

Richard Haskell holds a Ph.D. from Rensselaer Poly
technic Institute and is an engineering professor at
Oakland University in Michigan. In addition, he has
designed numerous microprocessor-based systems
for industrial application and written four other books
in the Prentice-Hall computer series entitled PETI
CBM BASIC, APPLE BASIC, APPLE BASIC: 6502 As
sembly Language Tutor, and TRS-80 Extended Color
BASIC.

/

AlARI BASIC

RICHARD HASKELL

A SP1C1RUM BOOK

PRENTICE-HALL, INC.
Englewood Cliffs, NJ 07362

Library of Congress Cata loging in Publication Data

Haskell , Richard E.
Atari basic.

"A Spectrum Book. "
Includes index.
1. Atari (Computer)-Programming. 2. Basic

(Computer program language) I. Title

QA76.8.A82 H37 1983 00l.64'24 82-25070
ISBN 0-13-049809-2
ISBN 0-13-049791-6 (pbk.)

This book is ava il able at a special discount when ordered in bulk
quantit ies. Contact Prent ice-Hall , Inc., Genera l Publishing Divi
sion , Special Sales, Englewood Cli ffs, N.J. 07632.

© 1983 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey
07632. All rights reserved. No part of this book
may be reproduced in any fo rm or by any means
w ithout permi ss ion in writing from the publ isher. A SPECTRUM
BOOK. Printed in the United States of America

10 9 8 7 6 5 4

Editorial/product ion supervision by Cyndy Lyle Rymer
Interior design by Frank Moorman
Page layout by Fred Dahl
Manufacturing buyer Cathie Lenard

ISBN 0-13-049791-6 {PBK.}

ISBN 0-13-049809-2

Prentice-Hall International , Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada Inc., Toronto
Prentice-Hall of India Pri vate Lim ited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd. , Singapore
Whiteha ll Books Limited, Wellington , New Zea land
Ed itora Prentice-Ha ll do Brasil Ltda., Rio de Janeiro

CONTENTS

Preface, xi

1
LEARNING TO USE THE ATARI KEYBOARD, 1

THE ATARI KEYBOARD/3 MAKING GRAPHIC FIGURES/4 REVERSE VIDEO/5 STRINGS AND
THE PRINT STATEMENT/6 DEFERRED MODE OF EXECUTION/7 EDITING USING THE

BACKSPACE, DELETE, AND INSERT KEYS/8 STRING VARIABLES/9 LINE LENGTH/l0

2
LEARNING TO PROGRAM IN BASIC, 12

THE BASIC PROGRAMMING LANGUAGEI12 SAVING YOUR PROGRAMSI13 STOPPING
PROGRAM EXECUTIONI15 THE STRUCTURE OF A BASIC PROGRAMI16

------ ------- --- -.

3
LEARNING MORE ABOUT PRINT, 19

THE ATARI AS A CALCULATOR/19 NUMERICAL VARIABLES/21 REVERSE VIDEO AND
LOWER-CASE LETTERS/26 SOME BUILT-IN FUNCTIONS/26

4
ENTERING DATA FROM THE KEYBOARD-LEARNING

ABOUT INPUT, 31

THE INPUT STATEMENT/3 1 SUM OF TWO NUMBERS/32 AREA OF A
RECTANGLE/32 AREA OF A CIRCLE/33 GAS MILEAGE/3 3 NAME AND ADDRESS/34

MAKING SOUNDS/35

5
A REPETITION LOOP-LEARNING ABOUT

FOR ... NEXT, 36

THE FOR . .. NEXT LOOP/3 6 NESTED FOR ... NEXT LOOPS/39 SOUND

EFFECTS/40 PLOTTING GRAPHIC PATTERNS/41

6
MAKING CHOICES-LEARNING ABOUT IF ... THEN, 43

THE IF . . . THEN STATEMENT/43 RELATIONAL OPERATORS/46 LOGICAL

OPERATORS/47 WEEKLY PAY PROGRAM/48 AREA OF A TRIANGLE/49 FLOWCHARTS
AND PSEUDOCODE/51

7
LEARNING TO USE LOW-RESOLUTION GRAPHICS

DISPLAYING THE FLAG, 55

PLOTTING DOTS AND LINES USING THE PLOT AND
DRAWTO STATEMENTS/55 DISPLAYING THE FLAG/64

8
LEARNING MORE ABOUT LOOPS-ANOTHER LOOK AT

IF ... THEN, 66

THE REPEAT WHILE LOOP/66 TRIANGLE PROGRAM/67 RANDOM STRIPE
PATTERNS/68 RANDOM CHECKERBOARD PATTERN/70 DIFFERENT TYPES OF LOOPS/71

9
SUBROUTINES: LEARNING TO USE GOSUB

AND RETURN, 75

THE GOSUB AND RETURN STATEMENTS/75 PLOTTING MULTIPLE FIGURES/77 PLOTTING
YOUR NAME/79 USING THE GAME PADDLES/81 USING THE JOYSTICKS/83

10
MAKING BAR GRAPHS- LEARNING ABOUT

READ ... DATA, 84

THE READ, DATA, AND RESTORE STATEMENTS/84 HORIZONTAL BAR
GRAPHS/87 VERTICAL BAR GRAPHS/89

11
LEARNING TO USE ARRAYS, 94

ARRAYS/94 SIMULATING STRING ARRAYS/96 BAR GRAPHS USING ARRAYS/97

12
MORE ABOUT STRINGS, 102

MANIPULATING STRINGSI102 THE NUMERIC/STRING FUNCTIONS VAL
AND STR$1103 THE ASCII CODE FUNCTIONS ASC AND CHR$1104 PRINTING DOLLARS

AND CENTS/ l 06 PLAYING CARDS/l09

13
LEARNING TO USE HIGH-RESOLUTION GRAPHICS, 116

ATARI GRAPHICS MODESI116 GRAPHICS MODE 8/11 7 PLOTTING HIGH-RESOLUTION
GRAPHIC FIGURES/119

14
LEARNING TO PEEK AND POKE, 128

THE STATEMENTS PEEK AND POKE/128 READING THE KEYBOARDI130 TEXT MODES 1
AND 2/131 DEFINING YOUR OWN CHARACTER SET/137

15
LEARNING TO PUT IT ALL TOGETHER, 141

HANGMAN/141 STORING DATA ON A DISKETTE/149 ATARI
ORGAN/155 CONCLUSION/162

APPENDICES, 164

INDEX, 171

PREFACE

Anyone planning to teach a BASIC programming
course using ATARI computers is faced with the prob
lem of selecting an appropriate text. Programming
manuals provided by the manufacturer are generally
more suitable for reference than for teaching.
Standard textbooks on BASIC programming will de
scribe a BASIC language enough at variance with
AT ARI BASIC to lead to considerable frustration on the
part of the student. Such texts will be of no help in
learning to use the graphics capability of the ATARI
computer. Since many interesting programs on the
ATARI will involve graphics, these texts will be of lit
tle value .

This book is designed to be used as a text for learn
ing to program in BASIC using the ATARI computer. It
should be suitable for introductory programming
courses at the high school, junior college, or univer
sity levels . It can also be used for self-study with an
AT ARI computer.

Three companion texts entitled PET/CAM BASIC,
APPLE BASIC, and TRS-80 EXTENDED COLOR BA
SIC are also available for use with these computers .

The strategy of this book is " Iearning by doing. "
Step by step the student is led through all aspects of
BASIC programming on an ATARI computer. All ex
amples are illustrated with many photographs taken
from the computer's TV screen. Many of the funda
mental programming ideas are developed using ex-

amples involving graphics. This has the advantage of
providing a direct visual picture of what the program
is doing. In addition, it provides examples that will be
useful for anyone wishing to write programs in a spe
cific applications area .

Chapter 1 introduces the ATARI keyboard and the
idea of string variables . Chapter 2 talks about the gen
eral nature of BASIC programs and covers the opera
tion of the cassette tape recorder and floppy disk
drive.

Chapter 3 covers numerical variables, arithmetic
expressions, and the ATARl's built-in functions. The
INPUT statement is covered in Chapter 4 with exam
ples that include making sounds. Chapter 5 intro
duces the FOR ... NEXT loop with programs to pro
duce several sound effects. Chapter 6 introduces the
IF .. . THEN statement and relational and logical op
erators.

The use of low-resolution graphics is introduced in
Chapter 7, where the American flag is displayed on
the screen. A more complete discussion of loops is
given in Chapter 8 . The use of subroutines is covered
in Chapter 9, where the student learns to draw multi
ple figures of varying size and to use the game pad
dies and joysticks.

The READ ... DATA statement is introduced in
Chapter 10, which covers the method of drawing bar
graphs. The topic of arrays is discussed in Chapter 11 .

Strings and string functions are described in detail in
Chapter 12 with examples given for dealing a hand of
cards. High-resolution graphics is covered in Chapter
13, including examples showing how to plot circles
and polygons. Chapter 14 describes the use of the
PEEK and POKE statements, including how to use
graphics and text modes 1 and 2, how to read the
keyboard, how to define your own character set, and
how to write text on the high-resolution graphics
screen. Chapter 15 describes the development of two
complete programs: the HANGMAN word game and
an AT ARI organ that plays four octaves of music from
the ATARI keyboard. This chapter also includes ex
amples of how to store data on a floppy disk.

Students who complete this text will have a solid
foundation in fundamental programming techniques
and will have acquired the particular skill of being
able to program the AT ARI computer using BASIC.

It is a pleasure to acknowledge my students of
many years who had to learn to program on a large
computer with none of the graphics capability of the
AT ARI computer, but on whom many of the ideas in
this book were first tested. Invaluable help in using
the ATARI computer was received from Anne
Jaworski and Laura Snider-Feldmesser. Special thanks
go to Sharon Rix, who typed the manuscript with
skill, patience, and good humor.

ATARI BASIC

LEARNING TO USE
THE ATARI KEYBOARD

There is only one way to learn how to program a
computer. You must write programs and run them on
a computer. It is not possible to learn to program by
reading about it. Programming is an action activity.
You must do it! This book is designed to help you
learn how to program in the BASIC programming lan
guage by actually using an ATARI computer.

The ATARI computer is one of several popular per
sonal computers (such as the PET, the Apple II , and
the TRS-80) that are finding their way into an
increasing number of homes and schools. All of these
personal computers will run programs written in the
BASIC programming language. However, this lan
guage is implemented somewhat differently on each
of these various computers. This is particularly true
with respect to how graphics programming is done.
This means that a BASIC program written for an Apple
II computer will not, in general, run on an ATARI
without some modification. It also means that if you
are learning BASIC for the first time, it will be easier for
you if you use a book written specifically for the kind
of computer you are using. In this way you will not
become frustrated by all of the I ittle "exceptions" that
apply only to your computer.

This book is written with the assumption that you
have an ATARI 800 or ATARI400 computer available
for you to use.

The programs shown in this book were all written
on an AT ARI 800 computer, shown in Figure 1.1.
However, most of the programs will run on an ATARI
400.

In this chapter you will become familiar with the
use of the ATARI keyboard. In particular you will
learn the meaning of the special keys shown in Figure
1.2. In the process you will learn how to draw simple
graph ic figures .

You will also learn

1. to use the PRI NT statement

FIGURE 1.1 The AT ARI 800 computer.

D AIAR\ @ItJjQ)
'~-------- r

,

--- -----)
$ '" & , ; ., I) (un ""10' ~" IT ! ., 4 5 6 J!.. 2- 0 < > t.",

I ~ .• ur Q W £ R T Y U 0 P 0 - 01

Gt3 A S 0 F G H J K L 11 \ 111 /\
.0 • • +

Z X C V B N M 7. JI\. I -
FIGURE 1.2 Special keys discussed in this chapter.

2. what strings and string variab les are

3. the difference between the immediate and de
ferred modes of execution

4. to use the LIST and RUN commands

5. to edit a statement.

THE AlARI KEYBOARD

Begin by turning on your ATARI computer. This is
done with the switch on the right side of the com
puter, shown in Figure 1.3. If you're using a disk
drive, turn the disk drive on first, insert a master
diskette, and then turn on the computer. The TV
screen should have the display shown in Figure 1.4.

FIGURE 1.3 Turning on the ATARI computer.

FIGURE 1.4 Initial screen display using an ATARI
computer.

2

Your ATARI computer contains a read only mem
ory cartridge, called a ROM, that contains the BASIC

interpreter. This cartridge can be seen by opening the
lid above the keyboard, as shown in Figure 1.5. An
other ROM cartridge is located under the ATARl's
main cover. This cartridge contains a collection of
systems programs called an operating system. The lo
cation of this ROM cartridge is shown in Figure 1.6.

FIGURE 1.5 ROM cartridge containing the BASIC
interpreter.

fffJifffHfflHffffffffffffn 111 11111 II II Ii!!m , \ ...-, -.."... I:>.~~ 'f
f

$ '" & ., I) h(U '·un PUt lC
? ., 4 5 e_ ..L e -9 0 < >

Q W £ R T Y U 0 P a- liI

A S 0 F G H J K L 11 \ ./\
' .. +

Z X C V 8 N M JI\.

'"
" , - .

~
-,i""""',-1<

\ !--.n·~\I\ t l~.I!j'

f 4' , yS T T , T r) ~-~2.. J , 8 .9 0 < > &At .. !> '11.10

FIGURE 1.6 Cartridges containing read/write
memory (RAM) and the ATARl's operating system
(ROM).

In addition to the read only memory (ROM), your
ATARI computer also contains some read/write mem
ory, called RAM for random-access memory. These
RAM cartridges are also shown in Figure 1.6. The dif
ference between ROM and RAM is that you can
change the contents of a RAM location, while the
contents of a ROM location are fixed and can't be
changed. Also, when you turn the power to your
AT ARI computer off, the contents of the RAM loca
tions are lost, while the contents of the ROM loca
tions are retained . This is why the BASIC interpreter,
located in ROM, is always there every time you turn
your computer on. On the other hand , every program
you write is stored in RAM and is lost whenever you
turn the power off. This is why you must save your
programs on a cassette tape or diskette if you wish to
run them at a later time without having to type in the
entire program again .

The amount of RAM you can have in your ATARI
depends on the number and size of the RAM car
tridges you have. Each cartridge may be either an 8K
or 16K RAM cartridge. The more RAM you have, the
larger the programs you can run and the more data
you can store in the computer. If you have 16K of
RAM, your ATARI contains 16,384 bytes of RAM
(1 K = 1,024 bytes). A byte is 8 bits, where a bit is a 1
or a O. Thus, for example, 10101101 is a byte. It takes
1 bytetostoreacharacterintheATARI.lfyourATARI
contains 32K bytes of RAM, you really have 32,768
bytes of RAM. Three 16K cartridges would give your
ATARI 48K or 49,152 bytes of RAM.

When the TV screen contains the word READY fol
lowed (on the next line) by a square cursor, the com
puter is ready and waiting for you to type in some
thing. Try typing your name and then press the
RETURN key. If your name is JOHN you should see
something like the display shown in Figure 1.7.

FIGURE 1.7 An ERROR occurs when you type an
invalid BASIC command .

Note that the message

ERROR- JOHN

appeared on the screen when you pressed the RE
TURN key . This is because JOHN is not a valid BASIC

command and the computer can only respond to
BASIC commands that it understands. You will learn
all of these valid BASIC commands in this book. If you
still type an invalid command because of misspelling,
for example, the ATARI will respond with an ERROR
message. You cannot hurt the computer by pressing
the wrong key. If it doesn't like what you typed, it will
let you know.

When you turn on the ATARI it will print letters in
upper case (CAPS). All BASIC statements must be
typed in all caps. If you want to type lower-case let
ters, press the CAPS/LOWR key located on the right
side of the keyboard (see Figure 1.2). Then type
JOHN again as shown in Figure 1.7. Note that you
still get an ERROR, but this time the ATARI does not
even recognize the first letter because it is lower case.
To return to all caps, press the CAPS/LOWR key
while holding down the SHIFT key.

Graphic Keys

All letter keys (and some punctuation keys) have
graphic symbols associated with them . These are
shown in Figure 1.8 as they are positioned on the
keyboard .

3

FIGURE 1.8 Graphic symbols can be printed by
holding down the CTRL key.

These symbols can be typed on the screen by hold
ing down the CTRL key while pressing the particular
graphic key. For example, if you press keys P . , ;
while holding the CTRL key down you will d isp lay
the spade, heart, diamond, and club used in play ing
cards, as shown in Figure 1.9.

FIGURE 1.9 Playing card graphic symbols .

Note that when you press RETURN after typing
only graphic symbo ls you also get an ERROR. Try
typing some of the graphic symbols to see what they
look like. They are shown in Figure 1.10.

Cursor Keys

The four keys labeled cursor keys in Figure 1.2 con
tain four arrows on small white squares. If you press
any of these keys whi le holding the CTRL key down,
the cursor w ill move in the direction of the arrow. Try
it.

Graphic Graphic Graphic
Key Symbol Key Symbol Key Symbol

comma C J ~ T C
A G K ~ U ~
B I) L a v (J

C CI M iI w ~
D CJ N ~ X " E ~ 0 ~ y [J

F ~ P g Z g
G ~ Q

.,
Period D

H ~ R = semicolon D
II s 0

FIGURE 1.10 Graphic symbols available on the
keyboard.

If you continue to hold a cursor key down (while
also holding the CTRL key down) the cursor will con
tinually move across the screen. Try this . In fact, all
keys on the keyboard will repeat if they are held
down .

Note that if you move the cursor above the top of
the screen, it will come in at the bottom. Similarly, if
you move it below the bottom of the screen it wi II
come in at the top . Moving the cursor past the right
edge of the screen will cause it to come in at the left
on the same line. Similarly, moving it off the left edge
of the screen causes it to come in at the right edge on
the same line. Try this.

CLEAR Key

The CLEAR key is located on the top row of keys . The
word CLEAR appea rs over the < symbol (see Figure
1.2). If you press this key while holding down the
SHIFT key, the screen will clear. Try this. The sc reen
will also clear if you press the CLEAR key while hold
ing down the CTRL key.

MAKING GRAPHIC FIGURES

The graph ic keys and the cursor keys can be com
bined to fo rm graphi c figures . For example, c lear the
screen (by press ing SHIFT CLEAR); then move the
cursor down near the center of the screen. Now type
the following keys. (CTRL Q directs you to type the
graphic symbol on key Q.)

4

CTRL Q

CTRL E

CTRL t
CTRL ~

CTRL ~

CTRL Z

CTRL C

You should have generated a square figure, as shown
in Figure 1.11.

FIGURE 1.11 Square figure generated used
keys, Q, E, Z, and C.

Similar shapes ca n be made using other graphi c
keys . For example, in Fi gure 1.12 the so lid square is
made us ing the graphics on keys I, 0, K, and L. The
diamond is made using the graphics on keys F and G.
Try mak ing these f igures .

FIGURE 1.12 Hallow square generated using
keys Q, E, Z, and C; solid square generated using
keys I, 0, K, and L; diamond generated using keys
F and G .

REVERSE VI DED

The ATA RI key shown in Fi gure 1. 2 is used to turn the
reverse v ideo on and off. Clea r the screen, press the
ATARI key, and then type

THIS IS REVERSE VIDEO

The resul t should be as shown in Fi gure 1.13. To turn
the reverse v ideo off, press the ATA RI key aga in .

The reverse v ideo key can be useful w hen making
certa in graphi c figures . For example, the graphi c f ig
ure in Fi gure 1.14 can be made by typ ing the fo llow
ing keys:

CTRL H

CTRL J
CTRL t
CTRL ~

CTRL ~

REVERSE VIDEO ON (ATARI KEY)

CTRL J
CTRL H

REVERSE VIDEO OFF (ATARI KEY)

FIGURE 1.14 Graphic figure generated uSing
keys Hand J plus reverse video .

Try making thi s figure.

EXERCISE 1.1
Try to generate the graphic fi gure shown in Fi gure
1.1 5.

FIGURE 1.15 Graphic figure for Exercise 1.1.

5

STRINGS AND THE PRINT STATEMENT

Clear the screen and type

PRINT "THIS IS A STRING"

followed by RETURN. The result should be as shown
in Figure 1.16. Note that the computer immediately
printed the words THIS IS A STRING . Any sequence
of characters enclosed between quotation marks (" If)

is called a string. If you type the word PRINT followed
by a string, the computer will immediately print this
string (without the quotation marks) on the screen.
This is called the immediate mode of execution .

FIGURE 1.16 Using the PRINT statement in the
immediate mode of execution.

When writing a BASIC statement, spaces are nor
mally ignored by the computer. Thus, for example,
you could have included a space following the word
PRINT in Figure 1.16. However, when included as
part of a string (that is, between quotation marks)
spaces are not ignored.

A string may include the graphic characters. For
example, try printing the playing card symbols as
shown in Figure 1.17 (keys P . , ;;).

FIGURE 1.17 Printing graphic symbols using the
PRINT statement.

A string may also include the cursor moves. This
may seem a little strange at first, but as you will see,
this is what allows you to prestore an entire graphic
figure as a string. If you press the ESC key (see Figure
1.2) before you press one of the cursor keys in a string
(that is, after you have typed one quotation mark) the
cursor movement does not take place at that time. In
stead, the cursor arrow is printed in the string. Later,

6

when this string is printed, the cursor movements will
occur in the order in which they appear in the string.

For example, suppose that you want to print the
square graphic figure shown in Figure 1.11. Just in
clude the key strokes

CTRL Q
CTRL E

ESC CTRL ~

ESC CTRL +

ESC CTRL +

CTRL Z

CTRL C

as a string in a PRINT statement. The result will look
like Figure 1.18. Try it. Note that when the PRINT
statement is executed, it is just as if you typed all the
keys, including the cursor moves, very rapidly .

FIGURE 1.18 PRINT statement using cursor
moves.

The arrows that appear in a string when you press
the ESC key before typing the cursor key are simply
used to tell the AT ARI what to do with the cursor
when the PRINT statement is executed.

EXERCISE 1.2
Use the PRINT statement to generate the graphic fig
ure shown in Figure 1 .14. Your result should look like
Figure 1.19.

FIGURE 1.19 Answer to Exercise 1.2.

DEFERRED MODE OF EXECUTION

If a BASIC statement such as PRINT is preceded by a
line number (such as 10), the statement is not exe
cuted immediately but rather its execution is deferred
until the command RUN is typed . For example, Fig
ure 1.20 shows how to print the playing card symbols
using the deferred modes of execution. When BASIC

statements have line numbers, these statements are
" stored" in the computer. They can be run at any
time. If you type RUN again the computer will again
display the playing card symbols. Try it. *

FIGURE 1.20 PRINT statement using the deferred
mode of execution.

Note that you must press RETURN at the end of
each statement (such as PRINT) or command (such as
RU N). The AT ARI does not look at what you have
typed on a line until you press RETURN . The ATARI
then deciphers what you typed on the line and de
cides what to do.

You can always look to see what BASIC statements
you currently have stored in the ATARI by typing
LIST. Try it. You should have listed the single PRINT
statement number 10 shown in Figure 1.21.

FIGURE 1.21 The LIST command will list all BASIC

statements stored in memory.

*Type NEW before typing the statement in Figure 1.20. See
Chapter 2 for a discussion of the command NEW.

You can now edit this PRINT statement by using
the cursor keys. Suppose that you want to print the
word HEAR instead of the playing card symbols.
Using the cursor keys, move the cursor over the club
in the PRINT statement. Then type HEAR followed by
RETURN . Now move the cursor down below READY
and type RUN. The result should be as shown in Fig
ure 1.22 .

FIGURE 1.22 (a) Editing a PRINT statement; (b)
running edited program.

(a)

(b)

The question mark (?) can be used as an abbrevia
tion for the word PRINT. Try typing

?"THIS WILL STILL PRINT"

In the deferred mode, if you type

1 0 ? "H ELLO"

RUN

the word HELLO will be printed. Note that if you now
type LIST, a space will be inserted after the question
mark (see Figure 1.23).

7

?"THIS ..,ILL STILL PRINT"
THIS ..,ILL STILL PRINT

READY
1.9?"HELLO"
RUN
HELLO

READY
LIST

1.0 ? "HELLO"

REtlDY •
FIGURE 1.23 The question mark (?) can be used
as a substitute for the word PRINT.

You can clear the screen in a BASIC program by
including the keystrokes ESC SHIFT CLEAR in a string
in a PRINT statement. For example, try the statement

10 ?"ESC SHIFT CLEAR"

Note that a special arrow symbol that points up and
to the left is displayed between the double quotes.
When you execute this statement by typing RUN the
screen will clear. Try it.

EDITING USING THE BACKSPACE, DELETE, AND INSERT KEYS

The backspace key contains the words DELETE/BACK
S; it is located above the RETURN key. When you
press the backspace key the cursor moves one space
to the left and erases any character that may have
been located at that position on the screen. For exam
ple, type

PRINT "ABCSEF"

but do not press the RETURN key. Now press the
backspace key four times so that SEF" is erased. Now
retype DEF" and then press RETURN. The letters
ABCDEF should be printed on the screen. If you press
the DELETE/BACK S key while holding down the
SHIFT key, the entire current line will be erased.

Suppose that you have already pressed the RE
TURN key before you notice a mistake. There are a
couple ofthings you can do. You can just type the en
tire line over again . Any time you type a BASIC state
ment beginning with a particular line number, this
new statement will replace any previous statement
having the same line number. This is also an easy
way to erase an entire line in a BASIC program. For ex
ample, if you type the number 50 and then press the
RETURN key immediately, line 50 will be completely
erased from the program.

You can also edit a line by using the INSERT and
DELETE keys while holding down the CTRL key. For
example, suppose that you want to change the word
HEAR in the PRINT statement in Figure 1.22 to
HEARING. First list the statement by typing LIST.
Then move the cursor over the last quotation mark.
While holding the CTRL key down press the INSERT
key three times. This will move the quotation mark
over three places. Now you can type ING followed

8

by RETURN . If you now move the cursor down and
type RUN , the computer should print the word
HEARING, as shown in Figure 1.24.

FIGURE 1.24 Inserting ING into "HEAR."

(a)

(b)

(a)

FIGURE 1.25 Deleting HEA from "HEARING."

Suppose that you now want to change HEARING
to RING. Type LIST (this isn't necessary but it mini
mizes the distance you have to move the cursor) and
then move the cursor over the letter H in HEARING.
Hold down the CTRL key and press the DELETE key
three times . You should have deleted the letters HEA.
Note that pressing the DELETE key while holding

(b)

down the CTRL key will delete the character at the lo
cation of the cursor. Now press RETURN, move the
cursor down, and type RUN. The word RING should
be printed on the screen, as shown in Figure 1.25.

The INSERT and DELETE keys can be used to edit
any BASIC statement.

STRI NG VARIABLES

As you have seen, any sequence of characters en
closed between quotation marks is called a string.
Thus, for example, the following are strings:

"HELLO"

1/****"

"THIS IS A STRING"

Any character or graphic symbol can be included in a
string. To the ATARI a blank space is just another
character when it is included in a string.

A string can be given a special name and then can
be referred to by this name. These string names are
sometimes called string variables. The name of a
string must start with a letter and end with a dollar
sign ($); it can contain from 1 to 120 alphanumeric
characters. Thus, the following are valid string
names:

A$

B3$

AXE$

HOUSE$

FIVE$

The AT ARI has a number of reserved words that it is
constantly looking for. For example, RUN and LIST
are reserved words. A complete list of reserved words

is given in Appendix A . If a variable name starts with
one of these reserved words, your program may not
run properly. Thus, it is probably a good idea to keep
your names short. Shorter names will also use less
memory.

A string variable such as A$ can be assigned a par
ticular string such as "THIS IS A STRING". This string
contains 16 characters (including all blanks). Before
this string can be assigned to A$, the variable A$ must
be dimensioned to 16 using the DIM statement. *

10 DIM A$(16)

Th is statement wi II reserve 16 character positions for
the string A$.

The equal sign (=) can be used in BASIC to assign a
particular string to a particular string variable or
name. Thus, for example, you could type **

10 DIM A$(16)

20 A$="THIS IS A STRING"

*This use of the DIM statement in ATARI BASIC differs
from the more common use of the DIM statement in
other versions of BASIC to dimension string arrays .
**Some versions of BASIC require you to use the word
LET in an assignment statement. Thus, you would
write

9

From now on the name A$ is considered to be the
same thing as the string "THIS IS A STRING". You
can , for example, print it with the PRINT statement.

30 PRINT A$

Try this. You should get the result shown in Figure
1.26.

FIGURE 1.26 Using string variables in a PRINT
statement.

If you change line lOin Figure 1.26 to

10 DIM A$(12)

then only the first 12 characters of the string will be
printed. Try it. You can always dimension a string
with a larger value than the actual number of charac
ters in the stri ng.

Of course, you can include graphic characters and
cursor moves in your definition of a string variable.
Thus, for example, to draw the square figure in Figure
1.18 you could define a string variable A$, as shown
in Figure 1.27.

FIGURE 1.27 Defining a graphic figure as a
string variable.

You can also define more than one graphic figure
and then print them all. For example, the three
graphic figures shown in Figure 1.12 can be defined
as the following three string variables:

A$ = hollow square

B$ = solid square

($ = diamond

Figure 1.28 shows a program that defines each of
these string variables and then prints each figure.
Type in this program and run it.

FIGURE 1.28 String variable definitions of the
figures in Figure 1.12.

LINE LENGTH

Each line on the ATARI screen contains 38 character
positions. (There are really 40 character positions on
the screen but the printing starts in the third column.)
However, the computer is able to process up to three

10

screen lines per BASIC statement. Thus, for example, if
you are defining a string using a statement such as

10 A$=" -------

and you get to the end of the line on the screen, you
just keep on typing. DO NOT PRESS RETURN. The
ATARI will automatically continue the statement on
the next line. When you finish the statement you must
then press RETU RN.

EXERCISE 1.3
Write and run a BASIC program that will draw each of
the following graphic figures on the screen:

20 LET A$="THIS IS A STRING"

The use of the word LET is optional in ATARI BASIC. We
will not use it.

11

LEARNING TO PROGRAM IN BASIC

In Chapter 1 you became fami li ar with using your
AT ARI keyboard. You also learned how to draw sim
ple graphic figures. We wi ll now beg in to look at
some of the ideas associated with writing BASIC pro
grams.

In th is chapter you wi II learn

1. how to use a cassette tape recorder and/or d isk
drive to save your programs

2. to use the commands, NEW, CSAVE, CLOAD
and CONT

3. to use the BREAK key

4. the general structure of a BASIC program

5. to use the statements GOTO, STOP, END, and
REM.

THE BASIC PROGRAMMING LANGUAGE

The programming language BASIC was developed at
Dartmouth Co llege in 1963. The word BASIC stands
for Beginners All-purpose Symbolic Instruction Code,
and the language was designed to be easy to learn
and easy to use. Over the years the BASIC language
has been extended and modified by various manufac
turers . ATARI BASIC is sim il ar to the BASIC that is found
on most microcomputers today.

The main advantages of using BASIC are that it is
simple to use and is avai lable on a cartr idge for your
ATARI. For all its simpli city, you w ill find that ATARI
BASIC is quite powerful, allowing you to write high
performance programs fairly eas ily.

12

There are, however, certain drawbacks to ATARI
BASIC. First of all , it is slow. You probably won't no
tice this until you try to draw a large picture quickly .
The reason it is slow is that the ATARI contains a BASIC

interpreter in its ROM cartridge . This means that each
time you run your program the ATARI decodes and
executes each of your BASIC statements one by one.
This takes t ime.

Assembly language

If you want to really speed up the execution time of a
program you must write the program in assembly

language rather than BASIC. Thi s is a lower-level lan
guage that the ATARI can execute directly. The
"brai n" of the ATARI is a 40-pin ch ip ca lled a 6502
microprocessor. It is this chip, shown in Fi gu re 2.1,
that ca n decode and execute a 6502 assembly lan
guage program. Any microcomputer that uses the
6502 microprocesso r can execute programs written
in 6502 assembly language. The Apple II and PET
computers also use a 6502 microprocessor. Radio
Shack TRS-80 Level II and Leve l III computers use the
Z80 microprocessor, which executes a complete ly
different assembly language. The TRS-80 Color Com
puter uses a 6809 microprocessor, which executes
still a different assembly language. We will not con
sider assembly language programming further in this
book.

FIGURE 2.1 The 6502 microprocessor IS the
"brain" of the ATARI.

o tlijS'l2 P
PI,SOl-ll

• 8107 '!'
-----~ -- - ---

Structured Programming

You may hea r that BASIC is not a very "well-struc
tured" language and that other languages such as
PASCAL are "better" in some sense . While it is true
that PASCAL almost forces you to write well-structured
programs, it is also true th at well-structured programs
ca n be written in any language, includ ing BASIC. In
this book we will try to minimize any bad program
ming habits that BASIC might encourage and show you
how to write good programs in BASIC.

learning the language

There are two aspects to learning computer
programming. The first is to learn a programming lan
guage. This is the easy part. The second is to lea rn
how to write programs to accomplish a parti cular
task. This is the hard part. Lea rning a computer lan
guage consists of learning the syntax and semantics of
the various statements that make up the language.
Syntax refers to the rules for forming the various state
ments. For example, the PRINT statement must be
spelled PRINT and a string must be enclosed between
quotation marks. We will look at more detail s of the
PRINT statement in the next chapter. Semantics refers
to what it is th at a parti cular statement does. For ex
ample, the statement PRINT followed by a string will
print the string on the screen.

learning How to Write Programs

Learning how to write a program to accomplish a par
ticular task is the hard part of computer program
ming. You must determine what you have to tell the
computer in order for it to do what you want. You
w ill f ind that the computer always does exactly what
you tell it to do. However, often what you tell it to do
is not what you think you are telling it to do. This will
lead to errors that are sometimes hard to find. The
best way to avoid many of these errors is to think
through the problem carefully before you start to
write any BASIC statements. Understanding exactly
what you want to do is a major step in solving a prob
lem.

It turns out that there are only a few basic rul es for
telling a computer what to do . Computers like to do
the sa me thing over and over again. This is accom
plished in a computer program by means of a loop.
We will look at a simple loop later in this chapter.
M ore detailed discu ss ions of loops are given in Chap
ters 5 and 8. The other thing computers like to do is to
make a simple choice between two alternatives. Thi s
process of making choices will be described in Chap
ter 6. Any computer program can be constructed by
combining loops with the process of making simple
choices .

SAVING YOUR PROGRAMS

Your ATARI may have either a cassette tape recorder
or a floppy disk drive connected to it. These devices
are used to store your programs on either a cassette
tape or a floppy disk. A floppy disk drive is more ex
pensive than a cassette tape recorder, but it is much

more convenient. You can store many programs on a
floppy disk and retrieve anyone quickly by name. In
this section we will show you how to save a program
on either a cassette tape or a floppy disk .

13

NEW

Type NEW followed by RETURN. This will clear any
BASIC program that you have stored in the computer.
You should type NEW before you begin typing in a
new program. Failure to do this may cause parts of
old programs to be combined with your new pro
gram.

Now type in the following program:

5 DIM A$(3), 8$(6), ($(9)
10 A$=//333//

20 B$=//666666//
30 ($ = //999999999//

40 ?A$
50 ?B$
60 ?($

This program listing and its execution are shown in
Figure 2.2.

FIGURE 2.2 This program prints three strips of
numbers.

Cassette Tape Recorder

Suppose that you wish to save the program shown in
, Figure 2.2 on a cassette tape. First make sure that the
tape recorder is properly connected to the AT ARI and
is plugged in. Rewind the tape (if necessary) and then
type

(SAVE

followed by RETURN. You should hear two "beeps, "
i nd icati ng that you shou Id press the PLAY and RE-

14

CORD buttons on the recorder . Do this and then
press the RETURN key on the ATARI keyboard. The
tape should start moving. This means that the ATARI
has started to store your program on the cassette tape .
When it has finished writing your program on the
tape (usually less than a minute), the READY message
will reappear on the screen.

Your program is now stored on the cassette tape .
In order to verify this, type NEW, which will clear
your BASIC program in the ATARI. For example, if you
now type LIST you will find that nothing gets listed. In
order to retrieve your program, you must load it in
from the cassette tape.

Rewind the tape and type

(LOAD

followed by RETURN. You should hear a single
"beep," indicating that you should press the PLAY
button on the recorder. Do this and then press the RE
TURN key on the ATARI keyboard. The tape should
start moving. Your program is now being loaded into
the AT ARI. When the READY message returns to the
screen, the tape will stop and your program will have
been completely loaded. You can see the program
listing now by typing LIST; you can execute the pro
gram by typing RUN.

You can store more than one program on each side
of the tape and can use the counter on the recorder to
position the tape to the proper location before using
CLOAD or CSAVE .

Floppy Disk Drive

If your AT ARI has a floppy disk drive connected to it,
you can save your program on a floppy disk by typing

SAVE //D:NUMBERS//

where NUMBERS is the name of the program. You
can make up any name containing up to eight letters
or digits (the first character should be a letter) option
ally followed by a suffix, .XXX. The top red light on
the disk drive will light up and the disk drive will
make a whirring sound for a few seconds while your
program is being written on the disk.

After the top red light on the disk drive goes out,
type DOS followed by A RETURN RETURN. This will
list all of the programs that are stored on the disk. This
list should now contain the name

NUMBERS

To verify that your program is really on the disk, type
NEW, which will clear your BASIC program in the
ATARI. If you now type LIST you will find that noth
ing gets listed. In order to retrieve your program from
the disk, type

LOAD JlD:NUMBERS"

The top red light on the disk drive will come on and
you will hear the whirring sound again . Your program
is being loaded into the AT ARI memory from the disk.
When the top red light goes out, your program will be
completely loaded . You can see the program listing
by typing LIST and execute the program by typing
RUN.

It is possible to both load and run a program with a
single command. If you type

RUN "D:NUMBERS"

the AT ARI wi" first load the program NUMBERS from
the floppy disk and then execute the program as soon
as it is completely loaded into the ATARI memory.

STOPPING PROGRAM EXECUTION

Add the statement

70 GOTO 40

to the program shown in Figure 2.2. If the program in
Figure 2.2 is in the computer memory, you can add
this statement by simply typing it as shown. Type LIST
in order to see the entire program. It should look like
Figure 2.3.

FIGURE 2.3 Program to display a continuous se
quence of number strings.

5 DIM A$(3),B$(6),C$(9)
10 A<t>:::::"333"
20 B$=" 66/::.666"
30 C$::=:" 9999(i9999"
40 ? AS
50 ? B$
60 ? [;$

70 GO TO 40

The statement

70 GOTO 40

means exactly what it says. When statement number
70 is executed it simply branches back and executes
statement number 40 again. This is a loop that contin
ues indefinitely, as shown in Figure 2.4.

FIGURE 2.4 An indefinite loop that prints num
bers until your press BREAK.

[

40 ?A$ prints three 3s
50 ?B$ prints six 6s
60 ?C$ prints nine 9s
70 GOTO 40

Now run this program. As you can see, the three
strings A$, B$, and C$ are being printed endlessly . In
order to stop this program, press the BREAK key lo
cated above the RETURN key. Note that you get a
BREAK message, as shown in Figure 2.5.

FIGURE 2.5 Stopping a program by pressing
BREAK.

CONT

The program shown in Figure 2.3 displays three 3s,
six 6s, and nine 9s over and over again. Each time the
program is run it will always start with the three 3s.
This can be seen in Figure 2.6, where the program
was stopped by pressing BREAK just after displaying
the six 6s. Note that the program starts again by
displaying the three 3s.

If a program has been stopped, the statement
CONT can be used to continue the program from the
place where it left off. This is illustrated in Figure 2.7,
where the program was again stopped just after
displaying the six 6s . Note that after typing CONT the
program restarts at the poi nt of d isplayi ng the nine 9s .

15

FIGURE 2.6 RUN causes the program to start at
the beginning.

STOP

The statement STOP can be included in a BASIC pro
gram. This will have the same effect as pressing
BREAK. This can be very useful in debugging (finding
the errors in) a program that doesn' t work properly.
You can just insert a STOP statement, check what the
program has done up to that point, and then resume
execution of the program by typing CaNT.

FIGURE 2.7 CO NT causes the program to start
from the place where it left off.

END

The END statement is traditionally used to stop a
BASIC program at the end of the program. It does not
cause a BREAK message as the STOP statement does.
In AT ARI BASIC the EN D statement is optional. As you
have seen, we have not been using the END state
ment in our programs. A BASIC program in the ATARI
will automatically stop if there are no more state
ments to execute.

THE STRUCTURE OF A BASIC PROGRAM

Sequence Numbers

A BASIC program consists of a sequence of BASIC state
ments. Each line of a BASIC program must begin with a
sequence number. When the program is executed,
the statement with the lowest sequence number is ex
ecuted first. Additional statements are then executed
in order of increasing sequence number. Sequence
numbers can be any integer between 0 and 32767.

When you write a BASIC program, you should in
crement your sequence numbers by 10. The program
should look like this:

16

10 first statement

20 second statement

30 third statement

etc.

This is done so that if you later want to insert a new
statement between the second and third statement,
you can just type

25 new statement

and this new statement will be inserted between
statement 20 and statement 30. If you hadn't left any
room between the second and third statements, you
would have had to renumber all of your statements.

If you think that you may want to add some new

3 REM PROGRAM TO PRINT THREE STRINGS OF NUMBERS
5 DIM A$(3),B$(6)~C$(9)
:[0 P,$::::" ~::'~::'3"
20 B$:::: "666666"
30 C'~::::" 9 c,?C?999999"
·<1-0 '-;:0 f.i$
~.iO r:., B$
60 '? C$
70 f3ClTCl 40

FIGURE 2.8 Use of the REM statement to make
remarks in a program.

statements at the beginning of your program, it would
be a good idea to start your program with a higher se
quence number, such as 100, and then continue with
110, 120, 130, and so on.

REM

A good statement to include at the beginning of your
program is a remark statement. This statement
consists of the three letters REM. The remainder of the
line can then be used for any kind of remark . These
remarks are ignored by the AT ARI when the program
is executed. Their only purpose is to make the pro
gram easier to understand. For example, in the pro
gram shown in Figure 2.3 you may want to add the
statement

3 REM PROGRAM TO PRINT THREE
STRINGS OF NUMBERS

as shown in Figure 2.8.
As mentioned earlier, any BASIC statement can use

more than one screen line. When you type the re
mark in Figure 2.8 and reach the end of the first line,
you must keep on typing. 00 not type RETURN at the
end of the first line or you will terminate the statement
at that point. You must then start the next line with a
new sequence number and another REM statement.
R. or .(SPACE) can be used as an abbreviation for
REM . They will both be changed to REM when the
program is listed .

Multiple Statements per line

AT ARI BASIC allows you to write more than one BASIC

statement per line by separating the statements with a
colon (:). By a line we mean the characters from the
line (or sequence) number to the RETURN, which
may consist of up to three screen lines. This can be an
advantage for a number of reasons : (1) It allows you
to group a number of short related statements to
gether; (2) it allows you to include remarks on the
same line as a BASIC statement; and (3) it saves some
memory by reducing the number of sequence num
bers in the program. Only the first BASIC statement on
a line has a sequence number. The remaining BASIC

statements on the line are simply separated from the
preceding one by a colon.

There are, however, some disadvantages to writ
ing more than one statement per line. If it is done in
discriminately, it can result in a program that is very
difficult to read and understand. You will not be able
to branch a statement (for example, with a GOTO
statement) that starts in the middle of a line, since it
will not have a sequence number. Finally, it is more
difficult to insert a new statement between existing
multiple statements. You should, therefore, be care
ful when writing multiple statements on a single line.

One good use of the multiple statement capability
is to include remarks that help to tell what is going on
in the program. For example, in Figure 2.9 we have
added three remarks that tell what each PRINT state
ment prints. Note that a colon (:) is used to separate
multiple statements on a single line.

FIGURE 2.9 Multiple statements on a single line
are separated by a colon (;) .

3 REM PROGRAM TO PRINT THREE STRINGS OF NUMBERS
5 DIM A$(3),B$(6),C$(9)
:[0 (~,$==" :::::~:;.~~:"

40 ? A$:REM PRINT THREES
50 ? B$:REM PRINT SIXES
60 ? C$:REM PRINT NINES
70 (30TD 40

17

More about LIST

We have seen that the command LIST will list the en
tire BASIC program that is stored in memory.

It is also possible to list only selected parts of a pro
gram. For example, if you type

LIST 30

only the line with the sequence number 30 will be
printed on the screen.

You can also list lines 20 through 40 by typing

LIST 20,40

These examples are shown in Figure 2.10.

Memory locations
and Computer Programs

A computer program is like a train going on a trip.
The seats in the train are the memory locations or
memory cells in the computer. Each seat has an "ad
dress" or name that identifies it. These names corre
spond to the variable names in a BASIC program. For
example, three different seat names could be A$, B$,
and C$. Each seat would have a different name.

Whoever or whatever is in a particular seat corre
sponds to the contents of a particular memory loca
tion in the computer. For example, if "JOHN" is sit
ting in seat A$, then the BASIC statement

A$= IJ JOHN"

can be interpreted as meaning: Put "JOHN" in seat
A$. It is very important to clearly distinguish between
the name of the memory location or seat on the train
(A$) and the contents of that memory location or seat
("JOHN"). See Figure 2.11.

Up to now all of our memory locations have con
tained strings and have had names that end with a
dollar sign. If a memory cell name does not end with
a dollar sign, the computer will assume that the mem
ory cell contains a number. The use of memory cells
containing numbers will be discussed in the next
chapter.

18

FIGURE 2.10 Examples of the LIST statement.

FIGURE 2.11 Memory locations are like seats on
a train.

LEARNING MORE ABOUT PRINT

In the first two chapters of this book you have written
short programs that print strings . In this chapter you
wi II see how the AT ARI can work with numbers as
well as strings . You will find that the ATARI can serve
as a very good calculator .

In this chapter you will learn

1. how to use the AT ARI as a calcu lator

2. to write arithmetic expressions involving addi
tion , subtraction, mutliplication, division, and
exponentiation

3. how to use the comma and semicolon in a
PRINT statement

4. how to use the TAB key in a PRINT statement

5. to use the POSITION statement

6. how to display letters in reverse video and
lower case

7. some of the built-in functions in the ATAR!.

THE ATARI AS A CALCULATOR

By using the PRINT statement in the immediate mode
of execution you can use your ATARI as a calculator.
You can add, subtract, multiply, divide, and raise a
number to a power.

Addition

If you type

PRINT 5+3

the AT ARI will respond with 8. You can use the ques
tion mark as an abbreviation for PRINT. Thus if you
type

?5+3

the ATARI will also respond with 8, as shown in Fig
ure 3.1 . Try it.

Subtraction

If you type

?12-5

the ATARI will respond with 7, as shown in Figure
3.1. Try it.

19

FIGURE 3.1 Using the ATARI In the calculator
mode.

Multiplication

The symbol for multiplication in BASIC is the asterisk
(*). Thus, if you type

?3*4

the ATARI will respond with 12, as shown in Figure
3.1. Try it.

Division

The symbol for division in BASIC is the slash (I) . Thus,
if you type

?lS/3

the ATARI will respond with 5, as shown in Figure
3.1. Try it.

Exponentiation

The symbol for exponentiation in BASIC is the upward
arrow (A); to print it press the same key as the asterisk
(*) while holding the SHIFT key down. Thus, if you
want to raise 2 to the power of 3 (2 cubed) you would
type

?2A3

and the ATARI should respond with 8. Try it. As you
can see, the ATARI displays 7.9999999 1 due to trun
cation errors. Note that when the exponent is an i nte
ger, exponentiation is equivalent to repeated multi
plication. Thus,

2A3=2*2*2

20

Arithmetic Expressions

The arithmetic operators +, - , *, /, and A can be
combined in a single arithmetic expression. For ex
ample, if you type

?S+3-2

the ATARI will respond with 6. What do you think the
ATARI will display if you type the following expres
sion?

?6+ 1212+4

Try it. Did it display what you thought it would?
You have found that the ATARI gave the answer

16. This is because the ATARI does division before
addition. All computer languages don't work this
way. For example, the language APL eva luates all ex
pressions from right to left. Thus, it would give the
preceding expression a value of 8. Do you see why?

In BASIC, arithmetic expressions are evaluated ac-
cording to the following order of precedence:

1. All exponentiations, A, are evaluated first.

2. All multiplicat ions, *, and divisions, /, are eval
uated next.

3. All additions, +, and subtractions, - , are eva l
uated last.

Within each level of precedence, the expression is
evaluated from left to right. Parentheses can always
be used to change the order of precedence. In this
case expressions within the innermost parentheses
are eval uated first.

Try to evaluate each of the following arithmetic ex
pressions and then type them on the AT ARI to check
your results . The answers are shown in Figure 3.2.

FIGURE 3.2 Evaluation of arithmetic expressions
on the ATARI.

?8-3+4/2
?3*2-5+8/4
?8+ 1/3
?(3+4)*(6-3)
?20/2/5

Did you guess the correct answer to the last expres
sion? Remember that the two divisions are eva luated
from left to ri ght, so the correct result is

20/2 = .!Q = 2
5 5

and not

1Q. = 20*5 = 50
2/5 2

If you want the second result you can type

?20/(2/5)

Try it.
Note that in the next to the last example in Fi gure

3.2 it is necessary to use the multiplication symbol *.
Although (3 + 4)(6 - 3) is used to imply multiplica
tion in ordinary algebra it does not imply multiplica
tion to the ATAR!. Any time you want to multipl y any
thing on the ATARI you must use the multiplication
symbo l *.

NUMERICAL VARIABLES

We have seen that strings such as " JO HN" can be
stored in memory ce ll s with names such as S3$. If a
memory cell name does not end with a dollar sign ,
the AT ARI wi II assume that the memory cell contains
a numerical value. For example, if you type

A=3
?A

the ATARI will respond with 3, as shown in Figure
3.3. Similarly, if you type

A=5

B=3

?A*B

the ATARI will respond w ith 15, as shown in Figure
3.3 .

FIGURE 3.3 Numerical variables can be used in
the immediate mode of execution and in arithme
tic expressions.

Note that these examples use the immediate mode
of execution. The deferred mode of execution can
also be used, as shown in Fi gure 3.4 .

FIGURE 3.4 Use of numerical variables In the
deferred mode of execution .

How many digits of a number does the At ARI
d isplay? Try typing

?1/3
and

?2/3

as shown in Figure 3.5. Note that 10 digits are dis
played (excl uding the lead ing zero) with any re
maining digits truncated.

FIGURE 3.5 The ATARI displays 10 digits.

21

Scientific Notation

What happens if you type in a number containing 11
or more digits? Try typing

?112233445566

as shown in Figure 3.6. Note that the ATARI has
rewritten the number in a form that contains an E.
This is called scientific notation. The number after the
E is the number of places you must move the decimal
point in order to obtain the correct number. If the
number after the E is positive, move the decimal point
to the right. If the number after the E is negative, move
the decimal point to the left. Try typing

? .00123

as shown in Figure 3.6 .

FIGURE 3.6 Scientific notation is used by the
AT ARI for numbers greater than 9999999999 and
less than 0.01.

The AT ARI uses scientific notation for numbers
greater than 9999999999 and less than 0.01 . You
can use scientific notation if you want; the ATARI will
convert it to standard notation if your number is be
tween 0.01 and 9999999999. Some examples are
shown in Figure 3.7. Note that the ATARI printed ER
ROR when we tried to print 1 E98.

If you try to store a number larger than 1 E97 you
will get an error. Also, any number with a magnitude
smaller than 1 E-98 will be stored in the ATARI as O.
However, only two digits can be used in the expo
nent when using scientific notation.

FIGURE 3.7 You can use scientific notation In
your programs.

CONTROLLING PRINTED OUTPUT

When you use the PRINT statement you can control
where on the screen the output is printed by using
commas, semicolons, the TAB key, and the POSI
TION statement.

Comma

The comma has a special meaning in BASIC. It cannot
be used in the customary way to separate every three
digits in a large number. For example, in BASIC the
number 3,526,489 must be written without commas
as 3526489.

Try printing the number 3,526,489 with the com
mas by typing

?3,526,489

22

FIGURE 3.8 The comma acts like a tab in a PRINT
statement.

as shown in Figure 3.8. Note that instead of printing
one number the ATARI thought you wanted to print
the three numbers 3,526, and 489. In a PRINT state
ment the comma is used to move to the next fixed tab
position. The fixed tab pos itions are located in co l
umns 2, 12, 22, and 32, where the screen co lumns
are numbered 0 through 39. (The first print position
on the screen is really column number 2, as you w ill
see.) If you try to print more than four numbers on a
line, separated by commas, the extra numbers wi ll be
printed on the next line, as shown in Figure 3.9 (ex
ample 1) . Note in the second example of Figure 3.9
that the negative sign in a negative number is printed
at the tab position . If the number contains more than
eight digits, a second number is moved to the next tab
position, as shown by the third example of Figure
3.9. One or more commas can precede a number in
order to skip tab positions, as shown in the last two
examples of Figure 3.9.

FIGURE 3.9 Using the comma as a tab .

The comma can also be used with strin gs, as
shown in Figure 3.10. Note that up to eight charac
ters can be included in a string before a tab position is
skipped prior to printing a second string. Also note
that strings begin printing in co lumn number 2 and at
the start of all other tab positions (12 , 22, and 32).

FIGURE 3.10 Using the comma tab with strings.

The comma ca n be used in PRINT statements to
separate strings from numerical variables, as shown
in Figure 3 .11. Note that after the string " A=" is
printed, the comma causes a tab to co lumn number
12 before the value of A (3) is printed. This looks a
little awkward. This gap can be eliminated by using a
semicolon instead of a comma.

FIGURE 3.11 Using the comma to separate
strings and numerical variables .

Semicolon

If numeri ca l values are separated by semicolons in
stead of commas, then no space is inserted after each
value, as shown in Fi gure 3. 12 . Note that commas
and semicolons ca n be mixed in a single PRINT state
ment.

FIGURE 3.12 Using the semicolon to separate
numerical values .

When it is used with strings the semicolon leaves
no blank spaces between two str ings, as shown in
Figure 3. 13. When stri ngs and numerica l variables
are combined, the semico lon ca n be used to elimi
nate unsightly gaps, as shown in Figure 3. 14. Note
that you need to include a blank space at the end of
the string in line 30 of Figure 3. 14 in order to leave a
space before the number.

23

FIGURE 3.13 The semicolon leaves no blank
spaces between strings.

FIGURE 3.14 Using the semicolon to separate
strings and numerical variables.

LIST

1.9 A=3
29 PRINT "A=";A
39 PRINT "THE VALUE OF A IS ";A

READY
RUN
tI-"'"
THE U~LUE OF A IS 3

READ '" •

The TAD Key

The TAB key is located on the left side of the key
board just below the ESC key. Press this key several
times. The cursor should move across the screen,
stopping at various tab positions. The cursor will
eventually be tabbed to the beginning of the next
line.

Any of these tab positions can be cleared by mov
ing the cursor to the tab position (pressing the TAB
key) and then pressing the TAB key while holding
down the CTRL key (CTRL TAB). To set a new tab po
sition, move the cursor to the desired location and
then press the TAB key while holding down the SHIFT
key (SH IFT TAB).

If you press the ESC key before any of these
keystrokes and include them all in a string in a PRINT
statement, then these tab operations can be per
formed ina BASIC program. For example, the state
ment

10?/IESC TAB ESC CTRL TAB ESC

TAB ESC CTRL TAB/I

will clear the first two tab positions on a line. This
statement will appear on the screen as shown in line
10 in Figure 3.15. Type this statement.

24

FIGURE 3.15 Using the TAB key in PRINT state
ments.

The statement

20?/ISPACE SPACE SPACE SPACE ESC
SHIFTTAB SPACE SPACE SPACE SPACE
ESC SHIFT TAB/I

will set two tabs at screen columns 6 and 10 (remem
ber that the printing starts at column 2). This state
ment will appear on the screen as shown in line 20 in
Figure 3.15 . Type this statement.

The statement

30 ?/IA ESC TAB B ESC TAB C/I

wi ll print the letter A, tab to the next tab position,
print the letter B, tab to the next position, and print
the letter C. This statement will appear on the screen
as shown in line 30 in Figure 3.15 . Type this state
ment and run the program. The result should be as
shown in Figure 3.15.

The POSITION Statement

Sometimes you may want to print something at a par
ticular location on the screen. This can be done using
the POSITION statement before a PRINT statement.
The screen contains 24 rows of 40 characters for a to
tal of 960 different print locations.

The statement

POSITION X,Y

will move an "invisible" cursor to column number X
(0- 39) and row number Y (0-23). A PRINT statement
containing a string wi ll then print the string starting at
location X, Y.

As an example, suppose that you want to print the
message shown in Figure 3.16. You can use the PO
SITION statement to move to the starting location for
each str ing, as shown in the program listing in Figure
3.17 . Statement 5 in Figure 3.17a will clear the
screen . It is typed by pressing the keys

o 5 10 15 20 25 30 35

o

5

WE L C OME

10

TO THE

15
AT ARI CO MP UT ER

20

FIGURE 3.16 Screen layout for POSITION statement.

5 ?"ESC SHIFT <"

In the POSITION statement the screen coordinates
X, Y can be variables, and numerical as well as string
variables can be printed. For example, if X = 10,
Y = 6, and A = - 2, then the statements

POSITION X,Y
PRINT A

will print the value -2 at the screen location 10,6.

(b)

FIGURE 3.17 The PRINT statement can be used
following the POSITION statement to print a string
anywhere on the screen.
(a)

5 ? "1} II

10 POSITION 16~8

:20 ? "WELCOME"
30 POSITION 16,12
40 ? liTO THEil
50 POSITION 12~16
60 ''? "ATARI 'COI"IPUTER"

25

REVERSE VIDEO AND LOWER-CASE LETTERS

You saw in Chapter 1 that pressing the ATARI logo
key will change to reverse video. Pressing it again
will change back to normal video. You can include
reverse video characters in a string in a PRINT state
ment. For example, type the statement

10 ? "THIS IS REVERSE VIDEO"
4ress ATARI key here~

as shown in Figure 3.18. Note that all the letters are
displayed in reverse video.

You can type lower-case letters by pressing the
CAPS/LOWR key on the right of the keyboard . The

SHIFT key can then be used to type capital letters as
on a regular typewriter. To return to all caps, press
the CAPS/LOWR key while holding down the SHIFT
key .

As an example, type the statement

20 ? "This is. UPPER;and lower case"

Lpress CAPS/LOWR key here]

as shown in Figure 3. 18. Note that when the program
in Figure 3. 18 is run , the two strings including the re
verse video and lower-case letters are printed on the
screen.

FIGURE 3.18 Reverse video and lower-case let
ters can be included in PRINT statements.

SOME BUILT-IN FUNCTIONS

The ATARI has a number of built-in functions that
simplify many calculations. You may use any of these
you care to in your programs.

The Functions ADS, INT, and seN

The absolute value of a number is the magnitude of a
number without regard to its sign. The absolute value
of a number can be found by using the built-in func
tion ABS(X) . Thus, for example, if X = -7 the value
of ABS(X) will be 7.

The value of the function INT(X) is equal to the in
teger part of X. Thus, if X = 3.25, then INT(X) is

26

equal to 3. When computing INT(X) the ATARI will
round to the next lower signed number. Thus, if
X = -3 .25, the value of INT(X) will be - 4.

The function SGN(X) can be used to determine the
sign of a number. It can have the following three
values:

{

+ 1 if X > 0

SGN(X) = 0 if X = 0

- 1 if X < 0

Examples using ABS, INT, and SGN are shown in Fig
ure 3. 19.

(a)

FIGURE 3.19 Finding the absolute value ABS, the
integer part INT, and the sign SGN of a number.

Random Numbers

In many programs, particularly game programs, It IS
useful to be able to generate random numbers. These
can be used to simulate dea ling card s, ro lling dice, or
creating other unpredictable results. AT ARI BASIC has
a built-in function called RND that uses hard wa re to
generate a random number.

Type in and run the following program twice as
shown in Figure 3.20.

10 ? RND(O)

20 ? RND(O)

30 ? RND(O)

FIGURE 3.20 The function RND(O) produces a
random number between 0 and 1.

The function RND(O) will return a pseudorandom
number between 0 and 1. Each time RND(O) is ca lled
it produces a different number between 0 and 1. The
argument 0 is of no particular significance. Any num
ber could be used.

(b)

Square Root

The square root of a number can be found by using
the BASIC function

SQR(X)

w here X is a positive number. For example, to find
the sq uare root of 16, type

?SQR(16)

as shown in Figure 3.21 a. To find the hypotenuse R of
the ri ght triangle shown in Figure 3.22, you could use
the program shown in Figure 3.21 b. Note that the use
of the exponentiation operator 1\ resulted in a trunca
tion error . The exact value of the hypotenuse is 5.

FIGURE 3.21 Use of the square root function
SQR.

LIST

1.8)(=3
28 V=4

(a)

38 R=SQRC)(A2+V A2)
48 PRINT "THE HVPOTENUSE :IS EOUAL TO ..
;R

READV
RUN
THE HVPOTENUSE :IS EQUAL TO 4.~~~~~~~4

READV •

(b)

27

Y=4

X=3

FIGURE 3.22 Finding the hypotenuse of a right
triangle.

Trigonometric Functions

The ATARI contains the following built-in trigono
metric functions:

AT ARI Function
SIN(X)
COS(X)
ATN(Y)

Value of Function
sine of X
cosine of X
arctangent of Y

In these expressions, X is a numeric constant, varia
ble, or expression that represents the value of an an
gie. The angle X is normally expressed in radians .
You can change this so that X is expressed in degrees
by executing the statement DEG. Once DEG has
been executed, you must execute the statement RAD
in order to go back to radians. The value of ATN(Y) is
expressed in either radians (with RAD set) in the
range ± 1.57, or in degrees (with DEG set) in the
range ± 90. The argument Y is a numeric constant,
variable, or expression .

The definition of a radian is shown in Figure 3.23.

FIGURE 3.23 Definition of a radian.

X 5 radians
R

1 radian angle for which 5 = R

= 57.3 degrees

7T radians 180 degrees

7T 3.14159265 ...

To convert degrees to radians, multiply by 7T1180. Ex
amples using the trigonometric functions are shown
in Figure 3.24.

28

FIGURE 3.24 Using the trigonometric functions
SIN, COS, and ATN .

Natural Logarithms and the
Exponential Function

Consider the equation

Y = bX

In this expression x is called the logarithm of y to the
base b and is written

x = 10gbY

If the base b is equal to e = 2.718281 ... , we say
that Y is the exponential function Y = eX and x is the
natural logarithm of y:

x = In y

In BASIC eX can be computed using the function
EXP(X) , and In X can be computed using the function
LOG(X) . If the base b is 10, the logarithm to the base
10 can be computed using the function CLOG(X).

The following properties of logarithms are
illustrated in the examples shown in Figure 3.25:

LOG(A*B)=LOG(A)+LOG(B)
LOG (AlB) = LOG (A) - LOG (B)
LOG(AI\K) = K*LOG(A)

When the rate at which a quantity grows is propor
tional to the amount of the quantity, we have expo
nential growth. The amount of money in a savings ac
count that is compounded continuously grows
exponentially. Thus 0 dollars invested at P percent
annual interest compounded continuously will yield
X dollars after T years, where

(a)

FIGURE 3.25 Properties of logarithms.

x = DePTIloo

For example, to find the amount of money you would
earn in 7 years by investing $3,000 at 9.5 percent in
terest compounded continuously, type

?3000*EXP(9.5*7/100)

as shown in Figure 3.26.

FIGURE 3.26 Examples related to the exponen
tial function.

Note that the answer is more than $5,833 or al
most double your original investment. A character
istic of exponential growth is a constant doubling
time Td . From the equation for X we see that X will be
equal to 20 in the time Td , where

or

(b)

PTd

20 =Oe 100

Taking the natural logarithm of both sides of this
equation and using the third property of logarithms
illustrated in Figure 3.25, we obtain

or

In(2) = PT d In(e)
100

_ PTd

100

Td = 100 In(2)

P

Note that In (e) = 1. Try typing ?LOG(2.718281).
In order to see how long this doubling time is type

?lOO*LOG(2)

as shown in Figure 3.26. We therefore see that the
doubling time is approximately 70 divided by the per
centage growth rate, or

Td = 70/P

Thus, for example, a 10 percent inflation rate will
double prices every 7 years.

29

EXERCISE 3.1
Let the variables A, B, C, and 0 have the following
values:

A = 2, B = 3, C = 4, 0 = 5

Use the ATARI to evaluate the following expressions :

(C) 0.5
1. X= A-

O

30

A(B - C)
2. Z = ---

O(BA - 1)

(A + B)
3. y=--

C(O - A)

4. R = Y(A + B)/(O - A)

5.5= ---
2

ENTERING DATA FROM THE KEYBOARD
LEARNING ABOUT INPUT

In ear lier chapters of this book you learned how to
use the PRINT statement to make the AT ARI output
various fo rms of data on the screen. In this chapter
you wi ll learn how to make the ATARI accept various
forms of data that you type on the keyboard. You do
this by using the INPUT statement in a BASIC program .
You will learn how to use this INPUT statement by
study ing sample programs that wi ll show you how to

1. add two numbers

2. compute the area of a rectangle

3. compute the area of a circle

4. ca lculate gas mileage

5. display your name and address

6. make sounds with the AT ARlo

THE INPUT STATEMENT

The INPUT statement can only be used in the de
ferred mode of execution . The following are va lid
forms of the INPUT statement:

10 INPUT R

10 INPUT A,B

10 INPUT A$

When the first INPUT statement is executed, the
ATARI will print a question mark and then wait for
you to enter some numerical value from the key
board. When you press the RETURN key the va lue
that you typed on the screen will be stored in the

memory ce ll R. The next statement in the BASIC pro
gram wi II then be executed.

When the second INPUT statement is executed,
the ATARI will expect you to enter two numerical
values, separated by a comma. If you press RETURN
after entering only one value, the ATARI will print an
other question mark and wait for you to enter the sec
ond va lue. These two values will then be stored in the
two memory cells A and B.

The third form of the INPUT statement shown will
store whatever you type on the screen in the string
variab le A$. The use of the INPUT statement will be
illustrated in the following sample programs.

31

SUM OF TWO NUMBERS

Figure 4.1 shows a listing and sample run of a pro
gram that will add two numbers entered from the key
board and display the sum. Type in this program and
run it.

Lines 20 and 25 print the message ENTER 2 NUM
BERS SEPARATED BY A COMMA. Line 30 prints a
question mark on the next line and then waits for you
to enter two numbers. In the first example in Figure
4.1 b, the two number 5 and 9 were entered from the
keyboard. Line 40 then printed the value stored in A
(5) followed by a plus sign, followed by the value
stored in B (9), followed by an equal sign, followed
by the sum of A + B (14). Line 50 is a PRINT state
ment with nothing following the word PRINT. The
only purpose of this statement is to skip a line on the
screen. Line 60 causes the program to branch back to
line 20, which asks for another two numbers to be en
tered.

In the second example in Figure 4.1 b, the value 8
was entered for the first number. But then the RE
TURN key was pressed. Note that the ATARI re
sponded with another question mark asking you to
enter the second number. In this example - 3 was
then entered.

In the third example the RETURN key was pressed
without entering any data. This caused the ERROR- 8
message. All error codes are given in Appendix C.

This program will continue to ask you for two

FIGURE 4.1 Sample program to add two num
bers.

10 REM PROGRAM TO SUM TWO NUMBERS
20 PP I NT "ENTEr;: :~ NUMBERS"
2:5 PRII'.JT "!:3EPARATED BY A COMMA"
30 INPUT A,B
40 PI::':INT A; "+"; B; "':::"; f~+B
!:iO PRI NT
60 GOTO 20 W

RUN
ENTER 2 NUHBERS
SEPARATED BV A COHHA
?5,~
5+~=J.4

ENTER 2 NUHBERS
SEPARATED BV A COHMA
?8
?-3
8+-3=5

ENTER 2 NUHBERS
SEPARATED BV A COHHA
?

ERROR• 8 AT LINE 30

(b)

more numbers. To stop the program, press the BREAK
key.

Experiment with this program to see how it be
haves. Study the program carefully and make sure
you understand what every statement does.

AREA OF A RECTANGLE

Figure 4.2 shows the listing and a sample run of a
program that computes the area of a rectangle, where
the lengths of the two sides are entered from the key
board. Type in this program and run it.

The main difference between this program and the
previous one is that the prompt message in line 20

ends with a semicolon. Note that when you do this,
the question mark follows the prompt messsage and
the cursor remains on the same line as the message.
Thus, you enter the data on the same line as the
prompting message.

FIGURE 4.2 Program to calculate the area of a rectangle.

10 REM PROGRAM TO COMPUTE THE
15 REM AREA OF A RECTANGLE
20 ? "ENTER 2 SIDES OF RECTANGLE ";
30 INPUT X~Y
40 ? "THE AREA OF A RECT{~NGLE"
45 ? "WITH SIDES ";
50 ? X;" AND ";Y
55 ? "IS EQUAL TO ";X*Y
60 ?
70 GOTO 20

32

RUN
ENTER 2 SIDES O~ RECTANGLE ?4,5
THE AREA O~ A RECTANGLE
WITH SIDES 4 AND 5
IS EQUAL TO 20

ENTER 2 SIDES O~ RECTANGLE ?3.6,7.5
THE AREA O~ A RECTANGLE
WITH SIDES 3.6 AND 7.5
IS EQUAL TO 27

ENTER 2 SIDES O~ RECTANGLE ?6,

ERROR• 8 AT LINE 30

AREA OF A CIRCLE

The area of a circle of rad ius (is given by

area = 71'(2

where 71' (p i) is approximate ly equal to 3. 14159265 .
Figure 4.3 shows the listing and a sample run of a
program that computes the area of a ci rcle whose ra
dius is entered from the keyboard. Type in this pro
gram and run it.

Line 35 calculates the area of the c ircle. The value

of pi has been defined in line 15. Note that in the sec
ond example after RUN two va lues, 6 and 3, were
entered . But the ATARI was expecting only one
va lue. It therefore used only the first va lue (6) and ig
nored the second value (3).

In the third example after RUN a va lue of 2.5E51
was entered. But this results in a value of the area A
that is larger than 1 E98; therefore, an overflow error
message occurred. (See Fi gure 3.7.)

FIGURE 4.3 Program to calculate the area of a
circle.

10 REM PROGRAM TO COMP UTE THE AREA OF A CIRCLE
15 PI=3.14 159265
20 ? "ENTER A R,~DIUS ",
30 II'~PUT R
::~!:i P,==F'I * R····· 2
40 '"} "THE ('~ I::-':EA OF:- THE CIRCLE IS"; (1

50 ?
60 GOTD 20

GAS MILEAGE

The program shown in Figure 4.4 computes gas mile
age in miles per ga ll on (MPG). The reading of the
odometer (the device that displays the mileage on the
dashboard) at the last fillup is stored in memory ce ll
M1 in line 25. The odometer reading at the present
fi llup is stored in memory ce ll M2 in line 35 . The
number of ga llons it takes to f ill the tank is stored in
memory ce ll G in line 45. The total miles trave led
since the last fillup is equal to M2 - M1. Therefore,
the number of miles per ga llon is given by (M2 - M 1)
/ G. Thi s is ca lculated in line 50 and stored in the
memory ce ll MPG. It is printed on the screen in line
60.

FIGURE 4.4 Program for computing gas mile
age.

10 REM GAS MILEAGE PROGRAM
20 ? "ENTER PREVIOUS ODOMETER READING"
::~5 INPUT I'll
~::.O '":' "ENTER NEW ODOMETER READING"
35 I NF'LJT t-12
40 ? "EI'HEI~ GALLONS SINCE LAST F I LLUP"
45 I NPUT G
50 MPG=CM2-M1)!G
60 '"} "GAS MILEAGE: "r.l"lPG;" MPG"

33

A sample run is shown in Figure 4.5a. The answer
is printed as 19.55696202 MPG. This answer con
tains many more digits after the decimal point than
are meaningful. After all, because of variations in fill
ing the tank it probably only makes sense to compute
the MPG to the nearest tenth. How can we have the
ATARI disp lay the MPG to the nearest tenth? The fol
lowing steps will do it:

1. Multiply the present value by 10:
19.55696202 x 10 = 195 .5696202

2. Add 0.5:
195 .5696202 + 0.5 = 196.0696202

3. Take the interger part of the result:
INT(196.0696202) = 196

4. Divide by 10:
196110 = 19.6

Although this may look complicated, it can all be
done with the following single BASIC statement.

55 MPG=INT(MPG*l 0+0.5)/1 0

Note that the result is stored back in memory cell
MPG. Therefore, if you add this statement to the pro
gram shown in Figure 4.4 and run the program with
the same values used in Figure 4.5a, the result wi ll be
as shown in Figure 4.5b.

The example shown in Figure 4.5c shows that if
you mistakenly press RETURN when the INPUT state-

RUN
ENTER PREVIOUS ODOMETER READING
?12345
ENTER NEW ODOMETER READING
?12654
ENT£R GALLONS SINCE LAST FILLUP
?

ERROR• 8 AT LINE 45

ment is waiting for a value for the gallons G in line FIGURE 4.5 Sample runs of gas mi leage pro-
45, the ATARI will produce the ERROR- 8 message. gram.

NAME AND ADDRESS

The INPUT statement can be used to enter string data
as well as numerical data into the computer. The
statement

INPUT A$

will assign whatever characters you type to the string
variable A$. As an example, consider the program
shown in Figure 4.6. Line 15 contains the statement
PRINT " ESC CTRL CLEAR", which clears the screen.
Line 30 will assign whatever you type for your name
to the string variab le N$. Line 50 will assign whatever
you type fo r your street address to the string variable
5$. Line 70 will assign whatever you type for your
city, state, and zip code to the string variable C$.
Lines 80-100 will then print these three strings on
three separate lines.

A sample run of this program is shown in Figure
4.7. Note that on ly one string variable can be used in
an INPUT statement. This is because a comma,
which is normally used to separate two numeri ca l in-

34

puts, w ill just be assigned to the first string variab le,
as is shown for the city and state in Figure 4.7. Quota
tion marks will also be assigned to the string variable
and can therefore be printed on the screen.

FIGURE 4.6 Program to disp lay your name and
address.

10 REM NAME AND ADDRESS
12 DIM N$(30)~S$(30)~C$(30)
1. 5 '? II'} II

~:::o

30
40
50
60
70
80

'? "ENTER
INPUT N~l>

r:=- "ENTER
INPUT S~*i
? "ENTEli
INFUT C-f;

? N$

90 ? f:"l$
100 '") C$

YOUR NAME"

YOUR STREET ADDRESS"

YOUR CITY~ SHHE~ ~~ND ZIP"

MAKING SOUNDS

You can make a single tone on your TV speaker by
using the statement

SOUND V,P,D,L

In this express ion V is a voice number between 0 and
3, P is a pitch va lue between 0 and 255, D is a distor
tion number (an even number between 0 and 14),
and L is a vo lume or loudness va lue between 1 and
15.

A va lue of P = 1 gives the lowest tone and a va lue
of P = 255 gives the highest tone. A value of L = 1
gives the weakest tone and a va lue of L = 15 gives
the loudest tone. The tone will stay on until another
SOUND statement (or an END statement) is exe
cuted. To turn a sound off, execute a SOUND state
ment with the same vo ice va lue V used to create the
sound and a loudness va lue of o.

In order to tryout some notes, turn up the volume
on your TV set and type in and run the fo llowing pro
gram :

10 REM MAKING SOUNDS
20 PRINT "ENTER PITCH AND LOUDNESS"
30 INPUT P,L
40 SOUND 0, P, 10, L
50 INPUT A$
60 SOUND 0, 0, 0, 0
70 GOTO 20

After the sou nd is turned on in line 40, the program
wi ll wa it at line 50 until you press RETURN. Line 60
w i II then turn the sound off.

Try several different va lues for P and L. The va lue
of lOused for the distortion D produces a "pure"
tone. Try changing this to other va lues .

FIGURE 4.7 Sample run of program shown In
Figure 4.6.

ENTER YOUR NAME
?JOHN DOE
ENTER YOUR STREET ADDRESS
?~234 ATARI DRIUE
ENTER YOUR CITY. STATE. AND ZIP
?ROCHESTER. MXCH. 48863
JOHN DOE
~234 ATARI DRXUE
ROCHESTER. MXCH. 48863

READV •

EXERCISE 4.1
The temperature in degrees Celsius (0C) is related to
the temperature in degrees Fahrenheit (OF) by the fo r
mula

Write a program that will input a temperature in of
and pri nt on the screen the temperature in both OF and
0c.

EXERCISE 4.2
Four different sounds corresponding to the four voice
numbers 0-3 can be played at the same time. Write a
program that will ask you to enter a pitch , distortion,
and loudness va lue for each of four vo ices and then
play the four sounds simul taneously. Have one sound
at a time stop each time you press the RETURN key.

35

A REPETITION LOOP-LEARNING
ABOUT FOR ... NEXT

In Chapter 2 you learned how to use the COTO state
ment to form a continuous loop. There is a looping
structure available in BASIC, called a FOR ... NEXT
loop, which is particularly useful when you know the
number of times you want to go through a loop.

In this chapter you will learn

1. how to form a FOR . .. NEXT loop

2. to draw dashed lines using the FOR ... NEXT
loop

3. how to use nested FOR ... NEXT loops.

THE FOR . .. NEXT LOOP

The general form of a FOR . . . NEXT loop is shown
in Figure 5.1. When statement lOis executed, the
value of I is equated to Ml and statements 20, 30,
and 40 are executed. If M3 > 0, then when statement
50 is executed the value of I will be incremented by
M3, and if I is less than or equal to M2 , statements
20, 30, and 40 will be executed again. This process
continues until I becomes greater than M2, at which
point the program branches to line 60. Every time
around the loop I is incremented by M3. In line 10
the phrase STEP M3 is optional. If it is omitted, an in
crement of 1 is assumed.

If M3 < 0, then when statement 50 is executed,
the value of I will be decremented by M3, and state
ments 20, 30, and 40 will continue to be executed
until I becomes less than M2 .

36

FIGURE 5.1 General form of the FOR ... NEXT
loop.

10 FOR I=M1 TO M2 STEP M3
20 ____ _
30 ___ _
40 ___ _

50 NEXT I
60

Immediate Mode Execution of the
FOR ... N EXT loop

In order to see how the FOR ... NEXT loop works,
try typing in the following examples in the immediate
mode.

FIGURE 5.2 Using the FOR . . . NEXT loop in the
immediate mode.

FOR 1= 1 TO 10:?I, :NEXTI

FOR 1=1 TO 10 STEP 2:?I , :NEXTI
FOR 1= 1 TO 10:?"*", :NEXTI
FOR 1=10 TO 1 STEP -1 :?I, :NEXTI

These examples are shown in Fi gure 5. 2.

Drawing lines Using POSITION X,Y

Rev iew the use of the POSITIO N statement in Chap
ter 3. By including the statements

POSITION X,Y
PRI NT "X";

in a FOR ... NEXT loop, we can print a series of
" X" s on the screen. The relati ve position of the " X" s
w ill depend upon how the va lues of X and Y are in
cremented in the FOR .. . NEXT loop.

For example, Figure 5.3 shows a horizontal ; verti

ca l, and diagonal line drawn on a screen layout. The
hori zontal line can be drawn by letting X vary from 4
to 30 in steps of 1 as shown in Fi gure 5.4. The state
ment

70 GOTO 70

is used to prevent the ready message from returning to
the screen. Press BREAK to stop the program .

FIGURE 5.3 A horizontal, vertical, and diagonal
line to be drawn using the POSITION statement.

o 5 10 15 20 25 30 35

o x X
X

X
X X
X X

5 X X
X X
X X
X X
X X

10 X X
X X
X X
X X
X X

15 X X
X X
X X
X X
X X

20 X X
X

X
X

37

10 REM HORIZONTAL LINE

~)O I=-OR i< :::4 TO :30
40 pm;ITION X!,O
5() '? II X II

60 NEXT X
70 GOTD 70

FIGURE 5.4 Drawing a horizontal line using PO
SITION X,D.

The vertical line can be drawn by letting Y vary
from 3 to 20 in steps 1 as shown in Figure 5.5.

FIGURE 5.5 Drawing a vertical line using POSI
TION 2,Y.

10 REM VERTICAL LINE

~)O FCH~ Y<::: TO 20
40 POSITION 2~Y
5() '? "X II
60 NEXT Y
70 GDTO 70

The diagonal line can be drawn by letting X vary
from 0 to 23 in steps of 1 with Y = X, as shown in
Figure 5.6.

38

Vertical and horizontal lines can be combined to
form a border, as shown in Figure 5.7.

FIGURE 5.6 Drawing a diagonal line using PO
SITION X,Y.

10 REM DIAGONAL LINE

30 FOFi X==O TO 23
35 '(=X
40 POSITION X,V
!:.;() ? .,X II

60 NEXT X
70 GOTO 70

FIGURE 5.7 Drawing a border using POSITION
X,Y.

10 REi'1 BORDER
20 '") II~II

30 FDR X==2 TO -:0:"7 0_' l

40 POSITION X!, 1
::';0 '? II X lI;i
60 F'O~\I T I ON X , 2::~
70 1:7' II X II,
80 NEXT X
90 FOR '(:=2 TO 21.
100 POSITION 2,V
:ll() ? flXII;i
120 POSITION 37,Y
:I. ~~:() ? ")(II !I
140 NEXT Y
1 ::';0 GOTO 1 ~30

XXXXXXXXXXXXXXXXXXXXXX
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x X
x x
XXXXXXXXXXXXXXXXXXXXXX •

EXERCISE 5.1

Draw a border around the message

WELCOME
TO THE

A TARI COMPUTER

shown in Figure 3.16.

EXERCISE 5.2

Draw your name in block letters using asterisks and
the POSITION statement.

FIGURE 5.7 (cont.)

NESTED FOR ... NEXT LOOPS

FOR ... NEXT loops may be nested. This means that
we can put one FOR ... NEXT loop completely
within another one. When this is done the inner
FOR ... NEXT loop is executed completely during
each pass through the outer loop. This makes it easy
to perform fairly complex operations.

Plotting an Array of Points

Clear the screen and type, in the immediate mode,

Y=20
FOR X=2 TO 32 STEP
5:POSITION X,Y:?"*":NEXTX

A line of seven asterisks spaced five positions apart
should appear near the bottom of the screen, as
shown in Figure 5.8 .

If you now let Y vary from 2 to 20 in steps of 3 you
can plot seven JQws, each containing seven asterisks .
The program showni'nFigure 5.9 will do this. Lines
30-60 form the F.OR ... NEXT loop used to plot a
?ingle row of asterisks, as shown in Figure 5.8. The
'outer FOR ... NEXT loop starting at line 20 plots
seven of these TOWS as Y varies from 2 to 20 in steps of
3.

Note that every time through the outer FOR ...
NEXT loop (lines 20-70) the inner FOR ... NEXT
loop (lines 30-60) is executed completely. That is,
the inner loop loops seven times (and therefore plots

. seven asterisks) every time the outer loop loops once.
Since the outer loop also loops seven times, a total of
7 x 7 = 49 asterisks will be plotted on the screen.

FIGURE 5.9 Program to plot an array of points.

10 REM ARRAY OF POINTS
15 ? II~ II

20 FOR Y=2 TO 20 STEP 3
30 FOR X=2 TO 32 STEP 5
40 F'OSITION X ~ Y
5() '? It * II
60 NEXT X
70 NE XT Y

FIGURE 5.8 Plotting a single row of seven asterisks .

39

Type in this program and run it. You should obta in
the array of asterisks shown in Figure 5.10. Modify
this program by changing the number of rows, the
number of points plotted in each row, and the spac
ing between the points.

FIGURE 5.10 Array of points plotted using the
program in Figure 5.9.

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *
READV •

Changing Screen Colors

As another example of nested FOR . .. NEXT loops,
consider the program shown in Figure 5.11 . This pro
gram will continually change the co lor of the screen
every second.

10 REM CHANGING COLORS
15 ? 1I1j11
:!O FOR C=O TO 1 :.;
30 SETCOLOR 2~C~10
40 FOR I=l TO 350:NEXT I
50 NEXT C
60 GO TO 20

FIGURE 5.11 Program to change the color of the
screeen every second.

The statement SETCOLOR 2,C, 1 0 changes the
background screen color to the hue value C, where C
is a number between 0 and 15. We will discuss the
statement SETCOLOR in Chapter 7. For now, type in
the program in Figure 5.11 and run it.

Line 15 clears the screen. The outer FOR ...
NEXT loop (lines 20-50) changes the screen color C
from 0 to 15. Line 30 actually changes the screen to
the co lor C. Line 40 is an inner FOR ... NEXT loop
that just uses up some time. Letting I increment from
1 to 350 will use up about 1 second. To make a
longer delay just change 350 to a larger number. To
make a shorter delay, change 350 to a smaller num
ber. Line 60 branches back to line 20, which runs the
program again.

Press the SYSTEM RESET key to stop the program.
Change the length of time that each color is dis
played.

SOU N D EFFECTS

Type in the following line in the immed iate mode:

FOR P=l TO 255:S0UND O,P,lO,lO:NEXTP:END

You will hear the speaker produce all possible pitch
values one after the other. This shou ld give you an
idea of how to add sound effects to you r programs.
Let's look at some examples.

Producing Multiple Clicks

The program shown in Figure 5.12 will produce N
clicks with pitch P and a separation of 5 seconds.
Lines 70-100 loop N times; a click is produced each
time line 80 is executed . Line 90 is a delay equal to
about 5 seconds.

Run the program and set P = 150, 5 = 0 .5, and
N = 10. You should hear 10 clicks occurring every
half-second. Enter different values of N, 5, and P to

40

FIGURE 5.12 Program to produce N clicks with
pitch P and a separation of S seconds.

10 REM PRODUCE N CLICKS WITH
20 REM SPACING S AND PITCH P
25 ? "ENTER PITCH P ";
:::::0 INPUT P
35 ? "ENTER SEPARATION (SEC)
40 INPUT S

II n

~

4~; ? II ENTER NLIMBER OF CL_ I C~::S ";
50 INPUT N
60 L.=:l.0
70 FOR 1=1 TO N
80 SOUND 0~P~10~L
85 SOUND 0,0,0,0
90 FOR J=l TO 350*S:NEXT J
100 NEXT I
110 '/
120 GOTO

produce different clicking effects. Press the BREAK
key to stop the program. The loudness of the clicks
can be changed by changing the value of L in line 60.

Producing a Phaser Noise

If you repeatedly execute SOUND O,P,lO,10 with
different pitch values P, you can produce a variety of
effects. For example, the program shown in Figure
5.13 produces a " phaser" noise consisting of NC cy
cles of a sound in which the pitch varies from Pl to
P2 in steps of DP.

To hear what this noise sounds like, type in the
program and run it for values of NC = 6, P1 = 10,
P2 = 220, and DP = 5. Try a variety of different
values for NC, P1 , P2, and DP. Press the BREAK key
to stop the program .

FIGURE 5.13 Program for making a "phaser"
nOise.

10 REM PHASER NOISE
20 REM NC==# CYCLES
30 REM P1=STARTING PITCH
40 r':;:EM P2=ENDING PITCH
50 REM DP=PITCH INCREMENT
60 ? "ENTER # OF CYCLES ";
65 INPUT NC
70 '/ "ENTER STARTING PITCH ";
75 INPUT PI
80 ? "ENTER ENDING PITCH ";
85 INPUT P2
90 ? "ENTER PITCH INCREMENT ";
95 INPUT DP
100 L==lO
110 FOR J=1 TO NC
120 FOR P==Pl TO P2 STEP DP
125 SOUND 0,P,10,L
130 NEXT P
1::;5 NEXT J

145 ':.l

150 GOTO 60

Producing a Siren Sound

A siren noise can be produced by repeatedly
executing SOUND O,P,l O,L first with increasing

values of P and then with decreasing values of P, as
shown in Figure 5.14. The outer FOR ... NEXT loop
from lines 110 to 160 produces NC complete cycles
of the siren sound. The loop in lines 120-135 pro
duces the increasing sound and the loop in lines
140-155 produces the decreasing sound. Each of
these loops executes SOUND O,P,lO,10, and pro
duces a tone of pitch P and duration T. The
FOR . .. NEXT loops in lines 130 and 150 produce
delays (while the tone is on) proportional to T.

Type in this program and run it for values of
NC = 5, Pl = 20, P2 = 220, DP = 3, and T = 1.
Try changing the values of NC, P1, P2 , DP, and T to
produce different siren sounds. Press the BREAK key
to stop the program.

FIGURE 5.14 Program to produce a siren sound.

10 REM SIREN NOISE
20 REM NC=# CYCLES
30 REM Pl=STARTING PITCH
40 REM P2=ENDING PITCH
50 REM DP=PITCH INCREMENT
60 ? "ENTER # OF CYCLES ";
65 INPUT NC
70 ? "ENTER STAF~TING PITCH ";
75 INPUT PI
80 ? "ENTER ENDING PITCH ";
85 INPUT P2
90
95
100
105
11 (>

120

? "ENTER PITCH INCREMENT ";
INPUT DP

? "ENTER HOLDING TIME ";
INPUT T
FOF~ J=1 TO NC
FOR P=Pl TO P2 STEP DP

125 SOUND 0,P,10,10
130 FOR K=1 TO T:NEXT K
135 NEXT P
140 FOR P=P2 TO PI STEP -DP
145 SOUND 0,P,10,10
150 FOR K=1 TO T:NEXT K
155 NEXT P
160 NEXT J
170 SOUND 0,0,0,0
175 ?
180 GOTO 60

PLOTTING GRAPHIC PATTERNS

As another example of using nested FOR ... NEXT
loops, consider the program shown in Figure 5.15 .
Line 15 dimensions the string variable G$, which

contains a graphic symbol entered through the key
board in line 30. This graphic symbol is printed as a
10 x 10 array using the nested FOR ... NEXT loops

41

FIGURE 5.15 Program to produce graphic pat
terns.

10 REM GRAPHIC PICTURES
1 5 DIl"l G$ (1)
: :0 ? II ENTER A GF';:APH I C SYMBOL II
30 INPUT G$
40 FOF{ V=l TO 10
50 FClR X=l TO 10
60 '") G$;
70 NEXT X
80 ?
90 NEXT Y

in lines 40-90. The inner loop in lines 50-70 prints
10 copies of the graphic symbol on a single row. The
PRINT statement(?) in line 80 moves the cursor to the
next screen line. The outer loop in lines 40-90 plots
10 rows of the graphic strip plotted by the inner loop.

Type in this program and run it. A sample run is
shown in figure 5.16. Try different graphic symbols to
produce a variety of patterns .

42

FIGURE 5.16 Sample run of program in Figure
5.15.

EXERCISE 5.3
Modify the program in Figure 5.15 so that G$ con
tains a string of three different graphic symbols en
tered from the keyboard . Have the resulting pattern
contain 20 rows.

MAKING CHOICES-LEARNING
ABOUT IF ... THEN

Up to this point all of the programs that we have writ
ten have consisted of a sequence of instructions and
simple loops. However, the thing that makes comput
ers appear to be smart is their ability to make a deci
sion based on the current state of affairs. The primary
decision-making statement in BASIC is the IF ...
THEN statement. This statement allows the ATARI to
branch to one of two possible statements depending
upon the truth or falsity of a particular logical expres-

sion. A logica l express ion is an expression that can be
either true or false.

In this chapter you will learn

1. to use the IF ... THEN statement to make si m
ple choices

2. the meaning of the ATARl's relational operators

3. the meaning of the AT ARl's logical operators

4. about flowcharts and structured flowcharts.

THE IF ... THEN STATEMENT

The IF ... THEN statement in BASIC allows your pro
gram to conditionally execute some statements or to
conditionally branch to some other statement. The
following are three different forms of the
IF . .. THEN statement:

50 IF logical expression THEN statement

50 IF logical expression THEN statement 1:
statement 2: ...

50 IF logical expression THEN line number

In each of these forms the logical expression is
some BASIC expression that is either true or false.

These express ions will normally contain relational
operators (such as <) and/or logical operators (such
as OR). These operators will be defined and dis
cussed in detail in a later section of this chapter.

In the first form of the IF . .. THEN statement, if
the logica l expression is true, the statement following
the word THEN is executed . This can be any BASIC

statement that can be executed conditionally. If the
logical expression is false, the statement with the next
line number is executed .

The second form of the IF .. . THEN statement
behaves in a similar way to the first form . However, if
the logical expression is true, all of the statements fol-

43

lowing the word THEN are executed. Remember that
if the logical expression is false, the statement with
the next line number is executed.

a good idea when writing computer programs to
check the data entered through the keyboard to try to
detect any typing errors. For example, if after you
have entered the value of M2 in line 35, M1 is greater
than M2, then a typing error has probably been
made. In any event M2 is too small to make sense.
Thus, we could add the statements

In the third form of the IF .. . THEN statement, if
the logical expression is true, the program will branch
to " line number. " This form is equivalent to the first
form, where the statement is a GOTO statement.
Thus, for example, the following two statements are
equivalent:

37 IF M1 > M2 THEN PRINT "READING
TOO SMALL" :GOTO 20

50 IF A < O THEN 90 to the program in Figure 4.4, as shown in Figure 6.1.
50 IF A < O THEN GOTO 90

We will illustrate the use of the IF ... THEN state
ment by adding some conditional statements to the
programs we wrote in Chapter 4.

A sample run of this new program is shown in Fig
ure 6.2. Note that during the first execution the last
digit of the new odometer reading was omitted . This
made M2 < M 1; statement number 37 caught it,
printed the message READING TOO SMALL, and
then branched back to statement number 20, where
the program started over again.

Gas Mileage Program

In the gas mileage program shown in Figure 4.4. of
Chapter 4, M1 is the old odometer reading and M2 is
the new odometer reading. Now to make any sense,
M2 must be greater than M1 (M2 > M1). It is always

In statement number 37 you might have branched
back to statement number 30 and only asked to enter
the new odometer reading. However, the error may
have occurred when enter ing M1 (you may have
typed an extra digit) ; therefore, it's better to reenter
both odometer readings.

44

FIGURE 6.1 Gas mileage program containing
an IF ... THEN statement.

10 REM GAS MILEAGE PROGRAM
20 ? "ENTER PREVIOUS ODOMETER READING"
25 I t~F' LIT M 1
30 ':, "EtHER NEW ODOMETEF, READ I NEt"
35 I t~F'UT M:2
:::::7 IF M 1 >M2 THEN ? "READ I NG TOO SI"I{-)LL" : GOTO 20
'lO ? "ENTER !3r:1LLONS !3 I NeE LAf:;T F I LLUP"
45 INPUT G
50 MPG=(M2-Ml)!G
55 MPG=INTCMPG*10+0 .5)/l0
60 ? "GA!3 M I LE?'iGE:: ", /,,IF'C::~,'' MPl3"

FIGURE 6.2 Program will check to make sure
that M2 is greater than M 1.

RUN
ENTER PREVIOUS ODOMETER RE~DING
?1.2345
ENTER NEW ODOMETER RE~DING
?1.265
RE~DING TOO SM~LL
ENTER PREVIOUS ODOMETER RE~DING
?1.2345
ENTER NEW ODOMETER RE~DING
?1.2654
ENTE R G~LLONS SINCE L~ST FILLUP
? 1.5 ,8
GA S HILE~GE: 1.~,6 MPG

REA !)'''' •

Circle Program

In the circle program shown in Figure 4.3, the radius
should obvioL1sly be positive. Actually , it you only
want to calculate the area of the circle given by -rrr2, a
negative radius will give the same answer as the same
positive radius. On the other hand, if you also calcu
late the circumference of the circle given by 2-rrr, the
radius must be positive. We can calculate the circum
ference by adding the two statements

45 C=2*PI*R
47 PRINT "CIRCUMFERENCE="iC

to the program in Figure 4.3. We can then test to see
if the radius is negative by adding the statement

32 IF R<O THEN PRINT "RADIUS MUST BE
POSITIVE":GOTO 20

If the value of R entered in the INPUT statement in
line 30 is less than 0, then the message RADIUS
MUST BE POSITIVE will be printed and the program
will branch back to line 20 and ask for another radius
to be entered .

We saw in Figure 4.3 that if the radius is too large
an overflow error will occur when the area is com-

puted in line 35 . Since the value of the area A cannot
be greater than 1. E97, the largest radius R that will
not result in an overflow can be found as follows :

A = 'TT(2 < 1.E97
r2 < 1.E97/ -rr

r < Vl.E97/ -rr

Thus, if

R > SQR(1.E97/ PI)

the area wi II be greater than 1. E97 and cause an over
flow. We can test this by adding the following state
ment to the program :

33 IF R>SQR(1.E97/PI) THEN PRINT
"RADIUS TOO LARGE":GOTO 20

The complete revised program is shown in Figure
6.3 and a sample run is shown in Figure 6.4. Note the
use of the two IF ... THEN statements in lines 32
and 33. The fi rst IF . .. TH EN statement checks to
see if R is less than O. If this is false (in other words, if
R is positive), the next IF ... THEN statement on line
33 is executed . If R is not greater than SQR(1.E97/PI),
then the program will continue on line 35.

FIGURE 6.3 Modified circle program that checks
the value of the radius R.

10 REM PROGRAM TO COMPUTE THE AREA OF A CIRCLE
15 PI:::::3. 14159 ~,'2\S5

20 ? "ENTE!::;: A F\ADIUS ";
:::;0 INPUT R
:32 11= F.:< (> l-HEN r? II RA1) I L.lS MLJST [-tE FIDE'; I -r I VF': IT ~ G01-0 2()
T::: IF R>SQR (1. OE+97.1PI) THEN? "Rf'.iDIUf:; TOO LARGE": GClTO 20
35 A=FI I *R····<2
40 ? "THE AREA OF THE CIRCLE IS "; (,,'1

45 C=:<.?*PI :U~
1+7 ? "C I RClIMFFRENCE=" ; C
5() '?
60 (30TO :~O

FIGURE 6.4 Sample run of program In Figure 6.3.

45

10 REM PROGRAM TO COMPUTE THE
15 REM AREA OF A RECTANGLE
20 ? "ENTER 2 SIDES OF nECTANGLE ";
30 INPUT X~Y
35 IF X<O OR Y<O THEN') "VALUES MUST BE POSITIVE":GOTO 20
40 ? "THE AREA OF A nECTANGLE"
4~:; ':, "IAJITH SIDES ";
50 ';'-' X;" AND "; y
55 ') "IS EDUAL TO ";X*Y
60 ?
70 GDTO 20

FIGURE 6.5 The IF ... THEN statement in line 35
contains a compound logical expression.

FIGURE 6.6 Sample run of program In Figure 6.5.

Rectangle Program

As another example of using the IF . . . THEN state
ment to check data entered with the I N PUT state
ment, consider the program shown in Figure 4.2 that
computes the area of a rectangle. It is clear that both
sides of a rectangle must be positive. Thus, if either of
the two values entered in the INPUT statement on
line 30 is negative, the program should print an error
message and ask for new inputs . We can do this by
adding the following single IF . . . THEN statement:

35 IF X<O OR Y< O THEN PRINT "VALUES
MUST BE POSITIVE":GOTO 30

The resulting program is shown in Figure 6.5 and a
sample run is shown in Figure 6.6. Note from this
sample run that the AT ARI will not allow the program
to continue if either value entered is negative or if
both are negative. Thus, the meaning of the logical
expression X < 0 OR Y < 0 is that it is true if either
X < 0 or Y < 0 is true, or if both are true.

In this logical expression the symbol < is one of
the relational operators. The word OR is one of the
logical operators. Relational operators and logical op
erators will be discussed in more detail in the follow
ing two sections.

RELATIONAL OPERATORS

A relational operator is used to form a logical expres
sion by comparing two arithmetic expressions. (An
arithmetic expression can be a numerical constant,
variable, or expression.) Thus, for example,

A <O

46

is a logical expression (it is either true or false) formed
using the relational operator < ("less than"). If the
contents of memory cell A are less than 0, this logical
expression is true; otherwise, it is false.

The ATARI stores the logical value "false" as O. It

FIGURE 6.7 The ATARI stores "true" as 1 and
"false" as O.

stores the logical value "true" as 1. You can see this
by typing

and

A=3

?A<O

A=-3

?A< O

as shown in Figure 6.7. Note that you can print the
va lue of logical express ions such as A < O.

FIGURE 6.8 Examples of logical expressions
formed using the relational operators.

The relational expressions used in the AT ARI are
given in Table 6.1. Figure 6.8 shows some examples
using these relational operators. You should try some
examples of your own .

TABLE 6.1 Relational Operators

Operator

< > or > <
<
>

< = or = <
> = or = >

Meaning
equal to
not equal to
less than
greater than
less than or equal to
greater than or equal to

LOGICAL OPERATORS

In addition to the relat ional operators =, <>, <, >,
< =, and > = , the AT ARI uses the three logica l oper
ators NOT, AND, and OR. The meanings of these op
erators are shown in Table 6.2.

TABLE 6.2 Logical Operators

A and B are logical expressions
A NOTA
true false
false true

A B A AND B A OR B
false false false false
false true false true
true false false true
true true true true

NOT

The logical operator NOT is a unary operator-that
is, it operates on a single logica l express ion, A. If A is
true, then NOT A is false . If A is fa lse, then NOT A is

true . Examples using the logica l operator NOT are
shown in Figure 6.9. Because of certain peculiarities
in ATARI BASIC it is always a good idea to include a
NOT operation in parentheses. Under certain rare
conditions, your program may otherwise bomb out.

FIGURE 6.9 Using the logical operator NOT.

47

AND

The logical operator AND is a binary operator that
operates on two logical expressions. Note from Table
6.2 that A AND B is true only if both A and B are true.
It is false if either A or B is false, or if both are false.
Examples using the logical operator AND are shown
in Figure 6.10.

FIGURE 6.10 Using the logical operator AND.

OR

The logical operator OR is, like AND, a binary opera
tor. Note from Table 6.2 that A OR B is false only if
both A and B are false. It is true if either A or B is true,
or if both are true. Examples using the logical opera
tor OR are shown in Figure 6.11 .

Note that the third example in Figure 6.11 is false
while the fourth example is true. The only difference
between the two is the inclusion of the parentheses in
the third example. The reason the fourth example is
true is that the AND operation is performed before the
OR operation . There is thus an order of precedence
for logical and relational operators as well as arithme
tic operators (see Chapter 3). When the ATARI evalu
ates an expression it uses the order of precedence

shown in Table 6.3. Within each level of precedence
the expression is evaluated from left to right.

FIGURE 6.11 Using the logical operator OR.

TABLE 6.3 Order of Precedence for Evaluating
Expressions

Operator
()

=, < > , <, >, < =, > =

-,+

1\
*, /

+,-
=, < > , <, >, < =, >

NOT
AND
OR

Meaning
Parenthesis
Relational operators used
with string variables
Unary negative or
positive
Exponentiation
Multiplication and
division
Addition and substraction
Relational operators used
with arithmetic
expressions
Logical complement
Logical AND
Logical OR

WEEKLY PAY PROGRAM

As another example of the IF .. . THEN statement,
consider the problem of calculating the weekly pay of
an employee whose hourly rate is $4.00 per hour and
who receives time and a half for overtime. Suppose
that the total hours worked per week cannot exceed
60 hours. Thus, we want to write a program that will

48

1. ask for the number of hours worked to be en
tered from the keyboard
2. check to make sure that the number of hours
entered is not greater than 60

3. check to make sure that the number of hours
entered is not negative

4. compute the pay at $4.00 per hour for the first
40 hours and at $6.00 per hour for any hours over
40

5. print the total amount of pay.

The program to do this is shown in Figure 6.12 .
Lines 20 and 30 ask for the number of hours to be IN
PUT; the value is stored in H. Line 40 checks to make

10 REM PROGRAM TO COMPUTE WEEKLY WAGES
20 ? "ENTER NUI1BER OF HOURS I.A)OR~<ED"

30 INPUT H
40 IF H >60 THEN ? "TOO 11ANY HOURS" ~ GDTO 20
50 IF H<O TI--lEN ? "INVALID DATA": GDTO :20
60 IF H<=40 THEN M=H*4:GDTD 90
70 D\/::=H-40
80 jvl:::40*4+(}V*6
90 M=INT(M*100+0.5)/100
1 00 ~ "WEEI<:L Y PAV= $ ":; M

FIGURE 6.12 Listing of weekly pay program.

sure that H is not greater than 60. Line 50 checks to
make sure that H is not negative.

Line 60 will compute the total pay to be M=H*4 if
H is less than or equal to 40 . Note that th is line ends
with the statement GOTO 90, which will branch to
statement 90. Line 90 rounds the value of M to two
places after the decimal point. Line 100 prints the
amount of pay.

If H is greater than 40, the logical expression
H<=40 in line 60 will be false and line 70 will be
executed next. Line 70 computes the number of over
time hours OV (to be paid at $6.00 per hour). Line 80
computes the total pay, M , consisting of the first 40
hours at $4.00 per hour plus the remaining overtime
hours at $6.00 per hour. That is, M=40*4+0V*6.
Line 90 and 100 will then round and print the total
pay.

Sample runs of this program are shown in Figure
6.13. Note that trailing Os are not printed on the
screen. Thus, for example, $233.50 is printed at

$233.5. In a later chapter (Chapter 12), we will see
how to make the total cents always appear on the
screen.

FIGURE 6.13 Sample runs of program in Figure
6.12.

RUN
ENTER NUMBER OF HOURS WORKED
?32
WEEKLY PAY= $ ~28

READY
RUN
ENTER NUMBER OF HOURS WORKED
?52.25
WEEKLY PAY= $ 233.5

REtiDY
RUN
ENTER NUMBER OF HOURS WORKED
?47.34
WEEKLY PAY= $ 204.04

READY •

AREA OF TRIANGLE

The area of the triangle shown in Figure 6.14 can be
calculated from the formula

AREA = [S(S-A)(S-B)(S-C)]O.s

= VS(S-A)(S-B)(S-C)

where A, B, and C are the sides of the triangle and

S = (A+B+C)/ 2

is the semi perimeter.
In BASIC the formula for the area can be written as

AREA=(S*(S- A)*(S- B)*(S -C))I\O. 5

or

AREA=SQR(S*(S-A)*(S-B)*(S-C))

FIGURE 6.14 Finding the area of a triangle.

c

Semiperimeter, S = (A + B + C)/ 2

Area = [S(S - A)(S - B)(S - C)]o.s

Remember that the multiplication symbol * must al
ways be explicitly typed and every left parenthesis
must have an accompanying right parenthesis.

We want to write a program that will ask the user
to enter the three sides of the triangle from the key
board and wi II then display the area of the triangle on
the screen. It should be c lear that not all combina
tions of three numbers can represent the sides of a tri
angle. For example, a triangle cannot be formed hav-

49

ing the three sides 10, 5, and 3, as shown in Figure
6.15 . From this figure you can see that to form a trian
gle the sum of the two sides A + B must be greater
than C, where C is the longest side. This is equivalent
to requiring C to be less than the semiperimeter 5 =
(A + B + C)/2. Note that if this were not true, the for
mula for the area would involve taking the square
root of a negative number, which is not a real value.

FIGURE 6.15 To form a triangle the following
relations must be true: A + B > C and C < S =

(A + B + C) / 2.

Therefore, our program should check to make sure
that the three numbers entered from the keyboard can
really represent the sides of a triangle . Thus, we need
to check to make sure that C < S. But which side is C?
It is the longest side. But the longest side may be the
first, second, or third number to be entered from the
keyboard. If the program uses the INPUT statement

INPUT A,B,C

then the longest side may actually be stored in mem
ory cell A, B, or C. Therefore, the program must find
the longest side, L, and then make sure that L is less
than the semiperimeter S.

We can determine the largest number stored in
memory cells A, B, and C by using the following pro
cedure:

1. Compare A and B:

If A > B
then set L = A
else set L = B

2. Compare C and L:

If C > L
then set L = C

You should convince yourself that this algorithm, or
step-by-step procedure, will, in fact, result in the
memory cell L containing the largest value . This
value of L can then be compared to the semiperimeter
5 to see if a triangle is possible.

The BASIC program to do all this is shown in Figure
6.16. Line 20 asks for the three sides of the traingle to
be entered and line 30 stores these three values in A,
B, and C. Line 40 compares A and B; if A is greater
than B, it stores the value of A in L and branches to
line 60. If A is not greater than B, line 50 will store the
value of Bin L. Thus, when line 60 is executed, L will
contain the larger of A and B. Line 60 compares C
and L; if C is greater than L, it stores the value of C in
L. Therefore, by the time that line 70 is executed, L
will contain the largest number stored in A, B, and C.

Line 70 computes the semiperimeter 5, and line 80
compares Land 5 to see if a triangle is possible. If Lis
greater than 5, the message NO TRIANGLE POSSIBLE
is printed and the program branches back to line 20
and asks for three new sides. On the other hand, if L
is not greater than 5 line 90 is executed, which com
putes the area of the triangle. Line 100 prints the re
sult. Line 110 skips a line and line 120 branches back
to line 20 to run the program again. A sample run of
this program is shown in Figure 6.17.

FIGURE 6.16 Program to find the area of a tri
angle.

50

10 REM PROGRAM TO FIND THE
15 REM AREA OF A TRIANGLE
20 ? "ENTER THE THF~:EE SIDES OF (~ TPI?~NGLE"

:::::0 INPUT A~ B~ C
40 IF A}B THEN L=A~GOTO 60
50 L=B
60 IF C}L THEN L=C
70 t:l= (A+B+C) ./?
80 IF L >S THf::N ? "NO n:n ANGLE POSS I Bl..E" ~ GOTO 20
90 AREA=(S*(S-A)*(S-B)*(S-C»AO.5
1 00 ? "THE ?~RE(") OF THE n~ I AI"'mL_E IE"; (~F~E{~
110 '?
1 :,20 GOTO 20

RUN
ENTER THE THREE SIDES OF A TRIANGLE
?5,~e.3
NO TRIANGLE POSSIBLE
ENTER THE THREE SIDES OF A TRIANGLE
?~e,3.5
NO TRIANGLE POSSIBLE
ENTER THE THREE SIDES OF A TRIANGLE
?3,4,5
THE AREA OF THE TRIANGLE IS 5.99999988

ENTER THE THREE SIDES OF A TRIANGLE
?

FIGURE 6.17 Sample runs of the program in Figure 6.16.

FLOWCHARTS AND PSEUDOCODE

In this chapter we have used the BASIC IF ... THEN
statement in the form of an if . .. then . . . else state
ment. For example, in the program to find the area of
a triangle, we used the following algorithm to f ind the
largest va lue in A, B, and C and store it in L:

be executed. If the logical expression following if is
false, the train w ill follow the track to station 2 where
the else statements w i II be executed . Note that the
train can only go to station 1 or station 2. It cannot go
to both stations .

if A > B

then L = A

else L = B

if C > L

then L = C

In Chapter 8 we will use the BASIC IF ... THEN state-
ment to form var ious loops. The if . .. then . .. else
statement is one of these "good" statements that is
avai lable in structured programming languages such
as PASCAL.

In Chapter 2 we said that a computer program is
like a train going on a trip. The seats in the train are
like memory locations with unique names or ad
dresses that distinguish one seat from another. The
seats may contain strings (like the name of the person
sitting in the seat) or numerical values (like the age of
the person sitting in the seat) .

As the train goes along the track it can come to a
station where new people can get on, some people
can get off, or others can exchange seats or add th i ngs
to their seats. This is equ ivalent to executing BASIC

statements such as PRINT, INPUT, and A=B+C.
The if . .. then . .. e lse statement is like a switch

in the track that allows the train to go on one of two
different paths, as shown in Figure 6.18. These two
paths lead to two different stat ions and then
recombine on the other side of the stat ions. If the logi
cal expression following if is true, the train wil l fo llow
the track to station 1 where the then statements w i II

FIGURE 6.18 The if ... then . .. else statement
takes the train to one of two possible stations.

if

else

STATION 1 STATION 2

51

Flowcharts have traditionally been used to express
a computer algorithm . The if . .. then . . . else state
ment illustrated in Figure 6.18 can be represented as
a flowchart, as shown in Figure 6.19. The similarity
to Figure 6.18 is obvious. If the logical expression in
the diamond-shaped box is true, then the path to
statements A will be followed. Otherwise, the path to
statements B will be followed.

FIGURE 6.19 Flowchart representation of the
if . .. then . .. else statement.

True logical
expression

False

The algorithm for finding the largest value in A, B,
and C is expressed as a flowchart and in pseudocode
(that is, using if ... then . .. else) in Figure 6.20.
Many people find the pseudocode representation
shown in Figure 6.20b to be simpler and just as easy
to understand as the flowchart shown in Figure
6.20a. In addition, it is easy to generate flowcharts
that end up looking like "bowls of spaghetti." For
these reasons the use of flowcharts has dec! ined in re
cent years.

FIGURE 6.20 (a) Flowchart and (b) pseudocode
for algorithm to find the largest value in A, B, and
C.

jf A>B

then L=A

else l=B

jf C>L

true false then L=C

(b)

(a)

For those who still like to have some type of
graphic representation of an algorithm without
creating a "bowl of spaghetti" that is hard to under
stand, structured flowcharts are avai lable.

52

Structured Flowcharts

A structured flowchart, also called a Nassi
Schneiderman chart, after the people who introduced
it, is an alternate representation of an algorithm that
consists of various nested "boxes" without the con
necting lines that are shown in Figure 6.20. Two
alternate representations of the if . .. then . .. else
statement are shown in Figure 6.21 . We will use the
form shown in Figure 6.21b. Using this structured
flowchart, we can represent the algorithm given in
Figure 6.20 as shown in Figure 6.22.

FIGURE 6.21 Two forms of a structured
flowchart that represents the if . . . then . .. else
statement.

if logical expression

then

statements A statements B

(a)

if logical expression

-
statements A statements B

(b) L--____ ---.JL-____ --l

FIGURE 6.22 Structure flowchart representation
of algorithm to find the largest value in A, B, and
C.

j!A>B

then else
-- -

L=A L=B

if C>L

then else
-- -

L=C

Flowcharts and pseudocode are just different ways
of representing an algorithm to try to make it easier to
understand . When you are first developing a com
puter program it is generally easier to express the pro-

then
- - - -

print "too many hours"

(0)

11 H>60

11 H<O

then else
- - - - -, -

print "invalid data" 11 H< =40

(c)

then else

M= H"4 r OV=H-40-

M=40"4+OV"6

M= INT(M"l 00+<1.5)/1 00

print "weekly pay=$ ";M

(b)

if H>60

then print "too many hours"

else if H<O
then print "invalid data"

else if H<=40

then M=H*4
else OY=H-40

M=40*4+0Y*6

M = INT(M* 100+0.5)/100

print "weekly pay = $" iM

10 REM PROGRAM TO COMPUTE WEEKLY WAGES
20 ? II ENTER NUI'1BER OF H(JUr~E I,.JOI=<I<ED II
50 I NF:'UT H
40 IF H >60 THEN r} II TOO MPd\IY HDUR~3 II : GOTO 20
50 IF 1·-1< 0 TI-IE~I\j '~) II I N~/r~L. I [) DI~ T f~ II : GUTO ~~O

60 IF H<=40 THEN M=H*4~GOTO 90
70 DV=H -'-40
80 1'1=40*4+()\"*6
90 M=INTCM*100+0. 5l! 100
100? "l)jEEI·:::!_Y F'A Y:= $ ";1'1

FIGURE 6.23 (a) Structured flowchart; (b)
pseudocode of weekly pay program; (c) BASIC list
ing of weekly pay program.

gram in the form of a flowchart, structured flowchart,
or pseudocode, and then to convert this algorithm to
BASIC.

The structured flowchart and pseudocode fo r the
weekly pay program discussed earlier in thi s chapter
are shown in Figure 6.23a and 6.23b. The BASIC list
ing of this program is shown in Figure 6.23c. You
should carefully compare these three representations
of the same program .

The advantage of the structured flowchart repre
sentation is that it clearly displays the logic of the pro
gram in a graphic form. The advantage of the
pseudocode is that it describes the algorithm in a sim
ple and straightforward manner. Note the importance
of the indentation in the pseudocode description . The
advantage of the BASIC representation is that it can be
executed on the AT ARI.

Some people have devised a variety of indentation
conventions that will make a BASIC program eas ier to
understand. You can use indentation in your program
on the AT ARI at the expense of usi ng up more mem
ory . You should always keep a written versi on of your
programs on a piece of paper. Thi s version ca n in
clude indentation, pseudocode, structured flow
charts, or anything else that will help you to under
stand the program.

The comp lete structured flowchart for the program
to find the area of a triangle is shown in Figure 6.24a.

The BASIC listing of this program is shown in Figure
6.24b. You shou ld compare the structured flowchart
carefully w ith the BASIC listing. Note that the GOTO
statement in line 120 is represented in the structured
flowchart as an "outer loop" that continues forever
(or until the program is stopped by pressing the
BREAK key).

In Chapter 8 we will take a closer look at loops. In
particular you will learn how to stop a loop any time
you want.

FIGURE 6.24 (a) Structured flowchart and (b)
BASIC listing of program to find the area of a trian
gle.

print "Enter the three sides of a triangle

input A, S, C

!! A>B

then else
-

I
- -

L~A L~B

~ C>L

then else
r-

L~ T
- - - -

g,:(A+B+C)12

!! L>S

)--
print "no triangle possible"

continue this loop forever

53

10 REM PROGRAM TO FIND THE
15 REM AREA OF A TRIANGLE
20 '::' 01 ENTER THE THREE ::) I DES OF A TR I ANGLE 01

30 INF'UT PI, B, C
40 IF A}B THEN L=A:GOTO 60
50 1...::::8
60 IF C}L THEN L=C
70 B= U~+B+C) /2
80 IF L}8 THEN ? 01 1\10 TR I (~NGLE POSS I ELE 01 ~ GOTO 20
90 AREA=(S*(S-A)*(S-B)*(8-C»AO.5
1 00 '? 01 THE I-IREA OF THE TR I ANGLE IS 01; AREA
110 ' ;.>

EXERCISE 6.1

120 GOlD :~O

FIGURE 6.4 (cont.)

For married taxpayers filing joint returns with a taxa
ble income between $20,200 and $24,600, the fed
eral income tax is $3 ,273 plus 28 percent of the
amount over $20,200. Write a program that will in
put a taxable income, check that it is between
$20,200 and $24,600, and then compute and print
the income tax on the screen.

EXERCISE 6.2
Write a program to compute take-home pay. The pro
gram should input an hourly wage and the number of
hours worked. Assume that 6.65 percent of the gross
pay is deducted for Social Security taxes, 14.8 per-

54

cent of the gross pay is deducted for federal income
taxes, and 4 percent of the gross pay is deducted for
state income taxes. The program should print out the
wage rate, the number of hours worked, the amount
deducted for Social Security, federal , and state in
come taxes, and the take-home pay.

EXERCISE 6.3
Write a program that will continuously input a series
of test scores. When a negative score is entered the
program should print the number of scores entered,
the largest score, the smallest score, and the average
of the test scores.

LEARNING TO USE LOW-RESOLUTION
GRAPHICS-DISPLAYING THE FLAG

In this chapter you will learn how to draw co lored
pictures on the screen using one of the low-reso lution
graphi cs modes of the ATARI. A high-reso lution
graphi cs mode that is also ava ilable will be described
in Chapter 13.

In this chapter you will learn

1. how to plot various co lored dots by using the
statement PLOT X, Y

2. how to plot lines using the statement DRAWTO
X,Y

3. to draw dashed lines using the FOR ... NEXT
loop

4. to draw areas and arrays of points

5. how to display the American flag on the TV
screen.

PLOTTING DOTS AND LINES USING
THE PLOT AND DRAWTO STATEMENTS

Type

GR. 5

This is an abbreviation for GRAPHICS 5, which sets
the graphics mode 5. When you do this the screen
will clear to black except for a four-line text window
at the bottom of the sc reen.

Graphics mode 5 is a low-resolution graphics
mode in which the screen is considered to be divided
into a grid made up of 40 rows and 80 co lumn s, as
shown in Fi gure 7. 1. The co lumn positions of the grid
are numbered 0 through 79 from left to ri ght. This is

ca lled the X position or X coordinate. The row posi
tions of the grid are numbered 0 through 39 from top
to bottom . This is called the Y position or Y
coordinate. Anyone of 3,200 (40 x 80 = 3,200)
small squares or blocks on the grid can be identified
by giving its X and Y coordinates. For example, in
Figure 7.1 the shaded block is located at the
coord inates X = 25,Y = 15 .

You can plot a co lored spot at any of the 3,200
grid positions on the screen. These spots can be one
of 16 different co lor hues. The possible color hues are
given in Fi gure 7.2 . In addition to the 16 color hues a

55

FIGURE 7.1 The low-resolution graphics mode 5
divides the screen into an 80 x 40 grid.

o Gray
1 Light orange(gold)
2 Orange
3 Red-orange
4 Pink
5 Purple-blue
6 Blue
7 Blue

8 Light blue
9 Dark blue

10 Turquoise
11 Green-blue
12 Green
13 Yellow-green
14 Orange-green
15 Light orange

FIGURE 7.2 Sixteen colors numbered 0-15 can
be plotted using low-resolution graphics.

spot can have one of 8 different values of color lumi
nance. The luminance value is an even number be
tween 0 and 14. A luminance value of 0 is very faint;
a value of 14 is very bright. A color is determined by
the combination of its hue value (0-15) and its lumi
nance value (0-14). An odd luminance value has the
same effect as the next lower even value.

The 16 hues and 8 luminances give rise to 128
(16 x 8) different colors that can be displayed . To
display a particular color, the hue and luminance
value must be stored in a color register. The color reg
ister contains both the hue value and the luminance
value, as shown in Figure 7.3.

The ATARI contains five color registers that con
tain different colors (hue-luminance combinations).
These resigers are numbered 0-4 as shown in Figure
7.4. The statement

SETCOLOR R,H,L

56

Hue value (0-17 \.minance value (0-14, even)

H L

Color register No. 0

FIGURE 7.3 A color register contains the hue and
luminance values for a particular color.

will store the color hue value H and the luminance L
in color register R. For example,

SETCOLOR 0,0,14

FIGURE 7.4 SETCOLOR R,H,L stores the color
hue H and luminance L in color register R.

SETCOLOR R,H,L

Register No.

o

2
3
4

H L
H L
H L
H L
H L

COLOR Numbers
(mode 5)

1
2
3

o (Background
and border)

will set the color in register ° to gray with a lumi
nance of 14.
To plot a spot on the screen we must tell the AT ARI
which color register to use to determine the color.
Graphics mode 5 allows four different colors corre
sponding to the color registers 0, 1, 2, and 4. Color
register 4 controls the color of the background. The
default value of color register 4 is black. (SETCOLOR
4,0,0). The statement

COLOR N

tells the ATARI which color register to use. For graph
ics mode 5, the value of N must be 1,2, 3, or ° corre
sponding to color registers 0, 1, 2, and 4, as shown in
Figure 7.4. Therefore, if you want to use the color
stored in color register 0, you must execute the state
ment

COLOR 1

Now type

SETCOLOR 0,O,14:COLOR 1

This will set color register ° to white and identify
color register ° (COLOR 1) as the color to use.

The text window at the bottom of the screen is
controlled by the GR. ° mode. In this mode color reg
ister 2 contains the color of the background and color
register 1 controls the color of the text. The hue value
in color register 1 (the text color) is always the same
as the background (color register 2). Only the lumi
nance can be different. Type

SETCOLOR 2,0,0

This will set the background of the text window to
black (gray hue with ° luminance) . Now type

SETCOLOR 1,0,14

This will set the text color in the text window to white
(the same gray hue as the background but with maxi
mum luminance) .

Once you have set the color, you can plot a spot
located at coordinates X, Y by typing

PLOT X,Y

For example, if after typing

GR.5
SETCOLOR O,O,8 :COLOR 1

you type

PLOT 25,15

then a white spot located at coordinates X = 25,
Y = 15 will be plotted, as shown in Figure 7.5.

FIGURE 7.5 PLOT 25,15 will plot a spot at loca
tion X = 25, Y = 15.

In order to get out of the low-resolution graphics
mode 5, type

GR. °
This will cause the ATARI to return to the full-screen
text mode (24 lines of 40 characters each), which is
the same as graphics mode 0 .

Whenever a GRAPHICS statement is executed the
color registers are set to their default values. These
default values are shown in Table 14.4 in Chapter 14.

Return to the low-resolution graphics mode 5 by
typing GR. 5 again. Now type

SETCOLOR O,O,14:COLOR 1

SETCOLOR 2,O,O:SETCOLOR 1,0,14

PLOT 20,20:PLOT 21,21 :PLOT 22,22

The screen should display three spots located along a
diagonal line, as shown in Figure 7.6.

FIGURE 7.6 Multiple spots can be plotted using
multiple PLOT statements.

57

Now type

DRAWTO 24,20

Notice that the two spots at 23,2 1 and 24,20 are
plotted as shown in Figure 7.7. The statement
DRAWTO X,Y can be used to plot a line from the
most recently plotted spot to the location X, Y.

FIGURE 7.7 Plotting a line using DRAWTO X,Y.

The graphics commands can be used in the de
ferred mode of execution by including them in a BASI C

program. For example, return to the text mode by
typing GR. 0 and then type in the following program :

10 GRAPHICS 5

15 SETCOLOR 4,0,0

20 SETCOLOR O,O,14:COLOR 1

25 SETCOLOR 2,O,O:SETCOLOR 1,0,14

30 PLOT 15,5:DRAWTO 50,5

40 DRAWTO 50,30

50 DRAWTO 15,5

This program should plot the triangle shown in Figure
7.8.

FIGURE 7.8 Triangle plotted using DRAWTO
statements.

58

EXERCISE 7.1
Plot the following horizontal lines on the screen:

1. a blue line from X = 10 to X = 35 at Y = 3

2. a yellow line eight spots long starting at co lumn
number lOon row number 12

3. a pink line all the way across the top of the
screen.

EXERCISE 7.2
Plot the following vertical lines on the screen :

1. a green line from Y = 3 to Y = 15 at X = 2

2. a purple line 15 blocks high with the top at row
10 and located in column 18

3. a blue line along the entire right edge of the
screen.

Drawing Your Name

Suppose that you want to draw your name in large
block letters on the sc reen. The first step is to draw
your name on quadrille paper the way you want it to
appear on the 80x40 grid on the screen . For exam
ple, Figure 7.9 shows the name JEFF sketched on a
grid . Some of the column and row numbers are writ
ten next to each letter.

From Figure 7.9 you can see that to plot the letter J
the computer must execute the statements

PLOT 2,19

PLOT 2,20:DRAWTO 8,20

DRAWTO 8,10

Similarly, to plot the letter E the statements

PLOT l1,10:DRAWTO 11,20

DRAWTO 17,20

PLOT 12,15:DRAWTO 15,15

PLOT 12,10:DRAWTO 17,10

must be executed . The statements

PLOT 20,20:DRAWTO 20,10

DRAWTO 26,10
PLOT 21,14:DRAWTO 24,14

will plot the first F; the second F can be plotted with
the statements

PLOT 29,20:DRAWTO 29,10

DRAWTO 35,10

PLOT 30,14:DRAWTO 33,14

You can type these statements in the immediate
mode and watch each letter being plotted one seg-

5

10

15

20

25
FIGURE 7.9 Sketch your name on an 80x40 grid
in order to define the coordinates of all letter seg
ments.

ment at a time. Alternatively, you can return to the
GR. 0 mode and type in the entire program using line
numbers. Then you can execute the program by
typing RUN .

A listing of this program, to be run in the deferred
mode, is shown in Figure 7.10. Line 20 enters the
low-resolution graphics mode 5. Each different letter
is plotted in a different color. Lines 30-60 plot a
green J. Lines 70-110 plot a yellow E. Lines 120-150
plata pink F, and lines 170-190 plot another pink F.
The result of running this program is shown in Figure
7.11.

Note that to plot three different colors on the
screen we must store three different co lors in the
three different color registers 0, 1, and 2. (Recall that
color register 4 stores the color of the background.)
This is because each spot that we plot on the screen
has associated with it the color number (1-3) that we
used when we plotted the spot. Color number 1 al
ways points to color register o. If you change the
color (H and L values) stored in color register 0 the
color of the J will change. To see this, type

SETCOLOR 0,3,8

The J should change from green to red . Similarly, if
you type

SETCOLOR 2,9,8

the two Fs will change from pink to dark blue . Try
this . Change the values stored in the various color
registers (by executing the SETCOLOR statement) and
watch the colors of the four letters and background
change.

FIGURE 7.10 Listing of program to plot the name
JEFF in block letters.

20 GR(""~PHICS 5
30 SETCOLOR 0,12~8~COLOR 1
40 PLOT 2~19
50 PLOT 2~20~DRAWTO 8,20
60 DRmnO 8~ 10
70 SETCOLOR 1,1 3,8~COLOR 2
80 PLOT 11~10:DRAWTO 11~20

90 DRA~~TO 17, 20
100 PLOT 12~15:DRAWTO 15~15

110 PLOT 12,10:DRAWTO 17,10
12 0 SETCOLOR 2~4,8:COLOR 3
130 PLOT 20,20:DRAWTO 20~10
140 DRA~nO 26,10
150 PLOT 21,14:DRAWTO 24,14
170 PLOT 29~20:DRAWTO 29~10
180 DR(~WTO 35 ~ 10
190 PLOT 30~14:DRAWTO 33,14

59

FIGURE 7.11 Result of running the program
shown in Figure 7.10.

EXERCISE 7.3
Write a program that will plot your name in block let
ters on the screen. Use three different colors for the
letters.

Drawing Dashed lines

Enter the low-resolution graphics mode 5 by typing

GR. 5
SETCOLOR O,0,14:COLOR 1
SETCOLOR 2,0,O:SETCOLOR 1,0,14

Now type

FOR X= 12 TO 40 STEP 2:PLOT X,5:NEXTX

This will plot the horizontal dashed line shown in Fig
ure 7.12.

The vertical line shown in Figure 7.12 can be
plotted by typing

FOR Y= 1 ° TO 30 STEP 3:PLOT X,Y:NEXTY

Note that seven spots are plotted in this vertical line
corresponding to Y values of 10, 13, 16, 19, 22, 25,
and 28. Another step of 3 would produce a value of Y
equa l to 31, which is greater than 30. Therefore, the
FOR .. . NEXT loop is ex ited.

FIGURE 7.12 Plotting dashed lines using the
FOR ... NEXT loop.

60

1 0 F~EM FL.OT AREA
20 GRAPHICS 5:SETCOL.OR 2~9,8:COLOR 3
30 FOR ROW=O TO 20
40 PL.OT O,ROW:DRAWTO 24,RDW
50 NEXT RO\I-l
(a)

(b)

FIGURE 7.13 Program shown in (a) will plot area
shown in (b) .

Drawing Areas

The program shown in Figure 7.13a will plot the blue
area shown in Figure 7.13b. Thi s area is plotted by
drawing 21 rows (0-20) of horizontal lines, each 25
units long.

Type in this program and run it. Modify the pro
gram so that it will draw a square area 20 units on a
side with the upper-left-hand co rner of the square at
the coordinates X = 10, Y = 10.

Plotting an Array of Points

Earl ier you saw (see Figure 7.12) that in the low
resolution graphics mode the FOR ... NEXT loop

FOR X = 12 TO 40 STEP 2:PLOT X,5 :N EXTX

will plot 15 spots in a horizonta l row with a blank
space between adjacent spots . If you change the
statement PLOT X,5 to PLOT X, Y and then let Y
change in an outer FOR . . . NEXT loop, you ca n
produce several rows of these dashed lines. The pro
gram shown in Figure 7.14 will do thi s.

Line 20 enters the low-resolution graphi cs mode 5
and sets the color to white. The inner FOR ... NEXT
loop starting at line 40 produces one row of 15 spots
at line number Y. The outer FOR . .. NEXT loop
starting at line 30 plots 15 rows of these dashed lines
as Y varies from 6 to 34 in steps of 2.

FIGURE 7.14 Program to plot an array of points.

10 REM ARRAY OF POINTS
20 GRAPHICS 5:SETCOLOR 0~0,14:COLOR 1
30 FOR Y=6 TO 3 4 STEP 2
40 FOR X=12 TO 40 STEF 2
::;0 F'LDT X;. Y
60 NE::::<T X: NEXT Y

FIGURE 7.15 Array of plots plotted uSing the
program in Figure 7.14.

61

Type in this program and run it. You should obtain
the array of spots shown in Figure 7.15 . Modify this
program by changing the number of rows, the num
ber of points plotted in each row, and the spacing be
tween the spots .

Plotting the Star Field

When we display the flag later in this chapter we will
need to plot the star field. We will do this by plotting
an array of low-resolution graphic spots. These will
be arranged according to the pattern shown in Figure
7.16.

FIGURE 7.16 Pattern used to display the star
field in the flag.

o 10 15 20 25

o

~ v.:
t6- b 1%

~ ~ ~ '/

v.: Vj

10 VJ VJ V,; V,; ~

VJ Vj V,; /j
15

'/ ~ 1% ~

V::: Vj v.:
20

If you look carefully at this pattern you will see that
it consists of two rectangular arrays of points: a 5 x 6
array and a 4X5 array. These two rectangular arrays
will be plotted separately.

The first rectangular array can be plotted using the
followi ng statements:

230 FOR Y=2 TO 18 STEP 4

240 FOR X=2 TO 22 STEP 4

250 PLOT X,Y:NEXT X:NEXT Y

The second rectangular array can be plotted using the
following statements:

260 FOR Y=4 TO 16 STEP 4

270 FOR X=4 TO 20 STEP 4
280 PLOT X,Y:NEXT X:NEXT Y

You should convince yourself that these two sets of
statements will, in fact, produce the pattern shown in
Figure 7.16.

62

A program that will plot this star field is shown in
Figure 7.17a. The result of running this program is
shown in Figure 7.17b.

FIGURE 7.17 (a) BASIC program to display star
field; (b) star field displayed by executing pro
gram in (a).

215 REM PLOT STAR FIELD
21 7 GRAPHICS 5:C2=0
220 SETCOLOR 0~C2~8:COLOR 1
230 FOR Y=2 TO 18 STEP 4
240 FOR X=2 TO 22 STEP 4
250 PLOT X,Y~NEXT X: NEXT Y
260 FOR Y=4 TO 16 STEP 4
270 FOR X=4 TO 20 STEP 4
280 PLOT X~Y:NEXT X:NEXT Y
290 END

(a)

(b)

Making Stripes

The one further thing we need to learn in order to
display our flag is how to make stripes. In this section
we will write a general program that can display any
size striped pattern made from any two colors. The
program will ask the user to enter the following
values from the keyboard:

1. the number of stripes, N, to be plotted

2. the width of each stripe, W

3. the length of each stripe, L

4. the two colors, C1 and C2, from which the
stripes will be formed.

Given these variables, Figure 7.18 shows an algo
rithm that will display N stripes, each of width Wand
length L, starting with the C1 color in color register O.

In this algorithm the inner NL for . . . next loop will
plot one stripe consisting of W rows of lines, each
with a length L. The color of the first stripe will be C1

(color number R=1). After the NL for . .. next loop is
completed the value of R is changed to the other
co lor register number using the if . .. then . . . else
statement. The outer NS for . . . next loop will con
tinue to plot stripes until N stripes have been plotted .

A listing of the BASIC program corresponding to this
algorithm is shown in Figure 7.19. You should type in
this program and run it. A sample run of the program
is shown in Figure 7.20. You should try making differ
ent kinds of stripes using this program . Another
sa mple run of this program is shown in Figure 7.2 1.
We will use the values shown in this example to help
display our flag.

FIGURE 7.18 Algorithm for displaying N stripes,
each of width Wand length L, starting with the
color (1 in color register O.

clear screen
SETCOLOR O,C1,8: SETCOLOR 1,C2,8
ROW = O:R = 1
for NS = 1 to N

COLOR R
for NL = 1 to W

PLOT 0, ROW: DRAWTO L-1, ROW
ROW = ROW + 1

next NL
if R = 1
then R = 2
else R = 1

next NS

FIGURE 7.19 BASIC listing of program to make
stripes .

10 REM PROGRAM TO MAKE STRIPES
:t. ~s '? "} II
:.?O ? "ENTER NUMBER OF STI::;: I PES "~

:?~; II\lI::'LIT N
30 ? "ENTER WIDTH OF EACH STRIPE ";
~~:5 I NF'lJT ~~

40 ? "ENTEI::;: I_ENGTH DF E{~CI'-\ STR I F'E ":;
45 INPUT L

SO
90
100
110
120

? "ENTER TWO COLOF~S «(1 -, 15) "if
INPUT Cl,C2
GR APHICS 5
SETCOLOR (I~C1,8:SETCOLOR 1,C2,8
Rmlj::::(I: R== 1
FOF~ \\IS:::: 1. TO N
COLOR R
FOR Nl_= 1 TO ~~

PLOT O,ROW:DRAWTO L-l~ROW
ROW:::: RO\.LJ+1
NEX T NL
IF R=1 THEN R=2:GOTO 140

130 R::::1
140 NE XT NS

FIGURE 7.20 Sample run of program shown in
Figure 7.19.

FIGURE 7.21 A second run of program shown in
Figure 7.19.

63

FIGURE 7.21 (cant.)

DISPLAYING THE FLAG

The American flag has 13 stripes. If we use 3 graphics
5 lines for each stripe, we will require 39 lines. Since
there are 40 rows in the graphics 5 mode, this wi II
work out well. The star field shown in Figure 7.16 is
21 rows high, which corresponds to the top 7 stripes
of the flag. This is the correct size of the star field.

The BASIC program shown in Figure 7.22 will
display the 13 stripes of the flag. Lines 50-150 are
just the algorithm shown in Figure 7.18 with N = 13,
W = 3, and L = 71. This will produce a somewhat
shortened version of the 13 stripes shown in Figure
7.21 b.

We now need to add the blue field to Figure
7.21 b. This will be done by plotting a 21 x25 blue
area in the upper-left-hand corner of the screen. The
following algorithm will do this:

set color to blue

for ROW = 0 to 20
Plot from 0 to 24 at ROW

next ROW

This algorithm is accomplished by adding lines
170-210 to our program, as shown in Figure 7.23.
The result of executing this new program is shown in
Figure 7.24.

We now need to add the star field . This is done by
adding lines 215-290 as shown in Figure 7.25. (See

64

Fi gure 7.17a.) The resulting flag is shown in Figure
7.26.

FIGURE 7.22 Program to display the 13 stripes of
the flag .

10 REM PROGRAM TO DISPLAY FLAG
20 SETCOLoR 0~4~6:REM RED
30 SETCOLOR 1~0~14:REM WHITE
40 SET COLOR 2,9,6:REM BLUE
50 GRAPHICS 5
60 ROW=O:R=l
70 FOR NS=l TO 13:REM RED & WHITE STRIPES
80 COLOR R
90 FOR NL=l TO 3
100 PLOT O~ROW:DRAWTo 70~ROW
110 ROW=ROW+l
120 NEXT NL
130 IF R=l THEN R=2:GOTO 150
140 R=l
150 NEXT NS

FIGURE 7.23 Subroutine to add the blue field to
the flag .

170 REM PLOT BLUE FIELD
180 COLOR :3
190 FOR ROW=O TO 2 0
2 00 PLOT O~ROW:DRAWTO 24,ROW
210 NEXT ROW

FIGURE 7.24 Result of executing program shown
in Figures 7.22 and 7.23.

FIGURE 7.25 Program to add the star field to the
flag.

215 REM PLOT STAR FIELD
220 COLOR l~REM WHITE STARS
230 FOR Y=2 TO 18 STEP 4
240 FOR X=2 TO 22 STEP 4
250 PLOT X~V:NEXT XnNEXT Y
260 FOR V=4 TO 16 STEP 4
270 FOR X=4 TO 20 STEP 4
280 PLOT X,V:NEXT X:NEXT V
:;:~9(l END

EXERCISE 7.4
Write a program that will draw a large 8x8 red and
blue checkerboard on the sc reen su itable for playing
a game of checkers.

EXERCISE 7.5
Write a program that will plot a large 3 x 3 red and
blue checkerboard for playing tic-tac-toe. Each
square of the checkerboard should contain 12 x 12
low-reso lution plotting spots. Plot a yellow X on
square I,J if you input I,LX. Plot a green 0 on square
I,J if you input 1,1,0. For example, if you input 1 ,2,X a
large yellow X should be plotted in the second square
of the first row. If you input 2,2,0, a large green cir
cle should be plotted in the center square. Make the
large circle occupy 8 x 8 squares. Make the large X
occupy 7 x 7 squares.

FIGURE 7.26 Flag produced by program shown
in Figures 7.22, 7.23, and 7.25.

65

LEARNING MORE ABOUT LOOPS
ANOTHER LOOK AT IF ... THEN

In Chapters 5 and 7 we used the FOR and NEXT state
ments to form loops. In this chapter we will form dif
ferent types of loops by using the IF .. . THEN state
ment. In Chapter 6 we used the IF ... THEN
statement to make simple choices between two alter-
natives. We saw that this use of the IF ... THEN
statement was equivalent to using an if ... then
... else statement. In this chapter we will use the
IF . .. THEN statement for a completely different
purpose-that of forming loops. Since you are using
the same IF . .. THEN statement, you may think that
there is no difference between using IF ... THEN to
form loops and using it to form an if . .. then . .. else
construct. But this is not so. An if . .. then . .. else
statement merely makes a decision between two dif
ferent paths. A loop, on the other hand, implies repe
tition, in which the same statements are executed

over and over again until (or while) some condition is
met.

In this chapter you will learn

1. to repeat a loop while an affirmative answer is
given to a question

2. to use the IF .. . THEN statement to form a re
peat while loop

3. to make nested loops using the IF ... THEN
statement

4. the difference between a repeat while, a repeat
until, a do while, and a do until loop and how to
implement these loops in BASIC

5. how to implement a loop ... exit if ...
endloop and a loop . .. continue if . .. endloop
construct in BASIC.

THE REPEAT WHILE LOOP

Very often you will have a sequence of BASIC state
ments that you will want to repeat as long as a partic
ular logical expression is true . For example, you may
wish to do the following :

30, __ _

66

40 __ _
50 __ _
60 __ _

repeat lines 30-60 while A > 0

You can do this with the following statement:

70 IF A>O THEN 30

Lines 30-70 form a loop that is exited only when
A > 0 becomes false-that is, when A < = o. Ob-

viously, in order to get out of the loop there must be
something in lines 30-60 that will eventually cause A
to become less than or equal to O.

Later in this chapter we will look at other types of
loops. For now, let's look at some examples.

TRIANGLE PROGRAM

The program to find the area of a triangle was dis
cussed in Chapter 6; the BASIC listing is given in Figure
6.16. Because of the GOTO statement in line 120,
this program executes over and over again until the
BREAK key is pressed in response to the INPUT state
ment. A better way to end the program would be to
ask the user if he or she wants to continue . This can
be done by replacing the GOTO 20 statement on line
120 with the following statements :

17 DIM A$(5)
120 ? "DO YOU WANT TO CONTINUE (Y,N)";
125 INPUT A$
130 IF A$(l,l) ="Y" THEN 20
140 END

Line 120 displays the message "DO YOU WANT
TO CONTINUE (Y,N) and line 125 then waits for a
response to be entered from the keyboard . This re
sponse is stored in the string A$, which is dimen
sioned to a length of 5 in line 17. Line 130 compares
the first letter of this string to " Y" and if

A$(l,l) = "Y" the program branches back to line 20
and the area of another triangle is found. Any other
response will terminate the program.

The string A$(I,J) is the substring of A$ that starts at
character number I and continues through character
number J. Thus, A$(l,l) is the first letter in A$. There
fore, line 120 will branch to line 20 if either " Y" or
"YES" was typed in line 125. (The string A$(I) is the
substring consisting of the characters in A$ starting at
location I and continuing to the end of the string.)

The BASIC listing of this modified program is shown
in Figure 8.1 and a sample run is shown in Figure 8.2.
Remember that if the response to an I N PUT statement
is expected to be a nonnumeric value, then a string
variable must be used in the INPUT statement. If the
INPUT statement contains a numerical variable and
the user types in a letter or other nonnumeric value,
the ATARI will respond with the message ERROR- 8
and exit the program .

An INPUT statement containing a string variable
will accept any input but will treat it as a string. Thus,
in line 130 in Figure 8.1 the substring A$(l , 1) must be
compared to the string "Y".

FIGURE 8.1 BASIC listing of modified triangle program.

10 REM PROGRAM TO FIND THE
15 REM AREA OF A TRIANGLE
17 DIlvl A$ (5)
20 ? "EI\ITEI=\: THE THREE SIDES OF {''I TRJ{~NGLE"

30 INPUT A,B~C
40 IF A>B THEN L=A:GOTO 60
50 L=B
60 IF C>L THEN L=C
70 S=(A+B+C).l2
80 IF L >8 THEN ? "1\10 TR I ANGLE POSS I BLE" ~ GOTD :::0
90 AREA=(S*(S-A)*(S-B)*(S-C» AO.5
1 00 ? "THE AREA OF THE TF~ I ANGLE IS"; AREA
1.1 () I?
120 ? "DO YOU WANT TO cmn INUE (Y, N) ";;

125 INPUT A$
1 ~JO IF A$ (1 , 1) =" Y" THEN 20
140 END

67

FIGURE 8.2 Sample run of program shown In

Figure 8.1.

RANDOM STRIPE PATTERNS

In this section we will write a program that will draw
a random horizontal stripe pattern . The pattern will
contain 40 horizontal I ines each 80 spaces long. In
other words the picture will take up the entire 80x40
screen area in the low-resolution graphics mode 5.
Each stripe that is plotted will have a 50/50 chance of
being one of two possible colors. These two co lors
can be specified by the user.

A pseudocode description and a structured
flowchart for this program are shown in Figure 8.3.
After clearing the screen the user specifies two co lor
numbers C1 and C2 in the INPUT statement. The var
iable Y is used to specify the line number (0-39) at
which a particular horizontal line is drawn.

Each time through the inner repeat while loop a
single stripe is drawn. The line number Y is increased
by 1 each time through this loop. The color of each
stripe is determined by the value of a random number
R. The value of this random number is between 0 and
1. If it is less than 0.5 (there will be a 50/50 chance of
this), then the color in color register 0 (COLOR 1) is
used for the next stripe. Otherwise, the color in co lor
register 1 (COLOR 2) is used. This loop is repeated
while Y< = 39. After the stripe pattern is plotted, the
user is asked if another picture is wanted. If so, the
screen is cleared and the entire program is executed
again. Otherwise, the screen is cleared and the pro
gram terminates.

A BASIC listing of this program is shown in Figure
8.4 . Compare this listing carefully with the
pseudocode and structured flowchart representations
of the program shown in Figure 8.3. Note in particu-

68

lar how the repeat while and if ... then . .. else con
structs are implemented in BASIC. Line 120 will cause
the screen to be cleared of the previous stripe pattern.

You should type in this program and run it. A
sample run is shown in Figure 8.5.

EXERCISE 8.1
Use a FOR ... NEXT loop to implement the random
stripe algorithm in Figure 8.3. Run the program and
compare the result with Figure 8.5.

FIGURE 8.3 (a) Pseudocode of program to draw
random stripes; (b) structured flowchart for pro
gram to draw random stripes.

clear screen
loop: input 2 colors C1, C2

GR. 5: SETCOLOR O,Cl,8
SETCOLOR l,Cl,8
Y=O
loop: R = RNO(O)

if R < 0.5
then COLOR 1
else COLOR 2
Draw horizontal line at Y
Y=Y+l

repeat while Y < = 39
input "another picture?"iA$
clear screen to green

repeat while A$(l, 1) = "Y"

clear screen

input 2 colors C1, C2
set up graphics
Y=O

R = RND(O)

if R <0. 5
then else

--COLOR'- - -1- --COLOR2 - --

Draw horizonta l line at Y
Y=Y+1

repeat while Y < =39

input "another picture?";A$
clear screen

repeat while A$ (1, 1) ="Y"

FIGURE 8.3 (cont.)

10 REM RANDOM STRIPES
15 DIM A$(5)
20 ? 11'1 11
30 ? "ENTER 2 COLORS (0-15) ";
35 INPUT Cl.C2
40 GRAPHICS 5:SETCOLOR 0.Cl.8:SETCOLOR I.C2.8
45 Y=(I
50 R=RND(O)
60 IF R(0.5 THEN COLOR I:GOTO 70
65 COLOR 2
70 PLOT O.Y:DRAWTO 79.Y
80 Y=Y+l
90 IF Y(=39 THEN 50
100? "ANOTHER PICTURE (Y .N)"!
110 INPUT A$
120 GRAPHICS 0
130 IF A$(I.1)="Y" THEN 30
140 END

FIGURE 8.4 BASIC listing of program to produce
a random stripe pattern.

FIGURE 8.5 Sample run of program shown In

Figure 8.4.

69

RANDOM CHECKERBOARD PATTERN

In this section we will modify the program in Figure
B.4 to plot a random checkerboard pattern rather
than a stripe pattern. This can be done by adding an
other inner loop that will plot a single spot rather than
a horizontal line. Each spot will have a 50/50 chance
of having one of two possible colors .

Pseudocode and structured flowchart representa
tions of this program are shown in Figure B.6. Com
pare these algorithms with the corresponding pro
gram descriptions given in Figure B.3 for the random
stripe program . Note that for each line plotted on the
screen (which occurs within the repeat while Y< =

39 loop) there is another nested repeat while X< =
79 loop. This inner loop will plot BO spots (with ran
dom color) on each line. Note that the value of X
must be initialized to 0 at the beginning of this inner
loop (that is, at the beginning of each new line) .

The BASIC listing of this program is shown in Figure
B.7. Compare this listing carefully with the program
descriptions shown in Figure B.6. Make sure you un
derstand clearly how each of the nested repeat while
loops is implemented in BASIC and what its function is
in the execution of the program .

Type in this program and run it. A sample run is
shown in Figure B.B. This program is a good example
of how "slow" BASIC is . It will take over a minute to
plot one random checkerboard .

EXERCISE 8.2
Use FOR ... NEXT loops to implement the random
checkerboard algorithm given in Figure B.6. Run the
program and compare your result with Figure B.B .

FIGURE 8.7 BASIC listing of program to plot ran
dom checkerboard pattern .

10 REM RANDOM CHECKERBOARD
15 DIM A$(5)
20 ? .. .,. ..
30 ? "ENTER 2 COLORS (0-15) ";
35 INPUT Cl!,C2
40 GRAPHICS 5:SETCoLoR 0,C1,8:SETCOLoR 1,C2,8
45 Y=(l
47 X=O
50 R=RND (0)

60 IF R(0.5 THEN COLOR 1:GoTo 70
65 COL.OR 2
70 PL.oT X,Y
72 X=X+1
75 IF X(=79 THEN 50
80 Y=Y+1
90 IF Y(=39 THEN 47
100? "ANOTHER PICTURE (Y,N)";
110 INPUT A$
120 GRAPHICS 0
130 IF A$(l,l)="Y" THEN 30
140 END

70

FIGURE 8.6 (a) Pseudocode and (b) structured
flowchart for program to plot a random checker
board pattern.

clear screen
loop: input 2 colors C1, C2

set up graphics
Y=O
loop: X = 0

loop: R = RND(O)
if R < 0.5
then COLOR 1
else COLOR 2
plot one square
X=X+1

repeat while X < = 79
Y=Y+1

repeat while Y < = 39
? "another picture?";
input A$
clear screen

repeat while A$(l, 1) = "Y"
(a)

clear screen

input 2 colors el . C2
set up graphics
Y = O

x=o

R=RNDIO)

if R < O.5
then else

- -coLoR, - - - - - TCOLOR-2 - - - - - - -

plot one square
X- x+,

repeat while X <=79

Y =Y+'

repeat while Y< =39

7 "another picture?";
input A$
clear screen

repeat while A$!l, 1):::<"Y"

(b)

FIGURE 8.8 Sample run of program shown In

Figure 8.7.

DIFFERENT TYPES OF LOOPS

There are really four different elementary loop struc
tures that are available. You can test the logica l ex
pression at the beginning of the loop or at the end of
the loop. In addit ion, you can branch out of the loop
when the logica ! express ion is either true or Fa lse. We
will ca ll the two loops with the test at the end of the
loop the repeat while and repeat until loops . We w ill
ca ll the two loops w ith the test at the beginning of the
loop the do while and the do until loops. In addition
to these elementary loops, it is possible to use a more
general loop structure in which the test of the logica l
expression is done in the middle of the loop. De
pending upon whether the loop is exited w hen the
logical expression is true or false we wi ll ca ll these
two general loop structures the loop . .. exit if . . .
endloop and the loop . . . continue if .. . end
loop loops.

All of these loop structures can be implemented in
BASIC. As we will see, some are easier to implement
than others. Most good programmers use only two or
three of these loop structures in all of their programs.
The cho ice of w hich ones to use depends on the
programming language being used and to some ex
tent on personal preference.

The Repeat While loop

This is the loop that we have been using in all of the
programs in this chapter. Its general form is shown in
Fi gu re B.9. In this figure logica l expo is any logica l ex
pression that is either true or false. This loop is re
peated while the logica l express ion is true. Fi gure

FIGURE 8.9 The repeat while loop: (a) pseudo
code; (b) BASIC implementation; (c) structured
flowchart; (d) train track equivalent.

loop,

r~peot whi le logical exp o

(0)

repeat while logical expo

(c)

10 __ _

20 _ _ _

30 __ _

40 IF logicol expression THEN 10

(b)

(d)

logical expo

false

71

B.9d show s what thi s loop looks like in our train track
model of a computer program. Note that the train
continues to loop around through the station as long
as the logical express ion is true.

The Repeat Until loop

The general form of the repea t until loop is shown in
Figure B.l O. Note th at in this case the loop is exited if
the logica l express ion is true. That is, the loop is re
peated until the logica l express ion is true. In general
you should choose to use either the repeat while or
the repeat until loop in your programs. Thi s w ill help
you to avoid logica l errors because you w ill always
be thinking either while or until . M any people prefer
the repeat until and some languages implement thi s
loop directly.

FIGURE 8.10 The repeat until loop : (a) pseudo
code; (b) BASIC implementation; (c) structured
flowchart; (d) train track equivalent.

loop, 10 _ _ _

20 __ _

30 __ _

repeat until logical expo 40 IF logico l expression THE N 60

50 GOTO 10

60 __ _

(0) (b)

repeat until logical expo

(c) (d)

However, by comparing Fi gures B.9 and B. l 0 you
can see that it is easier to implement a repeat while
loop in BAS IC. The repeat until implementation re
quires an additional GOTO statement. For this rea
son, any time we form a loop w ith the test at the end
of the loop we will make it a repeat while loop. Afte r
you fini sh this book you can use whichever loop
structure you want.

The Do While loop

The do while loop is one of those "good"
programming statements that is found in newer lan
guages such as PASCAL . Its general fo rm is shown in

72

Fi gure B. ll . In thi s loop the test of the logical expres
sion is done at the beginning of the loop. Thi s means
that if th e logica l expression is ini t iall y fa lse, the trai n
w i II never go to the station. That is, the statements
wi thi n the loop w ill never be executed. Note that the
BASIC implementation of the do while loop requires
two GOTO statements, one fo ll owi ng the IF
. .. THEN statement to skip over the loop statements
if the logica l expression is false, and one at the end of
the loop to branch back to the IF . . . TH EN state
ment.

FIGURE 8.11 The do while loop : (a)
pseudocode; (b) BASIC implementation; (c) struc
tured flowchart; (d) t rain track equivalent.

do while logical expo 10 IF logical expression THEN 30

20 GOTO 70

30 _ _ _

40 __ _

enddo 50 _ _ _

60 GOTO 10

70 __ _

(a) (b)

logical expo

do while logical expo

false

(c) (d)

The Do Until loop

The fourth elementary loop structure is the do until
loop, w hose genera l structure is shown in Figure
B. 12. In thi s loop the test of the logica l express ion is
also done at the beginning of the loop . However, the
statements w ithin the loop are only executed if the
logica l express ion is false-that is, until the logica l
express ion is true. Note that if the logica l express ion
is initiall y true, the train will never get to the station
and the statements w ithin the loop will never be exe
cuted .

Note also that the BASIC implementation of the do
until loop requires only one GOTO statement rather
than the two needed for the do while loop. For thi s
reason we w ill normall y implement the do until loop
rather than the do while loop w hen we need a test at
the beginning of the loop.

do until logical expo 10 IF logicol expression THEN 60

20 __ _

30 __ _

40 __ _

enddo 50 GOTO 10

60 __ _

(a) (b)

do until logical exp o
STATION

~) ~)

FIGURE 8.12 The do until loop: (a) pseudocode;
(b) BASIC implementation; (c) structured flowchart;
(d) train track equivalent.

People who write structured programs using a
"good" structured programming language use the do
while and the repeat until loops. As we have seen it
will save us some code (and therefore some memory)
if instead we use the do until and the repeat while
loops . However, any of these loops can be used with
out much difficulty.

The Loop . .. Exit If ...
Endloop Loop

Occasionally it is convenient to use a more general
looping structure. Such a loop is the loop . . . exit
if . . . end loop construct, whose general form is
shown in Figure 8.13. This is really a generalized un
til loop. That is, if the exit if statement is at the top of
the loop, it reduces to the do until loop. If the exit if
statement is at the bottom of the loop, it reduces to
the repeat until loop.

FIGURE 8.13 The loop ... exit if ... endloop
loop: (a) pseudocode; (b) BASIC implementation;
(c) structured flowchart; (d) train track equivalent.

10 __ _

20 __ _

30 __ _

exit if logical exp o 40 IF logical expression THEN 80

50 __ _

60 __ _

end/oop 70 GOTO 10

80 __ _

(a) (b)

exit if logical exp.

(e) (d)

The Loop . .. Continue
If ... fndloop Loop

In order to complete the discussion of loops, we will
show the general form of the loop ... continue
if . . . endloop in Figure 8.14. This is really a general
ized while loop. That is, if the continue if statement is
at the top of the loop, it reduces to the do while loop.
If the continue if statement is at the bottom of the
loop, it reduces to the repeat while loop.

Any of the loops that have been described can be
used in your programs, but as we have seen, the
easiest ones to implement in BASIC are the repeat
while, the do until, and the loop ... exit if .. .
endloop structures.

FIGURE 8.14 The loop . . . continue if . .. end
loop loop: (a) pseudocode; (b) BASIC implementa
tion; (c) structured flowchart; (d) train track equiv
alent.

10 __ _

20 __ _

30 __ _

continue if logical expo 40 IF logical expression THEN 60

50 GOTO 90

60 __ _

end/oop 70 __ _

80 GOTO 10

(a) (b) 90 __ _

continue if logical p.xp .

false

(c) (d)

73

EXERCISE 8.3
The dimensions, in feet, of a tract of land are shown
in the following figure:

150

300 /.i'20

,/'
720

-........... 650

-...........
490

Modify the program shown in Figure 8.1 to calcu
late the acreage of this tract of land. The total acreage
can be found by computing the area of each of the
four triangles, adding these results, and using the fact
that 1 acre = 43,560 square feet.

EXERCISE 8.4
Suppose that the tract of land shown in Exercise 8.3
contains a circular pond 200 feet in diameter com
pletely within its boundaries. Write a program that
will compute the acreage of the land excluding the
water.

EXERCISE 8.S
The Fibonacci sequence

1 1 2 3 5 8 13 21

has the property that each number in the sequence
(starting with the third) is the sum of the two immedi
ately preceding numbers. Write a program that will
display on the screen all numbers in the Fibonacci se
quence that are less than 1,000.

EXERCISE 8.6
You decide to deposit an amount of money, D, in a
savings account each month. The account pays P per
cent interest compounded monthly. Write a program
that will input D and P; then determine the number of
years (and months) that it will take for you to accumu
late a million dollars.

The amount of interest added to the account each
month is determined in the following way. If B is the
balance in the account at the beginning of the month,
then at the end of the month an amount of interest
B * MR is added to the account, where MR is the
monthly interest rate (equal to 0.01 * P/12) . Thus, the

74

total amount of money in the account at the end of
the month will be equal to B + B * MR.

Run the program for the following case :

1. Deposit $500 per month at 8 percent interest.

2. Deposit $1,000 per month at 10 percent inter
est.

3. Deposit $1,000 per month at 12 percent inter
est.

EXERCISE 8.7
Manhattan Island was purchased from the Indians in
1626 for $24. If that $24 had been deposited in a
bank in 1626 paying 4 percent interest compounded
annually, what would it be worth today?

EXERCISE 8.8
If you deposit $100 each year in a bank account
paying 5 percent interest compounded annually, how
much money will you have after 10 years?

EXERCISE 8.9
Population growth. In 1974 the u.S. birth rate was
14.9 births per 1,000 population, the death rate was
9.1 deaths per 1,000 population, and the net migra
tion rate was 1.7 per 1,000 population. Assume that
these rates will remain constant in the future and that
the population of the United States at the beginning of
1976 was 214,398,000. Also assume for the purpose
of simulating this process on the computer that all
births, deaths, and migrations take place on the last
day of each year. Write and run a program that will
determine in which year the population of the United
States will reach 300,000,000.

EXERCISE 8.10
A rocket is fired vertically into the air with an initial
velocity of V ftls . The height H of the rocket above the
ground at any time T is given by

H = - 16.2T2 + VT

Write a program that wi II

1. input a value of V

2. print the letters T and H for a table heading

3. compute H for values of T starting at 0 and
increasing by 1 second until the rocket hits the
ground

4. print the values of T and H in the form of a ta
ble.

Run the program using a value of V = 200 ft/s.

SUBROUTINES: LEARNING TO USE
GOSUB AND RETURN

Often you will have a sequence of BASIC statements
that you would like to execute at several different lo
cations within a program. Instead of having to repeat
this same sequence of statements every time you
want to use it, you can write the statements only once
as a subroutine and then call the subroutine each
time you want to execute these statements.

Subroutines are also useful as a mea ns of writing
programs in a modular fashion . Thi s becomes more
and more important as the size of a program grows.
Program segments that perform particular functions
can be written as subroutines and then called when
that function needs to be performed. The ATARI
screen can display a maximum of only 22 program
lines (leaving two lines at the bottom for the cursor);
therefore, if you can keep your main program and all
subroutines less than 22 screen lines long, you will be

able to read and study a complete program segment
without having to scroll the screen. This technique of
modularizing your program will simplify the process
of debugging and modifying your program . It is the
secret that allows you to write long programs with al
most the same ease with which you write short pro
grams.

In this chapter you will learn

1. how to use the GOSUB and RETURN state
ments

2. to plot the same figure at different locations on
the screen

3. to plot figures of varying sizes

4. how to display your name anywhere on the
screen
5. to use the game paddles and joysticks.

THE GOSUB AND RETURN STATEMENTS

The general form of the GOSUB statement is

GOSUB line number

When this statement is executed, the program
branches to the statement at line " Iine number. " For

example, the statement GOSUB 500 will cause the
program to branch to line 500. It looks as if GOSUB
500 behaves the same way as GOTO 500. However,
there is an important difference. The AT ARI remem
bers where the statement GOSUB 500 is located in

75

the program. Line number 500 is the first line of a
subroutine that is just a collection of BASIC statements
that perform a particular task. At the end of this
subroutine you must include the statement

RETURN

When the RETURN statement is executed, the pro
gram wi II then branch back to the next statement fol
lowing COSUB 500. This process is shown in Figure
9.1

FIGURE 9.1 Forming a subroutine using GOSUB
and RETURN.

50 __ _

60 GOSUB 500
70 __ _
80 __ _

Subroutine I ~~~ ----
520 RETURN

Now it looks as if you would accomplish the same
result in Figure 9.1 by using the two statements

60 GOTO 500

and

520 GOTO 70

Although this would be true in Figure 9..1 it would not
work if you wanted to call the same subroutine from
two different locations in the program as shown in
Figure 9.2 . In this case the statement

60 GOSUB 500

will branch to the subroutine at line 500, then return
to line 70.

However, the statement

90 GOSUB 500

will also branch to the subroutine at line 500 but will
then return to line 100. Recall that the ATARI always
remembers the point from which it branched to a
subroutine and it will always return to that point.

76

50 __ _

60 GOSUB 500 --....,
70 __ _

80 __ _

90 GOSUB 500
100 __ ~
110 __ _

I
500

Subroutine 510 ___ _

520 RETURN

FIGURE 9.2 Calling a subroutine from two dif
ferent locations within a program.

You can even call a subroutine from within an
other subroutine. The ATARI will always find its way
back by retracing its steps as shown in Figure 9.3.

FIGURE 9.3 One subroutine can call another
subroutine.

50 __ _

60 GOSUB 500
70 __ _
80 __ _

500 __ _

505 __ _

510 GOSUB 600
520 RETURN

600 __ _
610 __ _

620 RETURN

Line 60 branches to the subroutine at line 500. Line
510, which is within this subroutine, branches to a
second subroutine at line 600. The RETURN state
ment on line 620 will branch back to line 520, the
statement following the COSUB 600 statement. This
happens to be the RETURN statement of the
subroutine that begins at line 500. It will then branch
back to line 70, the statement following the COSUB
500 statement.

PLOTTING MULTIPLE FIGURES

The graphic figure shown in Figure 9.4a can be
plotted using the subroutine in Figure 9.4b. All points
in this figure are defined relative to the X, Y
coordinate of the upper-left-hand corner of the figure.
Lines 105-130 in Figure 9.4b draw the box in a
clockwise fashion starting at the position X,Y. Line
140 plots the two eyes. Line 150 plots the nose and
the mouth is drawn in lines 160-170. Note that line
180 is the RETURN statement. Study the subroutine
in Figure 9.4b carefully and make sure you under
stand how it draws the face in Figure 9.4a.

FIGURE 9.4 (a) Definition of graphic figure; (b)
subroutine to plot the figure in (a).
(0) x X+3 X+6 X+9

I I I I
Y - ~

Y+2 - D D
- D

I n
Y+4

Y+7 -

Y+9 -

(b)

100 REM PLOT FACE
105 PLOT X~Y:DRAWTO X+9,Y
110 DRAW TO X+9~V+9
120 DRAW TO X, Y+<i
1 :!-O DRAWTO X ~ Y
140 PLOT X+3~Y+2:PLOT X+6~Y+2
150 PLOT X+4~Y+4:PLOT X+5~Y+4

160 PLOT X+2,Y+5:DRAWTO X+4,Y+7
170 PLOT X+5~Y+7:DRAWTO X+7~Y+5
180 RETURN

This subroutine must have valid values for X and Y
before it is called. In order to test this subroutine, type
it in as shown in Figure 9.4b. Then in the immediate
mode, type

GR. 5:SETCOLOR O,O,8:COLOR 1

This will put you into the low-resolution graphics
mode 5. Now type

X=10:Y=10:GOSUB 100

This should display the figure shown in Figure 9.5.

FIGURE 9.5 Test of subroutine given in Figure
9.4b.

Note that you can execute the statement GOSUB 100
in the immediate mode. This is very useful for testing
subroutines.

Now that you know that the subroutine works, you
can plot multiple faces by simply calling this
subroutine several times with different values for X
and Y. The program shown in Figure 9.6 calls the
statement GOSUB 100 nine times using a nested
FOR ... NEXT loop. This loop will produce the fol
lowing nine pairs of values for X and Y:

x
o
15
30
o
15
30
o
15
30

y

o
o
o
15
15
15
30
30
30

These nine pairs of values will correspond to the
coordinates of the upper-left-hand corner of the nine
faces.

You should type in and run the program shown in
Figure 9.6. (If you already have the subroutine typed
in you only need to add lines 10-60.) The result of
executing this program is shown in Figure 9.7 .

Modify this program to plot only four faces. Note
that the END statement in line 60 is required to pre
vent the subroutine at line 100 from being executed
an extra time without being called from a GOSUB
statement.

77

10 REM MULTIPLE FIGURES
20 GRAPHICS 5:SETCOLOR 0,0,14:COLoR 1
25 SET COLOR 2~0~0:SETCOLOR 1,0,14
30 FOR y=o TO 30 STEP 15
40 FOR X=10 TO 50 STEP 20
50 GOSUB 100:NEXT X:NEXT Y
60 END
100 REM PLOT FACE
105 PLOT X,V:DRAWTO X+9,Y
110 DRAWTO X+9,Y+9
120 DliAWTO X, V+9
1 <;() DRA~~TO X ~ Y
140 PLOT X+3,Y+2:PLOT X+6,Y+2
150 PLOT X+4~Y+4:PLOT X+5,Y+4
160 PLOT X+2,V+5:DRAWTO X+4,V+7
170 PLOT X+5,Y+7:DRAWTO X+7,Y+5
180 RETURt--l

FIGURE 9.6 Program to plot nine faces an the
screen.

Plotting Different-Sized Figures

In addition to making the location of a figure variable,
you can also change the size of a figure. For example,
Figure 9.8a shows a square centered at X,Y whose
width is 2 * H + 1. The subroutine shown in Figure
9.8b will plot this square.

Type in this subroutine and then test it by typing

GR. 5:SETCOLOR O,O,8:COLOR 1

FIGURE 9.8 (a) Definition of square of width 2 *
H + 1; (b) subroutine to plot the square in (a) .

(0) Xt i xr

(b)

Y-H- I
I

Y- -----0

Y+H-

~1'---W=2 x H+l----·1

200 REM SQUARE OF WIDTH 2*H+1
210 PLOT X-H,Y-H:DRAWTO X+H,Y-H
220 DRAWTo X+H~Y+H
230 DRAWTo X-H,Y+H
240 DRAW TO X-H,V-H
250 RETURN

78

FIGURE 9.7 Result of executing the program
given in Figure 9.6.

to enter the low-resolution graphics mode 5, fol
lowed by

X=40:Y=20:H=10:GOSUB 200

This should display the figure shown in Figure 9.9.
You can now plot multiple squares of different

sizes by calling the subroutine in Figure 9.8b with dif
ferent values of H. For example, the program shown
in Figure 9.10 will plot seven concentric squares, all
centered at X = 40, Y = 20.

You should type in this program by adding lines
10-60 to the "square" subroutine in Figure 9.8b. If
you run the program you should obtain the figure
shown in Figure 9.11. Try running this program after
changing the step size in line 40 to 2, 4, 6, and 1.

FIGURE 9.9 Test of subroutine given in Figure
9.8b.

FIGURE 9.10 Program to plot concentric
squares.

10 REM CONCENTRIC SQUARES
20 GRAPHICS 5:SETCOLOR 0~0,14:COLOR 1
25 SETCOLOR 2~O~0:SETCOLOR 1,O~14
:::;:0 X=40: Y=20
40 FOR H=l TO 19 STEP 3
50 GOSUe 200:NEXT H
6 0 END
200 REM SQUARE OF WIDTH 2*H+1
210 PLOT X -H~Y-H:DRAWTO X+H~Y-H

2 20 DRAW TO X+H,V+H
2 3 0 DRAWTO X-H~Y+H

240 DRAWTO X -H~V-H

:?50 RETURN
FIGURE 9.11 Result of running the program
shown in Figure 9.10.

PLOTTING YOUR NAME

You can use the ideas described in the previous sec
tions of this chapter to plot your name anywhere on
the screen using letters of varying sizes . The trick is to
define each letter in terms of the X, Y coordinate of its
upper-left-hand corner and the width, W, and height,
H, of the letter. Then you can plot each letter wher
ever you want by using subroutines.

As an example, Figure 9.12 shows a subroutine
that will plot the letter J. In this figure W is the width
of the letter and H is its height. The upper-left-hand
corner of the H x W rectangle containing the letter de
fines the position X, Y of the letter. Study the
subroutine shown in Figure 9.12 and make sure you
understand how lines 210-230 plot each part of the J.

In a similar way, Figure 9.13 shows a subroutine
that wi II plot the letter F. Note that the short horizon-

FIGURE 9.12 (a) Definition of the letter J; (b)
subroutine to plot the letter J shown in (a).

(0) I X+ll
Y--o 1

H

Y+H-2-- 1
Y+H-l-

~

(b) ~w~
200 REM PLOT A J (H X W)
210 PLOT X+W-l,V:DRAWTO X+W-l,Y+H-1
220 DRAWTO X,Y+H-l
2 30 PLOT X,Y+H-2
240 RETUF~N

tal bar in the F is located at row number
Y + (H - 1)/ 2. If H is an odd number the horizontal
bar will be placed at the middle of the F. Also note
that the length of this bar is (W - 1)/ 2.

Figure 9.14a defines the letter E. The subroutine in
Figure 9.14b begins by plotting an F in line 410. Line
420 then adds the bottom horizontal bar to produce
an E.

In order to test these subroutines, type in the lines
shown in Figures 9.12b, 9.13b, and 9.14b. Then en
ter the low-resolution graphics mode 5 by typing

GR. 5:SETCOLOR O,O,8:COLOR 1

You can then plot a J by typing

X= 1 0:Y=1 O:W=3:H=5:GOSUB 200

as shown in Figure 9.15. In order to test the
subroutines for plotting the F and the E, type

X=20:GOSUB 300

FIGURE 9.13 (a) Definition of the letter F; (b)
subroutine to plot the letter F shown in (a).

(0)

Y

H-l
Y+-

2
--

Y+H-l-

x+ W-l
I 2

X I

r-t-----'l
H

79

300 REM PLOT AN F (H X W)
310 PLOT X+W-1~Y:DRAWTO X~Y
320 DRAWTO X~Y+H-1

330 PLOT X+1~Y+(H- 1)/2:DRAWTO X+(W-1)!2~Y+(H-1)!2
340 RETURN

FIGURE 9.14 (a) Definition of the letter E; (b)
subroutine to plot the letter E shown in (a) .
(0) X+ W-1

I 2

(b)

Y

H-1
Y+-

2
--

Y+H-1-

X I

400 REM PLOT AN E (H X W)
410 GOSUB 300:REM PLOT F
420 PLOT X+l~Y+H-l~DRAWTO X+W-1,Y+H-i
430 RETURN

FIGURE 9.15 Testing the subroutine shown in
Figure 9.12.

FIGURE 9.16 Testing the subroutine to plot indi
vidual letters.

80

and

X=30:GOSUB 400

as shown in Figure 9.16.
Figure 9.17 shows a subroutine that will combine

the letters 1, E, and F to plot the name JEFF. Before
calling this subroutine, X, Y, W, and H must have
been assigned values. Line 510 plots a J at location
X, Y. Li ne 520 plots an E where the X location has
been increased by W + 2. This will leave a blank
column between the J and the E. Similarly, lines
530-540 plot the two Fs .

A main program that plots three JEFFs of different
sizes is shown in Figure 9.18. Lines 20-30 will plot
the name with 5 x 3 letters. Lines 40-50 will plot the
name at a different location using 7 x 5 letters.
Finally, the name with 15 x 11 letters is plotted in
lines 60-70. The result of running this program is
shown in Figure 9.19.

FIGURE 9.17 Subroutine to plot the name JEFF.

500 REM PLOT JEFF (H X W)
51 0 GOSUB 200:REM J
520 X=X+W+2:GOSUB 400:REM E
530 X=X+W+2:GOSUB 300:REM F
540 X=X+W+2:GOSUB 300:REM F
550 RETURN

FIGURE 9.18 Main program that plots the name
JEFF three times.

10 REM PLOT 3 JEFFS
15 GRAPHICS 5:SETCOLOR 0~0~14:COLOR 1
17 SETCOLOR 2~0~0:SETCOLOR 1~0~14
20 X=12:Y=2:W=3:H=5
30 GOSUB 500
40 X=15:Y=10:W=5:H=7
50 GOSUB 500
60 X=10:Y=20:W=11:H=15
70 GOSUB 500
80 END

EXERCISE 9.1
Write a program that will plot your name at two dif
ferent locations on the screen. The size of the two
names should be different.

EXERCISE 9.2
Write a program that will plot a set of seven concen
tric diamonds.

FIGURE 9.19 Result of running the program
shown in Figure 9.18.

USING THE GAME PADDLES

The ATARI game paddles can be plugged into any of
the four controller jacks on the front of the computer
below the keyboard. The game paddles come in pairs
with two paddles connected to a single plug. The
plugs are numbered 1 to 4 from left to right.

The value of a paddle is read using the paddle
function PADDLE(N). The argument N is a number
between 0 and 7. This value will depend on which
controll er jack the paddles are connected to, as
shown in Figure 9.20. For example, if we connect the
paddles to controller jack 3, then the two functions
PADDLE(4) and PADDLE(5) will read the two pad
dies.

To see this, connect the paddles to jack 3, type the
following one-line program and run it.

10 ?PADDLE(4),PADDLE(5):GOTO 10

FIGURE 9.20 Eight paddles can be connected to
the ATARI through the four controller jacks.

Two columns of numbers will scroll off the screen.
Turn the two paddles. Note that the values change
from 0 to 228 as the paddles are rotated. The value of
228 occurs when the paddles are rotated completely
counterclockwise.

Now type in the program shown in Figure 9.21.
Line 20 sets the low-reso lution graphics mode 5 with
a white co lor. Line 30 ass igns X an integer value be
tween 0 and 76 depending upon the position of the
knob on paddle 4 . Note that the maximum possible
va lue is 228/3 = 76. This is done so that in the PLOT
statement in line 50 the maximum value of X will be
76. Similarly, line 40 ass igns Y an integer value be
tween 0 and 38 depending upon the position of the
knob on paddle 5.

The PLOT statement in line 50 causes a white dot

Controller Jack

\1--------1� \'----2~/ \'----3~1 \'----4~/
PADDLE(O)
PADDLE(l)

PADDLE(2)
PADDLE(3)

PADDLE(4)
PADDLE(5)

PADDLE(6)
PADDLE(7)

81

10 REM USING THE PADDLES
20 GRAPHICS 5:SETCOLOR 0,0~14=COLOR 1
30 X=INT(PADDLE(4)!3)
40 Y=INTCPADDLE(5)!6)
::'=;0 PL.OT X~; Y
60 GOTO :::;:0

FIGURE 9.21 Program to draw figures using the
game paddles.

to be plotted on the screen. The exact position of the
dot will depend on the position of the two paddle
knobs. Line 60 branches back to line 30 and the two
paddles are read again. Thus, this program should
continually display new spots on the screen as the
paddle knobs are turned .

A sample run of this program is shown in Figure
9.22. You should try running this program. Press the
BREAK key to stop the program .

~ =

FIGURE 9.22 Sample run of program shown in
Figure 9.21.

The function PTRIGU) U = 0 - 7) is used to tell if
the paddle trigger button on paddle number J is being
pressed . The value of PTRIGU) will be 0 only if the
trigger button on paddle number J is being pressed.

Suppose that you want to move a single 'spot
around the screen in response to the game paddles .
The program shown in Figure 9.23 will do this. Type
it in and run it.

Lines 20-50 are the same as in Figure 9.21. After
the first white spot is plotted in line 50, the paddles
are read again in lines 60-70. The new values are
stored in Xl and X2. If these are the same as X and Y
measured in lines 30-40, the paddles are read again.
This test is made in line 80. As soon as one of the pad
dies is rotated the test in line 80 will fail and line 90
will be executed. The statement COLOR 0 will point

82

10 REM MOVING SPOT WITH PADDLES
20 GRAPHICS 5:SETCOL.OR 0,0, 14:COL.OR 11
30 X=INT(PADDLEC4)!3)
40 Y=INTCPADDLE(S)/6)
!:'jO PLOT :X:, Y
60 X1=INT(PADDL.EC4)! 3)
70 Y1=INTCPADDLE(5)!6)
80 IF X1=X AND Yl=Y THEN 60
90 COLOR O~PLOT X,Y
100 X::::Xl:Y::::Yl
110 COLOR 1:GOTO 50

FIGURE 9.23 Program to move a single spot
around the screen.

to color register 4, which contains the default back
ground color black. The statement PLOT X, Y will
therefore plot a black spot at the same location (X, Y)
at which the white spot was plotted in line 50. This
will erase the spot. Line 100 then assigns the new
screen location Xl, Yl to the values X and Y. Line 110
resets the color to white by pointing to color register 0
and then branches back to line 50, where a new
white spot is plotted at X,Y.

An alternate way of writing this program is to read
the paddles, plot a white spot, erase the spot, and re
peat this process. However, this will result in a blink
ing spot when the paddles are not being turned . The
technique illustrated in Figure 9.23 in which a new
spot is plotted only when the paddles are rotated will
prevent the spot from blinking.

If the PLOT statements in lines 50 and 90 in Figure
9.23 are replaced with GOSUB statements, larger fig
ures can be moved around the screen. (See Exercise
9.3 .)

EXERCISE 9.3
Write a program that will plot the following 3 x3
cross in the center of the screen:

Have the cross move around the screen in response to
rotating the game paddles.

EXERCISE 9.4
Modify the program in Figure 9.21 so that the figure
on the screen is erased each time the paddle trigger
button is pressed .

EXERCISE 9.5
Modify Exercise 9.3 so that it uses a joystick instead
of game paddles . Change the color of the cross each
time the trigger button is pressed.

USING THE JOYSTICKS

An ATARI joystick can be plugged into one of the four
controller jacks on the front of the computer (see Fig
ure 9.20). The value of the joystick is read using the
stick function STICK(N), where N is the joystick num
ber 0-3. Stick number 0 is plugged into the leftmost
controller jack and stick number 3 is plugged into the
rightmost controller jack.

The function STICK(N) can only take on the values
shown in Figure 9.24, depending on the position of
the stick.

The program in Figure 9.25 shows how to produce
the same type of figure as the one shown in Figure

FIGURE 9.24 Possible values of the function
STICK(N).

14

10 6

11 ------il----{ t--+---~7

9 5

13

9.22 by moving the joystick. The joystick is assumed
to be plugged into the rightmost controller jack. If you
press the stick trigger button, the val ue of the function
STRIG(N) will be o. Line 90 in Figure 9.25 checks to
see if you are pressing the trigger button; if you are,
the program branches to line 20, which erases the
screen. Otherwise it will continue to plot a new point
in line 40.

Type in this program and run it. Modify the pro
gram so that diagonal lines are plotted when the
value of the function STICK(N) is 6, 5, 9, or 10 (see
Figure 9.24).

FIGURE 9.25 Program to draw figures using a
joystick.

10 REM PLOTTING WITH A JOYSTICK
20 GRAPHICS 5:SETCOLOR 0~0,14:COLOR 1
30 X=:?O: ¥=20
35 IF X>79 THEN X=79
36 IF X<O THEN X= O
37 IF Y>39 THEN Y=39
38 IF ¥(O THEN ¥=o
40 F'L.OT X ~ \(
50 IF STICK(3)=7 THEN X=X+l:GOTO 90
60 IF STICK(3)=13 THEN ¥=\(+1:GOTO 90
70 IF STICK(3)=11 THEN X=X-l:GOTO 90
80 IF STICK(3)=14 THEN ¥=¥-1
90 IF STRIG(3)=0 THEN 20
:I. 00 (~(JT[j 3~.i

83

MAKING BAR GRAPHS-LEARNING
ABOUT READ ... DATA

You know two ways to assign a value to a memory
cell name. One is to use an assignment statement
such as A = 3. The second is to use an INPUT state
ment such as INPUT A. In the last case the value is
entered through the keyboard .

In this chapter you will learn another method of as
signing values to memory cell names. The values to
be assigned are stored in the program in DATA state
ments. They are assigned to memory cell names by
using a READ statement.

In this chapter you will learn

1. to use the REA D , DATA, and RESTORE state
ments

2. to make horizontal bar graphs

3. to make vertical bar graphs containing multiple
bars

4. to scale and label bar graphs.

THE READ, DATA, AND RESTORE STATEMENTS

The DATA statement must be used in the deferred
mode. Although the READ and RESTORE statements
are normally used in the deferred mode we will
illustrate their use by storing data in a DATA state
ment (in the deferred mode) and then using the READ
and RESTORE statements in the immediate mode.

Type in the following statement:

10 DATA 5,10

and then type

84

RUN
READ A
?A
READ A
?A
READ A

as shown in Figure 10.1 The first time you typed
READ A, the first data value in the DATA statement
(5) was stored in A. The second time you typed READ

FIGURE 10.1 The READ statement reads succes
sive values from a DATA statement.

A, the second data value in the DATA statement (10)

was stored in A . The third time you typed READ A, an
error message, ERROR- 6, was displayed. This is an
out of data error because there were no more data
values in the DATA statement to use.

When a program is executed, a pointer points to
the fi rst data val ue in the DATA statement. (More than
one DATA statement in a program will be treated as a
single long DATA statement.) As data values are
"used up" by being read in READ statements, the
pointer keeps moving along to the next unused data
value. If the pointer gets to the end of the data values
in the DATA statement and another READ statement
is executed, then the ERROR- 6 message will be dis
played .

The pointer can be reset at any time to the first data
value in the DATA statement by using the statement

RESTORE

Also, more than one value can be read with a single
READ statement. In order to see this, type in the fol
lowi ng statements:

10 DATA 5,10,15
RUN

READ A,B,C

?A,B,C

RESTORE

READ B,C

?A,B,C

as shown in Figure 10.2.

FIGURE 10.2 The RESTORE statement moves the
pointer to the first data value in the DATA state
ment.

Note that in this case the first READ statement
stores the values 5, 10, and 15 in A, B, and C, respec
tively. The RESTORE statement then moves the
pointer back to the first data value (5). Therefore, the
next READ statement will store the values 5 and 10 in
Band C, respectively. Note that the value of A re
mains unchanged and is still equal to 5.

Now add the second DATA statement

20 DATA 20, 25, 30

Type RUN, which will automatically restore the
pointer to the first data value (5) in line 10. Type the
following statements, as shown in Figure 10.3:

READ A,B,C,D

?A,B,C,D

READ A,B,C

Note that the two DATA statements are treated as one
long DATA statement. DATA statements may occur
anywhere in the program . They are effectively com
bi ned into one long DATA statement in the order in
which they occur in the program . In the last READ
statement in Figure 10.3, although there are values
for A and B (25 and 30), there is no value for C and
therefore the ERROR- 6 message is displayed.

Strings can be included in a DATA statement. In
this case, the corresponding variable name in the
READ statement must be a string variable that has
been dimensioned. For example, change the DATA
statement in line 20 to

20 DATA ACE,BOSTON

85

and add

and then type

FIGURE 10.3 There must be data values for 0/1
variable names in a READ statement.

FIGURE 10.4 Stri ng variables can be used in a
READ statement to read strings in a DATA state
ment.

30 DIM A$(3),B$(6)

READ A,B,C,A$,B$

?A,B,C,A$,B$

rate different entries in a DATA statement. Note also
that the numerical variables A and B are completely
different memory cells from the string variables A$
and B$. The ATARI will not get these mixed up.

as shown in Figure 10.4 . Strings in a DATA statement
may contain any characters (including quotation
marks) except a comma. Commas are used to sepa-

The READ and DATA statements are particularly
useful when you have a list of data whose values do
not change in the program and which are read by the
same READ statement. Examples using the READ and
DATA statements will be given in the following sec
tions.

86

HORIZONTAL BAR GRAPHS

Bar graphs are very useful for providing a quick visual
picture of the relative sizes of various quantities . The
simplest kind of bar graph that you can draw on the
ATARI is one that plots a horizontal line whose length
is proportional to the quantity of interest.

As an example, suppose that you want to compare
graphically the four values 12, 25, 5, and 17. You
can plot four lines with lengths 12 , 25 , 5, and 17
using the program shown in Figure 10.5.

FIGURE 10.5 Program to plot four lines of
lengths 12, 25, 5, and 17.

In this program line 20 is a DATA statement that
contains the lengths of the four bars to be plotted .
Line 40 defines the character (the symbol # in this
case) that will be used to draw the lines and stores this
character in the string variable G$, which was dimen
sioned in line 30. Other characters such as hyphens
or asterisks could also be used . Lines 50-70 form a
FOR . . . NEXT loop that is executed once for each
bar that is to be plotted (four, in this case).

Within this loop line 60 reads the next length from
the values given in the DATA statement and stores
this length in the memory cell L. A bar of length L is
then plotted, using the subroutine in line 400 . This
subroutine prints L copies of the symbol stored in G$
(#) right next to each other to form the bar. The first
PRI NT statement (?) in line 410 causes the cursor to
be moved to the beginning of the next line. The sec
ond PRINT statement causes a line to be skipped.

Note that the END statement in line 80 is neces
sary to prevent the program from executing line 400
again. This would produce the error message ERROR-
16, which would mean that a RETURN statement was
encountered without a corresponding GOSUB .

The basic idea shown in Figure 10.5 can be used
to produce useful bar graphs of real data, as
illustrated in the following section.

Population of the New England
States

The populations of the six New England states are
shown in Table 10.1. The program given in Figure
10.5 has been modified, as shown in Figure 10.6, to
plot six bar graphs of the data in Table 10.1.

TABLE 10.1 Population of
the New England states

State
ME
NH
VT
MA
CT
RI

Population
1,124,660

920,610
511 ,456

5,737,037
3,107,576

947,154

Lines 100-150 are six DATA statements con
taining the information in Table 10.1. Note that each
DATA statement contains a string (the name of the
state) and a numerical value (the state's population) .
For each pass through the FOR . .. NEXT loop (lines
50-80), line 60 stores the next state name in 5$ and
its population in P.

Each symbol defined in line 30 will represent a
certain numer of people. We're using a reverse video
space (typed with the ATARI key) for G$. It is printed
as a blank space in Figure 10 .6 . In order to determine
how many people this should be you must choose a
value that will ensure that the longest bar will fit on
the screen. The state name starting in column 2 plus a
space will use five columns of a screen line. There
fore, the longest possible bar is one 35 spaces long.
The max imum population is that of Massachusetts,
5,737,037. Therefore, each symbol G$ must repre
sent more than 5737037/35 = 163915 persons. We
will therefore choose each symbol to represent a pop
ulation of 200,000.

Given a population P, line 70 calculates the num
ber of symbols L to be plotted (that is, the length of
the bar). In the equation

P
L = --- + 0.5

200000

87

10 REM POPULATION BAR GRAPH
15 DIM 8$(1),8$(2)
20 N==6
::::;0 El$== II "

35 ") "tlil
40 ,.? " PDPULATION OF NEvJ ENGLAI',m STATE!3"
4 0::'

d

50 FDF: ,}:::::1 TO N
60 READ 8$,P
70 L==P/200000+0.5:G08UB 400
80 NEXT J
(~O END
100 DATA ME, 1124660
110 DATA NH,920610
120 DATA VT,511456
130 DATA MA,5737037
140 DATA CT,310757 6
150 DATA RI,947154
400 '? 8$;i" ";: FOF: 1:::1 TD L:? GS;: NEXT I:? :? : RETURN

FIGURE 10.6 Program to produce a bar graph of
the data in Table 10.1.

the 0.5 will round to the nearest 200,000 persons,
since this equation is equivalent to the equation

L = P + 100000

200000

Note that the number of symbols plotted in the
subroutine in line 400 will be equal to the interger
part of L.

The subroutine in line 400 has been modified to
print the state name, stored in S$, to the left of the
each bar. Line 35 clears the screen; line 40 prints the
title to the graph, and then line 45 skips two lines.
The result of running this program is shown in Figure
10.7.

Adding a Scale

Although the bar graph shown in Figure 10.7
illustrates the relative sizes of the six state populations
it does not provide any information on the actual
values of these populations. We can correct this by
adding a scale to the bottom of the graph.

Since each symbol G$ represents a population of
200,000, five symbols will represent one million peo
ple. A subroutine that prints such a scale is shown in
Figure 10.8. This subroutine is called in line 85 of the
revised main program shown in Figure 10.9. The re
sult of executing this new program is shown in Figure
10.10.

FIGURE 10.7 Result of running the program
shown in Figure 10.6.

88

600 REM ADD SCALE
610? " +";~FDR 1:=1 TO 6:? " ----+";:NEXT I:?
620 '~!" ";:FOR 1==0 TO 6:? I;" ";;:NEXT I: '?:?
6 :::;'0 ? " MILL IONS OF PEOPLE"
640 RETUf;:N

FIGURE 10.8 Subroutine to display scale.

10 REM POPULATION BAR GRAPH
1 ~'j D 11'1 G$ (:[) , S$ (:::)

:::;'0 G$::::" "
~~;5 '~') 111'1
-'1·0 ? " POPUUHION OF NEvJ ENGLAND STATES"

FOF~ .J == 1 TO N
F:E~;D S$, P

70 L=P/200000+0.5:GOSUB 400
f3 0 NEX"I" ~J

85 GOSUB 600:REM ADD SCALE
90 END

FIGURE 10.9 Revised main program that calls
subroutine to add a scale.

FIGURE 10.10 Result of running the program
shown in Figure 10.9.

VERTICAL BAR GRAPHS

In addition to the horizontal bar graphs that have
been described, you can draw vertical bars by using
low-resolution graphics. As you already know, the
statement

location X. If Y2 is less than Yl, the bar will be plot
ted from bottom to top .

PLOT X,Yl :DRAWTO X,Y2

will plot a vertical bar from Yl to Y2 at the horizontal

Suppose that you want to plot a vertical bar with a
length proportional to the value V. The value of V can
be either positive or negative. For a negative value of
V the bar should be plotted in the negative direction.
Figure 10.11 shows the ranges of values for which

89

V

2 I Plot 2 squares

Y=36 I PI" 1 """"

Y=37 I Plot no squares 0

Y=38

-1 I Pl01 1 ""''"

Y=39 I Plo" '''''"'
-2

FIGURE 1 0.11 Screen layout for plotting vertical
bar with length proportional to the value V.

various numbers of squares will be plotted. The bot
tom of row 37 on the screen will define the "zero"
value of V. From Figure 10.11 you see that a value of
V between 0.5 and 1.5 will result in one square being
plotted in row Y = 37. Similarly, a value of V be
tween - 0.5 and - 1.5 will result in one square be
ing plotted in row Y = 38.

A positive bar of length L can be plotted using the
statement

PLOT X,Yl :DRAWTO X,Yl-L+ 1

Note that if L = 1, then a single square will be
plotted. The case of L = 0 must be tested for sepa
rately in order to plot no square at all.

A negative bar of length L (absolute value) can be
plotted using the statement

PLOT X,Yl :DRAWTO X,Yl +L-l

From Figure 10.11 note that Yl = 37 for a positive
bar and Yl = 38 for a negative bar. Also note that the
number of squares to be plotted (that is, the length of
the bar) is given by

L = INT(ABS(V) + 0.5)

These ideas are summarized in the algorithm shown
in Figure 10.12. This algorithm will plot a vertical bar
at position X with a length proportional to V .

A BASIC subroutine that implements this algorithm
is shown in Figure 10.13. Lines 540-550 plot the bar
for positive values of V and lines 570-580 plot the
bar for negative values of V.

In order to test this subroutine, type it in as shown
in Figure 10.13. Then enter the low-resolution graph
ics mode by typing

GR. 5:SETCOLOR O,O,8:COLOR 1

90

L = INT(ABS(V) + 0.5)

if L = 0
then return

else if V < 0
then Yl = 38

PLOT X,Yl :DRAWTO X,Yl + L - 1

else Yl = 37

PLOT X,Yl :DRAWTO X,Yl - L + 1

FIGURE 10.12 Algorithm to plot a bar of length
proportional to the value V.

FIGURE 10.13 Subroutine to plot a bar of length
V.
500 REM PLOT BAR OF LENGTH V
510 L=INT(ABS(V)+0.5)
520 IF L=O THEN RETURN
530 IF V<O THEN 570
'.:AO Yl :<:'7
550 PLOT X,Vl~DRAWTO X,Yl-L+l
~!60 GOTU 5(:;;0
'.:.;,/0 Y 1 =:3El
580 PLOT X,Vl~DRAWTO X~Vl+L-l
::i(;>O RETUF,N

Then type

V=20:X=15:GOSUB 500

You should obtain the result shown in Figure 10.14 .

FIGURE 10.14 Testing subroutines given in Fig
ure 10.13.

As another example, type

GR.5:SETCOLOR O,O,8:COLOR 1

V=+3.0:X=10:GOSUB 500

The line beginning with V=+3.0 is " live" on the
screen. This means that if you ed it this line (using the
CTRL i ~ keys) by changing the values of V and X,
then when you press RETURN the new statement w ill
be executed, and a new bar will be plotted . Edit this
line to plot the following bars:

V=+0.6:X= 11 :GOSUB 500

V=-0.6:X=12:GOSUB 500

V=+1.3:X=13:GOSUB 500

V= -1.3:X= 14:GOSUB 500

You should obtain the bars shown in Figure 10.15.
Try some other values .

This technique of using the immediate mode of ex
ecution to test subroutines is a good method because
you can make quite a few tests without d isturbing the
program that you have stored in the computer.

We will now use this subroutine to plot a "multi
ple" bar graph that will display five-year economic
data.

FIGURE 10.15 Further tests of subroutine given
in Figure 10.13.

TABLE 10.2 Economic data*

Multiple Bar Graph for the Economy

In thi s section we will develop a program to plot a
"multiple" bar graph of the economic data given in
Table 10.2. For each year we will plot four bars, one
for each economic factor. We will use the three col
ors given in Table 10.3. Note that we can on ly plot
three different colors using graphics mode 5. The first
and last bar of each group of four will therefore be the
same color (orange). The main program for plotting
this bar graph is shown in Figure 10.16.

FIGURE 10.16 Main program for plotting econ
omy bar graph .

5 REM THE ECONOMY
10 GRAPHICS 5
15 SET COLOR 0,2,8:REM ORANGE
16 SETCOLOR 1,12,10:REM GREEN
17 SETCOLOR 2,9,4:REM BLUE
20 DATA 4.8,7.8~4.8,2.8
30 DATA 6.8,7.0,5.8,4.5
40 DATA 9.0,6.0,4.9,3.4
50 DATA 13 . 3,5.8,0.8,-0.6
60 DATA 1 8.2, 6. 2~1.7,-0. 4
\zS5 X=8
70 FOR J:=l TO 5
80 GOSUe 200:REM PLOT 4 BARS
90 NEXT J
100 GOSUe 400:REM PRINT HEADING
1 ~50 GOTO 1 ~;O

Line 10 enters the low-resolution graphics mode 5.
Lines 15- 17 define the three color registers given in
Table 10.3. Lines 20-60 are DATA statements con
taining the data given in Table 10.2. Note that each
DATA statement contains the data for one year start-

7976 7977 7978 7979 7980

Inflation 4.8 6.8 9.0 13.3 18.2 Jan. change at
% change in c.P.!, compound annual

rate
Unemployment 7.8 7.0 6.0 5.8 6.2 Jan.

% of civilian labor force
Growth 4.8 5.8 4.9 0.8 1.7 Projected 1 st Q.

% change in real G.N .P.
Personal income 2.8 4.5 3.4 - 0.6 - 0.4 Projected 1 st Q .

% change eer capita

*Adpated from data on p. 67 of the March 10, 1980, issue of Time Magazine.

TABLE 10.3 Colors used in ecomon~ bar graeh

Color No. Color Color Register Hue No. Luminance
Inflation 1 Orange 0 2 8
Unemployment 2 Green 1 12 10
Growth 3 Blue 2 9 4
Personal income 1 Orange 0 2 8

91

ing with 1976. The value of X is initialized to 8 in line
65. This is the column number in which the first bar
will be plotted. The FOR ... NEXT loop in lines
70-90 is executed five times (once for each year).
Each time through this loop four bars are plotted, cor
responding to the data for that year. This is done in a
subroutine starting at line 200. Line 100 calls a
subroutine at line 400 that prints the heading and
scale for the graph. Line 150 branches on itself to pre
vent the READY message from being displayed.

The subroutine to plot the next four bars of the
graph is shown in Figure 10.17. The READ statement
in line 210 reads the next four values of inflation,
unemployment, growth, and income, and stores
these values in the memory cells I, U, G, and M. The
orange inflation bar is plotted in lines 230-240 using
the subroutine at line 500 shown in Figure 10.18 .

FIGURE 10.17 Subroutine to plot the next four
bars of the graph .

200 REM PLOT NEXT 4 BARS
210 READ I,U,G,M
230 V=2*I:COLOR 1
240 GOSUB 500:REM PLOT BAR
260 V=2*U:COLOR 2
270 GOSUB 500
290 V=2*G:COLOR 3
:::;'00 GOSUB 500
320 V=2*M:COLOR 1
3:50 GOSUS 500
340 X::::X+6
350 I::;:ETURN

Note that the value of V has been equated to twice
the inflation value I. This is done because the maxi
mum data value in Table 10.2 is 18.2. Twice this
value is 36.4, which will fit on the screen if we plot
36 squares. Lines 260-270 plot the green unemploy
ment bar. Lines 290-300 plot the blue growth bar.
Lines 320-330 plot the orange income bar. Line 340
increases the column number X by 6. This will leave
a six-column space between each group of four bars.

The subroutine in Figure 10.18 is a modification of
the subroutine in Figure 10.13 that plots a double
width bar. Note that the bars plotted in lines 550 and

500 REM PLOT BAR OF LENGTH V
510 L=INT(ABS(V)+0.5)
520 IF L=O THEN RETURN
530 IF V<O THEN 570
540 Y 1 =~:::7
545 FOR K=l TO 2
550 PLOT X,Yl:DRAWTO X,Y1-L+1
552 X:::::X+l
555 NEXT K
560 GOTO 590
570 Y1=:38
,--,e:
..... ,.' \..J

580

58~.i

590

FOR K=l TO 2
PLOT X, Y 1 : DR(~WTO
X=X+1
NEXT K
RETURN

X,Y1+L-1

FIGURE 10.18 Subroutine to plot a double-width
bar of length V.

580 are each plotted twice next to each other using
FOR ... NEXT loops. Also note that the value of X is
incremented by 1 after each bar is plotted. This will
make the double bars plotted with the subroutine at
line 500 appear adjacent to each other on the screen.

The subroutine to display the years and heading at
the bottom of the graph is shown in Figure 10.19.
Line 420 prints the five years under the appropriate
bar graphs. Line 430 prints the title of the graph and a
statement indicating the graph's scale. Lines 440-450
print a legend to explain the four bars. Note that all
text in the low-resolution graphics mode must be
confined to the bottom four lines on the screen. The
statement POKE 752,1 in line 410 will prevent the
cursor from being displayed at the end of the head
ing. Delete this statement to see the difference. We
will discuss POKE statements in detail in Chapter 14.

The entire program to plot the economy bar graph
is given by the statements in Figures 10.16-10.19.
The result of running this program is shown in Figure
10.20.

Although this entire program is relatively long, you
can see that by breaking it up into functional modules
you can more easily keep track of what is going on.
This will also make it easier for you to modify this
program to suit your own needs.

FIGURE 10.19 Subroutine to display heading
and scale.

92

400 REM DISPLAY YEARS AND TITLE
410 POKE 752,1
4:2() '7 II 1976 1977 1978
4~~0 r? "
440 ? " BAR
4::'iO ? " BAR
460 RETURN

THE ECONOMY
1-INFLATION
3-UNEMPUJYMENT

1979 1980"
1 SQUARE:::::(l. 5~'~"

Bf~R 2-GFmWTH"
BAR ':1·- INCOME" :;

FIGURE 10.20 Bar graph of economic data
given in Table 10.2.

EXERCISE 10.1
The following table shows the amount of gaso line re
quired to fill the gas tank of a certain station wagon :

Speedometer Reading
93769.3
94034.6
94249.1
94376.6
94558.0
94778.2
95037.0
95258.0
95499.3
95732.7
95941.2

Gallons to Fill Tank

15.5
15.2
14.8
9.0

10.5
12.8
14.9
14.7
15.3
20.3
15.0

Write and run a program that wi ll

1. store the data in the table i n DATA statements

2. compute the gas mileage in miles per gallon for
each fillup and plot the resu lts as a bar graph

3. compute and print out the average miles per
ga llon for all fillups shown in the table .

EXERCISE 10.2
Each entry in the following table gives a nation, its
population, and its area (in square miles):

Nation Population Area
Australia 13,467,400 2,967,909
Canada 22,648,200 3,851,809
China 830,453,000 3,691,502
Great Britain 56,235,500 94,500
India 587,503,700 1,178,995
Japan 108,152,900 143,698
Soviet Union 253,268,300 8,649,489
United States 212,031,000 3,615,122

Write and run a program that wi II :

1. store the data in the table in DATA statements

2. compute the population density for each nation
in persons per sq uare mile

3. plot the results as a bar graph.

93

LEARNING TO USE ARRAYS

You have learned that numerical values are stored in
memory cells with names like A and B3. Similarly,
strings are stored in memory cells with names like A$
and B3$. Remember that strings must be dimen
sioned with a value equal to or larger than the length
of the string. Sometimes it is desirable to identify a
collection of memory cells by the same name. Such a
collection of memory cells is called an array; and the
individual memory cells within the array are identi
fied by means of a subscript. AT ARI BASIC allows nu
merical arrays but not string arrays. Applications
requiring string arrays must be handled in a different
manner.

In this chapter you will learn

1. how to represent numerical arrays in BASIC

2. the difference between one-dimensional and
multidimensional arrays

3. how to use the DIM statement for numerica l ar
rays

4. how to simulate the use of string arrays in
ATARI BASIC

5. how to use arrays when plotting bar graphs

6. how to sort data stored in a one-dimensional
array.

ARRAYS

You will often encounter data that are related in some
way. For example, Table 10.1 in Chapter 10 lists the
six New England states and their populations. In the
program in Figure 10.6 we read each state into the
memory cell S$ and each population into the mem
ory cell P. This means that at anyone time only one
state name and one population were in named mem
ory cells. We printed the state name and plotted a bar
with a length proportional to the population . Then we

94

read another state name and population, which re
placed the previous ones in 5$ and P.

Some programs, however, require that all of the
state names and populations be stored in the com
puter at the same time . We would therefore need 12
different memory cells-six for the state names and
six for the populations. This would require 12 differ
ent memory ce ll names. It is convenient to store all of
the state populations in an array called P. The indi-

vidu al memory ce ll s within th e array are di st in
gui shed by a subscript I. A n ind ividual element
w ithin the array is sometimes ca lled a subscripted
va ri able, P(I). The array P is shown in Figure 11 .1.

P(O) 1124660

P(l) 920610

P(2) 511456

P(3) 5737037

P(4) 3107576

P(5) 947154

FIGURE 11 .1 The six subscripted variables P(I)
(I = 0,5) contain the state populations.

It would also be convenient to store the six state
names in a string array 5$, such as the one shown in
Figure 11 .2. Such string arrays are used in many ver
sions of BASIC. However, they are not ava ilabl e in
ATARI BASIC. Remember that 5$(3), fo r example, is
the substring consisting of the characters in 5$ starting
at location 3. We w ill see how to combine the six
strings in Fi gure 11.2 into a single long string later in
this chapter. First we w ill consider numeri ca l arrays .

S$(l)

S$(2)

S$(3)

S$(4)

S$(5)

S$(6)

ME

NH
VT
MA

(T
RI

FIGURE 11.2 String arrays are not available In
AT ARI BASIC.

The DIM Statement

You have already seen in Chapter 1 how to use the
DIM statement to ass ign a length to a string va ri able.
W hen you are using a numeri ca l array, you must also
use a D IM statement to spec ify the number of ele
ments in the array.

For example, to ass ign 16 memory ce lls to the ar
ray B you would type

DIM B(15)

You could then use the 16 memory ce ll s B(0)-B(15).
The constant 15 in the DIM statement (thi s could also

be a va ri able or an expression) represents the upper
subscri pt limit of the array . The lower subsc ript limit
is always assumed to be o.

You can define more th an one array with a single
DIM statement. For example, you can w rite

DIM B(15),A(3),C(24)

w hich defines three arrays containing 16, 4, and 25
memory ce ll s, respectively.

O ther than using up memory, it does not hurt to
reserve more memory locations (by using the DIM
statement) than you use in the program . For example,
you w ill reserve 100 memory cells w ith the statement
DIM C(99). In your program you may only refer to the
first 20 of these memory ce lls. Thi s is O .K. However,
if you try to refer to C(l 00) , you will obtain the error
message ERRO R- 9, which means that you have a
bad subscript error.

The DIM statement may occur anywhere in the
program but it must occur before you refer to the cor
responding subscripted variable. An array can onl y
be dimensioned once in a program. If you try to di
mension it more than once you will also obtain the
error messsage ERRO R- 9.

The statement CLR w ill clear, or reiniti alize, any
dimensioning information. If you want to refer to a
string or numerica l array after executing CLR, a new
DIM statement w ill be required .

The max imum number of elements in an array w ill
be limi ted by the amount of memory in your ATARI. If
the tota l amount of memory used by your program,
va ri ables, and arrays exceeds the amount of memory
in your ATA RI you w ill obtain the error message
ERROR- 2, meaning that the computer is out of mem
ory.

Any time you want to know how many bytes of
free memory you have left, type

?FRE(O)

For example, Fi gure 11 .3 shows that an array con
ta ining 100 elements uses 610 bytes of memory (6 fo r
each of the 100 elements in the array plus 10 for
header info rm at ion).

FIGURE 11 .3 The statement ?FRE(O) will print the
number of free bytes of memory left.

95

Two-Dimensional Arrays

A numerical array that contains a single subscript is
called a one-dimensional array. An array that con
tains two subscripts is called a two-dimensional array
or matrix. For example, the DIM statement

DIM A(2,3)

defines a two-dimensional array containing 12 ele
ments. It can be thought of as two-dimensional matrix
containing three rows and four columns, as shown in
Figure 11.4.

In the array A(I,J), the first subscript I is the row
number in Figure 11.4 and the second subscript J is
the column number. Thus for example, in Figure 11.4
the value of A(1 ,2) is 8 and the value of A(2 , 1) is 12.

Some versions of BASIC allow arrays to have more
than two subscripts. However, ATARI BASIC allows
only one- and two-dimensional arrays.

FIGURE 11.4 The array A(I,J), containing 12 ele
ments.

o
0 11

I 1 3

2 5

J
1

7

15

12

2

0

8

9

3

13

4

1

SIMULATING STRING ARRAYS

Suppose that you want to store in the computer the
six state names shown in Figure 11 .2. You could store
each one by a different name, such as 51 $, 52$, and
53$. Alternatively, you could store them in one long
string ST$, such that

ST$ = "MENHVTMACTRI"

The program shown in Figure 11 .5a will do this.
The six state names are stored in a DATA statement in
line 20. The length of each of these strings is 2. This
value is assigned to SLEN in line 30 . The
FOR ... NEXT loop in lines 40-80 reads each state
name in turn into 5$ in line 50 and then adds it to the
total state name string ST$ in line 60. The first time
through the loop the value of J is 1 and the statement

ST$(1,2)=S$

will make the first two characters of ST$ ME. The sec
ond time through the FOR .. . NEXT loop the value
of J will be 3 (incremented by SLEN in line 70) and the
string NH will be read into 5$ in line 50. Line 60 will
then be equivalent to

ST$(3,4)=S$

so that the third and fourth characters will be NH.
This process continues until all six state names have
been added (or concatenated) to the string ST$. Note
that when the program is run the string ST$ is printed
in line 90. The result of running the program is shown
in Figure 11 .5b.

Once the six state names are stored in the string
ST$, the individual names can be extracted by
referring to ST$(I,J). For example, ST$(5,6) is VT.

96

FIGURE 11 .5 Program to store six short strings
as one long string.

10 REM STRING OF STATE NAMES
15 DIM S$(2),ST$(12)
20 DATA ME~NH~VT,MA~CT,RI
30 ,J=: 1: SLEN::::2
!~O FOR I::: 1 TO 6
~iO REr-m S~~

~i5 ? S$
60 ST$(J,J+SLEN-l)=S$
70 ,J:::,} +SLEN
tW I\lEXT I
(~O ':) ST~~i

BAR GRAPHS USING ARRAYS

The program shown in Figure 10.5 in Chapter 10
plots four bars of lengths 12, 25, 5, and 17. Review
that program and make sure that you understand how
it works. Line 400 plots a bar of length L, using the
character stored in G$. In this section we will modify
this program to plot the same length bars but to use a
different character for each bar.

The modified program and its execution are shown
in Figure 11.6. Line 15 is a new DATA statement that
contains the four characters that will be used for the
four bars . (The second character is a reverse video
space which is printed as a space in Figure 11.6a.)
Line 25 is the DIM statement

25 DIM G$(1),GT$(4},L(4}

FIGURE 11.6 Bar graph example using arrays.

10 REM BAR GRAPH EXAMPLE
15 DATA :j:j: ~ , *, 1
20 DATA 12~25,5,17
:2~; D I 1'1 (3$ (:l) , GT$ (4) , L (4)
30 FOR 1==1 TO 4-
35 READ 6$:GT$(I,I)=6$
40 NEXT 1
45 FOR 1=1 TO 4nREAD L:L(I)=L:NEXT I
50 FClF~ ,J::::: 1 TO 4·
60 L=L(J):(3$=GT$(J,J):GOSUB 400
70 NEXT J
80 END
400 FOR 1=1 TO L:? G$;:NEXT I
410 ? :7 :RETURN

This statement defines a string G$(l) that will contain
one symbol and a string GT$(4) that will contain all
four symbols. The numerical array L(4) will contain
the four lengths. Although this DIM statement defines
five elements in the array L(I), we will only use the
elements L(l)-L(4) and just ignore L(O).

Lines 30-40 read the four characters in the DATA
statement on line 15 and concatenate them into the
string GT$. Line 45 reads the four values 12, 25, 5,
and 17 from line 20 into the four subscripted varia
bles L(1)-L(4), respectively . Note that ATARI BASIC

does not allow the READ statement to read data di
rectly into a subscripted variable. Therefore we first
READ L and then assign L to L(I).

The loop defined by lines 50-70 plots the four
bars. Each time through the loop a new length LU)
and a new character GT$(J,]) are assigned to Land G$
to be plotted in line 400. Note how the subscript] is
incremented from 1 to 4 each time it passes through
the loop. Also note that the subscripted variable L(J)
and the simple variable L are not confused by the
ATARI and are treated as separate memory cells.

The four bars in Figure 11 .6b can be plotted adja
cent to each other by eliminating one of the PRINT
statements in line 410, as shown in Figure 11.7.

Suppose that you would like to plot the bars shown
in Figure 11.7 in increasing order of length-that is,
the shortest bar first, the next to shortest second, and
so on . You can do this if you rearrange the array L(I)
so that the elements are in increasing order. One sim
ple method of sorting an array in increasing order will
now be described .

FIGURE 11.7 Plotting the bars adjacent to each
other.

97

Sorting an Array in Increasing Order

Many algorithms have been devised for sorting an ar
ray of elements in increasing order. Some are more
efficient (that is, they execute faster) than others.
Some (not necessaril y the same ones) are eas ier to un
derstand than others . The method of sorti ng the array
L illustrated in Figure 11. 8 is fa irl y easy to under
stand.

FIGURE 11 .8 Sorting an array by moving the
smallest succeeding value to location I, I = 1 to
N - 1, where N = number of elements in array .

L(l)
L(2)
L(3)
L(4)

I = 1

12J 25
5
7

1=2
5 5

25J 12J
12 25
7 7

1 = 3
5
7

25-,
12....l

Array sorted
5
7

12
25

The method begins by comparing the first element
in the array (I = 1) with all succeed ing elements . Any
time a succeeding element is found that is sma ller
than the first element, it is interchanged w ith the first
element. Thus, after the first element (whose va lue
may have changed a few times) is compared with all
succeed ing values, we will have moved the smallest
value to the first position in the array.

If we repeat this procedure start ing w ith the second
element (I = 2), then after the second element is
compared with all succeeding elements and the
values interchanged if the succeeding element is
smaller than the second one, the next to smallest
value will end up in the second position in the array .

This process continues until we have compared
the next to last element w ith the last element in th e
array. At this point the array is sorted in increas ing or
der, as shown in Figure 11 .8 . The algorithm for this
procedure is shown in pseudocode in Figure 11.9
Compare Figures 11 .8 and 11 .9 and make sure you
understand how this sorting algorithm works.

FIGURE 11.9 Pseudocode representation of sort
ing algorithm shown in Figure 11.8.

for I = 1 to N - 1
for J = I + 1 to N

if L(I) < = L(J)
then do nothing
else interchange L(I) and L(J)

next J
next I

The algorithm shown in Fi gure 11 .9 looks as if it
would be fairly easy to write in BASIC. The onl y prob
lem is how to interchange the contents of L(I) and L(J) .

98

Note that the two statements

L(I)=L(J)
L(J)=L(I)

w ill not work because the original value in L(I) will be
destroyed when the value of LU) is put in L(I) in the
first statement. Th is means that the second statement
wi ll rea ll y be assigning the value in LU) to itse lf! Thus,
L(I) and LU) w ill end up with the same value . It re
quires three statements to interchange the values of
L(I) and LU), as shown in Figure 11.10. The value in
L(I) must be stored temporarily in another memory
ce ll T before the value in LU) is put in L(I) . Then the
va lue in T w hich used to be in L(I) can be put in LU) .

FIGURE 11.10 Three statements are required to
interchange L(I) and L(J).

L(I) = L(J) }
L(J) = L(I) will not interchange L(I) and L(J)

T= L(I) }
L(I)=L(J)
L(J)=T

will interchange L(I) and L(J)

The sorti ng algorithm shown in Figure 11.9 is writ
ten as a BASIC subroutine in Figure 11 .11. Note that
line 2040 interchanges the values in L(I) and LU) . Add
this subroutine to the program shown in Figure 11 .7.

FIGURE 11 .11 BASIC subroutine to sort array L(I)
containing N elements in increasing order.

2000 REM SORT L(I)
2010 FOR 1=1 TO N-l
2020 FOR J=I+l TO N
2030 IF L(I)(=L(J) THEN 2050
2040 T=L (1) : L. (I) =L (J) : L (J) =T
2050 NEXT J~NEXT I
:2060 RETURN

FIGURE 11.12 Plotting bar graphs in increasing
order using the subroutine in Figure 11 .11.

10 REM BAR GRAPH EXAMPLE
:I. 5 DATA #, ~ * ~ 1
20 DATA 1 2~25,5~ 17
:25 D I 1'1 G$ (1) , GT$ (4) , L (4)
:30 Fm~ 1:::1 TO 4
35 READ G$~GT$(I,I):::G$

40 NEXT I
45 FOR 1=1 TO 4:READ L:L(I)=L:NEXT I
47 N=4:GOSUB 2000:REM SORT L(I)
~:;o FOR J=l TO 4
60 L=L(J)~G$=GT$(J,J):GOSUB 400
70 NEXT ,J
80 EI\lD

2000 REM SORT L(I)
2010 FOR 1=1 TO N-l
2020 FOR J=I+l TO N
2030 IF L(I)<=L(J) THEN 2050
2040 T=L(I):L(I)=LeJ):L(J)=T
2045 T$=GT$eI,I):GT$(I,I}=GT$(J,J}:GT$(J,J)=T$
2050 NEXT J:NEXT I
2060 RETURN
FIGURE 11.13 Sorting subroutine that inter
changes GT$(I,I) and GT$(J,J) each time that L(I)
and L(J) are interchanged.

Then add the statement

47 N=4:GOSUB 2000:REM SORT L(I)

to the main program, as shown in Figure 11 .12 . The
result of running this program is also shown in Figure
11 .12 . Line 47 sets the number of elements in the ar
ray L to 4 and then sorts this array by calling the
subroutine shown in Figure 11.11.

If you compare Figure 11.12 with Figure 11 .7 you
will notice that the four characters are plotted in the
same relative order. That is, they did not get sorted as
the data did. However, it probably makes more sense
to associate a particular character with a particular
data value (such as inflation or growth); therefore, if
the data are rearranged (sorted) the correspond i ng
character should also be rearranged . We can do this
by adding the statement

27 DIM T$(l)

to the main program, and the statement

2045 T$=GT$(I,I):GT$(I,I)=
GT$(J,J) :GT$(J,J) = T$

to the subroutine given in Figure 11 .11 , as shown in
Figure 11 .13. This statement will cause GT$(I,I) and

FIGURE 11.14 Plotting bar graphs using the
subroutine in Figure 11.13.

10 REM BAR GRAPH EXAMPLE
15 DATA :J:I: ~ , * ~ 1
20 DATA 12~25 ,5, 17

25 DIM G$(1),GT$(4),L(4)
27 DIM T$ (1)

:~O FOR 1=1 TO 4
35 READ G$:GT$(I,I)=G$
40 NEXT 1
45 FOR 1=1 TO 4:READ L:L(I)=L:NEXT 1
47 N=4:GOSUB 2000:REM SORT L(I)
50 FOR .J== 1 TO 4
60 L=L(J):G$=GT$(J,J):GOSUB 400
70 NEXT J
80 END
400 FOR 1=1 TO L:? G$;:NEXT I
410 ? :RETURN

GT$U,J) to be interchanged each time that L(I) and LUl
are interchanged. This will cause a given data value
to " keep" its particular character, as shown in Figure
11.14.

Sorting an Array in Decreasing
Order

The subroutine in Figure 11.13 can easily be
modified to sort the array L(I) in decreasing order
rather than increasing order by changing line 2030 to

2030 IF L(I»=L(J) THEN 2050

as shown in Figure 11.15 . Running the main program
with this subroutine will produce the result shown in
Figure 11 .16.

EXERCISE 11.1
Write a program that

1. stores the six New England states in the string
ST$ and their populations in the array P(I) , as
shown in Figure 11 .1

2. plots a vertical bar graph of the populations
using low-resolution graphics

99

2000 REM SORT L(I)
2010 FOR 1=1 TO N-l
2020 FOR J=I+1 TO N
2030 IF LCI)=LCJ) THEN 2050
2040 T=LCI):L(I)=L(J):L(J) =T
2045 T$=GT$(I,I):GT$(I,I)=GT$(J,J):GT$(J~J)=T$
2050 NEXT J:NEXT I
2 ()/..i () RE"fL..IRN

FIGURE 11.15 Subroutine to sort array L(I) con
taining N elements in decreasing order.

FIGURE 11.16 Plotting bar graphs in decreasing
order using the subroutine in Figure 11.15.

3. sorts the populations in increasing order

4. plots a second bar graph (after pressing key 5)

w ith the populations in increasing order.

EXERCISE 11.2
Write a program that

1. stores N test scores i n DATA statements, with
the value of N stored as the first entry of the first
data statement

2. reads the test scores into an array 5(1)

3. computes and prints out the average of the N
test scores.

EXERCISE 11.3
If AV is the average of the N test scores stored in
the array 5(1), then the standard deviation is de
fined as

SD= j ~ f (5(1) - AV)2
N 1= 1

N

where the notation L means the sum from
I = 1

I = 1 to N. Modify the program in Exercise 11 .2 to
compute and print out the standard deviation of
the test scores. Run the program for the following
test scores:

100

75 36
65 82
48 57
44 90

Test scores

60 92 80 72
88 72 76 85
73 66 76 88
70 56 81 75

EXERCISE 11.4

68
72
73
87

48
98
82
90

The following weights are those of a group of
males and females. Write a computer program that
will compute and print out the means and standard
deviations of the two groups of weights. Modify
the program to compute and print the mean and
standard deviation of al l weights (both male and
female) . (See Exercise 11.3 .)

Weights
Male Female

200 103
185 105
185 112
125 102
140 160
195 120
190 115
155 130
185 140
140 118
138
205
159
230
150
140
170
145
169
215

EXERCISE 11.5
A person makes the following monthly deposits in
a savings account paying 5 percent interest com-
pounded monthly :

Month 2 3 4 5 6 7 8 9 10 11

Deposit
(dollars) 25 20 30 15 25 40 20 30 35 35 35

12

25

The identical pattern of deposits is repeated for a
second and third year. Write a computer program
that will compute the amount of money the person
has deposited and the total amount in the account
at the end of 6, 12, 18, 24 , 30, and 36 months.
Read in the monthly deposits as an array D(I).
(Note: If R is the annual interest rate and it is com
pounded monthly, then each month the added in
terest is equal to R/ 12 times the amount in the ac
count.)

EXERCISE 11.6
The polynomial

P(x) = a,x4 + a2x3 + a3x2 + a4X + as

ca n be written in the following nested form:

P(x) = as + x(a4 + x(a3 + x(a2 + x(a,))))

If the coefficients aj are stored as subscripted varia-

bles A(I), then the polynomial P can be evaluated,
using the nested form, by the algorithm:

P = A(1)

for 1=2 to 5
P = A(I) + X * P
next I

Write a program that will use a similar nesting algo
rithm to evaluate the polynomial

P(x) = 3xs + 4X4 - 2x3 + 5x - 7

for values of x between - 2 and + 2 in steps of 0.2.
Print out a table of x and P(x). Make your program
general so that the coefficients are stored in DATA
statements and the program can handle a polynomial
of any order.

101

MORE ABOUT STRINGS

You have learned in previous chapters of this book
that memory cells with names like A$ and C3$ con
tain strings. The dollar sign, $, is used in BASIC to
identify string-related names. ATARI BASIC requires
you to dimension the length of a stri ng variable and
then makes it easy for you to manipulate strings by
using substrings such as A$(I ,J). In this chapter you
will learn

1. to use the length function LEN and manipulate
substrings

2. to use the numeric/str ing functions STR$ and
VAL

3. to use the ASCII code functions ASC and CH R$

4. how to display dollars and cents on the screen

5. how to write a program to shuffle and display a
deck of playing cards

6. how to write a program to deal a hand of
playing cards.

MANIPULATING STRINGS

The stri ng A$(I,J) is used to extract some portion of a
string. The function LEN is used to determine the
length of a string.

LEN

The function

LEN(A$)

102

is equal to the length of the string A$. Note that it is a
numerica l value (not a string). For example, if
A$ = "ABCDE" then the value of LEN(A$) is 5. To
verify this, type

DIM A$(5)

A$="ABCDE"

?LEN(A$)

as shown in Figure 12 .1.

FIGURE 12.1 Using substrings and the string
functions.

Substrings

Some popular versions of BASIC (for the Apple II , PET,
and TRS-80) have the string functions LEFT$,
RIGHT$, and MID$. ATARI BASIC can achieve the
same result by using the substring A$(I,J).

For example, the function

LEFT$(A$))

is a string that contains the leftmost I characters of the
string A$. For example, if A$ = " ABCDE", then
LEFT$(A$,2) will be the string " AB". In ATARI BASIC

this is the same as A$(l,I). To verify this, assuming
that you have already set A$ = " ABCDE", type

?A$(l,2)

as shown in Figure 12.1.
The function

RIGHT$(A$,I)

is a string that contains the rightmost I characters of
the string A$. For example, if A$ = "ABCDE", then
RIGHT$(A$,2) will be the string " DE" . In ATARI
BASIC this is the same as

A$(LEN(A$)-I+ 1)

To verify this, type

?A$(LEN(A$)-2+ 1)

as shown in Figure 12.1.
The function

MID$(A$),J)

is a stri ng that contai ns the J characters of A$ that start
at position I (the first character of A$ is position 1) .
For example, if A$ = " ABCDE", then MID$(A$,3 ,2)
will be the string "CD". In ATARI BASIC this is the
sa me as

A$(I,I+J-1)

To verify this, type

?A$(3,3+2-1)

as shown in Figure 12.1.

THE NUMERIC/STRING FUNCTIONS VAL AND STR$

It is important that you understand the difference be
tween a numerical value such as 456 and the string
" 456" . It is like the difference between BOSTON and
"BOSTON". BOSTON is a city in Massachusetts
containing buildings, roads, people, and so on.
"BOSTON" is a six-letter word that is the name of a
city. Similarly, 456 is a number that you can add to
other numbers. The string "456" is just the three
characters 4, 5, and 6 sitting next to each other.
Sometimes you will need to convert a str ing like
"456" to its corresponding numerical value 456. The
function VAL will do this. You may also need to con
vert a numerical value such as 456 to its correspond
ing string "456". The function STR$ will do this.

VAL

The funct ion

VAL(A$)

is equal to the numerical equivalent of the string A$.
If A$ does not have a numerical equivalent, VAL(A$)
will produce the ERROR- 18 messsage.

As an example of using the VAL function, clear the
sc reen and type

CLR
DIM A$(3)
A$="456"

103

FIGURE 12.2 Using the numeric/string function
VAL.

?A$
?VAL(A$)

as shown in Figure 12.2. It looks as if both PRINT
statements print the same value 456. However, in or
der to see the difference between VAL(A$) and A$,
type

?VAL(A$) + 10
?A$+10

as shown in Figure 12.2. Note that the number
VAL(A$) can be added to 10, whereas trying to add
the string A$ to the number 10 will produce an error.

STR$
The function

STR$(A)
is the string equivalent of the numerical value A. As
an example of how to use the STR$ function, clear

. the screen and type

A=456
?A
?STR$(A)

FIGURE 12.3 Using the numeric/string function
STR$.

as shown in Figure 12.3. Note that both print state
ments print the number 456. However, STR$(A) is ac
tually a string containing the three characters 4, 5,
and 6. To verify this, type

?LEN(STR$(A))
as shown in Figure 12.3.

The functions STR$ and VAL are reciprocal func
tions, as you can verify by typing

?STR$(VAL("246"))
?VAL(STR$(246))

as shown in Figure 12.4.

FIGURE 12.4 STR$ and VAL are reciprocal func
tions.

THE ASCII CODE FUNCTIONS ASC AND CHR$

The name ASCII stands for "American Standard Code
for Information Interchange." In this standard code a
certain number is associated with each character (let
ter, digit, or special character). This code is used ex-

104

tensively throughout the computer industry for
sending information from one computer to another or
for sending data from a terminal to a computer.
AT ARI uses an expanded ASCII code, called an AT ARI

ASCII, or ATASCII code, The BASIC function ASC can be
used to find the ATASCII number associated with any
character, and the function CHR$ can be used to find
the character associated with any ATASCII number.

ASC

The function
ASC(A$)

is equal to the ATASCII code of the first character in the
string A$. To find some ATASCII codes, clear the
screen and type

?ASC("A")

?ASC("?")

? ASC(" ABC")

?ASC("*")

? ASC(''7")

as shown in Figure 12.5. Letters, digits, and special
character keys all have ATASCII numbers. Note that the
ATASCII number for a digit is different from the digit it
self (55 is the ATASCII code for 7). Also note that the
function ASC("ABC") is the ATASCII code of the first
character A.

FIGURE 12.5 Examples of ATASCII codes of
ATARI characters.

CHR$

If you know the ATASCII code of a character you can
generate the string of that character using the function

CHR$(A)

where A is the ATASCII code of the character.
The program shown in Figure 12.6 will display the

ATASCII code for any key pressed. Typing the exclama
tion point (!) will terminate the program. Line 20 is
the OPEN statement

OPEN #1 A,O,"K:"

which must be executed before the statement

GET #1,A

in line 30 can be executed. This statement will wait
for a key to be pressed and then assign the ATASCII

code of the key pressed to the variable A. Line 35
checks to see if this is equal to the ATASCII code for an
exclamation point. If it is (the! key was pressed), the
program branches to line 60 where the statement
CLOSE #1 closes the file or input/output (1/0) device
(keyboard) opened in line 20.

If any key other than the exclamation point is
pressed, line 40 will print the character correspond
ing to the key pressed, CHR$(A), followed by the
ATASCII code A. A sample run of this program is
shown in Figure 12.7. A list of ATASCII codes is given
in Appendix B.

FIGURE 12.6 Program to find the ATASCII codes
of each key pressed.

10 REM ASCII CODES
20 UP~-::~N # 1, 4,0, "~:::: II

30 GET #1, (4
35 I F' ?~::::{~SC (II ~ ") THEN 60
40 r,' CHR$ (A) ; II "; l'i~

50 GClTO 30
60 CLOSE #1
70 ? II PROGFo:Al"l DONE II

FIGURE 12.7 Sample run of program given in
Figure 12.6.

105

PRINTING DOLLARS AND CENTS

Many practical programs involve money and require
you to display dollars and cents on the screen. This is
not as easy as it may seem. First of all, if you compute
some monetary value such as interest in a savings ac
count, you will want to round to the nearest cent.
You can do this by adding 0.005 to the value and
then displaying only two places after the decimal
point. In order to try this scheme, type

A=208.4978

A1 =A+.005

?A1

?INT(A 1 *1 00)/1 00

as shown in Figure 12.8. Note that although this
scheme rounded to the nearest cent, the AT ARI does
not display trailing Os . Therefore, 50 cents is printed
as .5 . This would look strange if you printed the
amount of a check this way.

FIGURE 12.8 Rounding a monetary value to the
nearest cent.

One way to print the .5 as .50 is to convert the dol
lars and cents separately to their string equivalents
and then display these strings . To investigate this pos
sibility, type

DIM A2$(9),A3$(9)

A2=INT(A1)

?A2

A2$=STR$(A2)

?A2$

as shown in Figure 12.9. Note that A2 is the dollar
value and A2$ is the string representation of this
value.

106

DIM A2$C",A3$C"

READV
A2=INTCA.1'

READV
?A2
298

READV
A2$=5TR$CA2)

READV
?tlI2$
298

REtlIDV •
FIGURE 12.9 A2$ is a string representation of
the dollar amount.

In order to obtain a string representation of the
cents value, type

A3=A1-A2

?A3

A3$=STR$(A3)

?A3$

?A3$(3,4)

as shown in Figure 12.10. Note that the cents value
A3 is found by subtracting the dollar value from the
total rounded amount. A string representing the cents
amount consists of the third and fourth characters in
the string STR$(A3) (the first two characters are 0.).

FIGURE 12.10 A3$(3,4) is a string representation
of the cents amount.

The total dollars and cents can be displayed by
typing

?"$" ;A2$;"." ;A3$(3,4)

which will display

$208.50

12.11. If the fractional part of A 1 (the cents value A3)
is less than 0.01, A3 will be stored in scientific nota
tion. This really messes things up because now the
third and fourth characters in STR$(A3) are "OE"
rather than "00". The subroutine shown in Figure
12.11 can be fixed by adding the statement

1\ 925 IF A3<.01 THEN A3$="0000":
A2$ A3$(3,4) GOTO 940

as shown at the bottom of Figure 12.10.
The statements shown in Figures 12.8, 12 .9, and

12.10 can be combined to form the subroutine
shown in Figure 12.11. This subroutine should print
the value of A in the form $XX. YY. For the first value
of A shown in Figure 12.10, the subroutine works
well. However, for a value of A = 159.996 the
subroutine prints $160.0E. The problem can be found
by looking at the value of A3 as shown in Figure

as shown in Figure 12.12. Note that this modified
subroutine prints the correct dollars and cents values
for all of the examples shown.

The last example shown in Figure 12.12 rounds
999999 .999 to $1000000.00. When writing a check
for this value (or any value over $1000 .00) it would
look better and make the value easier to read if you
included the commas in the dollar amount. A method
of doing this will now be explained .

FIGURE 12.11 This subroutine for displaying
dollars and cents will not work for cents values
less than 0.01.

'88 REM PRINT A AS $XX.vv
'~8 AL=A+5.8E-83:A2=INTCA~) :A3=A~-A2
'28 A2$=STR$CA2)
'38 A3$=STR$CA3)
'48 ? .. $.. ;A2$; ;A3$C3,4)
'50 RETURN

READV
DIM A2$(9),A3$C9)

READV
A=298.4978:GOSUB 900
$208.50

READV
A=159.996:GOSUB 900
$1.66.9E

READV
?A3
1..0E-03

READ V •
FIGURE 12.12 Modified subroutine that displays
correct dollars and cents value.

LIST

988 REM PRINT A AS $XX.VV
9~8 AL=A+5.0E-03:A2=INTCAL):A3=AL-A2
928 A2$=STR$CA2)
'25 IF A3(0.OL THEN A3$="0000":GOTO '4
o
'39 A3$=STR$C(3)
'49 ? .. $.. ;A2$; ;A3$C3,4)
<J59 RETURN

READY
DIM A2$(9),A3$(9)

READV
A=1.5<J.9<J6:GOSUB <J99
$1.60.09

READ V
A=<J99<J99.9<J<J:GOSUB <J99
$1.000909.09

READV •

107

Adding Commas to the
Dollar Amount

Suppose that you want to add commas to the value

$2357829.49

'/ 'i
A2$ A3$(3,4)

A4$ = {A2$
A2$(L - 2,L)

A5$ = {A2$(l,L - 3)
A2$(L - 5,L - 3)

A6$ = A2$(l, L - 6)

(L < = 3)
(L > 3)

(L < = 6)
(L> 6)

(L > 6)

First of all, the largest dollar value that our subroutine
can handle is 9999999999; after this value the AT ARI
will store Aland A2 in scientific notation. Actually,
because the ATARI does not keep more than 10 digits
of precision when storing numbers, to get the correct
cents you should limit the dollar values to
99,999,999.99. Therefore, at most we need to insert
two commas. We will therefore divide the string A2$
into the three substrings A4$, A5$, and A6$ as fol
lows:

The algorithm for adding the commas will then be

$2,357,829.49

I~~~
A6$ A5$ A2$ A3$(3,4)

ifL < =3
then print $A4$.A3$(3 ,4l

else if L < = 6

then print $A5$,A4$.A3$(3,4)
else print $A6$,A5$,A4$.A3$(3 ,4)

That is, if L = LEN(A2$) , then

Figure 12.13a shows how this algorithm can be
added to the subroutine shown in Figure 12.12. Lines
940-975 implement the algorithm described here.
Two examples using this subroutine are shown in Fig
ure 12.13b.

108

FIGURE 12.13 Subroutine that includes commas
when displaying dollars and cents.

900 REM PRINT A AS $XX.VV
910 Al=A+5.0E-03:A2= INT(A1):A3=Al-A2
9~,?O (~2$::::S TR$ (A2)
C?~2~:i IF (13< o. 01 THEN PI~;:-$::::" 0000" = GO TO 940
930 A:3~~==E;TR~~ (~)3)

9"tO I._::::L EN ((-a$)

950 IF L<=3 THEN A4$=A2$:GOTO 975
955 IF L<=6 THEN A5$=A2$(1,L-3):GOTO 967

965 A5$=A2$(L-5~L-3)

970 A4$=A2$(L-2~L)
9}"'.:.:.:.i '":' A4$:j",,"; A~)$ (::~;, "t)

9BO f~ETURN

PLAYING CARDS

As another example of how to use string functions we
will now develop some subroutines that will be useful
in card game programs. The first thing to decide is
how to represent a deck of cards within the com
puter. It is convenient to associate a number between
1 and 52 with each card in the deck. We will use the
numbering system shown in Figure 12.14. For exam
ple, the seven of hearts is number 33 and the jack of
diamonds is number 24.

The value of a card (A-K) has a value number V
and the four suits have a suit number 5, as defined in
Figure 12.14.

FIGURE 12.14 Each card in the deck is associa
ted with a number between 1 and 52.

Value No .
Club Diamond Hearl Spade V

A 1 14 27 40 1
2 2 15 28 41 2
3 3 16 29 42 3
4 4 17 30 43 4
5 5 18 31 44 5
6 6 19 32 45 6
7 7 20 33 46 7
8 8 21 34 47 8
9 9 22 35 48 9
T 10 23 36 49 10
J 11 24 37 50 11
Q 12 25 38 51 12
K 13 26 39 52 13

Suit
No . 5 1 2 3 4

It is usually easier to use the card number C as
much as possible in a program to distinguish cards
and then use C to find the value and suit of the card
when needed. Given a card number C, the corre
sponding suit number 5 is given by

S = INT((C - 1)/ 13) + 1

You should verify this by trying some examples from
Figure 12.14. For example, if C = 26 (king of dia
monds), then

S = INT(25/ 13) + 1

=1+1=2

Once you know 5, the value number V can be deter
mined from the equation

v = C - (S - 1) * 13

For example, if C = 26, then 5 = 2 and

V = 26 - (2 - 1) * 13 = 13

It is convenient to store all of the card numbers in

an array C(I). This array can be initialized with the fol
lowi ng statements:

DIM C(52)

FOR 1=1 to 52:C(I)=I:NEXTI

Thus, for example, C(47) = 47 and represents the
eight of spades.

Suppose that you want to display the 19th card in
the deck. The card number is C(19) = 19. The suit
number is

S = INT((C(19) - 1)/ 13) + 1

= INT(18/ 13) + 1

=2

and the value number is

V = C(19) - (S - 1) * 13

=19-1*13

=6

Therefore, from Figure 12 .14 the card is the six of dia
monds. To display this value, define the two strings
V$ and 5$ shown in Figure 12.15. The graphic sym
bols for a club, diamond, heart, and spade are
printed using the CTRL key as indicated in Figure
12.15. Note that the position of each value character
in V$ corresponds to the appropriate value number V
in Figure 12.14. Therefore, the single value character
V1 $ corresponding to the value number V is given by

V1 $ = V$(V,V)

Similarly, the position of each suit character in 5$
corresponds to the appropriate suit number 5 in Fig
ure 12.14. Therefore, the single suit symbol 51 $ cor
responding to the suit number 5 is given by

S1 $ = S$(S,S)

These ideas are incorporated in the two
subroutines shown in Figure 12.16. The subroutine
given by lines 3000-3050 sets up the deck by dimen
sioning and initializing C(I) and defining V$ and 5$.
This subroutine should be called once at the begin
ning of any program involving playing cards.

FIGURE 12.15 Definition of the value string V$
and the suit string S$.

CLUB CTRL

DIAMOND CTRL

HEART CTRL

SPADE CTRL

V$="A23456789T JQK"

S$="CDHS"

~gJJ
,

109

3000 REM PLAYING CARD SETUP
3010 D I 1"1 C (5:?:> , \)$ (1 ::~;) , E;~*i (4) , \/ 11i (1 :> ~ ~:; 1 $ (1 .\
3020 FOR 1=1 TO 52~C(I)=I:NEXT I
3(>;~;O \)$:::::" (:\:?54~!6789T\JTH:::"

3040 f;$:::" tt •• "
:::!;O:=.;O I:~ETUF~N

3100 REM PICK CARD AT LOCATION P
:::;:1. 10 S= I NT ((C (P) ····1:> /:1. :::;) +:1.
3120 \/=C(P)-(S-:l.) *:1.3
;~; :I. :::; (> \) 1 '~i =: \} '*i (\/ !' \,J)

:31 11·0 S 1 '$::::~:;'$ (~3, S)
:::~ :1.50 F~ETUF~N

FIGURE 12.16 Subroutines to set up deck (line
3000) and pick card at location P (line 3100).

The subroutine given by lines 3100-3150 in Fig
ure 12.16 will find the value string V1$ and the suit
string S1 $ of the card located at position P in the array
C-that is, the card with card number C(P). Lines
3110-3120 define the suit number S and value num
ber V using the formulas that have been given here.
Lines 3130-3140 find the single character strings V1 $
and S1 $.
In order to test these subroutines, type

GOSUB 3000

P=33:GOSUB 31 00:?V1 $;Sl $

P=52:GOSUB 3100: ?V1 $;Sl $

as shown in Figure 12.17. Note that card number 33
is the seven of hearts and card number 52 is the king
of spades, as shown in Figure 12.14.

You can display the entire deck by running the
program shown in Figure 12 .18. Line 20 sets up the
deck. Line 25 clears up to 10 tabs and line 27 sets
three new tab positions. The FOR ... NEXT loop in
lines 30-60 increments P from 1 to 52, finds V1 $ and
S 1 $ for the card at position P (I i ne 40) I and pri nts
these values and suit symbols in line 50 . Note that the
PRINT statement in line 50 ends with a tab. The result

of running this program is shown in Figure 12.19.
Note that the cards are printed in the order shown in
Figure 12 .14. In order to print them in a random or
der you must first shuffle the deck.

FIGURE 12.17 Testing the subroutines given in
Figure 12.16.

FIGURE 12.18 Program to display entire deck of
cards.

110

L%~T.18 • .188

.18 REM D%SPLAV DECK
28 GOSUB 3888:REM SETUP DECK
25 ? ".EI.EI.EI~.EI.EI.EI.EI.EI.~
27 ? .. U- ~ ~ ..
38 FOR P=.1 TO 52
.8 GOSUB 3.188:R~M GET NEKT CARD
58 ? U.1$;S.1$; ;:REM D%SPLAV CARD
68 NEKT P
.18e END

READV •

FIGURE 12.19 Result of running program shown
in Figure 12.18.

Shuffling a Deck of Cards

To shuffle a deck of cards all you have to do is to
scramb le the order of the card numbers stored in the
ca rd array C(I). The following simple algorithm will
do this:

for I = 1 to 52
find random number J between 1 and 52

interchange C(I) and C(J)

next I

Thi s algorithm interchanges each element in C(I) in
turn with another element selected at random.

Recalling that RND(O) is a random number with a
value greater than 0 and less than 1, then

J = INT(52 * RND(O) + 1)

will be a random integer between 1 and 52.

FIGURE 12.20 Subroutine to shuffle a deck of
cards .

3200 REM SHUFFLE DECK
~:!:?:I 0 ';:. "~3 H U F F l._ I N h";
3220 FOR 1=1 TO 52
3230 J~INT(52*RND(0)+1)
::!:2.t:l-O T::"'C (I) :: C (I) ::::C (~J) : C (J) ::-:::T
~~;2~SO NEXT I
52 .~·:oO RE:TURN

A subroutine that will shuffle the deck while
displaying the word "SHUFFLING" is shown in Fig
ure 12.20. The FOR ... NEXT loop in lines
3220-3250 corresponds to the for ... next loop
given here. Line 3230 finds a random number J be
tween 1 and 52. Line 3240 interchanges C(I) and C(J).

Add lines 28 and 29 shown in Figure 12 .21 to the
main program given in Figure 12 .18. This new pro
gram will shuffle the deck and then display all of the
cards. A sample run is shown in Figure 12.22.

FIGURE 12.21 Main program to display shuffled
deck of cards.

FIGURE 12.22 Sample run of program shown in
Figure 12.21.

111

10 REM DEAL HAND OF CARDS
20 GOSUS 3000:REM SETUP DECK
:?5 '-;:' II II

28 GOSUS 3200:REM SHUFFLE DECK
29 17 : '(
~:::O ? "ENTER NUMBER OF PU~YERS ",
::':;~5 I NF'l.JT t\IF'

"

40 ? "ENTER NUMBER OF c{·)RDS PER Ht:)ND ";
4:5 INPUT NC
50 P=l:?
60 FOR 1=1 TO NC
70 F-UR J 0::: 1 TU NP
80 GOSUn 3100:REM DEAL NEXT CARD
90 ') \,.! 1 $:; S 1 $; " " Ii

100 P::::P+:I.
110 NEXT J
120 ':)
130 NEXT I
140 EI\ID

FIGURE 12.23 Program to deal a hand of cards.

Dealing a Hand of Cards 50P=1:?
70 FOR J=l TO NP

The program shown in Figure 12.21 can easily be
modified to deal a hand of cards. All you have to do is
divide the cards among a number of players and limit
the number of cards dealt to the desired number.

80 GOSUB 3100:REM DEAL NEXT CARD
90? V1$;Sl$;ltab";

100P=P+1
1l0NEXTJ Let

NP = number of players

and

NC = number of cards per hand

The first card to each player can be displayed on a
single line with the statements

Note that P points to the next card in the deck and
subroutine 3100 finds the card at C(P).

To deal NC cards to each player and display them
on succeeding lines, add the statements

60 FOR 1=1 TO NC
120 ?
130 NEXT I

FIGURE 12.24 Sample runs of program shown in
Figure 12.23.

112

FIGURE 12.24 (cont.)

as shown in Figure 12.23 . In this program lines
30-45 allow the user to input the values NP and NC.
Line 50 points to the top ca rd of the deck and skips a
line. Lines 60-130 make up the outer FOR ... NEXT
loop that prints NC rows of cards. Lines 70-110 make
up the inner FOR ... NEXT loop that deals NP cards
and displays them on one line. Line 25 clears the tab
position (see Figure 12.21). Eight tab positions have
been set up in line 27. Line 100 points to the next
card in the deck after each one is dealt. The PRINT
statement in line 120 is necessary to move the cu rsor
to the beginning of the next line after each round of
cards is dealt.

Two sample runs of this program are shown in Fig
ure 12.24. The second example shown in Figure
12.24 could be a bridge hand . It would be nice if you
could sort each hand by suit. This is easier to do than
you may think.

Sorting Hand by Suit

Suppose that a hand contains the cards shown in Fig
ure 12 .2Sa, where the ca rd number for each hand is
also given (see Figure 12.14). If the card numbers are
sorted in increasing order, the cards will be sorted in
increas ing order by suit, as shown in Figure 12 .2Sb.
This illustrates the advantage of using card numbers
to represent pl ay ing cards inside the computer.

In order to sort a hand we will therefore need to
store the card numbers for each card in the hand . We
can store these in an array . For convenience we w ill
use a two-dimensional array, or matrix, H(I,)), in
which each column will contain the card numbers for
a different player, as shown in Figure 12 .26. To sort
all hands we will need to sort each column in
increasing order.

FIGURE 12.25 A hand of cards can be sorted by
suit by sorting the card numbers in increasing or
der.

Card
6H
4D
8D
4S
3C
JS
6C
9H
2C

Card No.
32
17
21
43

3
50

6
35

2
(a)

Card No.
2
3
6

17
21
32
35
43
50

(b)

Card
2C
3C
6C
4D
8D
6H
9H
4S
JS

FIGURE 12.26 Each column of the two
dimensional array H(I,J) contains the card num
bers for one player.

2

31

27
card I

8

11

50

player no. J

51

6

38

1

16

21

26

24

47

34

33

17

Two-dimensional array
H(1.J)

The array H(I ,J) needs to contain NC rows (number
of cards per hand) and NP columns (number of
players). Since we don't know what these values are
until lines 35-45 in Fi gure 12.23 are executed, we
will add the following dimension statement at line
47:

47 DIM H(NC,NP)

Every time a card is dealt we need ~o add the card
number to the array H(I,)) by adding the statement

113

75 H(I,J)=c(P)

as shown in Figure 12.27. Note that this statement is
inside the two nested FOR .. . NEXT loops and will
be filled up one row at a time. In Figure 12.27 we
have added the one additional statement

135 GOSUB 200:REM DISPLAY
SORTED HAND

where we will hide everything that we haven't figured
out how to do yet!

This subroutine at line 200 will have to sort each
co lumn in H(I,J) in increasing order and then display
the corresponding cards. This subroutine is shown in
Figure 12.28. Line 205 prints the word "SORTING"
so that if it takes a little time (it will), the user will
know what is going on. Line 210 will sort each col
umn in H(I,J). In the interest of putting off, as long as
possible, what we haven 't figured out how to do, we
will just let the subroutine at line 2000 do this. The
nested FOR ... NEXT loops in lines 220-260 are
similar to the ones in lines 60-130 in Figure 12.2 7
that displayed the original hand. The subroutine at
line 3100 will find the card at position P in the array
C-that is, the card with card number C(P) . This was
useful in line 80 in Figure 12 .27 where we were in
crementing P each time it passed through the loop.
However, in Figure 12.28 we don't know P but we do
know the card number directly-it is just H(I ,J) .
Therefore, we would like to use the subroutine at line

3100 to find the value of the card with card number
H(I,J). We must make C(P) contain the value H(I ,J).
Because the array element C(O) is not normally used
but is available, we will use this location to store
H(I,J), as shown in line 240 in Figure 12.2&. Note that
we must set P = 0 so that the subroutine at line 3100
shown in Figure 12.16 will use C(O), which will be
equivalent to using H(I,J).

W e're finally to the point where we must figure out
how to sort the columns of H(I,J) in increasing order.
If you go back and study the sorting algorithm that we
developed in the last chapter, given in Figure 11.10,
you will note that all we have to do is apply this same
algorithm to each column of H(I,J). The resulting al
gorithm is given in Figure 12 .29 . The BASIC imple
mentation of this algorithm is written as a subroutine
in Figure 12.30.

FIGURE 12.28 Subroutine to display the sorted
hands of cards.

200 REM DISPLAY SORTED HAND
20~.; .? ~? "E:OFnING":: '?
210 GOSUB 2000 :REM SORT COLUMNS OF H
220 FOR 1=1 TO NC
230 FOR J=1 TO NP
240 P=O:C(O)=HCI,J)
245 GOSUB 3100:REM NEXT CARD

260 NEXT J:? :NEXT InRETURN

FIGURE 12.27 Main program to deal a hand of
cards and then display the sorted hand.

114

10 REM DEAL HAND OF CARDS
20 GOSUB 3000:REM SETUP DECK
:~::~5 '? II II

28 GOSUB 3200:REM SHUFFLE DECK
29 ? :r:>
~;o ? "ENTER NUr'1BER OF F'LA YEP~3 "~

~) ~s I t\~ F' L.! 1- t··J F'

"

40 '":' "ENTER NUt-mER OF G\IFm~; PER HAND ";
4~3 INPtJT NC
47 DII''! H eNC, NF')
~:.;O poo:1: ')
60 I=' OF< I::: 1 TO NC
70 FOP ,J::: 1. TO NP
7~5 H (I '/ ,J) :::::C (F')
80 GOSUB 3100:REM DEAL NEXT CARD
90 r,' \,11 $:: S 1 $; " " ,

100 P:::P+l
110 NE XT J
1:20 ?
1:::;:0 NEXT I
135 GOSUB 200:REM DISPLAY SORTED HAND
140 END

fo r J = 1 TO NP
for I = 1 TO NC - 1

fo r K = I + 1 TO NC
if H(I ,J) < = H(K,J)

then do nothing

else inte rchange H(I ,J) and H (K,J)

next K
next I

next J

FIGURE 12.29 Algo ri thm for sorting each column
of H(I ,J) in increasing order.

FIGU RE 12.30 Subroutine to so rt each column of
the array H (I,J).

2000 REM SORT EACH COLUMN OF H(NC,NP)
2010 FOR J=l TO NP
2020 FOR 1=1 TO NC-l
2030 FOR K=I+l TO NC
2040 IF H(I,J){=H(K,J) THEN 2060
2050 T=H(I,J)~H(I,J)=H(K,J):H(K,J)=T
2060 NEXT K~NEXT I:NEXT J:RETURN

We have now w ritten all of the subrout ines needed
to run the program shown in Figure 12.27. A sample
ru n is shown in Figure 12.31. Note that each hand is
sorted by su it w ith the suits d isplayed in the order
cl ubs, d iamonds, hearts, and spades.

H U FF L ING

ENTER NUMBER OF PLAVERS ?5
ENTER NUMBER OF CARDS PER HAND

7. T. 6+ 8. ,.1+
5. a. 5. 6. 2+
7. T~ A. 8. 4+
~. 4. 6. 3+ T. a. 2-!:- 1<. 4. A~
Jo!!- -J 2. ~~ 3~

SORTING

J~ 2~ 2. ~~ A~
5. T ~ K. 4. 3~
7. T+ A. 6. T. -;. 0* 5. 8. 2+
7. 4 6. 8. 4+
Q. J'\I' 6+ 3+ J+

READY •
FIGURE 12.31 Sample run of the program
shown in Figure 12.27.

EXERCISE 12.1
W rite a program that w ill in put a string A$ and a
substring B$ and then search for the first occurrence
of the substring B$ in A$. If a match is found, the
va lue of P should be set to the pos iti on in A$ of the
first character of B$. (P = 1 corresponds to the f irst
character in A$.) If no match is found, set P = o.

EXERCISE 12.2
Mod ify the program in Exerci se 12.1 to find all occur
rences of B$ in A$. Store the locations of all matches
in the array P(I). A va lue of P(I) = 0 w ill ind icate that
there are no more matches in the string.

11 5

?6

LEARNING TO USE
HIGH-RESOLUTION GRAPHICS

The low-resolution graphics mode 5 was described in
Chapter 7 and you have used it in many of your pro
grams in earlier chapters. The ATARI also has other
graphics modes that allow you to plot figures on the
screen with considerably more detail. In this chapter
you will learn

1. the graphics modes available in ATARI BASIC

2. how to use the high-resolution graphics modes
on the ATARI

3. how to plot figures in a dot-to-dot fashion by
storing the coordinates of the vertices in DATA
statements

4. how to draw figures of varying size

5. how to plot figures at different locations on the
screen

6. how to plot figures whose coordinates can be
calculated.

AlARI GRAPHICS MODES

In Chapter 7 you learned to use graphics mode 5.
This was a low-resolution mode in which the screen
was divided into an 80 X40 grid with four lines of text
at the bottom of the screen. This four-line text
window can be changed to an additional graphics
area by adding 16 to the mode number in the
GRAPHICS statement. Thus, the statement

GR. 5+16

will enter graphics mode 5 with a full-screen 80 X48
graphics resolution. If you add 32 to the mode num-

116

ber in the graphics command, the graphics mode will
be entered without clearing the screen .

ATARI BASIC will allow you to access nine different
graphics modes. Three of these are actually text
modes and six are real graphics modes. These nine
modes are summarized in Table 13 .1. You are al
ready familiar with the text mode GR. 0 and the
graphics mode GR. 5.

W e will study the text modes GR. 1 and GR. 2 in
Chapter 14. In this chapter we will look at the
highest-resolution graphics mode, GR. 8.

T ABLE 131 ATARI d BASIC grapl ICS mo es

Resolution
GR. Mode Type With Text Window Full-screen No. of Colors Required Memory

0 TEXT 40 x 24 2 993
1 TEXT 20 x 20 20 x 24 5 513
2 TEXT 20 x 10 20 x 12 5 261
3 GRAPHICS 40 x 20 40 x 24 4 273
4 GRAPHICS 80 x 40 80 x 48 2 537
5 GRAPHICS 80 x 40 80 x 48 4 1017
6 GRAPHICS 160x 80 160 x 96 2 2025
7 GRAPHICS 160x 80 160 x 96 4 3945
8 GRAPHICS 320 x 160 320 x 192 1 (2) 7900

GRAPHICS MODE 8

In the high-resolution graphics mode 8 the screen is
considered to be divided into a grid of 160 rows and
320 columns with four lines of text at the bottom, as
shown in Figure 13.1. * The co lumn positions of the
grid are numbered 0 through 319 from left to right.
The row positions of the grid are numbered 0 through
150 from top to bottom.

In graphics mode 8 only a single co lor can be
plotted . The background and graphics point must
have the same hue but can have different lumi
nances. The background co lor is specified by co lor
register 2 (COLOR 0). Thus, for example (see Chapter
7),

SETCOLOR 2,0,0

will make a black background. The points plotted
must now be gray (hue = 0) and can only have a dif
ferent luminance from the background . Color register
1 (COLOR 1) specifies the luminance of the points
plotted . For example,

SETCOLOR 1,0,14

will plot white points with the brightest possible in
tensity.

Enter graphics mode 8 by typ ing

GR. 8

Set the background to black by typing

SETCOLOR 2,0,0

Set the luminance of the graphics points to bright by
typing

SETCOLOR 1,0, 14:COLOR 1

You can plot a point at any X, Y locat ion (X between 0
and 319 and Y between 0 and 159) by typing

*A full-screen graphics mode with a 160 x 192 resolution is
entered by typing GR. 8+ 16.

FIGURE 13.1 The high-resolution graphics mode
divides the screen into a 320 x 160 grid with four
lines of text at the bottom.

x=o
~ y=o-

320 x 160

X=319
~

Y=159~r-______________________ ~

4 lines of text

PLOT X,Y

For example, if you type

PLOT 159,80

you should see a small dot near the center of the
screen.

The statement

DRAWTO X,Y

will plot a line from the most recently plotted point to
the location X, Y. For example, type

PLOT 9,10:DRAWTO 309,10

This will plot a horizontal line across the top of the
screen as shown in Figure 13 .2.

117

FIGURE 13.2 Plotting a horizontal line in high
resolution graphics.

If you now type

DRAWTO 9,159

the diagonal line shown in Figure 13 .3 will be
plotted. This is because the point 309,10 was the last
point plotted in Figure 13.2.

If you now type

DRAWTO 9,10

the vertical line in Figure 13.4 will be plotted .

The program shown in Figure 13 .5a will plot the
pattern shown in Figure 13 .5b.

In order to get out of the high-resolution graphics
mode 8, type GR. 0 as you did when leaving the low
resolution graphics mode 5.

EXERCISE 13.1
Plot a sq uare in high-resolution graphics that is 100
points on a side and has its upper-left-hand corner at
the coordinates X = 90, Y = 30.

FIGURE 13.3 Plotting a diagonal line in high
resolution graphics.

118

FIGURE 13.4 Plotting a vertical line in high
resolution graphics.

FIGURE 13.5 Plotting multiple lines in g ra phics
mode 8.
10 REM HIGH RESOLUTION GRAPHICS
20 GF~PII:::' ~'I I C~:; El
25 SETCOLOR 2~0~0:SETCOLOR 1~0,14
:::;0 Cc)L.m~ 1
40 PLOT 21,10:DRAWTO 301,10
50 DRAWTO 21, 150:DRAWTO 2 1 ,10
60 DRAWTO 301~150:DRAWTO 301, 10

PLOTTING HIGH-RESOLUTION GRAPHIC FIGURES

Let's suppose that you want to draw some arbi trary
figure made up of a sequence of stra ight-line seg
ments. It is convenient to plot the figure on a new X, Y
coordinate system that is centered at the screen
coordinates XC,yc. For example, in Figure l3.6 a
sq uare is shown plotted in such a coordinate system.

Note that the Y coordinate is plotted in its " normal "
upward direction, which is the opposite of the Y
screen coord inate. We will let the computer take care
of this difference. Also, note that we have located the
origin of our new coordinate system at the center of
the square. This means that the coordinates of the

119

y

(-5 0, 50)

XC,YC

(-50 , -50)

(50,50)

x

(50, -5 0)

The vertex coordinates will be stored in the order
you wou ld use to draw the figure in a dot-to-dot fash
ion. If you return to the starting position, the first X, Y
coordinate must also be the last one. Thus, the two
DATA statements

250 DATA -50,50,50,-50,-50
260 DATA 50,50,-50,-50,50

will be used to plot the square shown in Figure 13.6.
Statement 250 contains all of the X coordinates and
statement 260 contains the corresponding Y
coordinates .

FIGURE 13.6 Defining a square centered on a
new XIV coordinate system.

The program shown in Figure 13.7 will plot this
square. After the high-resolution graphics mode is en
tered in line 20 and color register 1 is set in line 25,
the subroutine at line 200 is used to fi ll the arrays X(I)
and Y(I) with the vertex coordinates. These arrays are
dimensioned in line 210. The vertex coordinates
stored in the DATA statements are then read into the
arrays X(I) and Y(I) in lines 220 and 230. Note that in
line 230 each value stored in Y(I) is changed in sign.
This is because the Y coordinate shown in Figure
13.6 (from which the DATA coordinates were deter
mined) is opposite in direction to the Y screen
coordinate (see Figure 13 .1) .

vertices of the square may contain negative values, as
shown in Figure 13.6. Of course, for the square to fit
on the screen it is necessary for the value of XC (the
center of the square) to be in the range 50-269 and
the value of YC to be in the range 50-109.

For any center point XC, YC the square is com
plete ly defined by the X, Y coordinates of its vertices:

Line 40 in Figure 13.7 defines the center of the
square to be at the screen coordinates 159,80. Line
50 plots the point located at the upper-left-hand cor
ner of the square. Note that the statement (- 50,50)

(50,50)
(50,- 50)
(- 50,- 50)

PLOT XC+X(OLYC+Y(O)

will actually be equivalent to

We will store these vertex coordinates in two DATA
statements, with all of the X coordinates in the first
DATA statement and all of the Y coordinates (in the
same order) in the second DATA statement.

PLOT 159-50,80+(-50)

and will therefore plot the point (- 50,50) shown in
Figure 13.6 . Remember that all of the signs in Y(I)
were inverted in line 230. The statements

120

FIGURE 13.7 Program to plot a square.

1 ° F~EI'1 S[.lUf~m:;:
20 GRAPHICS 8:COLOR 1
25 SETCOLOR 2,0,0:SETCOLOR 1,0,14
30 GOSUS 200:REM FILL ARRAYS
·40 XC::::: 1 ~59 ~ YC;:'=80
50 PLOT XC+X(O),YC+Y(O)
60 F'ClF: 1":= 1. TO IVI
70 DRAWTO XC+X(I) ,YC+Y (I)
80 I\lEfT I
90 END
200 REM FILL X,V ARRAYS
210 M=4:DIM X(M),Y(M)
220 FOR 1=0 TO M:READ X=X(I)=X:NEXT I
230 FOR 1=0 TO M~READ Y:Y(I)=-Y:NEXT I
2:40 I:::ETUHN
250 DATA -50,50,50,-50,-50
260 DATA 50,50,-50,-50,50

60 FOR 1=1 TO M

70 DRAWTO XC+X(I),YC+Y(I)

80 NEXT I

on the screen we find that the horizontal length is
18 .5 centimeters and the vertical length is 19.5 centi
meters. Therefore, if we reduce the value of all Y
coord i nates by the factor

shown in Figure 13.7 will plot the four sides of the
square.

F = 19.5/ 18.5 = 1.1

The result of running the program given in Figure
13.7 is shown in Figure 13.8 . Note that although we
drew a square in Figure 13.6 it did not come out as a
square in Figure 13.8. The reason for this is that the
distance between adjacent points on a TV screen is
different in the vertical and horizontal directions. You
can see from Figure 13 .8 that since the same number
of points were plotted for both the vertical and
horizonatal sides of the square, the distance between
ad jacent vertical points must be larger than the dis
tance between adjacent horizontal points.

the square should appear square. We can do this by
adding the statement

215 F=1.1

and modifying line 230 to read

230 FOR 1=0 TO M:READ
Y:Y(I)=-Y/ F:NEXT I

There is an easy way to correct for this difference
in our program. If we measure the sides of the square

as shown in Figure 13.9. The result of running this
modified program is shown in Figure 13 .10. Note
that the square now looks like a square on the screen.
You should use this vertical scaling factor (measure it
for your own screen) in all of your plotting programs
in order to produce properly proportioned figures.

FIGURE 13.8 Result of running the program
shown in Figure 13.7.

FIGURE 13.10 Result of running the modified
"square" program shown in Figure 13.9.

FIGURE 13.9 The changes shown in lines 215
and 230 will properly scale the Y coordinate .

:I. 0 REI"I ~3()U(~IRE

20 GRAPHICS 8;COLOR 1
25 SETCOLOR 2~0,0:SETCOLOR 1~0,14
30 GOSUB 200:REM FILL ARRAYS
40)(C=159:YC:::::80
50 PLOT XC+X(O),YC+Y(O)
60 FI]F(1=1 TO M
70 DRAWTO XC+X(I).YC+Y(I)
80 NEXT 1
90 END
200 REM FILL X~Y ARRAYS
210 M=4~DIM XCM),Y(M)
~,21 ::i F= 1. " :l
220 FOR 1=0 TO M:READ X=X(1)=X:NEXT 1
230 FOR 1=0 TO M=READ Y~Y(I)=-Y/F=NEXT 1
~.?40 liETURI'~

250 DATA -50,50~50,-50,-50
260 DATA 50,50,-50,-50,50

121

EXERCISE 13.2
Write a program that will plot the star shown in Figure
13.11 centered at the screen coordinates 159,80.

in your plot statements, where 5 is the scale factor.
For example, a value of 5 = 2 will cause the figure to
be plotted double size and a value of 5 = 0.5 will
cause the figure to be plotted half size.

FIGURE 13.11 Star figure to be plotted in Exer
cise 13.2.

As an example, the program shown in Figure
13.12 wi II plot a sequence of concentric squares cen
tered at the screen coordinate 159, 80. Note that the
for . .. next loop

y

(0,50)

45 FOR S=0.2 TO 1.6 STEP 0.2

(-50, 20)~----+--+--~---~(50, 20)

85 NEXT S

-------j~-_t--7'T-------x has been added to the program given in Figure 13.9.

Scaling Figures

FIGURE 13.13 Result of running the program
shown in Figure 13.12.

If the coordinates of the points in a figure are stored in
the arrays X(I) and Y(I) as we have described, then it is
a simple matter to plot the figure in a different size.
All you have to do is to always use

and

122

X(I)*S

Y(I)*S

FIGURE 13.12 Program to plot a set of concen
tric squares.

10 REM CONCENTRIC SQUARES
20 GRAPHICS 8:COLOR 1
25 SETCOLOR 2.0.0:SETCOLOR 1~0,14

30 GOSU8 200~REM FILL ARRAYS
40 XC==l59:YC=80
45 FOR S=0.2 TO 1.6 STEP 0.2
50 PLOT XC+X(O,*S,YC+Y(O)*S
60 FTIR 1::::1 TO M
70 DRAWTO XC+X(I)*S~YC+Y(I)*S

80 NEXT I
8::; NEXT S
90 END
200 REM FILL X,Y ARRAYS
210 M=4:DIM X(M)~Y(M)
::: 1~; F'= 1 " :I.
220 FOR 1=0 TO M:READ X:X(I)=X:NEXT I
230 FOR 1=0 TO M:READ Y:Y(I)=-Y!F:NEXT I
:~240 F<:ETURN
250 DATA -50,50,50,-50,-50
260 DATA 50,50,-50,-50,50

In addition, the PLOT statement in line 50 and the
DRAWTO statement in line 70 have been modified to
include the scale factor S. The result of running this
program is shown in Figure 13 .13.

In addition to plotting a figure in different sizes by
using the scale factor 5, it is a simple matter to plot
the figure at different locations on the screen by
changing the values of the center coordinates XC and
ye.

EXERCISE 13.3
Write a program that will plot nine squares in a 3 x 3
arrangement on the screen. The size of each square
should be 40x40 and the squares should not overlap.

EXERCISE 13.4
Write a program that will plot five stars on the screen
at random locations. Take care to ensure that no part
of any star can ever extend beyond the edge of the
screen.

EXERCISE 13.5
Modify the program in Exercise 13.4 so that the size
of each star as well as its position is random.

FIGURE 13.14 Relationship between a point X, Y
on a circle and the radius R and angle A.

y

x ----- PI X, Y)

----~~--------~~L-----~_+-----x

Plotting Circles

How can you plot a circle in high-resolution graph
ics? Figure 13 .14 shows a circle of radius R with its
center at the origin of a local X, Y coordinate system.
Recall from trigonometry that for the triangle OPQ
the sine of the angle A is defined as

SIN(A) = Y/ R

and the cosine of the angle A is defined as

COS (A) = X/ R

Therefore, we see that any point P on the circle has
the X, Y coordinates

X = R * COStA)

Y = R * SIN(A)

We can therefore plot the circle by letting the angle A
increase in steps, calculate new values for X and Y
from the preceding equations, and DRAWTO to the
new points. If we let A increase from 0 to 360 degrees
we will plot the entire circle.

A program for plotting circles is shown in Figure
13. 15. Lines 20-22 enter the high-resolution graph
ics mode and set color register 1. The user can specify
the rad ius R and angular step size S in lines 25-45.

FIGURE 13.15 A program for plotting a circle of
radius R using high-resolution graphics.

10 REM PLOTTING CIRCLES
15 OPEN # 1 ~ 4 ~ 0 ~ II ~<: II

20 GRAPHICS 8:COLOR 1
22 SETCOLOR 2~0~0:SETCOLOR 1~0~14
25 ? "ENTER RADIU!3 (1-87) ";
:':;0 INPUT R
35 IF R{l OR R)87 THEN 30
40 ':.1 "ENTER ANGLE STEP SIZE <DEGREES) ";
45 INPUT S
50 DEG
60 F=l.. 1
70 XC=160:YC=80
80 PLOT XC+R,YC
90 FOR AD=O TO 360 STEP S
100 X=R*COS(AD)
110 Y=R*SIN(AD)
120 Y=-Y/F
130 DRAWTO XC+X~YC+Y

140 NEXT AD
1 ~50 ? II ANOTHER PLOT',? II
160 GET #1~A
170 IF A=ASC("Y") THEN 20
180 CLOSE #1:RAD
190 GRAPHICS O:END

Line 50 sets DEG so that the arguments of the SIN and
COS functions will be in degrees. Line 60 sets the ver
tical scale factor F. The center of the circle will be lo
cated at the screen coordinates XC,YC defined in line
70. The first point on the circle located at the screen
coordinates XC + R, YC is plotted in line 80. The
FOR ... NEXT loop in lines 90-140 plots the rest of
the circle. Notice that the angle AD increases from 0
degrees to 360 degrees in steps of S degrees. Lines
100-110 calculate the next values of X and Yon the
circle. Line 120 inverts and scales the Y value as we
have described so that the circle will look like a cir
cle. The next segment of the circle is plotted in line
130.

123

Line 160 waits for a key to be pressed and then
stores the ATASCII code for that key in A. The number
1 in thi s GET statement refers to the device number
(for the keyboard) defined in the OPEN statement in
line 15. This device is closed with the CLOSE state
ment in line 180.

You should type in this program and run it. Some
sample runs are shown in Fi gure 13. 16. Note that if
the angle step size becomes too large, a polygon w ill
be plotted rather than a c ircle. This suggests an easy
way to plot some interesting multiple polygon figures .
The next section w ill describe such a program .

FIGURE 13.16 Running the program shown In

Figure 13.15.

124

EXERCISE 13.6
Write a program to plot the "ball " shown in Figure
13. 17a. Think of looking dow n on the top of the ball
and then plotting a seri es of c ircles at different angles
B, as shown in Figure 13. 17. Both halves of this circle
will appear on the screen, so you only need to let B
increase from 0 to 90 degrees . The X coordinate of
each c ircle will now be

x = R * COS (A) * COS(8)

FIGURE 13.17 Plotti ng a 3-D ba II (Exercise 13.6) :
(a) ball to be plotted; (b) looking down on top of
the ball.
(a)

(b)

Plotting Polygons

Suppose that you would like to plot the picture shown
in Figure 13.18 . How would go about it? You could
start at the vertex X(l) , Y(l) and draw the four lines to
X(K),Y(K) (K = 2 to 5), as show n in Fi gure 13.19a.
Next you could add the three lines from X(2) ,Y(2) to
X(K), Y(K) (K = 3 to 5) as shown in Figure 13. 19b.
Next you could add the two lines from X(3),Y(3) to
X(K),Y(K) (K = 4 to 5) as shown in Figure 13.19c.

Y

X(1), Y(1)

X(21, Y(21~----f---If--\----~X(51, Y(51

---~-~-.~~-~~~-+-------X

X(31, Y(31 X(41, Y(41

FIGURE 13.18 A polygon with a line down be
tween all vertices.

FIGURE 13.19 Steps in generating the picture
shown in Figure 13.18.

X(1IY(11

(al (bl

(el (dl

Finally you would add the line from X(4),Y(4) to
X(S), Y(5). Note that the four steps shown in Figure
13.19 can be carried out by the algorithm

for J = 1 to N - 1

for K = J + 1 to N

plot line from XUl, YUl to X(K) , Y(K)

next K

next J

where N is the number of vertices in the polygon (five
in Figure 13.19).

Think of a circle that passes through all of the verti
ces of the polygon. If R is the radius of this circle, then
the N coordinate pairs X(I),Y(I) can be calculated
from the followi ng algorithm:

for I = 1 to N

next I

A = I * 360/ N

X(I) = R
COStA)

*

Y(I) = R * SIN(A)

Note that this algorithm divides the circle into N pie
shaped wedges, where the angle of each "pie piece"
is 360/ N degrees. The coordinates X(I), Y(I) are then
ca lculated using the equations of the circle.

A program that will plot this polygon figure for pol
ygons with from 3 to 15 sides is shown in Figure
13.20. The center of the polygon will be at XC,YC,
which is specified to be 160,80 in line 50. The radius
of the circle that would pass through the polygon ver
tices is set to 85 in line 50. After entering the number
of sides N in line 65 and checking to make sure that N
is between 3 and 15 in line 70, the subroutine at line
200 is called. This subroutine calculates the N
coordinates X(I), Y(I) as described previously. Note
that line 250 inverts and scales the Y coordinates by
our usual vertical scale factor F = 1.1 (defined in line
40).

FIGURE 13.20 Program to plot a polygon figure
with from 3 to 15 sides.

10 REM POLYGON FIGURE
15 OPEN #1,4, 0, "~::: "
20 DIM X (15) , Y (15)
30 GRAPHICS 8:COLOR 1
35 SET COLOR 2,0,0:SETCOLOR 1,0,14
40 DEG : F= 1 . 1
50 XC=160:YC=80:R=85
60 ? "ENTER NUMBER OF SIDES (3-15) ";
65 INPUT N
70 IF N(3 OR N>15 THEN 60
80 GOSUB 200:REM CALCULATE POINTS
90 FOR J=l TO N-l
100 FOR K=J+l TO N
110 PLOT XC+X(J),YC+YIJ):DRAWTo XC+X(K),YC+Y(K)
120 NEXT K:NEXT J
130 ? "ANOTHER PLOT?"
140 GET #l,A
150 IF A=ASC("Y") THEN 30
160 CLOSE #l:RAD
170 GRAPHICS O:END
200 REM CACULATE POINTS
210 FOR 1=1 TO N
220 AD=I*360/N
230 X(I)=R*COS(AD)
240 Y(I)=R*SIN(AD)
250 Y(I)=-Y(I)/F
260 NEXT I
270 RETURN

125

Lines 90-120 actually plot the polygon figure
using the nested for . . . next loops. Notice that the
PLOT statement in line 110 will cause the polygon to
be centered at XC,yc. After plotting the figure, line
130 will ask the user if another plot is desired . The
GET statement in line 140 will wait for a response and
then in line 150 will branch back to line 30 if key Y is
pressed. Any other key will cause line 160 to be exe
cuted, which will close the keyboard device number,
clear the screen, and stop the program.

Type in this program and run it. Two figures that
can be generated by this program are shown in Figure
13.21. Try some different values of N.

FIGURE 13.21 Examples of polygon figures that
can be generated by the program shown in Figure
13.20.

126

Plotting Functions

The high-resolution graphics capability of the ATARI
makes it a useful tool for studying the behavior of
mathematical functions. For example, the function

y(x) = A sin(21T x/ T + <1»

defines a sine wave with amplitude A, period T, and
phase angle <1>. You can calculate this function by
using the BASIC statement

Y= -A*SIN(2*PI*X/ T + PH)

where PI = 3.1415926, PH is the phase angle in ra
dians, and the minus sign is our usual inversion be
cause the positive Y screen coordinate points down
ward .

A program that will plot this function is shown in
Figure 13 .22 . The subroutine at line 200 that is called
in line 30 will plot the axes shown in Figure 13 .23a.

FIGURE 13.22 Program to plot a sine wave.

10 REM SINE WAVE
15 OPEN # 1 ~ 4·, 0 ~ "1<: "
20 GRAPHICS 8~COLOR 1
22 SETCOLOR 2~0,0:SETCOLOR 1~O,14
::5 F'I:::::3.1415<;>26
30 GOSUB 200:REM PLOT AXES
40 ? "Y=A*f;INC2*PI*X/T+PHPISE) II

~::;O .-,:- II ENTER AMPL I TUDE A (0-80)
~':.i:-::; INPUT t;
60 ? "ENTEli PERIOD T ";
6:'.i I NF'I...IT T
70
75

? "ENTER PHr~SE ANGLE ";
INPUT PH

80 PI·-j==F'H:l<P 1/1. 80
90 X=-159:Y=-A*SIN(2*PI*X/T+PH)
95 PLOT XC+X,YC+Y
100 FOR X=-158 TO 160
110 Y=-A*SIN(2*PI*X/T+PH)
120 DRAWTO XC+X,YC+Y
150 NEXT X
li-l-O ? "AN[JTHa~: F'L.ClT?"
1 ::'iO GET ~* 1 ,I<EY
160 IF KEY:=ASC ("V") THEN 20
170 CL.OSE #l~GRAPHICS O~END
200 REM PLOT AXES
210 XC:::::1~:;9~ YC==80
220 PLOT O,YC~DRAWTO 319,YC
230 PL.OT XC,O:DRAWTO XC,159
240 FOR X=9 TO 309 STEP 10
250 PL.OT X,YC:DRAWTO X,YC-5
:,260 NEXT X
270 FClR Y=O TO 150 STEP 10
280 PL.OT XC-5,V:DRAWTO XC+5,Y
:290 I\IE X T Y
:~;OO RETURN

II • ,

(a)

(b)

FIGURE 13.23 (a) Axes plotted by the subroutine
at line 200 in Figure 13.22; (b) example of sine
wave that is plotted by the program shown in Fig
ure 13.22.

Each grid mark on the axes represents an increment of
10 screen units. Lines 50-75 allow the user to enter
values for the amplitude A, the period T, and the
phase angle PH (in degrees). Line 80 converts the
phase angle from degrees to radians .

The coordinate system plotted in the subroutine at
line 200 originates at the screen coordinates XC, YC
(defined to be 159,80 in line 210). The first point of
the function that is plotted (in line 95) will be the
leftmost value of X (- 159). This value is assigned in
line 90 together with the corresponding value of Y.

The FOR ... NEXT loop in lines 100-130 plots
the rest of the curve . Notice that the value of X is in
creased from - 158 to + 160 and for each value of X
the value of the function Y is calculated in line 110.

Type in this program and run it. A sample run is
shown in Figure 13.23b. By entering different values
of the ampl itude A, period T, and phase angle PH you
will be able to get a good idea of how this function
behaves.

EXERCISE 13.7
Write programs that the user can use to plot the fol
lowing functions for different values of the parameters
A, C, and N :

1. Y = A * LOG (X/C) X > 0

2. Y = A * EXP(- X/C)

3. Y = X 1\ N/C

4. Y = A * SQR(X/C) X > 0

127

LEARNING TO PEEK AND POKE

As you have learned, the ATARI contains a large
number of memory locations that are used to store the
program and data. Some of this memory is read/write
memory (RAM), some is read only memory (ROM),
and some is special input/output memory that allows
communication to the outside world. Examples of
communication with the outside world include
getting data from the keyboard and game paddles,
and writing and reading data to and from a diskette.

When writing a program in BASIC you refer to a
memory cell by its name, such as A$ or C3. You do

. not know exactly which memory location within the
ATARI contains the data in C3. The ATARI's BASIC in
terpreter automatically takes care of assigning these
locations. However, in order to use the full power of
the ATARI, you must sometimes read and write data
to specific memory locations within the ATAR!. In or-

der to do this with maximum flexibility and speed you
must write the program in assembly language.

You can, however, read and write data to specific
memory locations even in BASIC. You do this by using
the PEEK and POKE statements. In this chapter you
will learn .

1. how data are stored in memory locations in the
ATARI

2. how to use the PEEK and POKE statements

3. how to use the console switches on the key
board

4. how to tell if a key on the keyboard has been
pressed

5. how to use the graphics 1 and 2 text modes

6. how to define your own character set.

THE STATEMENTS PEEK AND POKE

The 6502 microprocessor (see Figure 3.1) that is the
"brain" of the ATARI can address a total of 65536
memory locations (with addresses between 0 and
65535). The reason for this is that the 6502 has 16 ad-

128

dress lines and each line can be either high or low (1
or 0). Thus a typical address might be represented by
the 16 bits

0011010111000001

This binary number is equivalent to the decimal num
ber 13761. Thus, this memory location would have
an address of 13 761. Since each of the 16 bits in the
address can be either a 1 or a 0, the total number of
possible addresses is

i 6 = 65536

Your ATARI will actually contain less than this maxi
mum amount of memory.

When working with binary numbers such as this
address, it is convenient to represent these binary
numbers as hexadecimal numbers . This is not neces
sary when using BASIC, because the PEEK and POKE
statements use only decimal numbers. However, if
you want to program in assembly language, the use of
hexadecimal numbers is essential. Although you do
not need to know anything about hexadec imal num
bers to use this book, if you are curious, a brief
discussion of hexadec imal numbers is given in Ap
pendix D.

In add ition to the 16 address lines, the 6502
microprocessor has 8 data lines. These lines connect
the microprocessor to all of the memory chips in the
AT ARI. Thus, data are moved between memory loca
tions in groups of 8 bits ca lled bytes. The total num
ber of different values that a data byte can have is

28 = 256

Thus, data in a memory location in the ATARI can
have a value between 0 and 255 . This relationship
between addresses and data is shown in Figure 14 .1.

FIGURE 14.1 Each address in the range 0-65535
points to a memory location containing data in the
range 0-255.

1024 11111 111
Dala~255 - 255- -

1025 00000101 Oala= 5 Address 1024 - "5 - -
0000010000000000

1026 00001111
- 15- -

1027

1028

1029

1030

1031

In this figure memory location 1024 conta ins a data
value of 255 (eight 1 s), and memory location 1025
contai ns a data val ue of 5.

You can find the data value stored in a particular
location by using the PEEK statement. You can store a
particular data value in a given memory location by
using the POKE statement.

PEEK

The function

PEEK(Addr)

returns the data value stored in the memory location
with an address Addr. The value of Addr must be in
the range 0 through 65535. Try printing some value
of PEEK to see what you get. For example, try

?PEEK(2048)

?PEEK(2105)

as shown in Figure 14 .2 . Your ATARI will probably
conta in different data values in these locations from
those shown in Figure 14 .2.

FIGURE 14.2 Memory location 2048 contains the
value 41 and memory location 2105 contains the
value 3.

Certain memory locations have part icular mean
ings to the AT ARI. For example, memory location
53279 will tell you which of the console keys (OP
TION, SELECT, and START) are being pressed .

In order to see how this works, type and run the
following one-line program:

10 ?PEEK(53279):GOTO 10

The data value in location 53279 will keep being dis
played and will sc roll off the screen. Press the
console keys and watch what happens. Note that the
value displayed is between 0 and 7, according to Ta
ble 14 .1.

TABLE 14.1 Value of PEEK(53279) when
console keys are pressed

Value OPTION SELECT START
o X X X
1 X X
2 X X
3 X
4 X X
5 X
6 X
7

129

This fact can be used in programs if you want to
know when one of the console keys is being pressed.
For example, the program shown in Figure 14.3 will
cause a ball to bounce back and forth across the
screen as long as the START key is pressed. When
you release the START key the ball will stop.

FIGURE 14.3 The ball will move back and forth
across the screen as long as the START key is
pressed.

10 REM BOUNCING BALL
20 GRAPHICS 5~SETCOLOR 0~0~14
~)O FOR X=5 TO 75
35 COLOR 1~PLOT X,20
40 GOSUB 200:REM TEST START KEY
50 COLOR O:PLOT X,20
.so NEXT X
70 FOR X=74 TO 6 STEP -1
80 COLOR l~PLOT X,20
90 GOSUB 200:REM TEST START KEY
100 COLOR O~PLOT X,20
110 NE)<T X
1. ~~O GOTO 30
200 REM TEST START KEY
210 IF PEEK(53279)<>6 THEN 210
220 RETURN

The FOR . . . NEXT loop in lines 30-60 causes
the ball to move from left to right across the screen if
the START key is pressed. The subroutine in lines
200-220 tests if the START key is being pressed. If it
is not, then line 210 just loops on itself. This means
that the last spot plotted in line 35 wi II remai n station
ary on the screen. If the START key is being pressed,
the subroutine will ex it at line 220 and line 50 will
then erase the most recently plotted spot. A new spot
will then be plotted in line 35, just to the ri ght of the
previously plotted (and erased) spot, as the
FOR . . . NEXT loop increments the value of X by 1.

After a spot has been plotted and erased at the
screen position X = 75, the FOR . .. NEXT loop is
exited and another FOR ... NEXT loop in lines
70-110 is executed. This loop moves the spot in a
similar manner from right to left. When this loop is
exited after the spot has been plotted and erased in
position X = 6, then line 120 branches back to line
30 so that the entire process will be repeated as long

as the START key is being pressed. Since the START
key testing subroutine is always called (in lines 40
and 90) after a spot has been plotted and before it has
been erased, when you release the START key a
single spot will always remain on the screen. Type in
this program and run it. Modify the program so that
the ball moves back and forth when the OPTION key
is pressed.

POKE

Whereas PEEK allows you to read the data value in a
particular memory location , the statement

POKE Addr, Data

allows you to store the value Data in the memory lo
cation Addr. For example, type

POKE 1536,75
?PEEK(1536)

as shown in Figure 14.4. Note that PEEK(1536)
verifies that you actually stored the value 75 in mem
ory location 1536.

FIGURE 14.4 POKE 1536,75 stores the value 75
in memory location 1536.

Memory location 752 contro ls the visibility of the
cursor. A value of 0 in location 752 causes the screen
cursor to be visible . If you POKE any other value into
location 752 the cu rsor will disappear. This can be
usefu l when you don't want the cursor to remain on
the screen. For example, add the statement

55 POKE 752,1

to the program shown in Figure 5.4 in Chapter 5 and
note that the cursor is not displayed after the horizon
tal line is drawn.

READING THE KEYBOARD

The memory location 764 is used by the AT ARI to
store the value of the last key pressed. As long as no
key has been pressed, the value stored in memory lo
cation 764 will be 255. When a key is pressed a value
associated with that key is stored in locat ion 764.

130

These key values are not the ASCII codes but are spe
cial key codes given in Table 14.2.

In order to see how this works type in and run the
following one-line program:

10 ?PEEK(764):GOTO 10

T ABLE 142 K d ey co es 5 ore In oca Ion w d· I f 764 h en a k ey IS presse d
A 63 N 35 0 50
B 21 0 8 1 31
C 18 P 10 2 30
0 58 Q 47 3 26
E 42 R 40 4 24
F 56 S 62 5 29

G 61 T 45 6 27
H 57 U 11 7 51
I 13 V 16 8 53
J 1 W 46 9 48
K 5 X 22 , 32
L 0 Y 43 34

M 37 Z 23 / 38

The data value in location 764 will keep being dis
played and will scroll off the screen. Press any key
and watch what happens. Note that the value dis
played corresponds to the most recently pressed key
according to Table 14.2 .

PEEKing the special keyboard memory location
764 is useful when you want to see if a key has been
pressed. For example, suppose that you want to move
the bouncing ball in Figure 14 .3 by pressing any key
on the keyboard. You can do th is by modifying the
subrout ine at line 200 in Figure 14.3 to read

200 REM TEST ANY KEY

210 IF PEEK(764)=255 THEN 210

220 POKE 764,255

230 RETURN

The resulting program is shown in Figure 14.5 .
Note that after each new ball is plotted (and before it
is erased), the subroutine at line 200 is called. Line
210 checks to see if any key has been pressed . If not,
line 210 will then loop on itself until any key is
pressed . During this time the ball will remain station
ary on the screen. When a key has been pressed (any
key) , line 220 will restore the value 255 in location
764 before returning to the main program . The main
program will then erase the ball , plot a new one at the

,
; 2 115 space 33

+ 6 @ 117 return 12
* 7 (112 ESC 28

= 15) 114 TAB 44
- 14 - 78 clear 118
< 54 insert 119
> 55 I 79 delete 116
! 95 \ 70 back s 52
" 94 1\ 71 lowr 60

90 ? 102 caps 124
$ 88 [96 ATARI 39

% 93 1 98
& 91 : 66

FIGURE 14.5 Any key can be used to start and
stop the bouncing ball.

10 REM BOUNCING BALL
20 GRAPHICS 5:SETCOLOR 0,0~14
:::;:0 FOF<: X ==5 TO 7 5
35 COLOR l:PLOT X, 2 0
40 GOSUS 200:REM TES T ANY KEY
50 COLOR O~PLOT X,20
60 NEXT X
70 FOR X=74 TO 6 S TEP -1
80 COLOR l:PLOT X,20
90 GOSUB 200: REM TEST ANY KEY
100 COLOR O~PLOT X,20
110 NE ier X
1.20 GO TO :::::0
200 REM TEST ANY KEY
210 IF PEEK(764)=255 THEN 210
:220 pm:::E 764, 255
T :::O I::;:ETURN

adjacent location, and call the subroutine at line 200
again .

Type in this program and run it. Note that you can
move the bouncing ball by pressing any key. Also
note that if you hold down any key, the repeat feature
will cause the ball to conti nually start and stop and
therefore move back and forth across the screen.

TEXT MODES 1 AND 2

Graphics modes 1 and 2 are expanded text modes.
(See Table 13.1 in Chapter 13.) These modes mayor
may not include a four-line (GR. 0) text window at
the bottom of the screen. The GR. 1 mode displays
characters double width in the graphics screen area.
The GR. 2 mode displays characters both double
width and double height. This means that with the
four-line text window at the bottom of the screen, text
mode 1 can display 20 rows of 20 characters per row,
while the text mode 2 can display 10 rows of 20 char
acters per row. The full-screen mode GR. 1 + 16 will

add four more lines of text 1 characters, and the full
screen mode GR. 2 + 16 will add two more rows of
text 2 characters.

To see how these expanded text modes work, type
the following statements in the immediate mode as
shown in Figure 14.6:

GR. 1
SETCOLOR O,O,14:SETCOLOR 1,0,14

POSITION 2,2

?#6i"MODE 1 CHARACTERS"

?"MODE 0 CHARACTERS"

131

FIGURE 14.6 Mode 1 expanded text characters.

Note that the print statement PRINT #6; or ?#6; is
used to print characters in the text 1 (or text 2) screen
area. The standard print statement will print the char
acters in the mode 0 text window at the bottom of the
screen.

To print mode 2 expanded text characters type the
following statements as shown in Figure 14.7:

GR.2
SETCOLOR l,O,14:SETCOLOR 0,0,14
POSITION 2,2
?#6;"MODE 2 CHARACTERS"

The mode 1 and 2 text screens do not behave like
the mode 0 text screen in several regards . First of all,

mode 0 ca n display the entire set of 128 characters in
both normal and reverse video. Modes 1 and 2, on
the other hand, ·can display only a 64-character set
(with no reverse video) at anyone time.

The character set used by the ATARI is stored in
ROM and consists of the 128 characters shown in Ta
ble 14.3. The first 64 characters, consisting of upper
case, digits, and punctuation , comprise the standard
set normally used by the GR . 1 and GR. 2 expanded
text modes. If you execute the statement

POKE 756,226

you will change to the alternate character set
consisting of the 64 characters in columns 3 and 4 in
Table 14.3. These include the graphic characters and
lower-case letters .

FIGURE 14.7 Mode 2 expanded text characters.

132

TABLE 14.3 The internal character set

Standard Character Set

Column 1 Column 2

ATASCII

No. Char. Code No. Char.

o Space 32 32 @

33 33 A

2 34 34 B

3 # 35 35 c

4 $ 36 36 D

5 % 37 37 E

6 & 38 38 F

7 39 39 G

8 40 40 H

9 41 41

10 42 42

11 + 43 43 K

12 44 44 L

13 45 45 m

14 46 46 N

15 47 47 o

16 o 48 48 p

17 49 49 Q

18 2 50 50 R

19 3 51 51 S

20 4 52 52 T

21 5 53 53 u

22 6 54 54 v

23 7 55 55 w

24 8 56 56 x

25 9 57 57 y

26 58 58 z

27 59 59

28 < 60 60 \

29 61 61

30 > 62 62 II

31 63 63

ATASCII

Code

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Alternate Character Set
Column 3 Column 4

ATASCII ATASCII

No. Code No. Char. Code

64 o 96 o 96

65 97 97

66 2 98 b 98

67 3 99 c 99

68 4 100 d 100

69 5 101 e 101

70 6 102 102

71 7 103 103

72 8 104 h 104

73 9 105 105

74 10 106 106

75 11 107 k 107

76 12 108 108

77 13 109 m 109

78 14 110 n 110

79 15 111 o 111

80 16 112 p 112

81 17 113 q 113

82 18 114 114

83 19 115 115

84 20 116 116

85 21 117 u 117

86 22 118 v 118

87 13 119 w 119

88 24 120 x 120

89 25 121 y 121

90 26 122 122

91 27 123 D 123

92 28 124 124

93 29 125 125

94 30 126 126

95 31 127 127

133

FIGURE 14.8 POKE 756,226 will switch mode 1
or mode 2 to the alternate character set.

After displaying the mode 2 characters shown in
Figure 14.7, type

POKE 756,226

which will switch to the alternate character set, as
shown in Figure 14.8 . Note that all blank spaces
(character 0 in Tabl e 14.3) have changed to heart
graphic characters (character 64 in Table 14. 3). All
other characters in columns 1 and 2 in Tabl e 14. 3 are
replaced by the corresponding characters in co lumns
3 and 4 . This means that in the expanded text modes
1 and 2 you can use either the characters in columns
1 and 2 in Table 14.3 or the characters in columns 3
and 4. However, you cannot use both because the
text modes 1 and 2 can display only 64 characters at
a time. Later in this chapter, you will lea rn how to
mix some characters from co lumns 3 and 4 with
some from columns 1 and 2 by defining your own
character set.

You can return to the standard character set by
typing

POKE 756,224

Try it.
The text modes 1 and 2 do not scroll and you will

get an error if you try to print characters outside the
screen area .

Mode 1 and 2 Colors

Color register number 4 defines the background co lor
in modes 1 and 2. The default background color is

134

black (SETCOLO R 4,0,0). Color registers 0-3 are
used to define up to four co lors for text 1 and 2 char
acters. However, these co lors are defined in a some
what strange way.

Consider the following four ATASCI I codes (see Ap
pendi x B):

65 Upper-case A

97 Lower-case a

193 Reverse video upper-case A

225 Reverse video lower-case a

You ca n type each of these characters in the GR. 0
text mode by using the CAPS/LOWR key and the
ATARI key (for reverse video), as shown in Fi gure
14.9. Now type these same four characters in the text
2 mode by typing

FIGURE 14.9 ATASCII codes 65, 97,193, and 225
in the GR. 0 text mode.

GR. 2 TABLE 14.5 COLOR values for text modes 1 and 2

POSITION 2,2 Color Register
?#6;"AaAa" Char # Char 0 7 2 3

~ reverse video 0 Space 32 0 160 128
1 ! 33 1 161 129

as shown in Fi gure 14.10. Note that each of the four 2 34 2 162 130
characters is displayed as an upper-case A w ith a di f- 3 # 35 3 163 131
fe rent co lor. 4 $ 36 4 164 132

In text modes 1 and 2 the ATASCII code determines
5 % 37 5 165 133
6 & 38 6 166 134

not only the character to be plotted but also the co lor. 7 39 7 167 135
The four ATASC II codes 65, 97, 193, and 225 w ill all 8 (40 8 168 136
plot an upper-case A, but the co lor of the A w ill be 9) 41 9 169 137
determined by the va lue in co lor registers 0, 1, 2, and 10 * 42 10 170 138

11 + 43 11 171 139
3, respecti ve ly. The defaul t SETCOLO R va lues are 12 44 12 172 140
shown in Table 14.4. You can change the co lors of 13 45 13 173 141
the letters di splayed in Fi gure 14.10 by changing the 14 46 14 174 142
va lues in co lor registers 0-3. For example, type 15 / 47 15 175 143
SETCOLO R 1,0,12 and the second A should change 16 0 48 16 176 144

17 1 49 17 177 145
to white. Change the va lues in the other co lor regis- 18 2 50 18 178 146
te rs. 19 3 51 19 179 147

20 4 52 20 180 148

TABLE 14.4 Default SETCOLOR values
21 5 53 21 181 149
22 6 54 22 182 150

(SETCOLOR R, H, L) 23 7 55 23 183 151
Color Register R Hue H Luminance L Color 24 8 56 24 184 152

0 2 8 Orange
25 9 57 25 185 153
26 58 26 186 154 1 12 10 Green 27 59 27 187 None 2 9 4 Blue 28 < 60 28 188 156 3 4 6 Red 29 61 29 189 157 4 0 0 Black 30 > 62 30 190 158
31 ? 63 31 191 159

There is another way to plot characters in text
32 @ 64 96 192 224
33 A 65 97 193 225

modes 1 and 2. You can use the COLO R statement to 34 B 66 98 194 226
define both the character and the co lor, and then use 35 C 67 99 195 227
the PLOT statement. 36 D 68 100 196 228

For example, type 37 E 69 101 197 229
38 F 70 102 198 230

GR. 2 39 G 71 103 199 231
40 H 72 104 200 232

COLOR 65:PLOT 4,4 41 I 73 105 201 233
42 J 74 106 202 234

Note that an A with a co lor determined by co lor regis- 43 K 75 107 203 235
ter 0 is plotted at location 4,4 on the screen. If you 44 L 76 108 204 236
type 45 M 77 109 205 237

46 N 78 110 206 238
COLOR 193:PLOT 8,5 47 a 79 111 207 239

48 P 80 112 208 240
an A w ill be plotted at location 8,5 wi th its co lor de- 49 Q 81 113 209 241

term i ned by co lor register 2. 50 R 82 114 210 242
51 S 83 115 211 243

Table 14.5 shows what numbers to use in the 52 T 84 116 212 244
COLO R statement to pl ot any standard character in 53 U 85 117 213 245
any of four co lors. Note that the characters are listed 54 V 86 118 214 246
in the order show n in co lumns 1 and 2 of Table 14.3. 55 W 87 119 215 247

Thi s is the order in which the characters are stored in- 56 X 88 120 216 248
57 Y 89 121 217 249

side the computer. If you type PO KE 756,226, then 58 Z 90 122 218 250
the COLO R numbers shown in Tab le 14.5 w ill plot 59 [91 123 219 251
the corresponding alternate characters shown in co l- 60 \ 92 124 220 252
umns 3 and 4 in Table 14.3 61 1 93 None 221 253

62 /\ 94 126 222 254
63 95 127 223 255

135

FIGURE 14.10 ATASCII codes 65, 97,193, and 225
in the GR. 2 text mode.

As an example using the expanded text 2 mode,
type in and run the program shown in Figure 14.11.
Within the FOR . .. NEXT loop (lines 30-60), line
40 plots a series of dashes, spaced two apart, whose
color is determined by color register 0 (see Table
14.5). Line 50 plots a similar seq uence of dashes in
between the other set with a co lor determined by
color register 1. Line 70 plots a right arrow (» at the
end of the line of dashes. The co lor of the arrow is
determined by color register O.

Lines 80-90 set co lor register 0 to w hite and co lor
register 1 to blue. Every other dash w ill therefore be
white and the alternate ones wi ll be b lue. The arrow
will appear as shown in Figure 14.12a. After a short
delay in line 100, lines 110-120 reverse the co lors of
the dashes (and the arrow, ». The arrow w i II now
appear as shown in Figure 14.12b. After another
short delay in line 130 the process is repeated by
branching to line 80. Modify this program by using all
four co lor registers 0-3 so that four different co lored

FIGURE 14.12 Screen display while running pro
gram shown in Figure 14.11 .

(a)

136

dashes occu r in a row. Make it appear as if the four
co lors move from left to ri ght.

FIGURE 14.11 Moving arrow program using text
2 mode.

10 REM COLOR ARROW
?O (31:~t\F'H I D3 ::'
30 FOR X=2 TO 14 STEP ?
40 COLOR 45~PLOT X,4
50 COLOR 13~PLOT X+l,4
60 I\IEXT X
70 COLOR 62~PLOT 16,4
80 SETCOLOR 0,0,14:REM WH I TE
90 SETCOLOR 1,7,6:REM BLUE
100 FOR 1=1 TO 80~NEXT I
110 SETCOLOR 0,7,6~REM BLUE
120 SETCOLOR 1,0,14~REM WHITE
130 FOR 1=1 TO 80:NEXT 1
140 GOTO 80

(b)

DEFINING YOUR OWN CHARACTER SET

Table 14.3 shows the internal character set of the
ATARI. Thi s character set is stored in ROM starting at
memory location 57344. Each character uses eight
consecutive memory locat ions for its definition. The
character is defined on the 8 x 8 grid w here each row
of the grid corresponds to a separate memory location
and each co lumn in the grid corresponds to one of
the 8 bits in the data byte (0-255) stored at a particu
lar locat ion.

FIGURE 14.13 PEEKing the eight values used to
define the letter A.

LIST

1.0 FOR ·J=O TO 7
20 ? PEEK(57344+8*33+J)
30 NEXT .J

READ."
RUN
o
24
60
102
1.0 2
1. 26
1.02
o

RE ADY •

The characters given in Tab le 14.3 are listed in the
order in which they are stored in ROM. Character A is
number 33; therefore its definition starts at location
57344 + 8 * 33 (remember, each definition takes
eight memory locations) . In order to li st the 8 bytes
used to define the letter A, type in and run the follow
ing program, as shown in Figure 14 .13:

10 FOR J=O TO 7

20 ?PEEK(57344+8*33 + J)
30 NEXT J

The relationship between these eight va lues and the
letter A is shown in Fi gure 14.1 4. Note that each row
of the 8 x 8 grid has a number associated w ith it. The
number is equa l to the sum of the numbers at the top
of each co lumn in w hich a bit is "on. " An "on" bit
corresponds to a displayed point.

Now that you understand how the ATARI defines
the letter A (and all other characters), you may won
der if you can define your own characters. You can.

FIGURE 14.14 Defining the letter A.
CXJ
N <:t N to
..... C'OM-COvN_

~ ~
~ /; ~ ~

'i /:: ~ ~
ij ~ ~ 'i
ij ~ ~ ~ ~ 'i
~ ~ 'i 'l

o
16+8=24

32+16+8+4=60
64+32+4+2=102

64+32+4+2=102
64+32+16+8+4+2=126

64+32+4+2=102
o

First you must define the new characters you want on
an 8 x 8 grid. Then you must store these eight values
in the character set table. How can you do this when
this table is in ROM (read only memory)? You must
first move the character set table into RAM (read/write
memory) and then tell the AT ARI where you moved
it.

The beginning of the character set table is nor
mally at location 57344. This starting value divided
by 256 is stored in location 756. If you PEEK location
756 you should find the value 224 stored there (224 *
256 = 57344). When you POKE 756,226 in text
modes 1 and 2 you are moving the beginning of the
character set table to location 226 * 256 = 57856,
which is the beginning of the character set starting in
column 3 in Table 14.3.

You can move the beginning of the character set
table to a memory location in RAM by POKEing the
starting address divided by 256 in memory location
756. Suppose that you want to move the 512 bytes
corresponding to the character set table of the 64
characters in columns 1 and 2 in Table 14.3 to some
locations in RAM. The address of the top of RAM di
vided by 256 is stored in memory location 106. If you
decrease this value by 2 (2 * 256 = 512), you can set
aside 512 bytes of RAM into which you can move the
character set table. The following four statements will
make these changes :

855 NTOP=PEEK(106)-2

860 POKE 106,NTOP :REM New top of RAM
865 NSET = NTOP*256 : REM Address of Start of
870 POKE 756,NTOP :REM new character set

The following loop will move the 512 bytes of the
character set in ROM to the new location in RAM:

875 FOR J=O to 511
880 POKE NSET +J,PEEK(57344+J):NEXT J

137

in Chapter 15 we will write a HANGMAN game
using the graphics mode 2. We want to use both
upper-case and some graphic characters. But as we
have seen, in graphics modes 1 and 2 you can use
either th e characters in columns 1 and 2 in Table
14.3 or the characters in columns 3 and 4. You can
not use both . instead we will replace character num
bers 1- 10 (punctuation characters! " # $ % & , () *)
w ith the 10 graphic characters of our own des ign
shown in Figure 14.15 . Each graphic character is de
fined on an 8 x 8 grid. The value of each row in thi s
grid is given in Figure 14.15, using the technique
illustrated in Figure 14.14.

The eight values for each of the 10 ch aracters are
stored in 10 DATA statements in the subroutine
shown in Figure 14.16 . This subroutine moves the
51 2 bytes of the origi nal character set as desc ribed
previousl y and then replaces character numbers 1- 10
w ith the new graphic ch aracters in lines 1585-1590 .

FiGURE 14.15 Specially defined graphic charac
ters used in the HANGMAN program in Chapter
15.

24

60

126

255

255

255

126

24

24

15 255 24

31 255 248

63 255 252

120 255 30

240 255 15

224 255 7

192 255 3

192 255 3

192 255 3

192 255 3

192 255 3

192 255 3

192 255 3

192 255 3

192 255 3

255 128

255 192
255 224

240
120

60

30
15

192 3

192 3

192 3

192 3

192 3

192 3

192 3

192 3

15 00 REM DEFINE NEW CHAR SET
1505 DATA 24.60.126.255.255,255.126.24
1510 DATA 24.255.255.255.255.255.255.255
1515 DATA 255~255~255~255~255~255~255~255
1520 DATA 255.255.255.0.0.0.0.0
1525 DATA 0,15.31.63.120.240.224.192
1530 DATA 0.240.248.252.30.15.7.3
1535 DATA 1.3.7.15.30.60.120.240
1540 DATA 128.192.224.240.120.60.30.15
1545 DATA 192.192.192.192.192.192.192.192
1550 DATA 3.3.3.3.3.3.3.3
1552 POSITION 4.2:? #6; "PLEASE WAIT"
1555 NTOP=PEEK(106)-4
1560 POKE 106,NTOP
156 5 NSET=NTOP*256
1570 FOR J=O TO 511
1575 POKE NSET+J.PEEK(57344+J):NEXT J
1580 POKE 756.NTOP
1585 FOR K=O TO 79
1590 READ B:POKE NSET+8+K.B:NEXT K
1595 RETURN
FiGURE 14.16 Subroutine used to define new
character graphics.

in graphics mode 2 we can plot these graphics
characters by ploUing the corresponding character
numbers (1-10) given in Table 14.5. For example,
the program shown in Figure 14.17 w ill plot the
hangman figure shown in Figure 14.18.

FiGURE 14.17 Program to plot new character
graphic symbols.

(a)

10 REM PLOT NEW CHARACTER SYMBOLS
2 0 GRAPHICS 2:SETCOLOR 0.0,14
25 SETCOLOR l,12,14~ SETCOLOR 2.9.14
26 SETCOLOR 3,4,14
27 GOSUB 1500 ~ REM DEFINE NEW CHAR SET
3 0 GOSUB 900~REM PLOT FIGURE
/!· O END

(b)

900 REM PLOT HANGMAN FIGURE
940 COLOR 33:PLOT 11,3
950 COLOR 2:PLOT 11,4
9 55 COLOR 3:PLOT 11,5
957 COLOR 4:PLOT 11.6
96 0 COLOR 165:PLOT 10,4
965 COLOR 169:PLOT 10,5
970 COLOR 166:PLOT 12,4
975 COLOR 170~PLOT 12,5
98 0 COLOR 135:PLOT 10,6
985 COLOR 137:PLOT 10,7
990 COLOR 136:PLOT 12,6
995 COLOR 138:PLOT 12,7
997 RETURN

FIGURE 14.18 Result of running the program
shown in Figure 14.17.

Writing Text on the High-Resolution
Graphics Screen

In the graphics mode 8 used in Chapter 13 you saw
that you could write text only in the four-line window
at the bottom of the screen. The top part of the screen
is divided into a 320 x 160 grid. Each of the 160 rows
uses 40 8-bit bytes to store the graphics data (40 *
8 = 320) .

Each byte of graphics data displays a bit pattern in
the same way that each row of an 8 x 8 character
does, as defined in Figure 14.14. This means that if
the value of each row of a character is POKEd into the
proper memory location corresponding to a position
on the high-resolution graphics screen, then any
character can be plotted on the high-resolution
graphics screen.

The starting address of the screen display is given
in locations 88 and 89 . It is equal to

SA = PEEK(88) + 256 * PEEK(89)

Suppose that you want to plot the letter A at location
X = 20 (X between 0 and 39) and Y = 100 (Y be
tween 0 and 152). The address of the first byte of the
character A (the top row) to be plotted will be

LA = SA + 40 * Y + X

The character A is stored at character number 33 in
the character set table. The 8 bytes that define the let
ter A will begin at the address

CHAD = 57344 + 33 * 8

Therefore, the following loop will plot the entire letter
A at location X,Y on the high-resolution screen:

FOR 1=0 TO 7

POKE LA+I*40,PEEK(CHAD+I)

NEXT I

Remember that each line uses 40 bytes of memory so
that the screen addresses increase by 40 from one
row to the next. The program shown in Figure 14.19
will plot the letter A at location X = 20, Y = 100 on
the high-resolution screen with a box around it. The
result of running the program is shown in Figure
14.20.

Modify this program to display different letters.
This technique will be used in the ATA'RI organ pro
gram written in Chapter 15 to display the letters on
the keyboard.

FIGURE 14.19 Program to plot the letter A on the
high-resolution graphics screen.

10 REM PROGRAM TO DISPLAY AN A
15 REM ON HI-RES GRAPHICS SCREEN
20 GRAPHICS 8:SETCOLOR 2~0~0
30 SETCOLOR 1 ~ 0~14:COLOR 1
40 PLOT 140~80:DRAWTO 185~80

50 DRAWTO 185,130~DRAWTO 140~130
60 DRAWTD 140~80

70 SA=PEEK(88)+256*PEEK(89)
BO X=20: Y:= 1 00
90 L.~~= SA+40*Y+:X:

100 CHAD=57344+33*B
110 F'DR 1=0 TO 7
120 POKE lA+I*40~PEEK(CHAD+I)
130 NEXT I

139

FIGURE 14.20 Result of running the program
shown in Figure 14.19.

EXERCISE 14.1
Write a program that bounces a "ba ll " off the four
sides of the screen at 45 degrees. Have the ball stop
each time you hold the OPTION key down. The ball
should start moving again when you release the key.

140

EXERCISE 14.2
Modify the program in Figure 5.7 so that the cursor
does not appear on the screen after the border is
drawn.

EXERCISE 14.3
Modify Exercise 14.1 so that the ball starts and stops
each time any key is pressed.

Exercise 14.4
Plot a rectangular marquee in four colors in graphics
mode 2 and make it appear to rotate, using the tech
nique shown in Figure 14.11.

EXERCISE 14.5
Define your own graphic characters and use them to
plot a house in graphics mode 2.

EXERCISE 14.6
Define a new character set in graphics mode 2 that
rep laces the punctuation marks !, ", # , and $ with
the four playing card graphic symbols.

EXERCISE 14.7
Write a program that will replace the letter A in Figure
14.20 with the letter T.

LEARNING TO PUT IT ALL TOGETHER

In the previous 14 chapters you have learned how to
use the various features of ATARI BASIC. You have
learned how to write short programs that draw pic
tures and make sound . Now that you know the BAS IC

language you will want to write your own programs.
How do you go from an idea of something you would
like the ATARI to do to a working BASIC program that
does it? That is what this chapter is all about.

In order to illustrate the various steps involved in
developing a program, we will write two comp lete
programs. Although both programs are useful and fun
to run , it is the process of developing the programs
that we are trying to illustrate in this chapter.

The first program is a popular word-guessing game

called HANGMAN . The second program converts
your ATARI into an organ that will allow you to play
songs on the keyboard.

In this chapter you will learn

1. how to define what you want to do and give a
word-description of the program

2. to define the variab les you w ill need in the pro
gram

3. the technique of top-down programming

4. how to write a program to play HANGMAN

5. how to store data on a diskette

6. how to play music on your AT ARI.

HANGMAN

We will now develop a program to play the word
guessing game HANGMAN . The following si x steps
will help you develop a program with the minimum
amount of difficulty. We will follow these six steps in
developing HANGMAN:

1. Define what you want the program to do .

2. G ive a word-description of the program.

3. Define program variable names .

4. Write and test the main program and essential
subroutines.

5. Write and test the remaining subroutines.

6. Test the entire program and make improve
ments.

141

Defining What HANGMAN Will Do

This is the most important step in developing a pro
gram, but it is a step that is often omitted or not
carried out adequately. There is an almost irresistible
temptation to start writing BASIC code immediately .
You must resist this temptation at all costs. You
should not write any BASIC code until step 4!

Poor programming, like poor writing, is usually a
sign of poor and confused thinking. If you don't have
a clear idea of what you want the program to do, you
will have little chance of writing a program to do it.
Now you may not know all of the features that your
program will eventually have. Indeed, programming
is an iterative process in which you will improve a
program by rewriting it several times . However, you
must understand enough about what you want the
program to do to get started.

HANGMAN is a word-guessing game in which the
ATARI thinks of a word and displays a blank for each
letter in the word . You guess a letter. If the letter oc
curs in the word , it is inserted at all locations where it
occurs in the word. If the letter does not occur in the
word, then another part of your body is added to the
hanging gallows. You keep guessing letters until you
either guess the word or guess six wrong letters, at
which time your body is complete and you are
hanged.

The first thing to decide is what you want the
screen to look like and how you want the screen to
respond to various inputs and conditions. The best
idea is to sketch the screen to scale. Figure 15.1
shows the screen layout for the HANGMAN game

where we have decided to use the text mode GR. 2
and plot the gallows and body parts using character
graphics.

When the program is first executed the name
HANGMAN is written at the top of the screen. The
program then displays the gallows, the blanks for the
word, and the words GUESS A LETTER. As each cor
rect letter is guessed, it is filled in at the appropriate
blank position or positions . When an incorrect letter
is guessed, the phase NO X will be printed on the bot
tom line of the screen, and another part of the body
will be added.

If you guess the word correctly, the word will be
flashed and the words YOU ARE SAVED! wi II be
printed . If you fail to guess the word, the correct word
will be displayed above the blanks and the words
YOU ARE HANGED! will be printed. The words
PLAY AGAIN???? will then be displayed where the
words GUESS A LETTER were printed .

Having laid out what you want the screen to look
like and having thought about how the game is to be
played, you are ready to write a word-description of
the program.

A Word-Description of HANGMAN

At this point you should write a word-description of
the program that will completely describe its logic.
Use pseudocode, flowcharts, or whatever you find
useful . A word-description for the HANGMAN pro
gram written in pseudocode is shown in Figure 15.2 .
You should study this word-description carefully.

FIGURE 15.1 Screen layout for HANGMAN program.
o 5 10 15

HAN G MAN

y o u A R E

H A N G E D

5

1/
w o R D s III I

QUA I L

10 G U E S S A LET T E R

N 0 1 1 1 1 1

142

FIGURE 15.2 Pseudocode word-description of
HANGMAN program.

loop: Clear screen

Display HANGMAN

Display gallows

Display the words GUESS A LETTER

Find a random word

Display blanks for word

do until Word is guessed or you are
hanged

enddo

Guess a letter

Search for letter in word

if letter is in word

then display letter at proper posi
tion

else display NO " letter"
add part to body

if word is guessed

then blink word

display YOU ARE SAVED!

else display correct word

display YOU ARE HANGED!

Ask to PLAY AGAIN?

repeat while answer is "Y"

Note that it follows closely the screen layout we
made in Figure 15.1 and our ideas on how the pro
gram should work. Developing the word-description
shown in Figure 15.2 is the most creative part of w rit
ing the program. At this point most of the hard work is
done. This is why it is so important that you under
stand how to write word-descriptions like the one in
Figure 15 .2. Study it again. Note particularly how the
do until loop is used to include the entire process of
guessing a word. Being able to ident ify the appropri
ate looping structure for a particular problem (think
do until, repeat while, or for . .. next) is one of the
important skills you will need to develop in order to
become a good programmer.

Defining Program Variables

At this stage in the development of the program you
should define names for those variables that you
know you will need. You won't know all of the var ia
bles you will end up using, but don't worry about
that. Define the important ones you do know. This
will help you to focus in on how you w ill implement
various little algorithms. Be particularly conscious of
defining appropriate string variables and arrays.

In the HANGMAN program we will store the word
to be guessed in the string W$. The length of this
stri ng (the number of letters in the word) w ill be L.
How can you tell when the word is guessed correctl y
or when it' s time to be hanged? You will need to keep
track of the number of blanks that have been correct ly
fill ed in . We w ill call this value NL. You will also
need to keep track of the number of incorrect
guesses. We wi ll ca ll this val ue NH. Each letter
guessed wi ll be stored in the str ing G$. You can de
termine if a guessed letter G$ is in the word W$ by
comparing G$ with each letter in W$ and noting
where any matches occur. You will also need to
know if any match occurs. For this purpose define a
flag R and set R to 1 if any match occurs; set R to 0 if
G$ is not in W$. At this point, therefore, we have de
fined the variable names given in Figure 15. 3. We
can now use these variable names to put a little more
detail in the pseudocode description of the program
given in Figure 15 .2. For examp le, the do until loop
can be rewritten in the form shown in Figure 15.4 .

FIGURE 15.3 Definition of initial variables to be
used in HANGMAN program.

W$ = word to be guessed

L = length of word to be guessed

G$ = letter guessed

NL =

NH =

R =

number of correct letter positions guessed

number of incorrect guesses

{
l if G$ is in W$
o if G$ is not in W$

Note that the word is guessed when NL = L, and you
are hanged when NH = 6. The algorithm to search
for a letter in the word is given by the for . .. next
loop. Note that this algorithm displays each letter that
is found in its proper position, so nothing more needs
to be done in the then part of the following
if . .. then . . . else statement. Also note that the flag
R is used to tell if a letter is in the word.

You have now developed the program to the point
where you can begin to write some BASIC code. Since
you have already done most of the work, at this point
the BASIC code will practically write itse lf.

Writing the Main Program

Your next step should be to write the main program in
BASIC following the pseudocode description given in
Figures 15.2 and 15.4. Your goal should be to write
this entire program so that it fits on a single page and
you can read it all at once. To do this li se subroutine
ca ll s for anything that takes a lot of coding or that you
haven't figured out how to do yet.

143

FIGURE 15.4 More detailed version of do until
loop used in HANGMAN program.

The main program for HANGMAN is shown in
Figure 15.5. Lines 20-26 set the graphi cs mode 2 to
full screen and set co lor registers 0-3. Line 27 ca ll s a
subroutine at line 1500 that defines a new character
set. This character set includes the graph ic characters
for forming the hangman figure defined in Chapter
14. Line 30 displays the word HANGMAN and the
t;a llows in subroutine 600. Line 40 finds a random
word W$ in subroutine 1000. Line 50 finds the
length, L, of the word W$ and moves the cursor to the
first "blank" position. In text mode 2 there are 20 co l
umn positions. Therefore, the statement POSITION
1 0-L/2, 9 will center each word on the screen . Line 60
prints the L blanks for the word to be guessed.

NL = 0
NH = 0
do until NL = L or NH = 6

Guess a letter G$
R = 0
for I = 1 to L

if G$ = W$(I,I)
then print G$

NL = NL + 1
R = 1

else move cursor 1 space
next I

Lines 80-150 implement the do until loop shown
in Figure 15.4 (The ini tialization of S$ to the null
string in line 70 was added when the subrout ine to
guess a letter in line 400 was wr itten.) Line 90 ca lls
subroutine 400 to guess a letter. The words GUESS A
LETTER that appear on the screen wi ll be written in
this subroutine. Line 100 moves the cursor to the first
letter position in the word and line 105 sets the flag R
to O. Lines 110-130 implement the for . .. next loop
given in Figure 15.4 . Note how the statement POSI-

if R = 1
then do nothing
else NH = NH + 1

enddo

144

display NO "letter"
add part to body

FIGURE 15.5 Main program for HANGMAN.
1. 0 r~Ei"1 HAN(31"I~lN

:[:2 OPEN # 1 , .<1, 0 ~ "!<: II

:I. ~s D I 1'1 ~"$ (15) , (3$;; 1) , ~;~fi (20:>
20 GRAPHICS 2+16:SETCOLOR 0~O,14
25 SETCOLOR 1,12, 14:SETCOLOR 2,9,14
26 SETCOLOR 3,4,:1.4
27 GOSUB 1500:REM DEFINE NEW CHAR SET
30 GOSUS 600:REM DISPLAY HANGMAN ~ GALLOWS
40 GOSUS 1000:REM FIND WORD W$
50 L=LEN(WS):POSITION 1.0-L/2,9
60 FOI~ 1:::1 TO L:? 1t6:i 11._.11, ~ NE><T I
70 NL:::::O ~ NH::::O: S$:= II II

80 IF NL=L OR NH:::6 THEN :1.60
90 GOSUS 400:REM GUESS A LETTER
100 X= 10-L/2:POSITION X,9
1 O::i I~::::O

110 FOR 1=1 TO L
:1.12 X='X+:I.
115 IF GS=W$(I,I) THEN? #6;GS; ~NL=NL+l=R=:I.:GOTO :1.30
120 POSITION X,9
1 :::::0 NEXT I
140 IF R=l THEN 80
150 NH=NH+:I.:GOSUB 900:GOTO 80
160 POS I T I ON :I., ;~:? #6, II YOU (.:)F:E II

170 IF NI-j:=i'.=. THEN ':) #6;" H{-'1NC]ED II ; :: GU\3UB ~:::oo = GOTD 1C?0
1 flO .-;.' #6; II E~~'./ED II :; : (30SUE! 700
190 POSITION 3,:1.0
19~.i ''? #l:) li "PLAY ?iGPd N???? ";
200 GET :!:t:l., G: IF G::::AEC ("Y") THEN ::~:o

210 CLOSE #:I.:GRAPHICS O:END

TION X,9 is used in line 120 to move the cursor one
space in the else clause . The value of X is incre
mented by 1 each time it passes through the
for . .. next loop (in line 112) .

Lines 140-150 implement the last if ...
then . .. else statement in Figure 15.4. Subroutine
900 called in line 150 will display NO " letter" and
add a part of the body.

Lines 160-180 implement the last if .. .
then . .. else statement in Figure 15 .2. We have actu
ally interchanged the roles of then and else. That is,
line 170 is equivalent to if word is not guessed.
Subroutine 300 called in line 170 will display the cor
rect word. Subroutine 700 called in line 180 will
blink the word. Lines 190-195 will ask to PLAY
AGAIN???? Line 200 will then get G and cause a new
game to be played if the answer to PLAY AGAIN????
is "Y".

We have therefore written a complete main pro
gram that implements the HANGMAN algorithm
given in Figure 15 .2. We have also identified all the
subrouti nes that must sti II be written. These are sum
marized in Figure 15.6 .

FIGURE 15.6 List of subroutines called from main
program.

Line No. Subroutine

1500 Define new character set
600 Initial display (HANGMAN, gallows)

1000 Find a word, W$
400 Guess a letter, G$
900 Wrong guess-NO "Ietter," add to body
300 Print correct word
700 Blink word

The next step is to write the minimum amount of
code in each subroutine that will allow you to run
and test the main program. This stub could be just a
RETURN statement that does nothing but return to the
main program. Once you are certain th at the main
program is behaving properly, you can write and test
each subroutine separately. They can then be tested,
of course, by running the main program w hich ca ll s
the subroutine. This technique of top-down
programming allows you to plan the entire program
and begin to test it before you have to get involved in
all the detail s of every subroutine . It also keeps your
program well modulari zed, which w ill make it much
eas ier for you to debug and modify the program.

Subroutine 1500 will be the one used in Chapter
14 for defining a new character set. However, for
now just type

1500 REM DEFINE NEW CHAR SET

1510 RETURN

In subroutine 600, it will take some thought to fig
ure out how to draw the gallows. Therefore, for now,
just type

600 REM INITIAL DISPLAY

670 RETURN

for subroutine 600 and worry about the details later.
In order to test the main program, you should store

a known word in W$. Therefore, for subroutine 1000
type

1000 REM FIND A WORD

1010 W$="HANGMAN"

1 020 RETURN

which will assign the word HANGMAN to W$. It is a
good idea to pick a test word that contains multiple
occurrences of a single letter in order to make sure
that the main program displays all letters in their
proper ·Iocations. Later, you can come back and
make subroutine 1000 produce random words .

Subroutine 400 will display the words GUESS A
LETTER and will then have the player guess a letter,
G$. At first it looks as if this is just the statement GET
G:G$=CHR$(G). However, you do not want to al
low letters that have already been guessed. (Other
wise, you could hang yourself by typing the same
wrong letter six times .) Therefore, subroutine 400
must keep track of all letters that have been typed and
only return new values for G$. We' ll figure out how
to do this later. For now just type

400 REM GUESS A LETTER

410 POSITION 3,10

420 PRINT #6;"GUESS A LETTER";

430 GET #l,G

435 G$=CHR$(G)

440 RETURN

For subroutine 900 type

900 REM WRONG GUESS

910 POSITION 1,11

920 PRINT #6;"NO";G$

930 RETURN

You know that this will print all wrong guesses at the
same location on the screen, but it will help test the
main program. You can fix it up later and figure out
how to add a new part to the body each time.

For subroutines 300 and 700 just type the stubs

and

300 REM PRINT CORRECT WORD

310 RETURN

700 REM BLINK WORD

710 RETURN

and worry about these subroutines later.

145

FIGURE 15.7 Testing the main program of
HANGMAN.

With this much of the program written, you can
run the main program and test that it is working prop
erly. Figure 15.7 shows what the screen might look
like during such a test.

Writing the Remaining Subroutines

You can now go through and finish the subroutines
listed in Figure 15 .6. Subroutine 1500 will be the one
given in Figure 14.16 in Chapter 14 that we used to
define the new character set. This subroutine is
shown in Figure 15 .8 where one new statement, line
1502, has been added . The reason for this statement

After you have debugged the main program (it
won't work the first time-Figure 15.5 was not my
first version) you are ready to tackle the remaining
subroutines one by one.

146

FIGURE 15.8 Subroutine to define new graphic
characters for the HANGMAN program.

1500 REM DEFINE NEW CHAR SET
1502 NW=10:FOR 1=1 TO NW:READ W$:NEXT I
1505 DATA 24~60,126~255,255,255,126,24
1510 DATA 24,255,255,255,255,255,255,255
1515 DATA 255~255,255,255,255,255,255,255
1520 DATA 255,255,255,0,0,0,0,0
1525 DATA 0~15,31,63,1 20,240,224,192

1530 DATA 0,240,248,252,30,15,7,3
1535 DATA 1,3,7,15,30,60,120,240
1540 DATA 128,192,224,240,120,60,30,15
1545 DATA 192,192,192,192,192,192,192,192

1552 FOB I T I ON 4!, ~.i ~? :1:J:6;" F'I..J::::!~ISE ~\J(') If"
1555 NTOF=PEEK(106)-4
1560 POKE 106,NTOP
1565 NBET=NTOP*256
1570 FOR J=O TO 5 11
1575 POKE NSET+J,PEEK(57344+J):NEXT J
1580 POKE 756,NTOP
1585 FOR K=O TO 79
1590 READ B:POKE NSET+8+K,B:NEXT K
15<15 I=<E::nmN

600 REM INITIAL DISPLAY
605 COLOR O:FoR Y=O TO 11:FoR X=1 TO 19~PLOT X~Y:NEXT X:NEXT Y
PLOT X~Y~NEXT X:NEXT Y
h 1 0 COLOR 16 :~:'

620 FOR X=7 TO 18
630 PLOT X~1~NEXT X
640 FOR Y=2 TO 7
650 PLOT 17~Y:PLoT 18~Y

,~,60 NEXT Y
66~:: POS I T I ON 7, (>::? #6; Il H?~NGr"I(~N Il

670 RETUF~N
FIGURE 15.9 Initial display subroutine that
erases the screen, draws the gallows, and prints
the word HANGMAN.

will be described later. Omit it until the subroutine in
Figure 15.14 has been wr itten. Recall that the
subrout ine in Figure 15.8 defines the new graph ic
characters shown in Figure 14.15. These characters
can be plotted by using the COLOR numbers for
character numbers 1-10 in Tab le 14 .5.

The "guess a letter" subroutine 400 is shown in
Figure 15.10, where lines 435-470 have been added
to ensure that no letter is guessed more than once.
Line 470 keeps track of all letters that have been
guessed by adding each new letter to the string 5$.

Figure 15.9 is a li sting of subroutine 600. Line 605
erases the screen from a previous game. Note that
line 200 in the main program (Figure 15.5) branches
to line 30. Branching to line 20 wou ld automatica ll y
clear the screen. However, it would also reset the ad
dress of the start of the character set table to 57344.
Line 27 wou ld then have to move the character set
table aga in . This takes qu ite a long time. Branching to
line 30 from line 200 avo ids thi s. Lines 610-660
draw the blue ga llows. Note that 163 is the co lor
number for character number 3 (solid square) of our
new character set. Line 665 prints the word HANG
MAN at the top of the screen.

FIGURE 15.10 The subroutine to guess a letter.

400 REM GUESS A LETTER
410 POSITION 3,10
4:?0 ? #6!i" GUESS (:1 LETTER ";
4~~0 GET #1!1 c:;
4::::::2 G~;::::CHR$ ((3)

4:Y:; L.f:3 c.::LEI\1 (S~*;)
437 IF LS=O THEN 470
440 FOR J=1 TO LS
450 IF G$=S$(J,J) THEN 4~n
460 !'-.IEXT ,J
470 S':t.;(LS+1)::::G$
480 F~ETURN

FIGURE 15.11 The "wrong guess" subroutine
prints NO "letter" and adds a part to the body.

900 REM WRONG GUESS
910 POSITION 1,11
91 ~.5 IF' NH::: 1 THEN ') #6; Il NO "; GS; : GC:.rfo 935
920 POSITION 2*NH+l,11

935 ON NH GOTO 940~950,96(>,970,980,990
940 COLOR 33~PLOT 11,3:RETURN
950 COLOR 2:PLOT 11,4
955 COLOR 3:PLOT 1J,5
957 COLOR 4:PLOT 11,6:RETURN
960 COLOR 165:PLOT 10,4
965 COLOR 169:PLOT 10,5:RETURN
970 COLOR 166~PLOT 12,4
975 COLOR 170~PLOT 12~5:RETURN

980 COLOR 135:PLOT 10,6
985 COLOR 137:PLOT 10,7:RETURN
990 COLOR 136~PLoT 12,6
995 COLOR 138:PLoT 12,7
997 COLOR 41:PLOT 12,2:PLOT 12,3:RETURN

147

(This is why we initialized S$ to the null string ,n' in
line 70 of the main program.) Each time that lines
430-432 get a new letter G$, it is compared with all
previous letters (stored in S$) in the loop in lines
440-460. If a match is found in line 450, the program
gets a new letter in line 430.

The "wrong guess" subroutine 900 is shown in
Figure 15 .11 . Lines 910-930 print NO " letter" at the
bottom of the screen for the first wrong guess. Subse
quent wrong guesses are added to the li st following a
comma. Lines 935-995 add the appropri ate part of
the body to the hanging person. Note the use of the
ON ... GOTO statement in line 935 to add the ap
propriate part of the body shown in Figure 15. 1 and
defined in deta il in Chapter 14. Thi s statement
branches to one of the line numbers following
GOTO, depending on the value of NH . If NH = 1 it
branches to line 940 (the first number), if NH = 2 it
branches to line 950 (the second number), and so
forth. Line 940 plots the head (first wrong guess);
lines 950-957 plot the body (second wrong guess);
lines 960- 965 plot the right arm (on your left-third
wrong guess); lines 970-975 plot the left arm (fourth
wrong guess); lines 980-985 plot the right leg (fifth
wrong guess); lines 990-995 plot the left leg (sixth
and last wrong guess) ; line 997 plots the rope that
does the hanging.

Subroutine 300, shown in Fi gure 15.12 , prints the
correct word above the blanks when the person is
hanged. Subroutine 700, shown in Figure 15 .1 3,
blinks the word that was guessed.

Lines 705-730 change the co lor number of each
letter in the word by adding 128 to the current co lor
number. This will make the co lor of each letter
controll ed by co lor register 2. The statement LOCATE
X, Y,AC in line 715 returns a va lue AC equa l to the
co lor number of the character at locat ion X, Y. Line
720 adds 128 to the color number of each letter in the
word and line 725 replots the letter. Lines 735-760
blink the word by changing the co lor in co lor register
2. When this subroutine is ca ll ed, the ga llows and
parts of the body will also blink because they are also
controlled by co lor register 2 (see Tab le 14.5) .

FIGURE 15.12 This subroutine prints the correct
word above the blanks.

300 REM PRINT CORRECT WORD
;::: 1 0 F'Ufl I T I ON :I., 7
;~:20 ? #£:.; "lA)OFW IS"
325 PUSITION 10- L/2, 8
330 ... :) #6;: W:f;
:::~AO I::;:ETUF<N

FIGURE 15.13 This subroutine blinks the word.

700 REM BLINK WORD
·/05 :x: 1:::::10--L/2
710 FOR X=X:I. TO X:I.+L
715 LOCATE X,9,AC
7:20 I;C=={,~C+ 128
725 COLOR AC:PLOT X,9
7~:0 NE:XT X
735 FOR I=1 TO 40
740 SETCOLUR 2,3,14
745 FOR J=l TO 10 : NE XT J
750 SETCOLUR 2,9,:1.4
755 FUR J=1 TO 10:NEXT J
7,<:.0 I\lE i{ T I
770 RETUF\N

If all of these subroutines are working properly,
you can start add ing some new random words in
subrout ine 1000. There are several ways to do this.
O ne possibility is shown in Figure 15. 14. Line 1020
defines the number of words NW stored in the DATA
statement starting at line 1100. You can add more
words and increase the value of NW. In l ine 1030, X
is ass igned a random number between 1 and NW.
Line 1040 moves the "pointer" to the beginning of
the DATA statement. Note that the DATA statements
in line 1100 must be the first DATA statements in the
program . There are others at lines 1505-1550. This is
w hy you must now add line 1502 in Figure 15 .8, so
that the subroutine at line 1500 will skip over the first
10 DATA statement values in lines 1100-1110. Line
1050 reads the first X words. Therefore, word number
X wi ll end up in W$. Note that with this subroutine

FIGURE 15.14 Subroutine that finds one of 10
words at random .

148

1000 REM FIND A WO RD
1020 NW::"lO
1030 X=I NT (RND(O)*NW+l)
1040 RESTORE
1050 FOR 1=1 TO X~READ W$:NEXT I
1060 RET URN
1100 DATA HIPPOPOTAMUS, NURSE, FAMOUS, EMPIRE, ELK, DIGNI TY
1110 DATA CONDITIONAL,BRIBE,PAPER,QUA IL

FIGURE 15.15 Sample run of HANGMAN pro
gram.

the same word can occur more than once. If you
want to avoid this you will have to keep track of the
values of X that have been used and not use the same
ones more than once. (See Exerc ise 15.1.) Of course,
you wi II then be able to play only 10 times before
having to rerun the program. A sample run of this pro
gram is shown in Figure 15.15 .

It is clear that to make this game really interesting
you need a large dictionary of possible words so that
you will use different words each time you play. One
way to do this is to store a large number of words on a
diskette and then read in a random word each time
the game is played. The next section will show you
how to store a list of words on a diskette.

STORI NG DATA ON A DISKETTE

You may have been using diskettes to save and load
your BASIC programs. It is also possible for you to in
clude statements in your programs that will allow you
to store data on a diskette and later read back these
data . You do this using the PRINT # and INPUT #
statements. However, in order to use these statements
you must use first the OPEN statement and then the
CLOSE statement. In the following sections you will
learn how to use the statements OPEN , CLOSE,
PRINT # , INPUT #, and TRAP.

Storing Words in a Sequential File

The program shown in Figure 15.16 gives you the op
tion to (1) write words to a new file, (2) add words to
an ex isting file, or (3) read words from an existing file.
Type in this program and add the three stubs

1000 RETURN
2000 RETURN

3000 RETURN

Executing this program will produce the menu shown
in Figure 15 .17.

FIGURE 15.16 BASIC listing of main program
illustrating the use of sequential files.
10 REM S TORING WORDS IN A
12 REM SEQUENTIAL FILE
15 DIM AS(1)~NS(20),FS(23),WS(25)
20 OPEN # 1. !' ·4, 0 ~ "K: "
~25 ? "'}": pm3ITION 5, :::::
30 ? "1. WRITE WORDS TO A NEW FILE"
~::5 F'[}SITI l1N 5,5
40 ? " 2. ADD WORDS TO AN EXISTING FILE"
45 PClS I T I ON ::i ~ 7
50 ? "3 .. READ WORDS FROM EXISTING FILE"
55 F'()SITION 5!, 9
60 ? "4.. f: X I T PROGRAM" ~ ,.,' ~ r,'

70 GOSUB 200:REM SELECT NUMBER
80 IF AS=" 4" THEN ? "}" ~ CLOSE # 1. : E:t~D
85 I=VAL..(AS)
90 ON I GOSUB 1000,2000,3000
9:''':; GO TO 25
200 REM PICK A NUMBER
:'?l.O '~.' "SELECT A NUMBER";:? " ";
220 GET #l,A
230 A~f;=CHRS (A)
240 IF AS<"1" DR AS>"4" THEN 220
250 RETURN

149

FIGURE 15.17 Menu produced when the pro
gram in Figure 15.16 is executed.

The subroutine at line 200 (which is called in line
70) wa its for the user to press a key. If the key pressed
(A$) is a number between 1 and 4, the subroutine is
exited . If A$ = "4" (key 4 was pressed), line BO
clears the screen and terminates the program.

The statement

ON I GOSUB 1000,2000,3000

in line 90 will branch to the subroutine at line 1000,
2000, or 3000, depending upon whether I is 1, 2, or
3. Thus, if key 1 was pressed, the value of I will be 1
and the program will branch to the subroutine at line
1000. We only have the stub RETURN there now, so
if you press key 1 the program will immediately re
turn to line 90 and then branch back to line 25 .

A subroutine at line 1000 that will allow you to
write words into a new file is shown in Figure 15 .1B.
Lines 1010-1030 cause the messages shown in Fig
ure 15.19 to be displayed on the screen. Lines
1040-1050 allow the user to return to the main pro
gram (and the original menu) at this point by pressing
any key other than O. This is a good option to give a
user who may not be prepared to actually write data
on a diskette at this time.

If the user presses key 0, line 1060 wi II ask the
user to type in a file name. This file name will be
stored in N$ in line 1070 and will be the file in which
the words will be written . Before any words can be
written to this file, however, the file must be opened .
This is done using the following statement given in
line lOBO :

OPEN #2,8,0,F$

150

1000 REM CREATE NEW FILE
1010 GOSUB 1200:REM WRITE SETUP
1020 ? "P~:ESS KEY , D ' TO STORE WORDS"
1025 ? "ON DIS~::ETTE":?

1 O~:;:O '? II PRESS ANY ()THER ~: ::E,(TO E X IT"
1040 GET #l~A
:1. 04~.i (..)$==CHR$ (A)
1050 I F ~~$<:>" D II THEN RETURN
1060 ? :? "WHAT FILE NAME? ";
1070 INPUT N$
1075 F$=="D1: ": F<ti (4) ==N$
1080 OPEN #2~8~0,F$
1100 GOSUS 1300:REM ENTER WORDS
1110 CLOSE #2
ll20 RETURN
1200 REM WRITE SETUP
1:? 1 () '? "} II :: F'()t=:) I 'r I ON 2!f 5
1220 ? "INSERT DISKETTE ON l-\IHICH t·~ORDS"

12 ::~:0 ? "A~~E TO BE SAVED" : ?
1 ::40 RETURN
1300 REM ENTER WORDS
1310 ? "ENTER WORDS; TYPE ! TO STOP"
1 ~'::: 20 I NPUT W~i

1 :330 IF W$="! II THEN RETURN
l~AO ? #2:; W$
1 :350 GOTO 1320

FIGURE 15.18 Subroutine to write words into a
new file.

FIGURE 15:19 Initial messages displayed when
the subroutine in Figure 15.18 is executed.

In this statement F$ is the file name in the form
" 01 :FILENAME", where FILENAME is the name en
tered as N$ in line 1070. Note how the statements

F$=/l01 :":F$(4}=N$

are used in line 1Ci75 to form the equivalent of

F$=/lD1 :FILENAME"

The OPEN statement is of the general form

OPEN #fileno, code, aux, dev

where Fileno is a fi le number between 1 and 7, code
is a code number given in Table 15.1, aux is an auxil
iary code that is normally 0, and dev is a device des
ignation given in Table 15.2.

TABLE 15.1
statement

Code
4
8

12
6
9

Code values in the OPEN

Operation
Input (read)
Output (write)
Input and output (read and write)
Read disk directory
Append to end of file

TABLE 15.2 Device designations in OPEN
statement

Device
Disk file
Keyboard
Display screen
Printer
Screen editor
Recorder

dev Designation
"D[n]: filename[. ext] II
"K:"
"S: II
liP:"
liE :/1
"(:/1

RS-232 serial port "R[n]"

Therefore, the statement

OPEN #2,8,O,F$

directs you to open the file "D1 :N$" for writing (out
put) and give it the file number 2. After writing to this
file, you must close it using the statement

CLOSE #2

Once the fi le N$ is opened, the subroutine at line
1300 is used to enter a li st of words. This subroutine
allows you to enter as many words as you wish. You
type an exclamation point (!) to indicate the end of
the list. Each word is stored in W$ using the INPUT
statement in line 1320. The statement

PRINT #2;W$

will not print the word W$ on the TV screen, but
rather will write this word into the diskette file N$.
Line 1350 branches back to the INPUT statement in
line 1320.

Type in the subroutine shown in Figure 15.18 and
execute it by pressing key 1 after running the main
program. An example of the screen output while this
subroutine is being executed is shown in Figure
15.20.

If you enter an exclamation point in line 1320, line
1330 will cause the subroutine to return to line 1110.
This line closes the fi le N$, using the CLOSE state
ment.

INSERT DISKETTE ON WHICH WORDS
ARE TO BE SAVED

PRESS KEV 'D' TO STORE WORDS
ON DISKETTE

PRESS ~NV OTHER KEV TO EXIT

WHAT FILE NAHE? ?WORDS
ENTER WORDS; TVPE TO STOP
?AUTOHOBILE
?CHAIR
?E!<CELLENT
?SCHOOL
?COHPUTER
? !.

FIGURE 15.20 Storing words on a diskette using
the subroutine given in Figure 15.18.

Suppose that after writ ing some words into the fi le
you want to add some more words at a later time.
You cannot call the subroutine at line 1000 again be
cause this wi ll delete your old file and start a new
one. You wil l lose all of your old words. Instead, you
must append words to the existing fi le by using the
code 9 in the OPEN statement. This is i llustrated in
line 2075 of the subroutine shown in Figure 15 .21 .

FIGURE 15.21 Subroutine to add words to an ex
isting file.

2000 REM ADD WORDS TO FILE
2010 GOSUB 1200:REM WRITE SETUP
2020 ,.:) "PRESS KEY , A' TO ADD WOFmS"
;~030 '";-' "PRESS ANY OTHER VEY TO EX I T /I
2040 GET #1!, A
204::; A$=CHR ~f; (f:":)

20~iO IF A$< >/IA/l THEN RETURN
2060 ? : '~.l "\A.IHAT FILE NAI'1E /I;
2065 INPUT N$
2070 F$= /I D:L : " : F!li (4) =N$
2075 OPEN #2~9~0,F$
2080 GOSUB 1300:REM ENTER WORDS
2090 CLOSE #2
:2095 RETURN

This subroutine starts at line 2000 and is cal led in line
90 of the main program when key 2 is pressed.

Type in this subroutine and then add some more
words to your existing word file. Using this program,
you can build up a large f ile of words to be used in
the HANGMAN program . However, before we can
use these stored words in the HANGMAN program
we must learn how to read the words from the
diskette.

151

Reading Words from a Sequential
File

When key 3 is pressed in response to the menu in the
main program in Figure 15 .16, line 90 branches to
the subroutine in line 3000. If at line 3000 we write
the subroutine shown in Figure 15 .22, this subroutine
will produce a second menu , shown in Figure 15.23.

FIGURE 15.22 Subroutine to read words.

3000 REM READ WORDS
~.)o 1 (> ':.\ "}" ~ PDS I T I DN 2 ~ 5
~')020 ? "1 n liEAD ENT I liE F I I_E" : r?
3030 ? 1/2. READ N WDRDS STARTING"
3()3~i '") II (H LOCf'.yr:WN L" ~ ?

REP,O 1 IJ.)DFW AT FU~NDCJl"I" ~ ? '1 -:r
. ..:. a

::::;0:=';0 ':) "I.j." Dt..! IT" :? ~?

3060 GOSUB 2(>0:REM PICK A NUMBER
~;:'O)'O IF A$=" 4" THE:N liETURN
307~3 I =\N-iL (,~) ~*i)

3080 ON I GDSUB 3100~3200~3300
~:::O Ci>O GOTO :;010

FIGURE 15.23 Menu produced by the subroutine
given in Figure 15.22.

Note that this subroutine gives you three choices
other than returning to the main menu. This tech
nique of using menus is a good way to steer a user
through a large program . It is also a good way to keep
the organization of your program under control.

To read the enti re fi Ie, the user presses key 1. Th is
will cause line 3080 to branch to the subroutine at
line 3100. This subroutine is shown in Figure 15.24.
Line 3110 calls the subroutine at line 4000 that is
shown in Figure 15 .25 . This subroutine displays the
messages shown in Figure 15.26.

152

3100 REM READ ENTIRE FILE
~~; I. 05 '? ",."
3110 GOSUB 4000:REM READ SETUP
3120 DPEN #2,4,0,F$
3130 INPUT #2~W$
:;140 ? Wli
31~':;O GOTO 3130

FIGURE 15.24 Subroutine to read entire file.

FIGURE 15.25 Subroutine to display initial mes
sages for reading data.

4000 REM READ SETUP
4010 ':) "INSERT DIS~:::ETTE CONTPiINING"
40 ~,?0 '::' "~\J[lRDS TO BE READ": ?
40~:~;O ? "PRESS ANY KEY TD CONT I NUE"
4040 GET #l,A
4()5() r? : '7 II ~~HA 1" F' I I._E 1\~t:~ME II;
·'+060 I NF'UT N$
4070 TR{~P 6000
4080 F$=" D 1 : " ~ F1i (.l.j.) :=N$
l.J.090 RETURN

FIGURE 15.26 Messages displayed by the
subroutine shown in Figure 15.25.

Line 3120 in Figure 15 .24 opens file N$. The state
ment

INPUT #2,W$

will accept its characters from the specified sequen
tial disk file rather than from the keyboard . Thus, in
line 3130 in Figure 15.24, the string that is stored in
W$ will be the next word in the file N$. Line 3140
will print this word on the screen. Line 3150
branches back to line 3130, which will input the next
word from the disk file. Note there is no exit from this
loop. When the program tries to read beyond the end
of the file an error condition will result.

It is possible for you to have your program branch
to a specified line number when an error is detected.

6000 REM ERROR HANDLING ROUTINE
6005 EC=PEEK(195)
6010 IF EC=13l;) THEN? "END OF DATl~" ~ GOTO 6050
6020 '? "ERROR NO. "; EC
6050 CLOSE :1=1:2
6060 ? ::? "PRESS ANY ~:::EY TO COtH I NUE ";
6070 GET #l,A
60BO RETURN

FIGURE 15.27 Error-handling routine executed
when an error occurs after the statement TRAP
6000.

You do this by executing the TRAP statement before
an error occurs. In line 4070 in Figure 15.25, the
statement

TRAP 6000

will cause the program to jump to line 6000 when
ever an error is detected . In particular, it will jump to
line 6000 when it has read all of the words from the
file N$ and tries to read beyond the end of the file.
The error-handling routine at line 6000 is shown in
Figure 15.27.

After an error occurs, an error code is stored in
memory location 195. Line 6005 assigns this error
code to the variable name EC. A list of all error codes
is given in Appendix C. In particular, the error code
136 occurs when a program tries to read beyond the
end of data in a disk file . This is what would happen
eventually in line 3130 in Figure 15.24. When this
occurs, line 601 0 in Figure 15.27 will print the
mess sage

END OF DATA

and then close the file N$ in line 6050. Pressing any
key will then return the program to line 3090, which
will branch to line 3010 and redisplay the read menu.
An example showing the entire file being read is
given in Figure 15.28.

FIGURE 15.28 Reading the entire file.

XNSERT DXSKETTE CONTAXNXNG
WORDS TO BE READ

PRESS ANY KEY TO CONTXNUE

WHAT FILE NAME ?WORDS
AUTOMOBILE
CHAIR
E)(CELLENT
SCHOOL
COMPUTER
END OF DATA

PRESS ANY KEY TO CONTINUE •

Reading a Partial List of Words

Suppose that you have a data file containing a large
number of words and you want to read N of these
words, starting at location L. The subroutine shown in
Figure 15.29 will do this . It is called from line 3080 in
Figure 15.22 when key 2 is pressed.

In lines 3210-3225 the user enters the number of
words N and the starting location L from the key
board. Line 3232 calls the setup subroutine at line
4000, shown in Figure 15.25. After the file N$ has
been opened in line 3235, the FOR ... NEXT loop
in lines 3240-3245 will read the first L - 1 words
and discard them. The FOR ... NEXT loop in lines
3250-3265 will read the next N words from the disk
file and print them on the screen. Line 3270 closes
the file and line 3285 waits for any key to be pressed
before returning to line 3090 in Figure 15.22.

Note that if the subroutine in Figure 15.29 tries to
read past the end of the file, line 4070 in Figure 15.25

FIGURE 15.29 Subroutine to read N words from
a data file starting at location L.
3200 REM READ N WORDS STARTING
3202 REM AT LOCATION L
32()5 ? II'J II
3210 ? "ENTER NUMBER OF WORDS TO BE READ"
:3215 INPUT N
3220 ? "ENTER STARTING LOCATION"
~J225 I NFl LIT L
3230 L=L-1
3232 ? :GOSUB 4000:REM READ SETUP

3237 IF L=O THEN 3250
3240 FOR 1=1 TO L
3245 INPUT #2~W$~NEXT I
3250 FOR I=L+l TO L+1+N-l
3255 INPUT #2~W$
~::'260 ? W$
3265 NEXT I
3270 CLOSE #2
3280 ? :? "PRESS ANY KEY TO CONTINUE"
3285 GET #l~A
3290 RETURN

153

will cause a branch to the error-handling routine in
Figure 15.27. Execution of the subroutine in Figure
15.29 is shown in Figure 15.30.

FIGURE 15.30 Reading N words starting at loca
tion L.

INSERT DISKETTE CONTAINING
WORDS TO BE READ

PRESS ANV KEV TO CONTINUE

WHAT FILE NAME ?WORDS.15
ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE
TEN
ELEVEN
TWELVE
THIRTEEN
FOURTEEN
FIFTEEN
END OF DATA

PRESS ANY KEY TO CONTINUE •

ENTER NUMBER OF WORDS TO BE READ
75
ENTER STARTING LOCATION
77

INSERT DISKETTE CONTAINING
WORDS TO BE READ

PRESS ANY KEY TO CONTINUE

WHAT FILE NAME ?WORDS.15
SEVEN
EIGHT
NINE
TEN
ELEVEN

PRESS ANV KEV TO CONTINUE •

In order to read a word selected at random from
the file N$, we might read X - 1 dummy words and
then read word number X, where X is some random
integer. The subroutine shown in Figure 15.31 will
do this. It is called in line 3080 in Figure 15 .22 when
key 3 is pressed . The user enters the maximum num
ber of words in the file in line 3315. The usual read
setup subroutine in Figure 15.25 is call ed in line
3320.

154

3300 REM READ 1 WORD AT RANDOM

3310 ? II EI'''TER IvlA X H1UM NUMBEF{ OF ~I)ORDS"

T'::'15 INPUT N
3320 GOSUB 4000:REM READ SETUP
3325 X=INT(RND(0)*N+1)
3330 OPEN #2,4,0,F$
3335 IF X=l THEN 3360
3340 FOR 1=1 TO X-1
3350 INPUT #2,W$~NEXT I
:::::360 INPUT #2, ~\J$
~Y::::70 ,.? W$
~:::~'::'T.5 CLOSE W2
:::::~.::.t30 ':' ~? II F'F{ESS r~NY KEY 'lD CONT 1 NUE"
~::3f-:l~:! (3ET tt 1 !' A
::::::::::90 F,ETUf;:N
FIGURE 15.31 Subroutine to read one word at
random.

Line 3325 finds a random number X between
and N. Line 3330 opens the file N$ for reading
(code = 4) . Lines 3340-3350 form a loop that reads
X - 1 words . Line 3360 then reads word number X.

Figure 15.32 illustrates the use of the subroutine in
Figure 15 .31 to read a word at random.

FIGURE 15.32 Reading a word at random.

ENTER MAXIMUM NUMBER OF WORDS
715
INSERT DISKETTE CONTAINING
WORDS TO BE READ

PRESS ANY KEY TO CONTINUE

WHAT FILE NAME ?WORDS.15
NINE

PRESS ANV KEV TO CONTINUE •

Modified HANGMAN Program

Suppose that you have created a data file called
WORDS that contains a large number of words (say
100) using the program described earlier (see Figure
15.18). We saw in Figure 15 .31 how to read a word
at random from such a file.

To incorporate these ideas into the HANGMAN
program, change the "find a word" subroutine given
in Figure 15 .14 to the subroutine shown in Figure
15 .33 . Each time this subroutine is called , a random
word will be read from the disk file.

1000 REM FIND A WORD
1030 X=INTCRNDCO)*NW+1)
1040 OPEN #2,4,0,FS
1050 FOR 1=1 TO X:INPUT #2,W$:NEXT 1
1055 CLOSE #2
1060 RETURN

FIGURE 15.33 Modified HANGMAN subroutine
that will find a word from a collection of words
stored on a cassette data tape.

Storing Numbers in a Sequential File

The subroutine shown in Figure 15.18 stored words
in a sequential file on a diskette. It is also possible to
store numerical data on a diskette. To investigate this,
substitute the line

1100 GOSUB 1400

in the subroutine in Figure 15 .18 and then add the
subroutine shown in Figure 15 .34. This subroutine
will store the numbers 1-10 on the disk . The impor
tant thing to remember when storing numerical data
is that each numerical value must be followed by a
carriage return character. This is why line 1430 is
written as

PRINT #2;I:PRINT #2;1+ 1

The form

PRINT #2;1,1+ 1

will not work because the comma is not recognized
when writing to a disk file .

To read back the numerical data, change the
subroutine in Figure 15.24 to that shown in Figure
15.35. The result of executing this subroutine is
shown in Figure 15 .36. Note that the input statement

INPUT #2,X,Y

will read two data fields and store the values in X and
Y.

1400 REM SAVE NUMERICAL DATA
1410 FOR 1=1 TO 10 STEP 2
1420 ? #2;1:7 #2;1+1
1430 NEXT I
1440 RETURN
FIGURE 15.34 Subroutine to store numerical
data on a diskette.

FIGURE 15.35 Subroutine to read numerical
data from a disk file.

3100 REM READ NUMERICAL DATA

3110 GOSUB 4000:REM READ SETUP
3120 OPEN #2,4,0,F$
3130 FOR 1= 1 TO 5
3140 INPUT #2,X,Y
:'::;150 '? X, Y
~:'160 NEXT I
:::;; 1 70 CLOSE #2
::::; 1]!:j ? "PRESS ANY kEY TO CONT I NUE"
3180 GET # 1 , ?'i
:::;; 1 (710 RETUF:N

FIGURE 15.36 Result of executing the subroutine
in Figure 15.35.

AlARIORGAN

As another example of developing a BASIC program
we will turn the ATARI into a musical instrument.
First we will learn how to play the notes of the scale
by pressing keys on the keyboard; we will then de
velop a complete program that will display the mu
sical keys on the screen.

Playing a Tone When a Key Is
Pressed

You should review the sections in Chapters 4 and 5
on making sounds with the ATARI. Recall that the
statement

155

SOUND V,P,D,L

will produce a single tone for voice V on the TV
speaker of pitch P, distortion 0, and loudness L.

Type in the following short program and run it:

10 P= 121
20 GET #l,A

30 A$=CHR$(A)

40 IF A$= " " THEN SOUND O,O,O,O:GOTO 20
50 SOUND O,P,l 0,8
60 GOTO 20

This program should playa note each time any key is
pressed. The note can be turned off by pressing the
space bar. We must now make different keys play dif
ferent notes.

Screen Layout

The program we will write will display 10 white keys
and 7 black keys in high-resolution graphics accord
ing to the layout shown in Figure 15.37. The keys A
through ; on the computer keyboard will be the
"white" keys of the organ; the keys in the row above
will be used for sharps and flats (black keys) . The
AT ARI keys correspond i ng to each key on the screen
will be printed on each key by POKEing the bit codes

FIGURE 15.37 Screen layout for the ATARI organ.

I
L

"l

~ r0 ~ ~ ~ ~ f0 ~
~ ~ ~ ~ ~ f0: 10: ~
~ ~ ~ ~ ~ ~ ~

l'..""""
~w,~ ~E.~ ~.~~ ~\~
f0: f0: ~ ~ ~ ~ ~ ~
~ ~ 10: ~ ~ ~ ~ ~
~ ~ 10 f0: ~ ~ ~ ~

A S D F G

P R E S S K E Y S 1 , 2 , o R 3

o C T A V E 2

156

of the internal character set. The words ATARI OR
GAN wil l be plotted using PLOT and ORAWTO state
ments .

When a note is played, an eighth note will be dis
played on the key being pressed for as long as the
tone continues. Thus, as a song is played this note
will move from key to key. This note will be plotted
using PLOT and ORAWTO statements.

The ATARI organ wi ll start out in octave 2. Press
ing key 1 will change it to octave 1 (one octave
lower), and pressing key 3 will change it to octave 3
(one octave higher) . Thus, the total range of the
ATARI organ wi ll be over three octaves. For example,
pressing key A on the computer keyboard in the oc
tave 2 mode will produce the same note as pressing
key K in the octave 1 mode. The octave number that
is active at any time is displayed near the bottom of
the screen .

Pitch Values for the Musical Scale

The pitch values for each note in the three octaves
corresponding to our screen layout are given in Fig
ure 15.38. The pitch values shown in Figure 15 .38
w ill be stored in a two-dimensional array P(I,]) , where
I (1-17) corresponds to the white and black keys be
ing displayed on the screen and] (0-2) corresponds
to the octave number minus 1.

I--- .,
IF l:

L n 1 .., I

~ ~ ~ ~ ~ ~
f0: ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
c\-· u·~ l0o.~ I0p~

~ ~ f0: ~ ~ ~
~ ~ ~ l0: to ~
~ ~ ~ ~ ~ ~

H J K L

T 0 C H A N G E o C T A V E

w
>
<i
I
U
o

N

W
>
<i
I
U
o

C'l

W
>
<i
I
U
o

C'l
'<t
N

C

a
C'l
N

~
~
~
~

r:;
~
~
~

MIDDLE

C

co a
~

a " C'l CD L!) L!)

~
~
0
~

C

D

D

D

'<t a
N

~
~
~
r~

N
a

~
~
~
~

a
L!)

~
~
~
~

C'l
Ol

E

CD
Ol

E

E

N
co
~

F

F

~
~
~
~

L!)
co

~
~
~
~

N
CD

L!) N a
'<t '<t '<t

;:
«
~ «

F

G

G

G

C'l
L!)

~
~
~
~

CD N

" "
~
~
~
~

A

A

~
~
~
~

co
CD

~
~
~
~

" L!) C'l
C'l C'l C'l

~ ~
~ 0
~ ~
~ ~

A

FIGURE 15.38 Pitch values corresponding to all
notes that can be played on the ATARI organ.

co
N

B

'<t
CD

B

B

~
~
~
~

co a
~

MIDDLE

a
CD

Ol
N

C

C

C

" L!)

~
~
~
~

C'l
L!)

co CD
N N

~
0
~
~

D

D

D

N
a
~

~
~
~
~

a
L!)

~
~
~
~

L!)
N

«
0
0
0

CD
Ol

E

E

C'l
N

E

Word Description of Program FIGURE 15.39 Pseudocode word-description for
ATARI organ program.

The program for the AT ARI organ can be understood
from the pseudocode word-descri pti on given in Fig
ure 15.39.

Variable Definitions

The major variabl es used in the AT ARI organ progam
are defined in Figure 15.40. Using these variables the
pseudocode program shown in Figure 15.39 can be
refined to the program shown in Fi gure 15.41 . Note
how the do until loop is used to f ind the index I corre
sponding to the key that w as pressed . This value of I is
then used to find the proper pi tch va lue stored in
P(I ,]) . If key 1,2, or 3 is pressed, no match w ill occur

Initialize variables

Display keyboard

loop: Wait for key to be pressed

if key is space bar

then turn off sound

Identify key

if key is a note key

then play note

else if key is 1, 2, or 3

then change octave number

repeat fo rever

157

FIGURE 15.40 Major variables used in ATARI or
gan program.

K(18) An array containing the AT ARI computer
key ATASCII codes:

A,S,D,F,G,H,J,K,L,; for the white keys

W,E,T,Y,U,O,P for the black keys

P(17,2) A two-dimensional array containing the
pitch values for the corresponding keys in
K(I); the columns of the array correspond
to the three octaves.

T Octave number minus 1

P Pitch value being played

A$ Character value corresponding to a com
puter key pressed

in the do until loop and I will equal 18. This is why
K(I) must be dimensioned to K(18) . In this case I is
changed to VAL(A$), which will be 1, 2, or 3 (for
valid keys), and T is changed to I - 1 to select the
proper pitch values in P(I,T).

We are now at the point where the BASIC program
will practically write itself.

The Main Program

The main program for the AT ARI organ is shown in
Figure 15.42. It follows closely the pseudocode de
scription shown in Figure 15.41. Lines 20-50 fill the
arrays with the appropriate data. Note that all of the
"white" keys are stored first in K(I). Also note that the
order of the pitch values stored in P(I,l) is the same as
that of the corresponding key values in K(I), accord
ing to Figure 15.38. Lines 35 and 50 store tab data
that will be used later (in subroutine 1400) to plot the
eighth note on the black keys.

Lines 70-170 are a direct implementation of the
loop . . . repeat forever loop in Figure 15.41 .
Subroutine 1400, which is called in line 130, will
play the note. Evenutally this subroutine will display
the eighth note on the screen keyboard while playing
the note. However, for now you can test out the
playing of the ATARI organ by typing

1400 REM PLAY NOTE

1450 SOUND 0,P,1O,8

1470 RETURN

which just plays the note. You will also need to write
the following stub for the keyboard display
subroutine:

158

600 REM DISPLAY KEYBOARD

610 RETURN

FIGURE 15.41 Pseudocode description of ATARI
organ program.

Fill arrays K(I) and P(I,J) with appropriate values

Display keyboard

T = 1
loop: Wait for key A$ (code A) to be pressed

if A$ = " " then turn off sound: go to loop
I = 1
do until A = K(I) or 1=18

1=/+1

enddo
if I < 78

then P = P(I,T)

play note

else I = VAL(A$)

if I = 0 or I > 3
then do nothing (invalid key)

else

repeat forever

Display I

T = 1-1

Try running the program now. The notes should
change when you press different keys . You can stop
any note by pressing the space bar.

Remaining Subroutines

Once you have the musical part of the AT ARI organ
working you can finish the "display keyboard"
subroutine, as shown in Figure 15.43. This
subroutine will produce the keyboard shown in Fig
ure 15.44; the title and lettering on the keyboard are
printed using subroutine 800, shown in Figure 15.45.

The subroutine at line 800 POKEs the bit codes
~tored in the internal character set directly on the
screen. The DATA statement in line 805 contains the
offsets into the character table for the letters on the
keys .

The subroutine at line 900 that is called in line 895
plots the title at the top of the screen. The individual
letters are plotted using the subroutines at lines
1010-1070.

The eighth-note shape is displayed when a note is
played in subroutine 1400, shown in Figure 15.46.
The value of I in line 1410 is the value found in the do
until loop in lines 90-100 of the main program. If this
value is greater than 10, a "black" key was pressed
and the coordinate X at which the note will be plotted
is determined by the statement in line 1420. The X

FIGURE 15.42 Main program for the ATARI organ .

10 REM ATARI ORGAN
1'") OF'EN #:1. ~ 4 ~ 0 ~ "K: "
15 D I 1"1 ~::: (18) • P (17. 2) • TB en . A$ (:I.)
20 '? "I}" ~ r:, "~nOR11~G DATA -~ BE PATIENT! I"
25 DATA 65~83,68,70,71,72,74,75,76,59,87,69,84,89,85,79,80
26 DATA 243,217,193,182,162,144,128,121,108~96~230~204,173~153,136,114,102
28 DATA 121,108,96,91~81,72,64,60,53 ,47 ,1:1.4,102,85,76,68,57,50

30 DATA 60,53,47,45,40,35,3:1.,29,26,23,57,50,42,37,33,28,25
35 DATA 28,60,124,156,188,252,284
40 FOR 1=1 TO :l.7~READ K:K(I)=K~NEXT I
45 FOR J=O TO 2:FOR 1=1 TO 17:READ P~P(I,J)=P:NEXT I~NEXT J
50 FOR 1=:1. TO 7:READ TB~TB(I)=TB~NEXT 1
55 GOSUE 600:REM DISPLAY KEYBOARD
60 T=1
70 [:lET #l:; A
75 A$=CHF<$ (PI)

f:l0 IF P,$:::::" X" THEN GF,APH 1 CS 0: CLOSE # 1 : END
(3~,2 :r F A~;:::: " " THEN !30UND 0, (I, 0, 0: GOSUB 1500 ~ GOTO 70
85 1::::1
90 IF A=K(I) OR 1=18 THEN ll O
100 I = I+l:GOTO 90
11 0 IF 1= 18 THEN 140
120 F'=P 0: I !' T)
130 BOSUB 1400:GOTO 70
140 IF A$<" 1" OR A~~>":::;" TI·-lEN 70
:['.30 I ::: \/?4L. (i4$)

160 PDf.) I T I ON 8, 22::? "" ; {~ ':l;;

17 0 T=I-1:GOTO 70

FIGURE 15.43 Subroutine to display the key
board for the color organ .

600 REM DISPLAY KEYBOARD
6 10 '") "}" ~ f.3R~':1PH I CS 8: SETCOLOR 2, 0, 0: S ETCOLDR 1,0, 1?: COLOR :L
615 FDR Y=63 TO 159
620 PLOT O,Y:DRAWTO 319,Y:NEXT Y
,S:Z5 CCJLOR 0
630 FOR X=32 TO 288 STEP 32
635 PLOT X,64~DRAWTO X~159:NE X T X
tAO ,{=64
650 FOR X=16 TO 48 STEP 32
655 GOSUB 700:NEXT X
660 FOR X=1:[2 TO 176 STEP
665 GOSUB 7 00:NEXT X
670 FOR X=240 TCJ 272 STEP
675 BOSUB 700:NEXT X
680 ? :~' "PF:ESS ~: :: EYS l, :2 , OR 3 TO CHANC:~E DCTA'ylE"
690 r,:- : '") "OCTA\.JE";: ''? " 2";
695 GOSUB 800:RETURN
700 REM PLOT BLACK KEY AT X,Y
7 10 FOR 1=0 TO 14
720 PLOT X+I,Y:DRAWTD X+I,Y+48
730 NEXT I~RETURN

159

160

FIGURE 15.44 The keyboard for the organ pro
duced by the subroutine shown in Figure 15.43.

FIGURE 15.45 Subroutine to display the letteri ng
on the organ keyboard and the title.

800 REM KEY LABELS ~ TITLE

Ille) !3A=PEE: l~;(E!(~)*256 ·~F:'E : E!~:(8 ~~I)

815 FOR \=2 TO 38 STEP 4

825 L_A=SA~H4(:)*144-~X

83(:) CI~AD=57344+{:*13

835 F·OF~ 1=:0 T() "7
840 POKE LA+I*40.PEEV(CHAD+II
845 NEXT I;NEXT X
8se) FOR X=2 Tll 34 s·rEl~ 4
855 IF X=10 OR X=26 THEN 800
860 1:~Ei4D C
865 LA=SA+4()*96+X
870 CHAD=57~44+C*8
875 FOR 1=0 TO 7
E!BO PLWE U-'+I*40 , PEE! : (CH('ID+I)
8[3:':; NF)i T I
H<:iO NEXT X
895 GOGu e 900:REM PLOT TITLE
"'3<:1'0;> F:ETURr~

':100 REI'1 T I TL.E
'i> 0 :':; CD E. ur-~ 1
910 Y=45:X=26:60GUB 1010 :REM A
915 X=X+26:G08UB 1020:REM T
920 X=X+26:GD5UB 1010:REM A
925 X=X+26:G08UB 1030:REM R
<:130 X=X +26:GOGUB l040:REM
9:S5 X=X+52~GOSUD 1()5(I~REM [\
940 X=X+26:GOBUB 1030:REM R
945 X=X+26:608UB l060:REN G
950 X=X+26:6DSUB 1010:REM A
955 X=X+26:GO~JB 1070:REM N
'.160 I"<ET URN
1 000 PEti LEfT ERE;
1010 PLOT X,Y:DRAWTD X,Y-28 : DRAWTO X+21. Y- 28 =DRil WTO X+2 2 ,Y;PLDT X,Y-14:DRAWTO X+
22,Y-14:RETURN :PEM A
1020 PLOT X,Y-2B:DRAWTO X+22,Y-28:PLOT X+ ll, V- 28 :DRAWTO X+l1.Y:RETURN :REM T
1030 PLOT X,Y:DRAWTO X,Y -28:DRAWTO X+22,Y-28:DPA WTO X+22.V-14;DRAWTO X.Y - 14:DRAW
TO X+22,Y:RETURN :REM R
1040 PLOT X,Y:DRAWTD X+l0.Y:PLDT X, Y-28,DRAWTO X+10,V-28:PLOf \ +5, Y-28:DRAWTO X+
5,Y:RETURN :REM I
1050 PLOT X~Y~I:)RAW1'[) X~Y-28:DRAW1' (:) X'1 - 22~Y "- ' 28 :DF~ AW 'T-{:J X~-22 'JV~X)RAW-r[J X ~ Y :RE -rl,J F~ N ~ r~ E

11 C!
1060 PL OT X+22 ,Y-28,DRA WTO X.V-28,DRAWTO X,Y :DRAWTO ~+2 ' , V :DRAWTD X+22 .Y - 14,DRAW
TO X+15,Y-14:RETURN :PEM 6
1070 PLOT X,Y: DRAWTO X.Y-28:DRAWTD X+22. V:DRAWTO X+2 2 . Y 28:RETURN :REM N

1400 REM PLAY NOTE
14(:/:'; GOSUB 1600
1410 IF 1<11 THEN Y=125:X=32*I-4:COLOR O:GOSUB 1500:COLOR I:GOTO 1450
1420 Y=75:X=TB(I-I0)
1430 COLOR I:GOSUB 1500:COLOR 0
1450 SOUND 0,P,10,8
1470 RETURN
1500 REM PLOT NOTE
1510 PLOT X,Y:DRAWTO X-3,Y-3
1520 DRAWTO X-3,Y+12:DRAWTO X-5,Y+10
1530 DRAWTO X-7,Y+10:DRAWTO X-9,Y+12
1540 DRAWTO X-9,V+14:DRAWTO X-7,Y+16
1550 DRAWTO X-5~Y+16:DRAWTO X-3,Y+14
1560 DRAWTO X-3,Y+12:RETURN
1600 REM ERASE EIGTH NOTE
1610 IF Y=125 THEN COLOR l:GOSUB 1500:RETURN
1620 IF Y=75 THEN COLOR O:GOSUB 1500:RETURN
16~:~;O F;:ETUI::;:N

FIGURE 15.46 Subroutine to display the eighth
note and produce the tone.

and Y values defined in line 1420 determine where
on the screen the eighth note is plotted. The
subroutine at line 1500 plots the eighth note. The X
position is determined by the value in the tab array
T8(1-1O) that was initialized in lines 35 and 50 in Fig
ure 15.42 .

The coo rdinate X for plotting the note on the white
keys is given in the THEN clause in line 1410. Since
the spacing of the white keys is uniform, the position
of the note on the line can be calculated by the equa
tion X = 32 * I - 4, as given in line 1410.

On the black keys, the eighth note is plotted white

by calling subroutine 1500 in line 1430 after
executing the statement COLOR 1. On the white keys
the eighth note is plotted black by calling subroutine
1500 after the statement COLOR 0 in line 1410.
When the space bar is pressed, the sound is turned off
and the eighth note will be erased by calling
subroutine 1500 in line 82 (see Figure 15.42) . The
subroutine at line 1600 that is called at line 1405 will
erase any ex isting eighth note when a new note is
played. Figure 15.47 shows examples of the eighth
note that is displayed when the AT ARI organ is
played.

FIGURE 15.47 (a) ATARI organ when a white
note is played (key F)i (b) ATARI organ when a
black note is played (key T).

(a)

161

(b)

This ATARI organ program has only begun to use
the sound capabilities in the ATARI. By playing more
than one voice you can create chords. You can also
vary the loudness of each note and create special

sound effects by changing the distortion value in the
SOUND statement. See Exercise 15.2 for some ideas
on how to do this.

CONCLUSION

The HANGMAN and the AT ARI organ programs were
developed using the six steps outlined at the begin
ning of this chapter. This is not the only way to de
velop a program and these steps may not always be
appropriate for all programs that you write. However,
they are a good guide to use when you get stuck and
don't know how to proceed . In the last analysis you
will have to develop your own approach to writing
computer programs. Programming is a skill that still
requires insight, creativity, a knack for problem
solving, and practice .

If you have read this entire book, typed all the ex
amples on your ATARI, and worked a number of ex
ercises, then you will have a good understanding of
how to write BASIC programs on an ATARI computer.
It is now time for you to start writing your own pro
grams. Many useful programs can be written for the
ATARI. Pick an area in which you are an expert. How
can the ATARI help you in this area? Start by writing a
short program, and then expand it into a longer, more
complex one. You will find that writing computer
programs is challenging, rewarding, and fun. Good
luck!

162

EXERCISE 15.1
Modify the subroutine to find a word in Figure 15.14
so that no word is selected more than once.

EXERCISE 15.2
Modify the ATARI organ program to

1. play chords after key C has been pressed (A ma
jor chord can be played by multiplying the pitch of
voice 0 by 0.79166 for voice 1 and by 0.66666 for
voice 2)

2. vary the loudness of the notes by using the up
and down keys

3. change the distortion value using keys 4-9 .

EXERCISE 15.3
Write a program to play the game MASTERMIND.
The computer thinks of an N-digit number, where
each digit can be in the range 1-M. The player is al
lowed to select Nand M at the beginning of the
game. The player guesses a number (all N digits) and
the computer responds with two numbers P and W . P

is the number of digits that were correctly guessed
and that are in the correct position in the number,
and W is the number of digits guessed that are in the
number but that were guessed in the wrong position .
The player continues to guess numbers until the cor
rect number is guessed (or until the player gives up
and asks for the answer). When the number is
guessed, the computer displays the number of tries
that H: took to guess the number.

EXERCISE 15.4
Write a program to play the card game BLACKJACK
against the computer. The player first places a bet.
Two cards are dealt to the player and two to the com
puter (one face up and one face down) . The player
can ask for a hit (another card) as many times as he or
she wants. The player's goal is to have a higher count

than the computer without going over 21. Face ca rds
count 10 and an ace can count either 1 or 11 . Being
dealt an ace and a face card is a blackjack and is an
automatic winner. If the player' s count goes over 21 it
is a bust and the player loses. After the player stops
taking hits (with the card count less than or equal to
21) , the computer turns over its face-down card and
can then take additional cards to try to beat the
player. The computer will always take a hit if its card
count is less than 17. The computer will always stand
for a card count of 1 7 or greater. No money is won or
lost on a tie. Have the program continue playing and
keep a running total of the player's winnings.

EXERCISE 15.5.
Write a program to play tic-tac-toe (see Exercise 7.S).
The player should have the option to play against a
second player or the computer.

163

APPENDICES

APPENDIX A

Reserved Words

None of the following reserved words should be used
as part of a variabl e name in an ATARI BASIC program .

164

ABS
ADR
AND
ASC
ATN
BYE
(lOAD
CHR$
CLOG
CLOSE
CLR
COLOR
COM
CONT
COS
CSAVE
DATA
DEG
DIM
DOS
DRAWTO
END
ENTER
EXP
FOR
FRE
GET
GOSUB

GOTO
GRAPHICS
IF
INPUT
INT
LEN
LET
LIST
LOAD
LOCATE
LOG
LPRINT
NEW
NEXT
NOT
NOTE
ON
OPEN
OR
PADDLE
PEEK
PLOT
POINT
POKE
POP
POSITION
PRINT
PTRIG

PUT
RAD
READ
REM
RESTORE
RETURN
RND
RUN
SAVE
SETCOLOR
SGN
SIN
SOUND
SQR
STATUS
STEP
STICK
STRIG
STOP
STR$
THEN
TO
TRAP
USR
VAL
XIO

Character
C$ or CAPS
Keystroke ASC(C$}

Blank (space) 32
! 33
" 34
35
$ 36
% 37
& 38

39
(40
) 41 . 42
+ 43
, 44

45
46

/ 47
0 4B
1 49
2 50
3 51
4 52
5 53
6 54
7 55
8 56
9 57

58
; 59
< 60
= 61
> 62
? 63
@ 64
A 65
B 66
C 67
D 68
E 69
F 70
G 71
H 72
I 73
J 74
K 75
L 76
M 77
N 78
0 79
P 80
Q 81
R 82
S 83
T 84
U 85
V 86
W 87
X 88
Y 89
Z 90
[91
\ 92
I 93
/\ 94
- 95
I 124
ESC 27
RETURN 155

APPENDIX 8
ATASCII Codes

Keystroke

Normal Video
LOWR CTRL CAPS

160
161
162
163
164
165
166
167
168
169
170
171

0 172
173

96 174
175
176
177
178
179
180
181
182
183
184
185
186

123 187
188
189
190
191
192

97 1 193
98 2 194
99 3 195

100 4 196
101 5 197
102 6 198
103 7 199
104 8 200
105 9 201
106 10 202
107 11 203
108 12 204
109 13 205
110 14 206
111 15 207
112 16 208
11 3 17 209
11 4 18 210
11 5 19 211
11 6 20 212
11 7 21 213
11 8 22 214
119 23 215
120 24 216
121 25 217
122 26 218

219
220
221
222
223

A TARI Key (Reverse Video)
LOWR CTRL

128

224

251

225 129
226 130
227 131
228 132
229 133
230 134
231 135
232 136
233 137
234 138
235 139
236 140
237 141
238 142
239 143
240 144
241 145
242 146
243 147
244 148
245 149
246 150
247 151
248 152
249 153
250 154

252

165

Special Control Characters

The following characters are only displayed if they
are preceded by the ESC key, CHR$(27). Otherwise,
the result takes place.

ATASCII Code
28
29
30
31

125
126
127
156
157
158
159
253
254
255

ERROR CODES

Keystroke
ESC/CTRL -
ESClCTRL =
ESC/CTRL +
ESC/CTRL *
ESC/CLEAR
ESCIBACK S
ESCITAB
ESC/SHIFT BACK S
ESC/SHIFT >
ESC/CTRL TAB
ESCISHIFT TAB
ESC/CTRL 2
ESClCTRL BACK S
ESC/CTRL >

APPENDIX C

Error code is stored ir] memory location 195.
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
150
151
152
153
154
160
161
162
163
164
165
166
167
168
169
170
171

EC = PEEK(195)

EC Error
2 Memory insufficient
3 Value error
4 Too many variables
5 String length error
6 Out-of-data error
7 Number greater than 32767
8 INPUT statement error
9 Array or string DIM error

10 Argument stack overflow
11 Floating point overflow/underflow error
12 Line not found
13 NEXT without FOR
14 Line too long
15 GOSUB or FOR line deleted
16 RETURN without GOSUB
17 Garbage error
18 Invalid string character
19 LOAD program too long
20 Bad device number
21 LOAD file error

128 BREAK abort
129 10CB already open
130 Unknown device
131 Opened for write only
132 Invalid command

166

Result
cursor up
cursor down
cursor left
cursor right
clear screen
backspace
move cursor to next tab
delete line
insert line
clear tab stop
set tab stop
beep speaker
delete character
insert character

Device or file not open
Bad channel number
Opened for read only
End of file
Record truncated
Device timeout
Device cannot perform a command
Serial bus input framing error
Cursor out of range
Serial bus data frame overrun
Serial bus data frame checksum error
Disk write-protected
Read-after-write compare error or bad screen mode
Function not implemented
Insufficient RAM for graphics
Port already open
Concurrent mode I/O not enabled
Illegal user-supplied buffer
Active concurrent mode I/O error
Concurrent mode inactive
Drive number error
Too many open files
Disk full
Fatal I/O error
File number mismatch
File name error
POINT data length error
File locked
Command invalid
Directory full (64 files)
File not found
POINT invalid

APPENDIX D

HEXADECIMAL NUMBERS

Consider a box containing one marble. If the marb le
is in the box, we will say that the box is full and asso
ciate the digit 1 with the box. If we take the marb le
out of the box, the box will be empty, and we wi ll
then assoc iate the digit 0 with the box. The two bi
nary digits 0 and 1 are ca lled bits; with 1 bit we can
count from 0 (box empty) to 1 (box full) , as show n in
Figure 0 .1.

FIGURE D.l You can count from 0 to 1 with 1 bit.

'-----/ "-...L....J

o = empty box 1 = full box

Number of marbles = 0 Number of marbles =

Cons ider now a second box that can also only be
fu ll (1) or empty (0). However, w hen this box is full it
will contain two marbles, as shown in Figure 0.2 .

FIGURE D.2 This box can either contain two
marbles (full) or no marbles.

o = empty box 1 = full box

With these two boxes (2 bits) we ca n now count from
o to 3, as shown in Figure 0.3. Note that the va lue of
each 2-bit binary number shown in Figure 0.3 is
equa l to the total number of marbles in the two
boxes .

FIGURE D.3 You can count from 0 to 3 with 2
bits.

Total number of marbles

"----./ '-----/ o
0 0

'----.-J '---L./
0 1

~ "----./ 2
1 0

~ '---L./ 3
1 1

We can add a third bit to the binary number by
adding a third box that is full (b it = 1) when it con
tains four marbles and is empty (b it = 0) when it con
ta ins no marbles . It must be either fu ll (bit = 1) or
empty (b it = 0). With this third box (3 bits) we can
count from 0 to 7, as shown in Figure 0.4.

If you want to count beyond 7, you must add an
other box . How many marbl es should thi s fourth box
contain when it is full (bit = 1)? It should be clear that

this box must contain eight marbles. The binary num
ber 8 would then be written as

1000

FIGURE D.4 You can count from 0 to 7 with 3
bits.

"-------J "-------J "-------J o
o 0 0

"-------J ~ "-------J 2
0 10

3

4

5

6

7

Remember that a 1 in a binary number means that the
co rresponding box is full of marbles; the number of
marbles th at constitutes a full box varies as 1, 2, 4, 8,
start ing at the ri ght. Thi s means that w ith 4 bits we
can count from 0 to 15, as shown in Figure 0 .5.

FIGURE D.S You can count from 0 to 15 with 4
bits.
No. of marbles
in each full box (bit= 7) Total no.
B 4 2 7 of marbles Hex Digit

o
o
o
o
o
o
o
o
1
1
1
1
1
1
1
1

o
o
o
o
1
1
1
1
o
o
o
o
1
1
1
1

o
o
1
1
o
o
1
1
o
o
1
1
o
o
1
1

o
1
o
1
o
1
o
1
o
1
o
1
o
1
o
1

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

It is convenient to represent the total number of
marbles in the four boxes represented by the 4-bit bi
nary numbers shown in Fi gure 0 .5 by a single digit.

167

We call this a hexadecimal digit. The 16 hexadec imal
digits are shown in the right-hand co lumn in Figure
0 .5. The hexadecimal digits 0-9 are the same as the
dec imal digits 0-9 . However, the decimal numbers
10-15 are represented by the hexadecimal digits
A- F. Thus, for example, the hexadecimal digit 0 is
equiva lent to the decimal number 13 .

In order to count beyond 15 in binary, you must
add more boxes. Each full box you add must contain
twice as many marbles as the previous full box. With
8 bits you can count from ° to 255. A few examples
are shown in Figure 0 .6. Given a binary number, the
corresponding dec imal number is equal to the total
number of marbles in all of the boxes. To find this
number, just add up all of the marbles in the full
boxes (the ones with binary digits = 1).

FIGURE D.6 You can count from 0 to 255 with 8
bits.

No. of Marbles Total No.
in each full box (bit= 7) of marbles

128 64 32 16 8 4 2

0 0 1 0 1 0 0 52
1 0 0 0 0 1 1 163
1 1 1 1 1 1 1 255

As the length of a binary number increases it be
comes more cumbersome to work with. We then use
the corresponding hexadecimal number as a short
hand method of representing the binary number. This
is very easy to do. You just divide the binary number
into groups of 4 bits starting at the right, and then rep
resent each 4-bit group by its corresponding
hexadecimal digit, given in Figure 0 .5. For example,
the binary number

10011 01 0
~

9 A

is equivalent to the hexadecimal number 9A. You
should verify that the total number of marbles repre
sented by this binary number is 154. However, in
stead of counting the marbles in the " binary boxes,"
you can count the marbles in " hexadec imal " boxes,
where the first box contains A x 1 = 10 marbles and
the second box contains 9 x 16 = 144 marbles.
Therefore, the total number of marbles is equal to
144 + 10=154.

A third hexadecimal box would contain a multiple
of 162 = 256 marbles and a fourth hexadecimal box
would contain a multiple of 163 = 4,096 marbles.
As an example, the 16-bit binary number

1000011111001001

8 7 C 9
is equivalent to the decimal number 34,761 (that is, it
represents 34,761 marbles). This can be seen by ex
panding the hexadecimal number as follows:

8 x 163 = 8 x 4,096 = 32,768

7 x 162 = 7 x 256 = 1,792

C X 16' = 12 x

9 x 16° = 9 x
16 =

1 =

192

9
34,761

You can see that by working with hexadec imal num
bers you can reduce by a factor of 4 the number of
digits that you have to work with .

Table 0.1 will allow you to convenientl y convert
up to 4-digit hexadec imal numbers to their decimal
equivalents . Note, for example, how the four terms in
the convers ion of 87C9 given here can be read di
rectly from the table.

FIGURE D.l Hexadecimal and Decimal Conversion

15 BYTE 8 7 BYTE 0
15 CHAR 12 11 CHAR 8 7 CHAR 4 3 CHAR 0
HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 1,792 7 112 7 7
8 32,768 8 2,048 8 128 8 8
9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
B 45,056 B 2,816 B 176 B 11
C 49,152 C 3,072 C 192 C 12
D 53,248 D 3,328 D 208 D 13
E 57,344 E 3,584 E 224 E 14
F 61,440 F 3,840 F 240 F 15

168

APPENDIX E

Using Machine language
Subroutines with BASIC

This appendix assumes that you know how to write
6502 assembly language programs. If you have a ma
chine language subroutine, you can call this
subroutine from BASIC and pass data values to and
from the subroutine by using the USR function .

When the BASIC statement

W=USR(AD,X,Y)

is executed, the return address in the BASIC program is
pushed on the stack and the program jumps to the
machine language program starting at the decimal
address AD. The arguments X, Y in this statement are
optional and represent data values to be passed to the
machine language program. These values are pushed
on the stack as 2-byte, 16-bit integer values. The top
of the stack contains a 1-byte integer equal to the
number of arguments in the USR function. This value
will be 0 if no arguments are passed to the
subroutine . The machine language program must pull
this count value plus all arguments off the stack be-

fore returning to the BASIC program by executing an
RTS instruction. After the USR function given here is
executed the stack will look like Figure E.1.

FIGURE E.l Stack after executing
W=USR (AD,X,Y).

Sp ---,)
02 number of arguments
X low 1 st USR argument
X high
Y low 2nd USR argument
Y high
Return address low
Return address higb

To pass a 16-bit integer value V back to the BASIC

program, store the most significant byte in memory
location 213 ($05) and the least significant byte in
memory location 212 ($04) . Then execute an RTS in
struction which wi ll return control to the BASIC pro
gram with the value of USR equal to the 16-bit integer
value V.

APPENDIX F

Formatting Your Diskette

To format a new diskette you must use the disk utility
package (DOS menu). This package is part of the
DOS system files . These DOS system files are loaded
into memory (booted) when the computer is turned
on. If you type

DOS

the DOS menu shown in Figure F.1 will be displayed
on the screen .

To format your diskette, insert it in the disk drive.
Remember that formatting a diskette will destroy all
information on the diskette. Then press key I. The
message WHICH DRIVE TO FORMAT? will appear
on the screen. Press 1. The message TYPE "Y" TO
FORMAT DRIVE 1 wi ll appear on the screen. If you
now press key Y the disk drive will come on and for
mat your disk in about one minute.

FIGURE F.l DOS menu.

~ZSK OPER~TX~G 1~1T~M II UER~IaM 2.Q~
COPYRIGHT ~~~~ ~T~RI

~. DISK DIRECTORY I. FORM~T DI~~
B. RU" C~RTRIDGE ~. DUPLIC~TE DI~~
C. COPY FILE K. BI~~RY ~~UE
D. DELETE FILE (·5J L. BI~~R'" LI]~[J
E. RE"~ME FILE M. RUM AT ADORE·:;·:;
F. LaC .. : FILE ". CRE~TE MEM. ·:;A'J
G. UMLOCK FILE O. DUPLICATE FILE
H. !-mITE [II] ·:; FILE ·:;

·:iELEG TIT E M I] 1:1 :iIliIi]]]IC] FI] R MENU •

169

You shou ld then write the DOS files to your
diskette so that you can boot the system with your
disk. To do this, press key H in response to the menu

in Figure F.1. Follow the prompting messages on the
screen to comp lete the process.

APPENDIX G

Summary of BASIC Statements

The following summary gives examples of various
statements used in ATARI BASIC. For a more detai led
discussion of each statement, refer to the pages c ited.

Data Transfer Statements

PRINT A$; B, C
INPUT C
GET #l,A
READ A, B, C$
DATA 5, 10, JOE
RESTORE
PRINT #2;W$
INPUT #2 ,W$
OPEN #2,8,0,F$
CLOSE #2
POKE 1536,75
X=PEEK(1024)

Branching and Looping Statements

GOTO 40
IF M1 > M2 THEN PRINT " TOO SMALL" : GOTO 20
FOR 1=1 TO 10: PRINT I: NEXT I
GOSUB 500
RETURN
ON I GOSUB 100,200,300
ON NH GOTO 960,965,970,975,980,985
TRAP 9000

String Related Statements
B$ = A$(l , l)
B$ = A$(LEN(A$)- I + 1)
B$ = A$(I, I+J-1)
N = LEN(A$)
N = VAL(A$)
A$ = STR$(A)
N = ASC(A$)
A$ = CHR$(A)

170

Page Ref.

22
31

105
84
84
84

151
152
151
151
128
128

Page Ref.

15
43
36
75
75

150
147
153

Page Ref.

103
103
103
102
103
104
105
105

BASIC Functions
Z = SQR(X)
Z = ABS(X)
Z = INT(X)
Z = SGN(X)
X = RND(O)
Z = SIN(X)
Z = COS(X)
Z = ATN(X)
Z = LOG (X)
Z = CLOG(X)
Z = EXP(X)
Z = PADDLE(O)
Z = PTRIG(O)
Z = STICK(3)
Z = STRIG(3)

Graphics Statements
GR.5
SETCOLOR 0,0,14
COLOR 1
PLOT X,Y
DRAWTO X,Y
GR.O
GR.8
GR.l
GR.2

square root
absolute value
integer value
sign
random number
si ne
cos ine
arctangent
natural logarithm
base 10 logarithm
exponentia l function
padd le function
padd le trigger function
joystick function
joystick trigger function

Other Statements and Commands
DIM A(20)
? FRE(O)
NEW
SAVE
LOAD
RUN
CONT
STOP
END
LI ST
REM REMARK
CLR
(LOAD
CSAVE
DEG
RAD
DOS
SOUND 0,P,1O,8
X = USR(AD,Y)

Page Ref.
27
26
26
26
27
28
28
28
28
28
28
81
82
83
83

Page Ref.

55
56
57
57
58
57

11 7
131
131

Page Ref.

95
95
14
14
14

7

15
16
16

7

17
95
14
14
28
28

169
35

169

SUBJECT INDEX

A

ABS, absolute value, 26-27
Acreage, 74
Add ition, 19, 32
Algorithm, 50-53
Alternate Character Set. See character set
American flag. See Flag
AND,48
Apple 11,1,13
Arc tangent, 28
Area:

of a circle, 33, 45
of a rectangle, 32, 46
of a triangle, 49-51, 67-68

Area. See plotting
Arithmetic expressions, 20
Array of points. See plotting
Arrays, 94-101

one-dimensional, 94-96
two-dimensional, 96, 113

ASC, 104-105
ASCII codes, 104-105

See a/50 ATASCII codes
Assembly language, 12-13
ATARI BASIC. See BASIC
ATARI 400, 1
ATARI 800, 1
ATARI key, 2, 5, 26, 87, 134
ATASCII codes, 105, 124, 1340135, 165-66

ATN , 28
Auxiliary code, 151
Average, 54, 100

B

Background, 56-57, 117, 134
Backspace key, 2, 8
Bar graphs, 84-93

adding scale, 88-89, 92
horizontal, 87-89
multiple, 91-93
using arrays, 97-100
vertical, 89-93

BASIC, 12
ATARI,12
Interpreter, 2-3, 12
program, 16

Binary number, 129
Blackjack, 163
BREAK, 15-16
Built-in functions. See Functions
Byte, 3, 129, 137, 139

c
Calcu lator mode, 19-21
CAPS/LOWR key, 2-3, 26, 134
Card number, 109, 113

171

Cards . See Playing cards
Cassette tape recorder, 1 3-14, 1 51

storing data, 13-14
Celsius, 35
Cents. See Dollars and cents
Character set:

alternate, 132-34
defining your own, 137-39
internal , 132-36

Checkerboard pattern , 65
random, 70-71

CHR$, 104-105
Circle . See area; circumference
CLEAR key, 2, 4
Clearing the screen, 8
Clicks, 40-41
CLOAD, 14
CLOG,28
CLOSE statement, 105, 124, 149, 151
CLR, 95
Code number, 151
Colon, 17
COLOR, 56-57, 117, 135
Color number, 56, 59, 63, 135
Color register, 56, 59, 62-63, 117, 134-36
Colors, 56

modes 1 and 2, 134-36
Comma:

adding to dollars and cents, 108
in PRINT statement, 22

Compound interest, 28-29, 74,100-101
Concentric squares. See Plotting
Console keys, 129-30
CONT,15-16
Controller jacks, 81, 83
COS, 28, 123
Cosine, 28, 123
CSAVE, 14
CTRL key, 2, 4, 8, 24
Cursor, 130, 140
Cursor keys, 2, 4
Cursor moves in PRINT statement, 6, 10

D

DATA statement, 84-86, 120
Dealing hand of cards. See Playing cards
Debugging, 16
Deck of cards. See Playing cards
Deferred mode of execution, 6-7, 21, 84
DEG, 28, 123
Delay loop, 89-90
DELETE key, 2, 8-9
Device designation, 151
Device number, 124
Division, 20
DIM statement, 9-10, 95-96
Disk, 13-15

fi Ie, 151

172

formatti ng, 169
storing data, 149-55
uti I ity package, 169

Diskette. See Disk
Display screen, 151
Distortion , 35
Do until. See Loops
Do while. See Loops
Dollar sign . See string functions,

string variables, and Dolalrs and cents
Dollars and cents:

printing, 106-108
DOS, 169
Doubling time. See exponential growth
Drawing:

border, 38-39
dashed lines, 60-61
flag, See Flag
lines, 37-38
your name, 58-60, 79-81
See also Plotting

DRAWTO, 58, 117-18

E

Economic data. See Bar graphs
Editing a statement, 7-9
END, 16
Error handling routine, 153
Error:

array, 95
codes, 153, 166
INPUT statement, 32, 34
message, 3
out of data, 85-86
overflow, 22, 33

ESC key, 2, 6, 24, 166
EXP, 28-29
Exponential function, 28-29
Exponential growth, 28-29
Exponentiation , 20

F

Fahrenheit, 35
Fibonacci sequence, 74
File . See Sequential file
Fi Ie name, 150-51
File number, 151
Flag, American, 55, 64-65
Floppy disk. See Disk
Flowchart, 51-53

structured, 52-53
FOR . .. NEXT loop, 36-42

nested, 39-42
Formatting disk. See Disk
FRE, 95
Functions:

built-in, 26-29

G

Game paddles, 81-82
Gas mileage program, 33-34, 44

bar graph, 93
GET statement, 105, 124, 126
GOSUB, 75-76
GOTO, 15
GR.O, 57
GR.l, 131
GR.2, 131
GR.5,55
GR.8, 117
Graphic figures, 4-5, 10
Graph ic keys, 3-4
Graphic patterns . See Plotting
Graphic symbol s, 3-4, 6, 41

playing card , 4
Graph ics, 4, 6, 26, 87

colors, 56
high-resolution, 116-27
low-reso lution, 55-65
modes, 55,116-19

H

Hangman , 138, 141-49, 154-55
Hexadec imal :

numbers, 129, 167-68
to decimal conversion, 168

High-resolution graph ics. See Graph ics
Horizontal bar graphs. See Bar Graphs
Hue, 56 , 117
Hypotenuse, 27-28

If ... then ... else, 51-53, 68
IF .. . THEN statement, 43-46, 66-67
Immediate mode, 6, 21
Income tax, 54
INPUT statement, 31 - 35
INPUT#, 149, 152, 155
INSERT key, 2, 8-9
INT, 26-27
Integer va lue, 26-27, 34
Interest. See compound interest
Interpreter. See BASIC

J
Joysticks, 83

K

Key codes, 130-31
Keyboard, 2-4, 31,,130-31,151

l

LEFT$, 103
LEN, 102-104
LET, 9
Line length, 10-11
Lines. See Plotting
LIST, 7-8, 14, 18
LOAD, 14
LOG, 28-29
Logarithms, 28
Logical expression, 43
Logical operators, 43, 46-48
Loop .. . continue if ... end loop, 71, 73
Loops, 13, 15

do until, 71-73, 143-44, 157-58
do while, 71-72
FOR ... NEXY. See FOR ... NEXT loop
nested, 68-71
repeat until, 71-72
repeat while, 66-72

Loudness, 35
Low-resolution graphics. See Graphics
Lower case letters, 3, 26
Luminance, 56, 117

M

Machinge language, 169
Manhattan Island, 74
Mastermind, 162
Matrix, 96 , 113
Memory, 18, 128-30

required for graph ics, 117
MID$,103
Multiple statements, 17
Multiplication, 20
Music on the ATARI, 155-62
Musical sca le, 156-57

N

Name and address, 34
Names. See Drawing
Nassi-Schneiderman chart, 52
Nested loops . See Loops; also FOR . .. NEXT

loops
NEW, 7, 14
NEXT. See FOR ... NEXT loop
NOT,47
Notes. See musical sca le
Numerical variab les, 21

o
ON ... GOSUB statement, 150
ON .. . GOTO statement, 147-48
OPEN statement, 105, 124, 149-52

173

Operating system, 2
OPTION key, 129-30, 140
OR,48
Order of precedence, 20
Organ, AT ARI , 155-62
Out of data error. See Error
Overflow error. See Error

p

PADDLE,81
Pascal , 13, 51
Pay program, 48-49, 54
PEEK, 128-31 , 137-39
PET, 1, 13
Phase angle, 126-27
Phaser noise, 41
Pi , 28
Pitch, 35, 156
Pitch values for musical sclae. See Musical sclae
Playing cards, 109-115

dealing hand, 112-13
graphics, 4, 109-115, 140
shuffling deck, 111
sorting by suit. See Sorting

PLOT, 57, 117
Plotting:

American flag, 64-65
areas, 61
array of points, 39-40, 61-62
axes, 126-27
ball , 124
circles, 123-24
concentric squares, 78-79
dots, 55-63
functions, 126-27
graphic patterns, 41-42, 119-27
lines, 55-63, 117-19
multiple figures, 77-79
polygons, 124-26
sine wave, 126-27
square, 120-21
star, 122
star field , 62
stripes, 62-64
See also Drawing

Pointer, 85
POKE, 1 28-40
Polygon. See Plotting
Polynomial, 101
Population

density, 93
growth, 74
New England states, 87-89, 94-95, 99

POSITION statement, 22, 24-25, 37-39, 144
PRINT statement, 6-8, 19

comma, 22
semicolon, 23

Printer, 151

174

PRINT#, 149-51 , 155
PRINT#, 6,131-32
Pseudocode, 51, 71-73, 143, 157-58
PTRIG,82

Q
Question mark, 7-8

R

RAD,28
RAM (Random access memory) , 3, 128, 137
Random checkerboard. See checkerboard pattern
Random numbers, 27, 68
Random stripe pattern, 68-69
Radian , 28
Read only memory. See ROM
READ ... DATA, 84-86

with subscripted variable, 97
Relational operators, 43 , 46-47
REM, 17
Repeat unti I. See Loops
Repeat while. See Loops
Reserved words, 9, 164
RESTORE, 84-85
RETURN key, 2-3, 7, 31
RETURN statement, 75-76
Reverse video, 5, 26, 87
Right triangle. See Triangle
RIGHT$, 103
RND,27
ROM, 2, 128, 132, 137
RS-2 32 serial port, 151
RUN , 7,14-15

s
SAVE,14
Scale. See musical sclae
Scaling factor, 121
Scaling figures , 122
Scientific notation, 22
Screen color, 40
Screen editor, 151
Screen layout, 37

hangman, 142
organ, 156

SELECT key, 129-30
Semantics, 13
Semicolon, 23
Semiperimeter, 49
Sequence number, 16
Sequential file:

reading words, 152-55
storing numbers, 155
storing words, 149-5 1

SETCOLOR, 40, 56-63, 117, 134-35
SGN,26-27
SHIFT key, 2-3
Shuffling deck of cards. See Playing cards
SIN, 28, 123 , 127
Sine, 28, 123
Sine wave. See Plotting
Siren sound, 41
6502 microprocessor, 13, 128-29
6809 microprocessor, 13
Sorting:

in increasing order, 98-99
a column of a 2-D array, 113-15
in decreasing order, 99-100
a hand of cards by su it, 113-15

SOUND, 35, 156
Sound effects, 40-41
Sounds on the AT ARI, 35
SQR, 27
Square root, 27
Stack, 169
Standard deviation, 100
Star field. See Plotting
START key, 129-30
STICK, 83
STOP, 16
STRIG,83
String arrays, 94-96

simulating, 96
String functions, 102-104
String variable, 9-10, 18
Strings, 6

manipulating, 102-103
Stripes. See Plotting
Structured flowcharts. See Flowchart
Structured programming, 13
STR$, 103-104
Stubs, 145, 158
Subroutines, 75-81
Subscripted variable, 95
Subscri pts, 94-95
Subtraction, 19
Substrings, 103
Suit. See playing cards
Syntax, 13
SYSTEM RESET, 40

T

TAB key, 22, 24
Temperature, 35
Text :

modes, 57,116-17,131-36
on high-resolution graphics screen, 139, 158-60

Tic-tac-toe, 65
Top-down programming, 141, 145
Train model of program, 18,51,71-73
TRAP, 149, 153
Triangle

right, 27-28
See also Area

Trigonometric functions, 28
TRS-SO, 1, 13
Two-dimensional array. See Arrays

u
Upper-case letters, 3
USR, 169

v
VAL, 103-104
Variables:

numerical, See numerical variables
string, See string variables
subscripted, Sec subscripted variable

Vertical bar graphs. See Bar graphs
Voice, 35
Volume. See Loudness

w
Weekly pay program . See Pay program
Write data to disk. See PRINT#

z
ZSO microprocessor, 13

175

	Cover
	Contents
	Preface
	1: Learning to use the Atari Keyboard
	2: Learning to program in BASIC
	3: Learning more about PRINT
	4: Entering Data from the keyboard - Learning about INPUT
	5: A Repetition Loop - Learning about FOR...NEXT
	6: Making Choice - Learning about IF...THEN
	7: Learning to use low resolution graphics - Displaying the flag.
	8: Learning more about Loops
	9: Subroutines: Learning to use GOSUB and RETURN
	10: Making Bar Graphs - Learnign about READ...DATA
	11: Learning to use arrays
	12: More about Strings
	13: Learning to use High-resoultion graphics
	14: Learning to PEEK and POKE
	15: Learning to put it all together
	Appendices
	A: Reserved Words
	B: ATASCII Codes
	C: Error Codes
	D: Hex Numbers
	E: Using Machine Language from BASIC
	F: Formatting a Disk
	Summary of BASIC Statements

	Index

