1945

" ATARI _
FUN & GAMES

Discover new heights in game-playing excitement on any ATARI:
400, 600, 800, and 1200 systems, including XE and XL models!!

LINDA M. SCHREIBER /Yy






ATARI
FUN & GAMES

Discover new heights in game-playing excitement on any ATARI: 400,
600, 800, and 1200 systems, including XE and XL models!!

LINDA M. SCHREIBER

TAB TAB BOOKS Inc.

Blue Ridge Summit, PA 17214




To my grandfather, Stephan Rylko, who enjoys a good game and a challeng-
ing puzzle.

FIRST EDITION

FIRST PRINTING

Copyright © 1985 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Schreiber, Linda M.
ATARI fun and games.

1. Computer games. 2. Atari computer—Programming.
l. Title.
GV1469.2.539 1985 794.82 85-22238
ISBN 0-8306-0945-8
ISBN 0-8306-1945-3 (pbk.)



Contents

Introduction v

1 Card Games 1

Go Fish 1
Old Maid 18
Tarot 32
Blackjack 40

2 Grid Games 63

Boxes 63
Battleships 74

Hex 93

Treasure Hunt 108
The Great Abyss 117

3 Word Games 134

Jotto 134
Robotman 145
Fractured Stories 156
Decoder 162

4 Logic Games 178
Pebbles 178
Nim 186
Symbolize 202
Towers of Hanoi 211



5 Simulations 221

Duck Darts 221
Marbles 233
Jacks 254
Ski 268
Pinball 278



Introduction

This book was written for individuals, families, and everyone who
wants to have fun with the ATARI computer. It is also designed
as a hands-on book for the novice as well as the experienced
programmer. The assortment of games listed here are both adapta-
tions of traditional board and card games, and some games written
specifically for the computer. Most of the games are suitable for
children as well as adults.

Chapter 1 contains adaptations of well-known card games.
Although most card games are written for two or more players,
the computer can be used as a challenging opponent. Children will
enjoy these versions of Fish and Old Maid. Tarot and Twenty-One
were written as party games.

Traditional pencil-and-paper games are easily adapted for the
computer; the screen becomes an endless supply of paper and the
joysticks or arrow keys are fine electronic pencils. The games in
Chapter 2 include some for all skill levels. Some of these games
require the player to calculate his moves; others depend more on
luck than skill. All the games are based on a type or grid format.

Word games have become very popular in the past few years.
An advantage of computer games is that the words used in the
program can be changed to meet the player’s level. Jotto and Robot-
man can be played with youngsters as well as adults. Fractured
Stories is a favorite for all ages. Decoder has two levels of play; use
the symbols when the letter encryptions are no longer a challenge.

V'



Logic games challenge the mind. Some of the games in Chapter
4 are based on mathematical formulas; others require concentra-
tion in order to win. These games can be played alone or with a
friend. The computer serves as the game master, making sure the

rules are followed.
Chapter 5 contains simulations. These games offer many

challenges while increasing hand-eye coordination. Jacks and
Mapbles are based on children’s games. There is a variation of Darts,
and Ski is for those who want to enjoy that sport safely! The version
of Pinball is designed for young children who do not have the skills
for arcade games but want to play anyway.

The techniques used in the programs are described with the
listings. Many of the programs use the ATARI’s unique features
of player/missile graphics, movable character sets, and interrupts.
By understanding these features better, you will be able to incor-
porate them into your own programs. Figures depict the new
characters and how they are used in the program. All programs
use the ATARI’s color and sound capabilities.

The programs are written on an intermediate level, but, al-
though the programs are thoroughly explained, the explanations
are written with the assumption that you know the rudiments of
programming.

These programs are designed to work on all ATARI computers
with 16K of memory. Some of the programs require one joystick;
a few require two. The requirements are listed within each pro-
gram description.

Vi



Chapter 1

Card Games

This chapter contains several favorite games to play against the
computer. Go Fish and Old Maid are one-player games kids will
enjoy; Twenty-One or Blackjack can be played by one or two players.
The computer will attempt to tell your future in the 7arot program.

GO FISH

Objective of the game: To collect more pairs of cards than
the computer.

Directions: The computer deals five cards to you and five
to itself. You are asked if you want to go first. Enter Y if do, other-
wise, enter N. You are asked to enter your pair. If you do not have
a pair, press the Return key. A pair of cards is two cards of the
same value and same color, such as a three of clubs plus a three
of spades, or a king of hearts plus a king of diamonds.

Next you are asked to enter the card you want. This should
be a card that would make a pair with one of the cards in your hand.
If you have a seven of spades, ask for a seven of clubs. To enter
the card, press the number value (1-10) or face value (J, Q, K, A)
of the card, then press the first letter of the suit (C, H, S, D). Press
the Return key to record the entry.

If the computer has the card in its hand, it will say so and place
the card in your hand. If it does not have the card, you will fish.
The first card from the deck will be placed in your hand. If you
now have a pair of cards, you can enter them. If you do not have

1



a pair, just press the Return key and the computer will take its turn.
The game continues until all the cards have been played. The player
with the most pairs is the winner.

The computer checks to see if you have both cards of any pair
you enter. It also checks that the cards constitute a pair. Listing
1-1 is the code for the program, and Fig. 1-1 is the flowchart.

Line 50 sets aside the memory needed for strings and arrays.
The C array will contain all 52 cards. These cards will be shuffled
and used in the game. CARDS$ contains the number or letter that
appears on the card. SUITS$ contains the four suit characters. PLAY
array and CMP array contain the cards in the hand of the player
and the computer. B$ stores the entries —, Y, N, or the cards. The
CP array stores the numeric value of the cards entered by the
player.

Line 60 PEEKs at location 106 to see how much memory is
in the computer you are using. The computer moves the character
set into RAM, so 2K must be subtracted from the amount of RAM
available. This value is POKEd into location 204, and the first byte
of the character set in ROM is stored in location 206. The actual
decimal location of the ROM character set is stored in the variable
CS. This location will be used to move the four graphics characters
that represent the suits into RAM.

Line 70 moves the assembly language subroutine into locations
1536-1555; line 80 contains the decimal code for the routine.

Line 90 changes the screen to graphics 17. This is graphics 1
with no text window. The computer uses the USR command to ex-
ecute the assembly language subroutine at memory location 1536.
When the computer returns to this line, it will place the value of
A into location 756. Now the computer is using the character set
in RAM. The first byte of this character set is stored in the variable
CHARSET.

Line 100 uses two FOR-NEXT loops to move the four
characters that represent the suits into RAM. When we use the
large text, the computer can only use numbers and uppercase let-
ters, or graphics and lowercase letters. We need to move the four
graphics characters into locations in the character set in RAM in
order to use them. The computer will replace the percent sign, the
ampersand sign, the apostrophe, and the open parenthesis with the
graphics characters for the four suits. The computer reads the
number from line 110. This is the location of the graphics character
in the character set.

The computer uses the second FOR-NEXT loop to move each



Listing 1-1. Go Fish.

10 REM GO FISH FOR ONE FLAYER AND THE
COMFUTER

20 REM CHAFTER 1 - CARD GAMES

30 REM EY L.M.SCHREIEER FOR TAE EOOKS
40 REM COPYRIGHT 1984

50 DIM C(52),CARD$ (13),8UIT$(4),FLAY(3
0),CMF(30),E%(4)

60 A=FEEK(106)-161FOKE 204,A1CS=FEEK(7

56) IFOKE 206,C51C8=CE5%256

70 FOR X=1536 TO 155%IREAD VIFOKE X,V1
NEXT XiREM MOVE THE CHARACTER SET

80 DATA 104,162,4,160,0,177,205,14%,20
3,200,208,249,230,206,230,204,202,208,
242,96

90 GRAFHICS 17:Q=USR(1934) IFOKE 756,A!

CHARSET=A%2596 IREM SET UF THE CHARACTER
8
100 FOR CSET=CHARSET+40 TO CHARSET+64

STEF 8IREAD VIFOR X=0 TO 7iFOKE CSET+X
y FEEK (CS+UX8+X) INEXT XINEXT CSET

110 DATA 64,80,96,123

115 REM THE CHARACTERS FOR CARD$ AND 8

UIT$ ARE INVERSE

120 CARD$="AZ234547891JAK" tSULT$="7%Z& " ("
PREM PUT THE CARDS IN THE STRINGS

130 FOSITION 1,12:7 #63"% & shuffling
7 ("IGOSUE 10503HS=0:1C5=0

140 FOR X=1 TO 10:IF X/2=INT(X/2) THEN
FLAY (X/2)=C(X)I1GOTO 160

150 CMFCOINT(X/2)+1)=C(X)

1460 NEXT X:iCD=10:LC=5:CC=51AF=11GOSUE
2000

170 CO=3:R=141C=13iFOSITION 0,147 %6}
"GO FIRST Y/N"IiGOSUE 1100:3IF EB$="" THE
N 170

180 IF E$="N" THEN 430

1920 GOSUE 300

200 GOSUE Z2000:FOSITION 0,1437 #63'"WHA
T CARD "iC=12:R=14:C0O=131GOSUE 1100:IF
Ei:="" THEN 200

210 FOR X=1 TO 133:XF ASC(CARD$(X,X))-1
28=A8C(E$(1,1)) THEN L=LEN(E$)INC=X+(A
SC(E$(L,L))-36)/10:G0OTO 230




220 NEXT X

230 FOR X=1 TO CCIXF CMP(X)<=NC THEN N

EXT X:GOTO 270

240 FOSTITION 0,1437 #63"1 have it"1G08S
UEB 3000 iCMF(X)=CMF(CCHICC=CC-1IIF CC=0
THEN GOSUE 60031IF CC=0 THEN 800

250 LC=LC+13FLAY(LC)=NCIGOSUE 2000

260 GOSUER 300:GO0TO 450

270 GOSUE 400:G0S8UE 2000:GOTO 260

300 POSITION 00,1437 #63"YOUR FAIR?

"PIR=141C=113C0=LG08URE 11003IF E$

=" THEN RETURN

310 FOR X=1 TO 13:IF ASCICARDS(X,X))—-1
28=A8C(ES(1,1)) THEN L=LENCE$)ICF(l)=X
+(ASCIREGL,1.))-36)/10

315 NEXT X

320 FOSITION 6,157 #&63"AND? "IR
=153C=111C0=13GOSUE 1100¢IF E$="" THEN
320

330 FOR X=1 TO 1331IF ASC(CARD%(X,X))
28=AGC(E$(1,1)) THEN L=LENCE$)ICF(2)
+(ASCCES(L,1.))-36)/10

335 NEXT X

340 IF INTC(CR(L))<HINT(CF(2)) OR AEBS(C
PCLY-=CRC2)) 4502 THEN 390

350 FOR Q=1 TO LC!IF FLAY(Q)==CF(1) TH
EN NEXT Q:GOTO 390

360 FOR V=1 TO LCIIF FLAY(V)<H=CFP(2) TH
EN NEXT VIGOTO 390

370 FOSITION 0,1737 #63"GO0OD FAIR"{GOS
UE 30003IF V>R THEN FLAY (V)=FLAY(LC)IL
C=LL.C-1iFLAY (Q)=FLAY(LC)IGOTO 380

37% PLAY(Q)=FLAY(LC)ILC=LC-1IFLAY(V)=F
LAY (LC)

380 LC=LC-1!HS=HS+2ZI{IF LC=0 AND CD=352
THEN 800

383 IF LC=0 THEN GOSUE 400

389 RETURN

390 FOSITION 00,1737 #63"NOT A FAIR"IGO
SUE 3300:GOSUE 32003F0SITION 0,177 #6
. "1GOTO 300

400 IF CD=52 THEN FOSITION 00,1737 #63"
NO MORE CARDS"IGOSUE 3200 IRETURN

410 FOSITION 0,177 #63"FISHING "ICD=

CO+1ILC=LC+LIFLAY (LC)=C(CD) IFOSITION 0
» 1887 B63VYOU FISHED A "3

=i
=X




420 CARD=C(CD) I X=4tY=183Z=13GOSUE 1000
tGOSUE 3200 IRETURN
450 GOSUE 2000:1IF AF=CC THEN AF=1
440 FOSITION 00,1437 #63"i want a8 "IN
C=CMF (AF)=INTC(CMF(AF)) {IF NCX10/2=INT(
NCx10/2) THEN NC=0,6-NCIGOTO 480
470 NC=0.,4-NC
480 CARD=INT(CMF(AF))Y+NCIX=53Y=143G0SU
E 1000:AF=AF+1
490 FOSITION 0,197 #63"Fish or Have i
t"3iCO0=4iC=19IR=191COSUE 11003IF EBH=""
THEN 490
S00 IF B$="F" THEN GOSUE 400:GOT0O 550
510 FOR X=1 TO LCIIF FLAY(X)=:CARD THE
N NEXT X:GOSUE S920:GOTO HH0
520 CC=CC+1iCMF(CCHY=FLAY(X)
330 FLAY (X)) =FLAY(LC){LC=LC~13IF LC=0 T
HEN IF CD=52 THEN GOSUE 400:GOSUE 2000
tREM DRAW A CARD FROM THE DECK
540 IF LC=0 THEN 800
550 FOR Q=1 TO CC-L1:FOR VU=Q+1 TO CCIIF
INTC(CMF(Q) ) =INT(CMF(V)) AND AES(CMF(Q
)=CMF (VU))=0,2 THEN 560
555 NEXT VINEXT Q:GOTO 580
560 FOSITION 0,1587 #6463
"IPOSITION 0,137 #463"i have a8 pair
"1 ICARD=CMF (Q) ¢ X=71Y=131Z=1
570 GOSUE 1000:FOSITION 00,1437 #6463
and "3 iY=149{CARD=CMF (V) IGOSUE 1
000:GOSUE 3000:CS=CS+2
579 CMF(V)=CMF(CC) tCC=CC~1:CMF(Q)=CMF(
CCYICC=CC-1:IF CC=»0 THEN 200
577 GOSUE 600:IF CC-x0 THEN 200
578 GOTO 800
580 FOSITION 0,13:? #63"no pair "G
OSUE 3300:GOSUE 32003GOTO 200
590 FPOSITION 0,13:7? #463"1 must fish"
4600 IF CD=92 THEN FOSITION 0,13:7 #63"
NO CARDS LEFT"IGOSUE 3200:RETURN
610 CC=CC+1:CD=CD+1iCMF(CC)=C(CD){RETU
RN {REM GET A CARD
790 REM HUMAN IS INVERSE
800 FOSITION 0,0:7? #&6;CHRSCLZ2S) IFOSITI
ON S5,15:7? #63"WINNER IS ——="31IF HHE=CS T
HEN FOSITION 6,17:7 #6353 "HUMAN'"
810 IF CS=HS THEN FOSITION 4,177 #63"
computer"




815 REM tie IS LOWER CASE INVERSE

820 IF CS=HS THEN FOSITION 8,17:7 #63"
tie"IREM lower case inverse

830 IF PEEK(53279)<xé6 THEN 830

840 RUN

1000 CVU=INT(CARD) $5=(CARD~-CVIX10:IF (CV
=10 AND X-=Zx1 THEN FOSITION (X-Z)%X3-1,
Y

1005 IF S=1 0OR $=3 THEN 1020

1010 ? $63CARDS(CV,CV)Y 33 IF CVU=10 THEN
? #4303 SREM ZERO X9 INVERSE

1018 ? $635UTTH(S5,5) IRETURN

1020 A=ASC(CARD$(CV,CV))IIF A<1920 THEN
? FOHICHRS(A-32) 3 ¢ IF CV=10 THEN ? #6;C
HR$ CL44) 3

102% IF Ax190 THEN ? #63CHR$(A+32) 3
1030 A=ABC(SULTH(5,5)):i7? H6ICHRS (A-32)
PRETURN

10%0 Q=03FOR V=0,1 TO 0.4 STEF 0.,1:{FOR
X=1 TO 13:1C(X+Q)=X+VUINEXT X:Q=Q+13INE
XT V

1060 FOR X=1 TO 9iFOR Q=52 T0 1 STEP -
13V=INT(RND(L)XQ)IREM FICK A CARD

1070 CCOY=CUsC(VH)=C(RQYIC(QI=C(0) IREM
MOVE THE CARDS

1080 NEXT QINEXT XIRETURN $REM DO IT 9
TIMES

1100 B=13iRd=""10FEN #2,4,0,"K{"{GOSUE
3400

1110 GET #2,KIIF K=1835 THEN CLOSE #2:R

ETURN

1120 IF K=127 THEN K=K~-128:iFOKE 6%94,0¢
REM RESET INVERSE FLAG

1130 IF K=126 AND CO«=3 THEN E$=" "3
E$:=""{E=1{FOSITION C+E,R:? #&63" W
0=131GOTO 1110

1140 IF K=929 THEN K=K-9&6IiFOKE 702,641R

EM SET FOR UFPFERCASE

1150 IF CO=3 THEN IF K=78 0R K=89 THEN
1200

1160 IF CO=1 THEN IF (K:x47 AND K<58) 0

R K=6% OR K=74 0OR K=7%5 0OR K=81 THEN 12

00

1170 IF CO=2 AND E<4 THEN IF K=67 0OR K

=468 (OR K=72 0OR K=83 THEN 1230

1180 IF CO=4 THEN IF K=70 0OR K=72 THEN
1200




1190 GOTO 1110
1200 FOSITION C+E,RI? #63CHRS (K) {ES(E,
E)=CHR$ (K) IIF COx2 THEN CLOSE #2Zi{RETUR

N
1210 BE=B+11IF CO=1 THEN C0D=2{IF K=49 T
HEN CO=1

1220 GOTO 1110

1230 IF K=67 THEN K=38

1240 IF K=68 THEN K=39

1250 IF K=72 THEN K=37

12460 IF K=83 THEN K=40

1270 GOTO 1200

2000 FOSITION 0,087 #46;CHR$(125)1Y=13Z

=1iFOR X=1 TO LCiCARD=FLAY(X) {FOSITION
(X-Z)%3,Y

2010 GOSUE 10003XF X/7=INT(X/7) THEN Y

=Y+21Z=2+47

2020 NEXT X

2030 FOSITION 0,21:7? #63"HUMAN"(FOSITI

ON 3,22:7 $631HS

2040 FOSITION 11,2117 #63"computer"iF0

SITION 15,227 #63CSIRETURN

3000 FOR ZZ=1 TO 10$T=INT(RND(1)X150)+

S0380UND 0,T410,103FOR TI=1 TO 10INEXT
TIINEXT ZZiS0UND 0,0,0,0

3200 FOR TI=1 TO S00INEXT TI{RETURN

3300 FOR ZZ=1 TO 2i{S0UND 0,200,10,10%F

OR TI=1 TO L1O0INEXT TI{SOUND 0,0,0,0¢FO

R TI=1 TO SINEXT TIINEXT ZZ!RETURN

3400 FOR ZZ=1 TO 2:{S0UND 0,20,10,10%FO0

R TI=1 TO 10INEXT TII:SOUND 0,0,0,0:FOR
TI=1 TO SINEXT TIINEXT ZZ:RETURN

of the eight bytes that make up a character from ROM and place
it into RAM. The computer finds each byte of the character by
multiplying the value of V by eight and adding the value of X and
CS. The value of X will increase from zero to seven in the loop.
The other variables will remain the same. The value found is placed
into the RAM location. Because the value of X increases, each of
the eight bytes will be moved in the correct order and stored in
the correct location of RAM. The loop continues until all four
characters have been moved.

Line 110 contains the ATASCII value of each of the four
characters. This is the character’s position in the character set.

7



Set aside
memory for
character set
and strings

I

Move character
set, place
information
into strings

Clear screen,

display
message

Shuffle
cards

Deal cards.
display player's
hand

Player
goes first

Display message
get
card

No Is there
a card

Fig. 1-1. Flowchart for Go Fish. (Continued through page 10.)
8




Take a
card from
the deck

l

Check computer's
hand for the
card

Display
the new
card

Display
message

[

|

Is there
a pair
7

Get the
two cards

Are they
both in the
hand
?

Display
message




Computer
asks for
a card

Should Fish a
computer card from
fish the deck

7

Does
computer have
a pair
)

Check player's
hand for
card.

Display
pair of
cards

Display
end message

Start
key
pressed
2

Play
again;
run program

Fig. 1-1.
10

Continued-




Line 120 places the numeric values or letter descriptions of the
cards in CARDS. The four characters that have been changed to
represent the four suits are placed in SUITS.

Line 130 prints a message on the screen; be sure to include
the four characters. The computer goes to the subroutine at line
1050 to shuffle the cards. The variables HS and CS are set to zero,
the score for both players.

Lines 140-160 deal the cards. The first card is dealt to the com-
puter, the second to the player, and so on. The computer divides
the variable X by two to find out who gets the card. If the variable
is even, the player gets the card; if it is odd, the computer gets it.
After 10 cards have been dealt, the variable CD is set to 10. this
variable keeps track of how many cards have been dealt. The
variables LC and CC are set to 5, the number of cards in each hand.
The variable AF is set to 1, and the computer goes to the subroutine
in line 2000. This subroutine clears the screen and places the
player’s cards and the scores on the screen.

Line 170 sets the variable CO to 3. This is a code for the
subroutine at line 1100. By using a code variable, the computer will
know what letters or numbers are acceptable for the input routine.
The variable R is set to 14 and C is set to 13. This is the row and
column where the entry will be printed. A question is printed on
the screen and the computer uses the subroutine at line 1100 to
receive the input. If there is no input, B$ will be empty and the
line will repeat.

Line 180 sends the computer to line 450 when the entry is N.
The computer goes first.

Line 190 uses the subroutine at line 300 to find out if the player
has a pair. When you ask to go first, you will be given an oppor-
tunity to play a pair of cards before asking for a card. This occurs
only on the first turn. If the computer goes first, it also may play
a pair of cards before asking for one.

Line 200 begins the player’s turn. The computer uses the
subroutine in line 2000 to place the player’s cards on the screen
and asks for a card to be entered (the card you want from the com-
puter to complete a pair). The row and column variables are set
and the code variable is set to 1. The computer uses the subroutine
in line 1100 to receive an entry. If no card is entered, the line repeats
until a card is asked for.

Lines 210-220 look at the values of the cards in CARD$ and
compare them to the value of the card entered. When a match is
found, the computer determines the suit of the card the player wants

11



by subtracting 36 from the ATASCII value of the character. This
value is divided by 10 because the suit is the decimal value of the
card. The value of the card is stored in the variable NC. The com-
puter is then sent to line 230.

Line 230 looks at all the cards in the computer’s hand to see
if it can find one that matches the card the player requested. If no
match is found, the computer goes to line 270 to fish.

Line 240 tells the player that the computer has the card. The
computer uses the subroutine in line 3000 to make a sound, then
removes the card from the computer’s hand by placing the last card
in the computer’s hand into this card’s position. The variable that
keeps track of number of cards in the computer’s hand is decreased
by one. When this value reaches zero, the computer takes another
card from the deck. If there are no more cards, the computer goes
to line 800 to end the game.

Line 250 adds 1 to the value of LC. This is the number of cards
in the player’s hand. The new card is placed into the last position
of the player’s hand. The computer uses the subroutine at line 2000
to display the entire hand with the new card on the screen.

Line 260 sends the computer to the subroutine at line 300 to
get a pair of cards. After the computer returns, the computer is
sent to line 450 for its turn.

Line 270 is used when the computer does not have the card
the player requested. The computer uses the subroutine at line 400
to take the next card from the deck, and the subroutine from line
2000 to display the new hand on the screen. The computer then
goes to line 260 to find out if the player now has a pair of cards.

Lines 300-390 contain the subroutine that fetches the pair of
cards from the player. The computer asks for the first card of the
pair. The values for the row and column are set, as well as the code
for the type of input. The computer uses the subroutine in line 1100
to get the entry. If no card is entered, the computer is sent back
to the line it came from; the player has no pair.

Lines 310-315 check the card entered against the card values
to convert the entry into a one-digit card value.

Line 320 asks for the second card of the pair. This time the
line will repeat if no card is entered, and lines 330-335 again con-
vert the card entered into a one-digit card value.

Line 340 checks the two cards against each other. The number
or value of both cards must be the same, and the difference be-
tween the two cards must be two-tenths. If either of these condi-
tions are not met, the computer goes to line 390 and tells the player

12



that this is not a pair.

Lines 350-360 check both cards against every card in the
player’s hand. The computer knows that a pair was entered; now
it must verify that the player has both cards. If either card is not
in the hand, the computer goes to line 390 and tells the player this
is not a good pair.

Lines 370-385 tell the player the pair was acceptable and pro-
ceeds to remove both cards from the player’s hand. The last card
in the hand must be removed before the first in order for the
removal to be accomplished correctly. The number of cards in the
player’s hand are decreased by one each time a card is removed.
The score variable is increased by two, and the computer checks
to see if there are cards in the player’s hand. If there are none and
all 52 cards have been dealt, the computer goes to line 800 to end
the game. If cards are left in the deck but the player has no cards,
the computer goes to the subroutine in line 400 to get another card.
The computer then returns to the main program.

Line 390 tells the player that the two cards entered cannot be
used as a pair because they are not a pair, or one or both cards
are not in the player’s hand. The computer uses the subroutine at
line 3300 to make a sound and erases the first card entered. The
computer goes back to line 300 for another entry.

Line 400 begins the finishing subroutine. This routine is used
when the player runs out of cards. The variable CD is checked;
if it is 52, all the cards have been dealt. The computer displays a
message, makes a sound, and returns to the main program.

Line 410 tells the player a card is being taken from the deck.
The variable CD is increased by one, as is the variable that counts
the number of cards in the player’s hand; the next card is moved
to the player’s hand. The computer tells the player what card was
placed in his hand.

Line 420 places the decimal value of the card in the variable
CARD, and uses the subroutine at line 1000 to print the card on
the screen. The computer returns to the main program.

Line 450 begins the computer’s turn. The screen is updated
and the variable AF is compared to the number of cards in the com-
puter’s hand. If the variable is greater than the number of cards,
the variable is reset to one. This variable points to the card the com-
puter will try to pair.

Line 460 asks the player for a card. The suit value of the card
the computer wants to pair is placed in the variable NC. If the dec-
imal value is even, the computer subtracts this value from six-

13



tenths. If it is odd, the value is subtracted from four- tenths. This
gives the decimal value of the opposite suit.

Line 480 takes the card value and adds it to the decimal value
and places it into CARD, so the computer will recognize what card
it needs. The subroutine at line 1000 displays this card on the
screen. The variable AF is increased by one. On the next turn, the
computer will ask for the next card in its hand.

Line 490 asks the player to enter F or H. F tells the computer
to fish, or take the next card from the deck. H means the card is
in the player’s hand. The variables for the row, column, and code
are set. The computer uses the subroutine at line 1100 to get the
entry. If no letter was entered, the computer loops at this line.

Line 500 checks the letter in B$. If it is F, the computer goes
to the subroutine at line 600 to get a card. The computer then goes
to line 550 to see if it has a pair.

Line 510 checks every card in the player’s hand for the card
the computer requested. The computer uses this line when H is
entered. If the card is not in the player’s hand, the computer will
tell the player it must fish and use the subroutine at line 600 to
fish a card from the deck.

Line 520 increases the variable that counts the number of cards
in the computer’s hand and places the card into the last position
of the computer’s hand.

Line 530 removes the card from the player’s hand by taking
the card in the last position and placing it into the position of the
card taken by the computer. The variable that counts the number
of cards in the player’s hand is decreased by one. If the player has
no cards and there are cards in the deck, the computer will place
the next card into the player’s hand and go to line 550 to continue
the game.

Line 540 checks the value of LC again. If it is still zero, the
computer is sent to line 800 to end the game.

Lines 550-559 take every card in the computer’s hand and com-
pare them with every following card to see if the computer has a
pair. If there is no pair, the computer goes to line 580 to continue
the game.

Line 560 announces to the player that the computer has a pair.
The first card value is placed into CARD.

Line 570 uses the subroutine at line 1000 to print the card on
the screen. The second card value is placed into CARD and the
same routine prints the second card on the screen. The subroutine

14



at line 3000 makes a sound and the computer’s score is increased
by two.

Line 575 removes both cards from the computer’s hand. If there
are cards in the computer’s hand, the game continues at line 200
and the player takes a turn.

Line 577 uses the subroutine at line 600 to take the next card.
If it takes a card, the computer goes to line 200.

Line 578 sends the computer to line 800 to end the game.

Line 580 tells the player that the computer does not have a pair
in its hand. The computer makes a sound, then goes to line 200
for the player’s next turn.

Line 590 tells the player that the computer must fish. This line
is used when the player responded to the computer’s request for
a card positively, but the card wasn’t in the player’s hand.

Line 600 is the fishing routine. If the variable CD is equal to
52, there are no cards left, and the computer returns to the main
program.

Line 610 increases the variable CC by one. This variable keeps
track of how many cards are in the computer’s hand. The variable
CD is also increased by one. This is the number of cards that have
been removed from the deck. The next card is moved from the deck
to the computer’s hand and the computer returns to the main
program.

Line 800 ends the program. The screen clears and the win-
ning player is named. If the value of HS is greater than CS, the
player won and this message is printed on the screen. Line 810
prints that the computer won if its score is higher.

Line 820 states that the game was a tie if both scores are the
same.

Line 830 loops until the Start key is pressed.

Line 840 runs the program again. To quit the game, press the
System Reset key.

Lines 1000-1030 print the card on the screen. The value of the
card is stored as a single number. The suit of the card is a decimal
value. The value of the card must be stored in the variable CARD
before the computer uses this subroutine. The integer value of the
card is stored in the variable CV; the decimal value is stored in the
variable S. This value idéntifies the suit of the card. The variables
X and Y are the column and row positions where the card will be
printed. The Z value is subtracted from X to move the card one
position to the left as long as the variable X is not set to one. To

15



keep the cards evenly spaced on the screen, the value of X or X - Z
is multiplied by three.

Line 1005 sends the computer to line 1020 if the value of S is
one or three. The spades are printed in dark blue, the hearts in red.

Line 1010 prints the value of the card on the screen. If it is
10, the zero is also printed.

Line 1015 prints the character for the suit on the screen and
returns to the main program.

Line 1020 takes the ASCII value of the card that should be
printed. When the card is printed, 32 is subtracted from it so it can
be printed in red. If its value is 10 the zero is printed.

Line 1025 adds 32 to the value of A if it is greater than 190.
These are the face cards or letter values.

Line 1030 prints the suit character on the screen. This value
also has 32 subtracted from it.

Line 1050 places the cards into the C array. Each card is given
a value from one to 13 and a suit value from 0.1 to 0.4. The FOR-
NEXT loops place these values into the C array. The first loop steps
from 0.1 to 0.4. The loop steps by 0.1. The second loop counts from
1-13. The variable Q keeps track of where in the array the cards
are to be placed. The values of X and V are added together to get
the card value; this card is placed in the array at the location of
X plus Q. The first time this loop is executed, the value of Q is
zero. Each time the loop is completed, 13 is added to the value of
Q. This way, all 52 elements of the array contain a card when the
loop is finished.

Lines 1060-1080 shuffle the cards. The cards are shuffled five
times. Each time, the computer takes the card from the bottom of
the deck and places it into a random position in the deck. The card
that was replaced is moved into a temporary storage element. The
last card is moved into its position, then this card is moved into
the last position. The FOR-NEXT loop counts from 52 to one. The
variable Q always points to the last position, so once a card is moved
into the last position, the position just before it becomes the last
position. This way all the cards in the deck are moved at least once.
The loops continue until the deck has been shuffled five times.

Lines 1100-1270 contain the input routine. There are actually
three routines within these lines. The position of the letter in the
string is pointed to by the variable B. It is set to one for the first
letter. B$ is set to an empty string. The keyboard is opened, and
the computer uses the subroutine in line 3400 to make a sound.
The value cf the key that has been pressed is stored in the variable

16



K. If its value is 155 the Return key has been pressed and the com-
puter returns to the main program.

Line 1120 checks to see if the value of K is greater than 127.
If it is, the inverse key has been pressed, the variable K is decreased
by 128, and location 694 is cleared for normal video.

Line 1130 checks to see if the delete key has been pressed. If
it has, the entire contents of B$ is erased, the variable B is reset
to one, and the entry on the screen is erased. The code is reset
to one and the computer goes to line 1110 for another input.

Line 1140 checks the value of K to see if it is greater than 95.
If it is, the caps key has been pressed and this letter is in lower-
case. To reset the letter to uppercase, 96 is subtracted from the
value of K and the location 702 is POKEd with 64.

Line 1150 checks the value of CO. This is the code that tells
the computer what kind of entry it should look for. If the code is
three, the computer should accept only the letters Y and N. If ei-
ther of these keys were pressed, the computer goes to line 1200.

Line 1160 is used when the CO is 1. The computer will accept
any number of the letters A, K, J, or Q. This is the first entry for
a card. If any of these keys have been pressed and the computer
wants a card value, the computer will go to line 1200.

Line 1170 is used when the value of CO is 2 and there are less
than four characters in the string. One of the suit keys (H, C, D,
S) must be pressed before the computer an go to line 1230.

Line 1180 will accept the F or H keys if the value of CO is 4.

Line 1190 sends the computer to line 1110. The correct key
for the code was not entered.

Line 1200 prints the key that has been pressed on the screen.
The character is placed into B$. If the value of CO is greater than
two, the computer was looking for a one-keystroke entry. This is
used for the yes/no questions and the fish question. The keyboard
is closed and the computer returns to the main program.

Line 1210 increases the value of B by one so it can point to
the next position in the string. If the value of CO is one, it will be
changed to 2. Now the computer will look for the suit key. How-
ever, if the value of K is a 1, then the next key should be a 0 and
the value of CO is reset to 1.

Line 1220 sends the computer back to line 1110 to get another
entry.

Lines 1230-1260 change the value of the key that has been
pressed. The first letter of the suit is used for the entry of a par-
ticular suit, but these characters have not been changed in the

17



character set. In order to print the correct suit character on the
screen, the value of K must be changed to the correct suit character.

Line 1270 sends the computer to line 1200 to print the suit
character.

Lines 2000-2040 update the screen. The screen is cleared, then
each card in the player’s hand is placed into the variable CARD.
The computer calculates the position of the next card on the screen
and uses the subroutine in line 1000 to print the card on the screen.
Every time seven cards are printed on the screen, the variable Y
is increased by 2 to start a new row. The variable Z is increased
by 7 for the new offset. The loop continues until all the player’s
cards are printed on the screen. The scores for the player and the
computer are printed near the bottom of the screen. Then the com-
puter returns to the main program. Lines 3000-3400 are various
sound routines and timing routines that are used throughout the
program.

OLD MAID

Objective of the game: To get rid of all the cards and not
be left holding the last card.

Directions: There are 49 cards in the deck; all the cards are
dealt. You have 24, and the computer has 25. You are asked if you
would like to go first. If you do, enter Y; otherwise enter N. You
are asked if you have a pair. If you do, enter the two cards. A pair
is two cards of the same value and the same color, either a heart
and a diamond or a club and a spade. If you don’t have a pair, press
the Return key. You will be told how many cards the computer has.
Pick one of these cards and it will be placed in your hand. The game
alternates between you and computer until someone runs out of
cards. The first player to run out of cards wins. Figure 1-2 is the
flowchart for this and Listing 1-2 contains the code.

Line 50 sets aside memory for strings and arrays. The C array
contains the cards. CARD$ contains the value of the cards and
SUITS$ the characters that represent the four suits. The arrays
PLAY and CMP will contain the cards in the player’s and com-
puter’s hands. B$ will contain the information entered and CP is
the temporary storage area for the entered cards.

Line 60 finds out how much memory is in the computer by
PEEKing at location 106. The character set will be moved to the
area just before the screen, 2K from the end of memory. This value
and the beginning byte of the ROM-based character set are POKEd
into locations 204 and 206. The decimal address for the first byte

18



of the ROM-based character set is stored in the variable CS.

Line 70 reads the code for the assembly language subroutine
and places it in memory locations 1536-1555. This assembly
language subroutine will move the character set located in ROM
into RAM.

Line 80 contains the decimal values of the assembly language
subroutine that moves the character set.

Line 90 changes the screen to graphics 17, the large colored
letters with no text window. The computer uses the USR command
to execute the assembly language subroutine that begins in mem-
ory location 1536. When the computer returns to this line, it will
change the character set to the one in RAM by POKEing location
756 with the value of A. The first byte of this character set is stored
in the variable CHARSET.

Line 100 moves the graphic characters that depict the four suits
from ROM into RAM. Since the computer can only display numbers
and uppercase letters, or graphic characters and lowercase letters,
it is necessary to move the suit characters into the locations nor-
mally occupied by the percent sign, the ampersand, the apostrophe,
and the open parenthesis. To move these characters, the computer
reads the location of the character in the character set. To figure
out where the first byte is located, the computer multiplies this
number by 8, then adds the first byte of the character set and the
value of X. X will increment through this loop so that all eight bytes
of the character can be transferred. This loop continues until all
four characters are moved.

Line 110 contains the position of the four characters in the
character set.

Line 120 places the values of the cards in CARD$ and the four
suits in SUITS.

Line 130 places a message on the screen so you will know the
computer is working and not caught in an endless loop. The com-
puter uses the subroutine at line 1050 to place the cards in the C
array and to shuffle them. When the computer returns to this line,
the variable CD is set to one. This is the variable that points to
the next card to be dealt. The screen is also cleared.

Lines 140-160 deal the cards into two hands: the player’s and
the computer’s . The number of cards the player and the computer
were dealt are placed into variables LC and CC. The player is dealt
24 cards and the computer 25. The subroutine at line 2000 places
the player’s cards on the screen.

Line 170 asks the player if he wants to go first. The variables

19



Fig. 1-2. Flowchart for Old Maid.

START

Set aside
memory for
strings and

character set

l

Move character
set, place
information
into strings

Clear screen,
display
message

Deal cards,
display player’s
cards

Player
has pair
?

No

Get

from player

cards

Player
has pair

20




Player
has cards
?

Computer
have cards
left?

Pick a

card from
the computer

No

Yes

Computer
have a pair
T

Display
cards that
make pair

Computer
has cards
left?

Display
end
routine

g

—

Take a card
from the
player

Player
have cards
left
?

21



Listing 1-2. Old Maid.

22

10 REM OLD MAID FOR ONE FLAYER AND COM
FUTER

20 REM CHAFTER 1 - CARD GAMES

30 REM BY L.M. SCHREIERER FOR TAE BOOKS

40 REM COFYRIGHT 1984

S0 DIM CC52),CARDS(13),8UIT$(4),FLAY (3

0),CMF(26),E4$(3),CF(2)
60 A=FPEEK(106)-161FOKE 204,AC8=FEEK(7
96) IFOKE 206,C81C8=CE%256
70 FOR X=15346 TO 1555iREAD VIFOKE X,V$
NEXT XIREM MOVE THE CHARACTER SET
80 DATA 104,162,4,160,0,177,205,14%,20
3,200,208,249,230,206,230,204,202,208,
242,96
20 GRAFHICS 17:Q=USBR(1536) IFOKE 7%6,A:
CHARSET=AX2G6 tREM SET UF THE CHARACTER
8
100 FOR CSET=CHARSET+40 TO CHARSET+644
STEF B8IREAD VIFOR X=0 TO 7iFOKE CSET+X
y FEEK(CS+UXB4+X) INEXT XINEXT CSET
110 DATA 64,80,96,123
115 REM CHARACTERS IN CARD$ AND SUIT$
ARE INVERSE
120 CARDS="AZ234567891JAK" SUIT$="%& " ("
CREM FUT THE CARDS IN THE STRINGS
130 FOSITION 1,1237 #63"% & shuffling
2 (MIGOSUE 1050:CD=14FOSITION 0,057 %6
$CHR®B (L25)
140 FOR X=1 TO 491IF X/2=INT(X/2) THEN
FLAY (X/2)=C(X)$G0OTO 160
150 CMFOINT(X/Z2)+1)=0(X)
160 NEXT XiLC=24:1CC=25:GOSUE 2000
170 FOSITION 0,10:? #63"D0O YOU WANT TO
GO FIRST Y/N?"i1C8=3iR=111C1=121G0
SUE 11003IF E$="" THEN 170
180 IF E$="N" THEN 400:REM COMFUTER GO
ES FIRST
1920 FOSITION 0,1037? #63"
"ICF(1)=03CF
(2)=0IREM 40 ELANKS FOR 2 ROWS
”00 FOSITION 00,1087 #63"FIRST CARD IS
-PIC8=1tR=10:C1=14:GOSUE 11003IF E$=""
THEN 370
210 FOR X=1 TO 13:IF ASC(CARD$(X,X))-1




28=A8C(E$(1,1)) THEN L=LEN(E$)ICF(1)=X

+(ASC RS (L, 1)) -36)/7103G0OTO 230

220 NEXT X

230 FOSITION 4,1137 #63"NEXT CARD -"3C

S=11R=111C1=14:GOSUE 1100¢IF E$="" THE

N 230

240 FOR X=1 TO 13:IF ASC(CARD$(X,X))-1

28=AGC(E$(1,1)>) THEN L=LEN(E$)ICF(2)=X

+(ASCE$ (., L))-36)/10:C0O0TO 260

250 NEXT X

260 IF INT(CF(1))<=INT(CF(2)) OR AES(C

FCLY-CP(2))<x0,2 THEN 340

270 FOR X=1 TO LCIIF CF(1)<HFLAY(X) TH

EN NEXT X:CARD=CF(1):GOTO 320

280 FLAY(X)=0:GOSUE 3020:FOR X=1 TO LC
CIF CRPO2)<=FLAY (X)) THEN NEXT XICARD=CF
(2):1G0T0O 320

290 FLAY(X)=0:GOSUE 550

300 IF LCx0 THEN GOSUE 2000:GOTO 400:R

EM COMFUTERS TURN

310 ? #63CHR$(125)IG0OTO 600IREM END OF
GAME

320 GOSUE 3000:FOSITION 0,14:7 #63"NOT
FOUND *33Z=1iX=03Y=141G0SUE 3010:GOSU

E 1000

330 GOSUR 4000:FOSITION 00,1487 #63"

"ITRAF 40000:GOTO 190

340 GOSUE 3000:FOSITION 00,1487 #63"NOT
A MATCH"IGOTO 330

370 IF LC=30 THEN 200:REM MUST HAVE A

FAILR

380 FOSITION 0,147 #63"i have "jCC3"

cards"$? #63"FICK ONE"ICS=4iR=15:C1=10
tGOSUE 1100:IF E$="" THEN 380

389 E=VAL(E$){IF E-CC THEN 380

390 LC=LC+1:FPLAY(LC)=CMF(E) {CMF(E)=CMF
(CC)HICMF(CCH=0:CC=CC-1¢IF CC=0 THEN 640
0

395 GOSUE 2000

400 FOR Q=1 TO CC-1:FOR V=Q+1 TO CCIIF
INTCCHMF Q) <HINT(CHF (VY)Y THEN NEXT V3

GOTO 470:REM CARDS DON’T MATCH

410 IF ABS(CMF(Q)~-CHMF(V))<x0,2 THEN NE

XT VIGOTO 470:REM SUITS DON’'T MATCH

420 FOSITION 0,14:7? #43"I HAVE A MATCH
My iX=S I Z=1 Y =143 CARD=CMF(Q) 1GOSUR 100

23



24

DIFOSITION 11,1987 #63"AND "3

430 X=461Y=181CARD=CMF (V) {GOSUE 10003 GO
SUE 3020:G05UE 31003CMF(Q)=03CMF(V)=01
IF CC=2 THEN CC=03G0OT0Q 400

440 FOR X=1 T0Q CC=1:tIF CMF(X)=0 THEN F
OR Y=X+1 TO CCICMF(Y=1)=CMF(Y) INEXT Y1
CC=CC~-1:GOTO 440

450 NEXT XiIF CMF(X)=0 THEN CC=CC-1
4460 GOSUE Z000:GOTO 190

470 NEXT Q

500 GOSUE 30103FOSITION 0,14:¢7 Hb63"i0 ™
ust pick from You"ICI=INT(RND(1)XL.C)+

1

910 FOSTTION 0,157 #63"i picked a "}t
Z=11X=43Y=151CARD=FLAY (C1) tGOSUE 10003
(;l'J')U[' 3100

20 CC=CC+1ICMF(CCHI=CARDIFLAY(CL)=FLAY

(LC).LL LC-13:XF LC=0 THEN 400

530 GOTO 460
990 IF LC=2 AND FLAY(1l)=0 AND FLAY(2)=
0 THEN LLC=03RETURN
560 FOR X=1 TO LC-1!IF FLAY(X)=0 THEN
FOR Y=X+1 TO LCIFLAY(Y-1)=FLAY(Y) INEXT
YiLC=LC-13G0TO G560
570 NEXT X3IF FLAY(X)=0 THEN LC=LC-1
580 RETURN
600 FOSITION 0,037 #&H3CHR$(125)IFOSITI
ON 1,10:7 #63;"THE WINNER IS —-—-"

610 IF CC=0 THEN ? #63" the compute
r"3GOTO 630
6”0 A T- THE HUMAN"

630 GOSUE 40003:RUN

1000 CV=INT(CARD) :5=(CARD-CVIX10:IF CV
=10 AND X-Z&x1 THEN FOSITION (X-Z)x3-1,
Y

1005 IF 8=1 OR $=3 THEN 1020

1010 ? #63CARD$(CV,CV)3IIF CV=10 THEN

? #63"0"IIREM ZERO IS INVERSE

1015 7 #636UTTH(S,8) IRETURN

1020 A=ABC(CARD$(CV,CV))ITIF A<190 THEN
? F63CHRS (A-32) 3 3IF CV=10 THEN ? #63C

HR$ (144) 3§

1025 IF AX190 THEN ? #43CHR$ (A+32) 3
1030 A=ASC(SUIT$(5,8))1? $#63CHR$ (A-32)
fRETURN

1050 @=03FOR V=0,1 TO 0.4 STEF 0.13FOR




X=1 TO 13:1C(X+Q)=X+VINFEXT XiQ=Q+13INE

XT V

1060 C(26)=C(50)IREM GET RID OF ONE QU

EEN & TWO KINGS

1070 FOR X=1 TO SIFOR Q=49 TO0 1 STEF -
LIVU=INT(RNDC(1)XQ) IREM FICK A CARD

1080 CC0Y=C(MIC(VI=CCQ) 1CRI=C(0) IREM
MOVE. THE CARDS

1020 NEXT QINEXT XIRETURN (REM DO XT 9
TIMES

1100 E=11Es=""10FEN #2,4,0,"K"

1110 GET #2,KIIF K=155 THEN 1220

1120 IF Kx127 THEN K=K-128:FO0KE 694,0%

REM RESET INVERSE FLAG

1130 IF K=126 AND E>1 THEN E=1li1E$="

“IB$“““‘FOSITIGN CL+E,RI7? ¥63" "iCS=

1:GOTO 1110

1140 IF Kx9% THEN K=K-246I1FO0KE 702,64R

EM SET FOR UFFERCASE

1150 IF CS=1 AND E=4 THEN IF (K47 AND
{288) OR K=6G 0OR K=74 OR K=73 0OR K=81
THEN 1200

11460 IF CS8=2 AND E<4 THEN IF K=67 OR K

=68 OR K=72 0OR K=83 THEN 1230

1170 IF CS8=3 AND E«<4 THEN IF K=89 0OR K

=78 THEN CS=0:G0OTO 1200

1180 IF CS=4 AND E<3 THEN IF (K47 AND
K<58) THEN 1200

1190 GOTO 1110

1200 B$(E,EB)=CHR$(K) IFOSITION C1+E,

63 CHR$ (K) 1E=E+11IF CS=1 THEN CS—L.IF
E=2 AND K=49 THEN CS=1

1210 IF CS<x0 THEN 1110

1220 CLOSE #2IRETURN

1230 XIF K=67 THEN K=38

1240 IF K=68 THEN K=39

1’“0 IF K=72 THEN K=37
1260 IF K=83 THEN K=40

1270 GOTO 1200

2000 FOSITION 0,037 #63CHR$(1Z2G) 1Y=11Z

=13F0OR X=1 TO LCICARD=FLAY (X)) IFOSTTION
(X-Z)X3,Y

2010 GOBUR 10003IF X/7=INT(X/7) THEN Y

=Y+28Z=Z+7

2020 NEXT X

2030 FOSITION 0,207 #&63"HUMAN"IFOBITI

25



ON 22,2157 #651.CIFOSITION 10,2037 #68'"cC
omputer" tFOSTTION 14,2117 #630CC

2040 RETURN

3000 SOUND 0,50,10,10FOR TI=1 TO SOIN
EXT TILISOUND 0,0,0,0  RETURN

3010 SOUND 0,200,10,L0¢FOR TI=1 TO 10
NEXT TISSOUND 0,0,0,0RETURN

3020 FOR ZZ=10 TO 200 STEF 10:SQUND 0,
ZZy10,103F0R TI=1 TO 10INEXT TIINEXT Z
Z3iSOUND 0,0,0,0RETURN

3100 FOR TI=1 TO SO00¢NEXT TIIRETURN
4000 IF PEEK(33279)<xé6 THEN 4000

4000 RETURN

CS, R, and C1 are set. The variable CS indicates what type of in-
put is expected. The variables R and C1 are the row and column
for the input. The computer uses the subroutine in line 1100 to get
the entry. If the Return key is pressed and nothing was entered,
B$ will be empty and null. The computer loops at this line until
N or Y is entered.

Line 180 checks to see if N was entered. If so, the computer
is directed to line 400. The computer will play first.

Line 190 clears the question from the screen and clears both
elements of the array.

Line 200 prints a message of the screen, then sets the variables
for the input routine, the row and column. The computer uses the
input subroutine at line 1100 to get the first card of the pair. If
nothing is entered, B$ will be empty and the computer is sent to
line 370 to pick a card.

Lines 210-220 convert the card entered into its decimal
equivalent. Each card is stored as a whole number. The suit is the
decimal added to the whole number.

Line 230 gets the second card of the pair. The variables are
set before the computer uses the subroutine at line 1100. The com-
puter loops at this line until a card is entered.

Lines 240-250 convert the second card into its decimal
equivalent.

Line 260 checks the whole number of the card to see if both
cards have the same value. The suit is also checked to see if they
are both red or black. The value for the same color suits are two-
tenths apart, so if the difference between the suit values is two-
tenths, both suits are the same color. If either of the value or suit
conditions are not met, the computer is sent to line 340 to print

26




the message on the screen, then ask for the pair again.

Line 270 checks the cards in the player’s hand to make sure
the player has the first card entered. If the card is not in the
player’s hand, the computer goes to line 320 and tells the player
the card was not found. The computer asks for the pair again.

Line 280 removes the card from the player’s hand, makes a
sound, then looks for the second card. If it is not in the player’s
hand, the computer goes to line 320 to tell the player the card could
not be found.

Line 290 removes the card from the player’s hand, then uses
the subroutine in line 550 to move the cards in the player’s hand
up one position.

Line 300 checks to see if the player has any cards left. If there
are cards in the player’s hand, the computer uses the subroutine
in line 2000 to print the current hand on the screen. The computer
is sent to line 400 for the computer’s turn.

Line 310 clears the screen and sends the computer to line 600
to end the game.

Line 320 uses the subroutine in line 3000 to make a sound, then
prints a message on the screen. This tells the player the card can-
not be found.

Line 330 erases the message on the screen and sends the com-
puter to line 190 for another pair.

Line 340 makes a sound, then tells the player that the cards
entered were not a match. The computer is sent to line 330 to erase
the message and go back to the beginning of the input routine.

Line 370 checks to see how many cards are in the player’s hand.
If there are 30, the computer goes back to line 200. With that many
cards, there has to be a pair.

Line 380 tells the player how many cards are in the computer’s
hand and.instructs the player to pick one. The computer uses the
input subroutine in line 1100. The computer loops at this line until
a number is entered.

Line 385 finds the value of B$. If the value is more than the
number of cards in the computer’s hand, the computer gees back
to line 380 for another entry.

Line 390 adds 1 to the number of cards in the player’s hand.
The card that was chosen is removed from the computers hand and
placed into the player’s hand. The last card in the computer’s hand
is moved into the position of the card that was taken, and the last
card is erased. The variable that counts how many cards are in the
computer’s hand is decreased by 1. If this variable is 0, the com-

27



puter goes to line 600 to end the game.

Line 395 sends the computer to the subroutine at line 2000 that
places the cards on the screen.

Line 400 begins the computer’s turn. The computer begins with
the first card in the computer’s hand and checks every card after
it to see if it matches. If a match cannot be made with the first card,
the computer goes to line 470 to continue the loop. The loop con-
tinues until every card in the computer’s hand has been compared
with the others for a possible match.

Line 410 compares the suit values of the two cards. If the suit
colors of the two cards are not the same, the computer will con-
tinue the loop.

Line 420 is executed when the computer finds two cards of the
same value and same suit color. The message is printed on the
screen. The first card’s value is placed into CARD and the com-
puter uses the subroutine at line 1000 to print this card on the
screen.

Line 430 moves the second card value into the variable CARD
and the subroutine at line 1000 is used to print this card on the
screen. The subroutine at line 3020 makes a sound and the
subroutine at line 3100 pauses the program. The two cards are
removed from the computer’s hand by placing a zero into their posi-
tion in the array. The computer checks to see if these were the last
two cards in the computer’s hand. If they were, the variable CC
is set to 0 and the computer is sent to line 600 to end the game.

Line 440 begins with the first card of the computer’s hand and
looks for the elements that contain a zero. This is where the cards
were removed. When the computer finds such an element, it moves
the rest of the cards in the hand up one position, and decreases
the value of CC by 1. The loop continues until all the cards have
been moved up.

Line 450 continues the loop to find the elements of the array
that contain a zero. The last element of the array is checked to see
if it contains a zero. If it does, the variable CC is decreased by 1.

Line 460 uses the subroutine at line 2000 to update the screen.
Then the computer is sent to line 190 for the player’s turn.

Line 470 continues the loop that looks for a matching pair of
cards.

Line 500 begins the routine that picks a card from the player.
The computer uses this routine when it can not find a pair of cards
in its hand. The computer uses the subroutine at line 3010 to make
a sound, then it chooses a random number based on the number

28



of cards in the player’s hand. Remember, the variable LC keeps
track of how many cards are in the player’s hand.

Line 510 tells the player which card was picked. The variables
Z, X, and 15 are set for the correct position on the screen. The value
of the card that was picked is moved into CARD and the computer
uses the subroutine at line 1000 to print the card on the screen.
The subroutine at line 3100 pauses the program for a few seconds.

Line 520 adds 1 to the value of CC because the computer is
adding a card to its hand. The card the computer picked is placed
into the last element of the array. The last card in the player’s hand
is moved to the position of the card that was just removed. The
variable LC is decreased by 1, then checked to see if it is now 0.
If it is, the computer is sent to line 600 to end the game.

Line 530 sends the computer to line 460. This updates the
screen, then continues the game with the player’s turn.

Line 550 begins the routine that moves the cards up one posi-
tion in the player’s hand. If the variable LC is 2, the last two cards
in the player’s hand were just played so there are no cards to move
up. The variable LC is reset to 0 and the computer returns to the
main program.

Line 560 begins the FOR-NEXT loop that moves the cards up.
The computer compares the value of the element of the array to
zero. If it is zero, the card was played and the computer begins
another loop to move up the rest of the cards in the hand. The
variable LC is decreased by 1 and the loop begins again.

Line 570 continues the first loop that looks for the element with
zero. After this loop is completed, the computer checks the last
element of the array to see if it is zero. If it is, the computer sub-
tracts 1 from the value of LC.

Line 580 returns the computer to the main program.

Line 600 begins the ending routine. The screen is cleared and
the winning message is printed on the screen.

Line 610 checks the variable CC to see if it is zero. If it is, the
computer is the winner and this message is printed on the screen.

Line 620 prints the message that the human is the winner of
the game.

Line 630 sends the computer to the subroutine in line 4000.
When the computer returns to this line, the program is run again.
To stop this program completely, press the System Reset key.

Line 1000 prints the card on the screen. The value of the card
must be in the variable CARD before the computer uses this
subroutine. The integer or whole number indicates the value of the

29



card. This value is placed into the variable CV. The value of the
suit is placed into the variable S. This value is obtained by multiply-
ing the difference between the variable CARD and the variable CV
by 10. The suit value is stored as the decimal in the variable CARD.
If the value of the card is 10, the position of the card on the screen
is recalculated.

Line 1005 checks the value of the variable S. The hearts and
diamonds are printed in red and the spades and clubs are printed
in dark blue.

Line 1010 prints the card on the screen. The value of the card
is taken from CARDS. If the value of the card is 10, the zero is
printed on the screen.

Line 1015 prints the suit character on the screen and returns
to the main program.

Line 1020 takes the ASCII value of the card from CARDS$. If
the value is less than 190 the computer subtracts 32 from the value
and prints it on the screen. This is the number in the alternate color.
If the value of CV is 10, the zero is printed on the screen.

Line 1025 adds 32 to the value of A if the value of A is greater
than 190. This prints the letter on the screen in the other color.

Line 1030 prints the suit character on the screen in the alter-
nate color.

Line 1050 begins the subroutine that places the cards into the
C array and shuffles the cards. The first FOR-NEXT loop counts
from 0.1 to 0.4 by 0.1. These are the four suits for the cards. The
second loop counts from 1 to 13. Each time this loop is completed,
the variable Q is increased by 13. This variable points to the posi-
tion in the array where the next card will be placed. Its value is
added to the value of X. This way a card is placed in each element
of the array.

Line 1060 moves the last Jack into the position held by the sec-
ond King. Two Kings and one Queen will not be used in this
program.

Line 1070 begins two FOR-NEXT loops. The first loop is
repeated five times. This is the number of times the deck of cards
will be shuffled. The second loop begins with the last card used
and continues backwards to the first card. The computer chooses
a random card to move in the deck.

Line 1080 places this card in a temporary storage area. The
last card in the deck is moved into the position of the card that was
just picked. The card in the temporary area is moved to the last
position.

30



Line 1090 continues the loop. Since the number of cards the
computer can choose from is smaller by one each time this loop
is executed, all the cards can be moved; once the card is placed
into the last position, however, it can never be touched again. The
second loop continues until the cards have been shuffled five times.
The computer then returns to the main part of the program.

Line 1100 begins the input subroutine. The variable B is set
to 1. This variable points to the position the character will occupy
in the string. The string is cleared and the keyboard is opened.

Line 1110 waits until a key is pressed. The value of that key
is placed into the variable K. If its value is 155, the Return key
was pressed and the computer is sent to line 1220.

Line 1120 checks the value of K. If it is greater than 127, the
inverse key was pressed. To get the normal value of the key, sub-
tract 128 from the value of K. POKE location 694 with a zero to
reset the flag for normal input.

Line 1130 checks to see if the value of K is 126. This is the
delete key. If it is 126 and the value of B is greater than 1, then
the variable B is reset to 1, and the contents of B$ are erased. B$
is set to a null string (‘*”"), and the letters or numbers on the screen
are erased. The code is reset to 1, and the computer is sent to line
1110 for another entry.

Line 1140 checks to see if the value of K is greater than 95.
If it is, the entry was a lowercase. The value of K is decreased by
96 and the location 702 is POKEd with 64. This resets the keyboard
for uppercase.

Line 1150 checks the variable CS to see if it is 1. If it is, and
the value of B is less than 4, the computer will check the value of
K to see if a number key or the letter Q, K, J, or A was entered.
The computer is sent to line 1200 if one of these keys was pressed.

Line 1160 is used by the computer if the value of CS is 2 and
the value of B is less than four. This line checks to see if one of
the letters designating a suit was pressed. The four letters that the
computer will accept for suits are H, S, C, and D, for hearts, spades,
clubs, and diamonds. When one of these keys are pressed, the com-
puter is directed to line 1230.

Line 1170 is used when the value of CS is set to 3. The com-
puter will only accept the letters N or Y on this line.

Line 1180 is used when the variable CS is set to 4. This line
checks for a number key.

Line 1190 sends the computer back to line 1110. The key that
was pressed could not be used by the computer.

31



Line 1200 places the character for the pressed key into B$. This
character is then printed on the screen and the value of B is in-
creased by 1. If the value of CS is 1, it is reset to 2 to allow the
suit of the card to be entered. However, if the key pressed for the
card value was numeral 1, the variable CS is reset to 1 because
0 must be entered after the 1.

Line 1210 sends the computer back to line 1110 if the value
of CS is not zero. It is reset to 0 after a Y or N key was entered
so the computer does not have to wait for the Return key to be
pressed.

Line 1220 closes the keyboard and sends the computer back
to the main program.

Lines 1230-1270 change the value of K from the letter key that
was pressed to the value of the character of the suit. Once the value
has been changed, the computer is sent to line 1200 to print the
character on the screen.

Lines 2000-2020 restore the information on the screen. The
cards that are in the player’s hand are printed on the screen.

Line 2030 prints how many cards are left in the player’s and
the computer’s hands.

Line 2040 sends the computer back to the main program.

Lines 3000-3020 are the sound subroutines used in the program.
There are three different types of sounds used in this program.

Line 3100 is a timing loop. It is used to slow the program down.

Lines 4000-4010 are used at the end of the program. The com-
puter loops at line 4000 until the Start key is pressed. Once this
key is pressed, the computer returns to the main program.

TAROT CARDS

Objective of the game: To be able to forecast the future.

Directions: This program can be used as a parlor game. The
computer asks for the sex and marital status of the player then shuf-
fles the cards and deals them on the screen. The position of the
cards determines the future of the player. None of the predictions
are very specific; use your own imagination to fill in the details.
The flowchart for this program is Fig. 1-3, and Listing 1-3 is the
code.

Line 50 sets aside the memory for the arrays and variables.
The C array holds the deck of cards; CARD$ and SUIT$ contain
the values of the cards and the suit characters. The PLAY array
holds the cards in the order they are displayed on the screen. WHO$

32



holds the information needed to print messages on the screen.

Line 60 determines how much memory is in the computer by
PEEKing at location 106. This value is decreased by 16 so it points
to memory just above the screen area. This is where the character
set will be moved. The value is POKEd into location 204. The first
byte of the ROM-based character set is POKEd into location 206.
This information is used by the assembly language subroutine that
moves the character set from ROM into RAM. The decimal value
of the first byte of the character set is ROM is stored in variable CS.

Line 70 reads the assembly language subroutine from line 80
and POKEs it into memory locations 1536-1555.

Line 80 contains the decimal values for the assembly language
subroutine that moves the character set from ROM into RAM.

Line 90 changes the screen to graphics 17; which is graphics
1 with no text window. The computer uses the USR command to
execute the assembly language that begins in memory location
1536. When the computer returns to this line, it changes the
character set to the one in RAM by POKing location 756 with the
value of A. The first byte of this character set is stored in the
variable CHARSET.

Line 100 begins the FOR-NEXT loop that changes some of the
characters in the character set. The computer reads a value from
line 110. This is the location of the character that will be moved
from the ROM character set into the RAM character set. The sec-
ond FOR-NEXT loop takes each of the eight bytes and moves them
into RAM. These characters are the four graphic characters that
represent the four suits. The computer cannot display both numbers
and graphic characters in the large color letter mode, so we replace
some of the characters that will not be used with these four
characters.

Line 110 contains the location of the four characters.

Line 120 sets CARDS to the values of the cards, SUITS$ to the
four characters that represent the suits, and WHOS$ to specific
phrases- that will be used in the program.

Line 130 prints a message on the screen while the computer
uses the subroutine at line 1050 to place the cards into the C array
and shuffle the cards. When the computer returns to this line, the
screen is cleared.

Line 140 sets the variable CS to 1. This tells the computer which
letters to accept in the input routine. The computer prints a message
on the screen and uses the subroutine in line 1100 to get an answer.

33



( START )
Set aside
memory for
strings and
character set
Move character
set, place

information
into strings

Start

pressed
?

Clear screen,
display
message

Display
“travel "
message

Shuffle
the
cards

Start
pressed
?

Clear screen,

display
cards

3 Display
Display “Juck”
‘love” message
message
3 Start
No Start pressed
pressed
?
Yes

Display
‘‘money”’
message

Fig. 1-3. Flowchart for Tarot.

34



Listing 1-3. Tarot.

10 REM TAROT CARDS

20 REM CHAFTER 1 -~ CARD GAMES

30 REM BY L.M. SCHREIEER FOR TAE EOOKS

40 REM COFYRIGHY 1984

50 DIM C(52),CARD$¢(6),SULTH(4),FLAY(7,

5),WHO% (72)

60 A=FEEK(106)-1463FOKE 204,A!CS=FEEK(7

S56)IFOKE 206,CS831C5=C5X256

70 FOR X=1536 TO 15553IREAD VIFOKE X,V

NEXT X3IREM MOVE THE CHARACTER SET

80 DATA 104,162,4,160,0,177,205,145,20

3,200,208,249,230,206,230,204,202,208,

242,96

20 GRAFHICS 17:Q=USR(L1S36)IFOKE 7356,A%

CHARSET=AX296tREM SET UF THE CHARACTER

=)

100 FOR CSET=CHARSET+40 TO CHARSET+64

STEF 8:READ VIFOR X=0 TO 7:iFOKE CSET+X
yFEEK(CS+UXB+X) INEXT XINEXT CSET

110 DATA 64,80,96,123

115 REM CHARACTERS IN CARD%$ AND SUXT$

ARE INVERSE

120 CARD$="A91JAK" tSUTIT$="%Z& " (" {WHO%=""

MANY FEOFLE YOUR FAMILY YOUNG WOMAN YO

UNG MAN YOUR NIFE AN ASSOCIATE"

130 FOSITION 1,12:7? #463"%Z & the tarot
7 ("IGOSUE 1050 CD 1IFOSITION 0,087 %6
sCHR$ (129)

140 CS=1{FOSITION 0,317 #63i"Male or Fe

male?"$GOSUE 1100:IF K=77 THEN SEX=0:06G

0TQ 160

150 SEX=1{WHO%$(49,72)="600D FRIEND YOU

R HUSEAND"

160 CS=2FOSITION 0,5:7? #63'"Married or
Single?"$GOSUE 110038IF K=77 THEN STAT

=03G0TO 180

170 STAT=1{WHO$(49,72)="G00D FRIEND AN
ASSOCIATE"

180 FOR X=0 TO 7:FOR Y=0 TO SIFPLAY(X,Y
Y=0INEXT YINEXT X

190 FOSITION 0,07 #&63CHR$(125):0Q=03¢Z=

1:Y=11FOR X=1 TO 24:1CARD=C(X) {FOSITION
(X=Z)yX3,Y:1G06UB 1000

200 PLAY(X-Z+1,INTCY/2)+1)=CARD

35



36

210 IF X/6=INT(X/6) THEN Y=Y+231Z=7+6
215 REM love IS LLOWER CASE INVERSE

220 NEXT XINR=11{FOSITION 0,NR:? #63"1
ove" ICARD=5, 1 INR=NR+1¢1F NOT SEX THEN
CARD=6,1

230 FOR Y=1 TO 4{FOR X=1 TO &6{IF FLAY(
Xy Y)=CARD THEN 2%0

240 NEXT XINEXT Y

250 MC=XIMR=Y iY=MR-13{L=0IMON=0¢TRA=0L

UCK=0

260 IF (MC<=3 AND (MR=1 OR MR=4)) 0OR (M

Cx4 AND (MR=1 OR MR=4)) THEN FOSITION
0,NR:? #463"SOMETIMES FEEL ALONE"

270 FOR X=MC-1 TO MC+1:IF FLAY(X,Y)=0

OR (X=MC AND Y=MR) THEN NEXT X:GOTO 30
0

280 NC=FLAY (X, Y)-INT(FLAY(X,Y)){IF NC-

041 THEN NEXT X$GOTO 300

28% SOUND 0,100,10,10:FOR Z=1 TO 10INE

XT ZISOUND 0,0,0,0

2920 NC=INT(FLAY(X,Y))IFOSITION 0,NKR$™?

$63"CLOSE ~ "347? #AIWHOS ((NC-1)X12+1,(

NC=L)X12+12) iNR=NR+1:{L=1INEXT X

300 Y=Y+1{IF Y<:MR+2 THEN 270

310 IF L=0 THEN FOSITION O,NR:? #63"LO

VE ESCAFES YOU'"iNR=NR+1

320 GOSUE 4000 iNR=113Y=MR-1:FOSITION 0
yNREI? Ré3"money/qifts' INR=NR+1

330 FOR X=MC-1 TO MC+1L:{IF FLAY(X,Y)=0

OR (MC=X AND MR=Y) THEN NEXT X:iGOTOQ 36
0

340 NC=FLAY(X,Y)=INT(FLAY(X,Y)){IF NC=

#0443 THEN NEXT X:iGOTO 3640

345 SOUND 0,100,10,10¢FOR Z=1 TO 10:INE

XT ZiSOUND 0,0,0,0

350 NC=INT(FLAY(X,Y))IFOSITION 0,NR:?

$63"FROM "3 37? #6IWHOB((NC-1)%12+1, (NC~
1)X12+12) iINR=NR+1{MON=1iNEXT X

360 Y=Y+1{IF Y-<:*MR+2Z THEN 330

370 IF MON=0 THEN FOSITION O0,NR:I? #63"

MANY LOSSES"

375 REM TRAVEL S5 INVERSE

380 GOSUE 4000 ¢NR=11:Y=MR-1{FOSITION 0
yNRI? #6353 "TRAVEL " I NR=NFR+1

390 FOR X=MC-1 TO MC+1{IF FLAY(X,Y)=0

OR (MC=X AND MR=Y) THEN NEXT XiGOTO 42
0




400 NC=FLAY(X,Y)-INT(FLAY(X,Y)){IF NC<
0,2 THEN NEXT X:GOTO 420

4035 SOUND 0,100,10,103FOR Z=1 TO 10:INE
XT ZiSOUND 0,0,0,0

410 NC=INT(FLAY(X,Y))IFOSITION 0,NR$?
FOHI"WITH "337 #63WHOS ((NC-1)x12+1, (NC~
1)x12+412) INR=NR+1{TRA=1 INEXT X

420 Y=Y+11IF Y-<iMR+2 THEN 390

430 IF TRA=0 THEN FOSITION 0,NRI? #63"

NO TRAVELS"

440 GOSUE 4000:NR=113Y=MR-1{FOSITION 0
fNRI? F63"LUCK" INR=NR+1

450 FOR X=MC-1 TO MC+13:IF FLAY(X,Y)=0

OFR (MC=X AND MR=Y) THEN NEXT X:GOTO 48
0

460 NC=FLAY (X, Y)-INT(FLAY(X,Y))${IF NC
=044 THEN NEXT X:GOTO 480

465 SOUND 0,100,10,10:FOR Z=1 TO 10:INE
XT Z$SOUND 0,0,0,0

470 NC=INTC(FLAY(X,Y))IFOSITION O0,NR:?
¥63"STRESS "3 17 #63WHOS ((NC-1)%12+1, (N
C-1)x12+12) INR=NR+1I_LUCK=1 ¢ NEXT X

480 Y=Y+1:i1IF Y<{=MR+2 THEN 450

490 IF LUCK=0 THEN FOSITION O0,NR:7? #6}
"NO TRAGEDIES"

500 GOSUE 4000 :RUN

1000 CVY=INT(CARD) {8=(CARD-CV)X10:IF CV

=10 AND X-Zx1 THEN FOSITION (X-Z)x3-1,
Y

1005 IF S=1 OR 5=3 THEN 1020

1010 ? #63CARD$(CV,CV) 3 IIF CV=3 THEN ?
$63"0" 3 IREM ZERO IS INVERSE

1015 7 #63;5UIT$(5,5) tRETURN

1020 A=ASC(CARD$(CV,CV))IIF A<190 THEN
? #63CHR$(A-32) 3 {IF CV=3 THEN ? #6;CH

R$(144) 3

1025 IF A»190 THEN ? #&43CHR$(A+32);
1030 A=ABC(SUIT$(5,8))17? #63CHR$ (A-32)
tRETURN

1050 Q=0:FOR VU=0.1 TO 0.4 STEF 0.1:FOR
X=1 TO S1CX+Q)=X+VINEXT XIQ=Q+&6INEXT
v

1060 FOR X=1 TO SIFOR Q=24 TO 1 STEF -
13V=INT(RND(L)XQ) tREM FICK A CARD

1070 CCOH=CCV)IC(WI=CCA) IC(RAI=C(0)IREM
MOVE THE CARDS

37



1080 NEXT QINEXT X:RETURN $REM DO IT S
TIMES

1100 OFEN #2,4,0,"Ki"

1110 GET #2,KIIF K=1355 THEN 1110

1120 IF K127 THEN K=K-128:!FO0KE &694,0
1130 IF K95 THEN K=K-9&6iFOKE 702,64
1140 IF C8=1 THEN IF K=77 0OR K=70 THEN
1170

1150 IF CS=2 THEN IF K=77 OR K=83 THEN
1170

11460 GOTO 1110

1170 CLOSE #2:RETURN

4000 IF FPEEK(HG3279)<x6 THEN 4000

4010 FOR X=11 TO NRIFOSITION 0,X:? ¥63

e "INEXT X

4020 RETURN

The computer needs to know the sex of the player; if M was
entered, the variable SEX is set to 0 and the computer is sent to
line 160.

Line 150 sets the variable SEX to 1 and changes some of the
phrases in WHOS$.

Line 160 sets the CS variable to 2. The computer will now look
for an M or S in the input routine. The second question is printed
on the screen and the computer uses the subroutine in line 1100
to get the response. If M was entered, the STAT variable is set
to 0 and the computer is sent to line 180.

Line 170 sets the STAT variable to 1 and changes some of the
phrases in WHO$.

Line 180 clears the PLAY array. The computer does not clear
string or variable arrays when the program is run.

Line 190 clears the screen, sets the Q variable to 0, Z to 1 and
Y to 1. The Z variable is used to place the card in the correct col-
umn on the screen. The Y variable is the row value. The FOR-
NEXT loop places the cards in the PLAY array and on the screen.
The card to be printed on the screen is placed in the CARD variable.
The position is calculated and the computer is sent to the subroutine
in line 1000 to print the card on the screen.

Line 200 places the card into the PLAY array.

Line 210 checks the value of X to see if the computer is at the
end of the line. If it is, the Z variable is increased by 6.

Line 220 continues the FOR-NEXT loop. The NR variable is
set to 11. This is where the message will be printed. The first topic

38



in which the future is forecast is LOVE. The value of CARD is set
to the queen of hearts, but, if the value of SEX is 0, it is changed
to the king of hearts.

Line 230 looks for the king or queen of hearts in the array.

Line 240 continues the loops.

Line 250 stores the values for variables X and Y in variables
MC and MR. This is the position of the heart card that we will be
comparing with other cards on the screen. The Y variable is set
to the position of MR — 1. The value of L, MON, TRA, and LUCK
are set to 0. These four variables represent four areas—luck, money,
travel, and love—for which the computer will tell the future.

Line 260 checks to see where the card is located. If it is along
one of the edges of the screen, a message will appear on the screen.

Line 270 checks the row above the card for a card. If there are
no cards in this row, the computer is sent to line 300.

Line 280 checks the card to see if it is a heart. If it is not, the
loop continues.

Line 285 plays a short tone.

Line 290 prints a message on the screen based on the value
of the card next to the heart. This indicates the person to whom
the player is emotionally close.

Line 300 adds one to the value of Y; this is the row under the
row just searched. The loop continues until the row above, the row
below, and the row where the heart is located is searched.

Line 310 checks if any hearts surround the king or queen of
hearts. If none do, the L variable will remain 0 and a different
message is printed on the screen.

Line 320 uses the subroutine in line 4000 to keep the message
on the screen. When a player wants to advance to the next message,
press the Start key. The variable NR and Y are reset, and a new
message appears on the screen.

Lines 330-370 use the same routines to find the diamonds that
surround the heart. Diamonds usually depict money, gifts, or good
fortune. If any diamonds surround the heart, the computer will
make a sound and the appropriate messages will be printed on the
screen. If there are no diamonds, a different message is printed
on the screen.

Line 380 uses the subroutine in line 4000 and waits for the Start
key to be pressed. The variables are reset and a new message is
placed on the screen.

Lines 390-430 search for a club. If a club is near the heart, the
computer makes a sound and a message is printed on the screen.

39



If no clubs are near, there is no travel in the player’s future.

Line 440 waits for the Start key to be pressed. Then the com-
puter will tell the player what kind of luck to expect.

Lines 450-490 look for spades. Spades are the misfortune cards;
the fewer spades around the heart the better. If any exist, the com-
puter prints a message on the screen. If there are none, the com-
puter prints a better outlook on the future.

Line 500 is the end of the program. The computer uses the
subroutine in line 4000 to wait for the Start key. When it returns
to this line, the program is run again. To end the program, press
the System Reset key.

Lines 1000-1030 print the cards on the screen. The values of
the printed cards must be stored in the CARD variable before this
subroutine can be used. The value of each card is stored in the
variable CV, and the suit value in the S variable. The suit of the
card is checked; if the card is a heart or a diamond the routine in
line 1020 is used to print the card on the screen. Hearts and
diamonds are printed in red and spades and clubs in dark blue. If
the value of the card is 10, the zero is printed after the one. Once
the card is printed on the screen in the correct color, the computer
returns to the main program.

Lines 1050-1080 place the cards in the array and shuffle them.
The suit of the card is determined by the decimal value added to
the card value. The two FOR-NEXT loops place the deck of cards
into the array. The cards are shuffled by removing one card from
the deck and placing it into a temporary element of the array. The
card in the last element of the array is moved to the position of
the card that was removed. The card in temporary storage is moved
to the last element of the array. The loop counts backwards; once
a card is placed in the last element of the array, the pointer is moved
to the element just before it. The entire array is shuffled five times.

BLACKJACK

Objective of the game: To try to collect 21, or as many
points as possible without going over 21, while collecting more
points than the dealer.

Directions: This program is written for one or two players.
The program begins by placing one player on the screen. Press the
Select key to change the number of players to two. The program
will alternate between one and two players. Press the Start key
when you are ready to begin.

The screen clears after a few seconds and you are asked to bid.
Bids must be between $1 and $500. Next the cards are dealt on

40



the screen. The dealer will have one card face down and the other
showing. Each player is dealt two cards, both showing.

If the dealer has an ace showing, you can take insurance. If
the dealer has blackjack you will lose your bet if you do not have
insurance and also have a blackjack.

On your turn you can press the B key if you have blackjack,
the D key to double your bet on your first turn, the H key to get
another card, or the S key to stand. After each player plays his hand,
the dealer plays his. The dealer is required to stand on a ‘‘hard”
17 (i.e., one not containing a one-or-eleven ace) but draw to a ‘‘soft”’
16.

A player who holds a blackjack is paid at odds of three to two
unless the dealer also holds a blackjack. A winner is paid out even
money, and a player who ties the dealer has his wager returned.

After each hand the program asks if you want another hand.
If so, another hand will be dealt. If not, the game ends. The game
also ends when the players are out of money or a player’s win-
nings exceed $1000. Figure 1-4 is the flowchart for this program,
and Listing 1-4 contains the code.

Line 50 sets aside the memory needed for the arrays and
strings. The C array holds the deck of cards, CARD$ and SUIT$
hold the values of the cards and the characters for the suits. The
PLAY array holds the cards the players acquire, and the B array
keeps track of he money the players have, the bet, and insurance.
B$ is used to store an input.

Line 60 finds out how much memory the computer has and sub-
tracts 2K from this amount. The character set will be moved into
RAM just in front of the screen memory. The addresses of the new
character set and the old character set are stored in locations 204
and 206. These two values will be used by the assembly language
subroutine that moves the character set from ROM into RAM. The
first byte of the ROM-based character set is stored in variable CS.

Line 70 reads the code for the assembly language subroutine
and places it in memory locations 1536-1555; line 80 contains the
decimal codes for the routine.

Line 90 changes the screen to graphics 17, which is graphics
1 with no text window. The computer uses the USR command to
execute the assembly language subroutine that begins in memory
location 1536. This is the assembly language subroutine that moves
the character set from ROM into RAM. When the computer returns
to this line, it POKEs the address of the RAM-based character set
into location 756. If your screen contains garbage, or the characters

41



START

Set aside
memory for
strings and

character

set

Move character
set; place
information
into strings

3

Clear screen,
display
message

Change Yes
number of
players

Select
pressed
?

Start
pressed
?

Display
message

D=

Shuffle
cards,
get bets

Display two
cards for
players—one

for dealer

Fig. 1-4. Flowchart for Blackjack. (Continued through page 46.)
42




No

Does
dealer have
ace
?

Yes

Get insurance
from
players

Dealer
have
blackjack
?

Yes

Use end
game
routine

Get play
option from
player

43



44

No

Yes

Add up value of
hand, store
total

Another
player

Is total
hand 21
?

Flash
screen

Store value
of hand,
flag as blackjack

Another
player




Only 2
cards played
?

Double bet
and deal
one card

Total cards
in hand,
store amount

Deal a
card

Total hand
store amount

45



Yes Another
3 player
?

o—F
5

Add up
dealers
hand

Yes

Draw
another
card

Lo

Fig. 1-4 continued.

46



Listing 1-4. Blackjack.

10 REM 21 - ELACKJACK
20 REM CHAFTER 1 - CARD GAMES
30 REM EY L.M. SCHREIEER FOR TAE EOQOKS

40 REM COPYRIGHT 1984

50 DIM C(92),CARDS(13),8UXT$(4) ,FLAY (2
y13),E(2,3),B4(4)

60 A=FEEK(106)~146F0KE 204,AiCS=FEEK(7

56) tFOKE 206,C81C8=CHX256

70 FOR X=1536 TO 199%5IREAD VIFOKE X,Vt

NEXT X$REM MOVE THE CHARACTER SET

80 DATA 104,162,4,160,0,177,205,145,20

3,200,208,249,230,206,230,204,202,208,

242,96

20 GRAFHICS 17:1Q=USR(1%536)IFOKE 756,A%

CHARSET=A%X236 'REM SET UF THE CHARACTER

5]
100 FOR CSET=CHARSET+40 T0O CHARSET+44

STEF 8:READ VIFOR X=0 TO 7:FOKE CSET+X
yFEEK (CS+UXB+X) INEXT XINEXT CSET

110 DATA 64,80,96,123

115 REM CHARACTERS IN CARD$ AND SUXT$

ARE INVERSE

120 CARD$="A234567891JAK" tSUIT$=""7Z& ‘" ("
SREM FUT THE CARDS IN THE STRINGS

12% REM number of plagers IS LOWER CAS

E INVERSE

130 SOUND 0,100,10,1037? #63CHR$(125)F

L=1¢FOSITION 1,5:7 #6:"number of playe

re"$SOUND 0,0,0,0

140 POSITION 9,10:IF FEEK(S53279)=5 THE

N PL=FL+1:IF FL=3 THEN FL=1{REM GET TH

E NUMEER OF FLAYERS

150 IF PEEK(S53279)=46 THEN 170

160 ? #63FLIFOR X=1 TO 100INEXT X:GOTO
140¢:REM TIMING LOOQF FOR SWITCHES

170 FOR X=1 TO 2iEB(X,1)=5800¢E(X,2)=0%E
(X,3)=03INEXT XtIF FL=1 THEN E(2Z,1)=0

180 FOSITION 1,12:7? #63"% & shuffling
(" IGOSUR 1050:CD=0

190 FOR X=0 TO 2:FOR V=0 TO 13:PLAY(X,

V=0 3NEXT VINEXT X

199 REM 21 IS INVERSE

200 FOSITION 0,0:7 #63CHR$(125)IFOSITI

47



48

ON @,087 #63"2Z1"IFOSITION 0,237 #65"de
aler"
210 FOR X=1 T0 FLIFOSITION XX10-10,6:7
FSHT"FLAYER #" 3 XIES=85TR$ (B(X,1))IFOSIT
TON X%10-9,2317 #6'”$ i
Z20 POSITION XX10-9~LENCE$),2317 %431E%
ITNEXT XIFOR X=1 TO PL:IF E(X,1)=0 THEN
ZB80IREM SETUP-SKIF A FLAYER WITH NO M
ONEY
230 R=4{50UND 0,100,10,103FOSITION 0O, h
17 RSV RID-FPLAYER #"iXi" % "IC0=195
CH=11S0UND 0,0,0,0:G08UE 1100
240 B$=B$C1,C0-15) 1B=VAL(E$) {IF E<1 OR
Ex500 THEN COTO 230
230 IF BrB(X, 1) THEN 230
260 BUX,2)=RiRB(X,1)=R(X,1)-E!} FOSITION
XX10-9,2237 #63"% "IFOSITION Xx10-
LENC(ES),2217 #63E
°70 BE=STR$(E(X,1))IF0S ITIDN Xx10-9,23
I YOR AR "IFOSITION X%x10-S-LEN(ES),2
32? 6 3ES
280 NEXT X
290 Pl=1iR=7IFOSITION 0,4:7? #63"
"IREM REMOVE THE EBID FPROM
FT
300 FOR X=1 T0O PL$IIF B(X,2)=0 THEN FLA
Y(X,0)=22:G0OT0O 320
310 CD=CD+1{FOSITION X%X10-10,R:CARD=C(
CDYIGOSUE 1000FPLAY (X, F1)=CARD
320 NEXT XiR=R+1iRZ2=R{R3=R
330 CD=CD+1iCARD=C(CD) {FLAY(0,F1)=CARD
tPL=F1+L3IF F1=2 THEN FOSITION 0,3:G0S
UE 1000:GOTO 300
339 REM ASTERISK IS INVERSE
340 FOSITION 4,317 #6;"x"IiCD=CD+1¢IF I
NT(FLAYC(0,1))<x1 THEN 410
350 FOR X=1 TO PLIIF B(X,2)=0 THEN 400

355 REM QUESTION MARK IS INVERSE

360 SOUND 0,100,10,10FOSITION 0,087 #
- "3 FOSITION INT(C
XX10-10),9:7? &o63"P"

370 FOSITION 0,087 #63"INSURANCE Y/N?"
SGOUND 0,0,0,03C8=2:C0=17 iR=03GOSUE 11
00:IF E$“”N” THEN 400

380 BOX,3)=INT(E(X,2)/2) 1E$=GTRs (BE(X,3




Y)YIFOSITION XX10-9,21:7 #63"$"FOSITIO
N XX10-5-LENCES®),21317? #63E%
390 B(X,1)=E(X,1)~B(X,3) iBE$=CTR$(E(X,1
YIIFOSITION X%X10-9,2387 #43"% "IFOSI
TION XX10-5-LENCE$),23t7 $463E%
400 FOSITION INT(XX10-10),9:7? #463" "IN
EXT X
410 ZF INTC(PLAYC(0,1))<L0 AND INT(FLAY(
0,1))<x»1 THEN 500
420 X=03GO0SUE 1210:REM SEE IF DEALER H
AS ELACKJACK
430 FOSITION 0,0%? #63"
"$IF TC=»21 THEN FOR X=1 T0O FLIE(X
y3)=0 ¢NEXT X:iGOTO 500
435 REM hlaclk-jack IS ILOWER CASE INVER
SE
440 SOUND 0,50,10,10:F0SITION S,0:7 #6
y"black-jack" $CARD=FLAY(0,2) tFOSITION
4,346G08UE 1L000:S0OUND 0,0,0,40
4%0 FOR X=1 TO PL:!GOSUE 1210:IF TC=-1
THEN B(X,2)=2%XE(X,2){IF EB(X,3)=0 THEN
BE(X,2)=0
4460 IF TC=x=1 THEN EB(X,2)=0{B(X,3)=0
470 B(X,1)=B(X, 1)+E(X,2)+EB(X,3)IE(X,3)
=03B(X,2)=0¢{FOSITION XxX10-9,21:7 #63"
"IFOSITION XX10-9,22:7 #63" "

480 E$=STR$(E(X,1))IFOSITION X%10-9,23
HACIIE 2O "IFOSITION XX10-S~LEN(E$),2
317 #63ESIREM SHOW MONEY LEFT
490 NEXT X$FOR V=1 TO Z200iNEXT VIGOTO
880 IREM ASK FOR ANOTHER GAME
500 R1=R:D=0:FOR X=1 TO PLIR=R1:IF EB(X
y2)=0 THEN 420
510 SOUND 0,100,10,10iFOSITION 0,087 #
63" "IFOSITION 0,047
$63"Hit or Stand?"{SOUND 0,0,0,0
5195 REM QUESTION MARK IS INVERSE
520 R=R2:FOSITION XX10-9,R$? #&63"?"ICS
=03C0=13¢R=0$GOSUE 1100 IR=R2Z2{REM FIND
OUT WHAT THE FPLAYER WANTS TO DO
530 IF EB$="8" THEN GOSUE 1210:1G0OT0O 400
CREM NEXT FLAYER
540 IF B$="E" THEN GOSUE 1210:¢IF TC=-1
THEN GOSUE &303FLAY(X,0)=TC:GOTO 620%
REM THERE IS A ELLACKJACK
550 IF BE$="E" AND TC-=»-1 THEN 9$10

49



50

560 IF EB$="D" THEN GOSUE 640iD=1IREM S
EE IF EET CAN EE DOUELED

570 CARD=C(CD)CD=CD+1IFLAY (X,F1)=CARD
VFOSITION Xx10-10,RIGOSUE 1000 R=R+13F
1=F1+11R2=RIGCOSUE 1210

575 IF D=1 THEN 400IREM ONLY ONE CARD

ON A DOUELE DOWN

580 IF TC=21 AND (T1=0 OR T1:x21) THEN

600

590 GOTO G510

600 IF (TC<22 AND TCxT1) OR TC=-1 THEN
FLAY (X, 0)=TCIGOTO 420

610 FLAY(X,0)=T1IIF Ti=0 OR TLx21 THEN
FLAY (X, 0)=TC

620 FOSITION Xx10-9,Rt7? #43" "IF1=3iR=

R3BIRZ2=RID=0INEXT X:GOTO 700

630 FOR Q=0 TO 19ISETCOLOR 4,Q,03S0UND
0,Q%x10,10,10INEXT QISETCOLOR 4,0,0:80
UND 0,0,0,0¢RETURN

640 IF B(X,1)<B(X,2) THEN FOF (GOTO 51
0

650 IF F1:3 THEN FOF (1GOTO 510

660 B(X, 1)=E(X,1)~B(X,2) IBE(X,2)=2%XE(X,

2)IES=6TR$ (E(X,1)) IFOSTITION Xx10-9,233
G I-B S 4

670 FOSITION XX10-35-LEN(E$),2317 #63E$
tES=8TR$ (BE(X,2)) IFOSITION XX10-9,22%7

*6;”‘.5 "

680 FOSITION Xx10-5-LEN(E$),22:7 #43E$
tRETURN

690 REM END THE GAME

700 X=03Q=31IF FLAY(1,0)x21 AND FLAY(2
» 0021 THEN 810

710 FOSITION 0,07 #463"

"ICARD=FLAY(0,2) FOSITION 4,3:60S5U

E 1000:GOSUE 12100IF TCx1é6 THEN 760
720 FLAY(X,Q)=C(CD) ICARD=C(CD) tQ=Q+13C
D=CD+13IF Q<7 THEN FOSITION (Q-2)%4,3
730 XIF Q=6 THEN FOSITION (Q-2)%4-20,4
740 GOSUE 1000:GOSUE 1210:IF TCx16 THE
N 760

750 GOTO 720

760 IF Til=21 OR TC=21 OR T2=21 THEN FO
SITICN 0,137 #63"21-~-HOUSE WINS"IFLAYC(O
»00)=211G0T0O 810

770 IF T1=17 AND T1<x0 THEN 720iREM TR




Y WITH THE LOWER HAND

780 IF T2<17 AND T2<:0 THEN 720

790 FLAY(0,0)=TCIIF T2<x0 AND T2<22 TH
EN FLAY(0,0)=T2

795 IF TC:=T1 AND TC=22 THEN FLAY(0,0)=
TCIGOTO 810
800 IF T1xT2 AND T1=22 THEN FLAY(0,0)=
T1
810 FOR X=1 TO FLIIF FLAY(X,0)=-1 THEN
FOSITION Xx10-9,20:7? #63"black jack" B
(X, 2)=INT(B(X,2)X2,5):GOTO 860
820 IF FLAY(X,0)>21 THEN B(X,2)=0:G0T0
860

830 IF PLAY(X,0)*FLAYC(0,0) THEN E(X,2)
=2%XE(X,2) tGO0TO 860
840 IF FLAY(0,0)+22 AND FLAY(0,0)=FLAY
(X,0) THEN B(X,2)=0:GOT0O 860
850 IF FLAY(0,0)>21 AND FLAY(X,0)=22 T
HEN EB(X,2)=B(X,2)%2
860 EB(X,1)=B(X,1)+E(X,2)IB(X,0)=0¢{FOSI
TION XX10-9,22:7 #6;"% "IFOSITION Xx
10-9,23:7 %#63"% ¥
870 E$=STRH(EB(X,1)){FOSITION Xx10-S~-LE
N(E$), 2317 F63E$INEXT X
880 POSITION 0,087 %43

"IIF B(1,1)»=1000 OR E(2,1)>=1000

THEN 950
890 IF EB(1l,1)==0 AND EB(2,1)«<=0 THEN FO
SITION 4,10:7? #63"house wins!"iGOTO 298
0
200 FOSITION 0,0:? #463"FLAY AGAIN?'"ICO
=11 IR=03CS=2¢GOSUE 1100
210 IF EB$="N" THEN END
Q20 IF CD=30 THEN 180
930 GOTO 190
240 REM GAME OQVER
950 FOSITION S5,0:7 #63"qQame over!'"i1FP0S
ITION 0,10:7? #63"FLAYER #'"}
260 FL=2!{IF EB(Ll,1)=B(2,1) THEN FL=1
6% REM wins!' I8 LOWER CASE INVERSE
270 7?7 FS6IFLIFOSITION 7,127 #63"wins!"
980 IF FEEK(53279)<x6 THEN 980
290 RUN

1000 CU=INTC(CARD) $S=(CARD-CVIX10

1009 IF 8=1 OR $=3 THEN 1020

1010 ? #63CARD$C(CV,CVY 3 ¢IF CVU=10 THEN

51



52

? ORI 0MIIREM ZERO IS INVERSE

1015 7 #4638UTITH(S5,8) IRETURN

1020 A=ASC(CARDS (CV,CVI)IIF A<190 THEN
? #6JCHRE(A-32) 3 ¢IF CVU=10 THEN ? #63C

HR$(144)y

L0235 IF AX190 THEN 7 #463CHRE(A+32)
1026 A=ABCISUITS$(5,8))t? #63CHR$(A-32)
tRETURN

1030 CV1=038=INT(CARD/13) {CV=CARD~-S%13

+13IF CVU=1 THEN CVl=11

1040 RETURN

1050 Q=0:{FOR V=0.1 TO 0.4 STEF 0.,1:FOR
X=1 TO 133CX+Q)=X+VINEXT XiQ=Q+13INE

XT V

1060 FOR X=1 T0O GiFOR Q=52 TO 1 STEF -
1IV=INT(RND (CL)XQ) ¢REM FICK A CARD

1070 CCOI=CWMIC(V)=C(RIIC(RI=C(0) IREM
MOVE THE CARDS

1080 NEXT QINEXT XIRETURN $REM DO IT %
TIMES

1100 B=0% E$”“"’0FEN ¥2,4, 0,"V'"

1110 GET #2,KIIF K=155 AND E$-<x"" THEN
CLOSE 121RETURN

1120 IF K127 THEN K=K~-1Z8Ii1FOKE 694,0%

REM RESET INVERSE FLAG

1130 IF CS8=1 AND K=126 AND CO0>19 THEN

CO=CO-1:B6(C0~14,C0~14)=" "i{FOSITION C

O,R$? &6 "IGOTO 1110

1140 IF K99 THEN K=K~26iFOKE 702,64:R

EM SET FOR UFFERCASE

1150 IF CS=1 AND CO<L8 AND (K=47 AND K

“G8) THEN E$(CO0-14,C0-14)=CHR$ (K):{GOTO
1190

11460 IF CS=0 THEN IF K=72 0R K=83 0OR K

=468 0R K=66 THEN E$(1l,1)=CHR$(K):GOTO
1190

1170 IF CS=2 THEN IF K=89 0OR K=78 THEN
E$ (1, 1)=CHR$ () IGOTO 1190

1180 GOTO 1110

1190 FOSITION CO,R:7? #63CHR$(K)IIF CS=
1 THEN CO=CO+1

1200 GOTO 1110

1210 A=0:T2=ATC=AIT1=AIFOR V=1 TO 13%

I=INT(FLAY(X,V))IIF I=0 THEN 1270

1220 XF Ix9 THEN TC=TC+10:T1=T1+10:iGOT

0 12503REM ADD 10 FOR FACE CARD OR 10
1230 IF I=1 THEN TC=TC+11:T1=T1+1liA=A+




1:GOTO 1250:REM COUNT ACE AS HIGH AND
LOW

1240 TC=TC+IITLl=T1+I

1250 IF A=2 THEN T2=T1+10:!REM SFLIT AG
AIN - TWD ACES

1260 NEXT VIRETURN $(REM MORE THAN 2 CA
RDS IN HAND

1270 IF X0 AND TC=21 AND V=3 THEN TC=
-1IREM ELACKJACK!

1280 VU=13INEXT VIRETURN {REM GET RID O
F NUMEERS ON STACK

do not look right on the screen, check to see that you have the cor-
rect variable and the correct location. The first byte of the character
set in RAM is stored in the variable CHARSET.

Line 100 moves four characters from ROM into RAM. Since
the computer displays numbers with uppercase letters and the
graphics characters with lowercase letters, it is necessary to move
the four characters that represent the four suits from ROM and
replace characters in the RAM character set. In this program we
will replace the percent sign, the ampersand, the apostrophe, and
the open parenthesis with the heart, club, diamond, and spade. The
location of these characters in the character set are read from the
DATA line. This value is multiplied by eight and added to variables
X and CS. For all four characters, the computer loops through the
FOR-NEXT loop reading each of the eight bytes and moving them
into RAM.

Line 110 contains the locations of the four characters in the
character set.

Line 120 places the values of the cards into CARD$ and the
characters that now represent the four suits into SUITS.

Line 130 makes a sound, clears the screen, and prints a message
on the screen, and prints a message on the screen. The PL variable
is set to 1. This is the number of players.

Line 140 checks to see if the Select key has been pressed. If
it has, the value of PL is increased by 1. If the value reaches three,
it is reset to 1.

Line 150 checks to see if the Start key has been pressed. If
so, the computer is sent to line 170 to begin the game.

Line 160 prints the number of players on the screen, executes
a timing loop to give the player a chance to release the key, and
loops back to line 140.

53



Line 170 places $500 into each player’s kitty, and clears the
bet and insurance elements of the B array. If only one person is
playing the money in the second player’s kitty is removed.

Line 180 begins the next part of the program. The message
is printed on the screen. The computer uses the subroutine in line
1050 to place the cards into the C array and shuffle them. When
the computer returns to this line, the CD variable is set to 0. This
variable keeps track of how many cards have been played so the
computer knows when to shuffle the cards again.

Line 190 contains two FOR-NEXT loops that clear the elements
of the PLAY array.

Line 200 clears the screen and prints some words on the screen.

Line 210 prints the amount of money available to both players.
The value of the first element of variable B is placed as a string
into B$. The player’s money position is calculated and the old
amount is cleared.

Line 220 prints the amount of money currently available for
this player, then continues the loop for the next player. After this
loop is completed, the computer begins a second FOR-NEXT loop.
The amount of money the player has is checked. If the player has
no money, the computer is directed to line 280. If there is money,
the computer will continue to get a bet.

Line 230 makes a sound and asks for the player’s bet. The com-
puter uses the subroutine in line 1100 to retrieve the entry.

Line 240 takes the value entered in B$ and places it into B$.
This little manipulation gets rid of any spaces that may be at the
end of the string. If, for instance, the amount of $100 was entered
and then the player changed his mind and used the delete key to
change the amount to $25, the extra space at the end of the string
would remain. The value of B$ is placed into variable B. If the
amount is less than 1 or greater than 500 the computer is sent back
to line 230 to get another bet.

Line 250 checks to see if the player has enough money. If the
amount of variable B is greater than the amount of money in the
first element of the player’s array the computer is sent back to line
230 for another try.

Line 260 stores the amount bet into the second element of that
player’s array and decreases the amount of money in the first ele-
ment of the array by the amount bet. The amount of the bet is
printed on the screen just above the amount of money the player
has.

Line 270 places the amount of money the player has as a string

54



into B$. This amount is then printed on the screen.

Line 280 continues the loop.

Line 290 removes the bid prompt from the screen.

Line 300 begins the next FOR-NEXT loop; it prints two cards
for each player on the screen. The computer checks to see how
much money the player bid. If no money has been bid, the com-
puter sets the element of the PLAY array that stores how many
points the hand is worth to 22 and the computer is directed to line
320.

Line 310 increases the value of CD by 1. This variable points
to the next card in the array that will be played. The value of this
card is moved into CARD and the computer uses the subroutine
in line 1000 to print the card on the screen. The card is then moved
into the correct position of the PLAY array.

Line 320 continues the loop. After both cards have been dealt,
the R variable is increased by 1, then stored in variables R2 and R3.

Line 330 adds one to variable CD, moves the value of the next
card into CARD, then moves the card value into the dealer’s area
for the array. The value of P1 is increased by 1. If it then equals
2, the computer will use the subroutine in line 1000 to print the
card on the screen. Then the computer is directed to line 300 to
print the second card on the screen for each player.

Line 340 prints the asterisk on the screen as the dealer’s sec-
ond card. The variable CD is incremented by 1 so it is pointing to
the next card to be dealt. The dealer’s first card is checked to see
if it is an ace. If it is not, the computer goes to line 410 to continue
the game.

Line 350 begins another FOR-NEXT loop. In this line the com-
puter checks the second element of each player’s array to see if
any money has been bet. A zero here means that a person is not
playing. The computer goes to line 400 if the player is not playing.

Line 360 makes a prompting sound, clears the first line on the
screen, and prints a question mark in the ninth row.

Line 370 places the question on the top row of the screen. The
computer wants to know if the player wants insurance. The variable
CS is set to 2; this value is used in the input routine. Variables CO
and R are set for the column and row, and the computer uses the
subroutine in line 1100 to get an input. Only the letters Y or N will
be accepted. When the computer returns to this line, it checks the
contents of B$. If it is N, the computer goes to line 400—the player
does not want insurance.

Line 380 takes half the amount bet and stores it in the third

55



element of the array for this player. This is the insurance amount.
The variable is converted into a string and this amount is printed
on the screen just above the amount bet. The insurance is always
half the original bet.

Line 390 subtracts the insurance money from the amount of
money the player has in the first element of the array. This new
amount is converted into a string and printed on the screen.

Line 400 clears the player’s entry, the Y or N, from the screen.
The loop continues until both players have been given a chance
to buy insurance.

Line 410 checks the value of the dealer’s first card again. This
is the line the computer is directed to if the first card is not an ace.
The computer wants to know if this card is an ace, a ten, or a face
card. If it is none of these cards, the computer is sent to line 500.

Line 420 begins the routine that checks to see if the dealer has
blackjack. If the dealer has an ace, you are given a chance to in-
sure your bet; however, if the dealer has a ten or face card show-
ing, you cannot get insurance. The dealer is allowed to peek at his
other card and call a blackjack if he has one. The variable X is set
to 0, and the computer uses the subroutine in line 1210 to find out
what the two cards total.

Line 430 clears the message from the top row on the screen.
The variable TC contains the total value of the two cards. If it is
not 21, the dealer does not have blackjack. The money used as in-
surance is lost, and the computer is sent to line 500 to continue
the same.

Line 440 makes a sound and announces that the dealer has
blackjack. The value of the card that was face down is placed into
CARD. The subroutine at line 1000 prints the card on the screen.

Line 450 begins the loop that checks the hands of both players.
If the value of TC is — 1, the player has blackjack and is paid even
money on the bet. However, if there was no insurance on this bet
everything is lost and the second element of the player’s array is
set to 0.

Line 460 checks to see if the value of TC is not — 1; this means
that the player’s card count is less than 21. If this is the case, both
the money bet and the insurance money is lost. Both elements of
this player’s array are set to 0.

Line 470 adds the values of the three elements of the player’s
array and stores the total in the first element of the array. The bet
and insurance elements are cleared and the values are erased from
the screen.

56



Line 480 places the value of the first element of the player’s
array into B$, calculates the correct position on the screen, and
prints this amount of the screen. The player now knows how much
money he has left.

Line 490 continues the loop for the other player. The timing
loop gives the players a chance to study the screen; then the com-
puter goes to line 880 and asks for another game.

Line 500 resets the variables R1 and D. The FOR-NEXT loop
begins the routine that deals the rest of the hand to the players.
The second element of the player’s array is checked. If it is zero,
the computer is sent to line 620. This person is not playing.

Line 510 makes a sound, then prints a message in the top row
of the screen. You are asked if you want a hit or to stand. You also
have the option of pressing the B key for a blackjack or the D key
to double your bet on the first turn.

Line 520 prints a question mark on the screen under the last
card displayed. The variable CS is set to zero and the computer
is sent to the subroutine in line 1100 to set your input. Only the
letters B, H, S, and D will be accepted.

Line 530 checks the contents of B$. If it is S, the computer
uses the subroutine in line 1210 to set the value of your cards. The
computer then goes to line 600 to give the next player a turn.

Line 540 is used if the contents of B§ is B. The computer uses
the subroutine in line 1210 to get the value of the hand. If the value
of TCis -1, the player has a blackjack and the computer uses the
subroutine in line 630 to change the screen color and make a win-
ning sound. The value of variable TC is placed in the zero element
of the player’s array and the computer is sent to line 620 to con-
tinue the same.

Line 550 sends the computer back to line 510 if the player does
not have blackjack.

Line 560 sends the computer to line 640 if the contents of B$
is D. A bet can only be doubled on the first turn. When the com-
puter returns to this line, the variable D is set to one. This indicates
a successful double.

Line 570 places the next card into the CARD variable. The CD
variable is incremented by one so it is pointing to the next card,
and the card just taken is placed into this player’s array. The com-
puter uses the subroutine at line 1000 to print the card in the cor-
rect position on the screen. The variable P1 is increased by 1. This
is the next position in the player’s hand for the next card. The
subroutine in line 1210 is used to total the value of the hand.

57



Line 575 sends the computer to line 600 if the value of D is
one. This player doubled his bet is allowed only one card for a total
of three on a double.

Line 580 checks the value of TC. If it is greater than 21, and
the values of T1 are 0 or greater than 21, the player broke and the
computer is sent to line 620. The value of the player’s hand is stored
in the zero element of the PLAY array. The variable T1 contains
the alternate value of the hand should the hand contain an ace.

Line 590 sends the computer to line 510 for another entry.

Line 600 checks the values of the variables that contain the
total value of the hand. If the value of TC is less than 22 and greater
than the alternate value of the hand, or if it is - 1, indicating black-
jack, then this value is placed in the zero element of the array and
the computer is sent to line 620.

Line 610 places the alternate value of the hand into the zero
element of the array. However, if the value of T1 is 0 or the value
of T1 is greater than 0, the value of TC is placed in this element
of the array.

Line 620 erases the player’s entry on the screen and resets the
variables for the next player. The loop continues for the other
player’s turn. After both players have taken a turn, the computer
is sent to line 700 for the dealer’s turn.

Line 630 is used when a player is dealt a blackjack. The com-
puter returns to line 540 after it changes the screen colors and
makes the winning sounds.

Line 640 begins the subroutine that checks to see if the player
can double down. First the computer checks to see if there is enough
money to double the bet. If not, the POP command removes the
return address from the stack and the computer does not return
to line 560. Instead it goes to line 510 to get another entry.

Line 650 checks how many cards have been dealt to this player.
The player can choose the double down option only before receiv-
ing a third card. Once he has three or more cards, the option can-
not be chosen. If the value of P1 is greater than three, the POP
command is used again to remove the return address from the stack.
The computer is sent to line 510 for another entry.

Line 660 removes the amount of the bet from the first element
of this player’s array. The amount of the original bet is doubled,
and the amount of money left is converted into B$. The money the
player had is erased from the screen.

Line 670 prints the amount of money the player has left in the
last row of the screen. The amount of the new bet is placed into

58



B$ and the old bet is removed from the screen. Line 680 prints the
amount of the doubled bet on the screen, then returns to line 560.

Line 700 begins the dealer’s turn and the end of the game. The
values of both players’ hands are checked. If both are over 21, the
dealer does not deal to himself and the computer is sent to line 810
to end the game.

Line 710 clears the message from the top row of the screen.
The value card that was face down is placed into CARD and the
computer uses the subroutine at line 1000 to print this card on the
screen. The value of the dealer’s hand is calculated in the subroutine
at line 1210. If the value of the hand is greater than 16, the com-
puter is sent to line 760.

Line 720 takes the next card from the deck and places it in the
computer’s hand. This value of this card is placed into variable
CARD and variable CD is increased by one. Variable Q counts how
many cards have been printed on this line (only six cards can be
printed on one line). The position of the card is calculated if this
is not the seventh card the computer has drawn.

Line 730 calculates the position the card will be printed if the
variable Q is greater than 6.

Line 740 uses the subroutine in line 1000 to print the card on
the screen, and the subroutine in line 1210 to get the total value
of the dealer’s hand. This value is compared to 16. If the dealer’s
hand is greater than 16, the computer is sent to line 760. The dealer
stands on a hard 17.

Line 750 sends the computer to line 720 to draw another card.

Line 760 checks the values of variables T1, TC, and T2. If any
of these values equal 21, the house has 21 and wins. This value
is stored in the computer’s array and the computer is sent to line
810.

Line 770 checks whether the alternate value of the hand is less
than 17. If so, the computer is sent to line 720 to draw another card.
Variable T1 must contain some value; if it is 0, the dealer does not
have an ace, and does not have an alternate value.

Line 780 checks the third possible value the hand could have.
If this value is less than 17 and not 0 the computer will go back
to line 720 and draw again.

Line 790 places the value of TC in the computer’s array. It has
to check the alternate value this hand could have. If the value of
T2 is not 0 and is less than 22, this value is placed in the computer’s
array.

Line 795 checks to see if the value of TC is greater than the

59



value of T1 and less than 22. If so, this is the value placed into
the computer’s array.

Line 800 compares the values of T1 against T2. If they are
greater and less than 22, this value is used. The highest value for
the dealer’s hand under 22 is used as the hand’s value.

Line 810 begins the routine that checks the values of the
player’s hands. If the value of a player’s hand is — 1, the player has
blackjack. This is printed on the screen, and the value of the bet
is multiplied by 2.5. The computer is sent to line 860 to add up
the winnings.

Line 820 checks to see if the player went over 21. If he did,
the bet value is set to 0 and the computer is sent to line 860.

Line 830 compares the player’s hand against the computer’s.
If the player’s hand is worth more than the dealer’s, the player’s
bet is doubled and the computer is sent to line 860.

Line 840 checks to see if the dealer’s hand is less than 22 and
the player’s hand is less than the dealer’s. If this is true, the player
loses and the bet is lost.

Line 850 checks to see if the dealer went over 21 and the player
is under 22. If this is true, the player wins and the bet is doubled.

Line 860 adds the amount of money the player has to the bet
value and stores this amount in the first element of the player’s
array. The value of the player’s hand is cleared from the array and
the bet and player’s money is cleared from the screen.

Line 870 places the amount of money the player has into B$.
This amount is then printed in the last row on the screen. The loop
continues for the next player.

Line 880 clears the message from the top row of the screen
and checks to see if either player has more than $1000. If either
player has, the computer goes to line 950 to end the game.

Line 890 checks to see if both players are out of money. If both
are, the house wins and the computer goes to line 980 to end the
game.

Line 900 asks the players if they want to play again. The
subroutine in line 1100 gets the entry. Press Y to play again, N
to quit.

Line 910 ends the program if the N key is pressed.

Line 920 checks to see if more than 30 cards have been dealt.
If so, the computer is directed to line 180 to shuffle the cards again.

Line 930 sends the computer to line 190 to play another hand.

Line 950 ends the game when one of the two players amass
more than $1000. A message is printed on the screen.

60



Line 960 sets variable PL to two, then checks to see if player
one has more money. If he does, the value of PL is changed to 1.

Line 970 prints the winning player’s number on the screen and
declares him a winner.

Line 980 loops until the Start key is pressed; line 990 runs the
program again. To quit the program at this point, press the System
Reset key.

Lines 1000-1040 print the cards on the screen. The value of
the card must be stored in CARD before the computer uses this
routine. The face values of the cards are taken from CARDS, the
suit characters from SUITS. If the card value is 10, the computer
will print zero after the one is printed on the screen. The computer
returns to the main program after the card is printed.

Lines 1050-1080 place the cards into the C array and shuffle
them. The deck is shuffled five times. The card values are deter-
mined by the whole number, the suit by the decimal value added
to the card value. The cards are shuffled in the FOR-NEXT loop
that counts backwards. A card is chosen at random from the cards
available, and its value is stored in a temporary location. The last
card available in the deck is moved to this card’s position. The card
in the temporary location is moved to the last available location.
Each time the loop is executed the number of cards in the deck
is smaller by one than the previous time. This way all the cards
are moved at least once in the shuffle.

Lines 1100-1200 contain the input routine. The variable B
points to the location in B$ where the input will be placed. B$ is
set to a null string and the keyboard is opened. The computer waits
at line 1110 until a key is pressed. The value of this key is com-
pared to 155. This is the Return key; if it is pressed and there is
something in B$, the keyboard is closed and the computer returns
to the main program. The computer cannot return to the main pro-
gram until a key is pressed.

The value of K is also compared to 127. If it is greater than
127, the inverse key was pressed. The computer subtracts 128 from
this value and POKES location 694 with a zero to reset the flag
to normal. If the value of the variable CS is 1 and the value of K
is 126, the delete key will function and the entry will be erased from
the screen and from B$. If the value of K is greater than 95, the
CAPS key was pressed and the key was entered as lowercase. To
correct this 96 is subtracted from the value of K giving it the up-
percase value, and the location 702 is POKEd with 64 to restore
it to uppercase.

61



If the value of CS is 1, the computer is looking for a number
and only the number keys will be considered a valid entry. If the
value of CS is 0, the computer will only allow the keys H, S, B,
and D to be entered. When the value of CS is 2, only the keys Y
and N are considered. The key that has been pressed is printed
on the screen if it was a valid entry. The computer remains in this
routine until a valid entry and the Return key is pressed.

Lines 1210-1280 count the value of the cards in the hands. All
the variables are cleared. The variable X indicates which player’s
hand is being tallied. The computer counts the first 13 cards. It
is nearly impossible to have more than that number in this game.
The value of the card is moved to variable I. If this value is 0, there
are no more cards in this hand. The computer is sent to line 1270.

Line 1220 checks if the value of this card is greater than 9. If
so, it is worth 10 and this amount is added to the hand and alter-
nate hand. The computer is sent to line 1250 to check how many
aces are in this hand.

Line 1230 checks to see if this card is an ace. If it is, this card
is counted as 11 for the first hand value and 1 for the second or
alternate hand value. Variable A is increased by one to count the
number of aces in this hand. The computer is sent to line 1250 to
check whether it should split the hand again.

Line 1240 adds the value of the card to both hand values.

Line 1260 continues the loop.

Line 1270 checks the value of the variables X, TC, and V. If
the value of X is greater than 0, this is the player’s hand and not
the dealer’s. If the value of TC is 21, this could be a blackjack.
If the value of V is 3, only two cards have been dealt and this is
a blackjack. The value of TC is changed to — 1 to indicate a black-
jack. If we left it as 21, we wouldn’t be able to tell at the end of
the game if this was a blackjack or 21 made with several cards.

Line 1280 sets the variable V to 13 so the computer will end
the loop and return to the main program.

62



Grid Games

Many of the programs in this chapter are versions of traditional
pencil and paper games. Others have been developed specifically
for use on the computer. They all have one thing in common: a grid
of some sort is used as the playing field. The programs Boxes, Bat-
tleships, and Treasure Hunt use a square grid with X and Y coor-
dinates. Boxes is designed for young children; you don’t even have
to name the locations you use. Battleships and Treasure Hunt re-
quire you to name each location you are going to use.

Hex is played on a grid with six-sided locations. The grid itself
is a diamond. It takes a little more concentration to name the points
in this game.

In Cave Dwellers you are traveling through the grid and never
actually see it. It is a decahedron, or ten-sided figure. Each room
can lead to three others. You can find yourself going around in
endless circles.

BOXES

Objective of the game: To complete more boxes than your
opponent.

Directions: This program is designed for two players. One
player is blue and the other green. Each player takes turns at the
keyboard moving the cursor from one dot to the next. The arrow
keys move the cursor. When the cursor is over the dot you want
to claim, press the space bar. To start the turn again, press the

63



Left
arrow
pressed

Set aside memory

Can pla
for array; —] i

move left
?

change screen

Put dots v
on screen Change
y variables for
new location
Set variables A
for player's

turn

@; P g

Right arrow
pressed

Down
arrow
pressed

Can player
move down

player move
right
?

Change Change
variables for variables
new location for new location

Fig. 2-1. Flowchart for Boxes.

Escape key. Once you have claimed one point, you may continue
to claim a neighboring point. When two neighboring points have
been claimed, the computer will connect the points. If you com-
plete a box by connecting points, the box will be colored in your
color. The game ends when all the boxes have been colored. Fig-
ure 2-1 is the flowchart for this program, and Listing 2-1 is the code.

Line 50 sets aside the memory needed for the SCORE array.
This array keeps track of how many boxes each player has com-
pleted.

Line 60 sets the screen for graphics 21. This is graphics mode
64



Yes

Connect
dots

Up arrow
pressed

Can player
move up

Yes

Fill in
box

Add one to
this player's
score

Change variables
for new 1
location

All boxes
filled
?

Second

dot for this

player
?

5 with no text window. The dots are medium-sized in this mode.

Line 70 changes the green color to a darker shade. The color
value is set to one and and the computer prints a grid of dots on
the screen. The dots are placed four rows and columns apart. The
ROW variable indicates the row value and the COL variable in-
dicates the column the dot will be plotted in.

Line 80 continues the loop until all the dots are placed on the
screen.

Line 90 clears the array that counts how many squares have
been colored.

65



Listing 2-1. Boxes.

66

10 REM BOXES - FOR 2 FLAYERS - WHO CAN
CONNECT THE MOST EBOXES

20 REM CHAFTER 2 -~ GRID GAMES

30 REM BY L.M. SCHREIEBER FOR TAE EOOKS

40 REM COFPYRIGHT 1983

500 DIM SCORE(2)IREM SET THIS ARRAY THE
SCORE

60 GRAFHICS 21:(REM SET FOR MEDIUM SIZE
GRAFHICS

70 FOKE 709,196:COLOR 1$FOR COL=20 TO
60 STEF 431FOR ROW=2 TO 42 STEF 4:FLOT
COL,ROWIREM FLOT THE FOINTS 4 AFART

80 NEXT ROWINEXT COLI:REM FLOT OUT THE
ENTIRE SCREEN

90 SCORE(1)=0:SCORE(2)=0

100 BEGCOL=20{ENCOL=60EEGCROW=2{ENRQW=
42

110 REM FLAYER #1 TURN

120 COLOR 2:FLOT 16,42:COLOR 3iFLOT 644
»421C0L1=163C0L2=64 1RON1=42 IRON2=42 {RE
M FUT TWO CURSORS ON THE SCREEN

130 FLAYER=1{FCOL=COLL1{FROW=ROW] ¢ COLOR
FLAYER+1:FLOT COL1,ROWNLIGOSUE 300:SCO
RE(FLAYER)=SCORE (FLAYER)+8

135 IF SCORE(1)+SCORE(2)=100 THEN 200
140 FLAYER=2I!FCOL=COLZ2iFROW=ROWZ!COLOR
FLAYER+1IFLOT COLZ,ROWZ2IGOSUE 3003SCO
RE(FLAYER)=5CORE (FLLAYER)+8

145 IF SCORE(1)+SCORE(2)=100 THEN 900
150 GOTO 130

300 OLDCOL=FCOL:OLDROWN=FROW:S=0

310 OFEN #2,4,0,"K:"ICET #2,KEY!{CLOSE
#21IF OLDCOL=COL1 OR OLDCSL=COLZ2 THEN
340

320 IF KEY=43 THEN FROW=FROW-4:GOTO 38
0

330 IF KEY=61 THEN FROW=FROW+4:GOTO 38
0

340 IF KEY=43 AND OLDCOL<»>COL1 THEN FC
OL=FCOL-4:GOTO 380

330 IF KEY=42 AND OLDCOL<>COLZ THEN PC
OL=FCOL+4:GOTO 380

360 IF KEY=32 AND OLDCOL-=>COL1 AND QLD
COL==COLZ THEN 420




365 IF KEY=27 THEN COLOR 1:FLOT FCOL,F
ROW!FOF $GOTO 120+FLAYERXL0

370 GOTO 310

380 IF FROW-EEGROW THEN FROW=EEGROW
390 IF FROWHENROW THEN FROW=ENROW

400 IF PCOL<EEGCOL THEN FCOL=EEGCOL
410 IF PCOLFENCOL THEN FCOL=ENCOL

420 IF OLDCOL=COL1 OR OLDCOL=COLZ THEN
COLOR O0:FLOT OLDCOL,OLDROW:GOTO 440
430 COLOR 1:FLOT OLDCOL,OLDROW

440 COLLOR FLAYER+1:FLOT FCOL,FROW

450 IF KEY-=»32 THEN 300

460 OLDCOL=FCOL$0OLDROW=FROW

470 OLCOL=FCOL{OLROW=FROWIOFEN #2,4,0,
"KIMIGET #2,KEYICLOSE #2

480 IF KEY=435 THEN FROW=FROW-4:1G0OT0O %54
0

490 IF KEY=61 THEN FROW=FROW+4:GOTO 54
0

500 IF KEY=43 THEN FCOL=FCOL-4:G0OT0O 54
0

510 IF KEY=42 THEN FCOL=FCOL+4:GOTO 54
0

515 IF OLDCOL=FCOL AND OLDROW=FROW THE
N 5295

520 IF KEY=32 THEN 590

525 IF KEY=27 THEN COLOR 1:FLOT FCOL,F
ROWIFLOT OLDCOL,OLDROWIFOF (GOTO 120+F
LAYERX10

530 GOTO 470

540 IF FROW-EEGROW THEN FROW=EEGROW
550 IF FPROW:ENROW THEN FROW=ENROW

540 IF FCOL<EBEGCOL THEN FCOL=EEGCOL
570 IF PCOLXENCOL THEN FCOL=ENCOL

580 IF AES(FCOL-0LDCOL)Y>4 OR AES(FROW-
OLDROW)>4 THEN FCOL=0LCOL:FROW=0LROWIG
0TO 470

585 REM WATCH FOR THE DIAGONAL

590 IF PCOL<>0LDCOL AND FROW->OLDROW T
HEN FCOL=0LCOL{FROW=0LROW:GOTO 470

595 REM IF BACK IN ORIGINAL FOSITION,
DON‘T WORRY

600 IF FCOL=0LDCOL AND FROW=0LDROW THE
N 620

610 LOCATE OLDCOL-SGN(OLDCOL-FCOL),0LD
ROW-SGN(OLDROW-FROW) , TAKENIIF TAKEN-:0

67



68

THEN FCOL=0LCOL!FROW=0LROXWIGOTO 470
620 COLOR 1:{FLOT OLCOL,0OLROWICOLOR FLA
YER+1:FLOT 0LDCOL, OLDROW
630 COLOR PLAYER+L1:i{FLOT FCOL,FROW
640 IF KEY«»32 THEN 470
650 COLOR FLAYER+1:FLOT OLDCOL ,0OLDROW?
DRAWTO FCOL,FROW:COLOR 1:FLOT OLDCOL,O
LDROWSFLOT FCOL,FROW
660 IF OLDCOL-<:FCOL THEN 7&60:REM LINE
WENT ACROSS
670 ILOCATE OLDCOL+1,0LDROW, TAKENSIIF TA
KEN=0 THEN 710{REM NO EOX THIS WAY
680 ILOCATE FCOL+1,FROW, TAKEN!IF TAKEN=
0 THEN 7103REM NO EOX HERE
6920 LOCATE FCOL+4,0LDROW-SGN(OLDROW~FR
OW), TAKENSIF TAKEN=0 THEN 710:REM NOT
A EOX
700 COLOR FLAYER+1:!FOR X=1%X3GN(FROW-0L
DROW) TO 3%EGN(FROW-0OLDROW) STEF SGN(F
ROW-0OLDROW) ¢FLOT OLDCOL , OLDROW+X
705 DRAWTO OLDCOL+3,0LDROW+XINEXT X38=
S+l
710 LLOCATE OLDCOL-1,0LDROKW,TAKEN:IF TA
KEN=0 THEN RETURN $(REM NO EOX THIS WAY

720 LOCATE FCOL-1,FROW, TAKEN!IF TAKEN=
0 THEN RETURN $(REM NO EOX HERE

730 LOCATE FCOL~4,0LDROW-SGN(OLDROW-FR
OW), TAKEN!IF TAKEN=0 THEN RETURN $REM
NOT A EOX

740 COLOR FLAYER+13:FOR X=1XSGN(FROW-OL
DROW) TO 3x*SGN(FROW-OLDROW) STEF SGN(F
ROW-OLDROW) $FLOT OLLDCOL , OLDROW+X

750 DRAWTO OLDCOL-3,0LDROW+XINEXT X$8=
S+1IRETURN

760 LOCATE OLDCOL,OLDROW+1,TAKENSIF TA
KEN=0 THEN 800:REM NOT A EOX

770 LOCATE FCOL,FROW+1,TAKEN:IF TAKEN=
0 THEN 800:REM NOT HERE

780 LOCATE OLDCOL~SGN(OLDCOL~-FCOL) ,FRO
W+4, TAKENIIF TAKEN=0 THEN 800

790 COLOR FLAYER+1:FOR X=1XSGNC(FCOL~0L
DCOL) TO 3%SGN(FCOL-0OLDCOL) STEF SGN(F
COL-0LDCOL) $FLOT OLDCOL+X,0LDROW

795 DRAWTO OLDCOL+X,0LDROW+3INEXT X6
S+1




800 LOCATE OLDCOL,0LDROW-1,TAKENIIF TA
KEN=0 THEN RETURN (REM NO EOX

B1l0 LINE=810ILOCATE FCOL ,FROW-1,TAKENS
IF TAKEN=0 THEN RETURN

820 LOCATE OLDCOL-8GN(OLDCOL-FCOL) ,FRO
W-4, TAKENIIF TAKEN=0 THEN RETURN

830 COLOR FLAYER+L1$FOR X=1XSGN(FCOL-0L
DCOL) TO 3%XSGN(FCOL-0LDCOL) STEF SGN(F
COL-0OLDCOL) tFLOT OLDCOL+X,0LDROW

840 DRAWTO OLDCOL+X,0LDROW-3INEXT Xi8=
S+1IRETURN

00 GRAFHICS Z2IiFOSITION 2,4:7 #63"qame
over "

210 FOSITION 2,6:7 #63"GREEN - "3SCORE
(1)

920 FOSITION 2,817 #63"ELUE - "3SCORE(
2)

925 REM NEXT MESSAGE INVERSE
930 FOSITION 2,103? #6;"FRESS start TO
FLAY"

940 IF FEEK(53279)<»6 THEN 940

950 GOTO 60

Line 100 sets the variables that determine where the grid begins
and ends on the screen.

Line 120 uses the second color, green, for the first player and
the third color, blue, for the second player. The two colored cur-
sors are placed on the screen. The column that each cursor is in
is stored in variables COL1 and COL2. The value for the row for
each cursor is stored in variables ROW1 and ROW2.

Line 130 begins the turn for the first player. The variable
PLAYER is set to 1. This player’s cursor values are moved to PCOL
and PROW. The color value is set to the value of PLAYER + 1.
The computer then uses the subroutine in line 300 to move the cur-
sor. When the computer returns to this line, the score for this player
is updated. Line 135 checks to see if all 100 boxes have been filled
in. If they have, the computer goes to line 900 to end of the game.

Line 140 gives the second player his turn. The variables that
hold the cursor position for this variable are placed into variables
PCOL and PROW. The color value is changed for the second player
and the computer uses the subroutine in line 300 to move the cur-
sor. When the computer returns to this line, the score for the sec-
ond player is updated.

69



Line 145 checks to see if all 100 boxes have been filled in. If
they have, the computer goes to line 900 to end the game.

Line 150 sends the computer back to line 130 to continue the
same.

Line 300 is the subroutine that moves the cursor on the screen.
The values in PCOL and PROW are moved to variables OLDCOL
and OLDROW. The S variable is set to 0. The value in this variable
will change if a box is closed and colored in.

Line 310 opens the keyboard for a read. The computer waits
until a key is pressed, then the keyboard is closed. The value of
OLDCOL is compared to the values of COL1 and COL2. The cur-
sor is not on the grid if either of these values are equal. If the cur-
sor is not on the grid, the only way to move it is to the right or
left, depending on whose turn it is. The computer is sent to line
340 and skips the lines that would allow the cursor to move up and
down.

Line 320 checks to see if the up arrow key was pressed. If it
was, the value of PROW is decreased by 4 and the computer goes
to line 380 to print the cursor in the new position.The rows and
columns are four pixels apart.

Line 330 checks to see if the down arrow was pressed. If it
was, the variable PROW is increased by 4.

Line 340 checks the value of KEY to see if the left arrow key
was pressed. This line also compares the value of OLDCOL to
COL1. The cursor cannot move to the left if it is the first player’s
turn and the cursor is not on the grid. If the cursor can move to
the left, the variable PCOL is decreased by 4.

Line 350 checks to see if the right arrow key has been pressed.
If it has, and if this is not the first turn for the second player, the
cursor will move one dot to the right. The value of the PCOL
variable is increased by 4.

Line 360 checks to see if the space bar has been pressed. If
it has and the cursor has moved, the computer goes to line 420 to
change the color of the dot the cursor is on. If the variable OLDCOL
is equal to COL1 or COL2 the cursor has not moved, so there is
no dot to change.

Line 365 checks to see if the Escape key has been pressed. This
is one way to change your mind about a dot you have captured.
If this key has been pressed, the color value changes to 1, and the
dot that was in the player’s color is changed back to the grid color.
The POP command removes the return address from the stack and

70



the computer is sent back to the beginning of the program line for
this player.

Line 370 sends the computer back to line 310 for another key
entry.

Line 380 checks the value of the PROW variable with the value
of BEGROW. If the value of PROW is less than the value of
BEGROW, PROW is reset. This keeps the cursor on the grid.

Line 390 checks to see if the new value in PROW would put
the cursor off the grid on the bottom. If the value of PROW is
greater than the value of ENROW the cursor would move off the
grid, so PROW is reset to the bottom row of the grid.

Line 400 compares the value of PCOL with the value of
BEGCOL. If PCOL is less than BEGCOL, the curso. is not on the
grid. The value of PCOL is reset to BEGCOL.

Line 410 checks to see if the new value for PCOL would place
the cursor off the right side of the grid. If PCOL is greater than
EDCOL the cursor would be off the grid, so PCOL is reset to keep
it on the grid.

Line 420 checks to see if the value of OLDCOL is the same
as COL1 or COL2. If so, the color value is set to 0 so the cursor
will be erased from the screen when it is moved to the new posi-
tion. The cursor is erased by plotting the old position and the com-
puter is sent to line 440.

Line 430 colors the dot the cursor was over.

Line 440 changes the color back to the player’s color. This is
the color the dot in the new location will be changed to. The PLOT
command places the cursor on the screen in the new position.

Line 450 checks the value of the KEY variable again. If it is
not 32, the space bar, the computer goes back to line 300 to move
the cursor again.

Line 460 stores the current position of the cursor in variables
OLDCOL and OLDROW.

Line 470 stores the values again in variables OLCOL and
OLROW. The keyboard is opened again and the computer waits
for a key to be pressed. The value of the pressed key is stored in
the KEY variable and the keyboard is closed.

Lines 480-510 are similar to lines 320-350. This time the com-
puter does not have to check if the cursor can move in a direction
because the cursor is already in the grid. The computer will have
to make sure that the cursor stays on the grid.

Line 515 checks to see if the cursor has moved; if it hasn’t,

71



it must skip the next program line because you cannot claim the
same dot twice in the same turn.

Line 520 checks to see if the space bar has been pressed. If
it has, the computer is directed to line 590 to change the color of
the dot and draw the line.

Line 525 checks to see if the Escape key has been pressed. If
it has, the color value is changed to one and the dot that has been
changed and the dot the cursor is on are changed back to their
original color. The POP command is used to remove the return ad-
dress from the stack, and the computer is sent back to the program
line that begins the turn for this player.

Line 530 sends the computer to line 470 to wait for another
entry.

Lines 540-570 check the position of PROW and PCOL to make
sure the cursor will not be printed off the grid. If any value is out
of range, it is reset to the edge of the grid.

Line 580 now subtracts the new column value from the column
value of the first cursor, and the new row value from the row value
of the first cursor. If the difference between any two values is more
than 4, the cursor cannot move and values of PROW and PCOL
are reset with the values of OLROW and OLCOL. The computer
is sent back to line 470 to wait for a new entry.

Line 590 checks to see if the new location is on the diagonal.
If the column values and the row values are different. the cursor
was not moved in a straight line. The values of PROW and PCOL
are reset with the values of OLROW and OLCOL. If the cursor
was moved in a straight line, the row values or the column values
would be the same. The computer is sent back to line 470 to wait
for another entry.

Line 600 checks to see if the cursor has been moved to its
original position. This can happen the second time the cursor is
moved; for example, on the first turn the first dot in the first row
was captured. On the second turn the cursor was moved to the first
row, second column. For one reason or another the player decided
he would rather move to the first column, second row. The cursor
would have to move back to the first column, first row before it
could move up to the second row. The computer has to be able to
determine whether this dot was already taken so that it couldn’t
be taken twice. If this dot was taken already, the computer skips
the next line and goes directly to line 620.

Line 610 uses the LOCATE command to see if a line already
exists where the player wants to make his line. By using the SGN

72



command and subtracting the new column and row positions from
the old ones, the computer will point to the location just inside the
box along the side where the line will made. If the pixel at this loca-
tion is not a zero, then a line is there already and the values of PCOL
and PROW are restored to the old values. The computer is sent
to line 470 to wait for another turn.

Line 620 changes the color of the dot where the cursor was
to the original color, then uses the player’s color to plot the cursor
in the original position.

Line 630 plots the cursor in the new position.

Line 640 checks again to see if the space bar has been pressed.
If it hasn’t, the computer is sent to line 470 to wait for another entry.

Line 650 draws a line from the first cursor to the second. Then
the dots at the beginning and the end of the line are restored to
their original color.

Line 660 checks the values of the column variables. If these
variables are not the same, the line was drawn horizontally on the
screen rather than vertically. The computer is directed to line 760.

Line 670 checks the pixel just to the right of the end dot of
the line just drawn. If this pixel value is 0, there is no box drawn
in that direction and the computer is directed to line 710.

Line 680 checks the pixel to the right of the other end dot on
the line just drawn. If this pixel is a zero, there is no box in that
direction.

Line 690 checks one more point to see if a box has been com-
pleted. If this point also contains a zero, then no box has been com-
pleted in this direction.

Lines 700-705 fill in the completed box. The computer uses the
FOR-NEXT loop to draw in the lines that color the box. Once the
box is completely colored the S variable is increased by 1. This
variable keeps track of how many boxes have been filled in. It is
possible to complete more than one box in one turn.

Lines 710-730 continue to look for a completed box based on
the vertical line drawn on the screen.

Lines 740-750 color the completed box, increase the variable
S by 1 and return to the main program.

Lines 760-780 begin to look for a box that has been completed
with the horizontal line. If it cannot form a box, the computer is
sent to line 800.

Lines 790-795 fill in the completed box. The S variable in-
creased by 1 to keep count of how many boxes have been com-
pleted.

73



Lines 800-820 continue to look for a completed box. If no box
can be found, the computer returns to the main program.

Lines 830-840 color completed box. The S variable is increased
by 1 and the computer returns to the main program.

Lines 900-930 end the game. The game is over when all 100
boxes have been filled in. The computer has been keeping track
of the number of boxes each player has completed. The number
of boxes each player has colored in is printed on the screen.

Line 940 loops until the Start key is pressed.

Line 950 sends the computer back to line 60 to play again. To
end the program, press the System Reset key.

BATTLESHIPS

Objective of the game: To destroy the enemy’s ships before
yours are destroyed.

Directions: You play this game against the computer. You
have ten ships to position on your grid. Each ship can be placed
horizontally or vertically. Some ships are only one square long,
others are two, three, or four squares long. The ships are displayed
under the grid. The blue ship is the one you are trying to place
on the grid. Enter the letter and the number of the square where
you want the ship to begin. Then press the up arrow to place the
ship vertically on the screen, or the right arrow to place the ship
horizontally. Press the Return key after the letter and number are
entered to validate the location, the delete key to erase the entry.
After you enter the placement direction, press the Return key to
validate that location, the delete key to enter a new one. If the ship
will not fit at that location because it would be off the grid or on
top of another ship, the program will tell you and you will be asked
to place the ship again. After all your ships are placed, the com-
puter will put its ships on its grid.

To play the game you are asked to enter a letter and a number
of a square. If you hit one of the computer’s ships, the screen flashes
and the computer makes a sound. The computer in turn tries to
hit your ships. When it does, the screen flashes and the computer
makes a sound. The hits and misses are marked on the grid so you
know where you have scored. The game is over when one player
has hit all the opponent’s ships. Figures 2-2 and 2-3 is the flowchart
for this program, and Listing 2-2 contains the program code.

Line 50 sets aside the memory needed for the strings and ar-
ray. The array CMP is used by the computer to keep track of which

74



Set aside memory
for strings,
arrays,
character set

¥

Move character
set, change

screen mode

Y

Change
characters in
set

Place grid,
scores
on screen.

Get
position
for ship

Does it
fit
?

Computer sets
up its
grid

Get
location
from player

Hit
computer's
ship?

Make hit
sound,
increase score

Any
ships left
?

Yes

Computer
chooses
location

Yes Used

it before

player's
ship
?

Declare
the
winner

Fig. 2-2. Flowchart for Battleships.

75



255
129

129

129
129
129
129
255

85’ ﬁgﬂo oo

: 0
! 0
bl 0
0
158
152
154
252

31 0

15 8

3 12

3 14

1 127

15 95

11 95

2 127

Fig. 2-3. Character set for Battleships.

76

-
©w =0

_ _
=
88 872000




w
-

88

b0 NN

Listing 2-2. Battleships.

10 REM EATTLE SHIFS FOR 2 FLAYERS - TR
Y TO DESTROY THE ENEMY‘’S SHIFS EBEFORE
YOURS ARE DESTROYED

20 REM CHAFTER 2 - GRID GAMES

30 REM BY L.M. SCHREIRBER FOR TAE EOOKS
40 REM COFYRIGHT 1983

S50 DIM CHMFCL10,10),HG$C100) ,DIR$(H) ,8HI
F$(4) CG$(100)

5 MI“%~[080’HIT"1070 KEYEOARD=9003TIM
—lOUO‘CLSLh 101038HIF=1020:FPACK=1090
60 A=FEEK(106)-8I1FOKE 204,AIFOKE 206,F

EEK(756)

70 FOR X=1536 TO 1555IREAD VIFOKE X,V1
NEXT XIREM ROUTINE TO MOVE THE CHARACT
ER SET

80 DATA 104,162,4,160,0,177,20u, 45,20
3,200,208,249,230,206,230,204,202,208,
242,96

?0 GRAFHICS 17:Q=USR(1536)IFOKE 756,A%
REM MOVE IT AND USE IT

100 CHARSET=AX256+241FOR X=CHARSET TO
CHARSET+103:READ VIFOKE X,VINEXT XIiFOR
X=CHARSET+184 TO CHARSET+239

105 READ VIFOKE X,VINEXT XIFOR X=CHARS
ET+472 TO CHARSET+487 {READ VIFOKE X,V!
NEXT X

110 DATA 2855,129,129,129,129,129,129,2
0%

120 DATA 0,0,0,7,33,255,127,63,0,1,3,1

77



78

9,191,255,255,255

130 DATA 0,0,128,130,202,255,255,255,0
20,0,28,176,294,252,248

140 DATA 0,0,28,7,295,127,63,15,0,0,46,

30,255,25%5,255,255,0,240,144,240,254,2

92,248,240

150 DATA 0,0,0,1,115,35,295,127,0,0,0,

0,158,152,1594,252

160 DATA 0,0,0,48,16,16,124,254

170 DATA 0,10,11,15,15,3,3,15,31,15,3,

3,11,15,11,2

180 DATA 0,8,12,14,127,95,95,127,15,63
+63,31,31,15,15,15,31,31,63,47,47,14,1

2,8

190 DATA 0,4,22,23,31,15,7,1

S0 97 9184639127 36841557 ¢31 7

3233737 +15,6,4

195 DATA 255,19%5,153,189,189,153,195,2

99,295,195,165,153,153,165,195%,255

200 FOSITION 0,087 #é63"computer h

uman" IFOSITION 0,137 #63" “IFOSITION
16,17 k63" "

2095 REM ALFHAEET AND FOUND SIGNS ARE I

NVERSE

210 FOR X=12 TO 3 STEF —-1iFOSITION 4-(

X=12), X317 #63X-2ZINEXT XIFOSITION 5,287
$63 "abecdefahi "

220 FOR X=1 TO LOIFOSITION S,X+2:7 %63}

EEEFEFEREE" INEXT X

230 SQ=3:6H=1iFOSITION 3,14:7 #63"$%&"
()* +) -

240 GOSUE CLSCRIFOSITION 2,17:7? #63"en

ter letter and number"

250 GOSUE KEYEDARDIIF KEY<=65 0OR KEY>74
THEN 250iREM NOT A LETTER

260 FOSITION 92,197 #63CHR$(KEY) J"\"IF
1=KEY-64

270 GOSUE KEYEBOARD:!IF KEY=126 THEN 240

997431471
+7515,31,2

273 IF KEY<49 OR KEY>S57 THEN 270

280 FOSITION 11,19iF2=KEY~-48:7 #&6;CHR%
(KEY)

290 GOSUE KEYEOARD!IF KEY=155 THEN 320

295 IF KEY=126 THEN 240
300 IF P2=1 AND KEY=48 THEN F2=10$F0SI




TION 12,1937 #63"0"

310 GOTO 290IREM LOOF UNTIL RETURN KEY
IS FRESSED

320 FOSITION 22,2137 #63"up or across'?

REM LOWER CASE INVERSE

330 IF PEEK(764)=255 THEN 330:REM GET

THE DIRECTION

340 DIR=FEEK(764):IFOKE 764,2535:IF DIR=
14 OR DIR=7 THEN 360

345 IF DIR=52 THEN 240

350 GOTO 330

360 DIR$="ACROSS"{IF DIR=14 THEN DIR%=
" lJFI "

380 GOSUE SHIFIFOSITION 8,22:7 #63DIRS$

390 F=LEN(SHIF%$):0ON DIR/7 GOTO 400,430

400 IF F1+4SQx10 THEN 420

410 FOR X=F1+4 TO F1+4+SQILOCATE X,F2+

2,CHYIF CH=33 THEN NEXT XiFOSITION F1+

4,P2+217 #636HIF$IGOTO 460

420 GOTO 240

430 IF F2-8Q<1 THEN 420

440 FOR X=F2+2 T0O F2+(2-5Q) STEF -1:L0

CATE F144,X,CH!IF CH<:=35 THEN 240

450 NEXT X:FOR X=F2+2 TO F2+(2-SQ) STE

F -1{FOSITION F1+4,X:? ¥63SHIF$(F,F)IF

=F-1INEXT X

460 IF FPEEK(764)=255 THEN 460

470 EN=FEEK(764)IFOKE 764,2553IF EN=12
THEN 530

480 IF EN<>52 THEN 460

500 FP=8Q+1iSHIF$=""IFOR X=1 TO FISHIF$
(X, X)="%#"INEXT X{ON DIR/7 GOTO 510,520

510 FOSITION F1+4,F2+2:!7 #63SHIF$:GOTO
240

520 FOR X=F2+2 TO F2+(2-SQ) STEF -1:!FO0

SITION F1+4,X:? #63SHIF$(F,F)IF=F-1INE

XT XiGOTO 240

530 SH=8H+1:!IF SH=2 OR SH=3 THEN FOSIT

ION 3,14:7? #63" OxX"3165Q=216G0TO 240
tREM CHARACTERS ARE INVERSE

540 IF SH:»3 AND SH«7 THEN FOSITION 8,1

417 #63" +,"168Q=1:G0T0 240:REM CHAR

ACTERS ARE INVERSE

550 IF SH»6 AND SH<11 THEN FOSITION 12
» 1417 #6353 ~-"$18Q=0:CGOTO 2Z40:REM MINU

S SIGN IS INVERSE

79



80

560 GOSUE CLSCRIFOSITION 14,14:7 #63"
"IFOSITION 22,1717 #63"FLACING MY SHIF
S§"I1G6H=115Q=3IREM STARTING SHIFS

570 GOSUE FACKIFOR X=1 TO 10:iFOR V=1 T
0 103CMF(X,V)=03INEXT VINEXT XIREM CLEA
R THE ARRAYS

580 F1=INTC(RNDCLYXL0)+13F2=TINT(RND (L)X
L0+ 13DIR=INT(RNDC1L)X2)+10ON DIR GOTO
590,620

990 IF P1+45Q=10 THEN S80:REM OUT OF SQ
UARES

600 FOR X=F1 TO F1+8Q3IF CMF(X,F2)=0 T
HEN NEXT XI{FOR X=F1 TO F1+8Q3ICMFP(X,F2)
=5Q+1LINEXT XI1GOTO 650:REM CHECK

610 GOTO S80IREM CAN’T FUT IT THERE
620 IF F2-SQ<1 THEN S80iREM OFF THE ED
GE

630 FOR X=F2 TO F2-5Q STEF -131IF CMF(F
1,X)=0 THEN NEXT X:FOR X=F2 T0 F2-8Q 8§
TEF -131CMP(P1,X)=8Q+1INEXT Xi1GOTO 650
640 GOTO S80IREM WON’'T FIT

650 SH=SH+11IF SH=2 0OR $H=3 THEN SQ=2%
GOTO GB0IREM FLACE THE NEXT TWO EOATS
660 IF SHx3 AND SH=7 THEN SQ=1:1G0T0 %8
0:REM AND THE NEXT THREE

670 IF SHxé AND SH<11l THEN SQ=0:G0T0 S
80IREM AND THE LAST FOUR

680 COH(L)="F"I1CCH(100)="%"ICC$(2)=CC%
tREM MAKE THE GRID - FOUND SIGN IS INV
ERSE

6920 FOR X=1 TO L0{FOSITION S5,X+217 %63
CGH ((X~-1)x10+1,10%X) INEXT X

710 REM MESSAGE IS LOWER CASE AND INVE
RSE

720 FOSITION 2,17:17? #63"enter a8 letter

and number"iFOSITION 9,1947

izé;ll "

730 GOSUE KEYEOARDIIF KEY<é65 OR KEY:»74
THEN 7303REM NOT A LETTER

740 FOSITION 92,1987 #63CHRS(KEY) $"\"IF
1=KEY-64

750 GOSUE KEYEOARDIIF KEY=1246 THEN 720

759 IF KEY<49 OR KEY:>57 THEN 750

760 FOSITION 11,192iF2=KEY-48:7 #63CHR$
(KEY)

770 GOSUE KEYEOARDI!IF KEY=153 THEN 800




775 IF KEY=1246 THEN 720

780 IF F2Z=1 AND KEY=48 THEN F2=10:F0SI
TION 12,1937 #4630

790 GOTO 770:REM LOOF UNTIL RETURN KEY
IS5 FRESSED

800 IF CMF(FL,F2)=0 THEN GOSUE HITISHI

Fé="_"ICMF(PL1,F2)=-1:G0T0 830IREM SHIF
$ IS INVERS UNDERLINE

810 IF CMF(F1,F2)<>0 THEN FOSITION 9,1
817 #63" "1GOTO 720

820 GOSUE MISSISHIP$="A"ICMF(FLl,F2)=~1
tREM SHIF$ IS INVERSE UFP ARROW

830 FOSITION F1+4,F2+2:7 $#63SHIF$IGOSU

E TIME!IF SHIF$="A" THEN GOSUE 1180:G0
TO 840:REM UF ARROW XIS INVERSE

831 HMHT=HMHT+1iFOSITION 16,1:7 #63HMH
TsIF HMHT=20 THEN 1120

832 GOTO 720

840 FOR X=1 TO L0:FOSITION 5,X+2:7 %63
HGH((X=1)X10+1,XX10) INEXT X

841 REM MESSAGE IS INVERSE

849 POSITION 2,17:7? #6;"HIT ON
"IFOSITION 7,18:7 #63"FOSITION "IFDS
ITION 92,1917 #6463 v

847 IF CMHT=0 THEN 864

848 FOR X=1 T0O 103FOR V=1 TO 10:REM FI

ND A HIT

850 GOSUE 1170:IF CH=<>95 THEN FOSITION
0,20:GOTO 840

852 IF V<10 THEN VU=U+1:1G0OSURE 1170iV=U~
11IF CH=»94 AND CH=»9% THEN VU=VU+1:G0OTO
842

854 IF V1l THEN VU=U-1iGOSUE 1170:V=VU+1
tIF CH=»94 AND CH=»9%9 THEN VU=U-1:1GOTO
862

856 IF .X<10 THEN X=X+1:GOSUE 1170 X=X-
1:IF CH=:»94 AND CH=»9% THEN X=X+1:{G0TO0O
862

858 IF X1 THEN X=X-1i{GOSUE 1170:X=X+1
$IF CH<>94 AND CH=»9%5 THEN X=X-1:GOTO
8462

860 NEXT VINEXT XIi1GOTO 864

862 F1=ViF2=XI1G0T0O 865

864 F1=INTC(RND(1)XL10)+1iF2=INT(RND(L1)X
10)+1

865 FOSITION 9,197 H#463" "ILOCATE

81




82

F1+4,F2+2,CHIIF CH=95 OR CH=94 THEN 86
4

870 FOSITION 9,19237 #63CHRE(F1+64) 3" \"
tF23IF CH=33 THEN GOSUE MISSISHIF$="A"
+GOTO 890

880 GOSUE HITISHIF$="_"{CMHT=CMHT+1
890 GOSUE TIMEIFOSITION F1+4,F2+217 %6
$SHIFS

891 IF SHIF$="A" THEN GOSUE FACKIGOTO
690

892 IF SHIF$="_" THEN FOSITION 0,1:7? #
63CMHT $IF CMHT=20 THEN 1110

895 GOTO 848

200 OFEN #2,4,0,"K{"IREM READ THE KEYE
0ARD

210 GET #2,KEY!REM GET THE KEY EBEING F
RESSED

920 IF KEY=15% OR KEY=126 THEN 960

930 IF KEY>127 THEN KEY=KEY-128:iFOKE 6
?4,01REM SET FOR NORMAL VIDEO

240 IF KEY:95 THEN KEY=KEY-32!{FOKE 702
+64LREM SET FOR UFFER CASE

250 IF KEY<48 OR KEY:»74 THEN 9103:REM N
07T A GOOD KEY

9260 CLOSE #2IRETURN

1000 FOR TME=1 TO 200INEXT TME:RETURN
1010 FOR X=17 TO Z2iFOSITION 2,X:i? %63}
& "INEXT XIRETURN
1020 ON DIR/7 GOTO 1030,1050

102% REM ALL THE CHARACTERS FOR THE SH
IFS ARE INVERSE

1030 GOTO 1030+SH

1031 SHIF$="$%&’" IRETURN

1032 SHIF$="()X"IRETURN

1033 SHIF$="()X"{RETURN

1034 SHIF$="+," IRETURN

1035 SHIF$='"+," IRETURN

1036 SHIF$="+," {RETURN

1037 SHIF$="-"IRETURN

1038 SHIF$="-"IRETURN

1039 SHIF$="-"IRETURN

1040 SHIF$="-"I1RETURN

1050 GOTO 1050+8H

1051 SHIF$="=:?@" {RETURN

1052 SHIF$="1}§<" IRETURN

10%3 SHIF$:="33<" IRETURN




1054 SHIF$="",/"{RETURN
1085 SHIF$=".,/"tRETURN
1056 SHIFP$="./"{RETURN

1057 SHIF$="-"i{RETURN
1058 SHIF$="-"{RETURN
1059 SHIF$="-"IRETURN
1060 SHIF$="~"{RETURN

1070 FOR X=1 TO 10:FOKE 712,Xx10:S0UND
0,100,494, 15INEXT XIFOKE 712,0:S0UND 0,
0,0,0

1075 RETURN

1080 FOR X=1 TO 10:SOUND 0,X%10,10,10:

NEXT XiSO0UND 0,0,0,0¢RETURN

10?20 C=1!FOR X=1 TO 10:{FOR V=1 TO 10%L

OCATE V+4,X+2,CHIHG$(C,C)=CHR$ (CH) :C=C

+1INEXT VINEXT XIREM FACK THE GRID
1100 RETURN

1110 POSITION 2,1787? #63"T WIN!''!

"{GOTO 1130

1120 FOSITION 22,1787 #63"YOU WIN!!'!'$,
INVERSE >

1130 FOSITION ?,19:? #63"press start"?

REM START IS INVERSE

1140 IF FEEK(53279)<3x6 THEN 1140

1150 HMHT=0:{CMHT=0:GOSUE CLSCRI{GOTO 20
0

1170 LOCATE V+4,X+2,CHIRETURN

1180 C=1IiFOR X=1 TO 10:FOR V=1 TO 10:L
OCATE V+4,X+2,CHICG$(C,C)=CHR$(CH) :C=C
+1INEXT VINEXT XIRETURN (REM FACK GRID

locations have hits and misses. HG$ contains the grid for the human
player’s ships. DIR$ holds the words for the up and down direc-
tions. SHIP$ holds the characters for the ships, and CG$ contains
the grid for the computer’s ships.

Line 55 sets several variables to line numbers used frequently
in the program. This saves on memory in the program since
numbers are stored as several bytes and variables are only one byte.
MISS is the routine used when a ship is not at that point on the
grid. HIT is the routine used when a ship is hit. KEYBOARD sets
the key that was pressed. TIME is a timing loop. CLSCR clears
the screen. SHIP prints the ship on the screen, and PACK takes
the grid on the screen and makes it into one long string.

Line 60 finds out how much memory is in the computer by

83



PEEKing at location 106. In this program we subtract eight, or 1K,
from this amount. As the screen only occupies 513 bytes, the
character set can fit above the screen area. This value and the begin-
ning address of the character set in ROM is stored in locations 204
and 206. This information will be used in the assembly language
subroutine that moves the character set from ROM into RAM.

Line 70 contains the FOR-NEXT loop that moves the code for
the assembly language subroutine from the data line into memory
locations 1536-1555.

Line 80 contains the decimal codes for the assembly language
subroutine that moves the character set from ROM into RAM.

Line 90 changes the screen to graphics 17; this is graphics one
with no text window. The computer uses the USR command to ex-
ecute the assembly language subroutine that begins in memory loca-
tion 1536. When the computer returns to this line it POKES the
address of the beginning of the character set in RAM into location
756.

Line 100 sets the variable CHARSET to the first byte of the
third character in the character set. This is the first character we
will change. In all we will change 24 characters in this program.
The first FOR-NEXT loop changes 13 characters in the character
set: all the characters from the pound sign (#) to the slash (/). We
need numbers in this program,so we will leave the next 10
characters intact. The second FOR-NEXT loop changes the seven
characters following the numbers.

Line 105 contains the third FOR-NEXT loop, changing four
more characters. The reason the characters are changed in different
parts of the character set is because we want to keep the numbers
and the letters intact.

Lines 110-195 contain the codes for the new characters.

Line 200 prints the screen heading. The computer is playing
against the human.

Line 210 prints the numbers and the letter for the grid. The
grid is centered on the screen. The numbers are printed in rows
3-12, so the loop starts at 3 and ends with 12. We want the rows
numbered from 1 to 10, and we want the numbers to line up prop-
erly. The Position command contains an equation as part of the
column. The computer looks at the value of X and compares it to
12.If X is 12, the equation X = 12 is true and the equation is equal
to-1. If X is not 12, the equation is false or 0. When the computer
subtracts the value of X = 12 from four the numbers line up cor-
rectly. Four minus zero is four. The numbers from 1 to 9 are printed

84



in the fourth column. Four minus one is three, so the number 10
is printed in the third column. This is faster than using an IF-
THEN statement to line up the numbers. The number that will be
printed on the screen is two less than the value of X. Remember,
X began at three and we want to label the rows from 1 to 10. After
the numbers are printed, the computer prints the letters across the
top of the grid.

Line 220 contains another FOR-NEXT loop. This loop prints
10 rows of pound signs on the screen. The pound sign has been
changed into the grid character.

Line 230 sets the SQ variable to 3. This is one less than the
number of squares the first ship will use. The second variable, SH,
is the ship number that will be placed. The computer then prints
a set of characters on the screen. The first four characters should
be in inverse video. The rest of the characters are normal video.
The characters are grouped four, three, two, and one. These are
the four ships that will be placed on the grid.

Line 240 uses the subroutine in line 1010, the clear screen
routine. The whole screen is not cleared, only the lines under the
grid. The message that tells the player to enter a letter and a
number is printed on the screen.

Line 250 uses the subroutine in line 900 to get an entry from
the keyboard. If the value of the key entered is not between 65
and 74 the key was not a letter and the computer repeats this line.
This line loops until a letter key is entered.

Line 260 prints the entered letter and a backslash. The value
of KEY less 64 is stored in variable P1. We subtract 64 from the
value of KEY because we want to convert the letter into a column
number. The letter A has the value 65. It is the first column in the
grid. It is easier to locate the grid of the letter value is changed
into a number.

Line 270 uses the subroutine at line 900 again to get the next
entry. This time we are looking for a number. If the value of the
key pressed is 126, the Delete key was pressed and the computer
goes to line 240 to erase the letter value that was entered and start
again.

Line 275 checks to see if a number key was pressed. If it was
not, the computer goes back to line 270 to get another key. The
computer loops between these two lines until a number key or the
Delete key is pressed.

Line 280 prints the number of the entered key on the screen.
This time we subtract 48 from the value of KEY. The one key pro-

85



duces a value of 49. To get the actual key, we must subtract 48
from the key’s value.

Line 290 uses the keyboard routine at 900 again. This time the
computer is looking for a Return key. If the value of KEY is 155,
the Return key was pressed and the computer goes te line 320 to
place. the ship.

Line 295 checks the value of KEY to see if the delete key was
pressed. If it was, the value of KEY would be 126 and the com-
puter would go to line 240 to get an entirely new entry.

Line 300 checks to see if a zero was entered. The only time
the computer will accept 0 is if the last key entered was 1. If it
was, the value of P2 is changed to 10 and the zero is printed on
the screen.

Line 310 sends the computer back to line 290. The computer
loops through these lines until the Return key or the delete key
is pressed.

Line 320 sets the second part of the message. Now the com-
puter needs to know how to place the ship on the screen, horizon-
tally or vertically. A message is printed on the screen.

Line 330 looks at location 764 to see if a key has been pressed.
If one has not, the value of 764 remains 255. This value changes
once a key has been pressed.

Line 340 places the value of location 764 into the variable DIR.
The location 764 is then changed back to 255. If the value of DIR
is 7 or 14 an arrow key has been pressed and the computer is sent
to line 360.

Line 345 checks to see if the value of DIR is 52. If it is, the
Delete key has been pressed and the computer goes to line 240 to
get a new entry.

Line 350 sends the computer back to line 330. The key that
was pressed cannot be used in this routine. The computer loops
through these lines until the up arrow, right arrow, or Delete key
is pressed.

Line 360 places the word ACROSS into DIR$. Then it checks
the value of DIR. If this value is 14, the computer changes the word
in DIR$ to UP.

Line 380 sends the computer to the subroutine that begins at
line 1020. If the correct ship is placed into SHIP$ and the com-
puter prints the contents of DIR$ on the screen.

Line 390 finds the length of the ship and sends the computer
to the correct routine depending on which direction the ship should
be printed in.

86



Line 400 adds the value of P1, the column position, to the
number of squares this ship will take up. If this sum is greater than
10 the ship will not fit on the grid. The computer is sent to line
240 to try again.

Line 410 places the ship on the grid. The computer adds 4 to
the value of P1 because the first grid square is in the fifth column
of the screen. Before the computer prints the ship on the screen
it looks at that location on the screen to see if the square is empty.
If it is, that location will contain a value of 35. If all the squares
are empty the loop will be completed and the ship will be printed
on the screen. The computer is sent to line 460 to continue placing
ships on the screen.

Line 420 is executed if the FOR-NEXT loop in the previous
line reaches a square that is not empty. The computer is sent to
line 240 to clear the screen and start again.

Line 430 starts the routine that places a ship vertically on the
grid. This time the computer subtracts the number of squares this
ship will need from the value of the first square or row in which
the ship will be printed. If the difference is less than one, the ship
will not fit on the grid and the computer is sent to line 240 to get
another entry.

Line 440 begins at the row value P2 + 2 and continues up the
grid the number of squares this ship needs. To figure out the last
square the computer should look at, the value of SQ is subtracted
from 2; then this difference is added to P2. The computer looks
at the grid to see if the square is empty. If it is, the variable CH
will be 35. If CH is not 35, the computer is sent to line 240 to trv
again.

Line 450 continues the loop. If the loop is completed the com-
puter begins another loop to print the ship, one character at a time,
on the screen. Since we are printing from bottom to top on the
screen, each element of the string must be printed separately.

Line 460 looks at location 764 to see if a key has been pressed.
This location will contain 255 until a key is pressed.

Line 470 stores the value of location 764 in the variable EN.
This location is reset by POKEing it with 764. If the value of EN
is 12, the Return key has been pressed and the computer goes to
line 530 to continue placing ships on the screen.

Line 480 sends the computer back to line 460 for another key
input if the value of EN is not 52.

Line 500 is executed if the Delete key was pressed. The Delete
key has a value of 52. The bottom of the screen is cleared. The

87



value of P is one more than the value of SQ. P now contains the
actual number of squares the ship comprised. The string SHIP$
is filled with pound signs. The computer is directed to the correct
line, depending on which way the ship was printed on the screen.

Line 510 prints the cleared grid squares on the screen if the
ship was printed horizontally. The computer is sent to line 240 to
get a new position.

Line 520 prints the empty squares one at a time up the column
on the grid. Once the ship is erased, the computer goes to line 240
for a new entry.

Line 530 clears the lower portion of the screen. The variable
SH is increased by 1. This value is checked to see if it is 2 or 3.
If it is, the first ship is erased and the characters for the second
ship are printed in inverse video. The variable SQ is changed to
2 and the computer is sent to line 240 for a new entry.

Line 540 checks to see if SH is between 4 and 6. If it is, the
second ship is erased and the characters for the third ship are
printed on the screen in inverse video. The variable SQ is set to
1 and the computer is sent to line 240 for a new entry.

Line 550 checks to see if the value of SH is between 7 and 10.
If it is, the third ship is erased from the screen and the fourth ship
is printed in inverse video. The computer goes to line 240 to place
these ships. :

Line 560 clears the lower portion of the screen, erases the last
ship and prints a message on the screen. The variables SH and SQ
are reset.

Line 570 uses the subroutine in line 1090 to pack the grid
characters into one string. When the computer returns to this line
it clears the CMP array from any information that may be stored
in it. The computer does not clear an array when the program is run.

Line 580 chooses three random numbers. The first number,
which is placed in the variable P1, is the column position of the
ship. The second number, placed in P2, is the row position, and
the third number is the direction in which the ship will be placed
on the screen. Based on the value of the variable DIR, the com-
puter will go to either line 590 or line 620.

Line 590 is used if the value of DIR is 1. The ship will be placed
horizontally if there is enough room on the grid and the ship will
not run into another ship. The value of P1, the column position,
is added to the value of SQ. If the sum is greater than 10, the ship
will not fit on the grid and the computer goes back to line 580 to
pick another set of numbers.

88



Line 600 checks each element of the CMP array to see if there
is a number in the element. If there isn’t, the loop continues until
all the elements the ship would cover are checked. Next the com-
puter places the value SQ + 1 into the elements of the array. This
value is the ship number that is placed in the array. It is also the
number of squares this ship occupies on the grid. After the ship
is placed in the array, the computer is sent to line 650 for the next
ship.

Line 610 sends the computer back to line 580 if the ship can-
not be placed in this location on the grid.

Line 620 is used when the variable DIR is 2. The ship will be
placed vertically on the grid. The number of squares the ship will
take up is subtracted from the row value in P2. If this difference
is less than 1, the ship will not fit on the grid and the computer
is sent back to line 580 to pick a new location.

Line 630 checks each element of the CMP array that the ship
will be positioned in to see if it is empty. If it is, the value of the
element is 0. If the loop is completed, the value of SQ + 1 is placed
in each element of the array that will contain the ship. The com-
puter is sent to line 650 to continue the ship placement.

Line 640 sends the computer back to line 580. The ship will
not fit in the chosen position because another ship is already there.

Line 650 checks the value of SH to see if it is 2 or 3. If it is,
the value of SQ is changed to 2. The computer is sent to line 580
to place the new ship. _

Line 660 checks to see if the value of SH is between 4 and 6.
If it is, the value of SQ is 1. The computer goes to line 580 to place
these ships.

Line 670 checks the value of SH to see if it is between 7 and
10. The value of SQ is 0 and the computer places the last four ships.

Line 680 clears the computer’s grid string and fills every ele-
ment of it with pound signs or the empty grid squares.

Line 690 prints this empty grid on the screen.The player is look-
ing at the computer’s grid. At this time it is empty, because the
player has not made an attempt to hit the computer’s ships. Once
the player starts to enter possible positions of the computer’s ships,
the grid will contain marks that indicate a hit or a miss.

Line 720 prints a message on the screen. The player is asked
to enter a letter and a number. This is the position of a possible ship.

Line 730 uses the keyboard subroutine to set the value of a key
that was pressed. If the value of the variable KEY is not between
the values of 65 and 74, the key pressed was not a letter. The com-

89



puter will loop at this line until a letter key is pressed.

Line 740 prints the value of the key on the screen. The back-
slash is printed after the letter. A value 64 less than the value of
the key is stored in variable P1. This is the column value.

Line 750 uses the keyboard subroutine to set the next key value.
If the value of the key pressed is 126, the Delete key has been
pressed and the computer goes back to line 720 for another entry.

Line 755 checks to see if the value of KEY is a number value.
The number values are between 48 and 57. This line does not want
a key whose value is 48 because that is the 0.

Line 760 places the number value of the key in the variable
P2 and prints this number on the screen.

Line 770 uses the keyboard subroutine to get another key en-
try. If the value of KEY is 155, the Return key has been pressed
and the player is satisfied with the position. The computer is sent
to line 800.

Line 775 sends the computer to line 720 if the value of KEY
is 126, the Delete key.

Line 780 checks to see if the value of P2 is 1 and the value
of KEY is 0. This is the only time the zero key is accepted. The
value of P2 is changed to 10 and the zero is printed on the screen.

Line 790 sends the computer back to line 770. The computer
will loop through these lines until the Return key is pressed.

Line 800 looks at the value of the CMP array at the position
indicated by the variables P1 and P2. If the value of this element
is greater than zero, the player scored a hit. The underline character
is placed into SHIP$ and the element of the array is changed to
a negative one. The computer is sent to line 830.

Line 810 erases the position the player entered if the value of
the new positioning CMP is not a zero. This means that the player
has already entered that position and it was a hit or a miss. Either
way, the computer placed a —1 value in that location. The com-
puter is sent back to line 720 to get a new location.

Line 820 sends the computer to the MISS subroutine. The con-
tents of SHIP$ are changed and the contents of the element of the
array are changed toa —1.

Line 830 prints the contents of SHIP$ on the screen at the loca-
tion in the grid entered by the player. This can be the hit character
or the miss character depending on whether a ship was hit. The
timing subroutine is used, then if the location was a miss the com-
puter uses the subroutine in line 1180 to pack the grid into one
string. The computer uses this routine only after the player has

90



missed. The computer goes to line 840 for the computer’s turn.

Line 831 adds one to the value of HMHT. This is the number
of hits the player has. This value is printed under HUMAN on the
screen. If the value of HMHT is 20, all the ships have been hit and
the player wins. The computer is sent to line 1120.

Line 832 sends the computer to line 720 for another input. The
player continues to play as long as he gets hits. When he misses,
then it’s the computer’s turn.

Line 840 begins the computer’s turn. The contents of HG$ are
printed on the screen. This is the player’s grid. The hits and misses
the computer made are stored on this grid along with the player’s
ships.

Line 845 prints a message on the screen.

Line 847 checks the value of the variable CMHT. If it is a zero,
the computer has not hit the player’s ship and the computer is sent
to line 864 to pick a random position in the grid.

Line 848 begins two FOR-NEXT loops. The computer will
check each element of the player’s grid to see where a hit was made.
The computer is very honest. It only looks to see if that square
was a hit. It does not look to see if there is a ship in that position.

Line 850 uses the subroutine in line 1170 to get the value of
the grid square. If the value is not 95 (a hit), the computer goes
to line 860 to continue the loop.

Line 852 checks to see if the value of V is less than 10. If it
is, the computer checks the value of the square in the column after
the hit. If this square is not a hit or a miss, the computer goes to
line 862 to hit this location.

Line 854 checks to see if the value of V is greater than 1. If
it is the column before this one can be checked. If this square is
not a hit or a miss, the computer goes to line 862 and hits this
location.

Line 856 now looks at the squares under the location that was
hit. If this location is not a hit or a miss, the computer goes to line
862 and hits it.

Line 858 checks the squares above the one that has been hit.
If this square does not contain a hit or a miss, the computer goes
to line 862.

Line 860 continues the loops. If the computer cannot find a
square to hit, the computer g'oes to line 864 to pick a random
location.

Line 862 transfer the values of V and X to P1 and P2. The com-
puter goes to line 865 to hit this location.

91



Line 864 chooses two random numbers as a position to hit.

Line 865 checks this position to make sure it does not contain
a hit or a miss. If it does, the computer goes to line 864 and chooses
another location.

Line 870 prints the position that will be hit on the screen. If
the value of CH is 35, the location did not contain a ship and it is
a miss. The computer is sent to the MISS subroutine, then places
the miss character into SHIP$. The computer is sent to line 890
to print the character on the screen.

Line 880 uses the hit subroutine, then prints the hit character
on the screen. The computer’s score is increased by one.

Line 890 uses the timing subroutine. The hit or miss character
is printed on the screen.

Line 891 sends the computer to the subroutine that packs the
grid into a string if the computer missed the ship. The computer
then goes to line 690 for the player’s turn.

Line 892 prints the computer’s new score on the screen. If the
variable CMHT is equal to 20, the computer has hit all the player’s
ships and won the same. The computer is sent to line 1110 to end
the same.

Line 895 sends the computer to line 848 to try to hit another
ship.

Line 900 begins the keyboard routine. The keyboard is opened
to be read.

Line 910 waits for a key to be entered. The value of the key
is stored in the KEY variable.

Line 920 checks to see if the Return key or the Delete key was
pressed. If it was, the computer goes to line 960.

Line 930 checks to see if the value of KEY is greater than 127.
If it is, 128 is subtracted from the value of KEY and the flag is
restored for normal video by POKEing location 694 with a zero.

Line 940 checks to see if the value of KEY is greater than 95.
If it is, the CAPS key was pressed. The computer subtracts 32 from
the value of KEY and POKESs location 702 with 64 to restore the
computer to uppercase.

Line 950 checks to see if the key is a number or letter key.
If it isn’t the computer goes back to line 910 to set another key.

Line 960 closes the keyboard and sends the computer back to
the main program.

Line 1000 is the timing loop. Change the value 200 to make
the loop longer or shorter.

Line 1010 clears the bottom portion of the screen.

92



Lines 1020-1060 place the correct characters into SHIP$. The
line that the computer uses depends on the value of DIR. If the
value is 7, the first ten lines are used to place the characters that
represent the ship into SHIPS. If the value of DIR is 14, the com-
puter uses the second set of ten lines for the ship’s characters.

Line 1070 makes the hit sound.

Line 1080 makes the miss sound.

Line 1090 uses the LOCATE command to take each element
of the grid and place it in HGS$. By storing it this way, it takes up
less room than an array and is easily taken apart when it is printed
on the screen.

Lines 1110-1130 are the end of the game. Which message will
be printed on the screen depends on who reaches 20 points first.

Line 1140 loops until the Start key is pressed.

Line 1150 clears the variables that hold the scores, clears the
bottom portion of the screen and goes to line 200 to play another
game.

Line 1170 is the LOCATE command, used regularly to see what
is on that location on the screen.

Line 1180 packs the computer’s grid into CGS$.

HEX

Objective of the game: To connect a series of hexagons from
one end of the grid to the other before your opponent does.

Directions: The screen displays a diamond containing hexes.
A cursor appears at the bottom of the screen. You can move this
cursor by pressing the letter keys in the center of the keyboard.
The Y key moves the cursor up, T moves the cursor up and left,
U moves the cursor up and right. The N key moves the cursor
down, B down and to the left, and the M key moves the cursor down
and right. Press the H key to claim the hex location.

The game alternates between two players. One player is light
purple, the other dark purple. The player number is displayed at
the bottom of the screen under the cursor. When the player presses
H to claim a square, the computer makes a sound and prints that
player’s character in that location. The second player now has a
turn. Each location can only be occupied by one player. The first
player to complete a path from one side of the grid to the other
is the winner. The path must connect that player’s borders. For
example, if player one is light purple, his path must begin at the
lower right side and end at the upper left side. Player Two, on the
other hand, is dark purple: his path must begin at the lower left

93



START

Set aside
memory for
array,
strings

1

Change display
list, set aside
chararter
set memory

-

Move character
set, change
characters in

set

Draw grid
on screen

Y

Yes

Y

Get input
from
keyboard

Is it
an arrow
key

Is it
the space
bar?

Fig. 2-4. Flowchart for Hex.

94



Calculate
new position

Can player
move there
@

Move
cursor on

screen

y

Change
variable for
other player

No

Mark grid
for this
player

Is this
a complete
line
?

Declare
winner

END

95



168

168
32
32
32

Fig. 2-5. Character set for Hex.

side and end at the upper right side.

When one player makes a complete path the computer will
display the winning message on the screen. Press the Start key to
play again. Press System Reset to quit. Figure 2-4 is the flowchart
for this program, and Fig. 2-5 shows the character set. Listing 2-3
is the code.

Line 50 sets aside the memory needed for the string and ar-

96



Listing 2-3. Hex.

10 REM HEX - TRY TO MAKE A CONNECTING
LINE TO THE OTHER SIDE EEFORE YOUR OFF
ONENT

20 REM CHAFTER 2 - GRID GAMES

30 REM EBY L.M. SCHREIEER FOR TAE EOOKS
40 REM CORPYRIGHT 1983

S50 DIM GRIDC?,9),HB(4)

60 GRAFHICS 0:DLIST=FEEK(S560)+FEEK(561
YXZF6IFOKE DLIST+3,6B1FOR X=6 TO 2431F0
KE DLIST+X,4INEXT X

70 FOR X=25 TO Z8IFOKE DLIST+X,6NEXT
XtREM CHANGE DISFLAY LIST TO ANTIC 4 A
ND GRAFHICS 2

80 A=FEEK(106)-8IiFOKE 204,AIFOKE Z206,F
EEK(756) iFOKE 708,74!FOKE 709,100:FOKE
710,38

90 FOR X=1336 TO 1G55IREAD VIFOKE X,V%
NEXT XIREM MOVE CHARACTER SET

100 DATA 104,162,4,160,0,177,205,145,2
03,200,208,249,230,206,230,204,202,208
» 242596

110 Q=USR(1336)IFOKE 7%56,AIREM MOVE IT
& USE IT

120 CHARSET=AX256+520:F0OR X=CHARSET TO
CHARSET+103:READ VIFOKE X,VINEXT X
130 DATA 3,3,12,12,48,48,192,192,192,1
?2,48,48,12,12,3,3,255,255,0,0,0,0,0,0
y8%,85,85,85,8%5,85,85,89

131 DATA 87,87,92,92,112,112,192,192,3
+3,13,13,53,53,213,213,234,234,58,58,1

4,14,3,3

132 DATA 170,170,170,170,170,170,170,1

70,192,192,176,176,172,172,171,171

133 DATA 25%,255,0,0,16,16,16,84,84,84
1 84,16,16,16,0,0

134 DATA 255,255,0,0,32,32,32,168,1468,
168,168,32,32,32,0,0

140 RESTORE 140:FOR X=1 TO 4i{READ ViHS$
(X X)=CHR% (V) INEXT XIDATA 1,3,2,32

150 R=0:G=14FOR X=17 TO 1 STEF -2:G1=G
SFOSITION X,R$7? H$3:61=G1-11IF Gi=0 TH

EN 170

160 ? H$31GL=G1l~1¢IF G130 THEN 160
170 R=R+13IG=G+1INEXT X31G=G~3

97



98

180 FOR X=4 TO 2 STEF —~13H$(X,X)=H% (X~
1, X=1)INEXT XIH$ (X, X)=" "{REM MOVE THE
SHAFE
120 Gl=GiFOSITION X,R$¢? CHR$(2)3HS$; iC=
GL=1tIF Gi1=0 THEN 210
200 ? H$3:3G1=CG1-131IF G1<+=0 THEN 200
210 2?2 " "3ICHR$ (L) IR=R+1{G=G+2FOR X=1
TO 4% READ U:H$(X,X)=CHR$(U):NEXT XIiDAT
A ,4_,3
0 FOR X—Z TO 16 STEF 2:1G1=GiFOSITION
XyR:? H$31GL=GLl-13IF G1=0 THEN 240
230 ? H$3I1GLl=G1-14IF G1<»0 THEN 230
240 ? H$ (L1, 1) IR=R+13G=G~1INEXT X3$FOSIT
ION X,R&7? H$C(L, 1) iG=16
250 FOR X=0 TO GIFOSITION X,G1l:$? CHR%$(
4) INEXT XSPOSITION X,G137? CHR$(5)$G=G~
2i1G1=GL+LIIF Gx-2 THEN 2950
260 G=36
270 FOSITION G-1,G137? CHR$(&)IFOR X=
TO 3BIFOSITION X,G61:7? CHR$(4) 3 INEXT X!
G=G-23GLl=C1l+13IF G1<+18 THEN 270
280 G=20:G1=0
290 FOSITION G~1,GLl:? CHR$(7)I{FOR X=G
TO 38BIFOSITION X,Gl:? CHR$(8)INEXT XiG
=G+216G1=G1+1{IF G<38 THEN 290
300 G=0:TL=50
310 FOR X=0 TO GI:FOSITION X,G1:? CHR%(
8) 3 INEXT X1? CHR%(9):G=G+2:C1=G1+1IF
G1l<>18 THEN 310
330 FOR X=0 TO 9iFOR V=0 TO 9iGRID(X,V
)=0INEXT VINEXT X!REM CLEAR GRID FOR N
EW GAME
340 SOUND 0,100,10,10:GOSUE 1000 ¢ SOUND
0,75,10,10:GOSUE 1000:FOSITION 4,217
" PFLAYER ONE "{FLAYER=10:GOSUE 1010
350 SOUND 0,150,10,103CG0SUE 1000 $SOUND
0,125,10,10:GOSUE 1000:FOSITION 4,21
? " plaver two "{FLAYER=12:GOSUE 1010
3460 GOTO 340
1000 FOR TIME=1 TO TLINEXT TIME!RETURN
1010 SOUND 0,0,0,0:G=18tR=18{FOSITION
GyRE¢? CHR%(PLQYER);CHR$(29);CHR$(30);C
HR$ (FLAYER+L1) $0V=330V1=32GR=03GC=0
1020 OFEN #2,4,0,"KI"IREM OFEN KEYEQAR
D FOR A READ
1030 GET #2,KEY{IF KEY>127 THEN KEY=KE




Y-1281F0KE 694, 01REM SET FOR NORMAL VI
DEO

1040 IF KEY:95 THEN KEY=KEY-32ZIFOKE 70
2,641REM SET FOR UFFER CASE

1050 XF KEY<é646 OR KEY>89 THEN 1L030REM
NOT A GOOD KEY

1060 IF KEY=72 OR KEY=84 OR KEY=8% OR
KEY=8%5 0OR KEY=66é6 OR KEY=78 0OR KEY=77 T
HEN CLOSE #23G0T0O 1080

1070 GOTO 1030

1080 IF R=18 AND KEY-<:=R% THEN 1020
1090 OR=R:0G=GUGR=GR:OGC=GCIIF KEY=89
THEN R=R~-21GC=CC+1i1GR=CR+1:G0TO 1170¢
REM MOVE UF

1100 IF KEY=78 THEN R=R+2{GC=GC-116R=06G
R-1:GOTO 1170:REM MOVE DOWN

1110 IF KEY=8% THEN R=R-1:{G=G+2i{GC=6GC+
1:GOTO 1170¢REM UF AND RIGHT

1120 IF KEY=84 THEN R=R-1i{6=G-2!GR=GR+
1:GOTO 1170¢REM UF AND LEFT

1130 IF KEY=66 THEN R=R+1:1G=G-2i1GC=GC-
1:GOTO 1170:REM DOWN AND LEFT

1140 IF KEY:=77 THEN R=R+1:G=G+2iGR=GR~-
1:GOTO L1170:REM DOWN AND RIGHT

1150 IF KEY=72 THEN 1220!REM STAY THER

E

1160 GOTO 1020

1170 IF (GR<1 OR GR>% OR GC<1 OR GCx9)
AND R<18 THEN G=0GiR=0R:GR=0GR!GC=006

C:GOTO 1020

1180 LOCATE G,R,VILOCATE G,R+1,V1:IF V
<10 AND V=12 AND V<3 THEN G=0G!R=0R
tGR=0GR!GC=0GC:GOTO 1020

1190 FOSITION OG,0R:? CHR$(OV) JCHR$(Z9
) $CHR$ (30) ;CHR$ (OV1)

1200 FOSITION G,R3? CHR$(FLAYER) ;CHR$(

29)3CHR$(30) CHR$ (FLAYER+1) $0V=V10V 1=V
1

1210 GOTO 1020

1220 IF GRID(GC,GRY«<=0 THEN SOUND 0,
+10,10¢GOSUR 1000:S0UND 0,0,0,0:G0TO
020 tREM NOT AVAILAELE

1230 GRID(GC,GRI=FLAYERISOUND 0,150,10
»1L0:GOSUE 100023S0UND 0,0,0,0iREM MARK
IT FOR THAT FLAYER

1240 IF FLAYER=10 THEN GOTO 1410

30
1

99



100

1250 VU=13iX=110X=0:0V=0

1260 CX=XiCVU=VIIF GRID(CV,CX)«=12 THEN
X=X+131IF X100 THEN 1260

1270 IF X=10 THEN 1400

1279 F=031IF GRID(CV,CX)=12 AND CVU=9 TH
EN 1390

1280 V1=0:X1=03IF CV=9 THEN IF GRID(CV
+1,CX)=12 AND QVU=»CVU+1 THEN V1=CVU+1 X1
=CXiIF=1

1290 V2=01X2=01IF CV=9 AND CX=9 THEN I
F GRID(CV+1,CX+1)=12 AND OV=:=CVU+1 AND
OX+<=CX+1 THEN V2=CU+13X2=CX+1{F=1

1300 V3=0:iX3=0:IF CX<9 THEN IF GRID(CV
yCX+1)=12 AND OX<xCX+1 THEN VU3=CViX3=C
X+13iF=1

1310 V4=01X4=0tIF CX:>1 THEN IF GRID(CV
yCX=1)=12 AND 0OX<xCX-1 THEN V4=CV}$X4=C

X-14F=1

1315 IF F=0 THEN GRID(CV,CX)=-12¢{IF CV
=1 THEN V=1{X=X+11G0TO 1260

1320 IF CX=0X AND CVU=0V AND F=0 THEN V

=1 IX=X+11G0OTO 1240

1330 IF F=0 THEN CX=0X:{CV=0V:GOTO 1270
1340 IF V1<:x0 AND X1<x0 THEN OVU=CVi0X=
CXiCVU=V1iCX=X13G0TO 1275

1360 IF V20 AND X200 THEN OVU=CV!0X=
CXICU=V2I1CX=X2:G0T0 1275

1360 IF V3«0 AND X3<x0 THEN 0OVU=CV:0X=
CXICU=VUBICX=X3:G0TO 1275

1370 IF V40 AND X4+>0 THEN 0OVU=CV$0X=
CXICVU=VU4iCX=X4:GC0T0 1275

1380 REM '' AND #2 IN INVERSE

1390 FOSITION 4,21:7 " winmer!'! &2 "3
GOTO 1400

1400 FOR X=1 TO 9iFOR V=1 TO Q:GRID(V,
Xy=ABS (GRID(V, X)) INEXT VINEXT XIRETURN
1410 V=131X=1L10X=030V=0

1420 CX=XiCV=UIIF GRID(CV,CX)<x10 THEN
VU+ L $IF V=10 THEN 1420

1430 IF V=10 THEN 1580

1440 F=0!IF GRID(CV,CX)=10 AND CX=9 TH
EN 1570

14%0 V1=0:iX1l=0:IF CX<9 THEN IF GRID(CV
yCX+1)=10 AND OX<=CX+1 THEN X1=CX+1:V1l
=0UF=1

1460 V2:=031X2=03:1IF CV<9 AND CX<9 THEN I




F" GRID(CV+1,CX+1)=10 AND QV==CVU+1 AND

OX==0X+1 THEN V2=CU+1 3 X2=CX+1iF=1

1470 VU3=04iX3=01IF CV<92 THEN IF GRIDC(CV
+1,CX)=10 AND 0OV=I=CVU+1 THEN V3=CVU+13$X3
=CXiF=1

1480 V4=0:X4=01IF CVx1 THEN IF GRID(CV
-1,CX)=10 AND 0QV<xCV-1 THEN V4=CVU-11X4
=CXiF=1

1490 IF F=0 THEN GRID(CV,CX)=-10:IF CX
=1 THEN X=1iVU=U+11G0TO 1420

1500 IF CX=0X AND CV=0UV AND F=0 THEN X
=1 iV=U+11GOTO 1420

1510 IF F=0 THEN CX=0X:1CVU=0VIGOTO 1430

1520 IF V1<x0 AND X130 THEN QU=CVi0X=
CXICU=VLICX=X1:G0TO 1440

1530 IF V20 AND X2+0 THEN 0V=CV!0X=
CXICVU=V2ICX=X21GOTO 1440

1540 IF V30 AND X320 THEN OVU=CVI0X=
CX31CV=U3I1CX=X3I1GOTO 1440

1550 IF V40 AND X4<x0 THEN 0OV=CV3i0X=
CX3CVU=U4iCX=X4:G0OTO 1440

1560 GOTO 1500

1570 FOSITION 6,2147 "  WINNER'!' #1 "3
GOTO 1400

1580 FOR X=1 TO 93FOR V=1 TO 9:iGRID(V,
X)=AES (GRID(V, X)) INEXT VINEXT XIRETURN
1600 IF FEEK(S3279)<*6 THEN 1400

1610 GOTO 140

ray. The GRID array keeps track of which locations are clear and
which are occupied. H$ contains the characters that make up the
shape of the grid.

Line 60 sets the screen to graphics 0. This is the text mode,
to which the computer defaults. This program will change the
display table and use the screen as a graphics mode, so the com-
puter must execute a graphics command first. The first byte of the
display list is placed into the variable DLIST. The address of the
display list is stored in locations 560 and 561. The fourth location
of the display list is changed to 68. This is the instruction code plus
the display mode for the top row on the screen. Nineteen lines of
the display list are changed to ANTIC mode 4. This mode will
display four colors on the screen. The characters are eight pixels
high and eight pixels wide.

101



Line 70 changes the text window from the text mode to graphics
1. This is ANTIC 6. This value is POKEd into the next four rows
of the display list.

Line 80 finds out how much memory the computer has. This
value is decreased by eight. The character set will be moved and
placed just before the screen memory. The location of the new
character set is stored in memory location 204. The location of the
first byte of the ROM-based character set is stored in location 206.
These two values are used by the assembly language subroutine
that moves the character set from ROM into RAM. The colors of
the characters are also changed to light and dark purple.

Line 90 reads the code from line 100 and stores it in memory
locations 1536-1555. This is the assembly language subroutine that
will move the character set from ROM into RAM. Line 100 con-
tains the decimal codes for the assembly language subroutine.

Line 110 uses the USR command to execute the assembly
language subroutine at memory location 1536. When the computer
returns to this line the character set will be moved to RAM. To
use this character set, POKE location 756 with the value of A.

Line 120 sets the value of CHARSET to the first byte of the
character that will be changed. The FOR-NEXT loops read in the
codes that will change 13 characters in the character set.

Lines 130-134 contain the codes that change the characters in
the character set.

Line 140 uses the RESTORE command to ensure that the com-
puter is pointing to this line. The characters of the four numbers
in this line are placed in H$. These are the characters that will form
the grid for the same.

Line 150 sets the variable R to zero. This is the row the grid
characters will be printed in. The variable G is the number of grids
that will be printed in that row. The first row contains one grid.
The variable X is the column in which the grid will be printed. The
loop steps backwards from 17 to 1. The value of G is moved to
variable G1. The computer prints the grid on the screen. Variable
G1 is decreased by one. If it is zero, the computer is sent to line
line 170 to adjust for the next row.

Line 160 prints the grid on the screen again. Because the pro-
gram uses a semicolon after printing H$, every H$ will be connected
to the previous H$, making a complete grid across the screen. The
variable G1 is decreased again. The computer loops at this line until
G1 variable is zero.

Line 170 adds 1 to the value of R. This is the next row on which

102



the grid will be printed. The variable G is increased by 1. Every
row will have one more grid in it. The loop continues until the first
half of the grid is on the screen, then the value of G is decreased
by 3. The second half of the grid contains a decreasing number of
grids in it.

Line 180 changes the shape of the grid in H$. The computer
was printing the top part of the grid when it was printing the top
half of the grid. Now it has to change the shape of the character
in HS to print the bottom half of the grid.

Line 190 stores the value of G in the variable G1. The second
character is printed on the screen followed by the characters in H$.
The value of G is changed to one less than the value of G1. If G1
is 0, the computer goes to line 210 to print the rest of the grid.

Line 200 prints the remaining parts of the grid in this row. The
variable G1 is decreased by 1 each time a portion of the grid is
printed on the screen. When the row is complete, the computer con-
tinues with the next line.

Line 210 prints a space and then the first character to com-
plete the grid row. The value of R is increased by 1 for the next
row and the value of G is increased by 2. The characters in H$ are
changed again. The middle row of the grid needed special treat-
ment because it is the connecting row between the top and bottom
of the grid. The rest of the grid can be printed like the top half
was with the characters in HS.

Line 220 begins the FOR-NEXT loop. The variable S is the
column where the grids for that row will begin. The value of G is
stored in variable G1. The characters in H$ are printed on the
screen. The value of G1 is decreased by 1. If the value G1 is 0,
the computer is sent to line 240 to finish the row.

Line 230 prints the characters in H$ again. The computer loops
at this line until the value of G1 is 0. This is the end of the row.

Line 240 prints the first character of H$ to close the grid row.
The value of R is increased to point to the next row, and the value
of G is decreased by 1. Each row will contain one less hex shape
than the row before it. The loop continues until all the rows are
printed on the screen. The last hex shape is completed and the
variable G is set to 16.

Line 250 fills in the upper left side of the screen with light pur-
ple. The last character of each line replaces the grid character with
the background color and the grid character.

Line 260 sets the variable G to 36. This is the column position
of the lower right side of the screen.

103



Line 270 prints the grid character, then the color characters
on this side of the screen. The loop continues until the lower right
side of the screen is filled in with light purple.

Line 280 sets the variables G to 20 and the variable G1 to 0.
Now the computer will fill in the other two corners.

Line 290 begins the FOR-NEXT loop that fills in the upper right
corner of the screen. The first character printed is the grid character
with the background color. The rest of the row is filled in with the
background color.

Line 300 changes the value of G to 0 and the value of TL to 50.

Line 310 fills in the lower left corner of the screen.

Line 330 clears the values from the GRID array. The computer
does not clear an array when the program is run. If we don’t clear
it before we use it, it may contain erroneous information.

Line 340 makes a sound, prints the player’s number on the bot-
tom of the screen, sets variable PLAYER to 10 and uses the
subroutine in line 1010 to move the cursor on the screen. The value
of variable PLAYER indicates which cursor will be printed on the
screen.

Line 350 makes a different sound to indicate that it is the sec-
ond player’s turn. The value of PLAYER is changed to 12, and
the computer uses the subroutine in line 1010 to move this cursor.

Line 360 sends the computer back to line 340. The computer
loops at these lines until one player makes a path from one end
of the grid to the other.

Line 1000 is a timing loop. This subroutine is used to slow the
program down.

Line 1010 begins the subroutine that moves the cursor on the
screen. The sound is turned off. Then the variables G and R are
set to 18. This is the row and column at the bottom of the grid.
‘The cursor for the player is printed at this position. The cursor is
made up of two characters. The top half of the cursor is the value
PLAYER. This is the top part of the cursor and the bottom line
of the grid. The two values printed on the screen after the top part
of the cursor are the backspace and the down arrow. This lowers
the invisible cursor one row and moves it back one column. Now
the bottom part of the cursor can be printed under the top part of
the cursor. The variables OV, OV1, GR, and GC are set. These
variables keep track of the position of the cursor on the grid.

Line 1020 opens the keyboard for a read.

Line 1030 waits until a key is pressed. The value of this key
is stored in the variable KEY. If the value of KEY is greater than

104



127, the inverse key was pressed and the computer subtracts 128
from the value of KEY. The location 694 is POKEd with a zero
to reset the flag to normal video.

Line 1040 checks to see if the value of KEY is greater than
95. If it is, the CAPS key was pressed and the key is in lowercase.
Subtract 32 from the value of KEY to get the uppercase value of
the key. The location 702 is POKEd with 64 to reset the keyboard
for uppercase only.

Line 1050 checks to see if the value of the key is between 66
and 89. If it isn’t, the computer goes back to line 1030 to set an-
other input.

Line 1060 compares the value of KEY to see if it is one of the
keys that will move the cursor. If it is, the keyboard is closed and
the computer is sent to line 1080. The keys that move the cursor
arethe T, Y, U, B, N, and M. The H key will capture the hex loca-
tion on which the cursor is resting.

Line 1070 sends the computer back to line 1030 to get another
input. The computer will loop through these lines until one of the
seven keys are pressed.

Line 1080 checks to see what row the cursor is in. If it is in
row 18, the only direction the cursor can move is up. If the value
of KEY is not 89 (the Y key) the computer will go back to line 1020
to get another input. If the direction of the cursor were not limited
when it was outside the grid, it could be moved anywhere and not
necessarily on the grid.

Line 1090 sets the values of the variables used to move the cur-
sor. It is more complicated to move through hex locations than
through squares. The value of KEY is checked to see if itisa Y.
If it is, the value of R is decreased by 2. Each hex location is ac-
tually two rows high. The variables GC and GR are also increased
by 1. The computer is sent to line 1170 to move the cursor up.

Line 1100 checks to see if the N key was pressed. If it was,
the cursor will move down. The value of R is increased by 2 and
the values of GC and GR are decreased by 1. The computer is sent
to line 1170 to move the cursor down.

Line 1110 checks for the U key. This moves the cursor up and
to the right. This location is only one row above the present row.
The value of R is decreased by 1 and the variable G is increased
by 2. The variable GC is increased by 1. The computer is sent to
line 1170 to move the cursor.

Line 1120 checks the value of KEY for 84, a T. This moves
the cursor up and to the left. The value of R is decreased by 1,

105



moving the cursor up one row; the value of G is decreased by 2,
and the variable GR is increased by 1. The computer uses the
routine at line 1170 to print the cursor on the screen.

Line 1130 checks for the letter B. This moves the cursor down
and to the left. The variable R is increased by 1 to move it down
one row. The variable G is decreased by 2 and the variable GC is
decreased by 1. The computer is sent to line 1170 to print the cur-
sor in the new location.

Line 1140 compares the value of KEY to 77. If the M key was
pressed, the cursor will be moved down and to the right. The value
of R is increased by 1, the value of G is increased by 2, and the
value of GR is decreased by 1. The computer is sent to line 1170
to print the cursor.

Line 1150 checks to see if the H key was pressed. If it was,
none of the values of the variables are changed. The computer is
sent to line 1220 to print the cursor permanently in this location.

Line 1160 sends the computer to line 1020 to set another in-
put. Although the computer should only use these lines if one of
the seven keys are pressed, this is a safeguard in case the routine
was used and one of the seven keys was not pressed.

Line 1170 checks the values of variables GR and GC. This is
the grid columns and rows. If these variables are not between the
values 1 and 9 and the value of R is not 18, the cursor is on the
grid, but the new values would place it off the grid. The variables
are reset to their original values and the computer is sent to line
1020 to set another input.

Line 1180 uses the LOCATE command to see if the location
is already occupied. If the value of this location is not the top of
one of the player’s cursors and not an empty grid location, it is not
a possible position for the cursor. The values of the variables are
reset and the computer is sent to line 1020 to set another entry.

Line 1190 prints the contents of the grid in the position the cur-
sor is in right now. If there is a piece in this position it is restored.
[f the grid location was empty, it is cleared again. This way, two
pieces can occupy the same grid location when one piece is pass-
ing through.

Line 1200 prints the current cursor in the new position. The
values of the character that occupied the location before this
character was placed there are stored in the variables OV and OV1.

Line 1210 sends the computer to line 1020 to get another entry.

Line 1220 is used when the H key is pressed. The GRID array
is checked to see if this position is available. The variables GC and

106



GR point to the column and row of the array. If this location does
not contain a zero, the computer will make a sound, use the timing
loop in line 1000, and send the computer back to line 1020 for an-
other entry. Only one player can permanently occupy one location.

Line 1230 places the value of PLAYER in this location in the
GRID array. The computer makes a sound that tells the player that
he has captured this location.

Line 1240 checks to see which player has taken the location.
if the value of PLAYER is 10, the computer goes to line 1410.

Line 1250 resets the variables V, X, OX, and OV. These
variables will be used in the following routine, that checks to see
if the player has made a complete path from one side of the grid
to the other.

Line 1260 stores the values of X and V in CX and CV. The
value of this location in GRID array is checked. If it is not 12, the
value of X is increased by 1. If it is not 10, the line is repeated.
This line loops until a value of 12 is found or the value of X equals
10. The computer is looking for this player’s marker along the right
bottom side of the grid.

Line 1270 sends the computer to line 1400 if the value of X
is 10. This means there is no marker along this edge of the grid,
so this player could not possibly have completed a path from one
side to the other.

Line 1275 clears the variable F and checks to see if the variable
CV is 9. This could be the last column of the grid. If the last col-
umn of the grid contains a 12, the computer is sent to line 1390.
This is a completed path.

Lines 1280-1380 check the hex positions around the location
that contains this player’s cursor. If the next location also contains
a 12, the variables are updated and the loop continues until the path
ends or the computer reaches the other side of the grid. If the
variable F is not set, that location is set to a negative number so
the computer does not end up going back and forth between two
locations forever.

Line 1390 declares this player a winner. This program line is
reached only when a complete path from one side of the screen to
the other is completed. The computer then goes to line 1600 and
waits until the Start key is pressed.

Line 1400 resets the entire grid to its original values. Any
numbers that were changed to negative numbers are reset to
positive. The computer returns to the main lines of the program.

Lines 1410-1580 perform the same routine but in the opposite

107



order. This time the computer searches the grid from the top left
side to the bottom right side to see if Player One has made a com-
plete path across the grid. If he has, the computer declares this
player the winner. If he hasn’t, the computer resets all the variables
in the grid and returns to the main program to give Player One an-
other turn.

Lines 1600-1610 are the end of the program. The computer
loops at these lines after one player wins. The computer continues
the loop until the Start key or the System Reset key is pressed.
Pressing the Start key sends the computer back to line 140 for an-
other game. Pressing System Reset restores the screen to the text
mode.

TREASURE HUNT

Objective of the game: To find all the lost treasures before
running out of air.

Directions. A grid similar to the one used in ‘‘Battleship” is
printed on the screen. In addition to the grid letters and numbers,
the directions North, South, East, and West are printed on the
screen. The diver appears in the upper left corner of the screen.
You are instructed to enter a letter and a number. The letter entered
should be one of the coordinates A-J. Then enter a comma, then
the number coordinate. If you enter the wrong letter or number,
the Delete key can be pressed and the number or letter will be
removed.

Once you are satisfied with the coordinates you have entered,
press the Return key. The diver will appear at that location on the
grid. Look at the four letters that indicate direction. Some will be
light green, others will be pink. This is a clue. The diver must travel
toward the pink letters to find the treasure.

The units of oxygen are displayed near the bottom of the screen.
Each time the diver moves, he uses 10 units of oxygen. When the
diver finds the treasure, he surfaces, places the treasure on the
screen and receives 100 units of oxygen. The grid clears and the
diver is ready to be sent down for the second treasure. The game
continues until the diver runs out of oxygen or finds the three
treasures. If the diver finds all three treasures, the screen keeps
flashing until the Return key is pressed. This restores the program
for another game. If the diver runs out of air, the location of the
treasure is displayed on the grid and the coordinates are printed
under the grid. The computer waits until the Return key is pressed.
In either case, the program ends after three games are played. The

108



treasures collected are displayed near the top of the screen. Fig-
ure 2-6 is the flowchart, Fig. 2-7 is the character set for this pro-
gram, and Listing 2-4 shows the code.

Line 50 checks to see how much memory is in the computer.
The computer subtracts 8 from this amount; this is where the
character set will be moved. The computer stores this value at mem-
ory location 204. The computer stores the location of the character
set in ROM at location 206. This information will be used in the
assembly language subroutine that moves the character set from
ROM to RAM.

Line 60 reads the code in line 70 and places it into memory
locations 1536-1555. This code is the assembly language subroutine
that moves the character set. Line 70 contains the decimal codes
for the routine that moves the character set from ROM into RAM.

Line 80 changes the screen to graphics 17. This is graphics 1
with no text window. The USR command sends the computer to
the assembly language subroutine at memory location 1536. When
the computer returns to this line, it places the address of the
character set in RAM into location 756.

Li-ie 30 places the location of the first byte of the character
that wili be changed into the variable CHARSET. Seven characters
will be changed in this character set. The FOR-NEXT loop reads
the code for the new characters and places it in the area for the
existing characters.

Lines 100-120 contain the codes for the new characters.

Line 130 prints the diver in the upper left corner of the screen.
The units of oxygen are set to 100 and the variable G is set for
the first game. The FOR-NEXT loop prints the grid on the screen.

Line 140 prints the four directions on the screen.

Line 150 prints the letters across the top of the grid and the
numbers along the side. When X is equal to 10, the statement X = 10
will be equal to 1. The column value will then be 3 rather than 4.
When X is not equal to 10, the statement is equal to 0. This keeps
the number even on the screen.

Line 155 picks two random numbers. The variable TR is the
row value for the treasure. The variable TC is the column variable.

Line 160 prints the units of oxygen and the game number on
the screen.

Line 170 uses the subroutine in line 600 to make a sound. The
computer then asks for a letter and a number. The cursor is placed
on the screen.

Line 180 sets the variables AC and AR. This is the row and

109



START

Set aside memory

for character set,
move set

I

Create new
characters in
set

Draw grid,
coordinates
on screen

Hide

treasure

Get letter
and number
from player

Is letter

between
A&J
P

Is letter

between
1&10
2

Place
diver on
screen

Fig. 2-6. Flowchart for Treasure Hunt.

110




Got the
treasure

display
treasure

!

Get more
oxygen

Flash screen /

Any
oxygen
left?

column of the cursor. The letter that is entered is placed in this
position on the screen. The keyboard is opened for a read.

Line 190 waits until a key is pressed. The value of this key
is placed in the KEY variable.

Line 200 checks to see if the Return key is pressed. If the value
of KEY is 155 and the value AC is greater than 11, the Return key
will be accepted and the computer will go to line 350.

Line 210 checks to see if the value of KEY is greater than 127.
If it is, the inverse video was pressed. The computer subtracts 128
from the value of KEY and POKEs location 694 with zero to reset
the flag for normal video.

Line 220 checks to see if the value of KEY is 126. If it is, the
Delete key was pressed. The computer goes to line 330 to erase
the entry.

Line 230 checks the value of KEY to see if it is greater than
95. If it is, the computer subtracts 32 from this amount and resets

111



[T 0 0 0
0 0 56

24 36 124

&l |_| 60 24 254
60 24 198

24 36 198

0 0 254

|1 ] 0 0 124
0 0 0

30 14 112

62 14 64

120 14 92

224 14 94

126 62 %0

126 122 126

126 0 92

Fig. 2-7. Character set for Treasure Hunt.

Listing 2-4. Treasure Hunt.

10 REM TREASURE HUNT -~ FIND THE HIDDEN
TREASURES IN THE LEAST NUMEER OF TRIE

20 REM CHAFTER 2 - GRID GAMES
30 REM EY L.M. SCHREIEER FOR TAE EOOKS

40 REM COFYRIGHT 1983

S50 A=FEEK(106)-8IFOKE 204,A(FOKE 206,F
EEK(756)

60 FOR X=1536 TO 1555IREAD VIFOKE X,V
NEXT XIREM ROUTINE TO MOVE THE CHARACT
ER SET

70 DATA 104,162,4,160,0,177,205,145,20
3,200,208,249,230,206,230,204,202,208,
242 496

80 GRAFHICS 171Q=USR(1536)IFOKE 756,A%
REM MOVE IT AND USE IT

?0 CHARSET=AX2536+241F0R X=CHARSET TO C

112




HARSET+55tREAD VIFOKE X,VINEXT XIREM C
REATE NEW CHARACTERS

100 pAaTA 0,0,24,60,60,24,0,0,0,0,36,24
1 24,36,0,0

110 DATA 0,56,124,254,198,198,254,124,
0,30,62,120,224,126,126,126

120 DATA 0,14,14,14,14,62,122,0,0,112,
64,92,94,90,126,92,0,126,126,126,126,1
26,126,0

2% REM OFEN FARENTHESIS & FOUND SIGNS
ARE INVERSE

130 R=0:C=0:FOSITION C,R:? #463" ("iU=U+
100¢G=G+1{FOR X=5 TO 14:FOSITION 5,X3i7?
F63"FFREEEREEE INEXT X

140 FOSITION 10,1:? #463"n" (FOSITION 1,
937 $63"w"IFOSITION 17,917 #63"e"FOSI
TION 10,1637 $63"s" IREM DIRECTIONS

145 REM slphabet IS LOWER CASE INVERSE

150 FOSITION 5,3:7 #6;"abcdefahij"iFOR
X=1 TO 103FOSITION 4-(X=10),X+4:7? %6}

XINEXT X

155 TR=INT(RND(1)X10)+1$TC=INT(RND(1)x
10)+13REM HIDING FLACE

160 FOSITION 0,23:7 #63"UNITS "jUIFOSIT

TION 14,23:7 #63"GAME "31G3

1465 REM letter, number AND CLOSE FAREN

THESIS ARE LOWER CASE INVERSE

170 GOSUE S00:FOSITION 00,1837 #6i"ente

r letter,number"FOSITION 9,2037 #63"

YIFOSITION 9,207 #4630

180 AC=9:AR=2030FEN #2,4,0,"K{"tREM RE

AD THE KEYEOARD

190 GET #2,KEYIREM GET THE KEY EEING F

RESSED

200 IF KEY=15%5 AND ACx11 THEN 350!REM

RETURN KEY FRESSED

210 IF KEY>127 THEN KEY=HEY-128iFOKE é

24,0 REM SET FOR NORMAL VIDEO

220 IF KEY=126 THEN 330:REM DELETE ENT

RY

230 IF KEY>9S THEN KEY=KEY-32:iFOKE 702
y643REM SET FOR UFFER CASE

240 IF AC=9 THEN IF KEY«46S5 OR KEY>74 T

HEN 1920iREM NOT A LETTER

250 IF AC=10 AND KEY<>44 THEN 190:iREM

NOT A COMMA

113



260 IF ACx10 THEN IF KEY<48 OR KEY:S7

THEN 1903REM NOT A NUMEER

270 IF AC=13 THEN 190

280 IF AC=9 THEN HC=KEY-64:1G0OT0 320

290 IF AC=11 THEN HR=KEY-48:G0OT0O 320

295 REM CLOSE FARENTHESIS IS INVERSE

300 IF AC=12 AND (KEY<x48 OR HR<x1) TH

EN FOSITION AC,ARI? #63'")"1GOTO 190

310 HR=10

320 FOSITION AC,ARI? #63CHRS(KEY+128)
"IMIAC=AC+L1IGOTO 190¢REM FRINT THE LET

TER , NUMEER

330 AC=AC-1:!IF AC<9 THEN AC=9

335 REM CLOSE FARENTHESIS IS INVERSE

340 FPOSITION AC,ARI? #63'") "I1GOTO 190
350 CLOSE #2:!REM GOT THE ENTRY

360 IF R=0 AND C=0 THEN FOSITION R,C:7?
63" "I1GOTO 380IREM ERASE THE DIVER I
N THE CORNER

370 FOSITION C+4,R+4:17 #463"$"IREM X MA
RKS THE SFOT

380 R=HRIC=HCIFOSITION C+4,R+4:7? #65"¢
"IREM FUT DIVER ON THE SFOT

390 IF R=TR AND C=TC THEN S00:REM GOT

IT

400 FOSITION 10,187 #463"n"{FOSITION 1,

217 #63"W"IFOSITION 17,917 #63"e" tFOSI

TION 10,1687 #63"s"IREM DIRECTIONS

410 IF TC<C THEN FOSITION 1,9:7? #63"w"
VREM GIVE CLUES - w IS LOWER CASE INVE

RGE

420 IF TC:C THEN FOSITION 17,917 #63"e
"IREM e IS LLOWER CASE 'INVERSE

430 IF TR<R THEN FOSITION 10,1:7? #63"n
"IREM n IS LLOWER CASE INVERSE

440 IF TRHR THEN FOSITION 10,1637 #63"

s"IREM s I8 LOWER CASE INVERSE

450 U=U-102F0OSITION 9,237 #63" s

IF U=0 THEN 470

460 GOTO 160

470 SOUND 0,200,10,103G08UE 410:FOSITI

ON 00,1837 #63" TREASURE WAS AT "IF0

SITION 9,207 #6;CHR$(TC+64)3"," "} TR

480 FOSITION TC+4,TR+4317? #63CHRS (G+34)
CSOUND 0,0,0,08TF G=3 THEN 550

490 OFEN #2,4,0,"K:"IGET #2,KEYS$CLOSE

#2:G0T0 130

114




500 FOSITION 19-G,0:7? #63CHR$ (36+0G) tRE
M FUT TREASURE ON SCREEN

510 IF G=3 THEN 5S50iREM GAME QVER

S20 FOR X=1 TO 10$FOKE 712,X{50UND 0,2
00-Xx10,10,10GOSUE &LOINEXT XIS0UND 0
20,0, 03FOKE 712,0:G0TO 130

590 FOR X=1 TO 103FOKE 712,X{FOKE 711,
XXLOIFOKE 710, XX10+GSFOKE 709, Xx58S0UN
D 0,200-Xx10,10,103G08UE &10INEXT X
560 SOUND 0,0,0,08IF FEEK(764)=25%5 THE
N 550

G570 FOSITION 15,087 #6463 "i1G=023U=0
{FOKE 709,202¢F0KE 710,148:F0KE 711,70
VFOKE 712,0:G0TO 130

600 FOR T=1 TO 2ZiSOUND 0,50,10,10:G0SU
B 610i50UND 0,0,0,03G08UE 610INEXT TiR
ETURN $REM REEF

610 FOR TIME=1 TO Z0iNEXT TIME:IRETURN

the keyboard for uppercase by POKEing location 702 with 64.

Line 240 validates the value of the key that was pressed. If the
column position for the cursor is 9, the key must be a letter. If the
value of KEY is not between 65 and 74, the key was not a letter
from A-J. The computer is sent back to line 190 to get another input.

Line 250 checks to see if the cursor is in the tenth column. If
it is, the only entry allowed is the comma. If the comma is not
entered after the letter, the computer goes back to line 190 and
waits for the comma to be entered.

Line 260 checks to see if a number key was entered if the value
of AC is greater than 10. The computer goes back to line 190 if
a number was not pressed.

Line 270 sends the computer back to line 190 if AC is equal
to 13. Only the Return key or the Delete key can be entered if the
value of AC is 13.

Line 280 takes the letter value of KEY and places it in the
variable HC if the value of AC is 9.

Line 290 takes the number value of KEY and places it in the
variable HR if the value of AC is 11.

Line 300 will accept the value of KEY only if the value of AC
is 12, the value of KEY is 0, and the value of HR is 1. This way
the player cannot enter other two-digit numbers for the row value.

Line 310 changes the value of HR to 10 because the value of
HR was 1 and the 0 key was pressed.

115




Line 320 prints the number or the letter that was entered. The
AC variable is incremented by 1 and the computer goes back to
line 190 for another entry.

Line 330 is used when the Delete key is pressed. The computer
subtracts one from the value of AC. If the value of AC is less than
9, the value is reset to 9.

Line 340 prints the cursor with a space after it. This erases
the cursor from its previous position. The computer goes to line
190 for another entry.

Line 350 closes the keyboard after an entry has been made.

Line 360 checks the values of R and C. If both are 0, this is
the first time the diver is moving. The computer erases the diver
from the top left corner, then goes to line 380.

Line 370 removes the diver from its position on the grid. The
diver is replaced with an X so the player will know which positions
on the grid were already tried.

Line 380 places the values of HR and HC into the variables
H and C. The diver is printed on the screen in the new location.

Line 390 checks to see if the row and column the diver is in
matches the row and column the treasure is in. If both match, the
computer goes to line 500.

Line 400 prints the four directions on the screen again. This
restores any direction that was in a different color.

Line 410 checks the value of TC against the value of C. If the
treasure’s column position is less than the value of the variable C,
the diver needs to move west. The letter W is printed in inverse.

Line 420 checks to see if the value of the treasure’s column
is greater than the position of the column. If it is, the diver should
move east, and the letter E is printed in inverse.

Line 430 checks the variable TR against the value of R. If the
treasure is in a row with a value less than that of the row the diver
is in, the diver should move north. The letter N is printed in inverse.

Line 440 checks to see if the value of the treasure’s row is
greater than the row the diver is in. If it is, the diver should move
south and the letter S is printed in inverse.

Line 450 subtracts 10 units of oxygen from the amount the diver
has. If the diver has no oxygen left, the computer goes to line 470
to give the location of the treasure.

Line 460 sends the computer to line 160 for another entry.

Line 470 makes a sound, and prints the location of the treasure
on the screen.

Line 480 places the treasure on the grid. The character that

116



is the treasure is determined by the value of G. The computer goes
to line 560 if this was the third game.

Line 490 waits for a key to be pressed. The keyboard is opened
for a read, and the computer waits until the player presses a key.
The keyboard is closed and the computer goes to line 130 for an-
other game after the key is pressed. The value of the key is
disregarded.

Line 500 prints the treasure at the top of the screen. The
treasure can be a ring, a chest, or an old boot.

Line 510 checks to see if this is the third game. If it is, the com-
puter goes to line 550.

Line 520 makes a sound and changes the color of the screen,
then sends the computer to line 130 for another game.

Lines 550-560 end the game. The computer changes the color
of the screen and makes sounds. If no key is pressed, the computer
will continue to loop between these two lines.

Line 570 resets the variables for the number of games and the
units of oxygen, restores the colors to the screen and sends the com-
puter to line 130 to play another set of games. To end the program
completely, press the System Reset key.

Line 600 makes the prompt sound.

Line 610 is the timing loop.

THE GREAT ABYSS

Objective of the game: To capture the creature without
getting killed or falling into the bottomless pit.

Directions: You begin at one position of interconnecting
rooms and locations. The swamp creature lives in one of these
rooms. There are flying creatures and a bottomless pit in this area.
You have five arrows. You are trying to capture the creature with
one of these arrows. You can capture the creature by shooting an
arrow into the room where he is hiding. It’s not simple; if you walk
into the room where he is, he will capture you.

There are many hazards throughout the caves. One of the fly-
ing creatures can come into the room with you, pick you up, and
deposit you in a different room. This could be an ordinary room,
the room where the swamp creature is, or the bottomless pit! You
have no control over the flying creature.

The computer will give you clues when you are near hazards.
The screen will turn light blue when you are one room away from
the bottomless pit. A worm will crawl across the screen when you
are one room away from the swamp creature. The computer will

117



START

Set aside
memory for
array, strings,
character set

!

Move character
set, change
screen
graphics

{

Create
new
characters

Calculate
new
position

Y

Set up string with
the room names
and connecting

room numbers

Place
creature, pits,
flying creature

into rooms

Display

room and
three doors

Can
player move
there?

No

Move
player to
new position

Arrow
key pressed

Space bar
pressed
?

Return
key pressed
7

Fig. 2-8. Flowchart for The Great Abyss. (Continued through page 120.)




Set power
level, place
arrow on
screen

Increase
power level-
upto5

Is space
bar pressed

key pressed

Return No

A
- Vg -t
A
Escape Decrease
power-not
less than 1

pressed
2

Move
arrow
up
Top of
doorway
?
Yes
Out of No
doorway g
9
Yes
Hit
creature
?
Yes

Win
routine

Arrow
falls on
player

119



Yes

Arrow
scare
creature

Move
creature
one room

Same
room as
player

i

Move
flying
creatures

Same

room as

player
?

Creature
tramples
player

Yes

Move
player into
new room

Creature
there

Flying
creature
there
?

Drop
player in
pit

120




make a sound when the flying creatures are near.

To move yourself, press the left and right arrows. To go into
the next room, press the Return key. To shoot an arrow, press the
space bar. The power of the arrow begins with 1. This is the
distance or number of rooms the arrow can travel. To lower the
power, press the Escape key. To fire the arrow, press the Return
key. If you capture the swamp creature, a message will appear on
the screen. If the arrow goes through a room where the creature
is hiding, he will run into another room. He can only move into one
room at a time. If he comes into your room, he will capture you.
Figure 2-8 is the flowchart, Fig. 2-9 is the character set for this
program, and listing 2-5 is the code.

Line 50 sets aside the memory needed for the strings and the

0 ] 0 T 0
130 0 16
84 16 [ 40
56 [ 56 1 84
108 | 108 ] 16
254 254 16
40 0 16
40 0 0

0 | | 0
0 0
0 66
0 165
0 24
0 0
126 0
195 0

191

180

255
128
129
159
159
159
191
255

128 0
198 16
208 16

252 61
254 127
127 254

47 248

Fig. 2-9. Character set for The Great Abyss.
121



Listing 2-5. The Great Abyss.

10 REM THE GREAT AEYSS —~ CAFTURE THE C
REATURE WITHOUT FALLING INTO THE EOTTO
MLESS FIT!

20 REM CHAFTER 2 - GRID GAMES

30 REM BY L.M. SCHREIEER FOR TAE EOOKS
40 REM COFYRIGHT 1983

S0 DIM CC20,3),R$(320),RO0OM$(16)

60 A=FEEK(L06)-8¢FOKE 204,AFOKE 206,F
EEK(756)

70 FOR X=18536 TO 1955iREAD VIFOKE X,V$
NEXT XIREM MOVE THE CHARACTER SET

80 DATA 104,162,4,160,0,177,205,145,20
3,200,208,249,230,206,230,204,202,208,
242,96

?0 GRAFHICS 18:Q=USR(1538) {FOKE 754,A}
REM MOVE THE SET

100 CHARSET=AX2546+24{F0OR X=CHARSET TO

CHARSET+95{READ VIFOKE X,VINEXT X

110 DATA 0,130,84,%6,108,254,40,40,0,0
216,56,108,254,0,0,0,16,40,84,16,16,16
» 0

120 DATA 0,0,0,0,60,102,66,195,0,0,0,0
10,0,126,195

130 DATA 0,0,66,165,24,0,0,0,0,129,66,
36,24,0,0,0,0,0,0,36,90,129,0,0

140 DATA 0,49,25,15,159,191,254,180,12
8,198,204,248,252,254,127,47,0,16,16,2
3,61,127,254,248

150 DATA 2355,128,129,159,159,159,191,2

5%
160 REM SET UF THE CAVES
170 R$(1)=" "iR$(320)=" "IR$(2)=R$!REM

CLEAR THE STRING

180 FOR X=1 TO 20!{READ ROOM$,R1,RZ,R3%
RE(XX16-15,X%16)=ROOM$$C(X,1)=R13C(X,2
1)=R2IC(IX,3)=RIINEXT X

120 DATA ROCKY EOTTOM,S,19,2,M055 HEAF
+1,11,3,5WAMF LAND,2,13,4,MARSH GROVE,
3,15,5,8TONE WALL,4,17,1

200 DATA FEEELE CREEK,7,20,10,GLADES,S8
»12,6,ICE ARENA,9,14,7 ,CATACOMES,10,16
»8,8LIME FIT,6,18,9

210 DATA BAT HAVEN,20,2,12,L0VER LEAF,
11,7,13,8ATAN FIT,12,3,14,QUICKSAND,13

122




28,15, DEVIL TOWER,14,4,16

220 DATA GAS MIRE,15,9,17,ARTIC VIEW,1
6,53,18, TREMELING RAVINE,17,10,19, TIDEL
AND,18,1,20,CREMLIN FEAK,19,6,11

230 CREATURE=INT(RND(1)X19)+2{REM FLAC
E THE CREATURE

240 PITLI=INT(RND(LYX19)+23IF FIT1=CREA
TURE THEN Z40:REM MAKE A FIT -~ CREATUR
E CANNOT LIVE IN THE FIT

250 PITZ2=INT(RNDC(L)X1?)+2{IF FITZ2=FITI1
OR FITZ=CREATURE THEN 250:{REM MUST EBE
DIFFERENT

260 HENS=INT(RND(1)X19)+2{REM HENS CAN
BEE ANYWHERE

270 REM START THE GAME IN ROOM 1

280 A=SIRO0OM=1LIFC=2!FR=10{MWU=03GOSUE 1
000

290 T=0:iKEY=FEEK(7464)IFOKE 764,255

300 IF KEY=7 THEN FC=FC+1!IF FC=19 THE
N FC=18:G0T0 Z90:REM MOVE RIGHT

310 IF KEY=6 THEN FC=FC-13{IF FC=-1 THE

N FC=0:GOTO 290:IREM MOVE LEFT

320 IF KEY=33 THEN F=1:T=100:FC=FC+13G
0TO 390:REM SHOOT ARROW

330 IF KEY=12 THEN 600:REM MOVE TO NEX
T ROOM

340 IF MW THEN FOSITION MW,9:7? #63'" "3
CHR$ (38+(MW/2=TINT(MW/2))) }CHR$ (39~ (MW/
2=INT(MW/2))) 3" " IMU=MW-1

350 IF MW=1 THEN FOSITION MW,?317 #463"

"IMW=17

360 IF KEY=255 OR FC=0 OR FC=18 THEN 2
?0

370 SOUND 0,200,8,8:G05UE 1100:SOUND O
2 0,0,0¢FOSITION FC,FRI? #63" "JCHR$(35
+(FPC/2=INT(FC/2))+128) 3" "

380 GOTO 290

385 REM power IS LOWER CASE INVERSE
390 FOSITION 7,3:7 #6i"pouwer "JFIFOW=F
EEK(764){FOKE 764,2551TF FOW=33 THEN F
=F+11IF F=6 THEN F=3

400 IF FOW=28 THEN F=F-11IF F=0 THEN F
=1

410 IF FPOW<=12 THEN 390

420 FOR X=100 TO 0 STEF -3S180UND 0,X,1
2, 10INEXT XiS50UND 0,0,0,0:T=T/FIFOR X=
FR~1 TO 4 STEF -1:LOCATE FC,X,V

123



425 REM FERCENT SIGN (%) IS INVERSE

430 FOSITION FC,X317? #&63"%A" 1GOSUE 11003

FOSYITION PC,Xt7? #63CHR$ (V) INEXT X

440 IF V=174 OR V=142 OR V=14 THEN 460
{REM THROUGH THE TUNNEL

445 REM FERCENT SIGN (%) IS INVERSE

4%0 FOR X=4 TO FRI!LOCATE FC,X,VIFOSITI

ON FC,X3$7? #63"Z"1GOSUE 11003FOSITION F

C,oX17? HS6ICHRS (V) INEXT X1GOTO 1380

460 FC=FC-11IF V=14 THEN VU=1:1GOTO 490

470 IF V=174 THEN VU=2:1G0TO 490

480 V=3

490 R3=ROOMIFOR Ri=1 TO FIRZ=C(R3,V)IV

=INT(RND(1)%3)+11R3=R2{IF R3=CREATURE

AND R1-:F THEN W=11G0OTO 520

500 NEXT R1IIF R3=CREATURE THEN 1190:R

EM GOT IT

505 REM MISSED IS INVERSE

510 A=A-11FOSITION A,0:7? #63" "IFOSITI

ON 7,387 #63"MISSED "i1T=100:GOSUE 110
0:IF A=0 THEN 1200:REM YOU LOOSE

520 IF W=1 OR MW:>0 THEN VU=INT(RND(1)x%3
Y+ 1 iCREATURE=C(CREATURE,V) iW=03IREM MOV

E THE CREATURE

930 IF CREATURE=ROOM THEN 12003REM CRE
ATURE GOT YOU - YOU LOOSE

540 HENS=INT(RND(1)X20)+1:!IF HENS=ROOM
THEN GOSUE 1250:G0OTO S560¢REM MOVE THE
MARSH HENS - YOU CAN MOVE

550 GOSUE 1000:GOTO ZP0IREM FLAY AGAIN

560 ROOM=INT(RND(1)%20)+1:IF ROOM=HENS
THEN S603REM NEW ROOM FOR YOU

570 GOSUE 1000:IF ROOM=FIT1 OR ROOM=FI
T2 THEN 1350:REM YOU REALLY LOOSE

580 GOTO 290

590 REM MOVE TO THE NEXT ROOM

600 IF FCx0 AND FC<5 THEN V=1:GOTO 440

610 IF FCxé AND FCx11l THEN V=23GOTO 64

0

620 IF FCx12 AND FC<17 THEN VU=3:G0OTO 6

40

630 GOTO 290

640 ROOM=C(ROOM,V) 1GOSUE 10003REM GO T

0 NEW ROOM

650 IF ROOM=FIT1 OR ROOM=FIT2 THEN 13%

124




0:REM YOU LOOSE - DOWN YOU GO

6460 IF ROOM=CREATURE THEN 1200:REM YOU
LOOSE AGAIN

670 IF ROOM=HENS THEN GOSUE 1250:1G0TO0
700IREM YOU MOVE

680 HENS=INT(RND(1)X20)+1{IF ROOM=HENS
THEN GOSUE 12350:GOT0O 700

690 GOSUE 1030:GOTO 290

700 ROOM=INTC(RND(1)%20)+11IF ROOM=HENS
THEN 700

710 GOTO S70:REM MOVE TO NEW ROOM

293 REM > IS THE CODE FOR CLEAR THE SC

REEN

1000 FOKE 712,0iMW=0:7 #63"" IROOM$=R%
(ROOMX16-15,RO0MX16)SFOR F=16 TO & STE

F -1{XF ROOM$(F,P)=" " THEN NEXT F
1010 F=10-F/2:FOSITION F,1:7? #63ROOMS

FOR F=1 TO AIFOSITION F-1,037 #63"%4"IN

EXT F

1015 REM NEXT LINE CONSISTS OF FOUR CO

NTROL N’s, FOUR INVERSE FERIODS, AND F

OUR INVERSE SFACES.

1020 FOR X=4 TO 8iFOSITION 2Z,X:7? #63"

sveee  INEXT XIFOSITION FC,FR

MCE T RN &

1030 FOR X=1 TO 3:{IF C(ROOM,X)=CREATUR

E THEN MW=17

1040 IF C(ROOM,X)=FIT1 OR C(ROOM,X)=FI

T2 THEN FOKE 712,150

1050 IF C(ROOM,X)<*HENS THEN 1070

1060 T=50¢FOR V=1 TO 4:SOUND 0,200,10,
10:GOSUE 1100850UND 0,250,10,10:G0OSUE
1100 3INEXT VISOUND 0,0,0,0

1070 NEXT X

1090 RETURN

1100 FOR DELAY=1 TO TINEXT DELAY!RETUR

N

1190 FOSITION 4,237 #63;"YOU GOT IT!!"3

GOTO 1380

1195 REM FLUS SIGN, COMMA, AND DASH AR

E INVERSE

1200 T=10:FOR X=0 TO FC-13IFOSITION X,F

R$? H63" +,-"1GS0UND 0,200,12,103GOSUE
1100 3NEXT X31S0UND 0,0,0,0

1210 GOTO 1380

12590 T=S01FOR X=1 TO FC+1:LOCATE X,3,V
PFOSITION X,3817 #63CHR$ (168+(X-INT(X/3

125




)X3)){GOSUE 1100:FOSITION X,3

1260 ? #63CHRS (VI INEXT XIGOSUE 1310:F0
R X=4 TO FR-1{LOCATE FC+1,X,VIFOSITION
FC+1,X1? #S63CHRS(LEB+(X-INT(X/3)%X3))
1270 GOSUE 1100:FOSITION FC+1,X:7? #63C
HES (V) SNEXT XIFOSITION FC+1,PR-137 %63
CHR$(169) tGOSUE 13108V=03V1=0

1280 FOR X=FR-1 TO 3 STEF -11IF X<=9 T
HEN LLOCATE FC+1,X,VILOCATE FC+1,X+1,V1

1290 FOSITION FC+1,Xt? ¥63CHR$(168+ (X~
INT(X/3)%3)) IFOSITION FC+1,X+137 #63"#
1300 GOSUE 1100:FOSITION FC+1,X:7? #63C
HR$ (V) tFOSITION FC+1,X+1:7? #63CHR$ (V1)
SNEXT X

1310 FOR V=1 TO 4:50UND 0,200,10,102CG0
SUE 1100:SOUND 0,250,10,10:GOSUE 11003
NEXT VISOUND 0,0,0,0iRETURN

1350 LOCATE FC+1,7,V1IRO0OMS$ (1)=CHR$ (V1
) tROOM% (16)=RO0OM$ (1) IROOM$ (2)=RO0OM%
1360 T=103FOR X=2 TO 11:FOSITION 2,X:7?
F6ROOM$ INEXT XIFOR X=4 TO 11:LOCATE
Py Xy VIFOSITION 9,X:7? $63"#"

1370 GOSUE 1100:SOUND 0,X%10,12,103F0S
ITION 2,X:? #63CHRS (V) INEXT XiSOUND 0,
0,0,0REM FALLING

1380 FOSITION $,9:7? #63"press START"?:
F FEEK(33279)<x6 THEN 1380

1390 GOTO 230

arrays. There are 20 rooms. Each room leads into three other
rooms. The rooms this room connects to are stored in the C array.
The name of the room is stored in R$. ROOMS$ is used to read the
name from the data list.

Line 60 checks to see how much memory is in the computer.
This amount is decreased by 8. This new value is the beginning
location of the character set that will be moved into RAM. This
value is stored in memory location 204. The beginning location of
the ROM-based character set is stored in location 206. This infor-
mation is used in the assembly language subroutine that moves the
character set from ROM into RAM.

Line 70 reads the code for the assembly language subroutine
and places it into memory locations 1536-1555; line 80 contains the

126



decimal code for the routine.

Line 90 changes the screen to graphics 18. This is graphics 2
with no text window. The computer sees the USR command to ex-
ecute the assembly language subroutine that begins in location
1536. When the computer returns to this line, it POKEs the value
of A into memory location 756. This tells the computer to use the
character set in RAM.

Line 100 finds the address of the first character in the character
set that will be changed. This address is stored in the variable
CHARSET. The computer reads the codes for the new characters
and stores them in the area set aside for the character set.

Lines 110-150 contain the decimal codes for the new characters.

Line 170 clears the information from R$, because the computer
does not clear out the area set aside for strings and arrays when
a program is run.

Line 180 reads the information from the data lines and stores
it in R$ and C array. Each time the loop is executed, the computer
will read the name of the room and the numbers of the three rooms
connected to this room.

Lines 190-220 contain the names of the rooms and the con-
necting room numbers.

Line 230 picks one of the 20 rooms for the creature. The
number of the room the creature is in is stored in the variable
CREATURE. The first room cannot be used for the creature, the
pits, or the flying creatures.

Line 240 picks a number for the bottomless pit. The computer
compares this number with the room number of the creature. If
they are both the same, the computer picks another number for
the pit. The creature cannot live in the pit.

Line 250 picks a number for the second pit. There are two pits
in this program. The computer compares the number of this pit
with the last pit and the creature’s room. If this number is the same
as either of the others, this line is repeated.

Line 260 picks a room for the flying creatures. Their room
number is stored in the variable HENS. Since they fly, they can
be in any room, even the bottomless pits!

Line 280 begins the game. The variable A is the number of
arrows you have. You begin the game with five arrows. The ROOM
variable is the room you are in. You begin in room 1. The variables
PC and PR indicate the row and column in which the player will
be printed. The variable MW is set to 0. When this variable is not
0, the worm moves across the screen. The computer uses the

127



subroutine at line 1000 to put the room and the three doors on the
screen.

Line 290 clears the variable T, then gets the value of location
764. The computer POKEs this location with 255 to clear it.

Line 300 checks to see if the right arrow key was pressed. If
it was, the computer increases the value of PC by 1; if the value
of PC is equal to 19, it is reset to 18. The player must stay on the
screen.

Line 310 subtracts 1 from the value of PC if the left arrow key
is pressed. If the value of PC is less than 1, the value of PC is reset
to 0.

Line 320 checks to see if the space bar has been pressed. If
it has, the variable P is set to 1, the variable T is set to 100, the
column variable is increased by 1, and the computer is sent to line
390.

Line 330 checks to see if the Return key has been pressed. If
it has, the computer goes to line 600 to move the player.

Line 340 checks the variable MW. If it is not 0, the player is
near the swamp creature’s room. The two characters that make
up the worm are printed on the screen. The way the command is
written for printing and the characters, the characters will alter-
nate their pattern depending on the value of MW. When MW is
an odd number, character 38 will be printed before character 39.
When MW is an even number, character 39 will be printed before
character 38. This is because the statement

MW/2=INT (MW/2)

is equal to 1 when it is true, and 0 when it is false. This value is
added to 38 and 39. After the worm is printed, the last position
is erased and the variable MW is decreased by 1. This keeps the
creature moving across the screen.

Line 350 erases the character from the screen when MW
reaches 1 and resets MW to 17. If the worm was not cleared from
the screen, it would remain there until the player changes rooms
because the last segment of the worm is erased in the line where
the worm is printed. If it is at the beginning of the line, the com-
puter will not wrap around to the left edge of the screen.

Line 360 checks to see if the variable KEY is 255, 0, or 18.
If it is, the computer is sent to line 290 to get another input.

Line 370 makes a sound and prints the player in the new loca-
tion. There are two characters that can be used as the player. When

128



the value of PC is even, the second, shorter character is printed.
When PC is odd, the taller character is printed. The positions on
both sides of the character are erased.

Line 380 sends the computer back to line 290 for another entry.

Line 390—when the space bar is pressed, the power value is
printed at the top of the screen. The computer looks at location
764 to see if the space bar has been pressed again. If it has, the
power level is increased by 1. The power level cannot exceed 5.

Line 400 checks to see if the Escape key has been pressed. If
it has, the power level is decreased by 1. The power level can never
go below 1.

Line 410 sends the computer to line 390 if the Return key has
not been pressed. The computer loops through these lines until the
Return key is pressed.

Line 420 shoots an arrow through the doorway the player is
standing in front of. The computer makes a sound, then begins a
FOR-NEXT loop that prints the arrow on the screen. The computer
uses the LOCATE command to get the value of the character over
which the arrow is going to be printing. It stores this value in the
variable V.

Line 430 prints the arrow on the screen, uses the subroutine
in line 1100, then prints the character on the screen, erasing the
arrow. The loop continues until the arrow reaches the top of the
door.

Line 440 looks at the last value of V. If it is 174, 142, or 14,
then the arrow went through the doorway and into the tunnel. The
computer is sent to line 460.

Line 450 reverses the direction of the arrow. Since the player
was not in front of a door when the arrow was shot, the arrow has
hit the wall and is now rebounding toward the player. The com-
puter uses the same routine in reverse. The LOCATE command
gets the value of the character over which the arrow will be
printing. The arrow is printed on the screen, and the subroutine
at line 1100 delays its movement for a few seconds. The character
that was in that location is printed back on the screen. The loop
continues until the arrow is back on the bottom of the screen. The
computer is then sent to line 1380. The game is over, the player
got shot with its own arrow.

Line 460—the value of PC is decreased by 1 so the player is
in his or her original position on the screen. If the value of V is
14, the arrow was shot through the first room. The value of V is
changed to 1.

129



Line 470 changes the value of V to 2 if the value of V is 174.

Line 480 changes the value of V to 3.

Line 490 stores the value of ROOM in variable R3. ROOM is
the room number the player is in. The FOR-NEXT loop takes the
arrow through a number of rooms based on the power of the ar-
row. The variable R2 is the connecting room based on the value
of V. Then the computer chooses a number from 1 to 3; this is the
direction the arrow will go in if the arrow travels through any more
rooms. The value of R2 is moved into the variable R3. If the
creature is in the same room the arrow is in, and this is not the
last room the arrow will be in, the computer goes to line 520. The
creature is disturbed.

Line 500 continues the loop. If the arrow lands in the room
where the creature is, he is captured. The computer goes to line
1190.

Line 510 decreases the number of arrows the player has. The
message is printed on the screen, and the computer uses the tim-
ing loop in line 1100. If there are no arrows left, you lose the game.

Line 520 checks if the variable W is set to 1, or the value of
MW is greater than 0. The creature is disturbed and will move.
The computer chooses one of the three possible directions in which
the creature can move. The creature is moved to the new room and
the variable W is reset to 0.

Line 530 checks to see if the creature has moved into your
room. If it has, the computer goes to line 1200. You lose.

Line 540 gives the flying creatures a chance to move. If they
move into the room you are in, the computer goes to the subroutine
in line 1250 to move you, then to line 560.

Line 550 restores the screen and goes back to line 290 to play
the game.

Line 560 chooses a new room for you to land in. If the room
you are in is chosen, the line repeats until the computer finds you
a new room.

Line 570 uses the subroutine in line 1000 to print the room on
the screen. If you have been dropped into one of the pits, the com-
puter is sent to line 1350, where you fall down the screen into the
bottomless pit.

Line 580 sends the computer back to line 290 to finish the game.

Line 600 moves the player to the next room. If the player’s col-
umn value is between 1 and 4, the player stands before the first
doorway. The value of V is set to 1 and the computer goes to line
640 to move.

130



Line 610 checks to see if the column value of the player is be-
tween 7 and 10. If it is, the player is in front of the second or mid-
dle doorway. The value of V is set to 2 and the computer goes to
line 640.

Line 620 checks to see if the column value of the player is be-
tween 13 and 16. If it is, the player is in front of the third doorway
and variable V is set to 3.

Line 630 sends the computer back to line 290. The player can-
not move through the wall.

Line 640 changes the value of the ROOM variable to the value
pointed to by the variable V. The computer uses the subroutine
in line 1000 to update the screen.

Line 650 checks to see if the player fell into the pit. If he did,
the computer is sent to line 1350 to end the game.

Line 660 checks to see if the player wandered into the swamp
creature’s room. If he did, the computer is sent to line 1200 and
the player loses the game.

Line 670 checks to see if the flying creatures are in this room.
If they are, the computer uses the subroutine in line 1250 to move
you up. When the computer returns to this line, it goes to line 700
to move the flying creatures.

Line 680 picks a room for the flying creatures. If they move
into your room, the computer uses the subroutine at line 1250 to
move you. Then the computer uses the routine at line 700 to move
the flying creatures again.

Line 690 sends the computer to line 1030 to update the infor-
mation, then to line 290 to continue the game.

Line 700 picks a new room for the flying creatures. If the com-
puter picks the room they are currently in, the line repeats itself
until the flying creatures move.

Line 710 sends the computer to iine 570 to see if the player
is in the pits.

Line 1000 prints the room and the doorways on the screen. The
memory location 712 is POKEd with 0 to blacken the screen. The
screen is cleared. The name of the room the player is in is moved
into ROOMS$. The FOR-NEXT loop looks for the end of the word
in ROOM$.

Line 1010 finds the center of the word and prints the name of
the room centered on the screen. The arrows are printed in the
top left corner of the screen.

Line 1020 prints the doorways on the screen. The characters
between the quotation marks are four Ctrl-Ns, a space, four inverse

131



periods, a space, and four inverse spaces. The player is printed on
the screen. It is an inverse pound sign.

Line 1030 checks to see if the swamp creature is in any of the
three adjoining rooms. If it is, the variable MW is set to 17. The
worm will crawl across the screen when the computer returns to
the main part of the program.

Line 1040 checks to see if any of the adjoining rooms is a pit.
If it is, the screen color is changed.

Line 1050 checks to see if the flying creatures are in adjoining
rooms. If they aren’t, the computer is sent to line 1070.

Line 1060 makes the warning sound if the flying creatures are
in an adjoining room.

Line 1070 continues the loop.

Line 1090 returns the computer to the main program.

Line 1100 is a delay loop. The value of the variable T deter-
mines the length of the delay. The computer returns to the main
program after executing this line.

Line 1190 is used when the player gets the creature. The
message is printed on the screen and the computer goes to line 1380
to end the game.

Line 1200 moves the swamp creature across the screen and
onto the player. This line is used when the player and the swamp
creature occupy the same room. The characters that make up the
swamp creature are printed in inverse.

Line 1210 sends the computer to line 1380 to end the game.

Line 1250 is used when the flying creatures are in the same
room as the player. The FOR-NEXT loop prints the creature fly-
ing across the screen. The character that is on the screen in the
position the creature will be printed in is stored in the variable V.

Line 1260 prints the character on the screen and continues the
loop. The loop continues until the creature is above the player. The
following loop brings the creature down onto the player. Again,
the character over which the creature will be printed is stored in
variable V.

Line 1270 continues the loop until the creature is on top of the
player.

Lines 1280-1300 contain the routine that picks the player up.
The creature and the player fly to the top of the screen.

Line 1310 makes a sound and the computer returns to the main
program.

Lines 1350-1370 drop the player down into the pits. The en-
tire ROOMS is filled with the character for this particular door-

132



way. This pattern fills the screen. The player begins at the top of
the screen and falls to the bottom. The computer makes a falling
sound.

Lines 1380-1390 end the program. The message is printed on
the screen and the computer loops here until the Start key is
pressed. When it is, the computer goes back to line 230. To end
the game, press the System Reset key.

133



Chapter 3

o\ 2

\4 oM S

Word Games

Whether you enjoy crossword puzzles, anagrams, word searches,
or other puzzles involving letters or words, this chapter has several
games for the young and old.

JOTTO

Objective of the game: To figure out the word in the fewest
number of tries.

Directions: JOTTO is a traditional pencil-and-paper game
similar to Mastermind or Bagels. Instead of playing with numbers
or colors, words are used. This makes the game easier for young
children, who may be able to deduce the word from the letter com-
binations rather than by the clues: how many letters are correct
and in the correct place.

The game can be played by one or two players. If the game
is played by two players, each player receives a different word.
There are three levels of play. The words can be four, five, or six
letters long.

A question mark appears on the screen and the computer makes
a sound to indicate it is ready to receive a word. In the one-player
version, the question mark is near the center of the screen. In the
two-player version, the question mark for the first player is near
the left edge of the screen. Enter a word and press the Return key.
The word should be made up of the number of letters chosen at
the beginning of the game. If an incorrect letter is entered, press

134



the Delete key and the letter will be erased. After you have entered
your word, the computer compares your word with its word. Two
numbers appear on the screen. The first number tells you how many
letters are correct and in the correct position. The second number
indicates how many letters are correct but in the wrong position.

If this is a two-player game, the second player’s question mark
appears near the center of the screen. This player should now en-
ter a word. The game continues until the correct word is entered
or 10 guesses have been made. When the correct word is entered,
the program ends and the computer congratulates the player. If
the correct word is not entered within 10 tries, the computer tells
you the word. In either case, pressing the Start key will begin the
program again. To end the program, press the System Reset key.
Figure 3-1 is the flowchart for this program, and Listing 3-1 is the
code.

Line 50 sets aside the string space for this program. WORD1$
stores the word for the first player. WORD2$ holds the word for
the second player. TEMP$ is a temporary storage space, and
GUESSS$ holds the word entered by the player.

Line 60 clears the screen and sets the computer for graphics
2 with no text window.

Line 70 asks for the number of players. The question mark at
the end of the message is needed because the Input command will
not be used. If the question mark were not included, the computer
would not print one on the screen.

Line 80 opens the keyboard so a key can be pressed and read
without having to press the Return key. The value of the pressed
key is stored in the variable P. The keyboard is closed.

Line 90 compares the value of the variable P to 49 and 50. Only
two values are acceptable for this question—the 1 and 2. The ASCII
value of the 1 key is 49, and the ASCII value of the 2 key is 50.
If the value of P is greater or less than these two values, some other
key was pressed and the computer repeats line 80 until a correct
response is given.

Line 100 prints the number on the screen.

Line 110 subtracts 48 from the value of P to arrive at the ac-
tual number pressed. The value of the 1 key is 49, so if the 1 key
was pressed, P would contain 49. By subtracting 48 we arrive at
the actual number pressed.

Line 120 asks for the level of play. There are three levels of
play in this game. The words can be four, five, or six letters long.

Line 130 opens the keyboard so it can be read without using

135



START

Set aside memory
for strings,
change screen
mode

y

\

Get number
of players

Get number
of letters
in word

Fig. 3-1. Flowchart for Jotto. A

No Is it
between four

& six?

Choose a word
based on
number of

letters

Get a word
from
player

Are any
letters in
correct

place?

136



Count
number,
store it

Are any
letter in word
in different
place?

Yes

Count
number,
store it

A

Y

Display
clues

Change variable | g Is the
for other word correct
player ?

Congratulate
winner

137



Listing 3-1. Jotto.

10 REM JOTTO - GUESS THE WORD FROM THE
CLUES

20 REM CHAFTER 3 - WORD GAMES

30 REM BY L.M. SCHREIEBER FOR TAE EOOKS

40 REM COFYRIGHT 1983

S50 DIM WORDLIS(H) , WORD2% (&) , TEMFS () ,GU
ESSE% (&)

60 GRAFHICS 18IREM CLEAR THE SCREEN AN
D SET FOR GRAFHICS 2 WITH NO TEXT WIND
OW

70 FOSITION 1,4:17 #63"HOW MANY FLAYERS
'?n;

80 OFEN #2,4,0,"K${"IGET #2,FI{CLOSE #21
REM OFEN THE KEYEOARD FOR A READ - STO
RE NUMEBER OF FLAYERS IN ‘F“

20 IF F<49 OR F>50 THEN 80

100 FOSITION 19,47 #&63CHR$(F) {REM SHO
W THE NUMEER

110 FP=F-48tREM GET THE ACTUAL NUMEER O
F FLAYERS

120 FOSITION 1,737 #63"HOW MANY LETTER
S (4-46)7"}

130 OFEN #2,4,0,"K{"IGET #2,LiCLOSE #2
tREM GET THE NUMEER OF LETTERS FOR THE
WORDS

140 IF L<52 0OR L>54 THEN 130:{REM ONLY
ACCEFT NUMEERS 3-6

150 FOSITION 10,817 #63CHR$(L) L1=1L-48
L=(l.-52)%10+1000:REM CALCULATE THE EE
GINNING OF THE DATA

160 W=INT(RND(1)%10)iWL=L+WIREM CHOOSE
ONE DATA LINE EASED ON THE LEVEL

170 RESTORE WLIREM SET FOINTER TO THAT
LEVEL

180 W=INT(RND(L)XS)+1IREM CHOOSE ONE W
ORD OF THE GROUF

190 FOR R=1 TO WIREAD WORD1$%INEXT R
200 IF P=1 THEN 250

210 W=INT(RND(1)X10) $WHL=L+WIREM CHOOSE
ONE DATA LINE EASED ON THE LEVEL

220 RESTORE WLIREM SET FOINTER TO THAT
LEVEL

230 W=INT(RNDC(L)XE)+1IREM CHOOSE ONE W

ORD OF THE GROUF

138




240 FOR R=1 TO WIREAD WORDZ$INEXT R
250 GRAFHICS 18!:REM CLEAR THE SCREEN
260 R=21IF F=1 THEN C1=331C2=03G0T0 280
tREM SET ROW AND COLUMN FOR 1 FLAYER

270 Cl=1:C2=11{REM SET COLUMNS FOR 2 F

LAYERS

280 FOSITION 2,037 #463"ENTER YOUR GUES

SII

285 REM QUESTION MARK IS INVERSE

290 FOSITION C1,R:7? #63;"?"I1GOSUE 400

300 C=C1-13iTEMF$=WORD14$:COSUE 480

310 IF C2 THEN FOSITION C2,R:? #63"7?"3
COSUE 400:C=C2~-11TEMF$=HORDZ$IGOSUE 48
0

320 R=R+13{IF R<12 THEN Z90:IREM INCREAS

E ‘R’ FOR NEXT ROW - ALLOW 10 TRIES

330 GOTO 750

400 FOR X=1 TO Si1S0UND 0,20,10,103NEXT
X$S0UND 0,0,0,0¢REM FIRST EBEEF

410 FOR X=1 TO L10INEXT XIREM SILENCE

420 FOR X=1 T0 SiS0OUND 0,20,10,103NEXT
X{80UND 0,0,0,0:REM SECOND EEEF

430 RETURN

480 FOR X=1 TO L1+1{FOSITION C+X,R3IREM
SET CURSOR FOR FROFER FOSITON ON SCRE
EN

490 OFEN #2,4,0,"K:"IGET #2,KICLOSE #2
tREM GET A LETTER FROM THE KEYEOARD

500 IF K=1353 AND X=L1+1 THEN 570

510 IF K=126 AND X1 THEN X=X-1:GUESS%
(X X)=" "{K=32!FOSITION C+X,RiGOTO 560

520 IF X=L.1+1 THEN 490

530 IF K127 THEN K=K-128!FOKE 694,0:R
EM INVERSE KEY WAS FRESSED - RESET TO
NORMAL VIDEO

540 IF Kx96 THEN FOKE 702,64 i{K=K-32{RE
M CAFS/ILOWR KEY FRESSED - RESET TO CAF
8

S50 IF K65 OR K90 THEN 490iREM NOT A
LETTER - TRY AGAIN

560 P #63CHRS (K) 3 1GUESSS (X)) =CHR$ (K) $TIF
=32 THEN X=X-1

570 NEXT X

580 XF GUESS$=TEMF$ THEN 700

590 RIGHT=0:{FOR X=1 TO L1:REM NOW CHEC

139



K THE LETTERS

600 TF GUESSS (X, X)=TEMF$(X,X) THEN RIG

HT=RIGHT+13TEMF$ (X, X)=" "IGUESSH(X,X)=

OMIREM REMOQUVE THE RIGHT LETTER

H10 NEXT XIREM GET THE NUMEER FOR LETT

ERS IN THE RIGHYT FLACE

620 CLSE=03FOR X=1 TO LLIFOR Y=L TO I.1
FREM NOW CHECK FOR LETTERS NOT IN THE

RIGHT FLACE

630 IF X=Y THEN &60

640 IF GUESSH(X,X)=" " OR TEMF&(Y,Y)="
" OTHEN 660

450 TIF GUESSH (X, X)=TEMF$(Y,Y) THEN CLS

E=CLSE+LSTEMP$ (Y, Y)=" "JCUESSSH (X,X)="

Y=L REM REMOVE THE LETTER

660 NEXT YIREM CHECK ALL THE LETTERS

670 NEXT XiREM CHECK THE ENTIRE WORD

680 FOSITION C+2+L1,R17? #63CHR$(RIGHT+

48+128) 3" "3CLSEIREM SHOW THE NUMEBERS

620 RETURN

700 GRAFHICS 18:REM CLEAR THE SCREEN

710 FOSITION Z,4:7? #63"ConGRatULatI0ns
PUIREM CONGRATULATE WINNER-mGtUtIs! AR

E INVERSE

720 FOSITION 3,6:7? #63"YOU GOT ITt!tmg

FOSITION 4,817 #46;GUESSS

730 IF FEEK(33279)<:x6 THEN 770iREM WAI

T FOR START TO FLAY AGAIN

740 RUN

750 GRAFHICS 183iFOSITION ClL,2:7 #63"YD

UR WORD WAS"SIFOSITION C1,4817 $#63WORD1%
tREM SHOW THE WORDS

760 IF C2 THEN FOSITION C2-5,8:7 #63"y

our word was"IFOSITION C2-5,10¢7 #6313 W0

RD2%

770 GOTO 730

1000 DATA OGRE,DINE,ALAS,RAGE,LLAZY
1001 DATA WORM,BEATH,RO0T,CLAF ,WEFT
1002 DATA RIFPE,DULL,LOOF,SLID, THIN
1003 DATA HASH,DUTY, CAFE ,NEST,CHAT
1004 DATA CORK,SFIN,;SANK,DUSK,DOVE
1005 DATA KNEE,HEEL, TUCK,FLUG,FOEM
1006 DATA HERD,MINE,LESS,S0RT,MOON

1007 DATA HARM,SIZE,SELL,FITY,COST
1008 DATA STAR,DUST,WEST , WORE , RUCK

1009 DATA GASF,FINE,SHOF, TEAR,REAR

140




1010
D
1011
Fo
1012
H
1013
FI
1014
L.
1015
T
10164
E
1017
E
1018
N
1019
£
1020 DATA
GOELIN
1021 DATA
EARLEY
1022 DATA
FREFER
1023 DATA
CASTLE
1024 DATA
GREEDY
1025 DATA
INGSIST
1026 DATA
UNLESS
1027 DATA
EECAME
1028 DATA
ADVICE
1029 DATA
COURSE

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

FAVOR,FIGHT,SLEFT,GUIDE, GUAR
TIGER,FETCH, CHILD,NORTH,DROO
COACH, SFLIT,CLOUD, TOWEL ,WITC
SKEIN, COUNT,CANDY ,HUTCH, STUM
QUILT,CREFT, TEMFT,RUSTY, CORA
ROEIN, WORST, DROWN, CRUEL. , FAUL
STUDY , THUME , ERIEF , FEACE , RINS
MARRY , ROYAL , SALAD , EREAD , FROV
TRUTH, AFRON , AWARE , MAGIC , ANGE
EAGER, WORTH , GROUF , SHADE , ERAV
EMFIRE, RATHER,FROFER, STREAM,
PICKET,HOLLOW, KIMONO,EBUTLER,
ERAIDS, SELECT , COWARD , FILL.OW,
LINGER, BUBELE, TICKLE , THRONE,
MANGER , NAFKIN, CRADLE , ACCEFT,
HUMELE , SMOOTH, SADDLE , GENTILE,
MANAGE , THOUGH , EXCEFT , BEOTHER,,
VALLEY ,BREATH, CATTLE , MOMENT ,
DIVIDE,STUFID,EQUGHT ,QUTFIT,

DOCTOR,FIGURE, CARROT , THENTY,

the Return key. The ATASCII value of the pressed key is stored
in the variable L.

Line 140 checks the value of L to make sure the key pressed
was a 4, 5, or 6. If any other key was pressed, the computer will
repeat line 130.

141



Line 150 prints the number of letters the words will contain
on the screen. To get the actual number, 48 is subtracted from the
value of L. This is stored in variable L1. The words are stored on
DATA lines beginning with line 1000. The four-letter words are
on the first 10 lines, the five-letter words on the second set of 10
lines, and six-letter words on the third set of 10 lines. Since the
ATASCII value of 4 is 52, we subtract 52 from L, multiply this
by 10 and add the result to 1000. If the five-letter words were cho-
sen, the computer would subtract 52 from the value of L (53). This
equals 1. Multiplying 1 times 10 equals 10; 10 added to 1000 is
1010—the DATA line holding these words.

Line 160 chooses a random number from 0 to 9. By adding this
number to the line number, we arrive at a random data line for the
words.

Line 170 uses the RESTORE command to point to that DATA
line.

Line 180 chooses a random number from 1 to 5. Each DATA
line contains five words. We will use one of these five words.

Line 190 uses a FOR-NEXT loop to count from 1 to the value
of W. One word will be read each time this loop is executed. When
the computer reaches the value of W, the loop stops and the word
the computer is using in this game is stored in the variable
WORD1$.

Line 200 checks the value of P. If it is 1, there is only one player
for this game and the computer is directed to line 250.

Line 210 chooses a DATA line for the second player. The first
line of the words has been calculated. The DATA line the com-
puter uses for the second player’s words is stored in the variable
WL.

Line 220 uses the RESTORE command to point to the new
DATA line.

Line 230 chooses a number from 1 to 5. This is the position
of the word in the new DATA line.

Line 240 uses a FOR-NEXT loop again to READ the words
in the DATA line until it reaches the word for this player.

Line 250 clears the screen and sets it for graphics 2 without
the text window.

Line 260 sets the variable R to indicate on which row the ques-
tion mark and then the word should be printed. If there is only one
player, variable C1 is set to 5 and variable C2 is set to 0. This is
the column where the question mark will be printed. The computer
is directed to line 280. The next line is used for a two-player game.

142



Line 270 sets the column variables to 1 and 11 for a two-player
game.

Line 280 prints a message at the top of the screen.

Line 290 prints the question mark on the screen. Variable C1
indicates the column position of the question mark, variable R the
row. The computer is sent to the subroutine at line 400 to make
the prompt sound.

Line 300 decreases the value of C1 by 1 and stores it in variable
C. This variable will be used in the next subroutine to point to the
column in which the word will begin. The word the computer chose
is moved into TEMP$ and the computer is sent to the subroutine
at line 480 to get a word from the player.

Line 310 is used when there are two players. If there is only
one player, variable C2 is 0. If it is anything but 0, the computer
uses this program line. The question mark is printed at the posi-
tion indicated by variables C2 and R. The computer makes a sound
by using the subroutine at line 400. The position of the question
mark less one is stored in variable C, the second word the com-
puter chose is moved into TEMP$, and the computer is sent to the
subroutine at line 480 to get the second player’s guess.

Line 320 increases variable R by 1. The next word is printed
on the row. If the value of R is less than 12, the game continues
with line 290.

Line 330 sends the computer to line 750 for the end of the game.

Lines 400-430 make the prompt sound. The sound is made in
line 400. The FOR-NEXT loop keeps the sound on for a few
seconds, then turns it off. The next FOR-NEXT loop is a short
pause before the next SOUND command. After the second beep,
the computer is sent back to the main program.

Line 480 begins the routine that gets a guess from the player.
The FOR-NEXT loop counts from 1 to the number of letters in the
word, plus 1. One is added to the number of letters because the
last key to be pressed is the Return key; if we counted up to the
last letter, the loop would end before the Return key could be
pressed. The cursor is positioned at the correct column and row.

Line 490 opens the keyboard and places the value of the key
pressed into variable K.

Line 500 compares the value of K to 155. If it is 155 and X
is equal to one more than the number of letters in the word, the
computer goes to line 570. The value of the Return key is 155. By
checking to see if all the letters have been entered, the computer
makes sure a short word is not entered for a longer one. Line 570

143



can only be executed when all the letters have been entered.

Line 510 checks to see if the Delete key has been pressed. If
it has been pressed and the value of X is greater than one, the line
will continue. If X is 1, no letters have been entered and there is
nothing to erase. If letters have been entered, the value of X is
decreased by 1. The entered letter is erased from GUESS$, the
value of K is set to 32 (a space) and the position is set so the letter
on the screen can be erased. The computer is directed to line 560
to erase the letter on the screen.

Line 520 checks to see if any more letters can be entered. If
the value of X is greater by 1 than the number of letters needed
for the word, the comiputer is sent to line 490. It can only accept
a Delete key or a Return key.

Line 530 checks to see if the value of K is greater than 127.
If it is, the ATARI key has been pressed. To correct it, subtract
128 from the value of K and POKE location 694 with a 0.

Line 540 checks to see if an uppercase letter was entered. If
the value of K is greater than 96, the key was lowercase. To get
the uppercase value, 32 is subtracted from the value of K and the
location 702 is POKEd with 64. This resets the keyboard to up-
percase.

Line 550 sends the computer to line 490 if the value of K is
less than 65 or greater than 90. Only letters are acceptable. Values
out of this range indicate that the key pressed was not a letter.

Line 560 prints the pressed letter on the screen. It is stored
in GUESSS$. If the value of K is 32 (a space), the value of X is
decreased by 1.

Line 570 continues the loop.

Line 580 compares the word the player entered (GUESS$) with
the word the computer chose (TEMPS$). If both words are the same,
the computer is sent to line 700 to end the game.

Line 590 sets the variable RIGHT to 0. This counts the number
of letters in the player’s word that are in the same position as the
computer’s word. The FOR-NEXT loop starts with the first letter
and ends with the last letter of the word.

Line 600 compares a letter in one position with the letter in
the same position in the computer’s word. If both letters are the
same, variable RIGHT is increased by 1. The letter is removed from
the computer’s string and the player’s string.

Line 610 continues the loop until all the letters have been
checked.

Line 620 sets variable CLSE to 0. This variable will keep track

144



of how many letters are the same in both words, but in different
positions. Two FOR-NEXT loops are used. The first points at the
position in the player’s word, while the second points to the com-
puter’s word.

Line 630 sends the computer to line 660 if both X and Y are
the same value. We already compared the strings letter for this let-
ter; we do not need to do it again.

Line 640 sends the computer to line 660 if either position is
empty. No need to compare empty places, either.

Line 650 compares the letter in GUESS$ with the letter in
TEMPS. If they are both the same, variable CLSE is incremented
by 1. The letters are the same, but in different positions. Variable
Y is set to the last position because there is no letter left to com-
pare with the rest of the letters in this word.

Lines 660 and 670 continue the loop until all the letters and
positions have been checked.

Line 680 prints the number of letters that are the same and
in the same positions on the screen, then prints the number of let-
ters that are the same but in different positions. By adding 48 and
128 to the value of RIGHT, the number in the correct position is
printed in blue.

Line 690 returns the computer to the main program.

Lines 700-710 congratulate the winner. The first person to
guess the word is the winner.

Lines 720-730 loop until the Start key is pressed. Then the pro-
Zram is run again.

Lines 740-760 show the correct word.

Line 770 sends the computer to line 720 to wait for the Start
key. To end the program, press the System Reset key.

Lines 1000-1029 contain the words for this program. These
words can be changed as long as four-letter words replace four-
letter words, etc.

ROBOTMAN

Objective of the game: To identify correctly the word
before the robot disappears.

Directions: This program is similar to the popular Hangman
game. Children, especially, enjoy the challenge of trying to guess
the correct word in the fewest number of tries.

In this game, the letters of the alphabet appear on the screen
along with a robotman. The number of question marks on the screen
represent the letters in the word. There is an arrow pointing to the

145



START

Set aside string
space,
memory for
character set

* Calculate

new position

Move character
set, change
some

characters Print
cursor in
new position

Clear string,
choose set
of words

¥

Place
words in
string

Print
robot on
screen

Print
alphabet and
cursor

Pick one
word from
set

word
complete

pressed

?

congratulate
player

Fig. 3-2. Flowchart for Robotman.

146




Remove
part of
robot

Select
key pressed

letter A. To move the arrow, press the right arrow key or the left
arrow key. When the arrow is pointing to the letter you want to
enter, press the Escape key. The letter will disintegrate on the
screen. If the letter belongs in the word, it will replace a question
mark. If the letter is not part of that word, a portion of the robot
will disappear.

If the entire robot disappears, the correct word will appear on
the screen just above the question marks. If the entire word ap-
pears on the screen within 10 tries, a message appears on the
screen.

To continue the game with the same set of words, press any
key. To continue the game with a different set of words, press the
Select key on the computer.

The number of words you enter correctly and the number of

147



words you miss are printed near the bottom of the screen. Figure
3-2 is the flowchart for this program; Fig. 3-3 is the character set,
and Listing 3-2 is the code.

Line 60 sets the display to graphics 1 without a text window.

Line 70 finds out how much memory is available on your system
and subtracts 8 from this number. This is the equivalent of sub-
tracting 2K from the amount of memory in the system. This number
will be the first byte of the new character set. This value is stored
in location 204. The number 224 is stored in location 206. This is
the beginning byte of the character set in ROM. These memory
locations are temporary storage units used in the following assembly
language program.

Line 80 reads the assembly language program from line 90 into

253
255
255
255
255
255
255
255

128
192
224
240
248
252
254
255

127 255
255
255
255
231
193

153

159
207
231
243
249
252

255
255

127
127
63

255 255
255 255
254 126
254 126

[
l

248 60
240 24

31
31

®
-

=
{

24

153
195

195

185
185

b L]

2
[
o o ogc &I’Oo

Fig. 3-3. Character set for Robotman.

148



Listing 3-2. Robotman.

10 REM ROEOTMAN - A VARIATION OF HANGM

AN

20 REM CHAFTER 3 -~ WORD GAMES

30 REM EBY L.M. SCHREIERER FOR TAE EOOKS

40 REM COPYRIGHT 1983

S50 DIM WORDSCLO) ZEASESCLO0) , e L) , ANSK

ERGBCLO)

60 GRAFHICS 173iIREM CLEAR SCREEN - GRAF

HIC 1/NO TEXT WINDOW

70 A=FEEK(106)-8IFOKE 204,A1FOKE 206,2

24tREM FLACE NEW CHARACTER EASE 1K ARO

VE DISFLLAY ILIST

80 FOR X=1536 TO 1SGSIREAD EIFOKE X,E?

NEXT XtREM MOVE THE MACHINE LANGUAGE S

UEROUTINE

90 DATA 104,162,4,160,0,177,205,14%,20
200,208,249,2 30, 06,230,204,202,208,

4 2 96

100 Q=USBR(1936) {REM RUN THE MACHINE LA

NGUAGE SUEBEROUTINE

110 FOKE 7%6,A'REM TELL THE COMFUTER W

HERE THE CHARACTER SET IS

120 CHBASE=AX’P6 REM DECIMAL ADDRESS 0

F CHARACTER EAS

130 FOR X=24 TU 112 {READ E{FOKE CHEASE

+XGEINEXT XIREM READ IN THE NEW CHARAC

TER SET

140 DATA 1,3,7,15,31,63,127,255

150 DATA L.JJ,Z'«J‘U91_I\J\J,,4_\J\J,‘2\J\J,&..\J\.J 5592

99

160 DATA 128,192,224,240,248,252,254,2

E, l..-,

170 DATA 254,252,249,243,231,207,159,6
3
180 DATA 127,63,159,207,231,243,249,2

2

190 DATA 29%5,255,255,255,231,195,153,46
0

200 DATA 295,255,127,127,63,63,31,31
210 DATA 2%B%,255,2594,254,248,248,240,2
40

220 DATA 2855,255,126,126,60,60,24,24
230 DATA 24,60,153,195,195,195,195, 195
240 DATA 81,0,37,0,84,0,69,0

149



150

2%0 DATA 0,0,37,0,84,0,0,0

260 W=INTC(RND(1)X10) IEBASE$(L)=" "“IBAGE

$(L00)=" "IBASES(2)=EASE$ IWORD$=HASES !

REM CLEAR THE OLD WORDS FROM STRINGS

270 RESTORE 1000+Wx10

280 FOR X=1 TO 91 GTEF 103IREAD ANSWERS

tREM GET THE WORDS FROM THE LIST

290 BASES (X)) =ANSWER$ INEXT XIREM FILACE

THE. WORDS IN THE STRING

300 POSITION 12,7:7 #63"#$$$%"IFOSITIO

N 12,837 #63"$&4/$" IFOSITION 12,9:7 #6

BB (BB

310 FOSITION 12,1037 #63")$$$X"IREM FR

INT THE HEAD

320 FOSITION 13,1137 #63"#4$%Z"FOSITION
11,1287 $63"#6$9$64" IFOSITION 11,1337
F63"6 $5% 4"

330 FOSITION 11,1417 #63"% K&R $"IF0SI

TION 11,1587 %63", $%% ,"IFOSITION 13,

1637 $63"5%4%"

340 FOSITION 13,17:7 #63"% $"3IPOSITION
13,1887 #63"% $"IFOSITION 13,197 #63

"+ +"IREM FRINT ARMS AND TORSO0

3530 REM FRINT THE ALFHAEET AND SCORES.
ROEOT IS IN INVERSE LOWER CASE, HUMA

N IN LOWER CASE

360 FOSITION 2,0:iF0R X=65 TO 77:7? #6iC

HRE(X+128) 5 INEXT XIREM FPRINT HALF OF A

LFHAEET

370 FOSITION 2,1:7 #63"A"IREM FRINT AR

ROW - INVERSE VIDEO

380 FOSITION 2,23F0R X=78 TO 20:7? #6:C

HR$ (X+128) 3 INEXT XIREM FRINT THE REST

GF THE ALFHAEET

390 FOSITION 1,2217 #63"robot "IRSIFOS

ITION 11,22:7 #63"human "JHSIREM robot
IS LOWER CASE INVERSE

400 W=INTC(RND(1)%X10)X10+13E=9
W=91 THEN E=LEN(BASE$)-WiEl=

08E A WORD FROM THE EASE

410 ANSWER$=EASES$ (W, W+E) IFOR X=1 TO E1

PIF ANSHERS (X, Xy =" " THEN ANSWER$=ANSW

ERGCL,X~-1)1GOTO 430

420 NEXT X

430 WL=LENC(ANSWER$) IFOR X=1 TO WLIFOSY

TION X,1587 #63"?"INEXT Xi1R=13C=2iMI=1

E1=10%IF

E{REM CHO




0:REM FRINT THE ? - SET FOINTERS

440 OFEN #2,4,0,"Kt"

450 GET #2,KICLLOSE #23IF K127 THEN K=

K-1281FOKE 694,0!REM CLEAR THE BUFFER

AND CLOSE ITY

460 IF K=42 THEN 500

470 IF K=43 THEN %40

480 IF K=27 THEN $70

490 GOTO 440

500 FOSITION C,R&? #63" "IREM REMOVE T

HE FOINTER

510 C=C+11IF C=195 THEN C=21R=R+2!IF R=

9 THEN R=1:REM SET NEW FOSITION

520 FOSITION C,R$7? #63"A"IREM MOVE THE
FOINTER -~ ARROW IS INVERSE

530 GOTO 440:REM CET ANOTHER MOVE

540 FOSITION C,R&? $#&463" "IREM REMOVE T

HE. FOINTER

550 C=C~13IF C=1 THEN C=141R=R-2:IF R=

-1 THEN R=3{REM SET NEW FOSITION

560 GOTO 520

570 LOCATE CeR-1,LIFOSITION C,R-137 %6
JCHR$ (L) 3¢ IF L=32 THEN 4403IREM ONLY TA

KE LETTERS THAT ARE THERE

580 FOSITION C,R~-1:7? #63"-"I1FOR U=14 T

0 7 STEF -13FOR T=100 TO 50 STEF -5:i80

UND 0,7,V,10iNEXT TINEXT V

590 FOSITION C,R-1:7? #63"."IFOR V=7 TO
0 STEF ~1iFOR T=50 TO 0 STEF ~-5I150UND
0,T,V, 10 INEXT TINEXT V

600 SOUND 0,0,0,0¢FOSITION C,R-137 %63
"OMIREM REMOVE THE LETTER

610 L=l.-128iM=03FOR X=1 TO WLIREM CHEC
K THE LETTERS

620 IF L<=ASCCANSHER$ (X,X)) THEN 650:IR
EM NO MATCH

630 FOSITION X,1517 #63CHR$ (L) IWORDS (X
# X)=CHR$ (L) t M=1

640 FOR S5=2%B0 TO § STEF -5180UND 0,8,1
0,8INEXT StS0UND 0,0,0,0

650 NEXT X:XIF M AND ANSWER$=WORD®$ (1, WL
) THEN 840 :

660 IF NOT M THEN GOSUE 700+ (MIXL10)IM

I=MI-1

670 IF MI THEN 440

680 FOSITION 1,127 #6JANSKERS IFOR S=1

1561



00 TO 200:S0UND 0,5,6,8¢NEXT SISOUND 0
»0,0,0

620 RS=RS+1:1G0OTO 850

700 REM REMOVE THE EODY

710 FOR FX=7 TO 10FOSITION 12,FXi7? %6
3 "3IINEXT FXIRETURN

720 FOSITION 13,887 #63"$$%" IRETURN
730 FOSITION 14,917 #63"$" IRETURN

740 FOR FX=11 TO 16{FOSITION 13,FX1? &
Gy MEINEXT PXIRETURN

7590 FOR FPX=12 TO 14:F0SITION 16,FXt? &
63" "HINEXT PXIRETURN

760 FOR FX=12 TO 14:FO0SITION 11,FX$? %
63" "PINEXT PXIRETURN

770 FOR FX=17 TO 18IFOSITION 13,FXt? #
63" MPINEXT PXIRETURN

780 FOR FX=17 TO 18i{FOSITION 15,FX$? #
63" "PINEXT PXIRETURN

790 POSITION 11,1587 #63" $%$% "IRETU
RN

800 FOSITION 13,1937 %é63" "3 IRETURN

830 REM OrC! ARE INVERSE

840 FOSITION 1,1237 #43"COrrECL!"IFOR

X=1 TO WLISOUND 0,ASC(WORD$(X,X)),10,1
0 INEXT XiHB=HG+1

850 SOUND 0,0,0,03F0KE 764,2553F0SITIO0

N CyR:? #463" "3 IHORDS=" "IREM
CLEAR OUT THE FOINTER AND THE STRING
8460 IF FEEK(764)<x>285 THEN LINE=300:60
TO 890

870 IF FEEK(SG3279)=5 THEN LINE=260:G0T
0 890

880 GOTO 840

890 FOKE 764,2551F0SITION 1,12:7 #63W0
RD$IFOSTITION 1,1537 #63WORDS; :COTO LLIN
E

1000 DATA MAJESTY,DINE,ALAS,OGRE,FAVOR
y COTTAGE , EMPIRE, RATHER y SURROUNDED , ST
FED

1010 DATA FROFER,SCRATCH, REMARKAELE , RA
GE y ELLINDED , NAF , STREAM , SAWMILL , GOELIN,F
IFTEENTH

1020 DATA ARSOLUTELY ,FLAYMATE, LAZY,FIC

KETSy JAR FIGHT , HOLLOW, SLEFT, STOUTNESS ,

GOODEYE

1030 DATA WORMS,KIMONO,EATH,GUIDE,RQOOT

162




S, HIFS, BUTLER, BADE , GUARD , EARILEY

1040 DATA TIGER,CLAF,GRANTED,FEARLS,DA
RED,FETCH,CHILD,BERAIDS, TERRIFIED, SETZE
D

1050 DATA HWEFT,MUTTERING,HELFLESSLY,SE
LECTED, RIFE, EBID,DULL,RATS,UTTERLY,SFO0O
Li;

1060 DATA COWARDS,LOOF,FILLOW,SCUFFLIN
Gy NORTH,FADDY , FUMED , SLLID , DROOF s FATNF UL
1070 DATA WITS,COACH, SHIVERING,HALLO,S
FLIT,CLOUD,FORTUNATE ,FREFER, TOWEL ,WITC
H

1080 DATA COMFORT,HEALTHY,SWEETLY,SKETI
Ny SNIF, SOREING, ANT, LINGERED , COUNT, THIN
1090 DATA CANDY,HUTCH,EBUEELES,HASH,STU
MF, QUILT,MUGS , CARELESSILY , SLENDER, DUTY

a free area of RAM. Each byte is read from the data line and
POKEd into a memory location. This subroutine is completely
relocatable. In this program it is stored on page 6. It can be stored
in any other convenient area of memory.

Line 100 executes the assembly language subroutine. This
subroutine moves the character set from ROM into RAM.

Line 110 POKEs the high-order byte of the beginning address
of the character set into location 756. Now the computer will use
the character set in RAM instead of the ROM set.

Line 120 calculates the decimal address of the character set.
Since the character set must begin on an even boundary, the high-
order byte is multiplied by 256.

Line 130 reads the bytes from the following DATA lines and
POKEs them into RAM. Each DATA line is one new character.
Each character is made up of eight bytes. The characters frem the
pound sign to the period, inclusive, will be changed. See Fig. 3-
4 for the new character set.

Line 260 uses the random number command to pick a number
from one to ten. This number is the set of words that will be used
in the program. BASES is cleared and WQRDS is cleared. If the
strings are not cleared before they are used, data from previous
programs could be stored in them.

Line 270 points to the DATA line that contains the set of words
for this session.

Line 280-290 read the words from the DATA line and place
them into ANSWERS$. The words are then transferred into BASES.

153



Each word is given 10 bytes or places in the string.

Line 300-340 print the robot on the screen. Be sure to place
the spaces where indicated, or the robot will not look right on the
screen.

Lines 370 and 390 print the alphabet on the screen. The
alphabet will appear in two rows on the screen with a blank line
between the first and second row. The number of words guessed
and the robot’s score also appear on the screen.

Line 380 positions the up arrow under the A.

Line 400 chooses a number from 1 to 10. This number is the
word chosen from the word set that will be used in this turn.

Line 410 stores the word in ANSWERS$. The line looks for the
space or end of word so the string will contain only the letters for
that word.

Line 430 finds the length of ANSWERS$ and prints a question
mark for every letter in the word.

Line 440 opens the keyboard for a read.

Line 450 gets the ATASCII value of the key pressed and closes
the keyboard. If the value of K is greater than 127, the ATARI
key is pressed. By subtracting 128 from the value of K, we know
which key was pressed. POKEing location 694 with 0 restores the
keyboard to normal key values.

Lines 460-490 compare the value of K to the two arrow keys
and the Escape key. If a match is made, the program goes on to
the correct line number. If a match is not made, the program will
loop back and wait for another keystroke.

Line 500 erases the arrow from its position.

Line 510 increases the value of C by 1. C is the column the
arrow is in. When this value reaches 15, the arrow would not be
under a letter, so C is reset to 2 and variable R is increased by 2.
Variable R contains the row the arrow is in. If this value reaches
5, the variable is set back to 1. There are only two rows that the
arrow can be in, the first row or the second.

Line 520 prints the arrow in the new position. This gives a wrap
around effect on the screen.

Line 530 sends the computer back to line 440 to wait for an-
other keystroke.

Lines 540-560 move the arrow in the opposite direction.

Line 570 begins the routine for the Escape key. By pressing
the Escape key, you are telling the computer that this is the letter
you want to try. The Locate command checks the screen just above
the arrow to see if, in fact, a letter is there. If the space is blank,

154



the program goes back to line 440 and waits for another key to be
pressed.

Lines 580-590 remove the letter from the screen. The new
characters for the dash and period and the sound routines make
the letter look like it is disintegrating.

Line 600 turns the sound generator off and erases the letter
on the screen.

Line 610 begins the FOR-NEXT loop that checks the ‘“‘word”
for the letter just entered.

Line 620 individually checks each letter in the word. If the
entered letter does not match this letter, the computer is directed
to line 650 and the loop continues.

Line 630 replaces the question mark on the screen with the
entered letter and places that letter into WORDS$. Variable M is
used as a flag and is set to 1 when a match has been made.

Line 640 is the sound routine that makes the letter sound like
it popped onto the screen.

Line 650 continues the FOR-NEXT loop for the entire word.
If the flag (M) was set to 1 and the word in ANSWERS$ matches
the word in WORDS, the score is increased by 1, a short tune is
played and the computer continues with line 850.

Line 660 directs the computer to a line between 700 and 800.
This line will erase part of the robot.

Line 670 checks the value of M. If it is not 0, the program con-
tinues with line 440.

Line 680 prints the word in ANSWERS$ on the screen and
makes a sound. This line is executed after the entire robot is erased.

Line 690 increases the computer’s score and sends the com-
puter to line 850.

Lines 700-800 remove parts of the robot. Each incorrect letter
that is entered removes one part of the robot.

Line 850 removes the letters from WORDS$ string. This
prepares it for the next turn.

Line 860 checks location 764. If any key has been pressed,
variable LINE is set to 300 and the computer goes to line 890.

Line 870 checks the location 53279. If it is 5, the Select key
has been pressed. Variable LINE is set to 260 and the computer
continues with line 890.

Line 880 sends the computer back to line 860. No key has been
pressed.

Line 890 resets location 764 by POKEing it with 255. If the
answer was printed on the screen, it is removed, and the computer

155



is directed to the line number stored in LINE. If variable LINE
is equal to 300, the next word will be chosen from the same set
of words. If variable LINE is equal to 260, a new set of words will
be chosen. Otherwise, another word from the same set will be
chosen.

Lines 1000-1090 contain the words that can be used in this pro-
gram. To change the words, simply type 10 new words in a line.
The line number must be one of the lines that appear in this part
of the listing. Be sure the line contains 10 words and there is a
comma separating each word.

FRACTURED STORIES

Objective of the game: To create a new story.

Description: This game is a favorite with most children.
Whether they play it with the computer or use one of the many
popular books on the market, children love trying to come up with
stories that are sillier than the last.

In this program there are three different stories from which
to choose. The first is a Mother Goose rhyme, the second a space
story. The third story is about a place the child can visit. To select
a story, enter a story number and press the Return key. The screen
clears and a description appears on the screen. This may be a part
of speech, or a type of word the story needs. A slash after a word
gives more information about the word that is needed. Here are
a few selections:

verb/pt - verb part tense

verb/s - end with an “‘s
verb/ing - end with “‘ing”’

Each story requires between seven and 12 words. Once all the
words have been entered, the screen clears and the story is printed
on the screen. To return to the menu, press the Start key. Figure
3-4 is the flowchart for this program, and Listing 3- 3 is the code.

Line 50 sets aside the string space required for this program.
WORD$ holds the words entered by the user, D$ is used for the
description of the word that should be entered, and A$ temporarily
stores the word entered by the user.

Line 60 clears the string. If a string is not cleared before it is
used, it may contain garbage. The first element of the string is set
to a space, then the last element of the string is set to a space, then
the last element of the string is set to a space. By setting the sec-

156



( START )
(

Set aside memory
for strings,
clear strings

Display
menu

\

Print one
line of
story with

user's word

number
from 1-3

Is it
between
1-3?

Use story
outline based
on number )
entered Start
—>———i pressed
?
Read
part of speech
story
wants Run
\ program
. Set again.

word from
player

More
words
?

Yes

Fig. 3-4. Flowchart for Fractured Stories.
157



Listing 3-3. Fractured Stories.

10 REM FRACTURED STORIES

20 REM CHAFTER 3 - WORD GAMES

30 REM EY L.M. SCHREIEER FOR TAE EOOKS

40 REM COPYRIGHT 1984

50 DIM WORD$(240),D$(20),A%(15)

60 WORD$(1)=" "IWORD$(240)=" "i{WORD% (2
) =WORD %

70 ? CHR$(125)iFOSITION 3,5:? "CHOOSE

A STORY -" '

80 ? i? CHR$(127)3"1, MOTHER GOOSE":?
7 CHR$(127)3"2, SFACE ATTACK":? $7?

CHR$(127)3"3, FAVORITE FLACE"

90 FOSITION 19,1417 "  "jCHR$(30) jCHR

$(30) jCHR$(30) 3

100 TRAF 90:INFUT §iIF S<1 OR 8>3 THEN
90

110 ON § GOTO 120,260,430

120 RESTORE 15017 CHR$(125)IFOR X=1 TO
7IREAD D$37? $? D$;3INFUT A$IIF Ag=""

THEN 120

130 WORDS (XX15~14,Xx15-15+LEN(A$) ) =A%

REM STORE THE ANSWER

140 NEXT XIREM GET THE RIGHT NUMEER OF
WORDS

150 DATA OCCUFATION,NOUN,NOUN,NOUN,VER

E s NOUN, NOUN

160 ? CHR$(125)$FOSITION 13,217 "MOTHE

R GOOSE"

170 X=11GOSUE 100037 ? CHR$(127);"0LD
"3A%$3" HUEEARD"

180 X=21GOSUE 100037 CHR$(127)}"WENT T
0 THE ;A%

190 X=3:GOSUE 100037 CHR$(127)3"T0 GET
HER FOOR “3A%

200 X=4:GOSUE 100017 CHR$(127);CHR$ (12
7)3"A "iA%

210 X=51GOSUE 100037 $? CHR$(127)}"WHE
N SHE "3A%3" THERE,"

220 X=61GOSUE 10001? CHR$(127)3"THE "}
A$3" WAS EARE"

230 X=71GOSUE 100037 CHR$(127)3"AND S0
THE FOOR "jA%3" HAD NONE."

240 IF PEEK(53279)<26 THEN 240

250 RUN

158




260 RESTORE 290317 CHR$(12%) {FOR X=1 TO
L1IREAD D$37? 37 D$JIINFUT A% IIF A$=""
THEN 260

270 WORDGCXKLIG-14, XK1G~1S5+LEN(A$) ) =A%

REM STORE THE ANSWER

280 NEXT XIREM GET THE RIGHT NUMEER OF
WORDS

290 DATA VERE/ZFT,NOUN,VERE/FT,COLOR, VE

RE/ZING, NOUN, NUMEBER , ADVERE , NOUN, VERE/FT

» NOUN

300 ? CHR$(L25)IFOSITION 13,237 “SFACE
ATTACK"

310 X=11G0SUE 100087 17? CHR®(127);"0ONE
NIGHT I "3A%

320 X=21CO8UE 100037 "INTO THE DARK "3

A" I DID"

330 X=3:1G0SUE 100037 "NOT BELIEVE WHAT
I IIQA$OII'II

340 X=41GOSUE 1000:¢? 37 A%} MARTIANS

WERE "3 iX=51G0OSUE 100087 A%

350 X=61GOSUE 100087 "FROM THE "jAa%3".

360 X=71GOSUE 1000:? "THERE MUST HAVE

EEEN "ia$3" OF THEM."

370 X=8I1GOSUE 1000:? $? "I WAS "jA%s3".
I WANTED"

380 X=9:GOSUE 100037 "TO LEAVE MY "jA%

+ 1 "
? *

390 X=10:GOSUE 1000:? 37? “"THEN I "j;A%3

400 X=111GOSUE 1000:7? $? CHR%CLZ7)3"IT
WAS ONLY A "jAas3"!"

410 IF FPEEK(S53279)<x6 THEN 410

420 RUN

430 RESTORE 46017 CHR$(12%5)IFOR X=1 TO
12ZIREAD D$:? 1?7 D% IINFUT A$IIF As=""
THEN 430

440 WORD$ (XX15-14,XXL5-15+LENCA$) ) =A%

REM STORE THE ANSWER

450 NEXT XIREM GET THE RIGHT NUMEER OF
WORDS

460 DATA FLACE,SEASON,NOUN, NOUN,VERE,N

OUN, ADJECTIVE , NOUN,VERE , NOUN, VERE/S , VE

RE

470 X=13i1GOSUE 100037 CHR%C(1
TO GO TO THE "3A%3" IN "33

9

sV LIKE
tGOSUE 1

)
2

2
X

159




00052 A$3"."

480 X=31GOSUE 100032 "THE “jA$;" MAKES
WAVES ON"

490 ? "THE "3§iX=41GOSUE 100037 A%} ."
500 X=53GOSUE 100037 $? "THE FISH LIKE
TO "3A$3" "

510 X=61GOSUE 100037 “THE ";A%;iX=71G0
SUE 100037 " IS "jA$3"."

520 X=81GOSUE 100037 $? “SOMETIMES I §

IT ON THE "jA%;"."

530 X=91GOSUE 10003? "OTHERTIMES I "3A
$3" IN A ROWEOAT,"

540 X=10$GOSUE 100087 “"THE "3A%$3" "33X
=113GOSUE 100037 A$3" MY EODY,"

550 X=12$GOSUE 100037 "EUT I DON‘T ";A

$;II.II

560 ? 317 CHR$(127)3"IT’S FUN!!"

570 IF FEEK(53279)<x6 THEN 570

580 RUN
1000 A$=WORDS (X®X15-~14,X%x15)
1010 FOR V=1 TO 191IF A&(V,V)" " THE

N NEXT VIREM FIND THE END OF THE WORD
1020 V=U-11A%=WORD$ (XX15~14,XX15-15+V)
tRETURN

ond element of the string to the string, the entire string becomes
spaces.

Lines 70-90 print the menu on the screen. The screen is cleared,
the menu is printed, and the position for the question mark is erased.
Be sure to include all the semicolons on line 90: these semicolons
keep the cursor on the same line. The question mark will be printed
on this line.

Line 100 places the question mark on the screen and waits for
anumber. The TRAP command keeps the program from crashing
if a letter is entered instead of a number. The computer repeats
line 90. When a number is entered, it is stored in variable S. This
variable is tested to see if it contains a number between one and
three. If it does not, the computer remains on this line until a cor-
rect number is entered.

Line 110 sends the computer to the correct program line for
the chosen story.

Line 120 begins the Mother Goose rhyme. The RESTORE
command tells the computer to use the DATA on line 150. The
screen is cleared and the computer begins the FOR-NEXT loop.

160



This story asks for seven different words. The description of the
needed word is read from line 150 and stored in variable D$. This
description is printed on the screen. There are two PRINT com-
mands (in the ? shorthand), separated by a colon, before the sec-
ond D$. This skips a row on the screen between the words, making
it easier to read. The entered word is stored in A$. If the Return
key is pressed and no word is entered the computer is directed to
the beginning of this line, and an entire set of new words can be
entered.

Line 130 places the word stored in A$ into the correct position
in WORDS. There are 15 positions or spaces available for every
word entered. One is subtracted from the value of X. This new value
is multiplied by 15. Then 1 is added to the product. This is the first
element for the word entered. We need to subtract 1 from the value
of X before it is multiplied by 15, and add it back after the
multiplication because the word ends with a value that is a multi-
ple of 15, but begins one space after the last character of the
previous word.

Line 140 continues the loop until all seven words have been
entered.

Line 150 contains the descriptions of the words to be entered.

Lines 160-230 print the story on the screen. Variable X indicates
which word in the string is used in the sentence. The computer
uses the subroutine at line 1000 to get the correct word. Be sure
to use a semicolon before and after A$. Otherwise, the rest of that
line will be printed in the next row on the screen.

Line 240 waits until the Select key is pressed.

Line 250 runs the program again.

Line 260 begins the second story. The RESTORE command
tells the computer that the information for the descriptions of the
words are found on line 290. The screen clears and the program
asks for the words in the same manner as it did for the first story.

Line 270 places the word entered into the correct position of
WORDS$.

Line 280 continues the loop until all 11 words are entered.

Line 290 contains the data for the descriptions of the words
to be entered.

Lines 300-400 print the story on the screen. Variable X indicates
which word is used in the line. Be sure to include the spaces and
semicolons.

Line 410 loops until the Start key is pressed.

Line 420 runs the program again.

161



Line 430 begins the third story. The data for this story is on
line 460. The same routine is used to read the data and enter the
words.

Line 440 places the word entered into WORDS.

Line 450 continues the loop until all 12 words are entered.

Line 460 contains the word descriptions read by line 430.

Lines 470-560 print the new story on the screen.

Line 570 loops until the Start key is pressed.

Line 580 runs the program again.

Lines 1000-1020 use the value of variable X to find the correct
word in WORDS$. One is subtracted from X because the new word
will begin in the next space after the area set aside for the previous
word. The word will end at the value of X times 15. If the entire
15 characters placed in A$ were used, unnecessary spaces would
be printed on the screen. The FOR-NEXT loop looks for the first
space. This position minus one is the end of the word. The word
without the extra spaces is stored in A$. The routine returns to
the line that called it.

DECODER

Objective of the game: Test your ability to decipher the
code created by the computer.

Directions: The computer takes a well-known expression and
codes it. Every letter has another letter substituted for it. At the
more difficult level, every letter will have a graphics character
substituted. Talk about hieroglyphics! The program can be played
by two players, each taking turns trying to decipher his message.

To play the game, enter whether one or two persons will be
playing. The computer chooses a quotation and ciphers it. The en-
coded message is printed on the screen. On each player’s turn, an
up arrow is printed under the first letter or character of the en-
crypted quotation. Press the right arrow or left arrow key to move
the up arrow under a different letter or character. When the up
arrow is pointing to the letter or character you want to change, press
the space bar. A question mark appears above that letter. Press
the letter key you want substituted. If you press the space bar, then
change your mind, press the Return key and the up arrow will ap-
pear under the letter. If you want to erase all the letters and start
again, press the Escape key. A letter can be changed more than
once, but the same letter should not be substituted for two different
letters or characters. Figure 3-5 is the flowchart for this program,
and Listing 3-4 shows the code.

162



( START )

/
Set aside
memory for
strings

Clear screen,
display menu

Get number
of players

Get level
of play

Choose
quote

Y

Shuffle
letters in
alphabet

Fig. 3-5. Flowchart for Decoder. (Continued through page 165.)
163



164

Display
coded
message on
screen

Another
message
?

Display second,
olayer's message
on screen

Y

Get a
keystroke

Is it
the escape
key
?

Is it
the space

bar
?

Is it
an arrow
key
P

Adjust
cursor
position

Move cursor
on screen

A




Remove all
letters
from
answer line

Print question
mark above letter
or character

Get letter
to substitute

Is it
a letter
?

Place letter on

line with dashes
in correct
positions

Is sentence
correct

Line 50 sets aside string space for the program. MES1$ and
MES2$ store the messages that will be encrypted. ANS1$ and
ANS2$ store your answer to the message. SCRM1$ and SCRM2§$
hold the scrambled message, ALPH$ contains the alphabet, and
TEMP$ and TEMP2$ are temporary strings used to move the
message from one string to another.

Line 60 sets the computer for graphics 0, removes the cursor,

165



Listing 3-4. Decoder.

10 REM DE CODER - TRY TQ DECIFHER THE
ENCRYTED MESSAGE

20 REM CHAFTER 3 - WORD GAMES

30 REM BY L.M. SCHREIEER FOR TAE BEOOKS

40 REM COFYRIGHT 1983

S0 DIM MESLI4CL00),MES2%¢100) ,ANS14$(100
) sANS24 CL00) , BCRML1$CL00) , SCRMZ$(L00) , A
LEHG(26) s TEMF$(100) , TEMF24$(100)

60 GRAFHICS 0tFOKE 792,137 CHR$(129) IR
EM CLEAR THE SCREEN - TEXT MODE

70 COLOR (42):FLOT 5,3:DRAWTO 3%,5%:FL0
T 6,181DRAWTO 39, 18IREM DESIGN ON THE

SCREEN FOR MENU

80 TRAF B80IFOSITION 7,77 "How many pl
agers (1-2)  "JCHR$(L26) jCHR$(126) 3 ¢ IN
FUT FIIF P<1 OR F=2 THEN 80

20 TRAF 1003FOSITION 7,9%? "Which leve
1"IPOSITION 10,118 "1-Letter encrypti

on"
100 FOSITION 10,1387 "Z-Character encr
yption" IFOSITION 19,1587 " "3CHR®$ (126

YICHR® CL26) 3 $INFUT L

110 IF L1 OR L»2 THEN 100

120 TRAF 400003Q=INT(RND(1)X20)QUOTE=
1000+Q3P=F-13L=1-1

130 RESTORE QUOTEIREAD MES1$

140 IF NOT P THEN 180

150 Ql=INT(RND(1)%20):IF Q1=Q THEN 150
SREM DON’T LET BOTH FLAYERS HAVE SAME
QUOTE

160 QUOTE=1000+QLIRESTORE QUOTE

170 READ MESZ4$

180 ? CHR$(L2%)3IGOSUE 400+LIREM SHUFFL
E THE LETTERS

190 FOSITION 25,037 "PLAYER #1":TEMF$=
MESL1$IREM FLAYER #1 I8 INVERSE

200 C=1tR=11C1l=CIRL=RID=1

210 GOSUE 900IR3=RIREM FIRST MESSAGE
230 SCRM1$=TEMF4$IREM STORE THEN MESSAG
E AND THE ENCRYFTION

240 TEMF$=MES14:G0SUE 870IREM CHANGE L
ETTERS TO DASHES

250 C=11R=73:D=01G0GUE 900ANSLs=TEMMS

166




260 IF NOT P THEN 290

265 REM FLAYER #2 I8 INVERSE

270 GOSUE 400+L:ITEMP$=MESZ2$I1C=11R=131C

2=CIRZ=RIFOSITION 25,12:7? "PLAYER #2'"!

D=13GOSUE 2003R4=R

280 SCRM24$=TEMF$:!TEMF$=MES2%:GOSUE 870
C=1tR=191D=0:GOSUE 200IANS2$=TEMF$

290 C=C1liR=R1+1IRE=R3+1{RE=R:TEMF$=8CR

MLeITEMPZ2$=ANS1$IGOSUE 8303GOSUE 740

300 ANS19=TEMF2%IIF ANS1$=MES1$ THEN 9

80

310 TEMF$=ANS1$:D=1{C=13R=7{GOSUE 950

320 IF NOT F THEN 290

330 C=C2iR=R2+1IRE=R4+1IRE=R!TEMF$=5CR

M2% I TEMF2%=ANSZ2$ {GOSUE 830:GOSUE 740

340 ANSZ$=TEMFZ2%I1IF ANS24=MESZ2¢% THEN ¢

80

330 TEMF$=ANSZ$iD=11C=1IR=12{GOSUE 950

360 GOTO 290

400 FOR X=1 TO 2&61ALFH$ (X, X)=CHRS (X+64
) INEXT X3i1GOTO 410

401 FOR X=1 TO 261ALFHS (X, X)=CHR$(X) IN

EXT X

410 FOR T=1 TO 3:!FOR X=26 TO 1 STEF -1
PA=TINT(RND (1)%X)+1

420 TEMP$(Ll,1)=ALFH$(Q,Q) ALFH$(Q,Q)=A

LEH$ (X, X) $ALFHS (X, X)=TEMF$ (1, 1) {REM MO

VE LETTER TO LAST FOSITION AVAILAELE

430 NEXT XEINEXT T

440 FOR X=1 TO 263IF ALPH$ (X, X)=CHR$ (X

+64) THEN GOTO 400+

450 NEXT XIRETURN

600 FOSITION C,Ri? "A"IIREM FRINT THE

UF-ARROW

610 OFEN #2,4,0,"Ki"IREM OFEN KEYEOARD
FOR A READ

620 GET #2,KICLOSE #2:FOSITION C,R:? "
"33IF K=27 THEN 810:REM CHANGE ALL TH

E CHARACTERS EACK

630 IF K127 THEN K=K-128:FO0KE 694,0:R

EM TOGGLE THE INVERSE FLAG

640 XF K=32 THEN GOSUE 760

650 IF K=43 THEN 700

660 IF K=42 THEN 730

670 GOTO 400

700 C=C-13IF C=0 THEN C=381R=R-2Z1IF R<

167



RE THEN R=RE

710 1LOCATE C,R-1,LLIFOSITION C,R-1:7 C
HR$ CLL) $TF NOT 1o THEN IF L1<69 OR L1k
90 THEN 700

715 IF L. THEN IF L1:*26 THEN 700

720 GOTO 400

730 C=C+1L3IF C=39 THEN C=LIR=R+2:TF R
RE THEN R=RE

740 LOCATE C,R-1,L1{FOSITION CyR-117? C
HRGCLL) SIF NOT L THEN TIF Li1<eS OR L1k
20 THEN 730

745 IF L THEN IF L1326 THEN 730

750 GOTO 400

760 POSITION L1, ,RE-237? "2"31G08UE 84030
FEN #2,4,0,"K{"IREM ? X5 TNVERSE

770 GET #2,KICLOSE #2:TF K=155 THEN RE
TURN

7759 TF K127 THEN K=K-1281F0KE 694,0:R
EM RESET INVERSE FLAG

777 IF Kz THEN K=K-321FO0KE 702,64IRE
M RESET TO UFFER CASE

780 IF K69 OR K90 THEN 760

790 FOSITION 3,RE-217? CHR$(K)}IFOR X=
TO LENCTEMF$) JIF ASCCTEMF$(X, X)) =L.1
HEN TEMF24$ (X, X)=CHR$ (K)

800 NEXT XIFOSITION 1,RE-2$7? " "3iF0
FOiRETURN

810 TEMF$=TEMF2Z$IGOSUE 870 TEMF2$=TEMF
$IRETURN

830 FOR X=1 TO 10:S0UND 0,20,10,103INEX
T XISO0UND 0,0,0,0RETURN (REM CURSOR R
EADY SOUND

840 FOR X=1 TO 10:S0UND 0,80,10,10INEX
T X3IGOUND 0,0,0,0RETURN $REM INFUT LE
TTER SOUND

870 FOR X=1 TO LEN(TEMF$)

880 IF ASCC(TEMPS(X,X))<27 OR (ASC(TEMF
$(X,X))x64 AND ASCITEMF$(X,X))<91) THE

N TEMF$ (X, X)="-"

890 NEXT X:RETURN

200 FOR X=1 TO LENC(TEMF$®)IIF ASC(TEMF4$
(X3 X))=92 THEN TEMF$ (X, X)=CHR%$ (44) {REM
FRINT COMMA FOR SLASH

P10 IF ASC(TEMF$(X,X))<65 THEN 930:REM
KEEF NON-LETTERS

220 IF D THEN TEMP$ (X, X)=ALFH$ (ASC(TEM

1
T

168




F$ (X, X))-64)IREM CRYFT FOR LETTERS

230 NEXT X

950 FOR X=1 TO LENC(TEMF$)IFOSITION C,R
7 TEMFS(X,X) 3

260 C=C+13XF Cix=30 AND TEMF$(X,X)=" "
THEN C=1iR=R+2IREM NEXT ROW

270 NEXT XIRETURN

280 FOR X=1 TO 10:FOKE 710,150-FEEK(71
0)IFOR T=1 TO 100INEXT TINEXT X

990 GOTO 990:REM LOOF HERE UNTIL RESET
I8 FRESSED

1000 DATA "WHEN IDEAS FAIL\ WORDS COME
IN VERY HANDY." GOETHE

1001 DATA "I ONLY LIKE TWO KINDS OF ME
N: DOMESTIC AND FOREIGN." MAE WEST
1002 DATA "THE GREATEST FRAYER IS FATI
ENCE." THE EUDDHA

1003 DATA "WHEN THE CAT AND MOUSE AGRE
EN THE GROCER IS RUINED." FERSIAN FROV
ERE

1004 DATA "IF YOU DRINKN DON’T DRIVE.
DON’T EVEN FUTT." DEAN MARTIN

1005 DATA "IT IS BETTER TO WEAR OQUT TH
AN TO RUST QUT." EISHOF CUMEBERLAND
1006 DATA "A SMILE IS THE SHORTEST DIS
TANCE EETWEEN TWO FEOFLE." VICTOR EORG
E

1007 DATA "THE REWARD OF A THING WELL
DONEN I8 TO HAVE DONE IT." RALFH WALDO

1008 DATA "BLESSED ARE THE FURE OF HEA
RT: FOR THEY SHALL SEE GOD." MATTHEW 9
'8

1009 DATA "A SMALL LEAK WILL SINK A GR
EAT SHIF." THOMAS FULLER

1010 DATA "MUSIC IS TO THE MIND AS AIR
IS TO THE EODY.'" FLATO

1011 DATA "HE THAT FLANTS TREES LOVES

OTHERS EESIDES HIMSELF.'" ENGLISH FROVE

RE

1012 DATA "JUSTICE IS TRUTH IN ACTION.
" BENJAMIN DISRAELI

1013 DATA "NEVER CLAIM AS A RIGHT WHAT
YOU CAN ASK AS A FAVOR." JOHN CHURTON
COLLINS

1014 DATA "MIGHT DOES NOT MAKE RIGHT:

169



IT ONLY MAKES HISTORY." JIM FIEEIG
1015 DATA "IF YOU WANT A THING WELL DO
NEN DO IT YOURSELF." CHARLES HADDON SF
URGEON

1016 DATA '"NO GOOD DEED GOES UNFUNISHE
D." CLARE EOOTHE LUCE

1017 DATA "MEN WILL EITHER EE GOVERNED
BEY GOD OR RULED EY TYRANTS.'" WILLIAM

FENN

1018 DATA "IF ALL THE WORLD WERE JUST\
THERE WOULLD EE NO NEED OF VALOUR." FL

UTARCH

1019 DATA "THE ONLY REAL FEOFLE ARE TH

E FEOFLE WHO NEVER EXISTED.' OSCAR WIL

DE

and clears the screen. Although the computer is normally set up
in the text or graphics 0 mode, we must use the command in this
program so we can use the PLOT and DRAWTO commands. If
the screen is not cleared after the POKE command, the cursor will
stay on the screen.

Line 70 uses the PLOT and DRAWTO commands to draw two
rows of asterisks on the screen.

Line 80 asks you to enter the number of players. The two
CHR$(126)s backspace over the two spaces that follow the paren-
thesis. This erases an erroneous answer. The TRAP prevents the
program from crashing if a letter or character is entered instead
of a number. The computer remains on this line untila 1 or 2 is
entered.

Lines 90-110 ask for the level of play. The TRAP is used again
to prevent the program from crashing. The two spaces and two
CHR$(126)s erase an erroneous answer. Variable L is tested for
the value 1 or 2. If it contains any other number, line 100 is
repeated.

Line 120 disables the TRAP. A number from 1 to 20 is cho-
sen. This number will be the quotation the computer will encrypt.
By adding 1000 to the value of Q, the computer knows the line
number of the selected quotation. One is subtracted from the values
of P and L. If there is only one player, or level one was chosen,
the value of the variable is now 0. This value is used later in the
program.

Line 130 points to the line that contains the quotation. The
quotation is read into MES1$.

170



Line 140 uses the NOT operator to determine whether there
are one or two players. Two lines before, 1 was subtracted from
the value of P. In this line, if P is 0 the computer is sent to line
180. If P is 1, the computer continues with the next line.

Line 150 selects a number from 1 to 20 for the second player.
If the number chosen is the same number as that chosen for the
first player, the line is repeated.

Line 160 adds 1000 to the value of Q1 and uses the RESTORE
command to point to the quotation.

Line 170 reads the new quotation into MES2$. This is the
quotation that will be encrypted for the second player.

Line 180 clears the screen. The computer is sent to the cor-
rect line of the subroutine that shuffles the letters. The value of
L is added to 400 to arrive at the correct line.

Line 190 prints the number of the player whose turn it is. The
letters, character and number are in inverse video. The quotation
is placed into TEMPS.

Line 200—the variables C, R, C1, R1, and D are all set to 1.
These values are used to print the encrypted code on the screen.

Line 210 sends the computer to the subroutine at line 900. This
subroutine substitutes a new letter or character for the letters in
the quotation. The value of R is stored in R3. This is the last row
used by the encryption.

Line 230 stores the encrypted quotation in SCRM1$.

Line 240 places the unencrypted quotation back in TEMPS.
The subroutine at line 870 changes all the letters in the quotation
into dashes.

Line 250 resets the variable C to 1, the variable R to 7. This
is the row and column at which the dashes will begin. The variable
D is set to 0. The same subroutine at line 900 is used to print the
dashes on the screen. The string of dashes is then transferred to
ANSI1S.

Line 260 checks the value of P. If it is NOT, or is 0, the com-
puter is directed to line 290. There is only one player.

Line 270 sends the computer to the correct line to shuffle the
letters or characters for the second player. The second message
is stored in the temporary string TEMP$. Variable C is set to 1
and R is set to 13. This encryption is printed on the 13th row, begin-
ning with column 1. The column and row values for the second
player are stored in variables C2 and R2. These values are used
later in the program to determine where the up arrow should be
placed. The player num