[] “‘F"p‘Book” Computer Animation Movies
® High Tech Computer and Microcomputer Animation ;
® Atari BASIC and Machine Language Animation Examples: The Great Movie C{artoon, Exploding Bomb, Walking Man

b bl

Computer Animation Primer

Computer Animation Primer

David Fox and Mitchell Waite

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland
Bogotd Hamburg Johannesburg London Madrid
Mexico Montreal New Delhi Panama Paris
Séo Paulo Singapore = Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data
Fox, David, date
Computer animation primer.

Includes index.

1. Computer animation. I. Waite, Mitchell.
II. Title.
TR897.5.F68 1983 778.5°347°02854 83-7713
ISBN 0-07-021742-4

Copyright © 1984 by David Fox and the Waite Group. All rights
reserved. Printed in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

1234567890 DOC/DOC 8987654
ISBN 0-07-021742-Y4

ATARI is a registered trademark of Atari, Inc.

400, 800, 600XL, 800XL., 1200XL, and 825 are trademarks of
Atari, Inc. used by permission. BYTE/McGraw-Hill is not
affiliated with Atari, Inc., and Atari is not responsible for any
inaccuracies.

Editorial staff: Bruce Roberts, Peg Clement, Peg McCaulley, Stephen
G. Guty, and Barbara B. Toniolo

Design staff: Ellen Klempner-Beguin and Mark Safran

Production staff: Ellen Klempner-Beguin, Jaymia Ryll, and Thomas G.
Kowalczyk

Text set in Times Roman by LeWay Graphics

Printed and bound by R. R. Donnelley & Sons Company

The authors each dedicate this book, with love, to their parents.

David Fox
Mitchell Waite

Contents / vii

Contents

PREFACE xi
ACKNOWLEDGMENTS xv
Part I
1. ANIMATION PERSPECTIVES 1
1.1. Welcome to Computer Animation 4

1.2. Our Premise 4

1.3. About the Book 5

1.4. What Is Animation? 6

1.5. What Is Computer Animation? 8

1.6. A Little History of Animation 10

1.7. How Is Computer Animation Used Today? 16
1.8. Getting Started in Animation Today 34

2. COMPUTER ANIMATION HARDWARE 37
2.1. The CRT Canvas 37
2.2. Stroke Graphics 42
2.3. Raster Graphics 44
2.4. The Graphics Computer — A First Look 48
2.5. The Bit and the Pixel 51
2.6. Adding Gray Scale 54
2.7. Adding Color to the Display 56
2.8. Frame Buffers 57
2.9. Getting the Frame Buffer Image on Film 59
2.10. Encoding the Picture in the Buffer 60
2.11. Color Mapping 60
2.12. Video Mixing via Bit Planes 63
2.13. Other Encoding Techniques 64
2.14. Advanced Graphics Hardware 66
2.15. Personal Computer Graphics Hardware 67
2.16. Color in the Personal Computer 69
2.17. Memory-Mapped Video and Text Storage 70
2.18. Character Graphics 72
2.19. Graphics Peripherals 73

3. COMPUTER ANIMATION SOFTWARE
AND APPLICATIONS 81
3.1. Graphics Software—The Basics 81
3.2. Transformations 84

viii / Contents

3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.

3.13.
3.14.
3.15.

Clipping and Windowing 87

Fills and Scan Conversion 92
Three-Dimensional Representation 94
Curves and Surfaces 101

Hidden Line and Surface Removal 105
Shading 107

Antialiasing Lines 110

Personal Computer Animation Software 112
High-Tech Digital Paint Systems 113
Computer-Assisted and Computer-Generated
Animation 118

The Making of TRON 125

An Animation House—Examples 128

An Apple for Animation—James Leatham 129

4. PERSONAL COMPUTER
ANIMATION FEATURES 135

4.1. Format of This Chapter 136
4.2. BASIC Graphics Statements 136
4.3. Special Hardware Features 139
4.4. Graphics and Text Modes 139
4.5. Graphics Language Statements 143
4.6. Players and Sprites 148
4.7. Hardware Scrolling 149
4.8. Graphics Characters 149
4.9. Custom Characters Sets 149
4.10. Color Registers 150
4.11. Vertical Blank Interrupts 150
4.12. Display Lists and Display List Interrupts 151
4.13. Speed of Plotting 151

Part 11

Introduction 153

5. CHARACTER SET ANIMATION 155

5.1.

5.2.

5.3.

Built-in Character Sets—Making Do with What You
Have 155

User-Defined Character Sets—A Bouncy Walking
Man 164

Flipping Character Sets—The Galloping Horse 181

Contents / ix

5.4. Exploding with a Three-Color Character Set 188

6. COLOR REGISTER ANIMATION 207
6.1. Why Color Registers? 207
6.2. Creating Motion with Color Registers 218
6.3. The Trench Program 22§
6.4. Autumn Waterfall Program 229

7. PLAYER-MISSILE GRAPHICS 239
7.1. Why Player-Missile Graphics? 239
7.2. Player Motion 243
7.3. Player Parameters 250
7.4. Watch the Bouncing Ball—Using PM Graphics 256

8. USING MACHINE LANGUAGE ROUTINES IN BASIC
PROGRAMS 273
8.1. What Is Machine Language? 273
8.2. Moving Players with PMOVER 278
8.3. Automatic Animation with ANIMATE 290
8.4. Setting a Horizontal Velocity with
AUTOMOVE 307
8.5. Player Foreground for the Great Movie
Cartoon 318

9. CREATING A SCROLLING BACKGROUND 335
9.1. The Display List Revised 335
9.2. The Scrolling Background Program 351
9.3. The Great Movie Cartoon 383

APPENDICES
A. Complete Listings of BASIC Program Examples 395
B. Character Set Grid/ATARIROM Character Set 451
C. Listing Conventions 453
D. The String Loader Program 457
E. Complete List of Parameter Table Entries for Black Box Routines 463
F. Source Code Listings of Assembly Language Routines 467
G. ATARIHardware and Shadow Registers 489
H. Graphics Memory Map Modes 493

INDEX 495

Preface

A squadron of spacecraft roaring through a star-filled void, a high

speed chase through a canyon of eerie, snowcapped mountains,
a man in a tuxedo juggling colorful geometric solids whose finale is a
backflip into thin air . . . Are these segments from a George Lucas film
or a Disney feature? No, they are scenes created entirely inside a com-
puter using state-of-the-art advances in computer animation.

A small town, a man taking a brisk walk down the street, cars, trees,
houses zooming by, a waterfall cascading into a valley, a bird flying
across a blue sky, three dozen horses galloping in perfect unison, a
forward dive into a channel of kaleidoscopic colors . . . Are these
images from the same high tech computers? No, these startling effects
actually take place on the screen of a low cost personal computer. They
are programmed in BASIC (a popular computer language), and this book
will show you how to create them.

Computer Animation Primer is actually two books in one. It is the
first book to explain simply the details of the new high-tech computer
animation as used in the film and television industry. It is also the first to
show BASIC programmers how to create superior animation on a low-
cost ATARI Home Computer (400, 800, 6QOXL, 800XL, 1200XL, and
the rest of the XL models). Part I covers the theory and applications
behind computer animation, including graphics hardware, software, and
programming. Part I contains a tutorial describing animation capabilities
of the ATAR! Home Computers. In this way, the first half of the book
will allow you to become familiar with what the computer animation
professionals are doing and how they are doing it, while the second part
will provide you with the necessary tools to try-out some of these ideas at
home.

We have also added special flip book movies to these pages. (Flip
books are an old-fashioned way to do animation and are still fun to play
with today.) When flipped, these pages will give you a taste of computer
animation. You will find a sampling of animated segments from the best
animation houses in the United States. They will provide you with a
preview of the kinds of special effects that are in vogue today and the
impact of computer animation. To see the animation in six films, flip

Preface / xi

xii / Preface

right-hand pages from the back of the book to the front and left-hand
pages from the front of the book to the back. The starting points of the
films are as follows: Film 1, ‘‘Running Boy,”” page 393; Film 2, ‘*Vol
Libre,”” page 369; Film 3, ‘ “The Juggler,”’ page 201; Film 4, ‘‘Panasonic
Commercial — Paper Airplane,”” page 2; Film 5, *“Times Square,’” page
218; Film 6, ‘‘Walking Man,”’ page 316.

Throughout the text the illustrations are printed in black and white.
Color renditions of most of the photos, Figures 5.20 and 5.21, and nine
additional images appear in a 16-page insert located between pages 3 96
and 39 7.

The chapters of Part 1 are organized as follows:

Chapter 1, ‘*Animation Perspectives,’’ discusses the theory behind
basic animation, i.e., its mechanics and methods. We describe the
general theory and psychology of animation — how the eye and brain
may be fooled by the computer to perceive motion and how a computer
program does the same thing by flipping frames. The chapter then
describes the difference in approaches to animation between high tech
and personal computers. We present a concise but intriguing history of
animation, followed by a description of the computer applications that
animation has made possible. Finally, we tell how YOU can get started in
this amazing field.

Chapter 2, ‘‘Computer Animation Hardware,”’ covers the computer
hardware (the nuts and bolts) that makes computer animation possible.
We discuss CRT’s, stroke and raster graphics, pixels, gray scale, bit
planes, frame buffers, and so on. This information will prepare you for
understanding the next chapter and how the software tells the hardware to
perform its graphic duties.

Chapter 3, ‘““‘Computer Animation Software and Applications,”’
covers the interesting secrets and tricks which the animation experts use
today for creating their images. Included are descriptions of techniques
used for defining objects with programs, transformations, achieving
realism, removing hidden lines, shading, and various computer paint
systems. We will preview some fancy animation equipment used in the
film industry and contrast it with some low cost personal computer-based
equipment developed by hobbyists. The making of a computer-
animation-based movie (TRON) is highlighted to show you how the
hardware and software fit together.

Chapter 4, *‘Personal Computer Animation Features,”” describes
the 13 key capabilities available in many personal computers that make
them suitable for animation. With this chapter, you can learn which
features to look for when purchasing a personal computer for animation.

The second part of the book describes in detail how to do your own
animation on the ATARI Home Computers. To accomplish this goal, we
have included a number of impressive animation demo programs for the
ATARI Computers that can be entered immediately into a computer and

run, or just studied. In addition, there are a collection of special ‘‘black
box’’ machine language routines that will give the reader the tools to
harness some of the ATARI Computer’s more advanced features. By
black box, we mean that the programmer does not need to understand
how the routines work to use them. Just plug a series of values into the
routine from BASIC and watch the desired effect on the screen. We
encourage people to use these routines in their own software, which they
can then market. To make learning really easy and to avoid typing in the
source code, all the software examples in the book are available on a
diskette from Adventure International.

Here is a description of the chapters in Part II:

Chapter 5, ‘‘Character Set Animation,’’ covers the use of character
set graphics in animation. We show you how to use the ATARI’S built-in
character set for simple animation (such as birds flapping their wings),
and how to create your own character sets for animation. This last
technique allows us to create a man who gingerly walks across the
computer screen. Next, we cover character set flipping, showing how to
make 36 horses gallop on the screen at once. Finally, using a multi-
colored character set (and a redefined display list), we show how to
produce an arcade-like explosion on the screen, complete with sound
effects.

Chapter 6, “‘Color Register Animation,”’ describes the use of
ATARTI’S color map. This color map is a high-tech feature which allows
you to change the color on the screen almost instantly with one instruction
and without redrawing the image. We first fill the screen with a hypnotic,
ever-changing kaleidoscope of colors. A Star Wars type trench program
is then created to demonstrate the effect of motion using color registers.
This is followed by a program that displays a beautiful cascading water-
fall in a peaceful valley.

In Chapter 7, *‘Player-Missile Graphics,”’ a distinctly ATARI fea-
ture, is covered. Players allow you to move animated objects on the
screen without having to worry about erasing parts of the background.
We'll provide you with a sample program of a bouncing ball to illustrate
how Players work. True to cartoon reality, the ball even flattens when it
strikes the floor!

Chapter 8, ‘‘Using Machine Language Routines in BASIC Pro-
grams,”’ uncovers the secrets of enhancing your animations with our
black box machine language routines. These routines (which don’t need
to be understood to be used) are easy to enter from BASIC and bypass
much of the tedious work that is required to animate Players. Players can
be instantly moved anywhere on the screen, given a horizontal velocity,
and automatically animated (using Vertical Blank Interrupts) with as
many frames of information as you desire.

Finally, in Chapter 9, ‘‘Creating a Scrolling Background,”” we will
present the powerful techniques of fine scrolling and Display List Inter-

Preface / xiii

xiv / Preface

rupts. The ATARI Display List will also be covered in depth. There is a
demonstration program here which scrolls an entire suburban background
across the screen at various speeds. In this chapter there is an impressive
concluding animation demonstration program of a little man walking
down the street, head bobbing, arms swinging. In the background, trees
and houses with lawns and fences scroll by while numerous cars and
trucks with roaring engines pass by in the foreground.

The pushing and shoving that goes on around an arcade game and the
willingness of people to feed these machines a steady stream of silver, the
millions of low-cost computer games sold for the home, and the popular-
ity of special effects films all attest to the fact that a revolution in the
video/graphics/film industry is upon us. It is our belief that graphics-
oriented personal computers are forerunners of a new and exciting type of
home entertainment. Film quality animation effects, perhaps created
remotely and downloaded to your system via cable, will be combined
with the arcade capability of your personal computer. The result will give
you an interactive experience where you become the dominant player in a
world of graphics figures and flashing colors.

This book is intended to inspire the development of high quality,
graphics-oriented software for home computers, thus harnessing the
animation potential of these marvelous machines and speeding us
towards the future.

David Fox
Mitchell Waite

December 24, 1983

Acknowledgments

Saying that the creation of this book was a large project is a gross
understatement. Not only did it require more than a year of work, but it
also involved hundreds of hours of consultation, research, telephone
calls all over the country, programming, programming, and more
programming. In fact this book project had the creative support of more
people than a/l our previous books combined. Therefore we would like to
pause and express our sincere gratitude to everyone who contributed time
and energy to this project.

First and foremost, we want to thank Annie Fox for her constant
support and fantastic editing. Without her help, this book would not have
been nearly so interesting and easy to read.

We would like to thank Steve Catechi, Adam Janin, Scot Kamins,
Ph.D., Corey Kosak, Christopher L. Morgan, Alvy Ray Smith, Tandy
Trower, and Lane Winner for their thoughtful, encouraging, and
incredibly complete reviews of our manuscript.

We thank Clark Brown and Ted Richards of Atari for making their
Dicomed film recorder available to us for our Atari screen photos, Jerry
Jessop of Atari for keeping our equipment in good working order, and
Chris Crawford of Atari for first turning us on to the animation power of
the ATARI Home Computers.

We would like to thank the following people for their help in
providing us with information and materials for the book:

Susan Anderson, Loren C. Carpenter, Pat Cole, Clark Higgins, K.C.
Hodenfield, Andy Neddermeyer, Alvy Ray Smith, and Susan Trembly
of Lucasfilm Ltd.

Richard Taylor, Amie Sorenson, Bill Dungan, Art Durinski, and Lynn
Wilkinson of Information International, Inc.

Bill Kovacs, Shirley Shackman, and Steve Cooney of Robert Abel and
Associates

Ken Perlin of Magi (Mathematical Applications Group, Inc.)

Nelson Max of Lawrence Livermore National Laboratory

Wendall Mohler, Michael Bonifer, Mary Dill and Sue Muscarella of
Walt Disney Productions

Acknowledgments / xv

xvi / Acknowledgments

Judson Rosebush and Susan Bickford of Digital Effects

Peggy Allen, Ken Balthazar, Anne Bernstein, Harry Brown, Douglass
Chorey, Paul Cubbage, Jerome Domurat, Ann Louise Gechman, Clyde
Grossman, Bob Kahn, Ted Kahn, Peter Nelson, Jack Perron, Wanda
Royce, Joe Steele, Larry Summers, Don Teiser, Marilyn Theurer, and
Bonnie A. Umphreys of Atari, Inc.

Glen Entis and Carl Rosendahl of Pacific Data Images, Inc.

Dr. James F. Blinn and Charles E. Kohlhase of Jet Propulsion Laboratory
Philip Knopp of Gebelli Software, Inc.

John Williams, John Harris, and Gita Whelan of OnLine Systems
Bill Wilkinson of Optimized Systems Software

Jaime Cummins of The Solitaire Group

Joe Vierra, James Leatham,

Robin Ziegler and Bruce Merritt

Leo Christopherson

Nancy Bavor, Kate Kimelman, Anita Mosley, and Debbie Shepard of
Stanford University Museum of Art

Roy Smith of Advanced Electronics Design, Inc. (AED)

Mike White of Valpar Corporation

Doug Carlston and Olaf Lubeck of Broderbund Software

John Loveless of Synapse Software

Patricia Glenn and Mary Lock of Penguin Software

Gary Kofler and Patrick Ketchum of Datasoft, Inc.

Cherie Bauman of Versa Computing, Inc.

Herman Towles and Patrick T. Garvey of Computer Creations

Allan Sadoski and Mary C. Whitton of IKONAS

Tom Gemighani of Spectacolor, Inc.

Colin Cantwell of Crystal Chip, Inc.

Jane Veeder and Phil Morton

Frank Dietrick of Real Time Design

Dick Shoup of Aurora Imaging

Louis Schure of New York Institute of Technology Computer Graphics
Laboratory

Dave Eccles, Derek Lee, and Bruce Fox of Evans & Sutherland
Alice E. Ahlgren, Ph.D. and Mike Maldonado of Cromemco

Sharon H. Nelsen and Jody Peake of Tektronix, Inc.

Bill Kimberlin of W.A. Palmer Films, Inc.

Lynn Wedel and Sandy Vorheis of Apple Computer, Inc.

T. Barry Vincent of Commodore Computer Center

Sheri Correa of NorthStar Computers, Inc.

Ed Judd and Dennis Tanner of Tandy-Radio Shack

Jim Dugan of Texas Instruments

Grif Hamlin and Carolyn Robinson of The Los Alamos Scientific
Laboratory

Everett S. Joline, Ph.D. of Aviation Simulations International

Robert Holzman and Guy M. Lohman of Jet Propulsion Laboratory
Stephen H. McDaniel of Hanna-Barbera Productions, Inc.

Bob Christanson of Quality Software

David Sosna of MGM

Allen A. Wall of IBM

Steve Sipe and David Luther of IMLAC Corporation

Jim Higgins of Colorgraphic Communications Corporation

Peggy Grim of Chromatics Inc.

Daniel Clark of Terak Corporation

Ted Dyer of Grinnell Systems Corporation

John Walker of Marinchip

Kim Hoeg of Strider Productions

Nadara A. Craun and Terry Hostek of Digital Engineering

Ray Slane of Aydin Controls

Frank Magalski of Industrial Data Terminals

Ed Dwyer of Matrox Electronics

Christel I. Kiefer, Jim Forbes, Don Lewis, and Rudann Clark of Hewlett
Packard

James R. Smith of NASA — LBJ Space Center

Tom Crispin and Mark Nehamkin of Intek Manufacturing Company
Linda Buxbaum of Digital Equipment Corporation

We would also like to thank Peter Bloch, Larry Cuba, Thomas A.
DeFanti, Louis Ewens, Godbout Computers, Allan Lundell, Tom
Meeks, MicroPro, Mike Schmidt, Sean Turner, and J. T. Whitted.

And finally, we would like to thank the countless people who helped
us but we failed to mention above.

Acknowledgments / xvii

'

Part 1

Chapter 1

Animation Perspectives

L evon Klein knew very little about computer animation. He had
heard that many recently produced television commercials and
feature films were making use of computer-generated graphics, but he
wasn’t really sure what that meant. So computers could be programmed
to draw pictures, so what? Being so uninformed on the subject, he
couldn’t figure out why his editor had sent him to cover the annual
computer graphics conference meeting in his home town this year. He
wondered about this as he walked up the auditorium’s steep flight of
steps, his press badge fluttering in the wind. In preparation for today’s
event, a film showcase of recent computer animation films, he had read
everything he could get his hands on. Yet the written word hadn’t been
enough to enlighten him as to what all the excitement was about.

The guard at the door glanced at Levon’s badge and with a disin-
terested nod, let him pass. Once inside the immense room, he began
looking around for a place to sit. It was then that the enormity of the event
began to sink in. Most of the auditorium’s 10,000 seats were already
filled with people. The air crackled with the electricity of excited antic-
ipation. Someone with a staff badge walked up to the slightly stunned
reporter and hustled him to a seat towards the front of the room.

Three movie screens occupied the stage. As he impatiently waited
for the show to begin, he wondered once again what all the excitement
was about. Even without a sense of the technology, the high tech jargon
bandied about coupled with the tension in the room brought beads of
sweat to Levon’s forehead. At last the overhead lights dimmed, the
projector rolled, and Levon took a deep breath as a brave new world
unfolded on the screen.

His eyes stared at the screen, unsure about what to make of the
images. The position of the camera placed the audience above a human
figure standing on a grey checkerboard grid. As the camera floated down
towards the ground, Levon noticed that the man on the screen, wearing a
black tuxedo and top hat, was juggling three brightly colored objects — a
red cone, a blue cube, and a green sphere. One thing that made this unlike
any ordinary movie was the colors. They were all of an extraordinary
intensity, brighter and purer than any Levon had ever seen on film. The

Animation Perspectives / 1

2 / Animation Perspectives

Film 4

** Panasonic Commercial —
Paper Airplane,”” Robert Abel and
Associates. To promote their new
stereoscopic television, Panasonic
commissioned Abel to produce a
computer generated film which really
showed it off. Their new television is
essentially a standard TV with a
connection for a pair of special glasses
which are synchronized with the
display. By flipping between the right
and left eye views every sixtieth of a
second, the viewer sees a full 3-D
scene. Directed by Randy Roberts.
Courtesy of Robert Abel and
Associates.

background sky showed a most beautiful sunset with a bright red tinge at
the horizon, blending upward into blue, then darker shades of blue, and
finally a star-studded black night. An eclipsed sun flared brightly in the
sky, lending an eerie quality to the images. The color was so intense, so
surreal, that he felt it was safe not to try to predict anything about what
would happen next.

Thus suspending the earth-bound laws of physics, Levon’s gaze
returned to the juggler whose face was now coming into view. He saw
that this was not a man at all, and in that moment it became clear that
these computer people had done something revolutionary.

““What is going on?’’ Levon wondered out loud, not feeling pre-
pared for what he was experiencing.

The juggler was not alive and yet he moved as if he were. As Levon
scrutinized him, he was hard pressed to explain the figure’s origin. His
movements were too fluid for any robot, and every detail about him was
too flawless to have been hand painted. The man’s face, for example,
possessed a manufactured quality, like a clothing store manikin, and
appeared android-like, totally devoid of expression, and too perfect to be
human.

Levon’s puzzling over the figure was abruptly interrupted when
suddenly the scene shifted to a series of television commercials. Levon
recalled that he had watched these many times, but now he was amazed to
find that these images were all computer generated. Watching them at
home, he had just enjoyed their spectacular movements. Now he began to
appreciate the technology that had helped to create them.

The juggler appeared again, but this time the entire screen was
swimming with brilliantly colored geometric objects. One of them, a red
sphere, started flying towards the camera and Levon found himself
involuntarily ducking at the last moment. Never had he seen such realism
and such unlikely camera angles. He knew that what he was watching had
all been created by a computer, and that there was no live actor in a suit,
no real objects, no sun, no sky. All the objects and colors he was
witnessing were simply cold numbers, datapoints once nestled in the
vastness of a computer’s memory banks, now converted to film images
for his entertainment. Levon was impressed in spite of,, or because of this
fact, and the visual experience was absolutely compelling.

Another series of exceptional film segments flashed by, and then the
juggler’s three geometric shapes reappeared on the screen. Rainbow
colors swirled through the objects as the camera moved to a point above
them. The scene suddenly changed, and the three objects became three
round dots sitting above three silver I’s. The camera began to fly away
from the object, which gradually revealed itself to be a badge on one of
the juggler’s lapels. Levon was stunned at the smoothness of motion as
the camera continued to retreat. The juggler just stood there blinking.
Suddenly yet casually, the juggler did something quite unexpected. The

Animation Perspectives / 3

Photo 1.1: This is the famous Triple | “Adam Powers Jugglier” photo from the
film “The Juggler.” Created from a digitization of a human model in three
dimensions, it is one of the first computer graphics images which comes close
to passing the Turing Test for Realism. Except for the face (which looks some-
what like a manikin), it is almost impossible to distinguish this juggler from a
person on film! Triple | has created perhaps the most realistic images ever de-
vised on computers. Because Triple | doesn’t want the power of this film imag-
ery to be lessened in any way, they are reluctant to allow it to be shown on
video equipment. (Courtesy of Information International, Inc. [Triple I], Culver
City, CA.)

figure in the tuxedo simply stretched out his arms, took one brave leap
over his own head, and did a back flip, disappearing in a brilliant flash.
All that was left above the grey checkerboard was his top hat which
promptly tumbled to the ground, rolled around a few times, and came to a
stop.!

The audience burst into spontaneous applause. Levon found himself
wildly clapping along with everyone else, joining the roar of appreciation
which now echoed across the vast hall. *‘So this is computer animation,”’
he thought to himself. ‘‘How in the world did they do that?’’

'To see the juggler do his disappearing act, flip the pages of the book. (Courtesy of Information
International, Inc.)

4 / Animation Perspectives

1.1. WELCOME TO COMPUTER ANIMATION

Definition

andi-ma-tion (an'a ma’shan), n. 1. to breath artificial life into images
for films or computer-generated displays. 2. a sequence of drawings,
each slightly different from the preceding one so that, when filmed
and run through a projector or when shown on the computer screen
in rapid succession, the resulting figures seem to move, dance, or fly
about. 3. a motion picture effect which can elevate otherwise
mediocre films to financial success. 4. a technique, when combined
with fast action and loud noise, which causes millions of people to
drop billions of quarters into strange looking boxes.

This definition points out that we are a species of animation and
special effects lovers. This has been the case since the days of the early
cave dwellers, when flickering flames inspired a sense of wonder in
young hearts. As children, we have always been fascinated with anima-
tion. Who cannot recall when hands held in front of lamp light created
moving butterfly shadows and scary monsters on the wall?

Today the animation love affair has exploded with such intensity
that the stars of movies are no longer actors and actresses, but rather
behind-the-scenes complex computers and special effects technicians.
To the new producers, the entertainment world has become a high-tech
special effects race, with those having the best animation leading the
pack. The producer with the fastest and highest performing computer will
have the tool to make the flashiest special effects (although without a
story to go with it, the film may barely break even). In fact, these days we
can no longer go to a film and be sure that what we are seeing ever existed
in physical space. As our juggler episode showed, it won’t be long before
discriminating between real actors and their computer-generated counter-
parts will be impossible. An entirely new chapter is being written in the
film industry. It includes taking the finest aspects of the cliff-hanging
adventure thrillers and science fiction films of old and remaking them
using high technology’s special effects. Likewise, the television industry
1s also utilizing the new products of computer animation. The best of
today’s animated television commercials are so well done that you can’t
even tell that a computer was involved!

1.2. OUR PREMISE

This is a book about computer animation. We have written it to fill a
long existing void. For years, very few people could afford to do

computer animation. Skilled mathematicians and computer scientists
were required to operate expensive, megalithic machines, and huge sums
of money were needed to produce just a few seconds of animation.
Consequently, the knowledge of computer animation remained clois-

tered, the exclusive domain of a small select body of professionals. This
book is designed to change that because it was specifically written for the
vast number of personal computer users across the country. Today,
anyone who can afford to buy a good stereo system can afford to purchase
a computer. With the advent of the microcomputer (a.k.a. personal
computer, a.k.a. home computer), the rudiments of animation have
suddenly become available to a vast body of consumers.
Therefore, a basic premise of this book is:

AS BIG COMPUTERS GOETH, SO DOTH THE SMALL.

In other words, some of what was being accomplished yesterday on
expensive high-tech computers (i.e., highly technical, large, expensive,
computers) can be accomplished today on low and moderately priced
personal computers. To understand this transition from the few to the
many, let’s look at an example.

Today a high-tech computer suitable for animation of quality feature
length films has a resolution of 1024 X 1024 pixels (dots) and a choice
of over 16 million colors for each dot. Such a computer animation system
might be based on a minicomputer like the DEC VAX 780, which alone
costs more than $160,000.

A typical personal computer, on the other hand, has a resolution of
320 X 192 dots, can display as many as 16 colors and costs less than
$800. Even though the cost ratio of these two systems is 200 to 1, the
performance ratio, as we shall soon see, is much closer. The personal
computer is generally much easier to control than the high-tech machine,
particularly in the area of real time animation. Before we get too involved
with the technical side of computer animation and explain how these two
machines differ, we want to tell you how this book is organized and how
to best use it.

1.3. ABOUT THE BOOK

We have organized this book into two main sections. Part I covers
the theory and applications behind computer animation, including

Animation Perspectives / 5

6 / Animation Perspectives

graphics hardware, software, and programming. Part 11 contains a tuto-
rial describing animation capabilities of the ATARI Home Computers
(although some of the ideas can be implemented on computers which
have features similar to the ATARI Home Computer). In this way, the
first half of the book will allow you to become familiar with what the
“‘big boys’’ are doing in the field of animation, while the second part will
provide you with what you need to try out some of these ideas at home.

Flip Book

We have also added special flip book movies to the pages of this
book. Flip books, an old-fashioned way to do animation, are still fun to
play with today. On the upper page edges you will find an assembly of
computer-animated sequences collected from the best animation houses
in the United States. By rapidly flipping through the pages, you can
preview the kinds of special effects that are in vogue today and get an idea
of the vast power of computer animation. We have also put one of our
ATARI animated figures in the flip book so you can see it work without
the aid of an ATARI computer.

So now that you have an idea of what this book is about, it’s time to
plow forward, animated head first, into this exciting world of computer
special effects and animation.

1.4. WHAT IS ANIMATION?

Animation is the process of creating images that appear to move.
Motion pictures don’t really move. Anyone that has looked at a piece of
film knows that the medium is made up of many still images. From a
strictly scientific standpoint, animation relies on the mechanics (and in a
way imperfections) of the eye. When things move faster than a certain
rate (between 18 and 24 times per second), a physiological phenomenon
called persistence of vision comes into play and the motion tends to blur
together. This happens because a single image flashed at the eye is
retained by the brain longer than it is actually registered on the retina.
Thus, if a second image is flashed within a certain minimum time (about
50 milliseconds), the brain still retains the last image and the two images
may be combined. When a series of images is flashed in rapid succession,
as is accomplished with a movie projector, the brain blends the images
together. When these images are only slightly changed one to the next,
the end effect is that of continuous motion. This very remarkable illusion
is the perceptual foundation of film and television. (You can imagine that
if the eye didn’t have persistence of vision, the world would appear a
strange place indeed.)

Animation can be created in several different ways, as we shall soon
see. In each of these approaches,the number of images presented to the

eye in one second determines the *‘flicker rate’’ of the scene. Flicker
occurs when the eye can detect the individual frames of the picture
because the time between frames is too long or the degree of motion
within consecutive frames is too great (e.g., a “‘pan’’ which moves too
rapidly across a landscape). When this happens, the picture appears to
strobe uncomfortably. Standard 35 mm film, the kind shown at movie

theaters, uses a frame rate of 24 frames per second, This means that every

second, 24 frames of information appear on the screen. At this rate, there
is usually no visible flicker. In low-cost 8 mm camera film, on the other
hand, the 18 frames-per-second rate makes the flicker of these films
more noticeable. (A point of information: when a film is shown on
television, there is a frame rate discrepancy. Television has a frame rate
of 30 frames per second, however a film being broadcast usually was
created with the 24 frame-per-second format. This conversion is accom-
plished by showing every fourth frame twice.)

The speed at which objects appear to move in an animation is a
function of the number of drawings used to obtain a movement and the
distance between the object’s position in successive frames. For exam-
ple, if we are animating a bouncing ball, the farther the ball has moved in
each adjacent frame, the faster the ball will appear to travel across the
screen. If there is too much distance between balls in successive frames,
the ball will appear to jump from one spot on the screen to another, rather
than move smoothly.

One can appreciate that a high frame rate can result in there being
many frames. Consider a typical two-hour animated movie: 24 frames in
1 second is equivalent to 1440 frames in 1 minute. An hour’s worth of
animation, therefore, may have up to 86,400 individual frames. A
two-hour animation would then need 172,800 individual frames! Before
computers were put to work as animation machines, each of these frames
had to be hand drawn, painted, and photographed. It is easy to see why
animation is such a laborious task and how computers have opened the
door to a whole realm of animation possibilities.?

2Even today’s most popular animation computer (VAX from Digital Equipment Corp.) needs around 10
minutes to generate a single frame of animation for a high-resolution moderately complex scene. Thus
five minutes of animation can take 5 X 60 X 24 = 7,200 frames X 10 min. = 72,000
min. = 1,200 hrs. = fifty 24-hour days! Very complex scenes might take as much as four hours to
generate each frame. By the way, a computer that could do this even faster and is now being used by a
few of the really wealthy Hollywood studios is the Cray Research CRAY X-MP, which can do 100 to
200 million floating-pojnt instructions per second and costs a mere $15 to $20 million.

Animation Perspectives / 7

8 / Animation Perspectives

What is an Animator?

Although some people consider an animator to be an individual
who merely draws the individual frames of a film, giving some object
the illusion of motion, nothing could be farther from the truth. An
animator is actually an imparter of emotion (definition thanks to Alvy
Ray Smith of Lucasfilm). The really great animators (Preston Blair
and Frank Thomas, for example), are much more than great artists.
Rather than just capturing the essence of a character in a static
picture, they must also breathe life into two-dimensional images.
The animator quickly sketches the different parts of the figure in
motion using intuitive gifts. Assistants to the animators then convert
sketches into final art. Although anyone can do a simple animation,
the really great animations from studios such as Disney came from
such highly gifted individuals. It is therefore unlikely that a computer
will ever be able to automatically produce original animations which
possess the depth of character of the classics. A human will probably
always be needed to “start the ball rolling.”

1.5. WHAT IS COMPUTER ANIMATION?

Computer animation is the process of creating visual movement
through the use of a computer. There are two basic divisions of computer
animation covered in this book. One is high-tech computer animation
used for making films. The other is the low-cost computer animation
used in the personal computer and video game area. The techniques and
hardware involved in each of these areas differ greatly and consequently
will be explained separately.

High-Tech Computer Animation for Film

Let’s first take a look at how computer animation is used in produc-
ing effects on tilm. You know now that cartoon animation traditionally is
done by hand-drawing or painting successive frames of an object, each
slightly different than the preceding frame. In computer animation,
although the computer may be the one to draw the different frames, in
most cases the artist will draw the beginning and ending frames and the
computer will produce the in-between drawings. (This is more generally
referred to as computer-assisted animation, because the computer is
more of a helper than an originator.)

High-Tech Computer Animation Programs

In full computer animation, complex mathematical formulas are
used to produce the final picture. These formulas operate on extensive
databases of numbers that define the objects as they exist in mathematical
space. The database consists of endpoints, color and intensity informa-

tion, and so on. Highly trained professionals are needed to produce such
effects, because animation that obtains high degrees of realism involves
computer techniques for three-dimensional transformation, shading,
curvatures, and so on. (This whole area of database animation will be
covered in more detail in Chapter 3.)

High-tech computer animation for film involves very expensive
computer systems along with special color *‘terminals™ or *‘frame buf-
fers.’’ The frame buffer is nothing more than a giant image memory for
viewing a single frame. It temporarily holds the image for display on the
screen.

A camera can be used to film directly from the computer’s display
screen, but for the highest quality images possible, expensive film
recorders are used. The computer computes the positions, colors, etc. for
the figures in the picture and sends this information to the recorder which
captures it on film. (Sometimes, though, the images are stored on a large
magnetic disk before being sent to the recorder.) Once this process is
completed, it is repeated for the next frame. When the entire sequence
has been recorded on the film, the film must be developed before the
animation can be viewed. If the entire sequence doesn’t seem right, the
motions must be corrected, recomputed, redisplayed and rerecorded.
Obviously, this approach can be very time consuming and expensive.
Often, computer animation companies first do motion tests with simple,
computer-generated line drawings before setting their computers to the
task of calculating the high-resolution, realistic looking images. These
low resolution images can often be viewed in motion directly from the
computer’s screen. When these tests look right, the final scenes are
computed with a much higher chance of success.

Personal Computer Animation

At the other end of the spectrum is animation done on personal
computers. These may be for use in video games or educational pro-
grams. These low cost units (such as an Apple or an ATARI) have no
frame buffer per se. Instead, their relatively small memory is used to
temporarily store the image, and the television screen is used to display
the animation.

The major difference between the animation generated on personal
computers and that of most high-tech computers is that personal comput-
er animation is presented in real time. This means that you see the
animation as it 1s occurring on the screen as opposed to waiting for the
filming process to capture all the frames. Real-time animation allows
effects to be created and checked out aimost instantly, which means that
decisions about particular scenes can be made on the spot. On the
negative side, since personal computers have fewer available colors and
lower screen resolutions than the high tech machines, animations pro-
duced on them are lacking in these respects. Even if they had these

Animation Perspectives / 9

10 / Animation Perspectives

features, the lack of fast computing power would make the calculation of
three-dimensional, shaded objects highly impractical. Most personal
computer animations consist of two-dimensional, cartoon-like figures
such as space ships, cars, and people and other simple objects running,
bouncing, or flying across the screen. Occasionally, enterprising design-
ers will create games on personal computers that have a third dimension,
such as moving through a corridor or around a raceway, but this is the
exception rather than the rule.

Personal Computer Animation Programs

The programs for doing computer animation on personal computers
vary from very simple to extremely complex. A simple program could,
for example, be written in BASIC. It might use a statement like DRAK 1
AT X +Y to draw a predefined object. The X and Y coordinates would be
changed and the object redrawn at a series of new positions, moving the
object across the screen. The next level of animation would be to animate
the moving object itself (e.g., flapping a bird’s wings or moving a
figure’s legs). This could be accomplished by substituting the object on
the screen with a new, slightly different object (DRAW 2 AT ¥ »Y), and
then a third object is substituted (DRAW 3 AT ¥ +Y), and so on. This is
called real-time animation, and it is essentially the technique used in
computer games and video arcades.

For microcomputers, non-real-time animation, the method used by
the high-tech animators, is definitely a more complex and expensive
approach to animation. As with the large systems, it involves drawing a
detailed single frame, photographing it on film, or saving it on disk. This
process is repeated until all the frames have been drawn. Ideally, the
computer will control the camera so the operator doesn’t need to do it
manually over the many hours needed to shoot a short segment. In
Chapter 3, we will show how an Apple computer is used for just such a
process.

1.6. A LITTLE HISTORY OF ANIMATION

Animation using machines has existed for over 150 years! The first
animation device was cailed the Thaumatrope (pronounced THAW-ma-
trope). See Figure 1.1. It was invented by an English doctor, John Paris,
in the mid-1820’s. The idea behind it involved using strings to twirl a disc
with a different picture on each side. When the disc was twirled, you
could see both pictures at the same time. The idea for the Thaumatrope
probably originated from a spinning coin. When a coin is spun and
viewed from the side, the eye’s persistence of vision phenomenon makes
the front and back images appear superimposed on each other. (Of
course, if the inventors had an ATARI or Apple they could have filled the
entire screen with Thaumatrope images.)

Figure 1.1: The first animation device — the Thaumatrope (circa 1826).
(Courtesy of Stanford University Museum of Art.)

The first device that actually produced animated pictures was the
Phenakistoscope (fen-a-KEES-ti-scope, meaning motion shower),
which dates back to 1832. (Its inventor, Joseph Plateau, was partially
blind from staring at the sun for 20 minutes — he was testing persistence
of vision!) This device consists of a notched spinning wheel! attached to
one end of a handle. The spinning disc contains a series of drawn images,
each representing a frame of animation. To view the animations. you
held the wheel in front of a mirror, peeked through the notches and spun
the wheel. The notches acted like the shutter of a movie projector, letting
you see each frame for only a fraction of a second rather than a continuous
blur. See Figure 1.2.

Figure 1.2: The first animated picture — the Phenakistoscope (circa 1832).
(Courtesy of Stanford University Museum of Art.)

Animation Perspectives / 11

12 / Animation Perspectives

The next important animation tool, the Zoetrope, or Wheel of Life,
was invented around 1834 by William G. Horner in England where
people called it the wheel of the devil (much like some people today think
video games are entertainment of the devil). It was redesigned in France
by Pierre Desvignes in 1860. The Zoetrope is a revolving drum with
images drawn inside. Like the Phenakistoscope, the Zoetrope too has
equally spaced slits in the sides. When the drum is spun, the images can
be seen when viewed through the slits. A record player can be substituted
for the drum.

8end Stamp for 136 Page Catalogue of Magic Lanterns
and Views,

7. . WeALLISTER, OPTICIAN, 49 NASSAU STRENT, . ¥,

ZOETROPE.

Prof, Mulyhridge’s Pictures for the Zoetrope.
100 ber Rerien of 12 Piotarce.
Al e one s it e Ao s Phoiogrape ma by Prt, Mo

OF ANIMALS IN MOTION,

A large variety of Optical Toys for the Holidays.
*s001d Mmo] Moa 1@ sesse|n EidQ jO JUIWLOSSE dupy pue odieq

leaping Bardles.

Send Stamp for lllustrated Price List of Microscopes,
Telescopes, Lonses, Kto.

Figure 1.3: Zoetrope — the wheel of the devil. (Courtesy of Stanford
University Museum of Art.)

Long before movie cameras were invented, a man named Eadweard
Muybridge lined up a series of still cameras to photograph a horse as it ran
down a racetrack. Muybridge had the camera shutters connected to
strings across the track so that the horse’s legs would trip each camera as
it passed by. He was hoping to settle an argument between Governor
Leland Stanford of California and another millionaire. Stanford claimed
that when a horse is galloping it has all four feet off the ground at one
time. As you can see in Figure 1.4, the Governor was right!?

*In Chapter 5. we present an ATARI animation program that has three dozen horses galloping on the
screen. The images for these horses were based on the original photographs by Muybridge. Imagine
that . . . one-hundred-year-old data being used in a twentieth century computer program!’

Animation Perspectives / 13

Figure 1.4: The horses of Eadweard Muybridge.

Photo 1.2: Muybridge's Zoopraxiscope. (Courtesy of Kingston-upon-Thames
Museum and Art Gallery, Stanford University of Art.)

14 / Animation Perspectives

Figure 1.5: The Praxinoscope. (Courtesy of Stanford University of Art.
[Reproduced from Gaston Tissandijer, Popular Scientific Recreations, N.Y., c.
1880, nd.])

Later, Muybridge developed the Zoopraxiscope (zoo-0-PRAX-a-
scope) to project his motion studies on a screen. He used glass wheels
with his images running along the outer edge. The disk spun in a projector
showing a repeating cycle of motion. A complete cycle, however, only
lasted about half a second.

The Praxinoscope (prak-SIN-a-scope) was a device that replaced
the Zoetrope’s slits with mirrors. Inventor Emile Reynaud created a
version of this device which projected images on a screen. Using long
strips of translucent paper with frames drawn on them as film, he
eventually went into commercial production and opened the world’s first
movie theater in Paris in 1892. The show lasted only a short time, but this
didn’t keep people from flocking to see it. In Chapter 9, we present a
show of our own, the Great Movie Cartoon. Because it is programmed in
BASIC and uses randomness to create figures, this show never repeats
itself. Reynaud would have loved it.

Another popular way to produce animation in the old days was the
flip book, technically called the Kineograph (KIN-e-o-graf). With this
device you draw animated figures on individual cards, stack them up like
a deck, and fasten them together. Flip through the stack with your thumb
and watch the action. The flip book was patented in 1868 but was in use
long before that. Today you can still find peep shows lined with Muto-
scopes, Kinetoscopes, and Kinoras. You can cut out the animation
frames in the pages of this book and assemble your own custom Kineo-
graph to impress your friends.

Film animation cartoons were pioneered in 1908 by another French-
man, Emile Cohl. He put black line drawings on sheets of white paper
and photographed them. On the screen he used the negative to show
white figures moving on a black background.

Animation techniques began to move forward as methods improved
for producing movement and life-like motion. In the next few years a
rush of new cartoons were produced, including Gertie the Trained Dino-
saur (1909), and in 1917 the first really memorable cartoon character,
Felix the Cat, was born.

The following techniques were devised and experimented with prior
to the appearance of Felix the Cat:

® Silhouette films. Black cut-out figures were used on plain white
backgrounds to create the animation. These figures were easy to draw
and move compared to line drawings.

® Phase animation. In this approach, sketches were superimposed on top
of each other to save the repeated drawing of a background for
different phases in the movement of foreground figures.

® Cel animation. This eliminated phase animation by using transparent
celluloid for the foreground and simply superimposing them over an
opaque background. Now foreground figures could be moved any-
where on the background and only one photograph was necessary.

In the early 1920s the work of drawing the backgrounds became
separate from the main task of the animation movement. Specialists in
backgrounds perfected the scenes that the animation people placed their
figures upon. In a further division of labor, the time consuming task of
taking the outlines of the figures and filling in the color on the transparen-
cy or cel was isolated. This separate job is referred to as opaquing or
filling.

In 1928, Walt Disney Studios began turning out popular animated
cartoons. From the early 1930s to the early 1960s, film animation
produced a large number of notable and memorable cartoons that cap-
tured the imagination of the public. It became common to expect cartoons
to appear at the beginning of every movie. Eventually these cartoons
became a main part of television. Among the more popular were: Max
Fleischer’s Popeye (1933), Mickey Mouse, Snow White, Pinocchio,
Fantasia, Dumbo, Donald Duck (all Walt Disney); Tom and Jerry
(MGM); Woody Woodpecker (Walter Lantz); Bugs Bunny and Sylvester
(Warner Brothers); Mr. Magoo (UPA).

In the 1960s two scientists from Bell Labs developed the world’s
first computer animations. Messrs. Zajac and Knowlton’s achievements
were in the area of abstract and texturized patterns. This set the early
stages for later high-tech animations on computers by demonstrating that
textures could in fact be modeled on a screen. Further research in the use

Animation Perspectives / 15

16 / Animation Perspectives

of computers for graphic output helped progress the field of computer
animation. Some of the largest and best funded laboratories developed
uses for computer animation including simulation of the flow of viscous
fluids (Los Alamos), propagation of shock waves in a solid (Lawrence
Livermore National Laboratory), vibration and landing of an aircraft
(Boeing Aircraft).

Since the 1970s, computer animation has grown as computers
improved and new techniques for manipulating pictures were dis-
covered. Companies specializing in generation of computer animation
have been founded across the country, including such names as MAGI,
Information International Incorporated, Lucasfilm Ltd., Robert Abel and
Associates, Digital Effects, etc. Television advertisers have become
primary buyers of animation, using it to grab the viewer’s attention and
hopefully to get them to remember ‘‘the incredible commercial’’ they
saw on the box. Whether they actually recall the name of the product is
another story.

1.7. HOW IS COMPUTER ANIMATION USED TODAY?

Today people are creating hundreds of applications for computer
animation. Due to the popularity of the home computer, we are, in fact,
in the middle of a revolution in computer animation applications. This
low-cost device is driving manufacturers to pursue new techniques for
the generation of visual effects. Since we are such a visual culture, the
computer screen, the television screen, the photograph, and the movie
screen are all blending together. In one study done by Sony Corp., it was
discovered that people will more likely trust the validity of an image they
see on television over one they see in a photograph or a book! Conse-
quently, Sony is designing all its future products to output to the TV
screen.

Applications in the Film Industry

Perhaps the fastest growing use of computer animation is in the film
industry. Did you know, for example, that computer animation was used
in filming the Death Star simulation at the pilot’s briefing in the film, Star
Wars — A New Hope? Although the rest of that movie’s special effects
utilized either hand-built models or conventional animation, these will
not be the methods of choice for long. One very desirable but not yet fully
realized approach is to use computer-generated animation to replace the
hand-built models and hand-painted matte backgrounds. (See Photo 1.3
for an example of the kind of incredible realism that is possible today.)
Since the resolution provided by computers can now exceed that of film
and since a computer-simulated model destroyed by phaser never needs
rebuilding, the computer approach promises to improve realism and

lower production costs at the same time. Unfortunately, there is still an
important drawback to all of this computer generated animation — it
takes a long time to enter all the coordinate information for the model the
first time. Luscasfilm, for example, finds that hand built models can be
constructed, destroyed and reconstructed faster than a similarly complex
model can be entered into the computer database. One potential answer to
the database entering problem is to ‘‘grow’’ the model in the computer. If
this were possible, we could let the computer create its own database,
using brief guidelines set out by the designer of the model.

Photo 1.3: This X-Wing Fighter is based on those used in Star Wars films.
The realism is so outstanding that the animated fighter can’t be distinguished
from a model of “the real thing.” (Courtesy of Information International, Inc.)

One movie that used a large amount of computer animation (a full
fifteen minutes worth) is TRON from Walt Disney Productions.
Although Disney’s Studio was the king of the mountain for many years,
the rising labor costs of hand-painted cels made it too expensive to
produce full-length feature animation cartoons. With TRON, Disney
hoped for a major comeback. As shown in the figure below, TRON takes
place inside a giant computer controlled by an evil master control
program.

Animation Perspectives / 17

18 / Animation Perspectives

Photo 1.4: Light Cycles race through a simulated landscape of TRON.
High-tech artist Syd Mead designed the vehicles. MAGI created the images.
Notice the good shading effects. (Courtesy of Walt Disney Production.
*MCMLXXXIl Walt Disney Production, World Rights Reserved.)

a) b)

Photo 1.5: a) As we approach a dead, moon-like planet at 100,000 miles per
hour, a wall of flames begins spreading over and melting its entire surface from
the impact of the Genesis bomb. Four separate programs were used to
generate this image. One produced a star field as seen from the star Epsilon
Indi using an accurate database, another generated the planet and its texture
mapped cratered surface, a third generated the fires, and a fourth composited
all the elements together (with no matte lines). b) From the planet's molten
surface has arisen fractal mountains (mountains developed from controlled
randomness) and beautifu! lakes and oceans. The faint blue atmosphere just
beginning to form can be seen in the color insert. The once dead planet has
turned into an earth-like planet because of the Genesis effect.

Even though TRON used the largest quantity of computer graphics
to date, the most sophisticated computer graphics ever put on the big
screen appeared in Star Trek {I — The Wrath of Khan. The one minute
segment showing the Genesis device simulation was produced in a five
month period by the computer graphics wizards at Lucasfilm Ltd. Photo
1.5a) and b) show two scenes from this segment.

Although they are revolutionary in their own ways, Star Wars,
TRON, and Star Trek Il were not the first uses of computers in special

effects movie making. Early science fiction used analog computers
(called Scanimates) to produce weird bending and waving, mandala
patterns, and other effects. These devices simply distorted the picture
signal before it reached the screen.

The advent of the digital computer made it possible to have the
picture exist completely inside the computer memory. Mathematical
formulas could then be used to manipulate the scene and the result was
some very realistic pictures with special qualities. The tradeoffs are that
spectal formulas called transformations are needed (we’ll describe these
in Chapter 3) and that mathematically minded programmers must be
enlisted. As we mentioned earlier, however, good animation requires
artistic talent. As the computer software for doing these animations
becomes more user oriented, it will become easier for non-computer
oriented animators to create and control them. And who knows, after
a while simple animations without much detail may become totally
automated.

Applications of Animation in Space

In the area of space exploration, computer animation serves a most
valuable function. The Pioneer and Voyager space probes launched by
the National Aeronautics and Space Administration (NASA) were simu-
lated by James Blinn (with Charles Kohlhase) at the Jet Propulsion
Laboratory. (See Photo 1.6.) By putting physical laws of space and
motion into the computer, NASA scientists could see what certain
trajectories would look like and observe scenes as if they were riding on
the vehicle itself! The computer also allows alterations in perspective
which can place the observer behind the vehicle, thereby letting him view
the entire scene with both vehicle and planet visible. These same simula-
tion techniques were employed with the space shuttle to test its entry into
the atmosphere. In addition, with the help of the computer, otherwise
devastating errors could be dealt with safely. If, for example, a launch

Photo 1.6: NASA/JPL “Voyager-2 encounter with Uranus on 1-24-86.”
Computer simulation of the space probe as it approaches the planet Uranus in
1986. (Courtesy of James Blinn with Charles Kohlhase of NASA/JPL.)

Animation Perspectives / 19

20 / Animation Perspectives

orbit was mistakenly calculated, the worst that could happen was that all
the dots in the picture turned fiery red as the probe crashed into the planet
or shot off the edges of the frame buffer (i.e., into uncharted space).

Medical Research Applications

The use of animation in the medical sciences is becoming important
in helping doctors and researchers to visualize the composition of a
particular organ or bone structure. In Photo 1.7 we can see several views
of the spine as modeled by a computer. The doctor can literally fly about
the spine structure as if in a helicopter. Since it’s formed like a wire-
frame model, this kind of visual examination actually permits the struc-
ture to be viewed more thoroughly. One day doctors might fly around
inside our bodies, having first scanned them with whole body scanners to
obtain cross sections. The computers would assemble these cross sec-
tions into a three-dimensional model, and physicians could then study the
resulting computer images on the screen. By storing these images,
patients could look at them too, and thereby better understand what the
doctor had viewed. With this increased awareness of his body’s disfunc-
tioning, the patient might be better able to help in the healing process.

Photo 1.7: This high-resolution three-dimensional wire frame image of the
spine shows two different views. (Courtesy of Digital Effects — Rutgers Medical
School, *'Spine,” 1981.)

Sports Applications

Animation can be used in the sports world to help athletes improve
their performance. Below, for example, we see four frames of a running
man. It is possible to simulate a certain runner’s motion, captured by
computers and turned into images on the screen. Close examination
could reveal imperfections in the runner’s stride and suggest improve-
ments that could make the difference between winning and losing.
Similar ideas could apply to the swing of a tennis racquet, golf club, or
baseball bat. The computer digitizes the swing or converts it into a form
that the computer can manipulate, so it can transform it into a screen
image. (We’ll explain that in more detail later.) The trainer utilizing this
technique could then modify the actual swing data base for a more ideal
swing. The athlete would try to mimic the improved version of the swing
while the computer monitored. Audio feedback would be provided to
indicate the approximation of the athlete’s swing to the ideal. The louder
or higher pitch in the tone, the closer the approximation is getting to the
ideal programmed case. The use of audio feedback removes the necessity
of having to watch the screen at all times.

Photo 1.8: The Running Man shows the kind of detail possible in a frame
buffer. Compare this with the Running Boy in the ATARI program in the second
part of this book. (Courtesy of Advanced Electronics Design, Inc. [AED].)

Educational Applications

Computer animation has a promising future in the educational
fields. Currently however, there hasn’t been too much evidence of its use
here. The main reason for this is that software companies with the ability
to create impressive animation have not yet been willing to divert their
programmers from the lucrative game market to the burgeoning educa-
tional market.

Computer animation will most likely be utilized to embellish
teaching programs (courseware) on personal computers. To begin with, a
classroom computer could be set up in an “*attract’” mode just like arcade
games, presenting a beautiful visual stimulation that entices the student

Animation Perspectives / 21

22 / Animation Perspectives

to try a programmed lesson. Book covers are supposed to serve this
function, and a computer screen could do it much better. See Photo 1.9.

Photo 1.9: This is the opening screen from “Juggles’ Rainbow,” a program
that teaches young children the difference between above and below, left and
right. The balls are moving through space as music is played in the
background. (Courtesy of Atari, Inc. and The Learning Company.)

Once the student has been lured by animation, more animation
could be used to create an exciting lesson. For example, a program that
might teach a student geography could simulate a spinning globe on the
computer screen in real time, as shown in Photo 1.10. (This sequence
was actually taken off the display of an ATARI Home Computer.)

Computer animation could also be used in the physical sciences. In
physics, for example, it could effectively simulate motion on the screen.
In this way we could plot the course of a comet as it passed by a planet,
the flight of a bumblebee landing on a flower, or the path of a baseball as
it flew towards the batter. All the vector arrows we see in physics books
could be superimposed right on the computer screen, and as the object
moved, these arrows would change, reflecting the object’s changes in
velocity, inertia, etc. Likewise, in the study of engineering, computer
animation could be used to teach how robots walk, or in electronics, to
show the flow of electricity in wire. The possibilities for using animation
as a teaching tool are limitless.

b) (continued)

Animation Perspectives / 23

g

Photo 1.10: The Spinning Earth, an ATARI animation program, contains 24
frames worth of data (first eight frames shown here) showing the spinning earth.
Each frame represents 15 degrees of rotation, so when the entire sequence is
animated on the ATARI Home Computer, the effect of a spinning globe is
produced. The original data base was on an IBM 370, had a 256 x 256
resolution, and occupied 196 K bytes of data. This program made a transition
from the IBM 370 to a CP/M system to a Sorcerer and finally to an ATARI
Home Computer. The resolution was lowered, and the pictures were
compressed so they would all fit in the ATARI memory at once. Two screen
pages were used. When one has been drawn, it is switched on and displayed
while the other is being created by decoding the frame data. These photos
illustrate the high-resoiution effects possibie on an ATARI Home Computer.
(Courtesy of Robin Ziegler. Created by Robin Ziegler and Bruce Merritt.)

24 / Animation Perspectives

Engineering Applications

Engineering lends itself ideally to the capabilities offered in com-
puter animation. Essentially, animation allows designers and engineers
to visualize complex processes and to make better decisions regarding
them. For example, animating a complex structure allows viewing from
many angles and better understanding on all levels. Consider the three-
dimensional wire frame photos below. Because of the transparency of a
wire frame structure, the entire shape can be viewed at the same time. In
addition, animation enables us to study structures in motion. Complex
DNA strands, for example, are difficult to comprehend when viewed
from a stationary position. When you see them rotating and spinning on
the computer’s screen, however, the underlying structure becomes clear.

In civil engineering, the ability to model a building before it is
actually constructed can prevent enormous structural blunders from
occurring. For example, a computer animation of the sun rising on an

Photo 1.11: The circular red and yellow wire frame structure (see color insert)
is being rotated in three dimensions, showing a good variation of perspective.
(Romulus, “Merck Timoptol,” 1981. Courtesy of Digital Effects.)

office complex can be simulated. At the same time, an engineer could
take a simulated drive down the road that was to be constructed as an
entrance to the new building. The computer could display the precise
angle of the sun as reflected off the building. If the subsequent reflection
was found to be disturbing and potentially dangerous to oncoming
drivers, the angles and position of the building could be adjusted accord-
ingly before anything was committed to concrete and steel.

Air flight simulations on the computer are invaluable to the airframe
engineer. (An airframe engineer designs the structural frames of air-
craft.) Mathematical storms, wind shear, and icing effects are variables
encountered in flight that can be simulated by computer. The airframe
engineer can watch the flight path on the screen and judge the perfor-
mance of the plane as the vartables are manipulated.

The advantages of computer animation in engineering are limited
only by your imagination and the power of the computer.

Photo 1.12: These two photos show the wire frame output of the NorthStar
Advantage personal computer. This special computer has a built-in graphics
BASIC (called GBASIC) and graphics calls in the operating system.(Courtesy of
NorthStar Computers.)

Artistic Applications

The world of art is still a relatively unexplored territory for computer
animation. For many years, artists in general shied away from computers
as a medium of expression. Today, however, computers and artists are
beginning to mix. Now with sophisticated paint systems that are more
user-oriented, artists are discovering that a computer which offers a
palette of 16 million color combinations opens new realms of visual
delights. Once an artist becomes adept at using the new tools, the level of
artistic productivity is greatly increased.

In Photo 1.13, an artist is using a computer system to change the
appearance of a Victorian home. The house itself was entered into the
computer from a photograph, and now that it is stored, the artist can play
around with different elements that will alter its external structure. For
example, the computer allows the artist to draw in different shrubs to see

Animation Perspectives / 25

26 / Animation Perspectives

how they enhance the house’s image. Also, the computer makes ex-
perimenting with different color combinations child’s play. In a matter of
seconds, you can completely change the color of the house’s entire
facade.

Photo 1.13: Susan Bickford, of Digital Effects, NY, is using a paint system,
Video Palette 3, a $125,000 system which includes a DEC 11/34 computer,
graphics tablet, and paint software. Susan is using the system to paint a house
that was digitized from a black and white photograph. She later added the color
and the bushes in front (you can see the hand-drawn quality of the bushes).
This system uses a palette of 256 colors, selected from 16 million. It allows you
to vary the brush size and type, save images, and repaint these images in a
different size and location on the screen. You can zoom in on an object or pan
the scene to the right or the left. The menu for this paint system can be seen
overlayed on the photo in b). In ¢) Susan instructed the computer to change
the values in the color registers, producing a dramatic “digital effect on the fina
picture. This photo also shows the high quality of the characters on the screen’s
paint menu (see color insert). (Courtesy of Digital Effects.)

Another attractive art-oriented feature of computer animation and
graphics is the degree of realism the computer offers over paint. Because
the computer has higher resolution than film, visual effects can be
produced which were never possible with the standard art media. Shades
of color too subtle to be mixed by the unskilled hand can be created and
recreated with ease by anyone. Blending of color can be controlled with
incredible precision. Note the fantastic realism of the scene in Photo
1.14. Also note the wire frame structure of the paint tubes.

Photo 1.14: Triple ! Oil Paint Tubes shows three oil paint tubes on a grid-like
floor. From the tube in the foreground a luxurious flow of paint spills out into
space. The first tube is represented as a wire frame image, revealing the
underlying structure of the shapes used in computer graphics (see color insert).
(Courtesy of Information International, Inc.)

Another example of what computer animation offers the artist is
shown in Photo |.15. These are two frames of a computer-generated film
called ““Carla’s Island.”’ In the film, the computer was able to simulate
completely the sun setting and the water waves lapping at the shore. The
light is absolutely perfect because each ray was traced from the viewer’s
eye to the object. At this time, the artist would need to have programmer
assistance to help create a film of this complexity. In the future, using
newly developed tools, however, the artist/animator will be able to create
entire films without the aid of the computer programmers.

Animation Perspectives / 27

28 / Animation Perspectives

a) b)

Photo 1.15: lllustrating reflectance and natural light, these two photos are part
of the film “Carla’s Island.” The film shows a sun setting over ocean waves.
The waves are playing on the beach, reflecting the sun’s rays perfectly. For
every pixel, a ray of light had to be traced from the viewer’s eye out to the
scene mathematically and further reflected from the water to another part of the
scene. This was done using a vectorized ray-tracing algorithm on the extremely
powerful Cray 1 computer. The clouds, waves, and islands were all created
from mathematical formulas rather than from a data base. Different times of day
were created from the same pixel data by changing the values in the color table
as the picture was plotted on the Dicomed D-48. The sun was added as the

picture was drawn. (Courtesy of Nelson Max, Lawrence Livermore National
Laboratory.)

Computer animation may be used for other interesting artistic
effects. It is possible to have the computer take one picture and convert it
into another showing all the in-between stages as it’s done. Frames from
such a dissolve, or object blend sequence, are shown in Photo 1.16.

Not all artists need to be mathematically inclined to produce an
effective animation on computers. The animation called Walking Man
located on the page edges of this book was created for us by an artist who
simply used cylinders of various sizes and forms to generate the shape of
the mechanical man.

c)

Photo 1.16: These three key frames are from an object biend sequence and
illustrate how the computer can merge one image into another. The sequence
starts out as a detailed bust of a statue and goes through several frames to
become two Grecian warriors fighting each other. This sequence is from the
award-winning fully animated short entitled “Dilemma” (1981, Educational Film
Centre, Great Britain and Computer Creations Inc., South Bend, Indiana).
(VideoCell™ animation courtesy of Computer Creations, South Bend, Indiana.)

Animation in Advertising

Advertising is where the big money is being spent in computer
animation today. This is probably because the special effects of computer
animation are so novel that even people who don’t like computers are
attracted to them. Eventually computer animation may become so com-
monplace that advertisers will have to try something new to avoid the
technocratic, overkill blues. Laser art and three-dimensional television
may provide that novelty. Some computer graphics commercials. on the
other hand, may not need anything new because they are already so slick;
their computer influence is not readily detectable. It is possible that
computer animation techniques will be used to produce exceptional
graphics effects that would have otherwise required live action film.

One of the oldest uses for computer animation in advertising is the
Times Square marquee display. This display ts made up of thousands of
light bulbs that are controlled by computers housed inside the building. In
Photo 1.17 an artist prepares the display for a Timex watch ad.

Animation Perspectives / 29

30 / Animation Perspectives

i

Photo 1.17: This three-frame sequence shows the famous Times Square
display (by Spectacolor, Inc.) in New York. The 40 x 20 foot display has a
resolution of 64 x 32 pixels. Each pixel is a four light bulb cluster
(red-blue-green-white). The entire display consists of 8192 bulbs. A computer (a
Mark 420 by World-Wide Sign and Indicator Corp.) is used to develop the
individual frames that will be animated on the display. In photo a) animator Tom
Gemighani is working on an ad for Timex watches. The screen of the computer
simulates the resolution of the light bulb display. Tom is working from a
storyboard (above the terminal) that tells what each frame of the animation
should be like. He has control over each pixel in the display and uses the
keyboard to fill in the colors he wants. The final squence will be displayed at 8
frames per second. Photo b) shows a “big apple” generated on the display, and
photo ¢) is a close-up showing the individual bulbs that comprise the display.
Note the “glitches” in the display where bulbs are burned out. (Times Square
display courtesy of Spectacolor, Inc.)

The opening sequence of the popular television series, Nova, in-
corporated some fantastic animation from New York Institute of Tech-
nology. This group, located on Long Island, is one of the hotbeds of
computer animation research. Photo 1.18 shows the section of the scene
where the galaxy that had filled the screen a moment ago begins to shrink

leaving the letter ‘*“O’ (in the word NOVA) to grow and encompass the
entire screen.

Photo 1.18: This is a frame from the NYIT-produced opening sequence of
Nova, the popular PBS television program. (Courtesy of New York Institute of
Technology, Computer Graphics Lab. Graphics by David Geshwind.)

An advertisement for a radio was completely produced with com-
puter animation using a rather old-fashioned yet extremely effective
approach (see Photo 1.19). A digital plotter (device for drawing lines on
paper under control of a computer) was employed to plot each frame of
the ad on paper. The paper images were then photographed through
colored filters until the finished ad was created.

Photo 1.19: In this advertisement for a radio, a standard line plotter was used
to draw each frame of this sequence with black ink on white paper. (A line
plotter is a device that draws lines on a large paper surface in response to
commands given to it by a computer.) Various color filters were then used to
photograph the image onto film. The filters were placed in front of the line
drawings, and then the photographs were overexposed, giving a candy apple
neon effect to all the lines. (Separate drawings were created for each color.)
The car’'s dashboard was painted with conventional techniques and matted in
with the computer-generated drawings. What makes this sequence amazing is
that the equipment used to create it, an HP Desktop Computer, is quite an
affordable machine. (Computer graphics by Colin Cantwell. Courtesy of Marks
& Marks.)

Animation Perspectives / 31

32 / Animation Perspectives

State-of-the-Art Computer Animation Center

One of the most prestigious computer graphics houses, where the
first computer graphics paint system was developed (more on that soon)
and from which many experts got their start, is the New York Institute of
Technology (NYIT) Computer Graphics Lab. Manned by a team of over
60 employees, and housed in a pastoral setting, some of the most exciting
and realistic computer graphics ever imagined have been created here.
Privately funded, the founding fathers of the NYIT system were Ed
Catmull, Alvy Ray Smith, Malcolm Blanchard, and David DeFrancisco,
who all went on to work at Lucasfilm Ltd.

NYIT probably has the largest and most extensive graphics environ-
ment in the world. To display and hold their graphic images, it has over
twenty visible frame buffers (frame buffers with a separate processor and
video output) and more than fifteen blind frame buffers (large blocks of
memory with no video output). NYIT also has an impressive array of
large, medium, and small DEC computers. To store the completed
images, they have three 2 inch video tape recorders. Connected with a
private animation house and video production facility, NYIT is responsi-
ble for some of the best video animation yet to appear on a screen. In fact
NYIT has produced several computer-animated commercials that are so
good that it is impossible to deduce that a computer was on the production
payroll. Examples of these are: VW Does It Again, Lincoln Center Live,
Nova Opening, Walter Cronkite’s Universe.

Whereas NYIT aims for high-quality video graphics suitable for
television (525 line), other computer animation centers, such as Lucas-
film, are geared for super high resolution for film. Towards this end,
Lucasfilm is developing a laser printer capable of directly drawing
images on film, thereby eliminating the degradation caused by filming
off a CRT screen (we’ll explain what a CRT is in Chapter 2— for now it’s
just like a television screen).

Biological Simulation Applications

One growing application of computer animation is in the simulation
of how molecules are formed. In most cases, molecular structures are
inferred from special x-ray techniques. By shining x-rays on the speci-
men, a shadow or flat imprint of the internal composition of the molecule
is obtained. From this imprint, mathematical relationships between the
various parts of the molecule can be generated and fed into a computer.
Once the database for the molecule is inside the computer, animation and
graphics can be used to draw it on the screen and rotate it to various
viewing angles. Photo 1.20 shows a virus that was modeled in the
computer. Note the fabulous detail and fine shading that the computer
graphics were able to produce.

a) b)

Photo 1.20: Photo a) is a computer photograph showing a hemisphere of 90
of the full 180 amino acid subunits contained in the protein coat of the tomato
bushy stunt virus. X-ray crystallography was used to reveal the basic structure
of the virus. Nelson Max then used this information to create the mode!. Hidden
surface computations, which give the outlines of the visible parts of the spheres,
were done on the CDC 7600 at the LLNL Computer Center. Color shading and
highlights were calculated on a Sperry-Univac V75 minicomputer and then
plotted on a Dicomed D-48 color film recorder, which uses a high-resolution
black and white CRT tube. Color filters were used while transferring the image
to film. A special program used to produce the visible surfaces called ATOMLLL
was employed. ATOMLLL is adapted from a similar program called ATOMS
developed at Bell Labs. Spheres are divided into trapezoids of vertical slices in
the ATOMLLL algorithm. Nelson Max added code that allowed shading and light
reflection. The shading took five minutes to compute (4096 x 4096 resolution).
Photo b) shows three of the red protein subunits in greater detail. The big red
spheres from a) are broken down into greater detail where each smaller sphere
represents an individual amino acid. Although the yellow spheres appear in both
pictures, it is now apparent that the yellow chains are wrapped around a
three-fold helix. The pink regions of the protein extend beyond the shell of the
virus and are not indicated in a). (See color insert.) (Courtesy of Nelson Max,
Lawrence Livermore National Laboratory.)

Arcade Game Animation

Arcade games found at bars, pizza parlors, and shopping centers are
among the most sophisticated examples of real-time animation you can
find. Our earlier explanation of computer animation mentioned that
personal computers take advantage of displaying action on the screen as it
is occurring, rather than using the display and film approach of the
high-tech computers. The arcade games utilize very sophisticated micro-
processors and computer technology to achieve their effects. Anyone
who has played some of the newer high-speed arcade games knows that
the action can be so exciting as to actually cause dizziness and elevations
in blood pressure.

One car-racing game has the player looking out the front window of
a car, steering wheel clutched in sweating palms. While you are in the

Animation Perspectives / 33

34 / Animation Perspectives

driver’s seat, you rapidly tear around the corners of the racetrack. Houses
and trees zoom by the screen edges at incredible speeds, while other
racing cars pass you and smash into your car causing it to careen off the
road and crash in a screaming tangle of exploding light and sound. (This
is definitely not a game for someone with a weak heart!) Other games
have you piloting a jet over complex futuristic terrain while being
showered with flack and attacking rockets. The perspective in these
games is so engrossingly real that the playing time seems like seconds
instead of minutes. Technically, these games are able to achieve real-
time animation via custom high-speed circuits and non-standard pro-
gramming techniques.

1.8. GETTING STARTED IN ANIMATION TODAY

Now that you have seen what can be done with animation you might
well be wondering ‘“How do I get started?”’ The answer depends on what
kind of animation you want to explore. There are about four general areas
to examine: personal computer animation at home for fun, personal
computer animation for profit (i.e., writing games), arcade game anima-
tion, and high-tech animation for the film or advertising industry. Let’s
take a look at each of these.

Personal Computer Animation for Fun

If you wish to simply play with computer animation on your own
computer for fun, your task is relatively simple. As we explain in Chapter
4, plenty of home computers will give impressive animation effects
without much programming required. You will probably want to do
real-time animation; home computers are set up for that. You will also
probably want to start by learning a computer language such as BASIC,
Pascal, or Logo, because these languages are relatively easy to learn and
apply. (Of all three, Logo is the easiest, BASIC next, and then Pascal.
However Pascal is probably the most powerful for animation.) Finally,
you will want to take a close look at purchasing a computer that has good
color capability, has a fast display, has a selection of powerful graphics-
oriented languages, and allows custom character set graphics (see
Chapter 4).

You could produce non-real-time animation at home on a personal
computer too. This will require more investment in hardware (a camera,
filters, special motors for turning them, etc. — see Chapter 3) and some
knowledge of graphics transformations (which are really not too difficult
to understand). Of course, you must have a fundamental knowledge of
computer graphics. This book will aid in your understanding of graphics
and the use of ATARI products. Computer Graphics Primer by Mitchell
Waite (Howard Sams & Co., Indianapolis, IN) will help in your discov-
ery of Apple Computer’s graphics.

Personal Computer Animation for Profit

If you want to write computer games for personal computers that
effectively use animation, your task will be a bit tougher. You need to
know a high-level computer language such as BASIC or Pascal and
probably assembly language (the programming language of the micro-
processor). You need to know assembly because good animations must
be fast, and BASIC (and sometimes even Pascal) lacks this high speed.
You should also look at Forth and C, two high-speed languages that are
now available for many personal computers. You will also need to play
around with games already on the market and at arcades to get an idea of
what people are looking for.

Arcade Game Animation

If you want to do animation on arcade games, you’ll need to learn
assembly language for several of the more popular microprocessors. In
addition, you will need to be well versed in electronics because these
games pull out all the technological stops to obtain an effect. You might
also need to understand something called bit-slice microprocessors, as
well as the Forth language. Forth is a tricky, powerful, exclusive (border-
ing on religious) language that is also extremely fast. If you don’t intend
to do all of this as an independent agent, it would help to get a position
with a company that programs and sells arcade games. A job with an
outfit like that might enable you to learn by osmosis.

High-Tech Animation for Film or Advertising

If you wish to get into high-tech computer graphics, such as the kind
Lucasfilm uses, then you’ll need to learn the language C and frame buffer
technology. Most of the animation houses across the country use large,
expensive Digital Equipment VAX or similar minicomputers hooked up
to a commercial or custom frame buffer. Some universities have similar

computers you could study on. Even if you had access to one of those,
most of the software for doing animation on these machines are custom-

made, one-of-a-kind products. One solution would be to go to work for a
company that makes frame buffers or computer graphics terminals.

The Bottom Line

Obviously there is no right way to get started in computer anima-
tion. The best approach is to absorb everything you can about it. You can
attend the SIGGRAPH* conventions that occur each year around the end
of July and rub shoulders with the computer graphics pros.

4SIGGRAPH Conference Office, 111 East Wacker Drive, Chicago. llinois 60601, (312) 644-6610,
Telex: 25-4073 SBA.

Animation Perspectives / 35

36 / Animation Perspectives

We'd like to see you get your own computer and start programming
away in the haven of your home. In this way you can create a computer
animation that may impress someone enough to give you a job or to buy
your computer game. Who knows, one day your animations may be
viewed across the country either on film or on a computer screen. If you
study personal computers in depth, you will be in a position to write
special effects that have never been seen before. For example. one
student in a computer graphics class wrote an ATARI program that
simulates three dimensions just like the old three-dimensional movies,
using a pair of red/blue glasses! Good luck and happy animating!

Photo 1.21: Pyramid. (Courtesy of Information International, Inc.)

Computer Animation Hardware / 37

Chapter 2

Computer Animation Hardware

n the previous chapter we explained the theory of simple animation.

We covered the techniques behind hand-drawn animation as used
for years in the film industry and (briefly) the differences between
high-tech and personal computer animation. Now we are ready to take
the next step by examining the hardware (machinery) that is necessary to
achieve these animated wonders.

Animation is the most complex and technically sophisticated of all
possible computer graphics applications. This being the case, solid
grounding in computer graphics hardware is the best way to get started in
learning about computer animation. In this chapter we will answer the
question “*“What are the devices that make animation on computers
possible?”’

Since computer graphics usually starts with a drawing on a com-
puter screen, we will first learn how the hardware of the graphics
machine draws on this screen. We will cover the different technologies
found in computer graphics (stroke and raster), as well as bits and pixels.
We will also be examining how the gray scale works, where color fits in,
and how character graphics are done. Finally, we will be presenting
material about the purpose and technology of digital frame buffers, the
encoding of pictures, video mixing, color in a television, personal
computer graphics hardware, and graphics peripherals.

2.1. THE CRT CANVAS

3

In computer graphics, the most popular “‘canvas’ on which the
computer does its painting is called a CRT (cathode ray tube). ' Although
we are no longer in the Flash Gordon Age of Rays, or the Edison Age of

'Computers may also draw on paper using special devices called digital plotters. These plotters are very
slow devices and therefore less popular than CRTs. They are useful. however. when a hard (tangible)
copy of the graphics is needed. (We'll be discussing them later.)

38 / Computer Animation Hardware

Tubes, this device persists because as of yet there is no better way to draw
with a computer. (Solid-state flat panel displays are still a number of
years away.)

As shown in Figure 2.1, the CRT (pronounced C-R-T) is a glass
tube-like affair with one large flat end and a long neck. All air is
removed, thus the inside of the tube is a vacuum. At the neck end of the
CRT is a device that emits billions of electrons. The electrons, like tiny
bullets, are shot out towards the flat face end of the tube in a narrow
beam, much like squirting water from a hose. The interior side of the
CRT’s face is coated with special materials (phosphors) that emit light
when struck by electrons at high velocity. (Although this special coating
never wears out, too many electrons striking the same spot for a long time
can burn the phosphors.) At the point at which the beam of electrons
strikes the face of the tube, a tiny spot of light appears. This narrow beam
of electrons is the brush with which all images are created on the screen.

a) CRT (SIDE VIEW)

HIGH VOLTAGE
TO ATTRACTION
HIGH REGION

VOLTAGE -~

MAGNETIC PHOSPHOR
FIELD — COATING

SOURCE OF
ELECTRONS
= LIGHT

ELECTRON BEAM

b) CRT (BACK VIEW)

Figure 2.1: The CRT is revealed.

Controlling Our Beam ‘‘Brush”’

Now that we have a brush (our electron beam) that will draw on the
screen, we need a way to control its position. This can be done by putting
an electronic field around the neck of the tube at the place where the beam
starts its journey.

Just as a magnetic field pulls the needle of a compass, an electric
field will bend the electron beam as it travels towards the screen. The goal
is to deflect the beam in a predictable manner that can be controlled by
external signals. (The problem associated with this is akin to trying to

move a hose that is squirting colored water in such a fashion that it draws

a picture on the grass.) There are two ways to accomplish the deflection.
One is by using metal plates inside the neck of the tube and applying an
electric voltage to them. The other involves using wire coils wrapped
around the neck and applying electric current to them. The use of coils is
the preferred method for televisions and computer graphics CRTs,
whereas plates are employed more often for deflection in oscilloscopes.
(Oscilloscopes are instruments used by technicians and engineers to
study the images of electronic signals. We describe them in this section to
help explain the evolution of the graphics computer.)

There are two sets of plates or coils on the tube, one vertical set and
one horizontal set. In terms of plates, if we apply a positive voltage to the
right horizontal plate, the beam will be pulled (deflected) to the right.
Reversing the voltage (positive on left) pulls the beam to the left. A
similar effect occurs with the vertical plates, and the beam is deflected up
and down. See Figure 2.2.

Y AX1S DEFLECTION

— TRACED OUT BY
ELECTRON BEAM

IN RESPONSE TO
+6 SIGNALS ON PLATES
® [\

X AXIS -
DEFLECTION +6 u }
\/—_ -~ DEFLECTION PLATES

Figure 2.2: Deflection in the CRT.

As the beam moves across the face of the CRT, it also causes the
spot of light to move, leaving a trace of light behind it. The trace of light
then corresponds to the electric signals that are deflecting the beam.
Basically, the position of the spot of light is proportional or analog to the
signals controlling it, and consequently we call such signals analog
voltages. For example, the greater the amplitude (strength) of the vol-
tages applied to the vertical plates, the higher up the beam (and dot of
light) moves on the screen. By applying repetitive voltages to the plates

Computer Animation Hardware / 39

40 / Computer Animation Hardware

of the CRT and by varying the amplitude and repetition rates (number of
times the voltages change amplitude per second), it is possible to actually
see these signals on the face of the CRT. This is the designed purpose of
oscilloscopes as a service and research tool, although for many years
underground artists used them to generate some beautiful effects by
combining special signals on the face of the scope. See Photo 2.1 for an
example of this.

\\(((@f.’//&%

f
‘1"“'0 I’

sl

MG,

Photo 2.1: Lissajou art pattern on an oscilloscope. (By M. Waite.)

Drawing on Our CRT with Analog Circuits

Now that you have an idea of how the beam is deflected and moved
about, let’s see how we can capitalize on this method to draw an actual
shape on the face of the CRT.

Take a look at Figure 2.3. It shows the face of the CRT, the
horizontal and vertical deflection plates, and two signals applied to the
two sets of plates. The two signals are called waveforms. Each waveform
has been carefully produced by special analog signal generation circuits.
The signals repeat over and over. One of the signals goes to the electron
gun and can turn it on and off. When the signal is steady (indicated by a
horizontal line on the waveform), the beam holds its position steady on
the screen for that axis. When the signal is ramping (indicated by an
angled line going up or down in the waveform), the beam moves from left

to right, or up and down depending on the plate receiving the ramp.? In
essence, while one signal holds the beam steady on one axis of the screen,
the other is moving it in a straight line. By properly coordinating these
two signals, we can construct a box shape, the shape of a house as shown
in the example, or any shape at all, for that matter. (If you follow the
signals and the numbers on the figures you will see how the beam is
traced out on the screen.)

Y AXIS
DEFLECTION | REPEAT
|
|
|
i
x
i
X AXIS ! — L REPEAT
DEFLECTION I
!
[
P]
I
1
ON r
BEAM + REPEAT
OFF fo— ==

Figure 2.3: Drawing a house on the CRT with analog circuits.

As you can see from the figure, even drawing a shape as simple as a
two-dimensional house requires fairly complex waveforms. As the shape
we wish to display increases in complexity, so do the signals needed to
create that shape. Although it is a simple matter in electronics to generate
symmetrical, repetitive waveforms, the generation of irregular asymmet-
rical repetitive signals like the kind used in our example is costly and
difficult. Sophisticated generation circuits are required, and herein lies
the problem. Such circuits are complex, bulky, expensive and unreliable.
Because they are analog, they require passive components (resistors,
capacitors, etc.) and are sensitive to heat, therefore varying in value with
the passage of time. Consequently the display image would be subject to
change, requiring repeated trimming (adjusting) of the components. And
yet, for many years, despite all of these inherent problems, analog
circuits were the only approach in use for generating graphic displays.
With the invention of the digital computer, however, a major shift
occurred in computer graphics that doomed a lot of expensive analog
equipment to the already cluttered closets of the research laboratory.

2For the purposes of the discussion, the waveforms in the figure are actually a distortion from what would
be used in a real application.

Computer Animation Hardware / 41

42 |/ Computer Animation Hardware

2.2, STROKE GRAPHICS

Digital computers marked the next logical step in graphics evolution
by replacing the analog circuits of the display with digital numbers.
Digital numbers are special in that they are made up of several signals.
Each signal is very simple and has only one of two possible states, ON or
OFF. Since they do not cover the smooth range of values that the analog
signals cover, they are not subject to the drift and reliability problems. To
create a number with the digital values, several ON-OFF signals must be
combined. This is done to represent numbers using the binary numbering
system. (Binary is just another way to count. The decimal system counts
to ten before creating a new digit; the binary system counts to two before
creating a new digit.)

Imagine that each digit of a binary number is a switch. When the
switch is ON the digit is called a | and when itis OFF, it’s called a 0. The
number of binary digits that are used controls the size of the binary value.

Below we show some values of a four-digit binary number. On the
left are the switch settings, in the middle is the binary representation of
these, and on the right are the decimal equivalents of the binary numbers.

Switches Binary Decimal

OFF OFF OFF OFF = 00 00 = 0
OFF OFF OFF ON = 00 0 1 = 1
OFF OFF ON OFF = 0 01 0 = 2
OFF OFF ON ON = 0 0 1 1 = 3
OFF ON OFF OFF = 6 1 0 0 = 4
ON ON OFF ON = 1 1 0 1 = 13
ON ON ON OFF = 1110 = 14
ON ON ON ON = L1 1 1 = 15

Thus, instead of the analog circuits generating complex waveforms,
the digital computer manipulates the binary ON-OFF values. The com-
puter works directly with numbers instead of signals and uses mathe-
matics in a more practical fashion. Unfortunately, the use of digital
computers created a new problem: they produce binary voltages but the
CRT requires analog voltages. Therefore, an additional device called a
digital-to-analog convertor (DAC) was installed between the digital out-
put of the computer and the analog input of the CRT. The DACs
converted the binary ON-OFF language of the computer into the smooth
analog signals needed to bend the electron beam.

Computer Animation Hardware / 43

In Figure 2.4, we see that a DAC is nothing more than a series of
resistors hooked together to sum the various binary values. Each resistor
is chosen so that the binary digit attached to it contributes a certain
amount of electricity that is proportional to its weight in the number. This
means that the topmost significant digits of the binary value have a bigger
effect on the final voltage than the lower, least significant digits.

DIGITAL
INPUT F—————=- MSB- -~
ON ! AN
| 1/8R
OFF —[_]-— 1 > AN
J \
ON I 18R N
OFF 0 ; g N
i ANALOG OUTPUT
ON 1 (UP TO 16 LEVELS)
1/2R ;
|
OFF Il 1 - g /
/
i
ON __I_L [R /
! /
OFF 1 >'_|"M’_ Y
|
DAC
L---LsB—-----= -

Figure 2.4: How a digital-to-analog converter works.

ELECTRON
OSCILLOSCOPE-\\\ BEAM

DIGITAL IN ANALOG OUT \/
Ve

X-DEFLECTION yd
a 7

DIGITAL
COMPUTER

Y-DEFLECTION

(A) THE OLD WAY: STROKE GRAPHICS

IN STROKE GRAPHICS D/A CONVERTERS ARE EXPENSIVE
AND SLOW. COMPUTER IS OVERBURDENED WITH REFRESHING
DISPLAY, DOESN'T WORK WITH EXISTING TVs, AND SO ON ...,

SCOPE
_TRACES

{(B) STROKE GRAPHICS:
HERE FIVE X,Y POINT PAIRS DEFINE
THE SHAPE SO LITTLE MEMORY iS

REQUIRED; HOWEVER, EXPENSIVE
ANALOG CIRCUITRY RAISES COST.

Figure 2.5: Stroke graphics using DACs.

44 / Computer Animation Hardware

Figure 2.5 shows the complete DAC-based graphics computer.
Let’s see how to draw with it. To begin with, pairs of numbers (in binary)
representing the voltage values of the endpoints of the shape’s lines are
put in the computer’s memory. For example, using our previous figure of
the house which was painted with the analog circuits, we would set up the
binary voltage pairs to correspond to the values in the figure, i.e., the first
pair would be —6/+ 3, the next 0/+ 6 (X values given first), and so on.
(If you're interested in how to do negative binary, see Microcomputer
Primer by Mitchell Waite and Michael Pardee, Howard W. Sams and
Company, Indianapolis, IN.)

The computer feeds the binary endpoint pairs to the DACs, and they
in turn convert the binary values to analog voltages that are sent to the
deflection plates. This technique is referred to as stroke graphics because
in a single stroke, the beam draws a line from the last point on the screen
to the next point. The computer only has to deal with line segments. This
stroke approach is also called vector graphics, a vector being a line
defined by a start point and an endpoint. The shape drawn with the vector
display consists of a list of endpoints defining the shape. To add a new
piece to the display, the computer would generate new endpoints and
insert them in the list. Moving the shape on the screen requires that some
offset value be added or subtracted to all the values in the list. With the
development of vector displays, life for the graphics computer user
became much easier.

The vector approach ushered in a new era of capability. CRTs and
computers began to be used for radar displays, for modeling mathemat-
ics, and for revealing the insides of molecules. Although the vector
approach allowed dramatic displays and is still in use, it has a serious
drawback. Like the analog circuits described earlier, high performance
DAC:s suitable for good quality graphics contain analog circuits that must
be adjusted, are temperature sensitive, and relatively unreliable. There-
fore DAC-based graphic computers are expensive and utilized only when
money is not a primary concern.

2.3. RASTER GRAPHICS

The most popular approach to computer graphics, known as raster
graphics, is based on ideas similar to the weaving of rugs. [n weaving, an
image is created by many strands that all run in lines in one direction. By
dividing individual lines into segments of color and coordinating them to
coincide with adjacent lines above and below, or right and left, a very
beautiful pattern can be formed.

In computer graphics, the CRT beam can be deflected in a similar
weaving pattern for drawing on the screen. The weaving pattern is
referred to as a raster. In raster scanning, the CRT beam is deflected in a
weaving pattern that zig-zags across the screen and down, many times

per second (see Figure 2.6). A standard television also uses raster
scanning. The actual lines are visible when you look at the screen at close
proximity. For the purpose of the following discussion, when we talk
about the raster display, consider that it applies to the television display.
(The television has additional components that will be described later in
more detail.)

VIDEO SIGNAL
SHOWN BELOW
IN (C)

CPU,

RAM, ,

170, g

0SC. SYNC M 1

GENERATOR

COMPUTER

TELEVISION OR MONITOR
IN DOT MATRIX RASTER SCAN
GRAPHICS, LOW-COST RAM
MEMORY AND DIGITAL VIDEO
LOGIC WORK WITHOUT ANY
ADJUSTMENT ON REGULAR
TELEVISION SETS.

RASTER
SCAN LINES

DOT MATRIX ON RASTER SCAN:
MORE MEMORY REQUIRED TO
STORE POINTS FOR SHAPE, BUT
CAN BE BUILT WITH CHEAP
DIGITAL COMPUTER LOGIC

Figure 2.6: Raster scanning.

Basically, the graphics computer draws on a raster-scanned screen
by keeping track at all times of where the beam is in its scanning field. If it
can turn the beam on at the proper location on the raster. a picture can be
formed. Because there are a limited number of lines in the display, a
closely scrutinized picture will appear to be made up of a series of dots. If
there are enough lines and you don’t observe from too close a vantage
point, however, the individual picture dots will blend together and a
finely detailed image will result.

How does the computer know where to put the dots so as to create
the image? And how does it get the raster on the screen in the first place?
The answer to these questions is found in the sync circuits and sync
pulses.

Computer Animation Hardware / 45

46 / Computer Animation Hardware

To get the beam to scan on the screen properly, the raster display
contains special vertical and horizontal scanning generators. These are
devices that produce a signal which is sent to the deflection plates. The
signal is a sawtooth-shaped waveform that, like the signals we saw for
driving the oscilloscope, cause the beam to move across the screen, from
the top to the bottom and back. The horizontal transit is controlled by the
ramping portion of the horizontal sawtooth. During this time the beam
can be turned on to display a dot somewhere on the line. The trip back to
the beginning of the line happens very quickly by the falling, straight line
portion of the sawtooth. At the same time the beam is brought across the
screen, a vertical sawtooth signal is driving it downwards.

In standard U.S. video, the beam traces out 525 horizontal lines
(actually only 484 plus two half lines are visible). This is done at a rate of
about 30 times per second. To decrease the amount of flicker this would
produce, the picture is divided into two parts, called fields. Each field
contains every other line of the 525 line display. The fields are thus
interleaved so that the entire screen is filled with an image 60 times per
second.” This is called video interlace. Since the weaving pattern is
repeated at such a high rate, any dot that is illuminated will appear to the
eye to be steady on the display (because of persistence of vision). The 60
cycle rate is called vertical refresh because an entirely new field is
scanned (refreshed) 60 times per second.

The scanning generators inside the display device need some way to
stay in coordination with the computer, or the computer will not know
where the beam is. The solution is that special sync pulses are developed
in the computer. These sync pulses are inserted into the main video
output that is sent to the display (the information for turning on the beam
is inbetween the pulses). These pulses tell the scan generators when to
start scanning a line and when to return the beam to the top of the screen.
Circuits in the display strip off and use the pulses to get in step with the
computer’s signal. (Without the sync pulses the picture would roll
vertically or tear horizontally as you have probably seen it do when it is
“‘out of sync.””)

Horizontal sync pulses start the horizontal sweep of the beam, and
vertical sync pulses start the vertical trace of the beam. In between these
pulses is the video information, also in the form of pulses, that makes up a
single horizontal line on the TV. The horizontal lines are like the threads

*The reason for scanning the picture 60 times per second and not 24 or some other value has to do with the
way the United States distributes electricity. In the U.S., all electrical power is alternating at 60 cycles
per second (AC). In Europe the rate is 50 Hz. If the vertical refresh rate was anything other than 60. any
leakage or ripple from the power line would **beat™” with the refresh rate. The result would be a picture
that would roll on the screen. By using 60 cycles. we can lock the picture at the same rate as the power
line and have a very steady display.

running through the rug, and the video information is like the intensity or
color changes on each thread. The sync pulses are the beginnings and
endings of the threads.

On a single one of the 525 lines, a large number of dots may be
defined, but only a limited number may be displayed due to the mechan-
ics of the display and the limitations of the electronic circuits. An upper
limit of about 500 different dots on a line is possible on a black and white
display, whereas about 200 are possible on a color display.

X

L ~63us

BEAM ON BEAM ON-FIELD 1
L2I50per sec /o BEAM ON-FIELD 2
VERTICAL —_— /
TRACE T ———— ¥
It o PP
T s e
T mme——— T
—RETRACE BEAM OFF
I
|
|
I
525 LINES
]
)
HORIZONTAL TRACE
'y g
—— - - -
—
//
— //
—
< -
—— _ RETRACE BEAM OFF
33.3ms T~/
30 per sec T]
e ///
T _ —
— —
— —
— —
1 =

VERTICAL RETRACE

Figure 2.7: Details of the standard raster.

On a black and white display, video information on each line tells
the beam of electrons how intense the dot of light is to be. The light can be
controlled from very white to gray to black (no light). In the case of the
simplest black and white graphics computers, the video information is
represented as a single pulse that indicates whether a dot on a line should
be white or black. More sophisticated graphics computers allow the dot

Computer Animation Hardware / 47

48 / Computer Animation Hardware

to be one of many shades and are referred to as having gray scale
capability.

A computer that is properly synchronized can turn the beam on at
any point in the display’s X-Y plane, thus forming a dot there. The
raster-scanned screen can thus be imagined as a super dense matrix of
about 500 dots by 500 lines. If the beam is turned on at specific locations
on the screen, we get a shape made of tiny points. This may seem quite a
bit more complex than the stroke graphics, but, in fact, raster scanning
graphics considerably reduces the cost of the circuits needed for display-
ing information and leads to a much less expensive computer. The main
reason this is true is because the analog circuits of the vector display (the
DACS) can be eliminated; also, because the circuitry for televisions is
mass produced, it is quite inexpensive.

The negative aspect to the raster graphics approach is that unlike
stroke graphics, it must store a// the points for the shape being drawn
rather than just the endpoints. All these points are stored in the com-
puter’s memory. This used to present more of a problem than it does
today, since the costs of computer memory devices have been drastically
decreased.

Now that you have an idea of what the screen of the computer is all
about, let’s take a look at how the computer takes its stored pictures from
its memory and puts them onto the screen. '

— 2

U U U

30R 4
4-6us “H" LINES
LINE VERTICAL
64 * 6us HORIZONTAL SYNC FREQUENCY —#] SYNC

(60H2)
INDIVIDUAL HORIZONTAL AND VERTICAL SYNC SIGNALS

SOURCE IMPEDANCE

iEo" =72 OR 1008
WH'J‘Z)E(e SINGLE DOT mA QAN """~ 2 VOLTS
OPTIONAL
d-——-------Z10voLT
BLACK - - --05 VOLT
SYNC —— - -—--0 VOLT

LEVEL h- HORIZONTAL S VERTICAL SYNC /
SYNC 60-Hz RATE
e—— 63 5u5 = 1H— 3H e

Figure 2.8: Sync signals.

2.4. THE GRAPHICS COMPUTER — A FIRST LOOK

Any graphics computer, whether it’s a low cost $99 personal unit
(like a Sinclair/Timex ZX-81) or a large expensive mainframe, contains
several identically functioning components. (See Figure 2.9.) These are

Computer Animation Hardware / 49

the central processing unit (CPU), the bus, read/write memory (RAM),
read-only memory (ROM), keyboard, graphics input devices, the video
I/O section (shown expanded in the figure), and mass storage devices.

MASS
STORAGE

FLOPPY DISK KEYBOARD

GRAPHIC

INPUT
DEVICES

RAM ROM
MEMORY MEMORY

RF
MOOULATOR

Figure 2.9: The graphics computer.

The CPU can be thought of as the thinking part of the computer’s
brain. It is the required intelligence that tells the rest of the computer what
to do and how to do it, and is primarily used to interpret the instructions of
the computer program. In personal computers the CPU is a micro-
processor, a small, mass-produced device. the size of a stick of chewing
gum, which contains thousands of transistors. In expensive mainframe

50 / Computer Animation Hardware

computers, the CPU is usually a complex arrangement of custom de-
vices, each specially designed for the job.

The computer’s bus is where information flows back and forth
between the different devices. It is like a high-speed railroad on which
signals carrying graphics information can travel. You don’t really need to
understand fully how the bus or microprocessor work to do graphics or
animation. It is important, however, to be aware of their basic functions
in the system.

Photo 2.2: A typical graphics computer. (Courtesy of Tektronix.)

Let’s continue with our explanation of the standard components of
the graphics computer. The computer’s keyboard, which resembles a
typewriter, is for entering alphanumeric (letters and numbers) informa-

tion, such as instructions and programs, into the computer.

The RAM is where the instructions and data for the computer are
temporarily stored while the computer is doing its processing. The RAM
is also where the image of the picture that is on the screen is stored.
Screen memory may be either a portion of the RAM memory or a separate
RAM memory. Its purpose is to hold the image that will be displayed on
the CRT.

The ROM is where special programs and data are kept. When the
power is turned off, information in RAM is lost, but information in ROM
stays. This special data is always instantly available to the computer.

The graphics input devices are the channel through which graphic
information, such as picture and drawings, may be entered into the
computer (more on these later). The video scanning circuits are used to
take the image in the screen memory and put it on the CRT. You’ll learn
more about this soon.

Finally, every graphics computer needs a mass storage device. This
device functions as a long-term storage of information that has been
processed by the computer, i.e., computer programs that will be loaded
into the memory, and other data. (Information from the computer can be
stored on magnetic material in the same way music is stored on magnetic
tape.)

2.5. THE BIT AND THE PIXEL

Earlier we described how pictures could be drawn on a raster-
oriented computer screen by having the image composed of tiny dots of
light. These dots, which have specific locations on the screen, are called
pixels (or pels), which stands for picture element. Pixels become visible
by turning on the electron beam at the proper location and proper moment
on the screen line.

Where do these pixels come from, and (since timing is crucial to
creating animation) what tells them to turn on? They are stored in a
special area of the computer’s memory called screen memory or the bit
plane.*The dots are represented in screen memory as voltage levels using
the same binary system we described earlier. A dot that is visible on the
screen is stored in memory as an ON voltage, while all invisible dots are
stored as OFF voltages. We can consider the ON and OFF voltages as
switches that can be on or off. The locations that store these on and off

“The remaining portion of memory that is NOT devoted to holding the screen image also contains bits
that are on or off. These bits, however. correspond to instructions for the microprocessor or special
program data. The versatile computer actually has the ability to store data. pictures. and instructions all
in the same memory.

Computer Animation Hardware / 51

52 / Computer Animation Hardware

voltages are called bits, an abbreviated way of saying binary digit. Figure
2.10 shows this relationship. In a typical graphics computer there are
thousands of these bits devoted to holding our precious image. In our
stmple example, each bit in the computer’s memory corresponds exactly
to a certain pixel location on the screen.

Contained inside the computer are scanning circuits, called multi-
plexors, that fly through the screen memory synchronized with the
scanning of the raster. They are digital devices that very quickly count all
the addresses of the memory and read each memory location. The
purpose of these scanning circuits is to look at every memory location in
the screen memory and decide if a bit is on or off. If it is on, then the video
information that is being sent to the display is given a pulse to cause the
beam on the screen to turn on (and thus become white and visible).
Otherwise, the beam is left off, and black is visible at the location.

ETC.
"ADDRESSES' t
L
s096| | | jr
a097{ofolo olof[1T11
4098 [1[1]1]1]0 0. 0!0]
4099 [0'0]0}1|0]0j0 0]
500010[171]0:0]010 0]
5001 (1o foi0 0 of1fo|
l THIS IS JUST A SMALL PORTION
OF BITS FOR IMAGE BELOW
ere NOTE HOW HARD IT IS TO 'SEE’

CUBE IMAGE

(g) HOW BITS LOOK IN 8-BIT WIDE MEMORY

0000000000000
ololololololololo]ololojolo]0 o|ojolojo|o|oiolo|o}oio]o
olololoiofTia]311]1 0jojo olojojoioje[eieeee 80
ojololofilo[ofolo]o ololo olojolole[o|o[o]o]o[e |0
ololo]3]o 0l0 0[ofT[o]1[o]0]0 ololofe]o|o[o[o]o[e[o]e]o
0,0f3f111i1j17311}0l0j1]0j0]0 ojo|e/ee/e[e[e[e]o/o|e|oO|C
olofifoiofojolo[1jolo}T]ol0]0 olole[ojo[olo]o]e|o[o]elooio
0/0]1{0/0]0:010111010{31:0|0|0 ©0|0le]o 0l0|0|0|@]0 0le]0|0 O
olo|1loloioiolo[1]olof1]o]0l0 >|o[e]oio[olo]oje|ojo[ejo]o’o
olofijoloololof1{ofilo]o[o[o o|o|e]o’o[olo|o]e[ofe]ol0]0 ©
o[o|1joi0:00]0 olofojolo ololejolojooloje[e[oc 000 ©
olo[Ti3[I3[Ii 3[ojol0l0]0]0 oloje e eeeee[ccojo[0 0
olofofolo[ojofojololofo]o]o]0 olololo’olololololololo’olo’o

0C000000O0000000O0

0000000000000 0O0
NOTE: 1's CORRESPOND TO DARK DOTS ®-1-0NBIT
IN PICTURE ON RIGHT © = 0= OFF BIT
(6) TWO DIMENSIONAL REPRESENTATION (¢) PIXELS ON SCREEN

(continued)

MEMORY SYNC

VIDEO ¥
COMBINER

CRT

SCANNING
MULTIPLEXOR

(d) SCANNING PIXEL MEMORY

Figure 2.10 Pixel memory and scanning it.

The correspondence between memory and dots on the screen can tell
us the amount of memory bytes needed for a certain desired resolution.
For example, suppose the computer is to have a black and white (or black
and green) display and that each dot will take up one bit of memory. If the
display is to have a resolution of 320 horizontal dots by 200 lines. the
result is 320 x 200 or 64,000 pixels on the screen. This means that for
our example of one bit per pixel, there must also be 64,000 bits in the
memory. Since computers usually specify memory storage in terms of
bytes (8 bits = 1 byte)., we need 64,000/8 or 8,000 bytes for this
particular display. Later we will see how adding color or extra shades to
each pixel increases the number of bits per pixel and subsequently the
number of bytes needed in memory to hold the image.

Bit Planes

Imagine the screen memory for the computer as a two-dimenstonal
plane of bits, with each bit corresponding to a pixel on the screen. (Even
though the screen memory is probably organized in bytes, looking at it as
a bit plane simplifies our discussion.) Figure 2.11 shows a bit plane for
our black and white 320 x 200 display.

Computer Animation Hardware / 53

54 / Computer Animation Hardware

[oToJo]o]oTolo]o]o]0
OO OO 0 BEOR
[0 O O BEA
oo ojmoiojolo\
[ojojolo MoMololo]o
O A B OREG
lojo oo oolololo
ofojolelolo[o]ololofoly
ojojololofofo[o[o[o]o,
ojololofofofololofo
ojololojolojololo
Q[o[o]0o]o]o]0]0” *-— 30 BTS————— =
S -
)
200
BITS 320 X 200:64,000 PIXELS

L

Figure 2.11 A 320 x 200 bit biack and white bit plane.

2.6. ADDING GRAY SCALE

If we wanted to create a picture with some tonal gradations, how
could we do it? In other words, how can we add shades of gray to our
black and white display? The gray scale can be created by controlling the
intensity of the electron beam as it goes through scanning each pixel on
the screen. Recall that so far the beam has been either ON (resulting in
white), or OFF (resulting in black). Now we are going to add several
levels of intensity between white and black.

For example, if we wish eight levels of gray, then eight intensity
levels of the beam are required. Where do these intensity levels come
from? Simply by adding more bits for each pixel. Remember our binary
switches? How many switches are necessary to offer eight different
levels? Or, in other words, how many bits are needed to count from O to 7
(0 to 7 represents 8 different states)? Three bits are required, as shown in
the following table:

Switches Binary Decimal

OFF OFF OFF = 00 0 = 0
OFF OFF ON = 00 1 = 1
OFF ON OFF = 010 = 2
OFF ON ON = 0 1 1 = 3
ON OFF OFF = 1 00 = 4
ON OFF ON = 10 | = 5
ON ON OFF = 110 = 6
ON ON ON = 111 = 7

Another way to determine how many bits are required is to use the
following formula: 2 raised to what power equals the desired number? In
the example above, we want 2 raised to a power that equals 8. We know
that 2 raised to the third power is 8. So how do we get the extra bits into
our image? We simply stack two additional bit planes to our existing
plane, as shown in Figure 2.12. Now each pixel on the screen has 3 bits of
information. Since we are allowing the amplitude of our video informa-
tion to take on one of eight different levels, we need to convert the 3 bits
of digital pixel information to eight levels of analog information for
controlling the beam’s intensity. Again, the DAC comes to the rescue. In
this case, we need a DAC with three inputs. The output on the DAC is
mixed with the sync pulses and sent to the display. Now it will convert the
3 digital bits in each scanned memory location to the respective voltage
level for the amplitude of the beam.

1
8 GRAY Lt _
SHADES 1

3 BIT PLANES

Figure 2.12 Adding gray scale with three bit planes.

Gray scale is one way that high-tech computers accomplish stagger-
ing realism. When the number of bits per pixel is increased beyond a
certain number (about 8 bits or 256 levels of gray). it is almost impossible
to tell the difference between the digital image of a computer and a
photograph.

Computer Animation Hardware / 55

56 / Computer Animation Hardware

2.7. ADDING COLOR TO THE DISPLAY

Now that we have a gray scale, the next consideration is to add
color. As it turns out, this is not as difficult as you might imagine. Before
we explain the process, we first must digress a ‘*bit’” and see how color is
put on the CRT display device in the first place.

The Famous Red Green Blue (RGB) Monitor

Color is obtained on today’s high-tech graphics computers by using
the Red Green Blue (RGB) direct drive monitor. This is a fairly expen-
sive ($800 to $5,000) CRT that contains three separate electron beams,
one for each of the three primary colors of light: red, green, and blue. In
addition, this CRT has built-in scanning circuits for moving the beams on
the screen. But, unlike the surface of the black and white CRT, which is
coated with a smooth layer of white light-emitting phosphor, the surface
of the color CRT is coated with three different phosphors arranged in a
triad of dots. (See Figure 2.13.) (Note that instead of dot triads some
CRTs use bands of the three color phosphors.) A special metal aperture
mask is placed inside the CRT directly over the dots. The holes in the
mask allow each of three beams to illuminate its corresponding color
dots. The beam designed to produce the color red, for example, will only
illuminate the red phosphors.

The computer sends a separate video signal to each of the three color
guns, each signal representing an intensity of a screen color. The intensi-
ty of each beam then determines how much of that primary color is to be
mixed at the pixel location. In other words, if the color at a particular
location was to be pure blue, we would turn off the red and green guns
and turn on the blue gun full force. If the desired color was purple, we
would turn off the green gun and turn on the red and the blue. To produce
white, we would turn on all three guns. We can fine tune the exact color
that gets shown by controlling the amount of each of the primary colors
that gets mixed in at each pixel. This is done precisely the same way as we
did with shades of gray, i.e., each gun’s intensity is controlled by the
computer.

The intensity of each color is in turn set by the number of bits
representing that color in the bit plane. For example, suppose we allocate
3 bits for each of the three primary colors, so as to get eight intensities (or
shades for each color). This would make a total of 9 bits dedicated to each
pixel on the display, and we would have 9 bit planes. The 3 bits per
primary color means that we can have eight shades per color at each pixel
location, for a total of 8 X 8 X 8 or 512 possible colors! Believe it or
not, the human eye can actually distinguish many more colors than this.

We now need three separate DACSs in our graphics computer, one
for each of the primary colors. The circuitry for driving these DACs
increases the complexity and cost of the color display, as does the
additional screen memory.

BLUE ELECTRON

RED

PHOSPHORS
ON GLASS
FACEPLATE

Figure 2.13: The RGB color CRT and aperture mask.

2.8. FRAME BUFFERS

Today most high-tech raster-scan displays are based on the use of a
large digital memory called a frame buffer. The frame buffer (which we
alluded to when we discussed bit planes) is nothing more than all the bit
planes, stacked one upon the other and considered as a single entity. The
name ‘‘frame buffer’’ comes from the fact that the device is a large
memory designed to hold a single frame of a film, graphic picture, etc.

The number of bit planes being used sets the pixel depth of the frame
buffer, which in turn sets the number of bits available for the color
description of each pixel. The bit depth, in turn, sets the overall cost of
the frame buffer. Obviously, the more bits used for each pixel, the greater
the color capability of the buffer. Likewise, the number of horizontal and
vertical bits in the frame buffer sets the resolution obtainable on the
screen. State-of-the art animation houses, graphics designers, and others
use frame buffers with dimensions of 1024 x 1024 pixels and a depth of
up to 24 bits. (See Figure 2.14.) In a 24-bit deep frame buffer there are
usually 8 bits devoted to each of the primary colors. (Later we’ll be
showing how there are other ways to organize the bit planes.) This results
in 256 X 256 X 256 = 16,777,216 different colors. Although it is
unlikely that any living creature could differentiate between two adjacent
shades, it points out the range of color the high-tech frame buffer allows.

Computer Animation Hardware / 57

658 / Computer Animation Hardware

8 BITS
—r D/A
YOKE

B

8 BITS G

+ D/A] CRT

R

8 BITS \

D/A

/ SCAN
CIRCUITS

256 SHADES
PER PRIMARY COLOR
=16,777,216 COLORS

FRAME BUFFER @

1024 x 1024
512-1024 = 25,165,824 BITS
PIXELS
512-1024
PIXELS

Figure 2.14: A hi-tech 24 bit per pixel frame buffer.

Let’s do a little exercise to see what such a frame buffer might cost.
The total number of bits used in the frame bufferis 1024 x 1024 X 24,
which is 25,165,824 bits (24 Mbits for short, pronounced Megabits —
one Mbit equals one million bits). Today, a 64 K-bit RAM chip costs (in
quantity) about $8.50 (price obtained from the classified ads of BYTE
magazine). We would need 24 Mbits + 64 Kbits = 384 chips for our
frame buffer. At $8.50 per RAM chip, this comes to $3,264 just for the
memory portion of the frame buffer. This price does not include the

expensive circuits for driving the DACs that are required for each gun.

In general, frame buffers on the market today represent each color
gun’s intensity with 1, 2, 4, 8 or more bits of memory. As we saw earlier,
1 bit is sufficient for simple graphics and leads to a low cost display; 2 and
4 bits are useful for solid colors or shades of gray, and 8 bits are required
for finely detailed, shaded pictures.

2.9. GETTING THE FRAME BUFFER IMAGE ON FILM

The purpose of the frame buffer is to allow graphics designers to
scan their latest work of art on the CRT. This doesn’t, however, solve the
problem of getting the image onto 35 mm film, which is the main concern
of animation houses. The way this is done is interesting in that it points
out the flaws in the color CRT. The most straightforward approach would
be to simply display the frame buffer’s image on a high-quality CRT and
take a picture of it. This, however, is not the way they usually do it.
Remember the dots and the aperture mask used to keep the guns from
illuminating adjacent pixels? Well, because the mask and dots cannot be
made smaller than a certain measurement, they end up determining the
maximum resolution obtainable on the CRT. This is usually much less
than what the frame buffer, the computer, or the film is capable of.
Therefore, the film will never show a resolution greater than that mask.

The standard solution to the problem of photographing color is to
use a device called a film recorder to photograph the images. It contains a
very high-quality black and white monitor and three color filters. Since
the black and white monitor contains no mask or color dot triads, it can
resolve extremely high-resolution images. Here’s how it’s done.

Three color filters are employed, one at a time. The frame buffer is
grouped into three primary colors, red, blue, and green, each having
eight bits and planes of intensity information. When the red filter, for
example, is placed in front of a black and white monitor, the output from
the red planes are turned on and the green and blue planes are disabled.
Thus the intensity information for the red part of the picture is now on the
CRT and the red filter is in front of it. The frame of film is then exposed.
Next the blue plane is enabled, the red and green are disabled, a blue filter
is placed in front of the CRT, and the photo is taken again without
advancing the film. This same process is then repeated for the green
plane. The film automatically mixes the three colors for us. This will
produce an image with the same resolution as the frame buffer.

Bypassing the Frame Buffer

It is possible, however, to bypass the frame buffer and send to the
film recorder much higher resolution images, even higher than the best of
today’s film can resolve. This is accomplished by sending the film
recorder a single scan line at a time. The computer displays this single

Computer Animation Hardware / 59

60 / Computer Animation Hardware

line on its CRT, exposes the film, and then accepts the next scan line,
erasing the first from the screen. This is repeated for each scan line of
each frame, producing resolutions as high as 6000 x 4000 pixels with 9
bits per color.

Unfortunately, even this approach has a major drawback. It can take
as long as five to ten minutes to record each frame at high resolutions. To
solve this and many other problems, Lucasfilm is developing the ultimate
film animation system, called a Pixar. It is a general-purpose picture
computer, complete with processors, plenty of memory, and lasers for
I/O (input/output) devices. This hardware production instrument can
“‘suck’” pictures from film with its lasers, manipulate the images, and
spew them back out with another set of lasers onto new film. Lasers are
used because they are the most controllable light source available and
produce extremely vivid colors. Future Star Wars films should be of an
incomparable visual quality.

2.10. ENCODING THE PICTURE IN THE BUFFER

The process of encoding refers to the way the picture information is
organized inside the buffer. There are several ways to accomplish this in
the frame buffer. Often, bits are divided in some manner to represent the
three primary colors. If the pixel depth is only 8 bits, for example, we
might allocate 3 bits to red, 3 bits to green, and 2 bits to blue. The reason
for the underrepresentation of blue is that the eye is less sensitive to the
blue region of the color spectrum, because it has the smallest number of
blue receptors. Thus we allocate fewer bits to blue because they would
otherwise be wasted. These three components are then fed to the three
guns of the color monitor.

2.11. COLOR MAPPING

The trouble with the simple, 8-bit color encoding scheme above is
that the range of colors is limited. With 3 bits per primary color we can
only have eight shades of that color. In our example of 3-3-2 bits, we can
haveupto 8 X 8 X 4 or 256 different shades. Although this may seem
like a lot, the human eye is capable of resolving many more shades than
this. Fortunately. there is a good way to obtain more color shades without
utilizing more frame buffer memory. This method, called color mapping,
is used by more high-tech frame buffer manufacturers today (and some
personal computer manufacturers such as Atari).

With color mapping, the bit values that are normally stored in the
frame buffer are interpreted as addresses or pointers into a table of colors,
rather than directly as colors. This table may be an area in RAM or a
collection of special color registers. This means. for example, that the

8-bit value at a certain pixel location would point to a table address which
contained three individual color values, one for each of the primary
colors. (See Figure 2.15.)

By using such an approach, an 8-bit per pixel frame buffer can
address a color table with a maximum of 256 color values in it. This
means that the screen could display 256 different colors at one time. In
addition, each of these individual color components can be defined to a
high degree of precision, because the bit length of the table can be much
greater than the 8 bits per pixel we showed earlier. For example, the table
could be 24 bits wide, therefore allowing 8 bits for each primary color, or
256 shades for each color, or a maximum of 16 million shades per pixel!
Keep in mind, though, that only eight bits are required per pixel. (See the
box that foilows for another explanation of color mapping.)

(e Ll ﬂB-BIT PIXEL REGISTER
Frow RED | GREEN IBLUE
FRAME [BLUE SIGNAL
BUFFER

D/A CONVERTERS
a) SIMPLE DECODING OF 8-BIT PIXELS

RED GREEN BLUE COMPONENTS READ
ya FROM TABLE
.__.‘ | I RED
FROM GREEN BLUE
FRAME T —

&

Z
BUFFER l—. -
INDEX |

o L
£
£

L1

COLOR MAP TABLE

D/A CONVERTERS
b) SAME 8-BIT PIXEL VALUES INDEXING INTO A 24-BIT COLOR MAP

Figure 2.15: Pixel values indexing into a color map {(a & b).

Computer Animation Hardware / 61

62 / Computer Animation Hardware

Another, less apparent advantage of the color map is that changing
any colors in the color map table changes all associated colors on the
screen instantly! This is useful for painting on the screen and for color
animation. For example, suppose there were several balloon shapes on
the screen. Some are filled with green, some with magenta, and some
with yellow. Suppose we wanted to change all the magenta balloons to
pink. In a simple color encoding scheme, we would have to change all the
magenta pixels to pink pixels. This would prove to be a time-consuming
task. Color mapping, however, enables us to simply change the magenta
value in the color map table to pink, and instantly all the magenta
balloons turn pink. Frequently, the color map table is referred to as color
registers, and the entire process is called color register encoding. We will
talk more about color register animation in Chapter 6.

Color Mapping and the Magic Paint Store

Here is a simple analogy you can use to understand the idea of
color mapping and color registers. Although we will be using an
ATARI Home Computer in our example, with its maximum of 128
colors, the analogy holds true for other machines if you assume the
appropriate number of available colors.

Imagine a paint store shelf filled with 128 cans of different color
paint. In front of you there are nine magic, empty paint buckets, each
one labeled with a number from 0 to 8. Each bucket has a brush in it
with the same number (the buckets are the color registers and the
paint cans are the colors you can put in the registers). A large canvas
is before you, begging for a picture. Feeling artistically inspired, you
begin by filling the first bucket with one of the 128 colors (a light blue
color), pick up the brush, and paint the sky on your canvas. When
you have finished with that color, you fill another bucket with your
second color selection and paint some more. You continue this
process with the remaining seven buckets. Since there are no empty
buckets left, you decide to empty Bucket 0 and fill it with a new color,
a deep orange, chosen from the paint cans.

This is where the magic comes into play. Lo and behold, as soon
as you put the new colorin Bucket 0, the sky in your picture, originaily
painted with Brush 0, immediately changes to orange! In fact, every-
thing that was previously painted with Brush 0 now appears in the
new color currently in Bucket 0! When you try this with Bucket 1, the
same thing happens with everything previously painted with Brush 1.
You have magically changed your painting from a cool mid-
afternoon scene to a fiery sunset — and you didn't even have to use
paint thinner to clean out the old color from the bucket before putting
in the new. The new color has the property of completely expunging
the old color.

The fact that all colors on the screen painted with a certain
bucket change color together can be less than desirable at times.
For example, if your sun was setting over a blue ocean, you probably
wouldn'’t be thrilled by having the Caribbean looking like orangeade.

Computer Animation Hardware / 63

Another potential problem is that the ATARI Home Computer limits
you to amaximum of nine different colors on your canvas when using
its color registers. Of course, the machine costs only $200 to $800,
$0 you can't really complain.

Photo 2.3 shows an example of color mapping being used to change
the primary colors of a graphic display (see color insert).

Photo 2.3: These photos show the effects of color registers. In a) the circles
are all red, while in b) they are blue (see color insert). This was done by
changing only one byte in the color register. These graphics are done by Jane
Veeder, who is using ZGRASS language on a Datamax UV-1 computer.
ZGRASS, developed at the University of Chicago, is a very powerful language
especially designed for graphics. (Courtesy of Jane Veeder.)

2.12. VIDEO MIXING VIA BIT PLANES

By treating the frame buffer as several bit planes rather than a single
unit, each can be made to hold a separate image. For example, an 8-bit
per pixel frame buffer can be divided into two images of 4 bits each, four
images of 2 bits each, or eight individual black and white images. In

64 / Computer Animation Hardware

animation, this means several frames of the image can exist in the buffer
at the same time. The video from each plane can be turned on and off, and
thereby one image part can be faded out while another is merged in. So by
having several bits per pixel, we can do more than just represent different
colors and intensities. Using this technique, it is possible to have a static
background image while another image transverses it. No special logic
operations need to be performed for the movement since each bit plane is
independent of the other.

2.13. OTHER ENCODING TECHNIQUES

While the frame buffer is an extremely useful innovation, it does
have its problems. For one, it does not offer the most compact way of
storing graphic images, and therefore the large amount of memory
required keeps costs high. Further, since every byte of the image must be
changed if the image is to be shifted the smallest amount, the frame buffer
is extremely slow in its response time for moving highly detailed images.
Finally, when transferring the image in the frame buffer to the disk for
permanent storage, much time is required and much space is used up on
the disk itself. One solution to this last problem is based on the compact-
ing of the image via encoding techniques.

Real-Time Scan Conversion

The viability of the frame buffer really deteriorates in terms of
compactness of storage when we consider a simple line drawing such as a
three-dimensional box. Compared to a stroke graphics display that stores
endpoints, the box image could be stored in about | percent of the time
and 0.2 percent of the memory space as the frame buffer. A solution to
this problem is called scan conversion. In scan conversion, the image is
stored as geometric descriptions rather than as pixel intensities of the
frame buffer. Scan conversion relies on a special display file, which is
simply another area of memory for holding endpoint values for an image.
A special circuit looks at the display file several times per refresh cycle to
generate the image and mathematically determines if a line segment
intersects the current scan line being drawn. The image can be easily
modified by changing the description in the display file. The problem
with this approach is that special hardware is needed to perform the scan
conversion at rates of 30 frames per second. Very expensive graphics
systems, such as the Link Flight Simulator (a device that allows pilots to
be trained in flying new aircraft) uses scan conversion hardware and
achieves impressive degrees of realism.

Run-Length Encoding

Another approach to compact storage of images that works on both
memory and disk is called run-length encoding. This technique works

best for images involving solid gray or color areas. The approach has
been applied even on personal computers such as the Apple and is based
on the fact that a typical scan line has pixel values that remain at the same
intensity or color for several pixels. This being the case, if we encode the
length and intensity of each sequence of identical pixels, we will reduce
the amount of memory and disk space required to store the image.-Each
encoded scan line will then consist of one or more instructions, each of
which defines a run length and intensity.

Special hardware can be used in this approach to allow real-time
run-length encoding and decoding of the image. It is also possible to
design software that will encode and decode the image in non-real time
for a savings in memory. Run-length encoding has been employed in
some software for the Apple II, when many images need to be stored on
the limited space of mini-floppy diskettes. The pictures of the spinning
globe from Chapter 1 were encoded in this manner to allow all 24 frames
to reside in ATARI’s RAM at once.

Simulation of Resolution with Intensity — Block Pix

It is possible to simulate a much higher resolution than the X and Y
coordinates would imply by using intensity modulation carefully. For
example, if you correctly select the color in a single pixel, it is possible to
trick the eye into thinking that the resolution is quite high, when., in fact,
just the opposite 1s true.

The series of photographs in Photo 2.4 shows a block pix repre-
sentation of President Lincoln.”> Note the marvelous realism the first
picture achieves despite the fact that the pixels are relatively large.
Shading has greatly affected the way the image is perceived. Note also
that when you stand back and squint, the three photos seem very similar.
This demonstrates the role of shading and intensity over resolution. A
continuing controversy exists among computer graphics experts pertain-
ing to the primary importance of high display resolution versus copious
color capability per pixel.

The original block pix picture of Lincoln is a classic by Leon Harmon of Bell Labs done many years ago.
These photos are a commercial derivative of the original image.

Computer Animation Hardware / 65

66 / Computer Animation Hardware

c)

Photo 2.4: This three frame set (a, b, ¢) shows a picture of Lincoln evolving
through a block pix process where the picture is broken up into fewer and fewer
blocks and lower and lower resolution. The intensity and shade of each block,
however, is carefully chosen so that the original image can still be recognized,
showing that intensity modulation can substitute for absolute resolution.
(Courtesy of Digital Effects/R. Greenberg Associates — Lincoln Bank, 1981.)

2.14 ADVANCED GRAPHICS HARDWARE

Thus far, we have limited our discussion to the most fundamental of
high-tech graphics hardware. There are much more advanced systems on
the market, however, some of which cost in the millions of dollars! A
complete understanding of the concepts behind these more advanced
devices is not necessary, however, for you to proceed.

Computer Animation Hardware / 67

2.15. PERSONAL COMPUTER GRAPHICS HARDWARE

Now that you better understand the hardware of the high-tech
graphics computer, you are in a good position to tackle the workings of
the personal computer hardware used for graphics. We needed to intro-
duce the high-tech hardware first, because, as strange as it may seem, the
low-cost color graphics personal computers are actually a bit more
complex than their big brothers. This is true for two primary reasons.
First, they must work with a color television and consequently a con-
straint in operation is placed upon them (as you will learn). Second, they
must be mass produced and made inexpensively, and this means special
tricks are often needed to get the cost low (as you will also soon see).

CASSETTE RECORDER,
KEYBOARD Z—3 FLOPPY EDTIEK DRIVE,

1
MASS
ROM 110
MEMORY INTERFACE S"’”RO“GE
D . e—&——»DATA BUS
WP A) &—= ADDRESS BUS
c d » CONTROL LINES
SYSTEM
RAM viDso 0TV

MEMORY
[ittt q
| I
[}
| TIMING !
! CHAIN CLOCK f
| |
| ROW |
[SCAN !
i VSYNC HSYNC |
| |
| |
i SHIFT | |
"I muLmi- | ADDRESS. | DIspLAY CHAR L
! MIXER | !
: DATA !
lecmrcd e m et r el c e e, r e e, e, ——————— o

P P P
ADgRESS CO#TROL D}XTA
BUS LINES BUS

Figure 2.16: Personal graphics computer block diagram. This is the same as
the previous graphics computer block diagram except for the addition of an RF
modulator (as an option).

68 / Computer Animation Hardware

A block diagram of the personal graphics computer is shown on
page 67. It is very similar to the block diagram we showed earlier, except
for the inclusion of an RF modulator. The purpose of this is to convert the
video information coming from the computer into a high-frequency
signal that can be accepted by the television.

Televisions are set up to pull transmitted signals out of airwaves and
operate in what is called the radio frequency (RF) spectrum. The RF
modulator simply places the computer’s video information on an RF
wave so it can ‘‘ride’” into the television. Once the video is inside the TV,
usually entering through the antenna terminals, the television strips out
the RF, discards it, and merely retains the video portion. From this point,
the black and white television works almost identically to the raster-
scanning CRT you already learned about. In fact, some of the newer TVs
have jacks on the back that allow them to work as direct coupled CRTs!

Getting Color on the Television

When we add color to the personal computer and require it to
operate with a standard color television, we have an entirely new ball
game. To see how the color computer works, we must first understand
how color televisions work.

When color TV was first proposed, it had a major stumbling block to
overcome. It had to be compatible with the millions of black and white
TVs already on the market. In other words, when a color signal was
received it could not interfere with a TV that could only receive black and
white. This reality put some real restraints in the design of the color
signals. (Had the color television been designed first, things probably
would have been much simpler. So much for hindsight.)

Basically like the RGB monitor, the color TV picture tube has three
separate intensity-modulated color guns. It also has a shadow mask and a
coating of color dot triads (or in some of the newer televisions, stripes)
spread over the front interior surface of the tube.

At the transmitting end of television, there are three color signals,
often derived live from a camera. The problem is how to get these color
signals, which are mixed in with the black and white signal at the
transmission end, separated from the black and white signal and finally
use them to modulate the three corresponding color guns in a color
television.

In 1953, after much head scratching, the television industry came up
with the first monochrome (B&W) compatible color transmission
method. It is called the National Television System Committee (NTSC)
color standard, and it applies to all government-regulated broadcast
television systems in the United States and several other countries. The
basic underlying principle of the NTSC color standard is the merging of
two separate image transmissions, a wide-band signal carrying lumi-
nance information and a narrower bandwidth signal containing chromi-

nance information. (Luminance is the brightness or intensity of the three
colors red, blue, and green. Chrominance represents the actual color or
hue coming from the three guns.) These signals are derived from mixing
the red, blue, and green color signals from the camera (or computer) in a
very special way. This special mixing of the color signals and combining
for transmission is called NTSC encoding.

After the colors have been mixed in their proper proportions by the
encoder, they are used to modulate a high-frequency (3.58 MHz) subcar-
rier signal. The subcarrier is phase modulated, which means its delay can
be varied in different increments. This permits the use of a simple,
inexpensive circuit modulator that converts the color bits in the screen
memory to phase changes. The carrier is, in turn, mixed in with the
waveforms containing the sync signals and sent to the television.

At the television, an NTSC decoder circuit takes apart all the things
done by the encoder, thereby separating the colors into their original
chrominances. In addition to the color subcarrier signal, a special color
burst signal is mixed in with the video signal. This burst contains
reference information about the frequency of the color subcarrier and
allows the television to “‘lock’” with the original color oscillator.

Another restriction inherent to the functioning of a television is the
bandwidth. The television’s bandwidth is the maximum frequency that
the television will allow to pass. It sets a limit on the maximum number of
color changes possible on a particular line of the screen. Before anything
can be received, color signals for the television must fit within the signal
bandwidth (4 MHz) of the set. This breaks down the quality of the
picture. In addition, all of the encoding and decoding that takes place
adds noise to the color signal, further degrading it. At this point we can
appreciate why the direct drive RGB monitor gives better quality color
than the color television. In a RGB monitor, the bandwidth may be as
high as 35 MHz, thus allowing many more color changes to be resolved.

Every personal computer that is designed to work with a color TV
has an NTSC coior encoding circuit in it. Most personal computers,
however, have only the chrominance information encoded. Since the
luminance or brightness is fixed, this simplifies the encoding circuits by
eliminating the need for a DAC.

2.16. COLOR IN THE PERSONAL COMPUTER

Given that personal computers must keep the cost down, their
approach to getting color on the display is more constrained than that of
the high-tech graphics machines. For one thing, even though the price of
memory is dropping fast, its use must be kept to a minimum, or the
computer will be too expensive. The designers of the early personal
computers had to invent ways to get color graphics without using up
much system RAM. Several methods were used. One was to share

Computer Animation Hardware / 69

70 / Computer Animation Hardware

graphics memory with the program memory. For example, in the Apple,
ATARI, and in many of today’s new computers, the RAM for the color
display is part of the system RAM and is referred to as screen memory. If
a program used on such machines is large enough to creep into the arca
occupied by the screen RAM, high-resolution graphics will not be
obtainable. Given this constraint, programrflers learned to keep their
programs small enough to still use the graphics. (The alternative was
forfeiting the graphics and using as much of the RAM as they needed.)

Another way to keep the use of graphics RAM to a minimum is with
special encoding techniques that limit the color to certain pixels on the
screen. This technique originated with the Apple II's high-resolution
screen and caused programmers many hours of frustration until they
finally learned to work around it. In a way, it was a brilliant maneuver by
Steve Wozniak, the Apple’s designer, because it allowed the Apple 1l to
be advertised as a system that had 280 X 192 resolution in six colors
while consuming only 8K bytes of RAM. A little calculating will show
this is not possible, as 280 times 192 is 53,760 pixels. Six colors requires
about 2V bits. Two and one half times 53,760 is 134,400 bits. But the
Apple’s 8192 byte screen RAM has only 65,536 bits. There is a dis-
crepancy here. The answer is that any color cannot appear in every pixel!
Actually you can only have a resolution of 140 X 192 on the Apple and
get the full 6 colors. To get 280 pixels on a row you have to be willing to
accept that every seven pixels only be from one of two color sets. (This is
explained in more detail in Chapter 4 in the section pertaining to the
Apple II.) Our point here is not to discredit the Apple II, but to show the
color limitations of all personal computers.

Newer personal computers, which are following the high-tech
machines more closely in their use of graphics, still have some con-
straints. For example, the IBM Personal Computer has a full 16K bytes of
RAM set aside for the graphics and is separate from the program RAM.
The IBM PC allows up to 16 colors ina 320 X 200resolution. Inreality,
however, there are only eight colors and two color sets, one brighter than
the other, so that the 16K bytes can handle the full range. Otherwise, 32K
bytes would be needed for the graphics RAM.

2.17. MEMORY-MAPPED VIDEO AND TEXT STORAGE

In both kinds of raster-scanned systems, the most popular way to
display text is to encode the letters, numbers, and special symbols to be
displayed into a unique 6- or 7-bit value called an ASCII (ass-key)
character. (ASCII stands for American Standard Committee for Informa-
tion Interchange and is a special set of rules determining what bit patterns
are designated for what characters. Almost all computer manufacturers
follow the standard.) The ASCII characters are then stored in the com-
puter’s memory.

Computer Animation Hardware / 71

Photo 2.5: This Triple | “Computer Picture” advertisement shows the
company’s capability and illustrates the high quality and fine detail possible in
computer graphics. (Courtesy of Information international, Inc.)

In order to display the characters, circuits are built that convert the
bit patterns stored in the screen memory into dot images. These images
are then mixed in with the video and sent to the screen. Usually. a
character-generator ROM is used to hold the actual dot images that
correspond to the ASCII values stored in memory. There are different
kinds of these ROMs, each giving a different style of character on the
screen for the ASCII code. The density of the dot matrix for each
character that appears on the screen varies from computer to computer. It
can have a density ranging from S X 7 (the most coarse and not allowing
lowercase) to 9 X 12 (the most dense and allowing all symbols of the
alphabet as well as special graphic symbols).

72 / Computer Animation Hardware

In some personal computers, the dot patterns for the characters can
be defined in system RAM rather than in a character-generator ROM.
This allows the characters to be redefined by the programmer to be
whatever is desired. This can include graphics characters, special math
symbols, and foreign fonts.

Since the ASCII code is a 7-bit code, there is | bitof an 8-bit byte left
over. In fact, if only capital letters are used, 6 bits are needed and thus 2
bits are left over. Usually the extra bits of each byte are set up to contain
color, intensity, reverse video, or blinking information. In this way, it is
possible for each text character to have its own color. In some computers,
like the IBM PC, 2 bytes are automatically set aside for each char-
acter. One stores the ASCII code and the other stores the attribute for
the character, i.c., its foreground and background color, its blinking
state, etc.

It should be noted that in many personal computers the screen RAM
can simultaneously contain both text characters and graphics. The com-
puter can interpret the byte of screen memory as containing either a
ASCII character or several dots of color. In fact, by controlling how
many bits make up a pixel and the way in which they are interpreted for
color, it is possible to control the amount of color and resolution for
several different graphics modes. This is also why you will find that the
color graphics personal computers consume different amounts of mem-
ory depending on which mode is being used.

2.18. CHARACTER GRAPHICS

Another approach to graphics on personal computers is called char-
acter graphics. In this approach, the ASCII text character is replaced by a
graphics character, which has been designed by the computer user. In
some computers this graphics character may be of several colors and have
a density of 8 X 8 or larger. By carefully designing several graphics
characters, the user can define complex objects that are made up of
several of these characters.

In the example below, there are eight distinct graphics characters.
The box figure uses nine characters because one character is actually used
twice. Had the box been larger, we would have been able to use several of
the graphics characters more than once. This graphics character approach
to animation is used in several of the sample programs presented in
Chapter 5.

With character graphics, we use PRINT statements from BASIC to
send the characters to the screen. We draw a figure by PRINTing several
parts of it at distinct locations on the screen. We animate by redrawing the
figure with new graphics characters that represent the next movement of
the figure. One drawback to this technique is the fact that we are limited
1o the location on the screen where we can start the figure.

o
o

T
Q

]
T

|

T

!

[

]
-

SooleleB o]

A
1]
I

EEERREREERECE N

EEEEEE

oL m

o
OIGIE 60160 B0 60101601010t 11T

&6/ PICTURE MADE WITH GRAPHIC
CHARACTERS.

a) GRAPHIC CHARACTERS USED
TO CONSTRUCT PICTURE IN b}

Figure 2.17: Graphic characters for creating a box.

Now you know about the part of the graphics computer that creates
the image on the screen. But how does one go about getting an original
image into the computer to begin with? Unfortunately, the computer is
not yet equipped to accept commands like *‘Draw me a cloud.”” Getting
objects into the computer is the function of graphics input devices, which
we will cover next.

2.19. GRAPHICS PERIPHERALS

How are graphic drawings, paintings, lines, maps, and other images
entered into the computer? The keyboard can be used, but it requires the
laborious typing of the coordinates of every line, color, and pixel that
makes up the image. Instead of entering coordinates, you could use the
keyboard’s cursor keys to move a cross-hair cursor on the graphics screen
to point to the place where you wanted to draw lines or shapes. If software
is set up to allow previously formed graphic objects to be ‘*dragged’’ into
place, the cursor will allow the user to position them anywhere on the
screen. In other words, you can use the cross-hair to pick up an object,
drag it to some location on the screen, and then paste it in place. Often
this dragging is used with paint systems where a selection of preformed
objects are displayed at the bottom of the screen.

Computer Animation Hardware / 73

74 /| Computer Animation Hardware

For the easy manipulation of graphic images, the keyboard leaves
much to be desired. There are several graphics peripherals in use today
which make manipulation of graphics much easier. These include the
Jjoystick, mouse, light pen, and digitizing tablet.

Joystick

The joystick is a stick that protrudes out of a small box, like a
miniature gearshift lever on an automobile with a standard transmission.
The joystick can move in any direction (north-east-south-west), and there
are usually two potentiometers connected to the joystick that convert its
movements to changes in voltages. These changes, in turn, are converted
to digital values for the computer (usually with an analog-to-digital
convertor, or ADC, the opposite of the DAC). There are two values, one
for the X position of the joystick and one for the Y position of the
joystick. Software in the computer can then use the X-Y position in-
formation to move a cursor on the X-Y plane of the screen.

The problem with the joystick is that an expensive analog to digital
convertor (ADC) is required for movement on high-resolution screens,
and, if it is a poorly designed joystick, it will require good coordination to
master. By this we mean that it can be tricky to physically relate the stick
position to the cursor position on the screen. Joysticks, however, are
quite popular for low-cost displays such as those found in personal
computers. They are great for games where the user must maneuver a
ship or fly an object through a maze.

Mouse

The mouse used with a computer is not a furry animal with a long
tail. Instead, it is a small box resting on two small wheels whose axes are
at right angles to each other. Two or three buttons are on the top of the
mouse, and the whole device is rolled around on a flat surface thereby
turning the wheels. Shaft encoders (devices that convert mechanical
rotation to binary signals) connected to the wheels convert their turning to
digital pulses that are sent to the computer. By counting the pulses, the
computer can figure out the position of the mouse in the X-Y plane and
then use the information to move a screen cursor, like the joystick did.

Mice are becoming quite popular and offer features joysticks lack.
They are ideal for positioning objects and can also work well for point-
ing. (Stanford University did several studies that proved this.) The mouse
need not be picked up (like the light pen — see below) to be used. In fact,
when it is picked up, the cursor won’t move at all.

Some users don’t care for the mouse because they don’t like having
to search for it after using the keyboard in a dark room. Another, more
important limitation has to do with the fact that the mouse can’t be used to
trace outlines from paper images since a small error in rotation will cause
a cumulative mistake in the readings. Another is that the electronic shaft

encoders that are used to translate the information from the turning
wheels are expensive. This last problem may be eliminated soon, as
several companies are developing low-cost integrated circuits that do the
encoding job. With the addition of a microprocessor to these new cir-
cuits, this very powerful graphics input device could possibly become
more popular than the joystick.

Photo 2.6: The joystick.

Computer Animation Hardware / 75

76 / Computer Animation Hardware

Photo 2.7: The mouse.

Light Pen

The joystick and mouse discussed above are primarily used as
positioning devices. They allow us to represent the current position of a
cursor or object on the screen and to move it about. A light pen, on the
other hand, is a pointing device. When it is pointed at an item right on the
screen, its program can identify what item is being indicated.

The light pen is made of a hollow stylus that contains a small lens at
one end and a photocell at the other. Whenever the pen is close to the
screen, light from the screen enters the pen and falls on the photocell. A
switch on the pen allows the user to alert the computer that this is the
position to be selected. The output of the photocell goes to a storage
device similar to one bit of memory (called a flip-flop). This flip-flop can
be triggered when light strikes the pen. It is reset or untriggered when it is
read by the computer.

The light pen does not have the X-Y tracking hardware described for
the pen and mouse. Instead, it uses software for location of its position.
There are two ways to do this: polling and interrupt. In the polling
method, as the raster on the screen is being scanned, each individual pixe!
is being illuminated. In some cases a pair of counters in the computer are
constantly updated with the current row and column number of the pixel
that is being displayed. In other systems, it is sufficient to simply note
that the address of the pixel in the display memory tells us its current

location on the screen. Regardless, the computer can decipher where on
the screen the pen is pointing at any time. The computer simply checks
the flip-flop after displaying each point to see if it’s been triggered. Since
the counters contain the X-Y position of the current pixel, when it finds
the flip-flop set, it knows exactly where the pen is pointing. This
approach may place heavy constraints on the computer, however, since it
doesn’t have much time to check the flip-flop between plotting each
pixel.

In the interrupt approach, as soon as the light pen’s switch is
pressed, the flip-flop sends a signal to the computer that interrupts
whatever it is doing and says ‘‘I have a light pen point for you.”” The
computer then simply notes the current X-Y position of the pixel being
plotted (assuming the same counters are being used to keep track of the
column and row or the address of the pixel in the display RAM), and this
is where the pen must be pointing. This method also assumes that the
interrupt occurs fast enough so that no more pixels get plotted.

Light pens are not used for drawing on the screen because it is hard
to hold them steady on the glass surface of the CRT. They are better for
pointing to on-screen menus. Also, there must be light coming from the
screen for the light pen to receive. Thus, a cursor has to be sent to every
OFF pixel, so that the pen will be noticed when it is pointing to a location
that doesn’t contain any ON pixels.

Tablets

A tablet (or digitizing table) is a flat surface, separate from the
display, on which the user may draw with a special stylus or pointer.
Using a tablet is much like drawing with pencil and paper, and this
explains their popularity.

There are several ways to build a tablet. The most common
approach simply embeds into the surface a matrix of tiny wires running at
right angles to each other in the X-Y plane. One system, might, for
example, contain 1024 = 1024 wires. Each line carries a special digitally
coded signal. The stylus contains a sensitive amplifier that picks up the
signal and amplifies it. Special decoding circuitry figures out the X-Y
position of the stylus. By pressing the pen down on the tablet, a switch
inside of the pen allows the user to indicate a selected X-Y position.

Another approach puts a resistive plate on the tablet and applies
voltages to it, first horizontally and then vertically. The X-Y position of
the pen can be tracked by measuring the voltage of the pen during the
times the sheet is being scanned. Still other approaches use strip micro-
phones on the edges of the tablet and let the stylus generate a spark that is
then heard by the microphones. Counters record the delay for the sound
to reach the microphones and can then compute the position of the stylus.

The tablet is perhaps the most frequently used of the graphics input
devices. By placing a sketch on its surface, the stylus can be traced over it

Computer Animation Hardware / 77

78 / Computer Animation Hardware

and the drawing will be transferred directly into the computer. A line
drawing can be digitized on the tablet by touching the pen to the intersec-
tions of the various lines on the drawings. If three sides of a figure are
drawn and digitized, it is possible for the computer to create a three-
dimensional model of the figure. Transformation software can then
manipulate this information to create three-dimensional movements and
perspective drawings on the screen. We will learn more about how these
images are manipulated in the next chapter on software and applications.

PENTRAK

SOFTWARE

MASIER DiskErsg

"
T - :
Ll
Light Pen System for
Apple i Bompaters

Photo 2.8: The light pen.

Computer Animation Hardware / 79

Photo 2.9: The digitizing table.

Photo 2.10: Artist using digitizing table. (Courtesy of Aurora.)

80 / Computer Animation Hardware

The hardware used today in computer animation is among the most
sophisticated you can find. Yet as complex as it is, the computer revolu-
tion’s trickle-down effect is making more and more of this sophistication
available to the average personal computer user. It is truly remarkable to
think that the devices that were once the exclusive domain of rich
companies are now being studied and played with in homes across the
country. Yet as advanced as the hardware is, hardware alone is not
enough. Any computer, from the most expensive Cray-1 (a multimillion
dollar computer being used in computer animation) to the almost throw-
away $99 Sinclair, needs another half to be worth anything, to do
anything useful. This other half is the software program, that marriage
partner of the hardware that tells the hardware what to do. In the next
chapter we will learn about the programs and software that make anima-
tion possible, and we will see how graphics software is a set of rules that
tells the hardware what to do with itself. We will learn how the software
can make the hardware perform incredible feats of animation and how,
over the years, software has become a driving force in computer
graphics.

Computer Animation Software and Applications / 81

Chapter 3

Computer Animation Software
And Applications

T o appreciate the full capability of the graphics hardware, we need
to be aware of the hardware’s nebulous marriage partner: the
graphics software. This chapter introduces you to techniques for defining
graphics objects that the computer hardware can understand and for
moving those objects on the screen (transformation). We will also be
explaining what clipping and windowing are, how three-dimensional
visual realism is achieved with hidden line/surface removal, shading,
color use, and more.

You will see how the software breathes life into the computer’s
complex circuitry. This will be revealed along with the ways in which
software allows lines to be drawn, circles to be plotted, shadows to be
cast, and surfaces to be colored, textured, and shaded. In addition, we
will also give you insight as to how computer movies are made, revealing
the techniques behind the Juggler film (described in Chapter 1), the
making of Saturday morning cartoons, and inside production information
about TRON, a recent film that relies heavily on computer animation.

3.1. GRAPHICS SOFTWARE — THE BASICS

In most high-powered graphics computers, the hardware will plot
(turn ON) a point anywhere in the frame buffer or display memory when
that point’s X and Y coordinates are specified. In other words, if, for
example, you wish the hardware to turn a pixel ON at X,Y location
100,200, then your program must pass the X coordinate of 100 and the Y
coordinate of 200 to the frame buffer hardware. The hardware or soft-
ware, depending on what machine you are using, will cause the bit in the
frame buffer corresponding to the coordinate 100,200 to turn on, and
consequently the screen will reflect this with a dot appearing at that
location.

Some of the more sophisticated graphics machines have, besides
just plotting hardware, built-in line-drawing circuits. With these
machines you simply send the beginning and ending coordinates of the
line you want on the screen, and presto — the computer draws it for you. If,
however, line-drawing hardware is not included in your computer, you

82 / Computer Animation Software and Applications

may wonder where line drawing comes from. The answer lies in the
software.

Software, as most know by now, is a sequence of computer instruc-
tions that creates some end effect. In a graphics computer, the instruc-
tions may be in one of several languages, including BASIC (popular with
microcomputers), Pascal, or even the more fundamental language of the
microprocessor that forms the heart of the computer. You don’t really
need to understand all these languages to appreciate that a higher, more
complex level of control is operating in the graphics machine as the
software steers the hardware to achieve certain effects on the screen. The
software can be thought of as the soul of the machine, a higher force that
can’t easily be viewed but makes the computer tick, nonetheless. This
higher level of control is the sequence of instructions that causes the
hardware to plot in certain places and in certain ways.

Let’s look at a simple example to make this clearer. Suppose that all
your graphics computer can do is plot points. Say it has only the
instructions HPLOT X »% which plots a point at the location on the
screen X, Y. (By the way, this is a graphics statement found in Applesoft
BASIC; it is called PLOT in many other BASICs.) How can a line be
drawn using just this HPLOT statement? The program in Figure 3.1
shows how. It’s written in BASIC, but could be also written in Pascal,
FORTRAN, machine language, or whatever language is at your dispos-
al. In the industry, the program has a name that sort of describes what it
does. It’s called a Digital Differential Analyzer (DDA) because it gener-
ates lines from their differential equations, another way of saying it uses
fancy ‘‘incremental’” methods of plotting and replotting for drawing a
line. It can be used to draw curves as well. If you have a personal
computer, you might wish to type this program in and RUN it, otherwise
you can follow it on paper, providing you know about BASIC, FOR /
NEXT loops, and so on. (If you don’t know BASIC, then skip over it,
and realize its purpose is to draw lines when line-drawing hardware is
absent.)'

In the program in Figure 3.1, entering the endpoints of the line
causes the line connecting those points to be drawn automatically. (This
particular program is not complete; it will only draw lines with positive
startpoints and endpoints.) There are even better algorithms than this one
for drawing lines. Bresenham’s Algorithm is one. It is better in the sense
that the line will appear cleaner on the screen, and the program will run
faster. (These algorithms can be found in Fundamentals of Interactive
Computer Graphics by James D. Foley and Andries van Dam (Reading,
M A.: Addison-Wesley, 1982) or Principals of Interactive Computer
Graphics by William M. Newman and Robert F. Sproull (New York:
McGraw-Hill, 1979).

"You can learn BASIC by reading BASIC Programming Primer by Mitchell Waite and Michael Pardee,
Howard W. Sams & Co., Indianapolis, IN. or Armchair BASIC by Annie Fox and David Fox,
Osborne/McGraw Hill, Berkeley, CA.

Computer Animation Software and Applications / 83

From the primitive capability of just plotting a pixel (HPLOT in Apple-
soft), we can use software to develop more powerful features such as line
drawing or curves, and from these we can draw circles, polygons,
three-dimensional figures, and so on.

Figure 3.1: This DDA program in BASIC has rather simple instructions

(Line 6: HCOLOR = 3) for setting the color of the line to be drawn. In a more
sophisticated graphics frame buffer we might have to write additional programs
that set the color or shade of the pixel as required.?

4 REM SIMPLE DDA SIMULATION FOR APPLE I1I

) HGR : REM Puts
Arple in the HI resolution mode

B HCOLOR=3 : REM sets
Pplotting color to white

120 INPUT "X1,¥1 "i3X1¥1 : REM input
the bedinnind coordinates

110 INPUT "XZ2,¥Y2 "iXHZ2,Y2 : REM input

the ending coordinates

120 L = INT (ABS (X2 - X1)) : REM L is the
"increment"

132 IF ABS (Y2 - Y1) » L THEN L =
ABS (Y2 - Y1)

140 XKI = (X2 - K1)y / L 2 ¥YI =
(Y2 - Y1) / L
15¢ X = X1 + ,3 : ¥ = ¥1 + .5
160 REM LOOP AND PLOT LINE
176 FOrR I = 1 TO L
1890 A= X+ XD =+ ¥ =Y + YI
190 HPLOT XY : REM here’s

the actual rPlot

209 NEXT 1

219 GOTO 100 : REM rlot
another line

Defining Graphics Objects

Once we can plot points and draw lines on the screen, we have all
that is required for drawing simple to complex two- and three-
dimensional shapes. This is done by storing the data points for the objects
we want displayed (i.e., the X and Y coordinates of the object’s

2In all fairness we should mention that the Apple II does have a line-drawing statement (called HPLOT
X1+¥1 TO XZ,¥2). However, the above algorithm actually draws a better line than the Apple’s
statement!

84 / Computer Animation Software and Applications

corners). These data points are fed to our line-plotting routines which
then draw out the shape. It’s all really quite simple! For example, a
rectangle would require four pairs of coordinates, a triangle three pairs,
and so on. For three-dimensional objects, a third coordinate describing
the depth is needed for each corner. Each of the eight corners of a cube,
for example, would contain three numbers, X, Y, and Z, each specifying
the location of that corner in three-dimensional space.

3.2. TRANSFORMATIONS

Once we have the capability to draw our shapes on the screen, we
will want to move (translate), shrink or expand (scale), and rotate them.
This can be accomplished by using the mathematics of transformations.
A transformation is a mathematical formula that operates on the coordi-
nate pairs that make up our shape. It takes the various coordinates and
changes their values in distinct ways. There are three fundamental
transforms in computer graphics, and they are not really as complex as
their names imply.

Translation

This transform moves an object to a new location on the screen
without affecting its overall shape. It works by simply adding a constant
value to each coordinate pair. For example, if you have a shape made up
of one point called X, Y (not much of a shape, but good for an example)
and want to move it 100 units to the right and 50 units down, you would
perform this transformation:

X' =X+ 100 Y =Y + (=50)

where X',Y’ are the new coordinates of the point. If this formula is
applied to every point in our shape, they will each shift the same distance.
(Note that in many personal computers you would not need to put the

— 50 in parentheses because the Y axis begins at zero at the top of the
screen and increases as it travels downward.)

Scaling

In computer graphics, scaling has nothing to do with fish. Rather, it
is the graphics industry word for shrinking and expanding an image. Such
a transformation is needed when we want to magnify some portion of our
shape or to shrink it to allow more of the background to come into focus.

Computer Animation Software and Applications / 85

The scaling transform works by simply multiplying each coordinate point
by a constant value, as follows:

X' = X =S8l Y =Y =82

(Note that in computers, the asterisk symbol * represents multiplica-
tion.) To expand a shape to twice its current size, all points would be
multiplied by 2, as follows:

X' = X=%2 Y =Y =2

To contract or shrink a point, multiply all the coordinates by a
fractional value. For example, to shrink our shape to one half its current
size, we would multiply all coordinates by 0.5. (The same results would
occur if we divided all coordinates by 2.)

If we change the size of S1 and S2 so they are not equal, then we will
create distortion in the X or Y direction. To understand the visual effects
of scaling, look at Figure 3.2. It shows the corners of a rectangle centered
on the coordinate axis. Note that multiplying each coordinate by 2,
moves each corner outward from the center of the axis. If we simply
added or subtracted a value from the coordinates, the result would be that
the corners would all shift in the same direction (up, down, left, or right).
This would result in translation rather than expansion or contraction.

Y-AXIS 116
Ko (& il\‘ NEW SHAPE
s S OBTAINED AFTER
N e i MULTIPLYING BY 2
1 N 4 4
! ’ ; ORIGINAL SQUARE
| /
| I
-16 -8 -4 4 +8 +16
' ! X-AXIS
' I
| 1
I 1
| /! \ '
| // -4 \\ t
L |
1, AN
L —|-8------- “
-16 i-16

Figure 3.2: Example of scaling to magnify a shape.

86 / Computer Animation Software and Applications
Rotation

Rotation is the most complex transform because it uses the trigo-
nometric functions sine (S IN) and cosine (C(0$S). These are functions
found in most of the high-level computer languages like BASIC and
Pascal. When given an angle of a triangle, these functions produce a
number that represents the ratio of two of the sides of that triangle. For
example, when an angle of 45 degrees is fed to the SIN function, the
result is the number .707. To rotate an object by an angle (A), we simply
apply these formulas to all points:

X =X+*COSA+Y=*SINA Y =
~X*SINA + Y x=COS A

The old points are X,Y, and the new points will be X',Y". The angle
used can be from O to 360 degrees of rotation. Note we only have to
calculate the C0OS and 5 I N of the angle once, then it is simply multiplied
as shown in the formula. Figure 3.3 was created by laying a piece of grid
paper over a drawing and marking coordinates on the grid. These coor-
dinates were then entered into DATA statements in BASIC. Finally, a
simple line-drawing algorithm was used to draw the shape. It was rotated
by recalculating the points with a certain angle using the above algo-
rithm, and then it was redrawn.

Figure 3.3: Rotation example using da Vinci man. (Courtesy of The Waite
Group.)

Computer Animation Software and Applications / 87

A mathematical entity called a matrix can be used to assemble
several transforms into one neat package. Using a matrix, it is possible to
have a single mathematical operation that performs a rotation, a scaling,
and a translation in one compact form. Some of the really sophisticated
graphics processors perform such matrix operations in hardware!

3.3. CLIPPING AND WINDOWING

Often you see graphics programs that zoom in on some small object
in a particular scene, magnifying it until it consumes the entire screen.
This zooming is accomplished with the transforms of scaling and transla-
tion. But while watching a single object envelope a screen, did you ever
wonder what happens to the parts of the scene that are now out of the
picture? Are they being drawn on an invisible part of the display? No,
they are dealt with by a process known as clipping, which means to
eliminate that portion of the scene that will not appear on the display.

The purpose of clipping is to cut off portions of the object that are
invisible. This is surprisingly not an entirely trivial task; in fact it is the
subject of much scholarly research. In most cases it is not enough to
simply determine all points that are not within the screen area and then
not plot them. This would be extremely slow, as even in a magnified
image there may be millions of pixels that are not displayed. We must
attempt to clip larger elements or sections of the picture. This involves
the use of clipping algorithms that can determine portions of the picture
that are visible and invisible, such as vectors, text characters, and
polygons.

To appreciate the problem, consider clipping the triangle that is
partly shown on the screen in the figure on page 88. Imagine this as part
of a rocket ship, or missile that is moving into the display area. It is no
problem to clip lines that are entirely off the screen. It is done by simply
throwing them away!

Assume you have line-drawing commands at your disposal. In order
to clip the triangle, you must examine all the points that make it up. As
you examine these points you look for ones that are off the screen edge.
Assume also that your object starts at point A. You immediately discover
that point B is off the screen edge. So you must draw a line from point A
to a point at the edge of the screen where the line would have intersected
the screen edge if it had extended all the way to point B. This requires
your software to calculate where the line intersects the screen edge. (A
simple algebraic formula exists to do this.) Next you ignore the rest of the
shape that is off the screen edge (i.e., from the edge to point B, from B to
C, and from C to the edge). You must then draw a second line from the
edge of the screen at the point where the line would have intersected had it
been drawn from point C to point A.

88 / Computer Animation Software and Applications

The problems here are finding the points outside the screen and
determining where the intersection points are on the screen edge. Such
clipping is usually done with algorithms that involve rejection tests to
find parts that lie off the screen and subdivision calculations. which break
the line into new parts that lie within the screen boundary.

CLIPPED AND NOT
DISPLAYED

SCREEN EDGE /ﬁ T
(CLIPPING EDGE)

<//_,—“|B
A== |
‘\\‘IC
A . <
// AN
’ NN\
, N
, \
V. \
/ \
_____ —— —

Figure 3.4: An example of clipping.

Applesoft Transformation Example

In case you are interested, here is a partial listing of a larger
Applesoft BASIC program that can be studied (it can also be mod-
ified for other computers). It will help you to understand how the
drawing of the rotated figure of the da Vinci Man was produced. The
lengthly DATA statements for the program are not included. You
can create your own if you wish (use two arrays, one for all the X
values and one for all the Y values). Besides demonstrating how to
do the rotation, this program also illustrates brute force clipping and
scaling transform. To produce more images of the man at different
angles on the screen, simply increase the size of the FOR/NEXT
loop in line 2020 and change the initial angle in line 2015 and the
incremental angle in line 2040.

Main Program:

2¢02® REM ‘Hall of Mirrers’ Da Vinci Man

2005 A = 14@8: B = 95: GOSUB 21 : REM set

Computer Animation Software and Applications / 89

rotation exampPle

clipping limits

2906 PI = 3.,14158 : REM dood
ol pPi
2007 GOSUB 45 t REM clear

the screens draw border

2998 GOSUB 30 : REM read

the man’s data statements
into the arrav

2010 J=2: K=2: GOSUB 42 : REM

doubkle KHis size with stretch
transform

2015 ANG = -PI1/4 : REM sets

the first andle to -45 dedrees

2020 FOR P = 1 TO 2 : REM draw

first and second man

2¢30 C = CO5 (ANG) @ 8§ = SIN (ANG)
204@ ANG = PI/2Z2 : REM sets

the incremental andle
at 99 dedrees

2100 GOsuB Ge : REM

rotate the man (he’s at zero
dedrees start)

2200 o= X(@): FY = ¥{(@): GOSUB 1@

REM do cliepring (simeple)

2203 HPLOT A + FXsB + FY
2210 FOR I = 1 TO N:

o= H(I)y: FY = ¥(I):; GOSUB 19
REM clip
this point first and them.. .

2220 HPLOT 70O A + FX»B + FY : REM

finally draw line between
POiNnts

2230 NEXT I
2235 NEXT P

Subroutines:

10
11
12
13
14
15
21

hears
.

REM do the clirPing
IF FX * ®XH THEN F¥
IF FX < XL THEN FX
IF FY > YH THEN FY

A
I3
v
"

\v
4

IF FY < YL THEN FY YL

RETURN

REM set X and Y cliprping limits
KL = -A: HH = 278 - A:

YL = -B = ¥YH = 1891 - B:

RETURN

(continued)

90 / Computer Animation Software and Applications

3@ REM read in the data
(N=#% of pointss F=asrect
correction
31 RESTORE:
FOR I = @& 70 N:
READ X{I):
NEXT 1
32 FOR I = @ TO N:
READ Y{(I):

M{I) = -¥{I)/F:
NEXT I:
RETURN
4@ REM stretch or shrink transform
41 FOR I = @ TO N:
ACIY = J % X({I)
Y{I) = K % Y(I)
NEXKT 1
RETURN
43 REM clear screen draw border

46 CALL -836: HGR: POKE -1G302:+0:
HCOLOR = 3:
GosuB So:
RETURN

SO HPLOT @0 TO 27948 TO 279:1891
T0 @¢+191 TO @,0:
RETURN

6@ REM actual rotation transform
61 FOR I = @& T0 N

62 XKl = C % X({I) + 5§ % ¥Y(I}
63 Y1 = -5 % X(I) C % Y(I)
B4 ACD) = XKix YDy = Y
G3 NEXT I:

RETURN

Figure 3.5: Applesoft Transformation Example.

Viewing and Windowing Transform

You now know about clipping a picture to remove the invisible parts
and transforming a picture to change the scale and orientation of it. One
of the immediate advantages we gain from the use of transformations is
the ability to define pictures in the coordinate system of our choice. So far
we have just used the screen’s limited coordinate system, and in practice
this may be quite awkward. For example, what happens when the
picture’s coordinates are expressed in floating point (decimal) numbers
between % 999,999,999 and the screen coordinates are integers between

Computer Animation Software and Applications / 91

0 and 1023 or 0 and 279 (as in personal computers)? We can avoid these
problems if we can define our picture in its own coordinate system and
then use a transformation to convert it to the screen coordinate system
when we are ready to display it. Such a transformation is referred to as a
viewing transform.

A viewing transform is simply a combination of clipping, scaling,
translation, and rotation that converts all the picture’s coordinates to
screen coordinates. (Actually rotation is rare in the viewing transform.) It
can be adjusted to allow us to view the picture through a viewing
window, a rectangle that surrounds some portion of the picture. In
computer graphics, the coordinates for the object or picture we are going
to transform are called world coordinates. The world coordinates are the
database of points for the picture itself (our large decimal numbers in the
above example). These values may be large or small numbers with
decimal points, arrays such as game boards, graphs with dates, and so on.
Our screen’s coordinates, on the other hand, are usually in integer form
(i.e., whole numbers), and are called screen coordinates. It is the purpose
of the viewing transform to convert the world coordinates from the
picture’s original database of points to fit into the screen coordinates. The
viewing transform is particularly useful when we cannot always predict
the range of numbers our application will produce. This might be the
case, for example, when the data is coming from an experiment or
mathematical model.

The window, a rectangular section of the world coordinate system,
can specify the viewing transform to be operated on. A window can float
around the picture’s database of points and select out just the part we wish
to zoom in on, expand, etc. The main use of defining a window is that we
can lessen the work that the transform has to perform. It also makes it
easy for us to examine other parts of our graph, picture scene, or
whatever by simply readjusting the window’s corner limits.

A viewport, in contrast, is a rectangular section of the screen
coordinate system to which we can have the output of the viewing
transform directed. Often the viewport is smaller than the screen, thereby
allowing text menus and system messages to be placed under the picture.
There may, in fact, be several viewports on a screen.

92 / Computer Animation Software and Applications

le—— VIEWING
WINDOW

b
0 66,660
L - - __ __
VIEW ING
WORLD
TRANSFORM COORDINATES
1023 ~
SCREEN
COORDINATES - - -/ VIEWPORT
| "
! |
i
I 1
! I
! 3
sy —— J

SCREEN 1023

Figure 3.6: Windows, world and screen coordinates, viewports.

3.4. FILLS AND SCAN CONVERSION

We have discussed objects with wire frame construction, i.e.,
where the shapes are comprised of lines, like the superstructure of a
building before the walls are put up. Unfortunately for the graphics
designer, the real world is not made up of wire frame models, but rather
contains solid areas that give a shape its substance. How does one go
about filling in the wire frame outlines that make up a graphics shape?
This whole process is an interesting area of study that is just now being
pursued with relish in the personal computer field.

Three properties are required to fill in an area. First a mask, which
defines the pixels that lie inside and outside the area to be filled, is
generated. For example, a binary 0 may mean pixels outside and a binary
1 may mean pixels inside. The mask may consist of a list of the corners

Computer Animation Software and Applications / 93

(vertices) of the geometric object to be filled. Computing the mask from
the geometric image of the object as it exists on the screen is called scan
converting. Second, there is usually a shading rule that defines what the
intensity of each pixel inside the mask shall be. Different intensities
inside the mask lead to different shading, shadows, colorations, textures,
etc. Third, there is usually a priority assigned to the sides to be filled.
Priority is the property that defines what parts of overlapping areas are
obscured and which are shown. Thus when we do an actual fill we will
know what areas are to cover which.

The process of converting from the geometric representation of an
object (its corner coordinates) to one that can be filled on the screen is
usually not complex when simple shapes are involved. A rectangle, for
example, can be scan converted (filled) with a very simple algorithm that
only plots pixels (or draws lines) between the left and right sides, starting
at the top and finishing at the bottom. But since unadorned rectangles are
uncommon in most graphics scenes, some way must be developed for
scan converting a more general shape such as the polygon. The real
problem of the scan conversion filling is in handling a polygon with
holes, corners, and convoluted nooks and crannies.

Advanced Fills

One of the most popular scan conversion approaches for poly-
gons involves extending an imaginary line from some point outside
the polygon to the opposite side of the polygon and counting the
number of boundaries (an edge of the polygon’s perimeter) crossed.
If an odd number of intersections is encountered, the point in ques-
tion must lie inside the shape, otherwise it lies outside.

Using this algorithm, we can plot points on the line while we are
inside the polygon and cease plotting when we are outside the area.
This is a rather slow aigorithm, as every point must be tested and
compared with each edge of the polygon. This approach can be
improved, however, by using the concept of coherence, which states
that “if a given pixel is inside the polygon, then adjacent pixels are
likely to be inside as well.” This property suggests that a number of
pixels should be tested together, and the most convenient group to
test is the entire scan line. This leads to the famous YX Algorithm in
which all intersections of scan lines are first found and put in a list.
The list is then sorted so that the various intersections are grouped
by increasing X values. By using the values in this list, we can quickly
plot the entire line between two boundaries, without ever having
to test every point.

Another popular approach to filling involves using the com-
puter’s stack. The stack is an area in the computer's memory where

94 / Computer Animation Software and Applications

we can temporarily place information and quickly retrieve it. It works
like the pop-up trays or plates in a cafeteria. With this method, we
scan from top to bottom and left to right filling in pixels as the scan
proceeds. When the algorithm discovers that a left or right boundary
changes (due to a corner, for example), it saves the current bound-
ary coordinates (pushes them onto the stack) so it can later retrieve
them and continue. The algorithm then begins filling in the new area
until it finds the new right boundary and continues until it hits bottom.
Upon finding the bottom, it will restore the old boundary coordinates
(pop them off the stack) and continue the fill from where it left off. in
essence, this algorithm searches for edges until the entire shape is
filled. Such algorithms have been implemented on personal com-
puters such as the Apple and IBM. Microsoft's BASIC for the IBM fills
using the stack approach.

3.5. THREE-DIMENSIONAL REPRESENTATION

Perhaps the most remarkable achievement of computer graphics 1s
the modeling and displaying of three-dimensional images. Whereas two
dimensions involve X and Y coordinates of width and height, the third
dimension takes us into the realm of depth (the Z coordinate) and
perspective realism. In two dimensions, our pictures do not require the
subtle qualities of an image seriously attempting to represent reality.
Realism puts an incredible burden on the graphics computer and its
software. For example, since the screen is set up to display two dimen-
sions, how is the third dimension of depth to be displayed? And how are
parts of the object that are hidden by the frontal parts to be identified and
removed? In addition, how will lighting, color, shadows, and texture be
added to the display? All of these questions must be answered by those
who employ three-dimensional computer graphics. Lets take a look at
some of the concepts involved.

Achieving Realism

The degree of desired realism in computer graphics images depends
on the application. Perfect realism comes at a high price in terms of the
cost of hardware and software, the amount of information stored for the
model, and the time required for computing different views of the
display. Since a three-dimensional scene must be projected onto a two-
dimensional screen, the major stumbling block is depth perception,
sometimes called depth cuing. Many techniques have evolved for provid-

Computer Animation Software and Applications / 95

ing depth cues on computer graphics display, as described in the follow-
ing paragraphs.

Parallel Projection Although many different types of projection
exist, all are designed to ease the task of generating three-dimensional
views of images. Parallel projection is a method by which three views of
an object are projected (see Figure 3.7). One application is when an
architect draws three parallel projections to illustrate a house, e.g., a
front view, a side view and a top view. The viewer must then infer the
final shape from the three views. Most people, however, have difficulty
inferring the three-dimensional view from parallel projections.

TOP

M L]

FRONT SIDE

Figure 3.7: Parallel projection.

Perspective Projection This is the most common projection and
involves showing the object in three dimensions on the screen, with
distant objects smaller than nearer ones (see Figure 3.8). There is a
potential problem here if objects are limited in depth, as there may be
front/back ambiguity. For example, everyone is familiar with the wire
frame cube illusion where the front and the back can change places
depending on how you view it or imagine it to be. If we view the image
through a wide angle lens and exaggerate the perspective depth, the
front/back ambiguity disappears, but undesirable distortion effects take
its place.

96 / Computer Animation Software and Applications

Figure 3.8: Perspective projection.

Intensity Cues If we use intensity modulation to brighten lines
that are in the foreground, we can give the illusion that they are closer to
the viewer. When foreground lines are widened, the same effect is
achieved. This is a simple way to create depth cues, which requires a gray
scale capability in the computer (we covered gray scale in Chapter 2). If
the object is very complex, however, or the depth is small, this technique
may not work well.

Stereoscopic Views If separate images are created for the left and
right eyes and presented so each eye can only see the image intended for
it, a powerful illusion of depth can result. Several methods have been
developed for implementing this technique, including flashing shutters,
polarized glasses, color filters, and so on.

Kinetic Depth Effect Watching the movement of an object can
help the viewer experience the depth effect. Motion around a vertical
axis, for example, can resolve the ambiguity of a simple wire frame
object because lines near the viewer move more rapidly than those at a
distance. The rotation must be rapid for the effect to work, and this may
require special graphics hardware.

Hidden Line Elimination By removing lines that would not be
visible to a viewer, considerable depth cues and realism can be achieved.
This is a powerful and much studied technique in computer graphics. For
all but the most simple of wire frame objects, it requires large amounts of
computing time.

Computer Animation Software and Applications / 97

Figure 3.9: Perspective projection with hidden lines removed.

Shading, Surfacing, Texturing By adding shading, surface tex-
ture, and shadow, computer images can achieve a degree of realism that
makes them indistinguishable from photographs of real objects. The
realism of many of the computer graphics photographs in this book are
due to high quality shading, texturing, and surfacing.

Three-Dimensional Coordinate Systems

When dealing with three dimensions, a new axis is added to the
standard two-dimensional X-Y coordinate system with which we are
familiar. We use the letter Z to represent the new axis which takes on the
quantity of depth. The three numbers (X, Y, Z) specify a point in this
coordinate space. The choice of the directions of the three axes depends
on the application. For computer graphics, it is standard to have the Y
axis point up, the X axis to the right and the Z axis point either out from or
in to the screen. If the Z axis points out from the screen, we have a
right-handed system. If it points in to the screen, we have a left-handed
system. (In computer graphics, the most popular orientation is a left-
handed system so that as objects get farther away, their Z values in-
crease.) ‘‘Handedness’’ answers the question ‘‘Which hand must you
wrap around the Z axis so when the thumb points outward along that axis,
the fingers on that hand wrap around it in a counterclockwise direc-
tion?”’ You can prove this to yourself on the coordinate system below.
(Note in mathematics the Z axis is usually drawn facing upward.)

98 / Computer Animation Software and Applications

- p

z
{INTO SCREEN)

v
>

N)

Figure 3.10: Three-dimensional coordinate system (left-handed).

To generate the view of a three-dimensional scene, three parameters
must first be specified. They are viewpoint, viewing direction, and
aperture (see Figure 3.11). These parameters are similar to the adjust-
ments a photographer must make when photographing a scene. The
viewpoint is the location where the camera must be physically set to take
the picture, the viewing direction is the direction in which the camera
points, and the aperture is the lens that determines how much of the scene
will be included in the picture. These parameters are similar to the
window parameters we used for two-dimensional viewing. Note that in
this figure the Z axis points upward.

APERTURE
.-

A
b4 v‘ VIEWPOINT

VIEWING
DIRECTION

X Y

Figure 3.11: Three kinds of viewing parameters.

Modeling in Three Dimensions

Before we discuss how curves and surfaces of three dimensions are
created, it is important to understand how a three-dimensional object is
modeled in the computer. As shown in Figure 3.12, in two dimensions
we use polygons, two-dimensional n-sided figures, like rectangles,

Computer Animation Software and Applications / 99

trapezoids, pentagons, and hexagons, to model our shapes. In three
dimensions we use polyhedrons (as well as polygons) to model objects.
Polyhedrons are three-dimensional volumes whose sides are comprised
of polygon faces. Some typical polyhedrons are cubes, parallelepipeds,
wedges, prisms, etc. (see Figure 3.12).

The polygon face is specified by its vertices and its edges. A vertex
is a corner of the polygon. An edge of a polygon is the line connecting
two vertices. A polyhedron is also specified by its faces, which in turn are
polygons that can be specified by a list of its vertices or edges. This list,
referred to as the geometric description, is usually presented in a certain
order so we know what vertices connect to what edges.

a) POLYGONS
SIDE OR EDGE
s

VERTEX-
SIDE - T

VERTEX

TRIANGLE OCTAGON COFFEEPOTAGON

b) POLYHEDRONS
FACE (SQUARE POLYGON)
/

/ FACE (TRIANGLE POLYGON)

VERTEX —y)

CUBE PYRAMID

Figure 3.12: Polygons and polyhedrons defined.

Since a face has two sides (one inside the object and one facing out),
some convention must be chosen for representing these faces to the
computer. One way is to list the vertices of the edges in counterclockwise
order when the face is viewed from outside.

Table 3.1 shows how a simple cube in the figure is represented
mathematically so the computer graphics software can operate on it.
Another property of the cube is its topological attributes. Whereas the
geometric values give the locations of points in the image (i.e., the
coordinate values for each point), the topology gives the underlying
structure of the shape. This is done by listing the faces (i.e., F1, F2, etc.)

100 / Computer Animation Software and Applications

of the shape. The table may also include auxiliary information about the
cube, such as the colors of the various faces, their texture, etc.

v2
X (1,1,0)

Figure 3.13: The three-dimensional cube with vertices indicated.

GEOMETRY
Vertices
\"Al (1,1,
V2 (1,1,0)
V3 (1,0,0)
V4 (1,0,1)
V5 0,1,1)
V6 0,1,0)
V7 (0,0,0)
V8 (0,0,1)

(continued)

Computer Animation Software and Applications / 101

TOPOLOGY
Faces Edges
(list of vertices counterclockwise (can be derived from faces but
when viewed from outside) duplicates are removed)
F1 V1,V5,V8,v4 V1,v4 V7,V8
F2 V5,V6,V7,V8 V4,V3 V8.,V5
F3 V6,V2,V3,V7 V3,v2 V5.Vl
F4 VI1,V4,V3,V2 V2,VI V8,v4
F5 V8,V7,V3,V4 V5,V6 V6,V2
F6 V6,V5,VI1,V2 V6,V7 V7.V3

AUXILIARY DATA

Colors

(red, green, blue components)
F1 (0.4, 0, 0.3)

F2 (0.3, 0.6, 0.1)
remaining faces repeat F2

Table 3.1: Representing the cube with a data list.

Almost any shape may be created by assembling a group of
polyhedrons. As the number of faces of each polyhedron in the shape is
increased, very complex objects can be represented. It is beyond the
scope of this book to discuss modeling in detail, but it is sufficient to
understand that the object to be modeled will be represented as an ordered
list of vertices or faces. It is on this list that the transformation, clipping,
windowing, and upcoming hidden line removal and surfacing algorithms
must operate.

Constructing three-dimensional models is extremely difficult as vast
quantities of data must somehow be entered into the computer. The usual
method is to make a complex object from more primitive shapes. For
example, we might create a three-dimensional ant by making the body
from previously defined spheres which were constructed, in turn, from
many-sided polyhedrons. We would then only need to add legs which
could be made of cylinders, and so on.

3.6. CURVES AND SURFACES

One of the most intriguing aspects of three-dimensional graphics is
how a curve is made and how surfaces are produced. We have already
learned how to represent a three-dimensional object by using many-sided

102 / Computer Animation Software and Applications

polyhedrons. Although it would be logical to assume that complex
curved surfaces could be modeled by simply increasing the number of
polyhedrons and making them smaller, it is often very difficult to modify
such shapes because of the number of faces involved. A simple bottle, for
example, might be approximated by a single polyhedron with 1000 faces.
Changing its diameter would then invoive thousands of coordinate
points, all of which would have to be altered by the designer.

The need for smooth curves and surfaces is dependent on the actual
application. In some applications, such as the design of a simple me-
chanical part for an engine, for example, constructing the shape from
plane face polyhedra may be completely adequate. On the other hand,
designing car bodies, where smooth graceful curves are required, calls
for more complex shapes and very smooth surfaces. Such shapes are too
cumbersome to represent with a finite number of polyhedrons. There
must be other ways to modify curves that involve changing only a few
parameters thus affecting the curve in some predictable manner.

There are basically two different methods for describing and creat-
ing curves and surfaces: analytic and synthetic. Analytic methods are
used to describe shapes that can be measured, 1.e., data points exist, and
we wish to come up with the curve that is described by these points.
Analytic methods are employed when we are trying to achieve a precise
fit, to represent a shape in some compact form, and so on. Examples are
fitting a curve to a set of data points, fitting a surface to the measured
properties of some real object, etc. Synthetic methods, on the other hand,
are more often encountered when curves are being created from scratch in
the design process. With synthetic methods a designer interacts with a
program to create or modify a model of a shape, changing and improving
the design until it meets the desired criteria. That model may then be used
to create an image of the shape which can be examined.

With synthetic methods we are more concerned with the design
process and the exploration of the appearance of new curves and sur-
faces. Once a curve is created with synthetic methods, the data which
describes it can then be used in the analytic methods, allowing measure-
ment of the curve. In this section we will concentrate on the synthetic
approach, i.e., interactive shape modeling, and the techniques that we
describe for curves can be extrapolated for use with surfaces.

Ordinarily, when a designer is modeling a shape based on curves,
there is an interactive program involved. The designer first makes a
rough approximation of the shape, then improves it with the program
until it more closely resembles the desired shape. A very common way to
control the shape of a curve is to locate points through which the curve
must pass. These points, called the curve’s control points, can be con-
nected by straight lines to make the curve’s open polygon. Since the
creation of curves is conceptually simple but mathematically complex,
we will stick with a visual explanation. (See Figure 3.14.)

Computer Animation Software and Applications / 103

Figure 3.14: Control points for a curve.

By manipulating and moving these control points, it is possible to
control the shape of the curve in a predictable way. A complex curve is
made up of several curves pieced together end to end. As a designer alters
a control point, the curve may change shape only in the region of the
control point, or throughout the entire curve. This capability allows the
designer to fine tune the curve as desired and is respectively referred to as
local and global control.

Control points for a curve or surface may actually be off the curve.
One such type of control point altered curve is called Bezier curves
(pronounced bay-zee-YAY). A simple Bezier curve with four control
points is shown in Figure 3.15. Bezier, a Frenchman who worked for
Renault, created a computer modeling program for designing auto body
surfaces. The key to his work is special blending functions. These are
mathematical functions that represent the influence that each of the
control points exerts on the curve. By controlling these blending func-
tions, the designer can change the Bezier curve in very predictable and
uniform ways.

2 3 POINTS 1-4
——— e — ‘—”_I'_‘
r ‘\ DEFINE THIS CURVE

Figure 3.15: Bezier curve and four control points.

Modeling three-dimensional surfaces is merely an extension of
control points. Using Bezier curves we can produce a three-dimensional
surface by multiplying two curves! Usually a surface is pieced together

104 / Computer Animation Software and Applications

from several patches and continuity between them (the places where they
connect) is formed with special mathematics. Figure 3.16 shows a Bezier
surface and its control points.

THESE POINTS
/DEFINE THE SURFACE

Figure 3.16: Bezier surface and its control points.

One problem with Bezier curves is that changing the control point
can affect more of the curve than the designer wishes. Points that are far
from the altered control point, for example, can be affected. Another
technique for generating curves that doesn’t suffer from this problem is
called the B-spline curve. B-splines allow multiple control points at the
same location (i.e., the control points can overlap). This in turn allows
good local control of the curve without affecting distant points.

Displaying curves and surfaces on a CRT is more difficult than
displaying shapes constructed from straight lines. The simplest technique
for displaying curves is using wire frame techniques. In this process, the
curve is evaluated using the techniques described above and the points
are then connected by many short, straight line segments. Getting depth
cues for the display of curves can be tricky too. Often the method of
intensity modulation is used for providing a depth impression, but this is
not always adequate for complex shapes. Revolving the shape about an
axis can help in visualization.

Another approach to visualizing subtle curves in surfaces is by using
the hedgehog method. Here small vectors which are normal (perpendicu-
lar) to the surface are displayed (see Figure 3.17). Although this tech-
nique makes the display look like grass shoots projecting from the
surface, its orientation gives the eye a better idea of the general changes
the surface will undergo.

Although all of these are valid techniques. shading, which we will
discuss soon, is perhaps the best way to visualize curves.

Computer Animation Software and Applications / 105

Figure 3.17: Hedgehog method for visualizing subtle curves.

3.7. HIDDEN LINE AND SURFACE REMOVAL

Perhaps the greatest challenge facing the computer graphics user is
the removal of hidden parts of images from solid objects. In real life we
don’t concern ourselves with hidden lines because an object’s solidity
automatically blocks light from unviewed parts. (Perhaps there is a
survival value for not having X-ray vision like Superman, for had we
such an ability we would probably have a difficult time figuring out the
front of objects from the back, not to mention the privacy problem.)
Given our “‘limited’’ visual abilities, we are seldom conscious of what
the back side, or inside, or hidden parts of an object look like. When
objects are projected on the screen in computer graphics, however, there
is no such automatic hidden line removal, and every single part of the
object is displayed. To rectify this, special hidden line and hidden surface
algorithms have been developed.

In the early 1960s most algorithms centered on hidden /ine removal
because raster displays and surface fills were still in their infancy. We
have certainly come a long way since then. Today hidden surface algo-
rithms that utilize hardware can generate views of objects at rates of up to
30 images per second. Although there are many algorithms for hidden
line and surface elimination, there is no one best algorithm. Each is ideal
for a certain type of scene model or a certain degree of image complexity.

Hidden line and hidden surface algorithms basically work much like
the scan converting we discussed earlier. They all use geometric sorting
to determine which parts of the shape are visible and which are invisible.
Geometric sorting involves finding the objects which are closest to the
viewer. Once the near objects are determined, the parts far from the

106 / Computer Animation Software and Applications

viewer ¢an be tossed in the proverbial garbage can. Geometric sorting is,
in reality, much more difficult than it may sound because complex
objects do not always fall into simple order. Many algorithms rely on the
property of coherence (lines in close proximity are similar) to simplify
the determination of lines or surfaces that are hidden.

The most popular form of hidden surface removal is the depth-
buffer algorithm. In this method we scan through the object by looking at
each of its points in the database. Imagine peering into each pixel with
X-ray vision. You would be able to see every surface of every object
which falls directly behind that pixel. The Z value of each of these
surfaces is checked, and only the one with the lowest value (the closest
one in relation to the viewer) is saved. A record is then made of the depth
(Z) of this closest surface in a separate array which has the same
resolution as the screen. The intensity of this closest surface at that pixel
is recorded in another array.

Thus two arrays are used, one for the depth and one for the intensity.
When the depth-scanning algorithm is finished, the intensity array con-
tains the image with the hidden surfaces removed. Note that the algo-
rithm only works on objects that have been converted into screen coordi-
nates. Thus if the object is magnified, the entire process will need to
be repeated.

The depth-buffer algorithm is not always practical because of the
huge size of the depth and intensity arrays. A 400 x 400 coordinate
system would require two arrays with 160,000 elements each! One way
around this is to use smaller arrays and work on individual sections of the
picture. This is a good solution since we can throw out the depth array
after each pixel is done. The 400 x 400 system can be divided into 100
rasters of 40 X 40, so only 1600 elements are needed per array.

The process of computing the arrays is still very time consuming and
eats up memory like a starving elephant. The way to solve the problem of
excessive processing time is to use coherence techniques, as were de-
scribed earlier, for the scan conversion methods. The need to cut down on
processing time has given rise to a class of removal techniques called
scan line algorithms that solve the hidden surface problem one scan line
at a time. These capitalize on the fact that for each single scan line, short
spans of pixels will lie within the same polygon.

Another approach to hidden surface removal involves comparing
two polygons to determine which obscures the other. We can compute
each polygon’s plane equation, which precisely defines the surface of
that polygon. This equation allows us to then determine if a particular
point in the display scene lies inside or outside the polygon plane. We can
also locate all the polygons with back faces (those which cannot be
viewed by the observer because they lie on the side of the object facing
away from the viewpoint).

Many more advanced algorithms exist for removing hidden sur-

Computer Animation Software and Applications / 107

faces, each having characteristics that make it better for one type of
object than another. The more available the tools, the better, because as
scene complexity grows, hidden surface elimination limits the ability of a
computer to process pictures in real time.

3.8. SHADING

Now we come to shading, the one component of graphics process-
ing that does more to help create realism than any other factor. After we
have identified the visible surfaces with our hidden surface algorithms, a
shading model is used to compute the colors and intensities for the
surface. The shading model has two main aspects: properties of the
surface and properties of the illumination falling on it. This model
attempts to simulate the behavior of light on an object as it would appear
in the real world to the eye. To do this, it must simulate the surface
properties of the object, such as its reflectance, texture, color, and
transparency. Reflectance tells us how much incident light returns to the
eye. If the surface is textured, the reflected light will vary with the
position of the texture on the surface. If the surface reflection changes for
different wavelengths of light, it will appear to be colored. If some light
passes through the object then it has transparency.

In addition, the model must simulate the illumination on the object.
If the illumination is uniform from all directions it is called diffuse
illumination. If the illumination comes from one location it is called a
point source. Point source lighting causes highlights to appear on the
surface. If the object moves, as it will in animation, the model must
change the lighting accordingly. This is a difficult task indeed.

Photo 3.1, below and on the next page, shows a good example of
curved objects, hidden surface removal, and shading.

(continued)

108 / Computer Animation Software and Applications

)

Photo 3.1: Hidden line removal and shading: a) Artist's Table (wireframe)
represents one way of previewing an image without incurring the overhead of a
full rendering. The color of the wireframe components approximates the colors
of the final image. Once the wireframe image is constructed and situated to
satisfaction, a solid image with hidden surfaces removed is rendered. b) Artist's
Table (with stand-ins) shows the next step in establishing a shot, which is a
hidden-surface rendering with “stand-ins,” i.e., simpler, less detailed substitutes
for the objects to be used in the final image. These stand-ins allow decisions
about placement, coloring and lighting to be made and changed more quickly
than would be possible with a fully detailed image. c) Artist's Table shows the
final still-life, with all the fully detailed parts included in the scene. Spline-based
primitive objects, as well as simpler geometric primitive shapes make up the
objects in this scene. Light is from two light sources: a white light from over the
viewer's left shoulder and a yellow one from the rear left of the scene. These
pictures are antialiased, full color, 512 X 512 images (see color insert). They
were produced on a PDP 11/44 computer using the UNIX operating system, C
programming language, and a DeAnza 6400 frame-buffer. Software and images
were produced by Richard Chuang, Gienn Entis, and Carl Rosendahl. (Courtesy
of Pacific Data Images.)

Here is how it’s done. A mathematical model that takes all the above
parameters into account is developed for each pixel of the object in the
scene. The model determines the amount of light energy coming from a

Computer Animation Software and Applications / 109

point on the display. The model can be broken down into three parts, the
contribution from diffuse illumination, contributions from one or more
light sources, and a transparency effect. The actual mathematics must
utilize the rays of light arriving from different parts of the scene. Each of
these effects contributes to the final shading of the object.

An example of a shading formula would be

E(pd) = R(p) * I(d)

where E(pd) is the energy coming from the point P due to diffuse
illumination, 1(d) is the diffuse illumination falling on the entire scene,
and R(p) is the reflectance coefficient at point P, which ranges from O to
1. The actual formulas used for modeling shading use this one as a
starting point and expand to be much more complex. Such things as
reduction in intensity due to changing angles of incidence (Lambert’s
Law), single point source contributions, and transparency must also be
included in the formula.

The actual calculations must be performed many times (for each
point on the object) to produce a properly shaded image. Thus much of
the work in shading involves finding ways to reduce the amount of effort
required to evaluate the model. A 1024 X 1024 raster, for example, will
require that the calculation be performed on over one million pixels.
Once again, the concept of coherence is utilized to reduce the amount of
calculation required. (Shading coherence relies on the fact that the
intensity of adjacent pixels is very nearly identical.)

Two popular algorithms for improving the shading of an object are
the Gouraud (pronounced goor-ROE) shading technique and the Phong
technique. The Gouraud algorithm involves computing the normal vec-
tors (the perpendiculars) of the numerous surtfaces, vertices, and intensi-
ties of the shape, and then averaging them. The main advantage to this
approach is that it partially eliminates Mach bands, i.e., unwanted
intensity ridges that arise from simple shading of the object. On the other
hand, the effectiveness of the algorithm is lessened when motion is
induced. While the Phong technique eliminates the problems of Gouraud
shading, it requires much longer to calculate.

One real problem facing those who use shading is the limitations of
the hardware. If the spot size of the electronic beam changes (i.e., the
diameter of the beam when it strikes the CRT), the sharpness of the image
suffers. If the spot is too small, an array of dots will appear where smooth
shading was supposed to show through.

Some of today’s most sophisticated special effects utilize shading
techniques. The use of transparency, surface detail, shadows, texture,
and reflections are more of an art than a science. Although it is difficult to
imagine how these techniques will one day be simiplified, it is almost
certain that they will. Perhaps LSI chips (large scale integration — the
technique used to make microprocessors} will be developed that apply
shading algorithms to user-genecrated scenes.

110 / Computer Animation Software and Applications

3.9. ANTIALIASING LINES

Antialiasing (pronounced anti-AY-lee-es-sing) is a technique used
to remove the jagged staircase effect that occurs on a computer screen
when lines are drawn. Since the distance between pixels is not
infinitesimal, a staircase effect occurs as the line bounds towards its
endpoint. Also known as dejagging, antialiasing involves using intensity
modulation to make the line appear a smooth entity, thus minimizing the
staircase effect. (See Figure 3.18.)

Ideally, a line on a computer screen would be drawn from one point
to another, turning on only that portion of a pixel necessary to represent
the line (a). This is not possible since pixels must be either on or off. So
the software or hardware that draws the line must take a staircase path
from one pixel to the next, approximating the straight line (b). The higher
the resolution, the less the staircase (aliasing) effect will be noticed.
There is, however, another method besides more resolution to get rid of
the “‘jaggies.”’

With antialiasing, we can control the intensity of each pixel that the
line goes through rather than just turning it on or off. The importance of
this capability is apparent when we draw a straight line through the pixels
from the start point to the endpoint (c). The line will cut the boxes (pixels)
into sections. The antialiasing routine determines what percentage of the
box is intersected by the line and uses this to figure the shade of that pixel.
For example, if the area above the line is black and the screen is white,
then the pixel (1,0) would be a color which was a mixture of 50 percent
black and 50 percent white (because half of it is crossed by the line). On
the other hand,the pixel (0,0) in the figure would be 85 percent black and
15 percent white (only 15 percent is below the line), and pixel (0,1)
would be completely black (none of it is below the line).

If this intersecting line represented the outline of a color filled
object, then we would use the same figures to compute the percentages of
each color that the pixel should receive. If the color above the line was
100 percent green and the color below the line was 100 percent yellow,
then a pixel (1,0) which has the line cutting it exactly in half would be 50
percent green and 50 percent yellow.

Some of the more prominent graphics effects houses, such as
Lucasfilm, are staunch supporters of antialiasing and even wear T-shirts
with ‘‘jaggies forbidden’” symbols on them. Personal computer owners
must learn to live with jaggies for the time being, given the limited
resolution of their machines.

Computer Animation Software and Applications / 111

g) IDEAL BUT IMPOSSIBLE.
CANNOT DIVIDE A PIXEL IN HALF

)

b) JAGGIES
PIXEL IS EITHER ON OR OFF.

___——100% TOP COLOR

85% TOP COLOR
15% BOTTOM COLOR

50% TOP COLOR
50% BOTTOM COLOR

(Y)

100% BOTTOM COLOR

15% TOP COLOR
85% BOTTOM COLOR

. ¢) ANTIALIASING
USING MIXTURES OF COLORS

Figure 3.18: Antialiasing example.

112 / Computer Animation Software and Applications

i

i
i
i
i

Photo 3.2: Antialiasing on a CRT: a) Two graphic objects — the one on the
left a) is antialiased, the one on the right b) is regular. Note how a) seems
smoother. b) Closeup of both objects shows how antialiased a) is made
smoother by shading edges of the line. c) Extreme closeup of antialiased object
reveals details of shading effect on jaggies. (Courtesy of Advanced Electronic

Design, Inc.)

3.10. PERSONAL COMPUTER ANIMATION SOFTWARE

The state of software techniques for personal computers is not
nearly as advanced as those used for high-tech machines. The main
reason for this is that memory for these machines has purposely been kept
below 64K to keep the price realistically within the consumer’s range.
Although this is changing with new, large-memory 16-bit personal

Computer Animation Software and Applications / 113

computers like the IBM PC and Apple’s Lisa, the software for taking
advantage of the larger memory of these machines is still not available.
This is not to say, however, that the graphics software on the personal
computer has not matured. As we point out in detail in the next chapter,
personal computer graphics software offers a large array of new ideas and
techniques, especially in the area of real-time animation. You won’t find
built-in transformation algorithms, texturing and shading techniques, or
shadow mechanisms (at least right now). But you will find automatic
movement of simple graphics objects in real time, built-in color fill,
special programmable graphics definition languages, circle generation
routines, neat graphics languages, numerous text and color modes,
page-flipping animation, image array plotting, players, sprites, hardware
background scrolling, and more.

We will cover all these concepts in Chapter 4. For now you should
be aware that the personal computer is hot on the tail of the high-tech
machines, and, as memory capacity grows and programs mature, person-
al computers will eventually have special software for doing the same
complex three-dimensional effects that are seen on the higher memory
devices.

3.11. HIGH-TECH DIGITAL PAINT SYSTEMS

To many artists the computerization of painting is nothing less than
a mortal sin. This is understandable since the majority of artists eke out a
meager existence expressing the more subtle emotions of the heart,
delving into rarer forms of meaning, and in general are humanists rather
than technocrats. To most of them, digital and all its ramifications is the
antithesis of true art. You would be lucky to get one to even consider that
a computer could outmaneuver the stroke of a paint brush. The day has
come, however, when artists must begin to wake up and see the graphics
computer as an entirely new form of artistic expression rather than a
device that should be shunned. A graphics computer equipped with good
software for drawing can offer extraordinary artistic control. (Using such
a system can even save on oil and canvas expenses.)

(continucd)

114 / Computer Animation Software and Applications

c)

Photo 3.3: These examples were created on high-tech paint systems. In

a) “Mt. Fuji,” a very high resolution image shows reflectance of the
snow-covered mountain, with a small boat crossing the water in front of it. Note
the delicate light blue tones. b) Shows a hand-drawn Santa Claus: note the
exquisite shading. (Courtesy of Aurora Systems, Damon Rarey-artist.) In c), the
city skyline was created on a Video Palette 3 paint system as part of the film
Subway, nicely demonstrating the level of creativity an artist can achieve on a
paint system. (See color insert.) (Courtesy of Digital Effects Inc.; Mark
Lindquist — artist.)

What Are Paint Systems?

To allow artists to utilize the power of computer graphics, special
“‘paint’’ software has been developed. These paint systems are programs
that can work in conjunction with digital tablets and light pens (described
in Chapter 2). They allow the artist to draw on the computer screen by
moving the stylus on the tablet, or the light pen on the CRT itself, as if it
were a paint brush. The artist usually has a menu presented on part of the
computer screen in a viewport (out of the way of the picture) that contains
instructions for using the system. (These might include selection boxes
for choosing color, brush width, and other parameters.) By using the
keyboard along with the menu and the pen, an artist can, for example,
select the brush width that draws anything from a very fine line only one
pixel wide to a very wide line comprised of many pixels. Some advanced
systems even allow the brush to simulate a paint sprayer, sputtering and
feathering the edges of the painted line as if there were an aerosol can
behind the stylus!

In addition to allowing the selection of paint brush sizes, the paint
system that is implemented on a high-tech computer allows the artist to

Computer Animation Software and Applications / 115

choose from a fabulous array of colors. On some systems there may
actually be a maximum of 16 million colors to choose from.
With a paint system, an artist can also superimpose multiple images.

For example, the artist can create a background scene and then merge 1t
with previously created foreground images. The foreground images can
be moved around on the background until they are in the perfect position.
Other effects possible for the artist are color cycling (causing certain
colors on the screen to change simultaneously to new colors), zooming
(magnifying any particular section in a scene so it fills the entire screen),
and adding patterns and textures. This last feature, sometimes called
rubber stamping, is truly an example of something that computers can
easily do that painters cannot. For example, suppose the artist uses the
computer paint system to create a brick pattern to be used for a wall. Once
a small patch of brick has been made, it can be attached to a brush. Then
every time the brush is pressed down on the tablet, the pattern is placed on
the screen. In this way the entire wall is rubber stamped on the screen.

Technical Details

Technically, such sophisticated paint systems require large frame
buffers, powerful computers, and very large hard disks. The software for
these systems is very expensive (over $10,000 on the average), and the
hardware can easily exceed $50,000. Digitizing tablets with very high
resolution are needed. To use this system for video production, a video
tape recorder is attached. For film quality images, an expensive film
recorder is required for capturing the output onto film.

Main Applications

Some of the main uses of paint systems today are in television news,
weather reporting, and creating textures for high-tech three-dimensional
texture mapping (e.g., the Genesis planet in Star Trek II). It is relatively
easy, for example, for an artist at the TV station to quickly draw up maps
and pictorials on the computer, alter them to fit the news situation and
finally capture them on video tape.

Another important use of the paint system is in filling cartoon
*‘cels’” with color (we’ll say more about that later). A scan conversion
algorithm can evenly fill an enclosed boundary faster and far more
accurately than a human artist. The animation field is also utilizing paint
systems for creating special effects not possible or not easily made by
conventional techniques.

One popular software paint system was AVA. It was based on
NYIT’s paint program (written by Alvy Ray Smith) and modified by
Tom Porter (who went on to write Lucasfilm’s amazing paint program).
AVA ran on a DEC PDP-11 and was designed to be simple to use.
However, because it was too sophisticated for its time (it had too many
functions for the average user), it was pulled off the market by its owners,

116 / Computer Animation Software and Applications

Ampex. The CBS network, however, still uses AVA for many of its news
graphics.

Big names in paint systems include Dick Shoup’s Aurora system in
San Francisco, Digital Effects in New York, and NYIT’s “‘Images’”
system. Microprocessors used frequently in these systems are the DEC
LSI 11/23 and the Z80. Popular minicomputers (more expensive but also
more powerful) used with paint systems include the HP 1000 and General
Nova among others. The principal computer language for paint systems
is C. As described at the end of Chapter 2, C is a compiled language that
is fast in execution, fairly easy to maintain, and becoming more popular
among computer users. Most paint systems require at least 192K of
RAM. Most of them store images on disk using the same run-length
encoding techniques for compression that were described in Chapter 2.

An excellent survey of digital paint systems appeared in the April
1982 issue of Computer Graphics World, volume 5, number 4, page 61.

Personal Computer Paint Systems

Today there are several low-cost paint systems designed for person-
al computers like the Apple and ATARI. (These might actually replace
the need for high-tech systems when low-resolution with only a few
colors is all that is required.) One particularly fine piece of software can
help your Apple emulate a $250,000 graphics system for just $39.95!
The package is called Special Effects. It was written by Mark Pelczarski
of Penguin Software (830 4th Ave, Geneva, IL 60134) and requires DOS
3.3, 48K of RAM, and a joystick, paddle, or graphics tablet. Special
Effects provides 96 different paint brushes that can be moved about the
screen. You can load your brush with any of 107 colors or color patterns
and move the brush anywhere on the screen. Borders are not required for
filling with patterns and colors! Even shading is possible. Brushes and
color palette is displayed on screen 2 of the Apple, so it is easy to switch
back and forth between your picture and your menu. The package
includes a magnify mode which lets you magnify the area around the
cursor two or four times so you can see individual pixels. In addition,
there is software for taking fonts created with a font generator and
merging it into your scene. Mirror image flips and negative image tricks
can also be performed (reversing the color of all pixels).

The most impressive aspect of this software is that you can take a
rectangular portion of your picture and move it to any other portion of the
display. This allows the production of some terrific animation effects.
There is also a picture-packing routine for crunching pictures to use less
storage space on the disk (just like in the high-tech machines). You can
even string several pictures together so they can be quickly and automati-
cally loaded into the display RAM by a BASIC program statement.

Computer Animation Software and Applications / 117

Photo 3.4: This pie chart, created on the screen of the Apple Ill personal
computer, has a resolution of 280 x 192. This photo shows the jaggies very
clearly. Although few people know it, the Apple has a higher 560 x 192
resolution, but it is only black and white. (Courtesy of Apple Computer
Company, Inc.)

Photo 3.5: Scene created on Apple Il using “Special Effects” paint system by
David Lubar (see color insent). (Courtesy of Penguin Software.)

Of course, the Apple and the Special Effects software lack the high
resolution and color capability of the high-tech paint systems. But con-
sider a $3,000, 280 X 192 resolution, six-primary color computer, and
$39.95 paint software package versus a $150,000, 1024 x 1024 resolu-
tion, 16 million color computer, and $10,000 paint software package. It
is easy to see why these low-cost systems are extremely attractive — and
it surely won’t be long before their resolution and color capabilities
increase to a point where they are rivaling the high-tech machines.

118 / Computer Animation Software and Applications

3.12. COMPUTER-ASSISTED AND
COMPUTER-GENERATED ANIMATION

Now that you know the basics of graphics software. you are prob-
ably anxious to discover how computers are used in professional film
animation today. There are two very broad categories of computer
animation: computer-assisted animation (also called computer-aided
animation) and computer-generated animation, which can be further
subdivided into real-time and non-real-time computer-generated anima-
tion. Computer-assisted animation is used to aid artists in the production
of two-dimensional animation (with paint systems, cel opaquing, etc.)
whereas computer-generated animation is the process by which the
computer generates a realistic three-dimensional image under the direc-
tion of a human-designed database and animation controls. We will
explain these in more detail.

A third area outside the realm of computer animation in which
computers are being used today in film is called motion control photogra-
phy. Motion control photography involves using a computer to control
the movement of the motion picture camera. The camera has several
“‘stepper’’ motors that can change its position in almost any direction by
very small increments. By doing this, the computer has taken over a
laborious task which has previously been relegated to the animator. The
camera may be snapping pictures of a spaceship model, for example,
while revolving around the model, giving the illusion that the ship is
moving. Or it may simply be passing over a long landscape. The com-
puter simplifies the calculations for pans (left to right movement), tilts,
rotations, and accelerations.

The movie Dragonslayer used these techniques extensively in addi-
tion to a new technique called Go-Motion. The models of the dragon
were also provided with stepper motors and connected to an Apple 1.
Rather than moving the dragon and then taking a picture, as is usually
done with stop motion photography, the movie’s creators moved the
dragon by the computer while the frame was being exposed. This caused
each frame to be slightly blurred (as is the case with normally photo-
graphed scenes using live actors), resulting in extremely smooth motion.
Industrial Light and Magic (a division of Lucasfilm) is a pioneer of such
exciting effects.

Computer-Generated Animation

This book primarily focuses on computer-generated animation. As
we learned in previous sections, the generation of the original artwork in
such animation usually comes from the initial generation of a database of
coordinate points that describe the fundamental shape of an object. The
method used to enter these points into the computer depends on the object
to be animated.

Computer Animation Software and Applications / 119

A simple cube that will fly and twist across the screen can be
completely generated by mathematics, since its mathematical description
is fairly simple and the number of points describing it is minimal. It can
thus be entered by a formula, through the digitizing tablet, or with a
simple sketch and a digitizing camera. (A digitizing camera is a camera
connected to the computer in such a way that anything that appears in
front of its lens is scanned and converted to a bit image and stored in the
frame buffer.) A three-dimensional image as complex as a person jug-
gling geometric objects might take so long to describe mathematically
(given the complex and subtle motions involved) that methods for enter-
ing the datapoints which involve shortcuts might be required.

Once the initial coordinates for the image have been entered into the
computer, there are several steps that may occur for the production of the
final image. In general, they will involve mathematically affecting the
image, transforming it, including rotation and scaling, removing hidden
lines and surfaces, shading, coloring, texturing, and shadowing. A paint
system may be employed for several of the coloring functions.

As always, the actual steps involved are dependent on the particular
image and application. In order to get a feel for how an application of
computer-generated animation might proceed, we will describe the mak-
ing of the Juggler film (see Chapter 1). The processes used to produce the
Juggler cover the gamut of animation technique, but remember that other
animations may take a different approach. The end product is what is
important; how it is accomplished is secondary. This sequence is re-
nowned as an excellent example of the realism that can be achieved with
computer animation today.

Making of the Juggler If you forgot our description of the Jug-
gler film, now would be a good time to reread it at the beginning of
Chapter 1.

The film shows a juggler in a black tuxedo juggling three geometric
shapes. Incredible camera angles, smooth realistic body movements,
vivid color, and an eerie manikin face, make this film an outstanding
example of computer animation. The film was produced by Information
International, Inc. (Triple I), a California company which excelled in
animation and computer graphics effects. As we explained above, the
first step in the production of any computer animation is obtaining the
database for the objects.

Triple I had two choices for getting the initial image inside the
computer. They could either synthesize the juggler inside the computer
using pure mathematics or they could somehow get the coordinate points
of a real juggler’s movements inside the computer. Synthesizing their
own was almost impossible because there are so many subtle movements
of the human body that it would have taken years to describe it mathe-

120 / Computer Animation Software and Applications

matically. So they hired a professional juggler named Ken Rosenthal (the
computerized juggler is called Adam Powers).

The first step in getting the datapoints into the system was to have
Ken dress up in a white leotard and stand on a stage. One camera was
placed above him and one directly in front of him. The cameras were
synchronized so each frame picked up the exact same movement. The
people at Triple I then painted black dots at each joint of Ken’s body and
connected them with black lines.

With Ken on stage and the camera rolling, they had him juggle three
objects for five minutes. The film was then viewed and edited down to
one minute of exceptional juggling. After studying the film very careful-
ly, its creators found a simple three second sequence of juggling that
could be used for cyclical animation. In other words, this three-second
piece of film could be played over and over and it would appear as if Ken
(Adam Powers now) were continuously juggling the shapes.

The next step was to rotoscope Ken. Triple I mounted one of the
projectors on a device called an animation stand and advanced the three
seconds of film one frame at a time, projecting each frame onto a large
piece of engineering paper. As each frame was illuminated on the paper.
they ignored the other parts of his body and carefully traced onto the
paper all the dots at the joints and the black lines connecting them. This
process was repeated for the top and front camera views. When they were
done, they ended up with 144 frames of data (pieces of paper). This
number of frames comes from the fact that the cameras run at 24 frames
per second; 24 X 3 seconds = 72 frames, and since there were two
views, 72 X 2 gives 144.

Their next task was to get all this data into the computer, so they
took their paper frames to a digitizing table and entered the captured
points and lines into the computer. (Recall that a digitizing table is a
tablet with a special pen. A piece of paper with an image on it is placed
flat on the table and is traced over with the pen. The computer is able to
follow the pen’s motion and record the X and Y coordinates of each pen
position.)

They pressed the pen down at a joint to tell the computer it was an
endpoint. The two camera views allowed them to track each joint in three
dimensions, thereby giving 19 points per frame, for each of the 72
frames. The result was that all the frame information from Ken’s juggling
was entered into the computer. From this information they formed a
database of points for each frame. The precise movements of the juggler
were now captured inside of the computer.

The next step was to create the juggler’s body parts and make him
appear three-dimensional. For this they used a geometric wire frame
cylinder for each limb. modeling it mathematically inside the computer,
and then attaching it around the limb and joint data already stored in the
computer. (See Photo 3.6.) Much experimenting was needed with the

Computer Animation Software and Applications / 121

cylinders to get them to correspond properly to the database. Each
cylinder was merged with its neighbor in the final filming. The shoes and
details of the tuxedo were also added later. Because each cylinder
penetrated its neighbor, they decided to make the tux black. This would
make the connection points less noticeable.

Photo 3.6: This is the wire frame substructure of the Juggler model, which
was created from a digitization of a live model. (Courtesy of Information
International, Inc.)

Once the wire frame image was perfected, the difficult part was
completed. At that point a hidden line removal method called Bouk-
night’s algorithm (a special mathematical method) was used to make the
hidden lines disappear. Color was then added by using a cubic patch
program and polygon coloring. Shading was accomplished with Lam-
bert’s Cosine Law.

Creating the face presented a unique problem. Two views of a face
(front and side) were sketched on four-foot square engincering grid
paper. Then they approximated the face using 400 polygons. It was done
this way because it is extremely difficult to enter curves into a computer.
Triple 1 wanted the face to be as natural as possible and therefore needed
many polygons, because people react negatively to a face with distortions
in it.

The next step was to take the engineering paper with the polygons on
it and lay it on the digitizing table. The data for the polygon’s locations

122 / Computer Animation Software and Applications

was entered in the computer’s database by tracing the polygons of the
face on the table — thus it *‘knew’’ how the face was shaped. Triple |
only digitized half the face and then mirrored the image into two pieces
and joined them in the computer. Since it looked too perfect, they had to
add some imperfections, and did this by moving some of the datapoints
around. Finally, they mathematically smoothed the polygons of the face
by using the special Gouraud’s algorithm we described earlier in this
chapter. By the time the entire face was completed, they had used more
than 1000 polygons.

a)

b)

Figure 3.19: Human face simulated with polygons. (Courtesy of Henri
Gouraud, University of Utah.)

Computer Animation Software and Applications / 123

If you’re wondering about the computer that Triple [used, it was not
an ATARI or an Apple II. Rather, it was a custom-made computer
prototype called a Foonly, designed to be faster than many minicompu-
ters. The resolution at which the Juggler was photographed on 35 mm
film was 3000 points by 2400 lines, and that’s 130 times finer than the
Apple. On4 X 5 transparencies, Triple I records at a resolution of 6000
points by 4000 lines. When recording on film, the company uses an
incredible 9 bits per color, which amounts to over 134 million color
levels.

Real-Time High-Tech Animation

For real-time animation, the same concepts described throughout
this book are used. The only difference is that the speed at which the
software processes the images must be much faster. This is usually
accomplished by using very high-speed computers that cost in the mil-
lions of dollars. (The CRAY X-MP is an example.) These are called
vector processors because they deal with real-time computation of vec-
tors. The use of many microprocessors, each representing a certain object
or portion of the object in the scene, all running in parallel as they
compute, is being considered as an antidote to the cost of the high-speed
computer.

Now that you understand a little about the process behind computer-
generated animation, let’s investigate computer-assisted animation as it
is used in the cartoon industry.

Computer-Assisted Animation

To appreciate how much time and effort the computer has saved the
cartoonist, consider the six manual steps to creating a cartoon.

Initial Design The artist creates a storyboard which is a quick
sketch of the main pieces of the entire cartoon from beginning to end,
somewhat like a comic strip. It shows all the significant frames of the
cartoon, i.e., the important ones that specify a major change in characters
or environment.

Key Frames The key frames are then drawn in more detail to
create significant character positions. Key frames are the frames that hold
the peak positions of the figures in the cartoon. They tell the cartoonist
the path of the cartoon and where the figures in each motion sequence
start and end.

In-betweening Many frames between peaks of movement in the
storyboard are drawn to produce movement. Frames must be eased (also
called faired), i.e., properly accelerated from start to rest or jerky
movements will result. Usually 24 frames are needed for each second of
movement in the final film! Thus just one quarter hour of viewing time of
the cartoon requires 21,600 drawings! This is one of the most time-
consuming aspects of making an animated cartoon.

124 / Computer Animation Software and Applications

Pencil (Line) Testing The drawings are now photocopied on
acetate (called cels) and then filmed on an animation stand to test quality
of movements. The animation stand (also called an animation rostrum) is
a camera and a platform-like device that allows the drawings to be
accurately transferred to film for viewing. If an error is found at this
point, then the animator must go back to the drawing and in-betweening
and fix it, and the line test is repeated.

Opaquing Once modifications from the line test are completed,
the cels are actually painted in (opaqued) by hand to add color, so
characters stand out from backgrounds. This is another expensive, time-
consuming step.

Filming Finally the backgrounds and characters are brought
together on the animation stand and filmed by the camera to make the
cartoon. Sound is joined with the film at this stage. (Sound is always
recorded before the key frame stage since it is easier to make the drawings
match the sound than vice versa.)

Computerization of Cartoons

In making cartoons, the computer can help solve many of the
time-consuming manual techniques we described above. The following
methods are utilized at Hanna Barbera, a company famous for Fred
Flintstone and Superfriends.

After the pencil sketch has been created by the artist and cleaned up,
it is entered into the computer via a digitizing camera. Because the pencil
sketch has gray shades in its outlines, the picture gets automatically
antialiased and no special software techniques are needed to obtain
smooth non-jaggy edges. Once the picture is inside the computer, a paint
system is used to do the opaquing and fill the image with color. With the
use of a paint system, the opaquing step only requires the artist to place
the cursor in the center of the object, choose the fill color and press the
respective button. In a fraction of a second, the interior of the entire shape
will be flooded with color.

In such cartoon applications, there are usually 16 shades of 16
colors, allowing a total of 256 different hues. With the various shades the
flooding (filling) algorithm blends the colors as they approach the outline
of the figure for a smooth, antialiased border.

Of course, once we have the database of points for the figure in the
computer, it is relatively simple to rotate and scale the figure in two
dimensions. We can make our figures spin, expand, shrink, flip over,
mirror, and so on.

Another major contribution of the computer in cartoon applications
is in the area of in-betweening. With proper software, the computer can
mathematically estimate the in-between positions of two-dimensional

Computer Animation Software and Applications / 125

objects given their starting and ending drawings. This process is only
beginning to be used and needs much work before it can easily handle all
two-dimensional situations, but it is certainly on the way to becoming
very effective, The in-betweening of three-dimensional animation is
actually much easier than two-dimensional because the notion of *‘be-
hind”* exists in a three-dimensional database.

The computer is making cartoon generation much easier due to its
ability to solve the overlapping cel problem. In the old, manual approach
when several painted acetate sheets were superimposed on each other,
the color of the figure would change because of the increased density of
the many cels. For example, each cel is usually devoted to each of the
figure’s different body parts. The torso will be on one, the eyes on
another, lips on still another, and so on. This saves having to redraw all
the parts when only one feature changes (for example, if an eye blinks,
just the eye cel needs to be altered). However, the change in color due to
the overlapping of the cels meant the colors of each cel had to be carefully
selected to compensate. With the computer, we can completely eliminate
this problem. The color is of a hue exactly determined by the software.
There is no density effects from underlying cels.

Manipulation of the graphic image that is stored in the computer is a
very difficult process that requires intense mathematical knowledge of
the algorithms described earlier in this chapter. Special software is
available to help the animator. Checking the accuracy of the animation
may also be difficult because of the non-real time aspect. The images
must be loaded into the frame buffer and filmed (or videotaped) one at a
time before the entire sequence can be viewed. Some new systems, like
those at Hanna Barbera, can store the images of the animation on disk and
then call them up quickly enough to see the cartoon in real time.

You shouldn’t think that making cartoons using manual techniques,
computer assistance, and computer-generated imagery are totally inde-
pendent or mutually exclusive. Actually all techniques blend together in
many new ways. The next section explains how manual techniques are
combined with computer-generated animations and gives a glimpse of
what is on the horizon in computer animation.

3.13. THE MAKING OF TRON

Our book would not be complete without mentioning how a high-
tech computer is used today in a modern motion picture. TRON, a
feature-length film from Disney Studios, is about a programmer whose
great computer games are ripped off by the ultimate computer pirate —
another computer program. Through the magic of artistic license and
computer imagery, our hero gets laser digitized into a patch of pixels and
swallowed up by the computer. In his new RAM-based consciousness,
he wanders about the frame buffer searching for the villains who stole his
best program (called Space Paranoids). When he finds them, a fantastic

126 / Computer Animation Software and Applications

battle erupts in the frame buffer. The effectiveness of the film is the result
of brilliantly blending computer graphics and old-fashioned animation.

With TRON s release came a new awareness on the part of the public
regarding computer animation. Never before have special computer
effects been so pronounced. Playing a major role in the making of TRON
was Richard Taylor of Triple I and formerly with Robert Abel and
Associates (equally famous for candy apple neon 7-Up and Levis Jeans
commercials).

The process of making TRON required artist-designers to interact
with programmer-technicians, and this presented some interesting prob-
lems. The artists were at one end of the country and the programmers at
another, further complicating matters. The TRON artists were at Disney
studios in Los Angeles, and the programmers were at Mathematics
Applications Group, Inc. (MAGI) in New York. When Chromatics
terminals were installed at each end, work settled down. Modems were
used to send low-resolution motion tests to the director at Disney before
committing the images to film.

For example, after MAGI received the storyboards for the vehicular
animation from Disney, they took these crude images and plotted them in
three views using combinatorial geometry on a 40 X 60 inch Talos
digitizing tablet. They then made up flowcharts of the speed and angles of
the moving objects for the camera path. The results then went back to
Disney for corrections in pacing, staging, and animation. MAGI in-
corporated these corrections and committed them to film using a high-
speed raster system and film recorder.

Photo 3.7 From TRON, a video game tank patrols a dark alieyway. Note the
incredible effects of color shading (see color insert). The image is by MAGI.
(Courtesy of Walt Disney Production, World Rights Reserved.)

Computer Animation Software and Applications / 127

Photo 3.8: This is the computer-simulated master control I/O tower of TRON.
The image is by Information International, Inc. (Courtesy of Walt Disney
Production, World Rights Reserved.)

The characters in TRON had to be candy apple neon in appearance
(i.e., glowing tubes using bright colors, so that they looked like elec-
tronic images inside a computer memory). They were done by having the
actors wear white costumes and perform in front of a set with just a black
backdrop. They were filmed in 70 mm black and white. Then each frame
(and that’s thousands of frames) was enlarged for the production of four
cels for each frame. Cel painters then came in and applied holdout
mattes, masking out unwanted sections, one for the face, another for the
costume, one for the eyes and teeth, and a fourth for the glowing circuitry
on the front of the costume. A roto-scoping process (combining the four
cels into one continuous tone positive film) was then used.

The back-lighting for the film came from the techniques Abel used
in the 7-Up commercials. No reflected light is used in the microworld of
TRON all light comes from the creatures and objects themselves. Every-
thing glows dimly from within, giving a forbidding and oppressive end
effect.

Computer graphics were used throughout the film, often in places
that weren’t obvious. Even the scene showing a nighttime landing of a
helicopter used computer graphics (the city lights were computer-
generated, not the helicopter).

After the computer animation in TRON was so well received, we can
expect to see its expanded use in future films.

128 / Computer Animation Software and Applications

3.14. AN ANIMATION HOUSE — EXAMPLES

The figures below are from one of the most prolific animation
houses in the United States, Robert Abel and Associates. This company
is responsible for many television commercials that use computer anima-
tion and is perhaps most famous for their Levis commercials, which
strangely enough used the computer only to help figure out camera angles
(even though it looks very computer-like). The Philips Radio commercial
is completely synthetic except for the background, which was airbrushed
in. This shows how other media can be mixed in with computer
animation.

(continued)

Computer Animation Software and Applications / 129

d)

Photo 3.9: These are examples of animation from Robert Abel and
Associates. (Courtesy of Robert Abel and Associates.)

a) Levi's Commercial — this commercial won a Cleo Award and great acclaim
for Abel. Millions of people loved this when it first appeared on television in
1974. To help plan the commercial, an Evans and Sutherland Picture System 2
was used to calculate the camera moves. The final commercial, however,
contains no computer graphics, just live actors and standard animation.
(Directed by Robert Abel.)

b) Philips Radio Commercial — the entire scene is synthetic (created with a
three-dimensional vector-shading routine) except for the cloud background,
which was conventionally painted with an airbrush and then matted in. An
Evans and Sutherland Picture System Il is used for all of their computer
animation work. (Directed by Bill Kovacs.)

c) CBS Evening News Opening — for those of you who watched the evening
news on CBS during 1981-1982, you'll recognize this spinning globe with the
CBS “eye” symbol indicating the cities. (Directed by Clark Anderson.)

d) AT&T Energy Commercial — this was entirely computer generated.
(Directed by Rod Davis.)

3.15. AN APPLE FOR ANIMATION — JAMES LEATHAM

Can a low-cost twentieth century personal computer simulate a
high-tech graphics machine from the twenty-first century? Are personal
computer users destined to play Space Invaders and Pac Man because
they just don’t have enough pixels to do anything more significant? Or is
there a fantastic animation potential inside your personal computer that’s
dying to “‘worm’’ its way to the surface and do something wonderful?

One person who has answered all these questions with a resounding
YES is James Leatham, located in Chester, New York. James is a
multitalented programmer and filmmaker who, using a standard
Apple I1, a SubLogic A2-3D1 Graphics Package (SubLogic
Communications Corp, 713 Edgebrook Dr., Champaign, IL 61820), and
a special homemade equipment bench, has created fantastic animation
scenes for an 8 mm film called Asteroid. The movie concerns space age
asteroid belt miners. In the scene that Jim worked on. the ship’s computer
detects and analyzes a particularly valuable asteroid. The ship’s
computer creates a simulation of the asteroid and rotates it in three

130 / Computer Animation Software and Applications

dimensions. A jagged magnetic field appears to float around the asteroid,
rotating with it. The photo below shows another one of James’ creations.
This ts from the flip movie of a mathematical function. In the movie the
two functions appear like colorful wire frame mountains that grow and
shrink.

1)

Photo 3.10: Frames from James Leatham’s Calculus Mountains, a good
example of how a microcomputer can be used for computer animation. James
used a Super-8 camera under the direct control of an Apple Il computer. The
computer draws a high-resolution picture on the screen, positions a filter from
the filter wheel in front of the lens, takes the picture, and draws the next frame
with a new color or advances the film as appropriate a) through e): a short
sequence of film using three exposures per frame (r-g-b); f): black and white
version; g) through i): red, green and blue exposures. (Courtesy of James
Leatham.)

Computer Animation Software and Applications / 131

(continued)

132 / Computer Animation Software and Applications

d)

Photo 3.11: Four slides taken from a CT5 continuous-tone, reai-time visual
simulation system. CT5 was designed by Evans & Sutherland in collaboration
with Rediffusion Simulation, Inc., for flight simulation applications. CT5
generates these high quality, high complexity scenes in real-time, 50 times per
second. (Courtesy: Evans & Sutherland/Rediffusion Simulation.)

James used the SubLogic A2-3D1 package to define a three-
dimensional database for the asteroid. It was simple to enter rough
coordinates that resembled a round object. Next a control program was
written in BASIC to rotate the object in single degree increments on the
Apple screen. James devised a special bench for holding the camera and a
rotating filter. The control program could move the proper filter in front
of the camera and snap the shutter of the camera for each different filter
color. The control program and camera mechanism took almost all the
labor out of the filming of the animation sequence.

The film was later projected onto the spaceship’s CRT at 18 frames per
second, which was a speed-up of 180 times over the original rate. Figure
3.20 and Photo 3.12 show James’ set up. He uses an Apple I with
a Eumig 881 PMA Super-8 movie camera. A black and white monitor is
used for maximum resolution, and that explains the reason for all the
color filters. The computer can open the camera’s shutter and hold it open
for as long as required. The computer can also capture the display modes
from the text to either of the two high-resolution pages. Each new image
is drawn on an alternate graphics page. When it’s done, the new page is
switched on by the computer program, and the old page (now out of view)
is erased. The proper filter is then rotated into place by the stepper motors
and the camera shutter is opened for the required time.

James Leatham is one of the first pioneers in the amazing field of
home computer animation. His example shows that one can achieve
incredible effects on a very small budget. He may be at the forefront of a
new phase in computer movies where stick figures and clay models are
replaced with data statements and programmed logic.

Computer Animation Software and Applications / 133

Photo 3.12: James Leatham’s Appie Il budget 16 mm animation equipment.
This equipment produced the frames in Photo 3.10 as well as animation
sequences for a science fiction movie.

rCOLOR FILTERS (SEE DETAIL B)

SCREEN
VIDEO
SUPER-8 MONITOR
MOVIE (BLACK AND
CAMERA STEPPER WHITE)
MOTOR

SHUTTER CONTROL FILTER POSITION MOTOR POWER
AND SIGNAL SIGNALS o RELAY

[l Y

APPLE IT
COMPUTER

VIDEO

a) (continued)

134 / Computer Animation Software and Applications

, NONE CONDUCTIVE
TAPE

SUPER-8
MOVIE CAMERA

GREEN \ +— BLUE-GREEN

{ALSO FOR 3D)

BLUE

NOT USED
(NO FILTER)

BLUE-GREEN
{(ALSO FOR 3D)

\MAGENTA

Q
NOTES: ~WHITE (NOTE CONDUCTIVE

COLOR FILTER IN POSITION AT TAPE IS OFFSET)
9 0'CLOCK, CONDUCTIVE TAPE
AT 60'CLOCK WHITE

il COMMON
— |- ~__COLOR

b)

Figure 3.20: Using an Apple for film animation. a) equipment set up and
b) color filter details.

Now that you have had a good introduction to computer graphics
software, you are in a good position to solve a particular problem using a
graphics-oriented computer. You may also be asking yourself, **What is
available for a low budget in the way of graphics machines?’” Anticipat-
ing this, we have prepared the next chapter. It is a survey and analysis of
the graphics-oriented personal computers you can purchase today.
Although the survey doesn’t cover everything on the market, we think
our particular sample will whet your appetite. We have not covered the
expensive, non-microcomputer-based graphics machines, the S-100
boards, or the most super high-tech computers; we’ll leave those for
another book.

Personal Computer Animation Features / 135

Chapter 4

Personal Computer
Animation Features

N ow that you know enough about the million dollar, high-
technology animation computers to want to own one, it's time to
draw up plans for **borrowing’” a few bars of gold from Fort Knox. If this
isn’t quite your style, don’t worry. there’s another way out. Consider,
instead, the more reasonably priced color personal computer.

Given the rapid advances in technology, today’s personal comput-
ers, once the poor relatives of high-tech machines, are quickly catching
up in performance. And even though this is the case, the prices for these
marvels (with a single built-in programming language) start at a nominal
$99, average $1500, and peak at $3500.

In addition to their attractive low cost, color personal computers
offer the animator some other pulses which are lacking in the high-tech
machines. To begin with, the personal computer owner will find many
books (like this one), which make learning about the machines’ capa-
bilities a pleasant task. Likewise, the abundance of add-on hardware
products facilitates expanding the system as your needs change. Also,
personal computers have a sufficiently large base of owners to support
the creation of a wide selection of animation programming tools. A case
in point is the easy-to-use machine language animation routines de-
veloped as part of this book for use on the ATARI Home Computers;
these enable you to design your own animation programs that perform in
real time. Due to the projected number of sales for these kinds of
programs, their cost is likely to be very reasonable. Therefore. after
you’ve mastered your system and created your own programs, you might
wish to sell them to a ready-made market that is eager for all the software
it can get.

Because color personal computers offer so much for the money,
they are extremely attractive to the consumer on a low budget. As a
consumer, the first thing you’ll want to know is ‘*What can they do (in
terms of graphics and animation), and how can I make them do it?”’
Answering these questions is the basis of this chapter.

136 / Personal Computer Animation Features

4.1 FORMAT OF THIS CHAPTER

We have identified 13 key features you should be aware of when

evaluating a personal computer for graphics animation. These features
are:

BASIC Graphics Statements
Special Hardware Features
Graphics and Text Modes
Graphics Language Statements
Mode Selection
Color Sclection
Plotting
Line Drawing
Shapes, Graphics Definition Language
Paint, Fili, Flood
Defined Object Statements
Image Array Plotting
Miscellaneous Statements
Players/Sprites
Hardware Scrolling
Graphics Characters
Custom Characters
Color Registers
Vertical Blank Interrupts
Display List and Display List Interrupts
Page Flipping
Speed of Plotting

The bulk of this chapter will examine each of these features, defin-
ing each and explaining its importance to the animator. We will also
occasionally make reference to actual personal computers, languages,
and products. Our main goal is to expose you to what is important, rather
than to endorse a particular machine.

4.2 BASIC GRAFPHICS STATEMENTS

BASIC is by far the most popular language for executing graphics
on personal computers today. To better understand the things your
personal computer can do in the area of graphics, you should examine
those BASIC statements that pertain specifically to graphics on the
machine(s) in question. In some cases, as in the Apple 111, BASIC offers
primitives rather than regular statements. Primitives are graphic func-
tions performed when certain character sequences are sent to a special
graphics program called a driver. You should understand, however,

before getting involved with graphics primitives, that they are definitely
more difficult to use than BASIC statements.

What Language?

Although BASIC is the most common language in use on personal
computers and its merits are simplicity of use and immediate feedback. it
1s not accurate to conclude that it is the only or even the best language for
graphics. Another popular language for microcomputer graphics is Pas-
cal, particularly Apple Pascal. Since Pascal is a compiled language.' its
graphics programs usually execute faster than those written in BASIC.
The major drawback with Pascal is that it is a structured language. This
means a front-end or preamble of instructions must be first created for
your program before you can try an idea. This kind of programming
demands much preplanning and is good for long and involved projects
but difficult for the “‘just try it and see’” approach.

Another graphics language which is growing in popularity is Logo.
Logo is built around a concept called turtle graphics. Turtle graphics
allows the user to see a turtle (with an imaginary drawing pen in its
mouth) on the screen. The turtle can be moved with simple commands
like THRMN and MOYE, and in so doing it leaves a line of color behind it.
Children have an easy time drawing with the turtle because its move-
ments are obvious to them and intuitively understood. A simple box, for
example, can be drawn in Logo with very few statements (see box on the
next page).

'Pascal for the Apple compiles into what is called P-code. This is an intermediate set of instructions that
must be interpreted before they can be understood by the processor. Other Pascals (called native
compilers) produce pure native machine code, or N-code. that can be run immediately. Each has its
advantages. For more details on Pascal see Pascal Primer by David Fox and Mitchell Waite, Howard W.
Sams and Company, Indianapolis, IN.

Personal Computer Animation Features / 137

138 / Personal Computer Animation Features

Making a Box in Logo and BASIC

T0O BOX :5IDE

HOME

REPEAT 4 [FORMWARD :S5IDE LEFT 901
END

Figure 4.1: Logo Box Program.

In this program we have previously typed TELL TURTLE to
activate the drawing turtle. FORWARD sends the turtle ahead a
distance set by the variable SIDE and in any direction on the
compass. The turtle starts point straight up (due north). The instruc-
tion LEF T 9@ turns the turtle 90 degrees. We started the program
by typing BO X 18, which made the value of S IDE equal to 10 and
then executed the program.

Compare this to the same box done with Applesoft BASIC and
decide which is easier to understand. One of the authors was once a
devotee of BASIC and worshipped it at every turn. Now after playing
with Logo he no longer finds BASIC as friendly as it once was.

129 HGR :REM clear the hi-res screen

11¢ HCOLOR = 3 :REM set the color
to white

12@ XC = 149 : ¥C = B@® :REM set
the center coordinates

13@ INPUT "Enter lendth of side "3 SI:

REM enter side

149 HPLOT XC.¥C TO HC,¥YC-81 TO
HRC-51:sYC-81 TO HC-SINC TO KHC.¥YC
s:REM and draw 1t

153 END

Figure 4.2: Applesoft BASIC Box Program.

in this program, we must first clear the screen to black, set the
drawing color to white, set the center coordinates XC and YC, and
request the user to input the length of the sides. Then the HPLOT
statement draws the actual box.

Some versions of Logo may, however, hold back the programmer of
complex objects because its number crunching ability is more limited
than BASIC or Pascal. For example. Apple LOGO has floating point
while T1 Logo has only integers.

The language C is often used in larger computers for doing graphics.
C is similar to Pascal but is casier for creating programs that must
manipulate the byte and bits of the microprocessor. It executes faster than
Pascal and is just beginning to appear on low-cost personal computers
like the ATARI Home Computer (it has been available on CP/M-based
computers for some time). With C and the addition of an S-100 graphics

board with a high-resolution bit map, you would have a very powerful,
low-cost graphics machine.

You may also want to investigate Forth as a graphics language.
Although it is rather difficult to learn, it is a somewhat elegant language
and your own graphics instructions are easily added to it. Its advantages
include high speed, immediate execution of programs (no compilation
like in Pascal and C), ability to define your own commands, and very
compact code.

Assembly language is another way to go if you have lots of patience
and perseverance. Graphics written in assembly (8080 and 6502 are
among the most popular codes) will execute very quickly, allowing the
rapid and fluid movement of objects on the screen. One of the authors has
created a set of graphics extension routines in 6502 assembly language
that enhances Applesoft'so you can draw circles, polygons, and fill
shapes with color. These routines, however, were very difficult to create,
requiring hundreds of programming hours. Rather than attempting to
create your own assembly language routines, first check animation aids
and products currently available on the market by looking through
magazines such as Popular Computing and Byte.

4.3. SPECIAL HARDWARE FEATURES

As a graphics programmer, it may be important to understand how
your personal computer works on a hardware level. It all depends on the
degree of control you want to have over the graphics effects produced. In
the Apple, for example, it doesn’t really matter how the hardware for
graphics works if you’re using only BASIC or Pascal. If you want to
program your Apple in assembly language though, the hardware is
extremely important because you must access bits and bytes in screen
memory with a rather complex algorithm. If you are using an ATARI
Home Computer with its custom graphics chips and want to have abso-
lute control over the pictures that the machine is capable of creating, then
you’ll need an intimate understanding of the built-in hardware.

4.4. GRAPHICS AND TEXT MODES

Every manufacturer has its own way of defining the numerous
modes in which a computer can function. A graphics mode (sometimes
referred to as a map or pixel mode) sets up the screen for responding to the
graphics instructions that are in the language, whereas a text mode screen
is set up for displaying words, programs, etc. Usually the text mode is
used for program development, and the graphics mode is used for
running graphics programs. Text and graphics can often be mixed, but
the precise method of doing this varies from machine to machine. For
example, when the Apple is in a graphics mode, text can appear only in a
window of four lines at the bottom of the graphics screen. On the IBM, on

Personal Computer Animation Features / 139

142 / Personal Computer Animation Features

Disappearing Colors

As someone interested in computer graphics, you should be aware
of the “‘case of the disappearing colors on a television’ problem. A
television set has a limited band width, meaning it can respond only to a
limited number of changes in electric current per second. Because a
computer encodes color information via these changes, there is an upper
limit at which the TV cannot recognize a change in color. (If you just use
white on a black and white TV, this is not a problem. Also, color RGB
monitors have a higher band width than regular televisions so they permit
greater color changes on a line.) All this means that there is a limit to the
number of color changes that can occur on a horizontal line on the TV.
The result is that certain columns are restricted from having certain
colors. On the Apple 11 the problem is further complicated by the way the
screen colors are encoded in memory. A drawback like this has not kept
people from developing Apple programs, but moving color objects about
without having sections of them disappear complicates the programming
techniques.

Text Modes

In the text mode we are concerned with several things, including the
number of dots per character, the number of characters on a line, and the
number of lines on the screen. (These numbers correspond to the degree
of resolution in graphics modes.) In reference to the matrix of dots which
comprises each character, the more dots the finer the character’s detail
and the easier it is on the eye. A minimum dot matrix is 5 X 7; a
maximum on the computers we are covering is about 8 X 8. The actual
number of characters on a line varies from as low as 20 to as high as 80,
with 40 as standard for television sets. The final factor in text mode
displays is the number of lines on a screen, which varies from 16 to 25,
with 24 being the most popular. In most cases the general rule of thumb is
‘‘the more characters per line the better’’; however, 80 characters per line
is very difficult to read due to the television’s limited band width problem
which we mentioned above. On a black and white monitor and on color
RGB monitors, however, 80 characters is very readable.

Many text modes allow you to use color as well. This can be a
marvelous benefit in word processing applications or in any application
where you want text to stand out. In some computers, such as the IBM
PC, theré are two horizontal dots for every vertical position in the
40-column text mode. This feature is called double dot and gives the
impression of a 16 X 8 matrix, which results in text characters that
appear to have serifs! Serifs are the curly ends of characters that give
them a certain distinction.

Personal Computer Animation Features / 143

foters
B30

Go0RI66RAA3

50000
60088

Q0050000000

£Gn5380R958

LoI0800 | o
Zu0800

200000000

2p0pooowans

Gonouugnony
200000a380C
gaBa8aguann

far]

SonopDoDD
ggonannon:

wswatu [uucoguu [Luodowu [cagnogg

D0

bRy

i
G565a55e00;

)
£}
ol
1
o
5
B

0goooono
0550800
Je5065a0
OBIB00Ca
00660080
68503580

wGgaonBnn

Sounog
s0a-000

tst

0
Jirerelatels ettt
386605000

GOOO0DODaT
O00BRO800E

H
O
o

10008000858
Hansagenaon

B80000000aE
56860888000

gunonago;
g30na0onans
Bagsa5aians!

A text dot matrix.

Figure 4.4

GRAPHICS LANGUAGE STATEMENTS

4.5.

Here we present the various features for selecting modes, selecting

colors, plotting, drawing |

jects,

b

lling, defining o

1laneous other uses.

hapes, fi

Ines, creating s

1SCC

,and m

ing image arrays

plott

Mode Selection

Computers vary from having no mode selection to having several

modes to choose from. A machine might offer mode

the use of a single statement (such as Apple

selection through

in
four

such as the TRS-80

he mode (PMODE and SCREEN)

T) or, as

/
Ay

A,
s

sHGRor TE

’

ing

statement contain

IBM’s SCREEN, through the use of a complex
parameters which the user can set. Some computers,

color, have two statements for

setting t

Pages

S

s text or graphic
sed for display as

well as the page that will receive the results of output statement

k)

screen

The mode statement will usually select the

lect the page that will be u

ition, it may se

modes. In add

Pages

S.

f memory that can be used for the screen’s contents. Often

are sections o
there exist

ime

ht pages,

ive at a given ti

is act
the text mode, it has e

se pages but only one

several of the

18

mn

d

18 US¢

when the IBM
one of which can be made the active page and one the output page.

>

For example

The
The

statements

PRINT

output page will receive the results of any

TRS-

s to be drawn on the

image

1CS

80 Color Computer allows graph

S two

The Apple ha

ly

into view instant

ipped

and then f]
pages for high-resolution graphics. The idea behind pages is to allow

various pages

144 / Personal Computer Animation Features

generation of graphics on an output page while the user is viewing an
active page. This permits the new picture to be instantly switched on,
before the old picture is erased. If we were to erase the old picture and
then redraw the new one, the delay in time to draw the new picture would
result in an annoying flicker effect. However, because a page can be
enabled almost instantly, no flicker effects occur (however there may still
be some jerky motion). This method permits the programmer to create
animation by letting each page contain one of several frames of, for
example, a figure in different positions. The program could then flash
through sequential screens to give the effect of movement.

The mode statement may also be used for instantly activating color
(color burst) or disabling color in a particular scene. Some computers,
such as the ATARI Home Computer, allow changing modes with a very
simple statement like GRAPHICS n, where n is the graphics mode
number. (By making n equal to 0 the machine will operate in a text
mode.)

Color Selection

Colors may be automatically selected by the mode statement or
specifically selected with a special color statement. In some computers
the color selection statement allows choosing colors for the foreground,
background, and border. Computers that feature color registers usually
have one statement for selecting which color register will be used to paint
a pixel, and a second statement that sets each register’s color value. In
the ATARI Home Computer the two statements are COLOR and
SETCOLOR. When color registers are used, the statement may select
the luminance as well as the hue of the color. There may also be a
statement for setting the color of any special programmable objects, such
as TI's sprites.

Colors Available

The choice of colors on personal computers is very limited com-
pared to the selection available on expensive high-technology comput-
ers. In some computers, like the IBM, there are eight colors with two
intensities of each (high and low) for a total of sixteen (this is just in the
text mode). Most manufacturers include black and white when specify-
ing the number of available colors. In some computers, like the Apple,
there are only six colors available. On the other hand, the ATARI user
can choose from 128 colors (16 hues, 8 intensities) in most modes and

256 colors in two special modes, but this is the exception rather than the
rule.

The names chosen for computer colors follow no standard; one
company’s aqua may be another’s blue-green. Further complicating
matters is the fact that the colors that actually appear on the TV depend
greatly on the setting of the television color control and the fine tuning.

Some computers thoughtfully present a band of each color next to its
name so you can perform this adjustment before using any programs.

Plotting

Plotting is the most fundamental graphics function. It consists of
using horizontal and vertical coordinates to illuminate a point on the
screen. Sometimes the plotting command is referred to as PSET, and
sometimes it is simply referred to as PLOT, POINT, or HPLOT. The
plot statement is analogous to a needlepoint stitch done with a certain
color yarn. In some cases you may be able to specify the color within the
plot statement itself, while in other cases you must first set the color with
a color statement. Erasing of plotted points is much simpler than remov-
ing a needlepoint stitch. It is done by setting the point color to the
background color and replotting. Some computers, like the 1IBM PC,
offer a special erasing command called PRESET X »Y.

Some systems may allow the X, Y coordinates to be relative by use of
the word STEP in the plot statement. This means that the new point is
plotted X,Y locations away from the last plotted point. Relative coordi-
nates are good for simplifying the coordinate values for a complex object.
Although plotting is probably the simplest graphics function to perform
on a computer, it is usually too slow for real-time animation in BASIC.
With C and Forth, however, point plotting may provide suffictent plot-
ting speed for the animator.

Line Drawing

Line drawing is an important graphics instruction, because it allows
complex multi-sided objects to be drawn quickly and simply. It elimi-
nates the need to do a repeated PLOT in a loop of some sort. Line-
drawing statements can be as simple as Apple’s HPLOT x1:»1 TO
X22v20orIBM's LINE (x1sv1)-(x2:v2)scolor, B. The
IBM and TRS-80 Color Computer line-drawing statement is unique in
that it has a special option that allows a rectangle to be drawn. When the
letter B (for BOX) is included in the statement, the x1,yl and x2,y2
coordinates are taken as diagonal corners of a box. If BF is included, the
rectangle gets filled with color (when color is also set in the line state-
ment). Line-drawing statements are often used to put fixed objects on the
screen, with DATA statements holding the coordinates of the shape’s
numerous corners. Line drawing for real-time animation, unfortunately,
is usually too slow from BASIC.

Shapes and Graphics Definition Language

Shapes are a feature originated by Apple Computer as part of its
famous Apple II's graphics software. Shapes are ingenious graphics
objects composed of tiny vectors, which are small line segments that can
be drawn in one of four directions (up, down, right, or left). The

Personal Computer Animation Features / 145

146 / Personal Computer Animation Features

programmer uses simple rules to string these vectors together like tiny
arrows connected end to end. A shape can be made from a few vectors or
hundreds of them. Once these shapes have been created, they can be
drawn on the screen with one very simple statement, like DRAW 1 AT
#+. There also exists an entire set of additional statements for manipu-
lating these shapes, including ones that scale them in size from O to 255,
and ones that rotate them from 0 to 360 degrees! These statements make
shapes incredibly useful for games and programs where objects fly, sail,
spin, or otherwise bounce across the screen. They may be limited for
real-time animation however, because the BASIC statements that move
them are slow. For non-real-time animation (i.e., when you use film or
the disk to store the frames of the picture), they are ideal.

Graphics Definition Language (GDL) is a feature currently found
only on the IBM Personal Computer and the TRS-80 Color Computer.
GDL is a set of drawing commands that are placed in a string variable (as
opposed to being inserted into memory with POKE or BL.OAD as needed
with Apple’s shapes). These drawing commands specify the way the line
segments are to be drawn on the screen. There is a very complete set of
commands including ones that draw up, down, right, left, and diagonal
segments, repeat these patterns, move without drawing, rotate, and draw
relative to a point. The GDL is too slow for animation when the number
of vectors comprising the shape is greater than ten (when this is the case
an unacceptable screen flicker occurs). However, for slow moving
shapes, complex objects that don’t move at all, or non-real-time anima-
tion, it is an excellent feature. One problem with the GDL shapes is that
there can be vectors in only one of eight directions. This means smooth
curves are impossible to draw.

Paint, Fill, Flood

These terms all refer to the same thing — filling an enclosed
boundary with a particular color. There are different types of fills, the
main difference among them being the ability to circumvent corners and
fill every nook and cranny of the enclosed area. A fill, or paint, works by
the user specifying an x,y location inside an enclosed area and a particu-
lar color with which to flood it. Fills are usually slow and do their filling
in a method that resembles many bizarre window shades closing at the
same time. Because of the way some computer screens are set up (with
rules specifying which colors can be positioned next to each other), fills
have a tendency to distort the color of adjacent objects.

Defined Object Statements

Often it is desirable to draw certain geometric shapes (squares,
triangles, polygons) on the screen. This is fairly easy to accomplish using
the L. INE statement. The procedure, however, is somewhat more com-
plex when curved surfaces are involved. Drawing a simple circle can be

very demanding for the non-mathematically oriented user because we
usually need to use complex BASIC programs involving trigonometric
functions such as SIM and TAN. One way out of this dilemma is to use
the defined object statements that make graphics programming much
easier. One such statement is the CIRCLE command (available on the
IBM, TRS-80 Color, and VIC-20 Personal Computers), which allows
you to draw a circle, ellipse, or arc at any X,y location on the screen. The
circle you draw can be of any radius with distortion in either axis and can
be used for anything from the petals of a flower to the wheels of a bicycle
to complex mandala patterns. CIRCLE permits the drawing of elabo-
rately curved shapes using very little programming code; unfortunately,
1t is too slow for fast animation, but may work well for slow moving
objects.

Image-Array Plotting

Image-array plotting is another way to plot complex objects on the
screen, and it is a terrific graphics feature. There are two statements
involved here: GET and PUT. The GET statement is used to store an
object that has already been drawn on the screen in a two-dimensional
array (as a matrix of on and off bits/pixels). A pair of x,y coordinates in
the GET statement specifies the area on the screen to be stored in the
array. These coordinates define the diagonal corners of a rectangle that
surround the object on the screen. A corresponding statement, PUT, is
then used to draw the object now stored in the array at any X,y (upper left
corner of the rectangle) screen location. Since the object is drawn using
the bit map stored in the array, an optional action statement can be used to
control the way each of the object’s ON bits interacts with the image
already on the screen. The action command allows you to AND, OR, or
#*0OR the array contents onto the screen background. In essence, this
means you can draw the object on a background without having to erase
it! After storing an object with GET, you can use PUT as a specially
created paint brush to dab on the screen wherever you wish.

As might be expected, not all BASICs offer GET and PUT. You’ll
find it on the IBM and TRS-80 Color Computer. Image-array plotting is
too slow for complex animation but can be used effectively when slow
movement is desired or when objects are very small or very simple.
Apple III’s drawblock command, although cruder, is another example of
image-array plotting. It is a graphics primitive and not easily used from
within BASIC because up to 20 arguments for it are stored in memory.
Even so, it is probably faster in operation than regular array plotting and
might work well in animation.

Miscellaneous Graphics Statements

Other graphic statements that you will find useful are those desig-
nated for clearing the entire screen to a certain color, a width statement

Personal Computer Animation Features / 147

148 / Personal Computer Animation Features

for controlling the number of text columns that can be displayed, and a
screen function that returns the ASCII value of a character at a particular
row and column. Also useful are the point function for returning the color
at a specified location on the screen, a locate statement for positioning the
text cursor, acommand for setting the viewport (a rectangular window on
the screen that graphics drawing is restricted to), and a page copy
statement for moving graphics information from one page to another.

4.6. PLAYERS AND SPRITES

Players and sprites are graphics objects that can be moved by custom
hardware. ATARI calls them players while Texas Instruments refers to
them as sprites, but their function is similar in nature. Players solve a
major graphics problem — namely, they are separate from the back-
ground and don’t require complex erasing to be moved on the screen.
They are somewhat easier to update than the normal plotting methods,
and they don’t interfere with other objects made from players.

With normal software, the program must keep track of the position
of an object, erasing and redrawing it as it moves across the screen. With
players, however, you only have to POKE a register with the horizontal
value of the object’s screen destination, and the hardware does all the
moving for you. For vertical movement, bytes representing the object in
a special area of memory must be moved. There are techniques to
accomplish this from within BASIC, but a machine language routine
makes it simpler. ATARI’s Players have their own color register so they
can be a different color than anything else on the screen. You can even
combine Players to create larger objects or objects of more than one
color.

Sprites function differently from players. A sprite is twice as large
as aregular character (16 X 16), whereas the players are 8 bits wide with
a maximum height of 256 bits. Sprites are more powertul than players
when it comes to moving them on the screen. Once a sprite is put into
motion, it keeps moving as directed until told otherwise. The sprite has a
large number of special commands for moving it, including a MOT ION
command for specifying velocity and direction, COINC for detecting
sprites coincidence (collision), DISTANCE for telling the distance
between two sprites, and MAGNIF Y for changing the size of sprites on
the screen. You can tell all the sprites to FREEZE and to THAW; you can
change colors of any of them at any time, and you can redefine which
ones appear on the screen. For some time sprites were available only on
the TI 99/4. However, because sprites are generated by a special TI chip
that is on the open market, you can now buy a board for the Apple that
gives it sprite ability.

It should also be noted that some of the sprite’s manipulation
commands are available with ATARI’s players through a direct POKE or

PEEK to the hardware registers. The collision of a player with another
player or specific screen color can be detected, the width of a player can
be changed, and the Player’s priority in relation to the screen Playfield
colors (non-background screen color) can be controlled. (By priority we
mean whether the player passes in front or in back of a screen color.)
Each player is also associated with a two-bit wide missile, which can be
moved about the screen.

Players and sprites are perfect for animation — they were designed
for this purpose. Using them in a program eliminates flicker, update
overhead and superfluous, convoluted programming code!

4.7. HARDWARE SCROLLING

Hardware scrolling causes the display screen to move over a screen
memory area which is actually larger than the screen. Conventional brute
force scrolling, where bytes must be moved one at a time into the display
area of memory, results in a visual effect which is slow, wavy, and
choppy. With hardware scrolling, the software only needs to change
single two-byte pointers to cause the entire screen image to move up or
down, right or left, or diagonally, resulting in a very fast and smooth
scroll.

There are two distinct kinds of hardware scrolling — coarse and
fine. Coarse scrolling moves the screen window many bytes at a time
(entire characters), whereas fine scrolling moves the screen on a pixel
(dot) basis, allowing a smooth gliding effect. This technique is used in
Chapter 9 for moving our program backgrounds.

Although hardware scrolling is perfect for animation background, it
is a rare feature usually found only in the most sophisticated computers.
The only personal computers currently possessing this feature are the
ATARI Home Computers.

4.8. GRAPHICS CHARACTERS

Many personal computers have, in addition to the normal built-in
text characters, a set of graphics characters. These are usually tiny shapes
such as boxes, line segments, circles, card symbols, smiling faces, Greek
characters, and corners. In some quick and dirty types of animations,
these graphics characters may be very useful.

4.9. CUSTOM CHARACTERS SETS

A most important feature for animation is the ability to create and
manipulate objects which are made from your own custom characters set.

Personal Computer Animation Features / 149

150 / Personal Computer Animation Features

This feature is available on most of today’s personal computers. A single
custom character usually consists of an 8 X 8 matrix of dots. With
careful planning, you can create a custom character set that satisfies a
variety of purposes. You can create a complex object that can be made up
of several of these adjacent custom characters. The Walking Man pro-
gram (Chapter 5), as well as the trees and houses in Chapter 9, were
created using a custom character set.

Some computers, like the Apple, feature special programs that
facilitate the creation and use of custom characters. Therefore, if the
system lacks the ability to mix text and graphics, as the Apple Il does, itis
possible to actually create your own character set, as well as graphics
characters, and mix them on the screen.

4.10. COLOR REGISTERS

Color registers (see Chapter 2 for more details on these) are a feature
just beginning to appear on personal computers. First implemented on the
ATARI Home Computer and now found on the VIC-20 color computer
as well, color registers provide an indirect way to specify pixel color
while giving more power and flexible graphics control. Personal comput-
ers use color registers in a manner similar to that of high-tech animation
computers, with the exception that they are not as wide, bit-wise (and
thus hold fewer colors), nor are they as numerous (nine in the ATARI
Home Computer, four in the VIC-20). With enough color registers you
can perform animation colors through them. Areas on the screen that
reference these registers then change color accordingly. Chapter 6
shows, through program examples, how to use color registers in anima-
tion on the ATARI Home Computer.

4.11. VERTICAL BLANK INTERRUPTS

Every 1/60 of a second the entire screen is redrawn. From the time
when one screen has been completed and the next one is begun, there is a
short period called the vertical blank. If the computer allows it, the
microprocessor can be interrupted at this point, and a custom machine
language program can be executed. This routine can be used to process
animations-in a background mode, which means you can have certain
graphics events occur unattended and almost automatically, such as
moving an object, playing music, or reading the joystick. The ability to
interrupt the microprocessor during the vertical blank period is called a
vertical blank interrupt and is another rare feature which is available on
the ATARI Home Computer. Vertical blank interrupts are an advanced
concept which we thoroughly cover in Chapter 8.

4.12. DISPLAY LISTS AND DISPLAY LIST INTERRUPTS

Display lists are popular in high-technology animation computers
but rare in personal computers. A display list is a section of memory that
contains a set of graphics instructions for a graphics processor. So far,
only available on the ATARI Home Computers, the display list controls
into which graphics modes the screen is divided. The ATARI screen can
be horizontally divided into as many different modes as you wish.
Display list interrupts are display list instructions that actually interrupt
the microprocessor after a mode line has been drawn on the screen and
make it possible to change aspects of the display, such as screen color.
Chapter 9 features display list interrupt programming examples.

4.13. SPEED OF PLOTTING

A good general test of the speed of your graphics processor is to use
the BASIC plotting statement to place a certain number of pixels on the
screen using a FOR /NEXT loop and see how long it takes to do this. (If
you subtract the time to do the loop and divide the number of pixels by the
number of seconds, you have the number of pixels plotted per second — a
good measure of graphics speed.) We created the program below to
perform this test. The starting and ending values are adjustable to take
into account each computer’s particular display format. Here is the
benchmark program we used for the IBM. You can modify this program
to work with other computers’ unique statements.

19¢ REM test pixels rper second for ibm

119 CLS

120 SCREEN 1: REM sets 320 x 200 mode

130 COLOR @13 REM selects backdround,
Ppalette

14@ XMIN=1: XKMAX=320: REM start and end x

15¢ NROWS=10: REM enoudgh rows to time it

162 YMIN=1: REM starting v

170 FOR Y=YMIN TO NROWS

189 FOR X=XMIN TO XMAX

19¢ PSET (HaY) 1
200 NEXT XY
219 END

Figure 4.5: Benchmark Program for testing plotting speed.

Run the above program, and time it with a stopwatch. Calculate the
total number of pixels plotted by multiplying XMAX by NROWS. (XMAX

Personal Computer Animation Features / 151

152 / Personal Computer Animation Features

varies for each computer screen resolution.) After this number is
obtained, put a REM statement in front of the plotting command on line
190 (here PSET for the IBM), run the program, and time it again. (In
other words line 190 would look like 190 REM PSET (X:¥) +1)
Subtract the difference between the two times and divide the total number
of pixels by this difference. The final answer is the number of pixels
plotted per second.

As an example of how fast a personal computer can plot, we found
that in IBM’s medium- and high-resolution color modes, 320 pixels per
second could be PSET to a color.

Part 11

Introduction

Earlier you saw what can be done with million dollar computers.
Now let’s look at the kind of animation that can be created with a personal
computer costing only a few hundred dollars. In this half of the book, we
will show you how to bring the exciting world of animation into your own
home. If you have an ATARI microcomputer (a 400, 800, XL, or
equivalent) with ATARI BASIC, you will be able to turn your computer
into a fabulous animation machine. If you own something different, read
on anyway — some of our examples can be modified for other micro-
computers.

This second half of the book is organized differently from the first.
This is the hands-on section, and we will be presenting animation
program examples that you can type into your computer. We will start out
with very simple examples and conclude with a sophisticated demonstra-
tion program which uses most of the ATARDI’s special graphics features.

We assume that you already have some experience with the BASIC
programming language. Although we explain the logic behind our
animation demonstration programs, we don’t cover the meaning of the
BASIC keywords (e.g., PRINT + GOTO » GOSUB, etc.). Therefore, if
you are new to programming in BASIC, reading a beginning book like
BASIC Programming Primer (by Waite and Pardee, Howard W. Sams &
Co., Indianapolis, IN) or Armchair BASIC (by Fox and Fox, Osborne/
McGraw-Hill, Berkeley, CA) will help you better understand our
examples.

You do not need to understand assembly language to use the exam-
ples in this book. We have provided you with several black box machine
language routines which will give you control over the ATARI features
such as Player-Missile graphics, Fine Scrolling, and Display List Inter-
rupts. By black box we mean that you can use these routines without
knowing what’s inside them — you POKE something into them and the
desired result comes out. We have designed them so they are easy to use
from within BASIC.

If you have thumbed through this section of the book already, you
probably noticed many pages of program listings. To save you the time
and trouble of entering all this code, a diskette is available through

Part 11 / 153

154/ Partll

Adventure International which contains our major demo programs and all
the assembly language routines.

Many of our programming examples are expansions of previous
examples. This means that instead of typing an entire program, you will
often need only to add new sections to an existing program. Therefore, do
not erase the programs you type in — save them on cassette or diskette,
you may need them later on. Also, as you enter the examples, it is
tmportant to copy them exactly as they are, without changing any line
numbers or omitting any lines. Otherwise, when it is time to expand the
programs or merge some of them together, you will have quite a bit of
difficulty.

Character Set Animation / 155

Chapter 5

Character Set Animation

I n this chapter, we will show you how to use ATARI’s built-in and
user-defined character sets to create animated pictures. These tech-
niques can be employed with any computer which allows you to redefine
the character set. There are four demonstration programs in this chapter.
The first one will produce a flying bird, the next a walking man, the third
a screenful of galloping horses, and the last a bomb exploding in brilliant
colors.

5.1. BUILT-IN CHARACTER SETS —
MAKING DO WITH WHAT YOU HAVE

As we have mentioned earlier, animation is created simply by
rapidly displaying a series of pictures which differ only slightly from
each other. The brain is fooled into thinking that it is seeing continuous
motion rather than individual pictures. The most basic method of im-
plementing animation on a computer is by using PRINT statements to
draw a figure on the screen and then using PRINT to go over the figure
with a different picture. When these figures are PRINTed in rapid
succession, we perceive motion.

To draw our figures, we can use the computer’s built-in characters
— the letters of the alphabet, numbers, punctuation, and special graphics
characters. (See your ATARI BASIC Manual for the complete ATARI
character set.) A graphics character set is made up of straight lines,
diagonal lines, corners, squares, and circles. When the imaginative
programmer puts these elements together, he or she can create a crude
picture. Computers such as the IBM Personal Computer and the Com-
modore computers (PET, VIC, CBM, Commodore 64) all have built-in
graphics character sets. The greater the variety of characters, the more
flexibility a budding animator has in creating ‘‘living’’ figures. In our
first example, we will use the ATARI’s graphics character set to create a
bird in flight on the screen.

156 / Character Set Animation

Creating the Frames

To produce the effect of animation, you need to create a series of
individual pictures that can be rapidly flashed on the screen. Each picture
is called a frame. In conventional cel animation, the animator usually
draws the key frames first. These are the ones which show the figure in
extreme or key positions. With a very short animated motion, there might
be two frames: the initial position of the figure (before the action begins)
and the final position of the figure. For example, a person waving
good-bye could be animated with two key frames. Longer actions, on the
other hand, might contain many key frames, each one occurring at every
directional shift in the action. An example of this might be a battle
between two figures. The key positions are created as the fight is
choreographed. This is done by breaking the extended, complicated
action into short, simple actions. (In Example 1, our flying bird, we use
two key frames, one with the bird’s wings fully raised and one with the
wings pointing downwards at the bottom of the flapping cycle.)

The next step is to create the in-between frames, i.¢., the ones used
between the key frames. The number of in-between frames determines
the smoothness of the animation. In Example 1, if we had used only our
two key frames, without any in-between frames, the animation would
have looked jerky and unnatural. (This jerkiness is called judder and is an
indication of lazy animators or tight production budgets.) On the other
hand, since the computer can only PRINT a limited number of frames
per second, too many in-between frames would result in slow motion.
This is because the computer would not be able to flip through the frames
fast enough to make the bird flap its wings at the proper speed.

In film animation, frames are flashed on the screen at the rate of 24
per second. The cartoons produced during the golden age of animation
used full animation in which each of those 24 frames required a separate
drawing. Today’s low-budget cartoons necessitate the reuse of each
drawing in consecutive frames. A drawing is placed under the animation
camera and photographed two, three, four, or even six times before the
next drawing in the sequence is used. This yields a respective animation
rate of twelve, eight, six, or four frames per second. Twelve frames per
second is tolerable, but anything slower looks painfully crude in com-
parison to the classics.

In character set animation, the problem of how many frames to
display is approached from a different angle. With built-in character sets,
we are restricted to the number of in-between frames which can be
created with the limited set of characters. In the flying bird example, we
could only draw two in-between frames with the available graphics
characters, resulting in a total of four unique frames. Even without the
restriction of built-in character sets, there is another limiting factor — the
computer’s processing speed. How many frames can the computer draw
in one second without becoming bogged down? The answer is dependent

upon the complexity (size) of each frame, the number of different objects
which must be animated at one time, and the other programmed functions
(sound effects, calculations, or joystick inputs) that must be taken care of
during the animation cycle.

How do you decide how many frames to use in your animated
sequence? After months of creating animation programs we will now
pass on our foolproof technique for creating realistic looking animations
— it is called ‘*Trial and Error.”’

The Art of Trial and Error? Most of the development time for
this program was spent deciding which characters to PRINT on the
screen to create something that looked like a flying bird. Writing the
actual program logic took very little time, which is often the case in
creating computer animation. Much time is spent in trial and error, trying
to get the figure on the screen to look just right. We had certain prereq-
uisites. Not only must our figure resemble a bird, but when it moved, it
had to reflect the image of a bird in flight. If the wings moved too fast, the
viewers would see only a blur. If the wings moved too slowly, the effect
of motion would be lost.

As you begin to create your own animated figures, you’ll begin
observing the motion of living things. Another excellent source for
learning about animation is by watching cartoons. Notice how simple and
limited the animation can be while still conveying the effect of move-
ment. At first you may become frustrated with your results, especially
after looking at the video games created by the masters. Don’t give up! In
time, you'll develop an intuitive feeling for animation and will find that
your trials are shorter and the errors farther apart. After all, even masters
spend much time throwing away earlier attempts that don’t look just
right.

One nice thing about computer animation is that the results are
visible immediately. You don’t have to wait for the film to come back
from the lab before discovering that your bird looks like a boomerang
with arthritis! With a computer, if you don’t like what you see, you can
adjust the graphics accordingly.

The Flying Bird Frames

Four individual frames were used to create our flying bird, as shown
in Figure 5.1. Notice that only four different graphics characters are used
throughout the frames.

CHARACTERS USED:

1]
|

[1]
CTRL F

TITIT
CTRL M CTRL T

(continued)

Character Set Animation / 157

158 / Character Set Animation

FRAME 1

FRAME 2

)
I
1

FRAME 3

RENRNESNE
HHH

]'ITI
|
I
-
1
|
1
I
1
1

(continued)

Character Set Animation / 159

FRAME 4
|

Figure5.1: Frames of the flying bird.

Each frame is five characters across and three high. To make the job
of animating the bird easier, each frame should be identical in size and
shape. To accomplish this, many of the character positions in the frame
are filled with spaces.

By taking these four frames and cycling through them in a specific
order, the bird flaps its wings. Here is the order of the sequence:

Frame 1 beginning of cycle
Frame 2

Frame 3

Frame 4 midpoint of cycle
Frame 3

Frame 2

Frame 1 end of cycle and beginning of next cycle
Frame 2

Frame 3

Frame 4 midpoint of cycle
Frame 3

ete...

For obvious reasons, this is called cyclic animation. It is relatively
easy to implement because the object can be animated for many seconds
or minutes by using only a few different frames. In conventional cel
animation, each frame would be photographed in order, over and over
again. This can be very time consuming. But with a computer, we can use
a simple GOTO loop to repeat the cycle. In the upcoming program,
Example 1, six frames are displayed before the cycle repeats.

160 / Character Set Animation

Listing Conventions — How We Represent Those Invisible
ATARI Characters

Throughout the listings in this section of the book are many
characters which either cannot be printed by our printer or are
difficult to find on the ATARI keyboard (e.g., inverse video, cursor
control, and graphics characters). To make it easier to enter the
programs, we modified the listings so that all special characters are
indicated. Inverse video characters are underlined, and all other
special characters are surrounded with curly brackets { }. This
includes all graphics characters (entered with the CTRL key) and all
cursor control characters. When spaces are critical, they are repre-
sented as a “b” with a slash through it ().

You may have noticed that our printed listings look different
from programs listed on your screen. We used a special program to
print them in a manner which emphasizes their structure, thus mak-
ing them more easily read and understood. All FOR /NEXT loops
are indented so it's easy to see where the loop starts and ends.
IF/THEN statements are also indented — you can see exactly
what will be executed if the condition is TRUE. Also, the multiple
parts of all statements (separated by colons) are printed on a sepa-
rate line. Of course, when you enter the programs, the structure will
disappear; therefore, don’t try to maintain it by entering each state-
ment on a separate line!

Although our formatted listings are easier to read, the formatting
makes the programs appear to be longer than they really are. Don'’t
let the number of pages it takes to display each program discourage
you from entering it. Of course, if you don’t want to spend your time
typing programs in, you can always purchase them on a disk (see the
order card in the back of this book).

Before you try entering the programs, read the complete in-
formation in Appendix C, “Listing Conventions.”

The listings in this book are in a special format and use special
codes. Before you try to enter any of our programs, read the above box
and Appendix C, ‘‘Listing Conventions.’’

Some of the listings in Chapters 5 through 9 are rather small and
difficult to read. However, the complete listings are printed again, larger,
in Appendix A for your reference.

Character Set Animation / 161

Example 1

Exercise Using the built-in ATARI graphics character set,
write a program that draws a flying bird with flapping wings on the
screen.

=2

d)

Photo5.1: Screen photos of the Flying Bird program.

162 / Character Set Animation

Here is the listing of the Flying Bird program. Look at the lines
where the B IRD strings are initialized (lines 120—150). We are using a
special convention here to tell you which keys to press to get the
appropriate graphics characters. When you see a word or character which
is surrounded by curly brackets { }, you must do something special to get
the appropriate character into the string. The box called *‘Listing Con-
ventions’” and Appendix C explain how this is done.

s BPLOVINC

Figure5.2: Listing of the Flying Bird program.

How it Works In line 110, we D I Mension the string variables
we will be using in this program. The number within the parentheses tells
BASIC the maximum number of characters each string may hold. In
ATARI BASIC, all strings must be declared in this manner.

The four frame strings, BIRD1%, BIRDZ$, BIRD3%, and
BIRDA% (initialized in lines 120-150), contain three different types of
characters. They contain:

1. The graphics characters which make up the bird (see Figure 5.1).
2. The cursor control characters which move the cursor before printing a
graphics character.

3. Spaces which are used to erase sections of previous frames.

Whenever something is being printed (with P INT) on the screen,
you will see the little white box, called the cursor, following each printed
character. The POKE in line 160 turns off the cursor (makes it invisible),

so we don’t see little white boxes swarming around like a bunch of
hornets while each frame 1s drawn.

The Animation loop (lines 200-270) contains the logic to print each
frame in the correct order. This section is simple and straightforward. We
just have to place the cursor in the middle of the screen with ATARI’s
cursor positioning command (line 220) and print the appropriate frame.
The entire wing-flapping cycle consists of six frames (two of which are
repeated). To accomplish this we use a FOR /NEXT loop from 1 to 6 to
step through the frames. An ON GOSUB (line 230) uses the current
FOR/NEXT value (I) to control which frame is printed. When I equals
1, line 310 is executed and BIRD 1 % gets printed. When I equals 2, line
320 is executed, and so on.

Line 240’s FOR /NEXT loop is used to slow down the rate at which
the frames are printed. Try changing the value on this line to see what
happens to the bird. You may like the bird better at a different frame rate.

Modifications Here are a few modifications you can try on
Example 1:

1. Change the program so that more than one bird is flapping its wings on
the screen. This could easily be done by repeating lines 220 and 230
within the main Animation loop and changing the X,Y coordinates of
the POS I TION statement. You will also have to change the value in
the Pause loop (line 240) to adjust the frame rate of the birds. (You
may be able to gain some animation speed by using separate FRINT
statements for each of the three horizontal rows of bird characters per
frame. This will save you from having to use the cursor control
characters — the fewer characters printed, the faster the program will
run.)

2. Make the bird move around the screen. To do this, just control the
values in line 220’s POS I T I0ON statement. Be sure to erase the bird
each time you move it or the screen will become wallpapered in birds!
Another point to remember is this: anytime you erase and redraw a
figure, it will appear to flicker on the screen (the light from the image
is interrupted by blankness during the instant the image is erased, thus
the flicker). To minimize the flicker, erase the bird immediately
before drawing the next frame — avoid inserting any program logic or
calculations while the bird is erased.

3. Add sound effects. As we will see in later programs, sound effects can
add a great deal of realism to a program.

4. Make the bird look like it is flying away from or closer to you. Add
new frames of the bird which are smaller and frames of a larger bird
which have greater detail. As you display each set of frames in order,
it will look as though the bird is flying towards or away from you.

Character Set Animation / 163

164 [/ Character Set Animation

Summary

Now you have seen how a simple animation program can be put
together from start to finish. The result is a crude beginning, but the
next technique allows us to produce animated figures with far greater
sophistication.

5.2. USER-DEFINED CHARACTER SETS —
A BOUNCY WALKING MAN

We must admit that after all that talk about making the bird look like
a bird, it takes some imagination on the part of the observer to look at a
dot and a bunch of lines and see a flying bird. Using the built-in character
set of your computer is very limiting! In this section, we will see how to
make use of the ATARI’s capability to redefine the character set. Using
the same animation technique as in the first program, we can now
sculpture the individual characters into any shapes we wish. In other
words, you can create individual characters which can be printed together
to make up a larger, perfectly designed shape. Many other computers,
such as the IBM Personal Computer,' the Apple 11,2 and the Apple III
also have this capability. Now our animated figures can be created with a
high degree of detail rather than being limited to the coarseness offered
by the built-in character set.

The Character Set

When you first turn on your ATARI computer, you will see a word
or words printed on the screen (i.e., READY if you are using your BASIC
cartridge). What happens inside your computer to display those words? A
series of number codes are placed in an area of RAM called screen
memory, one code for each character. These codes are then interpreted in
a predetermined way (depending on which graphics mode you are in). In
the standard text mode, GRAPHICS @, the numbers in screen memory
are translated as addresses which are used to look up some permanently
stored information. This information, stored in ROM (read-only mem-
ory) is called a character set.®> Each character in the set is composed of

'"The IBM PC allows you to define characters only in its two graphics modes. Only the top 128 character
codes can be redefined.

2The Apple II's character set is not really redefinable. However, a number of software products now on
the market allow you to define a character set that is displayed on the high-resolution graphics screen
rather than the standard text screen.

3See Computer Graphics Primer by Mitchell Waite, Howard W. Sams & Co., Indianapolis, IN for more
details.

Character Set Animation / 165

dots in an array that is 8 dots wide and 8 dots high. Each of these 64 dots
can be turned on or off, thus defining a character. The information which
describes which dots to turn on or off for a character is called the
character definition. Figure 5.4 shows the dot array, or character defini-
tion, for the letter A.

THE EIGHT BYTES DEFINING THE CHARACTER

APPEARANCE OF LETTER BINARY DECIMAL

ON THE SCREEN REPRESENTATION REPRESENTATION
00000000 0
00011000 24
00111100 60
01100110 102
01100110 102
01111110 126
01100110 102
00000000 0

Figure 5.3: Character definition for the letter “A.”

Try typing some letters on your screen and see if you can make out
the individual dots. If your television set is sharp enough, you will be able
to see them.

Photo 5.2: Screen photo — close-up of the letter “A.”

The information in each character definition is stored as a series of 8
bytes, with each byte representing one horizontal row of § dots.* Since

*This is the same as the IBM Personal Computer’s graphics mode.

166 / Character Set Animation

there are 8 bits in a byte, whether a bit is on will determine whether the
corresponding dot on the screen will be turned on. Each character in the
character set is defined in this manner.

There are 128 distinct characters in the ATARI character set. If we
multiply this number of characters (128) by the number of bytes needed
to define each character in the character set (8), we get 1024, or 1K (128 *
8 = 1024 bytes). This is the amount of ROM space needed to store the
ATARI built-in character set. Since each character can also be repre-
sented in reverse video, there are a possible 128 * 2 = 256 codes (from
0 to 255) which can appear in screen memory and be interpreted as
characters. The codes from O to 127 represent normal video characters
and the codes from 128 to 255 are reserved for inverse video characters.>

CHARACTER 127
CHARACTER 126 00000000 | BYTE 7
CHARACTER 125 00000000 | BYTE 6
. 00000000 | BYTE &
: 00000000 | BYTE 4
. 00000000 | BYTE 3
00000000 | BYTE 2
CHARACTER 1 00000000 | BYTE 1
CHARACTER 0 00000000 BYTE 0

CHARACTER DEFINITION
FOR BLANK SPACE

Figure 5.4: Map of ROM character set.

In many personal computers, the built-in character set is all you get.
But the ATARI Home Computer has the capability to display user-
defined character sets! As we said, the ROM character set is permanent.
You can’t change any of the character definitions in this ROM. However,
what if we were to create our own set of character definitions and POKE
them into RAM? How would we let the computer know where to find this
customized set of character definitions? The answer is simple — ATARI
has memory location 756 (decimal) reserved for this purpose. This RAM
location always contains the page address of the current character set. (A
page of memory is 256 bytes, therefore to convert a page address to an
actual address, multiply by 256.) When you turn on your computer, press
the SYSTEM RESET button, or change GRAPHICS modes, the value in
756 is automatically initialized to 224 (the page address of the ROM

*The IBM PC has a separate byte for each character position to control attributes!

character set; thus we say that 756 points to the character set in ROM).
But you can change the value in 756 so it points instead to an address in
the computer’s RAM. If you POKE the page address of your customized
character set into 756, you ‘‘turn on’’ the new character set. As we shall
soon see, the results are instantaneously visible.®

(A) 1S THE RAM BASED (B) IS THE ROM BASED
USER-DEFINED CHAR- BUILT-IN CHARACTER
ACTER SET. SET.

{A)RAM (B) ROM

(A) [#——VALUE IN HERE POINTS TO
CURRENT CHARACTER SET.
ADDRESS 756

Figure 5.5: Switching between RAM and ROM character sets.

Turning On Character Sets

Let’s try a simple program to see what happens if we change the
value in 756. Try typing in the following short program:

18 GRAPHICS @

20 FOR I=¢ TO 255 STEP 4

30 POKE 756:I: REM Switch character sets
40 NEXT 1

20 GOTO Z@

Now run this program. Don’t worry, your computer isn’t broken!
What you will see on your screen is a rapidly changing, finely drawn
display which fills the entire screen. Exactly what is happening? Let’s
see. When line 10 is executed, the screen is cleared. The ATARI clears
its screen by filling screen memory with Os. These Os are used to look up
the Oth character in the current character set. In the ROM character set,

°On the IBM PC. changing the location of the character definition table atfects only funre characters to
be written, not characters already printed on the screen.

Character Set Animation / 167

168 / Character Set Animation

this Oth character is the space. A character set must always begin on a
‘1 K boundary.’” This means it can begin at any address which is evenly
divisible by 1024. In converting to pages, the value in 756 must be evenly
divisible by 4 (there are 4 pages in 1 K). So in line 20, we increment I by
four. As we POKE the different values of 1 into 756, the current
character set is changed. Of course, we really aren’t switching to differ-
ent character sets, just to whatever random information happens to be at
that memory location. What we see on the screen is the current character
definition for the Oth character (the space character). Whatever happens
to occupy the first 8 bytes in each character set (i.e., the character
definition for the Oth character) determines how the space character will
be displayed. When the first 8 bytes are Os, the screen goes blank.

Now press RESET, and POKE 756 with 200. The screen immediate-
ly becomes a mass of swirling, ever-changing interference patterns. But
how could this be — there’s no program running! Ah, but there is. We
have discovered an address which is being used by the ATARI operating
system. It is changing the contents of the first 8 bytes at machine-
language speed.

Reserving Character Set Memory

After we have designed a character set, we must find a safe place in
memory for it. A good location is immediately below screen memory.
Where is screen memory? In most computers, screen memory is always
located at the same address. However, the ATARI Home Computer
automatically reserves space at the very end of RAM for screen memory.
This means you’ll find the screen memory at different addresses, depend-
ing on how much memory your computer contains and which graphics
mode you are using. In GRAPHICS @, 1 K of memory is used to
display the screen.”

The ATARI uses memory location 106 to store the number of pages
of memory it thinks it currently has. By taking the value in 106 and
subtracting 4 from it for screen memory and another 4 for the size of the
character set, we can obtain the page address for our character set (see
Figure 5.6).

"Actually GRAPHICS @ uses 960 bytes of screen RAM and 32 bytes for the display list (covered later
in this chapter) for a total of 992 bytes.

«—— TOP OF RAM

4 PAGES GRAPHICS 0 (NUMBER OF RAM PAGES
ey SCREEN IS STORED IN 106)
MEMORY
RAM
4 PAGES CHARACTER
(1K) SET
BEGINNING OF 1K BOUNDARY
CHARACTER SET

Figure 5.6: Memory map of upper RAM.

Creating a Character Set

Now that we know the why and wherefore of user-defined character
sets, we can create one of our own. There is a difficult and a not-so-
difficult way to create user-defined character sets. The difficult way is to:

1. Photocopy the grid of squares in Figure 5.8 or obtain a sheet of graph
paper, preferably 8 squares per inch. (Our grid has been prepared to
accurately reflect the true proportions, 7:8, of each character — the
vertical side is longer than the horizontal side.)

2. Decide on the size of the character matrix you want your figure to
occupy and draw it on your grid of squares.

3. Draw the outline of the figure you wish to represent within the
character matrix.

4. Fill in all the little squares which lie more than halfway inside the

boundaries of your outline. Use your judgement fo improve the

appearance of the figure for borderline squares.

Calculate the decimal value for each row of each character cell.

6. Enter these byte values into your program.

hd

This method is difficult in that it involves the manual transfer of
information from paper to a program. If you only needed to do this once it
wouldn’t be so bad. But, as we mentioned earlier, creating an effective
animation requires a large degree of trial and error — it’s exceedingly
rare to get it right the first time. So once you’ve done all your work, tried
the program and discovered that your animated figure looks as if it’s
critically ill, you must go through the entire process again.

A more efficient approach is to use one of the commercial font
editing programs currently available to consumers.® A product like this
will allow you to work with your characters in an interactive environ-
ment: you can see the characters on the screen as you create and edit

¥The word **font’” refers to the style of the characters on the screen. You can design an Olde English font,
a computer-like font, a script font, or even a walking-man font.

Character Set Animation / 169

170 / Character Set Animation

a
N
| poymant
p4
’ N
{ ™
N T
-
’,
\ o
:‘ \‘ N
N
STEP 2: STEP 3:

2 X 3 MATRIX OF CHARACTERS

DRAW QUTLINE OF FIGURE

STEP 4:
FILL IN THE SQUARES

0 0
0 0
0 0
0 0
0 0
0 0
0 28
0 62
0 62
0 62
0 28
0 240
3 240
15 2490
29 240
59 251
51 255
7 220
7 192
7 192
15 227
252 118
112 60
48 24
STEP 5:

CALCULATE BYTE VALUES
FOR CHARACTER DEFINITIONS

(continued)

OPORSTUVHRYZ L
et L

ol

b)

Figure 5.7: a) Steps to create a character set frame b) using a font editor “IN-
STEDIT” by Sheidon Leemon, ATARI Program Exchange, Apx 20060.

- mesnaRResaERERN] T T
HHEE RaAEasERssuseEssnkrs 5{_1&
Ht H e i =
un 1 n
Setatoiey %J"ﬁﬁ:ﬁ ‘__ﬁjil,+§:f’,
i i I
:ﬁ et HEavee T
T T T T
T ERRTRSRARAREREARNR) ABAR RANERERGEEBE!
RENSRRRNRUSI SoulEERaes PRI
Hrr A - H
e SR Rasafie e e e Ryend gt
ﬁ HH L o pealt H
: :
IUBE SRR VNUNNARVENERBASAUNREN pAURRAR 4
e e e
IEARNERONE o8 i e ‘ [:“‘ 1 i
T H
ang 5 IABBAURABSRNNER A SACUREAREREAR]
it AT =
T T i |
T R H
;)
unanng; I T 1
T S RRRgsEEmeusassamssaas sl
; I AUEOURS AARSNERE AASTRRNN FOWRGH1
1 T T
T -
1 f T T
I 11 1 T
inRR) R I RNESBN A TDEE]
1 ESuDas|
e EEl
ow 1 T
t1 T
HHH HHHHH 1as T
T
1 1T I NAMUBNNSNSNSUNARRSUNAR] T T
T . HH A T
T T t TH isagstunnas|
T 103 I iEemgae:
T t 1
T T
T T T 1 R sanean, HE
T 1 inun
T HHH s Tt tt
YuuEREREEEBRES T T T o
e e
T T M 1 TITHHT

Figure 5.8: Grid for creating character set figures. A full-size grid appropriate
for photocopying can be found in Appendix B.

them. The computer can also take care of the laborious calculations
necessary to determine the byte values for each character. You will still
spend much time trying and erring, but the computer will handle much of
the tedium.

The digitizing tablet is another labor-saving device which facilitates
the creation of character sets. As we mentioned in Chapter 2, it consists
of a large, flat drawing surface and an electronic pen or pointer. By
placing your artwork on the tablet’s surface, you can enter information
directly into the computer by pressing down on the pen. When you
outline the sections you want to transfer, the computer creates an image
of your drawing on the screen. Before you rush out and buy a digitizing
tablet, though, make sure you can also buy an accompanying program
(for your computer) designed to help you create character sets.

Character Set Animation / 171

172 / Character Set Animation

Color Artifacts One thing you should be aware of when creating
your character sets is the problem with or capability of (depending on
how you look at it) color “‘artifacts.”” You may have noticed that every
vertical line in the ATARI built-in character set is at least two dots wide.
This is done to make sure the line shows up on a color television screen in
the desired color. If a vertical line is only one dot wide, or if every other
dot in a row (byte) is turned on, you’ll see a color artifact. For example,
instead of appearing white, the character may be blue or some other
color. The dictionary defines artifact as an artificially produced changed
appearance. In this case, it is a color that is produced by the nature of the
color television screen rather than intentionally by the computer. Arti-
facts can be used to add color to a screen, but these colors may look
different on someone else’s ATARI (depending on whether ithas a GTIA
or a CTIA chip — see Chapter 6). Harry Brown, an ATARI programmer,
used artifacts to add extra color to the playing cards of his poker game
(see Photo 5.3). The green background was created by filling the screen
with quadruple-wide Players and Missiles with holes cut in them for the
text and cards (see color insert; see also Chapters 7 and 8 for more on
Player-Missile Graphics).

Photo 5.3: Poker game using color artifacts (see color insert). (Courtesy of Harry
Brown.)

We will introduce a much better technique for producing extra
colors in a character set in Example 4. For more on artifacts, see the box
on ‘‘Pixels, Dots, and Color Clocks’’ later in this chapter.

The Walking Man Program

Our next program demonstrates the power of user-defined character
sets. We will define a character set that we can use to draw a picture of a
little man walking across the screen. Below are the character definitions
for our Walking Man character set. Each frame is made up of six
characters arranged in a2 X 3 array (see Figure 5.9). We are using five
frames for the walking cycle, and each frame is displayed only once
during each of his steps. This means that we need only 30 characters (6
characters per frame * 5 frames) to animate the man. Actually, we need
only 26 characters since 4 of the characters that appear within the frames
are blank. To the right of each frame are the byte values we need to POKE
into the character set RAM.

Character Set Animation / 173

oooooosﬁz
‘ N ORO

*OOOOOOOJOOO

I

1

I'T1

I

|

)
)
3
g
b=
5]
3]
1)
£
[poeoo00 444%MNMNM&QHMMMH¥ OOOOOOM&““H%%N%%WNOOOOO@ [CCO000IOOY RROD®OOORUBDNL O
! RSP ARNAILERZSRI TNNNT RS aoN S | SIIIJSNRAGI BZaan
COOOOOICOOC M D It N+ O 1)

00000 O0OOOOOCO NN~ INENY OO | MM D N DO MO i O 3 DD M Y N
7 J e ANIR0 ! w NNl ﬁOOOOOO et
T I T

TT 1T 1T LT

174 / Character Set Animation

T 0 0

] 0 0

0 0

r 0o 0

0 0

T 1 192

_3 %

3 224

1 192

r 12 8
B i 31 0
30 0

62 0

62 _ 0

B 63 0
63 0

! 60 0

2 8

T 12 0

‘ 12 0

252 _ 0

Figure5.9: Walking Man character set.

Animation implemented on microcomputers is often considered
crude. This is most often because the programmer is usually not an
animator or an artist, not because the computer isn’t capable of handling
the job. Attention to detail makes animation come alive. Take a look at
the position of the man’s head in these five frames. As he walks, his
entire body bounces up and down. This is much more realistic than a
walking man with moving feet and a stationary head!

To create this character set, Animation, by Preston Blair (published
by Walter Foster Art Books, Tustin, CA), a book on conventional
animation, was used. This is an excellent yet simple book showing how
to draw your own animated characters. We placed graph paper over a set
of drawings from the book of a walking man and filled in the appropriate
squares. A font editing program (FONTEDIT, from the software package
IRIDIS 2 by The Code Works, Goleta, CA) was used to help convert the
filled-in squares to character set data. One technique you can try (if you
can’t find the figure you wish to animate in an animation book) is to cut
out a drawing of your animated character from paper. At each of your
figure’s joints (i.e., knees, elbows), use paper clasps or string to create a
hinge. Then position your figure for each frame and outline its shape onto
graph paper. It will still take some practice to create smooth, realistic
motion, but the proportions of each body part will be correct.

Example 2

Exercise Using a user-defined character set, write a program
that displays a man walking across the screen. Use the joystick button to
control his forward movement. Give him life with a bounce in his step.
Include the sounds of his footsteps.

Character Set Animation / 175

Photo5.4: Walking Man.

176 / Character Set Animation

Here is the Walking Man program. There are four main sections: the
initialization section, the section which reads in the new character set, the
actual character set data, and the animation loop. The complete listing
can be found in Appendix A.

Figure5.10: Listing of Example 2—lines 10-250.

Initialization Each of the five man frames is made up of six
graphics characters and six cursor control characters for a total of twelve
characters. The variable FRMSZE (line 120) is set to this value. On line
130 we reserve string space for our frames with the D I Mension state-
ment. All of our frames are stored in one string variable, called MAN$,
rather than in a series of strings as we did in the Flying Bird program
(Example 1). This reduces the size of the program code needed to access
a specific frame and makes the program more flexible if we want to use a
different set of frame data. We could have initialized MAN%$ in one
statement, but it would have been much more difficult to understand and
enter. The variable FRAME$ will temporarily hold the current frame to
make it easier to manipulate.

Make sure you enter lines 140-160 exactly as they appear, including
the four spaces. Even though you are entering letters of the alphabet now,
when you switch over to the new character set, these will be printed as
sections of the man.

ERASE% (line 170) is used to erase the man every time he moves
one character position to the right. If this wasn’t used, our friend would
leave behind a trail of old body parts as he moved across the screen.

In line 230, the color of the screen background and foreground is
changed with the SETCOL OR command. For now, a brief description of
it should be enough. The syntax of the command is

SETCOLOR nhue,lum

where n selects the color register which will receive the new color, hue is
the hue of the color (a value from O to 15; see Table 6.2), and lum is the

luminance or brightness of the color (an even value from 0 to 14). The use
of color registers is a very important ATARI feature, requiring all of
Chapter 6 to cover. The hue we are choosing is gold with the brightness
of the man turned to maximum (the 14 in SETCOLOR 1:9,14) and
the background set to dark brown (SETCOLOR 2,1 :2). We will be
covering the SETCOLOR command in depth in Chapter 6.

In line 240, we POKE the address of the new character set into

memory location 756. (This is done to turn on the user-defined character
set and turn off the built-in ATARI character set).

Figure5.11: Listing of Example 2— lines 8000—8160.

Set Up Alternate Character Set Here we POKE the new
character set into RAM. First, on line 8010, some memory is set aside for
our character set. Recall that address 106 is where the ATARI stores the
number of pages of memory it thinks are in the computer. We’ve set the
variable H I CHR B (HIgh byte of CHaRacter set Base) to the total number
of RAM pages in the computer minus eight pages (2 K), four pages for
screen memory and four pages for the character set.

In line 8020, the RAM page number in HI CHRB is converted to an
actual RAM address by multiplying it by 256 (number of bytes in a page)
and then stored in CHRBAS.

The next step is to read in the character set data. The first letter of the
character set will replace the lowercase ““a,’” the second letter, lowercase
*‘b,”” etc. In some programs, you may need to copy all or part of the
ATARI ROM character set into our RAM character set. You may want to
retain the uppercase and numeric characters for use in your screen
display. By redefining only the lowercase letters, you would still be able
to print text on the screen or read your program when it was listed with the
new character set still installed. You could copy the ROM character set
into your RAM character set with the statements

Character Set Animation / 177

178 / Character Set Animation

100 ROMSET=224%256: REM Calculate address
of ROM character set
119 FOR I=0 TO 1@23:
POKE CHRBAS+I,» PEEK(ROMSET+I):
NEXT 1

where CHRBAS is the RAM address of your new character set. In our
Running Man program, we didn’t need to do this, so it really doesn’t
make any difference whether we redefined the lowercase letters or any
other sequence of characters.

In line 8040, the OFFSET for the lower case ‘‘a’’ (number of bytes
from the beginning of the character set) is calculated, and the number of
characters we are redefining is stored in CHARS.

To assure that the character set data is entered accurately, a check-
sum value is used. All of the bytes in our data statements were added
together to obtain this value. Then this value, which came to 16845, was
placed in a DATA statement on line 20020. This checksum value is
READ into the variable TOTAL (line 8060), and all the bytes in our
DATA statements are added together and stored in TEMP as the character
setis READ and POKEd into RAM (lines 8070-8090). If the checksum
value in TOTAL doesn’t equal the calculated sum in TEMP, an error
message is printed out. If this happens, recheck the values typed into the
character set data statements.

On lines 8120 through 8140 the first character in the character set is
filled with 0’s. As stated before, this is the character definition for the
space character. You already know what kind of designs can appear on
the screen if the space character isn’t a blank!

Figure5.12: Listing of Example 2— lines 20000—20380.

Character Set Animation / 179

Character Set Data This is where the data for our Walking
Man is stored. As previously mentioned, the first value (16845) is the
sum of the rest of data. Each line, starting with 20050, contains one
character definition — the 8 bytes which define a single character.

Figure5.13: Listing of Example 2—lines 300—430.

Animation Loop The logic behind this section is similar to the
animation loop in the Flying Bird program with the addition of a few new
techniques. Since all the frames are stored in one long string, the desired
frame can be pointed to directly with the formula in line 330. In ATARI
BASIC, a substring (section of a string) can be accessed by indicating the
first and last characters:

STRING®(first,last)

The formula in line 330 allows access to the Ith substring of MAN$
which is FRMSZE characters long. When I equals 1, the first 12
characters of MAN$ are stored in FRAME$ (Frame 1). When I equals 4,
the fourth set of 12 characters is stored in FRAME$ (Frame 4).

On line 340, the cursor (now invisible) is positioned on the screen.
ERASES is used to clear away any of the previously drawn man, and
then the current frame is drawn.

On lines 350 to 370, the sounds of a footstep are added. The syntax
of the SOUND command is

SOUND voice, frequency, distortion, volume

There are four separate sound registers or voices in the computer, num-
bered O to 3. The frequency can be any number from O to 255. It
determines how low or high in pitch the sound will be. By changing the

180 / Character Set Animation

value of the sound’s distortion (even numbers from O to 14), anything
from a pure tone to a roar can be created. The volume can be any number
from O (no sound) to 15 (loud sound). By using two different frequency
settings in our program, one sound is made when the man’s heel hits the
ground and another when the rest of his foot makes contact.

Finally, on line 410 the man’s horizontal position on the screen is
incremented if the joystick button is pressed. The screen is cleared when
he reaches the right edge of it, and the starting horizontal position () in
line 310 is reinitialized.

Running the Program Before you run the program, plug a
joystick into the first joystick port (on the left). Now type RUN, and
you’ll see the man walking in place on the left side of the screen. No
mistaking him for a bunch of wobbly pick-up sticks — he really looks
like a walking man! Adjust the volume on your television set so you can
hear the footsteps. When you press the joystick button, the man will
begin walking eastward.

Modification Make a modification which prints more than
one man on the screen at the same time. This could easily be done by
adding a few more lines like 340, but changing the vertical position to
other values. How many men can you have walking across the screen
before they look like they’re walking through a vat of cold molasses?
Don’t forget to delete line 380 to gain some speed.

Notice how the walking men seem to be stepping slightly out of
sync. This is due to the time it takes for BASIC to move the cursor to the
next man’s position and draw a new frame. This modification really
shows BASIC’s limitations in animating character set graphics with
multiple figures — BASIC just doesn’t PRINT fast enough on the
ATARI.

Summary

By making use of the increased resolution and control gained by
user-defined character sets over built-in character sets, your animations
can look much more lifelike! The next problem to overcome is that of
BASIC’s slowness when it comes to animating more than one figure at
the same time. In the next section we will see how this can be accom-
plished without the use of machine language.

5.3. FLIPPING CHARACTER SETS —
THE GALLOPING HORSE

The next technique overcomes the problem of animating multiple
figures with BASIC. The problem relates to the speed at which BASIC
can PRINT something on the screen. BASIC can’t maintain adequate
animation frame rates for the simultaneous display of more than a few
separate figures. It can handle one or two simple figures, but then it
becomes overloaded, and the result is sluggish and stilted animations.
We could use machine language at this point (called from BASIC) to
greatly increase the frame rate, but there is a simpler technique —
character set flipping. Using this technique in upcoming Example 3,
even though the screen will be completely filled with moving figures, the
program actually needs to be slowed down to obtain the proper frame
rate.

How Does Character Set Flipping Work?

In the last program, one alternate character set was created and then
switched on. The animation was created by rapidly PRINTing each
frame (made up of characters from that one character set) on the screen.
Recall our short introductory program which POK Ed a series of numbers
into RAM location 756. Do you remember how quickly the display
changed? By repeatedly changing the value in 756, we were actually
flipping through a series of character sets with random characters. The
screen looked like a rapidly changing mess. What would happen if we
made use of this flipping technique, but gave it real character sets to flip
through? One character set for each frame could be created. Then, rather
than redrawing the figure on the screen with PRINT, each of these
character sets could be rapidly flipped through! When we PRINT
something on the screen, it will be displayed using the character set that is
currently being pointed to (by the value in 756). When another character
set is pointed to, the image on the screen will immediately change.® Each
value in a screen location will “‘index’” into the current character set. The
frame rate will be determined then by how rapidly we can POKE in the
addresses of our different character sets as opposed to how rapidly the
computer can PRINMNT something on the screen.

In our next example, we will borrow from the man who made the
first live action movie. As we mentioned in Chapter 1, in 1872 the
ex-governor of California, Leland Stanford, and another millionaire
horse lover, Fred McCrellish, had an argument about whether a galloping
horse ever had all its hooves off the ground at any moment. They hired a

°This technique will not work for the IBM Personal Computer — once a character is printed on the

screen. its appearance can’t be changed by flipping to a different character set.

Character Set Animation / 181

182 / Character Set Animation

famous photographer named Eadweard Muybridge to find out. After his
first attempts using only one camera failed to produce convincing results,
he tried again six years later with 12 cameras. Each of these cameras,
equally spaced along a wall, was connected to a trip wire. As the famous
trotter Abe Edgington galloped by, it set off each of the cameras in
succession. By examining each of the photographs, it was determined
that the horse did indeed have all of its feet off the ground at one point
during its galloping cycle. Governor Stanford won the argument and had
a famous university named after him.

Perhaps more important for us, when Muybridge rapidly flipped
through the photographs, the motion of the galloping horse was recre-
ated! He later built the first movie projector (the Zoopraxiscope) and
toured North America and Europe. astounding crowned heads on both
sides of the Atlantic with the first feature-length (1-2 seconds) films.
Five of the frames from his original horse sequence were used to create
the character definitions for the next example.'”

Figure 5.14 illustrates the character definitions for our galloping
horse. Each of the five frames is composed of a6 X 4 array of characters
(24 characters).

FRAME
L I I 1T 0 0 0 0 0 0
l i GEdst N O O O O
ESaNRasss - ‘ B8 8 S
i S dameqensTHagEr g8 8 Ly
T [ine 0 0 0 15 231 136
- JREBE 0 0 6 59 135 196
i 0 0 0§ 15 14 204
: I 0 3 255 254 60 48
3 252 31 192 124 0
P A B S
N RESEE 5 11 31 0 8 0
e =N .
T 1 2 112 0
e e S oah
M 3 254 0
auale N 1 0 127 222 127 142 0
SEEEERRS 0 &7 162 3 252 @
Bt aicsases Rt L I
j
; w R, i, I 0 95 i28 1 128 ©
‘ T 1 193 192 1 128 ¢
s [T D8 1 128 224 1 182 o
T B i T T o o M2 1222 0
; 0 o0 28 0o 48 0O
[i = 0 0 28 0 56 0
! ‘
- 1 :] pRsagsN
i i o po e B ol g 9 oo o
1 1 RS N Y“M LI 1T 0 0 0 0 0 0
FRAME
6 9 9 o o o0
o o0 0 o 8 o
o 0 90 o 12 o
0 0 o 1 13 0
o 0 0 5 121 0
0 0 0 B 248 128
0 0 0 59 252 32
6 o0 0 87 191 208
0 0 __0 255 187 1aa
0 7 256 "1 1sa 192
3 252 32 0 48 0
7 208 3 0 16 O
15 151 108 4 16 0
29 31 255 28 16 O
0 31 235 252 48 o
0 15 255 184 240 0
0 15 255 248 28 O
0 15 143 255 254 ©
0 62 0 31 6 0
0 8 G 80 12 0
0 % 0 48 56 0
0 236 0 12 48
0 204 0 96 0 0
0 7198 0 192 0 0
0220 1 © ¢ 0
0216 1 0o 0 0
0192 1 0 0 0
0 8 0 0 0 0
0 112 o] [} 0 [
6 o6 6 06 o0 0
o o0 0o o 0o ©
o 06 6 o o ©

(continued)

Character Set Animation/ 183

FRAME

COCORANNYVDAVOCOOIOPNNNNND OOOOQODD
NPm—nOw NOTROON
coanm OO0 HOO0O00O0R

O ® 0O w
SRR T Il
~

D st

FOW TG NDOBVO NOOODOO
TAUOD PN BN N OO
~ NN e

COCOOOCOOOOMUCN A I HMIN—O OC0OOOOD
QEmmPMMONT o
—-

COOOCOCOOCOMIMODOOOOO~MO NI g

ry - A=X=1=1
—oa ~NNON

T

1]
T
- 3 .
T T T
] FE
T3 1 7
M1 I]
» I
11 I T H
b w‘ﬁmr i
T Ty Il 1
T 1] T
T] N
- W “ i 1
(T I 1
1 L T
s |
T
] n ! T
L + +
» 1 H- * [
1 [T I *

FRAME

COCO00OBNBNTNOOOO OOODANNYN FOOOOOOD
NONO e N
s ppiri

COOVO OO PYONNO NN HONMOR NN OO OO
AN e M O0© o aoo
N AN ————

COCODOOCOONMVAIMPNVVIILBVONTIOC000
DNSDO DN SO NG N
N N e

CO00000O0COMNT HNT MDVNH DL R OOO A0 OOO!
WO MmO TN
el IR

COOOO0OCOOOMNOOOCOOOOO~MARYOOO0CO

o
f

T

TTT

17

T

=
]
|
1
1

1171
T

FRAME

CO00®ANYNOITOOCODOOODOOCOORNNDOOCOOO
Ny Do N o
ST hpstey

OO I DMON DOV L DBNDOODVT BN OOCTOOO0

0w <
aNNNNaN NN e
COOENGRLINMNCOO LT N INOMMOOONT OO0
~Penom 3 e -
~ o
COO0OOO00ONIVIONPPNONV VTN O MO OO
O NN T NG TN
N NN

CO0COODTMOINBNNE N ONOVOOO O COCOOV0o
WOt~ - OVeN
R Bl

COCOOTOOORMMNSSOPO~MMBO OOC OO0
- —

T ,

T 1
1

jeiszagess
T -

s

T
—i-v L

i
|
=

aeies
aRaREE

aa
-

Character definitions of the Galloping Horse.

14

Figure 5.

cland Stanford for hiring himto do
¢ Apple computer. and Tandy Trower for the ATARI

ginal photos. L

gthe ori

ge tor takin

"Our thanks to Eadweard Muybrid,

em on th

gth

conversion of the Galloping Horse character set.

5o, Charlie Kellner for first digitizin

184 / Character Set Animation

Even though the same number of frames is used here as was used in
our last program, these frames employ a larger character array, thus
allowing us to create a figure of much greater detail. The drawback,

however, is that we have a lot more bytes to enter into our data state-
ments.

Example 3

Exercise Using the Galloping Horse character sets, fill the
screen with 36 horses, all galloping in unison. Use the technique of

character set flipping, and add the sound of hoofbeats. Use paddle O to
control the animation frame rate.

(continued)

Character Set Animation / 185

Photo 5.5: Galloping Horses.

Here is the Galloping Horse program. The same four main sections
are present in this program as in Example 2: initialize, set up alternate
character set, character set data, and animation loop. In this program,
however, each section is somewhat different.

Figure 5.15: Listing of Example 3 — lines 10-290.

186 / Character Set Animation

Initialize Rather than dimensioning a string to hold our frames
(as we did in the last program), we will dimension an array called
HICHRB (line 120) to hold the RAM page address of each of the five
character sets. HICHRB (1) will hold the address for character set one
(Frame 1), HICHRB (2) for character set two (Frame 2), and so on.
This will make it very easy to select the appropriate frame.

The border around the active area of the screen' is set to the same
color as the background in line 180. SETCOL.OR 2+1 +1@ sets the
background, and SETCOLOR 4 +1 »1 @ sets the border. SETCOLOR
1@ 2 sets the brightness of the horses (to dark).

On line 190, the first character set is switched on so when you
PRINT the horses on the screen, you'll see horses and not letters of the
alphabet.

Next, on lines 210-280, the screen is filled with horses using two
nested FOR /NEX T loops. There will be six horses across and six down
for a total of 36 horses — how about that! An instant racing stable!

Figure5.16: Listing of Example 3—lines 8000—-8190.

Set Up Alternate Character Set This time enough room for
five character sets plus the screen memory must be reserved. This comes
to 24 pages: 4 pages for each of the five character sets (20 pages) plus 4
pages for screen memory. Line 8050 initializes the HICHRB array to
point to each of the five character sets. Line 8150 prints out a period after
each character set is read, so we have an indicator that the program is still
running.

""This active area is called the Playtield — more on this later.

Character Set Animation / 187

oo

Figure5.17: Listing of Example 3— lines 20000—-20470.

Horse Character Set Data Starting with line 20050, each
line contains three character definitions or 24 bytes.

Figure5.18: Listing of Example 3— lines 300-370.

Animation Loop This section is extremely simple. A FOR/
NEXT loop is used to flip through the five frames. On line 330 we turn on
the sound effect for a hoof beat on every frame but the third one. Line 340
uses an ATARI game paddle to allow the interactive control of the frame
rate of the galloping horses. If you don’t have a paddle, replace the word
PADDLE (@) with a numeric value — 15 seems about right.

188 / Character Set Animation

When you run the program, you’ll see all 36 horses galloping in
perfect synchronization. If you turn your paddle to the fastest speed (or
remove line 340), the horses will be moving so fast that their legs will
begin to blur (they’d be a sure thing in the Kentucky Derby!). This means
that if we used character set flipping in a game, there would be quite a bit
of extra processor power to do other things.

5.4. EXPLODING WITH A THREE-COLOR
CHARACTER SET

Up until now, it’s only been possible to display animated figures on
the screen in one color, even though the choice of color is ours. But not
for long! The ATARI Home Computer has a graphics mode which allows
the display of a custom character set in three colors! We will drop a

whistling bomb from the top of the screen and then explode it in a burst of
color and sound.

The Display List and Antic Mode 4

Most of today’s computers can only operate in two or three different
graphics modes. The Apple II, for example, has a text mode, a low-
resolution graphics mode, and a high-resolution graphics mode. The
ATARI Home Computer is much more flexible than this. In fact, there
are twelve'? different graphics modes which are supported by the ATARI
400 or 800’s operating system'? and sixteen modes supported by
ATARI’s XL Home Computers’ operating systems.'* These graphics
modes can be easily set up from within BASIC using the GRAPHICS N
command (where N can be a value from 0—11 on the ATARI 400 and
800, or 0— 15 on the ATARI XL Home Computers). Some of them are
text (or character) modes, and some are plotted point modes (also called
bit mapped or map modes). Most of them can be split screen modes
(plotted points on the top part of the screen and four lines of GRAPHICS
@ text on the bottom). The exceptions are GRAPHICS @ (the whole
screen is a text window) and modes 9, 10, and 11 (GTIA modes — see
Chapter 6). The split screen modes can be changed into full screen modes
(no text window) by adding 16 to the value of N:

"2There are an additional five graphics modes available, including Antic 4, which are not supported by
the ATARI 400 or 800 operating system.

One more mode, Antic 3, isn't supported by the ATARI XL Home Computers’ operating system. This
mode displays 10 pixel high characters with descenders.

!“The operating system is contained within the 10K ROM cartridge in your ATARI 800, or inside the
computer if you have an ATARI 400 or XL Home Computer.

GRAPHICS 3 split screen mode 3
(four lines of mode O at bottom of screen)
GRAPHICS 3+16 full screen mode 3

Introducing ANTIC For you ATARI 400 or 800 owners who are
feeling jealous that you can’t access the four additional modes the
XL Home Computers can access, hold on. Your computer can display
anything the XL Home Computer can, it just might be a littie more
awkward for you to achieve. And for you ATARI XI. Home Computer
owners who might be feeling a little smug, the following information will
help you get the maximum graphics power from your computer.

One of the things which makes the ATARI Home Computers so
versatile for creating animation is its custom chip set, the primary thing
all ATARI Home Computers have in common. Rather than giving all of
the work to the computer’s microprocessor, Atari designed three LSI
(large scale integration) chips to help share the load. One of the chips,
called Antic, has the responsibility of interpreting the bytes in screen
memory into a form which can then be displayed on your television
screen (by another custom chip, CTIA or GTIA, depending on the age of
your computer). Antic is actually another microprocessor. As with any
microprocessor, it has a program (called the display list), data (screen
memory), and output (the television picture). Among other things, the
display list specifies the graphics mode or modes to be used on the screen.
By altering the display list, you can horizontally divide the screen into
many strips or ribbons of different graphics modes. This gives the
programmer who is able to modify the display list a great deal of
flexibility when designing the appearance of the computer’s video
output.

When using the GRAPHICS command in a BASIC program, the
ATARUI’s operating system will automatically set aside the appropriate
amount of screen memory for that mode. A low-resolution map mode
will take up much less memory than a high-resolution map mode. The OS
(operating system) will also create a display list that will tell Antic how to
interpret the data (bytes) in screen memory. Should the bytes be inter-
preted as text characters or as plotted points? How large should each
character or pixel (the smallest dot you can plot in the current graphics
mode — see box) be displayed on the screen, and what color should it
have?

Pixels, Dots, and Color Clocks

In many books about computer graphics, there is no distinction
between the words pixels, points, and dots. Pixel is derived from the
words picture element. It refers to the smallest dot you can access

Character Set Animation / 189

190 / Character Set Animation

(directly turn on or off) on the screen. Since the physical size of this
dot s different for each ATARI graphics mode, this could be confus-
ing. We are modifying the definition of a pixel to be “the smallest
point you can plot in the current graphics mode,” and we are using
the word “dot” to mean the smallest point the screen is capable of
displaying (320 x 192 dots). This means that the only time a pixel
and a dot will look the same is in GRAPHICS 8 when there are 320
x 192 pixels on the screen.

Any color of the rainbow can be created by combining varying
amounts of the three primary colors of light, i.e., red, green and blue.
If you look very closely at your color television screen, you will see
vertical stripes of phosphors in these three colors, first red, then
green, and finally blue. (It is hard to see all three phosphors unless
you are looking at a white area on the screen.) The width of each
group of red, green, and blue phosphors is equal to one color clock.
A television term rather than a computer term, a color clock is a unit
of measurement that is related to the maximum number of color
changes possible on one line. There are 227.5 color clocks in each
horizontal scan line, 160 of which are within the active area (for
plotting or printing) of your screen (playfield). To have full control
over the color of a pixel, the pixel must be large enough to have one
of each of the three colored phosphors in it, which means it is at least
one color clock wide. Therefore,in GRAPHICS 8, where each of
the 320 pixels in a line is one half of a color clock wide, you can't
independently control pixel color. You may have wanted the pixel to
look white, but it might appear as blue (only the blue phosphor was
turned on) or orange (both the red and green phosphors were
partially turned on). This is called a color artifact and can be exagger-
ated by turning on every other pixel in a horizontal line. Your pixels
will only look white if there are at least two of them horizontally
adjacent to each other, turning on all three phosphors. This is also
true for the pixels that make up each characterin GRAPHICS @ or
for any other graphics mode with pixels that are one half of a color
clock wide.

Examining the Screen Look closely at your ATARI’s video
picture. You will notice that it is made up of many extremely fine
horizontal lines. There are 192 of these horizontal scan lines in the active
area of your screen (we’ll wait if you care to count them). The active area
is that portion of the screen on which you can place text or plot points.
ATARI calls this area the playfield. The playfield is 160 color clocks
wide (see box) and is made up of 320 dots. Surrounding the playfield is a
border which can sometimes be independently colored, depending on the
graphics mode in use.

In GRAPHILCS @, each byte is represented as a character which is
eight dots wide (four color clocks) and eight scan lines high (remember
our character definitions from the last section). This provides us with the
previously mentioned 320 X 192 dots, since there can be 40 characters in
a line (40 * 8 dots per character = 320 dots) and 24 lines of text to a

screen (24 * scan lines per character = 192 scan lines). In GRAPHICS
3, a low-resolution map mode, each pixel (plotted point) is a square
which is four dots across (two color clocks) and four scan lines high. This
means there are 80 pixels across a line (80 4 dots per pixel = 320 dots)
and 48 pixels down (48 * 4 scan lines per pixel = 192 scan lines). Figure
5,19 compares the characters, pixels, and bytes in GRAPHICS @ and

GRAPHICS 5.

HORIZONTAL SCAN LINES

-~

[5]5/zl5]z 5l ol <[fola [uls][o|

Character Set Animation / 191

P

DOTS PER LINE

—_—

’ 33333333
111111 11111111
01234656789012345 234567839
- ¥ N
CHAR 1 CHAR 2 CHAR 40
LINE 0 LINE 0 cos LINE O
BYTE 1 BYTE 2 BYTE 40
CHAR1
LINE 1
BYTE 41
L]
L] E
L]
. |
CHAR 1 CHAR 2 CHAR 40
LINE 23 LINE 23 eee LINE 23
BYTE 921 BYTE 922 BYTE 960

\—
al;

40 BY 24 CHARACTERS
8 SCAN LINES PER "MODE" LINE
40 BYTES PER LINE

960 BYTES TOTAL

GRAPHICS 0 - CHARACTER GRAPHICS
2 COLORS (ONE HUE W/ TWO INTENSITIES)

(continued)

192 / Character Set Animation

DOTS PER LINE

’ 33333333
111111 11111111
0123456789012345 = 234567839
’ s At —
_o
_1] |0 1,0 2,0 3,0 ... 1780 79,0
2 BYTE1 | BYTE 1 | BYTE 2 | BYTE 2 *|BYTE 20|BYTE 20
_3
_4
5 0,1 1,1
Py BYTE 21| 8YTE 21
1
w|_8
v 9 0,2 1,2
S| 10| |BYTE 41|BYTE 41
z/ 1
o 12
0] —-
RNt 0,3 1,3
2| s BYTE 61 |BYTE 61
5|18
N
x L . J
T [. W
84
185 | o,46 1,46
186 | |BYTE 921|BYTE 921
187
188
189 | |o,47 1,47 2,47 3,47 veel78,87 79,47
190 | |BYTE 941|BYTE 941|BYTE 942|BYTE 942 BYTE 960|BYTE 960
LE
__ A J
GRAPHICS 5 ~ BIT MAPPED GRAPHICS
5 COLORS
80 X 48 PIXELS
4 SCAN LINES PER LINE
20 BYTES PER LINE
960 BYTES TOTAL
b)

Figure 5.19: a) GRAPHICS @ and b) GRAPHICS 5 on the screen.

By modifying the display list, you can access some additional
graphics modes which are not supported by the OS. The Exploding Bomb
program is compatible with any ATARI Home Computer. (Later on we’ll
tell you about a short cut for the ATARI XL Home Computers.) This
program uses something called Antic mode 4 (don’t confuse Antic 4 with
BASIC’s GRAPHICS 4 — they are totally different). This means that
we can’t use a GRAPHICS statement to set it up on an ATARI 400 or
800; we must do so manually by altering the display list. Table 5.1
indicates all the Antic and OS graphics modes. The pixels/column and
bytes/screen are calculated for the full screen modes (GRAPHICS N +
16). As you can see, the number of bytes needed for each mode depends
on the resolution (number of pixels) and the available number of colors.

GRAPHIC MODES

Color Scan

Clocks Lines
Antic BASIC Char Number Pixels/ Pixels/ Char/ Char/ Bytes/ Bytes/
Mode Mode or Map Colors Line Column Pixel Pixel Line Screen*

2 0 Char 2* 40 24 4 8 40 960
3 none Char 2 40 19 4 10 40 760
4 12. Char 4 40 24 4 8 40 960
5 13 Char 4 40 12 4 16 40 480
6 1 Char 5 20 24 8 8 20 480
7 2 Char 5 20 12 8 16 20 240
8 3 Map 4 40 24 4 8 10 240
9 4 Map 2 80 48 2 4 10 480
A 5 Map 4 80 48 2 4 20 960
B 6 Map 2 160 9% 1 2 20 1920
C 14+ Map 2 160 192 1 1 20 3840
D 7 Map 4 160 9 1 2 40 3840
E 15 Map 4 160 192 1 1 40 7680
F 8 Map 2™ 320 192 - 1 40 7680
F 9t Map 16" 80 192 2 1 40 7680
F 10t Map 9 80 192 2 1 40 7680
F 11t Map 16% 80 192 2 1 40 7680

Memory is also set aside for the display listin each mode. Most modes

also have some unused memory reserved (see Appendix H,

“Graphics Memory Map Modes™).

One hue, two luminance values.

16 luminance values, one hue.

1 All 16 hues, one luminance value.

1t Note: OS Modes 9—-11 are GTIA modes. Bits 6 and 7 of PRIOR
(location 623) control which mode will be used. See Table 7.5.

. Only supported by the ATARI XL Home Computers’ operating

systems.

**

*hk

Table 5.1: Antic and operating system graphics modes.

Antic 4 uses the same amount of screen RAM as GRAPHICS @. In
fact, it is very similar to GRAPHICS @ with one exception. Instead of
each bit in the character definition representing a dot on the screen (either
on or off), the bits in each row are paired. By considering this pair of bits
as one pixel, the horizontal resolution is halved so that each character is
now four double-wide dots across (instead of eight single-wide dots) and
eight horizontal scan lines down (as before). But by losing some horizon-
tal resolution, we gain color information! Because each of the character’s
pixels is now a full color clock wide, it can be displayed in any of three
colors depending on its bit pattern. If the bit pattern is 01, you can control
that pixel’s color with SETCOLOR @ . If the patternis 11, use SET -~
COLOR 2. Table 5.2 shows how this works.

Character Set Animation / 193

q

25

194 / Character Set Animation

SETCOLOR for Antic 4

Color
Bit pair in Use following register
character definition SETCOLOR value name
a0 SETCOLOR 4 COLBAK

21 SETCOLOR @ PF@

1@ SETCOLOR 1 PF1

i1 SETCOLOR 2 PF2

11 (inv. video) SETCOLOR 3 PF3

Table 5.2: SETCOLOR table for Antic 4.

As the chart indicates, if the character is printed in inverse video
(most significant bit is set in screen memory), only the bit pair “*11°” will
be affected. Its color will now be controlled witha SETCOLOR 3. This
can give us another color on the screen, but still only three colors within
each character. So, let’s create a character definition example for Antic
4, since we will soon use it in our falling bomb example.

BIT BYTE DISPLAYED INVERSE
PATTERN VALUE

ROW 1 01010101 85 [] [)l

ROW 2 01010101 85

ROW 3 00000000 0

ROW 4 10101010 170 e

ROW 5 10101010 170 P

ROW 6 00000000 0

ROW 7 11111111 255

ROW 8 11111111 255

Figure 5.20: Character definition for striped character.

As you can see, we are filling each of the eight rows with one of the
four possible bit patterns. By using the above byte values for our charac-
ter definition, the above Antic 4 character would be displayed as three
horizontal bands of color separated by two thin stripes of the background
color.

Now let’s set the color registers as follows to color the bands red,
blue, and green with a black background:

SETCOLOR 40,8 : REM BlacK
SETCOLOR @:34+6 : REM Red
SETCOLOR 1+7:6 : REM Blue
SETCOLOR 2+124+6 ¢ REM Green
SETCOLOR 3546 + REM Purrle

We will be covering the SETCOL OR command in greater detail in
the next chapter. For now, recall that the syntax of the command is

SETCOLOR nhue,lum

If we printed this character in inverse video, only the bottom band of
color will change. It would become purple because its color is now
controlled by SETCOLOR 3 instead of SETCOLOR 2 (see Table 5.2).

Explosions and an Antic 4 Character Set

Have you played any games at a video arcade recently? You are
flying your spaceship around the universe and suddenly an attacking
alien creeps up from behind. Lasers fire and KABRASHH'! Your
spaceship vanishes in a brilliant explosion . . . and you lose another
quarter. How was that explosion created on the screen? Two basic
techniques are used. One shows the exploding object bursting into a mass
of dots or debris that rapidly moves outwards towards the corners of the
screen. This technique requires a fast machine language algorithm which
can directly control each piece of debris. In the other technique, a
colorful fireball replaces the destroyed object. Often, you will see flames
flick out in different directions as three or four versions of the fireball are
rapidly displayed where your spaceship once was. This technique can be

easily duplicated using Antic 4 character set animation.
Since you already understand how characters in Antic 4 are dis-

played, let’s look at the character set for our Exploding Bomb program.
The actual explosion is created with four frames, each made of a box of
four characters arranged in a 2 X 2 array. Each frame shows the
explosion getting a little larger and in a different shape. By consecutively
executing PR I NT for each frame at the same screen position, we will see
what looks like an expanding explosion. We also need to define a single
character for our falling bomb, as shown in Figure 5.21.

Character Set Animation / 195

196 / Character Set Animation

& o~

2826000, 00 O E000 00D 000 N OO ¢ O
COOCOCWVBPBVONOYDOOO OO O O N g 7 mNONT ﬁO”Glt A i e N SN AN]
| eI it Pt it e ' RN NN e o —
O NTOD! € CIUD 46 O T~ P UDND O Ul g
©OO0OMZONRONRMOO O] Co0PNRUMDMORTS [eee@nIen TN%20840A DU O
|

i BB

1]

[

|

Hf;_ M
_

$.
e :
mEEs
% L]
SEEN
1]
RESREN
L
ENEARE
P
T 11 LT
mEE
IREE
HEN

T

Figure5.21:

it
|
FRAME
(L L

FRAME

T T
}[—ﬂi
3
nal
]
Wl
i
[T T1
]
|
|
[
|
FRAME
I |
T
]

Character definitions for Exploding Bomb program.

In the above figure, the bit pattern of each character is shown on the
left; in the center are the actual characters as they will appear on the
screen; on the right are the decimal values needed to define each charac-
ter. Notice that the pixels that make up each character are now rectangu-
lar instead of square. This decreased resolution makes it a little more
difficult to represent a detailed figure.

Example 4

Exercise Randomly drop a whistling bomb from the top of the
screen. When it falls to the bottom half of the screen, make it explode in a
burst of color and sound. Modify the display list to Antic 4 so that you can
use a three-color character set.

Character Set Animation / 197

198 / Character Set Animation

Photo 5.6: Screen photos of Exploding Bomb program.

Here is the Exploding Bomb program. Before you begin entering it,
you’ll notice that one section is almost identical to a section in the
Walking Man program. To save time, instead of typing this section (lines
8000-8160, Set up alternate character set) from scratch, you can copy it
over from the other program.

10 REM «--x-* EXPLCZ)DING BC)M

20 REM L Example 4

30 REM Program to demonstrate the three rolor text

40 REM Copyright © 1932 by David Fox asnd Mxtcm.ll

S0 goTotlo

0. REM Hi-speed Subrc;ut:i.na

70 SOUND O RNDGI#150420,0,VOLL -
SOUND 1, BND@I80+175,2, 001!
SOUND Z,RKIJIOHISOGO,S,VOL.

. RETURN | REM Soind

80 FORI=1 TO 10! .
. POKE 711.&2{{5(0)*255‘
NEXT It L
POKE 7120

. RETURN! REM Flash

0 SE‘X’COLDR o4 LuMEoy

| SETCOLOR L2RUMaR
SETCOLOR 2,1, LUM@):
RETURN REM Color

Figure 5.22: Listing of Example 4—lines 10-90.

Hi-Speed Subroutines You'll notice that there are three
subroutines at the very beginning of the program. These are specifically
placed here for a reason. In ATARI BASIC, the closer a section of code is
to the beginning of the program, the faster its execution speed will be.
(This has to do with the time it takes ATARI BASIC to search through all
the line numbers of a program to find the next one it is supposed to
execute. The closer the line is to the beginning of a program, the faster it
finds it.) One of the subroutines controls the explosion sound effects,
another creates a background flash, and the third sets the colors. All these
subroutines need to be executed as rapidly as possible, so we placed them
at the beginning. In fact, you’ll notice that we place most of the initializa-
tion subroutines and data towards the end of the program, and the
time-critical animation loops towards the beginning.

Line 70 will turn on three of the sound registers (voices) with
random explosion-like sounds. Each voice has a different frequency
range/distortion combination. Once the registers are on, this line is
executed again to randomly change the sound quality of the explosion.

Line 80 rapidly flashes the screen background ten times with ran-
dom colors. Memory location 712 is where the background color in-
formation is stored for this graphics mode. Using SETCOLOR 4 would
achieve the same result, but a direct POKE to this location is quite a bit
faster. This is because BASIC doesn’t have to take the time to calculate
the color value by combining the SETCOLOR hue and lum values
together (color value = hue * 16 + lum). The flash is used at the first
instant of the explosion.

Line 90 sets the colors of the explosion and is also used to fade out
the brightness of the explosion.

Figure 5.23: Listing of Example 4—lines 100-240.

Initialization The only thing new here is the call to the display
list modification subroutine in line 220. We’ll explain this subroutine in
just a second.

8000 REM Set Up Alternate Character Set

8010 HICHRB=FPEEK(106)~8; REM Reserve memory space (1024 bytes) below screen
8020 CHRBAS=HICHRB#256} REM Find start of Character Set

8030 REM Read in dat, first 97 ch,

TEMP=0
2070 FOR I=CHRBAS+OFFSET TO CHRBAS+OFFSET+CHARS#8-1
8080 READ BYTE!
POKE I,BYTE!
TEMP=TEMP+BYTE
8090 NEXTI
8100 IF TOTAL<OTEMP THEN
GRAPHICS 0!
FRINT "ERROR In Character Set Data":
END
§110 REM Clear out first char (background)
8120 FOR I=CHRBAS TO CHRBAS+7
€130 POKE 1,0
8140 MNEXTI
8150 RETURN
8160 REM

(continued)

Character Set Animation / 199

200 / Character Set Animation

Figure 5.24: Listing of Example 4—lines 8000-20290.

Set Up Alternate Character Set and Character Set Data
The lines in the first section (8000—8150) are identical to those in the
Walking Man program. The only thing you need to change is the value
assigned to CHARS in 8040. The character set data (20000-20290)
contains the character definitions for the four frames of the explosion and
the bomb character.

‘Figure 5.25: Listing of Example 4—lines 6000—6050.

Modify Display List This is the section where we modify the
display list to Antic 4. Since GRAPHICS @ is so close to Antic 4, we
need to change only the values in the already existing DL (display list). In
line 6010 we find where in memory the DL is. In line 6020, we change
the DL instruction that controls the first text line. Don’t worry about this
now; we will cover LMS (load memory scan) and display lists in greater
depth in Chapter 9.

In line 6030, we change the DL instruction for text lines 2 through
24 when we POKE in a 4 (and that’s why it’s called Antic 4). When this
subroutine is executed, you will see what looks like a black curtain
rapidly descending over your screen as each byte of the DL is modified.

If you have an ATARI XL Home Computer, you can modify this
program to let your OS set up the new display list with a GRAPHICS
12+ 16. Because cursor control won’t work in this mode, you will have
to PRINT each line of the frames separately on the screen with the
PRINT #6 command.

Character Set Animation / 201

Figure 5.26: Listing of Example 4—lines 600—700.

Falling Bomb This subroutine displays the falling bomb. The
spot on the screen where the bomb will explode is randomly selected (line
620). The vertical coordinate (%) will always be in the lower half of the
screen (because of the +12). A FOR/NEXT loop (lines 630-670) is
used to move the bomb down the screen. We are drawing the bomb in its
new position and erasing the old bomb with the same PR INT statement.
As it falls, sound register O is used to create a whistling sound. The
whistling sound was split onto two lines, 640 and 660, to create a more
even whistle. [t smoothly drops two frequency steps for every position of
the bomb. One of the SOUND statements could have been omitted, but
the change in frequency would have been more choppy.

When the bomb reaches its explosion point, line 680, the screen is
cleared and the sound turned off in preparation for the explosion routine
in the animation loop.

Figure 5.27: Listing of Example 4—lines 300-520.

Film 3

““The Juggler,”” Information
International, Inc. Here are three
segments from ‘‘The Juggler’ film
which we describe in Chapters 1 and 3
(see Photo 1.1 on page 3). (Courtesy of
Information International Inc.)

202 / Character Set Animation

Animation Loop This is where the entire explosion is orches-
trated. After setting the LUMinance (brightness of the color, used in the
subroutine at line 90) and Y 0L.ume levels (used in the subroutine at line
70) to their initial values (310}, the bomb is dropped (320). The color
registers are reset, the explosion sound turned on, and the background
flashed. In a real life explosion, you would see the flash before you heard
the sound, but when we tried it that way the effectdidn’t seem quite right.
The viewer expects to hear noise as soon as something hits so we took the
liberty of changing the laws of physics.

The frame loop, lines 360400, is identical to those in our earlier
programs. We didn’t need to erase the explosion after each frame, just
write over it. Instead of a pause loop, the sound of the explosion is
changed to add the effect of randomness to our pre-dawn graphics.

In lines 410 to 490, the LUMinance values of the last explosion
frame as well as the YOl ume level of the sound registers fade out. This
technique of altering the SE TCOL OR values gives the illusion of motion
when none is taking place (more on this in the next chapter).

Finally, on line 500 we wait for a random period of time before we
drop the next bomb.

Modifications Here are some modifications to try:

1. Switch the order of the initial sound and flash of light so that the flash
comes first. Which do you like better?

2. Use adifferent set of colors in the explosion. Maybe you can come up
with a better or more exciting combination.

3. Run this program with the sound on your television turned off. Notice
how much the sound adds to the effect.

4. Try to improve the explosion character set to create a more realistic
effect.

5. Program multiple explosions on the screen. What sets the limit to the
maximum number?

Commercially Available Software Using Character Sets

The character-set flipping technique is used in a popular ATARI
Home Computer game from Automated Simulations, Inc., entitled
“*Crush, Crumble, and Chomp!”’ In this game, you control your favorite
movie monster on a rampage. The screen can display running people,
police cars with flashing lights, helicopters with moving blades, flicker-
ing flames, and smoldering ruins all at the same time. The animation uses
only two frames and is created by flipping between two character sets.
Although the effect is very impressive (especially the flames and ruins).
as we have seen, the technique is very simple. Most of the program is
written in BASIC, with a number of machine language subroutines to
help out (see Chapter 8). To simplify the BASIC portion of the program,

the task of alternating between the character sets is automatically carried
out with a Vertical Blank Interrupt routine. (This technique is covered in
depth in Chapter 8.) For now, think of it as giving the computer a separate
task to do while BASIC is running the main part of the program.
Photo 5.7a) and b) is from the game’s introduction and shows the
two frames which appear on the screen. The two parts [c) and d)] show
two consecutive frames from the middle of the game. Notice the position
of the flames and the people’s legs. The monster (we chose to be
““Mantra’’ in this game) is made of two adjacent Players. (Players,
objects which can be moved anywhere on the screen without changing
the background, are covered in Chapter 7.) Even though GRAPHICS @
is being used, you’ll notice some extra colors on the screen (the green of
the trees and light blue on the buildings; see color insert). These extra
colors are obtained by turning on every other bit in those characters,
resulting in color artifacts (see box on artifacts in next section).

LXVILIAN TaRY
FLEEING 2EVILISNS
BOLIEE
BELYEHETERS

THEAMTRY

EIVILIAR S48%

FLECING CIUILUANY

#OLICE

BnELicoBvYERS

ITHFaRTEY

b) (continued)

Character Set Animation / 203

204 / Character Set Animation

d)

Photo 5.7: Four screen frames from “Crush, Crumble, and Chomp!”
(Copyright (c) 1981, Automated Simulations, Inc.)

The ATARI Home Computer version of Space Invaders™
(trademark of Taito America Corp.) is another program which makes use
of character set animation. This program, however, uses a different
technique than the two we’ve previously introduced. Each of the invad-
ing alien types (there are six) is made of two adjacent characters in
graphics mode 1. Rather than flipping through entire character sets, it
uses machine language to rapidly change the character definitions of each
invader. Since each row is made up of the same type of alien, the entire
row is animated at once. This doesn’t exhaust much processing power
since there are only four different frames for each of the six alien types.
Three Players were used in this game, one for the large green spaceship
on the left of the screen, one for the gun base at the bottom of the screen,
and one for the occasional flying saucer which appears at the top of the
screen (not pictured). The projectiles being fired by the invaders and the
game player are Missiles. Display list interrupts (Chapter 9) were used to
add extra colors for the invaders.

b)

Photo 5.8: Screen photos of Space Invaders™. (Trademark of Taito America
Corp.)

Summary

You have learned a powerful and flexible animation technique
which can be implemented without any use of machine language.
Although defining a new character set can be time consuming, the
advantages are well worth the effort in many cases. Using character set
animation in GRAPHICS @ (or the XL Computers’ GRAPHICS 12)
can provide the same resolution as the ATARI’s highest resolution mode
(GRAPHICS 8), but with only one-eighth of the memory overhead.
By using Antic 4, more colors can be placed on the screen at twice the
resolution (and one-fourth the memory overhead) as with GRAPHICS
7. As we will see later, this saving of memory also speeds up the
processing speed of the computer for faster animation programs.

Making animated figures roam the screen is exciting, but our programs
have been somewhat one dimensional — each character we have ani-
mated so far exists in a void, without any background or foreground! In
the next chapter, we will explore the advanced graphics feature of color
registers and create some beautiful animated backgrounds'

Character Set Animation / 205

206 / Character Set Animation

Color Register Animation / 207

Chapter 6

Color Register Animation

O n most personal computers, after you’ve selected a color from a

limited number of choices, that color is placed on the screen with
PLOT or DR AW statements. The only way to change itisto PLOT again
in a new color, and this is very time consuming. In addition, your
program must ‘‘remember’’ the screen coordinates of each pixel whose
color is to be changed. The ATARI Home Computer, as well as many of
the high-tech animation computers, has a feature called the color regis-
ter, which we first introduced in Chapter 2 when we talked about our
‘‘Magic Paint Store.”” In this chapter we will see how ATARI’s powerful
method of drawing graphics using color registers can be put to work in
colorful, action-packed animated scenes. Color register animation will
be used to draw a beautiful, ever-changing kaleidoscope of colors, create
the illusion that you are rapidly flying through a trench (a la Star Wars),
and display the motion of water in a cascading waterfall.

6.1. WHY COLOR REGISTERS?

Color registers were first created to provide the users of professional
computer paint systems with a relatively inexpensive way to use a
polychromatic (many-colored) palette. Suppose the computer artist
wanted sixteen million colors (give or take a few) from which to choose.
The expensive technique would be to make each pixel capable of display-
ing any of these colors so that all sixteen million could appear on the
screen at once. Each pixel must then contain 24 bits of information to
directly represent any of the sixteen million colors. If the display con-
tained 1024 x 1024 pixels, it would represent over three million bytes of
screen RAM. That’s why it costs so much.

The less costly method allows the artist to create a palette from a
subset of the sixteen million colors, for example, 256 different colors.
Instead of storing information at each pixel which describes the color, an
8-bit value is stored which points to a palette (or table or colors) entry,
eliminating 16 bits per pixel. The table would contain the 256 different
24-bit descriptions of the sixteen million colors (see Figure 6.1). If the

208 / Color Register Animation

EXPENSIVE METHOD -
ANY ONE OF 16,777,216
COLORS ON THE SCREEN

1024

SCREEN =

1,048,576 PIXELS x 24 BITS

= 3,145,728 BYTES

LESS EXPENSIVE METHOD -
USES A 256-COLOR PALETTE.
EACH PALETTE COLOR CAN BE

ANY ONE OF 16,777,216 COLORS

|¢———1024 ——-i

1024

SCREEN =
1,048,576 PIXELS x 8 BITS
= 1,048, 576 BYTES
TABLE =
256 ENTRIES x 24 BITS
= 768 BYTES

Figure 6.1: Palette of colors.

24 BITS OF COLOR
INFORMATION PER PIXEL

8 BITS OF
COLOR TABLE INFORMATION
PER PIXEL

= 43

T

I-————— 24 BITS ————-'

INENEANEENEEENENEENEN
IENNENSREREEREEENEENN

(ST -]

J‘mmfb

2z
a3[TITITTIITLTIT]

W 0 35 35 108 5 0O 408 20 29 ﬂw&c&wﬂ_.vw&-‘w'»zvg
253 :
254 EEEREE AEEEENEENEN
255 IENENEERE AT T YT

TABLE (PALETTE) OF 256 COLORS
EACH ENTRY HAS 24 BITS
OF COLOR INFORMATION

value in a pixel was 43, then the computer would look into the forty-third
entry of the table. The color value that is contained in this table position is
then displayed at that pixel. Screen RAM would only take about one
million bytes, and a negligible 768 bytes would be used for the table. This
represents a computer hardware investment of about one-third of the
price of the previous method! Of course, this way the artist could only
display 256 unique colors on the screen at the same time, but this is really
not as limiting as it sounds. The artist who plans a picture carefully can
create striking scenes with much fewer than 256 different colors.

This second technique of displaying color is called color mapping,
and the table of colors is called the color map. When color maps became
popular, many advantages other than the lower cost were discovered. An
artist could alter colors without having to redraw an entire picture. In the
field of computer animation, wonderfully animated scenes could be
created without plotting a single pixel simply by moving the colors
around the color map! In medical applications, in the analysis of a
computer image of an X-ray, formerly unnoticed details could be brought
out by assigning contrasting colors to areas which had been depicted with
only slight shading differences.

Color Maps and the ATARI Home Computer

The ATARI Home Computer is one of the few personal computers
that uses this technique to display its colors on the screen. However, there
are only 128 possible colors to choose from instead of sixteen million
(hope you didn’t get your hopes up!) and only nine entries in the color
map, rather than 256. These nine entries are called color registers. Most
ATARI graphics modes don’t use all nine color registers. In fact, many
use only four or less. Table 6.1 shows most of the different ATARI
graphics modes and the color registers which are active for each.

Defauit
Modes Colors SETCOLOR POKE COLOR Description
GRAPHICS @ — — (Not
(text mode and Lt Blue 1 709 normally Char. Lum.
all text windows, used) (uses bkg color)
1 hue, Blue 2 710 Background
2 luminances) — —
Black 4 712 Border
GRAPHICS 127,
(Antic 4)* Orange 0 708 (Not Character Pixel
GRAPHICS 1371
(Antic 5) Lt Green 1 709 normally Character Pixel
(special text Blue 2 710 used) Character Pixel
modes, 5 colors) Red 3 711 Character Pixel
Black 4 712 Background, Border

(continued)

Color Register Animation / 209

210 / Color Register Animation

Defauit
Modes Colors SETCOLOR POKE €OLOR Description
GRAPHICS 1 and | Orange 0 708 (Not Character
GRAPHICS 2 Lt Green 1 709 normally Character
(large text Blue 2 710 used) Character
modes, 5 colors) Red 3 711 Character
Black 4 712 Background, Border
GRAPHICS 3, Orange 0 708 1 Pixel
GRAPHICS 3, Lt Green 1 709 2 Pixel
GRAPHICS 7 and | Blue 2 710 3 Pixel
GRAPHICS 157+
(Antic E) — _ .
(4 colors) Black 4 712 0 Pixel/Background,
Border
GRAPHICS 4, Orange 0 708 1 Pixel
GRAPHICS 6 and — — —
GRAPHICS 147
(Antic C) — — —
(2 colors) — — —
Black 4 712 0 Pixel/Background,
Border
GRAPHICS B — — —
(1 hue, 2 Lt Blue 1 709 1 Pixel Lum.
luminances) (uses bkg color)
Blue 2 710 0 Pixel/Background
Black 4 712 — Border
GRAPHICS 9 Black 712 0 Pixel/Background,
(GTIA mode, Border
I hue, 16 1 — — I Pixel
luminances) — — 2 Pixel
— — 3 Pixel
Dk Gray — — 4 Pixel
— — 5 Pixel
1 — — 6 Pixel
Change hue with — — 7 Pixel
SETCOLOR 4,20 |Gray — — 8 Pixel
or POKE 712.n — — 9 Pixel
1 — — 10 Pixel
— — 11 Pixel
Lt Gray — — 12 Pixel
l — — 13 Pixel
— — 14 Pixel
White — — 15 Pixel
GRAPHICS 10 Black — 704 0 Pixel/Background,
(GTIA mode, Border
9 colors) Black — 705 1 Pixel
Black — 706 2 Pixel
Black — 707 3 Pixel
Orange 0 708 4 Pixel
Lt Green 1 709 5 Pixel
Blue 2 710 6 Pixel
Red 3 711 7 Pixel
Black 4 712 8 Pixel

(continued)

Default
Modes Colors SETCOLOR POKE COLOR Description
GRAPHICS 11 Black 4 712 0 Pixel/Background,
(GTIA mode, Border
1 luminance, Lt Orange — — 1 Pixel
16 hues) Orange — — 2 Pixel
Red-orange — — 3 Pixel
Pink — — 4 Pixel
Purple — — 5 Pixel
Purple-blue — — 6 Pixel
Change luminance Azure Blue — — 7 Pixel
with Sky Blue — — 8 Pixel
SETCOLOR 4:@,n | Light Blue — — 9 Pixel
or POKE 712,n Turquoise — — 10 Pixel
Green-blue — — 11 Pixel
Green — — 12 Pixel
Yellow-grm — — 13 Pixel
Orange-grn — — 14 Pixel
Lt Orange — — 15 Pixel

tThese GRAPHICS commands are only supported by the newer ATARI XL Home Computers.
*See Example 4 in Chapter 5 for more on Antic 4.

Table 6.1: ATARI Color Registers for graphics modes.

The Modes column lists the different ATARI graphics modes and
the number of colors they support. The Default Colors are the colors set
by the OS when the computer is first turned on or reset. The SETCOL OR
column gives the active SETCOLOR commands (used to change the
color value in the color registers) for that mode. The POKE column lists
the corresponding RAM addresses of the color registers for each mode.
When you POKE numbers into these addresses, you can bypass the
SETCOLOR command for faster color changing. (This is the only way
to change some of the registers in mode 10.) The numbers in the COL OR
column are the values of the COLOR command that will choose the
current color register with which to draw.

The Description column lists which of the three screen elements
each color register controls. First there is the screen background. When
the screen is cleared, you are looking at background. It is the *‘canvas’
upon which pixels are plotted and text is printed. Next is the border
around the background. Although this area sometimes has its own color
register, depending on the graphics mode it is really the frame surround-
ing the canvas and cannot be drawn on. Finally, there are the playfield
pixels (any pixel that is plotted with a non-background color register).
Each group of plotted pixels using a specific color register is considered
to be a separate playfield. For example, look in the table for the section
on GRAPHICS 3. Registers 0, 1, and 2 (in the SETCOLOR column)
each control the color of playfields O, 1, and 2 respectively. Register 4

Color Register Animation/ 211

212 / Color Register Animation

controls the background of the screen and the border. Therefore, in this
mode, the background’s color cannot be controlled separately from the
border’s color. Notice that register 4 also controls a pixel; however, this
is not a playfield pixel. Think of plotting with a background color register
as removing the playfield pixels so the background color shows through
again.

Using the Default Colors At first glance, this table may seem
somewhat overwhelming, so let’s look at a few examples. Suppose you
want to use GRAPHICS 3. Drawings done in this mode have a very
coarse resolution of 40 X 24 pixels. Do you remember the buckets of
paint in our Magic Paint Store? The store owner (ATARI operating
system) was kind enough to fill some of these buckets when he first
opened up the store. These are called the default colors and can be
selected for drawing with the COLOR command. If you wanted to use
only these default colors, then you can ignore the SETCOLOR and
POKE columns, because these colors are automatically placed in the
color registers when the computer is first turned on or SYSTEM RESET is
pressed. To use the table, first choose a color from the default color
column — light green, for example. Look across to the COLOR column,
and you’ll find a 2. Therefore, the command COL OR 2 selects the bucket
filled with light green paint.

To place a light green pixel at 10,8, you would execute the follow-
ing statements:

1¢ GRAPHICS 3+16 : REM Full screen mode
20 COLOR 2 : REM Choose vour bucKet
3@ PLOT 1248

20¢ GOTO Zeo REM Stav in GRAPHICS 3

In line 10, the full screen version of GRAPHICS 3 is used (16 is
added to the mode number). This means that there will be no text window
at the bottom of the screen. Try temporarily removing line 200 and see
what happens when you run this program. The screen flashes to black,
the pixel is plotted, and before you get to look at it, the blue GRAFHICS
© screen has reappeared. At the end of a program which uses a full screen
graphics mode, the OS will automatically switch backto GRAPHICS @.
Line 200 is added to prevent this from happening until you press the
BREAK button and exit the program.

To draw an orange line across the screen from this light green dot,
add the following lines:

49 COLOR 1
30 DRAWTO Z29.8

REM Choose another bucket

Now use one more color register available in this mode. This one is
filled with blue:

G0 COLORrR 3 : REM One more bucKet
790 PLOT 39.8

To erase a pixel, choose the background color (which always happens to
be COLOR ©):

80 COLOR @ : REM Select bacKdground
99 PLOT 208

This screen will now appear as in Photo 6.1.

Photo 6.1: Default colors of GRAPHICS 3 (see color insert).

Using SETCOLOR

Now that we understand the use of the default colors, let’s see what
else is available to us. As we’ve mentioned before, the ATARI Home
Computer has 16 different hues from which to choose, and each one can
be displayed in any of eight levels of brightness or luminance. As we
mentioned earlier, the BASIC command to change a color in a color
register is

SETCOLOR n,hue,lum

where n is the value from the SETCOL OR column in Table 6.1, hue is a
number from O to 15 that controls the hue, and {um is an even number
from0to 14 (0,2,4...14) that controls the luminance of the color (the odd
lum values have the same effect as the next lowest even value, e.g.,
lum = 1 and lum = 0 have the same effect). Table 6.2 shows the
different hues available on the ATARI Home Computer.

Color Register Animation / 213

214 / Color Register Animation

SETCOLOR
Hue Hue Value
Gray 0
Light Orange (gold or yellow) 1
Orange 2
Red-orange 3
Pink (magenta) 4
Purple 5
Purple-blue 6
Azure Blue (cyan) 7
Sky Blue 8
Light Blue 9
Turquoise 10
Green-blue 11
Green 12
Yellow-green 13
Orange-green 14
Light Orange 15

Table 6.2: ATARI hues and SETCOLOR values.

Let’s look at a few examples to see how the luminance value
combines with the hue to instantly produce a new color. Try the follow-
ing SETCOLOR commands while in GRAPHICS @ to change the color
of the border (just type them in direct mode):

Command Hue Luminance Color Result
SETCOLOR 40,14 Gray 14 White
SETCOLOR 44+9,0 Gray 0 Black
SETCOLOR 4:1.4 Light Orange 4 Brown
SETCOLOR 4,112 Light Orange 12 Bright Yellow
SETCOLOR 4,344 Red-orange 4 Deep Red
SETCOLOR 4,312 Red-orange 12 Flesh

With a little experimentation, you’ll be able to produce almost any color
you wish.

Adjusting Your Color Television

Now would be a good time to make sure the color on your
television is set correctly. This is a two-step process which may

.require you to adjust a hidden control on your computer. First, while
in GRAPHICS @, enter the following statement:

SETCOLOR 1040

This will change the luminance values of the lettering so it will show
up during the next steps. Now enter;

SETCOLOR Z2:1+10

ATARI calls this color light orange, but at this luminance level it
is actually a bright yellow. If the color is too green or too orange, then
adjust the tint control on your television set until it looks yellow to you.
Mark the position of your tint control so you can easily find it again if
anyone adjusts your television.

Next, enter the following statement:

SETCOLOR 22,1446

This is a strange color called orange-green (a khaki-gold color). After
you execute this command, your screen will be filled with this delight-
ful color. If this color doesn’t fall exactly halfway between orange and
green, you must make an adjustment on your ATARI Home Com-
puter (trying to fix it with the tint control will just throw off the first color
you adjusted). There is a small hole at the back of your computer
through which you can insert a tiny screwdriver (see Photo 6.2).
Inside this hole is the color adjustment control. Insert your screwdriv-
er and turn it very slightly in both directions. You'll find that a very
slight adjustment will produce a significant change on the screen.
Swing back and forth from orange to green until you find that elusive
point which yields a perfect orange-green.

When you have finished, all the other colors will be correctly
adjusted as well. To make sure, change the screen to yellow
(BETCOLOR 2 +1 +»1@) again. It should still be adjusted properly.
If not, then go back to step one and try again. (We noticed that the
ATARI color adjustment has no effect on this yellow.)

Photo 6.2: Adjusting the color on an ATARI Home Computer.

Color Register Animation / 215

216 / Color Register Animation

Now let’s have a little fun! Add the following lines to the last
program you entered:

80 COLOR 1 :REM Choose bucKet 1
adain

99 PLOT 20.:5:

PLDOT 20:6
189 PLOT 19,7:

DRAWTD 21,7
119 PLOT 19+9:

DRAWTO 21,9
120 SETCOLOR 1+3+68 : REM Chande to Red
130 SETCOLOR 2+12+6 : REM Chande to Green
149 FOR I=1 TO 50:

NEXT 1 : REM Pause
15¢ SETCOLOR 1+8:® : REM Chande to Black
16¢ SETCOLOR 2408 : REM Changde to BlacKk
179 FOR I=1 TO 40@
180 IF RND(@)*20<1 THEN

SETCOLOR 4,0+14:
SETCOLOR 4+2+@: REM Random lidhtningd
flash

190 NEXT I
200 GOTD 120

When you execute this program, you will see a crude airplane
heading towards you with red and green lights blinking at the tips of its
wings. Every so often the background will flash as if the plane were
flying through a lightning storm.

Lines 120-130 turn on the wing lights, then after a pause, lines
150-160 turn them off. SETCOLOR 1 changes the color of the pixel
plotted with COLOR 2, and SETCOLOR Z changes the pixel plotted
with COLOR 3. This may seem a little confusing, so refer back to Table
6.1 to see the relationship between the SETCOLOR and COLOR
commands.

If the value of the random number expression on line 180 is less than
1 (one chance in 20, or 5 percent), the lightning is turned on and off by
setting the background color register first to white and then immediately
back to black. As you can see in Table 6.1, SETCOLOR 4 controls the
screen background.

We could have created the blinking wing lights by replotting the tips
with the background color. This technique executes much more slowly
than one which just changes the color registers. Although we don’t need
the speed in this case, the effect would be slightly different. Notice that
during the lightning flash the darkened wing lights are silhouetted against

the sky. This effect could not be easily duplicated on a computer without
color registers!

Using POKE to Change Colors

Referring back to Table 6.1, you’ll notice that there is one more
column to cover. Each color register has an address in memory associated
with it. The value in the color register can be changed by using POKE to
put a new value into this address. In GRAPHICS 1@, the only way to
change the values in the first four color registers is with the use of a
POKE. To obtain the value to POKE into a memory location, take the
hue value of the color and multiply by 16, then add in the luminance
value

POKE addr, hue* 1 B+luminance

In GRAPHICS 7, for example, the following two statements would be
equivalent:

SETCOLOR @ +4+8 POKE 708 .72

To see why, first find the SETCOLOR @ entry for GRAPHICS 7 in
Table 6.1. Then move one column to the right, and you will see the
address 708. Multiply the hue in the above SETCOLOR by 16
(4%¥16 = 64), add the luminance value to it (64 + 8 = 72), and you
have your POKE value! In many cases you may want to use a POKE
instead of SETCOLOR, because POKE will execute more rapidly. This
is because it takes time for BASIC to do the necessary conversion from
SETCOLOR’s hue and luminance values to a single value which it then
POKEs into the proper address. You speed up the process by precalculat-
ing the value while you are writing your program and then have BASIC
just POKE it in during execution.

This technique was used in the Exploding Bomb program (Chapter
5, Example 4) to flash the background rapidly at the moment of the
explosion. Here is that line again:

B0 FOR I=1 7O 1@:
POKE 712,RND(@)*255:
NEXT 1I:
POKE 712,0:
RETURN: REM Flash

This line selects 10 random colors to flash on the background and then
resets the background color to black.

Color Register Animation / 217

218 / Color Register Animation

Film 5

““Times Square,”” Digital Effects
Inc./Rosebush, Kleiser, Leich, Cox,
Loen, Prins, Deas and Cohen, 1979.
Hold on as we take a brief ride through
Times Square as it might have appeared
on an evening in the year 1890.
(Courtesy Digital Effects Inc.)

Now type in the following short program and see what happens:

19 GRAPHICS 3+186

20 FOR I=0 TO 254 STEP 2 : REM Step throudh
every color

3¢ POKE 7121 : REM Chande
backdround
color

50 NEXT 1

6@ GOTO 20

When you run it, your screen will flash through all the colors so quickly
that you will hardly be able to see them. Add the following line to slow it
down to human speeds:

49 FOR W=1 TO S5@:
NEXT W

Try doing this trick without color registers!

Summary

Color registers can be used to rapidly change portions of the screen
with a simple SETCOL. OR or POKE. But what purpose do they serve for
animation? In the next section, we will explore the real power of color
registers in three amazing demonstration programs.

6.2. CREATING MOTION WITH COLOR REGISTERS

In Chapter 5’s Exploding Bomb program, we use color registers to
flash the background and then to fade out the explosion on the screen.
With careful planning, this ability to instantaneously change the color of
a specific area on the screen can be used to create the effect of high-speed<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>