with a single
READ statement. In order to see this, type in the fol-
lowing statements:

10 DATA 5,10,15
RUN
READ A,B,C
¢A,B,C
RESTORE
READ B,C
2A,B,C

as shown in Figure 10.2.

10 DATA 5,10,15
RUN

READY
READ a,B,C

READY
?6,6,C
5

REGLY
RESTORE

REAGLY
REal B,C

FIGURE 10.2 The RESTORE statement moves the
pointer to the first data value in the DATA state-
ment.

Note that in this case the first READ statement
stores the values 5, 10, and 15 in A, B, and C, respec-
tively. The RESTORE statement then moves the
pointer back to the first data value (5). Therefore, the
next READ statement will store the values 5 and 10 in
B and C, respectively. Note that the value of A re-
mains unchanged and is still equal to 5.

Now add the second DATA statement

20 DATA 20, 25, 30

Type RUN, which will automatically restore the
pointer to the first data value (5) in line 10. Type the
following statements, as shown in Figure 10.3:

READ A,B,C.D
¢ABCD
READ A,B,C

Note that the two DATA statements are treated as one
long DATA statement. DATA statements may occur
anywhere in the program. They are effectively com-
bined into one long DATA statement in the order in
which they occur in the program. In the last READ
statement in Figure 10.3, although there are values
for A and B (25 and 30), there is no value for C and
therefore the ERROR- 6 message is displayed.

Strings can be included in a DATA statement. In
this case, the corresponding variable name in the
READ statement must be a string variable that has
been dimensioned. For example, change the DATA
statement in line 20 to

20 DATA ACE,BOSTON

85

LIST

106 pAaTA 5,10,
20 DaATaA 20,25

READY
RUN

READY
REaAlD a4,B,C,D

READY
gQ,B,C,D

15
. 3

16

REAGDY
READR A,8,C

ERROR- 6
|

FIGURE 10.3 There must be data values for all
variable names in a READ statement.

LIST

10 DATA
20 DATA
380 DIM

READY
RUMN

READY

REaGD a,B,C,A%,BS

READY
?ha,B,C;a5,BS
5 106

BOSTON

READY
|

FIGURE 10.4 String variables can be used in a
READ statement to read strings in a DATA state-

ment.
and add
30 DIM A$(3),B$(6)
and then type

READ A,B,C,A$,B$
2A,B,C,A%,B$
as shown in Figure 10.4. Strings in a DATA statement

may contain any characters (including quotation
marks) except a comma. Commas are used to sepa-

86

rate different entries in a DATA statement. Note also
that the numerical variables A and B are completely
different memory cells from the string variables A$
and B$. The ATARI will not get these mixed up.

The READ and DATA statements are particularly
useful when you have a list of data whose values do
not change in the program and which are read by the
same READ statement. Examples using the READ and
DATA statements will be given in the following sec-
tions.

HORIZONTAL BAR GRAPHS

Bar graphs are very useful for providing a quick visual
picture of the relative sizes of various quantities. The
simplest kind of bar graph that you can draw on the
ATARI is one that plots a horizontal line whose length
is proportional to the quantity of interest.

As an example, suppose that you want to compare
graphically the four values 12, 25, 5, and 17. You
can plot four lines with lengths 12, 25, 5, and 17
using the program shown in Figure 10.5.

FIGURE 10.5 Program to plot four lines of

lengths 12, 25, 5, and 17.

In this program line 20 is a DATA statement that
contains the lengths of the four bars to be plotted.
Line 40 defines the character (the symbol # in this
case) that will be used to draw the lines and stores this
character in the string variable G$, which was dimen-
sioned in line 30. Other characters such as hyphens
or asterisks could also be used. Lines 50—70 form a
FOR . . . NEXT loop that is executed once for each
bar that is to be plotted (four, in this case).

Within this loop line 60 reads the next length from
the values given in the DATA statement and stores
this length in the memory cell L. A bar of length L is
then plotted, using the subroutine in line 400. This
subroutine prints L copies of the symbol stored in G$
(#) right next to each other to form the bar. The first
PRINT statement (?2) in line 410 causes the cursor to
be moved to the beginning of the next line. The sec-
ond PRINT statement causes a line to be skipped.

Note that the END statement in line 80 is neces-
sary to prevent the program from executing line 400
again. This would produce the error message ERROR-
16, which would mean that a RETURN statement was
encountered without a corresponding GOSUB.

The basic idea shown in Figure 10.5 can be used
to produce useful bar graphs of real data, as
illustrated in the following section.

Population of the New England
States

The populations of the six New England states are
shown in Table 10.1. The program given in Figure
10.5 has been modified, as shown in Figure 10.6, to
plot six bar graphs of the data in Table 10.1.

TasLE 10.1 Population of
the New England states

State Population
ME 1,124,660
NH 920,610
VT 511,456
MA 5,737,037
CT 3,107,576
RI 947,154

Lines 100—-150 are six DATA statements con-
taining the information in Table 10.1. Note that each
DATA statement contains a string (the name of the
state) and a numerical value (the state’s population).
For each pass through the FOR . . . NEXT loop (lines
50-80), line 60 stores the next state name in S$ and
its population in P.

Each symbol defined in line 30 will represent a
certain numer of people. We're using a reverse video
space (typed with the ATARI key) for G$. It is printed
as a blank space in Figure 10.6. In order to determine
how many people this should be you must choose a
value that will ensure that the longest bar will fit on
the screen. The state name starting in column 2 plus a
space will use five columns of a screen line. There-
fore, the longest possible bar is one 35 spaces long.
The maximum population is that of Massachusetts,
5,737,037. Therefore, each symbol G$ must repre-
sent more than 5737037/35 = 163915 persons. We
will therefore choose each symbol to represent a pop-
ulation of 200,000.

Given a population P, line 70 calculates the num-
ber of symbols L to be plotted (that is, the length of
the bar). In the equation

P
L= + 0.5

200000

87

10 REM FOFPULATION BAR GRAFH

15 DIM GH(1),5% ()
20 N=b

30 Ge=" "

35 7 8

40 7 o
45 7 17
50 FOR J=1 TO N
60 READ S%,F

70 =P/ 20000040, 5 GOSUR 400

80 NEXT J

90 END

100 DATA ME, 1124660
110 DATA NH, 920610
120 DATA VT,511456
130 DATA MA, 5737037
140 DATA CT,3107576
150 DATA RI, 947154
400 7 G$5" ViiFUR I=

TC 2P GHs tNEXT Iow @7

FOFULATION OF NEW ENMGLAND STATES"

2 RETURN

FIGURE 10.6 Program to produce a bar graph of

the data in Table 10.1.

the 0.5 will round to the nearest 200,000 persons,
since this equation is equivalent to the equation

_ P+ 100000

200000

Note that the number of symbols plotted in the
subroutine in line 400 will be equal to the interger
part of L.

The subroutine in line 400 has been modified to
print the state name, stored in S$, to the left of the
each bar. Line 35 clears the screen; line 40 prints the
title to the graph, and then line 45 skips two lines.
The result of running this program is shown in Figure
10.7.

L

FIGURE
shown in Figure 10.6.

Adding a Scale

Although the bar graph shown in Figure 10.7
illustrates the relative sizes of the six state populations
it does not provide any information on the actual
values of these populations. We can correct this by
adding a scale to the bottom of the graph.

Since each symbol G$ represents a population of
200,000, five symbols will represent one million peo-
ple. A subroutine that prints such a scale is shown in
Figure 10.8. This subroutine is called in line 85 of the
revised main program shown in Figure 10.9. The re-
sult of executing this new program is shown in Figure
10.10.

10.7 Result of running the program

POPULATION ON NEW ENGLAND STATES

ME
MH

88

400 REM ADD SCALE
&10 7 " +";:FOR
AR20 T M M FOR
&IO 7P M

&H40 RETURN

I=1 TO &7
I=0 TQ 627
MILLIONS OF FEQRPLE"

Mk My s NEXT T2 7
I "y ENEXT 137 37

FIGURE 10.8 Subroutine to display scale.

10 REM FOFULATION BAR GRAFH

15 DIM G$ (1), 5% (2)
20 N=6

O GH="

3 7

40 7
45 7 17
50 FOR J=1 TO N
60 READ $%,F

"OREORULATION OF NEW ENGLAND STATES"

FO L= 200000+0, 5 G05UR 400

830 NEXT J

88 GOSUR &00IREM ADD SCALE

20 END

FIGURE 10.9 Revised main program that calls

subroutine to add a scale.

POPULATION OM NEW ENGLAND S5TATES

ME
NH
UT
Mo

MILLIONS OF PEOPLE

FIGURE 10.10 Result of running the program

shown in Figure 10.9.

VERTICAL BAR GRAPHS

In addition to the horizontal bar graphs that have
been described, you can draw vertical bars by using
low-resolution graphics. As you already know, the
statement

PLOT X,Y1:DRAWTO X,Y2

will plot a vertical bar from Y1 to Y2 at the horizontal

location X. If Y2 is less than Y1, the bar will be plot-
ted from bottom to top.

Suppose that you want to plot a vertical bar with a
length proportional to the value V. The value of V can
be either positive or negative. For a negative value of
V the bar should be plotted in the negative direction.
Figure 10.11 shows the ranges of values for which

89

\Y

—_— 22— } Plot 2 squares
Y=36 T+

= 11— } Plot 1 square
Y=37 T

—_— 0 — } Plot no squares
Y=38 -+

== 11— } Plot 1 square
Y=39 T

—_— 22—t ; Plot 2 squares

FIGURE 10.11 Screen layout for plotting vertical

bar with length proportional to the value V.

various numbers of squares will be plotted. The bot-
tom of row 37 on the screen will define the “‘zero”
value of V. From Figure 10.11 you see that a value of
V between 0.5 and 1.5 will result in one square being
plotted in row Y = 37. Similarly, a value of V be-
tween — 0.5 and — 1.5 will result in one square be-
ing plotted in row Y = 38.

A positive bar of length L can be plotted using the
statement

PLOT X,Y1:DRAWTO X,Y1—L+1

Note that if L = 1, then a single square will be
plotted. The case of L = 0 must be tested for sepa-
rately in order to plot no square at all.

A negative bar of length L (absolute value) can be
plotted using the statement

PLOT X,YT1:DRAWTO X, Y1+L~-1

From Figure 10.11 note that Y1 = 37 for a positive
bar and Y1 = 38 for a negative bar. Also note that the
number of squares to be plotted (that is, the length of
the bar) is given by

L = INT(ABS(V) + 0.5)

These ideas are summarized in the algorithm shown
in Figure 10.12. This algorithm will plot a vertical bar
at position X with a length proportional to V.

A BASIC subroutine that implements this algorithm
is shown in Figure 10.13. Lines 540-550 plot the bar
for positive values of V and lines 570-580 plot the
bar for negative values of V.

In order to test this subroutine, type it in as shown
in Figure 10.13. Then enter the low-resolution graph-
ics mode by typing

GR. 5:SETCOLOR 0,0,8:COLOR 1

90

L = INT(ABS(V) + 0.5)
ifL=0
then return
else if V<0
then Y1 = 38
PLOT X,Y1:DRAWTO X,Y1 + L -1
else Y1 = 37
PLOT X,Y1:DRAWTO X,Y1 — L + 1

FIGURE 10.12 Algorithm to plot a bar of length
proportional to the value V.

FIGURE 10.13 Subroutine to plot a bar of length
V.

SO0 REM FLOT BAR OF LENGTH V
G100 L=INT (ARS (V) +0.5)

SEO IR L=0 THEN RETURM

DOITF VIO THEN 570

540 Y 1=3E7

SED FLOT X, Y1:DRAWTO X, Yi1-L+1
HED GATO 590

570 Yi=I38

280 PLOT X, Y1:DRAWTO X, ¥i1i+l-1
220 RETURM

Then type
V=20:X=15:GOSUB 500
You should obtain the result shown in Figure 10.14.

FIGURE 10.14 Testing subroutines given in Fig-
ure 10.13.

U=28:4=15:G05UB_ 5886
READY
|

As another example, type

GR.5:SETCOLOR 0,0,8:COLOR 1
V=+3.0:X=10:GOSUB 500

The line beginning with V=43.0 is “live’” on the
screen. This means that if you edit this line (using the
CTRL 1 — keys) by changing the values of V and X,
then when you press RETURN the new statement will
be executed, and a new bar will be plotted. Edit this
line to plot the following bars:

V=+0.6:X=11:GOSUB 500
V=-0.6:X=12:GOSUB 500
V=+1.3:X=13:GOSUB 500
V=-1.3:X=14:GOSUB 500

You should obtain the bars shown in Figure 10.15.
Try some other values.

This technique of using the immediate mode of ex-
ecution to test subroutines is a good method because
you can make quite a few tests without disturbing the
program that you have stored in the computer.

We will now use this subroutine to plot a ““multi-
ple’” bar graph that will display five-year economic
data.

FIGURE 10.15 Further tests of subroutine given
in Figure 10.13.

TaBLE 10.2 Economic data*

Multiple Bar Graph for the Economy

In this section we will develop a program to plot a
“multiple”” bar graph of the economic data given in
Table 10.2. For each year we will plot four bars, one
for each economic factor. We will use the three col-
ors given in Table 10.3. Note that we can only plot
three different colors using graphics mode 5. The first
and last bar of each group of four will therefore be the
same color (orange). The main program for plotting
this bar graph is shown in Figure 10.16.

FIGURE 10.16 Main program for plotting econ-
omy bar graph.

SOREM OTHE ECONOMY

10 GRAFHICS 5

15 SETCOLAR 0,2, 8:REM ORANGE

1& BETCOLOR 1,12, 10:REM GREEN
17 SETCOLOR 2,9,4:REM EBLUE

20 DATA 4.8,7.8,4.8,2.8

IZ0 DATA 4.8,7.0,5.8,4.5

40 DATA R.0,6.0,4.9,5.4

20 DATA 135.353,5.8,0.8,-0.4

60 DATA 18.2,6.2,1.7,~0.4

HE X=R

TO OFOR J=1 TO 5

20 GO5UR 200:REM FLOT 4 BARS

Q0 MEXT J

100 GOSUR 400:REM FRINT HEADING
TEO GOTO 150

Line 10 enters the low-resolution graphics mode 5.
Lines 15—17 define the three color registers given in
Table 10.3. Lines 20—-60 are DATA statements con-
taining the data given in Table 10.2. Note that each
DATA statement contains the data for one year start-

1976 1977

Inflation 4.8 6.8
% change in C.P.I.

Unemployment 7.8 7.0
% of civilian labor force

Growth 4.8 5.8
% change in real G.N.P.

Personal income 2.8 4.5

% change per capita

1978 1979 1980
9.0 13.3 18.2 Jan. change at
compound annual
rate
6.0 5.8 6.2 Jan.
4.9 0.8 1.7 Projected 1st Q.
34 - 06 — 0.4 Projected 1st Q.

*Adpated from data on p. 67 of the March 10, 1980, issue of Time Magazine.

TaBLE 10.3 Colors used in ecomony bar graph

Color No. Color Color Register Hue No. Luminance
Inflation 1 Orange 2 8
Unemployment 2 Green 12 10
Growth 3 Blue 9 4
Personal income 1 Orange 2 8

91

ing with 1976. The value of X is initialized to 8 in line
65. This is the column number in which the first bar
will be plotted. The FOR . .. NEXT loop in lines
70-90 is executed five times (once for each year).
Each time through this loop four bars are plotted, cor-
responding to the data for that year. This is done in a
subroutine starting at line 200. Line 100 calls a
subroutine at line 400 that prints the heading and
scale for the graph. Line 150 branches on itself to pre-
vent the READY message from being displayed.
The subroutine to plot the next four bars of the
graph is shown in Figure 10.17. The READ statement
in line 210 reads the next four values of inflation,
unemployment, growth, and income, and stores
these values in the memory cells |, U, G, and M. The
orange inflation bar is plotted in lines 230-240 using
the subroutine at line 500 shown in Figure 10.18.

FIGURE 10.17 Subroutine to plot the next four
bars of the graph.

200 REM FLOT NEXT 4 BARS
210 READ T,U,G,M

2B0 V=00%T: COLOR 1

240 EOSUR S00:REM FLAT RAR
260 V=% COLOR 2

270 GOsUR 500

290 V=2%G: COLOR I

i GOSUR S00

V=2%M: COLOR 1

GOSUR 500

X=X 46

RETURN

Note that the value of V has been equated to twice
the inflation value I. This is done because the maxi-
mum data value in Table 10.2 is 18.2. Twice this
value is 36.4, which will fit on the screen if we plot
36 squares. Lines 260-270 plot the green unemploy-
ment bar. Lines 290-300 plot the blue growth bar.
Lines 320-330 plot the orange income bar. Line 340
increases the column number X by 6. This will leave
a six-column space between each group of four bars.

The subroutine in Figure 10.18 is a modification of
the subroutine in Figure 10.13 that plots a double-
width bar. Note that the bars plotted in lines 550 and

FIGURE
and scale.

SO0 REM FLOT BAR OF LENGTH V
10 L=INT (ARS (V) +0.5)

S20 IF L=0 THEN RETURN

530 IF V<0 THEN 570

540 Y1=37

545 FOR K=1 TO 2

S50 FPLOT X, Y1sDRAWTO X,Yi-L+1
SEZ X=X+1

SEE ONEXT K

560 GOTO 590

70 Yi=ER

STE OFOR kE=1 TQ 2

580 FLOT X, Y1:DRAWTO X,Yi+l-1
HR2 X=X+l

585 NEXT K

590 RETURN

FIGURE 10.18 Subroutine to plot a double-width
bar of length V.

580 are each plotted twice next to each other using
FOR . . . NEXT loops. Also note that the value of X is
incremented by 1 after each bar is plotted. This will
make the double bars plotted with the subroutine at
line 500 appear adjacent to each other on the screen.

The subroutine to display the years and heading at
the bottom of the graph is shown in Figure 10.19.
Line 420 prints the five years under the appropriate
bar graphs. Line 430 prints the title of the graph and a
statement indicating the graph’s scale. Lines 440—450
print a legend to explain the four bars. Note that all
text in the low-resolution graphics mode must be
confined to the bottom four lines on the screen. The
statement POKE 752,1 in line 410 will prevent the
cursor from being displayed at the end of the head-
ing. Delete this statement to see the difference. We
will discuss POKE statements in detail in Chapter 14.

The entire program to plot the economy bar graph
is given by the statements in Figures 10.16—10.19.
The result of running this program is shown in Figure
10.20.

Although this entire program is relatively long, you
can see that by breaking it up into functional modules
you can more easily keep track of what is going on.
This will also make it easier for you to modify this
program to suit your own needs.

10.19 Subroutine to display heading

400 REM DISFLAY YEARS ANMD TITLE

410 PORE 734,

20 " 1976 1977 19738
4730 # o THE ECONOMY
440 7 " BRAR 1-INFLATION
450 7 " BAR Z-UNEMFLOYMENT

4460 RETURN

1979 1980

1 SEUARE=D., 38"
BRAR 2-GROWTH"
BAR 4-INCOME";

FIGURE

EXERCISE 10.1

The following table shows the amount of gasoline re-
quired to fill the gas tank of a certain station wagon:

Speedometer Reading

93769.3
94034.6
94249.1
94376.6
94558.0
94778.2
95037.0
95258.0
95499.3
95732.7
95941.2

10.20 Bar graph of economic data
given in Table 10.2.

Gallons to Fill Tank

15.5
15.2

_.
=
o

—IM_I_I_I_I_I
OO Oy b B OO0
cwwNvVvomwmo

Write and run a program that will

1. store the data in the table in DATA statements

2. compute the gas mileage in miles per gallon for
each fillup and plot the results as a bar graph

3. compute and print out the average miles per

gallon for all fillups shown in the table.

EXERCISE 10.2

Each entry in the following table gives a nation, its
population, and its area (in square miles):

Nation Population
Australia 13,467,400
Canada 22,648,200
China 830,453,000
Great Britain 56,235,500
India 587,503,700
Japan 108,152,900
Soviet Union 253,268,300
United States 212,031,000

Area

2,967,909
3,851,809
3,691,502
94,500
1,178,995
143,698
8,649,489
3,615,122

Write and run a program that will:

1. store the data in the table in DATA statements
2. compute the population density for each nation

in persons per square mile

3. plot the results as a bar graph.

93

LEARNING TO USE ARRAYS

You have learned that numerical values are stored in
memory cells with names like A and B3. Similarly,
strings are stored in memory cells with names like A$
and B3$. Remember that strings must be dimen-
sioned with a value equal to or larger than the length
of the string. Sometimes it is desirable to identify a
collection of memory cells by the same name. Such a
collection of memory cells is called an array; and the
individual memory cells within the array are identi-
fied by means of a subscript. ATARI BAsIC allows nu-
merical arrays but not string arrays. Applications
requiring string arrays must be handled in a different
manner.

In this chapter you will learn

1. how to represent numerical arrays in BASIC

2. the difference between one-dimensional and
multidimensional arrays

3. how to use the DIM statement for numerical ar-
rays

4. how to simulate the use of string arrays in
ATARI BASIC

5. how to use arrays when plotting bar graphs

6. how to sort data stored in a one-dimensional
array.

ARRAYS

You will often encounter data that are related in some
way. For example, Table 10.1 in Chapter 10 lists the
six New England states and their populations. In the
program in Figure 10.6 we read each state into the
memory cell S$ and each population into the mem-
ory cell P. This means that at any one time only one
state name and one population were in named mem-
ory cells. We printed the state name and plotted a bar
with a length proportional to the population. Then we

94

read another state name and population, which re-
placed the previous ones in S$ and P.

Some programs, however, require that all of the
state names and populations be stored in the com-
puter at the same time. We would therefore need 12
different memory cells—six for the state names and
six for the populations. This would require 12 differ-
ent memory cell names. It is convenient to store all of
the state populations in an array called P. The indi-

vidual memory cells within the array are distin-
guished by a subscript I. An individual element
within the array is sometimes called a subscripted
variable, P(l). The array P is shown in Figure 11.1.

P(O) |1124660
P(1) | 920610
P2) | 511456
P@3) |5737037
P(4) (3107576
P(5) | 947154

FIGURE 11.1 The six subscripted variables P(l)
(I =0,5) contain the state populations.

It would also be convenient to store the six state
names in a string array S$, such as the one shown in
Figure 11.2. Such string arrays are used in many ver-
sions of BAsIC. However, they are not available in
ATARI BAsic. Remember that S$(3), for example, is
the substring consisting of the characters in S$ starting
at location 3. We will see how to combine the six
strings in Figure 11.2 into a single long string later in
this chapter. First we will consider numerical arrays.

S$(1) ME
S$(2) NH
S$(3) VT
S$(4) MA
S$(5) CT
S$(6) Rl

FIGURE 11.2 String arrays are not available in
ATARI BAsIC.

The DIM Statement

You have already seen in Chapter 1 how to use the
DIM statement to assign a length to a string variable.
When you are using a numerical array, you must also
use a DIM statement to specify the number of ele-
ments in the array.

For example, to assign 16 memory cells to the ar-
ray B you would type

DIM B(15)

You could then use the 16 memory cells B(0)-B(15).
The constant 15 in the DIM statement (this could also

be a variable or an expression) represents the upper
subscript limit of the array. The lower subscript limit
is always assumed to be 0.

You can define more than one array with a single
DIM statement. For example, you can write

DIM B(15),A(3),C(24)

which defines three arrays containing 16, 4, and 25
memory cells, respectively.

Other than using up memory, it does not hurt to
reserve more memory locations (by using the DIM
statement) than you use in the program. For example,
you will reserve 100 memory cells with the statement
DIM C(99). In your program you may only refer to the
first 20 of these memory cells. This is O.K. However,
if you try to refer to C(100), you will obtain the error
message ERROR- 9, which means that you have a
bad subscript error.

The DIM statement may occur anywhere in the
program but it must occur before you refer to the cor-
responding subscripted variable. An array can only
be dimensioned once in a program. If you try to di-
mension it more than once you will also obtain the
error messsage ERROR- 9.

The statement CLR will clear, or reinitialize, any
dimensioning information. If you want to refer to a
string or numerical array after executing CLR, a new
DIM statement will be required.

The maximum number of elements in an array will
be limited by the amount of memory in your ATARI. If
the total amount of memory used by your program,
variables, and arrays exceeds the amount of memory
in your ATARI you will obtain the error message
ERROR- 2, meaning that the computer is out of mem-
ory.

Any time you want to know how many bytes of
free memory you have left, type

2FRE(0)

For example, Figure 11.3 shows that an array con-
taining 100 elements uses 610 bytes of memory (6 for
each of the 100 elements in the array plus 10 for
header information).

FIGURE 11.3 The statement 2FRE(0) will print the
number of free bytes of memory left.

?FRE (9)
31670

READY
DIM AC99)

READY
?FRE(O)
30460

READY
|

95

Two-Dimensional Arrays

A numerical array that contains a single subscript is
called a one-dimensional array. An array that con-
tains two subscripts is called a two-dimensional array
or matrix. For example, the DIM statement

DIM A(2,3)

defines a two-dimensional array containing 12 ele-
ments. It can be thought of as two-dimensional matrix
containing three rows and four columns, as shown in
Figure 11.4.

In the array A(l,)), the first subscript | is the row
number in Figure 11.4 and the second subscript] is
the column number. Thus for example, in Figure 11.4

the value of A(1,2) is 8 and the value of A(2,1) is12.

Some versions of BAsIC allow arrays to have more
than two subscripts. However, ATARI BAsIiC allows
only one- and two-dimensional arrays.

FIGURE 11.4 The array A(l,J), containing 12 ele-
ments.

J
0 1 2
0 11 7 0 13
I 1 15 8
2 5 12 7 1

SIMULATING STRING ARRAYS

Suppose that you want to store in the computer the
six state names shown in Figure 11.2. You could store
each one by a different name, such as 51$, S2$, and
S3$%. Alternatively, you could store them in one long
string ST$, such that

ST$ = “MENHVTMACTRI”

The program shown in Figure 11.5a will do this.
The six state names are stored in a DATA statement in
line 20. The length of each of these strings is 2. This
value is assigned to SLEN in line 30. The
FOR . . . NEXT loop in lines 40-80 reads each state
name in turn into S$ in line 50 and then adds it to the
total state name string ST$ in line 60. The first time
through the loop the value of J is 1 and the statement

ST$(1,2)=S$

will make the first two characters of ST$ ME. The sec-
ond time through the FOR . . . NEXT loop the value
of) will be 3 (incremented by SLEN in line 70) and the
string NH will be read into S$ in line 50. Line 60 will
then be equivalent to

ST$(3,4)=S%

so that the third and fourth characters will be NH.
This process continues until all six state names have
been added (or concatenated) to the string ST$. Note
that when the program is run the string ST$ is printed
in line 90. The result of running the program is shown
in Figure 11.5b.

Once the six state names are stored in the string
ST$, the individual names can be extracted by
referring to ST$(l,)). For example, ST$(5,6) is VT.

96

FIGURE 11.5 Program to store six short strings
as one long string.

10 REM BTRING OF STATE NAMES
15 DIM S$¢2) , 8T6 (1)

20 DATA ME.NH, VT, MA,CT, RY

J0 0 J=11 GLEN=2

4G FOR T=1 TO &

S50 READ S4%

P b R = 8-

HO STE (T, J+BLEN=-1) =58%
70 J=JT4+8EN

80 NEXT I

90 7 BTE

RI
MENHUTMACTRI
READY

n

10 REM BAR GRAFH EXAMFLE

15 DATA #. %, 1

20 DATA 12,25,5,17

25 DIM GS(L) ,GTE4) L4

0 FOR I=1 TO 4

I5 READ GHE:GETSL, I)=0G%

40 NEXT I

4% FOR I=1 TO 4:READ L:L{(I)=LsNEXT I
S50 FOR J=1 TO 4

HO L= D) s GE=GTS$ (J,.0) : GOSUR 400
70 NEXT J

80 END

400 FOR I=1 TO La7? Gy eNEXT I
410 7 17 sRETURN

BAR GRAPHS USING ARRAYS

The program shown in Figure 10.5 in Chapter 10
plots four bars of lengths 12, 25, 5, and 17. Review
that program and make sure that you understand how
it works. Line 400 plots a bar of length L, using the
character stored in G$. In this section we will modify
this program to plot the same length bars but to use a
different character for each bar.

The modified program and its execution are shown
in Figure 11.6. Line 15 is a new DATA statement that
contains the four characters that will be used for the
four bars. (The second character is a reverse video
space which is printed as a space in Figure 11.6a.)
Line 25 is the DIM statement

25 DIM G$(1),GT$(4),L(4)

FIGURE 11.6 Bar graph example using arrays.

IITIIITITIIIIIIIIX

READY
B

This statement defines a string G$(1) that will contain
one symbol and a string GT$(4) that will contain all
four symbols. The numerical array L(4) will contain
the four lengths. Although this DIM statement defines
five elements in the array L(l), we will only use the
elements L(1)-L(4) and just ignore L(0).

Lines 30—40 read the four characters in the DATA
statement on line 15 and concatenate them into the
string GT$. Line 45 reads the four values 12, 25, 5,
and 17 from line 20 into the four subscripted varia-
bles L(1)-L(4), respectively. Note that ATARI BAsIC
does not allow the READ statement to read data di-
rectly into a subscripted variable. Therefore we first
READ L and then assign L to L(l).

The loop defined by lines 50—70 plots the four
bars. Each time through the loop a new length L())
and a new character GT$(J,)) are assigned to L and G$
to be plotted in line 400. Note how the subscript] is
incremented from 1 to 4 each time it passes through
the loop. Also note that the subscripted variable L(J)
and the simple variable L are not confused by the
ATARI and are treated as separate memory cells.

The four bars in Figure 11.6b can be plotted adja-
cent to each other by eliminating one of the PRINT
statements in line 410, as shown in Figure 11.7.

Suppose that you would like to plot the bars shown
in Figure 11.7 in increasing order of length—that is,
the shortest bar first, the next to shortest second, and
so on. You can do this if you rearrange the array L(I)
so that the elements are in increasing order. One sim-
ple method of sorting an array in increasing order will
now be described.

FIGURE 11.7 Plotting the bars adjacent to each
other.

b

W
W= =N R

b AN

0

a
£
1
s
G
%

3
J
i

E

- |l

IITIIIIIIIIIIIIII
READY
|

97

Sorting an Array in Increasing Order

Many algorithms have been devised for sorting an ar-
ray of elements in increasing order. Some are more
efficient (that is, they execute faster) than others.
Some (not necessarily the same ones) are easier to un-
derstand than others. The method of sorting the array
L illustrated in Figure 11.8 is fairly easy to under-
stand.

FIGURE 11.8 Sorting an array by moving the
smallest succeeding value to location |, 1 =1 to
N — 1, where N = number of elements in array.

=1 | = 2 | = 3 Array sorted
L(1) 12 5
L(2) 25] 7
L(3)] 12
L(4) 25

The method begins by comparing the first element
in the array (I = 1) with all succeeding elements. Any
time a succeeding element is found that is smaller
than the first element, it is interchanged with the first
element. Thus, after the first element (whose value
may have changed a few times) is compared with all
succeeding values, we will have moved the smallest
value to the first position in the array.

If we repeat this procedure starting with the second
element (I = 2), then after the second element is
compared with all succeeding elements and the
values interchanged if the succeeding element is
smaller than the second one, the next to smallest
value will end up in the second position in the array.

This process continues until we have compared
the next to last element with the last element in the
array. At this point the array is sorted in increasing or-
der, as shown in Figure 11.8. The algorithm for this
procedure is shown in pseudocode in Figure 11.9
Compare Figures 11.8 and 11.9 and make sure you
understand how this sorting algorithm works.

FIGURE 11.9 Pseudocode representation of sort-
ing algorithm shown in Figure 11.8.

for |=1to N—1
forJ=1+1to N
if L) < = L(J)
then do nothing
else interchange L(l) and L(J)
next J
next |

The algorithm shown in Figure 11.9 looks as if it
would be fairly easy to write in BAsIC. The only prob-
lem is how to interchange the contents of L(I) and L()).

98

Note that the two statements

L{1)=L(J)

L{UJ)=L(1)
will not work because the original value in L(I) will be
destroyed when the value of L() is put in L(l) in the
first statement. This means that the second statement
will really be assigning the value in L(J) to itself! Thus,
L) and L(J)) will end up with the same value. It re-
quires three statements to interchange the values of
L(l) and L()), as shown in Figure 11.10. The value in
L(I) must be stored temporarily in another memory
cell T before the value in L()) is put in L(l). Then the
value in T which used to be in L(l) can be put in L()).

FIGURE 11.10 Three statements are required to
interchange L(I) and L(J).

L(')ZL(J)} _ .
L(J)=L(I) will not interchange L(l) and L(J)

|
() (E(J)} will interchange L(l) and L(J)
LJ)=T

The sorting algorithm shown in Figure 11.9 is writ-
ten as a BASIC subroutine in Figure 11.11. Note that
line 2040 interchanges the values in L(l) and L()). Add
this subroutine to the program shown in Figure 11.7.

FIGURE 11.11 BASIC subroutine to sort array L(l)
containing N elements in increasing order.

2000 FHEM SORT LI
2010 FOR I=1 TO N-1

2020 FOR J=I+1 TO N

20Z0 IF LD <=L (1) THEN 2050
2040 T=L(D) (D=L (I): . (I)=T
2030 NEXT JsNEXT I

2060 RETURN

FIGURE 11.12 Plotting bar graphs in increasing
order using the subroutine in Figure 11.11.

10 REM BAR GRAFH EXAMFLE

15 DATA #, %, T

20 DATA 12.35,@.17

25 DIM GH (1), GTE(4) ,L(4)

0 FOR I=1 TO 4

35 READ GEsGETS (1, I)=0G%

40 NEXT I

4% FOR I=1 TO 4:READ L:L(Id=L:iNEXT I
47 N=4:G08UR 2000:REM SORT L (I)
S0 FOR J=1 TO 4

HO L= (1) : Ge=GT$ (.1,.73) : GOSUR 400
70 NEXT J

80 END

2000
2010
2020
20320
2040
2045
2050
2060

REM SORT L(I)
FOR I=1 TO N-1
FOR J=I+1 TO N
IF LI <=L (J)

NEXT J:NEXT I
RETURN

THEN 2050
T=LA(D) s L(I)=L(J) L (J)=T
T$=GT$ (I, 1) :6T$(I, D =6T$(J,J):6T$(J,I)=T%

FIGURE 11.13 Sorting subroutine that inter-
changes GT$(l,I) and GT$(J,J) each time that L(l)

and L(J) are interchanged.
Then add the statement
47 N=4:GOSUB 2000:REM SORT L(I)

to the main program, as shown in Figure 11.12. The
result of running this program is also shown in Figure
11.12. Line 47 sets the number of elements in the ar-
ray L to 4 and then sorts this array by calling the
subroutine shown in Figure 11.11.

If you compare Figure 11.12 with Figure 11.7 you
will notice that the four characters are plotted in the
same relative order. That is, they did not get sorted as
the data did. However, it probably makes more sense
to associate a particular character with a particular
data value (such as inflation or growth); therefore, if
the data are rearranged (sorted) the corresponding
character should also be rearranged. We can do this

GT$(,)) to be interchanged each time that L(I) and L())
are interchanged. This will cause a given data value
to “’keep’’ its particular character, as shown in Figure
11.14.

Sorting an Array in Decreasing
Order

The subroutine in Figure 11.13 can easily be
modified to sort the array L(l) in decreasing order
rather than increasing order by changing line 2030 to

2030 IF L(l)>=L(J) THEN 2050

as shown in Figure 11.15. Running the main program
with this subroutine will produce the result shown in
Figure 11.16.

by adding the statement
27 DIM T$(1)
to the main program, and the statement
2045 T$=GT$(1,1):CGT$(l,l)=
GT$(J,J):GT$(JJ)=T$

to the subroutine given in Figure 11.11, as shown in
Figure 11.13. This statement will cause GT$(l,1) and

EXERCISE 11.1
Write a program that

1. stores the six New England states in the string
ST$ and their populations in the array P(l), as
shown in Figure 11.1

2. plots a vertical bar graph of the populations
using low-resolution graphics

FIGURE 11.14 Plotting bar graphs using the
subroutine in Figure 11.13.

10 REM BAR GRAFH EXAMFLE
15 DATA #. %, 1

20 DATA 12,25,5,17

25 DIM GS(1),GT$(4) L (4

27 DIM T# (1)

Z0 FOR I=1 TO 4

I5 READ G$:6T$(I,1)=G%

40 NEXT I

4% FOR I=1 TO 43READ Lib (I)=L:NEXT I
47 N=4:GOSUR 2000:REM SORT L{I)

=50 FOR J=1 TO 4

60 L=l (J) 1 6$=6GT$(J,J) : GOSUR 400

70 NEXT J

ITITTIITIITIIIIIIIIIIIIIIIIY
READY
. o

80 END
400 FOR I=1 TO L&7? GH;aNEXT I
410 7 :RETURN

99

FOO0

REM SORT L (D

20850

ETH (T, 0 s GTS (I, =TS

FOR T=1 TOQO N-1
FOR J=I+1 TO N
ROZO TR L D) F=lLGT) THEN
2040 T=L Dy e L D) =L (I sl (=T
‘"’t')4“i TE=ETE (T, D) aGTHE(I, D)
OO MEXT JoMEXT I
*.U\"::'.) RETLIRN

FIGURE 11.15 Subroutine to sort array L(l) con-
taining N elements in decreasing order.

FIGURE 11.16 Plotting bar graphs in decreasing
order using the subroutine in Figure 11.15.

RLUN
IITIIIIITIIIIITIIIIX
occccaiiaacasazanaazansy
I

3. sorts the populations in increasing order

4. plots a second bar graph (after pressing key S)
with the populations in increasing order.

EXERCISE 11.2
Write a program that

1. stores N test scores in DATA statements, with
the value of N stored as the first entry of the first
data statement

2. reads the test scores into an array S(I)

3. computes and prints out the average of the N
test scores.

EXERCISE 11.3

If AV is the average of the N test scores stored in
the array S(l), then the standard deviation is de-
fined as

'=‘v/ éi) — AV)?

where the notation Z
1 =

]
N
means the sum from

| = 1 to N. Modify the program in Exercise 11.2 to
compute and print out the standard deviation of
the test scores. Run the program for the following
test scores:

100

Test scores

75 36 60 92 80 72 68 48
65 82 88 72 76 8 72 98
48 57 73 66 76 88 73 82
44 90 70 56 81 75 87 90

EXERCISE 11.4

The following weights are those of a group of
males and females. Write a computer program that
will compute and print out the means and standard
deviations of the two groups of weights. Modify
the program to compute and print the mean and
standard deviation of all weights (both male and
female). (See Exercise 11.3.)

Weights
Male Female
200 103
185 105
185 112
125 102
140 160
195 120
190 115
155 130
185 140
140 118
138
205
159
230
150
140
170
145
169
215

EXERCISE 11.5

A person makes the following monthly deposits in
a savings account paying 5 percent interest com-
pounded monthly:

Month 1 2 3 4 5 6 7 8 9 10 11

Deposit

(dollars)25 20 30 15 25 40 20 30 35 35 35

12

25

The identical pattern of deposits is repeated for a
second and third year. Write a computer program
that will compute the amount of money the person
has deposited and the total amount in the account
at the end of 6, 12, 18, 24, 30, and 36 months.
Read in the monthly deposits as an array D(l).
(Note: If R is the annual interest rate and it is com-
pounded monthly, then each month the added in-
terest is equal to R/12 times the amount in the ac-
count.)

EXERCISE 11.6
The polynomial

P(x) = a;x* + axx® + a3x® + asx + as

can be written in the following nested form:

P(x) = a5 + x(ay + x(as + x(a; + x(ay))))

If the coefficients a; are stored as subscripted varia-

bles A(l), then the polynomial P can be evaluated,
using the nested form, by the algorithm:

P = A(1)

for | =2to5
P=Al)+X*P
next |

Write a program that will use a similar nesting algo-

rithm to evaluate the polynomial

P(x) = 3x° + 4x* — 2x> + 5x — 7

for values of x between — 2 and + 2 in steps of 0.2.
Print out a table of x and P(x). Make your program
general so that the coefficients are stored in DATA
statements and the program can handle a polynomial

of any order.

101

MORE ABOUT STRINGS

You have learned in previous chapters of this book
that memory cells with names like A$ and C3$ con-
tain strings. The dollar sign, $, is used in BASIC to
identify string-related names. ATARI BASIC requires
you to dimension the length of a string variable and
then makes it easy for you to manipulate strings by
using substrings such as A$(l,)). In this chapter you
will learn

1. to use the length function LEN and manipulate
substrings

2. to use the numeric/string functions STR$ and
VAL

3. to use the Asci code functions ASC and CHR$
4. how to display dollars and cents on the screen
5. how to write a program to shuffle and display a
deck of playing cards

6. how to write a program to deal a hand of
playing cards.

MANIPULATING STRINGS

The string A$(l,)) is used to extract some portion of a
string. The function LEN is used to determine the
length of a string.

LEN

The function
LEN(A$)

102

is equal to the length of the string A$. Note that it is a
numerical value (not a string). For example, if
A$ = "“ABCDE” then the value of LEN(A$) is 5. To
verify this, type

DIM A$(5)

A$="ABCDE"

2LEN(A$)

as shown in Figure 12.1.

DIM AS(5)

READY
AS=""aBCDE""

READY
;LEN(QS)

Y
2

REG
?a%
aB

+ 23

READY
ZASCLENCAS) —2+1)
DE

By

REA
ZA$LI,3+2-1)
CD

READY
=]

FIGURE 12.1

Using substrings and the string
functions.

Substrings

Some popular versions of BAsicC (for the Apple Il, PET,
and TRS-80) have the string functions LEFTS$,
RIGHT$, and MID$. ATARI BAsIC can achieve the
same result by using the substring A$(l,)).

For example, the function

LEFT$(AS,1)

is a string that contains the leftmost | characters of the
string A$. For example, if A$ = “ABCDE"”, then
LEFT$(A$,2) will be the string ““AB”’. In ATARI BASIC

this is the same as A$(1,1). To verify this, assuming
that you have already set A$ = “ABCDE", type

2A$(1,2)

as shown in Figure 12.1.
The function

RIGHT$(A$,)

is a string that contains the rightmost | characters of
the string A$. For example, if A = “ABCDE”, then
RIGHT$(A$,2) will be the string “DE”. In ATARI
BASIC this is the same as

A$(LEN(A$)—1+1)
To verify this, type
2AB(LEN(A$)—2+1)

as shown in Figure 12.1.
The function

MID$(A$,1,J)

is a string that contains the) characters of A$ that start
at position | (the first character of A$ is position 1).
For example, if A$ = “ABCDE", then MID$(A$,3,2)
will be the string “CD”. In ATARI BasIC this is the
same as
A$(L1+J-1)
To verify this, type
2A%$(3,3+2-1)

as shown in Figure 12.1.

THE NUMERIC/STRING FUNCTIONS VAL AND STR$

It is important that you understand the difference be-
tween a numerical value such as 456 and the string
456" . It is like the difference between BOSTON and
““BOSTON’. BOSTON s a city in Massachusetts
containing buildings, roads, people, and so on.
“BOSTON" is a six-letter word that is the name of a
city. Similarly, 456 is a number that you can add to
other numbers. The string “456" is just the three
characters 4, 5, and 6 sitting next to each other.
Sometimes you will need to convert a string like
456" to its corresponding numerical value 456. The
function VAL will do this. You may also need to con-
vert a numerical value such as 456 to its correspond-
ing string ““456"’. The function STR$ will do this.

VAL

The function
VAL(A$)

is equal to the numerical equivalent of the string A$.
If A$ does not have a numerical equivalent, VAL(A$)
will produce the ERROR- 18 messsage.

As an example of using the VAL function, clear the
screen and type

CLR
DIM A$(3)
A$="456"

103

CLR

READY
PIM AS5(3)
READY
AS='"456"
READY

?a%5

456

READY
uaLLAS)
456

READY
ZUAL (AS)Y +106
466

READY

7a5+109

ERROR- zasd1e

FIGURE 12.2 Using the numeric/string function
VAL.

2AS
2VAL(A$)
as shown in Figure 12.2. It looks as if both PRINT

statements print the same value 456. However, in or-
der to see the difference between VAL(A$) and A$,

type
2VAL(A$)+10
¢AB+10
as shown in Figure 12.2. Note that the number

VAL(A$) can be added to 10, whereas trying to add
the string A$ to the number 10 will produce an error.

STR$
The function
STR$(A)

is the string equivalent of the numerical value A. As
an example of how to use the STR$ function, clear
_the screen and type

A=456
2A
2STR$(A)

A=456

READY

?Aa

456

READY

25TRS (A)

456

READY
ZLENC(STRS CA))
3

READY
®

FIGURE 12.3 Using the numeric/string function
STRS.

as shown in Figure 12.3. Note that both print state-
ments print the number 456. However, STR$(A) is ac-
tually a string containing the three characters 4, 5,
and 6. To verify this, type

2LEN(STR$(A))

as shown in Figure 12.3.
The functions STR$ and VAL are reciprocal func-
tions, as you can verify by typing
2STR$(VAL(246"))
2VAL(STR$(246))

as shown in Figure 12.4.

FIGURE 12.4 STR$ and VAL are reciprocal func-
tions.

2STRS (VAL (''246''3)
246

READY
2VAL(S5TRS (246))
246

READY
|

THE ASCll CODE FUNCTIONS ASC AND CHR$

The name Ascll stands for ““American Standard Code
for Information Interchange.”” In this standard code a
certain number is associated with each character (let-
ter, digit, or special character). This code is used ex-

104

tensively throughout the computer industry for
sending information from one computer to another or
for sending data from a terminal to a computer.
ATARI uses an expanded Ascil code, called an ATARI

ASCII, or ATASCII code. The BAsIC function ASC can be
used to find the ATAscl number associated with any
character, and the function CHR$ can be used to find
the character associated with any ATAsCIl number.

ASC

The function
ASC(A$)

is equal to the ATAsCII code of the first character in the
string A$. To find some ATAscll codes, clear the
screen and type

2ASC(”A")

2ASC("2")

2ASC(“ABC")

2ASC(""*")

2ASC("“7")
as shown in Figure 12.5. Letters, digits, and special
character keys all have ATasci numbers. Note that the
ATASCIl number for a digit is different from the digit it-
self (55 is the ATAsCIl code for 7). Also note that the
function ASC(““ABC"’) is the ATAsCll code of the first
character A.

FIGURE 12.5 Examples of ATAsCIl codes of
ATARI characters.

?ascC(''a')
65

READY
?asCc('"?'")
63

READY
?asc('aBC'')
65

READY
7asc (')
42

READY
ascor7)
55

READY
|

CHR$

If you know the ATAscll code of a character you can
generate the string of that character using the function

CHR$(A)

where A is the ATAsCII code of the character.

The program shown in Figure 12.6 will display the
ATASCII code for any key pressed. Typing the exclama-
tion point (!) will terminate the program. Line 20 is
the OPEN statement

OPEN #1,4,0,"K:"
which must be executed before the statement
GET #1,A

in line 30 can be executed. This statement will wait
for a key to be pressed and then assign the ATAscI
code of the key pressed to the variable A. Line 35
checks to see if this is equal to the ATAscIl code for an
exclamation point. If it is (the ! key was pressed), the
program branches to line 60 where the statement
CLOSE #1 closes the file or input/output (1/O) device
(keyboard) opened in line 20.

If any key other than the exclamation point is
pressed, line 40 will print the character correspond-
ing to the key pressed, CHR$(A), followed by the
ATASCIl code A. A sample run of this program is
shown in Figure 12.7. A list of ATAsCII codes is given
in Appendix B.

FIGURE 12.6 Program to find the ATAsCII codes
of each key pressed.

10 REM ASCII CODES

20 OFEN #1,4,0, kK"

0 GET #1.A

35 IF A=ASC(" ") THEN &0
40 7 CHRE(A) 3" "3A,

=0 GOTO 30

&0 CLOSE #1

70 P PROGRAM DONE"

FIGURE 12.7 Sample run of program given in

Figure 12.6.

105

PRINTING DOLLARS AND CENTS

Many practical programs involve money and require
you to display dollars and cents on the screen. This is
not as easy as it may seem. First of all, if you compute
some monetary value such as interest in a savings ac-
count, you will want to round to the nearest cent.
You can do this by adding 0.005 to the value and
then displaying only two places after the decimal
point. In order to try this scheme, type

A=208.4978
Al=A+.005

¢Al
¢INT(A1*100)/100

as shown in Figure 12.8. Note that although this
scheme rounded to the nearest cent, the ATARI does
not display trailing Os. Therefore, 50 cents is printed
as .5. This would look strange if you printed the
amount of a check this way.

A=208.4978

READY
AlL=A+.005

?Aa1
208.5028

READY
?INT(A1%%1006)/71060
288.5

READY
|

FIGURE 12.8 Rounding a monetary value to the
nearest cent.

One way to print the .5 as .50 is to convert the dol-
lars and cents separately to their string equivalents
and then display these strings. To investigate this pos-
sibility, type

DIM A2$(9),A3%(9)
A2=INT(A1)

2A2
A2$=STR$(A2)
2A2%

as shown in Figure 12.9. Note that A2 is the dollar
value and A2$ is the string representation of this
value.

106

DIM A25(¢9) ,A35(9)

READY
A2=-INT (A1)

READY
?a02
208

READY
A25=5TRS$(A2)
READY

7025

288

READY
@

FIGURE 12.9 AZ2$ is a string representation of
the dollar amount.

In order to obtain a string representation of the
cents value, type

A3=AT1-A2

2A3

A3$=STR$(A3)

2A3%

2A3%(3,4)
as shown in Figure 12.10. Note that the cents value
A3 is found by subtracting the dollar value from the
total rounded amount. A string representing the cents

amount consists of the third and fourth characters in
the string STR$(A3) (the first two characters are 0.).

FIGURE 12.10 A3$(3,4) is a string representation
of the cents amount.

AZ=A1-A2

ZE3v i a35c3,4)

The total dollars and cents can be displayed by
typing
zII$II;A2$;II‘II;A3$(3’4)
which will display

$208.50

A2$% A3%(3,4)

as shown at the bottom of Figure 12.10.

The statements shown in Figures 12.8, 12.9, and
12.10 can be combined to form the subroutine
shown in Figure 12.11. This subroutine should print
the value of A in the form $XX.YY. For the first value
of A shown in Figure 12.10, the subroutine works
well. However, for a value of A = 159.996 the
subroutine prints $160.0E. The problem can be found
by looking at the value of A3 as shown in Figure

FIGURE 12.11

12.11. If the fractional part of A1 (the cents value A3)
is less than 0.01, A3 will be stored in scientific nota-
tion. This really messes things up because now the
third and fourth characters in STR$(A3) are “OE”
rather than “00”. The subroutine shown in Figure
12.11 can be fixed by adding the statement

925 IF A3<.01 THEN A3$="0000":
GOTO 940

as shown in Figure 12.12. Note that this modified
subroutine prints the correct dollars and cents values
for all of the examples shown.

The last example shown in Figure 12.12 rounds
999999.999 to $1000000.00. When writing a check
for this value (or any value over $1000.00) it would
look better and make the value easier to read if you
included the commas in the dollar amount. A method
of doing this will now be explained.

This subroutine for displaying

dollars and cents will not work for cents values

less than 0.01.

1) :a3=-a1—-Aa2

1":A35(3, 4)

READY
DIM AZ5(9),A35(¢C9)

REGDY

A=Z265.4978:GO0SUB 969

$2a8.548
READY

A4=159.996:GOSUB 90686

$168.08E

FIGURE 12.12 Modified subroutine that displays

correct dollars and cents value.

PIM A4Z5€323,A35(9)

REaDY

A=15%.996:G05UB 9606

A=393999,999:G05UB 968
$10000080 .00

READY
a

107

Adding Commas to the
Dollar Amount

Suppose that you want to add commas to the value
$2357829.49

AZ$ A3$(3,4)

First of all, the largest dollar value that our subroutine
can handle is 9999999999; after this value the ATARI
will store A1 and A2 in scientific notation. Actually,
because the ATARI does not keep more than 10 digits
of precision when storing numbers, to get the correct
cents you should limit the dollar values to
99,999,999.99. Therefore, at most we need to insert
two commas. We will therefore divide the string A2$
into the three substrings A4$, A5$, and A6$ as fol-
lows:

$2,357,829.49

Aé$ A5$ A2% A3%(3,4)
That is, if L = LEN(A2$), then

A4 = J A28 L< =3)
A2$(L — 2,L) (L>3)

A5$ = JA2$(1,L — 3) L< =6)
A2B(L—5L-3) (L>6)

A6$ = A2$(1, L - 6) (L>6)

The algorithm for adding the commas will then be

ifL< =3

then print $A4$.A3$(3,4)

elseifL< =6
then print $A5%,A4$.A3%$(3,4)
else print $A6$,A5%,A4$.A3%(3,4)

Figure 12.13a shows how this algorithm can be
added to the subroutine shown in Figure 12.12. Lines
940-975 implement the algorithm described here.
Two examples using this subroutine are shown in Fig-
ure 12.13b.

FIGURE 12.13 Subroutine that includes commas
when displaying dollars and cents.

P00 REM FPRINT A A&
P10 Al=A+5, 0E-03 A2
QRO AZE=0TRS (AZD)
PR IF ATCS0,01
FEO ATE=ETRS (AT)
P40 L=LEN(A2%)

Das D u$n;
GEO TR La=3% THEN A4 | Ha=
PELOIF Lad=& THEN A

PHO NHS=ARE (1,

QLT HEN'”q“:

970 A4E=ARS (L—2,L.)
Q7E P A4Sy, "y ATE (T
R0 RETURN

l“’“?

DLS ARE=ADE (-5, L -T)

AN, YY
=TT AL 3

SE=A] A2

THEN AZE:="0000"s GO0TO 9240

=02%y GOTO Q75

ey 26 O, -2 2 GOTO Q&7
HW§"”5“§

)

DIM AZ5(€93 ,A35(€9),A45(3) ,A55(3), A65(3)

READY

A=9999992.999:G05UB 266

$1.,600,060,00
READY

A=235782%.49:G05UB 960
$2,357,829.49

RE&DY

ZZ576.248:G05UB 92606

576.25

108

PLAYING CARDS

As another example of how to use string functions we
will now develop some subroutines that will be useful
in card game programs. The first thing to decide is
how to represent a deck of cards within the com-
puter. It is convenient to associate a number between
1 and 52 with each card in the deck. We will use the
numbering system shown in Figure 12.14. For exam-
ple, the seven of hearts is number 33 and the jack of
diamonds is number 24.

The value of a card (A—K) has a value number V
and the four suits have a suit number S, as defined in
Figure 12.14.

FIGURE 12.14 Each card in the deck is associa-
ted with a number between 1 and 52.

Valve No.
Club Diamond Heart Spade 4
A 1 14 27 40 1
2 2 15 28 41 2
3 3 16 29 42 3
4 4 17 30 43 4
5 5 18 31 44 5
6 6 19 32 45)
7 7 20 33 46 7
8 8 21 34 47 8
9 9 22 35 48 9
it 10 23 36 49 10
J 11 24 37 50 11
Q 12 25 38 51 12
K 13 26 39 52 13
Suit
No. § 1 2 3 4

It is usually easier to use the card number C as
much as possible in a program to distinguish cards
and then use C to find the value and suit of the card
when needed. Given a card number C, the corre-
sponding suit number S is given by

S = INT((C = 1)/13) + 1

You should verify this by trying some examples from
Figure 12.14. For example, if C = 26 (king of dia-
monds), then

S = INT(25/13) + 1
—1+1=2

Once you know S, the value number V can be deter-
mined from the equation

V=C—-(S—-1) *13
For example, if C = 26, then S = 2 and
V=26-(2-1)*13=13

It is convenient to store all of the card numbers in

an array C(l). This array can be initialized with the fol-
lowing statements:

DIM C(52)
FOR I=1 to 52:C(l)=I:NEXTI

Thus, for example, C(47) = 47 and represents the
eight of spades.

Suppose that you want to display the 19th card in
the deck. The card number is C(19) = 19. The suit
number is

S =INT((C(19) — 1)/13) + 1
= INT(18/13) + 1
=2
and the value number is
V=C(19)-(S-1)*13
=19-1*13
=6
Therefore, from Figure 12.14 the card is the six of dia-
monds. To display this value, define the two strings
V$ and S$ shown in Figure 12.15. The graphic sym-
bols for a club, diamond, heart, and spade are
printed using the CTRL key as indicated in Figure
12.15. Note that the position of each value character
in V$ corresponds to the appropriate value number V

in Figure 12.14. Therefore, the single value character
V1$ corresponding to the value number V is given by

V1§ = V§(V)V)

Similarly, the position of each suit character in S$
corresponds to the appropriate suit number S in Fig-
ure 12.14. Therefore, the single suit symbol S1$ cor-
responding to the suit number S is given by

S1$ = S$(S,9)

These ideas are incorporated in the two
subroutines shown in Figure 12.16. The subroutine
given by lines 3000—-3050 sets up the deck by dimen-
sioning and initializing C(I) and defining V$ and S$.
This subroutine should be called once at the begin-
ning of any program involving playing cards.

FIGURE 12.15 Definition of the value string V$
and the suit string S$.

V$="A23456789TJQK"

S$=""CDHS"
CLUB ctRe P |
DIAMOND CTRL .
HEART CTRL ,
SPADE CTRL ;

109

FETURN

REM PLAYING CARD SETUF
a 1) L 8% (4),

Mig(l),B1601)
=Te NEXT I

LOCATION P
Y+

DIM (52, V(]

FOR I=1 TO S2:C

V= AR TAS6TEITIOK
S 494"

FETURN

REM FICK CARD AT
S=INT (G F) =10 /13
Va0 (F) ~ (810 %173
Vig=VE (U, V)

B18=86 (8, 8)

FIGURE 12.16 Subroutines to set up deck (line
3000) and pick card at location P (line 3100).

The subroutine given by lines 3100-3150 in Fig-
ure 12.16 will find the value string V1$ and the suit
string S1$ of the card located at position P in the array
C—that is, the card with card number C(P). Lines
3110-3120 define the suit number S and value num-
ber V using the formulas that have been given here.
Lines 3130-3140 find the single character strings V1$
and S1%.

In order to test these subroutines, type

GOSUB 3000
P=33:GOSUB 3100:2V1$;S1$
P=52:GOSUB 3100:2V1$;S1$%

as shown in Figure 12.17. Note that card number 33
is the seven of hearts and card number 52 is the king
of spades, as shown in Figure 12.14.

You can display the entire deck by running the
program shown in Figure 12.18. Line 20 sets up the
deck. Line 25 clears up to 10 tabs and line 27 sets
three new tab positions. The FOR . . . NEXT loop in
lines 30—60 increments P from 1 to 52, finds V1$ and
S1$ for the card at position P (line 40), and prints
these values and suit symbols in line 50. Note that the
PRINT statement in line 50 ends with a tab. The result

of running this program is shown in Figure 12.19.
Note that the cards are printed in the order shown in
Figure 12.14. In order to print them in a random or-
der you must first shuffle the deck.

FIGURE 12.17 Testing the subroutines given in
Figure 12.16.

GOSUB 3909690

READY
2333:GOSUB 316808:?V15;515

REAGDY
P=5Z:505UB 31680:2?V15;515%
K4

REGDY
=

FIGURE 12.18 Program to display entire deck of

cards.

110

XD —ANMNLNWDOL
PPPPLL LS N Nd

FIGURE 12.19 Result of running program shown
in Figure 12.18.

Shuffling a Deck of Cards

To shuffle a deck of cards all you have to do is to
scramble the order of the card numbers stored in the

card array C(l). The following simple algorithm will
do this:

for 1 =1 to 52
find random number) between 1 and 52
interchange C(l) and C())
next |

This algorithm interchanges each element in C(l) in
turn with another element selected at random.

Recalling that RND(0) is a random number with a
value greater than 0O and less than 1, then

J =INT(52 * RND(0) + T)

will be a random integer between 1 and 52.

FIGURE 12.20 Subroutine to shuffle a deck of
REM SHUFFLE DECK

Poeg MU FF LI N G
FOR I=1 TO 52
Je=INTOE2FRND (OY +1)

TeaZ Ty s COLy =0Ty s 0T =T
NEXT I

RETLRM

A subroutine that will shuffle the deck while
displaying the word ““SHUFFLING"" is shown in Fig-
ure 12.20. The FOR ... NEXT loop in lines
3220-3250 corresponds to the for...next loop
given here. Line 3230 finds a random number] be-
tween 1 and 52. Line 3240 interchanges C(I) and C()).

Add lines 28 and 29 shown in Figure 12.21 to the
main program given in Figure 12.18. This new pro-
gram will shuffle the deck and then display all of the
cards. A sample run is shown in Figure 12.22.

FIGURE 12.21

Main program to display shuffled
deck of cards.

FIGURE 12.22 Sample run of program shown in
Figure 12.21.

HUFF L I NG

i o ol o o e o o

as
7e
6
Je
44
7e
g
4%
ae
Te
ae
Jo
To

NXYUANSINIQLND L
S EORENR O 4 DD

Pt =l g0 €0 7 G 00 L1 6

*

111

10
20 G
28 9

o o s TR 1|
au, J

VLR

25 % 50

EOOT VENTER NUMBER
ZEOINFUT NF

40 7 "ENTER MUMBER
SOINFUT NC
ol ?
FOR TI=1

TO OFOR J=1

GEOSUR
FH T NS Gley e
100 Fafea

110 NEXT J

120 72

1A MEXT I

140 END

TO NC
TO NF

FEOSUER 22003 REM SHUFFLE DECE

F100sREM DEAL

REM DEAL HAND OF CARDS
Z000:REM SETUR DECE

OF FLAYERS "y

QF CARDS FER HAND i

MEXT CARD

FIGURE 12.23 Program to deal a hand of cards.

Dealing a Hand of Cards

The program shown in Figure 12.21 can easily be

modified to deal a hand of cards. All you have to do is

divide the cards among a number of players and limit

the number of cards dealt to the desired number.
Let

NP = number of players
and
NC = number of cards per hand

The first card to each player can be displayed on a
single line with the statements

50 P=1:2

70 FOR J=1 TO NP

80 GOSUB 3100:REM DEAL NEXT CARD
90 2 V1$;S1%; tab’’;

100 P=P+1

110 NEXT J

Note that P points to the next card in the deck and
subroutine 3100 finds the card at C(P).

To deal NC cards to each player and display them
on succeeding lines, add the statements

60 FOR I=1 TO NC
120 ¢
130 NEXT |

FIGURE 12.24 Sample runs of program shown in

Figure 12.23.

HHF FLIMNG

EMTER HUMBER OF P
EMTER HUMBER OF C

4%

Lt

a%

a%

[}

.

READY
n

112

LAYE
ARDS

RS 72 i
PER HAMD 75

5 H U F F L I N G

ENTER HMUMBE
ENTER MUMBE

54
J¥
Z¥

AYAHREEXNNDIEDAND
tegee g gené¢ QO

FIGURE 12.24 (cont.)

as shown in Figure 12.23. In this program lines
30-45 allow the user to input the values NP and NC.
Line 50 points to the top card of the deck and skips a
line. Lines 60—130 make up the outer FOR . . . NEXT
loop that prints NC rows of cards. Lines 70—110 make
up the inner FOR . . . NEXT loop that deals NP cards
and displays them on one line. Line 25 clears the tab
position (see Figure 12.21). Eight tab positions have
been set up in line 27. Line 100 points to the next
card in the deck after each one is dealt. The PRINT
statement in line 120 is necessary to move the cursor
to the beginning of the next line after each round of
cards is dealt.

Two sample runs of this program are shown in Fig-
ure 12.24. The second example shown in Figure
12.24 could be a bridge hand. It would be nice if you
could sort each hand by suit. This is easier to do than
you may think.

Sorting Hand by Suit

Suppose that a hand contains the cards shown in Fig-
ure 12.25a, where the card number for each hand is
also given (see Figure 12.14). If the card numbers are
sorted in increasing order, the cards will be sorted in
increasing order by suit, as shown in Figure 12.25b.
This illustrates the advantage of using card numbers
to represent playing cards inside the computer.

In order to sort a hand we will therefore need to
store the card numbers for each card in the hand. We
can store these in an array. For convenience we will
use a two-dimensional array, or matrix, H(l,)), in
which each column will contain the card numbers for
a different player, as shown in Figure 12.26. To sort
all hands we will need to sort each column in
increasing order.

FIGURE 12.25 A hand of cards can be sorted by
suit by sorting the card numbers in increasing or-

der.

Card Card No. Card No. Card
6H 32 2 2C
4D 17 3 3C
8D 21 6 6C
4S 43 17 4D
3C 3 21 8D
JS 50 32 6H
6C 6 35 9H
9H a5 43 4S
2C 2 50 JS
(a) (b)
FIGURE 12.26 Each column of the two-

dimensional array H(l,J) contains the card num-
bers for one player.
player no. J

1 2 3

2 51 26

31 6 24

27 38 ar Two-dimensional array

| HOW)

card |
8 1 34

1 16 33

o 0 b W N =

50 21 17

The array H(l,J) needs to contain NC rows (number
of cards per hand) and NP columns (number of
players). Since we don’t know what these values are
until lines 35—45 in Figure 12.23 are executed, we
will add the following dimension statement at line
47:

47 DIM H(NC,NP)

Every time a card is dealt we need to add the card
number to the array H(l,)) by adding the statement

113

75 H(1,J)=C(P)

as shown in Figure 12.27. Note that this statement is
inside the two nested FOR . . . NEXT loops and will
be filled up one row at a time. In Figure 12.27 we
have added the one additional statement

135 GOSUB 200:REM DISPLAY
SORTED HAND

where we will hide everything that we haven't figured
out how to do yet!

This subroutine at line 200 will have to sort each
column in H(l,)) in increasing order and then display
the corresponding cards. This subroutine is shown in
Figure 12.28. Line 205 prints the word ““SORTING"
so that if it takes a little time (it will), the user will
know what is going on. Line 210 will sort each col-
umn in H(l,)). In the interest of putting off, as long as
possible, what we haven’t figured out how to do, we
will just let the subroutine at line 2000 do this. The
nested FOR . .. NEXT loops in lines 220-260 are
similar to the ones in lines 60—130 in Figure 12.27
that displayed the original hand. The subroutine at
line 3100 will find the card at position P in the array
C—that is, the card with card number C(P). This was
useful in line 80 in Figure 12.27 where we were in-
crementing P each time it passed through the loop.
However, in Figure 12.28 we don’t know P but we do
know the card number directly—it is just H(l,)).
Therefore, we would like to use the subroutine at line

3100 to find the value of the card with card number
H(l,)). We must make C(P) contain the value H(l,)).
Because the array element C(0) is not normally used
but is available, we will use this location to store
H(l,)), as shown in line 240 in Figure 12.28. Note that
we must set P = 0 so that the subroutine at line 3100
shown in Figure 12.16 will use C(0), which will be
equivalent to using H(l,J).

We're finally to the point where we must figure out
how to sort the columns of H(l,)) in increasing order.
If you go back and study the sorting algorithm that we
developed in the last chapter, given in Figure 11.10,
you will note that all we have to do is apply this same
algorithm to each column of H(l,)). The resulting al-
gorithm is given in Figure 12.29. The BAsIC imple-
mentation of this algorithm is written as a subroutine
in Figure 12.30.

FIGURE 12.28 Subroutine to display the sorted
hands of cards.

AO0 REM DISFLAY SORTED HAND

205 7 27 "GORTING"=27

210 GOsUR 2000:REM SORT COLUMNS OF H

2OFOR T=1 TO NC
ZEDOFQR J=1 TO NF
240 P=0s 000 =HI,d)
245 GOSUR Z100:REM NEXT CARD

250

VAR TRESR: 3 ity
NEXT J:7% sNEXT IT:RETURN

20

FIGURE 12.27 Main program to deal a hand of
cards and then display the sorted hand.

10 REM DEAL HAND OF
SETUF DECE

20 GEOSUR Z000r REM
SAET Y

ot 4

27 P

g -~ -~
DG g 7

HOOT O VENTER NUMRBER OQF

ZE INFUT NP
40 7
45 INFUT NC

47 DIM H{NG, NF)
B0 Pl ?

&0 FOR I=1 TO NC
70 FOR J=1 TO NP
78 ML, JY=C(F)

"ENTER NUMRBER OF

28 GOSUR Z200:REM BHUFFLE DECH

FLAYERS "j

CaRDE FER HAND "j

SO EOSUE Z100:REM DEASL NEXT CARD

Py P NMIspElLEg Ny
100 Pl

110 MEXT J

129 %

130 NEXT I

135 G0eUR 200: REM DIGFLAY

140 END

114

SORTED HAND

110
)
W)
V4440
V)

DOVAD

2000 REM SORT EACH COLUMN OF

for J =1 TO NP
for1=1TO NC -1
forK=1+1TO NC
if H(l,J) < = H(K,J)
then do nothing
else interchange H(l,J) and H(K,J)
next K
next |
next J

FIGURE 12.29 Algorithm for sorting each column
of H(l,J) in increasing order.

FIGURE 12.30 Subroutine to sort each column of
the array H(l,J).

H N, NFD

FOR J=1 TO NF
FOR T=1 TQ MNC-1
FOFR F=I+1 TDO NC

IF HOI,J0<=H,) THEN 2040
T (T J) s HOT Ty M (B, 00 s H K, D) =T
NEXT KxNEXT TrNEXT J:RETURN

We have now written all of the subroutines needed
to run the program shown in Figure 12.27. A sample
run is shown in Figure 12.31. Note that each hand is
sorted by suit with the suits displayed in the order
clubs, diamonds, hearts, and spades.

ENTER MUMBER
ENTER HLMBER

64
5%
ae
6%
K%
Z%

RS 2?5

mm

WD-ANL 0O

R DI
D
o<
wvim

WA WOmD
ke g QO

24
Keé
(=% 4
5w
(5%
G

AT BN

PSS D
Cam=HWD
LA B8 T

FIGURE 12.31 Sample

run of the program
shown in Figure 12.27.

EXERCISE 12.1

Write a program that will input a string A$ and a
substring B$ and then search for the first occurrence
of the substring B$ in A$. If a match is found, the
value of P should be set to the position in A$ of the
first character of B$. (P = 1 corresponds to the first
character in A$.) If no match is found, set P = 0.

EXERCISE 12.2

Modify the program in Exercise 12.1 to find all occur-
rences of B$ in A$. Store the locations of all matches
in the array P(I). A value of P(l) = 0 will indicate that
there are no more matches in the string.

115

PER HaND 7

LEARNING TO USE
HIGH-RESOLUTION GRAPHICS

The low-resolution graphics mode 5 was described in
Chapter 7 and you have used it in many of your pro-
grams in earlier chapters. The ATARI also has other
graphics modes that allow you to plot figures on the
screen with considerably more detail. In this chapter
you will learn

1. the graphics modes available in ATARI BAsIC

2. how to use the high-resolution graphics modes
on the ATARI

3. how to plot figures in a dot-to-dot fashion by
storing the coordinates of the vertices in DATA
statements

4. how to draw figures of varying size

5. how to plot figures at different locations on the
screen

6. how to plot figures whose coordinates can be
calculated.

ATARI GRAPHICS MODES

In Chapter 7 you learned to use graphics mode 5.
This was a low-resolution mode in which the screen
was divided into an 8040 grid with four lines of text
at the bottom of the screen. This four-line text
window can be changed to an additional graphics
area by adding 16 to the mode number in the
GRAPHICS statement. Thus, the statement

GR. 5+16

will enter graphics mode 5 with a full-screen 80x48
graphics resolution. If you add 32 to the mode num-

116

ber in the graphics command, the graphics mode will
be entered without clearing the screen.

ATARI Basic will allow you to access nine different
graphics modes. Three of these are actually text
modes and six are real graphics modes. These nine
modes are summarized in Table 13.1. You are al-
ready familiar with the text mode GR. 0 and the
graphics mode GR. 5.

We will study the text modes GR. 1 and GR. 2 in
Chapter 14. In this chapter we will look at the
highest-resolution graphics mode, GR. 8.

TaBLE 13.1 ATARI BASIC graphics modes
Resolution

GR. Mode | Type With Text Window Full-screen | No. of Colors | Required Memory
0 TEXT 40x24 2 993
1 TEXT 20%20 20x24 5 513
2 TEXT 20x10 20x12 5 261
3 GRAPHICS 40%20 40%24 4 273
4 GRAPHICS 80x40 80x48 2 537
5 GRAPHICS 80x40 80x48 4 1017
6 GRAPHICS 160x80 160x96 2 2025
7 GRAPHICS 160x80 16096 4 3945
8 GRAPHICS 320x160 320x192 1(2) 7900

GRAPHICS MODE 8

In the high-resolution graphics mode 8 the screen is
considered to be divided into a grid of 160 rows and
320 columns with four lines of text at the bottom, as
shown in Figure 13.1.* The column positions of the
grid are numbered 0 through 319 from left to right.
The row positions of the grid are numbered 0 through
150 from top to bottom.

In graphics mode 8 only a single color can be
plotted. The background and graphics point must
have the same hue but can have different lumi-
nances. The background color is specified by color
register 2 (COLOR 0). Thus, for example (see Chapter
7),

SETCOLOR 2,0,0
will make a black background. The points plotted
must now be gray (hue = 0) and can only have a dif-
ferent luminance from the background. Color register

1 (COLOR 1) specifies the luminance of the points
plotted. For example,

SETCOLOR 1,0,14

will plot white points with the brightest possible in-
tensity.
Enter graphics mode 8 by typing

GR. 8
Set the background to black by typing

SETCOLOR 2,0,0

Set the luminance of the graphics points to bright by
typing

SETCOLOR 1,0,14:COLOR 1

You can plot a point at any X,Y location (X between 0
and 319 and Y between 0 and 159) by typing

*A full-screen graphics mode with a 160x 192 resolution is
entered by typing GR. 8+16.

FIGURE 13.1 The high-resolution graphics mode
divides the screen into a 320x160 grid with four
lines of text at the bottom.

X=0 X=319
} |
Y=0~
320 x 160
Y=159~
4 lines of text

PLOT X,Y
For example, if you type
PLOT 159,80

you should see a small dot near the center of the
screen.
The statement

DRAWTO X,Y

will plot a line from the most recently plotted point to
the location X,Y. For example, type

PLOT 9,10:DRAWTO 309,10

This will plot a horizontal line across the top of the
screen as shown in Figure 13.2.

117

PLOT 2,18:DPRAMTO 369,106

READY
|

FIGURE 13.2 Plotting a horizontal line in high-

resolution graphics.

If you now type
DRAWTO 9,159

the diagonal line shown in Figure 13.3 will be
plotted. This is because the point 309,10 was the last
point plotted in Figure 13.2.

If you now type

DRAWTO 9,10

the vertical line in Figure 13.4 will be plotted.

The program shown in Figure 13.5a will plot the
pattern shown in Figure 13.5b.

In order to get out of the high-resolution graphics
mode 8, type GR. 0 as you did when leaving the low-
resolution graphics mode 5.

EXERCISE 13.1

Plot a square in high-resolution graphics that is 100
points on a side and has its upper-left-hand corner at
the coordinates X = 90, Y = 30.

FIGURE 13.3 Plotting a diagonal line in high-

resolution graphics.

“BRAWTO

READY
|

118

"DRAWTO 9,10
READY
|

FIGURE
resolution graphics.

13.4 Plotting a vertical line in high-

FIGURE 13.5 Plotting multiple lines in graphics

mode 8.

10 REM HIGH RESQOLUTION GRAFHICS

20 ERAFHICE &

25 BETCOLOR 2,0, 0: SETCOLOR

20 COLOR 1

1.0, 14

40 FLOT 21, 10: DRAWTO 201, 10
SO DRAWTO 21, 1502 DRAWTO 21, 10
HO DRAWTD 201, 1530: DRAWTO 201,10

PLOTTING HIGH-RESOLUTION GRAPHIC FIGURES

Let's suppose that you want to draw some arbitrary
figure made up of a sequence of straight-line seg-
ments. It is convenient to plot the figure on a new X, Y
coordinate system that is centered at the screen
coordinates XC,YC. For example, in Figure 13.6 a
square is shown plotted in such a coordinate system.

Note that the Y coordinate is plotted in its “‘normal”’
upward direction, which is the opposite of the Y
screen coordinate. We will let the computer take care
of this difference. Also, note that we have located the
origin of our new coordinate system at the center of
the square. This means that the coordinates of the

119

(—50, 50)

(50, 50)

XC,YC

(—50, —50)

(50, —50)

FIGURE 13.6 Defining a square centered on a
new X,Y coordinate system.

vertices of the square may contain negative values, as
shown in Figure 13.6. Of course, for the square to fit
on the screen it is necessary for the value of XC (the
center of the square) to be in the range 50-269 and
the value of YC to be in the range 50-109.

For any center point XC,YC the square is com-
pletely defined by the X,Y coordinates of its vertices:

(- 50,50)
(50,50)
(50,— 50)
(- 50,— 50)

We will store these vertex coordinates in two DATA
statements, with all of the X coordinates in the first
DATA statement and all of the Y coordinates (in the
same order) in the second DATA statement.

The vertex coordinates will be stored in the order
you would use to draw the figure in a dot-to-dot fash-
ion. If you return to the starting position, the first X,Y
coordinate must also be the last one. Thus, the two
DATA statements

250 DATA -50,50,50,—50,-50
260 DATA 50,50,—-50,—50,50

will be used to plot the square shown in Figure 13.6.
Statement 250 contains all of the X coordinates and
statement 260 contains the corresponding Y
coordinates.

The program shown in Figure 13.7 will plot this
square. After the high-resolution graphics mode is en-
tered in line 20 and color register 1 is set in line 25,
the subroutine at line 200 is used to fill the arrays X(I)
and Y(I) with the vertex coordinates. These arrays are
dimensioned in line 210. The vertex coordinates
stored in the DATA statements are then read into the
arrays X(I) and Y(l) in lines 220 and 230. Note that in
line 230 each value stored in Y(I) is changed in sign.
This is because the Y coordinate shown in Figure
13.6 (from which the DATA coordinates were deter-
mined) is opposite in direction to the Y screen
coordinate (see Figure 13.1).

Line 40 in Figure 13.7 defines the center of the
square to be at the screen coordinates 159,80. Line
50 plots the point located at the upper-left-hand cor-
ner of the square. Note that the statement

PLOT XC+X(0),YC+Y(0)
will actually be equivalent to
PLOT 159-50,80+(—50)

and will therefore plot the point (= 50,50) shown in
Figure 13.6. Remember that all of the signs in Y(I)
were inverted in line 230. The statements

FIGURE 13.7 Program to plot a square.

10 REM SEUARE

20 BRAFHICES 2:COLOR 1
25 GETCOLOR 2,0,0:8ETCOLOR 1,0,14
O GOSUR Z200:REM FILL ARRAYS

40 XC=1591 YO=80

&HO O FOR T=1 TO M

0 FLOT XOC+X (0) YE+Y {0)

O O DRAWTO XC+X (1), YE+Y D)

R0 MEXT I
Q0 END
REM FILL

FOR

RETURN
DATA —50,50, 50

120

XY ARRAYS

M=4sDIM X M) LY (M)

T=0 TO M:READ XX (I)=XsMEXT I
FOR I=0 TO MiREAD Y:Y (I)=-YaiNEXT I

g — D0, —E0

DATA 50, 50, =50, =50, 50

60 FOR I=1 TO M
70 DRAWTO XC+X(I),YC+Y(l)
80 NEXT |

shown in Figure 13.7 will plot the four sides of the
square.

The result of running the program given in Figure
13.7 is shown in Figure 13.8. Note that although we
drew a square in Figure 13.6 it did not come out as a
square in Figure 13.8. The reason for this is that the
distance between adjacent points on a TV screen is
different in the vertical and horizontal directions. You
can see from Figure 13.8 that since the same number
of points were plotted for both the vertical and
horizonatal sides of the square, the distance between
adjacent vertical points must be larger than the dis-
tance between adjacent horizontal points.

There is an easy way to correct for this difference
in our program. If we measure the sides of the square

on the screen we find that the horizontal length is
18.5 centimeters and the vertical length is 19.5 centi-
meters. Therefore, if we reduce the value of all Y
coordinates by the factor

F = 19.5/18.5 = 1.1

the square should appear square. We can do this by
adding the statement
215 F=1.1

and modifying line 230 to read

230 FOR 1=0 TO M:READ
Y:Y(l)=—Y/F:NEXT |

as shown in Figure 13.9. The result of running this
modified program is shown in Figure 13.10. Note
that the square now looks like a square on the screen.
You should use this vertical scaling factor (measure it
for your own screen) in all of your plotting programs
in order to produce properly proportioned figures.

FIGURE
shown in Figure 13.7.

13.8 Result of running the program

FIGURE 13.10 Result of running the modified
“square’’ program shown in Figure 13.9.

FIGURE 13.9 The changes shown in lines 215
and 230 will properly scale the Y coordinate.

10 REM SOUARE

20 GRAFHICS 8@ COLOAR
A% BETCOLAOR 2,0, 0:8ETCOLOR 1,0,14
F0 GOSUER Z200:REM FILL ARRAYS

w0 PLOT XC+HX (00, YO+Y (0)

A0 FOR I=1 TO M

J0 DRAWTO XC+X (1), YO+ (1)

82 NEXT 1
GO ENMD

200 REM FILL X,Y ARRAYS

210 M=4:DIM X M), Y (M)

215 F=1.1

RETURM

wd bl gt

220 FOR I=0 TO M READ
FOR T=0 T0O M:READ

Kp X (D) =XaMNEXT T
YeY (D) =-Y/FuaNEXT I

DATA 50, 50, 50, ~50, ~50

DATA S0, S0, -850, —50, 50

121

EXERCISE 13.2 in your plot statements, where S is the scale factor.
Write a program that will plot the star shown in Figure ~ For example, a value of S = 2 will cause the figure to

13.11 centered at the screen coordinates 159,80. be plotted double size and a value of S = 0.5 will
cause the figure to be plotted half size.
F'GURE 13.11 Star ﬁgure to be ploﬁed in Exer- As an examplel the program shown in Figure
cise 13.2. 13.12 will plot a sequence of concentric squares cen-
Y tered at the screen coordinate 159, 80. Note that the
(0, 50)

for . .. next loop
45 FOR $=0.2 TO 1.6 STEP 0.2

(50, 20) (50, 20) .
\/ \/ 85 NEXT S
x has been added to the program given in Figure 13.9.

FIGURE 13.13 Result of running the program
shown in Figure 13.12.

(—40, —40) (40, —40)

Scaling Figures

If the coordinates of the points in a figure are stored in
the arrays X(I) and Y(l) as we have described, then it is
a simple matter to plot the figure in a different size.
All you have to do is to always use

X(1)*S
and
Y(1)*S

FIGURE 13.12 Program to plot a set of concen-
tric squares.

10 REM CONCERMTRIC SOUARES
20 GRAFHICS 8:COLOR 1
25 GETCOLOR 2,0, 0:8ETCOLAOR 1,0,14

IO GOSUER 200:3REM FILL ARRAYS
40 XC=1593 YO=80
=5 FOR S=0.2 TO 1.6 STER 0.2
50 PLOT XO+X (0) 8, YO+Y (0) %8
&0 FOR I=1 TO M
70 DRAWTO XO+X (1) %S, YO+Y (1) &8
80 NEXT I
85 NEXT S
90 END
200 REM FILL X.Y ARRAYS
210 M=4:DIM X (M), Y (M)
215 F=1,1
220 FOR I=0 TO M:READ X:X{(I)=X:NEXT I
2TO0 FOR I=0 TO MiREAD Yr¥(I)=~Y/F:NEXT I
240 RETURN
250 DATA ~50, 50, 50, ~50, ~50

2460 DATA 50,50, ~50, S50, 50

122

In addition, the PLOT statement in line 50 and the
DRAWTO statement in line 70 have been modified to
include the scale factor S. The result of running this
program is shown in Figure 13.13.

In addition to plotting a figure in different sizes by
using the scale factor S, it is a simple matter to plot
the figure at different locations on the screen by
changing the values of the center coordinates XC and
YC.

EXERCISE 13.3

Write a program that will plot nine squares in a 3X3
arrangement on the screen. The size of each square
should be 40x40 and the squares should not overlap.

EXERCISE 13.4

Write a program that will plot five stars on the screen
at random locations. Take care to ensure that no part
of any star can ever extend beyond the edge of the
screen.

EXERCISE 13.5
Modify the program in Exercise 13.4 so that the size
of each star as well as its position is random.

FIGURE 13.14 Relationship between a point X,Y
on a circle and the radius R and angle A.

Y
L X _N\PIX,Y)
[
. [
R*SIN(A) :Y
X [
a X
R e
R*COS(A)

Plotting Circles

How can you plot a circle in high-resolution graph-
ics? Figure 13.14 shows a circle of radius R with its
center at the origin of a local X,Y coordinate system.
Recall from trigonometry that for the triangle OPQ
the sine of the angle A is defined as

SIN(A) = Y/R
and the cosine of the angle A is defined as
COS(A) = X/R

Therefore, we see that any point P on the circle has
the X,Y coordinates

X = R * COS(A)
Y = R * SIN(A)

We can therefore plot the circle by letting the angle A
increase in steps, calculate new values for X and Y
from the preceding equations, and DRAWTO to the
new points. If we let A increase from 0 to 360 degrees
we will plot the entire circle.

A program for plotting circles is shown in Figure
13.15. Lines 20—22 enter the high-resolution graph-
ics mode and set color register 1. The user can specify
the radius R and angular step size S in lines 25-45.

FIGURE 13.15 A program for plotting a circle of
radius R using high-resolution graphics.

10 REM FLOTTING CIRCLES

15 OFEN #1,4,0,"K:"

20 GRAFHICS 8:COLOR 1

22 SETCOLOR 2,0,0:8ETCOLOR 1,0,14
25 7 "ENTER RADIUS (1-87) "3
IO O INFUT R

35 IF R<S1 OR RX>87 THEN 30

40 7 "ENTER ANGLE STEF SIZE
45 INFUT &

50 DEG

HO F=1.1

70 XC=1&402YC=80

80 FLOT XC+R,YC

20 FOR AD=0 TO Z&0 STEF &5
100 X=R¥C0OS {(AD)

110 Y=R¥X&SIN(AD)

120 Y=-Y/F

150 DRAWTO XC+X, YOC+Y

140 NEXT AD

150 7 "ANOTHER PLOT?!

160 GET #1,A

170 IF A=ABC("Y'™)
180 CLOSE #1:RAD
190 GRAFHICS O: END

THEN 20

Line 50 sets DEG so that the arguments of the SIN and
COS functions will be in degrees. Line 60 sets the ver-
tical scale factor F. The center of the circle will be lo-
cated at the screen coordinates XC,YC defined in line
70. The first point on the circle located at the screen
coordinates XC + R, YC is plotted in line 80. The
FOR . . . NEXT loop in lines 90—140 plots the rest of
the circle. Notice that the angle AD increases from 0
degrees to 360 degrees in steps of S degrees. Lines
100-110 calculate the next values of X and Y on the
circle. Line 120 inverts and scales the Y value as we
have described so that the circle will look like a cir-
cle. The next segment of the circle is plotted in line
130.

123

(DEGREES)

Line 160 waits for a key to be pressed and then
stores the ATAsCIl code for that key in A. The number
1 in this GET statement refers to the device number
(for the keyboard) defined in the OPEN statement in
line 15. This device is closed with the CLOSE state-
ment in line 180.

You should type in this program and run it. Some
sample runs are shown in Figure 13.16. Note that if
the angle step size becomes too large, a polygon will
be plotted rather than a circle. This suggests an easy
way to plot some interesting multiple polygon figures.
The next section will describe such a program.

FIGURE 13.16 Running the program shown in
Figure 13.15.

ENTER RADIUS ¢1-
ENTER ANGLE STEP
ANDTHER PLOT?

@

871 7
SIZE

8
(PEGREES]

ENTER RADIUS
ENTER ANGLE 5

ANOTHER PLOT?

ENTER RaDIUS (1-87) 7?87

ENTER ANGLE STEP SIZE (DEGREES)
ANOTHER PLOT? A

124

EXERCISE 3.6

Write a program to plot the ““ball’’ shown in Figure
13.17a. Think of looking down on the top of the ball
and then plotting a series of circles at different angles
B, as shown in Figure 13.17. Both halves of this circle
will appear on the screen, so you only need to let B
increase from 0 to 90 degrees. The X coordinate of
each circle will now be

X = R * COS(A) * COS(B)

FIGURE 13.17 Plotting a 3-D ball (Exercise 13.6):
(a) ball to be plotted; (b) looking down on top of
the ball.

(a)

(b)

CIRCLE

Plotting Polygons

Suppose that you would like to plot the picture shown
in Figure 13.18. How would go about it? You could
start at the vertex X(1),Y(1) and draw the four lines to
X(K),Y(K) (K =2 to 5), as shown in Figure 13.19a.
Next you could add the three lines from X(2),Y(2) to
X(K),Y(K) (K = 3 to 5) as shown in Figure 13.19b.
Next you could add the two lines from X(3),Y(3) to
X(K),Y(K) (K = 4 to 5) as shown in Figure 13.19c.

X(1), Y(1)

/

X(2), Y(2) X(5), Y(5)

A\

SN

X(3), Y(3) X(4), Y(4)

FIGURE 13.18 A polygon with a line down be-
tween all vertices.

FIGURE 13.19 Steps in generating the picture
shown in Figure 13.18.

X(NY(1)

=

(a) (b)

Zp

X
5P

(c) (d)

Finally you would add the line from X(4),Y(4) to
X(5),Y(5). Note that the four steps shown in Figure
13.19 can be carried out by the algorithm

for) =1to N —1
forK=]4+1toN
plot line from X(J), Y(J) to X(K), Y(K)
next K
next)

where N is the number of vertices in the polygon (five
in Figure 13.19).

Think of a circle that passes through all of the verti-
ces of the polygon. If R is the radius of this circle, then
the N coordinate pairs X(I),Y(l) can be calculated
from the following algorithm:

for | =1to N
A =1*360/N
X =R *
COS(A)
Y(l) = R * SIN(A)
next |

Note that this algorithm divides the circle into N pie-
shaped wedges, where the angle of each “pie piece”
is 360/N degrees. The coordinates X(I),Y(l) are then
calculated using the equations of the circle.

A program that will plot this polygon figure for pol-
ygons with from 3 to 15 sides is shown in Figure
13.20. The center of the polygon will be at XC,YC,
which is specified to be 160,80 in line 50. The radius
of the circle that would pass through the polygon ver-
tices is set to 85 in line 50. After entering the number
of sides N in line 65 and checking to make sure that N
is between 3 and 15 in line 70, the subroutine at line
200 is called. This subroutine calculates the N
coordinates X(I),Y(l) as described previously. Note
that line 250 inverts and scales the Y coordinates by
our usual vertical scale factor F = 1.1 (defined in line
40).

FIGURE 13.20 Program to plot a polygon figure
with from 3 to 15 sides.

10 REM POLYGON FIGURE

15 OFEN #1,4,0,"K:"

20 DIM X(15),Y(15)

0 GRAPHICS 8:COLOR 1

35 SETCOLOR 2,0,0:SETCOLOR 1,0,14
40 DEG :F=1.1

50 XC=1603: YC=80: k=85

60 ? "ENTER NUMBER OF SIDES (I-15) j
65 INPUT N

70 IF N<ZF OR N:1S THEN 60

80 GOSUE 200:REM CALCULATE POINTS
90 FOR J=1 TO N-1

100 FOR K=J+1 TO N

110 PLOT XC+X (1), YC+Y (D) s DRAWTO XC+X (KD , YC+Y (KD

20 NEXT E:NEXT J

120 7 "ANOTHER FLOT?"
140 GET #1.,A

150 IF A=ASC("Y™)
160 CLOSE #1:RAD
170 GRAFHICS 0O:END
200 REM CACULATE FOINTS
210 FOR I=1 TO N

220 AD=I¥360/N

230 X (I)=R%C0S (AD)

240 Y(I)=RX¥XSIN(AD)

280 Y(I)==Y (1) /F

260 NEXT I

270 RETURN

THEN 2O

125

Lines 90-120 actually plot the polygon figure
using the nested for . . . next loops. Notice that the
PLOT statement in line 110 will cause the polygon to
be centered at XC,YC. After plotting the figure, line
130 will ask the user if another plot is desired. The
GET statement in line 140 will wait for a response and
then in line 150 will branch back to line 30 if key Y is
pressed. Any other key will cause line 160 to be exe-
cuted, which will close the keyboard device number,
clear the screen, and stop the program.

Type in this program and run it. Two figures that
can be generated by this program are shown in Figure
13.21. Try some different values of N.

FIGURE 13.21 Examples of polygon figures that

can be generated by the program shown in Figure

13.20.

ENTER MUMBER OF 5 E5 ¢3-15) 7?8

ANOTHER PLOT?|

126

Plotting Functions

The high-resolution graphics capability of the ATARI
makes it a useful tool for studying the behavior of
mathematical functions. For example, the function

y(x) = A sin@mw x/T + ¢)

defines a sine wave with amplitude A, period T, and
phase angle ¢. You can calculate this function by
using the BAsIC statement

Y=—A*SIN(2*PI*X/T+PH)

where Pl = 3.1415926, PH is the phase angle in ra-
dians, and the minus sign is our usual inversion be-
cause the positive Y screen coordinate points down-
ward.

A program that will plot this function is shown in
Figure 13.22. The subroutine at line 200 that is called
in line 30 will plot the axes shown in Figure 13.23a.

FIGURE 13.22 Program to plot a sine wave.

10 REM SINE WAVE

15 OFEN #1,4,0,"K:"

20 GRAFHICS &@:COoLOR 1

22 SETCOLOR 2.0,0:8ETCOLOR 1,0,14
HOFI=E. 1415924

E0 GOEUR 200:REM FLOT AXES

40 7 "Y=AKETN(2XP IR/ THFHASE)

SO V"ENTER AMPLITUDE A (O-80) "
SECOINMPUT A
6O "ENTER
HE INFUT T
TOO? "ENTER
75 INFUT FH
80 FH=FHX¥FI/180

PO A=—159 Ye=—AX8 TN (ZEF TR/ THFHD
GE PLAOT XC+X,YO+Y

100 FOR X=-—158 TO 1560

110 V=—-AkSIN(2XRIXX/THFH)

120 DRAWTO XO+X, YO+Y

A0 NEXT X

140 7 "ANOTHER FLOT?"

180 GET #1.KEY

140 IF EEY=A800"Y") THEN 20

170 CLOSE #1:6GRAFHICS OsERND

REM FLOT AXES

XC=159: YI=80

FLAOT O, ¥YCs DRAWTO 3219, YC
FLOT X, 0 DRAWTO XOT, 159

FERIOD T "3

FHASE ANGLE "3

200
21O
270

FOR X=9 TO 20% STEF 10
ZEOOPLOT X, YC: DRAWTO X, YE-5
2H0 NEXT X
270 FOR Y=0 TQ 150 8TERF 10
280 FLOT XC-5,Y:DRAWTO XC+E,Y
290 NEXT Y
H00 RETURN

S e TSR

(@)

ENTER PERIOD T 7886
ENTER PHASE AMNGLE 745
ANOTHER PLOT?

(b)
FIGURE 13.23

(a) Axes plotted by the subroutine

at line 200 in Figure 13.22; (b) example of sine
wave that is plotted by the program shown in Fig-

ure 13.22.

Each grid mark on the axes represents an increment of
10 screen units. Lines 50-75 allow the user to enter
values for the amplitude A, the period T, and the
phase angle PH (in degrees). Line 80 converts the
phase angle from degrees to radians.

The coordinate system plotted in the subroutine at
line 200 originates at the screen coordinates XC,YC
(defined to be 159,80 in line 210). The first point of
the function that is plotted (in line 95) will be the
leftmost value of X (— 159). This value is assigned in
line 90 together with the corresponding value of Y.

The FOR . . . NEXT loop in lines 100-130 plots
the rest of the curve. Notice that the value of X is in-
creased from — 158 to + 160 and for each value of X
the value of the function Y is calculated in line 110.

Type in this program and run it. A sample run is
shown in Figure 13.23b. By entering different values
of the amplitude A, period T, and phase angle PH you
will be able to get a good idea of how this function
behaves.

EXERCISE 13.7

Write programs that the user can use to plot the fol-
lowing functions for different values of the parameters
A, C, and N:

1. Y = A* LOG(X/C) X >0
2. Y = A * EXP(— X/C)

3. Y = XA N/IC

4. Y = A*SQR(X/C) X>0

127

LEARNING TO PEEK AND POKE

As you have learned, the ATARI contains a large
number of memory locations that are used to store the
program and data. Some of this memory is read/write
memory (RAM), some is read only memory (ROM),
and some is special input/output memory that allows
communication to the outside world. Examples of
communication with the outside world include
getting data from the keyboard and game paddles,
and writing and reading data to and from a diskette.

When writing a program in BASIC you refer to a
memory cell by its name, such as A$ or C3. You do
-not know exactly which memory location within the
ATARI contains the data in C3. The ATARI’s BASIC in-
terpreter automatically takes care of assigning these
locations. However, in order to use the full power of
the ATARI, you must sometimes read and write data
to specific memory locations within the ATARI. In or-

der to do this with maximum flexibility and speed you
must write the program in assembly language.

You can, however, read and write data to specific
memory locations even in BAsIC. You do this by using
the PEEK and POKE statements. In this chapter you
will learn

1. how data are stored in memory locations in the
ATARI

2. how to use the PEEK and POKE statements

3. how to use the console switches on the key-
board

4. how to tell if a key on the keyboard has been
pressed

5. how to use the graphics 1 and 2 text modes

6. how to define your own character set.

THE STATEMENTS PEEK AND POKE

The 6502 microprocessor (see Figure 3.1) that is the
“brain” of the ATARI can address a total of 65536
memory locations (with addresses between 0 and
65535). The reason for this is that the 6502 has 16 ad-

128

dress lines and each line can be either high or low (1
or 0). Thus a typical address might be represented by
the 16 bits

0011010111000001

This binary number is equivalent to the decimal num-
ber 13761. Thus, this memory location would have
an address of 13761. Since each of the 16 bits in the
address can be either a 1 or a 0, the total number of
possible addresses is

2'¢ = 65536

Your ATARI will actually contain less than this maxi-
mum amount of memory.

When working with binary numbers such as this
address, it is convenient to represent these binary
numbers as hexadecimal numbers. This is not neces-
sary when using BAsIC, because the PEEK and POKE
statements use only decimal numbers. However, if
you want to program in assembly language, the use of
hexadecimal numbers is essential. Although you do
not need to know anything about hexadecimal num-
bers to use this book, if you are curious, a brief
discussion of hexadecimal numbers is given in Ap-
pendix D.

In addition to the 16 address lines, the 6502
microprocessor has 8 data lines. These lines connect
the microprocessor to all of the memory chips in the
ATARI. Thus, data are moved between memory loca-
tions in groups of 8 bits called bytes. The total num-
ber of different values that a data byte can have is

2 = 356

Thus, data in a memory location in the ATARI can
have a value between 0 and 255. This relationship
between addresses and data is shown in Figure 14.1.

FIGURE 14.1 Each address in the range 0—65535
points to a memory location containing data in the
range 0-255.

1024 [t

Data=255

1025 00000101

Address 1024 Data=5

0000010000000000 1026

1027

1028

1029

1030

1031 | |
| |

In this figure memory location 1024 contains a data
value of 255 (eight 1s), and memory location 1025
contains a data value of 5.

You can find the data value stored in a particular
location by using the PEEK statement. You can store a
particular data value in a given memory location by
using the POKE statement.

PEEK

The function
PEEK(Addr)

returns the data value stored in the memory location
with an address Addr. The value of Addr must be in
the range 0 through 65535. Try printing some value
of PEEK to see what you get. For example, try

2PEEK(2048)
2PEEK(2105)

as shown in Figure 14.2. Your ATARI will probably
contain different data values in these locations from
those shown in Figure 14.2.

FIGURE 14.2 Memory location 2048 contains the
value 41 and memory location 2105 contains the
value 3.

?PEEK (208438)
41

READY
?PEEK(Z185)
3

READY
|

Certain memory locations have particular mean-
ings to the ATARI. For example, memory location
53279 will tell you which of the console keys (OP-
TION, SELECT, and START) are being pressed.

In order to see how this works, type and run the
following one-line program:

10 2PEEK(53279):GOTO 10

The data value in location 53279 will keep being dis-
played and will scroll off the screen. Press the
console keys and watch what happens. Note that the
value displayed is between 0 and 7, according to Ta-
ble 14.1.

TABLE 14.1 Value of PEEK(53279) when
console keys are pressed

Value OPTION SELECT START
0 X X X

1 X X

2 X X

3 X

4 X X

5 X

6 X

7

129

This fact can be used in programs if you want to
know when one of the console keys is being pressed.
For example, the program shown in Figure 14.3 will
cause a ball to bounce back and forth across the
screen as long as the START key is pressed. When
you release the START key the ball will stop.

FIGURE 14.3 The ball will move back and forth
across the screen as long as the START key is
pressed.

10 REM BOUNCING RALL
20 GRAFHICS S SETCOLOR G,0,14
F0O OFOQR X=5 TD 75

25 OCOLOR LsFLOT X, 20

40 GOSUR Z00:REM TEST START KEY
SO COLOR OsFLOT X, 20

S0 NEXT X

70 FOR X=74 TO & STEF -1

20 COLOR 1:FLOT X, 20

0 GOSUR ZOO0:REM TEST START EEY

100 COLOR OxFLOT X, 20

110 MNEXT X

120 GATO 20

200 REM TEST START EEY

210 IF FPEER(SZ279)< x4 THEN 210

220

RETLURN

The FOR . . . NEXT loop in lines 30-60 causes
the ball to move from left to right across the screen if
the START key is pressed. The subroutine in lines
200-220 tests if the START key is being pressed. If it
is not, then line 210 just loops on itself. This means
that the last spot plotted in line 35 will remain station-
ary on the screen. If the START key is being pressed,
the subroutine will exit at line 220 and line 50 will
then erase the most recently plotted spot. A new spot
will then be plotted in line 35, just to the right of the
previously plotted (and erased) spot, as the
FOR . . . NEXT loop increments the value of X by 1.

After a spot has been plotted and erased at the
screen position X = 75, the FOR . . . NEXT loop is
exited and another FOR ... NEXT loop in lines
70—110 is executed. This loop moves the spot in a
similar manner from right to left. When this loop is
exited after the spot has been plotted and erased in
position X = 6, then line 120 branches back to line
30 so that the entire process will be repeated as long

as the START key is being pressed. Since the START
key testing subroutine is always called (in lines 40
and 90) after a spot has been plotted and before it has
been erased, when you release the START key a
single spot will always remain on the screen. Type in
this program and run it. Modify the program so that
the ball moves back and forth when the OPTION key
is pressed.

POKE

Whereas PEEK allows you to read the data value in a
particular memory location, the statement

POKE Addr, Data

allows you to store the value Data in the memory lo-
cation Addr. For example, type

POKE 1536,75
¢PEEK(1536)

as shown in Figure 14.4. Note that PEEK(1536)
verifies that you actually stored the value 75 in mem-
ory location 1536.

FIGURE 14.4 POKE 1536,75 stores the value 75
in memory location 1536.

POKE 1536, 75

READY
?PEEK(1536)
75

READY
n

Memory location 752 controls the visibility of the
cursor. A value of 0 in location 752 causes the screen
cursor to be visible. If you POKE any other value into
location 752 the cursor will disappear. This can be
useful when you don’t want the cursor to remain on
the screen. For example, add the statement

55 POKE 752,1

to the program shown in Figure 5.4 in Chapter 5 and
note that the cursor is not displayed after the horizon-
tal line is drawn.

READING THE KEYBOARD

The memory location 764 is used by the ATARI to
store the value of the last key pressed. As long as no
key has been pressed, the value stored in memory lo-
cation 764 will be 255. When a key is pressed a value
associated with that key is stored in location 764.

130

These key values are not the Ascil codes but are spe-
cial key codes given in Table 14.2.

In order to see how this works type in and run the
following one-line program:

10 2PEEK(764):GOTO 10

TABLE 14.2 Key codes stored in location 764 when a key is pressed

A 63 N 35 0 50 = 2 " 115 space 33
B 21 @) 8 1 3l + 6 @ 117 return 12
Cc 18 P 10 2 30 * 7 (112 ESC 28
D 58 Q 47 3 26 = 15) 114 TAB 44
E 42 R 40 4 24 - 14 - 78 clear 118
F 56 S 62 5 29 < 54 insert 119
G 6] T 45 6 27 > 55 79 delete 116
H 57 u 1 Z 5l I 95 \ 70 back s 52
I 13 vV 16 8 53 " 94 N 71 lowr 60
J 1 W 46 9 48 # 90 2 102 caps 124
K 5 X 22 ;B2 $ 88 [96 ATARI 39
L 0 Y 43 . 34 % 93] 98

M 37 Z 23 / 38 & 91 . 66

The data value in location 764 will keep being dis-
played and will scroll off the screen. Press any key
and watch what happens. Note that the value dis-
played corresponds to the most recently pressed key
according to Table 14.2.

PEEKing the special keyboard memory location
764 is useful when you want to see if a key has been
pressed. For example, suppose that you want to move
the bouncing ball in Figure 14.3 by pressing any key
on the keyboard. You can do this by modifying the
subroutine at line 200 in Figure 14.3 to read

200 REM TEST ANY KEY

210 IF PEEK(764)=255 THEN 210
220 POKE 764,255

230 RETURN

The resulting program is shown in Figure 14.5.
Note that after each new ball is plotted (and before it
is erased), the subroutine at line 200 is called. Line
210 checks to see if any key has been pressed. If not,
line 210 will then loop on itself until any key is
pressed. During this time the ball will remain station-
ary on the screen. When a key has been pressed (any
key), line 220 will restore the value 255 in location
764 before returning to the main program. The main
program will then erase the ball, plot a new one at the

FIGURE 14.5 Any key can be used to start and
stop the bouncing ball.

10 REM BOUNCING RALL

20 GRAFHICS S:8ETCOLOR 0,0,14

EZ0 FOR X=5 TO 75

IE COQLOR 1:PLLOT X, 20

40 GOSUR ZO00:REM TEST ANY KEY
SO COLOR OsPLOT X, 20

HO NEXT X

70 FOR X=74 TOQ & STERF -1

80 COLOR 1« PLOT X, 20

0 GOSUR 2003 REM TEST ANY EEY
LOO COLOR O:FLOT X, 20

110 NEXT X

120 GATO 20

200 REM TEST ANY KEY

210 IF FPEEEA(7&4) =285 THEN 210
220 FOEE 7&4,255

230 RETURN

adjacent location, and call the subroutine at line 200
again.

Type in this program and run it. Note that you can
move the bouncing ball by pressing any key. Also
note that if you hold down any key, the repeat feature
will cause the ball to continually start and stop and
therefore move back and forth across the screen.

TEXT MODES 1 AND 2

Graphics modes 1 and 2 are expanded text modes.
(See Table 13.1 in Chapter 13.) These modes may or
may not include a four-line (GR. 0) text window at
the bottom of the screen. The GR. 1T mode displays
characters double width in the graphics screen area.
The GR. 2 mode displays characters both double
width and double height. This means that with the
four-line text window at the bottom of the screen, text
mode 1 can display 20 rows of 20 characters per row,
while the text mode 2 can display 10 rows of 20 char-
acters per row. The full-screen mode GR. 1 + 16 will

add four more lines of text 1 characters, and the full-
screen mode GR. 2 + 16 will add two more rows of
text 2 characters.

To see how these expanded text modes work, type
the following statements in the immediate mode as
shown in Figure 14.6:

GR. 1
SETCOLOR 0,0,14:SETCOLOR 1,0,14
POSITION 2,2
2#6;MODE 1 CHARACTERS”
¢”MODE 0 CHARACTERS”
131

MO D E A CHoaROaC TERS

MADE
READY
]

9 CHARACTERG

FIGURE 14.6 Mode 1 expanded text characters.

Note that the print statement PRINT #6; or 2#6; is
used to print characters in the text 1 (or text 2) screen
area. The standard print statement will print the char-
acters in the mode 0 text window at the bottom of the
screen.

To print mode 2 expanded text characters type the
following statements as shown in Figure 14.7:

GR. 2
SETCOLOR 1,0,14:SETCOLOR 0,0,14
POSITION 2,2

¢#6;,""MODE 2 CHARACTERS”

The mode 1 and 2 text screens do not behave like
the mode O text screen in several regards. First of all,

mode O can display the entire set of 128 characters in
both normal and reverse video. Modes 1 and 2, on
the other hand, .can display only a 64-character set
(with no reverse video) at any one time.

The character set used by the ATARI is stored in
ROM and consists of the 128 characters shown in Ta-
ble 14.3. The first 64 characters, consisting of upper-
case, digits, and punctuation, comprise the standard
set normally used by the GR. 1 and GR. 2 expanded
text modes. If you execute the statement

POKE 756,226

you will change to the alternate character set
consisting of the 64 characters in columns 3 and 4 in
Table 14.3. These include the graphic characters and
lower-case letters.

FIGURE 14.7 Mode 2 expanded text characters.

MODE 2 CHARACTERS

THEU'MIDE 2
REQDY
]

132

CHARACTERS'!

TABLE 14.3 The internal character set

Standard Character Set

Alternate Character Set

Column 1 Column 2 Column 3 Column 4
ATASCII ATASCII ATASCII ATASCII
No Char. Code No Char. Code No. Code No. Char. Code
0 Space 32 32 @ 64 64 0 96 O 96
1 ! 33 33 A 65 65 1 97 a 97
2 " 34 34 B 66 66 2 98 b 98
3 # 35 35 c 67 67 3 99 e 99
4 $ 36 36 D 68 68 4 100 d 100
5 % 37 37 E 69 69 5 101 e 101
6 & 38 38 F 70 70 6 102 f 102
7 ' 39 39 G 71 71 7 103 g 103
8 (40 40 H 72 72 8 104 h 104
9) a1 41 | 73 73 9 105 i 105
10 i 42 42 J 74 74 10 106 j 106
1 + 43 43 K 75 75 1 107 k 107
12 7 44 44 L 76 76 12 108 | 108
13 - 45 45 m 77 77 13 109 m 109
14 46 46 N 78 78 14 110 n 110
15 / 47 47 0 79 79 15 111 [i
16 0 48 48 P 80 80 16 112 p 112
17 1 49 49 Q 81 81 17 113 q 113
18 2 50 50 R 82 82 18 114 r 114
19 3 51 51 S 83 83 19 115 s 115
20 4 52 52 i 84 84 20 116 t 116
21 5 53 53 U 85 85 21 17 u (ks
22 6 54 54 Y 86 86 22 118 v 118
23 7 b5 55 W 87 87 13 119 w 119
24 8 56 56 X 88 88 24 120 X 120
25 9 57 57 Y 89 89 25 121 y 121
26 58 58 z 90 90 26 122 z 122
27 : 59 59 [91 91 27 123 g 123
28 2 60 60 X 92 92 28 124 _I. 124
29 = 61 61] 93 93 29 125 F 125
30 > 62 62 A 94 94 30 126 T 126
31 ? 63 63 95 95 31 127 T 127

133

bbb bbb b b b b b b L L L oL L L Ll
bbb b b b L L L oL L b L Ll Ll
*¥rodeVY=—%YCharactersy
bbbt b b b L L L L bt d
TEYYYYYYRPEEES

bbb b b b b b b b A b i
%'ﬁ!@ﬂ'ﬂﬂﬁﬁﬁgﬂé :

FIGURE 14.8 POKE 756,226 will switch mode 1
or mode 2 to the alternate character set.

After displaying the mode 2 characters shown in
Figure 14.7, type

POKE 756,226

which will switch to the alternate character set, as
shown in Figure 14.8. Note that all blank spaces
(character 0 in Table 14.3) have changed to heart
graphic characters (character 64 in Table 14.3). All
other characters in columns 1 and 2 in Table 14.3 are
replaced by the corresponding characters in columns
3 and 4. This means that in the expanded text modes
1 and 2 you can use either the characters in columns
1 and 2 in Table 14.3 or the characters in columns 3
and 4. However, you cannot use both because the
text modes 1 and 2 can display only 64 characters at
a time. Later in this chapter, you will learn how to
mix some characters from columns 3 and 4 with
some from columns 1 and 2 by defining your own
character set.

You can return to the standard character set by

typing
POKE 756,224
Try it.
The text modes 1 and 2 do not scroll and you will

get an error if you try to print characters outside the
screen area.

Mode 1 and 2 Colors

Color register number 4 defines the background color
in modes 1 and 2. The default background color is

134

black (SETCOLOR 4,0,0). Color registers 0-3 are
used to define up to four colors for text 1T and 2 char-
acters. However, these colors are defined in a some-
what strange way.

Consider the following four ATAsCII codes (see Ap-
pendix B):

65 Upper-case A
97 Lower-case a

193 Reverse video upper-case A
225 Reverse video lower-case a

You can type each of these characters in the GR. 0
text mode by using the CAPS/LOWR key and the
ATARI key (for reverse video), as shown in Figure
14.9. Now type these same four characters in the text
2 mode by typing

FIGURE 14.9 ATAsCIl codes 65, 97, 193, and 225
in the GR. 0 text mode.

2004 3T
0

READY
|

GR. 2
POSITION 2,2
2#6;" AaAa”

reverse video

as shown in Figure 14.10. Note that each of the four
characters is displayed as an upper-case A with a dif-
ferent color.

In text modes 1 and 2 the ATASCII code determines
not only the character to be plotted but also the color.
The four ATAscIl codes 65, 97, 193, and 225 will all
plot an upper-case A, but the color of the A will be
determined by the value in color registers 0, 1, 2, and
3, respectively. The default SETCOLOR values are
shown in Table 14.4. You can change the colors of
the letters displayed in Figure 14.10 by changing the
values in color registers 0-3. For example, type
SETCOLOR 1,0,12 and the second A should change
to white. Change the values in the other color regis-
ters.

TABLE 14.4 Default SETCOLOR values
(SETCOLORR, H, L)

Color Register R Hue H Luminance L Color

0 2 8 Orange
1 12 10 Green
2 9 4 Blue

3 4 6 Red

4 0 0 Black

There is another way to plot characters in text
modes 1 and 2. You can use the COLOR statement to
define both the character and the color, and then use
the PLOT statement.

For example, type

GR. 2
COLOR 65:PLOT 4,4

Note that an A with a color determined by color regis-
ter O is plotted at location 4,4 on the screen. If you

type
COLOR 193:PLOT 8,5

an A will be plotted at location 8,5 with its color de-
termined by color register 2.

Table 14.5 shows what numbers to use in the
COLOR statement to plot any standard character in
any of four colors. Note that the characters are listed
in the order shown in columns 1 and 2 of Table 14.3.
This is the order in which the characters are stored in-
side the computer. If you type POKE 756,226, then
the COLOR numbers shown in Table 14.5 will plot
the corresponding alternate characters shown in col-
umns 3 and 4 in Table 14.3

TABLE 14.5 COLOR values for text modes 1 and 2

Q
Q
S
%

NVONONUOBAEWN—O

el s i) s sl | sl i il
VoONONOBAWN—O

NNNNNNN
N WN—O

N NN
O 00 N

WWWwWwwW
GO WN—O

Char
Space
|

1"

NVONONUOBEBWN—ON"

I >—= " TN<XXgZg<CHVAYHUOZIT AT IQTMMUOAD>R OV I A~ 7

Color Register

1

0 T U R Y G D G Uy R
OVONOTUOBEAWN—OVONOTTOUOARWN—O

WNRNRNRNNNNNNN
OVONOTNOBEWN—

O 00OV W
O 00 NON—

2

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

3

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
None
156
157
158
159
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

135

FIGURE 14.10 ATASCIll codes 65, 97,193, and 225

in the GR. 2 text mode.

As an example using the expanded text 2 mode,
type in and run the program shown in Figure 14.11.
Within the FOR . . . NEXT loop (lines 30-60), line
40 plots a series of dashes, spaced two apart, whose
color is determined by color register O (see Table
14.5). Line 50 plots a similar sequence of dashes in
between the other set with a color determined by
color register 1. Line 70 plots a right arrow (>) at the
end of the line of dashes. The color of the arrow is
determined by color register O.

Lines 80-90 set color register 0 to white and color
register 1 to blue. Every other dash will therefore be
white and the alternate ones will be blue. The arrow
will appear as shown in Figure 14.12a. After a short
delay in line 100, lines 110—120 reverse the colors of
the dashes (and the arrow, >). The arrow will now
appear as shown in Figure 14.12b. After another
short delay in line 130 the process is repeated by
branching to line 80. Modify this program by using all
four color registers 03 so that four different colored

FIGURE 14.12 Screen display while running pro-
gram shown in Figure 14.11.

(@)

136

dashes occur in a row. Make it appear as if the four
colors move from left to right.

FIGURE 14.11
2 mode.

10 REM COLOR
20 GRARPHICS 2

Moving arrow program using text

ARRON

A0OFOR X=32 TO 14 STER X
40 COLOR 45 PLOT X, 4
HOOCOLOR 1352 PLOT X+1,4

HO O NEXT X

TOOCOLOR &Z2:FLOT 14,4

B0 SETCOLOR 0,0, 14:REM WHITE
S0 BETCOLOR 1,7, &:REM RLUE
100 FOR I=1 TO 80:NEXT I

110 SETCOLOR O, 7,5 REM BLUE
120 SETCQLOR 1,0, 14:REM WHITE
120 FOR I=1 TD B0:NEXT I

140 GATO O

(b)

DEFINING YOUR OWN CHARACTER SET

Table 14.3 shows the internal character set of the
ATARI. This character set is stored in ROM starting at
memory location 57344. Each character uses eight
consecutive memory locations for its definition. The
character is defined on the 8 X8 grid where each row
of the grid corresponds to a separate memory location
and each column in the grid corresponds to one of
the 8 bits in the data byte (0-255) stored at a particu-
lar location.

FIGURE 14.13 PEEKing the eight values used to
define the letter A.

7
44+8%3I3+.J)

The characters given in Table 14.3 are listed in the
order in which they are stored in ROM. Character A is
number 33; therefore its definition starts at location
57344 + 8 * 33 (remember, each definition takes
eight memory locations). In order to list the 8 bytes
used to define the letter A, type in and run the follow-
ing program, as shown in Figure 14.13:

10 FOR J=0TO 7
20 2PEEK(57344+8*33+))
30 NEXT J

The relationship between these eight values and the
letter A is shown in Figure 14.14. Note that each row
of the 8 X8 grid has a number associated with it. The
number is equal to the sum of the numbers at the top
of each column in which a bit is “on.”” An “on”’ bit
corresponds to a displayed point.

Now that you understand how the ATARI defines
the letter A (and all other characters), you may won-
der if you can define your own characters. You can.

FIGURE 14.14 Defining the letter A.

0
N o o ©
T O M - o0 N

0

16+8=24
32+16+8+4=60
64+32+4+2=102
64+32+4+2=102
64+32+16+8+4+2=126

64+32+4+2=102
0

First you must define the new characters you want on
an 8x8 grid. Then you must store these eight values
in the character set table. How can you do this when
this table is in ROM (read only memory)? You must
first move the character set table into RAM (read/write
memory) and then tell the ATARI where you moved
it.

The beginning of the character set table is nor-
mally at location 57344. This starting value divided
by 256 is stored in location 756. If you PEEK location
756 you should find the value 224 stored there (224 *
256 = 57344). When you POKE 756,226 in text
modes 1 and 2 you are moving the beginning of the
character set table to location 226 * 256 = 57856,
which is the beginning of the character set starting in
column 3 in Table 14.3.

You can move the beginning of the character set
table to a memory location in RAM by POKEing the
starting address divided by 256 in memory location
756. Suppose that you want to move the 512 bytes
corresponding to the character set table of the 64
characters in columns 1 and 2 in Table 14.3 to some
locations in RAM. The address of the top of RAM di-
vided by 256 is stored in memory location 106. If you
decrease this value by 2 (2 * 256 = 512), you can set
aside 512 bytes of RAM into which you can move the
character set table. The following four statements will
make these changes:

855 NTOP=PEEK(106)—2

860 POKE 106, NTOP :REM New top of RAM
865 NSET=NTOP*256 :REM Address of Start of
870 POKE 756, NTOP :REM new character set

The following loop will move the 512 bytes of the
character set in ROM to the new location in RAM:

875 FOR J=0 to 511
880 POKE NSET+J,PEEK(57344+J):NEXT J

137

In Chapter 15 we will write a HANGMAN game
using the graphics mode 2. We want to use both
upper-case and some graphic characters. But as we
have seen, in graphics modes 1 and 2 you can use
either the characters in columns 1 and 2 in Table
14.3 or the characters in columns 3 and 4. You can-
not use both. Instead we will replace character num-
bers 1-10 (punctuation characters | " # $ % &, () ¥
with the 10 graphic characters of our own design
shown in Figure 14.15. Each graphic character is de-
fined on an 8x8 grid. The value of each row in this
grid is given in Figure 14.15, using the technique
illustrated in Figure 14.14.

The eight values for each of the 10 characters are
stored in 10 DATA statements in the subroutine
shown in Figure 14.16. This subroutine moves the
512 bytes of the original character set as described
previously and then replaces character numbers 1-10
with the new graphic characters in lines 1585-1590.

FIGURE 14.15 Specially defined graphic charac-
ters used in the HANGMAN program in Chapter
15.

24
60
126
255
255
255
126
24
24
5 25t 2z
31 255 248
63 255 252
120 255 30
240 255 15
224 255 7
192 255 3
192 255 3
19IQ 255 3
192 255 3
192 255 3
192 255 3
192 255 3
192 2565 3
192 255 3
255 128
255 192
255 224
240
120
60
30
15
192 3
192 3
192 3
192 3
192 3
192 3
192 3
192 3

1500 REM DEFINE NEW CHAR SET

1505 DATA 24,60,126,255,255,255,126,2
1510 DATA L4.LQS.ZQQ.ZQJ.LJQ.LQS.LJH.ZSS
1515 DATA 205,205, 255,250,255, 205, 295,255
1520 DATA QSS.EQS 205 ,00,0,0,0

1525 DATA 0,155,731, 6-.1Ln 40,L&4,192
1520 DATA).L4U,&4R.2q2."n 1S5 73S

1535 DATA 1,3,7,15,20,60, 1“0 240

1540 DATA 1”8_192,224,240_170,&0,30,15
1545 DATA 192,192,192,192,192,192,192,192
1550 DATA 3.3.3.3,3.3.3.3

1552 FOSITION 4,2:7 #6463 "FLEASE WAIT"
1555 NTOF=FEEK {(10&) -4

1560 FOEE 106,NTOF

156 NSET=NTOPX256

1570 FOR J=0 TO 511

1575 POQEE NSET+J,FEEE (S7344+1) s NEXT J
1580 FOKE 756,NTOF

1585 FOR K=0 TO 79

1590 READ EB:FOKE NSET+8+k,EB:NEXT kK

1595 RETURN

FIGURE 14.16 Subroutine used to define new
character graphics.

In graphics mode 2 we can plot these graphics
characters by plotting the corresponding character
numbers (1-10) given in Table 14.5. For example,
the program shown in Figure 14.17 will plot the
hangman figure shown in Figure 14.18.

FIGURE 14.17 Program to plot new character
graphic symbols.

(a)

1o REM PLOT NEW CHARACTER SYMROLS
GRAFHICH 2y SETCOLOR D,0,14
SETCOLOR 1., 1Tq!4"”E1CDlﬂR 2,95 14
SETCOLOR mq4'14

.)‘HEM DEFIME MNEW CHAR

lL SET

(b)

o0 REM PLOT HANGMAN F TGURE

Qa0 COLOR EFZ:PLAOT 11,:2
COLOR 2:FLAOT 11,4
COLOR Z:PLaT 11,5
COLOR 4:RLOT 11,6
COLOR 145 PLOT 10,4
COLOR 1&69:FLOT 10,5
COLOR 14660 FPLOT 124
COLOR 1"’1)“!-L O7 12,5
COLOR 10,6
COLOR 10,7
COLOR 246

GeE COLOR 1 —'q FLOT 12,7

Q97 RETURN

PLEASE HAIT

FIGURE 14.18 Result of running the program

shown in Figure 14.17.

Writing Text on the High-Resolution
Graphics Screen

In the graphics mode 8 used in Chapter 13 you saw
that you could write text only in the four-line window
at the bottom of the screen. The top part of the screen
is divided into a 320X 160 grid. Each of the 160 rows
uses 40 8-bit bytes to store the graphics data (40 *
8 = 320).

Each byte of graphics data displays a bit pattern in
the same way that each row of an 88 character
does, as defined in Figure 14.14. This means that if
the value of each row of a character is POKEd into the
proper memory location corresponding to a position
on the high-resolution graphics screen, then any
character can be plotted on the high-resolution
graphics screen.

The starting address of the screen display is given
in locations 88 and 89. It is equal to

SA = PEEK(88) + 256 * PEEK(89)

Suppose that you want to plot the letter A at location
X = 20 (X between 0 and 39) and Y = 100 (Y be-
tween 0 and 152). The address of the first byte of the
character A (the top row) to be plotted will be

LA=SA+40*Y + X

The character A is stored at character number 33 in
the character set table. The 8 bytes that define the let-
ter A will begin at the address

CHAD = 57344 + 33 * 8

Therefore, the following loop will plot the entire letter
A at location X,Y on the high-resolution screen:

FOR I=0 TO 7
POKE LA+1*40,PEEK(CHAD+I)
NEXT |

Remember that each line uses 40 bytes of memory so
that the screen addresses increase by 40 from one
row to the next. The program shown in Figure 14.19
will plot the letter A at location X = 20, Y = 100 on
the high-resolution screen with a box around it. The
result of running the program is shown in Figure
14.20.

Modify this program to display different letters.
This technique will be used in the ATARI organ pro-
gram written in Chapter 15 to display the letters on
the keyboard.

FIGURE 14.19 Program to plot the letter A on the
high-resolution graphics screen.

10 REM FROGRAM TO DISFLAY AN A
15 REM ON HI-RES GRAFPHICE SCREEN
20 GRAFHICS 8:8ETCOLOR Z2,0,0

ZO SETCOLOR 1,0,14:COLAOR 1

40 PLOT 140, R0: DRAWTO 185,80
E5OODRAWTO 185, 1Z20: DRANTO 140, 1730
HO DRAWTO 140,80

70 SA=FEEE (28) +254%FEER (8%)

80 X=Z03Y:=100

SO LA=EA+40%XY+X

100 CHAD=S7E444-7535%8
110 FOR I=0 TO 7

120 FOEE LLA+IX40, FEEE
130 NEXT I

(CHAD+I)

139

FIGURE 14.20 Result of running the program
shown in Figure 14.19.

EXERCISE 14.1

Write a program that bounces a “’ball”’ off the four
sides of the screen at 45 degrees. Have the ball stop
each time you hold the OPTION key down. The ball
should start moving again when you release the key.

140

EXERCISE 14.2

Modify the program in Figure 5.7 so that the cursor
does not appear on the screen after the border is
drawn.

EXERCISE 14.3
Modify Exercise 14.1 so that the ball starts and stops
each time any key is pressed.

Exercise 14.4

Plot a rectangular marquee in four colors in graphics
mode 2 and make it appear to rotate, using the tech-
nique shown in Figure 14.11.

EXERCISE 14.5
Define your own graphic characters and use them to
plot a house in graphics mode 2.

EXERCISE 14.6

Define a new character set in graphics mode 2 that
replaces the punctuation marks !, “, #, and $ with
the four playing card graphic symbols.

EXERCISE 14.7
Write a program that will replace the letter A in Figure
14.20 with the letter T.

LEARNING TO PUT IT ALL TOGETHER

In the previous 14 chapters you have learned how to
use the various features of ATARI BAsIC. You have
learned how to write short programs that draw pic-
tures and make sound. Now that you know the BAsIC
language you will want to write your own programs.
How do you go from an idea of something you would
like the ATARI to do to a working BAsIC program that
does it? That is what this chapter is all about.

In order to illustrate the various steps involved in
developing a program, we will write two complete
programs. Although both programs are useful and fun
to run, it is the process of developing the programs
that we are trying to illustrate in this chapter.

The first program is a popular word-guessing game

called HANGMAN. The second program converts
your ATARI into an organ that will allow you to play
songs on the keyboard.

In this chapter you will learn

1. how to define what you want to do and give a
word-description of the program

2. to define the variables you will need in the pro-
gram

3. the technique of top-down programming

4. how to write a program to play HANGMAN
5. how to store data on a diskette

6. how to play music on your ATARI.

HANGMAN

We will now develop a program to play the word-
guessing game HANGMAN. The following six steps
will help you develop a program with the minimum
amount of difficulty. We will follow these six steps in
developing HANGMAN:

1. Define what you want the program to do.
2. Give a word-description of the program.

3. Define program variable names.

4. Write and test the main program and essential
subroutines.

5. Write and test the remaining subroutines.

6. Test the entire program and make improve-
ments.

141

Defining What HANGMAN Will Do

This is the most important step in developing a pro-
gram, but it is a step that is often omitted or not
carried out adequately. There is an almost irresistible
temptation to start writing BASIC code immediately.
You must resist this temptation at all costs. You
should not write any BAsIC code until step 4!

Poor programming, like poor writing, is usually a
sign of poor and confused thinking. If you don’t have
a clear idea of what you want the program to do, you
will have little chance of writing a program to do it.
Now you may not know all of the features that your
program will eventually have. Indeed, programming
is an iterative process in which you will improve a
program by rewriting it several times. However, you
must understand enough about what you want the
program to do to get started.

HANGMAN is a word-guessing game in which the
ATARI thinks of a word and displays a blank for each
letter in the word. You guess a letter. If the letter oc-
curs in the word, it is inserted at all locations where it
occurs in the word. If the letter does not occur in the
word, then another part of your body is added to the
hanging gallows. You keep guessing letters until you
either guess the word or guess six wrong letters, at
which time your body is complete and you are
hanged.

The first thing to decide is what you want the
screen to look like and how you want the screen to
respond to various inputs and conditions. The best
idea is to sketch the screen to scale. Figure 15.1
shows the screen layout for the HANGMAN game

where we have decided to use the text mode GR. 2
and plot the gallows and body parts using character
graphics.

When the program is first executed the name
HANGMAN is written at the top of the screen. The
program then displays the gallows, the blanks for the
word, and the words GUESS A LETTER. As each cor-
rect letter is guessed, it is filled in at the appropriate
blank position or positions. When an incorrect letter
is guessed, the phase NO X will be printed on the bot-
tom line of the screen, and another part of the body
will be added.

If you guess the word correctly, the word will be
flashed and the words YOU ARE SAVED! will be
printed. If you fail to guess the word, the correct word
will be displayed above the blanks and the words
YOU ARE HANGED! will be printed. The words
PLAY AGAIN??22? will then be displayed where the
words GUESS A LETTER were printed.

Having laid out what you want the screen to look
like and having thought about how the game is to be
played, you are ready to write a word-description of
the program.

A Word-Description of HANGMAN

At this point you should write a word-description of
the program that will completely describe its logic.
Use pseudocode, flowcharts, or whatever you find
useful. A word-description for the HANGMAN pro-
gram written in pseudocode is shown in Figure 15.2.
You should study this word-description carefully.

FIGURE 15.1 Screen layout for HANGMAN program.
0 5 10 15
0 HIA|N|G|M|A|[N
777V
/ UHUUHN Y
Y|O|U A|R|E /
H|A|[N]|G|[E|D % ///

NN

=

N

10 G|JUJ|E |[S]|S A

142

FIGURE 15.2 Pseudocode word-description of
HANGMAN program.

loop: Clear screen
Display HANGMAN
Display gallows
Display the words GUESS A LETTER
Find a random word
Display blanks for word

do until Word is
hanged

Guess a letter

guessed or you are

Search for letter in word
if letter is in word
then display letter at proper posi-
tion
else display NO “letter”
add part to body

enddo
if word is guessed

then blink word

display YOU ARE SAVED!
else display correct word

display YOU ARE HANGED!
Ask to PLAY AGAIN?

repeat while answer is “'Y"’

Note that it follows closely the screen layout we
made in Figure 15.1 and our ideas on how the pro-
gram should work. Developing the word-description
shown in Figure 15.2 is the most creative part of writ-
ing the program. At this point most of the hard work is
done. This is why it is so important that you under-
stand how to write word-descriptions like the one in
Figure 15.2. Study it again. Note particularly how the
do until loop is used to include the entire process of
guessing a word. Being able to identify the appropri-
ate looping structure for a particular problem (think
do until, repeat while, or for . .. next) is one of the
important skills you will need to develop in order to
become a good programmer.

Defining Program Variables

At this stage in the development of the program you
should define names for those variables that you
know you will need. You won’t know all of the varia-
bles you will end up using, but don’t worry about
that. Define the important ones you do know. This
will help you to focus in on how you will implement
various little algorithms. Be particularly conscious of
defining appropriate string variables and arrays.

In the HANGMAN program we will store the word
to be guessed in the string W$. The length of this
string (the number of letters in the word) will be L.
How can you tell when the word is guessed correctly
or when it's time to be hanged? You will need to keep
track of the number of blanks that have been correctly
filled in. We will call this value NL. You will also
need to keep track of the number of incorrect
guesses. We will call this value NH. Each letter
guessed will be stored in the string G$. You can de-
termine if a guessed letter G$ is in the word W$ by
comparing G$ with each letter in W$ and noting
where any matches occur. You will also need to
know if any match occurs. For this purpose define a
flag R and set R to 1 if any match occurs; set R to 0 if
G$ is not in W$. At this point, therefore, we have de-
fined the variable names given in Figure 15.3. We
can now use these variable names to put a little more
detail in the pseudocode description of the program
given in Figure 15.2. For example, the do until loop
can be rewritten in the form shown in Figure 15.4.

FIGURE 15.3 Definition of initial variables to be
used in HANGMAN program.

W$ = word to be guessed
L = length of word to be guessed
G$ = letter guessed
NL = number of correct letter positions guessed
NH = number of incorrect guesses

R= [1ifG$isin W$
0 if G$ is not in W$

Note that the word is guessed when NL = L, and you
are hanged when NH = 6. The algorithm to search
for a letter in the word is given by the for ... next
loop. Note that this algorithm displays each letter that
is found in its proper position, so nothing more needs
to be done in the then part of the following
if ... then ... else statement. Also note that the flag
R is used to tell if a letter is in the word.

You have now developed the program to the point
where you can begin to write some BAsIC code. Since
you have already dene most of the work, at this point
the Basic code will practically write itself.

Writing the Main Program

Your next step should be to write the main program in
BAsIC following the pseudocode description given in
Figures 15.2 and 15.4. Your goal should be to write
this entire program so that it fits on a single page and
you can read it all at once. To do this use subroutine
calls for anything that takes a lot of coding or that you
haven't figured out how to do yet.

143

FIGURE 15.4 More detailed version of do until The main program for HANGMAN is shown in

loop used in HANGMAN program. Figure 15.5. Lines 20—26 set the graphics mode 2 to
full screen and set color registers 0—3. Line 27 calls a
NL=0 subroutine at line 1500 that defines a new character
NH =0 set. This character set includes the graphic characters
do anfif NL = L or NH = 6 for forming the hangman figure defined in Chapter
G | 14. Line 30 displays the word HANGMAN and the
vess a letter G§ , . . .

gallows in subroutine 600. Line 40 finds a random
R=10 word W$ in subroutine 1000. Line 50 finds the
forl=1+to L length, L, of the word W$ and moves the cursor to the
if G$ = W$(l,1) first “blank’” position. In text mode 2 there are 20 col-
then print G$ umn positions. Therefore, the statement POSITION
NL = NL + 1 10-L/2,9 will center each word on the screen. Line 60

R =1 prints the L blanks for the word to be guessed.

Lines 80—150 implement the do until loop shown

else move cursor 1 space in Figure 15.4 (The initialization of S$ to the null

next | string in line 70 was added when the subroutine to
ifR=1 guess a letter in line 400 was written.) Line 90 calls
then do nothing subroutine 400 to guess a letter. The words GUESS A
else NH = NH + 1 LETTER that appear on the screen will be written in
display NO “letter” this subrqgtmg. Line 100 moves the cursor to the first

dd s T letter position in the word and line 105 sets the flag R

e el to 0. Lines 110-130 implement the for . . . next loop

enddo

given in Figure 15.4. Note how the statement POSI-

FIGURE 15.5 Main program for HANGMAN.

10 REM HANGHAN

12 OFEN #1,4,0, k2"

15 DIM WS LS G010, 88 (200

20 GRAFPHICS Z2+1&6:8ETCOLOR O, 0, 14

2E OSGETCOLOR 1,12, 14:8ETCALOR 2,9, 14

H BETCOLOR =, 4,14

7G0SLUR 15003 REM DEFINMNE NMEW CHAR SET
IO EQSUER AD0:REM DISFLAY HANGMAN & GALLOWS
40 GOSLIR 1000 REM FIND WORD W

S50 L=LEN(WS) s FOSTITION 1072, %

HO FOR I=1 TO LsP #e&y"—"paMEXT I

FO ONL=0 NH=0 SF=t"

20 IF ML=l OFR NH=& THEM 150

FOOGOSUHE 400 REM GUESS A LETTER

105 R=0

i FOR I=1 TO L

112 X=X+l

1S IF GeE=Ws (I, 1) THEN 7 $#&3G5; s NL=NL+1iR=1:G0TQ 17E0
120 FOSITION X, 2

120 NEXT I

140 IF RE=1 THERMN 80

LEO NH=NH+1: GOSUR F00: GOTO 30

160 FPOSITION 1,2:7% #6y"YOU ARE"

170 IF MH=& THEN 7P #é&: " HANGED";» GOBUR ZO00:;ATO 190
180 7 $#43 " BAVED “psGOSUR 70O

190 POSITION 3,10

195 72 $é&Hy "FLAY AGATINT??? i

200 GET #1,G: IF GE=A8C0"Y") THEN 20
210 CLOBE #1:G6RAFHICS O:END

144

TION X,9 is used in line 120 to move the cursor one
space in the else clause. The value of X is incre-

mented by 1 each time it passes through the
for ... next loop (in line 112).
Lines 140-150 implement the last if...

then . .. else statement in Figure 15.4. Subroutine
900 called in line 150 will display NO “letter”” and
add a part of the body.

Lines 160-180 implement the last if...
then . . . else statement in Figure 15.2. We have actu-
ally interchanged the roles of then and else. That is,
line 170 is equivalent to if word is not guessed.
Subroutine 300 called in line 170 will display the cor-
rect word. Subroutine 700 called in line 180 will
blink the word. Lines 190-195 will ask to PLAY
AGAIN?222 Line 200 will then get G and cause a new
game to be played if the answer to PLAY AGAIN??2?2?
is Y.

We have therefore written a complete main pro-
gram that implements the HANGMAN algorithm
given in Figure 15.2. We have also identified all the
subroutines that must still be written. These are sum-
marized in Figure 15.6.

FIGURE 15.6 List of subroutines called from main
program.

Line No. Subroutine

1500 Define new character set
600 Initial display (HANGMAN, gallows)
1000 Find a word, W$
400 Guess a letter, G$
900 Wrong guess-NO “letter,” add to body
300 Print correct word
700 Blink word

The next step is to write the minimum amount of
code in each subroutine that will allow you to run
and test the main program. This stub could be just a
RETURN statement that does nothing but return to the
main program. Once you are certain that the main
program is behaving properly, you can write and test
each subroutine separately. They can then be tested,
of course, by running the main program which calls
the subroutine. This technique of top-down
programming allows you to plan the entire program
and begin to test it before you have to get involved in
all the details of every subroutine. It also keeps your
program well modularized, which will make it much
easier for you to debug and modify the program.

Subroutine 1500 will be the one used in Chapter
14 for defining a new character set. However, for
now just type

1500 REM DEFINE NEW CHAR SET
1510 RETURN

In subroutine 600, it will take some thought to fig-
ure out how to draw the gallows. Therefore, for now,
just type

600 REM INITIAL DISPLAY
670 RETURN
for subroutine 600 and worry about the details later.

In order to test the main program, you should store

a known word in W$. Therefore, for subroutine 1000
type

1000 REM FIND A WORD

1010 W$="HANGMAN"

1020 RETURN
which will assign the word HANGMAN to W$. Itis a
good idea to pick a test word that contains multiple
occurrences of a single letter in order to make sure
that the main program displays all letters in their
proper ‘locations. Later, you can come back and
make subroutine 1000 produce random words.

Subroutine 400 will display the words GUESS A

LETTER and will then have the player guess a letter,
G$. At first it looks as if this is just the statement GET
G:G$=CHR$(G). However, you do not want to al-
low letters that have already been guessed. (Other-
wise, you could hang yourself by typing the same
wrong letter six times.) Therefore, subroutine 400
must keep track of all letters that have been typed and
only return new values for G$. We'll figure out how
to do this later. For now just type

400 REM GUESS A LETTER
410 POSITION 3,10

420 PRINT #6;GUESS A LETTER”;
430 GET #1,G

435 G$=CHR$(G)

440 RETURN

For subroutine 900 type

900 REM WRONG GUESS

910 POSITION 1,11

920 PRINT #6;"NO";G$

930 RETURN
You know that this will print all wrong guesses at the
same location on the screen, but it will help test the
main program. You can fix it up later and figure out

how to add a new part to the body each time.
For subroutines 300 and 700 just type the stubs

300 REM PRINT CORRECT WORD
310 RETURN

and

700 REM BLINK WORD
710 RETURN

and worry about these subroutines later.

145

—ANG—AN

G L E 55 5
ND E

FIGURE
HANGMAN.

With this much of the program written, you can
run the main program and test that it is working prop-
erly. Figure 15.7 shows what the screen might look
like during such a test.

After you have debugged the main program (it
won’t work the first time—Figure 15.5 was not my
first version) you are ready to tackle the remaining
subroutines one by one.

LETTER

15.7 Testing the main program of

Writing the Remaining Subroutines

You can now go through and finish the subroutines
listed in Figure 15.6. Subroutine 1500 will be the one
given in Figure 14.16 in Chapter 14 that we used to
define the new character set. This subroutine is
shown in Figure 15.8 where one new statement, line
1502, has been added. The reason for this statement

FIGURE 15.8 Subroutine to define new graphic
characters for the HANGMAN program.

1EOO
1502
1&05
1E1O
1TELE
1520

1525

NW=10: FOR I=1
DATE 24,860, 1248
DATHA “4”:?“
DATH ESQ.LWB_
DETA
DATA
DATA
DATA
DATH
DAETE
S0 DATA 3 g
Y FOS ITTUN 4 H"#

FORE 1046, NTOF
P NGSET=NTOF 2256

REM DEFIME RMEW CHAR

TO N hEHD (BE:

#6;,
= NTOR=FEEE (106) —4

SET
MEX I 1l

3, 120, 60,
192, 192, 192,

G, 15

192

NELEARE WATT"

FOR J=0 TQ S11
FOREE MBET+HI, FEER (573444+0) s NEXT J
FOFEE '7“:'6.\. NT l.JF

v FOR T 79

READ B PORE
RETURM

146

NSET+8+K

e NEXT

HO0 REM INITIAL DISFLAY

HOD COLAOR O:FOR Y=0 T0O 11:FOR X=1 TO 19:FLOT X,Y:NEXT X:NEXT Y
FLAOT X, YsNEXT XiMEXT ¥

LH10 COLOR 1463

AH20 FOR X=7 TO 18

RO PLOT X, e NEXT X

HA0 FOR Y=32 TGO 7

&S0 FLAT 17,Y:PLOT 18,Y

&HED NEXT Y

HED FOSITION 7,037 #&; "HANGHAN"
ATO RETURM

FIGURE 15.9 Initial display subroutine that

erases the screen, draws the gallows, and prints

the word HANGMAN.

will be described later. Omit it until the subroutine in
Figure 15.14 has been written. Recall that the
subroutine in Figure 15.8 defines the new graphic
characters shown in Figure 14.15. These characters
can be plotted by using the COLOR numbers for
character numbers 1-10 in Table 14.5.

Figure 15.9 is a listing of subroutine 600. Line 605
erases the screen from a previous game. Note that
line 200 in the main program (Figure 15.5) branches
to line 30. Branching to line 20 would automatically
clear the screen. However, it would also reset the ad-
dress of the start of the character set table to 57344.
Line 27 would then have to move the character set
table again. This takes quite a long time. Branching to
line 30 from line 200 avoids this. Lines 610-660
draw the blue gallows. Note that 163 is the color
number for character number 3 (solid square) of our
new character set. Line 665 prints the word HANG-
MAN at the top of the screen.
15.11

FIGURE The

""wrong guess”’

The "‘guess a letter’” subroutine 400 is shown in
Figure 15.10, where lines 435-470 have been added
to ensure that no letter is guessed more than once.
Line 470 keeps track of all letters that have been
guessed by adding each new letter to the string S$.

FIGURE 15.10 The subroutine to guess a letter.
400 REM GUESS A LETTER
410 FOSITION Z, 10
42007 Héey "GUESE A LETTER "3
450 GET #1,6G
22 GE=CHRS (GE)
VLS EN (R)

ITF L5=0 THEN 470

FORr JI=1 TOQ IS

IF GE=84(J,J) THEN 4320
MEXT J

S5 (L.S+1)=0G%

RETURN

subroutine

prints NO “letter’” and adds a part to the body.

P00 REM WRONG GUESS
910 FOSITION 1,11

P15 IF MH=1 THEN 7 #&43"NO "3 G$;:60TO 935
920 POSITION F¥NH+1, 11

PED T Hby ", "Gy

9IS ON NH GOTO 940,950, 960,970, 980, 990
940 COLODR TT:FLOT 11, 3:RETURN

950 COLOR F:FLOT 11,4

9E5 COLOR S FLOT 11"5

PE7 COLOR 4:FLOT 11, 4: RETURN

240 COLOR 1&45:FLOT 10,4

G&E COLOR 169: FLOT 10,5 RETURN

970 COLOR 16&6:PLOT 12,

975 COLOR 170:FLOT 17, 5: RETURN

980 COLOR 13%:PLOT 10,4

GE= COLOR 137:RFLOT 10,7:RETURN

290 COLOR 13&6:FLOT 12,6

9= COLOR 1ER:PLOT 12,7

297 COLOR 41:FLOT 12, 2:FPLOT 12, 3:RETURN

147

1

(This is why we initialized S$ to the null string " in
line 70 of the main program.) Each time that lines
430-432 get a new letter G$, it is compared with all
previous letters (stored in S$) in the loop in lines
440-460. If a match is found in line 450, the program
gets a new letter in line 430.

The ““wrong guess’’ subroutine 900 is shown in
Figure 15.11. Lines 910-930 print NO “letter’” at the
bottom of the screen for the first wrong guess. Subse-
quent wrong guesses are added to the list following a
comma. Lines 935-995 add the appropriate part of
the body to the hanging person. Note the use of the
ON . .. GOTO statement in line 935 to add the ap-
propriate part of the body shown in Figure 15.1 and
defined in detail in Chapter 14. This statement
branches to one of the line numbers following
GOTO, depending on the value of NH. If NH = 1 it
branches to line 940 (the first number), if NH = 2 it
branches to line 950 (the second number), and so
forth. Line 940 plots the head (first wrong guess);
lines 950-957 plot the body (second wrong guess);
lines 960-965 plot the right arm (on your left—third
wrong guess); lines 970-975 plot the left arm (fourth
wrong guess); lines 980-985 plot the right leg (fifth
wrong guess); lines 990-995 plot the left leg (sixth
and last wrong guess); line 997 plots the rope that
does the hanging.

Subroutine 300, shown in Figure 15.12, prints the
correct word above the blanks when the person is
hanged. Subroutine 700, shown in Figure 15.13,
blinks the word that was guessed.

Lines 705-730 change the color number of each
letter in the word by adding 128 to the current color
number. This will make the color of each letter
controlled by color register 2. The statement LOCATE
X,Y,AC in line 715 returns a value AC equal to the
color number of the character at location X,Y. Line
720 adds 128 to the color number of each letter in the
word and line 725 replots the letter. Lines 735-760
blink the word by changing the color in color register
2. When this subroutine is called, the gallows and
parts of the body will also blink because they are also
controlled by color register 2 (see Table 14.5).

FIGURE 15.12 This subroutine prints the correct
word above the blanks.

F00 REM PRINT CORRECT WORD
O FOSITION 1,7

)T ey TWORD 18"
FOFOSTITION 10-L/2,8

; T by WS

EA0 FRETURN

FIGURE 15.13 This subroutine blinks the word.
TOO REM BLINE WORD

TOE Xl=10-L/2

10O FOR X=xX1 TO X1+l
T1IE LOCATE X, 9,00

0 SC=ACH1ER

JRE COLOR AC:PLAOT X9
MEXT X

FOR I=1 TO 40
SETCOLOR 2,7, 14

FOR J=1 TO 10:NEXT J
SETCOLOR 2,9,14

FOF J=1 TO 10sNEXT J
MEXT I

FETURN

If all of these subroutines are working properly,
you can start adding some new random words in
subroutine 1000. There are several ways to do this.
One possibility is shown in Figure 15.14. Line 1020
defines the number of words NW stored in the DATA
statement starting at line 1100. You can add more
words and increase the value of NW. In line 1030, X
is assigned a random number between 1 and NW.
Line 1040 moves the “‘pointer’” to the beginning of
the DATA statement. Note that the DATA statements
in line 1100 must be the first DATA statements in the
program. There are others at lines 1505—1550. This is
why you must now add line 1502 in Figure 15.8, so
that the subroutine at line 1500 will skip over the first
10 DATA statement values in lines 1100-1110. Line
1050 reads the first X words. Therefore, word number
X will end up in W$. Note that with this subroutine

FIGURE 15.14 Subroutine that finds one of 10

words at random.

LOOD REM FIND & WORD
1020 NW=10

LTOERG X=INT (RND (O ANW-+1)
1040 RESTORE
1050 FOR I=1 TO
1060 RETURN

1100 0aTa HIPFOFOTAMUS , NURSE , FAMOLY

X READ WsaMNEXT I

M TRE ELE DIGNTTY

1110 DATA CONDITIONAL, BRIBE, FAFER, QUATL

148

HANGMAN

YOoUu ARE
SAVED

FIGURE 15.15 Sample run of HANGMAN pro-

gram.

the same word can occur more than once. If you
want to avoid this you will have to keep track of the
values of X that have been used and not use the same
ones more than once. (See Exercise 15.1.) Of course,
you will then be able to play only 10 times before
having to rerun the program. A sample run of this pro-
gram is shown in Figure 15.15.

YoUu ARE
HANGED

HORD IS
QuUAIL
—uaIl-—
PLAY AGAIN??77
NO O,E,MH,J, M, N

It is clear that to make this game really interesting
you need a large dictionary of possible words so that
you will use different words each time you play. One
way to do this is to store a large number of words on a
diskette and then read in a random word each time
the game is played. The next section will show you
how to store a list of words on a diskette.

STORING DATA ON A DISKETTE

You may have been using diskettes to save and load
your BASIC programs. It is also possible for you to in-
clude statements in your programs that will allow you
to store data on a diskette and later read back these
data. You do this using the PRINT # and INPUT #
statements. However, in order to use these statements
you must use first the OPEN statement and then the
CLOSE statement. In the following sections you will
learn how to use the statements OPEN, CLOSE,
PRINT #, INPUT #, and TRAP.

Storing Words in a Sequential File

The program shown in Figure 15.16 gives you the op-
tion to (1) write words to a new file, (2) add words to
an existing file, or (3) read words from an existing file.
Type in this program and add the three stubs

1000 RETURN

2000 RETURN

3000 RETURN

Executing this program will produce the menu shown
in Figure 15.17.

FIGURE 15.16 BAsIC listing of main program
illustrating the use of sequential files.

10 REM STORING WORDS IN A

12 REM SEQUENTIAL FILE

SODIM AECL) (NS C20) FE (23 W (25)
20 OFEN #1,4,0,"K: "

"FraFOSITION 5,3

Z00T "1, WRITE WORDS TD A MEW FILE"
25 OPOSITION 5,5

40 P "R

e
atio st B

4% POSITION 5,7

2007 "EL READ WORDE FROM EXISTING FILE"

=25 POSITION &,9

&O 7 "4, EXIT PROGRAM":? 37
70 GOSUR 200:REM SELECT NUMEER

80 IF A$="4" THEN 7 "2":CLOSE #1:END
85 I=VAL (A%)

Q0 ON I GOSUR 1000, 2000, 5000

95 BOTO 25

200 REM FICKE & NUMBER

210 P "SELECT & NUMEER";:? " ";

220 GET #1.A

20 A$=CHRE (A)

240 IF A$<"1" OR A%:"4" THEN 220

250 RETURN

149

2« ADD WORDS TO AN EXISTING FILE"

HWRITE WORDS TO A NEW FILE

abD WORDS TO AN EXISTING FILE
READ WORDS FROM EXISTING FILE
EXZIT PROGRAM

ELECT A WUMBERN |

FIGURE 15.17 Menu produced when the pro-
gram in Figure 15.16 is executed.

The subroutine at line 200 (which is called in line
70) waits for the user to press a key. If the key pressed
(A$) is a number between 1 and 4, the subroutine is
exited. If A$ = “4" (key 4 was pressed), line 80
clears the screen and terminates the program.

The statement

ON | GOSUB 1000,2000,3000

in line 90 will branch to the subroutine at line 1000,
2000, or 3000, depending upon whether | is 1, 2, or
3. Thus, if key 1 was pressed, the value of | will be 1
and the program will branch to the subroutine at line
1000. We only have the stub RETURN there now, so
if you press key 1 the program will immediately re-
turn to line 90 and then branch back to line 25.

A subroutine at line 1000 that will allow you to
write words into a new file is shown in Figure 15.18.
Lines 1010-1030 cause the messages shown in Fig-
ure 15.19 to be displayed on the screen. Lines
1040-1050 allow the user to return to the main pro-
gram (and the original menu) at this point by pressing
any key other than D. This is a good option to give a
user who may not be prepared to actually write data
on a diskette at this time.

If the user presses key D, line 1060 will ask the
user to type in a file name. This file name will be
stored in N$ in line 1070 and will be the file in which
the words will be written. Before any words can be
written to this file, however, the file must be opened.
This is done using the following statement given in
line 1080:

OPEN #2,8,0,F$

150

1000 REM CREATE NEW FILE

1010 GOSUR 1200:REM WRITE SETUF
1020 7 "PRESS KEY "D TO
10285 7 "ON DISKEETTE": 7

1OZ0 ? "PRESS ANY OTHER KEY TOQ EXIT"
1040 GET #1,A

1045 A$=CHRS (A)

1050 IF A%< :"D" THEN RETURN

1060 7 17 "WHAT FILE NAME? "y

1070 INPUT N$

1075 Fé="D1lzs":F% (4)=N%

1080 QFEN #Z2,8,0,F%

1100 GOSUR 1Z00:REM ENTER WORDS

1110 CLOSE #2

1120 RETURN

L1200 REM WRITE SETURF

1210 72 "3"ePOSITION 2,5

1220 7 "INSERT DISKETTE OM WHICH WORDS™
1270 7% "ARE TO BE SAVED":7?

1240 RETURN

13200 REM ENTER WORDS

1310 7 "ENTER WORDS; TYRE ! TQ gTOR"
1TEZ20 INFUT W

1320 IF We="!" THEN RETURN

1240 7 #23Ws
PEEO GOTA 1320

FIGURE 15.18 Subroutine to write words into a
new file.

INSERT DISKETTE ON WHICH HWORDS
ARE T0 BE 5SAVED

PRESS KEY 'D' TO STORE HWORDS
ON DISKETTE

ERESS aMY OTHER KEY TO EXIT

FIGURE 15.19 Initial messages displayed when
the subroutine in Figure 15.18 is executed.

In this statement F$ is the file name in the form
“D1:FILENAME"’, where FILENAME is the name en-
tered as N$ in line 1070. Note how the statements

F$="D1:":F$(4)=N$
are used in line 1075 to form the equivalent of
F$=""D1:FILENAME"

STORE WORDS™

The OPEN statement is of the general form
OPEN #fileno, code, aux, dev

where fileno is a file number between 1 and 7, code
is a code number given in Table 15.1, aux is an auxil-
iary code that is normally 0, and dev is a device des-
ignation given in Table 15.2.

TaBLe 15.1 Code values in the OPEN
statement
Code Operation
4 Input (read)
8 Output (write)
12 Input and output (read and write)
6 Read disk directory
9 Append to end of file
TABLE 15.2 Device designations in OPEN
statement
Device dev Designation
Disk file "DIn):filename[.exf]”
Keyboard K.
Display screen Gt
Printer Hpg
Screen editor “E."
Recorder “Cs
RS-232 serial port “R[n]"

Therefore, the statement
OPEN #2,8,0,F%

directs you to open the file “D1:N$’’ for writing (out-
put) and give it the file number 2. After writing to this
file, you must close it using the statement

CLOSE #2

Once the file N$ is opened, the subroutine at line
1300 is used to enter a list of words. This subroutine
allows you to enter as many words as you wish. You
type an exclamation point (!) to indicate the end of
the list. Each word is stored in W$ using the INPUT
statement in line 1320. The statement

PRINT #2;W$

will not print the word W$ on the TV screen, but
rather will write this word into the diskette file N$.
Line 1350 branches back to the INPUT statement in
line 1320.

Type in the subroutine shown in Figure 15.18 and
execute it by pressing key 1 after running the main
program. An example of the screen output while this
subroutine is being executed is shown in Figure
15.20.

If you enter an exclamation point in line 1320, line
1330 will cause the subroutine to return to line 1110.
This line closes the file N$, using the CLOSE state-
ment.

HORDS

PRESS aAaNY OTHER KEY TO EXIT
HHaT FILE NAME? ?2?HWORDS

ENTER HORDS;
ZAUTOMOBILE
?CHAIR
ZEXCELLENT
?S5CHOOL
?COMPUTER

210

TYPE ! TO STOP

FIGURE 15.20 Storing words on a diskette using
the subroutine given in Figure 15.18.

Suppose that after writing some words into the file
you want to add some more words at a later time.
You cannot call the subroutine at line 1000 again be-
cause this will delete your old file and start a new
one. You will lose all of your old words. Instead, you
must append words to the existing file by using the
code 9 in the OPEN statement. This is illustrated in
line 2075 of the subroutine shown in Figure 15.21.

FIGURE 15.21 Subroutine to add words to an ex-
isting file.

2000 REM ADD WORDS TO FILE

2010 EOSUR 1200:REM WRITE SETUFR
2020 7 "PRESS KEY A

20307

2040 GET #1,4
2045 As=CHRS (A)

2050 IF A%CX"A" THEN RETURN
200 T 2P "WHAT FILE NAME "3
2065 INFUT N$

2070 Fe="Dls "1 Fd(4)=N$

2O7E OFEN #2,9,0,F%

2080 GOSUR 13003 REM ENTER WORDS
2090 CLOSE #2

2095 RETURN

This subroutine starts at line 2000 and is called in line
90 of the main program when key 2 is pressed.

Type in this subroutine and then add some more
words to your existing word file. Using this program,
you can build up a large file of words to be used in
the HANGMAN program. However, before we can
use these stored words in the HANGMAN program
we must learn how to read the words from the
diskette.

151

TO ADD WORDS"
"FRESS ANY OTHER EEY TO EXIT!

Reading Words from a Sequential
File

H100 REHQ READ ENTIRE FILE

S1085 % 'Y

3110 GOSUR 4000:REM READ SETUR
F120 OFENM #2,4,0,F%

I1E0OINFUT #2, WS

H140 0T W

S1E0 GOTO Z173E0

FIGURE 15.24 Subroutine to read entire file.

When key 3 is pressed in response to the menu in the
main program in Figure 15.16, line 90 branches to
the subroutine in line 3000. If at line 3000 we write
the subroutine shown in Figure 15.22, this subroutine
will produce a second menu, shown in Figure 15.23.

FIGURE 15.22 Subroutine to read words. FIGURE 15.25 Subroutine to display initial mes-

000 REM READ WORDS sages for reading data.

3010 7 "3MiPOSITION 2,5 T s B ST

2020 7 M1, READ ENTIRE FILE":® 4010 7 "INSERT DISKETTE CONTAINING®
S030 7 "2. READ N WORDS STARTING® 4020 7 "WORDS TO BE READ":?

Aol £ @l LER IO L 4070 7 "PRESS ANY EEY TO CONTIMUE"
3040 7 “I. READ 1 WORD AT RANDOM":? 4070 Cer ai.p

S R 4050 7 37 "WHAT FILE NAME “j
GOSUR ;

04D 200:REM FICK A NUMBER 4060 INEUT N
IO70 IF As="4" THEN RETURN 4070 TRAE 6000
S0/0 LEiies LS 4080 F$="D1l:"1F% (4)=N$
AOR0 OM I GOSUR 3100, 3200, 3300 4090 RETURN
ZTOR0O GOTO 3010 S
FIGURE 15.26 Messages displayed by the

FIGURE 15.23 Menu produced by the subroutine
given in Figure 15.22.

READ ENTIRE FILE

READ H WORDS STARTING
aT LOCATION L

READ 1 WORD AT RANDOM
aurT

ELECT A NUMBERMN |

Note that this subroutine gives you three choices
other than returning to the main menu. This tech-
nique of using menus is a good way to steer a user
through a large program. It is also a good way to keep
the organization of your program under control.

To read the entire file, the user presses key 1. This
will cause line 3080 to branch to the subroutine at
line 3100. This subroutine is shown in Figure 15.24.
Line 3110 calls the subroutine at line 4000 that is
shown in Figure 15.25. This subroutine displays the
messages shown in Figure 15.26.

152

subroutine shown in Figure 15.25.

INSERT DISKETTE CONTAINING
WORDS TO BE READ

=RE55 ANY KEY TO CONTINUE

Line 3120 in Figure 15.24 opens file N$. The state-
ment

INPUT #2,W$

will accept its characters from the specified sequen-
tial disk file rather than from the keyboard. Thus, in
line 3130 in Figure 15.24, the string that is stored in
W$ will be the next word in the file N$. Line 3140
will print this word on the screen. Line 3150
branches back to line 3130, which will input the next
word from the disk file. Note there is no exit from this
loop. When the program tries to read beyond the end
of the file an error condition will result.

It is possible for you to have your program branch
to a specified line number when an error is detected.

"END QF DATAY: G070

HOEO

HO00 REM ERRQOR HANDL ING ROUTINE

HOO0E EO=PEEE (195)

HO10 IF EC=136 THEN 7

&HOZ20 T VERROR NO. "3EC

HOE0 CLOBE #2

AHO&H0 T MRFRESGS ANY EEY TOQ CONTINUE "3
HOT7Q GET #1,A

HOG0 RETURM

FIGURE 15.27 Error-handling routine executed
when an error occurs after the statement TRAP

6000.

You do this by executing the TRAP statement before
an error occurs. In line 4070 in Figure 15.25, the
statement

TRAP 6000

will cause the program to jump to line 6000 when-
ever an error is detected. In particular, it will jump to
line 6000 when it has read all of the words from the
file N$ and tries to read beyond the end of the file.
The error-handling routine at line 6000 is shown in
Figure 15.27.

After an error occurs, an error code is stored in
memory location 195. Line 6005 assigns this error
code to the variable name EC. A list of all error codes
is given in Appendix C. In particular, the error code
136 occurs when a program tries to read beyond the
end of data in a disk file. This is what would happen
eventually in line 3130 in Figure 15.24. When this
occurs, line 6010 in Figure 15.27 will print the
messsage

END OF DATA

and then close the file N$ in line 6050. Pressing any
key will then return the program to line 3090, which
will branch to line 3010 and redisplay the read menu.
An example showing the entire file being read is
given in Figure 15.28.

FIGURE 15.28 Reading the entire file.

INSERT DISKETTE CONTAINING
WORDS TO BE READ

PRESS ANY KEY TO CONTINUE
WHAT FILE NAME 7HORDS

AUTOMOBILE
CHaAI

R
EXCELLENT
SCHOOL
COMPUTER
END OF DATA

PRESS ANY KEY TO CONTINUE B

Reading a Partial List of Words

Suppose that you have a data file containing a large
number of words and you want to read N of these
words, starting at location L. The subroutine shown in
Figure 15.29 will do this. It is called from line 3080 in
Figure 15.22 when key 2 is pressed.

In lines 32103225 the user enters the number of
words N and the starting location L from the key-
board. Line 3232 calls the setup subroutine at line
4000, shown in Figure 15.25. After the file N$ has
been opened in line 3235, the FOR . . . NEXT loop
in lines 3240-3245 will read the first L — 1 words
and discard them. The FOR . . . NEXT loop in lines
3250-3265 will read the next N words from the disk
file and print them on the screen. Line 3270 closes
the file and line 3285 waits for any key to be pressed
before returning to line 3090 in Figure 15.22.

Note that if the subroutine in Figure 15.29 tries to
read past the end of the file, line 4070 in Figure 15.25

FIGURE 15.29 Subroutine to read N words from
a data file starting at location L.

REM READ N WORDS STARTING
REM AT LOCATION L.

IIG "

ER200
T202
TEOE 7
210 7
E215 INFUT N
I220 7 "ENTER
INFUT L
L=l.—1

: GOSUR 4000: REM READ SETUF
IE OFEN #2,4,0,F%

IF =0 THEN 3250

FOR I=1 TO L

INFUT #2,Ws:NEXT I

FOR I=L+1 TOQ L+1+N-1

INFUT #2,Ws$

T W

NEXT I

CLOSE #2

T280 7 2 7?
3285 GET #1,A
IZ2920 RETURN

STARTING LOCATION"

TN
el

RYRAY

URCH i H

F270

153

"ENTER NUMBER OF WORDS TO BE READY

"FRESS ANY KEY TO CONTINUE"

will cause a branch to the error-handling routine in
Figure 15.27. Execution of the subroutine in Figure
15.29 is shown in Figure 15.30.

FIGURE 15.30 Reading N words starting at loca-
tion L.

INSERT DISKETTE CONTAINING
HORDS TO BE

PRESS aAMY KEY TO CONTINUE
HHAT FILE HQHE ?WORDS . 15

THIRTEEN
FOURTEEN
FIFTEEN
END OF DATA

PRESS ANY KEY TO CONTINUE B

ggTER HUMBER OF WORDS TO BE READ
ENTER STARTING LOCATION

INSERT DISKETTE CONTQINING

HWORDS TO BE RE

PRESS aOHY KEY TO CONTINUE
HHQT“FILE MAME ?HORDS.15

SEVE
EIGHT

;RESS ANY KEY TO CONTIMUE

In order to read a word selected at random from
the file N$, we might read X — 1 dummy words and
then read word number X, where X is some random
integer. The subroutine shown in Figure 15.31 will
do this. Itis called in line 3080 in Figure 15.22 when
key 3 is pressed. The user enters the maximum num-
ber of words in the file in line 3315. The usual read
setup subroutine in Figure 15.25 is called in line
3320.

154

REM READ 1 WORD AT
R

? "ENTER
INFUT N
GOSUR 4000: REM READ SETUR
K= TNT (RND (O) KN+1)

OFEN #2,4,0,F$

IF X=1 THEN 3360

FOR I=1 TD X-1

INFUT #52, Wes NEXT 1

INFLT #7,Ws

RANDOM

IR0

MAXTMUM NUMBER

o
CLOSE #2
W oae "F’F\‘ESS ANY EEY TO CONTINUE"
A5 GET #1,
et l_E"Tllf-tN
FIGURE 15.31 Subroutine to read one word at

random.

Line 3325 finds a random number X between 1
and N. Line 3330 opens the file N$ for reading
(code = 4). Lines 3340-3350 form a loop that reads
X — 1 words. Line 3360 then reads word number X.

Figure 15.32 illustrates the use of the subroutine in
Figure 15.31 to read a word at random.

FIGURE 15.32 Reading a word at random.

ENTER MAXIMUM NUMBER OF WORDS
215

INSERT DISKETTE CONTAINING
HORDS TO BE READ

PRESS fAMY KEY TO CONTINLUE

HHAT FILE MAME 7?7HWORDS.15
NIME

;REEJ fiHY KEY TO CONTINUE

Modified HANGMAN Program

Suppose that you have created a data file called
WORDS that contains a large number of words (say
100) using the program described earlier (see Figure
15.18). We saw in Figure 15.31 how to read a word
at random from such a file.

To incorporate these ideas into the HANGMAN
program, change the ““find a word”’ subroutine given
in Figure 15.14 to the subroutine shown in Figure
15.33. Each time this subroutine is called, a random
word will be read from the disk file.

OF WORDSM

1000

REM FIND A WORD

1400
1410
14320
143E0
1440

REM SAVE NUMERICAL DATA
FOR I=1 TO 10 STEF 2
ORIy TP H23Id

MNEXT I

RETLURN

1OZG X=INT (RND (O) kNW+1)

1040 OFEN #2,4,0,F&

1050 FOR I=1 TO X:INPUT #2,W$:NEXT I
1055 CLOSE #2

1060 RETURN

FIGURE 15.33 Modified HANGMAN subroutine
that will find a word from a collection of words
stored on a cassette data tape.

Storing Numbers in a Sequential File

The subroutine shown in Figure 15.18 stored words
in a sequential file on a diskette. It is also possible to
store numerical data on a diskette. To investigate this,
substitute the line

1100 GOSUB 1400

in the subroutine in Figure 15.18 and then add the
subroutine shown in Figure 15.34. This subroutine
will store the numbers 1-10 on the disk. The impor-
tant thing to remember when storing numerical data
is that each numerical value must be followed by a
carriage return character. This is why line 1430 is
written as

PRINT #2;1:PRINT #2;1+1
The form
PRINT #2;1,1+1

will not work because the comma is not recognized
when writing to a disk file.

To read back the numerical data, change the
subroutine in Figure 15.24 to that shown in Figure
15.35. The result of executing this subroutine is
shown in Figure 15.36. Note that the input statement

INPUT #2,X,Y

will read two data fields and store the values in X and
Y.

FIGURE 15.34 Subroutine to store numerical
data on a diskette.

FIGURE 15.35 Subroutine to read numerical
data from a disk file.

3100 REM READ NUMERICAL DATA
3105 7 g

F110 GOSUE 4000:REM READ SETUF
F120 OFPEN #2,4,0,F%

T1Z0 FOR I=1 TO 5

Z140 INFUT #32,X,Y

TS50 7 X, Y

Z160 NEXT I

F170 CLOSE #7

I17S P O"PRESS ANY EEY TO CONTINUE"
3180 GET #1,A

3190 RETURN

FIGURE 15.36 Result of executing the subroutine
in Figure 15.35.

INSERT DISKETTE CONTAINING
HWORDS TO BE READ

PRESS aAMY KEY TO CONTINUE
HHAT FILE HWAME ?NUMBERS

4
4
6
8
1
K

5]
EY TO CONTINUE

HoYNNWe

ATARI

ORGAN

As another example of developing a BASIC program
we will turn the ATARI into a musical instrument.
First we will learn how to play the notes of the scale
by pressing keys on the keyboard; we will then de-
velop a complete program that will display the mu-
sical keys on the screen.

Playing a Tone When a Key Is
Pressed

You should review the sections in Chapters 4 and 5

on making sounds with the ATARI. Recall that the
statement

155

SOUND V,P,D,L

will produce a single tone for voice V on the TV
speaker of pitch P, distortion D, and loudness L.
Type in the following short program and run it:

10 P=121

20 GET #1,A

30 A$=CHR$(A)

40 IF A$= " " THEN SOUND 0,0,0,0:GOTO 20
50 SOUND 0,P,10,8

60 GOTO 20

This program should play a note each time any key is
pressed. The note can be turned off by pressing the
space bar. We must now make different keys play dif-
ferent notes.

Screen Layout

The program we will write will display 10 white keys
and 7 black keys in high-resolution graphics accord-
ing to the layout shown in Figure 15.37. The keys A
through ; on the computer keyboard will be the
“white’” keys of the organ; the keys in the row above
will be used for sharps and flats (black keys). The
ATARI keys corresponding to each key on the screen
will be printed on each key by POKEing the bit codes

FIGURE 15.37 Screen layout for the ATARI organ.

of the internal character set. The words ATARI OR-
GAN will be plotted using PLOT and DRAWTO state-
ments.

When a note is played, an eighth note will be dis-
played on the key being pressed for as long as the
tone continues. Thus, as a song is played this note
will move from key to key. This note will be plotted
using PLOT and DRAWTO statements.

The ATARI organ will start out in octave 2. Press-
ing key 1 will change it to octave 1 (one octave
lower), and pressing key 3 will change it to octave 3
(one octave higher). Thus, the total range of the
ATARI organ will be over three octaves. For example,
pressing key A on the computer keyboard in the oc-
tave 2 mode will produce the same note as pressing
key K in the octave 1 mode. The octave number that
is active at any time is displayed near the bottom of
the screen.

Pitch Values for the Musical Scale

The pitch values for each note in the three octaves
corresponding to our screen layout are given in Fig-
ure 15.38. The pitch values shown in Figure 15.38
will be stored in a two-dimensional array P(l,}), where
| (1-17) corresponds to the white and black keys be-
ing displayed on the screen and] (0-2) corresponds
to the octave number minus 1.

m
SNEENN NI SN NEENN
N AN NN N NWNEENN
WNEE NN NN LN N A
WN NEN N YN U 0 RPN
WA SNEENNEEN SNEENY
SOEEN SNEENN NTR
NI N N N b NN NN
A S D F G H J K L
plrlE[s|s]| [«k[e[Y][s 1 2 o|R Tlo| |clulaln|c|e| |olc|T|a|V]E
olcl|Tlalv[e] |2

156

7 %
/ V
- /] g
L
>
<
’_
(@]
© MIDDLE
o D E F G A B c D E
& = 3 S © - 0 - © o o) < o ~ ™ o ~
— - =4 b= o)) o)) 0 [o¢] ~ ~ [{e] [e] O [Te) [Te] T} <
V - 7
/ 5/ j j // // /
RN Em mm o
5 // //4 // // 7/ % i
g - g % A % % A
il
(@]
O | MIDDLE
c D E F G A B G D E
8 ©H B B S e g g 5 &8 8 & Y X & 8 &
ZRWZ ZARZANZ ZRN7Z
7 % % f
// % é 7 f/ 7 7%
. 7 ;// “ f % j/
i e] % “ &] %
il
(&)
o
o D E F e A B e D E

FIGURE 15.38 Pitch values corresponding to all
notes that can be played on the ATARI organ.

Word Description of Program

The program for the ATARI organ can be understood
from the pseudocode word-description given in Fig-
ure 15.39.

Variable Definitions

The major variables used in the ATARI organ progam
are defined in Figure 15.40. Using these variables the
pseudocode program shown in Figure 15.39 can be
refined to the program shown in Figure 15.41. Note
how the do until loop is used to find the index | corre-
sponding to the key that was pressed. This value of | is
then used to find the proper pitch value stored in
P(1,). If key 1,2, or 3 is pressed, no match will occur

FIGURE 15.39 Pseudocode word-description for
ATARI organ program.

Initialize variables
Display keyboard
loop: Wait for key to be pressed
if key is space bar
then turn off sound
Identify key
if key is a note key
then play note
else ifkey is 1, 2, or 3
then change octave number
repeat forever

157

FIGURE 15.40 Maijor variables used in ATARI or-
gan program.

FIGURE 15.41
organ program.

Pseudocode description of ATARI

K(18) An array containing the ATARI computer

key ATASCII codes:
A,S,D,F,G,H,J,KL,; for the white keys
W,E,T,Y,U,O,P for the black keys
P(17,2) A two-dimensional array containing the
pitch values for the corresponding keys in
K(l); the columns of the array correspond
to the three octaves.

T Octave number minus 1
P Pitch value being played
A$ Character value corresponding to a com-

puter key pressed

in the do until loop and | will equal 18. This is why
K(l) must be dimensioned to K(18). In this case | is
changed to VAL(A$), which will be 1, 2, or 3 (for
valid keys), and T is changed to | — 1 to select the
proper pitch values in P(1,T).

We are now at the point where the BAsIC program
will practically write itself.

The Main Program

The main program for the ATARI organ is shown in
Figure 15.42. It follows closely the pseudocode de-
scription shown in Figure 15.41. Lines 20-50 fill the
arrays with the appropriate data. Note that all of the
“white’” keys are stored first in K(l). Also note that the
order of the pitch values stored in P(l,)) is the same as
that of the corresponding key values in K(l), accord-
ing to Figure 15.38. Lines 35 and 50 store tab data
that will be used later (in subroutine 1400) to plot the
eighth note on the black keys.

Lines 70-170 are a direct implementation of the
loop . . .repeat forever loop in Figure 15.41.
Subroutine 1400, which is called in line 130, will
play the note. Evenutally this subroutine will display
the eighth note on the screen keyboard while playing
the note. However, for now you can test out the
playing of the ATARI organ by typing

1400 REM PLAY NOTE
1450 SOUND 0,P,10,8
1470 RETURN

which just plays the note. You will also need to write

the following stub for the keyboard display
subroutine:

600 REM DISPLAY KEYBOARD

610 RETURN

158

Fill arrays K(I) and P(l,J) with appropriate values
Display keyboard
T=1
loop: Wait for key A$ (code A) to be pressed
if A$ =" then turn off sound: go to loop

I =1
do until A =K(l) or | =18
l=1+1
enddo
ifl<18
then P = P(I,T)
play note
else | = VAL(A$)
ifl=0o0rl>3
then do nothing (invalid key)
else
Display |
T=1-1

repeat forever

Try running the program now. The notes should
change when you press different keys. You can stop
any note by pressing the space bar.

Remaining Subroutines

Once you have the musical part of the ATARI organ
working you can finish the “display keyboard”
subroutine, as shown in Figure 15.43. This
subroutine will produce the keyboard shown in Fig-
ure 15.44; the title and lettering on the keyboard are
printed using subroutine 800, shown in Figure 15.45.

The subroutine at line 800 POKEs the bit codes
stored in the internal character set directly on the
screen. The DATA statement in line 805 contains the
offsets into the character table for the letters on the
keys.

The subroutine at line 900 that is called in line 895
plots the title at the top of the screen. The individual
letters are plotted using the subroutines at lines
1010-1070.

The eighth-note shape is displayed when a note is
played in subroutine 1400, shown in Figure 15.46.
The value of I in line 1410 is the value found in the do
until loop in lines 90—100 of the main program. If this
value is greater than 10, a “‘black” key was pressed
and the coordinate X at which the note will be plotted
is determined by the statement in line 1420. The X

10
12
1!:'
a0

e
o

26
28
=0

ol
el

40
45
B
Sk
HO
vis)
F g

Q0
g

Q0

100
110
1320
1R
140
1EO
L&D
170

FIGURE 15.42 Main program for the ATARI organ.

REM ATARI ORGAN
OFEN #1,48,0," kK"
DIM L(ia).rtl W2 TE(7) JA% (1)
w o ulne NGTORING DATA —— BE PATIENT! "
DATA &5,83,68,70,71,72,74,75,76,59,87,69,
DATA 243,217,193,182, 162, 144,128, 121, 108,
DATA 121, 108, 96, 91,81, 72, bk, &0, 535,47, 114 4
DATA &0,5%,47,45, 40,35, 51,29, 26, 23,57, 50,
DATA 28,460,124, 156, 188, 252, 284
FOR I=1 TO 17:READ K:k (D) =KiNEXT I
FOR J=0 TO 2:FOR I=1 TO 17:READ F:F{I,J
FOR I=1 TO 7:READ TE: TR(ID) =TE:NEXT I
GOSUR &00:REM DISPLAY EEYROARD
Te=
GET #1,A
A$=CHRE (A)
IF As=nyn
[F_ AQ)T"“ 1
I=1
IF A=K {(I) OR I=18
I=1+1:G0TO 90
IF I=18 THEN 140
P=F(I,T)
BOSUR 1400 GOTO
IF A$S"1" OR A%:
I=VAL (A%)
FOSTTION
T=1-1:G0TAQ 70

THEN GRAFHICS 0:CLOSE #1:END

THEN SOUIND O, 0,0, O GOSUR

THEM 110

70

AL e "‘ll

THEN

70

Fio e e B

L]

mno ‘.I ‘q*‘z

FIGURE 15.43 Subroutine to display the key-
board for the color organ.

AHO0D REM DISFLAY EEYROARD

A10 T UXRGRAFHICE : SETCOLOR 2,
H1E FOR Y=4Z TOQ 159

H20 PLAOT O, ¥YeDRAWTO Z19,YeNEXT Y
HR25 COLaR O

HI0 FOR X=32 TO 288 STER 32

HE5 FPLOT X, 44:DRAWTO X, 1592 NEXT X

EFA4O
&LE0
HEE

L&D

Y=hd

FOR X=1& TOQ 482 STER 2

GOSUR 700 NEXT X

FOR X=112 T0Q 174&

&n« GOSUE 7OO:NEXT X
JOOFOR X=240 TQ 272
/5 GOSUER 7003 NEXT X

bBU P 2T "PRESS KEYS 1,

&R0 7 "QUTAVE T " 2y

STER 2

STEF 52

2 T CHANGE

s 2
W

&£95 GOSUR 8003 RETURN

700 REM FLOT BLACK EEY AT X,Y
710 FOR I=0 TOQ 14

TR0 PLOT X+I,Y:DRAWTO X+I,Y+48
TEO OMNEXT 1TsRETURN

y=Fy NEXT

0, 0: EETCOLAOR

24,89, 85, 79,80
qﬁ.ﬂf“ ”U4ql7”
102,85

42 w7 mT o e
g b oo PR

‘g

TaNEXT J

1500:GATO 70

1,0, 12: CALOR

ACTAVE"

183, 1

.mq&B.g7u50

1

T4,

114,102

159

160

PRESS KEYS 1,2, OR 3 TO CHANGE OCTAVE

IOCTAVERE |

FIGURE 15.44 The keyboard for the organ pro-
duced by the subroutine shown in Figure 15.43.

FIGURE 15.45 Subroutine to display the lettering
on the organ keyboard and the title.

1

(M1

4

THER 8%0

COHAD T

FLOT TITLE

DFRAWTO

¥ ¥ d s DRAWTE X+

DEAWTO X

2 DR

BTN ¢ RE

Ko W r DRAWTD

Yo DR

1400 REM FLAY NOTE
1405 GOSUR 1500
1410 IF
1420 Y=73:X=TR{I-10)

14750 COLOR 1:G08UR 1500 COLOR O
1450 SOUND O,F, 10,8

1470 RETURN

1500 REM FLOT NOTE

1310 FLAOT X, Y:DRAWTO X-3X, Y3
15820 DRAWTO X-Z,¥+12: DRAWTC
DRAWTO X7, ¥+10: DRAWTO

] 2 DRAWTD X-9,¥Y+14: DRAWTO
1550 DRAWTO X~5, Y+15: DRAWTO
1560 DRAWTO X-Z,YV+12s RETURM
1600 REM ERASE EIGTH NOTE
1610 IF Y=125 THEN COLOR 1:GOSUR
1620 ITF Y=75 THEN COLOR O:G0SUER
1630 RETURN

FIGURE 15.46 Subroutine to display the eighth
note and produce the tone.

and Y values defined in line 1420 determine where
on the screen the eighth note is plotted. The
subroutine at line 1500 plots the eighth note. The X
position is determined by the value in the tab array
TB(I-10) that was initialized in lines 35 and 50 in Fig-
ure 15.42.

The coordinate X for plotting the note on the white
keys is given in the THEN clause in line 1410. Since
the spacing of the white keys is uniform, the position
of the note on the line can be calculated by the equa-
tion X = 32 * | — 4, as given in line 1410.

On the black keys, the eighth note is plotted white

FIGURE 15.47

IT<11 THEN V=128 X=IC2%I-43 COLOR O GOSUR

PE00 COLOR

X5, Y410
X=G, Y+17
X=7,Y+1&
X=T, Y+14

1500y RETURN
1500 RETURN

by calling subroutine 1500 in line 1430 after
executing the statement COLOR 1. On the white keys
the eighth note is plotted black by calling subroutine
1500 after the statement COLOR O in line 1410.
When the space bar is pressed, the sound is turned off
and the eighth note will be erased by calling
subroutine 1500 in line 82 (see Figure 15.42). The
subroutine at line 1600 that is called at line 1405 will
erase any existing eighth note when a new note is
played. Figure 15.47 shows examples of the eighth
note that is displayed when the ATARI organ is
played.

(a) ATARI organ when a white

note is played (key F); (b) ATARI organ when a

black note is played (key T).

(a)

PRESS KEYS 1,2,

JOCTAVERP] |

OR 3 TO CHAMGE OCTAVE

161

1:6O7TQ 1450

PRESS KE¥S 1,2,

I0CTAUVERK] |

(b)

This ATARI organ program has only begun to use
the sound capabilities in the ATARI. By playing more
than one voice you can create chords. You can also
vary the loudness of each note and create special

OR 3 TO CHAMGE OCTAVE

sound effects by changing the distortion value in the
SOUND statement. See Exercise 15.2 for some ideas
on how to do this.

CONCLUSION

The HANGMAN and the ATARI organ programs were
developed using the six steps outlined at the begin-
ning of this chapter. This is not the only way to de-
velop a program and these steps may not always be
appropriate for all programs that you write. However,
they are a good guide to use when you get stuck and
don’t know how to proceed. In the last analysis you
will have to develop your own approach to writing
computer programs. Programming is a skill that stili
requires insight, creativity, a knack for problem
solving, and practice.

If you have read this entire book, typed all the ex-
amples on your ATARI, and worked a number of ex-
ercises, then you will have a good understanding of
how to write BAsIC programs on an ATARI computer.
It is now time for you to start writing your own pro-
grams. Many useful programs can be written for the
ATARI. Pick an area in which you are an expert. How
can the ATARI help you in this area? Start by writing a
short program, and then expand it into a longer, more
complex one. You will find that writing computer
programs is challenging, rewarding, and fun. Good
luck!

162

EXERCISE 15.1
Modify the subroutine to find a word in Figure 15.14
so that no word is selected more than once.

EXERCISE 15.2
Modify the ATARI organ program to

1. play chords after key C has been pressed (A ma-
jor chord can be played by multiplying the pitch of
voice 0 by 0.79166 for voice 1 and by 0.66666 for
voice 2)

2. vary the loudness of the notes by using the up
and down keys

3. change the distortion value using keys 4-9.

EXERCISE 15.3

Write a program to play the game MASTERMIND.
The computer thinks of an N-digit number, where
each digit can be in the range 1-M. The player is al-
lowed to select N and M at the beginning of the
game. The player guesses a number (all N digits) and
the computer responds with two numbers P and W. P

is the number of digits that were correctly guessed
and that are in the correct position in the number,
and W is the number of digits guessed that are in the
number but that were guessed in the wrong position.
The player continues to guess numbers until the cor-
rect number is guessed (or until the player gives up
and asks for the answer). When the number is
guessed, the computer displays the number of tries
that it took to guess the number.

EXERCISE 15.4

Write a program to play the card game BLACKJACK
against the computer. The player first places a bet.
Two cards are dealt to the player and two to the com-
puter (one face up and one face down). The player
can ask for a hit (another card) as many times as he or
she wants. The player’s goal is to have a higher count

than the computer without going over 21. Face cards
count 10 and an ace can count either 1 or 11. Being
dealt an ace and a face card is a blackjack and is an
automatic winner. If the player’s count goes over 21 it
is a bust and the player loses. After the player stops
taking hits (with the card count less than or equal to
21), the computer turns over its face-down card and
can then take additional cards to try to beat the
player. The computer will always take a hit if its card
count is less than 17. The computer will always stand
for a card count of 17 or greater. No money is won or
lost on a tie. Have the program continue playing and
keep a running total of the player’s winnings.

EXERCISE 15.5.

Write a program to play tic-tac-toe (see Exercise 7.5).
The player should have the option to play against a
second player or the computer.

163

APPENDICES

APPENDIX A

Reserved Words

None of the following reserved words should be used
as part of a variable name in an ATARI BASIC program.

ABS GOTO PUT
ADR GRAPHICS RAD
AND [F READ
ASC INPUT REM
ATN INT RESTORE
BYE LEN RETURN
CLOAD LET RND
CHR$ LIST RUN
CLOG LOAD SAVE
CLOSE LOCATE SETCOLOR
CLR LOG SGN
COLOR LPRINT SIN
COM NEW SOUND
CONT NEXT SQR
COS NOT STATUS
CSAVE NOTE STEP
DATA ON STICK
DEG OPEN STRIG
DIM OR STOP
DOS PADDLE STR$
DRAWTO PEEK THEN
END PLOT TO
ENTER POINT TRAP
EXP : POKE USR
FOR POP VAL

FRE POSITION X0
GET PRINT

GOSUB PTRIG

164

APPENDIX B

ATASCII Codes

Keystroke

Character Normal Video ATARI Key (Reverse Video)
C8 or CAPS LOWR CTRL CAPS LOWR CTRL
Keystroke ASC(C$)
Blank (space) 32 160
! 33 161
N 34 162
35 163
$ 36 164
% 37 165
& 38 166
! 39 167
(40 168
) 41 169
¥ 42 170
+ 43 171
) 44 0 172 128

45 173
. 46 96 174 224
/ 47 175
0 48 176
1 49 177
2 50 178
3 51 179
4 52 180
5 53 181
6 54 182
7 55 183
8 56 184
9 57 185
; 58 186
; 59 123 187 251
%= 60 188
= 61 189
> 62 190
2 63 191
@ 64 192
A 65 97 1 193 225 129
B 66 98 2 194 226 130
@ 67 99 3 195 227 131
D 68 100 4 196 228 132
E 69 101 5 197 229 133
F 70 102 6 198 230 134
G 71 103 7 199 231 135
H 72 104 8 200 232 136
I 73 105 9 201 233 137
J 74 106 10 202 234 138
K 75 107 11 203 235 139
I 76 108 12 204 236 140
M 77 109 13 205 237 141
N 78 110 14 206 238 142
O 79 11 15 207 239 143
P 80 112 16 208 240 144
Q 81 113 17 209 241 145
R 82 114 18 210 242 146
S 83 115 19 211 243 147
T 84 116 20 212 244 148
u 85 117 21 213 245 149
\% 86 118 22 214 246 150
W 87 119 23 215 247 151
X 88 120 24 216 248 152
¥ 89 121 25 217 249 153
Z 90 122 26 218 250 154
[91 219
\ 92 220
] 93 221
AN 94 222
_ 95 223
[124 252
ESC 27
RETURN 155

165

Special Control Characters

The following characters are only displayed if they
are preceded by the ESC key, CHR$(27). Otherwise,
the result takes place.

ATASCll Code Keystroke Result
28 ESC/CTRL — cursor up
29 ESC/CTRL = cursor down
30 ESC/CTRL + cursor left
31 ESC/CTRL * cursor right
125 ESC/CLEAR clear screen
126 ESC/BACK S backspace
127 ESC/TAB move cursor to next tab
156 ESC/SHIFT BACK S delete line
157 ESC/SHIFT > insert line
158 ESC/CTRL TAB clear tab stop
159 ESC/SHIFT TAB set tab stop
253 ESC/CTRL 2 beep speaker
254 ESC/CTRL BACK S delete character
255 ESC/CTRL > insert character
APPENDIX C
ERROR CODES
133 Device or file not open
Error code is stored in memory location 195. 134 Bad channel number
EC = PEEK(195) 135 Opened for read only

136 End of file
137 Record truncated

138 Device timeout
EC Error 139 Device cannot perform a command
2 Memory insufficient 140 Serial bus input framing error
3 Value error 141 Cursor out of range
4 Too many variables 142 Serial bus data frame overrun
5 String length error 143 Serial bus data frame checksum error
6 Out-of-data error 144 Disk write-protected
7 Number greater than 32767 145 Read-after-write compare error or bad screen mode
8 INPUT statement error 146 Function not implemented
9 Array or string DIM error 147 Insufficient RAM for graphics
10 Argument stack overflow 150 Port already open
1 Floating point overflow/underflow error 151 Concurrent mode I/O not enabled
12 Line not found 152 Illegal user-supplied buffer
13 NEXT without FOR 153 Active concurrent mode 1/O error
14 Line too long 154 Concurrent mode inactive
15 GOSUB or FOR line deleted 160 Drive number error
16 RETURN without GOSUB 161 Too many open files
17 Garbage error 162 Disk full
18 Invalid string character 163 Fatal 1/O error
19 LOAD program too long 164 File number mismatch
20 Bad device number 165 File name error
21 LOAD file error 166 POINT data length error
128 BREAK abort 167 File locked
129 IOCB already open 168 Command invalid
130 Unknown device 169 Directory full (64 files)
131 Opened for write only 170 File not found
132 Invalid command 171 POINT invalid

166

APPENDIX D

HEXADECIMAL NUMBERS

Consider a box containing one marble. If the marble
is in the box, we will say that the box is full and asso-
ciate the digit 1 with the box. If we take the marble
out of the box, the box will be empty, and we will
then associate the digit O with the box. The two bi-
nary digits 0 and 1 are called bits; with 1 bit we can
count from 0 (box empty) to 1 (box full), as shown in
Figure D.1.

FIGURE D.1 You can count from 0 to T with 1 bit.
e A e /
0 = empty box 1 = full box

Number of marbles = 0 Number of marbles = 1

Consider now a second box that can also only be
full (1) or empty (0). However, when this box is full it
will contain two marbles, as shown in Figure D.2.

FIGURE D.2 This box can either contain two
marbles (full) or no marbles.

N/ a0/

0 = empty box 1 = full box
With these two boxes (2 bits) we can now count from
0to 3, as shown in Figure D.3. Note that the value of
each 2-bit binary number shown in Figure D.3 is
equal to the total number of marbles in the two
boxes.

FIGURE D.3 You can count from 0 to 3 with 2
bits.

Total number of marbles

o0/ @/ 3

We can add a third bit to the binary number by
adding a third box that is full (bit = 1) when it con-
tains four marbles and is empty (bit = 0) when it con-
tains no marbles. It must be either full (bit = 1) or
empty (bit = 0). With this third box (3 bits) we can
count from O to 7, as shown in Figure D.4.

If you want to count beyond 7, you must add an-
other box. How many marbles should this fourth box
contain when it is full (bit = 1)? It should be clear that

this box must contain eight marbles. The binary num-
ber 8 would then be written as

1000
FIGURE D.4 You can count from 0 to 7 with 3
A e :
s SR 5
- ess e 7

Remember that a 1 in a binary number means that the
corresponding box is full of marbles; the number of
marbles that constitutes a full box varies as 1, 2, 4, 8,
starting at the right. This means that with 4 bits we
can count from 0 to 15, as shown in Figure D.5.

FIGURE D.5 You can count from 0 to 15 with 4
bits.

No. of marbles
in each full box (bit=1)Total no.

8 4 2 | of marbles Hex Digit
0o 0 0 0 0 0
0 0 O 1 1 1
0 0 1 0 2 2
0 0 1 1 3 3
0 1 0 0 4 4
0 1 0 1 5 5
0 1 1 0 6 6
0 1 1 1 7 7
1 0 0 0 8 8
1 0 0 1 9 9
1 0 1 0 10 A
1 0 1 1 11 B
1 1 0 0 12 C
1 1 0 1 13 D
1 1 1 0 14 E
1 1 1 1 15 F

It is convenient to represent the total number of
marbles in the four boxes represented by the 4-bit bi-
nary numbers shown in Figure D.5 by a single digit.

167

We call this a hexadecimal digit. The 16 hexadecimal
digits are shown in the right-hand column in Figure
D.5. The hexadecimal digits 0—9 are the same as the
decimal digits 0-9. However, the decimal numbers
10-15 are represented by the hexadecimal digits
A—F. Thus, for example, the hexadecimal digit D is
equivalent to the decimal number 13.

In order to count beyond 15 in binary, you must
add more boxes. Each full box you add must contain
twice as many marbles as the previous full box. With
8 bits you can count from 0 to 255. A few examples
are shown in Figure D.6. Given a binary number, the
corresponding decimal number is equal to the total
number of marbles in all of the boxes. To find this
number, just add up all of the marbles in the full
boxes (the ones with binary digits = 1).

FIGURE D.6 You can count from 0 to 255 with 8
bits.

No. of Marbles Total No.
in each full box (bit=1) of marbles
128 64 32 16 8 4 2 1
0 0 1 1 0 1 0 0 52
1 0 1 0 0 0 1 1 163
1 1 1 1 1 1 1 1 255

As the length of a binary number increases it be-
comes more cumbersome to work with. We then use
the corresponding hexadecimal number as a short-
hand method of representing the binary number. This
is very easy to do. You just divide the binary number
into groups of 4 bits starting at the right, and then rep-
resent each 4-bit group by its corresponding
hexadecimal digit, given in Figure D.5. For example,
the binary number

10011010

RS
9 A

is equivalent to the hexadecimal number 9A. You
should verify that the total number of marbles repre-
sented by this binary number is 154. However, in-
stead of counting the marbles in the “‘binary boxes,”
you can count the marbles in “‘hexadecimal”’ boxes,
where the first box contains A X 1 = 10 marbles and
the second box contains 9 X 16 = 144 marbles.
Therefore, the total number of marbles is equal to
144 + 10 = 154.

A third hexadecimal box would contain a multiple
of 162 = 256 marbles and a fourth hexadecimal box
would contain a multiple of 16> = 4,096 marbles.
As an example, the 16-bit binary number

1000011111001001
e —— -
8 7 C 9
is equivalent to the decimal number 34,761 (that is, it
represents 34,761 marbles). This can be seen by ex-
panding the hexadecimal number as follows:

8 X 16°= 8 X 4,09 = 32,768
7 x162= 7% 256= 1,792
CXxX16" =12 % 16 = 192
9 X 16°= 9 X 1= 9

34,761

You can see that by working with hexadecimal num-
bers you can reduce by a factor of 4 the number of
digits that you have to work with.

Table D.1 will allow you to conveniently convert
up to 4-digit hexadecimal numbers to their decimal
equivalents. Note, for example, how the four terms in
the conversion of 87C9 given here can be read di-
rectly from the table.

FIGURE D.1 Hexadecimal and Decimal Conversion

15 BYTE 8 7 BYTE 0
15 CHAR 12 11 CHAR 8 7 CHAR 4 3 CHAR 0
HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 0]
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 1,792 7 112 7 7
8 32,768 8 2,048 8 128 8 8
9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
B 45,056 B 2,816 B 176 B 11
C 49,152 C 3,072 c 192 (o 12
D 53,248 D 3,328 D 208 D 13
E 57,344 E 3,584 E 224 E 14

F 61,440 F 3,840 F 240 F 15

168

APPENDIX E

Using Machine Language
Subroutines with BASIC

This appendix assumes that you know how to write

6502 assembly language programs. If you have a ma-

chine language subroutine, you can «call this

subroutine from BAsIC and pass data values to and

from the subroutine by using the USR function.
When the BASIC statement

W=USR(AD,X,Y)

is executed, the return address in the BASIC program is
pushed on the stack and the program jumps to the
machine language program starting at the decimal
address AD. The arguments X,Y in this statement are
optional and represent data values to be passed to the
machine language program. These values are pushed
on the stack as 2-byte, 16-bit integer values. The top
of the stack contains a 1-byte integer equal to the
number of arguments in the USR function. This value
will be 0 if no arguments are passed to the
subroutine. The machine language program must pull
this count value plus all arguments off the stack be-

fore returning to the BASIC program by executing an
RTS instruction. After the USR function given here is
executed the stack will look like Figure E.1.

FIGURE E.1 Stack after executing
W=USR (AD,X,Y).

Sp—
02

X low

X high

Y low

Y high

Return address low
Return address high

number of arguments
1st USR argument

2nd USR argument

To pass a 16-bit integer value V back to the BAsIC
program, store the most significant byte in memory
location 213 ($D5) and the least significant byte in
memory location 212 ($D4). Then execute an RTS in-
struction which will return control to the BAsIC pro-
gram with the value of USR equal to the 16-bit integer
value V.

APPENDIX F

Formatting Your Diskette

To format a new diskette you must use the disk utility
package (DOS menu). This package is part of the
DOS system files. These DOS system files are loaded
into memory (booted) when the computer is turned
on. If you type

DOS

the DOS menu shown in Figure F.1 will be displayed
on the screen.

To format your diskette, insert it in the disk drive.
Remember that formatting a diskette will destroy all
information on the diskette. Then press key |. The
message WHICH DRIVE TO FORMAT? will appear
on the screen. Press 1. The message TYPE Y TO
FORMAT DRIVE 1 will appear on the screen. If you
now press key Y the disk drive will come on and for-
mat your disk in about one minute.

FIGURE F.1 DOS menu.

=X
b <3

-

WERITSTUON

HYATEIM L

o

Im
¥ 3

T
b
Py -]
=
=

I 0
=IO~

-t

S

Wt M3

<

Ir
—l%“.'rl"u‘u—i’:‘
MM ST M
IS
T WOMOX
= W T -
Wt

=
ST =T -

[cCzooxze
TommocH
xTMmMTET =3
r rroHO
m mm

T
CODEDETTE
CICHHCO
TMEEZEZTT
re oo
H=ATDTHT
b B

UiHMEHEHMIM 3
I

ID

Cc

a.
8.
C.
D,
E.
F.
G,
H.

HEQEMTED HOD
-oXDM< X

m
2
)
|
m
o

EELEIZT ITEM ait GTEHTED] FoRr MEHU

169

™ Lr

-

£L

-~

M

a4

You should then write the DOS files to your
diskette so that you can boot the system with your
disk. To do this, press key H in response to the menu

in Figure F.1. Follow the prompting messages on the

screen to complete the process.

APPENDIX G

Summary of BASIC Statements

The following summary gives examples of various
statements used in ATARI BAsIC. For a more detailed
discussion of each statement, refer to the pages cited.

Data Transfer Statements
PRINT A$; B, C
INPUT C

GET #1,A

READ A, B, C$
DATA 5, 10, JOE
RESTORE

PRINT #2;W$
INPUT #2,W$
OPEN #2,8,0,F$
CLOSE #2

POKE 1536,75
X=PEEK(1024)

Branching and Looping Statements
GOTO 40

IF M1 > M2 THEN PRINT “TOO SMALL"”: GOTO 20

FOR I=1 TO 10: PRINT |: NEXT |
GOSUB 500

RETURN

ON | GOSUB 100,200,300

ON NH GOTO 960,965,970,975,980,985
TRAP 9000

String Related Statements

B$ = A%,

B$ = AB(LEN(AS$)-I+1)
B$ = A$(,1+)-1)

N = LEN(A$)

N = VAL(A$)

A$ = STR$(A)

N = ASC(A$)

A$ = CHR$(A)

170

Page Ref.
22
31

105
84
84
84

151

152

151

151

128

128

Page Ref.
15

43

36

75

75

150

147

153

Page Ref.
103
103
103
102
103
104
105
105

BASIC Functions

Z = SQR(X) square root

Z = ABS(X) absolute value

Z = INT(X) integer value

Z = SGN(X) sign

X = RND(O) random number

Z = SIN(X) sine

Z = COS(X) cosine

Z = ATN(X) arctangent

Z = LOG(X) natural logarithm

Z = CLOG(X) base 10 logarithm

Z = EXP(X) exponential function
Z = PADDLE(O) paddle function

Z = PTRIG(O) paddle trigger function
Z = STICK(3) joystick function

Z = STRIG(3) joystick trigger function

Graphics Statements
GR.5

SETCOLOR 0,0,14
COLOR 1

PLOT X,Y
DRAWTO X,Y
GR.O

GR.8

GR.1

GR.2

Other Statements and Commands
DIM A(20)

¢ FRE(0)

NEW

SAVE

LOAD

RUN

CONT

STOP

END

LIST

REM REMARK
CLR

CLOAD

CSAVE

DEG

RAD

DOS

SOUND 0,P,10,8
X = USR(AD,Y)

Page Ref.
27
26
26
26
27
28
28
28
28
28
28
81
82
83
83

Page Ref.
55
56
57
57
58
57
117
131
131

Page Ref.
95
95
14
14
14

7
15
16
16

7
17
95
14
14
28
28

169
35
169

SUBJECT INDEX

A

ABS, absolute value, 2627

Acreage, 74

Addition, 19, 32

Algorithm, 50-53

Alternate Character Set. See character set
American flag. See Flag

AND, 48
Apple ll, 1, 13
Arc tangent, 28
Area:

of a circle, 33, 45

of a rectangle, 32, 46

of a triangle, 49-51, 67—68
Area. See plotting
Arithmetic expressions, 20
Array of points. See plotting
Arrays, 94—101

one-dimensional, 94-96

two-dimensional, 96, 113
ASC, 104-105
ASCII codes, 104-105

See also ATASCII codes
Assembly language, 12—13
ATARI BASIC. See BASIC
ATARI 400, 1
ATARI 800, 1
ATARI key, 2, 5, 26, 87, 134
ATASCII codes, 105, 124, 1340135, 165-66

ATN, 28
Auxiliary code, 151
Average, 54, 100

B

Background, 56-57, 117, 134
Backspace key, 2, 8
Bar graphs, 84-93
adding scale, 88-89, 92
horizontal, 87—89
multiple, 91-93
using arrays, 97—-100
vertical, 89—93
BASIC, 12
ATARI, 12
Interpreter, 2—3, 12
program, 16
Binary number, 129
Blackjack, 163
BREAK, 15-16
Built-in functions. See Functions
Byte, 3, 129, 137, 139

C

Calculator mode, 19-21
CAPS/LOWR key, 2—-3, 26, 134
Card number, 109, 113

171

Cards. See Playing cards
Cassette tape recorder, 13—-14, 151
storing data, 13-14
Celsius, 35
Cents. See Dollars and cents
Character set:
alternate, 132—-34
defining your own, 137-39
internal, 132-36
Checkerboard pattern, 65
random, 70-71
CHR$, 104-105
Circle. See area; circumference
CLEAR key, 2, 4
Clearing the screen, 8
Clicks, 40—41
CLOAD, 14
CLOG, 28
CLOSE statement, 105, 124, 149, 151
CLR, 95
Code number, 151
Colon, 17
COLOR, 56-57, 117, 135
Color number, 56, 59, 63, 135
Color register, 56, 59, 62—63, 117, 134-36
Colors, 56
modes 1 and 2, 134-36
Comma:
adding to dollars and cents, 108
in PRINT statement, 22
Compound interest, 28-29, 74, 100-101
Concentric squares. See Plotting
Console keys, 129-30
CONT, 15-16
Controller jacks, 81, 83
COSs, 28, 123
Cosine, 28, 123
CSAVE, 14
CTRL key, 2, 4, 8, 24
Cursor, 130, 140
Cursor keys, 2, 4
Cursor moves in PRINT statement, 6, 10

D

DATA statement, 84—86, 120
Dealing hand of cards. See Playing cards
Debugging, 16
Deck of cards. See Playing cards
Deferred mode of execution, 6—7, 21, 84
DEG, 28, 123
Delay loop, 89-90
DELETE key, 2, 8-9
Device designation, 151
Device number, 124
Division, 20
DIM statement, 9-10, 95-96
Disk, 13-15
file, 151

172

formatting, 169
storing data, 149-55
utility package, 169
Diskette. See Disk
Display screen, 151
Distortion, 35
Do until. See Loops
Do while. See Loops
Dollar sign. See string functions,
string variables, and Dolalrs and cents
Dollars and cents:
printing, 106—108
DOS, 169
Doubling time. See exponential growth
Drawing:
border, 38—39
dashed lines, 60—61
flag, See Flag
lines, 37-38
your name, 58-60, 79-81
See also Plotting
DRAWTO, 58, 117-18

E

Economic data. See Bar graphs
Editing a statement, 7—9
END, 16
Error handling routine, 153
Error:
array, 95
codes, 153, 166
INPUT statement, 32, 34
message, 3
out of data, 85-86
overflow, 22, 33
ESC key, 2, 6, 24, 166
EXP, 28-29
Exponential function, 28-29
Exponential growth, 28-29
Exponentiation, 20

F

Fahrenheit, 35
Fibonacci sequence, 74
File. See Sequential file
File name, 150-51
File number, 151
Flag, American, 55, 64—65
Floppy disk. See Disk
Flowchart, 51-53
structured, 52—53
FOR . . . NEXT loop, 36—42
nested, 39—42
Formatting disk. See Disk
FRE, 95
Functions:
built-in, 26-29

G

Game paddles, 81-82

Cas mileage program, 33-34, 44
bar graph, 93

GET statement, 105, 124, 126

GOSUB, 75-76

GOTO, 15

GR.0, 57

GR.T, 131

GR.2, 131

GR.5, 55

GR.8, 117

Graphic figures, 4-5, 10

Graphic keys, 3—4

Graphic patterns. See Plotting

Graphic symbols, 3—4, 6, 41
playing card, 4

Graphics, 4, 6, 26, 87
colors, 56
high-resolution, 116-27
low-resolution, 55—65
modes, 55, 116—-19

H

Hangman, 138, 141-49, 154-55
Hexadecimal:

numbers, 129, 167—-68

to decimal conversion, 168
High-resolution graphics. See Graphics
Horizontal bar graphs. See Bar Graphs
Hue, 56, 117
Hypotenuse, 27—-28

If...then...else, 51-53, 68
IF . .. THEN statement, 43—46, 66—67
Immediate mode, 6, 21

Income tax, 54

INPUT statement, 31-35
INPUT#, 149, 152, 155
INSERT key, 2, 8-9

INT, 26-27

Integer value, 26-27, 34
Interest. See compound interest
Interpreter. See BASIC

J

Joysticks, 83

K

Key codes, 130-31
Keyboard, 2—4, 31, 130-31, 151

L

LEFT$, 103

LEN, 102—-104

LET, 9

Line length, 10-11
Lines. See Plotting
LIST, 7—8, 14, 18
LOAD, 14

LOG, 28-29
Logarithms, 28
Logical expression, 43
Logical operators, 43, 46—48

Loop . . . continue if . . . endloop, 71, 73

Loops, 13, 15
do until, 71-73, 143—44, 157-58
do while, 71-72

FOR . .. NEXY. See FOR . . . NEXT loop

nested, 68—71
repeat until, 71-72
repeat while, 66—72
Loudness, 35
Low-resolution graphics. See Graphics
Lower case letters, 3, 26
Luminance, 56, 117

M

Machinge language, 169

Manhattan Island, 74

Mastermind, 162

Matrix, 96, 113

Memory, 18, 128-30
required for graphics, 117

MID$, 103

Multiple statements, 17

Multiplication, 20

Music on the ATARI, 15562

Musical scale, 156—57

N

Name and address, 34
Names. See Drawing
Nassi-Schneiderman chart, 52

Nested loops. See Loops; also FOR . . . NEXT

loops
NEW, 7, 14
NEXT. See FOR . . . NEXT loop
NOT, 47
Notes. See musical scale
Numerical variables, 21

O

ON . .. GOSUB statement, 150
ON . .. GOTO statement, 147—48
OPEN statement, 105, 124, 149-52

Operating system, 2
OPTION key, 129-30, 140
OR, 48

Order of precedence, 20
Organ, ATARI, 155-62
Out of data error. See Error
Overflow error. See Error

P
PADDLE, 81
Pascal, 13, 51

Pay program, 48-49, 54
PEEK, 128-31, 137-39
PET, 1, 13
Phase angle, 126-27
Phaser noise, 41
Pi, 28
Pitch, 35, 156
Pitch values for musical sclae. See Musical sclae
Playing cards, 109-115
dealing hand, 112-13
graphics, 4, 109-115, 140
shuffling deck, 111
sorting by suit. See Sorting
PLOT, 57, 117
Plotting:
American flag, 64-65
areas, 61
array of points, 39-40, 61-62
axes, 126-27
ball, 124
circles, 123-24
concentric squares, 78—79
dots, 55-63
functions, 12627
graphic patterns, 41-42, 119-27
lines, 55—63, 117-19
multiple figures, 77—79
polygons, 124-26
sine wave, 12627
square, 120-21
star, 122
star field, 62
stripes, 62—64
See also Drawing
Pointer, 85
POKE, 128-40
Polygon. See Plotting
Polynomial, 101
Population
density, 93
growth, 74
New England states, 87—-89, 94-95, 99
POSITION statement, 22, 24-25, 37-39, 144
PRINT statement, 6-8, 19
comma, 22
semicolon, 23
Printer, 151

174

PRINT#, 149-51, 155

PRINT#, 6, 131-32

Pseudocode, 51, 71-73, 143, 157—-58
PTRIG, 82

Q

Question mark, 7—8

R

RAD, 28
RAM (Random access memory), 3, 128, 137
Random checkerboard. See checkerboard pattern
Random numbers, 27, 68
Random stripe pattern, 68—69
Radian, 28
Read only memory. See ROM
READ . . . DATA, 84-86

with subscripted variable, 97
Relational operators, 43, 46—47
REM, 17
Repeat until. See Loops
Repeat while. See Loops
Reserved words, 9, 164
RESTORE, 84-85
RETURN key, 2-3, 7, 31
RETURN statement, 75—76
Reverse video, 5, 26, 87
Right triangle. See Triangle
RIGHTS, 103
RND, 27
ROM, 2, 128, 132, 137
RS-232 serial port, 151
RUN, 7, 14-15

S

SAVE, 14
Scale. See musical sclae
Scaling factor, 121
Scaling figures, 122
Scientific notation, 22
Screen color, 40
Screen editor, 151
Screen layout, 37
hangman, 142
organ, 156
SELECT key, 129-30
Semantics, 13
Semicolon, 23
Semiperimeter, 49
Sequence number, 16
Sequential file:
reading words, 152-55
storing numbers, 155
storing words, 149-51

SETCOLOR, 40, 56-63, 117, 134-35

SGN, 26-27
SHIFT key, 2-3

Shuffling deck of cards. See Playing cards

SIN, 28, 123, 127

Sine, 28, 123

Sine wave. See Plotting

Siren sound, 41

6502 microprocessor, 13, 128-29

6809 microprocessor, 13

Sorting:
in increasing order, 98-99
a column of a 2-D array, 113-15
in decreasing order, 99—100
a hand of cards by suit, 113-15

SOUND, 35, 156

Sound effects, 40—41

Sounds on the ATARI, 35

SQQR, 27

Square root, 27

Stack, 169

Standard deviation, 100

Star field. See Plotting

START key, 129-30

STICK, 83

STOP, 16

STRIG, 83

String arrays, 94-96
simulating, 96

String functions, 102—104

String variable, 9-10, 18

Strings, 6
manipulating, 102—-103

Stripes. See Plotting

Structured flowcharts. See Flowchart

Structured programming, 13

STR$, 103-104

Stubs, 145, 158

Subroutines, 75-81

Subscripted variable, 95

Subscripts, 94-95

Subtraction, 19

Substrings, 103

Suit. See playing cards

Syntax, 13

SYSTEM RESET, 40

T

TAB key, 22, 24
Temperature, 35
Text:

Train model of program, 18, 51, 71-73

modes, 57, 116—17, 131-36

on high-resolution graphics screen, 139, 158-60
Tic-tac-toe, 65
Top-down programming, 141, 145

TRAP, 149, 153
Triangle

right, 27-28
See also Area

Trigonometric functions, 28
TRS-80, 1, 13
Two-dimensional array. See Arrays

U

Upper-case letters, 3
USR, 169

\

VAL, 103-104
Variables:

numerical, See numerical variables
string, See string variables
subscripted, See subscripted variable

Vertical bar graphs. See Bar graphs
Voice, 35
Volume. See Loudness

W

W
W

z

eekly pay program. See Pay program
rite data to disk. See PRINT#

Z80 microprocessor, 13

175

. | ;'.Iul-::-"!_ SO
_ B lln-'" '.:-'I':Ifl:.l-'l"!

s i

R .

| . i 1 . B . - ;"r:f:&} I

e e - :

l I
- .I

| i'I

e

- -IIHlII.I -I

-

e

PERSONAL COMPUTERS

RD HASKIELLL

[1

atarl basic

ThIS practical, easy-to-use guidebook provides a solid introduction to
programming an ATARI computer in BASIC.

// \\

Complete with examples illustrated by actual photographs taken from
the computer’s video screen, ATARI BASIC offers a hands-on,
step-by-step approach to top-down programming that will enable you
to master fundamental concepts and program a computer with ease
and expertise in practically no time at all.

Written for the beginning and advanced programmer alike—for
self-study or classroom instruction—ATARI BASIC tells you everything
vou need to know to make the most of your ATARI computer, including
valuable information on:

* low-resolution graphics

e high-resolution graphics

e operation of the cassette tape recorder and floppy disk drive
e |oops and arrays

e string variables and string functions

¢ how to include sound effects

e animated graphics

e and much more.

Richard Haskell holds a Ph.D. from Rensselaer Polytechnic Institute
and is an engineering professor at Oakland University in Michigan. In
addition, he has designed numerous microprocessor-based systems
for industrial applications and written three other books in the
Prentice-Hall computer series entitled PET/CBM BASIC, TRS-80
EXTENDED COLOR BASIC, and APPLE BASIC.

PRENTICE-HALL, Inc., Englewood Cliffs, New Jersey 07632

m

ISBN 0-13-049791-b

	Cover

	Contents

	Preface

	1: Learning to use the Atari Keyboard

	2: Learning to program in BASIC

	3: Learning more about PRINT

	4: Entering Data from the keyboard - Learning about INPUT

	5: A Repetition Loop - Learning about FOR...NEXT

	6: Making Choice - Learning about IF...THEN

	7: Learning to use low resolution graphics - Displaying the flag.

	8: Learning more about Loops

	9: Subroutines: Learning to use GOSUB and RETURN

	10: Making Bar Graphs - Learnign about READ...DATA

	11: Learning to use arrays

	12: More about Strings

	13: Learning to use High-resoultion graphics

	14: Learning to PEEK and POKE

	15: Learning to put it all together

	Appendices

	A: Reserved Words

	B: ATASCII Codes

	C: Error Codes

	D: Hex Numbers

	E: Using Machine Language from BASIC

	F: Formatting a Disk

	Summary of BASIC Statements

	Index

