

Computer Animation Primer

Computer Animation Primer

David Fox and Mitchell Waite

McGraw-Hili Book Company
New York St. Louis San Francisco Auckland
Bogota Hamburg Johannesburg London Madrid
Mexico Montreal New Delhi Panama Paris
Sao Paulo Singapore Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data
Fox, David, date
Computer animation primer.

Includes index.
1. Computer animation. I. Waite, Mitchell.

n. Title.
TR897.5.F68 1983 778.5'347'02854 83-7713
ISBN 0-07-021742-4

Copyright © 1984 by David Fox and the Waite Group. All rights
reserved. Printed in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

1234567890 DOC/DOC 8987654

ISBN 0-07-021742-4

ATARI is a registered trademark of Atari, Inc.
400,800, 6OOXL, 800XL, 1200XL, and 825 are trademarks of
Atari, Inc. used by permission. BYTE/McGraw-Hill is not
affIliated with Atari, Inc., and Atari is not responsible for any
inaccuracies.

Editorial staff; Bruce Roberts, Peg Clement, Peg McCaulley, Stephen
G. Guty, and Barbara B. Toniolo

Design staff: Ellen Klempner-Beguin and Mark Safran
Production staff: Ellen Klempner-Beguin, Jaymia Ryll, and Thomas G.
Kowalczyk

Text set in Times Roman by LeWay Graphics
Printed and bound by R. R. Donnelley & Sons Company

The authors each dedicate this book, with love, to their parents.
David Fox
Mitchell Waite

Contents

PREFACE xi
ACKNOWLEDGMENTS xv

Part I
1. ANIMATION PERSPECTIVES 1
1.1. Welcome to Computer Animation 4
1.2. Our Premise 4
1.3. About the Book 5
IA. What Is Animation? 6
1.5. What Is Computer Animation? 8
1.6. A Little History of Animation 10
1.7. How Is Computer Animation Used Today? 16
1.8. Getting Started in Animation Today 34

2. COMPUTER ANIMATION HARDWARE 37
2.1. The CRT Canvas 37
2.2. Stroke Graphics 42
2.3. Raster Graphics 44
2.4. The Graphics Computer - A First Look 48
2.5. The Bit and the Pixel 51
2.6. Adding Gray Scale 54
2.7. Adding Color to the Display 56
2.8. Frame Buffers 57
2.9. Getting the Frame Buffer Image on Film 59
2.10. Encoding the Picture in the Buffer 60
2.11. Color Mapping 60
2.12. Video Mixing via Bit Planes 63
2.13. Other Encoding Techniques 64
2.14. Advanced Graphics Hardware 66
2.15. Personal Computer Graphics Hardware 67
2.16. Color in the Personal Computer 69
2.17. Memory-Mapped Video and Text Storage 70
2.18. Character Graphics 72
2.19. Graphics Peripherals 73

3. COMPUTER ANIMATION SOFTWARE
AND APPLICATIONS 81
3.1. Graphics Software-The Basics 81
3.2. Transformations 84

Contents/ vii

viii / Contents

3.3. Clipping and Windowing 87
3.4. Fills and Scan Conversion 92
3.5. Three-Dimensional Representation 94
3.6. Curves and Surfaces 101
3.7. Hidden Line and Surface Removal 105
3.8. Shading 107
3.9. Antialiasing Lines 110
3.10. Personal Computer Animation Software 112
3.11. High-Tech Digital Paint Systems 113
3.12. Computer-Assisted and Computer-Generated

Animation 118
3.13. The Making of TRON 125
3.14. An Animation House-Examples 128
3.15. An Apple for Animation-James Leatham 129

4. PERSONAL COMPUTER
ANIMATION FEATURES 135
4.1. Format of This Chapter 136
4.2. BASIC Graphics Statements 136
4.3. Special Hardware Features 139
4.4. Graphics and Text Modes 139
4.5. Graphics Language Statements 143
4.6. Players and Sprites 148
4.7. Hardware Scrolling 149
4.8. Graphics Characters 149
4.9. Custom Characters Sets 149
4.10. Color Registers 150
4.11. Vertical Blank Interrupts 150
4.12. Display Lists and Display List Interrupts 151
4.13. Speed of Plotting 151

Part II
Introduction 153

5. CHARACTER SET ANIMATION 155
5.1. Built-in Character Sets-Making Do with What You

Have 155
5.2. User-Defined Character Sets-A Bouncy Walking

Man 164
5.3. Flipping Character Sets-The Galloping Horse 181

5.4. Exploding with a Three-Color Character Set 188

6. COLOR REGISTER ANIMATION 207
6.1. Why Color Registers? 207
6.2. Creating Motion with Color Registers 218
6.3. The Trench Program 225
6.4. Autumn Waterfall Program 229

7. PLAYER-MISSILE GRAPHICS 239
7.1. Why Player-Missile Graphics? 239
7.2. Player Motion 243
7.3. Player Parameters 250
7.4. Watch the Bouncing Ball-Using PM Graphics 256

8. USING MACHINE LANGUAGE ROUTINES IN BASIC
PROGRAMS 273
8.1. What Is Machine Language? 273
8.2. Moving Players with PMOVER 278
8.3. Automatic Animation with ANIMATE 290
8.4. Setting a Horizontal Velocity with

AUTOMOVE 307
8.5. Player Foreground for the Great Movie

Cartoon 318

9. CREATING A SCROLLING BACKGROUND 335
9.1. The Display List Revised 335
9.2. The Scrolling Background Program 351
9.3. The Great Movie Cartoon 383

APPENDICES
A. Complete Listings of BASIC Program Examples 395
B. Character Set Grid/ATARI ROMCharacter Set 451
C. Listing Conventions 453
D. The String Loader Program 457
E. Complete List of Parameter Table Entries for Black Box Routines 463
F. Source Code Listings of Assembly Language Routines 467
G. ATARI Hardware and Shadow Registers 489
H. Graphics Memory MapModes 493

INDEX 495

Contents/ ix

Preface

A squadron of spacecraft roaring through a star-filled void, a high
speed chase through a canyon of eerie, snowcapped mountains,

a man in a tuxedo juggling colorful geometric solids whose finale is a
backflip into thin air ... Are these segments from a George Lucas film
or a Disney feature? No, they are scenes created entirely inside a com-
puter using state-of-the-art advances in computer animation.

A small town, a man taking a brisk walk down the street, cars, trees,
houses zooming by, a waterfall cascading into a valley, a bird flying
across a blue sky, three dozen horses galloping in perfect unison, a
forward dive into a channel of kaleidoscopic colors . . . Are these
images from the same high tech computers? No, these startling effects
actually take place on the screen of a low cost personal computer. They
are programmed in BASIC (a popular computer language), and this book
will show you how to create them.

Computer Animation Primer is actually two books in one. It is the
first book to explain simply the details of the new high-tech computer
animation as used in the film and television industry. It is also the first to
show BASIC programmers how to create superior animation on a low-
cost ATARI Home Computer (400,800, 690XL, 800XL, 1200XL, and
the rest of the XL models). Part I covers the theory and applications
behind computer animation, including graphics hardware, software, and
programming. Part II contains a tutorial describing animation capabilities
of the ATARI Home Computers. In this way, the first half of the book
will allow you to become familiar with what the computer animation
professionals are doing and how they are doing it, while the second part
will provide you with the necessary tools to try out some of these ideas at
home.

We have also added special flip book movies to these pages. (Flip
books are an old-fashioned way to do animation and are still fun to play
with today.) When flipped, these pages will give you a taste of computer
animation . You will find a sampling of animated segments from the best
animation houses in the United States. They will provide you with a
preview of the kinds of special effects that are in vogue today and the
impact of computer animation. To see the animation in six films, flip

Preface I xi

xii I Preface

right-hand pages from the back of the book to the front and left-hand
pages from the front of the book to the back. The starting points of the
films are as follows: Film 1, "Running Boy," page 393; Film 2, "Vol
Libre," page 369; Film 3, "The Juggler, " page 201; Film 4, "Panasonic
Commercial- Paper Airplane," page 2; Film 5, "Times Square," page
218; Film 6, "Walking Man," page 316.

Throughout the text the illustrations are printed in black and white.
Color renditions of most of the photos, Figures 5.20 and 5.21, and nine
additional images appear in a 16-page insert located between pages 3 96
and 39 7.

The chapters of Part I are organized as follows:
Chapter 1, "Animation Perspectives," discusses the theory behind

basic animation, i.e., its mechanics and methods. We describe the
general theory and psychology of animation - how the eye and brain
may be fooled by the computer to perceive motion and how a computer
program does the same thing by flipping frames. The chapter then
describes the difference in .approaches to animation between high tech
and personal computers. We present a concise but intriguing history of
animation, followed by a description of the computer applications that
animation has made possible. Finally, we tell how YOU can get started in
this amazing field.

Chapter 2, "Computer Animation Hardware, " covers the computer
hardware (the nuts and bolts) that makes computer animation possible.
We discuss CRT's, stroke and raster graphics, pixels, gray scale, bit
planes, frame buffers, and so on. This information will prepare you for
understanding the next chapter and how the software tells the hardware to
perform its graphic duties.

Chapter 3, "Computer Animation Software and Applications,"
covers the interesting secrets and tricks which the animation experts use
today for creating their images. Included are descriptions of techniques
used for defining objects with programs, transformations, achieving
realism, removing hidden lines, shading, and various computer paint
systems. We will preview some fancy animation equipment used in the
film industry and contrast it with some low cost personal computer-based
equipment developed by hobbyists. The making of a computer-
animation-based movie (TRON) is highlighted to show you how the
hardware and software fit together.

Chapter 4, "Personal Computer Animation Features," describes
the 13 key capabilities available in many personal computers that make
them suitable for animation. With this chapter, you can learn which
features to look for when purchasing a personal computer for animation.

The second part of the book describes in detail how to do your own
animation on the ATARI Home Computers. To accomplish this goal, we
have included a number of impressive animation demo programs for the
ATARI Computers that can be entered immediately into a computer and

run, or just studied. In addition, there are a collection of special "black
box" machine language routines that will give the reader the tools to
harness some of the ATARI Computer's more advanced features. By
black box, we mean that the programmer does not need to understand
how the routines work to use them. Just plug a series of values into the
routine from BASIC and watch the desired effect on the screen. We
encourage people to use these routines in their own software, which they
can then market. To make learning really easy and to avoid typing in the
source code, all the software examples in the book are available on a
diskette from Adventure International.

Here is a description of the chapters in Part II:
Chapter 5, "Character Set Animation," covers the use of character

set graphics in animation. We show you how to use the ATARI'S built-in
character set for simple animation (such as birds flapping their wings),
and how to create your own character sets for animation. This last
technique allows us to create a man who gingerly walks across the
computer screen. Next, we cover character set flipping, showing how to
make 36 horses gallop on the screen at once. Finally, using a multi-
colored character set (and a redefined display list), we show how to
produce an arcade-like explosion on the screen, complete with sound
effects.

Chapter 6, "Color Register Animation," describes the use of
ATARI'S color map. This color map is a high-tech feature which allows
you to change the color on the screen almost instantly with one instruction
and without redrawing the image. We first fill the screen with a hypnotic,
ever-changing kaleidoscope of colors. A Star Wars type trench program
is then created to demonstrate the effect of motion using color registers.
This is followed by a program that displays a beautiful cascading water-
fall in a peaceful valley.

In Chapter 7, "Player-Missile Graphics," a distinctly ATARI fea-
ture, is covered. Players allow you to move animated objects on the
screen without having to worry about erasing parts of the background.
We'll provide you with a sample program of a bouncing ball to illustrate
how Players work. True to cartoon reality, the ball even flattens when it
strikes the floor!

Chapter 8, "Using Machine Language Routines in BASIC Pro-
grams," uncovers the secrets of enhancing your animations with our
black box machine language routines. These routines (which don't need
to be understood to be used) are easy to enter from BASIC and bypass
much of the tedious work that is required to animate Players. Players can
be instantly moved anywhere on the screen, given a horizontal velocity,
and automatically animated (using Vertical Blank Interrupts) with as
many frames of information as you desire.

Finally, in Chapter 9, "Creating a Scrolling Background," we will
present the powerful techniques of fine scrolling and Display List Inter-

Preface I xiii

xiv / Preface

rupts. The ATARI Display List will also be covered in depth. There is a
demonstration program here which scrolls an entire suburban background
across the screen at various speeds. In this chapter there is an impressive
concluding animation demonstration program of a little man walking
down the street, head bobbing, arms swinging. In the background, trees
and houses with lawns and fences scroll by while numerous cars and
trucks with roaring engines pass by in the foreground.

The pushing and shoving that goes on around an arcade game and the
willingness of people to feed these machines a steady stream of silver, the
millions of low-cost computer games sold for the home, and the popular-
ity of special effects films all attest to the fact that a revolution in the
video/graphics/film industry is upon us. It is our belief that graphics-
oriented personal computers are forerunners of a new and exciting type of
home entertainment. Film quality animation effects, perhaps created
remotely and downloaded to your system via cable, will be combined
with the arcade capability of your personal computer. The result will give
you an interactive experience where you become the dominant player in a
world of graphics figures and flashing colors.

This book is intended to inspire the development of high quality,
graphics-oriented software for home computers, thus harnessing the
animation potential of these marvelous machines and speeding us
towards the future.

David Fox
Mitchell Waite

December 24, 1983

Acknowledgments

Saying that the creation of this book was a large project is a gross
understatement. Not only did it require more than a year of work, but it
also involved hundreds of hours of consultation, research, telephone
calls all over the country, programming, programming, and more
programming. In fact this book project had the creative support of more
people than all our previous books combined. Therefore we would like to
pause and express our sincere gratitude to everyone who contributed time
and energy to this project.

First and foremost, we want to thank Annie Fox for her constant
support and fantastic editing. Without her help, this book would not have
been nearly so interesting and easy to read.

We would like to thank Steve Catechi, Adam Janin, Scot Kamins,
Ph.D., Corey Kosak, Christopher L. Morgan, Alvy Ray Smith, Tandy
Trower, and Lane Winner for their thoughtful, encouraging, and
incredibly complete reviews of our manuscript.

We thank Clark Brown and Ted Richards of Atari for making their
Dicomed film recorder available to us for our Atari screen photos, Jerry
Jessop of Atari for keeping our equipment in good working order, and
Chris Crawford of Atari for first turning us on to the animation power of
the ATARI Home Computers.

We would like to thank the following people for their help in
providing us with information and materials for the book:

Susan Anderson, Loren C. Carpenter, Pat Cole, Clark Higgins, K.C.
Hodenfield, Andy Neddermeyer, Alvy Ray Smith, and Susan Trembly
of Lucasfilm Ltd.
Richard Taylor, Arnie Sorenson, Bill Dungan, Art Durinski, and Lynn
Wilkinson of Information International, Inc.
Bill Kovacs, Shirley Shackrnan, and Steve Cooney of Robert Abel and
Associates
Ken Perlin of Magi (Mathematical Applications Group, Inc.)
Nelson Max of Lawrence Livermore National Laboratory
Wendall Mohler, Michael Bonifer, Mary Dill and Sue Muscarella of
Walt Disney Productions

Acknowledgments / xv

xvi I Acknowledgments

Judson Rosebush and Susan Bickford of Digital Effects
Peggy Allen, Ken Balthazar, Anne Bernstein, Harry Brown, Douglass
Chorey, Paul Cubbage, Jerome Domurat, Ann Louise Gechman, Clyde
Grossman, Bob Kahn, Ted Kahn, Peter Nelson, Jack Perron, Wanda
Royce, Joe Steele, Larry Summers, Don Teiser, Marilyn Theurer, and
Bonnie A. Umphreys of Atari, Inc.
Glen Entis and Carl Rosendahl of Pacific Data Images, Inc.
Dr. James F. Blinn and Charles E. Kohlhase of Jet Propulsion Laboratory
Philip Knopp of Gebelli Software, Inc.
John Williams, John Harris, and Gita Whelan of OnLine Systems
Bill Wilkinson of Optimized Systems Software
Jaime Cummins of The Solitaire Group
Joe Vierra, James Leatham,
Robin Ziegler and Bruce Merritt
Leo Christopherson
Nancy Bavor, Kate Kimelman, Anita Mosley, and Debbie Shepard of
Stanford University Museum of Art
Roy Smith of Advanced Electronics Design, Inc. (AED)
Mike White of Valpar Corporation
Doug Carlston and Olaf Lubeck of Broderbund Software
John Loveless of Synapse Software
Patricia Glenn and Mary Lock of Penguin Software
Gary Kofler and Patrick Ketchum of Datasoft, Inc.
Cherie Bauman of Versa Computing, Inc.
Herman Towles and Patrick T. Garvey of Computer Creations
Allan Sadoski and Mary C. Whitton of IKONAS
Tom Gemighani of Spectacolor, Inc.
Colin Cantwell of Crystal Chip, Inc.
Jane Veeder and Phil Morton
Frank Dietrick of Real Time Design
Dick Shoup of Aurora Imaging
Louis Schure of New York Institute of Technology Computer Graphics
Laboratory
Dave Eccles, Derek Lee, and Bruce Fox of Evans & Sutherland
Alice E. Ahlgren, Ph.D. and Mike Maldonado of Cromemco
Sharon H. Nelsen and Jody Peake of Tektronix, Inc.
Bill Kimberlin of W.A. Palmer Films, Inc.
Lynn Wedel and Sandy Vorheis of Apple Computer, Inc.
T. Barry Vincent of Commodore Computer Center
Sheri Correa of NorthStar Computers, Inc.
Ed Judd and Dennis Tanner of Tandy-Radio Shack
Jim Dugan of Texas Instruments
Grif Hamlin and Carolyn Robinson of The Los Alamos Scientific
Laboratory
Everett S. Joline, Ph.D. of Aviation Simulations International

Robert Holzman and Guy M. Lohman of Jet Propulsion Laboratory
Stephen H. McDaniel of Hanna-Barbera Productions, Inc.
Bob Christanson of Quality Software
David Sosna of MGM
Allen A. Wall of IBM
Steve Sipe and David Luther of IMLAC Corporation
Jim Higgins of Colorgraphic Communications Corporation
Peggy Grim of Chromatics Inc.
Daniel Clark of Terak Corporation
Ted Dyer of Grinnell Systems Corporation
John Walker of Marinchip
Kim Hoeg of Strider Productions
Nadara A. Craun and Terry Hostek of Digital Engineering
Ray Slane of Aydin Controls
Frank Magalski of Industrial Data Terminals
Ed Dwyer of Matrox Electronics
Christel I. Kiefer, Jim Forbes, Don Lewis, and Rudann Clark of Hewlett
Packard
James R. Smith of NASA - LBJ Space Center
Tom Crispin and Mark Nehamkin of Intek Manufacturing Company
Linda Buxbaum of Digital Equipment Corporation

We would also like to thank Peter Bloch, Larry Cuba, Thomas A.
DeFanti, Louis Ewens, Godbout Computers, Allan Lundell, Tom
Meeks, MicroPro, Mike Schmidt, Sean Turner, and J. T. Whitted.

And finally, we would like to thank the countless people who helped
us but we failed to mention above.

Acknowledgments / xvii

Part I

Chapter 1

Animation Perspectives

L evon Klein knew very little about computer animation. He had
heard that many recently produced television commercials and

feature films were making use of computer-generated graphics, but he
wasn't really sure what that meant. So computers could be programmed
to draw pictures, so what? Being so uninformed on the subject, he
couldn't figure out why his editor had sent him to cover the annual
computer graphics conference meeting in his home town this year. He
wondered about this as he walked up the auditorium's steep flight of
steps, his press badge fluttering in the wind. In preparation for today's
event, a film showcase of recent computer animation films, he had read
everything he could get his hands on. Yet the written word hadn't been
enough to enlighten him as to what all the excitement was about.

The guard at the door glanced at Leven's badge and with a disin-
terested nod, let him pass. Once inside the immense room, he began
looking around for a place to sit. Itwas then that the enormity of the event
began to sink in. Most of the auditorium's 10,000 seats were already
filled with people. The air crackled with the electricity of excited antic-
ipation. Someone with a staff badge walked up to the slightly stunned
reporter and hustled him to a seat towards the front of the room.

Three movie screens occupied the stage. As he impatiently waited
for the show to begin, he wondered once again what all the excitement
was about. Even without a sense of the technology, the high tech jargon
bandied about coupled with the tension in the room brought beads of
sweat to Leven's forehead. At last the overhead lights dimmed, the
projector rolled, and Levon took a deep breath as a brave new world
unfolded on the screen.

His eyes stared at the screen, unsure about what to make of the
images. The position of the camera placed the audience above a human
figure standing on a grey checkerboard grid. As the camera floated down
towards the ground, Levon noticed that the man on the screen, wearing a
black tuxedo and top hat, was juggling three brightly colored objects - a
red cone, a blue cube, and a green sphere. One thing that made this unlike
any ordinary movie was the colors. They were all of an extraordinary
intensity, brighter and purer than any Levon had ever seen on film. The

Animation Perspectives I 1

2 / Animation Perspectives

Film 4
.. Panasonic Commercial -

Paper Airplane," Robert Abel and
Associates. To promote their new
stereoscopic television, Panasonic
commissioned Abel to produce a
computer generated film which really
showed it off. Their new television is
essentially a standard TV with a
connection for a pair of special glasses
which are synchronized with the
display. By flipping between the right
and left eye views every sixtieth of a
second, the viewer sees a full 3-D
scene. Directed by Randy Roberts.
Courtesy of Robert Abel and
Associates.

background sky showed a most beautiful sunset with a bright red tinge at
the horizon, blending upward into blue, then darker shades of blue, and
finally a star-studded black night. An eclipsed sun flared brightly in the
sky, lending an eerie quality to the images. The color was so intense, so
surreal, that he felt it was safe not to try to predict anything about what
would happen next.

Thus suspending the earth-bound laws of physics, Levon's gaze
returned to the juggler whose face was now coming into view. He saw
that this was not a man at all, and in that moment it became clear that
these computer people had done something revolutionary .

"What is going on?" Levon wondered out loud, not feeling pre-
pared for what he was experiencing.

The juggler was not alive and yet he moved as ifhe were. As Levon
scrutinized him, he was hard pressed to explain the figure's origin. His
movements were too fluid for any robot, and every detail about him was
too flawless to have been hand painted. The man's face, for example,
possessed a manufactured quality, like a clothing store manikin, and
appeared android-like, totally devoid of expression, and too perfect to be
human.

Levon's puzzling over the figure was abruptly interrupted when
suddenly the scene shifted to a series of television commercials. Levon
recalled that he had watched these many times, but now he was amazed to
find that these images were all computer generated. Watching them at
home, he hadjust enjoyed their spectacular movements. Now he began to
appreciate the technology that had helped to create them.

The juggler appeared again, but this time the entire screen was
swimming with brilliantly colored geometric objects. One of them, a red
sphere, started flying towards the camera and Levon found himself
involuntarily ducking at the last moment. Never had he seen such realism
and such unlikely camera angles. He knew that what he was watching had
all been created by a computer, and that there was no live actor in a suit,
no real objects, no sun, no sky. All the objects and colors he was
witnessing were simply cold numbers, datapoints once nestled in the
vastness of a computer's memory banks, now converted to film images
for his entertainment. Levon was impressed in spite of, or because of this
fact, and the visual experience was absolutely compelling.

Another series of exceptional film segments flashed by, and then the
juggler's three geometric shapes reappeared on the screen. Rainbow
colors swirled through the objects as the camera moved to a point above
them. The scene suddenly changed, and the three objects became three
round dots sitting above three silver I's. The camera began to flyaway
from the object, which gradually revealed itself to be a badge on one of
the juggler's lapels. Levon was stunned at the smoothness of motion as
the camera continued to retreat. The juggler just stood there blinking.
Suddenly yet casually, the juggler did something quite unexpected. The

Photo 1.1: This is the famous Triple I "Adam Powers Juggler" photo from the
film "The Juggler." Created from a digitization of a human model in three
dimensions, it is one of the first computer graphics images which comes close
to passing the Turing Test for Realism. Except for the face (which looks some-
what like a manikin), it is almost impossible to distinguish this juggler from a
person on film! Triple I has created perhaps the most realistic images ever de-
vised on computers. Because Triple I doesn't want the power of this film imag-
ery to be lessened in any way, they are reluctant to allow it to be shown on
video equipment. (Courtesy of Information International, Inc. [Triple I], Culver
City, CA.)

figure in the tuxedo simply stretched out his arms, took one brave leap
over his own head, and did a back flip, disappearing in a brilliant flash.
All that was left above the grey checkerboard was his top hat which
promptly tumbled to the ground, rolled around a few times, and came to a
stop.!

The audience burst into spontaneous applause. Levon found himself
wildly clapping along with everyone else, joining the roar of appreciation
which now echoed across the vast hall. "So this is computer animation, "
he thought to himself. "How in the world did they do that?"

lTo see the juggler do his disappearing act, flip the pages of the book. (Courtesy of Information
International, Inc.}

Animation Perspectives I 3

4 / Animation Perspectives

1.1. WELCOME TO COMPUTER ANIMATION

Definition

an·i·ma·tion (an'a ma'shan), n. 1. to breath artificial life into images
for films or computer-generated displays. 2. a sequence of drawings,
each slightly different from the preceding one so that, when filmed
and run through a projector or when shown on the computer screen
in rapid succession, the resulting figures seem to move, dance, or fly
about. 3. a motion picture effect which can elevate otherwise
mediocre films to financial success. 4. a technique, when combined
with fast action and loud noise, which causes millions of people to
drop billions of quarters into strange looking boxes.

This definition points out that we are a species of animation and
special effects lovers. This has been the case since the days of the early
cave dwellers, when flickering flames inspired a sense of wonder in
young hearts. As children, we have always been fascinated with anima-
tion. Who cannot recall when hands held in front of lamp light created
moving butterfly shadows and scary monsters on the wall?

Today the animation love affair has exploded with such intensity
that the stars of movies are no longer actors and actresses, but rather
behind-the-scenes complex computers and special effects technicians.
To the new producers, the entertainment world has become a high-tech
special effects race, with those having the best animation leading the
pack. The producer with the fastest and highest performing computer will
have the tool to make the flashiest special effects (although without a
story to go with it, the film may barely break even). In fact, these days we
can no longer go to a film and be sure that what we are seeing ever existed
in physical space. As our juggler episode showed, it won't be long before
discriminating between real actors and their computer-generated counter-
parts will be impossible. An entirely new chapter is being written in the
film industry. It includes taking the finest aspects of the cliff-hanging
adventure thrillers and science fiction films of old and remaking them
using high technology's special effects. Likewise, the television industry
is also utilizing the new products of computer animation. The best of
today's animated television commercials are so well done that you can't
even tell that a computer was involved!

1.2. OUR PREMISE

This is a book about computer animation. We have written it to fill a
long existing void. For years, very few people could afford to do

computer animation. Skilled mathematicians and computer scientists
were required to operate expensive, megalithic machines, and huge sums
of money were needed to produce just a few seconds of animation.
Consequently, the knowledge of computer animation remained clois-

tered, the exclusive domain ofa small select body of professionals. This
book is designed to change that because it was specifically written for the
vast number of personal computer users across the country. Today,
anyone who can afford to buy a good stereo system can afford to purchase
a computer. With the advent of the microcomputer (a.k.a. personal
computer, a.k.a. home computer), the rudiments of animation have
suddenly become available to a vast body of consumers.

Therefore, a basic premise of this book is:

AS BIG COMPUTERS GOETH, SO DOTH THE SMALL.

In other words, some of what was being accomplished yesterday on
expensive high-tech computers (i.e., highly technical, large, expensive,
computers) can be accomplished today on low and moderately priced
personal computers. To understand this transition from the few to the
many, let's look at an example.

Today a high-tech computer suitable for animation of quality feature
length films has a resolution of 1024 x 1024 pixels (dots) and a choice
of over 16 million colors for each dot. Such a computer animation system
might be based on a minicomputer like the DEC VAX 780, which alone
costs more than $160,000.

A typical personal computer, on the other hand, has a resolution of
320 x 192 dots, can display as many as 16 colors and costs less than
$800. Even though the cost ratio of these two systems is 200 to I, the
performance ratio, as we shall soon see, is much closer. The personal
computer is generally much easier to control than the high-tech machine,
particularly in the area of real time animation. Before we get too involved
with the technical side of computer animation and explain how these two
machines differ, we want to tell you how this book is organized and how
to best use it.

1.3. ABOUT THE BOOK

We have organized this book into two main sections. Part I covers
the theory and applications behind computer animation, including

Animation Perspectives / 5

6 / Animation Perspectives

graphics hardware, software, and programming. Part II contains a tuto-
rial describing animation capabilities of the ATARI Home Computers
(although some of the ideas can be implemented on computers which
have features similar to the ATARI Home Computer). In this way, the
first half of the book will allow you to become familiar with what the
"big boys" are doing in the field of animation, while the second part will
provide you with what you need to tryout some of these ideas at home.

Flip Book

We have also added special flip book movies to the pages of this
book. Flip books, an old-fashioned way to do animation, are still fun to
play with today. On the upper page edges you will find an assembly of
computer-animated sequences collected from the best animation houses
in the United States. By rapidly flipping through the pages, you can
preview the kinds of special effects that are in vogue today and get an idea
of the vast power of computer animation. We have also put one of our
ATARI animated figures in the flip book so you can see it work without
the aid of an ATARI computer.

So now that you have an idea of what this book is about, it's time to
plow forward, animated head first, into this exciting world of computer
special effects and animation.

1.4. WHAT IS ANIMATION?

Animation is the process of creating images that appear to move.
Motion pictures don't really move. Anyone that has looked at a piece of
film knows that the medium is made up of many still images. From a
strictly scientific standpoint, animation relies on the mechanics (and in a
way imperfections) of the eye. When things move faster than a certain
rate (between 18 and 24 times per second), a physiological phenomenon
called persistence of vision comes into play and the motion tends to blur
together. This happens because a single image flashed at the eye is
retained by the brain longer than it is actually registered on the retina.
Thus, if a second image is flashed within a certain minimum time (about
50 milliseconds), the brain still retains the last image and the two images
may be combined. When a series of images is flashed in rapid succession,
as is accomplished with a movie projector, the brain blends the images
together. When these images are only slightly changed one to the next,
the end effect is that of continuous motion. This very remarkable illusion
is the perceptual foundation of film and television . (You can imagine that
if the eye didn't have persistence of vision, the world would appear a
strange place indeed.)

Animation can be created in several different ways, as we shall soon
see. In each of these approaches,the number of images presented to the

eye in one second determines the "flicker rate" of the scene. Flicker
occurs when the eye can detect the individual frames of the picture
because the time between frames is too long or the degree of motion
within consecutive frames is too great (e.g., a "pan" which moves too
rapidly across a landscape). When this happens, the picture appears to
strobe uncomfortably. Standard 35 mm film, the kind shown at movie
theaters, uses aframe rate of24 frames per second, This means that every
second, 24 frames of information appear on the screen. At this rate, there
is usually no visible flicker. In low-cost 8 mm camera film, on the other
hand, the 18 frames-per-second rate makes the flicker of these films
more noticeable. (A point of information: when a film is shown on
television, there is a frame rate discrepancy. Television has a frame rate
of 30 frames per second, however a film being broadcast usually was
created with the 24 frame-per-second format. This conversion is accom-
plished by showing every fourth frame twice.)

The speed at which objects appear to move in an animation is a
function of the number of drawings used to obtain a movement and the
distance between the object's position in successive frames. For exam-
ple, if we are animating a bouncing ball, the farther the ball has moved in
each adjacent frame, the faster the ball will appear to travel across the
screen. If there is too much distance between balls in successive frames,
the ball will appear to jump from one spot on the screen to another, rather
than move smoothly.

One can appreciate that a high frame rate can result in there being
many frames. Consider a typical two-hour animated movie: 24 frames in
I second is equivalent to 1440 frames in I minute. An hour's worth of
animation, therefore, may have up to 86,400 individual frames. A
two-hour animation would then need 172,800 individual frames! Before
computers were put to work as animation machines, each of these frames
had to be hand drawn, painted, and photographed. It is easy to see why
animation is such a laborious task and how computers have opened the
door to a whole realm of animation possibilities.?

'Even today' s most popular animation computer (VAX from Digital Equipment Corp.) needs around 10
minutes to generate a single frame of animation for a high-resolution moderately complex scene. Thus
five minutes of animation can take 5 x 60 x 24 = 7,200 frames x 10 min. = 72,000
min. = 1.200 hrs. = fifty 24-hour days' Very complex scenes might take as much as four hours to
generate each frame. By the way. a computer that could do this even faster and is now being used by a
few of the really wealthy Hollywood studios is the Cray Research CRAY X-MP. which can do 100 to
200 million floating ..point instructions per second and costs a mere $15 to $20 million.

Animation Perspectives / 7

8 / Animation Perspectives

What is an Animator?

Although some people consider an animator to be an individual
who merely draws the individual frames of a film, giving some object
the illusion of motion, nothing could be farther from the truth. An
animator is actually an imparter of emotion (definition thanks to Alvy
Ray Smith of Lucasfilm). The really great animators (Preston Blair
and Frank Thomas, for example), are much more than great artists.
Rather than just capturing the essence of a character in a static
picture, they must also breathe life into two-dimensional images.
The animator quickly sketches the different parts of the figure in
motion using intuitive gifts. Assistants to the animators then convert
sketches into final art. Although anyone can do a simple animation,
the really great animations from studios such as Disney came from
such highly gifted individuals. It is therefore unlikely that a computer
will ever be able to automatically produce original animations which
possess the depth of character of the classics. A human will probably
always be needed to "start the ball rolling."

1.5. WHAT IS COMPUTER ANIMATION?

Computer animation is the process of creating visual movement
through the use of a computer. There are two basic divisions of computer
animation covered in this book. One is high-tech computer animation
used for making films. The other is the low-cost computer animation
used in the personal computer and video game area. The techniques and
hardware involved in each of these areas differ greatly and consequently
will be explained separately.

High-Tech Computer Animation for Film

Let's first take a look at how computer animation is used in produc-
ing effects on film. You know now that cartoon animation traditionally is
done by hand-drawing or painting successive frames of an object, each
slightly different than the preceding frame. In computer animation,
although the computer may be the one to draw the different frames, in
most cases the artist will draw the beginning and ending frames and the
computer will produce the in-between drawings. (This is more generally
referred to as computer-assisted animation, because the computer is
more of a helper than an originator.)

High-Tech Computer Animation Programs

In full computer animation, complex mathematical formulas are
used to produce the final picture. These formulas operate on extensive
databases of numbers that define the objects as they exist in mathematical
space. The database consists of endpoints, color and intensity informa-

tion, and so on. Highly trained professionals are needed to produce such
effects, because animation that obtains high degrees of realism involves
computer techniques for three-dimensional transformation, shading,
curvatures, and so on. (This whole area of database animation will be
covered in more detail in Chapter 3.)

High-tech computer animation for film involves very expensive
computer systems along with special color "terminals" or "frame buf-
fers. "The frame buffer is nothing more than a giant image memory for
viewing a single frame. It temporarily holds the image for display on the
screen.

A camera can be used to film directly from the computer's display
screen, but for the highest quality images possible, expensive film
recorders are used. The computer computes the positions, colors, etc. for
the figures in the picture and sends this information to the recorder which
captures it on film. (Sometimes, though, the images are stored on a large
magnetic disk before being sent to the recorder.) Once this process is
completed, it is repeated for the next frame. When the entire sequence
has been recorded on the film, the film must be developed before the
animation can be viewed. If the entire sequence doesn't seem right, the
motions must be corrected, recomputed, redisplayed and rerecorded.
Obviously, this approach can be very time consuming and expensive.
Often, computer animation companies first do motion tests with simple.
computer-generated line drawings before setting their computers to the
task of calculating the high-resolution, realistic looking images. These
low resolution images can often be viewed in motion directly from the
computer's screen. When these tests look right. the final scenes are
computed with a much higher chance of success.

Personal Computer Animation

At the other end of the spectrum is animation done on personal
computers. These may be for use in video games or educational pro-
grams. These low cost units (such as an Apple or an ATARI) have no
frame buffer per se. Instead, their relatively small memory is used to
temporarily store the image, and the television screen is used to display
the animation.

The major difference between the animation generated on personal
computers and that of most high-tech computers is that personal comput-
er animation is presented in real time. This means that you see the
animation as it is occurring on the screen as opposed to waiting for the
filming process to capture all the frames. Real-time animation allows
effects to be created and checked out almost instantly, which means that
decisions about particular scenes can be made on the spot. On the
negative side, since personal computers have fewer available colors and
lower screen resolutions than the high tech machines, animations pro-
duced on them are lacking in these respects. Even if they had these

Animation Perspectives / 9

10 I Animation Perspectives

features, the lack of fast computing power would make the calculation of
three-dimensional, shaded objects highly impractical. Most personal
computer animations consist of two-dimensional, cartoon-like figures
such as space ships, cars, and people and other simple objects running,
bouncing, or flying across the screen. Occasionally, enterprising design-
ers will create games on personal computers that have a third dimension,
such as moving through a corridor or around a raceway, but this is the
exception rather than the rule.

Personal Computer Animation Programs

The programs for doing computer animation on personal computers
vary from very simple to extremely complex. A simple program could,
for example, be written in BASIC. It might use a statement like DRAWl
AT){ ,Yto draw a predefined object. The X and Y coordinates would be
changed and the object redrawn at a series of new positions, moving the
object across the screen. The next level of animation would be to animate
the moving object itself (e.g., flapping a bird's wings or moving a
figure's legs). This could be accomplished by substituting the object on
the screen with a new, slightly different object (DRAW 2 AT)-(,Y), and
then a third object is substituted (DRAW 3 AT)-(,Y), and so on. This is
called real-time animation, and it is essentially the technique used in
computer games and video arcades.

For microcomputers, non-real-time animation, the method used by
the high-tech animators, is definitely a more complex and expensive
approach to animation. As with the large systems, it involves drawing a
detailed single frame, photographing it on film, or saving it on disk. This
process is repeated until all the frames have been drawn. Ideally, the
computer will control the camera so the operator doesn't need to do it
manually over the many hours needed to shoot a short segment. In
Chapter 3, we will show how an Apple computer is used for just such a
process.

1.6. A LITTLE HISTORY OF ANIMATION

Animation using machines has existed for over 150 years! The first
animation device was called the Thaumatrope (pronounced THAW-rna-
trope). See Figure 1.1. It was invented by an English doctor, John Paris,
in the mid-1820's. The idea behind it involved using strings to twirl a disc
with a different picture on each side. When the disc was twirled, you
could see both pictures at the same time. The idea for the Thaumatrope
probably originated from a spinning coin. When a coin is spun and
viewed from the side, the eye's persistence of vision phenomenon makes
the front and back images appear superimposed on each other. (Of
course, if the inventors had an ATARI or Apple they could have filled the
entire screen with Thaumatrope images.)

Figure 1.1: The first animation device - the Thaumatrope (circa 1826),
(Courtesy of Stanford University Museum of Art.)

The first device that actually produced animated pictures was the
Phenakistoscope (fen-a-KEES-ti-scope, meaning motion shower),
which dates back to 1832. (Its inventor, Joseph Plateau, was partially
blind from staring at the sun for 20 minutes - he was testing persistence
of vision!) This device consists of a notched spinning wheel attached to
one end of a handle. The spinning disc contains a series of drawn images,
each representing a frame of animation, To view the animations. you
held the wheel in front of a mirror, peeked through the notches and spun
the wheel. The notches acted like the shutter of a movie projector, letting
you see each frame for only a fraction of a second rather than a continuous
blur. See Figure 1.2.

Figure 1.2: The first animated picture - the Phenakistoscope (circa 1832),
(Courtesy of Stanford Un(versity Museum of Art.)

Animation Perspectives / 11

12 I Animation Perspectives

The next important animation tool, the Zoetrope, or Wheel of Life,
was invented around 1834 by William G. Horner in England where
people called it the wheel of the devil (much like some people today think
video games are entertainment of the devil). It was redesigned in France
by Pierre Desvignes in 1860. The Zoetrope is a revolving drum with
images drawn inside. Like the Phenakistoscope, the Zoetrope too has
equally spaced slits in the sides. When the drum is spun, the images can
be seen when viewed through the slits. A record player can be substituted
for the drum .

• end Stamp for 136 Catalogue of Magic Lant.rn.
and View••

ZOETROPE.

;:

">

c

hnd ltamp for IIhllitrated Price List of Micro_PM.
Te'elaOOpee,Len_., .to.

n
ii

!
a

I
Figure 1.3: Zoetrope - the wheel of the devil. (Courtesy of Stanford
University Museum of Art.)

Long before movie cameras were invented, a man named Eadweard
Muybridge lined up a series of still cameras to photograph a horse as it ran
down a racetrack. Muybridge had the camera shutters connected to
strings across the track so that the horse's legs would trip each camera as
it passed by. He was hoping to settle an argument between Governor
Leland Stanford of California and another millionaire. Stanford claimed
that when a horse is galloping it has all four feet off the ground at one
time. As you can see in Figure 1.4, the Governor was right!'

'In Chapter 5. we present an ATARI animation program that has three dozen horses galloping on the
screen. The images for these horses were based on the original photographs by Muybridge . Imagine
that one-hundred-year-old data being used in a twentieth century computer program!

Figure 1.4: The horses of Eadweard Muybridge.

Animation Perspectives / 13

Photo 1.2: Muybridge's Zoopraxiscope. (Courtesy of Kingston-upon-Thames
Museum and Art Gallery, Stanford University of Art.)

14 / Animation Perspectives

Figure 1.5: The Praxinoscope. (Courtesy of Stanford University of Art.
[Reproduced from Gaston Tissandier, Popular Scientific Recreations, N.Y., c.
1880, n.d.])

Later, Muybridge developed the Zoopraxiscope (zoo-o-PRAX-a-
scope) to project his motion studies on a screen. He used glass wheels
with his images running along the outer edge. The disk spun in a projector
showing a repeating cycle of motion. A complete cycle, however, only
lasted about half a second.

The Praxinoscope (prak-SIN-a-scope) was a device that replaced
the Zoetrope's slits with mirrors. Inventor Emile Reynaud created a
version of this device which projected images on a screen. Using long
strips of translucent paper with frames drawn on them as film, he
eventually went into commercial production and opened the world's first
movie theater in Paris in 1892. The show lasted only a short time, but this
didn't keep people from flocking to see it. In Chapter 9, we present a
show of our own, the Great Movie Cartoon. Because it is programmed in
BASIC and uses randomness to create figures, this show never repeats
itself. Reynaud would have loved it.

Another popular way to produce animation in the old days was the
flip book, technically called the Kineograph (KIN-e-o-graf). With this
device you draw animated figures on individual cards, stack them up like
a deck, and fasten them together. Flip through the stack with your thumb
and watch the action. The flip book was patented in 1868 but was in use
long before that. Today you can still find peep shows lined with Muto-
scopes, Kinetoscopes. and Kinoras. You can cut out the animation
frames in the pages of this book and assemble your own custom Kineo-
graph to impress your friends.

Film animation cartoons were pioneered in 1908 by another French-
man, Emile Cohl. He put black line drawings on sheets of white paper
and photographed them. On the screen he used the negative to show
white figures moving on a black background.

Animation techniques began to move forward as methods improved
for producing movement and life-like motion. In the next few years a
rush of new cartoons were produced, including Gertie the Trained Dino-
saur (1909), and in 1917 the first really memorable cartoon character,
Felix the Cat, was born.

The following techniques were devised and experimented with prior
to the appearance of Felix the Cat:

• Silhouette films. Black cut-out figures were used on plain white
backgrounds to create the animation. These figures were easy to draw
and move compared to line drawings.

• Phase animation. In this approach, sketches were superimposed on top
of each other to save the repeated drawing of a background for
different phases in the movement of foreground figures.

• Cel animation. This eliminated phase animation by using transparent
celluloid for the foreground and simply superimposing them over an
opaque background. Now foreground figures could be moved any-
where on the background and only one photograph was necessary.

In the early 1920s the work of drawing the backgrounds became
separate from the main task of the animation movement. Specialists in
backgrounds perfected the scenes that the animation people placed their
figures upon. In a further division of labor, the time consuming task of
taking the outlines of the figures and filling in the color on the transparen-
cy or eel was isolated. This separate job is referred to as opaquing or
filling.

In 1928, Walt Disney Studios began turning out popular animated
cartoons. From the early 1930s to the early 1960s, film animation
produced a large number of notable and memorable cartoons that cap-
tured the imagination of the public. It became common to expect cartoons
to appear at the beginning of every movie. Eventually these cartoons
became a main part of television. Among the more popular were: Max
Fleischer's Popeye (1933), Mickey Mouse, Snow White, Pinocchio,
Fantasia, Dumbo, Donald Duck (all Walt Disney); Tom and Jerry
(MGM); Woody Woodpecker (Walter Lantz); Bugs Bunny and Sylvester
(Warner Brothers); Mr. Magoo (UPA).

In the 1960s two scientists from Bell Labs developed the world's
first computer animations. Messrs. Zajac and Knowlton's achievements
were in the area of abstract and texturized patterns. This set the early
stages for later high-tech animations on computers by demonstrating that
textures could in fact be modeled on a screen. Further research in the use

Animation Perspectives I 15

16 / Animation Perspectives

of computers for graphic output helped progress the field of computer
animation. Some of the largest and best funded laboratories developed
uses for computer animation including simulation of the flow of viscous
fluids (Los Alamos), propagation of shock waves in a solid (Lawrence
Livermore National Laboratory), vibration and landing of an aircraft
(Boeing Aircraft).

Since the I970s, computer animation has grown as computers
improved and new techniques for manipulating pictures were dis-
covered. Companies specializing in generation of computer animation
have been founded across the country, including such names as MAGI,
Information International Incorporated, Lucasfilm Ltd., Robert Abel and
Associates, Digital Effects, etc. Television advertisers have become
primary buyers of animation, using it to grab the viewer's attention and
hopefully to get them to remember' 'the incredible commercial" they
saw on the box. Whether they actually recall the name of the product is
another story.

1.7. HOW IS COMPUTER ANIMATION USED TODAY?

Today people are creating hundreds of applications for computer
animation. Due to the popularity of the home computer, we are, in fact,
in the middle of a revolution in computer animation applications. This
low-cost device is driving manufacturers to pursue new techniques for
the generation of visual effects. Since we are such a visual culture, the
computer screen, the television screen, the photograph, and the movie
screen are all blending together. Inone study done by Sony Corp., it was
discovered that people will more likely trust the validity of an image they
see on television over one they see in a photograph or a book! Conse-
quently, Sony is designing all its future products to output to the TV
screen.

Applications in the Film Industry

Perhaps the fastest growing use of computer animation is in the film
industry. Did you know, for example, that computer animation was used
in filming the Death Star simulation at the pilot's briefing in the film, Star
Wars - A New Hope? Although the rest of that movie's special effects
utilized either hand-built models or conventional animation, these will
not be the methods of choice for long. One very desirable but not yet fully
realized approach is to use computer-generated animation to replace the
hand-built models and hand-painted matte backgrounds. (See Photo 1.3
for an example of the kind of incredible realism that is possible today.)
Since the resolution provided by computers can now exceed that of film
and since a computer-simulated model destroyed by phaser never needs
rebuilding, the computer approach promises to improve realism and

lower production costs at the same time. Unfortunately, there is still an
important drawback to all of this computer generated animation - it
takes a long time to enter all the coordinate information for the model the
first time. Luscasfilm, for example, finds that hand built models can be
constructed, destroyed and reconstructed faster than a similarly complex
model can beentered into thecomputer database. One potential answer to
the database entering problem is to' 'grow" the model in the computer. If
this were possible, we could let the computer create its own database,
using brief guidelines set out by the designer of the model.

Photo 1.3: This X-Wing Fighter is based on those used in Star Wars films.
The realism is so outstanding that the animated fighter can't be distinguished
from a model of "the real thing." (Courtesy of Information International, Inc.)

One movie that used a large amount of computer animation (a full
fifteen minutes worth) is TRON from Walt Disney Productions.
Although Disney's Studio was the king of the mountain for many years,
the rising labor costs of hand-painted eels made it too expensive to
produce full-length feature animation cartoons. With TRON, Disney
hoped for a major comeback. As shown in the figure below, TRON takes
place inside a giant computer controlled by an evil master control
program.

Animation Perspectives I 17

18 I Animation Perspectives

Photo 1.4: Light Cycles race through a simulated landscape of TRON.
High-tech artist Syd Mead designed the vehicles. MAGI created the images.
Notice the good shading effects. (Courtesy of Walt Disney Production.
'MCMLXXXIl Walt Disney Production, World Rights Reserved.)

a) b)

Photo 1.5: a) As we approach a dead, moon-like planet at 100,000 miles per
hour, a wall of flames begins spreading over and melting its entire surface from
the impact of the Genesis bomb. Four separate programs were used to
generate this image. One produced a star field as seen from the star Epsilon
Indi using an accurate database, another generated the planet and its texture
mapped cratered surface, a third generated the fires, and a fourth composited
all the elements together (with no matte lines). b) From the planet's molten
surface has arisen fractal mountains (mountains developed from controlled
randomness) and beautiful lakes and oceans. The faint blue atmosphere just
beginning to form can be seen in the color insert. The once dead planet has
turned into an earth-like planet because of the Genesis effect.

Even though TRON used the largest quantity of computer graphics
to date, the most sophisticated computer graphics ever put on the big
screen appeared in Star Trek II - The Wrath of Khan. The one minute
segment showing the Genesis device simulation was produced in a five
month period by the computer graphics wizards at Lucasfilm Ltd. Photo
I.Sa) and b) show two scenes from this segment.

Although they are revolutionary in their own ways, Star Wars,
TRON, and Star Trek II were not the first uses of computers in special

effects movie making. Early science fiction used analog computers
(called Scanimates) to produce weird bending and waving, mandala
patterns, and other effects. These devices simply distorted the picture
signal before it reached the screen.

The advent of the digital computer made it possible to have the
picture exist completely inside the computer memory. Mathematical
formulas could then be used to manipulate the scene and the result was
some very realistic pictures with special qualities. The tradeoffs are that
special formulas called transformations are needed (we'll describe these
in Chapter 3) and that mathematically minded programmers must be
enlisted. As we mentioned earlier, however, good animation requires
artistic talent. As the computer software for doing these animations
becomes more user oriented, it will become easier for non-computer
oriented animators to create and control them. And who knows, after
a while simple animations without much detail may become totally
automated.

Applications of Animation in Space

In the area of space exploration, computer animation serves a most
valuable function. The Pioneer and Voyager space probes launched by
the National Aeronautics and Space Administration (NASA) were simu-
lated by James Blinn (with Charles Kohlhase) at the Jet Propulsion
Laboratory. (See Photo 1.6.) By putting physical laws of space and
motion into the computer, NASA scientists could see what certain
trajectories would look like and observe scenes as if they were riding on
the vehicle itself! The computer also allows alterations in perspective
which can place the observer behind the vehicle, thereby letting him view
the entire scene with both vehicle and planet visible. These same simula-
tion techniques were employed with the space shuttle to test its entry into
the atmosphere. In addition, with the help of the computer, otherwise
devastating errors could be dealt with safely. If, for example, a launch

Photo 1.6: NASNJPL "Voyager-2 encounter with Uranus on 1-24-86."
Computer simulation of the space probe as it approaches the planet Uranus in
1986. (Courtesy of James Blinn with Charles Kohlhase of NASNJPL.)

Animation Perspectives / 19

20 I Animation Perspectives

orbit was mistakenly calculated, the worst that could happen was that all
the dots in the picture turned fiery red as the probe crashed into the planet
or shot off the edges of the frame buffer (i.e., into uncharted space).

Medical Research Applications

The use of animation in the medical sciences is becoming important
in helping doctors and researchers to visualize the composition of a
particular organ or bone structure. InPhoto 1.7 we can see several views
of the spine as modeled by a computer. The doctor can literally tly about
the spine structure as if in a helicopter. Since it's formed like a wire-
frame model, this kind of visual examination actually permits the struc-
ture to be viewed more thoroughly. One day doctors might tly around
inside our bodies, having first scanned them with whole body scanners to
obtain cross sections. The computers would assemble these cross sec-
tions into a three-dimensional model, and physicians could then study the
resulting computer images on the screen. By storing these images,
patients could look at them too, and thereby better understand what the
doctor had viewed. With this increased awareness of his body's disfunc-
tioning, the patient might be better able to help in the healing process.

Photo 1.7: This high-resolution three-dimensional wire frame image of the
spine shows two different views. (Courtesy of Digital Effects - Rutgers Medical
School, "Spine," 1981.)

Sports Applications

Animation can be used in the sports world to help athletes improve
their performance. Below, for example, we see four frames of a running
man. It is possible to simulate a certain runner's motion, captured by
computers and turned into images on the screen. Close examination
could reveal imperfections in the runner's stride and suggest improve-
ments that could make the difference between winning and losing.
Similar ideas could apply to the swing of a tennis racquet, golf club, or
baseball bat. The computer digitizes the swing or converts it into a form
that the computer can manipulate, so it can transform it into a screen
image. (We'll explain that in more detail later.) The trainer utilizing this
technique could then modify the actual swing data base for a more ideal
swing. The athlete would try to mimic the improved version of the swing
while the computer monitored. Audio feedback would be provided to
indicate the approximation of the athlete's swing to the ideal. The louder
or higher pitch in the tone, the closer the approximation is getting to the
ideal programmed case. The use of audio feedback removes the necessity
of having to watch the screen at all times.

Photo 1.8: The Running Man shows the kind of detail possible in a frame
buffer. Compare this with the Running Boy in the ATARI program in the second
part of this book. (Courtesy of Advanced Electronics Design. Inc. [AED].)

Educational Applications

Computer animation has a prormsmg future in the educational
fields. Currently however, there hasn't been too much evidence of its use
here. The main reason for this is that software companies with the ability
to create impressive animation have not yet been willing to divert their
programmers from the lucrative game market to the burgeoning educa-
tional market.

Computer animation will most likely be utilized to embellish
teaching programs (courseware) on personal computers. To begin with, a
classroom computer could be set up in an "attract" mode just like arcade
games, presenting a beautiful visual stimulation that entices the student

Animation Perspectives I 21

22 I Animation Perspectives

to try a programmed lesson. Book covers are supposed to serve this
function, and a computer screen could do it much better. See Photo 1.9.

Photo 1.9: This is the opening screen from "Juggles' Rainbow," a program
that teaches young children the difference between above and below, left and
right. The balls are moving through space as music is played in the
background. (Courtesy of Alari, Inc. and The Learning Company.)

Once the student has been lured by animation, more animation
could be used to create an exciting lesson. For example, a program that
might teach a student geography could simulate a spinning globe on the
computer screen in real time, as shown in Photo 1.10. (This sequence
was actually taken off the display of an ATARI Home Computer.)

Computer animation could also be used in the physical sciences. In
physics, for example, it could effectively simulate motion on the screen.
In this way we could plot the course of a comet as it passed by a planet,
the flight of a bumblebee landing on a flower, or the path of a baseball as
it flew towards the batter. All the vector arrows we see in physics books
could be superimposed right on the computer screen, and as the object
moved, these arrows would change, reflecting the object's changes in
velocity, inertia, etc. Likewise, in the study of engineering, computer
animation could be used to teach how robots walk, or in electronics, to
show the flow of electricity in wire. The possibilities for using animation
as a teaching tool are limitless.

a) b) (continued)

c)

e)

g)

d)

f)

h)

Animation Perspectives / 23

Photo 1.10: The Spinning Earth, an ATARI animation program, contains 24
frames worth of data (first eight frames shown here) showing the spinning earth.
Each frame represents 15 degrees of rotation, so when the entire sequence is
animated on the ATARI Home Computer, the effect of a spinning globe is
produced. The original data base was on an IBM 370, had a 256 x 256
resolution, and occupied 196 K bytes of data. This program made a transition
from the IBM 370 to a CP/M system to a Sorcerer and finally to an ATARI
Home Computer. The resolution was lowered, and the pictures were
compressed so they would all fit in the ATARI memory at once. Two screen
pages were used. When one has been drawn, it is switched on and displayed
while the other is being created by decoding the frame data. These photos
illustrate the high-resolution effects possible on an ATARI Home Computer.
(Courtesy of Robin Ziegler. Created by Robin Ziegler and Bruce Merritt.)

24 I Animation Perspectives

Engineering Applications

Engineering lends itself ideally to the capabilities offered in com-
puter animation. Essentially, animation allows designers and engineers
to visualize complex processes and to make better decisions regarding
them. For example, animating a complex structure allows viewing from
many angles and better understanding on all levels. Consider the three-
dimensional wire frame photos below. Because of the transparency of a
wire frame structure, the entire shape can be viewed at the same time. In
addition, animation enables us to study structures in motion. Complex
DNA strands, for example, are difficult to comprehend when viewed
from a stationary position. When you see them rotating and spinning on
the computer's screen, however, the underlying structure becomes clear.

In civil engineering, the ability to model a building before it is
actually constructed can prevent enormous structural blunders from
occurring. For example, a computer animation of the sun rising on an

Photo 1.11: The circular red and yellow wire frame structure (see color insert)
is being rotated in three dimensions, showing a good variation of perspective.
(Romulus, "Merck Timoptol," 1981. Courtesy of Digital Effects.)

office complex can be simulated. At the same time, an engineer could
take a simulated drive down the road that was to be constructed as an
entrance to the new building. The computer could display the precise
angle of the sun as reflected off the building. If the subsequent reflection
was found to be disturbing and potentially dangerous to oncoming
drivers, the angles and position of the building could be adjusted accord-
ingly before anything was committed to concrete and steel.

Air flight simulations on the computer are invaluable to the airframe
engineer. (An airframe engineer designs the structural frames of air-
craft.) Mathematical storms, wind shear, and icing effects are variables
encountered in flight that can be simulated by computer. The airframe
engineer can watch the flight path on the screen and judge the perfor-
mance of the plane as the variables are manipulated.

The advantages of computer animation in engineering are limited
only by your imagination and the power of the computer.

Animation Perspectives 125

a) b)

Photo 1.12: These two photos show the wire frame output of the NorthStar
Advantage personal computer. This special computer has a built-in graphics
BASIC (called GBASIC) and graphics calls in the operating system.(Courtesy of
NorthStar Computers.)

Artistic Applications

The world of art is still a relatively unexplored territory for computer
animation. For many years, artists in general shied away from computers
as a medium of expression. Today, however, computers and artists are
beginning to mix. Now with sophisticated paint systems that are more
user-oriented, artists are discovering that a computer which offers a
palette of 16 million color combinations opens new realms of visual
delights. Once an artist becomes adept at using the new tools, the level of
artistic productivity is greatly increased.

In Photo 1. 13, an artist is using a computer system to change the
appearance of a Victorian home. The house itself was entered into the
computer from a photograph, and now that it is stored, the artist can play
around with different elements that will alter its external structure. For
example, the computer allows the artist to draw in different shrubs to see

how they enhance the house's image. Also, the computer makes ex-
perimenting with different color combinations child's play. Ina matter of
seconds, you can completely change the color of the house's entire
facade.

26 / Animation Perspectives

a) b)

c) d)

Photo 1.13: Susan Bickford, of Digital Effects, NY, is using a paint system,
Video Palette 3, a $125,000 system which includes a DEC 11/34 computer,
graphics tablet, and paint software. Susan is using the system to paint a house
that was digitized from a black and white photograph. She later added the color
and the bushes in front (you can see the hand-drawn quality of the bushes).
This system uses a palette of 256 colors, selected from 16 million. It allows you
to vary the brush size and type, save images, and repaint these images in a
different size and location on the screen. You can zoom in on an object or pan
the scene to the right or the left. The menu for this paint system can be seen
overlayed on the photo in b). In c) Susan instructed the computer to change
the values in the color registers, producing a dramatic "digital effect on the final
picture. This photo also shows the high quality of the characters on the screen's
paint menu (see color insert). (Courtesy of Digital Effects.)

Another attractive art-oriented feature of computer animation and
graphics is the degree of realism the computer offers over paint. Because
the computer has higher resolution than film, visual effects can be
produced which were never possible with the standard art media. Shades
of color too subtle to be mixed by the unskilled hand can be created and
recreated with ease by anyone. Blending of color can be controlled with
incredible precision. Note the fantastic realism of the scene in Photo
1.14. Also note the wire frame structure of the paint tubes.

Photo 1.14: Triple I Oil Paint Tubes shows three oil paint tubes on a grid-like
floor. From the tube in the foreground a luxurious flow of paint spills out into
space. The first tube is represented as a wire frame image, revealing the
underlying structure of the shapes used in computer graphics (see color insert).
(Courtesy of Information International, Inc.)

Another example of what computer animation offers the artist is
shown in Photo 1.15. These are two frames of a computer-generated film
called "Carla's Island. " In the film, the computer was able to simulate
completely the sun setting and the water waves lapping at the shore. The
light is absolutely perfect because each ray was traced from the viewer's
eye to the object. At this time, the artist would need to have programmer
assistance to help create a film of this complexity. In the future, using
newly developed tools, however, the artist/animator will be able to create
entire films without the aid of the computer programmers.

Animation Perspectives / 27

28 / Animation Perspectives

a) b)

Photo 1.15: Illustrating reflectance and natural light, these two photos are part
of the film "Carla's Island." The film shows a sun setting over ocean waves.
The waves are playing on the beach, reflecting the sun's rays perfectly. For
every pixel, a ray of light had to be traced from the viewer's eye out to the
scene mathematically and further reflected from the water to another part of the
scene. This was done using a vectorized ray-tracing algorithm on the extremely
powerful Cray 1 computer. The clouds, waves, and islands were all created
from mathematical formulas rather than from a data base. Different times of day
were created from the same pixel data by changing the values in the color table
as the picture was plotted on the Dicomed D-48. The sun was added as the
picture was drawn. (Courtesy of Nelson Max, Lawrence Livermore National
Laboratory.)

Computer animation may be used for other interesting artistic
effects. It is possible to have the computer take one picture and convert it
into another showing all the in-between stages as it's done. Frames from
such a dissolve, or object blend sequence. are shown in Photo 1.16.

Not all artists need to be mathematically inclined to produce an
effective animation on computers. The animation called Walking Man
located on the page edges of this book was created for us by an artist who
simply used cylinders of various sizes and forms to generate the shape of
the mechanical man.

a) b)

Animation Perspectives I 29

c)

Photo 1.16: These three key frames are from an object blend sequence and
illustrate how the computer can merge one image into another. The sequence
starts out as a detailed bust of a statue and goes through several frames to
become two Grecian warriors fighting each other. This sequence is from the
award-winning fUlly animated short entitled "Dilemma" (1981, Educational Film
Centre, Great Britain and Computer Creations Inc., South Bend, Indiana).
(VideoCeW" animation courtesy of Computer Creations, South Bend, Indiana.)

Animation in Advertising

Advertising is where the big money is being spent in computer
animation today. This is probably because the special effects of computer
animation are so novel that even people who don't like computers are
attracted to them. Eventually computer animation may become so com-
monplace that advertisers will have to try something new to avoid the
technocratic, overkill blues. Laser art and three-dimensional television
may provide that novelty. Some computer graphics commercials, on the
other hand, may not need anything new because they are already so slick;
their computer influence is not readily detectable. It is possible that
computer animation techniques will be used to produce exceptional
graphics effects that would have otherwise required live action film.

One of the oldest uses for computer animation in advertising is the
Times Square marquee display. This display is made up of thousands of
light bulbs that are controlled by computers housed inside the building. In
Photo 1.17 an artist prepares the display for a Timex watch ad.

30 I Animation Perspectives

a)

c)

b)

Photo 1.17: This three-frame sequence shows the famous Times Square
display (by Spectacolor, Inc.) in New York. The 40 x 20 foot display has a
resolution of 64 x 32 pixels. Each pixel is a four light bulb cluster
(red-blue-green-white). The entire display consists of 8192 bulbs. A computer (a
Mark 420 by World-Wide Sign and Indicator Corp.) is used to develop the
individual frames that will be animated on the display. In photo a) animator Tom
Gemighani is working on an ad for Timex watches. The screen of the computer
simulates the resolution of the light bulb display. Tom is working from a
storyboard (above the terminal) that tells what each frame of the animation
should be like. He has control over each pixel in the display and uses the
keyboard to fill in the colors he wants. The final squence will be displayed at 8
frames per second. Photo b) shows a "big apple" generated on the display, and
photo c) is a close-up showing the individual bulbs that comprise the display.
Note the "glitches" in the display where bulbs are burned out. (Times Square
display courtesy of Spectacolor, Inc.)

The opening sequence of the popular television series, Nova, in-
corporated some fantastic animation from New York Institute of Tech-
nology. This group, located on Long Island, is one of the hotbeds of
computer animation research. Photo 1.18 shows the section of the scene
where the galaxy that had filled the screen a moment ago begins to shrink
leaving the letter' '0" (in the word NOVA) to grow and encompass the
entire screen.

Photo 1.18: This is a frame from the NYIT-produced opening sequence of
Nova, the popular PBS television program. (Courtesy of New York Institute of
Technology, Computer Graphics Lab. Graphics by David Geshwind.)

An advertisement for a radio was completely produced with com-
puter animation using a rather old-fashioned yet extremely effective
approach (see Photo 1.19). A digital plotter (device for drawing lines on
paper under control of a computer) was employed to plot each frame of
the ad on paper. The paper images were then photographed through
colored filters until the finished ad was created.

Photo 1.19: In this advertisement for a radio, a standard line plotter was used
to draw each frame of this sequence with black ink on white paper. (A line
plotter is a device that draws lines on a large paper surface in response to
commands given to it by a computer.) Various color filters were then used to
photograph the image onto film. The filters were placed in front of the line
drawings, and then the photographs were overexposed, giving a candy apple
neon effect to all the lines. (Separate drawings were created for each color.)
The car's dashboard was painted with conventional techniques and matted in
with the computer-generated drawings. What makes this sequence amazing is
that the equipment used to create it, an HP Desktop Computer, is quite an
affordable machine. (Computer graphics by Colin Cantwell. Courtesy of Marks
& Marks.)

Animation Perspectives I 31

32 I Animation Perspectives

State-of-the-Art Computer Animation Center

One of the most prestigious computer graphics houses, where the
first computer graphics paint system was developed (more on that soon)
and from which many experts got their start, is the New York Institute of
Technology (NYIT) Computer Graphics Lab. Manned by a team of over
60 employees, and housed in a pastoral setting, some of the most exciting
and realistic computer graphics ever imagined have been created here.
Privately funded, the founding fathers of the NYIT system were Ed
Catmull, Alvy Ray Smith, Malcolm Blanchard, and David DeFrancisco,
who all went on to work at Lucasfilm Ltd.

NYIT probably has the largest and most extensive graphics environ-
ment in the world. To display and hold their graphic images, it has over
twenty visible frame buffers (frame buffers with a separate processor and
video output) and more than fifteen blind frame buffers (large blocks of
memory with no video output). NYIT also has an impressive array of
large, medium, and small DEC computers. To store the completed
images, they have three 2 inch video tape recorders. Connected with a
private animation house and video production facility, NYIT is responsi-
ble for some of the best video animation yet to appear on a screen. In fact
NYIT has produced several computer-animated commercials that are so
good that it is impossible to deduce that a computer was on the production
payroll. Examples of these are: VW Does ItAgain, Lincoln Center Live,
Nova Opening, Walter Cronkite's Universe.

Whereas NYIT aims for high-quality video graphics suitable for
television (525 line), other computer animation centers, such as Lucas-
film, are geared for super high resolution for film. Towards this end,
Lucasfilm is developing a laser printer capable of directly drawing
images on film, thereby eliminating the degradation caused by filming
offa CRT screen (we'll explain what a CRT is in Chapter2-fornow it's
just like a television screen).

Biological Simulation Applications

One growing application of computer animation is in the simulation
of how molecules are formed. In most cases, molecular structures are
inferred from special x-ray techniques. By shining x-rays on the speci-
men, a shadow or flat imprint of the internal composition of the molecule
is obtained. From this imprint, mathematical relationships between the
various parts of the molecule can be generated and fed into a computer.
Once the database for the molecule is inside the computer, animation and
graphics can be used to draw it on the screen and rotate it to various
viewing angles. Photo 1.20 shows a virus that was modeled in the
computer. Note the fabulous detail and fine shading that the computer
graphics were able to produce.

a) b)

Animation Perspectives I 33

Photo 1.20: Photo a) is a computer photograph showing a hemisphere of 90
of the full 180 amino acid subunits contained in the protein coat of the tomato
bushy stunt virus. X-ray crystallography was used to reveal the basic structure
of the virus. Nelson Max then used this information to create the model. Hidden
surface computations, which give the outlines of the visible parts of the spheres,
were done on the CDC 7600 at the LLNL Computer Center. Color shading and
highlights were calculated on a Sperry-Univac V75 minicomputer and then
plotted on a Oicomed 0-48 color film recorder, which uses a high-resolution
black and white CRT tube. Color filters were used while transferring the image
to film. A special program used to produce the visible surfaces called ATOMLLL
was employed. ATOMLLL is adapted from a similar program called ATOMS
developed at Bell Labs. Spheres are divided into trapezoids of vertical slices in
the ATOMLLL algorithm. Nelson Max added code that allowed shading and light
reflection. The shading took five minutes to compute (4096 x 4096 resolution).
Photo b) shows three of the red protein subunits in greater detail. The big red
spheres from a) are broken down into greater detail where each smaller sphere
represents an individual amino acid. Although the yellow spheres appear in both
pictures, it is now apparent that the yellow chains are wrapped around a
three-fold helix. The pink regions of the protein extend beyond the shell of the
virus and are not indicated in a). (See color insert.) (Courtesy of Nelson Max,
Lawrence Livermore National Leboretoty.)

Arcade Game Animation

Arcade games found at bars, pizza parlors, and shopping centers are
among the most sophisticated examples of real-time animation you can
find. Our earlier explanation of computer animation mentioned that
personal computers take advantage ofdisplaying action on the screen as it
is occurring, rather than using the display and film approach of the
high-tech computers. The arcade games utilize very sophisticated micro-
processors and computer technology to achieve their effects. Anyone
who has played some of the newer high-speed arcade games knows that
the action can be so exciting as to actually cause dizziness and elevations
in blood pressure.

One car-racing game has the player looking out the front window of
a car, steering wheel clutched in sweating palms. While you are in the

34 / Animation Perspectives

driver's seat, you rapidly tear around the comers of the racetrack. Houses
and trees zoom by the screen edges at incredible speeds, while other
racing cars pass you and smash into your car causing it to careen off the
road and crash in a screaming tangle of exploding light and sound. (This
is definitely not a game for someone with a weak heart!) Other games
have you piloting a jet over complex futuristic terrain while being
showered with flack and attacking rockets. The perspective in these
games is so engrossingly real that the playing time seems like seconds
instead of minutes. Technically, these games are able to achieve real-
time animation via custom high-speed circuits and non-standard pro-
gramming techniques.

1.8. GETTING STARTED IN ANIMATION TODAY

Now that you have seen what can be done with animation you might
well be wondering "How do I get started?" The answer depends on what
kind of animation you want to explore. There are about four general areas
to examine: personal computer animation at home for fun, personal
computer animation for profit (i.e., writing games), arcade game anima-
tion, and high-tech animation for the film or advertising industry. Let's
take a look at each of these.

Personal Computer Animation for Fun
If you wish to simply play with computer animation on your own

computer for fun, your task is relatively simple. As we explain in Chapter
4, plenty of home computers will give impressive animation effects
without much programming required. You will probably want to do
real-time animation; home computers are set up for that. You will also
probably want to start by learning a computer language such as BASIC,
Pascal, or Logo, because these languages are relatively easy to learn and
apply. (Of all three, Logo is the easiest, BASIC next, and then Pascal.
However Pascal is probably the most powerful for animation.) Finally,
you will want to take a close look at purchasing a computer that has good
color capability, has a fast display, has a selection of powerful graphics-
oriented languages, and allows custom character set graphics (see
Chapter 4).

You could produce non-real-time animation at home on a personal
computer too. This will require more investment in hardware (a camera,
filters, special motors for turning them, etc. - see Chapter 3) and some
knowledge of graphics transformations (which are really not too difficult
to understand). Of course, you must have a fundamental knowledge of
computer graphics. This book will aid in your understanding of graphics
and the use of ATARI products. Computer Graphics Primer by Mitchell
Waite (Howard Sams & Co., Indianapolis, IN) will help in your discov-
ery of Apple Computer's graphics.

Personal Computer Animation for Profit

If you want to write computer games for personal computers that
effectively use animation, your task will be a bit tougher. You need to
know a high-level computer language such as BASIC or Pascal and
probably assembly language (the programming language of the micro-
processor). You need to know assembly because good animations must
be fast, and BASIC (and sometimes even Pascal) lacks this high speed.
You should also look at Forth and C, two high-speed languages that are
now available for many personal computers. You will also need to play
around with games already on the market and at arcades to get an idea of
what people are looking for.

Arcade Game Animation

If you want to do animation on arcade games, you'll need to learn
assembly language for several of the more popular microprocessors. In
addition, you will need to be well versed in electronics because these
games pull out all the technological stops to obtain an effect. You might
also need to understand something called bit-slice microprocessors, as
well as the Forth language. Forth isa tricky, powerful, exclusive (border-
ing on religious) language that is also extremely fast. If you don't intend
to do all of this as an independent agent, it would help to get a position
with a company that programs and sells arcade games. A job with an
outfit like that might enable you to learn by osmosis.

High-Tech Animation for Film or Advertising

If you wish to get into high-tech computer graphics, such as the kind
Lucasfilm uses, then you'll need to learn the language C and frame buffer
technology. Most of the animation houses across the country use large,
expensive Digital Equipment VAX or similar minicomputers hooked up
to a commercial or custom frame buffer. Some universities have similar
computers you could study on. Even if you had access to one of those,
most of the software for doing animation on these machines are custom-
made, one-of-a-kind products. One solution would be to go to work for a
company that makes frame buffers or computer graphics terminals.

The Bottom Line

Obviously there is no right way to get started in computer anima-
tion. The best approach is to absorb everything you can about it. You can
attend the SIGGRAPH4 conventions that occur each year around the end
of July and rub shoulders with the computer graphics pros.

4SIGGRAPH Conference Office. 111 East Wacker Drive, Chicago. Illinois 60601. (312) 644-6610.
Telex: 25-4073 SBA.

Animation Perspectives I 35

36 / Animation Perspectives

We'd like to see you get your own computer and start programming
away in the haven of your home. In this way you can create a computer
animation that may impress someone enough to give you a job or to buy
your computer game. Who knows, one day your animations may be
viewed across the country either on film or on a computer screen. If you
study personal computers in depth, you will be in a position to write
special effects that have never been seen before. For example. one
student in a computer graphics class wrote an ATARI program that
simulates three dimensions just like the old three-dimensional movies,
using a pair of red/blue glasses! Good luck and happy animating!

Photo 1.21: Pyramid. (Courtesy of Information International, Inc.)

Chapter 2

Computer Animation Hardware

I n the previous chapter we explained the theory of simple animation.
We covered the techniques behind hand-drawn animation as used

for years in the film industry and (briefly) the differences between
high-tech and personal computer animation. Now we are ready to take
the next step by examining the hardware (machinery) that is necessary to
achieve these animated wonders.

Animation is the most complex and technically sophisticated of all
possible computer graphics applications. This being the case. solid
grounding in computer graphics hardware is the best way to get started in
learning about computer animation. In this chapter we will answer the
question "What are the devices that make animation on computers
possible?' ,

Since computer graphics usually starts with a drawing on a com-
puter screen, we will first learn how the hardware of the graphics
machine draws on this screen. We will cover the different technologies
found in computer graphics (stroke and raster), as well as bits and pixels.
We will also be examining how the gray scale works, where color fits in,
and how character graphics are done. Finally, we will be presenting
material about the purpose and technology of digital frame buffers, the
encoding of pictures, video mixing, color in a television, personal
computer graphics hardware, and graphics peripherals.

2.1. THE CRT CANVAS

In computer graphics, the most popular "canvas" on which the
computer does its painting is called a CRT (cathode ray tube). I Although
we are no longer in the Flash Gordon Age of Rays, or the Edison Age of

'Computers may also draw on paper using special devices called digital plotters. These plotters arc very
slow devices and therefore less popular than CRTs. They are useful. however. when a hard (tangible)
copy of the graphics is needed. (We 'Il be discussing them later.)

Computer Animation Hardware I 37

38 I Computer Animation Hardware

Tubes, this device persists because as of yet there is no better way to draw
with a computer. (Solid-state flat panel displays are still a number of
years away.)

As shown in Figure 2.1, the CRT (pronounced C-R-T) is a glass
tube-like affair with one large flat end and a long neck. All air is
removed, thus the inside of the tube is a vacuum. At the neck end of the
CRT is a device that emits billions of electrons. The electrons, like tiny
bullets, are shot out towards the flat face end of the tube in a narrow
beam, much like squirting water from a hose. The interior side of the
CRT's face is coated with special materials (phosphors) that emit light
when struck by electrons at high velocity. (Although this special coating
never wears out, too many electrons striking the same spot for a long time
can burn the phosphors.) At the point at which the beam of electrons
strikes the face of the tube, a tiny spot of light appears. This narrow beam
of electrons is the brush with which all images are created on the screen.

0) CRT (SIDE VIEW)

C
HIGH VOLTAGE

TO ATTRACTION
HIGH REGION
VOLTAGE

ELECTRONS " "-
YOKE '-- - --CC LIGHT

ELECTRON BEAM

b) CRT (BACK VIEW)

Figure 2.1: The CRT is revealed.

Controlling Our Beam "Brush"

Now that we have a brush (our electron beam) that will draw on the
screen, we need a way to control its position. This can be done by putting
an electronic field around the neck of the tube at the place where the beam
starts its journey.

Just as a magnetic field pulls the needle of a compass, an electric
field will bend the electron beam as it travels towards the screen. The goal
is to deflect the beam in a predictable manner that can be controlled by
external signals. (The problem associated with this is akin to trying to
move ahose that issquirting colored water in such afashion that itdraws
a picture on the grass.) There are two ways to accomplish the deflection.
One is by using metal plates inside the neck of the tube and applying an
electric voltage to them. The other involves using wire coils wrapped
around the neck and applying electric current to them. The use of coils is
the preferred method for televisions and computer graphics CRTs,
whereas plates are employed more often for deflection in oscilloscopes.
(Oscilloscopes are instruments used by technicians and engineers to
study the images of electronic signals. We describe them in this section to
help explain the evolution of the graphics computer.)

There are two sets of plates or coils on the tube, one vertical set and
one horizontal set. In terms of plates, if we apply a positive voltage to the
right horizontal plate, the beam will be pulled (deflected) to the right.
Reversing the voltage (positive on left) pulls the beam to the left. A
similar effect occurs with the vertical plates, and the beam is deflected up
and down. See Figure 2.2.

+ Y AX IS DEFLECTION

Computer Animation Hardware / 39

X AXIS
DEFLECTION

Figure 2.2: Deflection in the CRT.

TR ACED OUT BY

X ELECTRON BEAM
IN RESPONSE TO

+6 CD SIGNALS ON PLATES

+

(0
-6

As the beam moves across the face of the CRT, it also causes the
spot of light to move, leaving a trace of light behind it. The trace of light
then corresponds to the electric signals that are deflecting the beam.
Basically, the position of the spot of light is proportional or analog to the
signals controlling it, and consequently we call such signals analog
voltages. For example, the greater the amplitude (strength) of the vol-
tages applied to the vertical plates, the higher up the beam (and dot of
light) moves on the screen. By applying repetitive voltages to the plates

40 / Computer Animation Hardware

of the CRT and by varying the amplitude and repetition rates (number of
times the voltages change amplitude per second), it is possible to actually
see these signals on the face of the CRT. This is the designed purpose of
oscilloscopes as a service and research tool, although for many years
underground artists used them to generate some beautiful effects by
combining special signals on the face of the scope. See Photo 2.1 for an
example of this.

Photo 2.1: Lissajou art pattern on an oscilloscope. (By M. Waite.)

Drawing on Our CRT with Analog Circuits

Now that you have an idea of how the beam is deflected and moved
about, let's see how we can capitalize on this method to draw an actual
shape on the face of the CRT.

Take a look at Figure 2.3. It shows the face of the CRT, the
horizontal and vertical deflection plates, and two signals applied to the
two sets of plates. The two signals are called waveforms. Each waveform
has been carefully produced by special analog signal generation circuits.
The signals repeat over and over. One of the signals goes to the electron
gun and can turn it on and off. When the signal is steady (indicated by a
horizontal line on the waveform), the beam holds its position steady on
the screen for that axis. When the signal is ramping (indicated by an
angled line going up or down in the waveform), the beam moves from left

Computer Animation Hardware / 41

to right, or up and down depending on the plate receiving the ramp." In
essence, while one signal holds the beam steady on one axis of the screen,
the other is moving it in a straight line. By properly coordinating these
two signals, we can construct a box shape, the shape of a house as shown
in the example, or any shape at all, for that matter. (If you follow the
signals and the numbers on the figures you will see how the beam is
traced out on the screen.)

o

-6

-6
+6

+6

I
I
I
I
I
I
I
I
: I
I -+REPEAT
I I
I I

I I I I I I
I I I I I I

BEAM r----------------------- REPEAT
OFF ..J

X AXIS
DEFLECTION

Y AXIS
DEFLECTION

Figure 2.3: Drawing a house on the CRT with analog circuits.

As you can see from the figure, even drawing a shape as simple as a
two-dimensional house requires fairly complex waveforms. As the shape
we wish to display increases in complexity, so do the signals needed to
create that shape. Although it is a simple matter in electronics to generate
symmetrical, repetitive waveforms, the generation of irregular asymmet-
rical repetitive signals like the kind used in our example is costly and
difficult. Sophisticated generation circuits are required, and herein lies
the problem. Such circuits are complex, bulky, expensive and unreliable.
Because they are analog, they require passive components (resistors,
capacitors, etc.) and are sensitive to heat, therefore varying in value with
the passage of time. Consequently the display image would be subject to
change, requiring repeated trimming (adjusting) of the components. And
yet, for many years, despite all of these inherent problems, analog
circuits were the only approach in use for generating graphic displays.
With the invention of the digital computer, however, a major shift
occurred in computer graphics that doomed a lot of expensive analog
equipment to the already cluttered closets of the research laboratory.

'For the purposes of the discussion, the waveforms in the figure are actually a distortion from what would
be used in a real application.

42 I Computer Animation Hardware

2.2. STROKE GRAPHICS

Digital computers marked the next logical step in graphics evolution
by replacing the analog circuits of the display with digital numbers.
Digital numbers are special in that they are made up of several signals.
Each signal is very simple and has only one of two possible states, ON or
OFF. Since they do not cover the smooth range of values that the analog
signals cover, they are not subject to the drift and reliability problems. To
create a number with the digital values, several ON-OFF signals must be
combined. This is done to represent numbers using the binary numbering
system. (Binary is just another way to count. The decimal system counts
to ten before creating a new digit; the binary system counts to two before
creating a new digit.)

Imagine that each digit of a binary number is a switch. When the
switch is ON the digit is called a I and when it is OFF, it's called a O. The
number of binary digits that are used controls the size of the binary value.

Below we show some values of a four-digit binary number. On the
left are the switch settings, in the middle is the binary representation of
these, and on the right are the decimal equivalents of the binary numbers.

Switches Binary Decimal

OFF OFF OFF OFF 0 0 0 0 0
OFF OFF OFF ON 0 0 0 1 I
OFF OFF ON OFF 0 0 1 0 2
OFF OFF ON ON 0 0 1 1 3
OFF ON OFF OFF 0 1 0 0 4

ON
ON
ON

ON
ON
ON

OFF
ON
ON

ON
OFF
ON

o 1
1 0
1 1

13
14
15

Thus, instead of the analog circuits generating complex waveforms,
the digital computer manipulates the binary ON-OFF values. The com-
puter works directly with numbers instead of signals and uses mathe-
matics in a more practical fashion. Unfortunately, the use of digital
computers created a new problem: they produce binary voltages but the
CRT requires analog voltages. Therefore, an additional device called a
digital-to-analog convertor (DAC) was installed between the digital out-
put of the computer and the analog input of the CRT. The DACs
converted the binary ON-OFF language of the computer into the smooth
analog signals needed to bend the electron beam.

Computer Animation Hardware / 43

In Figure 2.4, we see that a DAC is nothing more than a series of
resistors hooked together to sum the various binary values. Each resistor
is chosen so that the binary digit attached to it contributes a certain
amount of electricity that is proportional to its weight in the number. This
means that the topmost significant digits ofthe binary value have abigger
effect on the final voltage than the lower, least significant digits.

ANALOG OUTPUT
(UP TO 16 LEVELS)

I
I DAC I
L---LSB-------.J

r------- MSB - - ,
I \
I lI8R \

\. \
/ I \

I \
I 1/4R \
I \

\,- I \
\.I

I lI2R / /
\. I I
/ I I

I I
I I

\. I R I
I

/ I

ON n
OFF.-J L 1

ON n
OFF -.J L

DIGITAL
INPUT

ON n
OFF -.J L
ON

OFF --- 0

Figure 2.4: How a digital-to-analog converter works.

DIGITAL
COMPUTER

(Al THE OLD WAY, STROKE GRAPHICS

IN STROKE GRAPHICS D/A CONVERTERS ARE EXPENSIVE
AND SLOW. COMPUTER IS OVERBURDENED WITH REFRESH ING
DISPLAY, DOESN'T WORK WITH EXISTING TVs, AND SO ON ..

(B) STROKE GRAPHICS,

HERE FIVE X, Y POINT PAIRS DEFINE
THE SHAPE SO LITTLE MEMORY IS
REQUIRED; HOWEVER, EXPENSIVE
ANALOG CIRCUITRY RAiSES COST

START---.

Figure 2.5: Stroke graphics using DACs.

44 I Computer Animation Hardware

Figure 2.5 shows the complete DAC-based graphics computer.
Let's see how to draw with it. To begin with, pairs of numbers (in binary)
representing the voltage values of the endpoints of the shape's lines are
put in the computer's memory. For example, using our previous figure of
the house which was painted with the analog circuits, we would set up the
binary voltage pairs to correspond to the values in the figure, i.e. , the first
pair would be - 6 / + 3, the next 0 /+ 6 (X values given first), and so on.
(If you're interested in how to do negative binary, see Microcomputer
Primer by Mitchell Waite and Michael Pardee, Howard W. Sams and
Company, Indianapolis, IN.)

The computer feeds the binary endpoint pairs to the DACs, and they
in turn convert the binary values to analog voltages that are sent to the
deflection plates. This technique is referred to as stroke graphics because
in a single stroke, the beam draws a line from the last point on the screen
to the next point. The computer only has to deal with line segments. This
stroke approach is also called vector graphics, a vector being a line
defined by a start point and an endpoint. The shape drawn with the vector
display consists of a list of endpoints defining the shape. To add a new
piece to the display, the computer would generate new endpoints and
insert them in the list. Moving the shape on the screen requires that some
offset value be added or subtracted to all the values in the list. With the
development of vector displays, life for the graphics computer user
became much easier.

The vector approach ushered in a new era of capability. CRTs and
computers began to be used for radar displays, for modeling mathemat-
ics, and for revealing the insides of molecules. Although the vector
approach allowed dramatic displays and is still in use, it has a serious
drawback. Like the analog circuits described earlier, high performance
DACs suitable for good quality graphics contain analog circuits that must
be adjusted, are temperature sensitive, and relatively unreliable. There-
fore DAC-based graphic computers are expensive and utilized only when
money is not a primary concern.

2.3. RASTER GRAPHICS

The most popular approach to computer graphics, known as raster
graphics, is based on ideas similar to the weaving of rugs. In weaving, an
image is created by many strands that all run in lines in one direction. By
dividing individual lines into segments of color and coordinating them to
coincide with adjacent lines above and below, or right and left, a very
beautiful pattern can be formed.

In computer graphics, the CRT beam can be deflected in a similar
weaving pattern for drawing on the screen. The weaving pattern is
referred to as a raster. In raster scanning, the CRT beam is deflected in a
weaving pattern that zig-zags across the screen and down, many times

Computer Animation Hardware / 45

per second (see Figure 2.6). A standard television also uses raster
scanning. The actual lines are visible when you look at the screen at close
proximity. For the purpose of the following discussion, when we talk
about the raster display, consider that it applies to the television display.
(The television has additional components that will be described later in
more detail.)

rRASTERSCAN LI N ES

.- .• •.----. --. -. --.·----- -.• -- __ e-·· . ..· .. .

(

VIDEO SIGNAL
SHOWN BELOW
IN (C)

CPU,
RAM,
1/0,
OSC SYNC
GENERATOR

DOT MATRIX ON RASTER SCAN
MORE MEMORY REQUIRED TO
STORE POINTS FOR SHAPE, BUT
CAN BE BUILT WITH CHEAP
DIGITAL COMPUTER LOGIC

COMPUTER

IN DOT MATRIX RASTER SCAN
GRAPH ICS, LOW-COST RAM
MEMORY AND DIGITAL VIDEO
LOGIC WORK WITHOUT ANY
ADJUSTMENT ON REGULAR
TELEVISION SETS

Figure 2.6: Raster scanning.

Basically, the graphics computer draws on a raster-scanned screen
by keeping track at all times of where the beam is in its scanning field. If it
can turn the beam on at the proper location on the raster, a picture can be
formed. Because there are a limited number of lines in the display, a
closely scrutinized picture will appear to be made up of a series of dots. If
there are enough lines and you don't observe from too close a vantage
point, however, the individual picture dots will blend together and a
finely detailed image will result.

How does the computer know where to put the dots so as to create
the image? And how does it get the raster on the screen in the first place?
The answer to these questions is found in the sync circuits and sync
pulses.

46 I Computer Animation Hardware

To get the beam to scan on the screen properly, the raster display
contains special vertical and horizontal scanning generators. These are
devices that produce a signal which is sent to the deflection plates. The
signal is a sawtooth-shaped waveform that, like the signals we saw for
driving the oscilloscope, cause the beam to move across the screen, from
the top to the bottom and back. The horizontal transit is controlled by the
ramping portion of the horizontal sawtooth. During this time the beam
can be turned on to display a dot somewhere on the line. The trip back to
the beginning of the line happens very quickly by the falling, straight line
portion of the sawtooth. At the same time the beam is brought across the
screen, a vertical sawtooth signal is driving it downwards.

In standard U.S. video, the beam traces out 525 horizontal lines
(actually only 484 plus two half lines are visible). This is done at a rate of
about 30 times per second. To decrease the amount of flicker this would
produce, the picture is divided into two parts, called fields. Each field
contains every other line of the 525 line display. The fields are thus
interleaved so that the entire screen is filled with an image 60 times per
second.:' This is called video interlace. Since the weaving pattern is
repeated at such a high rate, any dot that is illuminated will appear to the
eye to be steady on the display (because of persistence of vision). The 60
cycle rate is called vertical refresh because an entirely new field is
scanned (refreshed) 60 times per second.

The scanning generators inside the display device need some way to
stay in coordination with the computer, or the computer will not know
where the beam is. The solution is that special sync pulses are developed
in the computer. These sync pulses are inserted into the main video
output that is sent to the display (the information for turning on the beam
is inbetween the pulses). These pulses tell the scan generators when to
start scanning a line and when to return the beam to the top of the screen.
Circuits in the display strip off and use the pulses to get in step with the
computer's signal. (Without the sync pulses the picture would roll
vertically or tear horizontally as you have probably seen it do when it is
"out of sync.")

Horizontal sync pulses start the horizontal sweep of the beam, and
vertical sync pulses start the vertical trace of the beam. In between these
pulses is the video information, also in the form of pulses, that makes up a
single horizontal line on the TV. The horizontal lines are like the threads

"The reason for scanning the picture 60 times per second and not 24 or some other value has to do with the
way the United States distributes electricity. In the U. S., all electrical power is alternating at 60 cycles
per second (AC). In Europe the rate is 50 Hz. If the vertical refresh rate was anything other than 60. any
leakage or ripple from the power line would' 'beat" with the refresh rate. The result would be a picture
that would roll on the screen. By using 60 cycles. we can lock the picture at the same rate as the power
line and have a very steady display.

Computer Animation Hardware / 47

running through the rug, and the video information is like the intensity or
color changes on each thread. The sync pulses are the beginnings and
endings of the threads.

On a single one of the 525 lines, a large number of dots may be
defined, but only a limited number may be displayed due to the mechan-
ics of the display and the limitations of the electronic circuits. An upper
limit of about 500 different dots on a line is possible on a black and white
display, whereas about 200 are possible on a color display.

RETRACE BEAM OFF
I
I
I
I

525 LINES
I•

14--------63"'. -I
BEAM ON BEAM ON-FIELD 1

r-- sec I- ON -FIELD 2--,-VERTICAL
TRACE

1

HORIZONTAL TRACE

1
33.3ms

30 pet sec

- - _ _ _ /TRETRACE BEAM OFF--------------

--
VERTICAL RETRACE

Figure 2.7: Details of the standard raster.

On a black and white display, video information on each line tells
the beam of electrons how intense the dot of light is to be. The light can be
controlled from very white to gray to black (no light). In the case of the
simplest black and white graphics computers, the video information is
represented as a single pulse that indicates whether a dot on a line should
be white or black. More sophisticated graphics computers allow the dot

48 / Computer Animation Hardware

to be one of many shades and are referred to as having gray scale
capability.

A computer that is properly synchronized can turn the beam on at
any point in the display's X-Y plane, thus forming a dot there. The
raster-scanned screen can thus be imagined as a super dense matrix of
about 500 dots by 500 lines. If the beam is turned on at specific locations
on the screen, we get a shape made of tiny points. This may seem quite a
bit more complex than the stroke graphics, but, in fact, raster scanning
graphics considerably reduces the cost of the circuits needed for display-
ing information and leads to a much less expensive computer. The main
reason this is true is because the analog circuits of the vector display (the
DACs) can be eliminated; also, because the circuitry for televisions is
mass produced, it is quite inexpensive.

The negative aspect to the raster graphics approach is that unlike
stroke graphics, it must store all the points for the shape being drawn
rather than just the endpoints. All these points are stored in the com-
puter's memory. This used to present more of a problem than it does
today, since the costs of computer memory devices have been drastically
decreased.

Now that you have an idea of what the screen of the computer is all
about, let's take a look at how the computer takes its stored pictures from
its memory and puts them onto the screen.

-.j 4-6ftSJI-- 64 ± 6fts HORIZONTAL SYNC
t}1 3 OR 4 .,I-- "H" LINES

LINE VERTICAL
FREQUENCY - SYNC
(60Hz)

INDIVIDUAL HORIZONTAL AND VERTICAL SYNC SIGNALS

WHITE
MAX

BLACK
SYNC--n

LEVEL I '- HO.RIZONTAL1SYNC

--63 5/"5 0 lH-

Figure 2.8: Sync signals.

SOURCE IMPEDANCE
072 OR 100.0.

- n - - - -- n - 2 VOLTS

- n _ U n 1.0 VOLT

- - 0.5 VOLT
n __ 0 VOLT

VERTICAL SYNC: •60-Hz RATE

3H

2.4. THE GRAPHICS COMPUTER - A FIRST LOOK

Any graphics computer, whether it's a low cost $99 personal unit
(like a Sinclair/Timex ZX-81) or a large expensive mainframe, contains
several identically functioning components. (See Figure 2.9.) These are

the central processing unit (CPU), the bus, read/write memory (RAM),
read-only memory (ROM), keyboard, graphics input devices, the video
110 section (shown expanded in the figure), and mass storage devices.

CPU
'BRAIN'

MASS
STORAGE

Computer Animation Hardware / 49

KEVBOARD

Figure 2.9: The graphics computer.

The CPU can be thought of as the thinking part of the computer's
brain. It is the required intelligence that tells the rest of the computer what
to do and how to do it, and is primarily used to interpret the instructions of
the computer program. In personal computers the CPU is a micro-
processor, a small, mass-produced device. the size of a stick of chewing
gum, which contains thousands of transistors. In expensive mainframe

50 / Computer Animation Hardware

computers, the CPU is usually a complex arrangement of custom de-
vices, each specially designed for the job.

The computer's bus is where information flows back and forth
between the different devices. It is like a high-speed railroad on which
signals carrying graphics information can travel. You don't really need to
understand fully how the bus or microprocessor work to do graphics or
animation. It is important, however, to be aware of their basic functions
in the system.

Photo 2.2: A typical graphics computer. (Courtesy of Tektronix.)

Let's continue with our explanation of the standard components of
the graphics computer. The computer's keyboard, which resembles a
typewriter, is for entering alphanumeric (letters and numbers) informa-

tion, such as instructions and programs, into the computer.
The RAM is where the instructions and data for the computer are

temporarily stored while the computer is doing its processing. The RAM
is also where the image of the picture that is on the screen is stored.
Screen memory may be either a portion of the RAM memory or a separate
RAM memory. Its purpose is to hold the image that will be displayed on
the CRT.

The ROM is where special programs and data are kept. When the
power is turned off, information in RAM is lost, but information in ROM
stays. This special data is always instantly available to the computer.

The graphics input devices are the channel through which graphic
information, such as picture and drawings, may be entered into the
computer (more on these later). The video scanning circuits are used to
take the image in the screen memory and put it on the CRT. You'll learn
more about this soon.

Finally, every graphics computer needs a mass storage device. This
device functions as a long-term storage of information that has been
processed by the computer, i.e., computer programs that will be loaded
into the memory, and other data. (Information from the computer can be
stored on magnetic material in the same way music is stored on magnetic
tape.)

2.5. THE BIT AND THE PIXEL

Earlier we described how pictures could be drawn on a raster-
oriented computer screen by having the image composed of tiny dots of
light. These dots, which have specific locations on the screen, are called
pixels (or pels), which stands for picture element. Pixels become visible
by turning on the electron beam at the proper location and proper moment
on the screen line.

Where do these pixels come from, and (since timing is crucial to
creating animation) what tells them to tum on? They are stored in a
special area of the computer's memory called screen memory or the bit
plane.r'The dots are represented in screen memory as voltage levels using
the same binary system we described earlier. A dot that is visible on the
screen is stored in memory as an ON voltage, while all invisible dots are
stored as OFF voltages. We can consider the ON and OFF voltages as
switches that can be on or off. The locations that store these on and off

"The remaining portion of memory that is NOT devoted to holding the screen image also contains bits
that are on or off. These bits, however. correspond to instructions for the microprocessor or special
program data. The versatile computer actually has the ability to store data. pictures. and instructions all
in the same memory.

Computer Animation Hardware I 51

52 / Computer Animation Hardware

voltages are called bits, an abbreviated way of saying binary digit. Figure
2.10 shows this relationship. In a typical graphics computer there are
thousands of these bits devoted to holding our precious image. In our
simple example, each bit in the computer's memory corresponds exactly
to a certain pixel location on the screen.

Contained inside the computer are scanning circuits, called multi-
plexors, that t1y through the screen memory synchronized with the
scanning of the raster. They are digital devices that very quickly count all
the addresses of the memory and read each memory location. The
purpose of these scanning circuits is to look at every memory location in
the screen memory and decide if a bit is on or off. If it is on, then the video
information that is being sent to the display is given a pulse to cause the
beam on the screen to turn on (and thus become white and visible).
Otherwise, the beam is left off, and black is visible at the location.

'ADDRESSES'

ETC
t

4096

40 9 7 t-=-f...":-.i-=-l...:...j ,.J-:...L:'-I--''-I
4 0 9 a H...c:..j-:.+-=4
4099

5000 1-1-'-1-"-4
5001

ETC

\ THIS IS JUST A SMALL PORTION
OF BITS FOR IMAGE BELOW
NOTE HOW HARD IT IS TO 'SEE'
CUBE IMAGE

(a) HOW BITS LOOK IN a-BIT WIDE MEMORY

o 010 000'0 '2lS0n
O'OIO!O eee e e ele 0iO+O
00* o j-Clj-Cl
ooeo 000 oeoeooot') e .,e eee eooeatoo • <?JO 000 eooeoo,o
fgeo,() 010 toteooeooio·Q1oto OIO"TO·
oeoo otoo eo e O+e> 00
n C--+-

0'0 0a e 010 e e a aa e,e'e e'e e .0
o o!o:o 0,0 a 0,0 0,0'0 00

000000000000000
o
o
o
o

-"+-co
o
o

000000000000000
000000000000000

0 0 0 010 0 0'010 0 0 0
0 0 0' 0 1 11 1 11 1 0 0 O.
0 a-m- OQi-0 001 1 0 0 0
0 0 1000'0 o flo 1 0 o 0
o 1 1111111 1 0 10 1 0 o 0
o 1 0 0 1 0 o 0
QI 0i-QJQ 100 1 0 o 0
o 1 00.'0'0 '0 1 1 0 o 0o 1 1 0 1 o 0 00
01 00 .o lo !o 1"1" 0 o 0 00
0 1 111 1 1 1 10 0 0 0 0 0
0 0 01010101010 0 0 01010 0

NOTE i: 5 CORRESPOND TO DARK DOTS
IN PICTURE ON RIGHT

(b) TWO DIMENSIONAL REPRESENTATION

e-1-0NBIT
a • O· OFF BIT

(c) PIXELS ON SCREEN

(continued)

/: r
.. ;;

\\;/i

""'- ,
I VI DEO) ..
I COMBINER
I
I VI A A
I CRTL _____

Mill TIPI Oynl>

'JY

MEMORY SYNC

(d) SCANNING PIXEL MEMORY

Computer Animation Hardware I 53

Figure 2.10 Pixel memory and scanning it.

The correspondence between memory and dots on the screen can tell
us the amount of memory bytes needed for a certain desired resolution.
For example, suppose the computer is to have a black and white (or black
and green) display and that each dot will take up one bit of memory. If the
display is to have a resolution of 320 horizontal dots by 200 lines. the
result is 320 x 200 or 64,000 pixels on the screen. This means that for
our example of one bit per pixel, there must also be 64.000 bits in the
memory. Since computers usually specify memory storage in terms of
bytes (8 bits = I byte). we need 64,000/8 or 8,000 bytes for this
particular display. Later we will see how adding color or extra shades to
each pixel increases the number of bits per pixel and subsequently the
number of bytes needed in memory to hold the image.

Bit Planes

Imagine the screen memory for the computer as a two-dimensional
plane of bits, with each bit corresponding to a pixel on the screen. (Even
though the screen memory is probably organized in bytes. looking at it as
a bit plane simplifies our discussion.) Figure 2. I I shows a bit plane for
our black and white 320 x 200 display.

54 / Computer Animation Hardware

a a a a a 00 o a a
00 a a a a a a
a a a a a a a a
a a a a 0 o a
a a a a a a a o a
a a a a a a a a a
a a a a a a a a a
a a a a 0 a a a a a a
a a a a 0 a a a a o 0
a a a a a a a a a 0.(
00 a a a 00 a alP'
a a a a a a 320 BITS .

I
200 320 x 200·64,000 PIXELSBITS

Figure 2.11 A 320 x 200 bit black and white bit plane.

2.6. ADDING GRAY SCALE

If we wanted to create a picture with some tonal gradations, how
could we do it? In other words, how can we add shades of gray to our
black and white display? The gray scale can be created by controlling the
intensity of the electron beam as it goes through scanning each pixel on
the screen. Recall that so far the beam has been either ON (resulting in
white), or OFF (resulting in black). Now we are going to add several
levels of intensity between white and black.

For example, if we wish eight levels of gray, then eight intensity
levels of the beam are required. Where do these intensity levels come
from? Simply by adding more bits for each pixel. Remember our binary
switches? How many switches are necessary to offer eight different
levels? Or, in other words, how many bits are needed to count from 0 to 7
(0 to 7 represents 8 different states)? Three bits are required, as shown in
the following table:

Computer Animation Hardware / 55

Switches Binary Decimal

OFF OFF OFF 0 0 0 0
OFF OFF ON 0 0 I 1
OFF ON OFF 0 1 0 2
OFF ON ON 0 1 1 3
ON OFF OFF 1 0 0 4
ON OFF ON I 0 I 5
ON ON OFF I 1 0 6
ON ON ON 1 1 1 7

Another way to determine how many bits are required is to use the
following formula: 2 raised to what power equals the desired number? In
the example above, we want 2 raised to a power that equals 8. We know
that 2 raised to the third power is 8. So how do we get the extra bits into
our image? We simply stack two additional bit planes to our existing
plane, as shown in Figure 2.12. Now each pixel on the screen has 3 bits of
information. Since we are allowing the amplitude of our video informa-
tion to take on one of eight different levels, we need to convert the 3 bits
of digital pixel information to eight levels of analog information for
controlling the beam's intensity. Again, the DAC comes to the rescue. In
this case, we need a DAC with three inputs. The output on the DAC is
mixed with the sync pulses and sent to the display. Now it will convert the
3 digital bits in each scanned memory location to the respective voltage
level for the amplitude of the beam.

8 GRAY
SHADES

I 1

I I I
,- -1- _ '-_

I I 1

-L I

3 BIT PLANES

Figure 2.12 Adding gray scale with three bit planes.

Gray scale is one way that high-tech computers accomplish stagger-
ing realism. When the number of bits per pixel is increased beyond a
certain number (about 8 bits or 256 levels of gray), it is almost impossible
to tell the difference between the digital image of a computer and a
photograph.

56 / Computer Animation Hardware

2.7. ADDING COLOR TO THE DISPLAY

Now that we have a gray scale, the next consideration is to add
color. As it turns out, this is not as difficult as you might imagine. Before
we explain the process, we first must digress a "bit" and see how color is
put on the CRT display device in the first place.

The Famous Red Green Blue (RGB) Monitor

Color is obtained on today's high-tech graphics computers by using
the Red Green Blue (RGB) direct drive monitor. This is a fairly expen-
sive ($800 to $5,000) CRT that contains three separate electron beams,
one for each of the three primary colors of light: red, green, and blue. In
addition, this CRT has built-in scanning circuits for moving the beams on
the screen. But, unlike the surface of the black and white CRT, which is
coated with a smooth layer of white light-emitting phosphor, the surface
of the color CRT is coated with three different phosphors arranged in a
triad of dots. (See Figure 2.13.) (Note that instead of dot triads some
CRTs use bands of the three color phosphors.) A special metal aperture
mask is placed inside the CRT directly over the dots. The holes in the
mask allow each of three beams to illuminate its corresponding color
dots. The beam designed to produce the color red, for example, will only
illuminate the red phosphors.

The computer sends a separate video signal to each of the three color
guns, each signal representing an intensity of a screen color. The intensi-
ty of each beam then determines how much of that primary color is to be
mixed at the pixel location. In other words, if the color at a particular
location was to be pure blue, we would tum off the red and green guns
and turn on the blue gun full force. If the desired color was purple, we
would turn off the green gun and turn on the red and the blue. To produce
white, we would turn on all three guns. We can fine tune the exact color
that gets shown by controlling the amount of each of the primary colors
that gets mixed in at each pixel. This is done precisely the same way as we
did with shades of gray, i.e., each gun's intensity is controlled by the
computer.

The intensity of each color is in turn set by the number of bits
representing that color in the bit plane. For example, suppose we allocate
3 bits for each of the three primary colors, so as to get eight intensities (or
shades for each color). This would make a total of9 bits dedicated to each
pixel on the display, and we would have 9 bit planes. The 3 bits per
primary color means that we can have eight shades per color at each pixel
location, for a total of 8 x 8 x 8 or 512 possible colors! Believe it or
not, the human eye can actually distinguish many more colors than this.

We now need three separate DACs in our graphics computer, one
for each of the primary colors. The circuitry for driving these DACs
increases the complexity and cost of the color display, as does the
additional screen memory.

Computer Animation Hardware /57

() () c
() ()

METAL

BLUE

Figure 2.13: The RGB color CRT and aperture mask.

2.8. FRAME BUFFERS

Today most high-tech raster-scan displays are based on the use of a
large digital memory called a frame buffer. The frame buffer (which we
alluded to when we discussed bit planes) is nothing more than all the bit
planes, stacked one upon the other and considered as a single entity. The
name "frame buffer" comes from the fact that the device is a large
memory designed to hold a single frame of a film, graphic picture, etc.

The number of bit planes being used sets the pixel depth of the frame
buffer, which in tum sets the number of bits available for the color
description of each pixel. The bit depth, in tum, sets the overall cost of
the frame buffer. Obviously, the more bits used for each pixel, the greater
the color capability of the buffer. Likewise, the number of horizontal and
vertical bits in the frame buffer sets the resolution obtainable on the
screen. State-of-the art animation houses, graphics designers, and others
use frame buffers with dimensions of 1024 x 1024 pixels and a depth of
up to 24 bits. (See Figure 2.14.) In a 24-bit deep frame buffer there are
usually 8 bits devoted to each of the primary colors. (Later we'll be
showing how there are other ways to organize the bit planes.) This results
in 256 x 256 x 256 = 16,777,216 different colors. Although it is
unlikely that any living creature could differentiate between two adjacent
shades, it points out the range of color the high-tech frame buffer allows.

58 I Computer Animation Hardware

B
G

R

YOKE

8 BITS

8 BITS

8 BITS

256 SHADES
PER PRIMARY COLOR
=16,777,216 COLORS

512-1024
PIXELS

FRAME BUFFER @l
1024 x 1024
= 25, 165, 824 BITS

512 - 1024
PI XELS

Figure 2.14: A hi-tech 24 bit per pixel frame buffer.

Let's do a little exercise to see what such a frame buffer might cost.
The total number of bits used in the frame buffer is 1024 x 1024 x 24,
which is 25,165,824 bits (24 Mbits for short, pronounced Megabits-
one Mbit equals one million bits). Today, a 64 K-bit RAM chip costs (in
quantity) about $8.50 (price obtained from the classified ads of BYTE
magazine). We would need 24 Mbits -;- 64 Kbits = 384 chips for our
frame buffer. At $8.50 per RAM chip, this comes to $3,264 just for the
memory portion of the frame buffer. This price does not include the

expensive circuits for driving the DACs that are required for each gun.
Ingeneral, frame buffers on the market today represent each color

gun's intensity with 1,2,4,8 or more bits of memory. As we saw earlier,
I bit is sufficient for simple graphics and leads to a low cost display; 2 and
4 bits are useful for solid colors or shades of gray, and 8 bits are required
for finely detailed, shaded pictures.

2.9. GETTING THE FRAME BUFFER IMAGE ON FILM

The purpose of the frame buffer is to allow graphics designers to
scan their latest work of art on the CRT. This doesn't, however, solve the
problem of getting the image onto 35 mm film, which is the main concern
of animation houses. The way this is done is interesting in that it points
out the flaws in the color CRT. The most straightforward approach would
be to simply display the frame buffer's image on a high-quality CRT and
take a picture of it. This, however, is not the way they usually do it.
Remember the dots and the aperture mask used to keep the guns from
illuminating adjacent pixels? Well, because the mask and dots cannot be
made smaller than a certain measurement, they end up determining the
maximum resolution obtainable on the CRT. This is usually much less
than what the frame buffer, the computer, or the film is capable of.
Therefore, the film will never show a resolution greater than that mask.

The standard solution to the problem of photographing color is to
use a device called a film recorder to photograph the images. It contains a
very high-quality black and white monitor and three color filters. Since
the black and white monitor contains no mask or color dot triads, it can
resolve extremely high-resolution images. Here's how it's done.

Three color filters are employed, one at a time. The frame buffer is
grouped into three primary colors, red, blue, and green, each having
eight bits and planes of intensity information. When the red filter, for
example, is placed in front of a black and white monitor, the output from
the red planes are turned on and the green and blue planes are disabled.
Thus the intensity information for the red part of the picture is now on the
CRT and the red filter is in front of it. The frame of film is then exposed.
Next the blue plane is enabled, the red and green are disabled, a blue filter
is placed in front of the CRT, and the photo is taken again without
advancing the film. This same process is then repeated for the green
plane. The film automatically mixes the three colors for us. This will
produce an image with the same resolution as the frame buffer.

Bypassing the Frame Buffer

It is possible, however, to bypass the frame buffer and send to the
film recorder much higher resolution images, even higher than the best of
today's film can resolve. This is accomplished by sending the film
recorder a single scan line at a time. The computer displays this single

Computer Animation Hardware I 59

60 / Computer Animation Hardware

line on its CRT, exposes the film, and then accepts the next scan line,
erasing the first from the screen. This is repeated for each scan line of
each frame, producing resolutions as high as 6000 x 4000 pixels with 9
bits per color.

Unfortunately, even this approach has a major drawback. It can take
as long as five to ten minutes to record each frame at high resolutions. To
solve this and many other problems, Lucasfilm is developing the ultimate
film animation system, called a Pixar. It is a general-purpose picture
computer, complete with processors, plenty of memory, and lasers for
I/O (input/output) devices. This hardware production instrument can
"suck" pictures from film with its lasers, manipulate the images, and
spew them back out with another set of lasers onto new film. Lasers are
used because they are the most controllable light source available and
produce extremely vivid colors. Future Star Wars films should be of an
incomparable visual quality.

2.10. ENCODING THE PICTURE IN THE BUFFER

The process of encoding refers to the way the picture information is
organized inside the buffer. There are several ways to accomplish this in
the frame buffer. Often, bits are divided in some manner to represent the
three primary colors. If the pixel depth is only 8 bits, for example, we
might allocate 3 bits to red, 3 bits to green, and 2 bits to blue. The reason
for the underrepresentation of blue is that the eye is less sensitive to the
blue region of the color spectrum, because it has the smallest number of
blue receptors. Thus we allocate fewer bits to blue because they would
otherwise be wasted. These three components are then fed to the three
guns of the color monitor.

2.11. COLOR MAPPING

The trouble with the simple, 8-bit color encoding scheme above is
that the range of colors is limited. With 3 bits per primary color we can
only have eight shades of that color. Inour example of 3-3-2 bits, we can
have up to 8 x 8 x 4 or 256 different shades. Although this may seem
like a lot, the human eye is capable of resolving many more shades than
this. Fortunately. there is a good way to obtain more color shades without
utilizing more frame buffer memory. This method, called color mapping,
is used by more high-tech frame buffer manufacturers today (and some
personal computer manufacturers such as Atari).

With color mapping, the bit values that are normally stored in the
frame buffer are interpreted as addresses or pointers into a table of colors,
rather than directly as colors. This table may be an area in RAM or a
collection of special color registers. This means. for example, that the

8-bit value at a certain pixel location would point to a table address which
contained three individual color values, one for each of the primary
colors. (See Figure 2.15.)

By using such an approach, an 8-bit per pixel frame buffer can
address a color table with a maximum of 256 color values in it. This
means that the screen could display 256 different colors at one time. In
addition, each of these individual color components can be defined to a
high degree of precision, because the bit length of the table can be much
greater than the 8 bits per pixel we showed earlier. For example, the table
could be 24 bits wide, therefore allowing 8 bits for each primary color, or
256 shades for each color, or a maximum of 16 million shades per pixel!
Keep in mind, though, that only eight bits are required per pixel. (See the
box that follows for another explanation of color mapping.)

Computer Animation Hardware / 61

FROM
FRAME
BUFFER

RED

D/A CONVERTERS

a) SIMPLE DECODING OF 8-BIT PIXELS

RED GREEN BLUE

FROM
FRAME
BUFFER

INDEX
INTO
TABLE

COLOR MAP TABLE

D/A CONVERTERS

b) SAME 8-BIT PIXEL VALUES INDEXING INTO A 24-BIT COLOR MAP

Figure 2.15: Pixel values indexing into a color map (a & b).

62 / Computer Animation Hardware

Another, less apparent advantage of the color map is that changing
any colors in the color map table changes all associated colors on the
screen instantly! This is useful for painting on the screen and for color
animation. For example, suppose there were several balloon shapes on
the screen. Some are filled with green, some .with magenta, and some
with yellow. Suppose we wanted to change all the magenta balloons to
pink. In a simple color encoding scheme, we would have to change all the
magenta pixels to pink pixels. This would prove to be a time-consuming
task. Color mapping, however, enables us to simply change the magenta
value in the color map table to pink, and instantly all the magenta
balloons turn pink. Frequently, the color map table is referred to as color
registers, and the entire process is called color register encoding. We will
talk more about color register animation in Chapter 6.

Color Mapping and the Magic Paint Store

Here is a simple analogy you can use to understand the idea of
color mapping and color registers. Although we will be using an
ATARI Home Computer in our example, with its maximum of 128
colors, the analogy holds true for other machines if you assume the
appropriate number of available colors.

Imagine a paint store shelf filled with 128 cans of different color
paint. In front of you there are nine magic, empty paint buckets, each
one labeled with a number from 0 to 8. Each bucket has a brush in it
with the same number (the buckets are the color registers and the
paint cans are the colors you can put in the registers). A large canvas
is before you, begging for a picture. Feeling artistically inspired, you
begin by filling the first bucket with one of the 128 colors (a light blue
color), pick up the brush, and paint the sky on your canvas. When
you have finished with that color, you fill another bucket with your
second color selection and paint some more. You continue this
process with the remaining seven buckets. Since there are no empty
buckets left, you decide to empty Bucket 0 and fill it with a new color,
a deep orange, chosen from the paint cans.

This is where the magic comes into play. Lo and behold, as soon
as you put the new color in Bucket 0, the sky in your picture, originally
painted with Brush 0, immediately changes to orange! In fact, every-
thing that was previously painted with Brush 0 now appears in the
new color currently in Bucket O! When you try this with Bucket 1, the
same thing happens with everything previously painted with Brush 1.
You have magically changed your painting from a cool mid-
afternoon scene to a fiery sunset - and you didn't even have to use
paint thinner to clean out the old color from the bucket before putting
in the new. The new color has the property of completely expunging
the old color.

The fact that all colors on the screen painted with a certain
bucket change color together can be less than desirable at times.
For example, if your sun was setting over a blue ocean, you probably
wouldn't be thrilled by having the Caribbean looking like orangeade.

Another potential problem is that the ATARI Home Computer limits
you to a maximum of nine different colors on your canvas when using
its color registers. Of course, the machine costs only $200 to $800,
so you can't really complain.

Photo 2.3 shows an example of color mapping being used to change
the primary colors of a graphic display (see color insert).

b)

Photo 2.3: These photos show the effects of color registers. In a) the circles
are all red, while in b) they are blue (see color insert). This was done by
changing only one byte in the color register. These graphics are done by Jane
Veeder, who is using ZGRASS language on a Datamax UV-1 computer.
ZGRASS, developed at the University of Chicago, is a very powerful language
especially designed for graphics. (Courtesy of Jane Veeder.)

2.12. VIDEO MIXING VIA BIT PLANES

By treating the frame buffer as several bit planes rather than a single
unit, each can be made to hold a separate image. For example, an 8-bit
per pixel frame buffer can be divided into two images of 4 bits each, four
images of 2 bits each, or eight individual black and white images. In

Computer Animation Hardware / 63

64 / Computer Animation Hardware

animation, this means several frames of the image can exist in the buffer
at the same time. The video from each plane can be turned on and off, and
thereby one image part can be faded out while another is merged in. So by
having several bits per pixel, we can do more than just represent different
colors and intensities. Using this technique, it is possible to have a static
background image while another image transverses it. No special logic
operations need to be performed for the movement since each bit plane is
independent of the other.

2.13. OTHER ENCODING TECHNIQUES

While the frame buffer is an extremely useful innovation, it does
have its problems. For one, it does not offer the most compact way of
storing graphic images, and therefore the large amount of memory
required keeps costs high. Further, since every byte of the image must be
changed if the image is to be shifted the smallest amount, the frame buffer
is extremely slow in its response time for moving highly detailed images.
Finally, when transferring the image in the frame buffer to the disk for
permanent storage, much time is required and much space is used up on
the disk itself. One solution to this last problem is based on the compact-
ing of the image via encoding techniques.

Real-Time Scan Conversion

The viability of the frame buffer really deteriorates in terms of
compactness of storage when we consider a simple line drawing such as a
three-dimensional box. Compared to a stroke graphics display that stores
endpoints, the box image could be stored in about I percent of the time
and 0.2 percent of the memory space as the frame buffer. A solution to
this problem is called scan conversion. In scan conversion, the image is
stored as geometric descriptions rather than as pixel intensities of the
frame buffer. Scan conversion relies on a special display file, which is
simply another area of memory for holding endpoint values for an image.
A special circuit looks at the display file several times per refresh cycle to
generate the image and mathematically determines if a line segment
intersects the current scan line being drawn. The image can be easily
modified by changing the description in the display file. The problem
with this approach is that special hardware is needed to perform the scan
conversion at rate" of 30 frames per second. Very expensive graphics
systems, such as the Link Flight Simulator (a device that allows pilots to
be trained in flying new aircraft) uses scan conversion hardware and
achieves impressive degrees of realism.

Run-Length Encoding

Another approach to compact storage of images that works on both
memory and disk is called run-length encoding. This technique works

best for images involving solid gray or color areas. The approach has
been applied even on personal computers such as the Apple and is based
on the fact that a typical scan line has pixel values that remain at the same
intensity or color for several pixels. This being the case, if we encode the
length and intensity of each sequence of identical pixels, we will reduce
the amount of memory and disk space required to store the image. ·Each
encoded scan line will then consist of one or more instructions, each of
which defines a run length and intensity.

Special hardware can be used in this approach to allow real-time
run-length encoding and decoding of the image. It is also possible to
design software that will encode and decode the image in non-real time
for a savings in memory. Run-length encoding has been employed in
some software for the Apple II, when many images need to be stored on
the limited space of mini-floppy diskettes. The pictures of the spinning
globe from Chapter I were encoded in this manner to allow all 24 frames
to reside in ATARI' s RAM at once.

Simulation of Resolution with Intensity - Block Pix

It is possible to simulate a much higher resolution than the X and Y
coordinates would imply by using intensity modulation carefully. For
example, if you correctly select the color in a single pixel, it is possible to
trick the eye into thinking that the resolution is quite high, when, in fact,
just the opposite is true.

The series of photographs in Photo 2.4 shows a block pix repre-
sentation of President Lincoln." Note the marvelous realism the first
picture achieves despite the fact that the pixels are relatively large.
Shading has greatly affected the way the image is perceived. Note also
that when you stand back and squint, the three photos seem very similar.
This demonstrates the role of shading and intensity over resolution. A
continuing controversy exists among computer graphics experts pertain-
ing to the primary importance of high display resolution versus copious
color capability per pixel.

'The original block pix picture of Lincoln is a classic by Leon Harmon of Bell Labs done many years ago.
These photos are a commercial derivative of the original image.

Computer Animation Hardware / 65

66 / Computer Animation Hardware

a)

b)

c)

Photo 2.4: This three frame set (a, b, c) shows a picture of Lincoln evolving
through a block pix process where the picture is broken up into fewer and fewer
blocks and lower and lower resolution. The intensity and shade of each block,
however, is carefully chosen so that the original image can still be recognized,
showing that intensity modulation can substitute for absolute resolution.
(Courtesy of Digital Effects/ R. Greenberg Associates - Lincoln Bank, 1981.)

2.14 ADVANCED GRAPHICS HARDWARE

Thus far, we have limited our discussion to the most fundamental of
high-tech graphics hardware. There are much more advanced systems on
the market, however, some of which cost in the millions of dollars! A
complete understanding of the concepts behind these more advanced
devices is not necessary, however, for you to proceed.

Computer Animation Hardware / 67

2.15. PERSONAL COMPUTER GRAPHICS HARDWARE

Now that you better understand the hardware of the high-tech
graphics computer, you are in a good position to tackle the workings of
the personal computer hardware used for graphics. We needed to intro-
duce the high-tech hardware first, because, as strange as it may seem, the
low-cost color graphics personal computers are actually a bit more
complex than their big brothers. This is true for two primary reasons.
First, they must work with a color television and consequently a con-
straint in operation is placed upon them (as you will learn). Second, they
must be mass produced and made inexpensively, and this means special
tricks are often needed to get the cost low (as you will also soon see).

CASSETTE RECORDER.
FLOPPY DISK DRIVE,

ETC.

BUS
J.tP A ADDRESS BUS

C CONTROL LINES

TO TV

r---------------------- ---------------,:--------....., :
I I
I I
I I
I I
I I
I
I
I
I
I
I
I
I

: MIXER
I

:----
ADb:ESS

BUS LINES BUS

Figure 2.16: Personal graphics computer block diagram. This is the same as
the previous graphics computer block diagram except for the addition of an RF
modulator (as an option).

68 / Computer Animation Hardware

A block diagram of the personal graphics computer is shown on
page 67. It is very similar to the block diagram we showed earlier, except
for the inclusion of an RF modulator. The purpose of this is to convert the
video information coming from the computer into a high-frequency
signal that can be accepted by the television.

Televisions are set up to pull transmitted signals out of airwaves and
operate in what is called the radio frequency (RF) spectrum. The RF
modulator simply places the computer's video information on an RF
wave so it can "ride" into the television. Once the video is inside the TV,
usually entering through the antenna terminals, the television strips out
the RF, discards it, and merely retains the video portion. From this point,
the black and white television works almost identically to the raster-
scanning CRT you already learned about. In fact, some of the newer TVs
have jacks on the back that allow them to work as direct coupled CRTs'

Getting Color on the Television

When we add color to the personal computer and require it to
operate with a standard color television, we have an entirely new ball
game. To see how the color computer works, we must first understand
how color televisions work.

When color TV was first proposed, it had a major stumbling block to
overcome. It had to be compatible with the millions of black and white
TVs already on the market. In other words, when a color signal was
received it could not interfere with a TV that could only receive black and
white. This reality put some real restraints in the design of the color
signals. (Had the color television been designed first, things probably
would have been much simpler. So much for hindsight.)

Basically like the RGB monitor, the color TV picture tube has three
separate intensity-modulated color guns. It also has a shadow mask and a
coating of color dot triads (or in some of the newer televisions, stripes)
spread over the front interior surface of the tube.

At the transmitting end of television, there are three color signals,
often derived live from a camera. The problem is how to get these color
signals, which are mixed in with the black and white signal at the
transmission end, separated from the black and white signal and finally
use them to modulate the three corresponding color guns in a color
television.

In 1953, after much head scratching, the television industry came up
with the first monochrome (B&W) compatible color transmission
method. It is called the National Television System Committee (NTSC)
color standard, and it applies to all government-regulated broadcast
television systems in the United States and several other countries. The
basic underlying principle of the NTSC color standard is the merging of
two separate image transmissions, a wide-band signal carrying lumi-
nance information and a narrower bandwidth signal containing chromi-

nance information. (Luminance is the brightness or intensity of the three
colors red, blue, and green. Chrominance represents the actual color or
hue coming from the three guns.) These signals are derived from mixing
the red, blue, and green color signals from the camera (or computer) in a
very special way. This special mixing of the color signals and combining
for transmission is called NTSC encoding.

After the colors have been mixed in their proper proportions by the
encoder, they are used to modulate a high-frequency (3.58 MHz) subcar-
rier signal. The subcarrier is phase modulated, which means its delay can
be varied in different increments. This permits the use of a simple,
inexpensive circuit modulator that converts the color bits in the screen
memory to phase changes. The carrier is, in turn, mixed in with the
waveforms containing the sync signals and sent to the television.

At the television, an NTSC decoder circuit takes apart all the things
done by the encoder, thereby separating the colors into their original
chrominances. In addition to the color subcarrier signal, a special color
burst signal is mixed in with the video signal. This burst contains
reference information about the frequency of the color subcarrier and
allows the television to "lock" with the original color oscillator.

Another restriction inherent to the functioning of a television is the
bandwidth. The television's bandwidth is the maximum frequency that
the television will allow to pass. It sets a limit on the maximum number of
color changes possible on a particular line of the screen. Before anything
can be received, color signals for the television must fit within the signal
bandwidth (4 MHz) of the set. This breaks down the quality of the
picture. In addition, all of the encoding and decoding that takes place
adds noise to the color signal, further degrading it. At this point we can
appreciate why the direct drive RGB monitor gives better quality color
than the color television. In a RGB monitor, the bandwidth may be as
high as 35 MHz, thus allowing many more color changes to be resolved.

Every personal computer that is designed to work with a color TV
has an NTSC color encoding circuit in it. Most personal computers,
however, have only the chrominance information encoded. Since the
luminance or brightness is fixed, this simplifies the encoding circuits by
eliminating the need for a DAC.

2.16. COLOR IN THE PERSONAL COMPUTER

Given that personal computers must keep the cost down, their
approach to getting color on the display is more constrained than that of
the high-tech graphics machines. For one thing, even though the price of
memory is dropping fast, its use must be kept to a minimum, or the
computer will be too expensive. The designers of the early personal
computers had to invent ways to get color graphics without using up
much system RAM. Several methods were used. One was to share

Computer Animation Hardware I 69

70 / Computer Animation Hardware

graphics memory with the program memory. For example, in the Apple,
ATARI, and in many of today's new computers, the RAM for the color
display is part of the system RAM and is referred to as screen memory. If
a program used on such machines is large enough to creep into the area
occupied by the screen RAM, high-resolution graphics will not be
obtainable. Given this constraint, programmers learned to keep their
programs small enough to still use the graphics. (The alternative was
forfeiting the graphics and using as much of the RAM as they needed.)

Another way to keep the use of graphics RAM to a minimum is with
special encoding techniques that limit the color to certain pixels on the
screen. This technique originated with the Apple II's high-resolution
screen and caused programmers many hours of frustration until they
finally learned to work around it. In a way, it was a brilliant maneuver by
Steve Wozniak, the Apple's designer, because it allowed the Apple II to
be advertised as a system that had 280 x 192 resolution in six colors
while consuming only 8K bytes of RAM. A little calculating will show
this is not possible, as 280 times 192 is 53,760 pixels. Six colors requires
about 21/ 2 bits. Two and one half times 53,760 is 134,400 bits. But the
Apple's 8192 byte screen RAM has only 65,536 bits. There is a dis-
crepancy here. The answer is that any color cannot appear in every pixel!
Actually you can only have a resolution of 140 x 192 on the Apple and
get the full 6 colors. To get 280 pixels on a row you have to be willing to
accept that every seven pixels only be from one of two color sets. (This is
explained in more detail in Chapter 4 in the section pertaining to the
Apple II.) Our point here is not to discredit the Apple II, but to show the
color limitations of all personal computers.

Newer personal computers, which are following the high-tech
machines more closely in their use of graphics, still have some con-
straints. For example, the IBM Personal Computer has a full 16Kbytes of
RAM set aside for the graphics and is separate from the program RAM.
The IBM PC allows up to 16colors in a 320 x 200 resolution. In reality,
however, there are only eight colors and two color sets, one brighter than
the other, so that the 16K bytes can handle the full range. Otherwise, 32K
bytes would be needed for the graphics RAM.

2.17. MEMORY-MAPPED VIDEO AND TEXT STORAGE

In both kinds of raster-scanned systems, the most popular way to
display text is to encode the letters, numbers, and special symbols to be
displayed into a unique 6- or 7-bit value called an ASCII (ass-key)
character. (ASCII stands for American Standard Committee for Informa-
tion Interchange and is a special set of rules determining what bit patterns
are designated for what characters. Almost all computer manufacturers
follow the standard.) The ASCII characters are then stored in the com-
puter's memory.

Photo 2.5: This Triple I "Computer Picture" advertisement shows the
company's capability and illustrates the high quality and fine detail possible in
computer graphics. (Courtesy of Information International, Inc.)

In order to display the characters, circuits are built that convert the
bit patterns stored in the screen memory into dot images. These images
are then mixed in with the video and sent to the screen. Usually. a
character-generator ROM is used to hold the actual dot images that
correspond to the ASCII values stored in memory. There are different
kinds of these ROMs, each giving a different style of character on the
screen for the ASCII code. The density of the dot matrix for each
character that appears on the screen varies from computer to computer. It
can have a density ranging from 5 X 7 (the most coarse and not allowing
lowercase) to 9 X 12 (the most dense and allowing all symbols of the
alphabet as well as special graphic symbols).

Computer Animation Hardware / 71

72/ Computer Animation Hardware

In some personal computers, the dot patterns for the characters can
be defined in system RAM rather than in a character-generator ROM.
This allows the characters to be redefined by the programmer to be
whatever is desired. This can include graphics characters, special math
symbols, and foreign fonts.

Since the ASCII code is a 7-bit code,there is I bit of an S-bit byte left
over. In fact, if only capital letters are used, 6 bits are needed and thus 2
bits are left over. Usually the extra bits of each byte are set up to contain
color, intensity, reverse video, or blinking information. In this way, it is
possible for each text character to have its own color. In some computers,
like the IBM PC, 2 bytes are automatically set aside for each char-
acter. One stores the ASCII code and the other stores the attribute for
the character, i.e., its foreground and background color, its blinking
state, etc.

It should be noted that in many personal computers the screen RAM
can simultaneously contain both text characters and graphics. The com-
puter can interpret the byte of screen memory as containing either a
ASCII character or several dots of color. In fact, by controlling how
many bits make up a pixel and the way in which they are interpreted for
color, it is possible to control the amount of color and resolution for
several different graphics modes. This is also why you will find that the
color graphics personal computers consume different amounts of mem-
ory depending on which mode is being used.

2.18. CHARACTER GRAPHICS

Another approach to graphics on personal computers is called char-
acter graphics. In this approach, the ASCII text character is replaced by a
graphics character, which has been designed by the computer user. In
some computers this graphics character may be of several colors and have
a density of 8 x 8 or larger. By carefully designing several graphics
characters, the user can define complex objects that are made up of
several of these characters.

In the example below, there are eight distinct graphics characters.
The box figure uses nine characters because one character is actually used
twice. Had the box been larger, we would have been able to use several of
the graphics characters more than once. This graphics character approach
to animation is used in several of the sample programs presented in
Chapter 5.

With character graphics, we use PRINT statements from BASIC to
send the characters to the screen. We draw a figure by PRINTing several
parts of it at distinct locations on the screen. We animate by redrawing the
figure with new graphics characters that represent the next movement of
the figure. One drawback to this technique is the fact that we are limited
to the location on the screen where we can start the figure.

Computer Animation Hardware I 73

o) PICTURE MADE WITH GRAPHIC
CHARACTERS.

m
10 0

CD CD CDIe (l

-

0 ® ®

01[10CD

Illl CD

CD

a t GRAPHIC CHARACTERS USED
TO CONSTRUCT PICTURE IN bl

Figure 2.17: Graphic characters for creating a box.

Now you know about the part of the graphics computer that creates
the image on the screen. But how does one go about getting an original
image into the computer to begin with? Unfortunately, the computer is
not yet equipped to accept commands like "Draw me a cloud." Getting
objects into the computer is the function of graphics input devices, which
we will cover next.

2.19. GRAPHICS PERIPHERALS

How are graphic drawings, paintings, lines, maps, and other images
entered into the computer? The keyboard can be used, but it requires the
laborious typing of the coordinates of every line, color, and pixel that
makes up the image. Instead of entering coordinates, you could use the
keyboard's cursor keys to move a cross-hair cursor on the graphics screen
to point to the place where you wanted to draw lines or shapes. If software
is set up to allow previously formed graphic objects to be ., dragged" into
place, the cursor will allow the user to position them anywhere on the
screen. In other words, you can use the cross-hair to pick up an object,
drag it to some location on the screen, and then paste it in place. Often
this dragging is used with paint systems where a selection of preformed
objects are displayed at the bottom of the screen.

74/ Computer Animation Hardware

For the easy manipulation of graphic images, the keyboard leaves
much to be desired. There are several graphics peripherals in use today
which make manipulation of graphics much easier. These include the
joystick, mouse, light pen, and digitizing tablet.

Joystick

The joystick is a stick that protrudes out of a small box, like a
miniature gearshift lever on an automobile with a standard transmission.
The joystick can move in any direction (north-east-south-west), and there
are usually two potentiometers connected to the joystick that convert its
movements to changes in voltages. These changes, in tum, are converted
to digital values for the computer (usually with an analog-to-digital
convertor, or ADC, the opposite of the DAC). There are two values, one
for the X position of the joystick and one for the Y position of the
joystick. Software in the computer can then use the X-Y position in-
formation to move a cursor on the X-Y plane of the screen.

The problem with the joystick is that an expensive analog to digital
convertor (ADC) is required for movement on high-resolution screens,
and, if it is a poorly designedjoystick, it will require good coordination to
master. By this we mean that it can be tricky to physically relate the stick
position to the cursor position on the screen. Joysticks, however, are
quite popular for low-cost displays such as those found in personal
computers. They are great for games where the user must maneuver a
ship or fly an object through a maze.

Mouse

The mouse used with a computer is not a furry animal with a long
tail. Instead, it is a small box resting on two small wheels whose axes are
at right angles to each other. Two or three buttons are on the top of the
mouse, and the whole device is rolled around on a flat surface thereby
turning the wheels. Shaft encoders (devices that convert mechanical
rotation to binary signals) connected to the wheels convert their turning to
digital pulses that are sent to the computer. By counting the pulses, the
computer can figure out the position of the mouse in the X-Y plane and
then use the information to move a screen cursor, like the joystick did.

Mice are becoming quite popular and offer features joysticks lack.
They are ideal for positioning objects and can also work well for point-
ing. (Stanford University did several studies that proved this.) The mouse
need not be picked up (like the light pen - see below) to be used. In fact,
when it is picked up, the cursor won't move at all.

Some users don't care for the mouse because they don't like having
to search for it after using the keyboard in a dark room. Another, more
important limitation has to do with the fact that the mouse can't be used to
trace outlines from paper images since a small error in rotation will cause
a cumulative mistake in the readings. Another is that the electronic shaft

encoders that are used to translate the information from the turning
wheels are expensive. This last problem may be eliminated soon, as
several companies are developing low-cost integrated circuits that do the
encoding job. With the addition of a microprocessor to these new cir-
cuits, this very powerful graphics input device could possibly become
more popular than the joystick.

Photo 2.6: The joystick.

Computer Animation Hardware / 75

76 / Computer Animation Hardware

Photo 2.7: The mouse.

Light Pen

The joystick and mouse discussed above are primarily used as
positioning devices. They allow us to represent the current position of a
cursor or object on the screen and to move it about. A light pen, on the
other hand, is a pointing device. When it is pointed at an item right on the
screen, its program can identify what item is being indicated.

The light pen is made of a hollow stylus that contains a small lens at
one end and a photocell at the other. Whenever the pen is close to the
screen, light from the screen enters the pen and falls on the photocell. A
switch on the pen allows the user to alert the computer that this is the
position to be selected. The output of the photocell goes to a storage
device similar to one bit of memory (called a flip-flop). This flip-flop can
be triggered when light strikes the pen. It is reset or untriggered when it is
read by the computer.

The light pen does not have the X-Y tracking hardware described for
the pen and mouse. Instead, it uses software for location of its position.
There are two ways to do this: polling and interrupt. In the polling
method, as the raster on the screen is being scanned, each individual pixel
is being illuminated. In some cases a pair of counters in the computer are
constantly updated with the current row and column number of the pixel
that is being displayed. In other systems, it is sufficient to simply note
that the address of the pixel in the display memory tells us its current

location on the screen. Regardless, the computer can decipher where on
the screen the pen is pointing at any time. The computer simply checks
the flip-flop after displaying each point to see if it's been triggered. Since
the counters contain the X-Y position of the current pixel, when it finds
the flip-flop set, it knows exactly where the pen is pointing. This
approach may place heavy constraints on the computer, however, since it
doesn't have much time to check the flip-flop between plotting each
pixel.

In the interrupt approach, as soon as the light pen's switch is
pressed, the flip-flop sends a signal to the computer that interrupts
whatever it is doing and says "I have a light pen point for you." The
computer then simply notes the current X-Y position of the pixel being
plotted (assuming the same counters are being used to keep track of the
column and row or the address of the pixel in the display RAM), and this
is where the pen must be pointing. This method also assumes that the
interrupt occurs fast enough so that no more pixels get plotted.

Light pens are not used for drawing on the screen because it is hard
to hold them steady on the glass surface of the CRT. They are better for
pointing to on-screen menus. Also, there must be light coming from the
screen for the light pen to receive. Thus, a cursor has to be sent to every
OFF pixel, so that the pen will be noticed when it is pointing to a location
that doesn't contain any ON pixels.

Tablets

A tablet (or digitizing table) is a flat surface, separate from the
display, on which the user may draw with a special stylus or pointer.
Using a tablet is much like drawing with pencil and paper, and this
explains their popularity.

There are several ways to build a tablet. The most common
approach simply embeds into the surface a matrix of tiny wires running at
right angles to each other in the X-Y plane. One system, might, for
example, contain 1024 * 1024 wires. Each line carries a special digitally
coded signal. The stylus contains a sensitive amplifier that picks up the
signal and amplifies it. Special decoding circuitry figures out the X-Y
position of the stylus. By pressing the pen down on the tablet, a switch
inside of the pen allows the user to indicate a selected X-Y position.

Another approach puts a resistive plate on the tablet and applies
voltages to it, first horizontally and then vertically. The X-Y position of
the pen can be tracked by measuring the voltage of the pen during the
times the sheet is being scanned. Still other approaches use strip micro-
phones on the edges of the tablet and let the stylus generate a spark that is
then heard by the microphones. Counters record the delay for the sound
to reach the microphones and can then compute the position of the stylus.

The tablet is perhaps the most frequently used of the graphics input
devices. By placing a sketch on its surface, the stylus can be traced over it

Computer Animation Hardware I 77

78 / Computer Animation Hardware

and the drawing will be transferred directly into the computer. A line
drawing can be digitized on the tablet by touching the pen to the intersec-
tions of the various lines on the drawings. If three sides of a figure are
drawn and digitized, it is possible for the computer to create a three-
dimensional model of the figure. Transformation software can then
manipulate this information to create three-dimensional movements and
perspective drawings on the screen. We willleam more about how these
images are manipulated in the next chapter on software and applications.

Photo 2.8: The light pen.

Photo 2.9: The digitizing table.

Photo 2.10: Artist using digitizing table. (Courtesy of Aurora.)

Computer Animation Hardware / 79

80 / Computer Animation Hardware

The hardware used today in computer animation is among the most
sophisticated you can find. Yet as complex as it is, the computer revolu-
tion's trickle-down effect is making more and more of this sophistication
available to the average personal computer user. It is truly remarkable to
think that the devices that were once the exclusive domain of rich
companies are now being studied and played with in homes across the
country . Yet as advanced as the hardware is, hardware alone is not
enough. Any computer, from the most expensive Cray-l (a multimillion
dollar computer being used in computer animation) to the almost throw-
away $99 Sinclair, needs another half to be worth anything, to do
anything useful. This other half is the software program, that marriage
partner of the hardware that tells the hardware what to do. In the next
chapter we will learn about the programs and software that make anima-
tion possible, and we will see how graphics software is a set of rules that
tells the hardware what to do with itself. We will learn how the software
can make the hardware perform incredible feats of animation and how,
over the years, software has become a driving force in computer
graphics.

Computer Animation Software and Applications I 81

Chapter 3

Computer Animation Software
And Applications

T oappreciate thefull capability of the graphics hardware, we need
to be aware of the hardware's nebulous marriage partner: the

graphics software. This chapter introduces you to techniques for defining
graphics objects that the computer hardware can understand and for
moving those objects on the screen (transformation). We will also be
explaining what clipping and windowing are, how three-dimensional
visual realism is achieved with hidden line/surface removal, shading,
color use, and more.

You will see how the software breathes life into the computer's
complex circuitry. This will be revealed along with the ways in which
software allows lines to be drawn, circles to be plotted, shadows to be
cast, and surfaces to be colored, textured, and shaded. In addition, we
will also give you insight as to how computer movies are made, revealing
the techniques behind the Juggler film (described in Chapter I), the
making of Saturday morning cartoons, and inside production information
about TRON, a recent film that relies heavily on computer animation.

3.1. GRAPHICS SOFTWARE - THE BASICS

In most high-powered graphics computers, the hardware will plot
(turn ON) a point anywhere in the frame buffer or display memory when
that point's X and Y coordinates are specified. In other words, if, for
example, you wish the hardware to turn a pixel ON at X, Y location
100,200, then your program must pass the X coordinate of 100 and the Y
coordinate of 200 to the frame buffer hardware. The hardware or soft-
ware, depending on what machine you are using, will cause the bit in the
frame buffer corresponding to the coordinate 100.200 to turn on, and
consequently the screen will reflect this with a dot appearing at that
location.

Some of the more sophisticated graphics machines have, besides
just plotting hardware, built-in line-drawing circuits. With these
machines you simply send the beginning and ending coordinates of the
line you want on the screen, and presto - the computer draws it for you. If,
however, line-drawing hardware is not included in your computer, you

82 / Computer Animation Software and Applications

may wonder where line drawing comes from. The answer lies in the
software.

Software, as most know by now, is a sequence of computer instruc-
tions that creates some end effect. In a graphics computer, the instruc-
tions may be in one of several languages , including BASIC (popular with
microcomputers), Pascal, or even the more fundamental language of the
microprocessor that forms the heart of the computer. You don't really
need to understand all these languages to appreciate that a higher, more
complex level of control is operating in the graphics machine as the
software steers the hardware to achieve certain effects on the screen. The
software can be thought of as the soul of the machine, a higher force that
can't easily be viewed but makes the computer tick, nonetheless. This
higher level of control is the sequence of instructions that causes the
hardware to plot in certain places and in certain ways.

Let's look at a simple example to make this clearer. Suppose that all
your graphics computer can do is plot points. Say it has only the
instructions HPLOT)-(t Y which plots a point at the location on the
screen X, Y. (By the way, this is a graphics statement found in Applesoft
BASIC; it is called PLOT in many other BASICs.) How can a line be
drawn using just this HPLOT statement'? The program in Figure 3. I
shows how. It's written in BASIC, but could be also written in Pascal,
FORTRAN, machine language, or whatever language is at your dispos-
al. In the industry, the program has a name that sort of describes what it
does. It's called a Digital Differential Analyzer (DDA) because it gener-
ates lines from their differential equations, another way of saying it uses
fancy " incremental" methods of plotting and replotting for drawing a
line. It can be used to draw curves as well. If you have a personal
computer, you might wish to type this program in and RUN it, otherwise
you can follow it on paper, providing you know about BASIC, FOR /
NE)<T loops, and so on. (If you don't know BASIC, then skip over it,
and realize its purpose is to draw lines when line-drawing hardware is
absent.)!

In the program in Figure 3. I, entering the endpoints of the line
causes the line connecting those points to be drawn automatically. (This
particular program is not complete; it will only draw lines with positive
startpoints and endpoints.) There are even better algorithms than this one
for drawing lines. Bresenham' s Algorithm is one. It is better in the sense
that the line will appear cleaner on the screen, and the program will run
faster. (These algorithms can be found in Fundamentals of Interactive
Computer Graphics by James D. Foley and Andries van Dam (Reading,
M A.: Addison-Wesley, 1982) or Principals of Interactive Computer
Graphics by William M. Newman and Robert F. Sproull (New York:
McGraw-Hill, 1979).

'You can learn BASIC by reading BASIC Programming Primer by Mitchell Waite and Michael Pardee.
Howard W. Sams & Co., Indianapolis, IN. or Armchair BASIC by Annie Fox and David Fox.
Osborne/McGraw Hill. Berkeley, CA.

Computer Animation Software and Applications I 83

From the primitive capability of just plotting a pixel (H PLOT in Apple-
soft), we can use software to develop more powerful features such as line
drawing or curves, and from these we can draw circles, polygons,
three-dimensional figures, and so on.

Figure 3.1: This DDA program in BASIC has rather simple instructions
(Line 6: HCOLOR = 3) for setting the color of the line to be drawn. In a more
sophisticated graphics frame buffer we might have to write additional programs
that set the color or shade of the pixel as required."

4 REM SIMPLE DDA SIMULATION FOR APPLE II
5 HGR : REM puts

Apple in the HI resolution mode
6 HCOLOR=3 REM sets

plottinf color to white
100 INPUT "}{1,Y1 II ;}{1 ,Y1 REM input

the befinninf coordinates
110 INPUT ")-(2,'1'2 II ;)-(2,'1'2 REM input

the endinf
120 L = I NT (ASS

II inc r eme n t "
(v '?
1\ 4-)(1)) REM L is the

130 I F ASS (Y2 - Y1) :> L THEN L =
ASS ('1'2 - '1'1)

140)0 = (""" -)(1) I L : YI =1\ s:
(Y2 - '1'1) I L

150 x =){1 + ,5 Y = Y1 + ,5
160 REM LOOP AND PLOT LINE
170 FOR I = 1 TO L
180 " = " + xI : Y = Y + YI,\ 1'\

180 HPLOT \/ \/
1\ t I

the actual plot
200 NE}{T I
210 GOTO 100

another line

REM here's

REM plot

Defining Graphics Objects

Once we can plot points and draw lines on the screen, we have all
that is required for drawing simple to complex two- and three-
dimensional shapes. This is done by storing the data points for the objects
we want displayed (i.e., the X and Y coordinates of the object's

'In all fairness we should mention that the Apple II does have a line-drawing statement (called HPLOT
Xl, Y1 TO X2 ,Y2). However, the above algorithm actually draws a better line than the Apple's
statement!

84 / Computer Animation Software and Applications

corners). These data points are fed to our line-plotting routines which
then draw out the shape. It's all really quite simple! For example, a
rectangle would require four pairs of coordinates, a triangle three pairs,
and so on. For three-dimensional objects, a third coordinate describing
the depth is needed for each corner. Each of the eight corners of a cube,
for example, would contain three numbers, X, Y, and Z, each specifying
the location of that corner in three-dimensional space.

3.2. TRANSFORMAnONS

Once we have the capability to draw our shapes on the screen, we
will want to move (translate), shrink or expand (scale), and rotate them.
This can be accomplished by using the mathematics of transformations.
A transformation is a mathematical formula that operates on the coordi-
nate pairs that make up our shape. It takes the various coordinates and
changes their values in distinct ways. There are three fundamental
transforms in computer graphics, and they are not really as complex as
their names imply.

Translation

This transform moves an object to a new location on the screen
without affecting its overall shape. It works by simply adding a constant
value to each coordinate pair. For example, if you have a shape made up
of one point called X, Y (not much of a shape, but good for an example)
and want to move it 100 units to the right and 50 units down, you would
perform this transformation:

X' = X +- 100 Y' Y +- (-50)

where X', Y' are the new coordinates of the point. If this formula is
applied to every point in our shape, they will each shift the same distance.
(Note that in many personal computers you would not need to put the
- 50 in parentheses because the Y axis begins at zero at the top of the
screen and increases as it travels downward.)

Scaling

In computer graphics, scaling has nothing to do with fish. Rather, it
is the graphics industry word for shrinking and expanding an image. Such
a transformation is needed when we want to magnify some portion of our
shape or to shrink it to allow more of the background to come into focus.

Computer Animation Software and Applications /85

The scaling transform works by simply multiplying each coordinate point
by a constant value, as follows:

(Note that in computers, the asterisk symbol * represents multiphca-
tion.) To expand a shape to twice its current size, all points would be
multiplied by 2, as follows:

X'

X'

X * Sl

X * 2

y'

y'

y * S2

y * 2

To contract or shrink a point, multiply all the coordinates by a
fractional value. For example, to shrink our shape to one half its current
size, we would multiply all coordinates by 0.5. (The same results would
occur if we divided all coordinates by 2.)

If we change the size of S I and S2 so they are not equal, then we will
create distortion in the X or Y direction. To understand the visual effects
of scaling, look at Figure 3.2. It shows the corners of a rectangle centered
on the coordinate axis. Note that multiplying each coordinate by 2,
moves each corner outward from the center of the axis. If we simply
added or subtracted a value from the coordinates. the result would be that
the corners would all shift in the same direction (up, down, left, or right).
This would result in translation rather than expansion or contraction.

Y-AXIS 16

-16

- NEW SHAPE
, " / '.....___ OBTAINED AFTER
I ' /' MULTIPLYING BY 2
I" 4 '" I
: ORIGINAL SQUARE

I I
-8 -4 4 +8 +16

I I
I I
I I
I I

: /,_---+---4., :
I // -4"" I
I / I
I / / ", :

-16 -16

X-AXIS

Figure 3.2: Example of scaling to magnify a shape.

86 / Computer Animation Software and Applications

Rotation

Rotation is the most complex transform because it uses the trigo-
nometric functions sine (S IN) and cosine (C0 S). These are functions
found in most of the high-level computer languages like BASIC and
Pascal. When given an angle of a triangle, these functions produce a
number that represents the ratio of two of the sides of that triangle. For
example, when an angle of 45 degrees is fed to the SIN function, the
result is the number. 707. To rotate an object by an angle (A), we simply
apply these formulas to all points:

X' = X * COS A + Y * SIN A Y'
X * SIN A + Y * COS A

The old points are X, Y, and the new points will be X',Y'. The angle
used can be from 0 to 360 degrees of rotation. Note we only have to
calculate the COS and SIN of the angle once, then it is simply multiplied
as shown in the formula. Figure 3.3 was created by laying a piece of grid
paper over a drawing and marking coordinates on the grid. These coor-
dinates were then entered into DATA statements in BASIC. Finally, a
simple line-drawing algorithm was used to draw the shape. It was rotated
by recalculating the points with a certain angle using the above algo-
rithm, and then it was redrawn.

Figure 3.3: Rotation example using da Vinci man. (Courtesy of The Waite
Group.)

Computer Animation Software and Applications / 87

A mathematical entity called a matrix can be used to assemble
several transforms into one neat package. Using a matrix, it is possible to
have a single mathematical operation that performs a rotation, a scaling,
and a translation in one compact form. Some of the really sophisticated
graphics processors perform such matrix operations in hardware

3.3. CLIPPING AND WINDOWING

Often you see graphics programs that zoom in on some small object
in a particular scene, magnifying it until it consumes the entire screen.
This zooming is accomplished with the transforms of scaling and transla-
tion. But while watching a single object envelope a screen, did you ever
wonder what happens to the parts of the scene that are now out of the
picture? Are they being drawn on an invisible part of the display? No,
they are dealt with by a process known as clipping, which means to
eliminate that portion of the scene that will not appear on the display.

The purpose of clipping is to cut off portions of the object that are
invisible. This is surprisingly not an entirely trivial task; in fact it is the
subject of much scholarly research. In most cases it is not enough to
simply determine all points that are not within the screen area and then
not plot them. This would be extremely slow, as even in a magnified
image there may be millions of pixels that are not displayed. We must
attempt to clip larger elements or sections of the picture. This involves
the use of clipping algorithms that can determine portions of the picture
that are visible and invisible, such as vectors, text characters, and
polygons.

To appreciate the problem, consider clipping the triangle that is
partly shown on the screen in the figure on page 88. Imagine this as part
of a rocket ship, or missile that is moving into the display area. It is no
problem to clip lines that are entirely off the screen. It is done by simply
throwing them away!

Assume you have line-drawing commands at your disposal. In order
to clip the triangle, you must examine all the points that make it up. As
you examine these points you look for ones that are off the screen edge.
Assume also that your object starts at point A. You immediately discover
that point B is off the screen edge. So you must draw a line from point A
to a point at the edge of the screen where the line would have intersected
the screen edge if it had extended all the way to point B. This requires
your software to calculate where the line intersects the screen edge. (A
simple algebraic formula exists to do this.) Next you ignore the rest of the
shape that is off the screen edge (i.e., from the edge to point B, from B to
C, and from C to the edge). You must then draw a second line from the
edge of the screen at the point where the line would have intersected had it
been drawn from point C to point A.

88 / Computer Animation Software and Applications

The problems here are finding the points outside the screen and
determining where the intersection points are on the screen edge. Such
clipping is usually done with algorithms that involve rejection tests to
find parts that lie off the screen and subdivision calculations, which break
the line into new parts that lie within the screen boundary.

Cli PPED AND NOT
DI SPLAYED\

I"'-...)
v; ..., -----/

......
.:.«

SCREEN EDGE---J
(CLIPPING EDGE>

/
/

/
/

/
/

/
/

-----_..../

Figure 3.4: An example of clipping.

Applesoft Transformation Example

'" '" ,,-'\
\
\
\
\
'---------

In case you are interested, here is a partial listing of a larger
Applesoft BASIC program that can be studied (it can also be mod-
ified for other computers). It will help you to understand how the
drawing of the rotated figure of the da Vinci Man was produced. The
lengthly DATA statements for the are not included. You
can create your own if you wish (use two arrays, one for all the X
values and one for all the Y values). Besides demonstrating how to
do the rotation, this program also illustrates brute force clipping and
scaling transform. To produce more images of the man at different
angles on the screen, simply increase the size of the FDR/ NE T
loop in line 2020 and change the initial angle in line 2015 and the
incremental angle in line 2040.

Computer Animation Software and Applications I 89

Main Program:

REM 9'ood

REM clear

read

sets

set

REM

REM

: REM

: REM
to -L15 de9'rees

: REM

REM 'Hall of Mirrors' Da Vinci Man
rotation s x ams l e
A = lL10: 5 = 85: GoSU5 21
c l i s s i n s l I mi t s
PI = 3.1L1158
01 pi
GoSU5 L15
the sc r e e n . d r a u bo rde r
GoSU5 30
the Man's data stateMents
into the a r r a v
J=2: K=2: GoSU5 L10 : REM
double his size with stretch
t r a n s f o r m
ANG = -PIILI
the first a n s l e
FOR P = 1 TO 2
first and second Man
C = COS (ANG) S = SIN (ANG)
ANG = PI/2 : REM sets
the increMental an9'le
at 80 de9'rees
GoSU5 60
rotate the Man (he's at zero
deg'rees start)
FX = X(0): FY = Y(0): GoSU5 10
: REM do cliPPing' (siMPle)
HPLoT A + FX,5 + FY
FOR I = 1 TO N:

2205
2210

2200

2100

2020

2030
20L10

2015

2010

2008

2007

2006

2005

2000

2220

2230
2235

F}(=){ (I): FY = Y(I): GoSU5 10
: REM clip

this point first and then ••••
HPLoT TO A + FX,5 + FY : REM
finally draw line between
points

NE){T I
NE){T P

Subroutines:

10 REM do the o Li e s i n s
11 IF F" >- THEN FV = }{H1\ 1\

12 IF FV < }<L THEN FV =){L1\ 1\

13 IF FY > YH THEN FY = YH
lL1 IF FY <: YL THEN FY = YL
15 RETURN
21 REM set x and Y cliPPing' Li mi t s
22 }-(L = -A:){H = 278 - A:

YL = -5 : YH = 181 - 5 :
RETURN

(continued)

90 I Computer Animation Software and Applications

shrink transformstretch or
o TO N:
J * i-«(I):
K * '((I) :

>((I) =
'((I) =

NEi<T I
RETURN
REM clear screen draw border
CALL -936: HGR: POKE -16302,0:
HCOLOR = 3:
GOSUB 50:
RETURN
HPLOT 0,0 TO 279,0 TO 279,191
TO 0,191 TO 0,0:
RETURN

40
41

50

32

read in the data
(N=# of points, F=aspect
correction

31 RESTORE:
FOR I = 0 TO N:
READ i« I) :

NEi<T I
FOR I = 0 TO N:
READ '((I) :
'((I) = -'((1)/F:

NEi<T I:
RETURN
REM
FOR I =

30 REM

45
46

60 REM actual rotation transform
61 FOR I = 0 TO N
62 i<1 = C * >((I) + S * '((I)
63 '(1 = -S * X(1) C * '((I)
64 X(1) = Xl: '((I) '(1
65 NEi<T I:

RETURN

Figure 3.5: Applesoft Transformation Example.

Viewing and Windowing Transform

You now know about clipping a picture to remove the invisible parts
and transforming a picture to change the scale and orientation of it. One
of the immediate advantages we gain from the use of transformations is
the ability to define pictures in the coordinate system of our choice. So far
we have just used the screen's limited coordinate system, and in practice
this may be quite awkward. For example, what happens when the
picture's coordinates are expressed in floating point (decimal) numbers
between ± 999,999.999 and the screen coordinates are integers between

Computer Animation Software and Applications / 91

oand 1023 or 0 and 279 (as in personal computers)? We can avoid these
problems if we can define our picture in its own coordinate system and
then use a transformation to convert it to the screen coordinate system
when we are ready to display it. Such a transformation is referred to as a
viewing transform.

A viewing transform is simply a combination of clipping, scaling,
translation, and rotation that converts all the picture's coordinates to
screen coordinates. (Actually rotation is rare in the viewing transform.) It
can be adjusted to allow us to view the picture through a viewing
window, a rectangle that surrounds some portion of the picture. In
computer graphics, the coordinates for the object or picture we are going
to transform are called world coordinates. The world coordinates are the
database of points for the picture itself (our large decimal numbers in the
above example). These values may be large or small numbers with
decimal points, arrays such as game boards, graphs with dates, and so on.
Our screen's coordinates, on the other hand, are usually in integer form
(i.e., whole numbers), and are called screen coordinates. It is the purpose
of the viewing transform to convert the world coordinates from the
picture's original database of points to fit into the screen coordinates. The
viewing transform is particularly useful when we cannot always predict
the range of numbers our application will produce. This might be the
case, for example, when the data is coming from an experiment or
mathematical model.

The window, a rectangular section of the world coordinate system,
can specify the viewing transform to be operated on. A window can float
around the picture's database of points and select out just the part we wish
to zoom in on, expand, etc. The main use of defining a window is that we
can lessen the work that the transform has to perform. It also makes it
easy for us to examine other parts of our graph, picture scene, or
whatever by simply readjusting the window's corner limits.

A viewport, in contrast, is a rectangular section of the screen
coordinate system to which we can have the output of the viewing
transform directed. Often the viewport is smaller than the screen, thereby
allowing text menus and system messages to be placed under the picture.
There may, in fact, be several viewports on a screen.

92 / Computer Animation Software and Applications

99,999

\ \
VIEW ING
TRANSFORM

I --

I I
I I
I
I I
I
LL_-_-_-_-_-_-_-_-_--'!J

--------------,
I--- VIEWING
I WINDOW
I
I
I
I

I
I
I
I
I
I
I
I
II 0 '-- L-_---'_
L _

1023

SCREEN)
COORDINATES

SCREEN

Figure 3.6: Windows, world and screen coordinates, viewports.

3.4. FILLS AND SCAN CONVERSION

We have discussed objects with wire frame construction, i.e.,
where the shapes are comprised of lines, like the superstructure of a
building before the walls are put up. Unfortunately for the graphics
designer, the real world is not made up of wire frame models, but rather
contains solid areas that give a shape its substance. How does one go
about filling in the wire frame outlines that make up a graphics shape?
This whole process is an interesting area of study that is just now being
pursued with relish in the personal computer field.

Three properties are required to fill in an area. First a mask, which
defines the pixels that lie inside and outside the area to be filled, is
generated. For example, a binary 0 may mean pixels outside and a binary
I may mean pixels inside. The mask may consist of a list of the corners

Computer Animation Software and Applications / 93

(vertices) of the geometric object to be filled. Computing the mask from
the geometric image of the object as it exists on the screen is called scan
converting. Second, there is usually a shading rule that defines what the
intensity of each pixel inside the mask shall be. Different intensities
inside the mask lead to different shading, shadows, colorations, textures,
etc. Third, there is usually a priority assigned to the sides to be filled.
Priority is the property that defines what parts of overlapping areas are
obscured and which are shown. Thus when we do an actual fill we will
know what areas are to cover which.

The process of converting from the geometric representation of an
object (its corner coordinates) to one that can be filled on the screen is
usually not complex when simple shapes are involved. A rectangle, for
example, can be scan converted (filled) with a very simple algorithm that
only plots pixels (or draws lines) between the left and right sides, starting
at the top and finishing at the bottom. But since unadorned rectangles are
uncommon in most graphics scenes, some way must be developed for
scan converting a more general shape such as the polygon. The real
problem of the scan conversion filling is in handling a polygon with
holes, corners, and convoluted nooks and crannies.

Advanced Fills

One of the most popular scan conversion approaches for poly-
gons involves extending an imaginary line from some point outside
the polygon to the opposite side of the polygon and counting the
number of boundaries (an edge of the polygon's perimeter) crossed.
If an odd number of intersections is encountered, the point in ques-
tion must lie inside the shape, otherwise it lies outside.

Using this algorithm, we can plot points on the line while we are
inside the polygon and cease plotting when we are outside the area.
This is a rather slow algorithm, as every point must be tested and
compared with each edge of the polygon. This approach can be
improved, however, by using the concept of coherence, which states
that "if a given pixel is inside the polygon, then adjacent pixels are
likely to be inside as well." This property suggests that a number of
pixels should be tested together, and the most convenient group to
test is the entire scan line. This leads to the famous YX Algorithm in
which all intersections of scan lines are first found and put in a list.
The list is then sorted so that the various intersections are grouped
by increasing X values. By using the values in this list, we can quickly
plot the entire line between two boundaries, without ever having
to test every point.

Another popular approach to filling involves using the com-
puter's stack. The stack is an area in the computer's memory where

94 I Computer Animation Software and Applications

we can temporarily place information and quickly retrieve it. It works
like the pop-up trays or plates in a cafeteria. With this method, we
scan from top to bottom and left to right filling in pixels as the scan
proceeds. When the algorithm discovers that a left or right boundary
changes (due to a corner, for example), it saves the current bound-
ary coordinates (pushes them onto the stack) so it can later retrieve
them and continue. The algorithm then begins filling in the new area
until it finds the new right boundary and continues until it hits bottom.
Upon finding the bottom, it will restore the old boundary coordinates
(pop them off the stack) and continue the fill from where it left off. In
essence, this algorithm searches for edges until the entire shape is
filled. Such algorithms have been implemented on personal com-
puters such as the Apple and IBM. Microsoft's BASIC forthe IBM fills
using the stack approach.

3.5. THREE-DIMENSIONAL REPRESENTATION

Perhaps the most remarkable achievement of computer graphics is
the modeling and displaying of three-dimensional images. Whereas two
dimensions involve X and Y coordinates of width and height, the third
dimension takes us into the realm of depth (the Z coordinate) and
perspective realism. In two dimensions, our pictures do not require the
subtle qualities of an image seriously attempting to represent reality.
Realism puts an incredible burden on the graphics computer and its
software. For example, since the screen is set up to display two dimen-
sions, how is the third dimension of depth to be displayed? And how are
parts of the object that are hidden by the frontal parts to be identified and
removed? In addition, how will lighting, color, shadows, and texture be
added to the display? All of these questions must be answered by those
who employ three-dimensional computer graphics. Lets take a look at
some of the concepts involved.

Achieving Realism

The degree of desired realism in computer graphics images depends
on the application. Perfect realism comes at a high price in terms of the
cost of hardware and software, the amount of information stored for the
model, and the time required for computing different views of the
display. Since a three-dimensional scene must be projected onto a two-
dimensional screen, the major stumbling block is depth perception,
sometimes called depth cuing. Many techniques have evolved for provid-

Computer Animation Software and Applications /95

ing depth cues on computer graphics display, as described in the follow-
ing paragraphs.

Parallel Projection Although many different types of projection
exist, all are designed to ease the task of generating three-dimensional
views of images. Parallel projection is a method by which three views of
an object are projected (see Figure 3.7). One application is when an
architect draws three parallel projections to illustrate a house, e.g., a
front view, a side view and a top view. The viewer must then infer the
final shape from the three views. Most people, however, have difficulty
inferring the three-dimensional view from parallel projections.

TOP

FRONT

D
SIDE

Figure 3.7: Parallel projection.

Perspective Projection This is the most common projection and
involves showing the object in three dimensions on the screen, with
distant objects smaller than nearer ones (see Figure 3.8). There is a
potential problem here if objects are limited in depth, as there may be
front/back ambiguity. For example, everyone is familiar with the wire
frame cube illusion where the front and the back can change places
depending on how you view it or imagine it to be. If we view the image
through a wide angle lens and exaggerate the perspective depth, the
front/back ambiguity disappears, but undesirable distortion effects take
its place.

96 / Computer Animation Software and Applications

Figure 3.8: Perspective projection.

Intensity Cues If we use intensity modulation to brighten lines
that are in the foreground, we can give the illusion that they are closer to
the viewer. When foreground lines are widened, the same effect is
achieved. This is a simple way to create depth cues, which requires a gray
scale capability in the computer (we covered gray scale in Chapter 2). If
the object is very complex, however, or the depth is small, this technique
may not work well.

Stereoscopic Views If separate images are created for the left and
right eyes and presented so each eye can only see the image intended for
it, a powerful illusion of depth can result. Several methods have been
developed for implementing this technique, including flashing shutters,
polarized glasses, color filters, and so on.

Kinetic Depth Effect Watching the movement of an object can
help the viewer experience the depth effect. Motion around a vertical
axis, for example, can resolve the ambiguity of a simple wire frame
object because lines near the viewer move more rapidly than those at a
distance. The rotation must be rapid for the effect to work, and this may
require special graphics hardware.

Hidden Line Elimination By removing lines that would not be
visible to a viewer, considerable depth cues and realism can be achieved.
This is a powerful and much studied technique in computer graphics. For
all but the most simple of wire frame objects, it requires large amounts of
computing time.

Computer Animation Software and Applications /97

Figure 3.9: Perspective projection with hidden lines removed.

Shading, Surfacing, Texturing By adding shading, surface tex-
ture, and shadow, computer images can achieve a degree of realism that
makes them indistinguishable from photographs of real objects. The
realism of many of the computer graphics photographs in this book are
due to high quality shading, texturing, and surfacing.

Three-Dimensional Coordinate Systems

When dealing with three dimensions, a new axis is added to the
standard two-dimensional X-Y coordinate system with which we are
familiar. We use the letter Z to represent the new axis which takes on the
quantity of depth. The three numbers (X, Y, Z) specify a point in this
coordinate space. The choice of the directions of the three axes depends
on the application. For computer graphics, it is standard to have the Y
axis point up, the X axis to the right and the Z axis point either out from or
in to the screen. If the Z axis points out from the screen, we have a
right-handed system. If it points in to the screen, we have a left-handed
system. (In computer graphics, the most popular orientation is a left-
handed system so that as objects get farther away, their Z values in-
crease.) "Handedness" answers the question "Which hand must you
wrap around the Z axis so when the thumb points outward along that axis,
the fingers on that hand wrap around it in a counterclockwise direc-
tion?" You can prove this to yourself on the coordinate system below.
(Note in mathematics the Z axis is usually drawn facing upward.)

98 / Computer Animation Software and Applications

y

z
(INTO SCREEN)

OL----------.x
0,0,0

Figure 3.10: Three-dimensional coordinate system (left-handed).

To generate the view of a three-dimensional scene, three parameters
must first be specified. They are viewpoint, viewing direction, and
aperture (see Figure 3.11). These parameters are similar to the adjust-
ments a photographer must make when photographing a scene. The
viewpoint is the location where the camera must be physically set to take
the picture, the viewing direction is the direction in which the camera
points, and the aperture is the lens that determines how much of the scene
will be included in the picture. These parameters are similar to the
window parameters we used for two-dimensional viewing. Note that in
this figure the Z axis points upward.

z

APERTURE ------....-«./'0 VIEWPOINT

DIRECTION

x y

Figure 3.11: Three kinds of viewing parameters.

Modeling in Three Dimensions

Before we discuss how curves and surfaces of three dimensions are
created, it is important to understand how a three-dimensional object is
modeled in the computer. As shown in Figure 3.12, in two dimensions
we use polygons, two-dimensional n-sided figures, like rectangles,

Computer Animation Software and Applications I 99

trapezoids, pentagons, and hexagons, to model our shapes. In three
dimensions we use polyhedrons (as well as polygons) to model objects.
Polyhedrons are three-dimensional volumes whose sides are comprised
of polygon faces. Some typical polyhedrons are cubes, parallelepipeds,
wedges, prisms, etc. (see Figure 3.12).

The polygon face is specified by its vertices and its edges. A vertex
is a corner of the polygon. An edge of a polygon is the line connecting
two vertices. A polyhedron is also specified by its faces, which in turn are
polygons that can be specified by a list of its vertices or edges. This list,
referred to as the geometric description, is usually presented in a certain
order so we know what vertices connect to what edges.

0) POLYGONS

SIDE

VERTEX

TRIANGLE

b) POLYHEDRONS

OCTAGON COFFEEPOTAGON

/FACE (SQUARE POLYGON)

f--;__1_, "" """'" ""J
CUBE

Figure 3.12: Polygons and polyhedrons defined.

PYRAMID

Since a face has two sides (one inside the object and one facing out),
some convention must be chosen for representing these faces to the
computer. One way is to list the vertices of the edges in counterclockwise
order when the face is viewed from outside.

Table 3.1 shows how a simple cube in the figure is represented
mathematically so the computer graphics software can operate on it.
Another property of the cube is its topological attributes. Whereas the
geometric values give the locations of points in the image (i.e., the
coordinate values for each point), the topology gives the underlying
structure of the shape. This is done by listing the faces (i.e., FI, F2, etc.)

of the shape. The table may also include auxiliary information about the
cube, such as the colors of the various faces, their texture, etc.

100 I Computer Animation Software and Applications

Z

x

va
(0,0,1)

V2
(1,1,0)

(X,Y,Z 1

V5
(O,I,ll

V6
(0,1,0)

Y

Figure 3.13: The three-dimensional cube with vertices indicated.

GEOMETRY

Vertices

VI (1,1,1)
V2 (1,1,0)
V3 (1,0,0)
V4 (1,0,1)
V5 (0,1,1)
V6 (0,1,0)
V7 (0,0,0)
V8 (0,0,1)

(continued)

Computer Animation Software and Applications / 101

TOPOLOGY

Faces

(list of vertices counterclockwise
when viewed from outside)
FI VI,V5,V8,V4
F2 V5,V6,V7,V8
F3 V6,V2,V3,V7
F4 VI,V4,V3,V2
F5 V8,V7,V3,V4
F6 V6,V5,VI,V2

AUXILIARY DATA

Colors

(red, green, blue components)
FI (0.4, 0, 0.3)
F2 (0.3, 0.6, 0.1)
remaining faces repeat F2

Edges

(can be derived from faces but
duplicates are removed)
VI,V4 V7,V8
V4,V3 V8,V5
V3,V2 V5,VI
V2,VI V8,V4
V5,V6 V6,V2
V6,V7 V7,V3

Table 3.1; Representing the cube with a data list.

Almost any shape may be created by assembling a group of
polyhedrons. As the number of faces of each polyhedron in the shape is
increased, very complex objects can be represented. It is beyond the
scope of this book to discuss modeling in detail, but it is sufficient to
understand that the object to be modeled will be represented as an ordered
list of vertices or faces. It is on this list that the transformation, clipping,
windowing, and upcoming hidden line removal and surfacing algorithms
must operate.

Constructing three-dimensional models is extremely difficult as vast
quantities of data must somehow be entered into the computer. The usual
method is to make a complex object from more primitive shapes. For
example, we might create a three-dimensional ant by making the body
from previously defined spheres which were constructed, in turn, from
many-sided polyhedrons. We would then only need to add legs which
could be made of cylinders, and so on.

3.6. CURVES AND SURFACES

One of the most intriguing aspects of three-dimensional graphics is
how a curve is made and how surfaces are produced. We have already
learned how to represent a three-dimensional object by using many-sided

102 / Computer Animation Software and Applications

polyhedrons. Although it would be logical to assume that complex
curved surfaces could be modeled by simply increasing the number of
polyhedrons and making them smaller, it is often very difficult to modify
such shapes because ofthe number of faces involved. A simple bottle, for
example, might be approximated by a single polyhedron with 1000 faces.
Changing its diameter would then involve thousands of coordinate
points, all of which would have to be altered by the designer.

The need for smooth curves and surfaces is dependent on the actual
application. In some applications, such as the design of a simple me-
chanical part for an engine, for example, constructing the shape from
plane face polyhedra may be completely adequate. On the other hand,
designing car bodies, where smooth graceful curves are required, calls
for more complex shapes and very smooth surfaces. Such shapes are too
cumbersome to represent with a finite number of polyhedrons. There
must be other ways to modify curves that involve changing only a few
parameters thus affecting the curve in some predictable manner.

There are basically two different methods for describing and creat-
ing curves and surfaces: analytic and synthetic. Analytic methods are
used to describe shapes that can be measured, i.e., data points exist, and
we wish to come up with the curve that is described by these points.
Analytic methods are employed when we are trying to achieve a precise
fit, to represent a shape in some compact form, and so on. Examples are
fitting a curve to a set of data points, fitting a surface to the measured
properties of some real object, etc. Synthetic methods, on the other hand,
are more often encountered when curves are being created from scratch in
the design process. With synthetic methods a designer interacts with a
program to create or modify a model of a shape, changing and improving
the design until it meets the desired criteria. That model may then be used
to create an image of the shape which can be examined.

With synthetic methods we are more concerned with the design
process and the exploration of the appearance of new curves and sur-
faces. Once a curve is created with synthetic methods, the data which
describes it can then be used in the analytic methods, allowing measure-
ment of the curve. In this section we will concentrate on the synthetic
approach, i.e., interactive shape modeling, and the techniques that we
describe for curves can be extrapolated for use with surfaces.

Ordinarily, when a designer is modeling a shape based on curves,
there is an interactive program involved. The designer first makes a
rough approximation of the shape, then improves it with the program
until it more closely resembles the desired shape. A very common way to
control the shape of a curve is to locate points through which the curve
must pass. These points, called the curve's control points, can be con-
nected by straight lines to make the curve's open polygon. Since the
creation of curves is conceptually simple but mathematically complex,
we will stick with a visual explanation. (See Figure 3.14.)

Computer Animation Software and Applications / 103

Figure 3.14: Control points for a curve.

By manipulating and moving these control points, it is possible to
control the shape of the curve in a predictable way. A complex curve is
made up of several curves pieced together end to end. As a designer alters
a control point, the curve may change shape only in the region of the
control point, or throughout the entire curve. This capability allows the
designer to fine tune the curve as desired and is respectively referred to as
local and global control.

Control points for a curve or surface may actually be off the curve.
One such type of control point altered curve is called Bezier curves
(pronounced bay-zee-YAY). A simple Bezier curve with four control
points is shown in Figure 3.15. Bezier, a Frenchman who worked for
Renault, created a computer modeling program for designing auto body
surfaces. The key to his work is special blending functions. These are
mathematical functions that represent the influence that each of the
control points exerts on the curve. By controlling these blending func-
tions, the designer can change the Bezier curve in very predictable and
uniform ways.

2 3..--- POINTS 1-4
DEFINE THIS CURVE

/ \
I.

1 4

Figure 3.15: Bezier curve and four control points.

Modeling three-dimensional surfaces is merely an extension of
control points. Using Bezier curves we can produce a three-dimensional
surface by multiplying two curves! Usually a surface is pieced together

104 / Computer Animation Software and Applications

from several patches and continuity between them (the places where they
connect) is formed with special mathematics. Figure 3.16 shows a Bezier
surface and its control points.

/THESE POINTSI DEFINE THE SURFACE

Figure 3.16: Bezier surface and its control points.

One problem with Bezier curves is that changing the control point
can affect more of the curve than the designer wishes. Points that are far
from the altered control point, for example, can be affected. Another
technique for generating curves that doesn't suffer from this problem is
called the B-spline curve. B-splines allow multiple control points at the
same location (i.e., the control points can overlap). This in turn allows
good local control of the curve without affecting distant points.

Displaying curves and surfaces on a CRT is more difficult than
displaying shapes constructed from straight lines. The simplest technique
for displaying curves is using wire frame techniques. In this process, the
curve is evaluated using the techniques described above and the points
are then connected by many short, straight line segments. Getting depth
cues for the display of curves can be tricky too. Often the method of
intensity modulation is used for providing a depth impression, but this is
not always adequate for complex shapes. Revolving the shape about an
axis can help in visualization.

Another approach to visualizing subtle curves in surfaces is by using
the hedgehog method. Here small vectors which are normal (perpendicu-
lar) to the surface are displayed (see Figure 3.17). Although this tech-
nique makes the display look like grass shoots projecting from the
surface, its orientation gives the eye a better idea of the general changes
the surface will undergo.

Although all of these are valid techniques, shading, which we will
discuss soon, is perhaps the best way to visualize curves.

Computer Animation Software and Applications / 105

Figure 3.17: Hedgehog method for visualizing subtle curves.

3.7. HIDDEN LINE AND SURFACE REMOVAL

Perhaps the greatest challenge facing the computer graphics user is
the removal of hidden parts of images from solid objects. In real life we
don't concern ourselves with hidden lines because an object's solidity
automatically blocks light from unviewed parts. (Perhaps there is a
survival value for not having X-ray vision like Superman, for had we
such an ability we would probably have a difficult time figuring out the
front of objects from the back, not to mention the privacy problem.)
Given our "limited" visual abilities, we are seldom conscious of what
the back side, or inside, or hidden parts of an object look like. When
objects are projected on the screen in computer graphics, however, there
is no such automatic hidden line removal, and every single part of the
object is displayed. To rectify this, special hidden line and hidden surface
algorithms have been developed.

In the early 1960s most algorithms centered on hidden line removal
because raster displays and surface fills were still in their infancy. We
have certainly come a long way since then. Today hidden surface algo-
rithms that utilize hardware can generate views of objects at rates of up to
30 images per second. Although there are many algorithms for hidden
line and surface elimination, there is no one best algorithm. Each is ideal
for a certain type of scene model or a certain degree of image complexity.

Hidden line and hidden surface algorithms basically work much like
the scan converting we discussed earlier. They all use geometric sorting
to determine which parts of the shape are visible and which are invisible.
Geometric sorting involves finding the objects which are closest to the
viewer. Once the near objects are determined, the parts far from the

106 / Computer Animation Software and Applications

viewer can be tossed in the proverbial garbage can. Geometric sorting is,
in reality, much more difficult than it may sound because complex
objects do not always fall into simple order. Many algorithms rely on the
property of coherence (lines in close proximity are similar) to simplify
the determination of lines or surfaces that are hidden.

The most popular form of hidden surface removal is the depth-
buffer algorithm. In this method we scan through the object by looking at
each of its points in the database. Imagine peering into each pixel with
X-ray vision. You would be able to see every surface of every object
which falls directly behind that pixel. The Z value of each of these
surfaces is checked, and only the one with the lowest value (the closest
one in relation to the viewer) is saved. A record is then made of the depth
(Z) of this closest surface in a separate array which has the same
resolution as the screen. The intensity of this closest surface at that pixel
is recorded in another array.

Thus two arrays are used, one for the depth and one for the intensity.
When the depth-scanning algorithm is finished, the intensity array con-
tains the image with the hidden surfaces removed. Note that the algo-
rithm only works on objects that have been converted into screen coordi-
nates. Thus if the object is magnified, the entire process will need to
be repeated.

The depth-buffer algorithm is not always practical because of the
huge size of the depth and intensity arrays. A 400 x 400 coordinate
system would require two arrays with 160,000 elements each! One way
around this is to use smaller arrays and work on individual sections of the
picture. This is a good solution since we can throw out the depth array
after each pixel is done. The 400 x 400 system can be divided into 100
rasters of 40 x 40, so only 1600 elements are needed per array.

The process of computing the arrays is still very time consuming and
eats up memory like a starving elephant. The way to solve the problem of
excessive processing time is to use coherence techniques, as were de-
scribed earlier, for the scan conversion methods. The need to cut down on
processing time has given rise to a class of removal techniques called
scan line algorithms that solve the hidden surface problem one scan line
at a time. These capitalize on the fact that for each single scan line, short
spans of pixels will lie within the same polygon.

Another approach to hidden surface removal involves comparing
two polygons to determine which obscures the other. We can compute
each polygon's plane equation, which precisely defines the surface of
that polygon. This equation allows us to then determine if a particular
point in the display scene lies inside or outside the polygon plane. We can
also locate all the polygons with back faces (those which cannot be
viewed by the observer because they lie on the side of the object facing
away from the viewpoint).

Many more advanced algorithms exist for removing hidden sur-

Computer Animation Software and Applications / 107

faces, each having characteristics that make it better for one type of
object than another. The more available the tools, the better, because as
scene complexity grows, hidden surface elimination limits the ability of a
computer to process pictures in real time.

3.8. SHADING

Now we come to shading, the one component of graphics process-
ing that does more to help create realism than any other factor. After we
have identified the visible surfaces with our hidden surface algorithms, a
shading model is used to compute the colors and intensities for the
surface. The shading model has two main aspects: properties of the
surface and properties of the illumination falling on it. This model
attempts to simulate the behavior of light on an object as it would appear
in the real world to the eye. To do this, it must simulate the surface
properties of the object, such as its reflectance, texture, color, and
transparency. Reflectance tells us how much incident light returns to the
eye. If the surface is textured, the reflected light will vary with the
position of the texture on the surface. If the surface reflection changes for
different wavelengths of light, it will appear to be colored. If some light
passes through the object then it has transparency.

Inaddition, the model must simulate the illumination on the object.
If the illumination is uniform from all directions it is called diffuse
illumination. If the illumination comes from one location it is called a
point source. Point source lighting causes highlights to appear on the
surface. If the object moves, as it will in animation, the model must
change the lighting accordingly. This is a difficult task indeed.

Photo 3. I, below and on the next page, shows a good example of
curved objects, hidden surface removal, and shading.

a) (continued)

108 / Computer Animation Software and Applications

b)

c)

Photo 3.1: Hidden line removal and shading: a) Artist's Table (wireframe)
represents one way of previewing an image without incurring the overhead of a
full rendering. The color of the wireframe components approximates the colors
of the final image. Once the wireframe image is constructed and situated to
satisfaction, a solid image with hidden surfaces removed is rendered. b) Artist's
Table (with stand-ins) shows the next step in establishing a shot, which is a
hidden-surface rendering with "stand-ins," i.e., simpler, less detailed substitutes
for the objects to be used in the final image. These stand-ins allow decisions
about placement, coloring and lighting to be made and changed more quickly
than would be possible with a fully detailed image. c) Artist's Table shows the
final still-life, with all the fully detailed parts included in the scene. Spline-based
primitive objects, as well as simpler geometric primitive shapes make up the
objects in this scene. Light is from two light sources: a white light from over the
viewer's left shoulder and a yellow one from the rear left of the scene. These
pictures are antialiased, full color, 512 X 512 images (see color insert). They
were produced on a PDP 11/44 computer using the UNIX operating system, C
programming language, and a DeAnza 6400 frame-buffer. Software and images
were produced by Richard Chuang, Glenn Entis, and Carl Rosendahl. (Courtesy
of Pacific Data Images.)

Here is how it's done. A mathematical model that takes all the above
parameters into account is developed for each pixel of the object in the
scene. The model determines the amount of light energy coming from a

Computer Animation Software and Applications I 109

point on the display. The model can be broken down into three parts, the
contribution from diffuse illumination, contributions from one or more
light sources, and a transparency effect. The actual mathematics must
utilize the rays of light arriving from different parts of the scene. Each of
these effects contributes to the final shading of the object.

An example of a shading formula would be

E(pd) = R(p) * l(d)
where E(pd) is the energy coming from the point P due to diffuse
illumination, I(d) is the diffuse illumination falling on the entire scene,
and R(p) is the reflectance coefficient at point P, which ranges from 0 to
1. The actual formulas used for modeling shading use this one as a
starting point and expand to be much more complex. Such things as
reduction in intensity due to changing angles of incidence (Lambert's
Law), single point source contributions, and transparency must also be
included in the formula.

The actual calculations must be performed many times (for each
point on the object) to produce a properly shaded image. Thus much of
the work in shading involves finding ways to reduce the amount of effort
required to evaluate the model. A 1024 x 1024 raster, for example, will
require that the calculation be performed on over one million pixels.
Once again, the concept of coherence is utilized to reduce the amount of
calculation required. (Shading coherence relies on the fact that the
intensity of adjacent pixels is very nearly identical.)

Two popular algorithms for improving the shading of an object are
the Gouraud (pronounced goor-ROE) shading technique and the Phong
technique. The Gouraud algorithm involves computing the normal vec-
tors (the perpendiculars) of the numerous surfaces, vertices, and intensi-
ties of the shape, and then averaging them. The main advantage to this
approach is that it partially eliminates Mach bands, i.e., unwanted
intensity ridges that arise from simple shading of the object. On the other
hand, the effectiveness of the algorithm is lessened when motion is
induced. While the Phong technique eliminates the problems of Gouraud
shading, it requires much longer to calculate.

One real problem facing those who use shading is the limitations of
the hardware. If the spot size of the electronic beam changes (i .e., the
diameter of the beam when it strikes the CRT), the sharpness of the image
suffers. If the spot is too small, an array of dots will appear where smooth
shading was supposed to show through.

Some of today's most sophisticated special effects utilize shading
techniques. The use of transparency, surface detail, shadows, texture,
and reflections are more of an art than a science. Although it is difficult to
imagine how these techniques will one day be simiplified, it is almost
certain that they will. Perhaps LSI chips (large scale integration - the
technique used to make microprocessors) will be developed that apply
shading algorithms to user-generated scenes.

110 I Computer Animation Software and Applications

3.9. ANTIALIASING LINES

Antialiasing (pronounced anti-AY-lee-es-sing), is a technique used
to remove the jagged staircase effect that occurs on a computer screen
when lines are drawn. Since the distance between pixels is not
infinitesimal, a staircase effect occurs as the line bounds towards its
endpoint. Also known as dejagging, antialiasing involves using intensity
modulation to make the line appear a smooth entity, thus minimizing the
staircase effect. (See Figure 3.18.)

Ideally, a line on a computer screen would be drawn from one point
to another, turning on only that portion of a pixel necessary to represent
the line (a). This is not possible since pixels must be either on or off. So
the software or hardware that draws the line must take a staircase path
from one pixel to the next, approximating the straight line (b). The higher
the resolution, the less the staircase (aliasing) effect will be noticed.
There is, however, another method besides more resolution to get rid of
the "jaggies."

With antialiasing, we can control the intensity of each pixel that the
line goes through rather than just turning it on or off. The importance of
this capability is apparent when we draw a straight line through the pixels
from the start point to the endpoint (c). The line will cut the boxes (pixels)
into sections. The antialiasing routine determines what percentage of the
box is intersected by the line and uses this to figure the shade of that pixel.
For example, if the area above the line is black and the screen is white,
then the pixel (1,0) would be a color which was a mixture of 50 percent
black and 50 percent white (because half of it is crossed by the line). On
the other hand.the pixel (0,0) in the figure would be 85 percent black and
15 percent white (only 15 percent is below the line), and pixel (0,1)
would be completely black (none of it is below the line).

If this intersecting line represented the outline of a color filled
object, then we would use the same figures to compute the percentages of
each color that the pixel should receive. If the color above the line was
100 percent green and the color below the line was 100 percent yellow,
then a pixel (1,0) which has the line cutting it exactly in half would be 50
percent green and 50 percent yellow.

Some of the more prominent graphics effects houses, such as
Lucasfilm, are staunch supporters of antialiasing and even wear T-shirts
with "jaggies forbidden" symbols on them. Personal computer owners
must learn to live with jaggies for the time being, given the limited
resolution of their machines.

3

2
(Yl

o
02345678

(Xl

0) IDEAL BUT IMPOSSIBLE.
CANNOT DIVIDE A PIXEL IN HALF

Computer Animation Software and Applications / 111

3

2
(Yl

o
02345678

(Xl

b) JAGGIES
PIXEL IS EITHER ON OR OFF.

100% TOP COLOR

(Yl

3

2

o

.__--- 85% TOP COLOR
15%" BOTTOM COLOR

50% TOP COLOR
50% BOTTOM COLOR

100% BOTTOM COLOR
15% TOP COLOR
85% BOTTOM COLOR

02345678
(X)

c) ANTIALIASING
USING MIXTURES OF COLORS

Figure 3.18: Antialiasing example.

112 I Computer Animation Software and Applications

a)

b)

c)

Photo 3.2: Antialiasing on a CRT: a) Two graphic objects - the one on the
left a) is antialiased, the one on the right b) is regular. Note how a) seems
smoother. b) Closeup of both objects shows how antialiased a) is made
smoother by shading edges of the line. c) Extreme closeup of antialiased object
reveals details of shading effect on jaggies. (Courtesy of Advanced Electronic
Design, Inc.)

3.10. PERSONAL COMPUTER ANIMATION SOFTWARE

The state of software techniques for personal computers is not
nearly as advanced as those used for high-tech machines. The main
reason for this is that memory for these machines has purposely been kept
below 64K to keep the priee realistically within the consumer's range.
Although this is changing with new, large-memory l6-bit personal

Computer Animation Software and Applications / 113

computers like the IBM PC and Apple's Lisa, the software for taking
advantage of the larger memory of these machines is still not available.
This is not to say, however, that the graphics software on the personal
computer has not matured. As we point out in detail in the next chapter,
personal computer graphics software offers a large array of new ideas and
techniques, especially in the area of real-time animation. You won't find
built-in transformation algorithms, texturing and shading techniques, or
shadow mechanisms (at least right now). But you will find automatic
movement of simple graphics objects in real time, built-in color fill,
special programmable graphics definition languages, circle generation
routines, neat graphics languages, numerous text and color modes,
page-flipping animation, image array plotting, players, sprites, hardware
background scrolling, and more.

We will cover all these concepts in Chapter 4. For now you should
be aware that the personal computer is hot on the tail of the high-tech
machines, and, as memory capacity grows and programs mature, person-
al computers will eventually have special software for doing the same
complex three-dimensional effects that are seen on the higher memory
devices.

3.11. HIGH-TECH DIGITAL PAINT SYSTEMS

To many artists the computerization of painting is nothing less than
a mortal sin. This is understandable since the majority of artists eke out a
meager existence expressing the more subtle emotions of the heart,
delving into rarer forms of meaning, and in general are humanists rather
than technocrats. To most of them, digital and all its ramifications is the
antithesis of true art. You would be lucky to get one to even consider that
a computer could outmaneuver the stroke of a paint brush. The day has
come, however, when artists must begin to wake up and see the graphics
computer as an entirely new form of artistic expression rather than a
device that should be shunned. A graphics computer equipped with good
software for drawing can offer extraordinary artistic control. (Using such
a system can even save on oil and canvas expenses.)

a) (continued)

114 / Computer Animation Software and Applications

b)

c)
Photo 3.3: These examples were created on high-tech paint systems. In
a) "Mt. Fuji," a very high resolution image shows reflectance of the
snow-covered mountain, with a small boat crossing the water in front of it. Note
the delicate light blue tones. b) Shows a hand-drawn Santa Claus: note the
exquisite shading. (Courtesy of Aurora Systems, Damon Rarey-artist.) In c), the
city skyline was created on a Video Palette 3 paint system as part of the film
Subway, nicely demonstrating the level of creativity an artist can achieve on a
paint system. (See color insert.) (Courtesy of Digital Effects Inc.; Mark
Lindquist - artist.)
What Are Paint Systems?

To allow artists to utilize the power of computer graphics, special
"paint" software has been developed. These paint systems are programs
that can work in conjunction with digital tablets and light pens (described
in Chapter 2). They allow the artist to draw on the computer screen by
moving the stylus on the tablet, or the light pen on the CRT itself, as if it
were a paint brush. The artist usually has a menu presented on part of the
computer screen in a viewport (out of the way of the picture) that contains
instructions for using the system. (These might include selection boxes
for choosing color, brush width, and other parameters.) By using the
keyboard along with the menu and the pen, an artist can, for example,
select the brush width that draws anything from a very fine line only one
pixel wide to a very wide line comprised of many pixels. Some advanced
systems even allow the brush to simulate a paint sprayer, sputtering and
feathering the edges of the painted line as if there were an aerosol can
behind the stylus!

In addition to allowing the selection of paint brush sizes, the paint
system that is implemented on a high-tech computer allows the artist to

Computer Animation Software and Applications / 115

choose from a fabulous array of colors. On some systems there may
actually be a maximum of 16 million colors to choose from.

With a paint system, an artist can also superimpose multiple images.

For example, the artist can create abackground scene and then merge it
with previously created foreground images. The foreground images can
be moved around on the background until they are in the perfect position.
Other effects possible for the artist are color cycling (causing certain
colors on the screen to change simultaneously to new colors), zooming
(magnifying any particular section in a scene so it fills the entire screen),
and adding patterns and textures. This last feature, sometimes called
rubber stamping, is truly an example of something that computers can
easily do that painters cannot. For example, suppose the artist uses the
computer paint system to create a brick pattern to be used for a wall. Once
a small patch of brick has been made, it can be attached to a brush. Then
every time the brush is pressed down on the tablet, the pattern is placed on
the screen. In this way the entire wall is rubber stamped on the screen.

Technical Details

Technically, such sophisticated paint systems require large frame
buffers, powerful computers, and very large hard disks. The software for
these systems is very expensive (over $10,000 on the average), and the
hardware can easily exceed $50,000. Digitizing tablets with very high
resolution are needed. To use this system for video production, a video
tape recorder is attached. For film quality images, an expensive film
recorder is required for capturing the output onto film.

Main Applications

Some of the main uses of paint systems today are in television news,
weather reporting, and creating textures for high-tech three-dimensional
texture mapping (e.g., the Genesis planet in Star Trek /I). It is relatively
easy, for example, for an artist at the TV station to quickly draw up maps
and pictorials on the computer, alter them to fit the news situation and
finally capture them on video tape.

Another important use of the paint system is in tilling cartoon
"eels" with color (we'll say more about that later). A scan conversion
algorithm can evenly fill an enclosed boundary faster and far more
accurately than a human artist. The animation field is also utilizing paint
systems for creating special effects not possible or not easily made by
conventional techniques.

One popular software paint system was AVA. It was based on
NYIT's paint program (written by Alvy Ray Smith) and modified by
Tom Porter (who went on to write Lucasfilm's amazing paint program).
AVA ran on a DEC PDP-II and was designed to be simple to use.
However, because it was too sophisticated for its time (it had too many
functions for the average user), it was pulled off the market by its owners,

116 I Computer Animation Software and Applications

Ampex. The CBS network, however, still uses AVA for many of its news
graphics.

Big names in paint systems include Dick Shoup's Aurora system in
San Francisco, Digital Effects in New York, and NYIT's "Images"
system. Microprocessors used frequently in these systems are the DEC
LSI 11/23 and the Z80. Popular minicomputers (more expensive but also
more powerful) used with paint systems include the HP 1000 and General
Nova among others. The principal computer language for paint systems
is C. As described at the end of Chapter 2, C is a compiled language that
is fast in execution, fairly easy to maintain, and becoming more popular
among computer users. Most paint systems require at least 192K of
RAM. Most of them store images on disk using the same run-length
encoding techniques for compression that were described in Chapter 2.

An excellent survey of digital paint systems appeared in the April
1982 issue of Computer Graphics World, volume 5, number 4, page 61.

Personal Computer Paint Systems

Today there are several low-cost paint systems designed for person-
al computers like the Apple and ATARI. (These might actually replace
the need for high-tech systems when low-resolution with only a few
colors is all that is required.) One particularly fine piece of software can
help your Apple emulate a $250,000 graphics system for just $39.95!
The package is called Special Effects. It was written by Mark Pelczarski
of Penguin Software (830 4th Ave, Geneva, IL 60134) and requires DOS
3.3, 48K of RAM, and a joystick, paddle, or graphics tablet. Special
Effects provides 96 different paint brushes that can be moved about the
screen. You can load your brush with any of 107 colors or color patterns
and move the brush anywhere on the screen. Borders are not required for
filling with patterns and colors! Even shading is possible. Brushes and
color palette is displayed on screen 2 of the Apple, so it is easy to switch
back and forth between your picture and your menu. The package
includes a magnify mode which lets you magnify the area around the
cursor two or four times so you can see individual pixels. In addition,
there is software for taking fonts created with a font generator and
merging it into your scene. Mirror image flips and negative image tricks
can also be performed (reversing the color of all pixels).

The most impressive aspect of this software is that you can take a
rectangular portion of your picture and move it to any other portion of the
display. This allows the production of some terrific animation effects.
There is also a picture-packing routine for crunching pictures to use less
storage space on the disk (just like in the high-tech machines). You can
even string several pictures together so they can be quickly and automati-
cally loaded into the display RAM by a BASIC program statement.

Computer Animation Software and Applications I 11 7

Photo 3.4: This pie chart, created on the screen of the Apple III personal
computer, has a resolution 'of 280 x 192. This photo shows the jaggies very
clearly. Although few people know it, the Apple has a higher 560 x 192
resolution, but it is only black and white. (Courtesy of Apple Computer
Company, Inc.)

Photo 3.5: Scene created on Apple II using "Special Effects" paint system by
David Lubar (see color insert). (Courtesy of Penguin Software.)

Of course, the Apple and the Special Effects software lack the high
resolution and color capability of the high-tech paint systems. But con-
sider a $3,000, 280 x 192 resolution, six-primary color computer. and
$39.95 paint software package versus a $150,000,1024 x 1024 resolu-
tion, 16 million color computer, and $10,000 paint software package. It
is easy to see why these low-cost systems are extremely attractive - and
it surely won't be long before their resolution and color capabilities
increase to a point where they are rivaling the high-tech machines.

118 / Computer Animation Software and Applications

3.12. COMPUTER-ASSISTED AND
COMPUTER-GENERATED ANIMATION

Now that you know the basics of graphics software. you are prob-
ably anxious to discover how computers are used in professional film
animation today. There are two very broad categories of computer
animation: computer-assisted animation (also called computer-aided
animation) and computer-generated animation, which can be further
subdivided into real-time and non-real-time computer-generated anima-
tion. Computer-assisted animation is used to aid artists in the production
of two-dimensional animation (with paint systems, cel opaquing, etc.)
whereas computer-generated animation is the process by which the
computer generates a realistic three-dimensional image under the direc-
tion of a human-designed database and animation controls. We will
explain these in more detail.

A third area outside the realm of computer animation in which
computers are being used today in film is called motion control photogra-
phy. Motion control photography involves using a computer to control
the movement of the motion picture camera. The camera has several
"stepper" motors that can change its position in almost any direction by
very small increments. By doing this, the computer has taken over a
laborious task which has previously been relegated to the animator. The
camera may be snapping pictures of a spaceship model, for example,
while revolving around the model, giving the illusion that the ship is
moving. Or it may simply be passing over a long landscape. The com-
puter simplifies the calculations for pans (left to right movement), tilts,
rotations, and accelerations.

The movie Dragonslayer used these techniques extensively in addi-
tion to a new technique called Go-Motion. The models of the dragon
were also provided with stepper motors and connected to an Apple II.
Rather than moving the dragon and then taking a picture, as is usually
done with stop motion photography, the movie's creators moved the
dragon by the computer while the frame was being exposed. This caused
each frame to be slightly blurred (as is the case with normally photo-
graphed scenes using live actors), resulting in extremely smooth motion.
Industrial Light and Magic (a division of Lucasfilm) is a pioneer of such
exciting effects.

Computer-Generated Animation

This book primarily focuses on computer-generated animation. As
we learned in previous sections, the generation of the original artwork in
such animation usually comes from the initial generation of a database of
coordinate points that describe the fundamental shape of an object. The
method used to enter these points into the computer depends on the object
to be animated.

Computer Animation Software and Applications / 119

A simple cube that will fly and twist across the screen can be
completely generated by mathematics, since its mathematical description
is fairly simple and the number of points describing it is minimal. It can
thus be entered by a formula, through the digitizing tablet, or with a
simple sketch and a digitizing camera. (A digitizing camera is a camera
connected to the computer in such a way that anything that appears in
front of its lens is scanned and converted to a bit image and stored in the
frame buffer.) A three-dimensional image as complex as a person jug-
gling geometric objects might take so long to describe mathematically
(given the complex and subtle motions involved) that methods for enter-
ing the datapoints which involve shortcuts might be required.

Once the initial coordinates for the image have been entered into the
computer, there are several steps that may occur for the production of the
final image. In general, they will involve mathematically affecting the
image, transforming it, including rotation and scaling, removing hidden
lines and surfaces, shading, coloring, texturing, and shadowing. A paint
system may be employed for several of the coloring functions.

As always, the actual steps involved are dependent on the particular
image and application. In order to get a feel for how an application of
computer-generated animation might proceed, we will describe the mak-
ing of the Juggler film (see Chapter 1). The processes used to produce the
Juggler cover the gamut of animation technique, but remember that other
animations may take a different approach. The end product is what is
important; how it is accomplished is secondary. This sequence is re-
nowned as an excellent example of the realism that can be achieved with
computer animation today.

Making of the Juggler If you forgot our description of the Jug-
gler film, now would be a good time to reread it at the beginning of
Chapter 1.

The film shows a juggler in a black tuxedo juggling three geometric
shapes. Incredible camera angles, smooth realistic body movements,
vivid color, and an eerie manikin face, make this film an outstanding
example of computer animation. The film was produced by Information
International, Inc. (Triple I), a California company which excelled in
animation and computer graphics effects. As we explained above, the
first step in the production of any computer animation is obtaining the
database for the objects.

Triple I had two choices for getting the initial image inside the
computer. They could either synthesize the juggler inside the computer
using pure mathematics or they could somehow get the coordinate points
of a real juggler's movements inside the computer. Synthesizing their
own was almost impossible because there are so many subtle movements
of the human body that it would have taken years to describe it mathe-

120 / Computer Animation Software and Applications

matically. So they hired a professional juggler named Ken Rosenthal (the
computerized juggler is called Adam Powers).

The first step in getting the datapoints into the system was to have
Ken dress up in a white leotard and stand on a stage. One camera was
placed above him and one directly in front of him. The cameras were
synchronized so each frame picked up the exact same movement. The
people at Triple I then painted black dots at each joint of Ken's body and
connected them with black lines.

With Ken on stage and the camera rolling, they had him juggle three
objects for five minutes. The film was then viewed and edited down to
one minute of exceptional juggling. After studying the film very careful-
ly, its creators found a simple three second sequence of juggling that
could be used for cyclical animation. In other words, this three-second
piece of film could be played over and over and it would appear as if Ken
(Adam Powers now) were continuously juggling the shapes.

The next step was to rotoscope Ken. Triple I mounted one of the
projectors on a device called an animation stand and advanced the three
seconds of film one frame at a time, projecting each frame onto a large
piece of engineering paper. As each frame was illuminated on the paper.
they ignored the other parts of his body and carefully traced onto the
paper all the dots at the joints and the black lines connecting them. This
process was repeated for the top and front camera views. When they were
done, they ended up with 144 frames of data (pieces of paper). This
number of frames comes from the fact that the cameras run at 24 frames
per second; 24 x 3 seconds = 72 frames, and since there were two
views, 72 x 2 gives 144.

Their next task was to get all this data into the computer, so they
took their paper frames to a digitizing table and entered the captured
points and lines into the computer. (Recall that a digitizing table is a
tablet with a special pen. A piece of paper with an image on it is placed
flat on the table and is traced over with the pen. The computer is able to
follow the pen's motion and record the X and Y coordinates of each pen
position.)

They pressed the pen down at a joint to tell the computer it was an
endpoint. The two camera views allowed them to track each joint in three
dimensions, thereby giving 19 points per frame. for each of the 72
frames. The result was that all the frame information from Ken's juggling
was entered into the computer. From this information they formed a
database of points for each frame. The precise movements of the juggler
were now captured inside of the computer.

The next step was to create the juggler's body parts and make him
appear three-dimensional. For this they used a geometric wire frame
cylinder for each limb. modeling it mathematically inside the computer.
and then attaching it around the limb and joint data already stored in the
computer. (See Photo 3.6.) Much experimenting was needed with the

Computer Animation Software and Applications I 121

cylinders to get them to correspond properly to the database. Each
cylinder was merged with its neighbor in the final filming. The shoes and
details of the tuxedo were also added later. Because each cylinder
penetrated its neighbor, they decided to make the tux black. This would
make the connection points less noticeable.

Photo 3.6: This is the wire frame substructure of the Juggler model, which
was created from a digitization of a live model. (Courtesy of Information
International, Inc.)

Once the wire frame image was perfected, the difficult part was
completed. At that point a hidden line removal method called Bouk-
night's algorithm (a special mathematical method) was used to make the
hidden lines disappear. Color was then added by using a cubic patch
program and polygon coloring. Shading was accomplished with Lam-
bert's Cosine Law.

Creating the face presented a unique problem. Two views of a face
(front and side) were sketched on four-foot square engineering grid
paper. Then they approximated the face using 400 polygons. It was done
this way because it is extremely difficult to enter curves into a computer.
Triple I wanted the face to be as natural as possible and therefore needed
many polygons, because people react negatively to a face with distortions
in it.

The next step was to take the engineering paper with the polygons on
it and lay it on the digitizing table. The data for the polygon's locations

122 I Computer Animation Software and Applications

was entered in the computer's database by tracing the polygons of the
face on the table - thus it "knew" how the face was shaped. Triple I
only digitized half the face and then mirrored the image into two pieces
and joined them in the computer. Since it looked too perfect, they had to
add some imperfections, and did this by moving some of the datapoints
around. Finally, they mathematically smoothed the polygons of the face
by using the special Gourauds algorithm we described earlier in this
chapter. By the time the entire face was completed, they had used more
than 1000 polygons.

a)

b)

Figure 3.19: Human face simulated with polygons. (Courtesy of Henri
Goureud, University of Utah.)

Computer Animation Software and Applications I 123

If you're wondering about the computer that Triple I used, it was not
an ATARI or an Apple II. Rather, it was a custom-made computer
prototype called a Foonly, designed to be faster than many minicompu-
ters. The resolution at which the Juggler was photographed on 35 mm
film was 3000 points by 2400 lines, and that's 130 times finer than the
Apple. On 4 x 5 transparencies, Triple I records at a resolution of 6000
points by 4000 lines. When recording on film, the company uses an
incredible 9 bits per color, which amounts to over 134 million color
levels.

Real-Time High-Tech Animation
For real-time animation, the same concepts described throughout

this book are used. The only difference is that the speed at which the
software processes the images must be much faster. This is usually
accomplished by using very high-speed computers that cost in the mil-
lions of dollars. (The eRAY X-MP is an example.) These are called
vector processors because they deal with real-time computation of vec-
tors. The use of many microprocessors, each representing a certain object
or portion of the object in the scene, all running in parallel as they
compute, is being considered as an antidote to the cost of the high-speed
computer.

Now that you understand a little about the process behind computer-
generated animation, let's investigate computer-assisted animation as it
is used in the cartoon industry.

Computer-Assisted Animation

To appreciate how much time and effort the computer has saved the
cartoonist, consider the six manual steps to creating a cartoon.

Initial Design The artist creates a storyboard which is a quick
sketch of the main pieces of the entire cartoon from beginning to end,
somewhat like a comic strip. It shows all the significant frames of the
cartoon, i.e., the important ones that specify a major change in characters
or environment.

Key Frames The key frames are then drawn in more detail to
create significant character positions. Key frames are the frames that hold
the peak positions of the figures in the cartoon. They tell the cartoonist
the path of the cartoon and where the figures in each motion sequence
start and end.

In-betweening Many frames between peaks of movement in the
storyboard are drawn to produce movement. Frames must be eased (also
called faired), i.e., properly accelerated from start to rest or jerky
movements will result. Usually 24 frames are needed for each second of
movement in the final film! Thus just one quarter hour of viewing time of
the cartoon requires 21,600 drawings! This is one of the most time-
consuming aspects of making an animated cartoon.

124 / Computer Animation Software and Applications

Pencil (Line) Testing The drawings are now photocopied on
acetate (called eels) and then filmed on an animation stand to test quality
of movements. The animation stand (also called an animation rostrum) is
a camera and a platform-like device that allows the drawings to be
accurately transferred to film for viewing. If an error is found at this
point, then the animator must go back to the drawing and in-betweening
and fix it, and the line test is repeated.

Opaquing Once modifications from the line test are completed,
the eels are actually painted in (opaqued) by hand to add color, so
characters stand out from backgrounds. This is another expensive, time-
consuming step.

Filming Finally the backgrounds and characters are brought
together on the animation stand and filmed by the camera to make the
cartoon. Sound is joined with the film at this stage. (Sound is always
recorded before the key frame stage since it is easier to make the drawings
match the sound than vice versa.)

Computerization of Cartoons

In making cartoons, the computer can help solve many of the
time-consuming manual techniques we described above. The following
methods are utilized at Hanna Barbera, a company famous for Fred
Flintstone and Superfriends.

After the pencil sketch has been created by the artist and cleaned up,
it is entered into the computer via a digitizing camera. Because the pencil
sketch has gray shades in its outlines, the picture gets automatically
antialiased and no special software techniques are needed to obtain
smooth non-jaggy edges. Once the picture is inside the computer, a paint
system is used to do the opaquing and fill the image with color. With the
use of a paint system, the opaquing step only requires the artist to place
the cursor in the center of the object, choose the fill color and press the
respective button. In a fraction of a second, the interior of the entire shape
will be flooded with color.

In such cartoon applications, there are usually 16 shades of 16
colors, allowing a total of 256 different hues. With the various shades the
flooding (filling) algorithm blends the colors as they approach the outline
of the figure for a smooth, antialiased border.

Of course, once we have the database of points for the figure in the
computer, it is relatively simple to rotate and scale the figure in two
dimensions. We can make our figures spin, expand, shrink, flip over,
mirror, and so on.

Another major contribution of the computer in cartoon applications
is in the area of in-betweening. With proper software, the computer can
mathematically estimate the in-between positions of two-dimensional

Computer Animation Software and Applications / 125

objects given their starting and ending drawings. This process is only
beginning to be used and needs much work before it can easily handle all
two-dimensional situations, but it is certainly on the way to becoming
very effective. The in-betweening of three-dimensional animation is
actually much easier than two-dimensional because the notion of "be-
hind" exists in a three-dimensional database.

The computer is making cartoon generation much easier due to its
ability to solve the overlapping eel problem. In the old, manual approach
when several painted acetate sheets were superimposed on each other,
the color of the figure would change because of the increased density of
the many eels. For example, each eel is usually devoted to each of the
figure's different body parts. The torso will be on one, the eyes on
another, lips on still another, and so on. This saves having to redraw all
the parts when only one feature changes (for example, if an eye blinks,
just the eye eel needs to be altered). However, the change in color due to
the overlapping of the eels meant the colors of each eel had to be carefully
selected to compensate. With the computer, we can completely eliminate
this problem. The color is of a hue exactly determined by the software.
There is no density effects from underlying eels.

Manipulation of the graphic image that is stored in the computer is a
very difficult process that requires intense mathematical knowledge of
the algorithms described earlier in this chapter. Special software is
available to help the animator. Checking the accuracy of the animation
may also be difficult because of the non-real time aspect. The images
must be loaded into the frame buffer and filmed (or videotaped) one at a
time before the entire sequence can be viewed. Some new systems, like
those at Hanna Barbera, can store the images of the animation on disk and
then call them up quickly enough to see the cartoon in real time.

You shouldn't think that making cartoons using manual techniques,
computer assistance, and computer-generated imagery are totally inde-
pendent or mutually exclusive. Actually all techniques blend together in
many new ways. The next section explains how manual techniques are
combined with computer-generated animations and gives a glimpse of
what is on the horizon in computer animation.

3.13. THE MAKING OF TRON

Our book would not be complete without mentioning how a high-
tech computer is used today in a modern motion picture. TRON, a
feature-length film from Disney Studios, is about a programmer whose
great computer games are ripped off by the ultimate computer pirate -
another computer program. Through the magic of artistic license and
computer imagery, our hero gets laser digitized into a patch of pixels and
swallowed up by the computer. In his new RAM-based consciousness,
he wanders about the frame buffer searching for the villains who stole his
best program (called Space Paranoids). When he finds them, a fantastic

126 / Computer Animation Software and Applications

battle erupts in the frame buffer. The effectiveness of the film is the result
of brilliantly blending computer graphics and old-fashioned animation.

With TRON's release came a new awareness on the part of the public
regarding computer animation. Never before have special computer
effects been so pronounced. Playing a major role in the making of TRON
was Richard Taylor of Triple I and formerly with Robert Abel and
Associates (equally famous for candy apple neon 7-Up and Levis Jeans
commercials) .

The process of making TRON required artist-designers to interact
with programmer-technicians, and this presented some interesting prob-
lems. The artists were at one end of the country and the programmers at
another, further complicating matters. The TRON artists were at Disney
studios in Los Angeles, and the programmers were at Mathematics
Applications Group, Inc. (MAGI) in New York. When Chromatics
terminals were installed at each end, work settled down. Modems were
used to send low-resolution motion tests to the director at Disney before
committing the images to film.

For example, after MAGI received the storyboards for the vehicular
animation from Disney, they took these crude images and plotted them in
three views using combinatorial geometry on a 40 x 60 inch Talos
digitizing tablet. They then made up flowcharts of the speed and angles of
the moving objects for the camera path. The results then went back to
Disney for corrections in pacing, staging, and animation. MAGI in-
corporated these corrections and committed them to film using a high-
speed raster system and film recorder.

Photo 3.7 From TRON, a video game tank patrols a dark alleyway. Note the
incredible effects of color shading (see color insert). The image is by MAGI.
(Courtesy of Walt Disney Production, World Rights Reserved.)

Computer Animation Software and Applications I 127

Photo 3.8: This is the computer-simulated master control I/O tower of TRON.
The image is by Information International, Inc. (Courtesy of Walt Disney
Production, World Rights Reserved.)

The characters in TRON had to be candy apple neon in appearance
(i.e., glowing tubes using bright colors, so that they looked like elec-
tronic images inside a computer memory). They were done by having the
actors wear white costumes and perform in front of a set with just a black
backdrop. They were filmed in 70 mm black and white. Then each frame
(and that's thousands of frames) was enlarged for the production of four
eels for each frame. Cel painters then came in and applied holdout
mattes, masking out unwanted sections, one for the face, another for the
costume, one for the eyes and teeth, and a fourth for the glowing circuitry
on the front of the costume. A roto-scoping process (combining the four
eels into one continuous tone positive film) was then used.

The back-lighting for the film came from the techniques Abel used
in the 7-Up commercials. No reflected light is used in the microworld of
TRON; all light comes from the creatures and objects themselves. Every-
thing glows dimly from within, giving a forbidding and oppressive end
effect.

Computer graphics were used throughout the film, often in places
that weren't obvious. Even the scene showing a nighttime landing of a
helicopter used computer graphics (the city lights were computer-
generated, not the helicopter).

After the computer animation in TRON was so well received, we can
expect to see its expanded use in future films.

128 / Computer Animation Software and Applications

3.14. AN ANIMATION HOUSE - EXAMPLES

The figures below are from one of the most prolific animation
houses in the United States, Robert Abel and Associates. This company
is responsible for many television commercials that use computer anima-
tion and is perhaps most famous for their Levis commercials, which
strangely enough used the computer only to help figure out camera angles
(even though it looks very computer-like). The Philips Radio commercial
is completely synthetic except for the background, which was airbrushed
in. This shows how other media can be mixed in with computer
animation.

a)

b)

c)
(continued)

Computer Animation Software and Applications I 129

d)

Photo 3.9: These are examples of animation from Robert Abel and
Associates. (Courtesy of Robert Abel and Associates.)

a) Levi's Commercial - this commercial won a Cleo Award and great acclaim
for Abel. Millions of people loved this when it first appeared on television in
1974. To help plan the commercial, an Evans and Sutherland Picture System 2
was used to calculate the camera moves. The final commercial, however,
contains no computer graphics, just live actors and standard animation.
(Directed by Robert Abel.)

b) Philips Radio Commercial - the entire scene is synthetic (created with a
three-dimensional vector-shading routine) except for the cloud background,
which was conventionally painted with an airbrush and then matted in. An
Evans and Sutherland Picture System II is used for all of their computer
animation work. (Directed by Bill Kovacs.)

c) CBS Evening News Opening - for those of you who watched the evening
news on CBS during 1981-1982, you'll recognize this spinning globe with the
CBS "eye" symbol indicating the cities. (Directed by Clark Anderson.)

d) AT&T Energy Commercial- this was entirely computer generated.
(Directed by Rod Davis.)

3.15. AN APPLE FOR ANIMATION - JAMES LEATHAM

Can a low-cost twentieth century personal computer simulate a
high-tech graphics machine from the twenty-first century? Are personal
computer users destined to play Space Invaders and Pac Man because
they just don't have enough pixels to do anything more significant? Or is
there a fantastic animation potential inside your personal computer that's
dying to "worm" its way to the surface and do something wonderful?

One person who has answered all these questions with a resounding
YES is James Leatham, located in Chester, New York. James is a
multitalented programmer and filmmaker who, using a standard
Apple II, a SubLogic A2-3D I Graphics Package (SubLogic
Communications Corp, 713 Edgebrook Dr., Champaign, IL 61820), and
a special homemade equipment bench, has created fantastic animation
scenes for an 8 mm film called Asteroid. The movie concerns space age
asteroid belt miners. In the scene that Jim worked on. the ship's computer
detects and analyzes a particularly valuable asteroid. The ship's
computer creates a simulation of the asteroid and rotates it in three

130 I Computer Animation Software and Applications

dimensions. Ajagged magnetic field appears to float around the asteroid,
rotating with it. The photo below shows another one of James' creations.
This is from the flip movie of a mathematical function. In the movie the
two functions appear like colorful wire frame mountains that grow and
shrink.

a)

d)

g)

j)

b)

e)

h)

k)

c)

f)

i)

I)

Photo 3.10: Frames from James Leatham's Calculus Mountains, a good
example of how a microcomputer can be used for computer animation. James
used a Super-8 camera under the direct control of an Apple II computer. The
computer draws a high-resolution picture on the screen, positions a filter from
the filter wheel in front of the lens, takes the picture, and draws the next frame
with a new color or advances the film as appropriate a) through e): a short
sequence of film using three exposures per frame (r-g-b); f): black and white
version; g) through i): red, green and blue exposures. (Courtesy of James
Leatham.)

a)

b)

c)

Computer Animation Software and Applications / 131

(continued)

132 / Computer Animation Software and Applications

d)

Photo 3.11: Four slides taken from a CT5 continuous-tone, real-time visual
simulation system. CT5 was designed by Evans & Sutherland in collaboration
with Rediffusion Simulation, Inc., for flight simulation applications. CT5
generates these high quality, high complexity scenes in real-time, 50 times per
second. (Courtesy: Evans & Sutherland/Rediffusion Simulation.)

James used the SubLogic A2-3D 1 package to define a three-
dimensional database for the asteroid. It was simple to enter rough
coordinates that resembled a round object. Next a control program was
written in BASIC to rotate the object in single degree increments on the
Apple screen. James devised a special bench for holding the camera and a
rotating filter. The control program could move the proper filter in front
of the camera and snap the shutter of the camera for each different filter
color. The control program and camera mechanism took almost all the
labor out of the filming of the animation sequence.

The film was later projected onto the spaceship's CRT at 18 frames per
second, which was a speed-up of 180 times over the original rate. Figure
3.20 and Photo 3.12 show James' set up. He uses an Apple II with
a Eumig 881 PMA Super-8 movie camera. A black and white monitor is
used for maximum resolution, and that explains the reason for all the
color filters. The computer can open the camera's shutter and hold it open
for as long as required. The computer can also capture the display modes
from the text to either of the two high-resolution pages. Each new image
is drawn on an alternate graphics page. When it's done, the new page is
switched on by the computer program, and the old page (now out of view)
is erased. The proper filter is then rotated into place by the stepper motors
and the camera shutter is opened for the required time.

James Leatham is one of the first pioneers in the amazing field of
home computer animation. His example shows that one can achieve
incredible effects on a very small budget. He may be at the forefront of a
new phase in computer movies where stick figures and clay models are
replaced with data statements and programmed logic.

Computer Animation Software and Applications / 133

Photo 3.12: James Leatham's Apple II budget 16 mm animation equipment.
This equipment produced the frames in Photo 3.10 as well as animation
sequences for a science fiction movie.

COLOR FILTERS (SEE DETAIL B)

LiliUP.ER- BMOVIE
CAMERA

SHUTTER CONTROL
AND SIGNAL

a)

STEPPER
MOTOR

APPLE II
COMPUTER

SCREEN

VIDEO
MONITOR
(BLACK AND
WHITE)

VIDEO

(continued)

134 / Computer Animation Software and Applications

SUPER-8
MOVIE CAMERA

YELLOW

(NONE CONDUCTIVE
TAPE

NOTES
COLOR FILTER IN POSITION AT
9 O'CLOCK, CONDUCTIVE TAPE
AT 6 O'CLOCK WHITE

=-=-::'::'::'::::'O:::cf}-/ COMMON
COLOR

b)

(NOTE CONDUCTIVE
TAPE IS OFFSET)

Figure 3.20: Using an Apple for film animation. a) equipment set up and
b) color filter details.

Now that you have had a good introduction to computer graphics
software, you are in a good position to solve a particular problem using a
graphics-oriented computer. You may also be asking yourself, "What is
available for a low budget in the way of graphics machines?" Anticipat-
ing this, we have prepared the next chapter. It is a survey and analysis of
the graphics-oriented personal computers you can purchase today.
Although the survey doesn't cover everything on the market, we think
our particular sample will whet your appetite. We have not covered the
expensive, non-microcomputer-based graphics machines, the S-lOO
boards, or the most super high-tech computers; we'll leave those for
another book.

Chapter 4

Personal Computer
Animation Features

NoW that you know enough about the million dollar, high-
technology animation computers to want to own one, it's time to

draw up plans for "borrowing" a few bars of gold from Fort Knox. If this
isn't quite your style, don't worry, there's another way out. Consider.
instead, the more reasonably priced color personal computer.

Given the rapid advances in technology, todays personal comput-
ers, once the poor relatives of high-tech machines, are quickly catching
up in performance. And even though this is the case, the prices for these
marvels (with a single built-in programming language) start at a nominal
$99, average $1500, and peak at $3500.

In addition to their attractive low cost, color personal computers
offer the animator some other pulses which are lacking in the high-tech
machines. To begin with, the personal computer owner will find many
books (like this one), which make learning about the machines' capa-
bilities a pleasant task. Likewise, the abundance of add-on hardware
products facilitates expanding the system as your needs change. Also.
personal computers have a sufficiently large base of owners to support
the creation of a wide selection of animation programming tools. A case
in point is the easy-to-use machine language animation routines de-
veloped as part of this book for use on the ATARI Home Computers:
these enable you to design your own animation programs that perform in
real time. Due to the projected number of sales for these kinds of
programs, their cost is likely to be very reasonable. Therefore. after
you've mastered your system and created your own programs. you might
wish to sell them to a ready-made market that is eager for all the software
it can get.

Because color personal computers offer so much for the money.
they are extremely attractive to the consumer on a low budget. As a
consumer, the first thing you'll want to know is "What can they do (in
terms of graphics and animation), and how can I make them do it'?"
Answering these questions is the basis of this chapter.

Personal Computer Animation Features /135

136/ Personal Computer Animation Features

4.1 FORMAT OF THIS CHAPTER

We have identified 13 key features you should be aware of when
evaluating a personal computer for graphics animation. These features
are:

• BASIC Graphics Statements
• Special Hardware Features
• Graphics and Text Modes
• Graphics Language Statements

Mode Selection
Color Selection
Plotting
Line Drawing
Shapes, Graphics Definition Language
Paint. Fill, Flood
Defined Object Statements
Image Array Plotting
Miscellaneous Statements

• Players/Sprites
• Hardware Scrolling
• Graphics Characters
• Custom Characters
• Color Registers
• Vertical Blank Interrupts
• Display List and Display List Interrupts
• Page Flipping
• Speed of Plotting

The bulk of this chapter will examine each of these features, defin-
ing each and explaining its importance to the animator. We will also
occasionally make reference to actual personal computers, languages,
and products. Our main goal is to expose you to what is important, rather
than to endorse a particular machine.

4.2 BASIC GRAPHICS STATEMENTS

BASIC is by far the most popular language for executing graphics
on personal computers today. To better understand the things your
personal computer can do in the area of graphics, you should examine
those BASIC statements that pertain specifically to graphics on the
machine(s) in question. In some cases, as in the Apple III, BASIC offers
primitives rather than regular statements. Primitives are graphic func-
tions performed when certain character sequences are sent to a special
graphics program called a driver. You should understand, however,

before getting involved with graphics primitives, that they are definitely
more difficult to use than BASIC statements.

What Language?

Although BASIC is the most common language in use on personal
computers and its merits are simplicity of use and immediate feedback. it
is not accurate to conclude that it is the only or even the best language for
graphics. Another popular language for microcomputer graphics is Pas-
cal, particularly Apple Pascal. Since Pascal is a compiled language. I its
graphics programs usually execute faster than those written in BASIC.
The major drawback with Pascal is that it is a structured language. This
means a front-end or preamble of instructions must be first created for
your program before you can try an idea. This kind of programming
demands much preplanning and is good for long and involved projects
but difficult for the "just try it and see" approach.

Another graphics language which is growing in popularity is Logo.
Logo is built around a concept called turtle graphics. Turtle graphics
allows the user to see a turtle (with an imaginary drawing pen in its
mouth) on the screen. The turtle can be moved with simple commands
like TURN and M0 t.J E, and in so doing it leaves a line of color behind it.
Children have an easy time drawing with the turtle because its move-
ments are obvious to them and intuitively understood. A simple box, for
example, can be drawn in Logo with very few statements (see box on the
next page).

'Pascal for the Apple compiles into what is called P-code. This is an intermediate set of instructions that
must be interpreted before they can be understood by the processor. Other Pascals (called native
compilers) produce pure native machine code. or N-code. that can be run immediately. Each has its
advantages. For more details on Pascal see Pascal Primer by David Fox and Mitchell Waite. HowardW.
Sams and Company. Indianapolis. IN.

Personal Computer Animation Features I 137

138/ Personal Computer Animation Features

Making a Box in Logo and BASIC

TO 50){ :8IDE
HOME
REPEAT 4 [FORWARD :8IDE LEFT 80]
END

Figure 4.1: Logo Box Program.

In this program we have previously typed TELL TURTLE to
activate the drawing turtle. F0 RWARD sends the turtle ahead a
distance set by the variable 8 IDE and in any direction on the
compass. The turtle starts point straight up (due north). The instruc-
tion LEFT 80 turns the turtle 90 degrees. We started the program
by typing 50){ 10, which made the value of 8 IDE equal to 10 and
then executed the program.

Compare this to the same box done with Applesoft BASIC and
decide which is easier to understand. One of the authors was once a
devotee of BASIC and worshipped it at every turn. Now after playing
with Logo he no longer finds BASIC as friendly as it once was.

100 HGR :REM clear the hi-res screen
110 HCOLOR = 3 :REM set the color

to u h i t e
120 XC = 140 : YC = 80 :REM set

the center coordinates
130 INPUT "Enter length of side "i 81:

REM enter side
140 HPLOT XC,YC TO XC,YC-8I TO

>(C-8I,YC-8I TO XC-8I,YC TO >(C ,YC
:REM and d r au it

150 END

Figure 4.2: Applesoft BASIC Box Program.

In this program, we must first clear the screen to black, set the
drawing color to white, set the center coordinates XC and YC, and
request the user to input the length of the sides. Then the HPLOT
statement draws the actual box.

Some versions of Logo may, however, hold back the programmer of
complex objects because its number crunching ability is more limited
than BASIC or Pascal. For example, Apple LOGO has floating point
while TI Logo has only integers.

The language C is often used in larger computers for doing graphics.
C is similar to Pascal but is easier for creating programs that must
manipulate the byte and bits of the microprocessor. It executes faster than
Pascal and is just beginning to appear on low-cost personal computers
like the ATARI Home Computer (it has been available on CP/M-based
computers for some time). With C and the addition of an S- 100 graphics

board with a high-resolution bit map, you would have a very powerful,
low-cost graphics machine.

You may also want to investigate Forth as a graphics language.
Although it is rather difficult to learn, it is a somewhat elegant language
and your own graphics instructions are easily added to it. Its advantages
include high speed, immediate execution of programs (no compilation
like in Pascal and C), ability to define your own commands, and very
compact code.

Assembly language is another way to go if you have lots of patience
and perseverance. Graphics written in assembly (8080 and 6502 are
among the most popular codes) will execute very quickly, allowing the
rapid and fluid movement of objects on the screen. One of the authors has
created a set of graphics extension routines in 6502 assembly language
that enhances Applesoft so you can draw circles, polygons, and fill
shapes with color. These routines, however, were very difficult to create,
requiring hundreds of programming hours. Rather than attempting to
create your own assembly language routines, first check animation aids
and products currently available on the market by looking through
magazines such as Popular Computing and Byte.

4.3. SPECIAL HARDWARE FEATURES

As a graphics programmer, it may be important to understand how
your personal computer works on a hardware level. It all depends on the
degree of control you want to have over the graphics effects produced. In
the Apple, for example, it doesn't really matter how the hardware for
graphics works if you're using only BASIC or Pascal. If you want to
program your Apple in assembly language though, the hardware is
extremely important because you must access bits and bytes in screen
memory with a rather complex algorithm. If you are using an ATARI
Home Computer with its custom graphics chips and want to have abso-
lute control over the pictures that the machine is capable of creating, then
you'll need an intimate understanding of the built-in hardware.

4.4. GRAPHICS AND TEXT MODES

Every manufacturer has its own way of defining the numerous
modes in which a computer can function. A graphics mode (sometimes
referred to as a map or pixel mode) sets up the screen for responding to the
graphics instructions that are in the language, whereas a text mode screen
is set up for displaying words, programs, etc. Usually the text mode is
used for program development, and the graphics mode is used for
running graphics programs. Text and graphics can often be mixed, but
the precise method of doing this varies from machine to machine. For
example, when the Apple is in a graphics mode, text can appear only in a
window of four lines at the bottom of the graphics screen. On the IBM, on

Personal Computer Animation Features / 139

142 / Personal Computer Animation Features

Disappearing Colors

As someone interested in computer graphics, you should be aware
of the "case of the disappearing colors on a television" problem. A
television set has a limited band width, meaning it can respond only to a
limited number of changes in electric current per second. Because a
computer encodes color information via these changes, there is an upper
limit at which the TV cannot recognize a change in color. (If you just use
white on a black and white TV, this is not a problem. Also, color RGB
monitors have a higher band width than regular televisions so they permit
greater color changes on a line.) All this means that there is a limit to the
number of color changes that can occur on a horizontal line on the TV.
The result is that certain columns are restricted from having certain
colors. On the Apple II the problem is further complicated by the way the
screen colors are encoded in memory. A drawback like this has not kept
people from developing Apple programs, but moving color objects about
without having sections of them disappear complicates the programming
techniques.

Text Modes

In the text mode we are concerned with several things, including the
number of dots per character, the number of characters on a line, and the
number of lines on the screen. (These numbers correspond to the degree
of resolution in graphics modes.) In reference to the matrix of dots which
comprises each character, the more dots the finer the character's detail
and the easier it is on the eye. A minimum dot matrix is 5 x 7; a
maximum on the computers we are covering is about 8 x 8. The actual
number of characters on a line varies from as low as 20 to as high as 80,
with 40 as standard for television sets. The final factor in text mode
displays is the number of lines on a screen, which varies from 16 to 25,
with 24 being the most popular. In most cases the general rule of thumb is
"the more characters per line the better"; however, 80 characters per line
is very difficult to read due to the television's limited band width problem
which we mentioned above. On a black and white monitor and on color
RGB monitors, however, 80 characters is very readable.

Many text modes allow you to use color as well. This can be a
marvelous benefit in word processing applications or in any application
where you want text to stand out. In some computers, such as the IBM
PC, there-are two horizontal dots for every vertical position in the
40-column text mode. This feature is called double dot and gives the
impression of a 16 x 8 matrix, which results in text characters that
appear to have serifs! Serifs are the curly ends of characters that give
them a certain distinction.

Figure 4.4: A text dot matrix.

4.5. GRAPHICS LANGUAGE STATEMENTS

Here we present the various features for selecting modes, selecting
colors, plotting, drawing lines, creating shapes, filling, defining objects,
plotting image arrays, and miscellaneous other uses.

Mode Selection

Computers vary from having no mode selection to having several
modes to choose from. A machine might offer mode selection through
the use of a single statement (such as Apple's HGR or TE)<T) or, as in
IBM's SeREEN, through the use of a complex statement containing four
parameters which the user can set. Some computers, such as the TRS-80
color, have two statements for setting the mode (PMODE and SeREEN).

Pages

The mode statement will usually select the screen's text or graphics
modes. In addition, it may select the page that will be used for display as
well as the page that will receive the results of output statements. Pages
are sections of memory that can be used for the screen's contents. Often
there exist several of these pages but only one is active at a given time.
For example, when the IBM is used in the text mode, it has eight pages,
one of which can be made the active page and one the output page. The
output page will receive the results of any PRINT statements. The
TRS-80 Color Computer allows graphics images to be drawn on the
various pages and then flipped into view instantly. The Apple has two
pages for high-resolution graphics. The idea behind pages is to allow

Personal ComputerAnimationFeatures /143

144 / Personal Computer Animation Features

generation of graphics on an output page while the user is viewing an
active page. This permits the new picture to be instantly switched on,
before the old picture is erased. If we were to erase the old picture and
then redraw the new one, the delay in time to draw the new picture would
result in an annoying flicker effect. However, because a page can be
enabled almost instantly, no flicker effects occur (however there may still
be some jerky motion). This method permits the programmer to create
animation by letting each page contain one of several frames of, for
example, a figure in different positions. The program could then flash
through sequential screens to give the effect of movement.

The mode statement may also be used for instantly activating color
(color burst) or disabling color in a particular scene. Some computers,
such as the ATARI Home Computer, allow changing modes with a very
simple statement like GRAPHIeS n, where n is the graphics mode
number. (By making n equal to 0 the machine will operate in a text
mode.)

Color Selection

Colors may be automatically selected by the mode statement or
specifically selected with a special color statement. In some computers
the color selection statement allows choosing colors for the foreground,
background, and border. Computers that feature color registers usually
have one statement for selecting which color register will be used to paint
a pixel, and a second statement that sets each register's color value. In
the ATARI Home Computer the two statements are COL aRand
SETCOLOR. When color registers are used, the statement may select
the luminance as well as the hue of the color. There may also be a
statement for setting the color of any special programmable objects, such
as TI's sprites.

Colors Available

The choice of colors on personal computers is very limited com-
pared to the selection available on expensive high-technology comput-
ers. In some computers, like the IBM, there are eight colors with two
intensities of each (high and low) for a total of sixteen (this is just in the
text mode). Most manufacturers include black and white when specify-
ing the number of available colors. In some computers, like the Apple,
there are only six colors available. On the other hand, the ATARI user
can choose from 128 colors (16 hues, 8 intensities) in most modes and
256 colors in two special modes, but this is the exception rather than the
rule.

The names chosen for computer colors follow no standard; one
company's aqua may be another's blue-green. Further complicating
matters is the fact that the colors that actually appear on the TV depend
greatly on the setting of the television color control and the fine tuning.

Some computers thoughtfully present a band of each color next to its
name so you can perform this adjustment before using any programs.

Plotting

Plotting is the most fundamental graphics function. It consists of
using horizontal and vertical coordinates to illuminate a point on the
screen. Sometimes the plotting command is referred to as PSET, and
sometimes it is simply referred to as PLOT, POI NT, or HPLOT. The
plot statement is analogous to a needlepoint stitch done with a certain
color yam. In some cases you may be able to specify the color within the
plot statement itself, while in other cases you must first set the color with
a color statement. Erasing of plotted points is much simpler than remov-
ing a needlepoint stitch. It is done by setting the point color to the
background color and replotting. Some computers, like the IBM PC,
offer a special erasing command called PRE SET){ I Y.

Some systems may allow the X,Y coordinates to be relative by use of
the word STEP in the plot statement. This means that the new point is
plotted X,Y locations away from the last plotted point. Relative coordi-
nates are good for simplifying the coordinate values for a complex object.
Although plotting is probably the simplest graphics function to perform
on a computer, it is usually too slow for real-time animation in BASIC.
With C and Forth, however, point plotting may provide sufficient plot-
ting speed for the animator.

Line Drawing

Line drawing is an important graphics instruction, because it allows
complex multi-sided objects to be drawn quickly and simply. It elimi-
nates the need to do a repeated PLOT in a loop of some sort. Line-
drawing statements can be as simple as Apple's HPLOT x 1 I}' 1 TO
x2q'2orIBM'sLINE (xll}'1l-(x2,y2J I color, B.The
IBM and TRS-80 Color Computer line-drawing statement is unique in
that it has a special option that allows a rectangle to be drawn. When the
letter B (for BO){) is included in the statement, the x I,y I and x2,y2
coordinates are taken as diagonal corners of a box. If BF is included, the
rectangle gets filled with color (when color is also set in the line state-
ment). Line-drawing statements are often used to put fixed objects on the
screen, with DATA statements holding the coordinates of the shape's
numerous corners. Line drawing for real-time animation, unfortunately,
is usually too slow from BASIC.

Shapes and Graphics Definition Language

Shapes are a feature originated by Apple Computer as part of its
famous Apple II's graphics software. Shapes are ingenious graphics
objects composed of tiny vectors, which are small line segments that can
be drawn in one of four directions (up, down, right, or left). The

Personal Computer Animation Features /145

146/ Personal Computer Animation Features

programmer uses simple rules to string these vectors together like tiny
arrows connected end to end. A shape can be made from a few vectors or
hundreds of them. Once these shapes have been created, they can be
drawn on the screen with one very simple statement, like 0 RAW 1 AT
)(,Y. There also exists an entire set of additional statements for manipu-
lating these shapes, including ones that scale them in size from 0 to 255,
and ones that rotate them from 0 to 360 degrees! These statements make
shapes incredibly useful for games and programs where objects fly, sail,
spin, or otherwise bounce across the screen. They may be limited for
real-time animation however, because the BASIC statements that move
them are slow. For non-real-time animation (i.e., when you use film or
the disk to store the frames of the picture), they are ideal.

Graphics Definition Language (GDL) is a feature currently found
only on the IBM Personal Computer and the TRS-80 Color Computer.
GDL is a set of drawing commands that are placed in a string variable (as
opposed to being inserted into memory with POKE or BLOA0 as needed
with Apple's shapes). These drawing commands specify the way the line
segments are to be drawn on the screen. There is a very complete set of
commands including ones that draw up, down, right, left, and diagonal
segments, repeat these patterns, move without drawing, rotate, and draw
relative to a point. The GDL is too slow for animation when the number
of vectors comprising the shape is greater than ten (when this is the case
an unacceptable screen flicker occurs). However, for slow moving
shapes, complex objects that don't move at all, or non-real-time anima-
tion, it is an excellent feature. One problem with the GDL shapes is that
there can be vectors in only one of eight directions. This means smooth
curves are impossible to draw.

Paint, Fill, Flood

These terms all refer to the same thing - filling an enclosed
boundary with a particular color. There are different types of fills, the
main difference among them being the ability to circumvent comers and
fill every nook and cranny of the enclosed area. A fill, or paint, works by
the user specifying an x.y location inside an enclosed area and a particu-
lar color with which to flood it. Fills are usually slow and do their filling
in a method that resembles many bizarre window shades closing at the
same time. Because of the way some computer screens are set up (with
rules specifying which colors can be positioned next to each other), fills
have a tendency to distort the color of adjacent objects.

Defined Object Statements

Often it is desirable to draw certain geometric shapes (squares,
triangles, polygons) on the screen. This is fairly easy to accomplish using
the LIN E statement. The procedure, however, is somewhat more com-
plex when curved surfaces are involved. Drawing a simple circle can be

very demanding for the non-mathematically oriented user because we
usually need to use complex BASIC programs involving trigonometric
functions such as SIN and TAN. One way out of this dilemma is to use
the defined object statements that make graphics programming much
easier. One such statement is the CIRCLE command (available on the
IBM, TRS-80 Color, and VIC-20 Personal Computers), which allows
you to draw a circle, ellipse, or arc at any x.y location on the screen. The
circle you draw can be of any radius with distortion in either axis and can
be used for anything from the petals of a flower to the wheels of a bicycle
to complex mandala patterns. CIRCLE permits the drawing of elabo-
rately curved shapes using very little programming code; unfortunately,
it is too slow for fast animation, but may work well for slow moving
objects.

Image-Array Plotting

Image-array plotting is another way to plot complex objects on the
screen, and it is a terrific graphics feature. There are two statements
involved here: GET and PUT. The GET statement is used to store an
object that has already been drawn on the screen in a two-dimensional
array (as a matrix of on and off bits/pixels). A pair of x,y coordinates in
the GET statement specifies the area on the screen to be stored in the
array. These coordinates define the diagonal comers of a rectangle that
surround the object on the screen. A corresponding statement, PUT, is
then used to draw the object now stored in the array at any x,y (upper left
comer of the rectangle) screen location. Since the object is drawn using
the bit map stored in the array, an optional action statement can be used to
control the way each of the object's ON bits interacts with the image
already on the screen. The action command allows you to AND, 0R, or
)(0R the array contents onto the screen background. In essence, this
means you can draw the object on a background without having to erase
it! After storing an object with GET, you can use PUT as a specially
created paint brush to dab on the screen wherever you wish.

As might be expected, not all BASICs offer GET and PUT. You'll
find it on the IBM and TRS-80 Color Computer. Image-array plotting is
too slow for complex animation but can be used effectively when slow
movement is desired or when objects are very small or very simple.
Apple Ill's drawblock command, although cruder, is another example of
image-array plotting. It is a graphics primitive and not easily used from
within BASIC because up to 20 arguments for it are stored in memory.
Even so, it is probably faster in operation than regular array plotting and
might work well in animation.

Miscellaneous Graphics Statements

Other graphic statements that you will find useful are those desig-
nated for clearing the entire screen to a certain color, a width statement

Personal Computer Animation Features /147

148 / Personal Computer Animation Features

for controlling the number of text columns that can be displayed, and a
screen function that returns the ASCII value of a character at a particular
row and column. Also useful are the point function for returning the color
at a specified location on the screen, a locate statement for positioning the
text cursor, a command for setting the viewport (a rectangular window on
the screen that graphics drawing is restricted to), and a page copy
statement for moving graphics information from one page to another.

4.6. PLAYERS AND SPRITES

Players and sprites are graphics objects that can be moved by custom
hardware. ATARI calls them players while Texas Instruments refers to
them as sprites, but their function is similar in nature. Players solve a
major graphics problem - namely, they are separate from the back-
ground and don't require complex erasing to be moved on the screen.
They are somewhat easier to update than the normal plotting methods,
and they don't interfere with other objects made from players.

With normal software, the program must keep track of the position
of an object, erasing and redrawing it as it moves across the screen. With
players, however, you only have to POKE a register with the horizontal
value of the object's screen destination, and the hardware does all the
moving for you. For vertical movement, bytes representing the object in
a special area of memory must be moved. There are techniques to
accomplish this from within BASIC, but a machine language routine
makes it simpler. ATARI' s Players have their own color register so they
can be a different color than anything else on the screen. You can even
combine Players to create larger objects or objects of more than one
color.

Sprites function differently from players. A sprite is twice as large
as a regular character (16 x 16), whereas the players are 8 bits wide with
a maximum height of 256 bits. Sprites are more powerful than players
when it comes to moving them on the screen. Once a sprite is put into
motion, it keeps moving as directed until told otherwise. The sprite has a
large number of special commands for moving it, including a MOTION
command for specifying velocity and direction, COl NC for detecting
sprites coincidence (collision), 0 1STANeE for telling the distance
between two sprites, and MAGN I FY for changing the size of sprites on
the screen. You can tell all the sprites to FREEZE and to THAW; you can
change colors of any of them at any time, and you can redefine which
ones appear on the screen. For some time sprites were available only on
the TI 99/4. However, because sprites are generated by a special TI chip
that is on the open market, you can now buy a board for the Apple that
gives it sprite ability.

It should also be noted that some of the sprite's manipulation
commands are available with ATARI' s players through a direct POKE or

PEEK to the hardware registers. The collision of a player with another
player or specific screen color can be detected, the width of a player can
be changed, and the Player's priority in relation to the screen Playfield
colors (non-background screen color) can be controlled. (By priority we
mean whether the player passes in front or in back of a screen color.)
Each player is also associated with a two-bit wide missile, which can be
moved about the screen.

Players and sprites are perfect for animation - they were designed
for this purpose. Using them in a program eliminates flicker, update
overhead and superfluous, convoluted programming code!

4.7. HARDWARE SCROLLING

Hardware scrolling causes the display screen to move over a screen
memory area which is actually larger than the screen. Conventional brute
force scrolling, where bytes must be moved one at a time into the display
area of memory, results in a visual effect which is slow, wavy, and
choppy. With hardware scrolling, the software only needs to change
single two-byte pointers to cause the entire screen image to move up or
down, right or left, or diagonally, resulting in a very fast and smooth
scroll.

There are two distinct kinds of hardware scrolling - coarse and
fine. Coarse scrolling moves the screen window many bytes at a time
(entire characters), whereas fine scrolling moves the screen on a pixel
(dot) basis, allowing a smooth gliding effect. This technique is used in
Chapter 9 for moving our program backgrounds.

Although hardware scrolling is perfect for animation background, it
is a rare feature usually found only in the most sophisticated computers.
The only personal computers currently possessing this feature are the
ATARI Home Computers.

4.8. GRAPHICS CHARACTERS

Many personal computers have, in addition to the normal built-in
text characters, a set of graphics characters. These are usually tiny shapes
such as boxes, line segments, circles, card symbols, smiling faces, Greek
characters, and corners. In some quick and dirty types of animations,
these graphics characters may be very useful.

4.9. CUSTOM CHARACTERS SETS

A most important feature for animation is the ability to create and
manipulate objects which are made from your own custom characters set.

Personal Computer Animation Features / 149

150 I Personal Computer Animation Features

This feature is available on most of today's personal computers. A single
custom character usually consists of an 8 x 8 matrix of dots. With
careful planning, you can create a custom character set that satisfies a
variety of purposes. You can create a complex object that can be made up
of several of these adjacent custom characters. The Walking Man pro-
gram (Chapter 5), as well as the trees and houses in Chapter 9, were
created using a custom character set.

Some computers, like the Apple, feature special programs that
facilitate the creation and use of custom characters. Therefore, if the
system lacks the ability to mix text and graphics, as the Apple II does, it is
possible to actually create your own character set, as well as graphics
characters, and mix them on the screen.

4.10. COLOR REGISTERS

Color registers (see Chapter 2 for more details on these) are a feature
just beginning to appear on personal computers. First implemented on the
ATARI Home Computer and now found on the VIC-20 color computer
as well, color registers provide an indirect way to specify pixel color
while giving more power and flexible graphics control. Personal comput-
ers use color registers in a manner similar to that of high-tech animation
computers, with the exception that they are not as wide, bit-wise (and
thus hold fewer colors), nor are they as numerous (nine in the ATARI
Home Computer, four in the VIC-20). With enough color registers you
can perform animation colors through them. Areas on the screen that
reference these registers then change color accordingly. Chapter 6
shows, through program examples, how to use color registers in anima-
tion on the ATARI Home Computer.

4.11. VERTICAL BLANK INTERRUPTS

Every 1160 of a second the entire screen is redrawn. From the time
when one screen has been completed and the next one is begun, there is a
short period called the vertical blank. If the computer allows it, the
microprocessor can be interrupted at this point, and a custom machine
language program can be executed. This routine can be used to process
animations-in a background mode, which means you can have certain
graphics events occur unattended and almost automatically, such as
moving an object, playing music, or reading the joystick. The ability to
interrupt the microprocessor during the vertical blank period is called a
vertical blank interrupt and is another rare feature which is available on
the ATARI Home Computer. Vertical blank interrupts are an advanced
concept which we thoroughly cover in Chapter 8.

4.12. DISPLAY LISTS AND DISPLAY LIST INTERRUPTS

Display lists are popular in high-technology animation computers
but rare in personal computers. A display list is a section of memory that
contains a set of graphics instructions for a graphics processor. So far,
only available on the ATARI Home Computers, the display list controls
into which graphics modes the screen is divided. The ATARI screen can
be horizontally divided into as many different modes as you wish.
Display list interrupts are display list instructions that actually interrupt
the microprocessor after a mode line has been drawn on the screen and
make it possible to change aspects of the display, such as screen color.
Chapter 9 features display list interrupt programming examples.

4.13. SPEED OF PLOTTING

A good general test of the speed of your graphics processor is to use
the BASIC plotting statement to place a certain number of pixels on the
screen using a FOR/ ND(T loop and see how long it takes to do this. (If
you subtract the time to do the loop and divide the number of pixels by the
number of seconds, you have the number of pixels plotted per second - a
good measure of graphics speed.) We created the program below to
perform this test. The starting and ending values are adjustable to take
into account each computer's particular display format. Here is the
benchmark program we used for the IBM. You can modify this program
to work with other computers' unique statements.

100 REM test pixels per second for ibm
110 CLS
120 SCREEN 1: REM sets 320 x 200 mode
130 COLOR 0 t1: REM selects ba c k s r o un d .

palette
140 XMIN=1: XMAX=320: REM start and end x
150 NROWS=10: REM enough rows to time it
160 YMIN=1: REM starting y
170 FOR Y=YMIN TO NROWS
180 FOR X=XMIN TO XMAX
180 PSET(;<,Y),l
200 NE){T x .Y
210 END

Figure 4.5: Benchmark Program for testing plotting speed.

Run the above program, and time it with a stopwatch. Calculate the
total number of pixels plotted by multiplying)<MA)< by NROWS. ()< MA)<

Personal Computer Animation Features/ 151

152 / Personal Computer Animation Features

varies for each computer screen resolution.) After this number is
obtained, put aREMstatement in front of the plotting command on line
190 (here PSET for the IBM), run the program, and time it again. (In
other words line 190 would look like 180 REM PSET ()(t Y) t 1.)
Subtract the difference between the two times and divide the total number
of pixels by this difference. The final answer is the number of pixels
plotted per second.

As an example of how fast a personal computer can plot, we found
that in IBM's medium- and high-resolution color modes, 320 pixels per
second could be PSET to a color.

Partll
Introduction

Earlier you saw what can be done with million dollar computers.
Now let's look at the kind ofanimation that can be created with a personal
computer costing only a few hundred dollars. In this half of the book, we
will show you how to bring the exciting world ofanimation into your own
home. If you have an ATARI microcomputer (a 400, 800, XL, or
equivalent) with ATARI BASIC, you will be able to tum your computer
into a fabulous animation machine. If you own something different, read
on anyway - some of our examples can be modified for other micro-
computers.

This second half of the book is organized differently from the first.
This is the hands-on section, and we will be presenting animation
program examples that you can type into your computer. We will start out
with very simple examples and conclude with a sophisticated demonstra-
tion program which uses most of the ATARI' s special graphics features.

We assume that you already have some experience with the BASIC
programming language. Although we explain the logic behind our
animation demonstration programs, we don't cover the meaning of the
BASIC keywords (e.g., PR I NT I GOTO I GOSUB, etc.). Therefore, if
you are new to programming in BASIC, reading a beginning book like
BASIC Programming Primer (by Waite and Pardee, Howard W. Sams &
Co., Indianapolis, IN) or Armchair BASIC (by Fox and Fox, Osbome/
McGraw-Hill, Berkeley, CA) will help you better understand our
examples.

You do not need to understand assembly language to use the exam-
ples in this book. We have provided you with several black box machine
language routines which will give you control over the ATARI features
such as Player-Missile graphics, Fine Scrolling, and Display List Inter-
rupts. By black box we mean that you can use these routines without
knowing what's inside them - you POKE something into them and the
desired result comes out. We have designed them so they are easy to use
from within BASIC.

If you have thumbed through this section of the book already, you
probably noticed many pages of program listings. To save you the time
and trouble of entering all this code, a diskette is available through

Part 11/153

154/ Part II

Adventure International which contains our major demo programs and all
the assembly language routines.

Many of our programming examples are expansions of previous
examples. This means that instead of typing an entire program, you will
often need only to add new sections to an existing program. Therefore, do
not erase the programs you type in - save them on cassette or diskette,
you may need them later on. Also, as you enter the examples, it is
important to copy them exactly as they are, without changing any line
numbers or omitting any lines. Otherwise, when it is time to expand the
programs or merge some of them together, you will have quite a bit of
difficulty.

Chapter 5

Character Set Animation

I n this chapter, we will show you how to use ATARI's built-in and
user-defined character sets to create animated pictures. These tech-

niques can be employed with any computer which allows you to redefine
the character set. There are four demonstration programs in this chapter.
The first one will produce a flying bird, the next a walking man, the third
a screenful of galloping horses, and the last a bomb exploding in brilliant
colors.

5.1. BUILT-IN CHARACTER SETS -
MAKING DO WITH WHAT YOU HAVE

As we have mentioned earlier, animation is created simply by
rapidly displaying a series of pictures which differ only slightly from
each other. The brain is fooled into thinking that it is seeing continuous
motion rather than individual pictures. The most basic method of im-
plementing animation on a computer is by using PR I NT statements to
draw a figure on the screen and then using PRI NT to go over the figure
with a different picture. When these figures are PRI NTed in rapid
succession, we perceive motion.

To draw our figures, we can use the computer's built-in characters
-the letters of the alphabet, numbers, punctuation, and special graphics
characters. (See your ATARI BASIC Manual for the complete ATARI
character set.) A graphics character set is made up of straight lines,
diagonal lines, comers, squares, and circles. When the imaginative
programmer puts these elements together, he or she can create a crude
picture. Computers such as the IBM Personal Computer and the Com-
modore computers (PET, VIC, CBM, Commodore 64) all have built-in
graphics character sets. The greater the variety of characters, the more
flexibility a budding animator has in creating "living" figures. In our
first example, we will use the ATARI's graphics character set to create a
bird in flight on the screen.

Character Set Animation / 155

156 I Character Set Animation

Creating the Frames

To produce the effect of animation, you need to create a series of
individual pictures that can be rapidly flashed on the screen. Each picture
is called a frame. In conventional eel animation, the animator usualIy
draws the key frames first. These are the ones which show the figure in
extreme or key positions. With a very short animated motion, there might
be two frames: the initial position of the figure (before the action begins)
and the final position of the figure. For example, a person waving
good-bye could be animated with two key frames. Longer actions, on the
other hand, might contain many key frames, each one occurring at every
directional shift in the action. An example of this might be a battle
between two figures. The key positions are created as the fight is
choreographed. This is done by breaking the extended, complicated
action into short, simple actions. (In Example I, our flying bird, we use
two key frames, one with the bird's wings fully raised and one with the
wings pointing downwards at the bottom of the flapping cycle.)

The next step is to create the in-between frames, i.e., the ones used
between the key frames. The number of in-between frames determines
the smoothness of the animation. In Example I, if we had used only our
two key frames, without any in-between frames, the animation would
have looked jerky and unnatural. (This jerkiness is calledjudder and is an
indication of lazy animators or tight production budgets.) On the other
hand, since the computer can only PR I NT a limited number of frames
per second, too many in-between frames would result in slow motion.
This is because the computer would not be able to flip through the frames
fast enough to make the bird flap its wings at the proper speed.

In film animation, frames are flashed on the screen at the rate of 24
per second. The cartoons produced during the golden age of animation
used full animation in which each of those 24 frames required a separate
drawing. Today's low-budget cartoons necessitate the reuse of each
drawing in consecutive frames. A drawing is placed under the animation
camera and photographed two, three, four, or even six times before the
next drawing in the sequence is used. This yields a respective animation
rate of twelve, eight, six, or four frames per second. Twelve frames per
second is tolerable, but anything slower looks painfully crude in com-
parison to the classics.

In character set animation, the problem of how many frames to
display is approached from a different angle. With built-in character sets,
we are restricted to the number of in-between frames which can be
created with the limited set of characters. In the flying bird example, we
could only draw two in-between frames with the available graphics
characters, resulting in a total of four unique frames. Even without the
restriction of built-in character sets, there is another limiting factor - the
computer's processing speed. How many frames can the computer draw
in one second without becoming bogged down'? The answer is dependent

upon the complexity (size) of each frame, the number of different objects
which must be animated at one time, and the other programmed functions
(sound effects, calculations, or joystick inputs) that must be taken care of
during the animation cycle.

How do you decide how many frames to use in your animated
sequence? After months of creating animation programs we will now
pass on our foolproof technique for creating realistic looking animations
- it is called "Trial and Error."

The Art of Trial and Error? Most of the development time for
this program was spent deciding which characters to PRI NT on the
screen to create something that looked like a flying bird. Writing the
actual program logic took very little time, which is often the case in
creating computer animation. Much time is spent in trial and error, trying
to get the figure on the screen to look just right. We had certain prereq-
uisites. Not only must our figure resemble a bird, but when it moved, it
had to reflect the image of a bird in flight. If the wings moved too fast, the
viewers would see only a blur. If the wings moved too slowly, the effect
of motion would be lost.

As you begin to create your own animated figures, you'll begin
observing the motion of living things. Another excellent source for
learning about animation is by watching cartoons. Notice how simple and
limited the animation can be while still conveying the effect of move-
ment. At first you may become frustrated with your results, especially
after looking at the video games created by the masters. Don't give up! In
time, you'll develop an intuitive feeling for animation and will find that
your trials are shorter and the errors farther apart. After all, even masters
spend much time throwing away earlier attempts that don't look just
right.

One nice thing about computer animation is that the results are
visible immediately. You don't have to wait for the film to come back
from the lab before discovering that your bird looks like a boomerang
with arthritis! With a computer, if you don't like what you see, you can
adjust the graphics accordingly.

The Flying Bird Frames

Four individual frames were used to create our flying bird, as shown
in Figure 5. I. Notice that only four different graphics characters are used
throughout the frames.

CHARACTERS USED:

••••

Character Set Animation / 157

CTRL F CTRL G CTRL M CTRL T

(continued)

158 / Character Set Animation

FRAME 1

FRAME 2

FRAME 3

(continued)

FRAME 4

Figure 5.1: Frames ofthe flying bird.

Each frame is five characters across and three high. To make the job
of animating the bird easier, each frame should be identical in size and
shape. To accomplish this, many of the character positions in the frame
are filled with spaces.

By taking these four frames and cycling through them in a specific
order, the bird flaps its wings. Here is the order of the sequence:

Frame 1 beginning of cycle
Frame 2
Frame 3
Frame 4 midpoint of cycle
Frame 3
Frame 2
Frame 1 end of cycle and beginning of next cycle
Frame 2
Frame 3
Frame 4 midpoint of cycle
Frame 3
etc ...

For obvious reasons, this is called cyclic animation. It is relatively
easy to implement because the object can be animated for many seconds
or minutes by using only a few different frames. In conventional eel
animation, each frame would be photographed in order, over and over
again. This can be very time consuming. But with a computer, we can use
a simple GOTO loop to repeat the cycle. In the upcoming program,
Example I, six frames are displayed before the cycle repeats.

Character Set Animation / 159

160 / Character Set Animation

Listing Conventions - How We Represent Those Invisible
ATARI Characters

Throughout the listings in this section of the book are many
characters which either cannot be printed by our printer or are
difficult to find on the ATARI keyboard (e.g., inverse video, cursor
control, and graphics characters). To make it easier to enter the
programs, we modified the listings so that all special characters are
indicated. Inverse video characters are underlined, and all other
special characters are surrounded with curly brackets { }. This
includes all graphics characters (entered with the CTRL key) and all
cursor control characters. When spaces are critical, they are repre-
sented as a "b" with a slash through it (ttl).

You may have noticed that our printed listings look different
from programs listed on your screen. We used a special program to
print them in a manner which emphasizes their structure, thus mak-
ing them more easily read and understood. All FOR / NE>{T loops
are indented so it's easy to see where the loop starts and ends.
I F / THE N statements are also indented - you can see exactly
what will be executed if the condition is TRUE. Also, the multiple
parts of all statements (separated by colons) are printed on a sepa-
rate line. Of course, when you enter the programs, the structure will
disappear; therefore, don't try to maintain it by entering each state-
ment on a separate line!

Although our formatted listings are easier to read, the formatting
makes the programs appear to be longer than they really are. Don't
let the number of pages it takes to display each program discourage
you from entering it. Of course, if you don't want to spend your time
typing programs in, you can always purchase them on a disk (see the
order card in the back of this book).

Before you try entering the programs, read the complete in-
formation in Appendix C, "Listing Conventions."

The listings in this book are in a special format and use special
codes. Before you try to enter any of our programs, read the above box
and Appendix C, "Listing Conventions."

Some of the listings in Chapters 5 through 9 are rather small and
difficult to read. However, the complete listings are printed again, larger,
in Appendix A for your reference.

Example 1

Exercise Using the built-in ATARI graphics character set,
write a program that draws a flying bird with flapping wings on the
screen.

a)

b)

c)

d)

Photo 5.1 : Screen photos of the Flying Bird program.

Character Set Animation / 161

162 / Character Set Animation

Here is the listing of the Flying Bird program. Look at the lines
where the B I RD strings are initialized (lines 120-150). We are using a
special convention here to tell you which keys to press to get the
appropriate graphics characters. When you see a word or character which
is surrounded by curly brackets { }, you must do something special to get
the appropriate character into the string. The box called "Listing Con-
ventions" and Appendix C explain how this is done.

Figure 5.2: Listing of the Flying Bird program.

How it Works In line 110, we DIMension the string variables
we will be using in this program. The number within the parentheses tells
BASIC the maximum number of characters each string may hold. In
ATARI BASIC, all strings must be declared in this manner.

The four frame strings, BIRD 1$, B I RD2$, B I RD3$, and
B I RDLI $ (initialized in lines 120-150), contain three different types of
characters. They contain:

1. The graphics characters which make up the bird (see Figure 5.1).
2. The cursor control characters which move the cursor before printing a
graphics character.

3. Spaces which are used to erase sections of previous frames.

Whenever something is being printed (with PR I NT) on the screen,
you will see the little white box, called the cursor, following each printed
character. The POKE in line 160 turns off the cursor (makes it invisible),

so we don't see little white boxes swarming around like a bunch of
hornets while each frame is drawn.

The Animation loop (lines 200-270) contains the logic to print each
frame in the correct order. This section is simple and straightforward. We
just have to place the cursor in the middle of the screen with ATARI' s
cursor positioning command (line 220) and print the appropriate frame.
The entire wing-flapping cycle consists of six frames (two of which are
repeated). To accomplish this we use a FOR / NE){T loop from I to 6 to
step through the frames. An ON GOSUB (line 230) uses the current
FOR / NE){T value (I) to control which frame is printed. When I equals
I, line 310 is executed and B I RD1$ gets printed. When I equals 2, line
320 is executed, and so on.

Line 240' s FOR / NE){ T loop is used to slow down the rate at which
the frames are printed. Try changing the value on this line to see what
happens to the bird. You may like the bird better at a different frame rate.

Character Set Animation / 163

Modifications
Example 1:

Here are a few modifications you can tryon

1. Change the program so that more than one bird is flapping its wings on
the screen. This could easily be done by repeating lines 220 and 230
within the main Animation loop and changing the X,Y coordinates of
the POSIT ION statement. You will also have to change the value in
the Pause loop (line 240) to adjust the frame rate of the birds. (You
may be able to gain some animation speed by using separate PR I NT
statements for each of the three horizontal rows of bird characters per
frame. This will save you from having to use the cursor control
characters - the fewer characters printed, the faster the program will
run.)

2. Make the bird move around the screen. To do this, just control the
values in line 220' s POSIT ION statement. Be sure to erase the bird
each time you move it or the screen will become wallpapered in birds!
Another point to remember is this: anytime you erase and redraw a
figure, it will appear to flicker on the screen (the light from the image
is interrupted by blankness during the instant the image is erased, thus
the flicker). To minimize the flicker, erase the bird immediately
before drawing the next frame - avoid inserting any program logic or
calculations while the bird is erased.

3. Add sound effects. As we will see in later programs, sound effects can
add a great deal of realism to a program.

4. Make the bird look like it is flying away from or closer to you. Add
new frames of the bird which are smaller and frames of a larger bird
which have greater detail. As you display each set of frames in order,
it will look as though the bird is flying towards or away from you.

164 / Character Set Animation

Summary

Now you have seen how a simple animation program can be put
together from start to finish. The result is a crude beginning, but the
next technique allows us to produce animated figures with far greater
sophistication.

5.2. USER·DEFINED CHARACTER SETS -
A BOUNCY WALKING MAN

We must admit that after all that talk about making the bird look like
a bird, it takes some imagination on the part of the observer to look at a
dot and a bunch of lines and see a flying bird. Using the built-in character
set of your computer is very limiting! In this section, we will see how to
make use of the ATARI' s capability to redefine the character set. Using
the same animation technique as in the first program, we can now
sculpture the individual characters into any shapes we wish. In other
words, you can create individual characters which can be printed together
to make up a larger, perfectly designed shape. Many other computers,
such as the IBM Personal Computer, I the Apple II, 2 and the Apple III
also have this capability. Now our animated figures can be created with a
high degree of detail rather than being limited to the coarseness offered
by the built-in character set.

The Character Set

When you first turn on your ATARI computer, you will see a word
or words printed on the screen (i.e ., REA0 '(if you are using your BASIC
cartridge). What happens inside your computer to display those words? A
series of number codes are placed in an area of RAM called screen
memory, one code for each character. These codes are then interpreted in
a predetermined way (depending on which graphics mode you are in). In
the standard text mode, GRAPHIe S 0, the numbers in screen memory
are translated as addresses which are used to look up some permanently
stored information. This information, stored in ROM (read-only mem-
ory) is called a character set. 3 Each character in the set is composed of

'The IBM PC allows you to define characters only in its two graphics modes. Only the top 128 character
codes can be redefined.

'The Apple II's character set is not really redefinable. However, a number of software products now on
the market allow you to define a character set that is displayed on the high-resolution graphics screen
rather than the standard text screen.

'See Computer Graphics Primer by Mitchell Waite. Howard W. Sams & Co., Indianapolis, IN for more
details.

dots in an array that is 8 dots wide and 8 dots high. Each of these 64 dots
can be turned on or off, thus defining a character. The information which
describes which dots to turn on or off for a character is called the
character definition. Figure 5.4 shows the dot array, or character defini-
tion, for the letter A.

THE EIGHT SYTES DEFINING THE CHARACTER

Character Set Animation / 165

APPEARANCE OF LETTER
ON THE SCREEN

BINARY
REPRESENTATION

00000000
00011000
00111100
01100110
01100110
01111110
01100110
00000000

DECIMAL
REPRESENTATION

o
24

60
102
102
126
102
o

Figure 5.3: Character definition for the letter "A."

Try typing some letters on your screen and see if you can make out
the individual dots. If your television set is sharp enough, you will be able
to see them.

Photo 5.2: Screen photo - close-up of the letter "A."

The information in each character definition is stored as a series of 8
bytes, with each byte representing one horizontal row of 8 dots." Since

4This is the same as the IBM Personal Computer's graphics mode.

166 I Character Set Animation

there are 8 bits in a byte, whether a bit is on will determine whether the
corresponding dot on the screen will be turned on. Each character in the
character set is defined in this manner.

There are 128 distinct characters in the ATARI character set. If we
multiply this number of characters (128) by the number of bytes needed
to define each character in the character set (8), we get 1024, or lK (128 *
8 = 1024 bytes). This is the amount of ROM space needed to store the
ATARI built-in character set. Since each character can also be repre-
sented in reverse video, there are a possible 128 * 2 = 256 codes (from
o to 255) which can appear in screen memory and be interpreted as
characters. The codes from 0 to 127 represent normal video characters
and the codes from 128 to 255 are reserved for inverse video characters. 5

CHARACTER 127

CHARACTER 126

CHARACTER 125

CHARACTER

CHARACTER 0

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

BYTE 7
BYTE 6
BYTE 5
BYTE 4
BYTE 3
BYTE 2
BYTE 1
BYTE 0

Figure 5.4: Map of ROM character set.

CHARACTER DEFINITION
FOR BLANK SPACE

In many personal computers, the built-in character set is all you get.
But the ATARI Home Computer has the capability to display user-
defined character sets! As we said, the ROM character set is permanent.
You can't change any of the character definitions in this ROM. However,
what if we were to create our own set of character definitions and POKE
them into RAM'? How would we let the computer know where to find this
customized set of character definitions'? The answer is simple - ATARI
has memory location 756 (decimal) reserved forthis purpose. This RAM
location always contains the page address of the current character set. (A
page of memory is 256 bytes, therefore to convert a page address to an
actual address, multiply by 256.) When you turn on your computer, press
the SYSTEM RESET button, or change GRAPHIe S modes, the value in
756 is automatically initialized to 224 (the page address of the ROM

.'iThe IBM PC has a separate byte for each character position to control attributes!

character set; thus we say that 756 points to the character set in ROM).
But you can change the value in 756 so it points instead to an address in
the computer's RAM. If you PO KE the page address of your customized
character set into 756, you "turn on" the new character set. As we shall
soon see, the results are instantaneously visible."

Character Set Animation / 167

(A) IS THE RAM BASED
USER-DEFINED CHAR-
ACTER SET.

(B) IS THE ROM BASED
BUILT-IN CHARACTER
SET.

tA) RAM (B) ROM

(AI -VALUE IN HERE POINTS TO
CURRENT CHARACTER

ADDRESS 756

Figure 5.5: Switching between RAM and ROM character sets.

Turning On Character Sets

Let's try a simple program to see what happens if we change the
value in 756. Try typing in the following short program:

10 GRAPHICS 0
20 FOR 1=0 TO 255 STEP 4
30 POKE 75GtI: REM Switch character sets
40 NE}n I
50 GOTO 20

Now run this program. Don't worry, your computer isn't broken!
What you will see on your screen is a rapidly changing, finely drawn
display which fills the entire screen. Exactly what is happening? Let's
see. When line 10 is executed, the screen is cleared. The ATARI clears
its screen by filling screen memory with as. These Os are used to look up
the Oth character in the current character set. In the ROM character set,

hOn the IBM PC. changing the location of the character definition table affects onlyjl{{/{re characters to
be written. not characters already printed on the screen.

168 I Character Set Animation

this Oth character is the space. A character set must always begin on a
"1 K boundary. " This means it can begin at any address which is evenly
divisible by 1024. In converting to pages, the value in 756 must be evenly
divisible by 4 (there are 4 pages in 1 K). So in line 20, we increment I by
four. As we POKE the different values of I into 756, the current
character set is changed. Of course, we really aren't switching to differ-
ent character sets, just to whatever random information happens to be at
that memory location. What we see on the screen is the current character
definition for the Oth character (the space character). Whatever happens
to occupy the first 8 bytes in each character set (i.e., the character
definition for the Oth character) determines how the space character will
be displayed. When the first 8 bytes are Os, the screen goes blank.

Now press RESET, and POKE 756 with 200. The screen immediate-
ly becomes a mass of swirling, ever-changing interference patterns. But
how could this be - there's no program running! Ah, but there is. We
have discovered an address which is being used by the ATARI operating
system. It is changing the contents of the first 8 bytes at machine-
language speed.

Reserving Character Set Memory

After we have designed a character set, we must find a safe place in
memory for it. A good location is immediately below screen memory.
Where is screen memory? In most computers, screen memory is always
located at the same address. However, the ATARI Home Computer
automatically reserves space at the very end of RAM for screen memory.
This means you'll find the screen memory at different addresses, depend-
ing on how much memory your computer contains and which graphics
mode you are using. In GRAPHIe S 0, 1 K of memory is used to
display the screen. 7

The ATARI uses memory location I06 to store the number of pages
of memory it thinks it currently has. By taking the value in 106 and
subtracting 4 from it for screen memory and another 4 for the size of the
character set, we can obtain the page address for our character set (see
Figure 5.6).

7Actually GRAPH I CS 111 uses 960 bytes of screen RAM and 32 bytes for the display list (covered later
in this chapter) for a total of 992 bytes.

Character Set Animation / 169

Figure 5.6: Memory map of upper RAM.

GRAPHICS 0
SCREEN
MEMORY

RAM
CHARACTER
SET

.-----------,-TOP OF RAM
(NUMBER OF RAM PAGES
IS STORED IN 106)4 PAGES

(IK)

4 PAGES
(IK)

BEGINNING OF-r--------l-IK BOUNDARY
CHARACTER SET

Creating a Character Set

Now that we know the why and wherefore of user-defined character
sets, we can create one of our own. There is a difficult and a not-so-
difficult way to create user-defined character sets. The difficult way is to:

I. Photocopy the grid of squares in Figure 5.8 or obtain a sheet of graph
paper, preferably 8 squares per inch. (Our grid has been prepared to
accurately reflect the true proportions, 7:8, of each character - the
vertical side is longer than the horizontal side.)

2. Decide on the size of the character matrix you want your figure to
occupy and draw it on your grid of squares.

3. Draw the outline of the figure you wish to represent within the
character matrix.

4. Fill in all the little squares which lie more than halfway inside the
boundaries of your outline. Use your judgement to improve the
appearance of the figure for borderline squares.

5. Calculate the decimal value for each row of each character cell.
6. Enter these byte values into your program.

This method is difficult in that it involves the manual transfer of
information from paper to a program. If you only needed to do this once it
wouldn't be so bad. But, as we mentioned earlier, creating an effective
animation requires a large degree of trial and error - it's exceedingly
rare to get it right the first time. So once you've done all your work, tried
the program and discovered that your animated figure looks as if it's
critically ill, you must go through the entire process again.

A more efficient approach is to use one of the commercial font
editing programs currently available to consumers.8 A product like this
will allow you to work with your characters in an interactive environ-
ment: you can see the characters on the screen as you create and edit

8Theword "font" refers to the style of the characters on the screen. You can design an Olde English font.
a computer-like font, a script font. or even a walking-man font.

170 / Character Set Animation

STEP 2:
2 x 3 MATRIX OF CHARACTERS

STEP 4:
FILL IN THE SQUARES

a)

I I
I
I

...
/,
I\.

L..oo

'"
".

!/ f / ..
i\ I I

'-fo'"

... \
t1' ,.

r- I, , '"I'-
STEP 3:
DRAW OUTLINE OF FIGURE

0 0
0 0
0 0
0 0
0 0
0 0
0 28
0 62
0 62
0 62
0 28
0 240
3 240
15 240
29 240
59 251
51 255
7 220
7 192
7 192
15 227
252 118
112 60
48 24

STEP 5:
CALCULATE 8YTE VALUES
FOR CHARACTER DEFINITIONS

(continued)

b)

Figure 5.7: a) Steps to create a character set frame b) using a font editor "IN-
STEDIT" by Sheldon Leemon, ATARI Program Exchange. Apx 20060.

Figure 5.8: Grid for creating character set figures. A full-size grid appropriate
for photocopying can be found in Appendix B.

them. The computer can also take care of the laborious calculations
necessary to determine the byte values for each character. You will still
spend much time trying and erring, but the computer will handle much of
the tedium.

The digitizing tablet is another labor-saving device which facilitates
the creation of character sets. As we mentioned in Chapter 2, it consists
of a large, flat drawing surface and an electronic pen or pointer. By
placing your artwork on the tablet's surface, you can enter information
directly into the computer by pressing down on the pen. When you
outline the sections you want to transfer, the computer creates an image
of your drawing on the screen. Before you rush out and buy a digitizing
tablet, though, make sure you can also buy an accompanying program
(for your computer) designed to help you create character sets.

Character Set Animation I 171

172 I Character Set Animation

Color Artifacts One thing you should be aware of when creating
your character sets is the problem with or capability of (depending on
how you look at it) color "artifacts." You may have noticed that every
vertical line in the ATARI built-in character set is at least two dots wide.
This is done to make sure the line shows up on a color television screen in
the desired color. If a vertical line is only one dot wide, or if every other
dot in a row (byte) is turned on, you'll see a color artifact. For example,
instead of appearing white, the character may be blue or some other
color. The dictionary defines artifact as an artificially produced changed
appearance. In this case, it is a color that is produced by the nature of the
color television screen rather than intentionally by the computer. Arti-
facts can be used to add color to a screen, but these colors may look
different on someone else's ATARI (depending on whether it has a GTIA
or a CTIA chip - see Chapter 6). Harry Brown, an ATARI programmer,
used artifacts to add extra color to the playing cards of his poker game
(see Photo 5.3). The green background was created by filling the screen
with quadruple-wide Players and Missiles with holes cut in them for the
text and cards (see color insert; see also Chapters 7 and 8 for more on
Player-Missile Graphics).

Photo 5.3: Poker game using color artifacts (see color insert). (Courtesy of Harry
Brown.)

We will introduce a much better technique for producing extra
colors in a character set in Example 4. For more on artifacts, see the box
on "Pixels, Dots, and Color Clocks" later in this chapter.

The Walking Man Program

Our next program demonstrates the power of user-defined character
sets. We will define a character set that we can use to draw a picture of a
little man walking across the screen. Below are the character definitions
for our Walking Man character set. Each frame is made up of six
characters arranged in a 2 x 3 array (see Figure 5.9). We are using five
frames for the walking cycle, and each frame is displayed only once
during each of his steps. This means that we need only 30 characters (6
characters per frame * 5 frames) to animate the man. Actually, we need
only 26 characters since 4 of the characters that appear within the frames
are blank. To the right of each frame are the byte values we need to POKE
into the character set RAM.

00o 0o 0o 0o 0o 0o 28

o 62o 28o 240
3 240
15 240
29 240
-M 251
51 ill
7 200
7 192
15 192
252 227
224 118
112 60
--!.!!

o 0o 0o 0o 0o 0o 0o 0
--0 .sso 124o 124o 124o 56
1 224
7 224
15 224
.ai 224
55 246
55 254
7 192

111 128
125 192
248 224
192 224
-.M 248

o 0o 0o 0o 0o 0o 0o 112
__ 248o 248o 248o 112
3 192
7 192
15 128
31 128
31 128-31 ill
31 224
222 0
254 0
251 0
231 0
206 0
.is 128

-6 -0
o 0o 0o 0o 0o 0o 224
1 240
J 246
1 240o 224
7 128
31 128
31 128
31 128
--11 rzs
31 240
15 0
15 128
13 192
31 128
123 192
112 128
124 (continued)

Character Set Animation / 173

174 ! Character Set Animation

o oooo
1
3

--i
1
7
15
31
30
62.sa
63
63
60
124
120
112
112
252

o oooo
192
224
224m
192ooooo
---ilooooooo
---il

Figure5.9: Walking Man character set.

Animation implemented on microcomputers is often considered
crude. This is most often because the programmer is usually not an
animator or an artist, not because the computer isn't capable of handl ing
the job. Attention to detail makes animation come alive. Take a look at
the position of the man's head in these five frames. As he walks, his
entire body bounces up and down. This is much more realistic than a
walking man with moving feet and a stationary head!

To create this character set, Animation, by Preston Blair (published
by Walter Foster Art Books, Tustin, CA), a book on conventional
animation, was used. This is an excellent yet simple book showing how
to draw your own animated characters. We placed graph paper over a set
of drawings from the book of a walking man and filled in the appropriate
squares. A font editing program (FONTEDIT, from the software package
lRIDlS 2 by The Code Works, Goleta, CA) was used to help convert the
filled-in squares to character set data. One technique you can try (if you
can't find the figure you wish to animate in an animation book) is to cut
out a drawing of your animated character from paper. At each of your
figure's joints (i.e., knees, elbows), use paper clasps or string to create a
hinge. Then position your figure for each frame and outline its shape onto
graph paper. It will still take some practice to create smooth, realistic
motion, but the proportions of each body part will be correct.

Example 2

Exercise Using a user-defined character set, write a program
that displays a man walking across the screen. Use the joystick button to
control his forward movement. Give him life with a bounce in his step.
Include the sounds of his footsteps.

Photo 5.4: Walking Man.

a)

b)

c)

d)

e)

Character Set Animation / 175

176 I Character Set Animation

Here is the Walking Man program. There are four main sections: the
initialization section, the section which reads in the new character set, the
actual character set data, and the animation loop. The complete listing
can be found in Appendix A.

Figure 5.10: Listing of Example 2 -lines 10-250.

Initialization Each of the five man frames is made up of six
graphics characters and six cursor control characters for a total of twelve
characters. The variable FRMSZE (line 120) is set to this value. On line
130 we reserve string space for our frames with the DIMension state-
ment. All of our frames are stored in one string variable, called MAN$,
rather than in a series of strings as we did in the Flying Bird program
(Example I). This reduces the size of the program code needed to access
a specific frame and makes the program more flexible if we want to use a
different set of frame data. We could have initialized MAN$ in one
statement, but it would have been much more difficult to understand and
enter. The variable FRAM E$ will temporarily hold the current frame to
make it easier to manipulate.

Make sure you enter lines 140-160 exactly as they appear, including
the four spaces. Even though you are entering letters of the alphabet now,
when you switch over to the new character set, these will be printed as
sections of the man.

ERASE$ (line 170) is used to erase the man every time he moves
one character position to the right. If this wasn't used, our friend would
leave behind a trail of old body parts as he moved across the screen.

In line 230, the color of the screen background and foreground is
changed with the SETCOL0 R command. For now, a briefdescription of
it should be enough. The syntax of the command is

SETCOLOR n,hue,lum

where n selects the color register which will receive the new color, hue is
the hue of the color (a value from 0 to 15; see Table 6.2), and lum is the

luminance or brightness of the color (an even value from 0 to 14). The use
of color registers is a very important ATARI feature, requiring all of
Chapter 6 to cover. The hue we are choosing is gold with the brightness
of the man turned to maximum (the 14 in SETCOL 0R 1 ,0 , 1a) and
the background set to dark brown (SETCOLOR 2,1 ,2). We will be
covering the SETCOLOR command in depth in Chapter 6.

In line 240, we POKE the address of the new character set into

memory location 756. (This isdone toturn on the user-defined character
set and tum off the built-in ATARI character set).

Figure5.11: Listing of Example 2-lines 8000-8160.

Set Up Alternate Character Set Here we POKE the new
character set into RAM. First, on line 8010, some memory is set aside for
our character set. Recall that address 106 is where the ATARI stores the
number of pages of memory it thinks are in the computer. We've set the
variable H I CHRB (HIgh byte ofCHaRacter set Base) to the total number
of RAM pages in the computer minus eight pages (2 K), four pages for
screen memory and four pages for the character set.

In line 8020, the RAM page number in HI CHRB is converted to an
actual RAM address by multiplying it by 256 (number of bytes in a page)
and then stored in CHRBAS.

The next step is to read in the character set data. The first letter of the
character set will replace the lowercase" a," the second letter, lowercase
"b," etc. In some programs, you may need to copy all or part of the
ATARI ROM character set into our RAM character set. You may want to
retain the uppercase and numeric characters for use in your screen
display. By redefining only the lowercase letters, you would still be able
to print text on the screen or read your program when it was listed with the
new character set still installed. You could copy the ROM character set
into your RAM character set with the statements

Character Set Animation I 177

178 / Character Set Animation

100 ROMSET=224*25G: REM Calculate address
of ROM character set

110 FOR 1=0 TO 1023:
POKE CHRBAS+ I, PEEK (ROMSET+ I) :

NEi{T I

where CHRBAS is the RAM address of your new character set. In our
Running Man program, we didn't need to do this, so it really doesn't
make any difference whether we redefined the lowercase letters or any
other sequence of characters.

In line 8040, the OF F SET forthe lower case "a" (number of bytes
from the beginning of the character set) is calculated, and the number of
characters we are redefining is stored in CHARS .

To assure that the character set data is entered accurately, a check-
sum value is used. All of the bytes in our data statements were added
together to obtain this value. Then this value, which came to 16845, was
placed in a DATA statement on line 20020. This checksum value is
READ into the variable TOT AL (line 8060), and all the bytes in our
DATAstatements are added together and stored in TEMP as the character
set is READ and POKEd into RAM (lines 8070-8090). If the checksum
value in TOT AL doesn't equal the calculated sum in TEMP, an error
message is printed out. If this happens, recheck the values typed into the
character set data statements.

On lines 8120 through 8140 the first character in the character set is
filled with O's. As stated before, this is the character definition for the
space character. You already know what kind of designs can appear on
the screen if the space character isn't a blank!

Figure 5.12: Listing of Example 2 -lines 20000-20380.

Character Set Data This is where the data for our Walking
Man is stored. As previously mentioned, the first value (16845) is the
sum of the rest of data. Each line, starting with 20050, contains one
character definition - the 8 bytes which define a single character.

Figure 5.13: Listing of Example 2-lines 300-430.

Animation Loop The logic behind this section is similar to the
animation loop in the Flying Bird program with the addition of a few new
techniques. Since all the frames are stored in one long string, the desired
frame can be pointed to directly with the formula in line 330. In ATARI
BASIC, a substring (section of a string) can be accessed by indicating the
first and last characters:

STR I NG$(first,last)

The formula in line 330 allows access to the I th substring of MAN$
which is FRMSZE characters long. When I equals I, the first 12
characters of MAN$ are stored in FRAME$ (Frame I). When I equals 4,
the fourth set of 12 characters is stored in FRAME$ (Frame 4).

On line 340, the cursor (now invisible) is positioned on the screen.
ERASE$ is used to clear away any of the previously drawn man, and
then the current frame is drawn.

On lines 350 to 370, the sounds of a footstep are added. The syntax
of the SOUND command is

SOUND voice, frequency, distortion, volume

There are four separate sound registers or voices in the computer, num-
bered 0 to 3. The frequency can be any number from 0 to 255. It
determines how low or high in pitch the sound will be. By changing the

Character Set Animation I 179

180 / Character Set Animation

value of the sound's distortion (even numbers from 0 to 14), anything
from a pure tone to a roar can be created. The volume can be any number
from 0 (no sound) to 15 (loud sound). By using two different frequency
settings in our program, one sound is made when the man's heel hits the
ground and another when the rest of his foot makes contact.

Finally, on line 410 the man's horizontal position on the screen is
incremented if the joystick button is pressed. The screen is cleared when
he reaches the right edge of it, and the starting horizontal position O{) in
line 310 is reinitialized.

Running the Program Before you run the program, plug a
joystick into the first joystick port (on the left). Now type RUN, and
you'll see the man walking in place on the left side of the screen. No
mistaking him for a bunch of wobbly pick-up sticks - he really looks
like a walking man! Adjust the volume on your television set so you can
hear the footsteps. When you press the joystick button, the man will
begin walking eastward.

Modification Make a modification which prints more than
one man on the screen at the same time. This could easily be done by
adding a few more lines like 340, but changing the vertical position to
other values. How many men can you have walking across the screen
before they look like they're walking through a vat of cold molasses?
Don't forget to delete line 380 to gain some speed.

Notice how the walking men seem to be stepping slightly out of
sync. This is due to the time it takes for BASIC to move the cursor to the
next man's position and draw a new frame. This modification really
shows BASIC's limitations in animating character set graphics with
multiple figures - BASIC just doesn't PR I NT fast enough on the
ATARI.

Summary

By making use of the increased resolution and control gained by
user-defined character sets over built-in character sets, your animations
can look much more lifelike! The next problem to overcome is that of
BASIC's slowness when it comes to animating more than one figure at
the same time. In the next section we will see how this can be accom-
plished without the use of machine language.

5.3. FLIPPING CHARACTER SETS -
THE GALLOPING HORSE

The next technique overcomes the problem of animating multiple
figures with BASIC. The problem relates to the speed at which BASIC
can PR I NT something on the screen. BASIC can't maintain adequate
animation frame rates for the simultaneous display of more than a few
separate figures. It can handle one or two simple figures, but then it
becomes overloaded, and the result is sluggish and stilted animations.
We could use machine language at this point (called from BASIC) to
greatly increase the frame rate, but there is a simpler technique -
character set flipping. Using this technique in upcoming Example 3,
even though the screen will be completely filled with moving figures, the
program actually needs to be slowed down to obtain the proper frame
rate.

How Does Character Set Flipping Work?

In the last program, one alternate character set was created and then
switched on. The animation was created by rapidly PR I NTing each
frame (made up of characters from that one character set) on the screen.
Recall our short introductory program which POKEd a series of numbers
into RAM location 756. Do you remember how quickly the display
changed? By repeatedly changing the value in 756, we were actually
flipping through a series of character sets with random characters. The
screen looked like a rapidly changing mess. What would happen if we
made use of this flipping technique, but gave it real character sets to flip
through? One character set for each frame could be created. Then, rather
than redrawing the figure on the screen with PR I NT, each of these
character sets could be rapidly flipped through! When we PR I NT
something on the screen, it will be displayed using the character set that is
currently being pointed to (by the value in 756). When another character
set is pointed to, the image on the screen will immediately change." Each
value in a screen location will "index" into the current character set. The
frame rate will be determined then by how rapidly we can POKE in the
addresses of our different character sets as opposed to how rapidly the
computer can PR I NT something on the screen.

In our next example, we will borrow from the man who made the
first live action movie. As we mentioned in Chapter 1, in 1872 the
ex-governor of California, Leland Stanford, and another millionaire
horse lover, Fred McCrellish, had an argument about whether a galloping
horse ever had all its hooves off the ground at any moment. They hired a

llThis technique will not work for the IBM Personal Computer - once a character is printed on the
screen. its appearance can't be changed by flipping to a different character set.

Character Set Animation I 181

182 I Character Set Animation

famous photographer named Eadweard Muybridge to find out. After his
first attempts using only one camera failed to produce convincing results,
he tried again six years later with 12 cameras. Each of these cameras,
equally spaced along a wall, was connected to a trip wire. As the famous
trotter Abe Edgington galloped by, it set off each of the cameras in
succession. By examining each of the photographs, it was determined
that the horse did indeed have all of its feet off the ground at one point
during its galloping cycle. Governor Stanford won the argument and had
a famous university named after him.

Perhaps more important for us, when Muybridge rapidly flipped
through the photographs, the motion of the galloping horse was recre-
ated! He later built the first movie projector (the Zoopraxiscope) and
toured North America and Europe, astounding crowned heads on both
sides of the Atlantic with the first feature-length (1-2 seconds) films.
Five of the frames from his original horse sequence were used to create
the character definitions for the next example. 10

Figure 5.14 illustrates the character definitions for our galloping
horse. Each of the five frames is composed of a 6 x 4 array of characters
(24 characters).

FRAME

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 6 0
0 0 0 0 118 0
0 0 0 1 155 128
0 0 0 1 127 192
0 0 0 6 247 32
0 0 0 15 231 136
0 0 0 59 135 196
0 0 0 15 14 204
0 3 255 254 60 48
3 252 31 192 124 0
14 188 0 0 12 0
29 14 24 0 8 0
5 11 31 0 8 0
0 11 157 240 56 0
0 15 207 252 112 0
0 5 223 191 248 0
0 126 243 223 254 0
0 127 224 127 142 0
0 97 192 3 252 0
0 99 192 3 248 0
0 103 128 1 128 0
0 99 128 1 128 0
1 193 192 1 128 0
1 128 224 1 192 0
0 0 112 1 224 0
0 0 24 0 48 0
0 0 28 0 56 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

FRAME

0 0 0 0 0 0
0 0 0 0 8 0
0 0 0 0 12 0
0 0 0 1 190 0
0 0 0 5 121 0
0 0 0 8 248 128
0 0 0 59 252 32
0 0 0 87 191 208
0 0 0 255 187 144
0 7 255 1 184 192
3 252 32 0 48 0
7 208 3£ 0 16 0
15 151 108 4 16 0
29 31 255 28 16 0
0 31 255 252 48 0
0 15 255 184 240 0
0 15 255 248 28 0
0 15 143 255 254 0
0 62 0 31 6 0
0 60 0 60 12 0
0 56 0 48 56 0
0 236 0 112 48 0
0 204 0 96 0 0
0 198 0 192 0 0
0 220 1 0 0 0
0 216 1 0 0 0
0 192 1 0 0 0
0 96 0 0 0 0
0 112 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(continued)

FRAME

FRAME

o 0 0o 0 0o 0 0o 0 0o 0 0
000o 0 0o 0 0
o 0 0o 0 0o 3 255
3 252 24
15 200 48
63 12 124
10 31 56o 31 255
o 31 191o 31 224o 61 224o 121 192o 243 128
I 195 0
3 I 128
6 0 96
12 0 51
24 0 I 62
24 0 0
56 0 0
24 0 0o 0 0o 0 0o 0 0

o 0o 0o 2o 3o 62
1 239o 223
63]27
23 247
255 238
]28 252o 20o 8
56 24
126 16
255 16
254 56
254 7
7 255
7 0

14 0
12 0
24 0
112 0
]92 1o 0o 0o 0o 0o 0o 0o 0

oooo
128
192
32
16
196
108
48ooooo
o

128
192
192
192
192
] 92
128
oooooooo

Character Set Animation I 183

FRAME

ooooooooooo
3
7
10oooooooo
1
l

118
60oooooo

oooooooog
3

255
204
141
15
14
13
15
15
63
248
224
128o
6oooooo
Q

o 0 0
o 0 0
o 0 6o 0 118o 0 155o 0 127o 0 247o 1 231o I 127o 11 255

252 29 254
127 224 122
16 0 30
239 12 12
63 142 4
]11 220 68
159 252]24
]27 255 196
248 63 243
56 1 255
24 1]99
24 0 192
56 112 192
28 63 192
6 a 0
1 128 0o 192 0o 192 0o 0 0o 0 0o 0 0o Q 0

oo
o
oo
o

128
32
8

252
204
32oooo
ooo

128
192
192
96
48
24ooooooo

o 0o 0o 0o 0o 0o 0o 0o 0
6 3
I 255
3 232
7 78
13 142o 15o 7o 15o 60o 255
I 240
1 128
3 0
3 0

118 0
60 0
o 0o 0o 0o 0o 0o 0o 0o 0

o 0 48 0o 0 56 0o 0 254 0o 6 231 0o 15 227 128o 30 255 32o 28 253 144o 61 255 232
255 255 252 216
124 63 28 64
80 12 56 0
24 0 56 0
60 0 24 0
247 0 16 0
239 241 208 0
159 4 112 0
11"2 255 48 0
240 1 240 0
112 12 120 0
48 6 56 0
56 3 124 0
24 1 198 0
12 0 3 0
6 0 1 128
3 0 0 192
1 192 0 112o 224 0 56o 0 0 0o 0 0 0o 0 0 0o 0 0 0o 0 0 0

Figure 5.14: Character definitions of the Galloping Horse.

I00ur thanks to Eadweard Muybridge for taking the original photos. Leland Stanford for hiring him to do
so. Charlie Kellner for first digitizing them on the Apple computer. and Tandy Trower for the ATARI
conversion of the Galloping Horse character set.

184 / Character Set Animation

Even though the same number of frames is used here as was used in
our last program, these frames employ a larger character array, thus
allowing us to create a figure of much greater detail. The drawback,
however, is that we have a lot more bytes to enter into our data state-
ments.

Example 3

Exercise Using the Galloping Horse character sets, fill the
screen with 36 horses, all galloping in unison. Use the technique of
character set flipping, and add the sound of hoofbeats. Use paddle 0 to
control the animation frame rate.

a)

b)

c) (continued)

d)

e)

Photo 5.5: Galloping Horses.

Here is the Galloping Horse program. The same four main sections
are present in this program as in Example 2: initialize, set up alternate
character set, character set data, and animation loop. In this program,
however, each section is somewhat different.

Figure 5.15: Listing of Example 3 - lines 10-290.

Character Set Animation I 185

186 I Character Set Animation

Initialize Rather than dimensioning a string to hold our frames
(as we did in the last program), we will dimension an array called
HI CHRB (line 120) to hold the RAM page address of each of the five
character sets. HI CHRB (1) will hold the address for character set one
(Frame I), HI CHRB (2) for character set two (Frame 2), and so on.
This will make it very easy to select the appropriate frame.

The border around the active area of the screen II is set to the same
color as the background in line 180. SET COL0 R 2 ,1 ,1 0 sets the
background, and SETCOLOR Ll ,1 ,10 sets the border. SETCOLOR
1 ,0 ,2 sets the brightness of the horses (to dark).

On line 190, the first character set is switched on so when you
PR I NT the horses on the screen, you'll see horses and not letters of the
alphabet.

Next, on lines 210-280, the screen is filled with horses using two
nested FOR / NE){T loops. There will be six horses across and six down
for a total of 36 horses - how about that! An instant racing stable!

Figure 5.16: Listing of Example 3-lines 8000-8190.

Set Up Alternate Character Set This time enough room for
five character sets plus the screen memory must be reserved. This comes
to 24 pages: 4 pages for each of the five character sets (20 pages) plus 4
pages for screen memory. Line 8050 initializes the HI CHRB array to
point to each of the five character sets. Line 8150 prints out a period after
each character set is read, so we have an indicator that the program is still
running.

IIThis active area is called the Playficld .- more on this later.

Figure 5.17: Listing of Example 3-lines 20000-20470.

Horse Character Set Data Starting with line 20050, each
line contains three character definitions or 24 bytes.

Figure 5.18: Listing of Example 3 -lines 300-370.

Animation Loop This section is extremely simple. A FOR /
NE;{T loop is used to flip through the five frames. On line 330 we turn on
the sound effect for a hoof beat on every frame but the third one. Line 340
uses an ATARI game paddle to allow the interactive control of the frame
rate of the galloping horses. If you don't have a paddle, replace the word
PADDLE (Ql) with a numeric value - 15 seems about right.

Character Set Animation I 187

188 I Character Set Animation

When you run the program, you'll see all 36 horses galloping in
perfect synchronization. If you turn your paddle to the fastest speed (or
remove line 340), the horses will be moving so fast that their legs will
begin to blur (they'd be a sure thing in the Kentucky Derby!). This means
that if we used character set flipping in a game, there would be quite a bit
of extra processor power to do other things.

5.4. EXPLODING WITH A THREE-COLOR
CHARACTER SET

Up until now, it's only been possible to display animated figures on
the screen in one color, even though the choice of color is ours. But not
for long! The ATARI Home Computer has a graphics mode which allows
the display of a custom character set in three colors! We will drop a
whistling bomb from the top of the screen and then explode it in a burst of
color and sound.

The Display List and Antic Mode 4

Most of today's computers can only operate in two or three different
graphics modes. The Apple II, for example, has a text mode, a low-
resolution graphics mode, and a high-resolution graphics mode. The
ATARI Home Computer is much more flexible than this. In fact, there
are twelve'? different graphics modes which are supported by the ATARI
400 or 800's operating system 13 and sixteen modes supported by
ATARI's XL Home Computers' operating systems. 14 These graphics
modes can be easily set up from within BASIC using the GRAPHI CS N
command (where N can be a value from 0-11 on the ATARI 400 and
800, or 0 - 15 on the ATARI XL Home Computers). Some of them are
text (or character) modes, and some are plotted point modes (also called
bit mapped or map modes). Most of them can be split screen modes
(plotted points on the top part of the screen and four lines of GRAPHI CS
o text on the bottom). The exceptions are GRAPHICS 0 (the whole
screen is a text window) and modes 9, 10, and 11 (GTlA modes - see
Chapter 6). The split screen modes can be changed into full screen modes
(no text window) by adding 16 to the value of N:

"There are an additional five graphics modes available, including Antic 4. which are not supported by
the ATARl 400 or 800 operating system.

"One more mode, Antic 3, isn't supported by the ATARl XL Home Computers operating system. This
mode displays !O pixel high characters with descenders.

14Theoperating system is contained within the !OK ROM cartridge in your ATARl 800, or inside the
computer if you have an ATARl 400 or XL Home Computer.

GRAPHICS 3 split screen mode 3
(four lines of mode 0 at bottom of screen)

GRAPHI CS 3+ 16 full screen mode 3

Introducing ANTIC For you ATARI400 or 800 owners who are
feeling jealous that you can't access the four additional modes the
XL Home Computers can access, hold on. Your computer can display
anything the XL Home Computer can, it just might be a little more
awkward for you to achieve. And for you ATARI XL Home Computer
owners who might be feeling a little smug, the following information will
help you get the maximum graphics power from your computer.

One of the things which makes the ATARI Home Computers so
versatile for creating animation is its custom chip set, the primary thing
all ATARI Home Computers have in common. Rather than giving all of
the work to the computer's microprocessor, Atari designed three LSI
(large scale integration) chips to help share the load. One of the chips,
called Antic, has the responsibility of interpreting the bytes in screen
memory into a form which can then be displayed on your television
screen (by another custom chip, CTIA or GTIA, depending on the age of
your computer). Antic is actually another microprocessor. As with any
microprocessor, it has a program (called the display list), data (screen
memory), and output (the television picture). Among other things, the
display list specifies the graphics mode or modes to be used on the screen.
By altering the display list, you can horizontally divide the screen into
many strips or ribbons of different graphics modes. This gives the
programmer who is able to modify the display list a great deal of
flexibility when designing the appearance of the computer's video
output.

When using the GRAPHI CS command in a BASIC program, the
ATARl's operating system will automatically set aside the appropriate
amount of screen memory for that mode. A low-resolution map mode
will take up much less memory than a high-resolution map mode. The OS
(operating system) will also create a display list that will tell Antic how to
interpret the data (bytes) in screen memory. Should the bytes be inter-
preted as text characters or as plotted points? How large should each
character or pixel (the smallest dot you can plot in the current graphics
mode - see box) be displayed on the screen, and what color should it
have?

Pixels, Dots, and Color Clocks

In many books about computer graphics, there is no distinction
between the words pixels, points, and dots. Pixel is derived from the
words picture element. It refers to the smallest dot you can access

Character Set Animation I 189

190 / Character Set Animation

(directly turn on or off) on the screen. Since the physical size of this
dot is different for each ATARI graphics mode, this could be confus-
ing. We are modifying the definition of a pixel to be "the smallest
point you can plot in the current graphics mode," and we are using
the word "dot" to mean the smallest point the screen is capable of
displaying (320 x 192 dots). This means that the only time a pixel
and a dot will look the same is in GRAPHIe 5 8 when there are 320
x 192 pixels on the screen.

Any color of the rainbow can be created by combining varying
amounts of the three primary colors of light, i.e., red, green and blue.
If you look very closely at your color television screen, you will see
vertical stripes of phosphors in these three colors, first red, then
green, and finally blue. (It is hard to see all three phosphors unless
you are looking at a white area on the screen.) The width of each
group of red, green, and blue phosphors is equal to one color clock.
A television term rather than a computer term, a color clock is a unit
of measurement that is related to the maximum number of color
changes possible on one line. There are 227.5 color clocks in each
horizontal scan line, 160 of which are within the active area (for
plotting or printing) of your screen (playfield). To have full control
over the color of a pixel, the pixel must be large enough to have one
of each of the three coloredphosphors in it, which means it is at least
one color clock wide. Therefore, in GRAPHIeS 8, where each of
the 320 pixels in a line is one half of a color clock wide, you can't
independently control pixel color. You may have wanted the pixel to
look white, but it might appear as blue (only the blue phosphor was
turned on) or orange (both the red and green phosphors were
partially turned on). This is called a color artifact and can be exagger-
ated by turning on every other pixel in a horizontal line. Your pixels
will only look white if there are at least two of them horizontally
adjacent to each other, turning on all three phosphors. This is also
true for the pixels that make up each character in GRAPHIe S 0 or
for any other graphics mode with pixels that are one half of a color
clock wide.

Examining the Screen Look closely at your ATARI' s video
picture. You will notice that it is made up of many extremely fine
horizontal lines. There are 192 of these horizontal scan lines in the active
area of your screen (we'll wait if you care to count them). The active area
is that portion of the screen on which you can place text or plot points.
ATARI calls this area the playfield. The playfield is 160 color clocks
wide (see box) and is made up of 320 dots. Surrounding the playfield is a
border which can sometimes be independently colored, depending on the
graphics mode in use.

In GRAPHIe S 0, each byte is represented as a character which is
eight dots wide (four color clocks) and eight scan lines high (remember
our character definitions from the last section). This provides us with the
previously mentioned 320 x 192 dots, since there can be 40 characters in
a line (40 * 8 dots per character = 320 dots) and 24 lines of text to a

screen (24 * scan lines per character = 192 scan lines). In GRAPHI CS
5, a low-resolution map mode, each pixel (plotted point) is a square
which is four dots across (two color clocks) and four scan lines high. This
means there are 80 pixels across a line (80 * 4 dots per pixel = 320 dots)
and 48 pixels down (48 * 4 scan lines per pixel = 192 scan lines). Figure
5.. 19 compares the characters, pixels, and bytes in GRAPHI CS 0 and
GRAPHICS 5.

DOTS PER LINE

Character Set Animation I 191

1o 1 234 567 890
1 1 1 1
2 3 4 5

3 3 3 3 3 3 3 3'
11111111
23456789

CHAR 1 CHAR 2
LINE 0 LINE 0
BYTE 1 BYTE 2

CHAR 1
LINE 1
BYTE 41

0
1
2
3
4
5
6
7

en 8.... 9z
...J 10
z 11
ct
0 12en
...J 13
ct 14I-z 150
N
a:
0
I

184
185
186
187
188
189
190
191

••••

CHAR 1
LINE 23
BYTE 921

CHAR 2
LINE 23
BYTE 922

...

•••

CHAR 40
LINE 0
BYTE 40

CHAR 40
LINE 23
BYTE 960

a)

GRAPHICS 0 - CHARACTER GRAPHICS
2 COLORS (ONE HUE WI TWO INTENSITIES)
40 BY 24 CHARACTERS
8 SCAN LINES PER" MODE" LINE
40 BYTES PER LINE
960 BYTES TOTAL

(continued)

192 / Character Set Animation

0
1
2
3-
4
5
6
7-

VJ 8
w 9z
...J 10
z 11ct
0 12
VJ

...J 13
t! 14
z 150
N
0::
0
I

184-
185
186
187
188
189
190
191

DOTS PER LINE

111111
01234 567 890 1 2 345

0,0 1,0 2,0 3,0
BYTE 1 BYTE 1 BYTE 2 BYTE 2

0,1 1,1
BYTE 21 BYTE 21

0,2 1,2
BYTE 41 BYTE 41

0,3 1,3
BYTE 61 BYTE 61

0,46 1,46
BYTE 921 BYTE 921

0,47 1,47 2,47 3,47
BYTE 941 BYTE 941 BYTE 942 BYTE 942

3 3 3 3 3 3 3 3'
11111111
2 345 6 7 8 9

78,0 79,0
BYTE 20 BYTE 20

78,47 79,47
BYTE 960 BYTE 960

GRAPHICS 5 - BIT MAPPED GRAPHICS
5 COLORS
80 x 48 PIXELS
4 SCAN LINES PER LINE
20 BYTES PER LINE
960 BYTES TOTAL

b)

Figure 5.19: a) GRAPHICS 0 and b) GRAPHICS 5 on the screen.

By modifying the display list, you can access some additional
graphics modes which are not supported by the as. The Exploding Bomb
program is compatible with any ATARI Home Computer. (Later on we'll
tell you about a short cut for the ATARI XL Home Computers.) This
program uses something called Antic mode 4 (don't confuse Antic 4 with
BASIC's GRA PH I CS L1- they are totally different). This means that
we can't use a GRAPHIeS statement to set it up on an ATARI 400 or
800; we must do so manually by altering the display list. Table 5.1
indicates all the Antic and as graphics modes. The pixels/column and
bytes/screen are calculated forthe full screen modes (GRA PH I CS N +
16). As you can see, the number of bytes needed for each mode depends
on the resolution (number of pixels) and the available number of colors.

Character SetAnimation I 193

GRAPHIC MODES
Color Scan
Clocks Lines

Antic BASIC Char Number Pixelsl Pixelsl Chari Chari Bytes/ Bytesl
Mode Mode or Map Colors Line Column Pixel Pixel Line Screen*

2 0 Char 2*' 40 24 4 8 40 960
3 none Char 2 40 19 4 10 40 760
4 12- Char 4 40 24 4 8 40 960
5 13- Char 4 40 12 4 16 40 480
6 1 Char 5 20 24 8 8 20 480
7 2 Char 5 20 12 8 16 20 240
8 3 Map 4 40 24 4 8 10 240
9 4 Map 2 80 48 2 4 10 480
A 5 Map 4 80 48 2 4 20 960
B 6 Map 2 160 96 1 2 20 1920
C 14- Map 2 160 192 1 1 20 3840
D 7 Map 4 160 96 1 2 40 3840
E 15- Map 4 160 192 1 1 40 7680
F 8 Map 2*' 320 192 Y2 1 40 7680
F 9t Map 16*'* 80 192 2 1 40 7680
F 10t Map 9 80 192 2 1 40 7680
F 11t Map 16+ 80 192 2 1 40 7680

Memory is also set aside for the display list in eachmode.Mostmodes
also have some unused memory reserved (see Appendix H,
"Graphics Memory Map Modes").
One hue, two luminance values.

**. 16 luminance values, one hue.
+ All 16 hues, one luminance value.
t Note: OS Modes 9-11 are GTIA modes. Bits 6 and 7 of PRIOR

(location 623) control which mode will be used. See Table 7.5.
Only supported by the ATARI XL Home Computers' operating
systems.

Table 5.1: Antic and operating system graphics modes.

Antic 4 uses the same amount of screen RAM as GRAPHI CS 0. In
fact, it is very similar to GRA PH I CS 0 with one exception. Instead of
each bit in the character definition representing a dot on the screen (either
on or oft), the bits in each row are paired. By considering this pair of bits
as one pixel, the horizontal resolution is halved so that each character is
now four double-wide dots across (instead of eight single-wide dots) and
eight horizontal scan lines down (as before). But by losing some horizon-
tal resolution, we gain color information! Because each ofthe character's
pixels is now a full color clock wide, it can be displayed in any of three
colors depending on its bit pattern. If the bit pattern is aI, you can control
that pixel's color with SETCOLOR 0 + If the pattern is II, use SET-
COLOR 2. Table 5.2 shows how this works.

194 I Character Set Animation

SETCOLOR for Antic 4

Bit pair in
character definition

00
01
10
11
11 (inv. video)

Use following
SETCOLOR value

SETCOLOR 4
SETCOLOR 0
SETCOLOR 1
SETCOLOR 2
SETCOLOR 3

Color
register
name

COLBAK
PF0
PFl
PF2
PF3

Table 5.2: SETCOLOR table for Antic 4.

As the chart indicates, if the character is printed in inverse video
(most significant bit is set in screen memory), only the bit pair" II" will
be affected. Its color will now be controlled with a SET COL 0 R 3. This
can give us another color on the screen, but still only three colors within
each character. So, let's create a character definition example for Antic
4, since we will soon use it in our falling bomb example.

BIT BYTE DISPLAYED
PATTERN VALUE

ROW] 0]0] 0] 0] 85
ROW 2 0] 0]0] 0] 85
ROW 3 00000000 0
ROW 4] 0] 0] 0] 0]70
ROW 5] 0] 0] 0] 0 170
ROW 6 00000000 0
ROW 7]]]]]]]] 255
ROW 8 i i i i i i i i 255

IN VERSE

Figure 5.20: Character definition for striped character.

As you can see, we are filling each of the eight rows with one of the
four possible bit patterns. By using the above byte values for our charac-
ter definition, the above Antic 4 character would be displayed as three
horizontal bands of color separated by two thin stripes of the background
color.

Now let's set the color registers as follows to color the bands red,
blue, and green with a black background:

SETCoLoR Ll ,0 ,0 REM BlacK
SETCoLoR 0,3,8 REM Red
SETCoLoR 1,7,8 REM Blue
SETCoLoR 2,12,8 : REM Green
SET COLOR 3,5,8 : REM Purple

We will be covering the SET COL 0R command in greater detail in
the next chapter. For now, recall that the syntax of the command is

SETCoLoR n,hue,lum

Ifwe printed this character in inverse video, only the bottom band of
color will change. It would become purple because its color is now
controlled by SETCoLoR 3 instead of SETCoLoR 2 (see Table 5.2).

Explosions and an Antic 4 Character Set

Have you played any games at a video arcade recently? You are
flying your spaceship around the universe and suddenly an attacking
alien creeps up from behind. Lasers fire and KABRASHH!! Your
spaceship vanishes in a brilliant explosion ... and you lose another
quarter. How was that explosion created on the screen? Two basic
techniques are used. One shows the exploding object bursting into a mass
of dots or debris that rapidly moves outwards towards the corners of the
screen. This technique requires a fast machine language algorithm which
can directly control each piece of debris. In the other technique, a
colorful fireball replaces the destroyed object. Often, you will see flames
flick out in different directions as three or four versions of the fireball are
rapidly displayed where your spaceship once was. This technique can be
easily duplicated using Antic 4 character set animation.

Since you already understand how characters in Antic 4 are dis-
played, let's look at the character set for our Exploding Bomb program.
The actual explosion is created with four frames, each made of a box of
four characters arranged in a 2 x 2 array. Each frame shows the
explosion getting a little larger and in a different shape. By consecutively
executing PR I NT for each frame at the same screen position, we will see
what looks like an expanding explosion. We also need to define a single
character for our falling bomb, as shown in Figure 5.21.

Character Set Animation / 195

196 / Character Set Animation

20
215
215
60
60
60
40
40

o 0o 0o 0o 0
3 16
50 128
10 128
2 176

58 160
10 172
2 196
1 64
3 0o 0o 0
Q

FRAME
o 0o 0o 0
8 0
2 32
43 180
11 192
3 224
11 232
3 192
15 48
24 32
32 16
64 0o 0
QQ

FRAME

o 0o 0o 16
65 32
17 128
34 208
43 228
11 249
27 m
91 208
26 192
2 160
10 16
8 4
24 4
_Jl Jl

FRAME

Figure 5.21: Character definitions for Exploding Bomb program.

In the above figure, the bit pattern of each character is shown on the
left; in the center are the actual characters as they will appear on the
screen; on the right are the decimal values needed to define each charac-
ter. Notice that the pixels that make up each character are now rectangu-
lar instead of square. This decreased resolution makes it a little more
difficult to represent a detailed figure.

Example 4

Exercise Randomly drop a whistling bomb from the top of the
screen. When it falls to the bottom half of the screen, make it explode in a
burst of color and sound. Modify the display list to Antic 4 so that you can
use a three-color character set.

a)

b)

c)

Character Set Animation I 197

198 / Character Set Animation

d)

Photo 5.6: Screen photos of Exploding Bomb program.

Here is the Exploding Bomb program. Before you begin entering it,
you'll notice that one section is almost identical to a section in the
Walking Man program. To save time, instead of typing this section (lines
8000-8160, Set up alternate character set) from scratch, you can copy it
over from the other program.

Figure 5.22: Listing of Example 4-lines 10-90.

Hi-Speed Subroutines You'll notice that there are three
subroutines at the very beginning of the program. These are specifically
placed here for a reason. In ATARI BASIC, the closer a section of code is
to the beginning of the program, the faster its execution speed will be.
(This has to do with the time it takes ATARI BASIC to search through all
the line numbers of a program to find the next one it is supposed to
execute. The closer the line is to the beginning of a program, the faster it
finds it.) One of the subroutines controls the explosion sound effects,
another creates a background flash, and the third sets the colors. All these
subroutines need to be executed as rapidly as possible, so we placed them
at the beginning. In fact, you'll notice that we place most of the initializa-
tion subroutines and data towards the end of the program, and the
time-critical animation loops towards the beginning.

Line 70 will turn on three of the sound registers (voices) with
random explosion-like sounds. Each voice has a different frequency
range/distortion combination. Once the registers are on, this line is
executed again to randomly change the sound quality of the explosion.

Line 80 rapidly flashes the screen background ten times with ran-
dom colors. Memory location 712 is where the background color in-
formation is stored for this graphics mode. Using SETCOL0 R awould
achieve the same result, but a direct POKEto this location is quite a bit
faster. This is because BASIC doesn't have to take the time to calculate
the color value by combining the SETCOL0 R hue and lum values
together (color value = hue * 16 + lum). The flash is used at the first
instant of the explosion.

Line 90 sets the colors of the explosion and is also used to fade out
the brightness of the explosion.

Figure 5.23: Listing of Example 4--lines 100-240.

Initialization The only thing new here is the call to the display
list modification subroutine in line 220. We'll explain this subroutine in
just a second.

8000 REM Se·tUp A1teY"nate Cha.racter Set
801--0 HICHRE=PEEK<10bl-S: REM Reserve memory space (1024 bytes) below screen
8020 CHRBAS=HICHRB*256: REM Find start of Character Set

TEMP=O
8070 FOR I=CHRBAS+OFFSET TO CHRBAS+OFFSET+CHARS*8-1
8080 READ BYTE:

POKE I,BYTE:
TEMP=TEMP+BYTE

8090 NEXT I
8100 IF TOTALOTEMP THEN

GRAPHICS 0:
PRINT "ERROR In Character Set Data":
END

8110 REM Clear out first char (background)
8120 FOR I=CHRBAS TO CHRBAS+7
8130 POKE 1,0
8140 NEXT I
8150 RETURN
8160 REM

(continued)

Character Set Animation / 199

200 I Character Set Animation

Figure 5.24: Listing of Example 4-lines 8000-20290.

Set Up Alternate Character Set and Character Set Data
The lines in the first section (8000-8150) are identical to those in the
Walking Man program. The only thing you need to change is the value
assigned to CHARS in 8040. The character set data (20000-20290)
contains the character definitions for the four frames of the explosion and
the bomb character.

'Figure 5.25: Listing of Example 4-lines 6000-6050.

Modify Display List This is the section where we modify the
display list to Antic 4. Since GRAPH I CS (2) is so close to Antic 4, we
need to change only the values in the already existing DL (display list). In
line 6010 we find where in memory the DL is. In line 6020, we change
the DL instruction that controls the first text line. Don't worry about this
now; we will cover LMS (load memory scan) and display lists in greater
depth in Chapter 9.

In line 6030, we change the DL instruction for text lines 2 through
24 when we POK E in a 4 (and that's why it's called Antic 4). When this
subroutine is executed, you will see what looks like a black curtain
rapidly descending over your screen as each byte of the DL is modified.

If you have an ATARI XL Home Computer, you can modify this
program to let your OS set up the new display list with a GRAPHICS
12+ 16. Because cursor control won't work in this mode, you will have
to PR I NT each line of the frames separately on the screen with the
PR I NT #6 command.

Figure 5.26: Listing of Example 4--lines 600-700.

Falling Bomb This subroutine displays the falling bomb. The
spot on the screen where the bomb will explode is randomly selected (line
620). The vertical coordinate (Y) will always be in the lower half of the
screen (because of the + 12). A FOR I NE){T loop (lines 630-670) is
used to move the bomb down the screen. We are drawing the bomb in its
new position and erasing the old bomb with the same PRI NT statement.
As it falls, sound register 0 is used to create a whistling sound. The
whistling sound was split onto two lines, 640 and 660, to create a more
even whistle. It smoothly drops two frequency steps for every position of
the bomb. One of the SOUND statements could have been omitted, but
the change in frequency would have been more choppy.

When the bomb reaches its explosion point, line 680, the screen is
cleared and the sound turned off in preparation for the explosion routine
in the animation loop.

Figure 5.27: Listing of Example 4--lines 300-520.

Character Set Animation I 201

I

IL
Film 3

"The Juggler," Information
International, Inc. Here are three
segments from "The Juggler" film
which we describe in Chapters 1 and 3
(see Photo 1.1 on page 3). (Courtesy of
Information International Inc.)

202 / Character Set Animation

Animation Loop This is where the entire explosion is orches-
trated. After setting the LUMinance (brightness of the color, used in the
subroutine at line 90) and I,J 0 Lume levels (used in the subroutine at line
70) to their initial values (310), the bomb is dropped (320). The color
registers are reset, the explosion sound turned on, and the background
flashed. In a real life explosion, you would see the flash before you heard
the sound, but when we tried it that way the effect didn't seem quite right.
The viewer expects to hear noise as soon as something hits so we took the
liberty of changing the laws of physics.

The frame loop, lines 360-400, is identical to those in our earlier
programs. We didn't need to erase the explosion after each frame, just
write over it. Instead of a pause loop, the sound of the explosion is
changed to add the effect of randomness to our pre-dawn graphics.

In lines 410 to 490, the LUMinance values of the last explosion
frame as well as the t,J0 Lume level of the sound registers fade out. This
technique of altering the SETCOL0R values gives the illusion of motion
when none is taking place (more on this in the next chapter).

Finally, on line 500 we wait for a random period of time before we
drop the next bomb.

Modifications Here are some modifications to try:

I. Switch the order of the initial sound and flash of light so that the flash
comes first. Which do you like better?

2. Use a different set of colors in the explosion. Maybe you can come up
with a better or more exciting combination.

3. Run this program with the sound on your television turned off. Notice
how much the sound adds to the effect.

4. Try to improve the explosion character set to create a more realistic
effect.

5. Program multiple explosions on the screen. What sets the limit to the
maximum number?

Commercially Available Software Using Character Sets

The character-set Hipping technique is used in a popular ATARI
Home Computer game from Automated Simulations, Inc., entitled
"Crush, Crumble, and Chomp!" In this game, you control your favorite
movie monster on a rampage. The screen can display running people,
police cars with flashing lights, helicopters with moving blades, flicker-
ing flames, and smoldering ruins all at the same time. The animation uses
only two frames and is created by flipping between two character sets.
Although the effect is very impressive (especially the flames and ruins),
as we have seen, the technique is very simple. Most of the program is
written in BASIC, with a number of machine language subroutines to
help out (see Chapter 8). To simplify the BASIC portion of the program,

the task of alternating between the character sets is automatically carried
out with a Vertical Blank Interrupt routine. (This technique is covered in
depth in Chapter 8.) For now, think of it as giving the computer a separate
task to do while BASIC is running the main part of the program.

Photo 5.7a) and b) is from the game's introduction and shows the
tw.o frames which appear on the screen. The two parts [c) and d)] show
two consecutive frames from the middle of the game. Notice the position
of the flames and the people's legs. The monster (we chose to be
"Mantra" in this game) is made of two adjacent Players. (Players,
objects which can be moved anywhere on the screen without changing
the background, are covered in Chapter 7.) Even though GRAPHIeS 0
is being used, you'll notice some extra colors on the screen (the green of
the trees and light blue on the buildings; see color insert). These extra
colors are obtained by turning on every other bit in those characters,
resulting in color artifacts (see box on artifacts in next section).

a)

Character Set Animation I 203

b) (continued)

204 I Character Set Animation

c)

d)

Photo 5.7: Four screen frames from "Crush, Crumble, and Chomp!"
(Copyright (c) 1981, Automated Simulations, Inc.)

The ATARI Home Computer version of Space Invaders 1\1

(trademark of Taito America Corp.) is another program which makes use
of character set animation. This program, however, uses a different
technique than the two we've previously introduced. Each of the invad-
ing alien types (there are six) is made of two adjacent characters in
graphics mode I. Rather than flipping through entire character sets, it
uses machine language to rapidly change the character definitions of each
invader. Since each row is made up of the same type of alien, the entire
row is animated at once. This doesn't exhaust much processing power
since there are only four different frames for each of the six alien types.
Three Players were used in this game, one for the large green spaceship
on the left of the screen, one for the gun base at the bottom of the screen,
and one for the occasional flying saucer which appears at the top of the
screen (not pictured). The projectiles being fired by the invaders and the
game player are Missiles. Display list interrupts (Chapter 9) were used to
add extra colors for the invaders.

a)

b)

Photo 5.8: Screen photos of Space Invaders". (Trademark of Taito America
Corp.)

Summary

You have learned a powerful and flexible animation technique
which can be implemented without any use of machine language.
Although defining a new character set can be time consuming, the
advantages are well worth the effort in many cases. Using character set
animation in GRAPHIe S (2) (or the XL Computers' GRAP HIeS 12)
can provide the same resolution as the ATARI' s highest resolution mode
(GRA PH I CS 8) , but with only one-eighth of the memory overhead.
By using Antic 4, more colors can be placed on the screen at twice the
resolution (and one-fourth the memory overhead) as with GRAP HIeS
7. As we will see later, this saving of memory also speeds up the
processing speed of the computer for faster animation programs.
Making animated figures roam the screen is exciting, but our programs

have been somewhat one dimensional - each character we have ani-
mated so far exists in a void, without any background or foreground! In
the next chapter, we will explore the advanced graphics feature of color
registers and create some beautiful animated backgrounds!

Character Set Animation / 205

206 / Character Set Animation

Chapter 6

Color Register Animation

O nmost personal computers, after you've selected a color from a
limited number of choices, that color is placed on the screen with

PLOT or DRAW statements. The only way to change it is to PLOT again
in a new color, and this is very time consuming. In addition, your
program must "remember" the screen coordinates of each pixel whose
color is to be changed. The ATARI Home Computer, as well as many of
the high-tech animation computers, has a feature called the color regis-
ter, which we first introduced in Chapter 2 when we talked about our
"Magic Paint Store." In this chapter we will see how ATARI's powerful
method of drawing graphics using color registers can be put to work in
colorful, action-packed animated scenes. Color register animation will
be used to draw a beautiful, ever-changing kaleidoscope of colors, create
the illusion that you are rapidly flying through a trench (a la Star Wars),
and display the motion of water in a cascading waterfall.

6.1. WHY COLOR REGISTERS?

Color registers were first created to provide the users of professional
computer paint systems with a relatively inexpensive way to use a
polychromatic (many-colored) palette. Suppose the computer artist
wanted sixteen million colors (give or take a few) from which to choose.
The expensive technique would be to make each pixel capable of display-
ing any of these colors so that all sixteen million could appear on the
screen at once. Each pixel must then contain 24 bits of information to
directly represent any of the sixteen million colors. If the display con-
tained 1024 x 1024 pixels, it would represent over three million bytes of
screen RAM. That's why it costs so much.

The less costly method allows the artist to create a palette from a
subset of the sixteen million colors, for example, 256 different colors.
Instead of storing information at each pixel which describes the color, an
8-bit value is stored which points to a palette (or table or colors) entry,
eliminating 16 bits per pixel. The table would contain the 256 different
24-bit descriptions of the sixteen million colors (see Figure 6.1). If the

Color Register Animation I 207

208 / Color Register Animation

EXPENSIVE METHOD-
ANY ONE OF 16,777,216
COLORS ON THE SCREEN

1024--_

-n
1024

lJ'-.-------/

24 BITS OF COLOR
INFORMATiON PER PIXEL

SCREEN =
1,048,576 PIXELS x 24 BITS
- 3,145,728 BYTES

INFORMATION

•

1 .
2 .

•
..t"iifrr-rrl;",@.;r::..431-__1 i . _I . _I _I 1 I __. Jl I LC'••

255_

TABLE (PALETTE) OF 256 COLORS
EACH ENTRY HAS 24 BITS
OF COLOR INFORMATION

SCREEN =
1,048,576 PIXELS x 8 BITS
- 1,048, 576 BYTES

TABLE·
256 ENTRIES x 24 BITS
- 768 BYTES

BITS OF
COLOR TABLE

PER PIXELiA -43

1024 ==:l ,u::>:
1024

lJ'----___

LESS EXPENSIVE METHOD-
USES A 256- COLOR PALETTE
EACH PALETTE COLOR CAN BE
ANY ONE OF 16,777,216 COLORS

Figure 6.1: Palette of colors.

value in a pixel was 43, then the computer would look into the forty-third
entry of the table. The color value that is contained in this table position is
then displayed at that pixel. Screen RAM would only take about one
million bytes, and a negligible 768 bytes would be used for the table. This
represents a computer hardware investment of about one-third of the
price of the previous method! Of course, this way the artist could only
display 256 unique colors on the screen at the same time, but this is really
not as limiting as it sounds. The artist who plans a picture carefully can
create striking scenes with much fewer than 256 different colors.

This second technique of displaying color is called color mapping,
and the table of colors is called the color map. When color maps became
popular, many advantages other than the lower cost were discovered. An
artist could alter colors without having to redraw an entire picture. In the
field of computer animation, wonderfully animated scenes could be
created without plotting a single pixel simply by moving the colors
around the color map! In medical applications, in the analysis of a
computer image of an X-ray, formerly unnoticed details could be brought
out by assigning contrasting colors to areas which had been depicted with
only slight shading differences.

Color Maps and the ATARI Home Computer

The ATARI Home Computer is one of the few personal computers
that uses this technique to display its colors on the screen. However, there
are only 128 possible colors to choose from instead of sixteen million
(hope you didn't get your hopes up!) and only nine entries in the color
map, rather than 256. These nine entries are called color registers. Most
ATARI graphics modes don't use all nine color registers. In fact, many
use only four or less. Table 6.1 shows most of the different ATARI
graphics modes and the color registers which are active for each.

Default
Modes Colors SETCOLOR POKE COLOR Description
GRAPHICS 0 (Not
(text mode and Lt Blue 709 normally Char. Lum.
all text windows, used) (uses bkg color)
I hue, Blue 2 710 Background
2 luminances)

Black 4 712 Border
GRAPHICS 12t,
(Antic 4)* Orange 0 708 (Not Character Pixel
GRAPHICS 13t
(Antic 5) Lt Green I 709 normally Character Pixel
(special text Blue 2 710 used) Character Pixel
modes, 5 colors) Red 3 711 Character Pixel

Black 4 712 Background, Border

<continued)

Color Register Animation I 209

210 / Color Register Animation

Default
Modes Colors SETCOLOR POKE COLOR Description

GRAPH I CS 1 and Orange 0 708 (Not Character
GRAPHICS 2 Lt Green I 709 normally Character
(large text Blue 2 710 used) Character
modes,S colors) Red 3 711 Character

Black 4 712 Background, Border

GRAPHICS 3, Orange 0 708 I Pixel
GRAPHICS 5, Lt Green I 709 2 Pixel
GRAPH I CS 7 and Blue 2 710 3 Pixel
GRAPHICS 15t
(Antic E)
(4 colors) Black 4 712 0 Pixel/Background,

Border

GRAPHICS a, Orange 0 708 Pixel
GRAPHICS Gand
GRAPHICS 1at
(Antic C)
(2 colors)

Black 4 712 0 Pixel/Background,
Border

GRAPHICS 8
(I hue, 2 Lt Blue 709 Pixel Lum.
luminances) (uses bkg color)

Blue 2 710 0 Pixel/Background

Black 4 712 Border

GRAPHICS 9 Black 4 712 0 Pixel/Background,
(GTIA mode, Border
I hue, 16 l I Pixel
luminances) 2 Pixel

3 Pixel
Dk Gray 4 Pixel

5 Pixell 6 Pixel
Change hue with 7 Pixel
SETCOLOR a,n.O Gray 8 Pixel
or POKE 712.n 9 Pixel

l 10 Pixel
II Pixel

Lt Gray 12 Pixel

l 13 Pixel
14 Pixel

White 15 Pixel

GRAPHICS 1111 Black 704 0 Pixel/Background,
(GTIA mode. Border
9 colors) Black 705 I Pixel

Black 706 2 Pixel
Black 707 3 Pixel
Orange 0 708 4 Pixel
Lt Green I 709 5 Pixel
Blue 2 710 6 Pixel
Red 3 711 7 Pixel
Black 4 712 8 Pixel

(continued)

Modes

GRAPHICS 11
(GTIA mode,
I luminance,
16 hues)

Change luminance
with
SETCOLOR a ,0,n
or POKE 712,n

Default
Colors SETCOLOR POKE COLOR Description

Black 4 712 0 Pixel/Background,
Border

Lt Orange I Pixel
Orange 2 Pixel
Red-orange 3 Pixel
Pink 4 Pixel
Purple 5 Pixel
Purple-blue 6 Pixel
Azure Blue 7 Pixel
Sky Blue 8 Pixel
Light Blue 9 Pixel
Turquoise 10 Pixel
Green-blue II Pixel
Green 12 Pixel
Yellow-gm 13 Pixel
Orange-gm 14 Pixel
Lt Orange 15 Pixel

Color Register Animation I 211

tThese GRAPHI C5 commands are only supported by the newer ATAR! XL Home Computers.
'See Example 4 in Chapter 5 for more on Antic 4.

Table 6.1: ATARI Color Registers for graphics modes.

The Modes column lists the different ATARI graphics modes and
the number of colors they support. The Default Colors are the colors set
by the OS when the computer is first turned on or reset. The SETCOL0 R
column gives the active SETCOLOR commands (used to change the
color value in the color registers) for that mode. The POKE column lists
the corresponding RAM addresses of the color registers for each mode.
When you POKE numbers into these addresses, you can bypass the
SETCOLOR command for faster color changing. (This is the only way
to change some of the registers in mode 10.) The numbers in the COL0 R
column are the values of the COL0 R command that will choose the
current color register with which to draw.

The Description column lists which of the three screen elements
each color register controls. First there is the screen background. When
the screen is cleared, you are looking at background. It is the "canvas"
upon which pixels are plotted and text is printed. Next is the border
around the background. Although this area sometimes has its own color
register, depending on the graphics mode it is really the frame surround-
ing the canvas and cannot be drawn on. Finally, there are the playfield
pixels (any pixel that is plotted with a non-background color register).
Each group of plotted pixels using a specific color register is considered
to be a separate playfield. For example, look in the table for the section
on GRAPH I CS 3. Registers 0, I, and 2 (in the SE TCOLOR column)
each control the color of playfields 0, I, and 2 respectively. Register 4

212 / Color Register Animation

controls the background of the screen and the border. Therefore, in this
mode, the background's color cannot be controlled separately from the
border's color. Notice that register 4 also controls a pixel; however, this
is not a playfield pixel. Think of plotting with a background color register
as removing the playfield pixels so the background color shows through
again.

Using the Default Colors At first glance, this table may seem
somewhat overwhelming, so let's look at a few examples. Suppose you
want to use GRAPHI CS 3. Drawings done in this mode have a very
coarse resolution of 40 x 24 pixels. Do you remember the buckets of
paint in our Magic Paint Store? The store owner (ATARI operating
system) was kind enough to fill some of these buckets when he first
opened up the store. These are called the default colors and can be
selected for drawing with the COLOR command. If you wanted to use
only these default colors, then you can ignore the SETCOL0Rand
POKE columns, because these colors are automatically placed in the
color registers when the computer is first turned on or SYSTEM RESET is
pressed. To use the table, first choose a color from the default color
column -light green, for example. Look across to the COLOR column,
and you'll find a2. Therefore, the command COLOR 2 selects the bucket
filled with light green paint.

To place a light green pixel at 10,8, you would execute the follow-
ing statements:

10 GRAPHICS 3+16
20 COLOR 2
30 PLOT 10,8
200 GOTO 200

REM Full screen Mode
REM Choose your bucKet

REM StaY in GRAPHICS 3

In line 10, the full screen version of GRAPHI CS 3 is used (16 is
added to the mode number). This means that there will be no text window
at the bottom of the screen. Try temporarily removing line 200 and see
what happens when you run this program. The screen flashes to black,
the pixel is plotted, and before you get to look at it, the blue GRAPHI CS
o screen has reappeared. At the end of a program which uses a full screen
graphics mode, the OS will automatically switch back to GRAPHI CS 0.
Line 200 is added to prevent this from happening until you press the
BREAK button and exit the program.

To draw an orange line across the screen from this light green dot,
add the following lines:

40 COLOR 1
50 DRAWTO 28,8

REM Choose another bucKet

To erase a pixel, choose the background color (which always happens to
be COLOR 0):

Now use one more color register available in this mode. This one is
filled with blue:

80 COLOR 3
70 PLOT 30,8

80 COLOR 0
80 PLOT 20,8

REM One More bucKet

REM Select

Color Register Animation / 213

This screen will now appear as in Photo 6.1.

Photo 6.1: Default colors of GRAPHIeS 3 (see color insert).

Using SETCOLOR
Now that we understand the use of the default colors, let's see what

else is available to us. As we've mentioned before, the ATARI Home
Computer has 16 different hues from which to choose, and each one can
be displayed in any of eight levels of brightness or luminance. As we
mentioned earlier, the BASIC command to change a color in a color
register is

SETCOLOR n,hue,lum

where n is the value from the SETCOL 0Rcolumn in Table 6.1, hue is a
number from 0 to 15 that controls the hue, and lum is an even number
from 0 to 14 (0,2,4 ... 14) that controls the luminance ofthe color (the odd
lum values have the same effect as the next lowest even value, e.g.,
lum == 1 and lum == 0 have the same effect). Table 6.2 shows the
different hues available on the ATARI Home Computer.

214 / Color Register Animation

Hue

Gray
Light Orange (gold or yellow)
Orange
Red-orange
Pink (magenta)
Purple
Purple-blue
Azure Blue (cyan)
Sky Blue
Light Blue
Turquoise
Green-blue
Green
Yellow-green
Orange-green
Light Orange

SET COLOR

Hue Value

o
I
2
3
4
5
6
7
8
9
10
II
12
13
14
15

Table 6.2: ATARI hues and SETCOLOR values.

Let's look at a few examples to see how the luminance value
combines with the hue to instantly produce a new color. Try the follow-
ing SETCOL 0 Rcommands while in GRAPHIe S (2) to change the color
of the border (just type them in direct mode):

Command Hue Luminance Color Result

SETCOLOR 4,0.14 Gray 14 White
SETCOLOR 4,0,0 Gray 0 Black
SETCOLOR 4,1 ,4 Light Orange 4 Brown
SETCOLOR 4.1 .12 Light Orange 12 Bright Yellow
SETCOLOR 4,3,4 Red-orange 4 Deep Red
SETCOLOR 4,3.12 Red-orange 12 Flesh

With a little experimentation, you'll be able to produce almost any color
you wish.

Adjusting Your Color Television

Now would be a good time to make sure the color on your
television is set correctly. This is a two-step process which may
,require you to adjust a hidden control on your computer. First, while
in GRAP H I CS 0, enter the following statement:

SETCOLOR 1 ,0,0

This will change the luminance values of the lettering so it will show
up during the next steps. Now enter:

SETCOLOR 2,1,10

ATARI calls this color light orange, but at this luminance level it
is actually a bright yellow. If the color is too green or too orange, then
adjust the tint control on your television set until it looks yellow to you.
Mark the position of your tint control so you can easily find it again if
anyone adjusts your television.

Next, enter the following statement:

SETCOLOR 2,14,8

This is a strange color called orange-green (a khaki-gold color). After
you execute this command, your screen will be filled with this delight-
ful color. If this color doesn't fall exactly halfway between orange and
green, you must make an adjustment on your ATARI Home Com-
puter (trying to fix it with the tint control will just throw off the first color
you adjusted). There is a small hole at the back of your computer
through which you can insert a tiny screwdriver (see Photo 6.2).
Inside this hole is the color adjustment control. Insert your screwdriv-
er and turn it very slightly in both directions. You'll find that a very
slight adjustment will produce a significant change on the screen.
SWingback and forth from orange to green until you find that elusive
point which yields a perfect orange-green.

When you have finished, all the other colors will be correctly
adjusted as well. To make sure, change the screen to yellow
(SET COLOR 2 ,1 ,10) again. It should still be adjusted properly.
If not, then go back to step one and try again. (We noticed that the
ATARI color adjustment has no effect on this yellow.)

Photo 6.2: Adjusting the color on an ATARI Home Computer.

Color Register Animation I 215

Now let's have a little fun! Add the following lines to the last
program you entered:

80 PLOT 20,5 :
PLOT 20,6

100 PLOT 18,7:
ORAWTO 21 ,7

110 PLOT 18,8 :
ORAWTO 21 ,8

120 SETCOLOR 1 ,3,6 REM Change to Red
130 SETCOLOR 2,12,6 REM Change to Green
ll10 FOR I =1 TO 50:

NE)-(T I REM Pause
150 SETCOLOR 1 ,0,0 REM Change to BlacK
160 SETCOLOR 2,0,0 REM Change to BlacK
170 FOR I =1 TO lI00
180 IF RNO(0)*20<1 THEN

SETCOLOR lI,0,1l1:
SETCOLOR lI,0,0 : REM RandolTl lightning

fl ash
180 NE>:T I
200 GOTO 120

216 / Color Register Animation

80 COLOR 1 :REM Choose bucKet 1
again

When you execute this program, you will see a crude airplane
heading towards you with red and green lights blinking at the tips of its
wings. Every so often the background will flash as if the plane were
flying through a lightning storm.

Lines 120-130 tum on the wing lights, then after a pause, lines
150-160 tum them off. SETCOL 0 R 1 changes the color of the pixel
plotted with COL 0 R 2, and SETCOL 0 R 2 changes the pixel plotted
with COLOR 3. This may seem a little confusing, so refer back to Table
6.1 to see the relationship between the SETCOLOR and COLOR
commands.

If the value of the random number expression on line 180 is less than
I (one chance in 20, or 5 percent), the lightning is turned on and off by
setting the background color register first to white and then immediately
back to black. As you can see in Table 6. 1, SETCOL0 R II controls the
screen background.

We could have created the blinking wing lights by replotting the tips
with the background color. This technique executes much more slowly
than one which just changes the color registers. Although we don't need
the speed in this case, the effect would be slightly different. Notice that
during the lightning flash the darkened wing lights are silhouetted against

the sky. This effect could not be easily duplicated on a computer without
color registers!

Using POKEto Change Colors

Referring back to Table 6.1, you'll notice that there is one more
column to cover. Each color register has an address in memory associated
with it. The value in the color register can be changed by using POKEto
put a new value into this address. In GRAPHI CS 10, the only way to
change the values in the first four color registers is with the use of a
POKE. To obtain the value to POKE into a memory location, take the
hue value of the color and multiply by 16, then add in the luminance
value

POKE addr, huee 1G+luminance

In GRAPHI CS 7, for example, the following two statements would be
equivalent:

Color Register Animation I 217

SETCOLOR 0 tll .a POKE 708 t72

To see why, first find the SETCOLOR 0 entry for GRAPHICS 7 in
Table 6.1. Then move one column to the right, and you will see the
address 708. Multiply the hue in the above SETCOL0 R by 16
(4*16 = 64), add the luminance value to it (64 + 8 = 72), and you
have your POKE value! In many cases you may want to use a POKE
instead of SETCOL0 R, because POKE will execute more rapidly. This
is because it takes time for BASIC to do the necessary conversion from
SETCOLOR's hue and luminance values to a single value which it then
POKEs into the proper address. You speed up the process by precalculat-
ing the value while you are writing your program and then have BASIC
just POKE it in during execution.

This technique was used in the Exploding Bomb program (Chapter
5, Example 4) to flash the background rapidly at the moment of the
explosion. Here is that line again:

80 FOR I = 1 TO 10:
POKE 712tRND(0)*255:

NE>n I:
POKE 712t0:
RETURN: REM Flash

This line selects 10 random colors to flash on the background and then
resets the background color to black.

Now type in the following short program and see what happens:

218 / Color Register Animation

10 GRAPHICS 3+18
20 FOR 1=0 TO 254 STEP 2

30 POKE 712tI

REM Step throu9'h
every color

REM Chan9'e
b a c k s r o u n d
color

FilmS
"Times Square," Digital Effects

Inc./Rosebush, Kleiser, Leich, Cox,
Loen, Prins, Deas and Cohen, 1979.
Hold on as we take a brief ride through
Times Square as it might have appeared
on an evening in the year 1890.
(Courtesy Digital Effects Inc.)

50 NE>(T
80 GO TO 20

When you run it, your screen will flash through all the colors so quickly
that you will hardly be able to see them. Add the following line to slow it
down to human speeds:

40 FOR W=l TO 50:
NE>(T W

Try doing this trick without color registers!

Summary

Color registers can be used to rapidly change portions of the screen
with a simple SET COL0 R or POKE. But what purpose do they serve for
animation? In the next section, we will explore the real power of color
registers in three amazing demonstration programs.

6.2. CREATING MOTION WITH COLOR REGISTERS

In Chapter 5's Exploding Bomb program, we use color registers to
flash the background and then to fade out the explosion on the screen.
With careful planning, this ability to instantaneously change the color of
a specific area on the screen can be used to create the effect of high-speed
motion without resorting to machine language.

To understand how to create motion using color registers, first
consider our paint store analogy again. It had nine paint buckets num-
bered from 0 to 8, each filled with a different color. Now let's add a
temporary paint tray called TEMP. We are going to use the nine buckets
and the tray to play "pass the colors" (see Figure 6.2). First, empty the
paint contained in Bucket 0 into the TEMPorary tray. Then pour Bucket
l's contents into the now emptied Bucket O. Next, pour the paint in
Bucket 2 into Bucket I. Continue passing the colors until Bucket 8 is
emptied into Bucket 7. There are no more buckets left with which to fill
Bucket 8. Aha! Stored in TEMP, we still have the paint that first filled

Color Register Animation I 219

SECOND STEP
BUCKET 1 INTO
BUCKET 0

Figure 6.2: Rotating the colors through the buckets.

ETC.

ETC.

Bucket O! So we take the paint in TEMP and empty it into Bucket 8. Then
go back to the very first step and empty the paint now in Bucket 0 into
TEMP and so on. (This is called a "bucket brigade" in electronics.) We
have just created an endless loop of moving colors, which is seen on the
screen as a rapidly changing pattern. Depending on what was drawn and
how it was organized on the screen, a hypnotically abstract design or an
exciting, realistic scene can be produced.

As animators, we must now form the pattern of moving colors into
something interesting to look at.

220 / Color Register Animation

The Moving-Color Curtain Program

Let's see how color register animation actually looks on the screen.
In our first program, the screen is filled with vertical bars that have colors
rotating through them. We will use GRAPHIe S 10, a mode especially
suited to color register animation as it allows you to use the full nine
ATARI Color Registers (see box).

The GTIA and the eTIA

When the ATARI Computer first came out, it had a special
television interface chip called CTIA. Beginning in early 1982, all
ATARl's were manufactured with a new and better chip called GTIA.
The GTIA supports three additional BASIC graphics modes, 9, 10,
and 11, which were not available on the earlier ATARI computers.
The resolution on these modes is 80 x 192, yielding the same
vertical resolution as GRAP HIe S 8 (as well as the same memory
consumption). GRAPHIe S 9 allows the selection of one hue which
can then be simultaneously displayed on the screen with 16 different
luminances (see Photo 6.3).

Photo 6.3: Screen photos of GRAPHIe 5 9.

GRAP HIeS 1 1 allows the placement of up to 16 different
hues on the screen, all set to the same luminance value.

Photo 6.4: Screen photo of GRAPHIe 5 1 1.

These two modes won't be covered in this book since they can't
be used for color register animation. We will be discussing
GRA PH I CS 10 , however, which allows you to chose any nine
colors from the ATARI palette of 128 colors!

Color Register Animation I 221

To tell whether your ATARI Home Computer has the CTIAorthe
GTIA chip, enter and run the following program:
10 GRAPHICS 10
20 GOTO 20
If your screen first flashes black and then returns to blue, you have
the CTIA. The program will still be running, but the CTIA will not be
able to properly display a GRAPHI CS 10 screen. If your screen
stays black, congratulations! You have the GTIA and may run our
GTIA examples. You may get your computer upgraded to the GTIA
chip for a small fee. If you haven't already done so, you will be
missing out on many new ATARI programs which require this chip.

Using the Amazing GRAPHICS 10

GRAPHI CS 10 has a rather strangely shaped pixel. Each pixel is
about four times as wide as it is high, with a screen resolution of 80 X
192. This doesn't present a problem in Example 5, but it is awkward to
use when drawing curved surfaces. As you can see in the following
figure, lines that are almost horizontal show very fine resolution, and
those that approach vertical are extremely coarse.

10 PIXEL
(FOUR TIMES AS WIDE AS IT IS

_ HIGH)

14------80

I
192

1
GREAT RESOLUTION FOR HORIZONTAL
OR NEAR HORIZONTAL LINES

POOR RESOLUTION FOR VERTICAL
OR NEAR VERTICAL LINES

Figure 6.3: GRAPHICS 10 pixels.

222 / Color Register Animation

To change the values in the color registers for the standard CTIA
graphics modes (0 through 8), you can use the BASIC SETCOLOR
command. However, ATARI BASIC isn't fully set up for the GTIA
graphics modes. The only way to change the colors in the first four color
registers (see Table 6.3) is to POKE them directly into the color register's
RAM address. The following table shows the relationship between this
RAM address and the SETCOLOR command. Even though BASIC's
SETCOLOR isn't adequate in GRAPHICS 10, BASIC's COLOR
command can be used to choose any of the registers for painting. For
example, to draw an orange (hue 2, luminance 8) pixel on the
GRAPHI CS 10 screen with register I, use the statements:

POKE 705 tLl0

COLOR 1

REM Fill register 1 with
orange <hue=2t lUfll=8)
REM Select register 1
for d r au i n s

PLOT \I \I
1\ t I REM Place

at x t Y
an orange pixel

To draw with register 6, you could use either the SETCOL0 R
command or a direct POKE:

SET COL0R 2 t 2 t 8 or POKE 7 10 t L10

Here is the GRAPHI CS 10 section of Table 6.1 for easy reference:

Default
Modes Colors SETCOLOR POKE COLOR Description
GRAPHICS 10 Black 704 0 Pixel/Background.
(GTIA mode. Border
nine colors) Black 705 1 Pixel

Black 706 2 Pixel
Black 707 3 Pixel
Orange 0 708 4 Pixel
LI Green I 709 5 Pixel
Blue 2 710 6 Pixel
Red 3 711 7 Pixel
Black 4 712 8 Pixel

Table 6.3: GRAPHI CS 10 - color registers and COL 0R command.

Even though we have nine color registers to play with on a GTIA
ATARI, we seldom use all of them for color rotations in an animated
scene. In the next example, we use the eight color registers that color the

playfields (all colors except the background) and leave the screen back-
ground register (register 0) alone.

Example 5

Exercise Create a beautiful kaleidoscopic pattern by filling the
screen with vertical bars drawn with all eight of GRAPHIe S 10' s
playfield color registers. Divide the screen in half so that when you rotate
colors through the registers, both the left and right halves of the screen
move towards the center. Leave the background black.

Color Register Animation / 223

a) b)

Photo 6.5: Screen photos of moving color curtain program (see color insert).

There are three sections to this program: the initialization section,
the section which draws the bars on the screen, and the section which
animates the picture by rotating the colors. You'll notice that this last
section was placed at the beginning of the program. It makes use of the
previously discussed fact that statements towards the beginning of an
ATARI BASIC program execute at a faster rate than those at the end.

Figure 6.4: Listing of Example 5 - lines 200-290.

Initialize First, GRAPHIe S 10 is turned on. Even though the
ATARI operating system fully supports GRAPHIe S 10, BASIC
doesn't. Since the normal SET COL0 R command to control the first four

224 / Color Register Animation

registers can't be used, we will directly POKE in the initial colors (lines
250-280).

Figure 6.5: Listing of Example 5 - lines 300-370.

Draw Bars, Increment Color This is the section of a color
register animation program which requires the most work, i.e., drawing
the picture on the screen. The color register is set to the value in C, then
this color is used to draw a vertical bar. (The values from 0 to 8 can be
used in the COLOR command without any problems.) After each bar is
drawn, the value in C is changed so the next bar will be drawn using a
different color register. On the left half of the screen, we are dec-
rementing through the color registers. On the right half, we are in-
crementing through them and continue to draw bars until the screen is
completely filled. Again, notice that the background register, COL0 R 0,
is not used.

Figure 6.6: Listing of Example 5 - lines 10-140.

Rotate the Color Registers Now that the scene is drawn, it
can be animated. We play our game of "pass the colors" with eight of
the registers, using a FOR / NE)< T loop for simplicity, even though it
slows the execution speed a bit. Listing out each POKE in the color
rotation sequence (as we do in Example 6) would increase the program's
execution speed.

When this program is executed, the colors are seen moving from
each half of the screen towards the middle.

Modifications For variety, try the following changes:
I. Use a different initial set of colors and/or a different luminance value.
2. Change line 110 to the following:

110 TEMP=PEEK(705)+lG:
IF TEMP>255 THEN
TEMP=LUM: REM Add a new color

This will change the color stored in TEMP to the next color in the
ATARI rainbow of colors. This will cause the colors displayed on the
screen to circulate constantly through the 16 different hues as they
move towards the center of the screen.

3. For those who like surprises, change line 110 to the following:

110 TEMP=RND(1l*256: REM Picf, r an d om color

4. Change the program so the background color is rotated.

Summary

Creating kaleidoscopes is fun, but what about some real action! In
the next section, we will use the same technique and apply it to the
beginnings of a space game.

6.3. THE TRENCH PROGRAM

Everyone who saw Star Wars remembers the flight through the
Death Star's trench. In the next program, Example 6, we will use color
register animation to create this effect. We will be using GRAPHIeS 7
(available on all ATARI Home Computers) which will give us fewer
registers to play with (GRAPH I CS 7 has a resolution of 160 x 96 and
uses four color registers). This program can be the core of an exciting
game.

The theory behind the Trench program is the same as that in
Example 5. The main difference is that we will rotate colors through only
three registers. This will almost triple the speed of the color rotation loop.
Also, the size of the sections on the screen that will be animated are much
larger than those in Example 5. This will so exaggerate the effect of
motion that there will be more than enough processing time left for sound
effects and major improvements to the program.

Color Register Animation I 225

226 / Color Register Animation

Example 6

Exercise Draw a trench on the screen in GRAP HIe S 7 in
such a way that the viewer will have the experience of rapidly traveling
through it when color register rotation is used. Make the trench U-
shaped, with two vertical sides and a horizontal bottom. Using a game
paddle, give the viewer control of speed through the trench and forward/
reverse motion. Make the roar of the engines change as the velocity
changes.

a)

c)

b)

Photo 6.6: Screen photos of the Trench program.

This program has three main sections: the initialization section, the
section which draws the trench on the screen, and the section which
animates the picture by rotating the colors and reading the game paddle.
The drawing section was difficult to write. It took quite a while to create a
formula that could simulate the perspective of the trench. We could have
drawn the trench on graph paper and just translated the plotting coordi-
nates to the program, but that would have used much more memory (and
would have been much more boring).

Figure 6.7: Listing of Example 6 - lines 200-220.

Color Register Animation I 227

Initialize The initial values are set along with the colors to be
drawn. Notice that two of the registers are set to the same color. Even
though we are using three color registers in our animation sequence, only
two colors will be passed through them. This yields a smoother animation
effect (see Figure 6.8). The three boxes, A, B, and C, show the progres-
sionof the two colors through the three registers. Even though the width
of the moving color is two bars wide, the step size of the movement is
only one bar wide.

3 COLOR REGISTERS, TWO COLORS 2 COLOR REGISTERS.
TWO COLORS

A o

2

B E

C F

Figure 6.8: Using two colors and three registers.

228 I Color Register Animation

If only two colors and two registers were used (boxes 0, E, F), the
viewer would just see the two colors alternating places. There wouldn't
be any illusion of movement, just a flickering effect. With three colors
and three registers, there would be too many colors in the trench and the
effect would be spoiled. (Darth in a candy-striped trench?)

Figure 6.9: Listing of Example 6 - lines 300-440.

Draw Trench onScreen This section draws the trench on the
screen using the appropriate color register. We start near the horizon,
draw the three sides of the trench, then move out towards the edges of the
screen. The algorithms used here were all arrived at through the scientific
method of trial and error. Line 370 increments the value of C in smaller
and smaller steps as ;{ (the horizontal position of our lines) increases.
This creates the illusion of perspective - the closer the different colored
panels are to the viewer, the wider they appear.

Figure 6.10: Listing of Example 6 - lines 10-190.

Loop to Rotate the Colors This program calls for sound
effects and an element of interaction. Sound register 3 is used to give us a
constant background roar (line 110). The game paddle is used to control
the speed through the trench (line 150) and to reverse the direction we are
traveling (line 130). If the paddle button is pressed, we move backwards
(line 140). To gain as much execution speed as possible, each POKE in
lines 130-140 is written out rather than using FOR / NE}(T loops. In line
160, the position of the game paddle is also used to control the pitch of the
other three sound registers. To add to the realism, the whine of the engine
rises in pitch as velocity increases. Line 170 takes the paddle value and
uses it to control a pause loop.

If you don't have game paddles, use a joystick to change the value
in POL - if you push forward. increment POL; if you pull back,
decrement POL.

Modifications The following are modifications for you to try:
1. You may want to modify this program to use GRAPHIeS 10 instead
of GRAPHIeS 7. This will give you some extra registers for stars
and other objects.

2. Turn this program into a game. After reading the next chapter on
player-missile graphics, see if you can create the target spacecraft in
front of you as well as a movable gunsight.

Summary

Moving from the excitement of outer space, we will visit a sylvan
scene of the wilderness. In the next section the same techniques are used
to animate only a single portion of a scene.

6.4. AUTUMN WATERFALL PROGRAM

The tranquility of this program is for those of you who don't enjoy
roaring through a narrow trench at almost the speed of light.
GRAPHIeS 1o will be used to draw an autumnal landscape complete
with trees casting long shadows from an early morning sun. The scene is
brought to life by a foaming waterfall cascading down a steep cliff and
across a green valley.

We are not introducing any new animation techniques, just expand-
ing on earlier ones. Because of the complexity of the scene on the screen,
this program is quite a bit longer than some of our previous examples.
The section which actually animates the scene, however, is only three
lines long! This reveals that much of our ATARI animation involves set
up while the actual motion code is simple.

Only four color registers will be used for the program's animation.
The other five registers will be used to draw the landscape. This takes

Color Register Animation I 229

230 I Color Register Animation

some planning, as there is an interdependency between what we want to
include in the picture and how many colors can be used. One way to plan
the picture is to keep adding details as long as there are colors left. That's
the method we used. The background register was used for the sky,
another register for the brown cliffs, and a third for the grass covering the
top of the cliff and the valley floor. That left two unused registers, so we
planted trees across the valley. The brown of the cliffs was recycled for
the tree trunks, and the tree tops were painted orange-red to add some
color. Finally, a darker shade of green was used in the last register for tree
shadows. The foam at the base of the waterfall was drawn with the sky's
color rather than one of the waterfall's colors, since we didn't want its
color to change at all. There were no more registers left for new colors, so
the scene was completed!

Using Fill

To make it easier to color large areas of the screen rapidly, the
ATARI operating system's built-in Fill routine is used. Unfortunately,
this Fill is not the same as the Fill or Flood used in professional computer
paint systems. ATARI's Fill will not seek out all the adjacent nooks and
crannies within the area to be filled. Since it's more of a box fill, it just
draws a series of horizontal lines towards the right of the screen. Each
line is completed when it hits a non-background color. Even worse than
its inadequacy is the fact that there doesn't even exist a simple ATARI
BASIC statement to implement the OS's Fill (although there is a FILL
in ATARI Microsoft BASIC). Instead, we must use a special call to the
as to activate Fill after setting up the screen in a particular way. This
makes it very inconvenient to use, but it's still better than nothing.

Photo 6.7 shows how Fill works. The left boundary of the area being
filled is created as Fill is at work. This outline was drawn in a color
different from the filled-in area to make it easier to see precisely how Fill
operates. The steps are further described in the text that follows.

a)

10 GRAPHICS 5 + 16
20 COLOR 2 REM STEP 1
30 POKE 765. 3 REM STEP 2
40 PLOT 60,35

DRAW TO 50.10· REM STEP 3

METHOD IAI METHOD IBI

Color Register Animation / 231

b)

50 DRAWTO 30.10 REM STEP 4 50 PLOT 30.10 REM STEP 4

d) e)

60 POSITION 20. 35
70 XIO 18. #6.0.0.
80 GOTO 80

REM STEP 5
REM STEP 6

60 POSITION 20.35
70 X!O 18. #6. O. O."S ..
80 GOTO 80

REM STEP 5
REM STEP 6

Photo 6.7: The Fill routine in action.

232 I Color Register Animation

Since Fill is an OS routine and not directly supported by BASIC, it
must be accessed through BASIC's I 0 command. This is a general
input/output statement used for special operations which, in addition to
Fill, can be used to perform special disk operations like Rename, Delete,
Lock. (For more information on)-(I 0, see your ATARI BASIC manual.)
Here are the steps you need to go through to use Fill:

I. Using the COL0 R command, select the outline color of the area to be
filled.

2. Select the color for Fill with a POKE of the appropriate COL0 Rvalue
into RAM location 765.

3. Make sure there is a right edge to the area you want to fill. If there isn't
one, then draw it in.

4. There are two ways to mark the starting point of the fill (see Photo
6.7). One, you can draw a horizontal line from step 3's right edge to
the starting point of the Fill. Fill doesn't actually begin until the next
line (up or down) towards the end point ()-(2 ,'1'2 in step 5). Two, you
can indicate the starting point with a PLOT)-(1 ,'I' 1 . In this case, the
first horizontal line will again begin on the next line towards)-(2 , 'I'2
and will end when it reaches the right edge of step 3. However, with
this method a pixel will be left out in the open at)-(1 ,'I' 1 . This is fine
when you are filling in an area by sections and this pixel blends into
the previous section. We used this second method in our Waterfall
Program.

5. Indicate the ending point with a PO SIT ION){2 ,Y Z. This IS where
the final horizontal line will begin. It too will end when it reaches the
right edge of step 3.

6. Call the Fill routine with the x I 0 function rx I 0 18,
6 ,0 ,0 , II S : "). This will fill in the defined area with the color set
in step 2. Note that the borders may be in a different color than the
filled area (see above photos).

Example 7

Exercise Create a practical example of motion using color
registers. Draw a peaceful scene on your computer's screen with a
waterfall roaring over the edge of a cliff onto a valley floor. Draw some
trees using the colors of autumn. Use color register animation to create
the motion of the water in the river and the falls. Use fourregisters for the
moving water and the remaining five registers for the scenery.

Photo 6.8 Screen photo of Autumn Waterfall Program (see color insert).

There are three main parts to this program: initialize, draw the
scene, and animate the scene. However, because the program is longer
than the earlier ones, we divided the draw-the-scene portion of the
program into several smaller sections.

Figure 6.11 : Listing of Example 7 - lines 200-320.

Color Register Animation / 233

Initialize Set up the palette of colors we will be using.

234 I Color Register Animation

Figure 6.12: Listing of Example 7 - lines 400-490, 1300-1320.

Draw Grass and Cliff As in oil painting, we must first paint
in the large background areas, then the details. We are using ATARI's
built-in Fill routine to rapidly color these large areas. To make this
process simpler, a subroutine on lines 1300-1310 is used. It carries out
Fill steps 4-6 as described earlier.

Figure 6.13: Listing of Example 7 - lines 500-830,1500-1560.

Draw the Falls and River Inour scene, the water is the only
thing which is animated. Four color registers are used to animate the
moving water. The water is drawn in three sections: the river on top of the
cliff (lines 5 I0-600), the waterfall (lines 6 I0-720), and the river on the
valley floor (lines 730-820). The water consists of a series of parallel
strips. To give some randomness to these strips, a subroutine (lines
1500-1530) is called which chooses the starting color register for each
strip of water, making sure that no two adjacent strips will be identical.

On lines 710-720 some grass and dirt are added around the falls to
depict the natural forces of erosion.

Color Register Animation / 235

236 / Color Register Animation

Figure 6.14: Listing of Example 7 - lines 900-1080, 2000-2010.

Draw the Trees This section draws II identical trees. The X
and Y base coordinates for the trees are stored on line 2010. An X, y
coordinates pair is READ and a new tree is drawn at that location. Lines
980-1010 add a great deal of realism by creating a shadow in a darker
shade of green. Lines 1020-1060 create some randomness by scattering
15 leaves about the base of each tree.

Figure 6.15: Listing of Example 7 - lines 1100-1210.

Draw the Foam As the water hits the base of the falls, white
foam is created. Since there are no color registers left for white foam, the
sky color is reused.

Figure 6.16: Listing of Example 7 -lines 1250-1280.

Turn on the Sound All the sound registers are used to create
the roar of the waterfall. The sound is constant and does not need to be
changed anywhere else in the program.

Figure 6.17: Listing of Example 7 - lines 10-140.

Rotate the Colors This section is similar to the correspond-
ing sections in the other programs of this chapter. Of course, we only
need to rotate the color registers for the four colors of the water.

Modifications Try the following modifications:
1. Simulate a sunset by gradually changing the sky color to orange, pink,
and purple and by decreasing the luminance values of each of the
color registers. Then, after a period of time, reverse the process for a
sunrise.

2. Change this program into a representation of the different seasons of
the year. Simply by changing the colors in the appropriate registers,
you can tum this into a summer scene (turn the treetops green). By
altering the color of the grass and treetops to white, the sky to grey,
and slowing or stopping the flow of the river, you can create a winter
scene.

Commercially Available Games Using Color Register Animation

After scouring the marketplace, we could find not a single example
of color register animation being used in a current game. What untapped
potential!

Color Register Animation I 237

238 / Color Register Animation

Summary

Color register animation is a wonderful tool for creating a back-
ground scene with some life to it. Very little computer processing power
is needed to create fantastic effects. Using color registers, it's a simple
matter to create an entrancing picture. It would be somewhat difficult,
however, to combine this technique with character set animation for two
reasons.

One, color register animation is more suited for map modes than for
text modes. In GRAPHIe S (2),there aren't enough registers available to
do color register animation. In ANT I C a,where there are enough regis-
ters available, it would be difficult to design the picture to be animated.

Two, GRAPHIe modes can't be mixed at the same location on the
screen - only in horizontal bands. It would be possible to carefully lay
out your screen so that your animated character set figure only stayed in
its own band and the rest of the screen was a beautiful animated scene.
Although this technique would be more than adequate for many well
thought-out programs, it is somewhat limiting because the figure could
only stay in this horizontal band and not move freely about the screen.

Fortunately there is a solution to this problem. It's possible to move
animated figures over complex backgrounds without having to worry
about erasing anything! This feature is called player-missile graphics,
and we will cover it in the next chapter.

Chapter 7

Player-Missile Graphics

I n advertisements for many ATARI games you'll see the words
". . . uses ATARI player-missile graphics!" What are player-

missile graphics, you may have wondered, especially if the game has
nothing to do with war or fighting? In this chapter, you will be introduced
to this powerful feature through a Bouncing Ball program. Even though
this sounds like a trivial example, it reveals the fundamental method
behind animating players on the ATARI Home Computer. You will be
able to control the ball's initial velocity and how much "bounce" it has
- from a bowling ball dropped into a vat of mud to a ball which gains
energy every time it hits the ground. To move the ball on the screen, the
untapped power of ATARI BASIC string manipulations will be used. All
of the upcoming examples from Chapters 8 and 9 build on this program,
using much of the same program code, so save each program to avoid
endless retyping.

7.1. WHY PLAYER·MISSILE GRAPHICS?

In Chapter 5 some lively animated figures are created, and in
Chapter 6 some spellbinding backgrounds are produced. Unfortunately,
it is somewhat difficult to combine these two elements because every
time a figure is moved from one part of the screen to another, the old
figure must be erased before the new one is drawn. This is a simple
procedure when the figure is moving across a blank screen. A number of
problems arise, however, if our little man were to stroll through a forest
or down a city street. The first difficulty results from the computer's
inability to mix different graphics modes on the same horizontal line. By
altering the display list, the screen can contain different graphic modes,
but only in horizontal bands stacked one on top of another. A character
set walking man can't traverse a map mode screen!

There are several apparent solutions to this first problem. If the man
can be restricted to a horizontal band on the screen, and this band can be
created in a solid background color, then the technique of altering the
display list could work. Even though the rest of the screen contains a

Player-Missile Graphics I 239

240 / Player-Missile Graphics

colorful scene, the man could only walk over a solid background, and the
techniques of Chapter 5 would apply. This approach takes quite a bit of
planning and is still very confining.

Another solution is to make sure the animated figure and the entire
background are created in the same graphics mode. This is done either by
producing the background out of character sets so it matches the man, or
making the man out of plotted points to match the background. This
solution, however, presents the second problem. Let's assume you
painstakingly construct a beautiful scene using an Antic 4 character set
(difficult but not impossible). What happens when you want the man to
walk across the scene? As you erase him from the old position, a portion
of the background is also erased. By the time the man reaches the other
side, he has ripped a long hole in the background scenery and done more
damage than an ambitious strip mining operation. In order for this
technique to work properly, the man must be erased by precisely redraw-
ing the background over his old position. Although techniques to accom-
plish this feat are available, they are awkward to implement and require
machine language's quick calculation power.

Fortunately, ATARI had a better idea! Rather than relying on
complicated software routines to mix animated figures and complex
backgrounds, they gave the task to two of their custom chips, Antic and
GTIA (or CTIA). Now, you can create an animated figure, move it
quickly to any part of a screen consisting of any mixture of graphics
modes, and not worry about erasing the existing background! This
capability is called player-missile (PM) graphics.

What Are Player-Missile Graphics?

A player is actually a section of RAM, totally separate from normal
screen memory, which controls a vertical bar on the screen. This bar,
consisting of a stack of bytes, can be horizontally positioned anywhere on
the screen. Defining a player is very similar to defining a character (see
Chapter 5). Just tum on the appropriate bits of the appropriate bytes. On
the first screen in Figure 7. I, evey bit in the player has been turned on

a

Figure 7.1: Players on the screen.

b

•

(each byte in the stack has the value of255). This results in a solid vertical
bar. On the second screen, a round ball has been defined by turning on
some of the bits in five adjacent bytes only. The player is invisible where
bits are turned off. Moving the object vertically is a simple matter of
moving its byte image up and down within the vertical bar.

Since there are 8bits in a byte, a player has a horizontal resolution of
eight pixels. The vertical resolution of a player can either be one or two
horizontal scan lines, depending on how you set up PM (player-missile)
graphics. There are 128 bytes in the stack of a double-line resolution
player and 256 bytes in a single-line resolution player (it takes twice as
many bytes to display the increased resolution). All examples in this
book use the double-line resolution mode. A player pixel in this mode is
one color clock wide and two scan lines high, exactly the same size as a
pixel in GRA PHI CS 7, and four times as large (twice as wide and twice
as high) as a GRAPHIeS 0 character set pixel. Figure 7.2 shows how a
ball might be represented as both double- and single-line resolution
players. Even though these close-ups exaggerate the pixel steps, the
single-line resolution ball still looks rounder.

Player-Missile Graphics I 241

BYTE 0
BYTE I
BYTE 2

DOUBLE LINE
76543210

. i·· ._-
--- -

BYTE
VALUES

SINGLE LINE
76543210

BYTE 0
BYTE I
BYTE 2
BYTE 3 I-j'--+. -t-

BYTE
VALUES

BYTE 126
BYTE 127

o

j -f-.f--+--+- -j 0
o
60
126
126
126
60

f---f--+ -+--+--+- 4-+--1 0
0

I I

-- - - I I
I I

128 BYTES

126
126
126
126
60
60

I=S1ltf=Sr

BYTE 253m t::.Jt:::::t::::t::::t::1:::t::.:t::::j
256 BYTES

Figure 7.2: Player in double-line resolution.

242 / Player-Missile Graphics

Even though players are larger than characters, the proportions of
their pixels are identical. This means that you can use all the tools for
creating user-defined character sets to help make players, including a
font-editing program or our character grid (Figure 5.8). Also watch for
software tools designed especially for creating players.

A total of four players is available in the ATARI Home Computer,
and each one can be independently controlled. Each has it own color,
width, and area ofRAM and can be moved separately from the others (see
the section in this chapter on player parameters). In addition, each of the
four players has a missile. A missile is similar to a player except that it is
only 2 bits wide instead of 8. Each player-missile pair shares the same
color. It is possible to combine the four missiles into a fifth independent
player. (None of our demonstration programs use missiles.)

PLAYERS - 8 BITS WIDE
MISSILES -
2 BITS WIDE

EACH MISSILE BORROWS ITS COLOR FROM THE CORRESPONDING PLAYER

Figure 7.3: The four players and their missiles.

Figure 7.4 is a memory map of PM RAM. PMBASE, the address
where PM RAM begins, must be on a I K address boundary for double-
line resolution (a RAM address which is evenly divisible by 1024) or a 2
K boundary for single line resolution (evenly divisible by 2048). Notice
that there is some wasted memory at the beginning of the PM RAM area.
This RAM can be used for other purposes (e.g., storing frame informa-
tion).

Player-Missile Graphics I 243

UN USE D

SINGLE LINE RESOLUTION

+768

+ 1280 -t-------

+ 1792 --t-------

+ 153 6 --t-------

+ 1024 -+-_.l.---l_--'-_

+ 2048 -'-------y

PMBASE-f--:------{

+512 -t---L----I._...J..._

+ 896 -t--------

DOUBLE LINE RESOLUTION

+ 768-+-------
+640+------

+128

+384

+256

+ 1024-'-------17

PMBASE MUST BE ON A lK BOUNDARY
FOR DOUBLE LINE RESOLUTION
AND A 2K BOUNDARY FOR
SINGLE LINE RESOLUTION

PMBASE-f--:------{

Figure 7.4: Memory map of player-missile RAM.

7.2. PLAYER MOTION

Each player can be moved independently in a horizontal, vertical, or
diagonal direction. Horizontal movement is the easiest. How much easier
is it to move a player than to move an object using other techniques? Let's
find out.

Moving a Player Horizontally

It is extremely simple to move a player across the screen from left to
right (or from right to left). Each player (and each missile) has its own
address called a horizontal position register. To move a player to any
horizontal position, simply POKE the proper value into the player's
horizontal position register and the player immediately appears at its new
position! Table 7.1 lists the locations of these registers for each player
and missile.

Addresses

244 / Player-Missile Graphics

Player 0
Player I
Player 2
Player 3
Missile 0
Missile I
Missile 2
Missile 3

Decimal

53248
53249
53250
53251
53252
53253
53254
53255

Hex

0000
0001
0002
0003
0004
0005
0006
0007

ATARl's

Name for it

HPOSPO
HPOSPI
HPOSP2
HPOSP3
HPOSMO
HPOSMI
HPOSM2
HPOSM3

Table 7.1: Player-missile horizontal position registers.

The value you POKEinto the horizontal position registers is in color
clocks (see Chapter 5). Each horizontal scan line is 227.5 color clocks
wide, but because of overscan (television manufacturers adjust their sets
so that part of the picture overflows the screen and is lost), each end of the
scan line is off the screen. So, although you can POK Ea value from 0 to
255 into any of these registers, a player positioned with the low and high
values will not be visible. Depending on your television set, the values
less than 20-60 will be off the left edge and the values greater than
200-245 will be off the right edge. Therefore, to make a player vanish,
all you have to do is POKE its horizontal position register with a O. It will
immediately disappear from the screen. Actually, it is hiding off the left
edge of the screen, waiting for your next command.

Hardware Registers and Shadow Registers

Try the following experiment - press SYSTEM RESET on your
ATARI, POK Ea value into 53248 (the horizontal position register for
player 0), and then immediately PEEK into this address to see
what's there:

POKE 53248,50
PRINT PEEK(53248)

The ATARI printed this.

No there isn't anything wrong with your computer. No matter
what value you PO KE into 53248, you won't be able to alter the
value you find when you PR I NT its contents! This is because any
address in the ATARI from 53248 to 55295 (D000 - D7FF Hex) is

not really a RAM address; it is ahardware register. These addresses
are mapped to locations in the ATARI special chip set, which gives
direct access to the power of the computer (see Figure 7.5). In this
case, Antic, which is tied to location 53248, received your value and
immediately put it to use. If PM graphics were enabled (turned on),
you would see Player 0 move to the indicated position, but you
wouldn't be able to verify this by a PEEK into the register. This is
called a write-only register.

ADDRESSES

Player-Missile Graphics / 245

DECIMAL HEX FUNCTION SIZE

65535 FFFF

OPERATING SYSTEM AND 10KMATH ROUTINES

55296 0800
55295 D7FF HARDWARE REGISTERS 2K53248 0000
53247 CFFF

RESERVED FOR FUTURE OPERATING 4K
49152 COOO

SYSTEM EXPANSION

49151 BFFF

BASIC CARTRIDGE OR RAM
(IN 48K SYSTEM WITH NO CARTRIDGES)

40960 AOOO
----------- ------------------ - - --------- 16K
40959 9FFF

RAM
(IN ATARI WITH 40K OR MORE MEMORY)

32768 8000

32767 7FFF

RAM 16K(IN ATARI WITH 32 K OR MORE MEMORY)

16384 4000
16383 3FFF

RAM 16K
(IN ATARI WITH 16K OR MORE MEMORY)

0 0000

Figure 7.5: Memory map showing hardware registers and RAM.

There is a limited number of addresses set aside for this pur-
pose, so ATARI has them doing double duty. The address 53248, for
example, has a split personality. In addition to its function as the
write-only horizontal position register for Player 0, it is also tied to a

246 / Player-Missile Graphics

read-only GTIA register that is used for collision detection. You can
PEE K into this address to find out if Missile 0 has collided with a
playfield (see the upcoming section on collision detection). The 0
that you just PR I NTed on the screen means that no collisions of
this nature have occurred.

What about color registers? They do not follow our description
of hardware registers in two ways. They don't fall within the specified
hardware register addresses, and we were able to PEE K at their
contents and POKE them with color information. Certain hardware
registers have "scratch pad" RAM locations associated with them
called shadow registers. A shadow register is a normal RAM loca-
tion. Every sixtieth of a second, the computer looks into its shadow
registers, grabs their values, and places them into the corresponding
hardware registers (or, with some registers, the information is trans-
ferred from the hardware register to the shadow register). This is
necessary when a register controls some aspects of the screen
display. For example, if the gathering of color information were not
synchronized with the display (which is also being refreshed every
sixtieth of a second), you would see the color change on the screen
at random horizontal positions resulting in an annoying flicker (see
the sections on the vertical blank in the next chapter). So, the color
registers we have been using are really shadow registers of the
hardware color registers. The use of shadow registers made the
color register animation programs from the last chapter as simple to
implement as they are!

When a shadow register is available for a specific hardware
register, we will only give you that shadow register address. If you try
to POKE information (from within BASIC) into a hardware register
that is shadowed, it will be set back to its shadowed value during the
next sixtieth of a second. Some amazing things can be accom-
plished, however, by directly accessing these shadowed hardware
registers through machine language as we will see in Chapter 9.
(Appendix G furnishes a list of ATARI hardware and shadow
registers.)

Moving a Player Vertically with BASIC

Vertical player movement is slightly more difficult to accomplish
than its horizontal counterpart. Since there is no vertical position register,
the only way to move a player up and down is to actually move its bit
pattern through player RAM. To do this effectively, machine language
speed is required. There is a technique, however, by which we can trick
BASIC into helping us with this problem through the use of string
manipulations.

Background on Strings As you enter a BASIC program line
which contains string variables, some information is stored in two tables.
One table, called the variable name table, keeps a list of all variable

names, and another, called the variable value table, has information as to
where in memory each string's data will be stored. (This table also has
information about numeric arrays, which we won't be covering here.)
The location of the table can be discovered from within BASIC by
checking a pair of memory locations called VVTP (variable value table
pointer). The value of VVTP is calculated like this:

VVTP=PEEK(1341 + PEEK(1351 * 258

Suppose, for example, you had a program which started like this:

10 DIM A$(251 ,5$(2581
20 A$="This is a test"
30 5$="done"

Here is how the beginning of the variable table would look if we PEEKed
into the contents of RAM starting at VVTP. All of the values are given in
decimal:

Byte Numbers

Player-Missile Graphics I 247

1 2 3&4 5&6 7&8

String (0 I Mensioned) 129 Offset from Current oIMed
(unO I Mensioned) 128 Var # STARP length length

Entry for A$ 129 0 0 0 14 0 25 0
Entry for 5$ 129 I 25 0 4 0 0 I

Table 7.2: Variable value table.

Each variable's entry in the table is 8 bytes long. Byte I indicates
whether the variable has been DIMensioned yet (a 129 is stored here if it
has and a 128 if it hasn't). The second byte indicates the variable's
position in the variable name table. It is important to note that this number
represents the order in which the variables were entered (time-wise) into
the program, not the order in which they occur in the listing. In our
example above, another string variable now added at line 5 would be the
third variable in the program. This order is maintained even when the
program is saved on disk (or cassette), and even variables which have
been deleted from the program remain in the table. The only way to
reorder the variables in the table (or to purge old variables) is to LIS T
the program to disk (or cassette), type NEW, and then use EN TER to
bring the program back into memory. As far as BASIC is concerned, the

248 I Player-Missile Graphics

program is being entered by hand for the first time. This information is
important to remember for Examples 8 and 9 in which the string ma-
nipulation is used.

The next 6 bytes in the table are paired as low and high bytes. This
means the second byte is multiplied by 256 and added to the first byte to
get the proper (16 bit) value. Bytes 3 and 4 in the table give the "offset"
from the beginning of the string/array area (where the string data and
array data are actually stored). This area, located elsewhere in memory,
can be pinpointed by aPEEK into a pair of memory locations called
STARP (for string/array pointer):

STARP =PEEK(1L10) + PEEK(1L11) * 256

Offset refers to the number of bytes from the beginning of the string/array
area to where the string's data is stored. A$'s contents are at the
beginning of this area, and B$'s contents have an offset of25 (which also
happens to be the reserved length for A$ when A$ is DIMensioned).
This offset value is what will give us vertical control over our players!

Bytes 5 and 6 contain the current length of the string, and bytes 7 and
8 contain the DIMensioned values for the string, or the number of bytes
reserved for the string in the string/array area.

By changing the offset value in bytes 3 and 4, we can switch the area
in RAM where the data for a specific string will be stored. In our next
program, this offset value for the first entry in the variable value table is
changed so the first string coincides with the RAM for Player O. This
means if something is stored in this relocated string, it will appear on the
screen as a player! If we fill the string with zeroes (ATASCII 0), the
image in the player will be erased! By using normal string manipula-
tion techniques, BASIC is forced to move the player image up and
down at machine language speeds! Later, in the next chapter, we will
introduce some machine language routines to do the same thing a little
more efficiently.

Moving an Object Through a String Once the string is relo-
cated over the player RAM, how is an object or character moved up and
down? The technique used in upcoming Example 8 allows the player to
jump from one vertical position to any other in one move. This ability is
essential for fast action games. A temporary string buffer (BUFFER $) is
used which is the same size (in bytes) as the RAM for one player (128
bytes). Another string of the same length (BLANK$) contains 128 blank
characters (ATASCII 0, not space characters). PLRO$ is the string
which has been moved to player RAM. There are four steps executed
each time the player is moved vertically:

1. Obtain the player's new vertical position in a variable called YPOS.

2. Fill BUFFER $ with blanks:

BUFFER$=BLANK$

3. Move the player image, stored in FRAME$, into the proper vertical
p.osition in BUFFER$. FRMS I ZE is the number of bytes contained
in FRAME$:

BUFFER$(YPOStYPOS+FRMSIZE-l)=FRAME$

4. Move BUFFER$ to the player RAM area where its contents will be
immediately displayed. This step also erases the old player since
BUFFER $ is filled with blanks as well as the player image:

PLRO$=BUFFER$

This isn't the only possible method of player movement that uses
string manipulation, but it has a number of advantages over the others.
By employing the two I 28-character strings, BUFFER$ and BLANK$,
we give up 256 bytes of memory and gain animation speed. Storing
blanks in BLANK$ saves time when erasing the old frame information in
BUFFER$ (step 2), and thus a manual clearing of BUFFER$ isn't
necessary. Since the old player is automatically erased at the same time
the new player is moved to the screen (step 4), there is no screen flicker
and the computer doesn't have to remember the player's old position.

This method also makes it very simple to add another step which
stores new frame information in FRAME$. This provides a rapid means
of animating a figure.

If the program you are designing only required the player to be
moved up and down in single steps rather than in random jumps, it would
be possible to eliminate step 2 and combine steps 3 and 4 so FRAME$ is
moved directly into PLRO$:

PLRO$(YPOStYPOS=FRMSIZE-l)=FRAME$

It would be necessary to include one blank space at the beginning of the
frame and one at the end so the player would erase itself as it moved.
Otherwise, a vertical trail of player pieces would be seen as the frame is
moved up and down the screen.

Moving a Player Diagonally

Diagonal motion is simple once horizontal and vertical player mo-
tion is understood. It is achieved by combining a number of horizontal

Player-Missile Graphics I 249

250 / Player-Missile Graphics

and vertical moves. One horizontal move to the left and one vertical
move up results in a diagonal move towards the upper left.

7.3. PLAYER PARAMETERS

Each player has a number of parameters which can be independently
controlled. In addition to its motion, the player's color and width can be
specified. Also, a player can be given a priority to determine whether it
will be displayed in front of or behind a specific playfield. Lastly, there is
a way to easily determine when a player has a collision with another
player or a playfield!

Selecting Player Color

The color of each player can be independently controlled through
the use of its own color register. To change a player's color, just POKE
the color value directly into the appropriate RAM location (704-707-
see Table 7.3). Recall from the last chapter that the color is determined by
multiplying the selected hue by 16 and adding in the luminance value:

color = hue * 1G + luminance

Notice in the following table that each player and its missile share the
same color (except when combined to make a fifth player - see upcom-
ing section on Using Five Players).

Addresses ATARl's

Decimal Hex Name for it

Player-Missile 0 704 2C0 PCOLRO
Player-Missile I 705 2C1 PCOLRI
Player-Missile 2 706 2C2 PCOLR2
Player-Missile 3 707 2C3 PCOLR3

Table 7.3: Player-missile color registers (shadow registers.)

These same color registers are also used in GRAPHIe S 10 to color
the background and three of the playfields. If you use PM graphics in
GRAPHIe S 10, you will have to be careful that the player doesn't rest
on one of these colors, or it will seem to disappear! However, in

GRAPHIeS 8 and 1 1, you will be able to display 20 different colors on
the screen at once when using PM graphics.

Unfortunately, unless special machine language routines are used
(along with display list interrupts - see Chapter 9), each player can only
be shown in one color. Although PM graphics greatly increases anima-
tion speed and simplicity, there is a loss of color detail, and this is its
major drawback. (See the section on Enabling Multiple Color Players.)

Selecting Player Width

Each player can appear on the screen in one of three sizes: single
width, double width, and quadruple width. Indouble width, for example,
each bit in the player definition controls two adjacent pixels instead of
one. In the following figure, you can see how our player ball would look
in these different sizes.

Player-Missile Graphics / 251

SINGLE
WIDTH

DOUBLE WIDTH

. H.·......................•.

QUADRUPLE WIDTH

(POKE A 0 OR 2 (POKE A 1 (POKE A 3 INTO SIZE REGISTER)
INTO SIZE REGISTER) INTO SIZE REGISTER)

Figure7.6: Example of different player widths.

Table 7.4 show the addresses of the four player width registers.

Addresses ATARI's

Player 0
Player I
Player 2
Player 3
All Missiles

Decimal

53256
53257
53258
53259
53260

Hex

0008
0009
000A
0005
000C

Name for it

SIZEPO
SIZEPI
SIZEP2
SIZEP3
SIZEM

Table 7.4: Player-missile width registers.

252 / Player-Missile Graphics

To change Player 2 to double width, execute the following
statement:

POKE 53258/1

To change Player 3 to quadruple width, execute

POKE 53258/3

To restore Player 2 to single width (the default when the computer is
turned on or SYSTEM RESET is pressed), execute either of the following
statements:

POKE 53258/0
POKE 53258/2

Priority Control

In most cases, you probably will want your players to appear on top
of the background scenery. When this happens, the scenery, which is
made up of all the different available playfields I and the background
color, is always obscured by a passing player. Other effects, however,
are possible. For example, the playfields (not the background color) can
take precedence over the players. The trees of a dark and dangerous forest
could be drawn using playfields. When the walking man then moved
across the screen, he would appear to move behind the trees. Or you
could make a figure enter a house and watch it pass by the windows. For
different effects, a combination of the above could be used. The available
priority settings are listed in the following table, where a Pn (as in PO)
represents Player nand PFn means Playfield n. To change a priority
setting, just POKE the indicated value into memory location 623 (2 GF
Hex), which is called GPRIOR.

IRecall that each color register controls the color of a different playfield. e.g .. pixels plotted with Color
Register 2 are considered to be Playfield 2. This means that in each graphics mode. the number of
playfields available is the same as the number of active color registers for pixel plotting (not counting the
background register).

Player-Missile Graphics / 253

Bit Number: 7 6 5 4 3 2 1 0
Bit Value: 128 64 32 16 8 4 2 1

Priorities
Set only one of
these four bits

Fifth Player Enable
Multiple Color Players

CTIAmodes 0 0
GTIA modes:
GRAPHICS 9 0 I
GRAPHICS 10 I 0
GRAPHICS II I I

Value in 623

I
2
4
8

Priorities of Players
and Playfields

PO PI P2 P3 All Playfields
PO PI All playfields P2 P3
All Playfields PO PI P2 P3
PFO PFI PO PI P2 P3 PF2 PF3

Table 7.5: Bit values for GPRIOR.

Using Five Players If you don't need any missiles but could
use an extra player, add a 16 to the value in 623 (if we don't say Hex, we
always mean decimal). This will enable a fifth player by assigning all the
missiles the same color, which is obtained from Playfield 3
(SETCOLOR 3 or address 711). Note that this mode affects only the
color of the missiles - to move this new player horizontally, you must
change all the missile registers together (53252 to 53255). Vertical
motion can be achieved in the same manner as with the other players.

Enabling Multiple Color Players Although each Player can
have only one color, you can create the appearance of players with two
colors by creating a single figure made up of two players. For example, a
two-tone tree could be created by making the brown trunk out of one
player and the leafy green top out of another (see Example 12 in the next
chapter).

A third color can be obtained by enabling a special multicolor player
mode. This is accomplished by adding a 32 to the chosen priority value

254 / Player-Missile Graphics

from the above table. Now, where Player 0 overlaps with Player I, their
colors will blend to form a third new color - voild, a three-color figure!
The same blending will occur where Player 2 overlaps Player 3. Also
note that the top two bits in GPRIOR enable GTIA modes.

Collision Detection

When using PM graphics in a game, it might be important to know
when one player rams into a wall, or when a missile strikes the oppo-
nent's player. The ATARI Home Computer provides us with a series of
16Collision Registers that are automatically set when any such collision
occurs. These registers are updated every sixtieth of a second, and all
collision information remains there until it is cleared by your program.

Addresses ATARI's

Function

Player 0 to Playfield
Player 0 to Player
Player I to Playfield
Player I to Player
Player 2 to Playfield
Player 2 to Player
Player 3 to Playfield
Player 3 to Player
Missile 0 to Playfield
Missile 0 to Player
Missile I to Playfield
Missile I to Player
Missile 2 to Playfield
Missile 2 to Player
Missile 3 to Playfield
Missile 3 to Player

Decimal

53252
53260
53253
53261
53254
53262
53255
53263
53248
53256
53249
53257
53250
53258
53251
53259

Hex

Dl2l12l4
Dl2ll2lC
Dl2l12l5
Dl2ll2lD
Dl2ll2lG
Dl2ll2lE
Dl2l12l7
Dl2ll2lF
Dl2ll2ll2l
Dl2l12l8
Dl2ll2l1
Dl2l12l9
Dl2l12l2
Dl2ll2lA
Dl2l12l3
Dl2ll2lB

Name for it

POPF
POPL
PIPF
PIPL
P2PF
P2PL
P3PF
P3PL
MOPF
MOPL
MIPF
MIPL
M2PF
M2PL
M3PF
M3PL

Table 7.6: Collision registers for players and missiles.

To determine whether there was a collision, just PEEK into the
appropriate collision register. You will have to perform some checks on
the value obtained to see what type of collision (if any) occurred. The
four right-most bits of the value are used to discover which player or
playfield was hit (see Figure 7.7).

BIT VALUES _8 4 2 1

p. PLAYER
PF. PLAYFIELD x :,,:II '\\" o

P/PF 2 P/PF 1

Player-Missile Graphics I 255

Figure 7.7: Significant bits in collision registers.

Discovering which collisions happened is awkward from within
ATARI BASIC since there is no easy way to check selected bits of a byte
(no masking of bits). To see if Player I collided with Playfield 2, use
Table 7.6 to find out which collision register keeps track of all Player I
collisions with any playfield (it's 53253). Then use the following state-
ment:

HIT = PEEK(53253)

If the value in HIT is 4, then the anticipated collision occurred. If the
value is 5, then there was a collision with Playfield 2 and Playfield 0 (bits
4 + 1 = 5). The following short program shows how BASIC can be
used to translate the value in HIT to collision information. This program
will only give accurate results for values of 15 or less.

10 PRINT "Enter value in HIT: " .l
20 INPUT BYTE
30 BIT=8

: REM Start IAI it h bit 3
40 PRINT "!:L!:E g !

PRINT "t1t1t1t1" j

50 IF BYTE>=BIT THEN
BYTE=BYTE-BIT:
PRINT " 1 " j :

GoTo 70
: REM Bit is on t P r i n t ' 1 r

60 PRINT " 0" j

: REM Bit is off t print '0 '
70 BIT=BIT/2

: REM Next bit
80 IF BIT< 1 THEN

PRINT:
PRINT:
GoTo 10

80 GoTo 50

256 / Player-Missile Graphics

Here is a sample run of this program:

Enter value in HIT: ?5
ELEE: 2 !

o 1 0 1

So a value of 5 obtained from a Player-l-to-playfield collision register
means that the Player collided with Playfields 2 and 0 since the last time
the registers were cleared.

Clearing the Collision Register Some of the addresses for the
Collision Registers might look familiar to you. For example, 53248
(Missile 0 to playfield) is also the horizontal position register for Player
0, as we explained earlier. There is really no RAM at the other end of
these addresses, however. The RAM addresses just provide an easy way
to pass the information back and forth. The custom ATARI chips are
designed so they directly receive the information intended for them and
will directly provide requested data. They know when the request was in
the form of a POKE or aPE EKand respond accordingly, never allowing
information to move in the wrong direction. This means you can read
(P EEK) information from the collision registers, but the POKE informa-
tion is always routed to the horizontal position registers. Likewise, you
can't discover the horizontal location of your player by a PEEK into its
horizontal position register, or its width by aPE EK into its size register!
Furthermore, once a collision value is set, it can't be cleared by a POK E
of zero into the register. The only way to clear a collision register is to
POKE any value into RAM location 53278 (called HITCLR):

POKE 53278,0

All the collision registers will now be cleared to O.

Summary

Okay - enough theory and explanation. Let's put this information
to use. In the next section we present our Bouncing Ball program, which
uses player-missile graphics. With this program as a foundation, you can
go on to make dazzling programs using this flexible ATARI feature.

7.4. WATCH THE BOUNCING BALL-
USING PM GRAPHICS

Now that you understand how PM graphics work, let's explore its
applications. Example 8 will simulate a bouncing ball. You will be able
to enter the initial velocity of the ball and its elasticity coefficient - how

bouncy it will be. The ball (made out of a player) will not only bounce,
but will also be displayed using three different frames to give it some
added life and allow it to "squash" when it hits.

Graphics Mode and Execution Speed

In many of our player examples, we use GRA, PHI CS 3 even
though PM graphics will work in any graphics mode. You may wonder,
"Why GRA PH I CS 3? It has such a coarse resolution." That is exactly
why we chose it - coarse graphics means low memory overhead. In fact,
no ATARI graphics mode uses less memory than GRAPHIe S 3. Okay,
you say, but these programs aren't that long - why conserve memory?
Ah ... do you remember how it's Antic's responsibility to gather
display information to update the screen? Well, only one microprocessor
can use the address and data buses of the computer at any time. So during
this update process Antic halts the 6502 CPU and takes control of the
buses for its direct memory access (DMA) once for each byte of screen
memory. At this time, the 6502 is asleep and can't do anything, including
BASIC program execution or calculations. The more screen RAM used
in a particular graphics mode, the more often Antic halts the CPU, and
the longer it takes the CPU to do its chores. This entire update process
must happen 60 times a second! So, GRA PH I CS 3 (or GRA PH I CS 2
which uses the same amount of RAM) yields the fastest execution time
for a BASIC program, or a program written in any other language,
including assembly language.

The same 6502 slowdown occurs when PM graphics are enabled.
Antic must fetch information from PM RAM for display. Once enabled,
Antic grabs every byte of PM memory during each update of the screen
(60 times a second), even if PM graphics are no longer being used. This
amounts to 76,800 wasted machine cycles each second - processing
cycles during which the 6502 could be doing something better than
sleeping! So, remember to disable PM graphics if you no longer need
them in your program but do need the increased CPU speed which this
can provide (see the next section).

Initializing Player-Missile Graphics

After setting aside a section of RAM for player-missile memory,
there are three POKEs which must be executed to tum on player-missile
graphics. The first one tells Antic where to find PM RAM. POKE
address 54279 with the memory page where PM RAM begins:

POKE 54278, PM PAGE

Next, Antic must be told that it should begin grabbing information
from PM memory. This is done through address 559 (22 F Hex). ATARI

Player-Missile Graphics I 257

258 / Player-Missile Graphics

•
,,,'.I'•,ItI',,-.tt

I", "

calls this address SDMCTL (Shadow for Direct Memory Access Con-
trol). SDMCTL affects not only PM graphics, but the entire screen
display as well. Different bits are used for different purposes as shown in
Table. 7.7.

SDMCTL
Bit Number: X 5 4 3 2 / 0 (X = not used)
Bit Value: X 32 /6 8 4 2 l

Enable Screen DMA

PM Resolution
Enable Player DMA

Enable Missile DMA
Playfield Width

Examples POKE Value

Normal Screen, 0 0 0 0 = 34
PM graphics off
Normal Screen, 0 0 0 = 42
2-line PM graphics,
Player DMA enabled
Normal Screen, 0 0 = 46
2-line PM graphics,
Player DMA enabled,
Missile DMA enabled
Normal Screen, 0 62
I-line PM graphics,
Player DMA enabled,
Missile DMA enabled

Table 7.7: Bit control of SDMCTL.

Bit 5 enables the direct memory access (DMA) using the display
list. This bit is normally on (1). But if you turn it off (0), Antic stops
fetching display RAM, the screen displays only the background, and the
6502 is no longer halted by Antic for screen updating. This technique can
be used if you need to do some extra number crunching and don't mind if
the computer looks like it's "out to lunch." Bit 4 controls whether a
one- or two-line PM display is to be used: one-line if the bit is on (1);
two-line if the bit is off (0). Bit 3 (when on) enables DMA from Player
RAM. Bit 2 (when on) enables DMA from Missile RAM. This means
that either players or missiles or both can be used by selecting a combina-
tion of bits 2 and 3. Bits I and 0 control the width of the Playfield. We
will discuss the three playfield widths in Chapter 9. For now, note that bit
I should be on and bit 0 off for a normal playfield.

Therefore, a POKE of 42 into 559 will leave us with a normal
screen, a two-line PM display, and an enabled Player DMA:

POKE 558,42

Since missiles are not being used, this is the value which is used in all PM
programs in this book. It would also be all right to enable missile DMA
by a POKE of 46 instead of42, but this would cause Antic to unnecessari-
ly grab an extra 128 bytes of memory every sixtieth of a second, thus
slowing the 6502 just a bit more.

The third POKE gives Antic the go ahead to begin sending player-
missile information to GTIA so it can be displayed on the screen. Address
53277 (DO10 Hex), called GRACTL (Graphics Control) by ATARI,
uses the bits as indicated in Table 7.8.

GRACTL
Bit Number: X X X X X 2 I 0 (X = not used)
Bit Value: 4 2 I

Latch Joystick
button

Enable Player
data transfer

Enable Missile
data transfer

Examples POKE Value

Enable Players 0 0 2
Enable Players, 0 I 3
Enable Missiles

Table 7.8: Bit control of GRACTL.

Bit 2 isn't used for PM graphics. It causes the joystick buttons
(TRIGO-TRIG3) to be latched when this bit is on. This means that the
button will act as if it is still being pressed even after you have released it.
This is useful in interactive programs - normally, if you don't happen to
check the button at the instant the operator is pressing it, there is no way
to tell if it has been pressed. When latched, the button can be checked
later and then released by turning off this bit. Bit 1 is used to enable the
transfer ofplayer information to GTIA. Bit 0 is used to enable the transfer
of missile information to GTIA. Again, you can choose to use either

Player-Missile Graphics I 259

260 I Player-Missile Graphics

players or missiles or both. Since missiles aren't being used in our
programs, the value of 2 will be used:

POKE 53277t2

Player graphics are now enabled and ready to go. Disabling them
takes an extra step, however. If there is a player on the screen, setting
SDMCTL and GRACTL back to their original values may not make it
vanish. (This is because even though no new player information will be
sent to GTIA for display, it still has the old player information.) You will
need to first move the player off the screen by a POKE of 0 into its
horizontal position register, then disabling PM graphics:

POKE 53248t0

POKE 558t34

POKE 53277t0

REM Move Player 0 to left
of screen
REM Disable PM DMAt normal
screen display
REM Disable PM information
to GTlA

Creating the Frames

Have you ever noticed how cartoons tend to exaggerate life? When a
coyote falls off a cliff, he flattens out at the bottom as if he were made of
clay. When a rabbit is going to jump over a wall. it will squash down in
anticipation of its feat, then stretch out during the jump, and finally
flatten when it hits the ground again. These overcompensation tech-
niques add a degree of realism to simple two-dimensional drawings by
making them seem more alive. Well, we can do the same thing with a
bouncing ball by using three frames: a round ball- for most of the ball's
flight; a vertically elongated ball- immediately before and after impact;
and a flattened ball- at impact. (See Figure 7.8.) Don't laugh at frames
two and three until you have seen this program in action. They look silly
but they really work as part of the sequence!

FRAME 1

•
FRAME 2

•
FRAME 3

•

DATA

o
60
126
126
126
60
---i!

24
60
60
60
60
60

o oo
126
255
126
---i!

Player-Missile Graphics / 261

Figure 7.8: Frames of a bouncing ball.

Example 8

Exercise Using player-missile graphics and string manipula-
tion, create a simulation of a bouncing rubber ball. Allow the user to enter
values from the keyboard for initial velocity and elasticity to see what
will happen. Have the program calculate the positions of the ball using
the formula for gravity. Use exaggerated animation to create three
different frames. Create a sound effect for the bounce of the ball.

Photo 7.1: The bouncing ball (multiple exposures).

262 / Player-Missile Graphics

Overview As with some of our previous examples (and all of
our subsequent examples), most of the code in this program sets every-
thing up for the relatively short main animation loop. You will notice that
we skipped large blocks of line numbers throughout the prograJ.Tl; for
example, one section is numbered 5000,5100,5120,5130,5170,5360.
This was intentional, and in later examples every "skipped" line number
will be filled in as our programs become more complex. For this reason,
it is essential that you enter every line with its given line number in the
remainder of our example programs. Otherwise, there may be a line
numbering conflict and the programs in later chapters may not run
correctly. For the same reason, don't add extra lines, even if they are
REMarks, into these programs unless their line numbers don't end in 0.

Figure 7.9: Listing of Example 8 -lines 10-130.

Heading and High/Low Byte Calculation First look at line
70. This is where the first entry into the variable value table is made with
string variable PL R0 $. This line must be entered before entering any
other line containing variables or the program will not work properly.
Later, the location of the data for this variable will be moved to coincide
with the RAM for Player 0.

The subroutine on lines 100-130 is called when the value of a 16-bit
number, :-(, needs to be separated into high and low bytes. This is
necessary when the HI BYTE and/or LOBYTE will be put into memory
address by a POKE.

Figure 7.10: Listing of Example 8 - lines 140-330.

Initialize This section initializes the program's variables and
sends the computer off into four initializing subroutines. On line 150,
three variables are DIMensioned - BLANK$ will be used to clear a
temporary player buffer; PL R(n) will hold the RAM address of the four
players; and HPLR(n) will be set to the address of the horizontal position
registers for the four players.

On line 160, an ATARI BASIC trick is used to fill BLANK$ with
128 ATASCII 0 (ATARI ASCII) characters. After the first and last
characters of BLANK$ are initialized to CHR$ (0) , the magic begins
with the statement

BLANK$(2)=BLANK$

Player-Missile Graphics / 263

I
destination string

\
source string

BASIC copies the first character of the source string into the second
character of the destination string, then the second character of the source
string into the third character of the destination string, and so on. In this
way, each character of the string will be copied from the one before until
the string is filled! Try this out - it really works!

Line 170 sets the screen to GRAP HI CS 3, turns off the cursor and
PR I NTs a message on the screen. Lines 180-240 call some special
set-up subroutines that we will cover next. Lines 300-320 PR I NT
information on the screen and set the initial v ELocity and ELAS T I City
values. By elasticity, we mean the percentage of the ball's current
velocity which remains when it hits the ground. An elasticity of 0.5 (50
percent) means that the ball maintains half its current velocity and loses
the other half every time it bounces. An elasticity of 1.0 (100 percent) is a
perfect bouncing ball. It never loses any energy and will bounce forever.
The closest to perfect we have seen is about 0.85 (85 percent) for a toy
super ball. An elasticity of 0 (0 percent) is a ball that will not bounce at all
- it just hits the ground and dies.

Figure 7.11: Listing of Example 8 - lines 5000-5370, 20000-20060.

264 I Player-Missile Graphics

Set Up Memory Locations This subroutine reserves mem-
ory space (in the form of strings) for the frame data. Line 5100 reads the
number of frames used in the sequence (F RAMES = 3), the size ofeach
frame in bytes (FRMS I ZE = 7), and the number of players used in this
program (NUMPLRS = I). The data is located on line 20060. On 5120,
the variable PLRFRMMEM(PLayeR FRaMe MEMory) is set to the total
number of bytes necessary to store the frames for each player. Line 5130
sets FRAMEMEM(FRAME MEMory) to the total number of frame bytes
needed for all players.

On line 5170, string memory is reserved for three variables.
BUFFER $ is the temporary buffer used in vertical player movement (see
earlier explanation in section on vertical player movement). FRAME$
will hold the current frame to be displayed and FRAMEMEM$ holds all
frames for every player.

•II.aa.
a· •.',I' -.t'

J
(J ..f;".1 ••, ."'....

: .
•

•••·•••." :, ",

•

Figure 7.12: Listing of Example 8 -lines 7000-7130.

Initialize Player-Missile Graphics In this section, memory
is reserved for the players, and PM graphics are enabled. As we men-
tioned before, it takes extra work on Antic's part to move the information
in player RAM to GTlA for display on the screen. When PM graphics are
turned on, the 6502 is slowed down just a bit more.

Line 70 I0 reserves four pages of memory for the player and four
pages for the screen. GRAPHIeS 3 only occupies 240 bytes of memory
so why use four pages for screen RAM when only one is necessary?
Recall that PM RAM must begin on an even I K boundary (in double-
line mode). If necessary, the wasted memory could be used for storage of
frame information or other data.

Line 7020 tells Antic where to find PM RAM by placing the starting
memory page number (TEMP) in 54279 (D407 Hex). The actual RAM
address of PM RAM is calculated and stored in PMBASE in line 7030.

In lines 7040-7070, two arrays are initialized. PLR (I) holds the
RAM address for Players 0 through 3 (see Figure 7.4). HPLR (I) holds
the address of the horizonal position register for each player.
In line 7080, SDMCTL, address 559 is initialized and Antic begins

DMA (direct memory access) from player RAM. A PDKE of 42 into 559

leaves us with a normal screen, a two-line PM display, and enabled
player DMA (but no missiles).

In line 7100, Antic starts sending player information to GTIA so it
can be displayed on the screen when GRACTL, 53277, is POKEd with
a 2.

Figure 7.13: Listing of Example 8 - lines 9000-9080.

Point PLRO$ to Player 0 RAM Here is where BASIC is
tricked into moving a string variable to coincide with Player 0 RAM. In
lines 9010-9020 the locations of the string/array area and the variable
value table are calculated. In 9030 the number of bytes from the begin-
ning of the string/array area to the start of Player 0 RAM is stored in
OFFSET. Line 9040 uses the HI / LO byte subroutine on OFFSET so
these values can be POKEd into the variable value table and the first
variable in the program is now relocated! See the earlier section" Moving
a Player Vertically With BASIC" for more information on this
technique.

Figure 7.14: Listing of Example 8 -lines 10000-10140, 21000-21060.

Read in Frame Data This loop reads the frame data for the
bouncing ball into the string FRAMEMEMs Each B '(TE is converted to
a character with CHR$.

Player-Missile Graphics I 265

266 / Player-Missile Graphics

I
(I ...r.· .., ._10'"

•. :

:.•• t:.. :, "

• .'..'..'.
"I' -,e' Figure 7.15: Listing of Example 8 - lines 700-740.

Move Player 0 to Left of Screen This subroutine will move
Player 0 off the left side of the screen. This routine will be expanded in
later programs.

Figure 7.16: Listing of Example 8 - lines 400-570.

Main Animation Loop This section controls the movement of
the ball on the screen. There is some mathematics involved to calculate
the positions of the ball as it is being affected by gravity and its elasticity,
but don't worry about them if you aren't a math person. Just skim the
parts you don't understand; we promise not to test you later.

On line 410 four constants are initialized. BOTTOM is the lowest
vertical screen position to which the ball will go and is analogous to the
floor.)-(POS is the starting horizontal position of the ball (off the screen
to the left). T I ME holds the elapsed time from the moment the ball is
launched or bounced. H0 R I Z holds the horizontal velocity. This value
is constant until the ball begins to roll.

The ball is moved to the left of the screen in 420, and the value of
ELAS TIC is checked in 430. Later, when input is accepted from the
keyboard, this line makes sure that if the elasticity is very low, there is at
least one bouncing noise when the ball hits the ground.

The important loop begins at 440 with the gravity calculation. The

effect gravity has on the motion of an object can be represented by the
formula

or

This shows the acceleration of gravity over time. TIM E* TIM E is used
rather than the exponent function (.'.) to increase calculation speed. By
subtracting the above value from the current velocity (I.JEL) multiplied
by TIM E, the current height of the ball off the ground is obtained:

VEL*TIME-1G*TIME*TIME

This must be subtracted from the value of the ground (BOTTOM) to
convert the number to screen coordinates:

YPOS=BOTTOM-(VEL*TIME-1G*TIME*TIME)

FRMNO, the number of the current frame to be displayed, is set to I (the
round ball).

In line 450 the YP0 S and IiEL are checked; if the ball is near the
ground and the velocity is high enough, the vertically elongated ball
frame is chosen to exaggerate the vertical motion.

Line 460 checks for contact with the ground. If the ball has hit
(YP0 S will be greater than or equal to BOTTOM), the ball's {.J ELocity is
recalculated by multiplying the current l,J ELocity by ELAS TIC. With
the initial ELAS T I City of 0.8, 80 percent of the current velocity will be
conserved and 20 percent lost. TIME is set to 0 since as far as gravity is
concerned, the ball is first starting out and was thrown by the ground. The
frame number is set to 1 unless the velocity is high enough to cause the
ball to flatten, at which time it is set to 3.

Line 470 checks to see if the ball is still on the screen. If not, the
animation loop is exited, and new values can be entered from the routine
starting at 600.

Now that all the values are calculated, the ball will be positioned on
the screen. The horizontal position of the player is set in line 480. On 490
the correct frame is transferred from FRAMEMEM$ (where all three
frames are kept) to FRAME$. This is the same technique used in the
Walking Man program (Example 2) from Chapter 5. Lines 500-520
position FRAM E$ at the proper vertical position in player RAM as

Player-Missile Graphics / 267

268 / Player-Missile Graphics

described in a previous section, "Moving a Player Vertically With
BASIC." The ball is now in place.

In line 530 the horizontal position of the ball 0< POS) is in-
cremented. Line 540 turns on the bounce sound if the ball has just struck
bottom and the velocity is high enough. If SN0 FLAGwas set in line 430
(low elasticity), the sound will be heard on the first bounce.

In line 550, TIM E is incremented by 0.15 and the loop continues at
line 440 if the velocity is greater than 0.5. A different value can be
substituted for the O.IS to simulate the ball bouncing in slow or fast
motion. Use a smaller T I ME increment to make the ball move in tinier
increments (slow motion).

Finally, line 560 will be reached if the velocity of the ball is so slow
that it can only roll rather than bounce. H0 R I Z is decremented to
simulate the effect offriction on the ball's horizontal velocity. If the ball
is still rolling (H0 R I Z will be greaterthan 0), frame I is selected, and the
program jumps to 470 since the bouncing calculations of 440--460 are no
longer needed. If the ball has stopped rolling, the program will fall
through to the routine at 600.

Figure 7.17: Listing of Example 8 - lines 600-690.

Get Parameters for Ball This section of the program is
executed after every ball finishes bouncing to allow you to enter your
own velocity and elasticity values. The ball is moved off the screen in line
610. The TRAP command is used in line 640 to trap any IN PUT errors
which may occur. If there are any, the program will jump to line 630 and
the values can be reentered. In line 670, after executing the' 'cursor off"
POKE, at least one character must be PR I NTed before the cursor
vanishes. Line 680 turns off error trapping by setting TRAP to a nonexis-
tent line number, and the animation loop is restarted.

Modifications Try the following modifications:
I. Experiment with different velocities and elasticities. Try a velocity of
I and an elasticity greater than 1.0. Did you ever see the Walt Disney
movie, The Absent-Minded Professor, which is about an amazing

substance called Flubber? This flying rubber gained velocity every
time it bounced.

2. Change the constant (16) in the gravity equation (line 440) to simulate
a ball falling on a different planet with stronger or weaker gravity.

3. Modify the program so there is a ceiling as well as a floor off which
the ball can bounce. Will the ball speed up if you use an elasticity
greater than or equal to 1.0'1

Commercially Available Games and
Player-Missile Graphics

Almost every action game now appearing on the market includes the
use of player-missile graphics. The only exceptions are those games
which are straight conversions from computers which don't have players
or sprites (e.g., the Apple II). The use of players usually results in extra
color and much smoother action. The game Threshold (by Warren
Schwader and Ken Williams of On-Line Systems) is an example of an
Apple conversion which doesn't use PM graphics. As do most conver-
sions, it uses GRAPHIe S 8, the closest mode to the Apple's 280 x 192
screen. The object of the game is to destroy the endless waves of
attacking aliens. The first wave is made up of bird-like creatures. The
flapping of their wings is achieved with four different frames, much like
our Example I. The motion of the figures and their animation is done
with a technique called byte move (or playfield animation). Rather than
plotting individual pixels on the screen, entire bytes (8 pixels wide) are
rapidly moved into screen memory to create the effect. All the color on
the screen is a result of artifacts. Even though the only special ATARI
feature used is sound, the game still plays well with more than enough
action.

Player-Missile Graphics / 269

a) b)

Photo 7.2: These frames are from the game Threshold. (Copyright (c) 1982
by On-Line Systems.)

270 I Player-Missile Graphics

Another game, Apple Panic (by Olaf Lubeck of Broderbund Soft-
ware, Inc.), uses a combination of PM graphics and map mode graphics.
The object of the game is to avoid and destroy the apples. This is
accomplished by pounding holes in the bricks. When an apple walks by,
it falls into your trap. Then you must pound the apple on its head with the
hammer, driving it into oblivion. The little man is made up of all four
players in the single-line resolution mode (thus the different colors). The
game uses graphics mode Antic E (also affectionately known as
GRAPHI CS 7 1/2 by ATARI 400 and 800 programmers). Known as
GRAPHIe S 15 on the ATARI XL Home Computers, it has the same
number of colors (four) and horizontal resolution as GRAPHIe S 7 but
twice the vertical resolution (160 x 192). The wandering apples were
drawn with a technique similar to the one used in Threshold using
playfield animation. Each time an apple moves, it is Exclusive ORed
(XOR) with the background. When one passes in front of a ladder, rather
than temporarily erasing the background, the ladder shows through the
apple in the color of the bricks. With this technique, it is not necessary to
remember what the background looked like when it needs to be restored.

Photo 7.3: A frame from the game Apple Panic. (Copyright (c) 1982 by
Broderbund Software, Inc.)

In ATARI's PAC-MAW", each ghost is the chomping PAC-MAN
as well as a player. This was accomplished by combining the four
missiles into a fifth player. Notice the two lines of GRAPHIe S 0 text at
the top of the screen.

Photo 7.4: A frame from the game PAC-MAN. (Trademark of Bally Midway
Mfg. Co., licensed by Namco-America, Inc., Copyright (c) 1982, Atari, Inc.)

Summary

ATARI player-missile graphics can be an extremely powerful
animation tool. Although somewhat awkward to set up, once im-
plemented in your program, they are capable of effects that would be
much more difficult to achieve by other means.

Up to this point in our examples, everything can be accomplished
using BASIC programming. In the next chapter, we introduce you to
three of our black box machine language routines which enable us to use
the ATARI Home Computer's special features most effectively. Don't
let the words "machine language" scare you away from trying out these
examples! Remember, you do not need to understand anything about
assembly language or machine language to use our routines. Black box
means that all you see are the results without seeing the mechanics of
production.

Player-Missile Graphics I 271

272 I Player-Missile Graphics

Using Machine Language Routines in BASIC Programs / 273

Chapter 8

Using Machine Language Routines
In BASIC Programs

W e have come about as far as we can with pure BASIC pro-
grams, so in this chapter a modification is made to the previous

program, Example 8, by adding two machine language routines to it.
Wait! Don't go away! We know we're talking about something that is
terrifying to many BASIC programmers, but believe it or not, machine
language routines are not monsters waiting to confuse and befuddle you
or erase programs from your disks! We will first introduce you to a coupie
of very friendly machine language routines that are going to change your
attitude permanently. For those of you who speak" assembly," complete
listings of the assembly language source code for these routines are
included in Appendix F. As for the rest of you, don't worry; it's going to
be painless because all of our machine language routines are like black
box machines - you don't need to understand their inner workings to
take advantage of them. We will show you how to coax them into your
programs and how to feed them parameters so they will do your bidding.
In essence, these machine language routines will expand ATARI BASIC
by adding new statements that will allow control over some of the most
powerful but elusive ATARI features.

Four separate routines are introduced in this chapter, and another
two are introduced in Chapter 9. The simplest routine will rapidly fill any
portion of memory with a selected byte value. Then we'll provide you
with a routine to move the players to any point on the screen, one to
automatically move frame information into the players at a selected rate,
and one to assign a horizontal velocity to the players.

8.1. WHAT IS MACHINE LANGUAGE?

Machine language is a series of number codes and memory address-
es that the CPU understands as a program. Each code, actually a byte,
will cause the CPU to do one tiny task. Because these tasks are so small (it
requires a lot of them for anything interesting to happen), machine
language is called a low-level language. BASIC, which is really a large
machine language program, is called a high-level language because each

274 / Using Machine Language Routines in BASIC Programs

of its commands causes the CPU to execute a flurry of its tiny tasks. The
main advantage of machine language is its speed of execution. This is
essential for fast-action game and graphics. Machine language's main
disadvantage is the amount of effort the programmer must put forth to
produce the finished product.

To make it easier for us humans to produce the byte codes of
machine language, assembly language was invented. This allows the
programmer to write programs using short words called mnemonics,
which have more meaning for us than a bunch of numbers would. When
the assembly language programmer has completed writing this program,
called the source code, it is processed by another program called an
assembler. The assembler checks the mnemonics for errors and produces
the final product by assembling all the information in the source code into
the numbers which the CPU can understand. These number bytes are
called the object code, machine code, or machine language and can be
direct!y executed by the CPU when stored in the computer's memory.
Routines, then, are originally a list of letters and numbers that get boiled
down to just plain numbers.

Using Our Black Box Machine Language Routines

We keep on stressing how easy it is to use our machine lan-
guage routines and that they have been designed for programmers
who don't necessarily know assembly language. Once they have
been entered into memory, most of our routines use a reserved
section of RAM for a parameter table. To talk to the routines or check
on their progress, use BASIC PEE K and POKE statements to
access this table. To make it easier to remember which table loca-
tions do what, their memory locations are assigned to BASIC vari-
able names, and in some cases, to arrays (e.g., to control the
horizontal position of Players 0 through 3, we POKE values into
table locations stored in array variables HPL R (0) through
HPLR(3)).

All of our routines are designed to be as flexible as possible
rather than specific to our demonstration programs. This means they
will be somewhat longer than other less versatile routines designed
for a single application. Our routines do, however, have some limita-
tions - there are bound to be some features which we didn't include
that would be perfect for your dream program. Just think of our
routines as some important programming tools to add to your ATARI
workshop.

If you are an assembly language programmer, feel free to either
modify our routines or to use them as guides for creating your own.
The complete source code listings for our routines are found in
Appendix F and are also included on our program diskette.

Using Machine Language Routines in BASIC Programs I 275

Entering the Routines Into Memory

There are different methods for getting the machine language pro-
gram into memory. Programs which are pure machine code can be stored
in cartridges, diskettes, or cassettes. They are simply loaded in and
executed. We will be using a mixture of BASIC and machine language,
so two different types of program information must get into memory. For
disk owners, it would be a simple task for the BASIC program to pull the
machine language routine off the disk and into a reserved section of
memory. But what about those cassette recorder owners who aren't so
fortunate? One solution would be to store the machine code bytes as
OATA statements in your BASIC program. This way everything is
loaded at the same time from disk or cassette. The BASIC program would
then POKE each number into consecutive memory locations. There are
two disadvantages to this method. If the routine is long, it could take
quite a while to POKE each byte into RAM. A more serious problem is
that the machine language routine will be occupying precious memory
space two times - once as 0 ATA statements (where each number
actually takes up seven bytes) and once in its reserved RAM.

ATARI BASIC provides a simple solution. The routine bytes can be
stored in strings! Each byte has a value from 0 to 255 and can be
converted to a character representation using the CHR$ function. By
using the ATARI BASIC A0R function (which returns the address of a
string's data), the machine language routine can be located and executed.
The above problems are solved with this technique. The routines are
moved into the strings at machine language speed when the strings are
initialized, and a byte stored as a character only takes up one byte of
RAM rather than seven. In addition, memory for the routines is automati-
cally reserved by BASIC when the string is 0 I Mensioned.

Now, how do we get those bytes into strings? We have written a
String Loader BASIC program for you which will read bytes from 0 ATA
statements and then stuff them into strings. These strings, complete with
line numbers, can be outputted to disk, cassette, or even the screen. It's a
simple task then to merge these saved strings into your BASIC programs.
The only real difficulty is that some of the routines are long - the longest
two contain about 300 bytes each! There are a few ways to get around
entering all these bytes into 0 ATA statements: enter and assemble the
source code yourself, talk a quick-typing friend into entering the 0 ATA,
or purchase the program diskette from Adventure International.

The listing and explanation of our String Loader program is found in
Appendix D. Now would be a good time to enter it so you can convert our
first machine language routine, MF ILL, into a string. (The data bytes for
MF ILL are included in the String Loader listing.) MF ILL will allow
you to rapidly fill a section of RAM of any size with the byte value of your
choice. MF I LL is used in the rest of our program examples as a utility
program, a program designed to make some frequently used function

276 I Using Machine Language Routines in BASIC Programs

easier and more efficient. This routine could be replaced with some
simple BASIC code, but then it would execute much more slowly.

Flashing with Memory Fill

Now for some fun! We will use MF I LL in a program called Flash to
create some wonderful patterns on your screen. Type NEW and enter the
MFILL routine string (created by the String Loader Program, Appendix
D) into memory. Use the following commands depending on whether
you used the String Loader program to save it on disk or cassette:

ENTER "D:MFILL.STR"
ENTER "e:"

(disk)
(cassette)

Next, enter the following statements (of course, lines 11620
containing the MF I LL string will have just been entered). Since it isn't
necessary to represent the routine's string characters (line 11620) in our
listings, we will indicate where they belong with the phrase
"<<<R0 uti n eSt r i n 9 90 e 5 her e :>:>:>" in this and all subse-
quent programs.

Figure 8.1: Listing of FLASH.

Go ahead and run the program. Phew! What's happening? The
entire screen immediately begins flashing through all of the characters,

Using Machine Language Routines in BASIC Programs I 277

first in normal and then in inverse video. The characters fill the screen so
rapidly that it's difficult to make out each one. Let's look at the listing and
find out why. After the graphics mode in line 110 is chosen, the sub-
routine at 11600-11640 is called. This initializes the memory fill routine
and discovers its location in RAM by using the ADR function. This
address is then saved in the variable MF I LL (named after guess what).

In line 130, the address of screen RAM is calculated. This address
will correspond to the first byte of screen memory or the upper left corner
of the screen. To check this, stop your program and clear the screen.
Then POKE a value into SCREEN and watch the corner:

POKE SCREENt33

You'll see an 'A' appear in that corner because 33 is the position in the
ROM character set for' A' (see Chapter 5 on user-defined character sets).

In lines 210-230, a FOR I NE;{ T loop is used to cycle through all
the possible byte values. Line 220 calls the machine language routine and
passes it the needed information (parameters). Here is the syntax for
using MF ILL:

TEM P=USR (MF I LL rstart.length.byte]

The variable TEMP is necessary for proper syntax of the USR function;
however, in this case it is a dummy variable (although a value could be
passed to BASIC from a routine, we aren't doing so here). USR is the
BASIC function which allows the use of machine language routines. The
first value within the parentheses is the address of the routine (MF ILL).
When USR is used, there must always be an address here. The next three
parameters tell MF I LL where in memory the filling should start, how
many bytes should be filled (length), and what byte value should be used
to fill memory. Any parameters after the first one have been established
by the routine's programmer. Here is line 220 again:

220 TEMP=USR(MFILLtSCREENt960tI)
: REM Call routine

The address of the first byte to be filled is SCREEN, the beginning of
screen memory. Since the entire screen is to be filled, the length para-
meter must equal the number of bytes in screen RAM. By checking Table
5.1, we discover that there are 960 bytes in a GRAPH I CS 0 screen. The
byte value (I) will be controlled by the FOR I N T loop and will cycle
through all the possible values. So, this line says "call the machine
language routine located at address MF ILL and fill the 960 bytes starting
at SCREEN with the value in 1." Once the FOR/NE;-(T loop is
completed, it starts over again with O.

278 / Using Machine Language Routines in BASIC Programs

Flashing in Other Graphics Modes Since GRAPHIeS 0 is
being used, the values which are filling the screen are interpreted as
characters. If you use a different GRAPHIeS mode (change line 110),
some beautiful and colorful patterns will appear. Use Table 5.1 to
determine the number of bytes in screen memory for the mode you are
using. Notice that with the higher resolution graphics modes, the screen
takes much longer to fill - you can actually see a "curtain" of new
colors fall from the top of the screen.

Summary

Now that you have successfully implemented a machine language
routine in a program, we can proceed to much more useful and powerful
applications. Notice that you never had to understand exactly how the
machine language routine worked! Our next goal is to make ATARI' s
player graphics more accessible and controllable from within BASIC.

8.2. MOVING PLAYERS WITH PMOl.'ER

In this section we will introduce a machine language routine to move
a player or players to specific positions on the screen. Since we have
already successfully moved players without machine language, you may
be wondering, "Why bother?" This routine, the first part of an inte-
grated set of machine language routines, can accomplish certain tasks
more rapidly than BASIC and automatically carry them out while your
program is executing BASIC statements. The power this places at your
disposal will soon become apparent.

Synchronizing the Screen

Aside from all this, a number of other advantages are gained with
the use of our next routine, called PM 0 I.' ER. In the Bouncing Ball
program (Example 8), a single, very small player was moved on the
screen. When a large player (or even worse, several large players) moves
horizontally across the screen, a tearing effect is sometimes observed.
This is caused by a synchronization problem between the player's move-
ment and the updating of the screen. To understand how this works, let's
talk about how the screen is updated. As we mentioned in Chapter 2, the
television picture is actually painted by an electronic beam. The beam
starts in the upper left comer of the screen and paints one horizontal scan
line to the right. Then it's turned off and returned to the left side of the
screen where it paints the second horizontal scan line. There are actually
262 horizontal lines on the screen which need to be painted, 192 of which
make up the ATARI playfield. After the 262nd line is painted, the
electron beam must return to the upper left corner in preparation for
painting the next complete screen. This entire process happens 60 times a

Using Machine Language Routines in BASIC Programs / 279

second, which means it takes one-sixtieth of a second to paint each screen
frame! (See Figure 8.2.)

rHORIZONTAL SCAN LINE
f=:==(SOLID LINE)

,-;...-
==-i--..-PATH OF ELECTRON BEAM TO NEXT

- '- - - - HORIZONTAL SCAN LINE (DOTTED
'-- - - LINE)

- - '<

START

- ----, =<,
yLAST SCAN LINE HAS BEEN DRAWN,. ELECTRON BEAM RETURNS TO TOP

LEFT CORNER TO BEGIN AGAIN
TIME ELAPSED' 1160 SECOND

Figure 8.2: Screen updating cycle.

Imagine a very tall player being moved horizontally from left to
right across the screen. What would happen if this player was moved
while the screen was being updated (redrawn by the electron beam)? It is
possible that the top half of the player will be in the original position
while the bottom half is updated in the new position. Of course, when the
beam gets to the top of the screen, the top half of the player will also be
updated. But if this happens over and over as the player is moved, it will
look like the player is being tom in half (see Figure 8.3).

MOTION OF PLAYER

TEARING - PLAYER HAS
BEEN MOVED HALF-WAY
THROUGH SCREEN UP-
DATING CYCLE

MOTION OF PLAYER

Figure 8.3: Tearing of a player during horizontal motion.

280 I Using Machine Language Routines in BASIC Programs

Vertical Interrupts

The problem intensifies when two or more players have been com-
bined into one larger player for increased color or resolution. The
combined player must appear to move as one player, or it may risk losing
its solidity as some parts try to catch up with others. This will happen if
we attempt to use BASIC to move them simultaneously. BASIC just isn't
fast enough to allow the perfectly synchronized movement of players.
That's the problem, and here comes our machine language routine to the
rescue! The first part of the solution is to execute all horizontal player
movements during the period of time (about 1400 microseconds) when
the electron beam is returning from the bottom of the screen to the upper
corner, called the vertical blank or vertical retrace period. In this way,
the players will never move horizontally during a screen update, and the
problem of tearing is solved. The second part ofthe solution is to have the
machine language routine move all desired players vertically with one
call to the routine rather than a separate call for each player. All players
will appear to arrive at their new vertical positions together. Since there
is no tearing problem with vertical player movement, the VBLANK
(vertical blank) isn't needed and vertical movement can be executed
immediately.

Fortunately, the people who designed the ATARI Home Computer
made the first part to this solution easy to implement through the use of
the vertical blank interrupt (VBI). During vertical blank, the 6502 is
interrupted with whatever it is doing (e.g., calculating the number of
peanuts which will fit in a Volkswagen), and the ATARIaS performs all
of its updating of hardware registers by grabbing information from
shadow registers, reading joysticks and paddles, incrementing the real-
time clock, etc. It is possible to add in our own program, which will be
executed after the as does its updating tasks.

In PMOI.JER we created eight new shadow registers (see Chapter 7
for an explanation on shadow registers), one for the horizontal and
vertical position of each player. By POKEing information into these
locations, PMOI.JER is told where to move the players. These shadow
registers, however, are ignored until all POK Es have been completed. At
that time, PMOI.JER is called (activated) and told which player or players
are to be moved. There are actually two separate programs in PM0 VER.
One is a normal machine language routine which vertically moves each
player to its new position. The other is a vertical blank interrupt routine
which will fetch the horizontal position from our shadow register during
the next t.J BLANK and store it in the appropriate player's horizontal
position register. All this happens so rapidly that all the players seem to
appear at their new screen locations. In addition to eliminating horizontal
tearing, BASIC's inherent lack of speed is bypassed by avoiding a series

Using Machine language Routines in BASIC Programs I 281

of consecutive calls to the routine to move each player separately. The
call to the routine looks like this:

TEMP=USRCPMOVER,FLAG)

The value in FLAG determines which player or players will be moved
during the next VBLANK. The table below lists the addresses which
PMOIJER uses and the bit values indicating which players are to be
moved.

Variable Offset From Address
Name PARAMBASE (Decimal) Description

PARAMBASE 1024 Start of Parameter area
PMBAS 0 1024 Page address of Player 0 (hi byte)
PMBUF I 1025,1026 Low and High bytes of Player Buffer
HPLR(0l 6 1030 Player 0 Horizontal Shadow Register
HPLR(ll 7 1031 Player I Horizontal Shadow Register
HPLR(Zl 8 1032 Player 2 Horizontal Shadow Register
HPLR(3l 9 1033 Player 3 Horizontal Shadow Register

10 1034 Player 0 Vertical Shadow Register
VPLR(ll II 1035 Player I Vertical Shadow Register
VPLR(Zl 12 1036 Player 2 Vertical Shadow Register

(3 l 13 1037 Player 3 Vertical Shadow Register

Bits of FLAG byte

Bit Number: X X X X 3 2 1 0 (X = not used)
Bit Value: 8 4 2 I

FLAG for Player #: 3 2 0

Examples FLAG Value

Move Player I only 0 0 I 0 = 2
Move Players 0, 2 & 3 I I 0 I 13
Move all Players I I I I = 15

Table 8.1: Parameters for PMOVER.

All of our machine language routines will be utilizing a parameter
table starting at 1024 for shadow registers and to hold temporary values.
This memory is normally used by the as when reading or writing to a
cassette recorder (you can't use your recorder during the execution of
these programs). The above table shows only the parameter table entries
used by PM 0 l.J ER. The first column contains the variable names we

282 I Using Machine Language Routines in BASIC Programs

assigned to each parameter table address. The first three addresses listed
in the table are used only during the initialization selection of a program.
PARAMBASE is set to the base address of the parameter table (1024),
PMBAS will hold the page address (high byte) of Player 0 so PM 0 I,J ER
knows where the players are, and PMBUF will hold the two byte address
of the temporary player buffer. This buffer will be used in much the same
way as BUFFER $ in the Bouncing Ball program. When a player is to be
moved vertically, all 128 bytes of it are copied into this buffer. Then,
using the information in its vertical position shadow register, it is copied
back into Player RAM with the appropriate vertical offset. This is the
fastest method when the player needs to jump around the screen. Each
vertical relocation requires moving 256 bytes of RAM (128 into the
buffer from player RAM and 128 out of the buffer back into player
RAM). See Figure 8.4.

METHOD USING
TEMPORARY BUFFER.
256 BYTES MOVED
NO MATTER THE
NUMBER OF VERTICAL
STEP. GOOD FOR
RAPID REPOSITIONING
OF PLAYER.

128 BYTES
MOVED

- - ///

:/,(/'
)/

/ \
\
\
\

128 \
BYTES \

L.._---l ___'
PLAYER RAM
(128 BYTES)

TEMPORARY
BUFFER
(128 BYTES)

BACK TO PLAYER RAM
WITH A NEW
VERTICAL POSITION

ROTATE
BYTES
UP

METHOD OF ROTATING
ALL OF PLAYER'S RAM.
128 BYTE S MOVE 0
FOR EACH VERTICAL
STEP. GOOD FOR
SMOOTH MOTION
WITH SMALL
INCREMENTS.

PLAYER RAM
1128 BYTES
MOVED)

PLAYER RAM
1128 BYTES
MOVED)

PLAYER RAM
(128 BYTES
MOVED)

Figure 8.4: Two methods for moving a player.

Using Machine Language Routines in BASIC Programs I 283

An alternate method would be to slide or rotate all of the player's
RAM up or down a byte at a time directly within the player's RAM (no
buffer). Each vertical step would require the movement of 128 bytes of
RAM as each byte moves one position up or down. As a result, this
technique executes more rapidly when the player needs to move up or
down only one vertical increment. The farther the player must move, the
'longer it will take, since the player must occupy every intermediate
position between its starting location and its destination. The player will
appear to slide smoothly to its new position rather than just materializing
there. This technique would not work in our Bouncing Ball program,
however, as it would take too long for the player to arrive at each new
position, and the sliding effect isn't appropriate.

These two methods are excellent as general-purpose player movers,
where the height of the player may not be known. When sliding the player
is acceptable and you know exactly how tall the player is, a third
technique, mentioned in the last chapter, may be more efficient. This
would be to include a blank byte immediately above and below the player
object as part of the object. Then, when the object is moved in single
steps either up or down, this blank space would erase the object in the
original position. We used a similar technique with the falling bomb in
Example 4 when the bomb erased itself as it moved down the screen.

The array HPLR(n) holds the addresses of the shadow registers for
the horizontal position of Player n and the array I,J PLR(n) holds the
vertical position shadow register for Player n, Here is an example of how
PMOI,JER might be used. If you wanted to move both Players 0 and I
together, you would add the following to your program (assuming the
variables have already been initialized):

100 POKE HPLR(0) 1100
110 POKE HPLR(1) 1108

120 POKE I,JPLR(0) t50
130 POKE I,JPLR(1) t50
140 TEMP=USR(PMOVERt3)

REM Pla>'er 1 is
adjacent to
Pla>'er 0

REM Move Players 0
and 1

Notice that the position of Player I is eight steps over from Player o.
Since the players in normal width are eight pixels wide, this will place
them adjacent to each other. The two players would appear in their new
positions on the next updated screen.

284 I Using Machine Language Routines in BASIC Programs

Setting Up Vertical Blank Interrupts

After our routine is in memory, its VBl (vertical blank interrupt)
section must be connected to the "plumbing" of the existing ATARI
VBl routines. The program flow during the vertical blank period is
similar to the flow of water through pipes. To connect additional "fix-
tures" to the existing pipes, a special sequence of steps must be followed
to avoid an accident (water on the floor). Figure 8.5 shows the process of
installing our VBl routine into the normal path of the operating system's
VBl routines.

Normally, once the OS has completed the updating process, the VBl
program goes through a vector (direction sign) called VVBLKD (de-
ferred vertical blank vector), which is located at address 548 and 549
(0224 Hex). (This is indicated in part a) of Figure 8.5.) VVBLKD
contains the address of XlTVBV (exit vertical blank interrupt, E4G2
Hex), where there is a simple interrupt termination routine. By placing
the address of the VB! section of PM 0 t,J ER into VVBLKD, the program
flow gets rerouted through our program (the new plumbing fixture).
When PMOI,JER has finished its job, it returns the flow to XITVBV (part
c) of Figure 8.5).

There is one potential problem at this point. Since we must POKE a
two-byte address into I,J I,J 5 LKD, it is possible that a VBl may occur after
the POKE of the first byte but before the POKE of the second. This will
cause the interrupt routine to shoot off to some unknown part of memory
and the computer will crash! As any amateur plumber knows, you must
tum off the water or detour it before disconnecting any pipes. ATARI has
provided us with a "detour valve" precisely for this purpose. It is called
CRITICAL and is found at location 66. Before changing the values in
VVBLKD to connect PM 0 I,J ER, we POKE a 1into CRITICAL to open
the detour pathway (part b) of Figure 8.5). Then, after the connections
(POKEs) are completed, CRITICAL is closed by a POKE of 0:

13010 POKE CRITICAL d: REM Open CRITICAL
" v a l v e v • set UP detour

(connect PMOt,JER to the ATARI VBl routine at this point)

13170 POKE CRITICAL,0: REM Close CRITICAL
valve, routine installed

Stuffing the PM 0 t,J ER String

The next step in implementing PM 0 I,J ER is to enter its byte values
into DATA statements, and then run our String Loader program to
convert these values into a string. Load the String Loader program into

Using Machine Language Routines in BASIC Programs I 285

OPERATI NG SYSTEM
VERTICAL BLANK
INTERRUPT SERVICE
ROUTINE

@-CRITICAL
(OFF)

VVBLKD

XITVBV

CRITICAL
(ON)

VBLANK SECTION
OF PMOVER

(HORIZONTAL
MOVEMENT
OF PLAYERS)

"""""'VVBLKD

0) NORMAL FLOW OF VBI-
CRITICAL IS CLOSED

XITVBV

b) INTERMEDIATE STEP-
CRITICAL OPENED,
DETOUR ACTIVE

VERTICAL
--BLANK INTERRUPT

(EVERY 1/60 SEC)

__ OPERATING SYSTEM
VERTICAL BLANK
INTERRUPT SERVICE ROUTINE

+ /CRITICAL
.-----l@ (OFF)

........-'-•....-_ VVBLKD

PMOVER
(SECTION
WHICH MOVES
PLAYERS
VERTICALLY)

l---------4

c) CONNECTION COMPLETED - CRITICAL IS CLOSED AGAIN

Figure 8.5: Vertical blank interrupt pathway.

286 I Using Machine language Routines in BASIC Programs

memory, making sure that the DATA statements from MF ILL are
deleted. Then add the lines shown in Figure 8.6.

Figure 8.6: Listing of DATA statements for PMOI.IER.

Now run the program to create the routine string. We are now ready
to use PMOI,'ER in a program.

Example 9
Exercise Create a version of the previous Bouncing Ball pro-

gram that uses the machine language routine PM 0 I,'ER to place the ball at
its horizontal and vertical position on the screen. Everything else in this
program will remain the same as before.
The Bouncing Ball program, Example 8, will be modified to use

PM 0 I,' ER, so load that program into memory and delete the following
lines:

160 500 510 7060

We will now present the sections of this program which have new or
modified lines. Just add to your program the lines which are highlighted.
Refer to Figure 8.7.

POKE 752,1:

up memory
220 GOSUB 7000: REMSet up Player area
230 GOSUB 9000: REM Point PLROS to Player 0 RAM

Figure 8.7: Listing of Example 9 - lines 10-60, 140-300

Using Machine Language Routines in BASIC Programs I 287

Initialize Line 150 eliminates the DIMensioning of BLANK$
(no longer needed) and adds lJPLR (3) for the parameter table entry of
the players' vertical position. Lines 180, 280, and 290 call the added
subroutines to initialize, install, and tum on PM 0 I,J ER.

470 ir XPOS)220 OR YPOS(=I THEN 600

540 IF YPOS=BOTTOM AND (VEL+SNDFLAG>0.5l THEN
SOUND 1,250,10,14:
SNDFLAG=O:
SOUND 1,0,0,0

Figure 8.8: Listing of Example 9 - lines 470-540.

Main Animation Loop In line 480, the horizontal and vertical
positions for the ball are POKEd into PM 0 lJER' s shadow registers and
then PMOI,JER is called. PMOl,'ER is passed the value in PQl, which is a
I, to move only Player 0. Since the player has already been positioned by
PM OI,J ER, the current frame can be placed direct!y over the old frame in
line 520 without fear of leaving multiple balls in player RAM.

700 REM MovE!' P1a..yer 0 to Le-Ft of=" Screen

740 REM

Figure 8.9: Listing of Example 9 - lines 700-740.

Move Player 0 to Left ofScreen
move the ball off the screen to the left.

Line 720 calls PM 0 I,'ER to

5000 REM Se't' Up Memory Loca.tions
5090 READ FRAMES,FRMSIZE,NUMPLRS
5110 PLRFRMMEM=FRAMES*FRMSIZE
5120 FRAMEMEM=PLRFRMMEM*NUMPLRS
5160 DIM BUFFER$(1281,FRAME$(FRMSIZE1,FRAMEMEM$(FRAMEMEMl

5340 RETURN
5350 REM

Figure 8.10: Listing of Example 9 - lines 5000-5350.

Set Up Memory Locations Lines 5270-5310 use ADR to
find the address of the two machine language routines and the temporary
player buffer.

288 / Using Machine Language Routines in BASIC Programs

• .'•• •••• ••
• • I

,
I

•• ,1/ •• •
I ..- .,,'.

7000 REM Initialize Pla..yer--Missile Graphics
7010 TEMP=PEEKU06}-S: REMSet aside Playel'-Missile area
7020 POKE 54279,TEMP: REM Tell ANTIC where PM RAM is
7030 PMBASE=25b*TEMP: REM Find PM Base address
7040 FOR 1=0 TO 3
7050 PLR<J)=PMBASE+128*I+512: REM Set addresses of Players
7070 NEXT I
7080 POKE 559,42: REMSet PM 2 line resolution, Players enabled
7090 POKE REM Color ball

7130 REM

Figure 8.11: Listing of Example 9 - lines 7000-7130.

Initialize Player-Missile Graphics Line 71 lOis added to
clear out Player RAM with zeroes. Notice that 7060, the line which
stored the addresses of the horizontal position registers, has been deleted.
The equivalent line appears in a later section.

11320 PMOVER$(1)=" «<Routine
11330 PMOVER$(91l=" «<Routine

«(Routine

Figure 8.12: Listing of Example 9 - lines 11000-11660.

Initialize Routine Strings The next three sections are all new
to this program. This subroutine places the routine strings into RAM.
First, ENTER the saved routine strings for PMOI.IER and MF I LL, then
add the lines which are highlighted.

Figure 8.13: Listing of Example 9 - lines 12000-12540.

Using Machine Language Routines in BASIC Programs I 289

Set Parameters for Routines This section initializes the
values necessary to support our machine language routines. As we said
before, PARAMBASE is the starting address of the memory reserved for
the shadow registers and other parameters used by all ofour routines. The
routines look into PMBAS to learn where Player 0 RAM begins and into
PMBUF for the address of the temporary player buffer. In lines
12070-12130, the addresses of the horizontal and vertical shadow
registers are initialized. In line 12210, a bit value is assigned to variables
P0-P3 to make it easier to pass parameters to PM 0 IJER. When
PMOVER is called, it is only necessary to include the appropriate P
variable:

TEMP=USR(PMoVERtP0+Pl)
TEMP=USR(PMoVERtP2+P3)
TEMP=USR(PMoVERtP0+Pl+P2+P3)

to move Players 0 and 1
to move Players 2 and 3
to move all the players

Line 12240 uses MF ILL to clear the entire parameter area to
zeroes. If this isn't done, then the random values in the parameter area
could cause the computer to crash.

Line 12250 uses the subroutine at 110 to calculate the high byte of
Player O's RAM address and then PoK Es it into PMBAS. Lines 12260
and 12270 PoK E the high and low bytes of the temporary buffer into
PMBUF.

Figure 8.14: Listing of Example 9 - lines 13000-13210.

Install Interrupt Routine This is the section in which the
VBI portion of PMolJER gets patched into the operating system's verti-
cal blank routines. Notice that in line 13080 the address which is POKEd
into V IJBLKD is actually PM 0 t.JER+6 and not the starting address of
PM0VER. This is to link the VBI portion of PM 0 I.J ER and not the section
which vertically moves the players.

Important: You can stop this program with the BREAK key,
but make sure you use the SYSTEM RESET button before you try to
rerun it or list it!!! Otherwise, the computer will lock up and will have to
be momentarily turned off (thus fully resetting the computer) before it
can be used again. The same procedure must be followed for any other
program that uses VBIs !

290 / Using Machine Language Routines in BASIC Programs

•••""" ••• • •••• 1" • • ..
It " ..,...

When you run this program, it will look nearly the same as Example
9. Then why all this work if no apparent improvement has been gained?
Rather than giving you all of our machine language routines at once, we
are allowing you to test each one separately in a program to make sure it
works properly! This road testing is a necessary step for the more
advanced programs to come.

Modifications Try these variations:
I. Tum the Trench program (Example 6) into a real game by adding PM
graphics to it and using PMOl.'ER to move the players. Create a
crosshairs (gunsight) from one player and an enemy ship from
another. Use the joystick to move the crosshairs around the screen.

2. Add some players to the Waterfall program (Example 7). How about a
bird or two flying across the sky or a deer drinking from the river?

Summary

With the first two machine language routines '·ucC\:ssfully im-
plemented, we are ready to move on to more exciting applications. In the
next section, the power of VBl's will be put to use to automatically flip
through the different frames of an animation sequence for us - a change
from the slow and inefficient BASIC loop.

8.3. AUTOMATIC ANIMATION WITH AN I MATE

In all of our previous animation programs that included the transfer
of frame information from a string to the screen, the current frame had to
be calculated and displayed from within BASIC. The frame rates (num-
ber of frames per second) that could be achieved with this method are
adequate for demonstration programs, but fast-action games might re-
quire the rapid transfer of frames for all four players in addition to a
variety of other computer activities. It would be nice to he able to tum
over this frame flipping task to a background machine language routine
while more complicated things were being orchestrated by BASIC. (A
background routine is one which is executing independently while the
computer is running another program, e.g., BASIC or another machine
language routine.) By patching a routine into the vertical blank interrupt
routines, a program can be made to automatically carry out a task (like
Hipping frames) as fast as every sixtieth of a second. This is exactly what
our next machine language routine, AN I MATE, can do!

Revisited by Our Walking Man

Before explaining how to use AN I MATE, let's take a look at our
subject matter. In the next example, we will borrow our Walking Man
from Example 2 and animate him using players. A two-by-three array of
characters was needed to represent the man on the screen. This provided

Using Machine Language Routines in BASIC Programs I 291

16 bits of horizontal resolution and 24 bits of vertical resolution. Since a
player only has 8 bits of horizontal resolution, two players are placed side
by side to give us the required 16 bits. However, only 19 of the 24 bits of
vertical resolution are used in the character set man, and the remaining 5
are left blank. This wasted space is avoided when converting to players,
which can be any number from 1 to 128 pixels (in double-line mode)
high. Recall that each player pixel is twice as wide and twice as high as a
character set pixel, so a walking man made of players will be four times
as large (and four times as coarse) as a character set man.

Below is the frame data for our Walking Man character set. The
numbers are the same, but there are now two long strips rather than six
small boxes, so the organization of these numbers in a program will be

FRAME 1
PLAYER 0 PLAYER 1

FRAME 3
PLAYER 0 PLAYER 1

DATA
o 1
00o 28o 62o 62o 62o 28o 240
3 240
15 240
29 240
59 251
51 255
7 220
7 192
15 192
252 227
224 118
112 60

--1!

DATA
o 1
00o 112o 248o 248o 248o 112
3 192
7 192
15 128
31 128
31 128
31 224
31 224
222 0
254 0
251 0
231 0
206 0

128

FRAME 2
PLAYER 0 PLAYER 1

FRAME 4
PLAYER 0 PLAYER 1

DATA
o 1
0-0o 0o 56o 124o 124o 124o 56
1 224
7 224
15 224
31 224
55 246
55 254
7 192
III 128
125 192
248 224
192 224
193 248

DATA
o 1
1 192
3 224
3 224
3 224
1 192
7 0
15 0
31 0
30 0
62 0
62 0
63 0
63 0
60 0
124 0
120 0
112 0
112 0
252 ---.J1

FRAME 5 DATA
PLAYER 0 PLAYER 1 0 1

00o 224
1 240
1 240
1 240o 224
7 128
31 128
31 128
31 128
31 176
31 240
15 0
15 128
13 192
31 128
123 192
112 0
124 ---.J1

Figure 8.15: Frame data for Walking Man players.

292 / Using Machine Language Routines in BASIC Programs

different. Unfortunately, this means that you will have to type in this data
once again when we reach Example 10.

How AN I MATE Works

AN I MATE was designed for cyclic animation, animation such as in
our Walking Man and Galloping Horse programs which repeat a few
frames in a specific order. However, the cycle can be much greater than
four or five frames long. Very complex sequences can be produced with
much longer cycles. For example, an entire dance could be choreo-
graphed using only 20-25 unique frames that are put together in an
imaginative sequence. An excellent example of this technique is found in
Leo Christopherson's TRS-80 program called Dancing Demon. In this
program, the user can program the demon's dance to original music by
choosing from a selection of 26 tap dance steps. Each of these steps is
composed of a few frames from a pool of twenty-two unique frames (see
Figure 8.16a). The genius of this program is in the creation of these
twenty-two frames - the demon is always unbelievably life-like. Using
AN IMATE, the same level of animation can be achieved on the ATARI
Home Computer.

ARRAY #9 ARRAY #10 ARRAY

"DANCING DEMON" @ 1979 LEO CHRISTOPHERSON
AND 80-NW PUBLISHING CO.

a)

Figure 8.16a: Three of the twenty-two frames for Leo Christopherson's
"Dancing Demon" program.(Copyright© 1979 by Leo Christopherson and
80-NW Publishing Co.)

Using Machine Language Routines in BASIC Programs / 293

Frame Data ANI MATE requires two types of information.
The first is the actual Frame Data (the bytes which define the shape of the
figure) and is stored in a string. This data is stored in the manner shown in
Figure 8.16b.

FRAME DATA
FOR SET 'A'

FRAME SIZE In)
BYTE 1
BYTE 2···BYTE n
BYTE 1
BYTE 2···BYTE n

.----- FRAME SIZE - NUMBER OF BYTES IN EACH

}

FRAME OF SET 'A'

FRAME 1

},,,",,

FRAME DATA
FOR SET 'B'

b)

·
BYTE 1
BYTE 2···BYTE n

FRAME SIZE (n)
BYTE 1
BYTE 2

···BYTE n

·

} "" '''"' " 'C, ','

.-----FRAME SIZE - NUMBER OF BYTES IN
FRAME OF SET 'B'

EACH

Figure 8.16b: Frame data for ANI MATE.

Two sets of frame data are represented in Figure 8.6b, set A and set
B. A set contains data for all the frames of a figure for one player. In
reference to the frame data in Figure 8. 15, one set would be the entire left
vertical column (all five frames) for Player 0, and another set would be
the right column for Player 1. At the beginning of each set of data is
stored the frame size of the following frames in that set (19 for our
Walking Man data). Each frame of a set must contain exactly that number
of bytes. There can be as many sets of frame data in the string as you
wish.

Frame List We call the second type of information a frame list.
This is an ordered list of the frames which are to be moved into a player.
Figure 8. 17 illustrates how frame lists are stored in memory.

294 / Using Machine Language Routines in BASIC Programs

FRAME OROER

FRAME ORDER

---- ADDRESS OF FRAME DATA

---- END OF II ST, RETURN TO BEGINNI NG

----END OF LIST, RETURN TO BEGINNING

----ADDRESS OF FRAME DATA

----ADDRESS OF FRAME DATALO BYTE
HI BYTE

1

}2
3
4
5
0

LO BYTE
HI BYTE

1
,

2
3
3
2
1 1/
0

LO BYTE
HI BYTE

···THIRD
FRAME LIST

FIRST
FRAME LIST

SECOND
FRAME LIST

II• III••
IIIIII
IIII

II
II,: • , •II • • ••-.1 --I

Figure 8.17: Frame list for ANIMATE.

The first two bytes of a frame list contain the address of the frame
data that is to be used. Then follows the order in which the frames are to
be displayed (their animation cycle). For example, our Walking Man
uses five frames numbered 1 through 5. The frame list for the man would
look like this:

Lo Byte
Hi Byte
1
2
3
4
5
o (end of list, return to beginning)

The two-byte address points to the first byte of the frame data that will be
used for this player. The numbers from 1 to 5 tell ANI MATE the order of
the frames to be grabbed from the frame data. There must always be a 0 at
the end of each frame list. This tells ANI MATE to return to the first
frame indicated in the list (see Figure 8.18).

Passing Information to ANI MATE

Unlike PMOlJER (which accepts parameters through the USER
function and the parameter table), there is only one road through which

Using Machine Language Routines in BASIC Programs / 295

ANI MAT E receives its parameters - the parameter table. The ANI -
MAT E table entries as well as four read-only addresses are listed in Table
8.2.

Variable
Name

Offset From Address
PARAMBASE (Decimal) Description

INITANIMATE
RATE (0)
RATE (1)
RATE (Z)
RATE (3)
FRMLSTPTR(0)
FRMLSTPTR(l)
FRMLSTPTR(Z)
FRMLSTPTR(3)

3
14
15
16
17
18
20
22
24

1027
1038
1039
1040
1041

1042,1043
1044,1045
1046,1047
1048,1049

Flag to initialize ANI MATE
PlayerO Animation Rate Shadow Reg.
Player I Animation Rate Shadow Reg.
Player 2 Animation Rate Shadow Reg.
Player 3 Animation Rate Shadow Reg.
Player 0 Pointer to Frame List
Player I Pointer to Frame List
Player 2 Pointer to Frame List
Player 3 Pointer to Frame List

The following addresses are read-only addresses - don't change their values:

FLPOS0 62 1086 Player 0 Frame List Position
FLPOSl 63 1087 Player I Frame List Position
FLPOS2 64 1088 Player 2 Frame List Position
FLPOS3 65 1089 Player 3 Frame List Position

Table 8.2: Parameters for ANIMATE.

The RATE parameters set the duration in "jiffies" or sixtieths of a
second which each frame will remain on the screen. Each player's frame
rate can be changed independently of the others. A POKE of 4 into
RATE (0) means that a new frame will automatically be moved into
Player 0 every four jiffies (4/60 second, or 15 times a second).

The frame list pointer (F RMLS T PTR) contains the RAM address
of the frame list that is to be used for that player. It's possible to have a
large number of frame lists stored in RAM describing various types of
motion. Anyone of these can be selected simply by a POKE of its address
into FRMLSTPTR (n).

I NIT ANI MAT E is the address which alerts ANI MATE to change
its parameters. The values in RATE(n) and FRMLSTPTR(n) are
ignored until all values have been POKEd in. In the meantime, ANI-
MATE checks the contents of I NI TAN I MATE for your "ready" signal
every jiffy. As soon as AN I MAT E sees your signal value in I N-
ITANIMATE, it goes to work.

The value you POKE into I NI TAN I MATE tells ANI MATE what
to do. Table 8.3 contains the bit information for INITANIMATE.

296 I Using Machine Language Routines in BASIC Programs

Bits of FLAG byte

Bit Number: 7 X X 4 3 2 / 0 (X = not used)
Bit Value: /28 /6 8 4 2 /
Resume Animation I
Modify Frame Rate only
FLAG for Player #: 3 2 0

Examples FLAG Value

Begin Animation,
Players 0 & I 0 0 0 0 3

Modify Frame Rate,
Players 2 & 3 0 I I I 0 0 28

Halt All Animation 0 0 0 0 0 0 0
Resume All
Animation 0 0 0 0 0 128

Table 8.3 Bit values for I NITANI MATE ready signal.

As in PM 0 I,JER, the player or players to be affected are indicated by
turning on the appropriate bits (0-3). To tell ANIMATE that it must
begin animation with a new frame list, these bit values are used by
themselves. Once ANI MAT E is happily flipping frames, you may want
to change only the frame rate. Using the player bit value by itself will not
only change the rate but also will begin the frame sequence from the first
one on the list. Adding a 16 (bit 4) to the player bit value will change only
the rate. To halt animation for all players, POKE I NI TAN I MATE with
a O.To continue the animation where it left off, POKE I NIT ANI MAT E
with a 128 (bit 7). To stop a specific player's animation, POKE its RATE
withaO,then POKE INITANIMATE with 16 plus the player's bit
value:

POKE RATE(l) ,0

POKE INITANIMATE,18

REM Halt Pla}'er
1 on l v

REM Ready Flag - 16+2

ANI MAT E is a state machine, a program which looks at its status
(value in I NIT ANI MATE) to find out what its supposed to be doing. By
aPE EK into I NIT ANI MAT E, we can tell whether it has received our
new information yet. When ANI MAT E has accepted any non-zero
information from I NITANI MATE, it changes the value in I N-
I TAN I MAT E to 128. When making rapid changes in the parameter
table values (RATE and FRMLSTPTR), you should first check the
value of I NIT ANI MAT E. Problems can appear in a loop with very little
or no code between successive table changes. For example, if after a

Using Machine Language Routines in BASIC Programs I 297

POKE of 18 (see above) into I N I TAN I MATE, we still find an 18 there
(rather than a 128), AN I MATE has not yet received our new parameter
table information (or even the message to retrieve that information). If
the values in RATE (n) are changed before AN I MATE has a chance to
grab them, a synchronization problem could occur between the player's
frame rates. (See Example 10, line 710.)

Finally, in most of our programs, we need to discover what frame is
currently being displayed in a player. This can be accomplished by a
PEEK into FL POS0 through FL POS3. Do not POK E information into
these locations or AN I MATE will lose track of what frame it's on!

The AN I MAT E Chain of Command

Now that you have all of the pieces of AN I MAT E, let's pull it all
together. Figure 8.18 shows how AN I MATE would operate on the
Walking Man.

POINTS TO PLAYER 0 FRAME DATA

PARAMBASE

INIT ANIMATE 3 -POKE WITH A 3 TO
INITIALIZE ANIMATION
FOR PLAYER 0 8 I

POINTS TO
PLAYER 0 FRAME LIST

FRAME LIST
FOR PLAYER 0

POINTS TO PLAYER 1 FRAME DATA

POINTS TO
PLAYER 1 FRAME LiST

RATE 10J
RATE III
RATE 121
RATE III

FRMLSTPTR (01 LO
HI

FRMLSTPTR III LO
HI

FRMLSTPTR 121

FRMLSTPTR (3)
FRAME LIST
FOR PLAyER 1

FRAME LISTS
(STORED IN FRMLSTMEM$1

PARAMETER
TABLE

Figure 8.18: ANIMATE in action.

298 I Using Machine Language Routines in BASIC Programs

During the initialization process in the program, the frame data is
POKEd in, making sure that the first byte of each set of player data is the
frame size (19 in this case). Then the frame lists are constructed, setting
the address of the appropriate set of frame data into the first two bytes of
the list. Now, to turn on the Walking Man, all we need to do is:

POKE RATE«(2) ,4
Frafrle Rates

POKE RATE(l) ,4
POKE FRMLSTPTR«(2) ,POINTER«(2)
FrarTle Lists

POKE FRMLSTPTR (1) ,PO INTER (1)
POKE INITANIMATE,3
AniMation of Players (2) & 1

: REM Set

REM Point to

REM Begin

The initial frame rate is set to four jiffies per frame, and ANI MAT E
is given the addresses of the two frame lists which will be used - their
addresses are stored in PO INTER «(2) and PO INTER (1) . Then the
ready flag is set with a 3 (I NITANI MATE), and the animation begins!

Even though the frame data is stored in the same sequence as the
number of the frame lists, this is not at all necessary. For example, by
changing the numbers in the frame list to

5
4
3
2
1
o (end of list, return to beginning)

the man would appear to be walking backwards! It would be a simple
matter to maintain this information in an additional frame list that could
then be switched on simply by pointing the frame list pointers
(FRMLSTPTR) to it and POKEing INITANIMATE with a 3! This
flexibility can save a tremendous amount of program development time.

Installing ANI MAT E

As with PM 0 \,J ER, ANI MAT E must also be installed into the
ATARI vertical blank interrupt routines. Each of our VBI routines can be
joined together in any order, very much like a set of Leggo interlocking
blocks. Recall that when PMO\,JER has completed its tasks, it returns
control to the exit point of the ATARI VBI routine. This exit address,
XITVBV, is stored in the fifth and sixth bytes (starting address + 4,
starting address + 5) of each of our VBI routines. All that is necessary to

Using Machine Language Routines in BASIC Programs I 299

patch in another of our VBI routines is to change this exit value from
XITVBV to the entry point of the next routine, which is always the
seventh byte (starting address + 6). Figure 8. 19 shows how ANI MATE
is patched in.

PMOVER
PMOVER
VBI

SECTION

(."ER"

AN IMATE +6

PMOVER +4,
(NORMALLY POINTS TO
XITVBV - HAS BEEN
CHANGED TO POINT TO
ANIMATE +6. THE
ENTRY POINT TO ANI MATE)

ANIMATE

XITVBV-C::::J

U,"
(NORMALLY POINTS TO XITVBV-
CAN BE CHANGED TO POINT TO
NEXT VBI ROUTINE.)

Figure 8.19: Connecting our VBI routines together.

To patch in another routine after ANI MAT E simply POKE its
address into the fifth and sixth bytes of ANI MAT E.

Stuffing the ANI MAT E String

Now it's time to enter the bytes of ANI MATE into the String Loader
program so a routine string can be created. Before you begin entering this
information, it would be a good idea to LIS T the 0 ATAstatements from
PMOI,JER into a separate file. To do this, use one of the following
commands:

LI ST "D: PMOI,JER. DAT" ,28000 ,28070
LIST "e:" ,28000,28070

(for disk)
(for cassette)

300 / Using Machine Language Routines in BASIC Programs

Now delete the PM 0 I.JER 0 ATA and enter the lines indicated in Figure
8.20. After you have RUN String Loader, we can go on to the next
example!

Figure 8.20: Listing of DATA statements for ANIMATE.

Example 10

Exercise Write a program which uses players to animate our
Walking Man from Example 2. Use the AN I MATE routine to automati-
cally flip through the five frames. Accept keyboard entry to control his
walking speed: pressing a number from 1 through 9 for the number of
jiffies per frame. Single step the man when 0 is pressed.

Again, much of this program is the same as the previous program
(Example 9), so load it into memory, and away we go. First, all the lines
controlling the Bouncing Ball, relocating a string, and miscellaneous
others must be deleted. Delete the following lines.

230 310-330 410-740 7090 9000-9080

In the following sections you'll only need to enter the lines that are
highlighted.

80 REM

Figure 8.21: Listing of Example 10 -lines 10-80, lines 140-150.

Using Machine Language Routines in BASIC Programs I 301

Initialize The old line 70 has been replaced because the tech-
nique to move frame information into player RAM is being taken over by
ANI MAT E. Some of the new parameters are DIMensioned in line 150.

5340
5350 REM

Figure 8.22: Listing of Example 10- lines 5000--5350.

Set Up Memory Locations In line 5110, I is added to the
value to create space for the frame size byte. In line 5130, the size of one
frame list is calculated. In addition to the number of frames, two bytes are
needed for the address of the frame data, and one byte is needed for the
terminating O. Line 5140 calculates the total frame list size by multi-
plying the size of one frame list by the number of players. The string
variables for the temporary player buffer, frame data memory
(FRAMEMEM$) and the frame list memory (FRMLSTMEM$) are
DIMensioned in line 5160. In lines 5280, 5320, and 5330, the addresses
for the new string variables are determined.

7040 FOR 1=0 TO 3
7050 REMSet of

Figure 8.23: Listing of Example 10 - lines 7040-7070.

Initialize Player-Missile Graphics Line 7060 is the only
new line here. It sets the players to a peach color. Actually the color of
Players 2 and 3 are also being set here - that's fine since they never
appear on the screen.

10000 REM Rea.d in Frame Da.ta.

10130 RETURN
10140 REM

Figure 8.24: Listing of Example 10 - lines 10000-10140.

302 / Using Machine Language Routines in BASIC Programs

Read In Frame Data This section has been modified so it
begins the frame list set up and POKEs in the frame size at the beginning
of each set of frame data. In line 10010, OFFSET2 is a temporary
variable, which helps calculate the beginning of the next set of frame
data. Line 10030 sets the variable FRAM ELI S T to the beginning of
frame list memory.

The FOR / NEXT loop beginning at 10050 sets up the frame data.
FRMDATA(I) in line 10060 points to the beginning of each set of
frame data. Later in the program, these values will be used when
constructing the frame lists. 0 F F SET 2 is set to point to the beginning of
the next set offrame data in line 10070. Theframe size is POKEd into the
beginning of each set of frame data in line 10080.

Finally, the actual DATA bytes are POKEd into RAM in lines
10090-10110. Notice that in line 10110 a different technique is being
implemented than in the last program where the following statement was
used:

10110 FRAMEMEM$(J,J)=CHR$(BYTE)

Both lines accomplish exactly the same thing; only the current version
executes almost 50 percent faster.

11000 REM I:NI:TI:ALI:ZE ROUTI:NE STRI:NGS
11300 REM S.t: _OVER rc:>ut:in"
11310 DIM PMOVERt<I861
11320 PMOVERtIl)s" <<<Routine String goes hltre») "
11330 PMOVER,191l=" «<Routine String goes here») "
11340 PMOVER'1I81l=" «<Routine String goes hltre») "

II
11610 DIM MFILU<41l
11620 MFlLL.U)Z- «<Routine String gOft here}»
11650 RETURN
11660 REM

Figure 8.25: Listing of Example 10- lines 11000-11660.

Initialize Routine Strings Now is the time to ENTER the
AN I MATE routine strings from your storage device.

12000 REM Set P ...r....-ne't"er& For Rout-ines
12010 PARAMBASE=1024: REM PArameter Base Address
12020 PMBAS=PARAMBASE: REM Hi Byte of PLRO Location goes here
12030 PMBUF=PARAMBASE+I: REMAddress of a 128 byte buffer
f'lRQji;!!i.n_••JB•••el...
12070 FOR 1=010 3
12080 HPLRIIl=PARAMBASE+6+I: REM
12090 REM

12130
12190 VVBLXD=-548: REMDeferred Vertical Blank Interrupt Vedor
12200 CRITICAL=66: REMCritical Flag
12210 PO=I:

PI=2:
P2=4:

Figure 8.26: Listing of Example 10 - lines 12000-12220.

Using Machine Language Routines in BASIC Programs I 303

Set Parameters For Routines In this section the new ANI -
MAT E variables must be initialized (I NITANI MATE, RATE (I) ,
F RM LST PTR (I ». In line 12220, a variable is set to the bit value that
will control the first two players (FST2P). This saves having to do this
addition in a section where calculation speed is critical.

Figure 8.27: Listing of Example 10 - lines 12390-12520.

Set Up Frame Lists This new section creates the two frame
lists needed in this program. In line 12410, the variable that will hold the
beginning address of each frame list (PO I NTER) is DIMensioned.
Lines 12430-12520 create a frame list for each player in use. Line 12440
calculates the beginning addresses of each frame list. (Make sure you use
the LET in front of the variable POI NTER since it contains the ATARI
BASIC reserved work POI NT.) The high and low bytes of the beginning
of each set of the frame data are obtained (12450) and POKEd into the
beginning of the appropriate frame list (12460-12470). Lines
12480-12500 POKE in the frame numbers (l through 5 in this case), and
the terminating 0 is POKEd in on line 12510.

13000 REM Int:errup1: RCIL.Jt:'ine
13010 POKE CRITICAL,l: REMOpen CRITICAL "vAlve", set up detour
13080 X=PMOVER+6:

GOSUB 110
13090 POKE VVBLKD,LOBYTE: REM Set VBLANK vector to PMOVER
13100 POKE VVBLKD+ I,HIBYTE

13170 POKE CRITICAL,o: REMClose CRITICAL "valve", routine insblled
13200 RETURN
13210 REM

Figure 8.28: Listing of Example 10 -lines 13000-13210.

Install Interrupt Routines Lines 13110-13130 have been
added to point the exit vector of PM 0 IJER to the entry point to ANI -
MATE (see Figure 8.19).

304 I Using Machine Language Routines in BASIC Programs

• I

I I• ':I 1• I j,
I;• I I;,

e iie'i • •• • ••••

Figure 8.29: Listing of Example 10 - lines 20000-21200,

Frame OPt rPt This section contains the frame data for the
Walking Man. Each DATA line contains one 19-byte frame for a single
player.

Figure 8.30: Listing of Example 10 - lines 1500-1570,

Put Frame List Addresses in Parameter Table This sub-
routine transfers the addresses in the POI NT ER array into the appropri-
ate parameter table addresses (F RMLST PTR (I ».

Figure 8.31: Listing of Example 10 - lines 1000-1090,

Parameters For Players This subroutine positions the man
on the screen at coordinates P)-(,PY. First, the subroutine at 1500, which

Using Machine Language Routines in BASIC Programs I 305

puts the frame list addresses in the parameter table is called. Then the
vertical and horizontal coordinates are POKEd in. On line 1050, the
players are set next to each other with Player 0 on the left. Line 1070 calls
PMOVER to position the players.

Figure 8.32: Listing of Example 10 - lines 700-790.

Set Frame Rate This subroutine sets all the frame rates to the
value in 8 PEE D. Line 710 checks to make sure ANI MAT E has received
its last set of information before giving it new information (the value in
INITANIMATE is set to 128 when it is finished). Line 760 changes
only the frame rate (+ 16).

Figure 8.33: Listing of Example 10- lines 300-390.

Initialize Revisited This section prepares the final parameters
and variables before entering the main animation loop. The horizontal
(P){) and vertical (PY) player coordinates are set in line 330. The
subroutine at line 1000 (called in 340) places the man on the screen at this
position and calls the 1500 subroutine, which puts the frame list address-
es in the parameter table. Line 350 sets a variable (8 FLAG, sound flag)
to its initial value. This variable is used in the main animation loop to
determine during which frames a footstep will be heard. Line 360
initializes ANI MAT E, and line 370 sets the frame rates to 4.

In order to accept keyboard information without using an I NPUT,
the keyboard is opened as a device in 380. Location 754 is an ATARI
location used as a key ready flag - if there is anything other than a 255 in
it when checked later on, then a key has been pressed.

306 / Using Machine Language Routines in BASIC Programs

Figure 8.34: Listing of Example 10- lines 400-530.

Main Animation Loop This section keeps track of the frames
so the sound of footsteps can be added. It also enables the computer to
accept frame rate information from the keyboard. As we mentioned
earlier, parameter table locations F L PO S 0 -F L POS 3 (RAM locations
1086-1089) are scratch pad addresses used by AN I MATE. They contain
the current frame number being displayed for each of the players. By
checking the value in 1086 (FLPOS0), we can synchronize the man's
actions with footstep sounds. When frame 2 is being displayed, a heel
sound is created and when frame 3 appears, a sole sound is turned on. The
variable SFLAG is used sothe sound only occurs once during each of the
appropriate frames. Otherwise, you would hear a continuous buzz during
the slower frame rates (or single stepping) as the sound was constantly
being turned on and off. Line 480 checks for a keypress. If the value in
754 is anything other than what we set it to (255), then the following lines
are executed. Line 490 accepts the BY TE value of the key which was
pressed, converts it to a number from 0 to 9, and location 754 is reset to
255. Then the value in S PEE D is checked for low and high errror values
and corrected. Line 510 calls the subroutine which implements the new
frame rate, and the cycle repeats.

Before you run this program, make sure it has been saved to disk or
cassette! Now go ahead and run it. At the fastest frame rate (one frame per
jiffy), the man is walking so fast that his feet become a blur! While the
man is walking along, stop the BASIC program with the BREAK key.
Wait a second! The man keeps on chugging away as if nothing happened.
This is because our VBI routines are still active and executing. Press
SYSTEM RESET before typing anything else, or the computer may lock up
requiring you to turn it off and on again.

Modifications

1. Play around with the frame lists. Implement one for a backwards
walk.

2. Store both the normal and backwards frame lists in RAM. Modify the

Using Machine Language Routines in BASIC Programs / 307

program so pressing a special key will alternate from a forwards and
backwards walk.

3. Use PM 0 I.) ER to make the man walk across the screen rather than
walking in place.

4. Starting with the same BASIC program, create a new set offrame data
for a flying bird. After you have successfully gotten the bird to fly in
place, use PM0 I.J ER to make it fly around the screen. Since the frame
flipping is now on automatic, this should not be too difficult. You
could even increase the flapping rate as the bird flies upwards and
decrease it as it soars towards the ground.

Summary

You now have some very powerful animation tools at your disposal.
The drudgery of moving the frames into Player RAM is now a thing of the
past. In the next section, one final player machine language routine will
be added. This will liberate even more BASIC processing power.

8.4. SETTING A HORIZONTAL VELOCITY
WITH AUTOMOl)E

The last machine language routine of this chapter, AUT 0M0 l,J E ,
allows us to assign a horizontal velocity to a player. Once this velocity is
set, the player will continue to move to the right or left until we stop it or it
goes off the screen. To show off this routine, a new four-player-wide
animated character, Running Boy, will be introduced.

How AUTOMQl.)E Works

AUTOMOl.)E is a fairly simple routine to use. Each player has its
own velocity shadow register, M0 l,J ERA TE (I) , and there is a ready
flag location called I N I TAUTOMOl,JE which is similar in purpose to
I NITAN I MAT E. In addition to these addresses, there are four more
locations which can be used to discover the current horizontal position of
a player (PLR0}(-PLR 3 }(), which can also be used for PMOl.'ER. Here
are the addresses for AUT 0MOl) E:

308 / Using Machine language Routines in BASIC Programs

Variable
Name

INITAUTOMOVE
MOVERATE(0l
MOVERATE(l)
MOI)ERATE (Z)
MOVERATE(3)

Offset From
PAR AM BASE

4
32
33
34
35

Address
(Decimal)

1028
1056
1057
1058
1059

Description

Flag to Initialize AUTOMOVE
Player 0 Horizontal Velocity
Player I Horizontal Velocity
Player 2 Horizontal Velocity
Player 3 Horizontal Velocity

The following addresses are read-only addresses - don't change their values:

PLR0X 38 1062 Player 0 Horizontal Position
PLR 1){ 39 1063 Player I Horizontal Position
PLRZ}(40 1064 Player 2 Horizontal Position
PLR3X 41 1065 Player 3 Horizontal Position

Table 8.4: Parameter table for AUTOMOVE.

The velocity is entered as horizontal steps per jiffy, a step being the
minimum horizontal distance which a player can be moved (one color
clock). Ifyou want the player to move to the right, use a positive number.
Use a negative number for movement to the left, and a 0 for no move-
ment. Because you can't POKE in negative values, add 128 to all
velocities (called a bias). This means a value of 127 is 1 horizontal step
per jiffy to the left, 128 is stopped, and 129 is 1horizontal step per jiffy to
the right. Here are some more examples:

POKE MOI.'ERATE «(2) ,128+3
Moves 3 steps/Jiffy to

POKE MOI.JERATE(3) d28-5
Moves 5 steps/Jiffy to

POKE MOI.'ERATE (1) d 28
is halted

REM Pla}'er (2)

the right
REM Pla}'er 3

the left
:REM Player 1

Once the values are POKEd in, tell AUT0M0 I.J E you are ready by
POKEing I NIT AUT0 M0 I.J E with the bit numbers of the players you
wish to move (see Table 8.5).

Using Machine Language Routines in BASIC Programs I 309

Begin PlayerMotion
Players 0 & 1 0

Halt All Motion 0
Resume All Motion 1

Bit Number:
Bit Value:

Resume PlayerMotion
FLAG for Player #:
Examples

7 X
128

Bits of FLAG Byte

x X 3 2 1 0 (X = not used)
8 4 2 1

3 2 0

FLAG Value

0 0 1 1 = 3
0 0 0 0 = 0
0 0 0 0 = 128

Table 8.5: Bit values for I NI TAUTOMOVE ready signal.

A POK E of 0 into I NI TAUTOMOl.'E will halt the horizontal
motion of all players; a POKE of 128 will resume player motion at the
last initialized rates:

POKE MOl.'ERATE(2) ,131 : REM Pla}'er 2 mo v e s
3 steps/Jiffy to right

POKE INITAUTOMOVEt1 : REM Begin MoveMent
with current velocities

POKE INITAUTOMOVEt0
Player mo u e me n t

POKE INITAUTOMOVEt128

REM Halt all

REM ResuMe
MoveMent at old velocity

In practice, a POKE of 128 into I NI TAUTOMOl.'E is seldom used.
The only difference between using a 128 and using the player bit values is
that these bit values cause AUT0MOl.' E to grab new data from the
appropriate MOl.' ERATE addresses. The 128 option does not check the
MOl) ERATE addresses but uses the last values grabbed by AUT 0 -
MOl)E. It is important to always use the player bits the first time
AUT 0MOl..' E is used, so some values are transferred from the M0 VE-
RATE addresses. As with ANIMATE, you can check the value in
I NITAUT0MOl) E to see whether it has received your last read mes-
sage. If its value is 128, it has; otherwise wait as we did for I NITANI -
MAT E in line 710 of Example 10.

Note that if PMOl.'ER is called while AUTOMOl.'E is moving a
player, the player will continue its travels from its new horizontal and
vertical position. Once a player reaches position 255 or position 0, its
velocity and its PLRn}(value are both set to O.

IMPORTANT: AUTOMOl,JE requires PMOl.'ER to be in memo
ory for it to work. AUTOMOl)E uses PMOl)ER to reposition the
players on the screen.

310/ Using Machine Language Routines in BASIC Programs

I I• II I'• I I
I• I I• '. 1-"I' • •• • ••••

Stuffing the AUT 0M0 l.J E String

Figure 8.35 shows the DATA statements for AUTOMOI.JE. Follow
the earlier procedure of LIS Ting the DATA for AN I MATE onto a disk
or cassette before deleting it.

Figure 8.35: Listing of DATA statements for AUTOMOI,IE.

The Running Boy DATA

Before we go on to the program, here is the player information for
the Running Boy. He is 31 bytes high and 32 bits (four players) wide and
uses four frames. See Figure 8.36.

FRAME 1 DATA
PLAYER 0 PLAYER 1 PLAYER 2 PLAYER 3 0 1 2 3

0 0 0 120
0 0 1 252
0 0 7 244
0 0 31 240
0 0 63 240
0 0 63 240
0 0 63 176
0 0 63 176
0 0 31 248
0 1 207 184
0 3 231 200
0 7 247 240
0 14 127 128
0 14 126 0
0 12 254 8
0 1 254 120
0 7 254 120
1 207 254 240
3 207 255 192
7 223 247 128
15 255 227 0
14 255 128 0
12 239 128 0
0 195 128 0
0 3 131 0
0 3 135 0
0 1 207 0
0 1 254 0
0 0 252 0
0 0 240 0

---9
(continued)

a)

Using Machine Language Routines in BASIC Programs I 311

FRAME 2 DATA
PLAYER 0 PLAYER 1 PLAYER 2 PLAYER 3 0 1 2 3

---0 ---0 ---0 ---0
0 0 0 0
0 0 0 0
0 0 0 124
0 0 0 254
0 0 3 254
0 0 15 252
0 0 31 248
0 0 63 248
0 0 63 248
0 0 31 216
0 1 159 216
0 3 207 252
0 7 231 220
0 6 255 228
0 6 127 248
0 6 254 0
0 15 252 0
0 63 252 96
0 127 252 224
0 255 253 224
0 255 223 192
0 127 143 128
0 127 128 0
0 255 192 0
1 239 192 0
1 207 0 0
0 30 0 0
0 127 128 0
0 255 0 0

--.Q 252 --.Q --.Q

b)

FRAME 3 DATA
PLAYER 0 PLAYER 1 PLAYER 2 PLAYER 3 0 1 2 3

---0 ---0 ---0 ---0
0 0 0 126
0 0 3 255
0 0 7
0 0 15 25
0 0 15 252
0 0 15 236
0 0 15 236
0 0 15 254
0 0 7 238
0 0 1 242
0 0 1 252
0 0 7 224
0 0 63 128
0 0 255 0
0 1 255 0
0 1 255 0
0 3 254 0
0 7 255 128
0 15 255 128
0 31 252 0
0 63 255 128
0 255 255 0
1 252 252 0
3 192 62 0
15 0 14 0
30 0 0 0
30 0 0 0
28 0 0 0
30 0 0 0

--.Q --.Q --.Q

C)

(continued)

312 / Using Machine Language Routines in BASIC Programs

DATAI I• I'I I'I I J;
III , II

I_it• •II •• • ••••

FRAME 4
PLAYER 0

d)

PLAYER 1 PLAYER 2 PLAYER 3 o
oo
8ooooooooo
63
254
254
252
63
63
31oooooooooo
-2

1
o oooooo
13
31
30ooo
7
31
63
255
255
255
255oooooo
8oo
-2

2
1
7
15
15
15
15
7

199
227
121
63
63
254
255
255
255
240
224
192
240
248
63
31
15
6ooooo

-----9

3
254
255
255
253
252
236
236
254
238
242
252o
3

135
255
252oo
96
224
224
192
192
128oooooo
-2

Figure 8.36: Running Boy player frames.

It's difficult to tell from the static pictures, but as the boy runs, his
hair bounces up and down. The book Animation, by Preston Blair
(published by Walter Foster Art Books, Tustin, California), was used
again to help create these frames.

Example 11

Exercise Modify the last program, Example 10, to create a
four-player-wide Running Boy. Use AUTOMOlJE to smoothly move him
across the screen. As before, create the sound of his footsteps and accept
frame rate information from the keyboard.

This program is very close to Example 10, so there are no lines to
delete and not too many new lines to enter.

a) b) (continued)

Using Machine Language Routines in BASIC Programs I 313

c) d)

Photo 8.1: Screen photos of Running Boy.

Figure 8.37: Listing of Example 11 - lines 10-60, 150.

Initialize Line 150 has some new variables. You already know
about M0 I,J ERATE, but MSPEED is new. It will contain the proper
horizontal velocity for each frame rate that is entered from the keyboard.
If the boy's feet are moving too fast or too slow for his horizontal
velocity, it will look like he's running on the ice because his feet will be
slipping and sliding in relation to the floor. These velocities were deter-
mined through trial and error until the boy's running looked as realistic as
possible.

5000 REM Up Memory Locat-ions
5090 READ FRAMES,FRMSIZE,HUMPLRS
suo PLRFRMMEM=FRAMESitFRMSIZE+I
5120 FRAMEMEM-PLRFRMMEM'NUMPLRS
5130 FRMLSTSIZE=FRAMES+3
5140 TOTFRMLSTSIZE=FRMLSTSIZE'HUMPLRS
5160 DIM BUFFER$CI28),FRAMEMEMSlFRAMEMEMl,FRMLSTMEMSrrOTFRMLSTSIZEI
5270 PMOVER=ADRCPMOVERSl

Figure 8.38: Listing of Example 11 - lines 5000-5300.

Set Up Memory Locations Line 5290 assigns the location of
AUTOMOI,JE to the variable of the same name.

Figure 8.39: Listing of Example 11 - lines 11500-11520.

314/ Using Machine Language Routines in BASIC Programs

Initialize Routine Strings This is where you can enter the
AUTOMOI.JE string into the program from your disk or cassette.

12000 REM P ..rAm_t-_r. For Rout-in._
12010 PARAMBASE-I024: REMPar_er Bue address
12020 PMBAS=PARAMBASE: REMHi Byte of PLROLOCAtion g""s _e
12030 PMBUF-PARAMBASE+I: REMAddro.. of a 128 byte buffor
12040 IRITARIMATE-PARAMBASE+31 REMInitill1iIe Pr...,. AnimAte routine

inn!!: n:'Hinnnn:,;:
12070 FOR 1-0 TO 3
12080 HPLR(I)-PARAMBASE+6+I: REM Plliyer horizontal"sh..:jow· regititers
12090 VPLR<I)=PARAMBASE+l0+I: REM Player ".rticAl "shadow" regist.,..s
12100 RATE(J)=PARAMBASE+14+I: REM Anim.ate y.t. registers
12110 FRMLSTPrRU)-=PARAMBASE+18+I*2: REM Pointer to frm. Lists

I
VVBLlCD-548: REK o.ferred Vertical Interrupt Vector
CRITICAL-bb: REMCriliC<l1 Flog
PO-I;
PI=2:
P2=4:

REM Control bits for the four Players
12220 FST2P=PO+PI

Figure 8.40: Listing of Example 11 - lines 12000-12230.

Set Parameters For Routines Lines 12050 and 12120 set
up the parameter table entries for AUT0 M0 I.J E. Line 12230 provides us
with a single variable which can be used to represent the bit values of all
the players for PMOI.JER and ANI MATE.

13000 REM In&t-all :I:n't'errup't Rou1:in_tIi
13010 POKE CRITICAL,I: REMOpen CRITICAL "valve", 50t"" detour
13080 X-PMOVER+b:

GOSUB 110
13090 POKE VVBLKD,LOBYTE: REMSot VBLANK vector to PMOVER
13100 POKE VVBLICD+ I,HIBYTE
13110 X-ANIMATE+b:

GOSUB 110
13120 POKE PMOVER+4,LOBYTE: REMPoints PMOVER to ANIMATE
13130 POKE PMOVER+5,HIBYTE

13170 POKECRITICAL,O: REMClose CRITICAL routines installed
13200 RETURN

Figure 8.41 : Listing of Example 11 - lines 13000-13200.

Install Interrupt Routines AUT0 M0 I.J E is installed by
pointing the exit vector in AN I MATE to AUTOMOI.JE's entry address
(see Figure 8.19).

Using Machine Language Routines in BASIC Programs / 315

zoooo REM FRAME DATA
20030 REM
20040 REMNOOIber of Franws, Fr&rne S1IIhNlMT1ber of Player.

Figure 8.42: Listing of Example 11 - lines 20000--21490.

FrameData Here is the frame data for the Running Boy. Each
frame takes up two 0 ATAlines. The first one has 16 bytes and the second
has 15.

1000 REM PARAMETERS FORA.

1030 FOR 1=0 TO NUMPLRS-I
10-40 POKE VPLRm,py
1050 POKE HPLR(1),px+1*a
1060 NEXT I

1090 REM

Figure 8.43: Listing of Example 11 -lines 1000--1090.

316/ Using Machine Language Routines in BASIC Programs

Film 6
"Walking Man," MAGI

(Mathematical Applications Group,
Inc.). This is an example of cyclic
animation - these frames of a walking
mechanical man can be endlessly
repeated to show a continuous walk.
The images, created by artist Chris
Wedge, were computed with the MAGI
SynthaVision 3-D computer animation
system on a Perkin-Elmer 3240
super-minicomputer. The output was
filmed on a CELCO CFR 4000 Color
Film Recorder. Resolution is 1680
points per line by 1200 lines. Dynamic
range is 256 grey levels for each of the
red, green, and blue components of the
pictures. (Courtesy of
MAGIISynthaVision.)

Parameters For Players This subroutine POKEs the initial
parameter table values for PM 0 I.J ER. Line 1070 moves all the players to
their starting position.

340 GQSUB 1000
350 SFLAG-2

380 OPEN.2,4,0,"1::"1
POKE 7504.=

390 REM

Figure 8.44: Listing of Example 11 - lines 300-390,30000-30010.

More Initialize Line 320 reads the MS PEE D DATA into the
array. The intermediate variable, TEMP, is used because in ATARI
BASIC you can't directly READ DATA into an array. Line 330 has new
P){ and PY values because of the boy's large size. In line 360, AN 1-
MATE is initialized for all the players. Line 370 sets a new initial
SPEED.

710 IF 710
720 FOR 1=0 TO HUMPLRS-I

790 REM

Figure 8.45: Listing of Example 11 - lines 700-790.

Set Velocities and Frame Rates This subroutine now sets
the new horizontal velocities for each player in addition to their frame
rates. Line 730 POKEs the correct value of MSPEED into the MOI)E-
RATE addresses. Line 760 resets the frame rate for all the players, and
line 770 starts them moving across the screen.

Using Machine Language Routines in BASIC Programs I 317

400 REM Main An:i.m..t:"ion Loop
410 IF PEEKlIOSbr-sFLAG THEN

SOUND0,0,0.10:
SFLAG-:l: REM Footsteps

420 IF PEElClIOSblcSFLAGTHEN
SOUND 0,24,0,10:
SFLAG=2

430 SOUND0,0,0.0

490 GET .2,BTTE:
SPEED-BTTE-4S:
POKE 754.255:
IF SPEED<O THEN
SPEED-O

500 IF SPEED>9 THEN
SPEED=9

510 GOSUB700
520 GOTO 410
530 REM

Figure 8.46: Listing of Example 11 - lines 400--530.

Main Animation Loop The only change to this section is line
460, which makes sure the boy is still on the screen. If the horizontal
position of Player 0 (determined through parameter table address 1062) is
less than the value in P)-((l0, off screen right), then AUTOMOI,JE is
reactivated by POKEing ALL P into I NITAUTOMOI,JE (the values
currently in the M0 I,J ERATE registers are used again), and the boy is
returned to his starting position with PM 0 \,JER.

A rather exotic bug would appear if PM 0 I,J ER were called before
AUT0M0 VE on this line; it's possible to cause the boy to split in half as a
separation appears between the four players. This would happen if a key
is pressed to change the speed at the proper instant - for example, after
Player I, 2, and 3 have reached position 255 and been sent to 0, but
before Player 0 reaches 255. All the players would be given the new
velocity. Then, after Player 0 reaches 255 and its velocity is stopped
when it gets sent to 0, the other players will still be moving from the
recent speed change. PMOVER would then properly position all the
players, but three of them will keep moving while Player 0 waits the
fraction of a second for AUTOMOVE to be called on the same line. The
solution is to write the line as we did with AUT0M0 \,J E before PM0 \,J ER.

Go ahead and run the program now. Entering the frame data for the
boy was a lot of work, but now you'll see it was worth it!

If you press the BREAK key while the boy is still on the screen, he
will continue running but will not reappear. That's because line 460
needs to be executed for him to reappear from the left side, and the
BASIC program has been stopped.

Modifications
I. Implement AUTOMOVE using the Walking Man data. You'll have to
create a new set of MS PEE D values to create realistic motion in
relation to his frame rate.

318 I Using Machine language Routines in BASIC Programs

2. Make the boy run backwards. Change the frame lists and the velocity.
Don't forget to make his starting position on the right side of the
screen.

Summary

You now have all of our tools to make player graphics easier to use.
In the final section of this chapter, we will take these tools and create the
animated foreground for our climactic program, the Great Movie
Cartoon.

8.5. PLAYER FOREGROUND FOR THE GREAT MOVIE
CARTOON

Imagine you own an ion-powered train which can cruise at sub-light
speeds or stop on a dime. While traveling through the undeveloped
outskirts of a major metropolis, you see cars and trucks speeding by,
large green trees, and an occasional resident out for a stroll. Sometimes
you choose to stop your train to watch everything move by; other times
you enjoy matching the velocities of the inhabitants, or "dragging" with
the local automobiles.

FRAME 1
PLAYER 2

FRAME 1
PLAYER 2

DATA
PLAYER 3 2 ,3

..--..-, 192
9 64
17 32
17 32
17 16
31 248
63 255
127 255
255 255
255 254
255 255
56 28
---ll -----!l

DATA
PLAYER 3 2 3

o 255o 255o 255o 255o 255
15 255
25 255
17 255
17 255
17 255
17 255
17 255
31 255
31 255
255 255
255 255
255 255
255 255
255 255
255 255
255 255
255 255
255 255
28 12
J.g

Figure 8.47: Player frame data for cars, trucks, and trees.

Using Machine Language Routines in BASIC Programs / 319

In this section we will take everything we know about players and
put it together into one program. This program will make use of multi-
colored players, double- and quadruple-width players, player priorities,
sound effects, keyboard control, and all of the machine language routines
introduced so far. This program of foreground objects will later be
combined with a background program for the next chapter's Great Movie
Cartoon.

The Cast of Players

In addition to the walking man, this program must display cars,
trucks, and trees. Each object will use two players: the cars use two
adjacent double-wide players of the same randomly selected color, the
trucks use one double-wide player for the cab and a quadruple-wide
player for the trailer (both in different colors). Finally, the trees use a
brown single-wide player for the trunk and a green quadruple-wide
player for the leafy top. However, unlike the walking man, each of these
objects has only one frame. Their only form of animation will be their
motion across the screen. The frame data for these new objects is in
Figure 8.47.

--

FRAME 1
PLAYER 3••--

II-
I
1----=-

-==..
-I.--

DATA
3
24
24
60
60
126
126
126
255
255
255
255
255
255
255
255
255
255
255
255
126
126
60
60
60
24
--2.4

FRAME 1
PLAYER 0

DATA
o
2
2

132
128
64o
149
165
210
211
219
251
255
254
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
122
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
255
255
219
137

320 I Using Machine Language Routines in BASIC Programs

You may be wondering how we can display four objects on the
screen, each of which uses two players - don't we really need eight
players? That would be nice, but it's not necessary. The trick is: never
allow more than two objects on the screen at once. I Players 0 and I are
permanently reserved by the Walking Man. Players 2 and 3 are used for
the rest of the objects. When a tree is passing by, the street is suspiciously
free of cars and trucks. When a truck hogs the road, not a car or tree is in
sight. The little man, however, comes and goes as he pleases, regardless
of the traffic or foliage.

Overview of the Player Foreground Demo

To understand this program, take the point of view that we are
looking out of a window of a moving vehicle. The only thing we can
control is our own velocity in relation to the scene on the screen. From
time to time, cars, trucks, and trees appear to pass in front of our window.
Our point of view can be moved parallel to these objects at different
speeds, but always towards the right (the same direction the man is
walking). Each object has its own intrinsic velocity in relation to the
ground. To simulate this on the screen, our velocity is subtracted from the
object's velocity, and this value is passed to AUT 0M0 t.J E for that object.
When our velocity is 0, the man (whose velocity is I) walks past us across
the screen. When our velocity is I, we are moving at the same rate as the
man, and he stays framed in our window. This is because our two
velocities cancel each other out (1 - I = 0). When we increase our
velocity beyond I, the man moves off the screen to the left as we seem to
leave him behind.

Trees, on the other hand, have no velocity of their own (of course),
so unless our velocity is 0, we pass them by. The velocity of a tree (in
relation to our point of view) is calculated by multiplying our velocity by
2 and subtracting the result from the tree's 0 velocity. This won't make
much sense until the background is added in the next chapter. For now,
just accept that this exaggerated velocity will look realistic in the final
program.

When a car occasionally appears on the screen, it is also moving in
the same direction as we are, but at a velocity of 4. This means that if we
are moving at a velocity less than 4, the car will pass us by. Trucks move
in the other direction (from right to left) with a velocity of - 3. The
higher our velocity, the faster the trucks seem to roar across the screen.

Most of the work in this program is handled by our black box

IBy using display list interrupts (see next chapter). it would be possible to cause a playerto appear on the
screen in more than one incarnation at the same time. Different figures would be stacked within a single
player. restricting each to a separate horizontal band on the screen.

Using Machine Language Routines in BASIC Programs I 321

machine language routines. BASIC's job is to handle the orchestration of
the program - which object should appear next, calculating the object's
velocity in relation to our own, watching when an object leaves the
screen, accepting keyboard input, and controlling the sound effects.
BASIC is also responsible for setting up the frame lists and POKEing the
frame data into memory. Much of the program code has been taken from
the previous examples to make it easier for you to enter and understand.

Example 12

Exercise Using your knowledge of players in conjunction with
our machine language routines, create a program which simulates a
window looking onto a scene that contains a walking man, tall trees, and
roaring cars and trucks. We, as observers, can only change our own
velocity in relation to the scene by entering numbers from the keyboard.

a)

c)

b)

Photo 8.2: Screen photos of man, tree, car, and truck.

First, load the Walking Man program, Example 10, into memory.
Then save the DATA statements, lines 20050-21200, onto disk or
cassette:

LIST "D:MAN.DAT" ,20050,21200
LIST "e:" ,20050,21200

(disk)
(cassette)

322 I Using Machine Language Routines in BASIC Programs

You will add this data into the program later on. Next, load the Running
Boy program, Example 11, and delete the following lines:

780 21210-30010

Many of the lines in Example 12 are similar but not identical to lines in
Example 11. Others are completely new. We will indicate when a line
requires only modification, rather than a total retyping, by placing an
asterisk (*) before its line number, in addition to highlighting it.

*
so REM
70 GOTO 140
SO REM
100 REM Hi/La By't'e Calculation
110 HlBYTE=IRTIX/25bl: REM Colculate High Byte
120 LOBYTE=X-HlBYTE*25bl REM Colculatel.ow Byte
130 RETURN

752,1:
PRINT "One moment please ... ": REM Tum off co-eer , print

Figure 8.48: Listing of Example 12 - lines 10-170.

Initialize Some new arrays are introduced in line 150.
PMWIDTH contains the addresses of the player width registers.
FRMDATA is now 0 I Mensioned in line 5070.

5000 REM s.t: Up J.'wS:emory Locat:ions

51so DIM BUF'F'Em112SI,FRAMEMEMSIFRAMEMEMl,FRMLSTMEMSITOTFRMLSTSIZEI

Figure 8.49: Listing of Example 12 - lines 5000-5160.

Set Up Memory Locations Line 5060 REA0 s the number of
objects being displayed in the program (OBJS). (The tree is considered
to be two objects, trunk and top, so there will be a total of five objects.) In
line 5070, a number of familiar variables has been converted to arrays, so
information on each object can be individually maintained. FRM0 ATA,

Using Machine Language Routines in BASIC Programs I 323

which contains the addresses ofthe frame data, is now a two-dimensional
array. The first dimension, 5, refers to the number of objects, and the
second refers to the player numbers (0 to 3) which make up those objects.
This reflects a change from Example 11where there was only one object
to animate (the boy). Now FRMDATA can point to the frame data for
each player of each object.

The loop from 5080 to 5150 reserves frame data and frame list
memory for each of the objects. The TEMPorary variables in lines 5090
and 5100 are needed because ATARI BASIC can't directly READ data
into an array. Lines 5110-5130 have been modified to include the
subscripts (I).

7000 REM :I:ni'tia.liz. Player-Missile Gra.phics
7010 TEMP=-PEEJC(106)-S: REM Set ASidePlayer-Missile area
7020 POKE 54279.TEMP: REMTell ANTIC where PM: RAM is
7030 l'MBASEa256.TEMP: REM Find PM: Ba•• ••s
7040 FOR laoTO 3

yer display
7110 TEMfbUSRCMFILL,PLR(O)t512,O): REM Use memory fill routine to del1.rPlayers
7120 RETURN

Figure 8.50: Listing of Example 12 - lines 7000-7120.

Initialize Player-Missile Graphics Line 7060 saves the
addresses of the player width registers, and 7090 sets the player priority
so the players will appear in front of a playfield (see Table 7.5).

Figure 8.51: Listing of Example 12 - lines 10000-10130.

Read in Frame Data The main change in this section is the
added K FOR / NE}(T loop to read in data for all the objects. Line 10010
initializes OFFSET which will be used to calculate the beginning
address of the next frame list. FRAMELI ST is turned into an array to
maintain the beginning address of the frame lists for each object.

324 I Using Machine Language Routines in BASIC Programs

Line 10040 calculates the size of the frame list for object Kand adds
it to OFFSET.

12210 PO=I:
Pl=2:
P2=4\
P3=S: REMControl bits for the four Players

Figure 8.52: Listing of Example 12 -lines 12210-12230.

Set Parameters For Routines The variable LST2 P has
been added to make it easier to control the last two players (2 and 3).

**
12530

Figure 8.53: Listing of Example 12 - lines 12400-12530.

Set Up Frame Lists Again, the main change to this section is
the addition of a K FOR / NE)-(T loop to cover all the objects. In line
12410, PO INTER, the variable which holds the addresses of each frame
list, is turned into a two-dimensional array. The first dimension is the
number of objects, and the second is the number of players. Since none of
the objects use more than two players, a I is used for the second number
(for values 0 and 1).

20040 REM Number of Prame!h Frame Size, Nunber of Players
20050 REM. (Walking Man)
20060 DATA 5.19.2

21 Fra.me da..'t& or-
21010 REMFrame 1, Player 0
21020 DATA 0,0,0,0,0,0,0,3,15,29,59,51,7,7,15,252,224,112,48
21030 REMFrame 2, Player 0
21040 DATA
21050 REMFrame 3, Fl.y.r 0
21060 O"'TA

(continued)

Using Machine Language Routines in BASIC Programs I 325

21070 REMFranw 4, PlAyft' 0
21080 DATA 1,3t3,3,1,7 ,15,31,30,62,62,63,63,60,124,120,112,112,252
21090 REM. Frame 5, Player 0
21100 DATA0,0,1,1,1,0,7,31.31,31,31,31,15,15,13,31,123,112,124
21110
21120 DATA0,28,62,62,62,28,240,240,240,240,251,255,220,192,192,227,118,60,24
21130 REMFr..... 2, P1Ayor1
21140 DATA
21150 REMFr..... 3, P1Ayor1
211bO DATA0,112,248,248,248,112,192,192,128,128,128,224,224,0,0,0,0,0,128
21170 REMFrame 4, Player 1
21180 DATA 192,224,224,224,192,0,0,0,0,0,0,0,0,0,0,0,0,0,0
21190 REMFrame 5, Player 1
21200 DATA0,224,240,240,240,224,128,128,128,128,176,240,0,128,192,128,192,0,0

Figure 8.54: Listing of Example 12 - lines 20000-22240.

Frame Data This section has all the frame data of our objects.
Now is the time to EN TER the earlier saved data of the man:

ENTER "D:MAN.DAT"
ENTER "e:"

(disk)
(cassette)

Then go ahead and enter the rest of the lines (the ones which are
highlighted). There are no more than 20 sets of numbers on any of the
lines. Look at lines 20070-20100, and you'll see why we separated the
tree into two objects. Each player in an object must have the same number
of bytes for our routines to work properly. Since the trunk has twice as
many bytes (52) as the top (26), it would have been necessary to pad the
tree top with an extra 26 zero bytes (bytes with a value of 0) to make them
equal.

1000 REM PARAMETERS FOR PLAYERS

(continued)

326 / Using Machine Language Routines in BASIC Programs

Figure 8.55: Listing of Example 12 - lines 1000-1400.

Parameters For Players This section consists of four sub-
routines, one to initialize the player information for the men, trees,
trucks, and cars. The color, vertical (I.J PLR) and horizontal (HPLR)
starting position, and player width must be set for each object.

Let's look at the Man subroutine first (lines 1010-1090). After the
color is set, another subroutine is called in line 1030, placing the
appropriate frame list information into the parameter table. This routine
(at 1500) requires two pieces of information: the first player (0 to 3) in
which to place the frame data (F RSTPLR) and the number of the
aBJ ECT which is to be used. The first player that the man will occupy is
Player 0 (FRSTPLR=0) and the man is object number one
(OBJECT= 1). Line 1040 sets the vertical position for the man. Line

Using Machine Language Routines in BASIC Programs / 327

1050 checks to see if the current velocity (S PEED) is 1. If so, then the
horizontal position doesn't need to be set (in line 1060). Since the man
also walks at a velocity of one, he will never appear on the screen when
we are traveling at this velocity. If he is already on the screen, then line
1060 doesn't need to be executed again. Line 1060 will position the man
either off screen left or right, depending on the current value of S PEED.
If our S PEED is 0, the man will pass by our window from the left to the
right. If we are moving greater than 1, we will seem to pass the man by
and he will move from the right edge to the left. In 1070 a flag is set that
will keep the man from appearing on the screen for a random period of
time.

The tree section (lines 1100-1190) is very similar. In line 1110, the
SPEED is checked for a value of O. If the tree objects are selected to
make their appearance while our velocity is 0, this line sends the program
back for another selection. This is because if we are stopped when the tree
objects are selected, nothing will happen until we begin moving again.
Since the tree has no velocity of its own, it would just stand patiently off
screen right until we pass by it. As we mentioned before, only one
non-man object can be on the screen at a time, so the stationary tree
would keep the cars and trucks away.

Line 1150 calls the subroutine at 1500 twice, once for each of the
tree's objects. The width of the tree players are set in line 1160 with the
tree top set to quadruple width. Line 1170 sets a volume flag (I.J F) so the
main animation section will know whether to make a sound or not. We
don't want a roaring tree, so I.JF is set to O.

The truck section (line 1200-1280) adds a few variations. In line
1210, the trailer of the truck is assigned a random hue (with a luminance
of 10). The cab is always orange to avoid some awful color combina-
tions. In line 1220, notice that the difference between the horizontal
position of the two players is 16 rather than 8 as in earlier programs. This
is because the cab of the truck will be set to double width (in line 1250).
As with the tree, the truck will always emerge from the right side of the
screen. In line 1260, the volume flag is turned on (I)F = 1), and the pitch
of the truck's roar is set by the sound constant (SCONS = 180).

Finally, take a look at the car section (lines 1300-1390). In line
1310, the velocity is checked to see if it matches the car's velocity of4. If
they do match, the two velocities will cancel each other out, and the
situation described for the tree with a velocity of 0 will occur. In line
1320, a random color from 0 to 15 is selected along with a random
luminosity of either 4 or 8. This is to make sure that in the final program,
when the car is traveling over a background with a luminance of6, the car
won't seem to vanish into the street if the luminance and color values
happen to match. In lines 1330 and 1340, the initial horizontal position of
the car is set based on the current S PEED to make sure the car appears
from the correct side of the screen. In line 1380, the volume flag is turned

328 I Using Machine Language Routines in BASIC Programs

on and the sound constant value is set to 40. This will create a higher
pitched roar than that of the truck.

1:500 REM Put: Fr........ Li.t: Addres. in P ...r Tabl_

1= REXTI
1500 RETURl'l
1570 REM

Figure 8.56: Listing of Example 12 -lines 1500-1570.

Put Frame List Address in Parameter Table This is the
subroutine that is called whenever we want to move new objects into the
players. As we said before, OBJECT selects which object will be used,
and FRS TPLR points to the first player that will be filled. The values in
the NUMPLRS array controls how many players the selected object uses.

Figure 8.57: Listing of Example 12 - lines 300-390.

More Initializing This section finishes the initialization proc-
ess. Line 310 places the frame rate for the man players into the parameter
table. Note that the frame rate for Players 2 and 3 are still set to 0, as they
will be throughout this program. AN I MATE will therefore be used for
two purposes: to automatically animate the man and to move new frame
information into the other players. In line 320, S PEED is temporarily set
to - 1. This will allow us to set the parameters for both the man and the
tree (the first object to pass by our window) in line 330 (remember that
both the man and tree parameter-setting subroutines check for "legal"
values of S PEE D). In line 340 the S PEE D is set to 1, the starting
velocity for the program. Line 350 positions all the players to their
starting positions, and 360 moves the frames into player memory and
starts the man walking (although he is still off the screen). Then the
subroutine (starting at line 700) is called, starting the players across the
screen.

Using Machine Language Routines in BASIC Programs I 329

Figure 8.58: Listing of Example 12 - lines 70D-780.

Set Horizontal Velocities This part of the program calcu-
lates the proper velocities for each of the objects. This routine is called
whenever a new object has been selected or when a key is pressed to
change the S PEE D. Line 710 calculates the new speed (NS PO) for the
trees, line 720 for the trucks, and 730 for the cars. As we mentioned
earlier, these velocities are obtained by subtracting our velocity from the
object's inherent velocity.

Line 740 places NS PO into the parameter table and sets TEMP to
LST2 P (last 2 players). The velocity of the man is POKEd into the table
in line 750, and then the value of WA LK is checked. If it has been set to
- I in the main animation loop, then the man can appear on the screen
and TEMP is reset to include the man players. Then, in line 760,
AUT0M0 1,1E is started for the players represented in TEMP. An alternate
method would be to POKE I NITAUT0M0 1,1E once for the man in line
750 and again for the other object in 760. It would then be necessary to
add a line 755 to keep checking the value in I NI TAUTOMOl.JE until it
equalled 128. This would prevent AUT0M0 l,JE from taking the informa-
tion from line 760 before it was finished with line 750:

755 IF PEEK(INITAUTOMOI,IEI(>128 THEN 755

The method we chose insures that the velocity of all players will be
changed simultaneously.

Figure 8.59: Listing of Example 12 - lines 600-690.

330 I Using Machine Language Routines in BASIC Programs

Select aNewObject This routine randomly selects one of the
non-man objects to appear on the screen. It is called whenever the main
animation loop discovers that one of these objects has exited the screen.
In line 610 and 620, the current l.JOLume level of the last object to zoom
across the screen is checked. Ifa sound is still turned on (I) 0 L>0), then it
will be gradually faded out. Line 630 uses the MF ILL routine to clear out
Players 2 and 3 before they receive their new objects. Since the AN 1-
MATE frame rates for these two players is 0, AN I MATE isn't constantly
updating them with new information. If the frame rates were non-zero,
ANI MAT E would refill the players as soon as they were cleared. In line
640, FLAG receives a number from 1 to 6 which will be used to choose
the next object. Yes, we know there are only three possible choices, and
we'll explain what we're doing in a moment. Line 650 sets OBJECT to
0, so we can use this variable as a flag to indicate whether an object was
successfully selected. Line 660 directs the program to the selected
subroutine. Notice that the first three line numbers are 1100 (the tree).
This means that 3 out of 6 times (50 percent) a tree will be selected.
Likewise, the truck will be selected lout of 6 times (16.7 percent) and the
car 2 out of 6 times (33.3 percent). By changing this line and line 640, a
different mix of objects could be created. You could reduce the number
of cars and trucks to a very small percentage if you prefer a more rural
setting.

If 0 BJ ECT is still set to 0 after the selected subroutine has been
executed, this subroutine is exited. Otherwise, line 670 moves the new
object to its starting position in line 670, and line 680 transfers the
appropriate frames into the players. The program then falls through to the
routine beginning at line 700 to set the velocities.

490 GET 1I2,sm:
SPEEDaBYTE-48:

IF SPEED<O TREK
SPEEDaO

510 G0811B700
520 GOT0410
530 REM

Figure 8.60: Listing of Example 12 - lines 400-530.

Using Machine Language Routines in BASIC Programs I 331

Main Animation Loop Now we come to the main controlling
section of the program. This section creates the sound effects, watches to
see when an object leaves the screen, and accepts keyboard input for
velocity changes. Line 410 sets the value of two sound variables, SND
and SND2, using the horizontal position of Player 2 (location 1063). As
an object moves across the screen, the value in TEMPdecreases from 128
to 0 (at midpoint) and back to 128. This value can be used to raise the
pitch of the passing cars and trucks and then lower it again as they go off
the screen. Line 420 controls the in a similar manner - it
increases towards midpoint and fades as the vehicle leaves the screen.
Notice that the sound is only turned on if the volume flag (\IF) is set to 1.

Line 430 checks the value of WALK, the wait flag which gets set to a
random number in line 1070. IfWALKis still greater than 0 and SPEED
is not 1, WALK is decremented and the program jumps to line 470,
skipping the selection that creates the footstep sounds for the man. As
soon as WALKbecomes equal to 0 and the man can appear on the screen
(SPEED< :> 1), line 440 starts the man moving across the screen,
making sure he starts from the proper position, and sets WALK to - 1 so
this line isn't executed again until the next man arrives.

Line 450 checks the current frame number of Player 0 to synchro-
nize a footstep to the man's feet. Line 460 checks the position ofthe man.
If he has moved off the screen on either side, the man is reinitialized
starting at line 1050.

if one of the other objects leaves the screen (line 470), a new object
is selected in the subroutine beginning at line 600.

Now you may run this program. Have some fun trying to keep up
with the man or drag racing with the car. Notice how the truck seems to
get shorter as your velocity increases (theory of relativity at work?).

Modifications
1. Animate some of the objects (other than the man) by creating addi-
tional frames for them. Try to make the wheels turn, or place a
flashing light on top of the car.

2. Add some additional objects - how about a bird, a plane, a different-
ly shaped tree, or a motorcycle?

Commercially Available Software
Using Players and VBI

In addition to player-missile graphics, many commercial games use
the vertical blank interrupt to gain more control of the computer. Jaw
Breaker, by John Harris of On-Line Systems, uses the VBI to play the
game's musical interludes and to redefine the character set. The object of
this game is to move your set of teeth around the maze, munching
lifesavers and avoiding the bullies who will knock your teeth out if they

332 I Using Machine Language Routines in BASIC Programs

catch you. Eating one of the colorful jawbreakers in the comer will tum
the bad guys blue - then you can catch them.

John used ATARI's Music Composer cartridge to create the music,
then converted the final music file into data for a VBI routine that plays
the notes in a background mode while the action is occurring on the
screen. GRAPH I CS (2) is used for the playfield, with each lifesaver
being a redefined character. The constant redefining of the jawbreaker
character during l)BLANK means that the colors (artifacts) are always
changing in perfect unison. The teeth are made of the four missiles
combined into a fifth player. If you manage to eat all the lifesavers, a
giant toothbrush will appear to clean your teeth for another round. The
toothbrush is made of one quadruple-wide player (the red handle) and one
single-wide player (the bristles).

One of the features of this game that makes it stand out from the
others in the PAC-MAN genre is the wonderful animations John added to
the four bullies (each made of a player in single-line resolution mode).
Each one has its own sequence of frames to go through. One's eyes
bounce and mouth changes shape (five frames); one spins like a top (eight
frames); one rolls like a coin on its edge (eighteen frames); and one flips
upside down (twenty-four frames). The frame changing is not under VBI
control, but is part of the main program - every time one of the objects
moves, a new frame is placed into the player.

Photo 8.3: Screen photo of Jawbreakers. (Copyright (c) 1981 by On-Line
Systems.)

Inanother game, Mouskattack (On-Line Systems), John Harris uses
similar techniques. In this game, you are a plumber who must lay pipes in
the dreaded Rat Alley. The rats are constantly trying to destroy you and
your work, so you must move fast. In this game, there can be two people
playing at the same time. The plumber or plumbers, represented as a hard
hates), and the rodents are made of players. The inadequate mouse traps
that you can lay, the pipes, and your two timid helper cats are made of
GRAPH I CS (2) redefined characters. The animation isn't quite as clever

Using Machine language Routines in BASIC Programs I 333

as in Jawbreakers. The rats stomp their feet up and down as they run after
you, and, when a rat gets you, your hat floats to the ground (using five
frames). John did, however, do a splendid job with the sound effect of
laying the pipes. The clank sound, and all other sounds, are under VBI
control.

Photo 8.4: Screen photo of Mouskattack. (Copyright (c) 1981 by On-Line
Systems.)

Summary

You have now graduated from player-missile graphics class and are
ready to tackle some exciting games. However, before you go too far,
there are two more special ATARI features we'll be introducing you to in
Chapter 9, fine scrolling and display list interrupts. Using these tech-
niques, you'll be able to create a moving background that would be the
envy of any cartoon animator! Then, all the techniques discussed in this
book will be combined into our grand finale, the Great Movie Cartoon.

334 I Using Machine Language Routines in BASIC Programs

Chapter 9

Creating A Scrolling Background

I n the golden years of film animation, companies like Walt Disney
Productions perfected the art of fluid and realistic motion for their

characters and paid painstaking attention to the quality of the background
scenery for their cartoons as well. The results were imaginary worlds
which irresistably pulled us in to share in their fantasies. To achieve this
level of reality, Disney invented a large machine called a multiplane.
This enabled artists to create complicated backgrounds consisting of up
to six layers, each positioned at a different distance from the camera. As
the characters in the foreground moved along, the backgrounds were
scrolled behind them, each layer at a different rate, with the furthermost
ones moving the most slowly as governed by the laws of perspective. The
multiplane produced breathtaking results, but the dozen operators neces-
sary to run it plus the tremendous production costs required to feed it
multilevel backgrounds caused this marvel of technology to finally take
up residence in themuseum.

In today's cartoons, backgrounds usually consist of only one level
which is moved behind the characters as they walk or drive along. This
succeeds in creating the feeling of movement, but through a very flat,
two-dimensional world. In this chapter, we will create a moving back-
ground for our foreground players of Example 12, bringing back the
feeling of depth to animation. Our background has not one, but two
levels, and when combined with the three levels of the foreground players
in the final program of this book (the Great Movie Cartoon), provides a
five-level scene with enough realism to bring on motion sickness if you
have a weak stomach!

To give motion to our background, the ATARI feature of fine
scrolling will be used. To color the screen with more colors than is
normally possible, another feature called display list interrupts is uti-
lized. Both features are implemented through our old friend, the ATARI
display list.

9.1. THE DISPLAY LIST REVISED

In Chapter 5, we introduced you to the Exploding Bomb program
(Example 4), which uses a graphics mode that is only accessible (in the

Creating a Scrolling Background / 335

336 / Creating a Scrolling Background

ATARI 400/800) by modifying the display list (DL). Recall that the DL
is actually a program for Antic, the display processor chip. The DL
specifies how the screen memory is to be interpreted; what graphics mode
is in effect for each horizontal scan line. This enables us to create a screen
made up of many different graphics modes. Although that is the primary
purpose of the DL, there are some other important features that it can
provide.

A GRA PH ICS 0 Display List
Besides the specific graphics modes to be used, the display list tells

Antic where to find screen RAM and whether to implement fine scrolling
or display list interrupts. Different values for each DL instruction specify
which functions are in effect. Let's start by taking a look at a normal, no
frills display list. Enter and run the following program. It will print out
the entire display list for a GRAPHI CS 0 screen:

10 GRAPHICS 0
20 DLIST=PEEK(5G0l+PEEK(5G1l*25G
30 FOR 1=0 TO 31
40 PRINT I,PEEK(DLIST+Il
50 ND(T I

In Figure 9.1 are the numbers that will be printed out by this
program, plus the description of each display list instruction and a picture
of the screen showing which mode lines (horizontal band of scan lines
which make up one graphics mode line) are controlled by each
instruction.

As we explore the function of each of these bytes, refer to Table 9.1.
It shows which bits of a display list instruction are used to control the
graphics mode that will be in effect and which bits enable the different
display list functions.

Bit Number: 7 6 5 4 3 2 j 0
Bit Value: 128 64 32 16 8 4 2 1

Mode Type • • • •
Horizontal Fine Scrolling •
Vertical Fine Scrolling •
Load Memory Scan •
Display List Interrupt •

Table 9.1: Display list control bits.

G
RA

PH
IC
S

0
P
LA

Y
FI
E
LD

-.:.
::::
:::;
:::.
:

";:;:
;::;::

;::;;.
;

-I"
":':
':':
':':
':'

--
-'
1
:-. ="

D
ES

C
R
IP
TI
O
N

EI
G
HT

BL
AN

K
LI
N
E
S

L
EI
G
H
T

B
LA

N
K

LI
N
E
S

E
IG
H
T

B
LA

N
K

LI
N
E
S

LM
S

PL
US

FI
R
ST

G
RA

PH
IC
S

0
LI
N
E

SC
RE

EN
RA

M
AD

DR
ES

S
(L
O
W

B
Y
TE

)
SC

RE
EN

RA
M

AD
DR

ES
S

(H
IG
H

B
Y
TE

)
I

SE
CO

ND
G
RA

PH
IC
S

0
LI
N
E

•
TH

IR
D

G
RA

PH
IC
S

0
LI
N
E

•

TW
EN

TY
-F
O
U
R
TH

G
RA

PH
IC
S

0
LI
N
E

I
JU
M
P

O
N

VE
R
TI
C
AL

BL
AN

K
TO
..
•.

CBE
G
IN
N
IN
G

O
F
D
IS
PL

AY
LI
S
T
IL
O
W

B
Y
TE

)
BE

G
IN
N
IN
G

O
F

D
IS
PL

AY
LI
S
T

(H
IG
H

BY
TE

)

D
IS
PL

AY
LI
S
T

IN
S
TR

U
C
TI
O
N
S

11
2

11
2

11
2
66 64 15
6 2

65 C32 15
6

o 1 2 3 4 5 6 7 8 9
1
0
11 12 1
3 14 1
5
1
6
17 18 19 2
0
21 22 2
3 24 25 26 27 28 29 3
0
31

D
L
BY

TE
#

Fi
gu
re

9.
1:

G
RA

PH
IC
S
0
di
sp
la
y
lis
t.

o Cil .. <to :::l lQ .. en n g 5' lQ lD .. n ..- lQ a c: :::l Co

338 / Creating a Scrolling Background

Because more than one display list function can be implemented
with each instruction, calculating the correct value can be confusing.
Table 9.2 can be used to figure out what byte value the display list
instruction should have. It gives the decimal byte value for all possible
mode/function combinations for creating a custom DL. Don't be over-
whelmed by the table's size; it's really very simple to use. Just look in the
top section (with all the Xs) to find the column which has the combination
of features you want to implement, then follow that column down to the
bottom section until you find the graphics mode you want to use. The
number found at that intersection is the value to use in your display list.
Note that some DL instructions are always followed by a two-byte
address.

Let's use this table to decipher the sample display list in Figure 9.1.
Starting at the top of the DL, the first byte is a 112. Now, look at the first
number column (on the left) in Table 9.2 (pages 342-343). The eighth
entry from the top is also a 112. The table's description says that this
instruction creates eight blank horizontal scan lines. Why tell ANTIC to
create blank lines? This is to compensate for vertical overscan and to
center the playfield on the screen. Look at your GRAPHI CS 0 screen,
and you'll notice a black border at the top. These blank lines are
displayed on the screen in the current border color. Since the next two
instructions in the display list are also 112's, this border is made up of a
total of 24 blank lines (8 blank lines * 3 instructions = 24), which is the
standard followed in all display lists. Notice there is also a bottom border.
The size of this border is determined by what screen space is left over
after all the mode lines have been displayed.

Try the following experiment:

10 GRAPHICS 0
20DLIST=PEEK(560)+PEEK(561)*256
30 REM Change the number of blanK scan

lines at top of screen
40
50
60
70
80
80
500
510
520

FOR 1=0 TO 112
POKE DUST,I
GOSUB 500

ND<T I
GOTO 40
REM
REM Pause loop
FOR W=l TO 10:
RETURN

STEP 16

REM Load MerTlo r v

When this program is RUN, the entire screen will seem to bounce up
and down! This is because we are changing the top margin of the screen
by changing the value of the first byte of the DL (line 50 in the program).
As you can see in Table 9.2, a value of 0 creates one blank scan line, a
value of 16 creates two, a value of 32 creates three, etc. Thus a POK E of
ointo this address will decrease the original 24-scan line top border to 17
(l + 8 + 8). As different numbers are POKEd into the first DL byte,
the border will enlarge by one scan line at a time until it is back at 24.
Then, the program will loop back to a 17-scan line top border. The
remainder of the display list is not changed, so the remainder of the
screen that it controls will move up and down in one block. The bottom
border will become larger as the top becomes smaller, since the total
number of scan lines on the screen always remains constant.

Coarse Scrolling

The next byte (number 3) in the DL of Figure 9.1 serves two
purposes. First, it alerts Antic that the following two bytes will contain
the starting address of screen RAM. This function is called load memory
scan (LMS) because it tells Antic to load the address where the scanning
of display memory will begin. This byte also tells Antic to display one
GRAPHI CS 0 mode line. As you can tell from the two tables, a 64 is
added to the value of the mode line (a value of 2) to enable LMS. By
having more than one LMS instruction in a DL, it is possible to use RAM
from totally different parts of memory to make up one screen.

Try the following program:

10 GRAPHICS 0
20 DLIST=PEEK(580)+PEEK(581)*258
30 LMSLO=DLIST+4 REM Load MeMOry

Scan LOIAI byte
40 LMSH1= DLI ST +5

Scan High b v t e
50 SCRNLO=0:

SCRNHI=0
80 REM TaKe a Scroll Through MeMOry
70 POKE LMSLO,SCRNLO : REM Point to new

screen
80 POKE LMSHI,SCRNHI
90 SCRNLO=SCRNLO+40 : REM IncreMent by

nUMber of bytes/line
100 IF SCRNLO>255 THEN

SCRNLO=SCRNLO-258:
SCRNHI=SCRNHI+1

(continued)

Creating a Scrolling Background I 339

340 I Creating a Scrolling Background

110 IF SCRNHI=256 THEN
GRAPHICS 0:
END

120 GOTO 70

When this program is executed, you will see a rapid, vertically
scrolling display of numbers and letters. This is called coarse scrolling.
When we increment the address of screen memory by 40 (the number of
bytes in a line in the current graphics mode), we are constantly changing
where in RAM the screen memory is located in increments of one
horizontal line of text. You have just taken a visual tour through the entire
memory space of your computer! (Use GRAPHICS 7+ 16 instead of
GRAPH I CS 0, and the moving patterns will become more apparent.)
The visual effect produced by this example will remind you of a LIS Tof
a BASIC program. However, with a LIST, the brute force method of
moving 960 bytes of information through screen memory is used while
coarse scrolling changes two bytes to move the screen window over the
information.

This ability to redefine the location of screen RAM is a very
powerful feature. By only changing two bytes, we were able to move full
screens of text or graphics by our "window into memory." Compare this
to the microprocessor intensive method of moving each of thousands of
bytes ofmemory into a fixed screen area! And with a little more effort, we
could scroll horizontally instead of vertically. However, coarse scrolling
by itself doesn't compare to the beauty of fine scrolling, which we will
look at in the next section.

With a slight modification of the above technique, it is possible to
have several different screens set aside at once, each with a different
animation frame on it. To flip through the frames, just change the fourth
and fifth bytes in your display list, and the new screen instantly appears!

Stereoscopic ATARI

Joe Vierra, a student at California State University, Hayward,
decided to undertake the task of creating a stereoscopic view on his
ATARI. He wrote a Vertical Blank Interrupt routine which flipped
between two pages of screen memory every jiffy. He conserved
memory by using GRAPHIeS G, a 160 by 96 mode that only uses
one Playfield color, which he also changes from red to blue during
VBLANK. To draw the two cubes, he used BASIC, which slowed
down the process too much for animation. With assembly language,
however, it wouldn't be too difficult to create a spinning three dimen-
sional object! Following is a screen photo showing his stereo cube.

Notice that where the red and blue lines meet, it appears to be
purple. When viewed with red/blue glasses (left eye red, right eye
blue), the image takes on real depth (see color insert).

Photo 9.1: Stereoscopic cube by Joe Vierra (see color insert).

Jump on Vertical Blank After the two-byte address indicating
the beginning of screen memory comes the rest of the mode line instruc-
tions. Since there are 24 text lines in a GRA PH I CS 0 screen, we need
23 more GRAPHIe S 0 mode instructions (2). Remember that the
mode instruction for the first screen line was combined with the LMS
instruction.

The last three bytes (numbers 29-31) consist of a special jump
instruction (similar to the BASIC GoTo command) plus the beginning
address of the DL. This is a jump on vertical blank (IVB) instruction. It
tells Antic to wait until the vertical blank period, then jump to the
beginning of the display list and continue processing display informa-
tion. This assures that the processing of the DL will be synchronized with
the television display. The address following the IVB instruction (which
points to the beginning of the DL) is ignored under normal circumstances.
This is because during the VBI, the OS takes the address stored in
560,561 and feeds it to Antic as the start of the next display list. By
disabling the OS VBI routines, however, it is possible to jump to a
completely different DL to create a rapid flipping between two screens.
This technique could be used to create a stereo display by showing the left
eye view on the first screen in red lines and the right eye on the other in
blue lines. The user would see a relatively flicker free three-dimensional

Creating a Scrolling Background I 341

342 I Creating a Scrolling Background

DISPLAY LIST INSTRUCTION CALCULATION AID

H SCROLL (+ 16) X X X X
V SCROLL (+ 32) X X X X
LMS (+64) X X X X
DLI (+ 128) X
Blank 1 Line 0 128
Blank 2 Lines 16 144
Blank 3 Lines 32 160
Blank 4 Lines 48 176
Blank 5 Lines 64 192
Blank 6 Lines 80 208
Blank 7 Lines 96 224
Blank 8 Lines 112 240
Jump 1 129
Jump Vrt Blnk 65 193

GRAPHICS 0 2 18 34 50 66 82 98 114 130
Antic 3 3 19 35 51 67 83 99 115 131
Antic 4' 4 20 36 52 68 84 100 116 132
Antic 52 5 21 37 53 69 85 101 117 133
GRAPHICS 1 6 22 38 54 70 86 102 118 134
GRAPHICS 2 7 23 39 55 71 87 103 119 135
GRAPHICS 3 8 24 40 56 72 88 104 120 136
GRAPHICS 1I 9 25 41 57 73 89 105 121 137
GRAPHICS 5 10 26 42 58 74 90 106 122 138
GRAPHICS 6 11 27 43 59 75 91 107 123 139
Antic C3 12 28 44 60 76 92 108 124 140
GRAPHICS 7 13 29 45 61 77 93 109 125 141
Antic E4 14 30 46 62 78 94 110 126 142
GRAPHICS 8 15 31 47 63 79 95 111 127 143

All values are in decimal.
An X means the optional function is turned on.

'GRA PH I CS 12 on the ATARI XL Computers
2GRAPHICS 13 on the ATARI XL Computers
3GRAPHICS ill on the ATARI XL Computers
4GRA PH I CS 15 on the ATARI XL Computers
NOTE: GTIA makes 9, 10 and 11 use GRAPHI CS 12 values as controlled by
GPRIOR (623) - see Table 7.5.

Table 9.2: Display list instruction calculation aid.

x x x X Horizontal Scrolling
X X X X Vertical Scrolling

X X X X LoadMemory Scan (3-byte instr)
X X X X X X X Display List Interrupt

Blank Horizontal
Scan Lines for
Top Border

Jump (3-byte instruction)
Jump & wait for Vertical Blank
(3-byte instruction)

146 162 178 194 210 226 242
147 163 179 195 211 227 243
148 164 180 196 212 228 244 CharacterMode
149 165 181 197 213 229 245 Instructions
150 166 182 198 214 230 246
151 167 183 199 215 231 247
152 168 184 200 216 232 248
153 169 185 201 217 233 249
154 170 186 202 218 234 250
155 171 187 203 219 235 251 Map Mode (Pixel)
156 172 188 204 220 236 252 Instructions
157 173 189 205 221 237 253
158 174 190 206 222 238 254
159 175 191 207 223 239 255

Creating a Scrolling Background I 343

344 / Creating a Scrolling Background

display by viewing the screen with a pairofred/blue glasses (see box). Of
course, there's no reason to stop with only two screens - the second DL
could jump to a third DL (which could jump to a fourth, etc.) before
returning to the beginning of the first one to close the loop.

That's all there is to a GRAPHIeS 0 display list! When construct-
ing your own, there are a few rules you must follow. See the following
box.

Rules for Creating a Display List

The following three rules must be followed when you create
your custom display lists:

1. A display list cannot cross a 1 K boundary, which means they are
not fully relocatable. In the rare cases when you must cross a
boundary, use the DLJMP instruction (01) and the address of the
first byte on the other side ofthe boundary just before you reach it:

RAM Address

20475
20476
20477
20478
20479

20480
20481

4
4
1
o
80

4
4

DL

JMP over boundary
Low byte}
H· h b 0+(80*256)=20480Ig yte
1 K boundary
Resume DL

2. Screen memory cannot cross a 4 K boundary. When using the
higher resolution modes, for example GRA PH I CS 8 which takes
up almost 8 K, this is impossible to avoid. You must include a
second LMS instruction in the DL pointing to the second 4 K of
screen RAM. Here is an example using GRAP HIe S 8:

DL Byte #

97
98
99
100
101
102
103

15
15
79
o

144
15
15

DL Instruction

GRAPHICS 8
GRAPHICS 8
GRAPH I CS 8 +LMS
Low byte - Next 4 K of screen RAM
High byte
Resume GRAPHICS 8 DL

Creating a Scrolling Background I 345

3. No more than 192 horizontal scan lines can be displayed in the
playfield (although fewer are okay). When creating a custom DL,
you must count the number of scan lines used in all of your mode
lines to make sure their total doesn't exceed 192. Otherwise, it
may take too much time to display them; Antic will no longer be
synchronized with the screen, and the display may roll or break
up.

Fine Scrolling

The ATARI feature called fine scrolling allows you to move the
mode lines smoothly in any direction. Whereas coarse scrolling moves
the image past the screen in whole byte or mode line increments, fine
scrolling vertically moves the image by horizontal scan lines or horizon-
tally moves it by color clocks (see Figure 9.2.).

Horizontal Fine Scrolling To see what we are talking about,
enter and execute the program in Figure 9.3.

346 I Creating a Scrolling Background

HORIZONTAL
COARSE

SCROLLING

HORIZONTAL
FINE

SCROLLING

ONE ONE ONE
BYTE BYTE BYTE

I IT··········•···············I
• •••••••• •

I T·················......··I I
r.. .

I I ITI
I I II
I,JIII, I

COLOR CLOCKS

(GRAPH ICS 0 CHARACTER IS
FOUR COLOR CLOCKS WIDE)

IMAGE MOVES PAST SCREEN
IN WHOLE BYTE INCREMENTS

IMAGE MOVES PAST SCREEN
IN COLOR CLOCK INCREMENTS
(OR VERTICALLY BY
HORIZONTAL SCAN LINES)

Figure 9.2: Comparing coarse and fine scrolling.

Figure 9.3: Listing of horizontal fine scrolling demo.

You will see the sentence that was PRI NTed by line 80 ("This is a
demo of horizontal scrolling!") smoothly sliding back and forth horizon-
tally on the screen. Notice that scrolling is being used to display more
information than will fit on one line. When part of the first word
("This") moves off the screen to the left, the cursor will appear on the
right. This is one of the major advantages of scrolling - to control a
window which peers into a much larger amount of data than will appear
on the screen at once.

To use horizontal fine scrolling, just two steps are required. First,
enable it by adding 16 to the value of the DL instruction (line 70). Then,
all you have to do is POKE a value from 0 to 15 into the special hardware
register called HSCROL (54276 Decimal, D404 Hex). The value you
POKE determines how many color clocks the line will be moved to the
right. Since each GRAPH I CS 0 text character is four color clocks wide,
this program will slide the sentence four characters over (16 increments/4
color clocks per character = 4 characters).

Now press the BREAK key, and LIS T the program. What hap-
pened?! The screen looks disorganized, but this is only a temporary
condition (either press RESET or type GRAPH I CS 0). When horizontal
fine scrolling is turned on, Antic automatically grabs extra bytes (20
percent more) for that line, throwing off the rest of the display. This is to
provide a scrolling buffer. When one character is halfway off the screen
on the left, then half of one should be appearing on the right. This means
that more than 40 characters will appear on the line at once. The extra
characters are taken from the next line down, causing the remainder of
the screen to be shifted to the left by eight characters.

Vertical Fine Scrolling To show off vertical fine scrolling, mod-
ify the previous example as follows. The lines with an asterisk in front
just need to be altered rather than added.

10 REM VERTXCAL FXNE SCROLLXNG
20 REM
30 GRAPHICS 0

**
**
** I
160 NEXT I
170 GOTO 90
500 FOR W=I TO 5:

NEXTW
510 RETURN

Figure 9.4: Listing of vertical fine scrolling demo.

Creating a Scrolling Background /347

348 I Creating a Scrolling Background

Now the line of text slips up and down in horizontal scan line
increments. Since the GRAPHI CS 0 mode line is only eight scan lines
high, we are using values from 0 to 7 to scroll the sentence up one line.
Notice that it seems to vanish as it moves up. Add the following line to the
program:

75 POKE DLIST+14,34

Now when you run the program, the entire line remains on the screen as it
hops up and down. This is because two adjacent mode lines are now
being scrolled rather than one.

Vertical fine scrolling is enabled (activated) by adding a 32 to the
DL instruction. Then, values (from 0 to 7) are POKEed into the
I.JSCROL register (54277 Decimal, D405 Hex).

Diagonal Fine Scrolling Sorry - there is no diagonal fine scroll-
ing register. To achieve diagonal scrolling, just combine horizontal and
vertical motion as indicated in the following program. Delete line 75
from the last example and then modify the asterisked lines:

10 REM DIAGONAL. FINE SCROLLING
20 REM
30 GRAPHICS 0
40 HSCROL054276
50 VSCROL=54277
60 DLIST=PEEll:l56Ol+PEEK1561 l*256: REMFind List

**
*

NEXT I
GOTO 90
FOR W=1 TO 5:
NEXTW

510 RETURN

Figure 9.5: Listing of diagonal fine scrolling demo.

Mixing Coarse and Fine Scrolling

All this smooth motion is nice, but if you ran these programs you
may have noticed that fine scrolling can only be implemented over a short
distance. What if you want to slide the line more than one line up or down
(or more than 16 color clocks to the right)? The solution is to combine
fine scrolling with coarse scrolling. Look at Figure 9.6 to see how this
works.

T ST
AR

TI
N
G

PO
SI
TI
O
N

S
T
E
P
)

ST
EP

2
ST

EP
3

ST
EP

4
ST

EP
5

ST
EP

6
S
TE

P
7

S
TE

P
8

T
TH

IS
ST

EP
M
US

T
O
CC

UR
DU

RI
NG

V
B
LA

N
K

FO
R

EF
FE

C
TI
N
G

SC
R
O
LL
IN
G

PO
KE

VS
C
R
O
L.
)

PO
KE

VS
C
R
O
L.
3

PO
KE

VS
C
R
O
L.
5

PO
KE

VS
C
R
O
L.
7

PO
KE

VS
CR

O
L.
0

PO
KE

VS
CR

O
L.
2

PO
KE

VS
C
R
O
L.
4

PO
KE

VS
C
R
O
L.
6

PO
KE

VS
C
R
O
L.
O

FI
NE

SC
R
O
LL
IN
G

Fi
gu
re

9.
6:

Co
m
bi
ni
ng

fin
e
sc
ro
llin
g
an
d
co
ar
se

sc
ro
llin
g.

CH
AN

G
E
U
IS

VA
LU

ES
FO

R
CO

AR
SE

SC
RE

EN

o Cil Ol :::
l

<0 O
l en o g s <0 til Ol o ""<0 a <: a

350 / Creating a Scrolling Background

The trick is to use coarse scrolling to move in one-byte increments
(in GRAPHIe S 0, each byte represents one character) and use fine
scrolling to smooth out the steps between each byte. Using animation
terms, think of coarse scrolling as the key positions and fine scrolling as
the in-between positions. First, the character (or pixel) is fine scrolled for
just enough scan lines or color clocks to reposition it one increment short
of the next character's original position. Then, it is reset to its starting
position, and coarse scrolling takes over to move the display on a byte
level by one increment. The process then repeats "forever." The last
step must be executed during vertical blank so the jump is never seen on
the screen. In fact, a machine language routine should be used for fine
scrolling over any distance. (Of course, we will be introducing just such a

later in this chapter.) You may have noticed some occasional
screen glitches (picture "break-ups" that last for a fraction of a second)
during our fine scrolling demo programs. This is caused by changing an
Antic display register while the screen is being drawn. The glitch prob-
lem and any jumpiness is totally avoided with a vertical blank interrupt
machine language routine.

Applications Fine scrolling is used in conjunction with coarse
scrolling to allow you to access a much larger area of screen memory than
is normally available to open a window in RAM. The ATARI game,
Eastern Front (1941) by Chris Crawford, uses this technique to present a
large map of Russia, which is actually about ten screenfuls large, on the
display. With a joystick, the user can fly across the entire terrain at will.
For more information on this program and some screen photos, see the
end of this chapter.

For another application, imagine a word processing program that
allows you to fine scroll through your entire document, either horizontal-
ly (for lines wider than the screen width) or vertically. This would be
much easier on the eyes than moving around in huge jumps.

Display List Interrupts

The last option which can be implemented with display lists is called
the display list interrupt (DLI). We have already talked about vertical
blank, the period of time when the television's electron beam has finished
painting the screen, turns off, and then moves from the lower right comer
of the screen to the top left comer in preparation to tum on and repeat the
update process. There is also something called the horizontal blank. This
is the period of time after a horizontal scan line is drawn when the beam
shuts off and moves from the end of one scan line to the beginning of the
next. Vertical blank lasts about 1400microseconds, and horizontal blank
lasts about 14microseconds. We know that there is not much we humans
can do in 14 (or even 1400) microseconds, but the computer is somewhat
faster than we are. By setting the DLI bit on a display list instruction

(adding 128 to the instruction's value), the 6502 can be interrupted at a
specific point in time in relation to the screen updating process (i. e. , just
before that mode line has been fully displayed). All sorts of interesting
things can be accomplished when the CPU is directed to a special DLI
routine. For example, the DLI routine could change the hardware color
registers to increase the number of colors that are displayed on the screen,
move a player horizontally so it appears to be in two or more places at the
same time, or change a player's size.

We will not go into much detail on the inner workings of DLI's, as
they are beyond the scope of this book. For an excellent discussion on
DLI's, see the ATARI publication, De Re Atari (product number APX-
90008). We will be introducing a black box DLI routine later in this
chapter. For now, all you need to know is that the display list instruction
gets its DLI bit set for the mode line just preceding the place where the
desired change is to go into effect. Again, to set the DU bit, just add 128
to the display list instruction:

DL Instructions

7 GRAPHICS 2
7 GRAPHICS 2

135 GRAPHICS 2 with DU bit set (7+ 128)
7 GRAPHI CS 2 - Color change will be seen on this line
7 GRAPHICS 2

Summary

You now have a fundamental understanding of the power of the
display list, coarse and fine scrolling, and DU's. No other personal
computer now on the market can give you the flexibility that the DL
provides. By combining all of its features, you can create some exciting
effects. In the next section, we will lay the foundation for our scrolling
background program using the display list's capabilities.

9.2 THE SCROLLING BACKGROUND PROGRAM

As you look out the window of your ion-powered train, the scene
suddenly changes. Gone are the noisy cars and trucks. It's early Sunday
morning, and all the people are inside their homes. The sky, a peaceful
shade of blue, has cotton clouds in it. "I must have arrived in the

Creating a Scrolling Background I 351

352 I Creating a Scrolling Background

suburbs, you think as row upon row of nicely kept cottages, homes, and
large apartment buildings pass by. The lawns are bright green, the shrubs
and trees well groomed, the pink and yellow buildings immaculate.
"What a nice day for a drive," you decide.

Now that you have glimpsed the world offine scrolling, we'll show
you how to incorporate it into a program by presenting our scrolling street
scene example. What we want to create is a long horizontal strip of
scenery which can pass across the window of our super train. If the strip is
long enough, we won't notice it repeating. One technique would be to use
map graphics, for example, GRAPHIe S 7, to create the background.
However, if we made a long strip in this mode, it would eat up quite a bit
of memory. A solution is to create a special character set and use
GRAPHI CS 2. A full screen in this mode takes up only 240 bytes,
whereas a GRAPHIe S 7 screen is 3840 bytes long! Furthermore, the
working resolution of both modes is identical, and GRAPHIe S 2
provides us with one extra color! (By working resolution we are referring
to the pixel size within each GRAPHIe S 2 character.)

The only major drawbacks to this technique are the development
time required to define a new character set and the limitation to the
number of characters we can define without resorting to special tricks.
Fortunately, for you, we have already solved these problems by creating
a custom character set. This set is used to create houses and trees of
random shapes, sizes, and colors. Every time the program is executed, a
new street scene will be produced out of our characters.

The Street Character Set

To add some originality to the street scene, we designed a series of
shapes that fit together to produce a wide variety of houses, cottages,
apartment buildings, shrubs, bushes, and trees. The computer is given
the task of putting these building blocks together along certain guide-
lines. Should the house have a fence, a TV antenna, a chimney? How
many stories high and how wide should it be? How many windows
should the house have, and what color should it be painted? By allowing
the program to choose the features for each house, we saved the time it
would have taken us to try to think of all the possible combinations, and
then lay them out in a random order. Another advantage to our computer-
designed street is that the street can be of any length - from two
screenfuls wide to twenty. The computer will continue building houses
and growing foliage until the allocated space has been filled.

Color Selection In GRAPHIe S 2 GRAPHIe S 2 allows for
four playfield colors and one background color. We are using pink and
yellow for the houses, brown for the roofs, fences and tree trunks, and
dark green for the tree tops and shrubs. Extra color will be provided with
the help of DLI's. We will add white and gray clouds (also made of
characters), blue sky, light green grass, sidewalks, and a gray street.

When using either GRAPHICS 1 or GRAPHICS 2, the 128
characters normally available in the ATARI built-in character set are
reduced to 64. This is because the upper two bits of each byte in screen
memory that were used to help select a character (or activate inverse
video) in GRAPHICS 0 have been reassigned for color selection. Try
the following experiment. (Notice that the second twoA's and the second
123 are in inverse video.)

10 GRAPHICS 2
20 PRINT

When this program is RUN, you will see four capital A's in four different
colors and "123" in two different colors. The #6 means PRI NT to the
graphics screen device that was opened with the GRAPHICS 2 state-
ment. Now type in the following statement:

POKE 758,228

The four capital A's are now four lowercase a's. The 123's have turned
into strange lines, and the background is filled with orange hearts instead
of black background. You have switched to the other half of the standard
character set (remember from Chapter 5 that location 756 contains the
high byte of the current character set's address). The first half contains
numbers and uppercase letters, and the second half contains the graphics
characters and lowercase letters. To switch back, type the following:

POKE 758,22£1

This means that you can't mix uppercase and lowercase letters when
using these graphics modes unless you resort to redefining the character
set.

Displaying the four possible colors for a letter is simple, but what
about numbers or graphics characters? There is no such thing as an
uppercase or lowercase "2." The first complication is that the byte
information stored in screen memory to display a specific character may
not match that character's ATASCII code. The screen bytes refer to the
order of the character set in ROM (or RAM), not to their ATASCII value.
The order ofthe character set was created so it could easily be divided for
GRAPHICS 1 and 2 displays. For example, the ATASCII value of the
number 2 is 50. However its screen value is 18, as it occupies the
eighteenth position in the character set. Table 9.3 gives the positional
value of each character in the ATARI ROM character set.

Creating a Scrolling Background / 353

354 I Creating a Scrolling Background

Column 1 Column 2 Column 3 Column 4

CUR # CUR # CUR # CUR , CUR , CUR # CUR # CUR

0 Space Ib 0 32 @ 48 I' [;4 D 80 D 96 D 112 P

I 17 I 33 A 49 \!. ss G 81 il 113 q

2 IH 0' 34 B 50 R t>lj I) 82 = 9B b 114 I

:1 # 1 I 3 35 C 51 S b7 CI B3 C .. 11.':i ,
4 s ;20 4 :H; [) T bI1 CI 84 D 100 d i u: !

'; :21 5 J7 E 5:> l' l:I 85 e 101 c 117 II

h {,:. .. b :lB r 54 v :-0 81; II f liB '0

7 2:1 7 39 (; 5:) W 71 B7 e 103 g 1 1 J vv

B r :24 B 40 II 5h x 72 IlIl lO4 b 120 x

I r 2;:; 9 41 1 5:- v 73 (J HE') i 121 v

111 2h 4:2 J :;8 Z 74 IOli I 122 z

11 . .!.7 -1,3 >: I -- II to; k 12:1 D.:1

1:2 2M < 44 L 1;0 \ ;1> iii 0 lO/-I I 1.!.-l I

I:l .!. , 4;) 1)1 I .. ii 0 on 12:")

14 - :\(1 > 4h x 1\ 78 1--1 C 110 II l.!.li

\.'i :q 4 - () I;:> - I rI .'J C III " 1:..':-
.,

Table 9.3: The order of the ATARI character set.'

Columns 1 and 2 show the characters available when GRAPHI CS
1 and 2 are first initialized. Columns 3 and 4 hold the characters
accessible when location 756 is POKEd with a 226. Notice the position
of the heart-shaped character (64) in relation to the space character (0).
Both occupy the first location in their half of the table. This explains why
the background character shows up as hearts when the second half is
used.

Try the following experiment:

10 GRAPHICS 2
20 SCREEN=PEEK(88)+PEEK(8S)*256
30 POKE SCREEN,18
40 POKE SCREEN+ 1 ,18+64
50 POKE SCREEN+2,18+128
60 POKE SCREEN+3,18+64+128

When you RUNthis program, you will see the number 2 displayed in four
different colors. In lines 40-60, the upper two bits that control the color
are being switched on.

'From the ATARI BASIC manual.

To accomplish the same thing with PR I NT statements, you must
use the above table. First find 2 on the table. Then, jump over to the other
half of the table, and locate the character in the corresponding position.
This is the graphics character obtained by typing control-®. Let's try it
out by adding the following statement. Remember that the curley brack-
ets mean to hold down the CTRL key, and underline means to print in
inverse video.

70 POSITION 0 Ii
80 PRINT #6j"2{R}g{!!}"

You will see a second line of colorful 2' s below the first line. The entire
process becomes much more difficult when the screen control characters
are to be displayed. You can't directly PR I NT an "inverse cursor
down" by using the inverse key, for example. However, an inverse down
arrow can be displayed on the screen by pressing a combination of keys,
ESC Shift INSERT (use the ATASCII table in Appendix B). The semicol-
on can appear in only three of its color incarnations, because the fourth
corresponds to the EOL (RETURN) code and can't be displayed. Our
solution is to avoid redefining characters that cannot be displayed in all
their incarnations.

Our Street Characters Definitions Here are the character defini-
tions for the street character set. Weare using 35 characters out of the 64.
By a change of color, some do double duty as cloud tops and tree tops,
others as sections of roofs or walls of houses, and one character is used in
clouds, tree tops, houses, and roofs!

Creating a Scrolling Background I 355

356 / Creating a Scrolling Background

CHARACTER 1
CLOUD I TREETOP
(UPPER LEFT)

CHARACTER 8
DOOR

CHARACTER 2
CLOUD / TREETOP
(UPPER RIGHT)

CHARACTER 9
FENCE
(RIGHT CORNER)

CHARACTER 3
TREETOP
(BOTTOM LEFT)

CHARACTER 10
FENCE

CHARACTER 4
TREETOP
(BOTTOM RIGHT)

127
127
127
127
127
127
127
112

CHARACTER 11
HOUSE
(LEFT SIDE)

156
220
252
252
252
252
254
255

CHARACTER 15
ROOF

CHARACTER 16
TREE TRUNK BASE
(LEFT)

CHARACTER 17
TREE TRUNK BASE
(RIGHT)

CHARACTER 18
ROOF AND CHIMNEY

CHARACTER 22
FENCE

CHARACTER 23
WINDOW

CHARACTER 24
LARGE WINDOW

CHARACTER 25
CLOUDI TREETOP/

HOUSE I ROOF

ill
127
127
127
63
63
30

----'1
CHARACTER 29
POINTY ROOF

CHARACTER 30
ROOF AND CHIMNEY

CHARACTER 31
POINTY ROOF

CHARACTER 32
CLOUD BOrrOM
(LEFT SIDE)

Figure 9.7: Character definitions for street scene.

Bjj II•CHARACTER 5
T V ANTENNA

CHARACTER 12
HOUSE
(RIGHT SIDE)

4
31
4
31
4
4
4

.....!
CHARACTER 6
FENCE
(LEFT CORNER)

CHARACTER 13
ROOF

CHARACTER 7
TREE TRUNK
(RIGHT SIDE)

CHARACTER 14
POINTY ROOF

3
3
3
3
3
3
3
-2

1
I
3
3
7
7
15

Creating a Scrolling Background / 357

•
128

•
128

•
255

128 128 255
192 192 39
192 192 39
224 224 255
224 224 39
243 240 39
243 240

CHARACTER 19 CHARACTER 20 CHARACTER 21
POINTY ROOF AND POINTY ROOF WINDOW

CHIMNEY TOP

•
rn

•
192

•
0

251 192 0
255 192 0
252 192 255
254 192 102
254 192 102
255 192 102
255 192 !..Q..g

CHARACTER 26 CHARACTER 27 CHARACTER 28
POINTY ROOF AND TREE TRUNK FENCE
CHIMNEY (RIGHT SI DE)

•
255

•
254

•
255

255 254 255
255 254 255
255 254 0
255 252 0
254 252 0
124 120 0
---.2. -'! ----.Q

CHARACTER 33 CHARACTER 34 CHARACTER 35
CLOUD BOTTOM CLOUD BOTTOM SIDEWALK
(CENTER) (RIGHT SIDE)

358 I Creating a Scrolling Background

Laying Out the Screen

In the beginning of this chapter we mentioned that our background
will consist of two levels. The farthest level is made up of the sky and
clouds which are so far away that they will remain stationary no matter
how fast we are moving. The second level consists of the houses, trees,
and a street. Although the background is in two levels, the screen will
actually be split into three sections (see Figure 9.8). The center section
with the houses and trees is the only section that will be scrolled. The top
cloud isn't moved (must be a windless day), and the bottom section,
consisting of the grass, sidewalks, and street, doesn't need to be moved,
because it doesn't contain any details. There is no way to tell whether it is
actually moving or stationary by looking at it. The illusion of movement
will be created, since the viewer assumes the foreground must be con-
nected to the center section.

Notice how wide the strip of street is in relation to the screen. To set
this up in the display list, eight LMS instructions must be used. There is
one for line 1 to establish the beginning of screen memory. Lines 3
through 8 each use one, so coarse scrolling can be used by changing the
byte addresses following the LMS instruction. (The horizontal fine
scrolling bit is also activated for these lines.) Line 9 also needs one to
establish the address for the remainder of the screen.

Creating an Endless Street Now, how can this long horizontal
strip be turned into a loop which endlessly scrolls across the screen'?
When the end of the strip is reached, it must be reset to the beginning for
another pass. Doing this would cause an unpleasant jump, and the entire
screen would change. To avoid a potentially jarring experience we copy
the first screenful of information onto the area of the strip which contains
the last screenful. Then, when that last screen is being displayed, reset all
the LMS bytes of the scrolling section back to the starting screen during
the vertical blank period (see Figure 9.9). The result is a smooth,
invisible transition to the next pass of the strip across the screen window.

SC
RE

EN
LI
NE

S

I 2 3 4 5 6 7 8 9
10 II 12

LM
S

LM
S

LM
S

LM
S

LM
S

LM
S

r:
)

BO
RD

ER

)
LI
N
E
S

1
AN

D
2,

C
O
N
TA

IN
ST

AT
IO
N
AR

Y
C
LO

U
D
S

LM
S

-
LM

S

}U
,,,
'-".
"''
''''
''"
"'.
",,
'"

sr
ae
er

}
BO

R
D
ER

}

L
IN
E
S
3
-8

HO
US

ES
AN

D
TR

E
E
S

Fi
gu
re
9.
8:

Th
re
e
se
ct
io
ns

of
st
re
et
sc
en
e,

o til s cc 0> C/
l

o g s cc til 0> o ,.. cc a <: 5. lB

360 / Creating a Scrolling Background

LAST SCREEN

COPY FIRST SCREEN
ONTO LAST

-
FI RST SCREEN

>RESET TO STARTING POSITION
DURING VERTICAL BLANK

Figure 9.9: Creating an endless street loop.

Playfield Width InChapter 7, we mentioned that there were three
playfield widths from which to choose - wide, normal, and narrow.
These widths control the number of bytes of information to be fetched for
each line of the screen. The playfield width is controlled by the lower two
bits of SDMCTL (559 Decimal, 22F Hex). This register also controls
player-missile DMA and display list DMA (see Table 7.7). Try the
following POKEs on a GRAPHIeS (2) screen. [Bit 5 (+ 32) turns on the
DMA for the display list.]

POKE 558,33

POKE 558,34

POKE 558,35

REM Narrow Playfield
(bits 5 and (2) on)
REM NorMal Playfield
(bits 5 and 1 on)
REM Wide Playfield
(bits 5, 1 and (2) on)

a)

b)

c)

Photo 9.2: Screen photos of each playfield width.

Notice the size of the side borders for each playfield width. The
screen is all jumbled up for narrow and wide modes, because the display
list is still set up for a normal playfield. Table 9.4 shows the number of
bytes fetched for each mode line in GRAPHIe S (2) and 2.

Bytes per Mode Line in GRAPH I CS (2) and 2

PLAYFIELD WIDTH

Creating a Scrolling Background I 361

GRAPHICS 0
GRAPHICS 2

Narrow

32
16

Normal

40
20

Wide

48
24

Table 9.4: Bytes per mode line using different playfield widths.

362 / Creating a Scrolling Background

The wide playfield option will be used in our Street Scene program
to eliminate the side borders. Using a normal playfield in this program
would cause the houses to appear from the void of the border, rather than
from the edge of the television screen.

The actual length of the scrolling strip is controllable within the
program. It must be at least wide enough to contain two screenfuls - 48
bytes wide (2 screens * 24 bytes per line). This would cause the same
screenful of houses to continuously scroll by since the first and last
screens are identical.

Adding Extra Color With DLIs The five colors with which
GRAPHICS 2 provides us aren't enough to create a realistic scene.
Display list interrupts are used to add additional colors. Figure 9.10
shows where DLls are set and the colors that they affect.

QLI-CHANGE SKY BACKGROUND
TO GRASS

DLI - CHANGE CLOUD COLORS TO
HOUSE COLORS (CHARACTERS)

2LI-CHANGE PAVEMENT COLOR TO
SIDEWALK COLOR (BACKGROUND)

oL I - CHANGE HOUSECOLOR TO
SIDEWALK COLOR (CHARACTER)

1
2
3
4
5
6
7
8
9_

::'L I -CHANGE GRASS COLOR TO 10_
PAVEMENT COLOR (BACKGROUND) 11

1£

Figure 9.10: DUs for extra color.

As you can see from Figure 9.10, five DLls are used on the screen.
During each of these interrupts, our DLl routine is designed to change
only three of the five color registers available in GRAPHI CS 2 (regis-
ters 2, 3 and 4). The brown for the roofs and tree trunks and the green tree
tops are left alone. Initially, the background (register 4) is set to the color
of the sky, and registers 2 and 3 are set for two different shades of white
for the clouds. The DLl set on mode line 2 changes the cloud colors to
pink and yellow for the houses. Again, the color change doesn't go into
effect until the line following the DLlline, line 3 in this case. On line 5,
the background register is changed to light green for the grass. This
creates a horizon on line 6. On line 8, a house color is changed to the
sidewalk color. The background grass color is changed to the gray color
for the pavement of the street on line 10. (The light gray distant sidewalk
is made from a character, not the screen background.) Finally, on line 12,
the background (actually the bottom border) is changed to the near
sidewalk.

The SCROLL Routine

The black box machine language routine that horizontally scrolls the
strip of street is appropriately called SCR0 LL. It is extremely easy to
use. Once it knows where to find the section of screen memory that is to
be scrolled, all you need to do is give it a scroll rate. In Table 9.5 are the
parameter table entries used by S CR0 LL.

Creating a Scrolling Background I 363

Variable
Name

Offset From Address
PARAMBASE (Decimal) Description

SCRLINIT
SCRLADR
SCRLLEN
SCRLCLK
SCRLSTEP

5
26
28
30
31

1029
1050,1051
1052,1053
1054
1055

POKE 1 to turn on routine, 0 off
La and Hi bytes of scrolling window
Width of scrolling window in bytes
Color clocks per mode line byte -1
Step size to scroll each jiffy

Table 9.5: Parameters for SCROLL.

To set up for SCR0 LL, POKE the two-byte address that points to
the beginning of the scrolling window into SCRLADR. This is the upper
left comer of the section that will be scrolled, not the first byte of screen
memory (unless the first mode line is to be scrolled too). In our scrolling
street scene program, this is the same two-byte address that follows the
LMS instruction for line 3 of the screen. Then POKE the width of the
scrolling window into SCRLLEN. This is a two-byte value so SCR0 LL
can accept very long window lengths. The next parameter, SCRLCLK,
controls the number of fine scrolling steps that will be performed before a
coarse scroll. This is based on how wide (in color clocks) the bytes in
your mode lines are. GRAPHI CS 2 bytes are eight color clocks wide so
a 7 will be POKEd into this address. When using a 40-bytes-per-line
graphics mode, use the value 3; with a lO-bytes-per-line mode, POKE in
a 15.

When all these parameters are POKEd in, SCR0 LL is turned on by
a POKE of I into SCRLI NIT. (The fifth parameter, SCRLSTEP ,
need not be set until after SCR0 LL is activated in this way.) At every
sixtieth of a second, the routine will look into SCRLSTEP to determine
how quickly to scroll the screen. To begin the movement, just POKE in
the rate you want the street to scroll, and the scrolling window will
immediately begin to move. The step size is in color clocks per jiffy and
can be any value from 0 to 255. A step size of I yields the slowest rate -
the scene moves one color clock every jiffy (1/60 of a second). A POKE
of 2 will double the rate to two color clocks per jiffy. To pause the
display, POKESCRLS TEP with a 0, then POKE in a new step size to
start it again.

364 / Creating a Scrolling Background

If you wish to reset the display to its starting position, POKE
SCRLIN I T with a I. It will immediately begin again from the original
starting position at the rate currently in SCRLSTEP. (As with our earlier
routines, when SCR0 LL has received the I that was POKEd into
SCRL I NIT, it replaces it with a 128.)

SCROLL will work in any GRAPH I CS mode with any number of
adjacent scrolling lines. The routine looks for the first display list LMS
instruction with the horizontal fine scrolling bit set and defines that mode
line as the top of the scrolling window. It continues incrementing all the
address bytes following the DL instructions with these two bits set until it
reaches the end of the DL. Even if the scrolling lines are not adjacent,
they will still be scrolled, but the display will become jumbled.

Note that SCROLL only moves the scrolling window from the right
to the left.

Entering SCR0 LL Here are the bytes for SCR0 LL that are
entered with the same method as shown in Chapter 8 (with the String
Loader program).

Figure 9.11: Listing of DATA statements for SCR0 L L.

The Display List Interrupt Routine (DL I ROUT)

We made it! We have finally come to the last machine language
program in the book. This routine, called DL I ROUT, is used to add the
extra colors on the screen as described earlier in this chapter. DL I R0 UT
changes the values in the hardware color registers, not the shadow
registers that we have been accessing from within BASIC (see Table
9.6). A color value sent to a hardware color register goes into effect
immediately, whereas a shadow register alteration doesn't take effect
until the next vertical blank. This means that all the mode lines prior to
(and including) the line containing the first DLI instruction take their
color values from the shadow color registers. During vertical blank, all
the hardware color registers are reset once again to the shadow register
values.

HARDWARE
ADDRESS

SHADOW
ADDRESS

COLOR
REGISTER #

COLOR
REGISTER
NAME

Dec Hex Dec Hex

Creating a Scrolling Background / 365

0 COLPF0 53270 0016 708 2C4
I COLPF1 53271 0017 709 2C5
2 COLPF2 53272* 0018 710 2C6
3 COLPF3 53273* 0019 711 2C7
4 COLBK 53274* 001A 712 2C8

* The three hardware color registers controlled by 0 L I R0 UT

Table 9.6: Hardware and shadow color registers.

DL I R0 UT uses one parameter table location to store the address of
a table of color values. This color table contains the new color values for
each DL instruction with the DLI bit set (see Table 9.7).

Variable
Name

OLIAOR

Offset From
PARAMBASE

36

Address
(Decimal)

1060,1061

Description

Low and High bytes of
DLI color table

Table 9.7: Parameters for DLIROUT.

As we said before, this routine changes the color of registers 2, 3,
and 4. The size of its table is determined by the number of display list
instructions that have the DLI bit set. For each DLI bit that is set, three
table entries are required, one for each of the three color registers to be
changed. Since our program uses five DLI instructions, its DLI table is
IS bytes long (5 DLI's * 3 entries per DLI). See Figure 9.12.

366 / Creating a Scrolling Background

FI RST
DLI INSTRUCTION

SECOND
DLI INSTRUCTION

TH IRD
DLI INSTRUCTION

FOURTH
DL I INSTRUCTION

FI FTH
DLI INSTRUCTION

DLI TABLE

BYTES
IN TABLE

234
90
1 52
234
90
198
10
0

198
0
0
6
0
0
10

COLOR
REGISTER #'5

2 YELLOW HOUSES
3 PI NK HOUSES
4 SKY
2 YELLOW HOUSES
3 PINK HOUSES
4 GRASS
2 SIDEWALK
3 (NOT USED)
4 GRASS
2 (NOT USED)
3 (NOT USED)
4 STREET PAVEMENT
2 (NOT USED)
3 (NOT USED)
4 SIDEWALK

Figure 9.12: DLI color table for DLIROUT.

Look at the color values for the first DLl instruction. Even though
we wanted to change the color of only the first two registers (from cloud
colors to house colors), the third register had to be reassigned its original
sky color. Each of the three registers must have a table entry for each DLl
instruction, even if there is no color change for that register and even if
that register isn't being used. In the last set oftable entries, registers 2 and
3 are not used, but a value (any value) still needs to be stored in the table
for them.

Using DL I ROUT To use DL I ROUT, first create a table and fill
it with the desired color values. Turn on the DLl bit (+ 128) in the
appropriate display list instructions. The OS must then be told where the
DLl routine is located in memory. This is accomplished by a POKE of
the address (low and high bytes) of the routine into locations 512 and 513
(200,201 Hex). DLIROUT must next be told where your table is
stored by a POKE of its address into the parameter table:

POKE DLIADR,TABLELO
POKE DLIADR+1,TABLEHI

As with our previous machine language routines, DL I ROUT has a
section of code that is executed during vertical blank and must be linked
to the VBI vectors (see lines 13000-13210 in upcoming Example 13).
Finally, display list interrupts must be turned on by a POKE of 192 into
54286 (NMIEN, non-rnaskable interrupt enable, DLl0E Hex). That's all
there is to it; the rest is automatically carried out by DL I ROUT.

Even though we are using this routine with SeRa L L, there is no
reason why either of them could not be implemented by themselves.
(However, AUT a Ma l.JE requires PMa l.JER for its execution.)

Entering DL I ROUT The lines containing the DATA statement
for DL I ROUT follow. Again, use the string loader program to stuff the
bytes into strings.

Figure 9.13: Listing of DATA statements for DLI RDUT.

Entering the Scrolling Street Scene Program

You have now been fully briefed on the Scrolling Street Scene
program and are ready to enter it into the computer. When you have
finished entering this program, it will be combined with the Player
Foreground Demo (Example 12) to produce the book's final program.

Most of this program is new and must be entered from the keyboard.
For those lazy disk owners who would rather make the poor ATARI do
some extra work, we offer the following program to transfer 41 lines
from Example 12 to Example 13. To use the Copy program, first load
Example 12 into memory, and then LIST the entire program to disk or a
cassette:

Creating a Scrolling Background I 367

LIST "D:PLAYERS,n<T"
LIST "e:"

(disk)
(cassette)

Then enter and execute the following program. It will copy the common
lines to a file called SeRaL L , BAS. (Note that there are 15 numbers on
each 0 ATA statement but the last.)

368 / Creating a Scrolling Background

Figure 9.14: Listing of Copy Program.

Now that this program has finished its task, type NEW, and ENTER
the newly created file into memory:

ENTER "D:SCRDLL,BAS"
ENTER "C:"

Example 13

(disk)
(cassette)

Exercise Create a scrolling scene filled with houses, trees, and
shrubs of different shapes and sizes. Design a custom character set to
build these objects, and use GRAPHICS 2 to display them. Use
SCR0 LL to move the scene across the screen and DLI R0UT to add
extra color. Set up the program so it can later be merged with the Player
Foreground Demo.

a) (continued)

b)

c)

Photo 9.3: Screen photos showing several different types of houses and
trees.

As before, the lines which are new to this program are highlighted.
If you don't use the above Copy Program, just enter all the lines,
highlighted or not.

60 REM
70 GOTO 140
80 REM
100 REM Hi/La Byte C ..lcula.:tion
110 HIBYTE=INT(X/256>: REM Calculate High Byte
120 LOBYTE=X-HIBYTE*256: REM Calculate Low Byte
130 RETURN
140 REM Ini"tia.1ize

390

Figure 9.15: Listing of Example 13 - lines 10-390.

Creating a Scrolling Background / 369

Film 2
"Vol Libre," Loren Carpenter.

The landscape images from this excerpt
are constructed from hundreds of
thousands of triangles, created by
fractal splitting of only I00 or so
original triangles. Fractals are a
convenient method for representing
natural randomness. The pictures were
computed in 15 to 40 minutes each on
a DEC VAX 11/780, and are a full 24
bits per pixel, 512 by 512 resolution.
No antialiasing was done. (Courtesy of
Loren Carpenter.)

370 I Creating a Scrolling Background

Initialize This section of the program calls all the subroutines
that set up the screen and machine language routines. To speed up the
initialization time, screen DMA has been turned off (line 6020) and must
be turned on again so the picture will show. The statement on line 260
turns on the screen and sets the playfield to wide. Line 340 starts the
display scrolling.

11000 REM INITIALIZE ROUTINE STRINGS
11010 REM Se1:' SCROLL routine

IIbOO REM Set: :M:FILL rout:in.
IIblO DIM MFILU(411
llb20 MFILLtU)-" «<Routine String goes here»)
IIb50 RETUR1II

Figure 9.16: Listing of Example 13 - lines 11000-11660, 25500-25510.

Initialize Routine Strings This section initializes the
routines and creates the DLl color table for DL I R0 UT. Enter your
SCROLL and DL I ROUT strings at this time.

Lines create the DLl table. Each byte is read in and
stored into the string DLITABLE$.

5000 REM 5.1:' Up M_mory Locat:ions

52b0 DLlROUT=ADRlDUROUTfI
5300 MFILL=ADR(MFILLSI
5340 RETURN
5350 REM

Figure 9.17: Listing of Example 13 - lines 5000-5350.

Set Up Memory Locations This section reserves the mem-
ory space for the screen and display list. DI F (line 5010) is used to
determine the number of memory pages needed to hold the screen. Line
5040 calculates the number of bytes needed for the screen. Note that there
are six wide playfield lines of 24 bytes each and six scrolling lines of
LI NELEN bytes each.

In line 5170, the number of pages of memory needed to hold the
screen plus the DL is calculated. The DL will come first, then the screen
RAM. Since the DL must not cross a 1 K boundary (four pages), DI F is
incremented by 4 each time. When D I F's value is large enough, the high
and low bytes of the DL are calculated (lines 5180-5190). The address of
the screen (SeRN, line 5210) is determined by adding the length of the
DL (DLSZE) to the DL's beginning address (DLBASE).

In line 5240, the address of the scrolling window is found by adding
the number of bytes in the first two lines (24*2) to the beginning of screen
memory.

Figure 9.18: Listing of Example 13 - lines 6000-6340.

Creating a Scrolling Background I 371

372 / Creating a Scrolling Background

Set Up the Display List Here is the section that creates the
display list. First, line 6010 tells the as that the computer will be
operating a full-screen graphics mode. This is not necessary for the
operation of the program since a custom DL has already been created.
However, because the as thinks we're using a full-screen mode, it will
immediately return the screen to a normal GRAPHIe S (2) mode if an
error occurs in the program or if BREAK is pressed. On the next line,
6020, screen DMA is turned off to increase the processor speed during
the initialization process and to keep the screen from jumping or glitching
when we switch over to the new display list. The only drawback is that if
the initialization process is too long, the user may think the computer has
passed away. It might be a good idea first to display a message stating
how long the screen will be blank before turning off the DMA.

Next, the top border of the screen is created by blanking 24 scan
lines (6030-6050). The instruction for the first mode line (+ 7 for
GRAPHIe S 2) with the LMS bit set (+ 64) indicates the beginning of
screen memory (lines 6060-6080). On line 6090, the second mode line
gets its DLI bit set.

Lines 6100-6190 create the DL instructions for mode lines 3
through 9. WINDOW is a temporary variable that holds the beginning
memory address for each mode line. The lines get the LMS bit (+64),
horizontal fine scroll bit (+ 16), and mode bits (+ 7) for a value of 87.
Mode lines 5 and 8 (line 6130) also receive a DLI bit. Mode line 9 (line
6140) begins the section of the screen immediately under the scrolling
window so its horizontal scroll bit remains unset.

Lines 6230-6250 tell Antic to note that the end of the display list has
been reached and to return to the beginning.

The as receives the address of DL I R0 UT in lines 6260-6280 so it
knows where to send the CPU during a DLI. The new DL is then switched
on by a POKE of its location into 560 and 561.

Finally, the color registers are set for the top section of the screen
(before the first DLI). Even though the screen DMA is turned off, the
background color is still controlled by color register 4 so the screen will
tum from black to light blue at this point. This suggests a technique to
keep DMA off during program set up but will still show that the computer
is alive and functioning - from time to time, just change the color of the
screen background.

Figure 9.19: Listing of Example 13 -lines 2600-2630.

Clear the Screen MF ILL IS used to clear all of display
memory by filling it with D's.

Figure 9.20: Listing of Example 13 - lines 8000-8160.

Set Up Alternate Character Set This subroutine REA 0 S in
the character defini tions for the street character set and POKEs them into
memory. This section was stolen from Example 2, the Walking Man
Character Set program, with only a few changes (you may want to
transfer it over to save some typing). Line 8010 places the beginning of
the character set two pages below the display list (remember, only 512
bytes are required for a GRAPHIeS 2 character set).

Figure 9.21: Listing of Example 13 - lines 23000-23370.

Creating a Scrolling Background / 373

374 / Creating a Scrolling Background

Character Set Data Here are the character definitions for the
street scene's houses, trees, etc. Each line contains the eight numbers
necessary to define one character. (The first line is the checksum value.)

Figure 9.22: Listing of Example 13 - lines 2800-2850.

Put in Clouds and Sidewalk We have now come to the first
part of the program, which fills the screen memory with scenery. This
section places the clouds and the sidewalk on the screen. The technique
we have chosen places the appropriate characters into a string called
SEG$ (for segment). Each object to be displayed is stuffed into SEG$
and then a subroutine at line 2000 is called that POKEs the information
into memory. Even though this is a text screen, its unusual dimensions
would make it very difficult to PR I NT the strings to the screen.

Line 2810 has a number of parameters that instruct the subroutine at
2000 how and where to place the information on the screen. CLOU0 is a
flag that alerts the subroutine that this is a cloud. PTR gives the string's
horizontal screen position as an offset from the left edge of the screen.
HE I GHT informs the routine how many mode lines tall (less I) the shape
in the string is. (A height of 1 means 2 mode lines; a height of 0 means 1
mode line.) WIDTH says how many bytes wide the shape is. This means
that there will be HE I GHT*WIDTH characters in the string. This line
will send two light gray clouds to the screen.

Line 2820 creates another cloud, which will be positioned 3 bytes
over from the previous one. Line 2830 then creates the sidewalk string.

(continued)

Figure 9.23: Listing of Example 13 - lines 2000-2190.

Send Information to Screen After S EG$ has been filled
with characters defining an object, this subroutine is called. The object's
HE I GHT, /AI I DTH, and horizontal placement (P TR) are passed to this
routine as well as flags that indicate special objects. FEN CE means that a
fence is to be placed around the house. S PCFLAG is used to increase the
space between objects. CLOUD and GRND cause the object to be placed
in special locations outside the scrolling window.

Line 20 I0 makes sure the string is at least 24 characters long by
padding short strings with blanks contained in CLs .

Line 2060 obtains the ATASCII value for the individual character to
be transferred to the screen. A subroutine at 1900 converts this value to
the proper byte value so it will be correctly displayed.

After the string has been POKEd into memory, line 2150 incre-
ments PTR for the next object, and line 2170 finds out how much room is
left on the line for more objects.

Figure 9.24: Listing of Example 13 - lines 1900-1960.

Convert to Screen Value As we mentioned earlier, the
ATASCII value of a character doesn't always match its screen value.
This routine makes a conversion which enables the character to be
POKEd into the screen. We won't explain lines 1920--1930, but we'll
guarantee they'll work! Line 1940 changes the house color to pink or
yellow, depending on the value of PAI NT.

Creating a Scrolling Background I 375

376 I Creating a Scrolling Background

Figure 9.25: Listing of Example 13 - lines 2200-2280.

Put In Fence This routine is called by line 2040 if a fence is to
be placed around the house (a random event). The variable I gives the
current mode line being filled (from the loop in the routine at 2000). If I
is less than 4, we're too high up so the routine is exited. Otherwise, the
side fence pieces are POKEd in. The front bottom section of the fence is
contained in S EG$.

Figure 9.26: Listing of Example 13 - lines 3000-3140.

Create Random Display This is the master controller section
for building the houses and planting the greenery. It makes the random
choices that will control many of the features of the street scene. In this
city, a tree or shrub is planted between each pair of buildings. The size of
the plant depends on the care and feeding provided by a later program
section.

Line 3040 selects a random house WIDTH. There is an equal chance
for the house to be 2, 3, or 4 bytes wide. Lines 3050-3070 select the
number of stories tall the house will be. Given a large enough street, 45
percent will be a two-story house, 35 percent will be a three-story house,
and 20 percent will be a four-story house. These percentages could be
changed if you want to modify the ambience of your street.

Line 3080 decides whether a chimney can be built on the house.
However, since not all houses can receive building permits for chimneys
(depending on roof shape), the actual percentage will be lower than 60
percent.

Line 3090 gives a 40 percent chance for a fence around the house
only if a shrub wasn't first planted next door.

How many houses have antennas and how many opted for cable?
This important decision is made on line 3110. Again, the actual percen-
tage will be different as either a chimney or a flat roof is a prerequisite for
"free TV."

Line 3120 chooses the paint color for the house, half yellow and
half pink. If you have a preference of one color over the other (or wish a
different two-tone town), feel free to make the change.

Line 3130 clears the string and calls the contractor that specializes in
building houses of the specified width. After the string is stuffed and
transferred to the screen, line 3140 checks for the number of bytes left on
the line. If there is no room left for a plant (the next section), then the
routine 2400 is called and copies the first screen to the last (see Figure
9.9).

Figure 9.27: Listing of Example 13 - lines 3500-3650.

Creating a Scrolling Background I 377

378 / Creating a Scrolling Background

Width 2 This subroutine builds the small "get away" cottages.
To ensure coziness, line 3510 restricts the number of stories to these
houses to three. In line 3520, BT, a byte pointer used in the creation of
the strings, is set to 1. If there are only two stories (rather than three) for
this house, then BT is set to 3 (remember, this is a two-byte wide house).
First the roof is built (the contractors we hired are very strange - they
believe in a top-down approach). If a chimney has been requested, line
3540 obliges; otherwise 3550 takes over. BT is incremented, and a loop
is entered that fills in the third and second stories. Notice the randomness
being added. Then line 3600 builds a door, and lines 3620-3630 build a
fence, if requested.

Figure 9.28: Listing of Example 13 - lines 3700-3820.

Width 3 This section is very similar to the previous one. The
main difference, other than the width, is that the antenna is an option and
the chimney isn't (those bigger houses just aren't as romantic).

(continued)

Figure 9.29: Listing of Example 13 -lines 3900-4120.

Width 4 The wide body house is assembled in this section.
There are actually two different possible versions. If the house has more
than two stories, is adjacent to a shrub, or is just lucky (33 percent
chance), the house gets normal outer walls (decided in line 3930).
Otherwise, it is branded an ODDHOUSE and gets the narrower set of
walls. Because of these indented walls, a fence or shrub placed next to it
would sit a distance away from the house, so they aren't permitted.

In line 4010, the house can receive both an antenna and a chimney,
otherwise, the normal house is not any different than its skinnier cousins.

Creating a Scrolling Background I 379

380 / Creating a Scrolling Background

Figure 9.30: Listing of Example 13 - lines 3150-3490.

Plant Some Foliage Here is where the gardeners reside.
After a house is built, they come in and plant something before the next
house is plunked down. There are basicaIly two types of plants: shrubs
and trees. A shrub is a quarter of a tree top which rests next to the outer
waIl of a house. Shrubs only come in pairs, so when one house gets a
shrub, its soon-to-be neighbor gets one too. Trees are vertical plants
which mayor may not have a trunk. By selecting different heights for the
tree and deciding how much of that will be leafy green, you can create a
wide selection of trees.

First, line 3170 checks whether a shrub is possible. It must be a
normal house without a fence with enough room next to it for another
house to foIlow. If a shrub is eligible after these tests, it has a 30 percent
chance of appearing; otherwise, a tree is planted. All trees have a width of
2. Their height can range from 2 to 6 bytes (3200-3250). Then, the
height of the trunk (3260) and the height of the tree top (3270) are
determined. In lines 3280-3340, the tree top is grown first (clever
gardeners!), then the trunk (3360--3380), and finally a base is spliced
onto half of the trees (3390). Then lines 3400--3430 add random spacing
next to either (or neither) side of the tree.

Lines 3440-3460 create the shrubs. They can either have a width of
2 or 3 bytes. If the width is three, then a blank space is inserted between
them.

Finally, the amount of room left on the screen is checked. If it isn't
enough for a house, line 3140 checks if another plant can be grown
instead.

Figure 9.31: Listing of Example 13 - lines 2400-2470.

Copy First Page Onto Last Page Once the available space
in the scrolling window has been filled with houses and trees, the first
screen page must be copied to the last to allow for a smooth transition
when the screen is reset to its starting position. This loop copies the first
24 bytes of each of the six scrolling lines to the last 24 bytes of each line.

12000 REM Set" P-.rAI'TI.t"er. Fer Rout'in••
12010 PARAMBASE=1024: REM PA'ter BASeAdd,ns

12:530 RETURJI
12540 REM

Figure 9.32: Listing of Example 13 -lines 12000-12540.

Set Parameters For Routines This subroutine sets up the
parameter table for the machine language routines. All the parameters for
SCROLL are POK Ed in except SCRLSTE P. SCRLI N IT isn't set
until the YBLANK routines are in place.

13000 REM Xn.t:-all Int:errup't Rout-in.&.
13010 POKE CRITICAL,I: REM Open CRITICAL "verve", set up detour

13200 RETURJI
13210 REM

Figure 9.33: Listing of Example 13 -lines 13000-13210.

Install Interrupt Routines SCR0 LLand DL I R0UT are
installed into the vertical blank routines, SCR0 LL is turned on (line
13180), and the DLI's are enabled (13190).

Creating a Scrolling Background / 381

382 I Creating a Scrolling Background

400 Ma.in Ani.ma.t:ion

Figure 9.34: Listing of Example 13 - lines 400-530.

Main Animation Loop We have reached the last section of
this program. All it does is watch the keyboard, accept S PEED values,
and POKE them into SCRLSTE P.

Before running this program, make sure you have saved it on disk or
cassette! We wouldn't want you to lose all that work! Forthe first run, set
LIN ELEN (in line 5030) to 48. You won't get much variety in houses,
but you won't have to wait as long to see your results. The screen will
flash to black for a few seconds, then to light blue for about 15 seconds.
Appearing next will be the clouds, the sidewalk, and then the first house
and tree, on the far left side of the screen. After the visible screen is
covered, it will be copied over to the end of the scrolling window. Don't
be alarmed when the houses first appear in gray and white and there is no
grass or street - the interrupts aren't turned on until the entire street has
been completed. The screen will then spring into full color and start
rolling by! Press RESET when you have finished admiring your work, and
set up a longer scrolling window (160 is a good number to use). Just
remember that the wider it is, the longer you'll have to wait forthe action
to begin.

Try changing the speed. Notice that when you press down on a key,
there is sometimes a slight jump at the color border between DU. This is
because the computer's interior speaker interferes with the DU timing.
The only way to avoid it is by not acknowledging keyboard input (don't
use the GET command), or avoid using the keyboard as the input device.

Modifications
1. Use the paddles to change the speed rather than the keyboard. This
will eliminate the DU jump upon keypress.

2. To save memory space and set-up time, save the entire screen to disk.
Then, replace the street drawing code with a routine to read that disk
file back into screen memory.

3. Experiment with creating a scrolling window in a different graphics
mode. Be sure to set S CRLCLK to the correct color value.

4. The scrolling background would make a perfect backdrop for many
arcade type games (e.g., Defender or racing-type games). Think of
the current crop of games, and see if you can come up with any ideas
of your own.

Summary

You have now successfully implemented two more very powerful
ATARI features into a program. We are about to enter the last stage of
this book, combining all the best features into one climactic program, the
Great Movie Cartoon.

9.3. THE GREAT MOVIE CARTOON

As you continue your trip through the Sunday morning suburbs you
suddenly notice a few very large trees passing by. They are on the curb so
they seem to pass faster than the houses in the background. Then the
sound of traffic reaches your ears. When you realize that you are going
very slowly, you triple your speed. Occasionally, a man appears, walk-
ing on the sidewalk. It seems the town has awakened.

Well, this is it - the moment you have been waiting for. It is now
time to merge Examples 12 and 13 to create the final program in this
book, the Great Movie Cartoon. This process is really very simple. Just
delete six lines, modify fourteen lines and add one! That's all!

Example 14

Exercise Merge the last two program examples, 12 (Player
Foreground Demo) and 13 (Scrolling Street Scene) into one program.
Use the same keyboard routine to change the speed of the display.

Creating a Scrolling Background / 383

a) (continued)

384 I Creating a Scrolling Background

b)

c)

d)

Photo 9.4: Screen photos of the Great Movie Cartoon.

There are just ten simple steps you must follow to merge Examples
12 and 13. For everything to work properly, it is essential that all the lines
and line numbers were entered exactly as given in the book.

As we mentioned in Chapter 7, every time a variable is entered into a
program, it takes up residence in the variable name table. This wouldn't
be much of a problem except for two facts: I) There can be no more than
128 different variable names in an ATARI BASIC program, and 2) the
Great Movie Cartoon has exactly 128 different variable names. If there is
one extra variable name in the table, you will get an error (ERR0 R 4)
while trying to merge Examples 12 and 13. An extra variable may have
sneaked its way in while you were entering the programs. Ifyou mistyped
any of the variable names and pressed RETURN, that name would remain

in the variable table. The method to clear the extra entries from the
variable name table is to LIST the program to disk or cassette, type
NEW, and ENTER the program back into memory. Here are the steps to
follow to create Example 14:

I. Load Example 13 into memory.
2. Delete the following lines:

340 480 500 520
3. LIST the program into a temporary file:

Creating a Scrolling Background I 385

LIST "D:TEMP"
LIST "C:"

for disk
for cassette

4. Load Example 12 into memory.
5. LIS T the program onto disk or cassette as in step 3, but use a
different file:

LIST "D:E>(12"
LIST "C:"

for disk
for cassette

6. Type NEW, and ENTER the program back into memory:

ENTER "D:EX12"
ENTER "C:"

for disk
for cassette

7. Delete the following lines:
300 7080

8. Merge the temporary file into the program in memory:

ENTER "D:TEMP"
ENTER "C:"

9. Modify the following highlighted lines:

for disk
for cassette

250 POKE'756,HICHRB: REMSwitch to Street set
iWiGosuJ._·IJ[::."'II!•• ••[Ii!'LL1:lI!!Ii__ttlUil'iii!

GOSUB 3000: REM Create a street

Figure 9.35: Listing of Example 14 - lines 10-50, 250-270.

Line 260 now enables PM graphics as well as turning the screen
DMA back on and setting it to a wide playfield.

386 / Creating a Scrolling Background

* 1000 REM PARAMETERS FOR PLAYERS

Figure 9.36: Listing of Example 14 - lines 1000, 1040, 1140, 1230, 1350.

These lines reset the vertical position for the four objects: the man,
the trees, the trucks, and the cars. They must now be positioned properly
on the sidewalk, the street, or the grass.

5000 REM Set Up Memory Locations
5010 DIF=O
5020 DLSZE:o::34: REMDisplay List sizs
5030 LINELEN=160: REMHOr1zontallength of scrolling window
5040 SCRNSZE=6*24+LINELEN*6: REMScreen size

REM to reserve for DL and Screen

Figure 9.37: Listing of Example 14 - lines 5000-5060.

The RES TORE must be added to line 5060 to REA 0 information
on the players.

hies

Figure 9.38: Listing of Example 14 - lines 7000-7010, 8000-8010.

Line 70 lOis changed so player RAM resides in the I K section of
memory directly below screen memory. Recall that the players use the
upper two pages (512 bytes) of this I K section and that the missiles use
part of the second page. Since we are not using missiles, the first two
pages can be used to store the character set (line 8010), which also
requires only 512 bytes.

10000 REM R._d in FrAlTle Da.:ta.

Figure 9.39: Listing of Example 14 - lines 10000-10010.

The RES TOR E 2 1000 statement is added to line 100 I0 to again
reset the READ pointers.

13000 REM In.-tall In1:errup-t Rou1:ines
13010 POKE CRITICAL,I: REM Open CRITICAL "valve", set up detllUT
13020 X=SCROU+61

G05UB 110
13030 POKE VVBLKO,LOBYTE: REM Set VBLANK vector to SCROU
13040 POKE VVBLKO+I,HIBYTE
13050 X=OLIROUT+6:

GOSUB 110
13060 POKE SCROU+4,LOBYTEl REM Point. SCROLL to OLIROUT
13070 POKE SCROLL+5,HIBYTE
13080 X=PMOVER+61

GOSUB 110

G05UB 110
13120 POKE PMOVER+4,LOBYTEl REM Point. PMOVER to ANIMATE
13130 POKE PMOVER+5,HIBYTE
13140 X=AUTOMOVE+61

GOSUB 110
13150 POKE ANIMATE+4,LOBYTE: REM Point. ANIMATE to AUTOMOVE
13160 POKE ANIMATE+5,HIBYTE
13170 POKE CRITICAL,O: REM Close CRITICAL ·valve", routines installed
13180 POKE SCRLINIT,I
13190 POKE 54286,192: REM Enable OLI'.
13200 RETURN

Figure 9.40: Listing of Example 14 - lines 13000-13200.

PM 0 1,J ER must now be connected to the previous routine,
DL I R0 UT, rather than I,ll,'BLKD. Now all the routines are chained
together.

10. Add the following new line:

700 REM Set Horizonta.1 Velocities
710 IF OBJECT=3 THEN

NSPO=128-SPEEO*2:
GOTO 740: REM Tree

720 IF OBJECT=4 THEN
NSPD=125-SPEEO:
GOTO 740: REM Truck

730 NSPD=13Z-SPEEO: REM Car
740 POKE MOVERATE(Z),NSPD:

POKE MOVERATE(3),NSPD:
TEMP=LST2P

750 POKE MOVERATEW),129-SPEED:
POKE MOVERATE(ll,129-SPEEDl
IF WALK=-l THEN
TEMP=ALLP

790 REM

Figure 9.41: Listing of Example 14 - lines 700-790.

In line 770, S CR0 LL receives the new S PEEDby POKEing it into
SCRLSTEP.

Are you ready to run the culmination of all that code entry? Make
sure you have saved the program first and that LIN ELEN is a small

Creating a Scrolling Background I 387

388 / Creating a Scrolling Background

value to start. Then RUN the program and sit back and enjoy. Remember
that there is quite a bit more initialization than before, so don't panic. The
screen will remain light blue for about 40 seconds before the first cloud
appears on the horizon. May it be a cloud of joy.

Commercially Available Software - Scrolling and DLIs

There are currently two main uses for scrolling in games. One is to
create a playing area or map that is much larger than the screen. Then the
television screen becomes a moving window into this larger universe.
The games Match Racer, The Adventures of Farnsworth, Caverns of
Mars, and Eastern Front use scrolling in this manner. The second tech-
nique is to move a band of figures across the screen (usually in a
horizontal direction). This method is used in Embargo, Chicken, and all
the Frogger look alikes.

In Match Racer (by Bill Hooper, Solitaire Group, distributed by
Gebelli Software, Inc.), the background consists of a race track with a
number of obstacles. There are a total of eight different track sections that
are randomly combined to make a continuous race track. A GRAPHIe S
2 redefined character set is used for these backgrounds. Racing on the
tracks are two cars (when two people are playing the game), each of
which is made of two players. The priority control (GPRIO R) is set to
allow multi-colored players (see Chapter 7 on priority control), so each
car has three colors (the third being a result of the combination of each
player's color). The odometer numbers at the bottom of the screen are
created with redefined GRAPHIe S 0 characters. Also at the bottom of
the screen, all four missiles are used to display the current speed. The
collision registers are used to determine when a race car collides with a
wall or other object.

a)

b)

Photo 9.5: Screen photos of Match Racer. (Copyright (c) 1981 by Gebelli
Software, Inc.)

A perfect application for scrolling is in an adventure game. The
entire game universe fits into memory, and the explorer can view only a
portion of it at any time. This is the technique used in The Adventures of
Farnsworth (by Doctor Goodcode , Gebelli Software, Inc.). You get to
control Farnsworth, the little man with the red hat, moving him around
the castle and adjoining maze as he fights off evil characters and bats,
while searching for treasures. The background is made of a GRAP HIeS
2 character set. All the figures are made of players.

a)

b)

Photo 9.6: Screen photos of The Adventures of Farnsworth. (Copyright (c)
1982 by Gebelli Software, Inc.)

Creating a Scrolling Background I 389

390 / Creating a Scrolling Background

In Caverns of Mars (by Greg Christensen, ATARI, Inc., CX8130),
the scrolling background was created in GRAPHIeS 7. The object of
this game is to make it through a number of levels of the Martian cavern
defense system to activate a fusion bomb, leveling Martian Headquar-
cers. Your fighter ship is a player and your laser torpedoes are missiles.

Photo 9.7: Screen photo of Caverns of Mars. (Copyright (c) 1982 by ATARI, Inc.).

We mentioned the game Eastern Front (1941) (by Chris Crawford,
ATARI cartridge RX8039) earlier in this chapter. It was one of the first
games to make use of fine scrolling on the ATARI Home Computer.
(Chris probably knows more about how to push the ATARI Home
Computer to its limits than any other programmer.) This game is a
simulation of Operation Barbarossa, the German invasion of Russia
towards the beginning of World War II. You control the German troops
and the computer controls the Russians. The map of Russia (about ten
screens large) was created entirely in GRAP HIe S 2 with two separate
character sets. The second character set (as well as some new colors) is
enabled during a DLI. This was rather difficult, since the mode line on
which to make this switch changes as the map is scrolled up and down.
Players are used for the cursor (the large pink square), the cross, and
pointers (arrows, not pictured here). As you move the cursor to one of the
edges of the screen, the entire map scrolls to reveal other portions. As the
seasons change, so does the background - from brown (summer) to gray
(muddy fall) to white (winter). Chris used vertical blank interrupts in a
most ingenious way - to have the computer calculate its next move. The
computer starts off with a rough guess and then refines it during each
successive VBI until the human finally presses the START key. The
longer the human takes to make a decision, the more time the computer
gets to perfect its strategy!

a)

b)

Photo 9.8: Screen photos of Eastern Front (1941). (Copyright (c) 1981 by Chris
Crawford.)

The second use of fine scrolling makes a number of playfield objects
fly across the screen. The game Embargo (by Bill Hooper, Solitaire
Group, distributed by Gebelli Software, Inc.) has a beautifully laid out
screen with four bands of Antic 4 ships that move horizontally across the
screen. The object of the game is to fly your light blue ship (a player) past
the blockade, pick up supplies (a player) on the ground, and then
transport them to your mother ship (upper left of screen, Antic 4). To
make things more difficult, a small brown enemy ship (another player)
flies around trying to shoot you. The ships at the very bottom of the
screen that show how many turns are left are also players. As many as
nine players can appear on the screen simultaneously using Dl.l 's to
move them to a new position. All the objects on the ground arc made from
map mode Antic E. Dl.l 's are also used to obtain the extra colors on the
screen.

Creating a Scrolling Background I 391

392 / Creating a Scrolling Background

a)

b)

Photo 9.9: Screen photos of Embargo. (Copyright (c) 1981 by Gebelli Software,
Inc.)

Finally, there is the delightful game called Chicken (by Mike Potter,
Synapse Software). The object of the game is to catch in your wheelbar-
row all the eggs that the fox is throwing down at you (the chicken). If you
miss an egg, it breaks open and a chick pops out. Then, if you are clumsy
enough to step on a chick, the farmer runs out and kicks you off the
screen. The sifter is made of three bars of GRAPHIe S 0 characters
using artifacts for the color. Each bar randomly scrolls back and forth,
sifting the eggs down. The fox (standing on top of the sifter), the chicken,
the red of the wheelbarrow, the blue of the wheelbarrow, and the farmer
are all players. The eggs and chicks are redefined GRAPHIe S 0
characters.

Photo 9.10: Screen photo of Chicken. (Copyright (c) 1982 by Synapse Software.)

Summary

Congratulations ! You are now a graduate of our course on Personal
Computer Animation. The programs in this book are intended as a
jumping off place, and we would be thrilled if you will take what you
have learned and apply it in some heretofore unseen examples of extraor-
dinary animation. Part of our reason for doing this book was indeed
selfish. As more of you can implement animation on a personal com-
puter, two things will happen: I) Fabulous new games will begin emerg-
ing on the computers that exist today, and 2) there will be a demand on the
manufacturers of microcomputers to continue making rapid technologi-
cal advances in their products until they match the power of today' s ten
million dollar real-time simulation computers. In the meantime, enjoy
your personal animation machine!

Creating a Scrolling Background I 393

Film I
This is the Running Boy from our

ATARI program, Example II.

394 / Creating a Scrolling Background

Appendix A

Complete Listings ofBASIC Program
Examples

The following is a compilation of all listings from Chapters 5
through 9, reproduced in larger detail for easier reference.

10 REM *** FLYING BIRD ***
20 REM Example 1
30 REM
40 REMDemonstration of Character Set Animation using Atari's built-in graphics characters
50 REMCopyright eCl 1982 by David Fox and Mitchell Waite
60 REM
100 REM Ini-tialize
110 DIM BIRD1f(17l,BIRD2f(17l,BIRD3$(16l,BIRD4f(16l
120 BIRD1$="<DOWN:al{F}{T}{G)M<DOWN){S LEFT){F)MMM(G)"
130 BIRD2$="<OOWN}{F){M){T}{M){G)<DOWN){S LEFT)MMMMM"
140 LEFT){2 M){T}{2 M)"
150 LEFT)M<M){T){M)M"
160 POKE 752,1
170 PRINT "{CLEAR>"
180 REM
200 REM Anima-tion Loop
210 FOR I=l TO 6
220 POSITION 17,10
230 ON I GOSUB 310,320,330,340,330,320
240 FOR W=l TO 2S:

NEXT W: REMPause
250 NEXT I
260 GOTO 210
270 REM
300 REM Dra.""", Frame
310 PRINT BIRD1$;:

RETURN
320 PRINT BIRD2$;:

RETURN
330 PRINT BIRD3$;:

RETURN
340 PRINT BIRD4$;:

RETURN

10 REM WALKING l"1:AN CHARACTER SET
20 REM Example 2
30 REM
40 REMDemonstration of user-defined character set
50 REMCopyright eCl 1982 by David Fox and Mitchell Waite
60 REM

Appendix A I 395

396 I Appendix A

100
110
120
130
140
150
160
170
180
190
200
210
220
230

240
250
300
310
320
330
340

350

360

370
380

390
400
410

420
430
8000
8010
8020
8030
8040

8060

8070
8080

8090
8100

8110
8120
8130
8140
8150
8160
20000

REM Initialize
FRAMES=5: REM Number of frames
FRMSZE=12: REM Characters in frame (including cursor control chars)
DIM MAN$(FRAMES*FRMSZEl,FRAME$(FRMSZEl,ERASE$(7l
MAN$="r!a<DOWN}{2 LEFT}bc<DOWN}{2 LEFT}der!f{DOWN}{2 LEFT}gh<DOWN}{2 LEFT}ij"
MAN$(25)="r!k<DOWN}{2 LEFT}lm<DOWN}{2 LEFT}nopq<DOWN}{2 LEFT}rsCDOWN}{2 LEFT)tr!"
MAN$(49l="uv<DOWN}{2 LEFT}wxCDOWN}{2 LEFT}yz"
ERASE$="r!{LEFT}{UP}r!{LEFT}{UP}r!"
GRAPHICS 0
POKE 752,1: REM Turn off cursor
PRINT "One moment please.....
GOSUB 8000: REM Read in Character Set
PRINT "{CLEAR}"
SETCOLOR 1,0,14:
SETCOLOR 2,1,2
POKE 756,HICHRB: REM Switch to new Char Set
REM
REM Animation Loop
X=3: REM Set starting horizontal position of Man
FOR 1=1 TO FRAMES

FRAME$=MAN$(!* FRMSZE-(FRMSZE-l),1*FRMSZEl
POSITION X,14:
PRINT ERASE$:FRAME$:
IF 1=1 THEN
SOUND 1,0,0,14: REM Footsteps

IF 1=2 THEN
SOUND 1,24,0,14

SOUND 1,0,0,0: REM Turn off sound
FOR W=l TO 10:
NEXT W: REM Slow him down a little

NEXT I
REM Walk man across screen if Joystick button is down
IF STRIG(o)=O THEN
X=X+1:
IF X=36 THEN
PRINT "{CLEAID":
GOTO 310

GOTO 320
REM
REM Set Up Alternate Character Set
HICHRB=PEEK(106)-8: REM Reserve memory space <1024bytes) below screen
CHRBAS=HICHRB*256: REM Find start of Character Set
REM Read in data, skip first 97 characters
OFFSET=97*8:
CHARS=26
READ TOTAL:
TEMP=O
FOR I=CHRBAS+OFFSET TO CHRBAS+OFFSET+CHARS*8-1

READ BYTE:
POKE I,BYTE:
TEMP=TEMP+BYTE

NEXT I
IF TOTALOTEMP THEN
GRAPHICS 0:
PRINT "ERROR In Character Set Data":
END

REM Clear out first char (background)
FOR I=CHRBAS TO CHRBAS+7

POKE 1,0
NEXT I
RETURN
REM
REM Character Set Data

GALLOPJ:NG HORSE DEMO
Example 3

20010
20020
20030
20040
20050
20060
20070
20080
20090
20100
20110
20120
20130
20140
20150
20160
20170
20180
20190
20200
20210
20220
20230
20240
20250
20260
20270
20280
20290
20300
20310
20320
20330
20340
20350
20360
20370
20380

10
20
30
40
50
60
100
110
120
130
140
150
160
170
180

190
200
210
220
230

REM • Checksum
DATA 16845
REM
REM. Frame 1
DATA 0,0,0,0,0,0,28,62
DATA 0,0,0,0,3,15,29,59
DATA 62,62,28,240,240,240,240,251
DATA 51,7,7,15,252,224,112,48
DATA 255,220,192,192,227,118,60,24
REM
REM. Frame 2
DATA 0,0,0,0,0,0,0,56
DATA 0,0,0,0,1,7,15,31
DATA 124,124,124,56,224,224,224,224
DATA 55,55,7,111,125,248,192,65
DATA 246,254,192,128,192,224,224,248
REM
REM. Frame 3
DATA 0,0,0,0,0,0,112,248
DATA 0,0,0,3,7,15,31,31
DATA 248,248,112,192,192,128,128,128
DATA 31,31,222,254,251,231,206,15
DATA 224,224,0,0,0,0,0,128
REM
REM. Frame 4
DATA 0,0,0,0,0,1,3,3
DATA 0,0,0,0,0,192,224,224
DATA 3,1,7,15,31,30,62,62
DATA 224,192,0,0,0,0,0,0
DATA 63,63,60,124,120,112,112,252
REM
REM. Frame 5
DATA 0,0,0,0,0,0,0,1
DATA 0,0,0,0,0,0,224,240
DATA 1,1,0,7,31,31,31,31
DATA 240,240,224,128,128,128,128,176
DATA 31,15,15,13,31,123,112,124
DATA 240,0,128,192,128,192,128,0

REM
REM
REM
REMExample using the technique of flipping through multiple character sets
REMCopyright IC) 1982 by David Fox and Mitchell Waite
REM
REM J:ni1::ialize
FRAMES=5: REM Number of frames
DIM HICHRBIFRAMES)
GRAPHICS 0
POKE 752,1: REM Turn off cursor
PRINT "On. moment plu;
(JOSUB 8000: REM Read in Charact.r S.t
PRINT "(CLEAIU"
SETCOLOR 1,0,2:
SETCOLOR 2,1,10:
SETCOLOR 4,1,10
POKE 756,HICHRBl1>: REMSwitch to Frame 1 Char Set
REM Fill Scr••n Wi1:: h Hor•••
FOR Y·O TO 20 STEP 4
FOR X"2 TO 32 STEP 6
POSITION X,y:
PRINT "IfWifabc"

Appendix A I 397

398 I Appendix A

240

260

270
280
290
300
310
320
330

340

350
360
370
8000
8010
8020

8030

8040
8050
8060
8070
8080
8090

8100
8110
8120
8130
8140

8160
8170

8180
8190
20000
20010
20020
20030
20040

20060
20070
20080
20090
20100
20110
20120
20130
20140

POSITION x.r-u
PRINT "defghi"
POSITION X,Y+2t
PRINT "jklmno"
POSITION X,Y+3:
PRINT ·Pllrstu";

NEXT X
NEXTY
REM
REM Anirn&1:ion Loop
FOR 1-1 TO FRAMES
POKE
IF 103 THEN
SO'l1ND 0,0,8,10:
SO'l1ND 0,0,0,0: REMHccf Buts

FOR W=1 TO PADDLE(Olt
NEXTW: REM '1158 15 if you don't have paddles

NEXT I
GOTO 310
REM
REM S.1: Up Al1:erna,1:. Charac:1:.r S.1:
HICHRB=PEEIC(106)-24: REMRltserve mem spac:. X 1024 bytes) below ser..n
OFFSET=97*8:
CHARS=21
READTOTAL:
TEMr-O
FOR J=l TO FRAMES
HICHRB(JI=HICHRB+4*(J-11l REMFind start of Sets
REMRead in data, skip first 97 characters
CHRBAS=HICHRB(J>*256
FOR I=CHRBAS+OFFSETTO CHRBAS+OFFSET+CHARS*8-1
READ BYTE:
POKE I,BYTE:
TEMP=TEMP+BYTE

NEXT I
REMClear out first char (background>
FOR I-CHRBAS TO CHRBAS+7
POKE 1,0

NEXT I
PRINT ",";

NEXTJ
IF TOTAL(>TEMP THEN
QRAPHICS 01
PRINT "ERROR In Character Set Data"l
END

RET'I1RN
REM
REM Hor•• Ch.r&c:1:.r S.1: D.1:&
REM , Checksum
DATA46921
REM
REMFrame 1
DATA
DATA
DATA
DATA 103,99,207,223,243,224,192,192,128,128
DATA
DATA 1,1,0,0,0,0,0,0,193,128,0,0,0,0,0,0,192,224,112,24,28,0,0,0
DATA
REM
REMFrame 2
DATA 0,0,0,1,5,8,59,87,0,8,12,190,121,248,252,191,0,0,0,0,0,128,32,208
DATA 0,0,3,7,1 5,29,0,0,0,7

Appendix A I 399

20160 DATA255,1,0,0,4,28,252,184,187,184,48,16,16,16,48,240,144,192,0,0,0,0,0,0
20170 DATA0,0,0,0,0,0,0,0,15,15,62,60,56,236,204,198,255,143,0,0,0,0,0,0
20180 DATA248,255,31,6O,48,112,96,192,28,254,6,12,S6,48,0,0,0,0,0,0,0,0,0,0
20190 DATA0,0,0,0,0,0,0,0,220,216,192,96,112,0,0,0,1 ,1,1,0,0,0,0,0
20200 DATA0,0
20210 REM
20220 REMFrame 3
20230 DATA0,0,0,0,0,1 ,0,63,0,0,2,3,62,239,223,127,0,0,0,0,128,192,32,16
20240 DATA0,0,0,3,15,63,10,0,0,0,3,252,200,12,31,31,0,0,255,24 ,48,124,56,255
20250 DATA 23,2S5,128,0,0,56,126,2S5,247,238,252,20,8,24,16,16,196,108,48,0,0,0,0,0
20260 DATA 0,0,0,0,0,1,3,6,31,31,61,121,243,195,1,0,191 ,224,224,192,128,0,128,96
20270 DATA254,254,7,7,14,12,24,112,S6,7 ,255,0,0,0,0,0,0,128,192,192,192,192,192,128
20280 OATA 12,24,24,56,24,0,0,0,0,0,0,0,0,0,0,0,51 ,62,0,0,0,0,0,0
20290 OATA 192,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
20300 REM
20310 REMFrame 4
20320 DATA0,0,0,0,0,0,0,1,0,0,6,118,155,127,247,231,0,0,0,0,0,0,128,32
20330 DATA0,0,0,3,7,10,0,0,0,0,3,255,204,141 ,15,14,0,0,252,127,16,239,63,111
20340 DATA 1,11,29,224,0,12,142,220,127,255,254,122,30,12,4,68,8,252,204,32,0,0,0,0
20350 DATA 0,0,0,0,0,0,1,3,13,15,15,63,248,224,128,0,159,127,248,56,24,24,56,28
20360 DATA252,255,63,1,1 ,0,112,63,124,196,243,255,199,192,192,192,0,0,0,128,192,192,96,48
20370 DATA 118,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6.1,0,0,0,0,0,0
20380 DATA0,128,192,192,0,0,0,0,0,0,0,0,0,0,0,0,24,0,0,0,0,0,0,0
20390 REM
20400 REMFrame 5
20410 DATA0,0,0,6,15,30,28,61,48,56,254,231 ,227,255,253,255,0,0,0,0,128,32,144,232
20420 DATA0,1,3,7,13,0,0,0,3,255,232,78,142,15,7,15,255,124,80,24,60,247,239,159
20430 DATA 255,63,12,0,0,0,241 ,4,252,28,56,56,24,16,208,112,216,64,0,0,0,0,0,0
20440 DATA0,0,1,1,3,3,118,60,60,255,240,128,0,0,0,0,112,240,112,48,56,24,12,6
20450 DATA255,1,12,6,3,1 ,0,0,48,240,120,S6,124,198,3,1 ,0,0,0,0,0,0,0,128
20460 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0
20470 DATA0,192,224,0,0,0,0,0,0,0,0,0,0,0,0,0,192,112,56,0,0,0,0,0

10 REM *** EXPLOD1:NG EOME PROGRAM ***
20 REM Ex&mpIe 4
30 REMProgram to demonstrate the three color text mode - ANTIC 4
40 REMCopyright ICl 1982 by David Fox and Mitchell Waite
50 OOTO 110
60 REM Hi-sp.ed Subrou'tin••
70 SOUND0,RND(0)*150+30,0,VOLl

SOUND1,RNDIOl*80+175,2,VOL:
SOUND2,RNDIO)*150+30,8,VOL:
RETURN I REMSound

80 FOR I=l TO 10:
POKE 712,RND(0)*2551

NEXT II
POKE 712,01
RETURN I REM Flash

90 SETCOLOR0,4,LUM(0)1
SETCOLOR1,2,LUM(l)l
SETCOLOR2,1,LUM(2)1
RETURN: REMColor

100 REM 1:n i'tia.lize
110 FRAMES=41 REMNumber of frames
120 FRMSZE-71 REMCharacters in frame <including cursor control chars)
130 DIM EXPU(FRAMES*FRMSZEl,FRAMEt(FRMSZE),LUM(2l
140 EXPU-"ab(OOWN)(2 LEFT>c:def(DOWN)(2LEFT>ghij<DOWNH2 LEFT>klmn<DOWNH2 LEFT)op"
160 GRAPHICS 0
170 POKE 752,11 REMTurn off cursor
180 PRINT "One moment please... "
200 GOSUB80001 REMRead in Character Set
210 PRINT "(CLEAR>"

400 I Appendix A

220 GOSUP 6000: REMAlter Display List
230 POKE 756,HICHRB: REMSwitch to new Char Set
240 REM
300 REM Anima'tion Loop
310 LUM(0)=6:

LUM<1l=8:
LUM(2)=12:
VOL=14

320 GOSUB600: REMFalling Bomb
330 GOSUB90: REMSet colors
340 GOSUB70: REMTurn on sound
350 GOSUB80: REMFlash background
360 FOR 1=1 TO FRAMES
370 FRAME$=EXPU(I*FRMSZE-(FRMSZE-l),I*FRMSZE)
3S0 POSITION X,Y:

PRINT FRAME$;
390 GOSUB 70: REMChange sound
400 NEXT I
410 FOR J=O TO 2: REMFade out explosion
420 LUM(J)=LUM(J)-2
430 IF LUM(JKO THEN

LUM(J)=O
440 NEXT J
450 GOSUB90
460 VOL=VOL-ll

GOSUB70: REM Fade sound
470 IF LUM(2)>0THEN 410
4S0 PRINT "{CLEAR}"
490 IF VOL)O THEN

VOL=VOL-l:
GOSUB70:
GOTO 490: REMFade sound off

500 FOR W=1 TO INT(RND(0l*400+50):
NEXTW: REMRandom pause

510 GOTO 310
520 REM
600 REM Fa.lling Bomb
610 SETCOLOR0,3,S:

SETCOLOR 1,7,6:
SETCOLOR2,5,6

620 X=INT(RND(0)*36+211
Y=INT(RND<O)*10+12): REMSelect random explosion point

630 FOR 1=0 TO Y-l
640 SOUND0,1*2+16,10,S
650 POSITION X,I:

PRINT "l!l{DOWNHLEFT)q";
660 SOUND0,1*2+17,10,S
670 NEXT I
6S0 PRINT "{CLEAR}":

SOUND0,0,0,0
690 RETURN
700 REM
6000 REM Modi-Fy Display Li5't
6010 DLIST=PEEK(560)+PEEK(561>*256: REMFind Display List
6020 POKE DLIST+3,6S: REMLMS byte plus 4 (line 1)
6030 FOR 1=6 TO 2S:

POKE DLIST+I,4:
NEXT I: REM Lines 2 through 24

6040 RETURN
6050 REM
SOOO REM Se't Up Al'terna'te Charac'ter Se't
SOlO HICHRB=PEEK(106)-S: REMReserve memory space (1024 bytes) below screen
S020 CHRBAS=HICHRB*256: REMFind start of Character Set

8030
8040

8060

8070
8080

8090
8100

8110
8120
8130
8140
8150
8160
20000
20010
20020
20030
20040
20050
20060
20070
20080
20090
20100
20110
20120
20130
20140
20150
20160
20170
20180
20190
20200
20210
20220
20230
20240
20250
20260
20270
20280
20290

10
20
30
40
50
60
70
80
90
100
110

REMRead in data, skip first 97 characters
OFFSET=97*8:
CHARS=17
READ TOTAL:
TEMP=O
FOR I=CHRBAS+OFFSET TO CHRBAS+OFFSET+CHARS*8-1
READ BYTE:
POKE I,BYTE:
TEMP=TEMP+BYTE

NEXT I
IF TOTALOTEMP THEN
GRAPHICS 0:
PRINT "ERROR In Character Set Data":
END

REMClear out first char (background)
FOR I=CHRBAS TO CHRBAS+7
POKE 1,0

NEXT I
RETURN
REM
REM C haY"acteY" Set Data
REM • Checksum
DATA 8264
REM
REM. Frame 1
DATA 0,0,0,0,3,50,10,2
DATA 0,0,0,0,16,128,128,176
DATA 58,10,2,1,3,0,0,0
DATA 160,172,196,64,0,0,0,0
REM
REM. Frame 2
DATA 0,0,0,8,2,43,11,3
DATA 0,0,0,0,32,180,192,224
DATA 11,3,15,24,32,64,0,0
DATA 232,192,48,32,16,0,0,0
REM
REM. Frame 3
DATA 0,0,0,65,17,34,43,11
DATA 0,0,16,32,128,208,228,249
DATA 27,91,26,2,10,8,24,0
DATA 228,208,192,160,16,4,4,0
REM
REM. Frame 4
DATA 64,80,20,25,26,10,91,27
DATA 133,132,152,168,96,228,229,245
DATA 11,27,106,86,2,10,5,4
DATA 228,208,164,182,165,32,20,4
REM
REM • Bomb
DATA 20,215,215,60,60,60,40,40

REM *** MOVING COLOR CURTAIN ***
REM Examp1e 5
REM
REMProgram to demonstrate Color Register Animation in GRAPHICS 10
REM (GTIA chip required)
REMCopyright (C) 1982 by David Fox and Mitchell Waite
REM
GOTO 200
REM
REM Rotate Co1oY" RegisteY"s
TEMP=PEEIC(705)

Appendix A I 401

402 / Appendix A

120 FOR 1=705 TO 711:
POKE I,PEEKII+ll:

NEXT I: REMRotate colors
130 POKE 712,TEMP:

GOTO 110
140 REM
200 REM Ini'tia.lize
210 GRAPHICS 10: REMGTIA Mode - 80 X 192 with 9 color registers
220 COL=ll

LUM=8: REMSet starting COLor Register &LUMinance values
230 REM
240 REMSet initial colors
250 POKE 704,0: REMBackground to black
260 FOR 1=1 TO 8: REMOther registers to different colors
270 POKE 704+I,I*16+LUM
280 NEXT I
290 REM
300 REM Dr...,., :aars, Incremen't COLOR
310 FOR 1=0 TO 79
320 COLORCOL
330 PLOT 1,0:

DRAWTO 1,191
340 IF 1<40 THEN

COL=COL-ll
IF COL=O THEN
COL=S

350 IF 1)-40 THEN
COL-COL+ll
IF COL-9 THEN
COL=l

360 NEXT I
370 GOTO 100

10 REM *** THE TREMCH ***
20 REM ExampIe 6
30 REM
40 REMProgram to create the illusion of flying through a trench by rotating
50 REMthe Color Registers in GRAPHICS 7
60 REMCopyright Ie) 19S2 by David Fox and Mitchell Waite
70 REM
SO GOTO200
90 REM
100 REM Ro'ta'te 'the Colors
110 SOUND3,255,0,S: REMBackground roar lalways on)
120 REMIf the trigger on PADDLE 0 is pressed, reverse the direction
130 IF PTRIGIO)=l THEN

TEMP=PEEK(710):
POKE 710,PEEKI709J:
POKE 709,PEEKI70Sl:
POKE 70S,TEMP:
GOTO 150: REMNot pressed

140 TEMP=PEEK170S):
POKE 70S,PEEKI709J:
POKE 709,PEEKI710l:
POKE 710,TEMP: REMPressed

150 PDL=PADDLE(0)/5: REMSpeed and sound controlled by PADDLE 0
160 SOUNDO,PDL,O,S:

SOUND 1,PDL+SO,0,S:
SOUND2,PDL+160,0,S

170 FOR PAUSE=l TO PDL:
NEXTPAUSE

lS0 GOTO 130

190 REM
200 REM In i tialize
210 COL=1:

Y1=45:
Y2=49

220 REM
300 REM Draw Trenc:h on Sc:reen
310 GRAPHICS 7+16: REM Full screen graphics
320 SETCOLOR0,3,S: REMSet Color Register values
330 SETCOLOR 1,3,S
340 SETCOLOR2,3,4
350 FOR X=2 TO 79: REM Increment horizontal coordinates
360 COLOR INTICOL+0.5l: REMChoose which Color Register to draw with
370 PLOT X+SO,Y1:

DRAWTO X+SO,Y2:
DRAWTO 79-X,Y2:
DRAWTO 79-X,Y1

380 Yl=Yl-0.6:
Y2=Y2+0.6: REM Increase vertical line length

390 IF Y1(0 THEN
Yl=O: REM Prevent overflow

400 IF Y2>95 THEN
Y2=95

410 COL=COL+C79-X)/160: REM Increment Color Register
420 IF COL+0.5)=4 THEN

COL=COL-3
430 NEXT X
440 GOTO 100

10 REM *** FALL W A TERFALL ***
20 REM ExampIe 7
30 REM
40 REMDemonstration of animating a scene by rotating the Color Registers
50 REM <Uses GRAPHICS 10 - GTIA is neededl
60 REMCopyright ICl 19S2 by David Fox and Mitchell Waite
70 REM
80 GOTO 200
90 REM
100 REM Rotate the Colors
110 TEMP=PEEKI705l:

POKE 705,PEEKI706l:
POKE 706,PEEKI707>:
POKE 707,PEEKI70Sl:
POKE 70S,TEMP

120 FOR WT=l TO 5:
NEXT WT

130 GOTO 110
140 REM
200 REM Initialize
210 FILL=1300
220 GRAPHICS 10
230 POKE 704,9*16+10: REMSky - COLOR 0
240 POKE 705,S*16+10: REMWater - COLOR 1
250 POKE 706,S*16+S: REMWater - COLOR 2
260 POKE 707,S*16+6: REMWater - COLOR 3
270 sETCOLOR 0,S,4: REMWater - COLOR 4
2S0 SETCOLOR 1,12,4: REMTree shadow - COLOR 5
290 SETCOLOR 2,2,4: REMCliff & tree trunks - COLOR 6
300 SETCOLOR3,12,6: REMGrass - COLOR 7
310 SETCOLOR 4,3,6: REMTreetops - COLOR S
320 REM
400 REM Draw Grass and Cli-F-F

Appendix A I 403

404 / Appendix A

410 COLOR7:
POKE 76S,7: REMThe grass

420 PLOT 79,10:
DRAWTO 79,45:
Xl=7S:
Yl=10:
X2=66:
Y2=lS:
GOSUBFILL

430 Xl=6S:
Y1=lS:
X2=61:
Y2=lS:
GOSUBFILL:
Xl=60:
Yl=lS:
X2=56:
Y2=25:
GOSUBFILL

440 Xl=56:
Yl=25:
X2=6S:
Y2=3S:
GOSUBFILL:
Xl=66:
Yl=3S:
X2=78:
Y2=45:
GOSUBFILL

450 COLOR6:
POKE 765,6: REMThe diff

460 PLOT 79,46:
DRAWTO 79,145:
Xl=56:
Yl=26:
X2=56:
Y2=117:
GOSUBFILL

470 Yl=117:
X2=68:
Y2=132:
GOSUBFILL:
X1=68:
Y1=132:
X2=78:
Y2=145:
GOSUBFILL

480 COLOR7:
POKE 765,7: REMMore grass

490 PLOT 0,1911
DRAWTO 79,191:
DRAWTO 79,146:
X1=0:
Y1=1911
X2=0:
Y2=911
GOSUBFILL

SOO REM Ora""" the Fa11s and River
510 FALL=58:

CFLAG=O: REMDraw the river on top of the diff
520 FOR Y=25 TO 34
530 GOSUB lS00
540 FOR X=79 TO FALL STEP-l

550 COLORCOL
560 PLOT X,Y
570 COL=COL-ll

IF COL=O THEN
COL=4

580 NEXT X
590 FALL=FALL+1
60Q NEXT Y
610 FALL=O:

CFLAG=-1: REMDraw the falls
620 FOR X=58 TO 66
630 FALL=FALL+1
640 GOSUB 1500
650 PLOT X,25+FALL
660 FOR Y=30 TO 120 STEP 4
670 COLOR COL
680 DRAWTO X,Y+FALL
690 COL=COL-ll

IF COL=O THEN
COL=4

700 NEXT Y:
NEXT X

710 COLOR 61
PLOT S8,281
DRAWTO S8,2SI
DRAWTO S9,2SI
PLOT 66,381
DRAWTO 66,1291 REMCleanup

720 COLOR 71
PLOT 73,331
DRAWTO 79,331
PLOT 68,341
DRAWTO 79,34

730 FALL-S71
CFLAG-lI REMDraw the river on the valley floor

740 FOR Y-121 TO 128
7S0 GOSUB 1SOO
760 FOR X-PALL TO 0 STEP-1
no COLOR COL
780 PLOT X,Y
790 COL-COL-ll

IP COLaOTHEN
COL-4

800 NEXT X
810 FALL-PALL+l
820 NEXT Y
830 REM
900 REM Dr.......... Trees
910 FOR T=1 TO 11
920 READ X,Y
930 COLOR8: REMTreetop
940 FOR 1=0 TO 2:

PLOT X-I,Y-40+2*I:
DRAWTO X-I,Y-20-2*I:

NEXT I
950 FOR 1=-2 TO -1:

PLOT X-I,Y-40-2*I:
DRAWTO X-I,Y-20+2*I:

NEXT I
960 COLOR 6: REMTree trunk
970 PLOT X,Y:

DRAWTO X,Y-21
980 COLOR 5: REMShadow of tr..

Appendix A / 405

406 / Appendix A

990 PLOT X,Y+l:
DRAWTO X+7,Y+4:
PLOT X+8,Y+3:
DRAWTO X+8,Y+5:
DRAWTO X+9,Y+6

1000 DRAWTO X+9,Y+3:
DRAWTO X+l0,Y+3:
DRAWTO X+l0,Y+7

1010 PLOT X+ll,Y+7:
DRAWTO X+ll,Y+41
DRAWTO X+12,Y+5:
DRAWTO X+12,Y+7

1020 COLOR 8: REM Fallen leaves around tree trunk
1030 FOR 1'"'1 TO 15
1040 RX=X+INTIRND<1l*7)-3:

IF RX-X THEN 1040
1050 RY=Y+INTIRNDl1l*8)-3:

PLOT RX,RY
1060 NEXT I
1070 NEXT T
1080 REM
1100 REM Dra."'" -the Foa.m
1110 COLOR 0: REMSame color as the sky
1120 PLOT 57,114:

DRAWTO 65,122
1130 PLOT 57,115:

DRAWTO 65,123
1140 PLOT 57,116:

DRAWTO 65,124
1150 PLOT 56,116:

DRAWTO 65,125
1160 PLOT 56,117:

DRAWTO 65,126
1170 PLOT 56,118:

DRAWTO 65,127
1180 PLOT 56,119:

DRAWTO 65,128
1190 PLOT 55,119:

DRAWTO 64,128
1200 PLOT 55,120:

DRAWTO 63,128
1210 REM
1250 REM Turn on -the Sound
1260 FOR I=O TO 3:

SOUND I,1*50,0,8:
NEXT I

1270 GOTO 100
1280 REM
1300 REM Fi11 Subrou-tine
1310 PLOT xi.ru

POSITION X2,Y2:
XIO 18,1:6,0,0,"5:":
RETURN

1320 REM
1500 REM Choose Co1or
1510 COL=INT(RND<1l*4)+1l

IF COL=STARTCOL THEN 1510:REM No two adjacent strips with same color pattern
1520 STARTCOL=COL+CfLAG: REMCalculate next starting color to avoid
1530 IF 5TARTCOL=O THEN

5TARTCOL=4
1540 IF 5TARTCOL=5 THEN

5TARTCOL=1
1550 RETURN

Appendix A I 407

1560 REM
2000 REM Data -For Loc:ation o-F Trees
2010 DATA7,106,13,96,30,100,40,112,47,145,7,179,15,155,27,164,35,173,60,181,66,174

10 REM* BOUNCING BALL 1 PROGRAM ...* ...
20 REM Example 8
30 REM
40 REMProgram to demonstrate Player-Missile Graphics using string manipulation
50 REMCopyright ICI 1982 by David Fox and Mitchell Waite
60 REM
70 DIM PLRO$1128l:

GOTO 140: REMThis MUST be the first variable in the program
80 REM
100 REM Hi/Lo Byte Calc:ulation
110 HIBYTE=INTIXI2561: REMCalculate High Byte
120 LOBYTE=X-HIBYTE*256: REMCalculate Low Byte
130 RETURN
140 REM In i tialize
150 DIM BLANK$1128l,PLR(3l,HPLRI31
160 BLANIC$lll=CHR$(OI:

BLANIC$(1281=CHR$(QI:
BLANK$121=BLANX$: REMFill with blanks

170 GRAPHICS 3:
POKE 752,1:
PRINT "One moment please... ·: REMTurn off cursor, print message

190 GOSUB 5000: REMSet up memory locations
220 GOSUB 7000: REMSet up Player area
230 GOSUB 9000: REMPoint PLRO$ to Player 0 RAM
240 GOSUB10000: REMRead frames into RAM
300 PRINT
310 VEL=70:

ELASTIC=O.e
320 PRINT "Initial velocity: "IVEL:

PRINT "Elasticity: "IELASTICI
330 REM
400 REM Main Animation Loop
410 BOTTOM=911

XPOS=40:
TIME=0.5:
HORIZ=0.75

420 GOSUB 700: REMMove Player off screen
430 IF ELASTIC(=O.l THEN

SNDFLAG=l
440 YPOS=BOTTOM-IVEL*TIME-16*TIME*TIMEl:

FRMNO"l
450 IF YPOS)82 ANDVEL)30 THEN

FRMNO"2
460 IF YPOS)-BOTTOM THEN

YPOS-BOTTOM:
VEL-VEUELASTIC:
TIME-Ol
FRMNO-1:
IF VEL>14 THEN
FRMNO-3

470 IF XPOS>220OR YPOS(-1 THEN 600
480 POKE HPLRIO),XPOS
490 FRAMES-FRAMEMEMS«FRMNO-ll*FRMSIZE+1,FRMNO*FRMSlZEll REMSelect correct frame
SOO BUFFERS-BLANKS! REM Fill Buffer with blanks

BUFFERS(YPOS,YPOS+FRMSIZE-ll-FRAMESl REM Move current frame into buffer
520 PLROS.BUFFER., REMMove buffer into Player 0 RAM

XPOS.XPOS+HORIZ

408 / Appendix A

:540

550

560

570
600
610
620
630
640

650

660
670

680

690
700
710
730
740
5000
5100
5120
5130
5170
5360
5370
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7120
7130
9000
9010
9020
9030
9040

9050
9060
9070
90S0
10000
10090
10100

IF YPOS-SOTTOM AND IVEL+SHDFLAG)O.:5l THEN
SOUND 1,2:50,10,141
SNDFLAG=O:
SOUND1,0,0,0

IF VEL)0.5 THEN
TIME=TIME+0.15:
GOTO 440

HORIZ=HORIZ-0.01 :
IF HORIZ>O THEN
FRMNO=1:
ooT0470

REM
REM Gei: Paramei:ers -For Ball
GOSUB700
POKE 752,0: REMTurn on aJrsor
PRINT "(CLEAR>Enter initial velodty: .;
TRAP 630:
INPUT VEL
PRINT "Enter the ball's elastidty la number":
PRINT· from 0-1 [or more]l: ";
INPUT ELASTIC
POKE 752,1:
PRINT" a;: REMTurn off aJrsor
TRAP 40000:
GOTO 400
REM
REM Move Player 0 i:o Le-Fi: o-F Screen
POKE HPLRIOl,O
RETURN
REM
REM Sei: Up Memory Loca.i:ions
READ FRAMES,FRMSIZE,NUMPLRS
PLRFRMMEM=FRAMES*FRMSIZE
FRAMEMEM=PLRFRMMEM*NUMPLRS
DIM BUFFERSI128l,FRAME$IFRMSIZE),FRAMEMEMSIFRAMEMEMl
RETURN
REM
REM Inii:ialize Player-Missile Graphics
TEMP=PEEX1106l-S: REMSet aside Player-Missile area
POKE 54279,TEMP: REMTell ANTIC where PM RAM is
PMBASE=256*TEMP: REMFind PM Base address
FOR 1=0 TO 3
PLRIIl=PMBASE+128*I+512: REMSet addresses of Players
HPLRIIl=53248+I: REMHorizontal Player Position registers

NEXT I
POKE 559,42: REM Set PM 2 line resolution, Players enabled
POKE 704,12*16+8: REMColor ball green
POKE 53277,2: REMEnable Player display
RETURN
REM
REM Poin i: PLRO$ i:o Player 0 RAM
STARP=PEEKU40>+PEEKU41 l*256: REMStart of String Array area
VVTP=PEEJCU34l+PEE!CU35l*256: REMStart of Variable Value Table
OFFSET=PLRIOl-STARP: REMCalwlate offset from String Array to Player 0
X=OFFSET:
GOSUB 110
POKE VVTP+2,LOBYTE: REMPoke offset of string into Variable Value Table
POKE VVTP+3,HIBYTE: REMThis points the first string IPLROSl to PLRlOl
RETURN
REM
REM Read in Frame Dai:a
FOR J=1 TO PLRFRMMEM
READ BYTE

10110
10120
10130
10140
20000
20030
20040
20050
20060
21000
21010
21020
21030
21040
21050
21060

10
20
30
40
50
60
100
110
120
130
140
200
210
220
230
240
250

11600
11610
11620
11630
11640
26000
26010
26020
26030
26040
26050
26060
26070
26080
26090

Appendix A I 409

FRAMEMEM$(J ,J)=CHR$!BYTE)
NEXTJ
RETURN
REM
REM FRAME DATA
REM
REM Number of Frames, Frame Size, Number of Players
REM. (Bouncing Ball)
DATA 3,7,1
REM Frame Da-ta -For Bounting Ball
REM Frame 1
DATA 0,60,126,126,126,60,0
REM Frame 2
DATA 24,60,60,60,60,60,24
REM Frame 3
DATA 0,0,0,126,255,126,0

REM*** FLASH ***
REM
REM Program to demonstrate the Memory Fill Machine Language Routine
REM
REMCopyright (C) 1982 by David Fox and Mitchell Waite
REM
REM Ini-tialize
GRAPHICS 0
GOSUB 11610: REM Store routine
SCREEN=PEEK(88)+PEEl(89)*2S6: REM Address for start of screen memory
REM
REM Main Loop
FOR 1=0 TO 255
TEMP=USR<MFILL,SCREEN,960,I>: REM Call routine

NEXT I
GOT0210
REM
REM Rou-tine
DIM MFILU(41l
MF!LL$U)=" «<Routine String goes here») U

MFILL=ADRlMFILU>: REM Find address of routine
RETURN
REM Player Move Rou-tine DATA
DATA PMOVER,l1310,186,22157
DATA 184,80,16,76,98,228,162,3,189,38,4,157,0,208,202,16,247,48,240,162,6,181,223,157,83
DATA 4,202,208,248,104,104,104,133,227,165,227,133,226,172,4,4,162,0,142,4,4,70,226,144,6
DATA 189,6,4,157,38,4,232,224,4,208,241,140,4,4,162,0,134,224,173,0,4,133,225,173,1
DATA 4,133,228,173,2,4,133,229,173,3,4,133,226,142,3,4,70,227,176,30,165,224,73,128,133
DATA 224,208,2,230,225,232,224,4,208,237,165,226,141,3,4,232,189,84,4,149,224,202,16,248,96
DATA 160,127,177 ,224,145,228,136,16,249,142,76,4,189,42,4,72,189,10,4,157,42,4,168,104,170
DATA 142,77,4,140,78,4,138,168,177,228,172,78,4,145,224,200,16,2,160,0,232,16,2,162,0
DATA 236,77,4,208,229,174,76,4,184,80,165

10 REM *** BOUNCING BALL 2 PROGRAM ***
20 REM ExampIe '9
30 REM
40 REM Program to demonstrate Player-Missile Graphics with Machine Language routine to move players
50 REM Copyright (C) 1982 by David Fox and Mitchell Waite
60 REM
70 DIM PLRO$U28>:

GOTO 140: REM This MUST be the first variable in the program
80 REM
100 REM Hi/La Ey-t. C aleula-tion
110 HIBYTE=INT(XI256l: REM Calculate High Byte

410 I Appendix A

120 LOBYTE-X-HIBYTE*256t REMCalDJlat. Low Byte
130 RETURN
140 REM J:nii:'ializ.
150 DIM PLR(3),HPLRI31,VPLRI31
170 GRAPHICS 3:

POKE 752.11
PRINT "On. mom.nt pleas...."t REM Turn off DJrsor, print m.ssag.

180 GOSUB 11000: REM Initialize Routine strings
190 GOSUB 5000: REMSet up memory locations
220 GOSUB 7000: REMSet up Player area
230 GOSUB 9000: REM Point PLRO$ to Player 0 RAM
240 GOSUB 10000: REMRead frames into RAM
280 GOSUB 12000: REMSet up param.t.r addr.sses
290 GOSUB 13000t REMTurn on interrupts
300 PRINT "(CLEAR>MMMMM***l5BOUNCINQMBALUiDEMO»***"
310 VEL-70:

ELASTIC-O.S
320 PRINT "Initial velocity: ";VEL:

PRINT "Elasticity: ";ELASTIC;
330 REM
400 REM Main Animai:'ion Loop
410 BOTTOM-91l

XPOS=40:
TIME=0.5:
HORIZ=0.75

420 GOSUB 700: REMMove Player off screen
430 IF ELASTIC(=001 THEN

SNDFLAG=l
440 YPOS=BOTTOM-IVEL*TIME-16*TIME*TIMEll

FRMNO-l
450 IF YPOS)S2 AND VEL)30 THEN

FRMNO=2
460 IF YPOS)=BOTTOM THEN

YPOS=BOTTOM:
VEL=VEL*ELASTIC:
TIME=O:
FRMNO=l:
IF VEL)14 THEN
FRMNO=3

470 IF XPOS>220 OR YPOS(=1 THEN 600
480 POKE HPLR(O).XPOS:

POKE VPLRIO),YPOS:
TEMP=USRIPMOVER,PO)

490 FRAME$=FRAMEMEM$«FRMNO-1I*FRMSIZE+1.FRMNO*FRMSIZE): REMSelect correct frame
520 PLRO$IYPOS)=FRAME$: REMMove new frame into Player 0
530 XPOS=XPOS+HORIZ
540 IF YPOS=BOTTOMAND IVEL+SNDFLAG>0.5) THEN

SOUND 1,250,10,14:
SNDFLAG=O:
SOUND 1,0,0,0

550 IF VEDO.5 THEN
TIME=TIME+0.15:
GOTO 440

560 HORIZ=HORIZ-O.Oll
IF HORIZ>O THEN
FRMNO-ll
GOTO 470

570 REM
600 REM Gei:' Paramei:'ers -For Ball
610 GOSUB 700
620 POKE 752,0: REM Turn on DJrsor
630 PRINT "(CLEAR>Enter initial velocity: "I

640 TRAP 630:
INPUT VEL

650 PRINT "Enter the ball's elasticity la number":
PRINT" from 0-1 [or morem ";

660 INPUT ELASTIC
670 POKE 752,1:

PRINT" ";: REMTurn off cursor
680 TRAP 40000:

GOTO400
690 REM
700 REM Move Pla.yer 0 1:"0 Le-F1:" o-F Sc:reen
710 POKE HPLRIO),O
720 TEMP=USRIPMOVER,PO)
730 RETURN
740 REM
5000 REM S.1:" Up Memory Loc:a.1:"ions
5090 READ FRAMES,FRMSIZE,NUMPLRS
5110 PLRFRMMEM=FRAMES*FRMSIZE
5120 FRAMEMEM=PLRFRMMEM*NUMPLRS
5160 DIM BUFFERt(128),FRAMESIFRMSIZEl,FRAMEMEMSIFRAMEMEM)
5270 PMOVER=ADRIPMOVERS)
5300 MFILL=ADR(MF1LU)
5310 BUFFER=ADR(BUFFER$)
5340 RETURN
5350 REM
7000 REM Ini1:"ialize Player-Missile Graphic:s
7010 TEMP=PEEKII06)-8: REMSet aside Player-Missile area
7020 POKE 54279,TEMP: REMTell ANTIC where PM RAM is
7030 PMBASE=256*TEMP: REMFind PM Base address
7040 FOR 1=0 TO 3
7050 PLR<I>=PMBASE+128*I+512: REMSet addresses of Players
7070 NEXT I
7080 POKE 559,42: REMSet PM 2 line resolution, Players enabled
7090 POKE 704,12*16+8: REMColor ball green
7100 POKE 53277,2: REMEnable Player display
7110 TEMP=USR(MF1LL,PLRI0),512,0l: REMUse memory fill routine to dear Players
7120 RETURN
7130 REM
9000 REM Poin 1:" PLRO$ 1:"0 Player 0 RAM
9010 STARP=PEEK(140)+PEEKI141l*256: REMStart of String Array area
9020 VVTP=PEEK(134)+PEEKI135)*256: REMStart of Variable Value Table
9030 OFFSET=PLRIO)-STARP: REMCalculate offset from String Array to Player 0
9040 X=OFFSET:

GOSUB 110
9050 POKE VVTP+2,LOBYTE: REMPoke offset of string into Variable Value Table
9060 POKE VVTP+3,HIBYTE: REMThis points the first string (PLRO$) to PLRW)
9070 RETURN
9080 REM
10000 REM Read In Frame Da.1:"a.
10090 FOR J=l TO PLRFRMMEM
10100 READBYTE
10110 FRAMEMEM$IJ,J)=CHR$IBYTE)
10120 NEXT J
10130 RETURN
10140 REM
11000 REM INITIALIZE ROUTINE STRINGS
11300 REM Se1:" PMOVER rou1:"ine
11310 DIM PMOVER$(86)
11320 PMOVER$lll=" «(Routine String goes here») "
11330 PMOVER$(91)=" «(Routine String goes here») "
11340 PMOVER$U81)=" «(Routine String goes here») "
11600 REM Se1:" MFILL rou1:"ine
11610 DIM MFILUl41l

Appendix A /411

412 I Appendix A

11620
11650
11660
12000
12010
12020
12030
12070
12080
12090
12130
12190
12200
12210

12240
12250

12260

12270
12530
12540
13000
13010
13080

13090
13100
13170
13200
13210
20000
20030
20040

20060
21000
21010
21020
21030
21040
21050
21060
27000
27010
27020
27030
27040
27050
27060
27070
27080
27090
27100
27110
27120
27130

MFILL$(1l=" «(Routine String goes here») "
RETURN
REM
REM Set: Paramet:ers ror Rout:ines
PARAMBASE=1024: REM Parameter Base address
PMBAS=PARAMBASE: REM Hi Byte of PLRO Loc:ation goes here
PMBUF=PARAMBASE+ll REM Address of a 128 byte buffer
FOR 1=0 TO 3
HPLR(I)=PARAMBASE+6+I: REM Player horizontal "shadow" registers
VPLR(I)=PARAMBASE+l0+I: REM Player vertic:al"shadow" registers

NEXT I
VVBLICD=548: REMDeferred Vertic:al Blank Interrupt Vector
CRITICAL=66: REM Critic:al Flag
PO=l:
Pl=2:
P2=4:
P3=8: REM Control bits for the four Players
TEMP=USR(MFILL,PARAMBASE,94,Ol: REM IMPORTANT: Clear out parameter area
X=PLR(Ol:
GOSUB 110:
POICE PMBAS,HIBYTE: REM Poke Hi Byte of Player 0 into PMBAS
X=BUFFER:
GOSUB 110:
POICE PMBUF,LOBYTE: REM Poke address of buffer
POICE PMBUF+l,HIBYTE
RETURN
REM
REM Install Interrupt Routine
POICE CRITICAL,1: REM Open CRITICAL "valve", set up detour
X-PMOVER+6:
GOSUB 110
POICE VVBLICD,LOBYTE: REM Set VBLANIC vector to PMOVER
POICE VVBLICD+l,HIBYTE
POICE CRITICAL,O: REM Close CRITICAL "valve", routine installed
RETURN
REM
REM FRAME DATA
REM
REMNumber of Frame., Frame Size, Number of Player.
REM. (Boundng Bam
DATA 3,7,1
REM Frame dat:a ror Bouncing Bal.l.
REM Frame 1
DATA 0,60,126,126,126,60,0
REM Frame 2
DATA 24,60,60,60,60,60,24
REM Frame 3
DATA 0,0,0,126,255,126,0
REM Animat:e Routine DATA
DATA ANIMATE,11410,294,34779
DATA 184,80,3,76,98,228,216,162,3,181,224,157,89,4,202,16,248,173,3,4,240,237,48,72,10
DATA 10,10,141,80,4,162,0,78,3,4,176,16, 144,2,240,218,232,224,4,208,242,169,128,141,3
DATA 4,208,43,189,14,4,208,2,169,255,157,46,4,138,1 0, 168,185,18,4,153,50,4,185,19,4
DATA 153,51,4,173,80,4,48,214,189,14,4,157,58,4,169,1 ,157,62,4,208,201,169,0,133,224
DATA 162,0,189,46,4,240,9,201 ,222,58,4,240,25,165,224,73,128
DATA 133,224,208,2,230,225,232,224,4,208,227,189,88,4,149,223,202,208,248,240,149,189,46,4,201
DATA 255,208,2,169,1,157,58,4,138,10,168,185,50,4,133,226,185,51 ,4,133,227,254,62,4,189
DATA 62,4,168,177 ,226,208,9,169,2,157,62,4,208,244,80,186,141,80,4,206,80,4,160,0,177
DATA 226,72,200,177,226,133,227,104,133,226,136,177,226,141,81,4,169,0,160,8,78,80,4,144,4
DATA 24,109,81 ,4,74,110,82,4,136,208,240,168,173,82,4,56,101 ,226,133,226,152,101,227,133,227
DATA 142,80,4,189,42,4,168,162,0,140,82,4,138,168,177,226,172,82,4,145,224,200,232,236,81
DATA 4,208,237,174,80,4,189,46,4,201 ,255,208,3,254,46,4,184,80,151

10 REM *** W ALXING MAN PLAYER DEMO ***
20 REM Example 10
30 REM
40 REM Program to introduce the Animate Machine Language routine with the walking man
50 REMCopyright IC) 1982 by David Fox and Mitchell Waite
bO REM
70 GOTO 140
80 REM
100 REM Hi/Lo 13yt:e C alculat:ion
110 HIEYTE=INTIXI25b): REMCalculate High Eyte
120 LOEYTE=X-HIEYTE*25b: REMCalculate Low Eyte
130 RETURN
140 REM Init:ialize
150 DIM PLRI3ltHPLR(3l,VPLR(3l,RATEI3ltFRMLSTPTR(3ltFRMDATA(3)
170 GRAPHICS 3:

POKE 752,11
PRINT "One moment please.. ,": REMTurn off cursor, print message

180 GOSUE 11000: REM Initialize Routine strings
190 GOSUE5000: REM Set up memory locations
220 GOSUE7000: REM Set up Player area
240 GOSUE 10000: REM Re..cl frames into RAM
280 GOSUE 12000: REMSet up parameter ..cIdresses
290 GOSUE 13000: REMTurn on interrupts
300 PRINT "(CLEAR)(b RIGHT)*** WALKING MAN DEMO ***"
310 PRINT "Pre•• a number from 1 to 9 to control hili speed or 0'. to single step,";
330 PX=120:

py..tt
340 GOSUE 1000
350 SFLAG=2
3bO POKE INITANIMATE,FST2P
370 SPEED-4:

GOSUE700
380 OPEN i2,4,O,"K:"1

POKE 754,255
390 REM
400 REM Main Animat:ion Loop
410 IF PEEK(108bl-SFLAG THEN

SOUND 0,0,0,101
SFLAG-31 REM Foot.tep.

420 IF PEEK<108bl-SFLAG THEN
SOUND 0,24,0,101
SFLAG-2

430 SOUND 0,0,0,0
480 IF PEEK(754)-255 THEN 410
490 GET i2,SYTEI

SPEED-SYTE-481
POKE 754,2551
IF SPEED(OTHEN
SPEED-O

500 IF SPEED>9 THEN
SPEED-9

510 GOSVS 700
520 GOTO410
530 REM
700 REM S.ot Fram. Raot.
710 IF PEIKIINITANIMATE)(>128 THIN 710
720 FOR 1-0 TO NVMPLRS-1
740 POKERATIIIl,SPEID
750 NIXT I
160 POKE INITANIMATE,FST2P+16
780 RETURN
790 REM
1000 REM Paramet:ers For Players

Appendix A I 413

414 / Appendix A

1010
1020
1030
1040
1050
lObO
1070
1080
1090
1500
1510
1520

1530
1540
1550
15bO
1570
5000
5090
5110
5120
5130
5140
51bO
5270
5280
5300
5310
5320
5330
5340
5350
7000
7010
7020
7030
7040
7050
70bO
7070
7080
7090
7100
7110
7120
7140
10000
10010
10030
10050
100bO
10070
10080
10090
10100
10110
10120

10130
10140
11000
11300

REM Man
GOSUB 1500: REM Point to Frame Lists
FOR I=O TO NUMPLRS-1

POKE VPLR<Il,PY
POKE HPLR(IltPX+I*8

NEXT I
TEMP=USR(PMOVER,FST2P)
RETURN
REM
REM Put:' Frame List:' Address in Param Table
FOR I=O TO NUMPLRS-1

X=POINTER<Il:
GOSUB 110
POKE FRMLSTPTR(IltLOBYTE
POKE FRMLSTPTR<Il+1,HIBYTE

NEXT I
RETURN
REM
REM Set:' Up Memory Locat:'ions
READ FRAMES,FRMSIZE,NUMPLRS
PLRFRMMEM=FRAMES*FRMSIZE+ 1
FRAMEMEM=PLRFRMMEM*NUMPLRS
FRMLSTSIZE=FRAMES+3
TOTFRMLSTSIZE=FRMLSTSIZE*NUMPLRS
DIM BUFFER$(128),FRAMEMEM$(FRAMEMEM),FRMLSTMEM$(TOTFRMLSTSIZE)
PMOVER=ADR(PMOVER$)
ANIMATE=ADR(ANIMATE$)
MFILL=ADR(MFILU)
BUFFER=ADR(BUFFER$)
PLRFRAMES"ADR(FRAMEMEM$)
FRMLSTMEM"ADR(FRMLSTMEM$)
RETURN
REM
REM ::Init:'iali:z:e Player-Missile Graphics
TEMP=PEEK<10b)-8: REM Set aside Player-Missile area
POKE 54279,TEMP: REM Tell ANTIC where PM RAM is
PMBASE=256*TEMP: REM Find PM Base address
FOR I=O TO 3

PLR<Il=PMBASE+128*I+512: REM Set addresses of Players
POKE 704+I,3*16+10: REM Color him peach

NEXT I
POKE 559,42: REM Set PM 2 line resolution, Players enabled
REM
POKE 53277,2: REM Enable Player display
TEMp=USR(MFILL,PLR(Olt512tOl: REM Use memory fill routine to dear Players
RETURN
RETURN
REM Read in Frame Dat:'a
OFFSET2=0
FRAMELIST=FRMLSTMEM
FOR I=O TO NUMPLRS-l

FRMDATA<Il=PLRFRAMES+OFFSET2: REM Store addresses of frame data
OFFSET2=OFFSET2+PLRFRMMEM
POKE FRMDATA<Il,FRMSIZE: REM Poke Frame size at beginning of each set of frame data
FOR J=l TO PLRFRMMEM-l

READ BYTE
POKE FRMDATA(1)+J,EYTE

NEXT J:
NEXT I
RETVRN
REM
REM ::IN::IT::IAL::IZE ROUT::INE STR::INGS
REM Set:' PMOVER rout:'ine

11310
11320
11330
11340
11400
11410
11420
11430
11440
11450
11600
11610
11620
11650
11660
12000
12010
12020
12030
12040
12070
120S0.
12090
12100
12110
12130
12190
12200
12210

12220
12240
12250

12260

12270
12390
12400
12410
12430
12440
12450

12460
12470
124S0
12490
12500
12510
12520
12530
12540
13000
13010
13080

13090
13100

Appendix A 1415

DIM PMOVERtU8b)
PMOVERtU)-" «<Rautin. Strinll 1iI0•• h.r.») "
PMOVERtl91)-" <<<Routin. Strinlil 1iI0•• h.r.») "
PMOVERtUSll-" <<<Routin. Strinll 1iI0e. h.re») "
REM S.1: AN:I:MATE rou1:1n_
DIM ANIMATEt(294)
ANIMATEtl1l-· «<Rautine String go•• here») "
ANIMATEtl91l-" <<<Routine 'String 1iI0e. here») "
ANIMATEtUS1)-" «<Routine String go•• her.») "
ANIMATEt(271)-" «<Routine Strinlilgo•• h.r.») "
REM S.1: MP:I:LL rou1:in_
DIMMFILUl41l
MFILUU)-" «<Rautin. String go•• Iwre») "
RETURN
REM
REM S.1: Param_1:.r. Por Rou1:in••
PARAMBASE-l024: REMParam.t.r Ba•• addr...
PMBAS-PARAMBASE: REMHi Byt. of PLRO Leeation 110•• h.re
PMBUF-PARAMBASE+ll REMAddre•• of a 128 byte buffer
INITANIMATE-PARAMBASE+3: REMInitializ. Fram. Animate routine
FOR 1-0 TO 3
HPLRlIl-PARAMBASE+6+I: REM Player horizontal "shadow" registers
VPLRlI)-PARAMBASE+l0+I1 REMPlayer vertical "shadow" registers
RATElI)-PARAMBASE+14+I: REMAnimate rate "shadow" registers
FRMLSTPrRlIl-PARAMBASE+1S+I*2: REM Pointer to Frame Lists

NEXT I
VVBLKD"54S: REM Deferred Vertical Blank Interrupt Vector
CRITICAL=66: REM Critical Flag
PO=l:
Pl=2:
P2=4:
P3=S: REMControl bits for the four Players
FST2P-PO+Pl
TEMP=USRlMFILL,PARAMBASE,94,0): REMIMPORTANT:Clear out parameter area
X=PLRlOll
GOSUB 110:
POKE PMBAS,HIBYTE: REMPoke Hi Byte of Player 0 into PMBAS
X=BUFFER:
GOSUB 110:
POKE PMBUF,LOBYTE: REMPoke address of buffer
POKE PMBUF+l,HIBYTE
REM
REM 8.1: Up Prame Lis1:s
DIM POINTERlNUMPLRS-l)
FOR 1=0 TO NUMPLRS-l
LET POINTERlI)=FRAMELIST+I*FRMLSTSIZE: REM Points to start of each Frame List
X=FRMDATAlIl:
GOSUB 110
POKE POINTERlD,LOBYTE: REMPut in address of Frame Data
POKE POINTERlD+l,HIBYTE
FOR J=l TO FRAMES: REMMake up a Frame List lnumbers 1 thru FRAMES)
POKE POINTERlD+J+l,J

NEXT J
POKE POINTERlD+FRAMES+2,O: REMEnd of frame list marker

NEXT I
RETURN
REM
REM Ins1:all In1:errup1: Rou1:in.
POKE CRITICAL,ll REM Open CRITICAL "valve", set up detour
X=PMOVER+6:
GOSUB 110
POKE VVBLKD,LOBYTE: REMSet VBLANK vector to PMOVER
POKE VVBLKD+1,HIBYTE

416 / Appendix A

13110 X=ANIMATE+6:
GOSUB110

13120 POKE PMOVER+4,LOBYTE: REMPoints PMOVERto ANIMATE
13130 POKE PMOVER+5,HIBYTE
13170 POKECRITICAL,O: REMClose CRITICAL "valve", routine installed
13200 RETURN
13210 REM
20000 REM FRAME DATA
20030 REM
20040 REMNumber of Frames, Frame Size, Number of Players
20050 REM. (Walking Man)
20060 DATA5,19,2
21000 REM Frame Da.ta For Wa.lking Man
21010 REMFrame 1, Player 0
21020 DATA0,0,0,0,0,0,0,3,15,29,59,51,7,7,15,252,224,112,48
21030 REMFrame 2, Player 0
21040 DATA 0,0,0,0,0,0,0,1,7,15,31,55,55,7,111,125,248,192,193
21050 REMFrame 3, Player 0
21060 DATA0,0,0,0,0,0,3,7,15,31,31,31,31,222,254,251,231,206,15
21070 REMFrame 4, Player 0
21080 DATA 1,3,3,3,1,7,15,31,30,62,62,63,63,60,124,120,112,112,252
21090 REMFrame 5, Player 0
21100 DATA0,0,1,1,1,0,7,31,31,31,31,31,15,15,13,31,123,112,124
21110 REMFrame 1, Player 1
21120 DATA0,28,62,62,62,28,240,240,240,240,251,255,220,192,192,227,118,60,24
21130 REMFrame 2, Player 1
21140 DATA0,0,56,124,124,124,56,224,224,224,224,246,254,192,128,192,224,224,248
21150 REMFrame 3, Player 1
21160 DATA0,112,248,248,248,112,192,192,128,128,128,224,224,0,0,0,0,0,128
21170 REMFrame 4, Player 1
21180 DATA 192,224,224,224,192,0,0,0,0,0,0,0,0,0,0,0,0,0,0
21190 REMFrame 5, Player 1
21200 DATA0,224,240,240,240,224,128,128,128,128,176,240,0,128,192,128,192,0,0
28000 REM Automov. Routine DATA
28010 DATA
28020 DATA 184t80t3,76,98t228,216,173t4,4,240,247,48,23,162,0,78,4,4,144,6,189,32,4,157
28030 DATA71,4,232,224,4,208,240,169,128,141,4,4,162,3,189,71 ,4,73,128,8,24,125,38,4,144
28040 D.T. 5,40,48,12,16,3,40,16,7,169,128,157,71 ,4,169,0,157,38,4,202,16,223,48,185

10 REM *** RUNNING BOY PLAYER DEMO ***
20 REM Exa.mpIe 1 1
30 REM
40 REMProgram to introduce the AUTOMOVE Machine Language routine and the running boy
SO REMCopyright (C) 1982 by David Fox and Mitchell Waite
60 REM
70 GOTO 140
80 REM
100 REM Hi/Lo Byte Calcula.tion
110 HIBYTE=INT(XI256>l REMCalculate High Byte
120 LOBYTE"X-HIBYTE*256: REMCalculate Low Byte
130 RETURN
140 REM Initialize
150 DIM PLR(3),HPLR(3),VPLR(3),RATE(3),FRMLSTPTR(3),FRMDATA(3),MOVERATE(3),MSPEED(9)
170 GRAPHICS3:

POKE 752,1:
PRINT IOOne moment please... ": REMTurn off cursor, print message

180 GOSUB11000: REMInitialize Routine .trings
190 GOSUB5000: REMSet up mlImOry locations
220 GOSUB7000: REMSet up Player area
240 GOSUB10000: REMRead frames into RAM
280 GOSUB12000: REMSet up parameter addr•••e.
290 GOSUB13000: REMTurn on interrupts

300 PRINT "(CLEAR>(6 RIGHT>-" RYNNING BOY DEMO ***U
310 PRINT -Press a number from 1 to 9 to control his speed or 0'5 to single step.u;
320 FOR 1=9 TO 0 STEP-1:

READ TEMPI
MSPEED<Il=TEMPI

NEXT I
330 PX=101

PY-64
340 GOSUB 1000
350 SFLAG-2
360 POD INITANIMATE,ALLP
370 SPEED=b1

GOSUB7oo
380 OPEN .2,4,0,-ICI"I

POICE754,255
390 REM
400 REM Main Animation Loop
410 IF PEEIC(086)=SFLAG THEN

SOUND 0,0,0,101
SFLAG=31 REM Footsteps

420 IF PEEIC(086)=SFLAG THEN
SOUND 0,24,0,10:
SFLAG=2

430 SOUND 0,0,0,0
460 IF PEEICU062KPX THEN

POICE INITAUTOMOVE,ALLP:
TEMP=USRIPMOVER,ALLP): REM Reset Boy

480 IF PEEIC(754)=255 THEN 410
490 GET :ll:2,BYTE:

SPEED=BYTE-48:
POICE754,255:
IF SPEED<O THEN
SPEED=O

500 IF SPEED)9 THEN
SPEED=9

510 GOSUB 700
520 ooT0410
530 REM
700 REM Set Velocities a.nd Fra.me Rates
710 IF PEEICIINITAN1MATE)()128 THEN 710
720 FOR 1=0 TO NUMPLRS-l
730 POICEMOVERATElIl,128+MSPEEDISPEEDl
740 POICERATEI1l,SPEED
750 NEXT I
760 POD INITANIMATE,ALLP+16
770 POICE1N1TAUTOMOVE,ALLP
780 RETURN
790 REM
1000 REM PARAMETERS FOR PLAYERS
1010 REM Boy
1020 GOSUB 1500: REM Point to Frame Lists
1030 FOR 1=0 TO NUMPLRS-1
1040 POKE VPLR<Il,PY
1050 POKE HPLR<Il,PX+1*8
1060 NEXT I
1070 TEMP=USRIPMOVER,ALLP)
1080 RETURN
1090 REM
1500 REM Put Fram. Li.t Addr••• in Param T&bl.
1510 FOR r-o TO NUMPLRS-l
1520 X-POINTERI1ll

GOSVB 110
1530 POD FRMLBTPTR(Il,LOBYTE

Appendix A I 417

418 I Appendix A

1!540
1!5!50
1!560
1!570
!5000
!5090
!5UO
!5120
!5130
!5140
!5160
!5270
!5280
!5290
!5300
!5310
!5320
!5330
!5340
!53!50
7000
7010
7020
7030
7040
70!50
7060
7070
7080
7100
7110
7120
7130
10000
10010
10030
10050
10060
10070
10080
10090
10100
10110
10120

10130
10140
11000
11300
11310
11320
11330
11340
11400
11410
11420
11430
11440
11450
11500
11510
11520
11600

POKE FRMLSTPTRCII+l,HIBYTE
NEXT I
RETURN
REM
REM S.t- Up M.mcry Lccat-icn.
REAO PRAMES,PRMSIZE,NUMPLRS
PLRPRMMIM-PRAMIS*PRMSIZI+1
PRAMIMIM-PLRPRMMEM*NUMPLRS
PRMLSTSIZI-PRAMIS+3
TOTPRMLSTSIZI-PRMLSTBIZI*NUMPLRS
OIM SUPFIR.C12B),PRAMIMIM.CPRAMIMIMI,PRMLSTMIM.CTOTPRMLSTBIZII
PMOVO-AORCPMOVIR.1
ANIMATI-AORCANIMATI.1
AUTOMOVI-AORCAVTOMOVE.1
MPILL-AORCMPILUI
BUPFIR-AORCBUPFIR.1
PLRPRAMIS-AORCPRAMIMIM.1
PRMLBTMIM-AORCPRMLSTMEM.1
RETURN
REM
REM :Init-ializ. Play.r-Mi••il. C3rap hic.
TEMP-PEEKC1061-BI REMs.t a.id. Play.r-Mi••U. aru
POKE !54279,TEMPI REMT.11 ANTIC wh.r. PM RAMi.
PMBABE-2!56*TEMPI REM Pind PM Ba.. &ddr•••
PORI-O TO 3
PLRCII-PMBASE+128*I+5121 REMS.t &ddr••••• 0' Play.r.
POXE 704+I,3*16+101 REMColor him p.ach

NEXT I
POKE !5!59,421 REMS.t PM 2 11n. r••olution, Play.r••nabl.d
POKE !53277,21 REMEnabl. Play.r di.play
TEMP-USRCMFILL,PLRIOl,512,011 REMU•• m.mory,m routin. to clur Play.r.
RETURN
REM
REM Read In FYCLme Data
OFFSET2=0
FRAMEL1ST=FRMLSTMEM
FOR 1=0 TO NUMPLRS-l
FRMDATAlIlzPLRFRAMES+OFFSET2: REMStore addresses of frame data
OFFSET2=OFFSET2+PLRFRMMEM
POKE FRMDATA(1l,FRMS1ZE: REMPoke Frame size at beginning of each set of frame data
FOR J=l TO PLRFRMMEM-l
READ BYTE
POKE FRMDATAlIl+J ,BYTE

NEXT J:
NEXT I
RETURN
REM
REM INITIALIZE ROUTINE STRINGS
REM Set PMOVER Youtine
DIM PMOVER$l1861
PMOVER$l11=" «(Routine String goes here»> "
PMOVER$(91l=" «(Routine String goes here»> "
PMOVER$l181l=" «(Routine String goes here»> "
REM Set ANIMATE Youtine
DIM AN1MATE$(2941
ANIMATE.(ll=" «(Routine String goes here»> "
ANIMATE$(9ll=" «(Routine String goes here»> "
ANIMATE.l181l=" «(Routine String goes here>)) "
ANIMATE$1271 1=" «(Routine String goes here»> "
REM Set AUTOMOVE Youtine
DIM AUTOMOVE.<74l
AUTOMOVE$(1)=" «<:Routine String goes here»> "
REM Set MFILL Youtine

11610
11620
11650
11060
12000
12010
12020
12030
12040
12050
12070
12080
12090
12100
12110
12120
12130
12190
12200
12210

12220
12230
12240
12250

12260

12270
12390
12400
12410
12430
12440
12450

12460
12470
12480
12490
12500
12510
12520
12530
12540
13000
13010
13080

13090
13100
13110

13120
13130
13140

131S0
13160

Appendix A I 419

DIM MFILU(41)
MFILU(1)=" «<Routine String goes here») "
RETURN
REM
REM S.t Pa.rameters For Routines
PARAMBASE=1024: REMParameter Base address
PMBAS=PARAMBASE: REMHi Byte of PLROLocation goes here
PMBUF=PARAMBASE+U REMAddress of a 128 byte buffer
INITANIMATE=PARAMBASE+3: REM Initialize Frame Animate routine
INITAUTOMOVE=PARAMBASE+4: REM Initialize Player Automove routine
FOR 1=0 TO 3
HPLRIIl=PARAMBASE+6+I: REMPlayer horizontal ·shadow" registers
VPLR<Il=PARAMBASE+l0+I: REMPlayer vertical "shadow" registers
RATEIIl=PARAMBASE+14+I: REMAnimate rate "shadow" registers
FRMLSTPTRII)=PARAMBASE+18+I*2: REMPointer to Frame Lists
MOVERATEII)=PARAMBASE+32+I: REMHorizontal movement for AUTOMOVE

NEXT I
VVBLKD=548: REMDeferred Vertical Blank Interrupt Vector
CRITICAL=66: REMCritical Flag
PO=1:
P1=2:
P2=4:
P3=8: REMControl bits for the four Players
FST2P=PO+P1
ALLP=PO+Pl+P2+P3
TEMP=USRIMFILL,PARAMBASE,94,Ol: REM IMPORTANT: Clear out parameter area
X=PLRIO):
GOSUB 110:
POKE PMBAS,HIBYTE: REMPoke Hi Byte of Player 0 into PMBAS
X=BUFFER:
GOSUB 110:
POKE PMBUF,LOBYTE: REMPoke address of buffer
POKE PMBUF+1,HIBYTE
REM
REM Set Up Fra.me Lists
DIM POINTERINUMPLRS-l)
FOR 1=0 TO NUMPLRS-l
LET POINTERIIl=FRAMELIST+I*FRMLSTSIZE: REMPoints to start of each Frame List
X=FRMDATAIIl:
GOSUB 110
POKE POINTERIIl,LOBYTE: REMPut in address of Frame Data
POKE POINTERIIl+1,HIBYTE
FOR J=l TO FRAMES: REMMake up a Frame List Inumbers 1 thru FRAMES)
POKE POINTERIIl+J+l,J

NEXTJ
POKE POINTERIIl+FRAMES+2,O: REMEnd of frame list marker

NEXT I
RETURN
REM
REM :In.t.11 :Int.rrupt Routin••
POKE CRITICAL,lI REMOpen CRITICAL "valve", .et up detour
X-PMOVER+61
GOSUB 110
POKE VVBLICD,LOBYTEI REMSet VBLANKvector to PMOVER
POKE VVBLJCD+1,HIBYTE
X-ANIMATE+61
GOSUB 110
POKE PMOVER+4,LOBYTEI REMPaint. PMOVBRto ANIMATE
POIeE PMOVBR+e,HIBYTE
X-AVTOMOVE+61
GOSVB 110
POll ARIMATI+4,LOBYTEI REMPaint. ANIMATE to AVTOMOVE
POItE ARIMATE+S,HIBYTE

420 I Appendix A

13170 POKE CRITICAL,OI RIM Closl CRITICAL ·valVI", routinIS installed
13200 RlT'I1RK
13210 RIM
20000 RIM PRAMS OATA
20030 RIM
20040 RIM Numblr of Frltnls, FrllTll SiZI, NLMnbir of Playlrs

REM, (Running Boy)
20060 DATA 4,31,4
21000 RIM Pram. datoa -For Running JaQ)'
21010 REMFrltnl 1, Playlr°
21020 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
21030 DATA0,0,1,3,7,IS,14,12,0,0,0,0,0,0,0,0
21040 REM Frame 2, Player°
210S0 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
21060 DATA0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0
21070 RIM FrllTle 3, Player°
21090 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
21090 DATA0,0,0,0,0,0,0,0,1,3,1 ',30,30,29,30,30
21100 RIM Fr&mtt 4, Player °
21110 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,63,2'4
21120 DATA 2'4,2S2,63,63,31,O,0,0,O,O,0,0,0,O,O,o
21130 REMFr&mtt 1, Player 1
21140 DATA 0,0,0,0,0,0,0,0,0,1,3,7,14,14,12
211:50 DATA 1,7,207,207,223,2:5:5,2':5,239,19:5,3,3,1,1,0,0,0
21160 REMFrame 2, Player 1
21170 DATA0,0,0,0,0,0,0,0,0,0,0,1,3,7,6
21180 DATA 6,6,15,63,127,255,255,127 ,127,255,239,207,30,127,255,252
21190 REM Frame 3, Player 1
21200 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
21210 DATA 1,1,3,7,15,31,63,255,252,192,0,0,0,0,0,0
21220 REMFrame 4, Player 1
21230 DATA0,0,0,0,0,0,0,13,31,30,0,0,0,7,31
21240 DATA63,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0
21250 REMFrame 1, Player 2
21260 DATA0,1,7,31,63,03,63,63,31,207,231,247,127,126,254
21270 DATA254,254,254,255,247,227,128,128,128,131 ,135,207,254,252,240,96
21280 REM Frame 2, Player 2
21290 DATA0,0,0,0,0,3,15,31,63,63,31,159,207,231,255
21300 DATA 127,254,252,252,252,253,223,143,128,192,192,0,0,128,0,0
21310 REMFrame 3, Player 2
21320 DATA0,0,3,7,15,15,15,15,15,7,1,1,7,63,255
21330 DATA255,255,254,255,255,252,255,255,252,62,14,0,0,0,0,0
21340 REM Frame 4, Player 2
21350 DATA 1,7,15,15,15,15,7,199,227,121,63,63,254,255,255
21360 DATA255,240,224,192,240,248,63,31,15,6,0,0,0,0,0,0
21370 REMFrame 1, Player 3
21380 DATA 120,252,244,240,240,240,176,176,248,184,200,240,128,0,8
21390 DATA 120,120,240,192,128,0,0,0,0,0,0,0,0,0,0,0
21400 REMFrame 2, Player 3
21410 DATA0,0,0,124,254,254,252,248,248,248,216,216,252,220,228
21420 DATA248,0,0,96,224,224,192,128,0,0,0,0,0,0,0,0
21430 REMFrame 3, Player 3
21440 DATA0,126,255,255,255,252,236,236,254,238,242,252,224,128,0
21450 DATA0,0,0,128,128,0,128,0,0,0,0,0,0,0,0,0
21460 REMFrame 4, Player 3
21470 DATA2:54,255,255,253,252,236,236,254,238,242,252,0,3,135,255
21480 DATA 252,0,0,96,224,224,192,192,128,0,0,0,0,0,0,0
21490 REM
30000 REM Data -For MSPEED (Au'tomove speeds>
30010 DATA 1,2,2,3,3,4,5,0,9,0

10 REM *** PLAYER FOREGROUND DEMO ***
20 REM Example 12
30 REM
40 REM Program using all four Players to create animated foreground
50 REMCopyright lC) 1982 by David Fox and Mitchell Waite
60 REM
70 GOTO 140
80 REM
100 REM Hi/Lo Byte Calculation
110 HIBYTE=INTlX1256l: REMCalculate High Byte
120 LOBYTE=X-HIBYTE*256: REMCalculate Low Byte
130 RETURN
140 REM Initialize
150 DIM PLR(3),HPLRI3),VPLR(3),RATE(3),PMWIDTHI3),FRMLSTPTRI3),MOVERATE(3)
170 GRAPHICS 3:

POKE 752,1:
PRINT "One moment please... ": REMTurn off cursor, print message

180 GOSUB11000: REMInitialize Routine strings
190 GOSUB5000: REM Set up memory locations
220 GOSUB7000: REMSet up Player area
240 GOSUB10000: REMRead frames into RAM
280 GOSUB12000: REMSet UJ! parameter addresses
290 GOSUB 13000: REM Turn on interrupts
300 PRINT "(CLEAR)(3 RIGHn*** PLAYER FOREGROUND DEMO***"
310 FOR 1=0 TO 1:

POICE RATElI),4:
NEXT I: REMFrame rate for walking man

320 SPEED--1: REMTemporary start up condition
330 GOSUB1000:

GOSUB 1100
340 SPEED-l
350 TEMP-USRIPMOVER,ALLP)
360 POKE INITANIMATE,ALLP
370 GOSUB700
380 OPEN .2,4,0,"K:":

POKE 754,255
390 REM
400 REM Main Animation Loop
410 TEMP-ABSlPEEIC11064l-128l:

SND=TEMP/5:
SND2=SND+SCONS

420 IF VF THEN
VOL-I128-TEMP)/9:
SOUND 1,SND,s,VOLl
SOUND2,SND2,2,VOL

430 IF WALK>O THEN
WALK=WALK-(SPEEDOll:
GOTO470

440 IF WALK=O THEN
POKE INITAUTOMOVE,FST2P:
TEMP=USR(PMOVER,FST2P):
WALK=-l

450 IF PEEK(1086)=2 THEN
SOUND0,10,4,10:
SOUND0,0,0,0: REMFootsteps

460 IF PEElC(1062»218 OR PEElC11062l<20 THEN
GOSUB 1050: REMReset Man

470 IF PEEIC(1064»229 OR PEEICH065l<16THEN
GOSUB600: REMReset other players

480 IF PEEIC(754)=255 THEN 410

Appendix A / 421

422 / Appendix A

490 GET .2,BYTE:
SPEED=BYTE-4S:
POKE 754,255:
IF SPEED<O THEN
SPEED=O

510 GOSUE 700
520 GOTO 410
530 REM
600 REM Select: a. Ne"'" Object:
610 IF VOL THEN

VOL=INT(VOL):
IF VOL=O THEN
VOL=1

620 IF VOL THEN
VOL=VOL-o.S:
SOUND l,SND,SNOL:
SOUND 2,SND2,2,VOL:
GOTO 620

630 TEMP=USR(MFILL,PLR(2lt256,O): REMUse memory fill routine to dear Players 2 &3
640 FLAG=INT(RND(1I*6+1): REMWhich object to display (if possible)
6S0 OBJECT=O: REMNo object selected yet
660 ON FLAG GOSUB 1100,1100,1100,1200,1300,1300:

IF OBJECT=OTHEN
RETURN

670 TEMP=USR(PMOVER,LST2PI
6S0 POKE INITANIMATE,LST2P
690 REM
700 REM S.t: HoY"izont:al V.locit:ie.
710 IF OBJECT=3 THEN

NSPD=12S-SPEED*2:
GOTO 7401 REMTree

720 IF OBJECT..4 THEN
NSPD=125-SPEED:
GOTO 740: REMTruck

730 NSPD-132-SPEED: REMCar
740 POKE MOVERATE(2l,NSPD:

POKE MOVERATE(3I,NSPDI
TEMP=LST2P

750 POKE MOVERATE(0),129-SPEED:
POKE MOVERAiE(1), 129-SPEED:
IF WALK--1 THEN
TEMP=ALLP

760 POKE INITAUTOMOVE,TEMP
7S0 RETURN
790 REM
1000 REM PARAMETERS FOR PLAYERS
1010 REM Ma.n
1020 POKE 704,3*16+10:

POKE 705,3*16+10: REMSet color to peach
1030 FRSTPLR=O:

OBJECT=l:
GOSUB 1500: REMPoint to proper Frame List

1040 POKE VPLR(O),77:
POKE VPLR(1),77

1050 IF SPEED=1 THEN 1070
1060 POKE HPLR(0),20:

POKE HPLR(ll,28:
IF SPEED)l THEN
POKE HPLRIOlt21S:
POKE HPLR<1),226

1070 WALK=INTIRNDI1l*100+20)
1080 RETURN
1090 REM

1100 REM Tree
1110 IF SPEED=O THEN

RETURN
1120 POKE 706,14*16+4:

POKE 707,13*16+6: REMBrown trunk and green leaves
1130 POKE HPLR(2),229:

POKE HPLR(3),217
1140 POKE VPLR(2),32:

POKE VPLR(3),18
1150 FRSTPLR=2:

OBJECT=2:
GOSUB 1500:
FRSTPLR=3:
OBJECT=3:
GOSUB 1500: REMPoint to proper Frame List

1160 POKE PMWIDTH(2),0:
POKE PMWIDTH(3),3

1170 VF=O
1180 RETTJRN
1190 REM
1200 REM Truck.
1210 POKE 706,3*16+61

POKE 707,INTCRNDCl)*16)*16+10
1220 POKE HPLR(2),217:

POKE HPLR(3),233
1230 POKE VPLR(2),571

POKE VPLR(3),57
1240 FRSTPLR=2:

OBJECT=4:
GOSUB 1500: REMPoint to proper Frame List

1250 POKE PMWIDTH(2),1:
POKE PMWIDTHC3l,3

1260 VF"'l:
SCONS=180

1270 RETURN
1280 REM
1300 REM Car
1310 IF SPEED=4 THEN

RETURN
1320 C=INTCRNDC1l*16ll

L=8-INTCRNDCl)*2)*41
TEMP=C*16+L:
POKE 706,TEMPl
POKE 707,TEMP

1330 POKE HPLR(2),0:
POKE HPLR(3),16

1340 IF SPEED)4 THEN
POKE HPLR(2),2161
POKE HPLR(3),232

1350 POKE VPLRC2l,76:
POKE VPLR(3),76

1360 FRSTPLR=Z:
OBJECT=51
GOSUB 1500: REMPoint to proper Frame List

1370 POKE PMWIDTHCZ),1:
POKE PMWIDTH(3),1

1380 VF=1:
SCONS=40

1390 RETURN
1400 REM
1500 REM Put Frame List Address in Param Table
1510 FOR 1=0 TO NUMPLRSCOBJECTH

Appendix A / 423

424 I Appendix A

1520 X=POINTERIOBJECT,n:
GOSUB 110

1530 POKE FRMLSTPTRII+FRSTPLR),LOBYTE
1540 POKE FRMLSTPrRcr+FRSTPLR)+l,HIBYTE
1550 NEXT I
1560 RETURN
1570 REM
5000 REM Set:' Up Memory Loc:a.t:'ions
5060 READOBJS
5070 DIM FRMDATAIOBJS,3>l

DIM FRAMESIOBJS),FRMSIZEIOBJS),NUMPLRSIOBJS),PLRFRMMEMIOBJS),FRMLSTSIZEIOBJSI
5080 FOR 1=1 TO OBJS
5090 READTEMPl,TEMP2,TEMP3
5100 FRAMESlIl=TEMPl:

FRMSIZEII)=TEMP2:
NUMPLRSlIl=TEMP3

5110 PLRFRMMEMlIl-FRAMESII>*FRMSIZEII)+l
5120 FRAMEMEM=FRAMEMEM+PLRFRMMEMII>*NUMPLRSIII
5130 FRMLSTSIZElIl=FRAMESlIl+3
5140 TOTFRMLSTSIZE-TOTFRMLSTSIZE+FRMLSTSIZElIl*NUMPLRSIII
5150 NEXT I
5160 DIM BUFFERt(128),FRAMEMEMfIFRAMEMEM),FRMLSTMEM$ITOTFRMLSTSIZEI
5270 PMOVER=ADRIPMOVERf)
5280 ANIMATE=ADRIANIMATEf)
5290 AUTOMOVE=ADRIAUTOMOVE$)
5300 MFILL=ADRIMFILUI
5310 BUFFER=ADRlBUFFER$)
5320 PLRFRAMES-ADRIFRAMEMEM$1
5330 FRMLSTMEM-ADR<FRMLSTMEM$1
5340 RETURN
5350 REM
7000 REM J:nit:'ia.li:z:& Player-Missile Graphic:s
7010 TEMP-PEE1C(06)-8: REMSet aside Player-Missile area
7020 POKE 54279,TEMP: REMTell ANTIC where PM RAM is
7030 PMBASE=256*TEMP: REMFind PM Base address
7040 FOR 1=0 TO 3
7050 PLR<Il=PMBASE+128*I+512: REMSet addresses of Players
7060 PMWIDTHlIl=53256+I: REMSet addresses of Player Widths
7070 NEXT I
7080 POKE 559,42: REMSet PM 2 line resolution, Players enabled
7090 POKE 623,1: REMSet priority - Players in front
7100 POKE 53277,2: REMEnable Player display
7110 TEMP=USRIMFILL,PLR(0),512,O): REMUse memory fill routine to dear Players
7120 RETURN
7130 REM
10000 REM Read in Fr.,-ne Dat:'a
10010 OFFSET=O:

OFFSET2=O:
DIM FRAMELISTIOBJS)

10020 FOR K=l TO OBJS
10030 FRAMEUSTIK)=FRMLSTMEM+OFFSET
10040 OFFSET=OFFSET+IFRAMESIK)+3l*NUMPLRS<K)
10050 FOR 1=0 TO NUMPLRSIKH
10060 FRMDATAIK,Il=PLRFRAMES+OFFSET2: REMStore addresses of frame data
10070 OFFSET2=OFFSET2+PLRFRMMEMIK)
10080 POKE FRMDATAIK,I>,FRMSIZEIKl: REMPoke Frame size at beginning of each set of frame data
10090 FOR J=l TO PLRFRMMEMIKH
10100 READBYTE
10110 POKE FRMDATAIK,I>+J,BYTE
10120 NEXT J:

NEXT1:
NEXTK

10130 RETURN

10140
11000
11300
11310
11320
11330
11340
11400
11410
11420
11430
11440
11450
11500
11510
11520
11600
11610
11620
11650
11600
12000
12010
12020
12030
12040
12050
12070
12080
12090
12100
12110
12120
12130
12190
12200
12210

12220
12230

12240
12250

12260

12270
12390
12400
12410
12420
12430
12440
12450

12460
12470
12480
12490

Appendix A I 425

REM
REM INITIALIZE ROUTINE STRINGS
REM Set PMOVER routine
DIM PMOVER$(86)
PMOVER$(l)=" «<Routine String goes here») II

PMOVER$l91l=" «<Routine String goes here») "
PMOVERS(81)=" «<Routine String goes here») "
REM Set ANIMATE rou1:'ine
DIM ANIMATE$(294)
ANIMATE$U)=" «<Routine String goes here») "
ANIMATE$l9ll=" «<Routine String goes here») •
ANIMATE$U8ll=" «<Routine String goes here») II

ANIMATE$l27ll=" «<Routine String goes here») II

REM Se1:' A UTOMOVE rou1:'ine
DIM AUTOMOVE$(74)
AUTOMOVE$(l)=" «<Routine String goes here») •
REM Se1:' MFILL rou1:'in e
DIMMFILUl4ll
MFILUUl=" «<Routine String goes here») II

RETURN
REM
REM Se1:' Pa..rame1:'.rs For Rou1:'ines
PARAMBASE=1024: REMParAmeter Base address
PMBAS-PARAMBASE: REM Hi Byte of PLROLocation goes here
PMBl1F=PARAMBASE+l: REMAddress of a 128 byte buffer
INITANIMATE=PARAMBASE+3: REMInitialize Frame Animate routine
INITAUTOMOVE=PARAMBASE+4: REM Initialize Player Automove routine
FOR 1=0 TO 3
HPLRlIl=PARAMBASE+6+I: REM Player horizontal ·shadow· registers
VPLRal=PARAMBASE+l0+I: REM Player vertical ·shadow" registers
RATE(I)=PARAMBASE+14+I: REM Animate rate "shadow" registers
FRMLSTPTRal=PARAMBASE+18+I*2: REM Pointer to Frame Lists
MOVERATEal=PARAMBASE+32+I: REMHorizontal movement for AUTOMOVE

NEXT I
VVBLKD=548: REM Deferred Vertical Blank Interrupt Vector
CRITICAL=bb: REMCritical Flag
ro-u
Pl=2:
P2=4:
P3=8: REMControl bits for the four Players
FST2P=PO+Pl
LST2P=P2+P3:
ALLP=PO+Pl+P2+P3
TEMP=USRlMFILL,PARAMBASE,94,O): REMIMPORTANT:Clear out parameter area
X=PLRlO):
GOSUB 110:
POKE PMBAS,HIBYTE: REMPoke Hi Byte of Player 0 into PMBAS
X=BUFFER:
GOSUB110:
POKE PMBUF,LOBYTE: REMPoke address of buffer
POKE PMBUF+l,HIBYTE
REM
REM S.1:' Up Fra.me Lis1:'s
DIM POINTERlOBJS,l)
FOR K=l TO OBJS
FOR 1=0 TO NUMPLRSlKH
LET POIHTER<IC,I)=FRAMELIST<ICl+I*FRMLSTSIZElKl: REMPoints to start of each Frame List
X=FRMDATA<IC,Il:
GOSUB110
POKE POINTERlK,Il,LOBYTEI REMPut in addre•• of Frame Data
POKE POIHTERlK,I)+1,HIBYTE
FOR J-l TO FRAMESlKl: REMMake up a Frame Li.t lnumbers 1 thru FRAMES)
POKE POINTERlK,I)+J+1,J

426 I Appendix A

ImO
12540
13000
13010
13080

13090
13100
13110

13120
13130
13140

13150
13160
13170
13200
13210
20000
20010
20020
20030
20040

20060
20070
20080
20090
20100
20110
20120
20130
20140
20150
21000
21010
21020
21030
21040
21050
21060
21070
21080
21090
21100
21110
21120
21130
21140
21150
21160
21170
21180
21190
21200
21210
22000
22010

NEXTJ
POKE POINTER(K,I)+FRAMES(K)+2,OI REMEnd of frAIM Ust mar"-r

NEXT II
NEXTK
'RETURN
REM
REM I:n.t:all I:nt:.rrupt: Rout:in••
POKE CRITICAL,ll REMOpen CRITICAL "valve", set up detour
X-PMOVER+61
GOSUB 110
POKE VVBLKD,LOBYTEI REMSet VBLANKvector to PMOVER
POKE VVBLKD+l,HIBYTE
X=ANIMATE+61
GOSUB 110
POKE PMOVER+4,LOBYTEI REM Points PMOVERto ANIMATE
POKE PMOVER+5,HIBYTE
X-AUTOMOVE+61
GOSUB 110
POKE ANIMATE+4,LOBYTEI REMPoints ANIMATE to AUTOMOVE
POKE ANIMATE+5,HIBYTE
POKE CRITICAL,OI REM Close CRITICAL ·valve", routines installed
RETURN
REM
REM FRAME OATA
REMNumber of objects
DATA 5
REM
REMNumber of FrAIMs, FrillTle Size, Number of Players
REM, (Walking Man)
DATA 5,19,2
REM, (Tree Trunk)
DATA 1,52,1
REM, (Tree Top)
DATA 1,26,1
REM, (Truck)
DATA 1,25,2
REM, (Car)
DATA 1,13,2
REM
REM Frame da..t:a -For Walking Man
REMFrame 1, Player °
DATA0,0,0,0,0,0,0,3,15,29,59,51,7,7,15,252,224,112,48
REMFrame 2, Player °
DATA0,0,0,0,0,0,0,1,7,15,31,55,55,7,111,125,248,192,193
REM Frame 3, Player°
DATA 0,0,0,0,0,0,3,7,15,31,31,31,31,222,254,251,231,206,15
REMFrame 4, Player °
DATA 1,3,3,3,1,7,15,31,30,62,62,63,63,60,124,120,112,112,252
REMFrame 5, Player °
DATA0,0,1,1,1,0,7,31,31,31,31,31,15,15,13,31,123,112,124
REMFrame 1, Player 1
DATA0,28,62,62,62,28,240,240,240,240,251,255,220,192,192,227,118,60,24
REM Frame 2, Player 1
DATA0,0,56,124,124,124,56,224,224,224,224,246,254,192,128,192,224,224,248
REMFrame 3, Player 1
DATA0,112,248,248,248,112,192,192,128,128,128,224,224,0,0,0,0,0,128
REM Frame 4, Player 1
DATA 192,224,224,224,192,0,0,0,0,0,0,0,0,0,0,0,0,0,0
REM Frame 5, Player 1
DATA0,224,240,240,240,224,128,128,128,128,176,240,0,128,192,128,192,0,0
REM
REM Frame dat:a -For Tree
REMPlayer 2, Tree Trunk

22020 DATA2,2,132,128,64,0,149,165,210,211,219,251,255,254,126,126,126,126,126,12b
22030 DATA 126,126,126,126,126,126,126,126,126,122,126,126,126,120,120,120,120,120,120,120
22040 DATA 126,120,120,120,120,120,120,126,255,255,219,137
22050 REM Player 3, Tree Top
22000 DATA24,24,00,00,120,126,126,255,255,255,255,255,255,255,255,255,255,255,255,126
22070 DATA126,60,60,60,24,24
22080 REM
22100 REM Fram. d ..:t"a -For Truc:k
22110 REM Player 2, Truck Cab
22120 DATA0,0,0,0,0,15,25,17,17,17,17,17,31,31,255,255,255,255,255,255
22130 DATA
22140 REM Player 3, Truck Body
22150 DATA 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255
22160 DATA 255,255,255,12,12
22170 REM
22200 REM Fr....m. data -For Car
22210 REM Player 2, Car back
22220 DATA 7,9,17,17,17,31,63,127,255,255,255,56,16
22230 REM Player 3, Car front
22240 DATA 192,64,32,32,16,248,255,255,255,254,255,28,8

10 REM *** SCROLLING STREET SCENE ***
20 REM Exa.mple 13
30 REM
40 REM Program demonstrating Horizontal fine Scrolling and Display List Interrupts
50 REM Copyright IC) 1982 by David Fox and Mitchell Waite
60 REM
70 GOTO140
80 REM
100 REM Hi/Lo Byte Calc:ulation
110 HIBYTE=INTIXI256): REM Calculate High Byte
120 LOBYTE=X-HIBYTE*256: REM Calculate Low Byte
130 RETURN
140 REM Initialize
160 DIMCUI24>,SEG$(24),TEMP$18)
170 CU(1)=CHR$IO):

CU(24)=CHR$10):
CU(2)=CU: REM Fill with ASCII 0

180 GOSUB 11000: REM Initialize Routine strings
190 GOSUB 5000: REM Set up memory locations
200 GOSUB 6000: REMSet up Display List
210 GOSUB 2600: REM Clear screen
230 GOSUB 8000: REMLoad in Character Set
250 POKE 756,HICHRB: REM Switch to Street character set
260 POKE559,35: REMTurn screen DMA on again, Wide Playfield
270 GOSUB 2800:

GOSUB 3000: REM Create a street
280 GOSUB 12000: REM Set up parameter addresses
290 GOSUB 13000: REM Turn on interrupts
340 SPEED=ll

POKE SCRLSTEP,SPEED
380 OPEN .2,4,O,"K:":

POKE 754,255
390 REM
400 REM Main Animation Loop
480 IF PEUrn54)-255 THEN480
490 GET .2,BYTE:

SPEED-BYTE-481
POKE 754,2551
IF SPEED(OTHEN
SPEED-O

500 POKESCRLSTEP,SPEED

Appendix A I 427

428 I Appendix A

S20 OOTO 480
S30 REM
1900 REM Con".r't 'to aer••n V.lu.
1910 CFLAO-O
1920 IF CHAR>127 THEN

CHAR-CHAR-1281
CFLAO-128

1930 IF CHAR<96 THEN
CHAR-CHAR-321
IF CHAR<O THEN
CHAR-eHAR+96

1940 IP CFUO THEN
CHAR-CHAR+CPLAO+PAINT*64

19S0 RETURN
1960 REM
2000 REM a.nd :In-Fc 'to aer••n
2010 LN-LENISEOtll

IF LN<24 THEN
SEG$ILN+l)=CU

2020 IF FENCE THEN
PTR=PTR+1

2030 FOR 1=0 TO HEIGHT
2040 IF FENCE THEN

GOSUB 2200
2050 FOR J=l TO WIDTH
2060 P=I*WIDTH+J:

CHAR=ASCISEG$(P,P»
2070 GOSUB 1900
2080 IF GRND THEN

POKE SCRLWIN+6*LINELEN+J+23,CHAR:
GOTO 2130

2090 IF CLOUD=O THEN 2120
2100 IF CLOUD=2 THEN

CHAR=CHAR+64
2110 POKE SCRN+PTR+I*24+J-l,CHAR:

GOTO 2130
2120 POKE SCRLWIN+PTR+I*LINELEN+J-l,CHAR
2130 NEXT J
2140 NEXT I
2150 PTR=PTR+WIDTH+ABSIFENCE)+SPCFLAG
2160 SPCFLAG=O
2170 ROOMLEFT=LINELEN-25-PTR
2180 RETURN
2190 REM
2200 REM Put:" In Fenee
2210 IF 1(4 THEN 2240
2220 IF 1=4 THEN

CHAR=ASCI"Q")l
GOSUB 1900:
P=-1l
GOSUB 2250:
CHAR=ASCI"E")l
GOSUB 1900:
P=WIDTH:
GOSUB 2250:
GOTO 2240

2230 CHAR=ASCI"A")l
GOSUB 1900:
P=-1l
GOSUB 2250:
CHAR=ASCltlDtI):
GOSUB 1900:
P=WIDTH:

GOSUB2250
2240 RETURN
2250 REM Poke In Da:t:-a
2260 POKE SCRLWIN+FI'R+I*LINELEN+P.CHAR
2270 RETURN
2280 REM
2400 REM Copy Firs1: Page On1:o Las1: Page
2410 FOR I=OTO 5
2420 FOR J=O TO 24
2430 POKE SCRLWIN+I*LINELEN+LINELEN-25+J.PEEKlSCRLWIN+I*LINELEN+Jl
2440 NEXT J
2450 NEXT I
2460 RETURN
2470 REM
2600 REM C1ear 1:he Screen - Fi11 1:he Screen Wi1:h 0
2610 TEM?=USR(MFILL.SCRN.SCRNSZE.Ol
2620 RETURN
2630 REM
2800 REM Pu1: in C10wds and Side"""a1k
2810 SEG$="{T={TT=[\][\\JII:

CLOUD=!:
FI'R=4:
HEIGHT=1:
WIDTH=7:
GOSUE 2000

2820 SEG$="ST={=[\\\J":
CLOUD=2:
FI'R"'FI'R+3:
WIDTH=5:
GOSUE 2000

Appendix A I 429

430 / Appendix A

31:50 REM Plant: Sorn. Poil&g.
31bO SHRUB-OI

TREE-O
3170 IF FENCE-O AND ODDHOUSE-O AND ROOMLEFT>8 THEN

SHRUB-(RND(11(-0.311
IF SHRUB THEN 3440

3180 REM M&k. & t:r••
3190 WIDTH-21

SEOf-CU
3200 REM Find height of tree
3210 IF RNDU)*10(=1 THEN

TREE=2:
GOTO 3260: REM 10%

3220 IF RND(1l*9(=2 THEN
TREE=3:
GOTO 3260: REM20%

3230 IF RND(1I*7(=4 THEN
TREE=4:
GOTO 3260: REM 40"'"

3240 IF RND<1l*3(=2 THEN
TREE=5:
GOTO 32601 REM 20"10

3250 TREE=6: REM 10"1.
3260 TRUNK=INT(RND<1l*(TREE-21+111

IF TREE=2 THEN
TRUNK=O

3270 TREETOP=TREE-TRUNK:
IF TREETOP>4 THEN
TRUNK=TREE-4:
TREETOP=4

3280 BT-(6-TREEI*2+1
3290 SEOf(BTl-"(UP>CDOWN)"
3300 IF TREETOP-2 THEN 3340
3310 FOR 1-1 TO TREETOP-2
3320 BT-BT+21

SEOf(BTl-ltt"
3330 NEXT I
3340 BT-BT+21

SEOf(BTl-ICLEFTHRIOHT)"
33eO IP TRUNK-1 THEN 3390
3360 POR I-1 TO TRUNK-1
3370 BT-BT+21

SEOf(BTl-"BV"
3380 NBXT I
3390 IP RNJJ(l)(-O.e THBN

SBOf(BT+2)-"KL"
3400 REMAdd random .padng on .ide of tree
3410 TEMP-INT(RNJJUl*3+1)1

IP TEMP-3 OR ROOMLEPT(3 THBN 3470
3420 IF TBMP-1 THBN

PTR-PTR+11
OOTO 3470

3430 SPCFLAO-lI
OOTO 3470

3440 REM M&k. & _"rub
34eO WIJJTH-INT(RND(U*2+211

SBOf-CLfI
IF WIJJTH-2 THBN
SBO.(91-"CDOWNHUP:)"I
OOTO 3470

3460 SEOfU31-"CDOWN)IIICUP:)"

3470 ODDHOUSE-OI
FEMCE-OI
OOSUE! 2000

3480 IF ROOMLEFT(4 THEN 3140lREM Add another tree if nat enaugh reern far a hause
3490 OOTO3040

REM Width 2
IF STORY>3THEN
STORY-3

3520 BT=l
3530 IF STORY=2THEN

BT=3
3540 IF CHIMNEYTHEN

SEG$(BT)="INZU":
GOTO 3560

3550 SEG$(BT)=IlIOZX"
3560 BT=BT+4:

FOR I=BT TO BT+(STORY-2)*2 STEP 2
3570 IF RND<1)(=0.5 THEN

SEG$lI>=IlTP":
GOTO3590

3580 SEG$II)="RP"
3590 NEXT I
3600 SEG$(9l="CT"
3610 IF FENCE=O THEN 3640
3620 IF RND<1)(=0.5 THEN

SEG$(l1)="WW":
GOTO 3640

3630 SEG$(l1)="EQ"
3640 RETURN
3650 REM
3700 REM Width 3
3710 BT=14-STORY)*3+1
3720 IF ANTENNA ANDSTORY(4 THEN

SEG$(BT-3)=Il{,H.){,)"
3730 SEG$IBT)="ZTX"
3740 IF RND(1)(-0.5 THEN

TEMPt""ffl:i":
GOTO 3760

3750 TEMPt-"EIm"
3760 BT-BT+3:

FOR I-BT TO BT+ISTORY-2)*3 STEP 3
3770 SEG.lI>-TEMPt
3780 NEXT I
3790
3800 IP PEKCE THEN

SEG.(16)-"WWW"
3810 RETURN
3820 REM
3900 REM Width 4
3910 BT-14-STORYI*4+1
3920 IF STORY-4 THEN

SEG.(BT)-"HTTJ"I

3930 IF STORY:>2 OR SHRUBOR RNDl1)(-0.3333 THEN 4000lREMWhich type hause?
3940 REMCreate Odd Hau.e type

ODDHOUSE-l
3960 IF CHIMNEY THEN

SEO.n)·"{,>IN{2 ,)ZU{,)"I
OOTO 3980

3970 SEO'Ul=I(,>I0(2,)ZX(,)"
3980 FEMCE·O
3990 SSO.(9)oo"ITTOBRPyBTCY"I

OOTO4100

Appendix A I 431

432 I Appendix A

4000 REMCr.at. Normal Hou•• type
4010 IF ANTENNAANDCHIMNEYTHEN

8EOtlBT-4)oo"<,>HJ <,>YTTJill
OOTO 40!50

4020 SEG$(BT-4)="{,}HJ{,}":
IF CHIMNEY=O THEN
SEG$(BT)="HTTJ":
GOTO 4050

4030 IF RND<1l{=O,5 THEN
SEG$(BT)="YTTJ":
GOTO4050

4040 SEG$(BT)="HTTM"
4050 BT=BT+4:

FOR I=BT TO BT+(STORY-2)*4 STEP 4
4060 IF RND<1)(=0.25 THEN

SEG$(Il=IFSSG":
GOT04080-

4070 SEG$<Il=IFPRG"
4080 NEXT I
4090 SEG$(17)="FTCG"
4100 IF FENCE THEN

SEG$(21)="WEQW"
4110 RETURN
4120 REM
5000 REM Set: Up 1".[emory Loc:a.t:ions
5010 DIF=O
5020 DLSZE=34: REMDisplay List size
5030 UNELEN=48: REMHorizontal length of scrolling window
5040 SCRNSZE=6*24+UNELEN*b: REMScreen size
5050 MEM=DLSZE+SCRNSZE: REMMEMory to reserve for DL and Screen
5170 DIF=DIF+41

IF DIF*25b{MEM THEN 5170
5180 HIBASE=PEEK<10b)-DIF: REMFind DL Hi and Lo bytes
5190 LOBASE=O
5200 DLBASE-HIBASE*256+LOBASE
5210 SCRN=DLBASE+OLSZEI REMStarting address of Screen RAM
5220 X=SCRNI

GOSUB 110
5230 SCRNHI-HIBYTEI

SCRNLO-LOBTTEI REMFind Scr.en Hi and La byt••
5240 SCRLWIN-SCRN+48: REMBeginning of Scroll window
5250 SCROLL"ADR(SCROLU)
5260 OLIROUT-ADR(DUROUT.)
5300 MFILL-ADR(MFILU)
5340 RETURN

REM
6000 REM S.t: Up t:h. Di.plAY List:
6010 GRAPHICS 2+161 REMS.t flag. to Oraphics mode 2
6020 POKE 5!59,01 REMTurn off .crnn OMA
6030 POKE OLBA8E,1121 REMS.t up top border, 24 .can 11n••
6040 POKE DLBASE+l,112
60!50 POKE DLBASE+2,112
6060 POKE DLBASE+3,711 REMLMSfor 11ne 1
6070 POKE DLBASE+4,SCRNLO
6080 POKE DLBASE+5,SCRNHI
6090 POKE OLBASE+6,7+1281 REMLin. 2 (wI DUl
6100 FOR 1-0 TO 61 REMLoop for 11n.. 3-9
6110 WINDOW-SCRLWIN+I*LINELEN
6120 BYTE-871 REMLMSand HSCRL
6130 IF 1-2 OR I-!5 THEN

BYTE-87+1281 REMDLI, LMSand HSCRL for 11n•• !5 and 8
6140 IF 1-6 THEN

BYTE-71I REMNo .croll for 11n. 9

6150
6160

6170
6180
6190
6200
6210
6220
6230
6240
6250
6260

6270
6280
6290
6300
6310
6320

6330
6340
8000
8010
8020
8030
8040

8050
8060

8070
8080

8090
8100

8110
8120
8130
8140
8150
8160
11000
11010
11020
11030
11040
11050
11060
11100
11110
11120
11130
11200

POKE DLBASE+7+3*I,BYTE: REMLMSand HSCRL
X=WINDOW:
GOSUB 110
POKE DLBASE+8+3*I,LOBYTE
POKE DLBASE+9+3*I,HIBYTE

NEXT I
POKE DLBASE+28,7+128: REMLast 3 lines
POKE DLBASE+29,7
POKE DLBASE+30,7+128
POKE DLBASE+31,65: REM Jump on VBLANK to beginning of DL
POKE DLBASE+32,LOBASE
POKE DLBASE+33,HIBASE
X=DLIROUT:
GOSUB 110
POKE 512,LOBYTE: REMAddress of DL for DLI handling routine
POKE 513,HIBYTE
REMTen ANTIC where the DL is
POKE 560,LOBASE
POKE 561 ,HIBASE
SETCOLOR0,15,4:
SETCOLOR 1,12,4:
SETCOLOR2,0,10:
SETCOLOR3,0,12:
SETCOLOR4,9,8: REMBrn, grn, wht, wht, blue
RETURN
REM
REM Set Up Character Set
HICHRB=PEEIC(106)-DIF-2: REMReserve space (512 bytes)
CHRBAS...HICHRB*256: REMFind start of Character Set
REMRead in datil, skip first 28 characters
OFFSET...28*e:
CHARS=35
RESTORE 23000
READ TOTAL:
TEMP-O
FOR I=CHRBAS+OFFSETTO CHRBAS+OFFSET+CHARS*8-1
READ BYTE:
POKE I,BYTE:
TEMP=TEMP+BYTE

NEXT I
IF TOTALOTEMP THEN
GRAPHICS 0:
PRINT MiBiQRIn Chilrilcter Set DabM:
END

REMClur out first chilr (bilckground)
FOR I-CHRBAS TO CHRBAS+7
POICE 1,0

NEXT I
RETURN
REM
REM XNl:TXALl:ZE ROUTXNE STRXNC3S
REM S.t SCROLL rout:'in.
DIM SCROLU(316)
SCROLUm-M <<<Routine String go•• here») II

SCROLU(91)1I" «<Routine String goe. hIIre)>> II

SCROLU<181>_h <<<Routine String gOft here)>> II

SCROLU(271)=" <<<Routine String goes hIIre)>> II

REM 8.t DLl: rout:'in.
DIM DLIROU!t(94)
DLIROUT$(1)=" <<<Routine String goes here)>> "
DLIROUT$(91)=" «<Routine String goes here») "
REM Read Xnt:'o DLI Table

Appendix A / 433

434 / Appendix A

11210

11220
11230
11240
11250
11260
11270
11600
11610
11620
11650
11660
12000
12010
12060
12140
12150
12160
12170
12180
12190
12200
12240
12280

12290
12300
12320

12330
12340

12360

12370
12390
12'S3O
12540
13000
13010
13020

13030
13040
13050

13060
13070
13170
13180
13190
13200
13210
23000
23010
23020
23030
23040
23050
23060
23070
23080

DLITBLSZE=15:
RESTORE 25510
DIM OUTABLE$<DUTBLSZEl
OUTABLE=ADR<DUTABLE$l
FOR 1=0 TO DUTBLSZE-1
READBYTE
POKE DUTABLE+I,BYTE

NEXT I
REM Set: MF:ILL rout:ine
DIMMFILU(41 l
MFILUlll=" «<Routine String goes here») •
RETURN
REM
REM Set: Paramet:ers For Rout:ines
PARAMBASE=1024: REMParameter Base address
SCRLINIT=PARAMBASE+51 REMPoke a 1 to initialize the scroll routine
SCRLADR=PARAMBASE+26: REMAddress of scrolling window
SCRLLEN=PARAMBASE+28: REMLine length of scrolling window
SCRLCLK=PARAMBASE+301 REMNumber of Color Clocks per screen byte
SCRLSTEP=PARAMBASE+31l REMStep size of scroll each jiffy
DUADR=PARAMBASE+361 REMAddress of DLI table
VVBLKD=548: REMDeferred Vertical Blank Interrupt Vector
CRITICAL=66: REMCritical Flag
TEMP-USRIMFILL,PARAMBASE,94,0>: REM IMPORTANT: Clear out parameter area
X=SCRLWIN:
GOSUB 110
POKE SCRLADR,LOBYTE
POKE SCRLADR+1,HIBYTE
X=UNELENI
GOSUB 110
POKE SCRLLEN,LOBYTE
POICE SCRLLEN+l ,HIBYTE
POKE SCRLCLlC,71 REMSet to e color dock. per byte
X-DLITABLEI
(lOSUB 110
POKE DLIADR,LOBYTE
POKE DLIADR+1,HIBYTE
RETURN
REM
REM J:n.t:&ll J:nt:.rrupt: Rcut:1n••
POKE CRITICAL,II REMOpen CRITICAL "valve", .et up detour
X-SCROLL+61
(lOSUS 110
POKE VVBLKD,LOBYTEI REMSet VBLANK vector to SCROLL
POKE VVBLKD+l,HIBYTE
X-DLIROUT+61
(lOSUB 110
POKE SCROLL+4,LOBYTEI REM Points SCROLL to DLIROUT
POKE SCROLL+!5,HIBYTE
POKE CRITICAL,OI REMClo.e CRITICAL. "valve", routine. in.talled
POKE BeRLINIT,1
POKE 54286,1921 REMEnable DLl'•
RETURN
REM
REM C h&r&c't'.r S.'t' O&'t'&
DATA 38646
DATA 0,3,15,31,63,63,127,127
DATA 0,192,240,248,252,252,254,254
DATA 127,127,127,63,63,31,15,7
DATA 254,254,254,252,252,248,240,224
DATA 4,31,4,31,4,4,4,4
DATA 48,48,48,63,54,54,54,54
DATA 3,3,3,3,3,3,3,3

Appendix A I 435

23090 DATA 255,195,219,219,219,219,219,219
23100 DATA 12,12,12,252,108,108,108,108
23110 DATA0,0,0,252,108,108,108,108
23120 DATA 127,127,127,127,127,127,127,127
23130 DATA254,254,254,254,254,254,254,254
23140 DATA 1,3,7,15,31,63,127,255
23150 DATA 1,1,3,3,7,7,15,15
23160 DATA 128,192,224,240,248,252,254,255
23170 DATA 3,3,7,7,15,0,0,0
23180 DATA 192,192,224,224,240,0,0,0
23190 DATA 156,220,252,252,252,252,254,255
23200 DATA 128,128,192,192,224,224,243,243
23210 DATA 128,128,192,192,224,224,240,240
23220 DATA 255,255,39,39,255,39,39,255
23230 DATA0,0,0,63,54,54,54,54
23240 DATA 255,255,228,228,255,228,228,255
23250 DATA 255,24,24,24,255,24,24,24
23260 DATA 255,255,255,255,255,255,255,255
23270 DATA251,251,255,252,254,254,255,255
23280 DATA 192,192,192,192,192,192,192,192
23290 DATA0,0,0,255,102,102,102,102
23300 DATA248,248,252,252,254,254,255,255
23310 DATA57,59,63,63,63,63,127,255
23320 DATA 31,31,63,63,127,127,255,255
23330 DATA 127,127,127,127,63,63,30,0
23340 DATA255,255,255,255,255,254,124,0
23350 DATA 254,254,254,254,252,252,120,0
23360 DATA255,255,255,0,0,0,0,0
23370 REM
25500 REM DL:J: Color V ..lu••
25510 DATA 234,90,152,234,90,198,10,0,198,0,0,6,0,0,10

10 REM *** THE GREAT MOVIE CARTOON ***
20 REM Exa..mp1e 14
30 REM
40 REMProgram putting it all together - PM Graphics, Fine Scrolling, £, Display List Interrupts
50 REMCopyright (C) 1982 by David Fox and Mitchell Waite
60 REM
70 GOTO 140
80 REM
100 REM Hi/La l3y1:"e Ca..1cu1a..1:"ion
110 HIBYTE=INT(Xf256lt REMCalculate High Byte
120 LOBYTE=X-HIBYTE*256: REMCalculate Low Byte
130 RETURN
140 REM Ini1:"ia..1ize
150 DIM PLR(3ltHPLR(3),VPLR(3l,RATE(3),PMWIDTH(3),FRMLSTPTR(3),MOVERATE(3)
160 DIM CL$(24ltSEG$(24),TEMP$(S)
170 CL$(l)=CHR$(Olt

CL$(24)=CHR$(Olt
CL$(2)=CL$: REMFill with ASCII 0

180 GOSUB 110001 REMInitialize Routine strings
190 GOSUB 5000: REMSet up memory locations
200 GOSUB6000: REMSet up Display List
210 GOSUB2600: REMClear screen
220 GOSUB7000: REMSet up Player area
230 GOSUB8000: REMLoad in Character Set
240 GOSUB 100001 REMRead frames into RAM
250 POKE 756,HICHRB: REMSwitch to Street character set
260 POKE 559,471 REMTurn screen DMA on again, Wide Playfield, PM 2 line resolution, Players enabled
270 GOSUB2800:

OOSUB30001 REMCreate a street
2S0 OOSUB 120001 REMSet up parameter addresses

436 / Appendix A

290 GOSUE 130001 REM Turn on intRrrupts
310 FOR 1=0 TO 1:

POKE RATEII),4:
NEXT II REM FrllTl. riLt. for walking man

320 SPEED--ll REM T.mporary start up condition
330 GOSUE 1000:

GOSUE 1100
340 SPEED-I
3:50 TEMP=USRIPMOVER,ALLP)
360 POKE INITANIMATE,ALLP
370 GOSUE 700
390 OPEN t2,4,0,IKI"1

POKE 7:54,2:5:5
390 REM
400 REM Main Animation Loop
410 TEMP=ABSlPEEK(1004)-129l1

SND-TEMP/:51
SND2-SND+SCONS

420 IF VF THEN
VOL- (129-TEMPl/91
SOUND 1,SND,9,VOLI
SOUND 2,SND2,2,VOL

430 IF WALK>O THEN
WALK-WALK-ISPEED<>1)1
GOTO 470

440 IF WALK-OTHEN
POKE INITAUTOMOVE,FST2PI
TEMP=USRIPMOVER,FST2P)1
WALK--!

450 IF PEEK(086)=2 THEN
SOUND 0,10,4,10:
SOUND 0,0,0,0: REM Footsteps

460 IF PEEK(062»218 OR PEEK(1062K20 THEN
GOSUB 1050: REM Reset Man

470 IF PEEK(064»229 OR PEEK(106Sl<16 THEN
GOSUB bOO: REMReset other players

480 IF PEEK(754)=255 THEN 410
490 GET #2,BYTE:

SPEED=BYTE-48:
POKE 754,255:
IF SPEED(O THEN
SPEED=O

510 GOSUE 700
520 GOTO 410
530 REM
600 REM Se1ec:1:" a. Ne....... Objec:1:"
610 IF VOL THEN

VOL=INT<VOLJI
IF VOL-O THEN
VOL=l

620 IF VOL THEN
VOL=VOL-0.5:
SOUND 1,SND,8,VOLI
SOUND 2,SND2,2,VOLI
GOTO 620

630 TEMP=USR(MFILL,PLRI2),256,OH REM Use memory fill routine to dear Players 2 & 3
640 FLAG=INTIRNDI1l*6+1l1 REMWhich object to display (if possible)
650 OBJECT-O: REM No object selected yet
660 ON FLAG GOSUB 1100,1100,1100,1200,1300,13001

IF OBJECT=O THEN
RETURN

670 TEMP=USRIPMOVER,LST2PJ
680 POKE INITANIMATE,LST2P
690 REM

700 REM Set Horizontal Velocities
710 IF OBJECT=3 THEN

NSPD=128-SPEED*2:
GOTO 740: REMTree

720 IF OBJECT=4 THEN
NSPO=125-SPEED:
GOTO 740: REMTruck

730 NSPO=132-SPEED: REMCar
740 POKE MOVERATE(2l,NSPO:

POKE MOVERATE(3l,NSPD:
TEMP=LST2P

750 POKE MOVERATE(Ol,129-SPEED:
POKE MOVERATEUl,129-SPEED:
IF WALK=-l THEN
TEMP=ALLP

760 POKE INITAUTOMOVE,TEMP
770 POKE SCRLSTEP,SPEED
780 RETURN
790 REM
1000 REM PARAMETERS FOR PLAYERS
1010 REM Man
1020 POKE 704,3*16+10:

POKE 705,3*16+10: REMSet color to peach
1030 FRSTPLR=O:

OBJECT=!:
GOSUB 1500: REM Point to proper Frame List

1040 POKE VPLR<Ol,97:
POKE VPLR(1l,97

1050 IF SPEED=l THEN 1070
1060 POKE HPLR(Ol,20:

POKE HPLR(1l,28:
IF SPEED)1 THEN
POKE HPLR(0l,218:
POKE HPLRU l,226

1070 WALK=INT(RNDU l*100+20l
1080 RETURN
1090 REM
1100 REM Tree
1110 IF SPEED=O THEN

RETURN
1120 POKE 706,14*16+4:

POKE 707,13*16+6: REMBrown trunk and green leaves
1130 POKE HPLR(2l,229:

POKE HPLR(3l,217
1140 POKE VPLR(2l,42:

POKE VPLR(3l,28
1150 FRSTPLR=2:

OBJECT=2:
GOSUB 1500:
FRSTPLR=3:
OBJECT=3:
GOSUB 1500: REM Point to proper Frame List

1160 POKE PMWIDTH(2l,0:
POKE PMWIDTH(3l,3

1170 VF=O
1180 RETURN
1190 REM
1200 REM Truck.
1210 POKE 706,3*16+6:

POKE 707,INT(RNDUl*16l*16+10
1220 POKE HPLR(2l,217:

POKE HPLR(3l,233
1230 POKE VPLR(2l,77:

POKE VPLR(3l,77

Appendix A I 437

438 I Appendix A

1240 FRSTPLR=2:
OEJECT=4:
GOSUE 1500: REM Point to proper Frame List

1250 POKE PMWIDTH(2),t:
POKE PMWIDTH(3l,3

1260 VF=t:
SCONS=180

1270 RETURN
1280 REM
1300 REM Ca.r
1310 IF SPEED=4 THEN

RETURN
1320 C=INT(RND<1l*16ll

L=8-INT(RND(1l*2)*4:
TEMP=C*16+L:
POKE 706,TEMP:
POKE 707,TEMP

1330 POKE HPLR(2l,0:
POKE HPLR(3l,16

1340 IF SPEED)4 THEN
POKE HPLR(2),216:
POKE HPLR(3),232

1350 POKE VPLRC2l,96:
POKE VPLR(3),96

1360 FRSTPLR=2:
OEJECT=5:
GOSUE 1500: REM Point to proper Frame List

1370 POKE PMWIDTHC2l,t:
POKE PMWIDTH(3),1

1380 VF=t:
SCONS=40

1390 RETURN
1400 REM
1500 REM Put Frame List Address in Param Table
1510 FOR 1=0 TO NUMPLRSCOEJECTH
1520 X=POINTER(OBJECT,D:

GOSUB 110
1530 POKE FRMLSTPTR<I+FRSTPLRl,LOEYTE
1540 POKE FRMLSTPTR(I+FRSTPLRl+l,HIBYTE
1550 NEXT I
1560 RETURN
1570 REM
1900 REM Convert to Sc:reen Va.lue
1910 CFLAG=O
1920 IF CHAR>127 THEN

CHAR=CHAR-128:
CFLAG=128

1930 IF CHAR<96 THEN
CHAR"CHAR-32:
IF CHAR<O THEN
CHAR"CHAR+96

1940 IF CFLAG THEN
CHAR"CHAR+CFLAG+PAINT*64

1950 RETURN
1960 REM
2000 REM S.nd 1:n -Fo to Sc:r••n
2010 LN-LEN(SEGtll

IF LN<24 THEN
SEGt(LN+ll-CU

2020 IF FENCE THEN
PTR-PTR+1

2030 FOR 1-0 TO HEIGHT

2040 IF FENCE THEN
OOBt1B2200

20S0 FOR J-1 TO WIDTH
2060 P-IIWIDTH+Jl

CHAR-ABC(BEOt(P,Pll
2070 OOBUEI 1900
2080 IF ORND THEN

POKE SCRLWIN+6ILINELEN+J+23,CHARI
OOTO 2130

2090 IF CLOUD-O THEN 2120
2100 IF CLOUD-2 THEN

CHAR-CHAR+64
2110 POKE SCRN+PTR+I*24+J-l,CHARI

OOTO 2130
2120 POKE BCRLWIN+PTR+ItLINELEN+J-l,CHAR
2130 NEXT J
2140 NEXT I
2150 PI'R=PI'R+WIDTH+ABSIFENCEl+SPCFLAG
2160 SPCFLAG=O
2170 ROOMLEFT=LINELEN-25-PI'R
2180 RETURN
2190 REM
2200 REM Put: In Fence
2210 IF I<4 THEN 2240
2220 IF I=4 THEN

CHAR=ASCI"Q">:
GOSUB 1900:
P=-t:
GOSUB 2250:
CHAR=ASCI"E">:
GOSUB 1900:
P=WIDTH:
GOSUB 2250:
GOTO 2240

2230 CHAR=ASCI"A"l:
GOSUB 1900:
P=-I:
GOSUB 2250:
CHAR=ASCI"D"l:
GOSUB 1900:
P-WIDTH:
GOSUB 2250

2240 RETURN
2250 REM Pek.e In Da.t:..
2260 POKE SCRLWIN+PTR+I*LINELEN+P,CHAR
2270 RETURN
2280 REM
2400 REM Cepy Fir.t: Pag. Ont:e Lt: Page
2410 FOR I-O TO S
2420 FOR J-O TO 24
2430 POKE SCRLWIN+I*LINELEN+LINELEN-2S+J,PEEKISCRLWIN+I*LINELEN+Jl
2440 NEXT J
24S0 NEXT I
2460 RETURN
2470 REM
2600 REM CI.ar t:n. Ber••n - Fill t:n. Ser••n Wit:n 0
2610 TEMP-t1SRIMFILL,SCRN,SCRNSZE,Ol
2620 RETURN
2630 REM
2800 REM Put: in Cloud. and Sid.walk

Appendix A I 439

440 I Appendix A

2810 SEO.-"(T-<TT-[\J[\\]"I
CLOUC-ll
PTR-41
HEIOHT·ll
WIDTH·7l
OOSUS2000

2820 SEO.·Il(T·<-[\\\]"I
CLOUC·21
PTR-PTR+3:

OOSUS2000
2830 SEO••" " ,,"I

ORNC·ll
HEIOHT·OI
WICTH·241
GOSUB 2000

2840 RETURN
2850 REM
3000 REM C REATE RAND01VJ: DISPLAY
3010 PTR=O: REM Initialize Pointer to Scroll Window
3020 HEIGHT=5: REM How tall is the window
3030 CLOUD=O:

GRNC=O
3040 WIDTH=INT(RND<1)*3+2): REM From 2-4
3050 IF RND(1)*100(=45 THEN

STORY=2:
GOTO 3080: REM 45"4 2 Stories

3060 IF RND(1)*55(=35 THEN
STORY=3:
GOTO 3080: REM 35"1. 3 Stories

3070 STORY=4: REM 20',. 4 Stories
3080 CHIMNEY=CRND(1)(=0.6): REM 60"10 chance
3090 IF SHRUB=OTHEN

FENCE=(RND<1)(=O.4): REM 40". chance (only if no shrub)
3100 IF ROOMLEFT{6 THEN

FENCE=O: REM Not enough room left for a fence
3110 ANTENNA=(RNDC1)(=0.5>: REM 50',. chance
3120 PAINT=(RND<1)(=0.5>: REM 50"1. yellow, 50',. pink
3130 SEG$=CU:

ON WIDTH-1 GOSUB 3500,3700,3900:
GOSUB 2000

3140 IF ROOMLEFT<2 THEN
GOSUB 2400:
RETURN: REM No room for tree, exit routine

3150 REM Plan"t Some Foilage
3160 SHRUB=O:

TREE=O
3170 IF FENCE=OAND ODDHOUSE=OAND ROOMLEFT>8 THEN

SHRUB=(RND<1)(=0.3>:
IF SHRUB THEN 3440

3180 REM 1VJ:ak.e a "tree
3190 WIDTH=2:

SEG$=CU
3200 REM Find height of tree
3210 IF RNDUl*10{=1 THEN

TREE=2:
GOTO 3260: REM 10"10

3220 IF RND<1 >*9{=2 THEN
TREE=3:
GOTO 3260: REM 20"1"

3230 IF RND(1l*7{=4 THEN
TREE=4:
GOTO 3260: REM 40"4

3240 IF RND<1)*3(=2 THEN
TREE=5:
GOTO 3260: REM 20"1.

3250 TREE=6: REM 10"10
3260 TRUNK=INT(RND(1)*(TREE-2)+1>:

IF TREE=2 THEN
TRUNK=O

3270 TREETOP=TREE-TRUNK:
IF TREETOP)4 THEN
TRUNK=TREE-4:
TREETOP=4

3280 BT=16-TREE)*2+1
3290 SEG$(BT)=·(UP}{DOWN}·
3300 IF TREETOF=2 THEN 3340
3310 FOR 1=1 TO TREETOP-2
3320 BT=BT+2:

SEG$(BT)=·tt·
3330 NEXT I
3340 BT=BT+2:

SEG$(BT)=·(LEFT}(RIGHn·
3350 IF TRUNK=1 THEN 3390
3360 FOR 1=1 TO TRUNK-1
3370 BT=BT+2:

SEG$(BT)=·BV·
3380 NEXT I
3390 IF RND<1)(=0.5 THEN

SEG$(BT+2)="KL"
3400 REM Add random spacing on side of tree
3410 TEMF=INT(RND(1l*3+1):

IF TEMP=3 OR ROOMLEFT(3 THEN 3470
3420 IF TEMP=1 THEN

FTR=FTR+1:
GOTO 3470

3430 SFCFLAG=1:
GOTO 3470

3440 REM Ma.ke a. shrub
3450 WIDTH=INTIRNDI1)*2+2>:

SEG$=CU:
IF WIDTH=2 THEN
SEG$(9)="{DOWN}(UF}" :
GOTO 3470

3460
3470 ODDHOUSE=O:

FENCE=O:
GOSUB 2000

3480 IF ROOMLEFT(4 THEN 3140:REM Add another tree if not enough room for a house
3490 GOTO 3040
3500 REM Width 2
3510 IF STORY>3 THEN

STORY=3
3520 BT=1
3530 IF STORY-2 THEN

BT=3
3540 IF CHIMNEY THEN

SEG$<BT)="INZU":
GOTO 3560

3550 SEG$(BT)="IOZX"
3560 BT=BT+4:

FOR I=BT TO BT+(STORY-2)*2 STEP 2
3570 IF RND<1)(=0.5 THEN

SEG$<Il="If":
GOTO 3590

3580 SEG$<Il="RF"

Appendix A / 441

442 / Appendix A

3590 NEXT I
3600 SEO$(9)="U"
3610 IF FENCE=O THEN 3640
3620 IF RNDm(=0.5 THEN

SEO$(11)="WW"1
OOTO 3640

3630 SEO$(l1)="EQ"
3640 RETURN
3650 REM
3700 REM Wid1:h 3
3710 BT=(4-STORY)*3+1
3720 IF ANTENNAANDSTORY(4 THEN

SEO$(BT-3)=" (,}{.}(,)"
3730 SEO$(BT)="ZTX"
3740 IF RND(l)(=0.5 THEN

TEMPS="FPG":
OOTO 3760

3750 TEMPS="FRO"
3760 BT=BT+31

FOR I=BT TO BT+(STORY-2)*3 STEP 3
3770 SEG$(I)=TEMPS
3780 NEXT I
3790 SEG$(l3)="FCO"
3800 IF FENCE THEN

SEO$(16)="WWW"
3810 RETURN
3820 REM
3900 REM Wid1:h 4
3910 BT=(4-STORY)*4+1
3920 IF STORY=4THEN

SEO$(BT)="HTTJ"I
OOTO 4050

3930 IF STORY)2 OR SHRUBOR RND(l)(=0.3333 THEN 4000lREM Whil:h type house?
3940 REMCreate Odd House type
3950 ODDHOUSE=1
3960 IF CHIMNEYTHEN

SEO$(1l="(,nN(2 ,nU(,}"1
OOTO 3980

3970 SEO$(l)="(,nO(2,nX(,)"
3980 FENCE-O
3990 SEG$(9)="ITTOBRPYBTCV"1

GOTO 4100
4000 REMCrute Normal House type
4010 IF ANTENNAANDCHIMNEYTHEN

SEO$(BT-4)-"C.)HJC,)YTTJ"1
OOTO

4020 SEO$(BT-4)="C,)HJC,)"1
IF CHIMNEY-OTHEN
SEO$(BT)-"HTTJ"I
OOTO

4030 IF THEN
SEO$(BT)-"YTTJ""I
OOTO

4040 SEO$lBT)-"HTTM"
ST-ST+41
FOR I-ST TO BT+(STORY-2)*4 STEP 4

4060 IF THEN
SEO$(I)-"9m"1
OOTO 4080

4070 SEG$(I)-"fm"
4080 NEXT I
4090 SEG$(17)-"m"

Appendix A / 443

4100 IF FENCE THEN
BEG.(21)-"WEQW"

4110 RETURN
4120 REM
5000 REM Set Up Memory Loca.tions
5010 DIF=O
5020 DLSZE=34: REM Display List size
5030 LINELEN=160: REMHorizontal Ienqth of scrolling window
5040 SCRNSZE=6*24+LINELEN*6: REMScreen size
5050 MEM=DLSZE+SCRNSZE: REMMEMory to reserve for DL and Screen
5060 RESTORE:

READ OBJS
5070 DIM FRMDATA(OBJS,3):

DIM FRAMES(OBJS),FRMSIZElOBJS),NUMFLRS(OBJS),FLRFRMMEMlOBJS),FRMLSTSIZE(OBJS)
5080 FOR 1=1 TO OBJS
5090 READ TEMF1,TEMF2,TEMF3
5100 FRAMES<I>=TEMPll

FRMSIZE<I>=TEMF2:
NUMPLRS<I>=TEMF3

5110 FLRFRMMEM<I>=FRAMES<I>*FRMSIZE<I>+l
5120 FRAMEMEM=FRAMEMEM+PLRFRMMEM<I>*NUMPLRSlI)
5130 FRMLSTSIZE(I)=FRAMES(I)+3
5140 TOTFRMLSTSIZE=TOTFRMLSTSIZE+FRMLSTSIZE<I>*NUMPLRSm
5150 NEXT I
5160 DIM BUFFERS(128),FRAMEMEMS(FRAMEMEM),FRMLSTMEMSITOTFRMLSTSIZEI
5170 DIF=DIF+4:

IF DIF*256<MEM THEN 5170
5180 HIBASE=FEEK(106)-DIF: REM Find DL Hi and Lo bytes
5190 LOBASE=O
5200 DLBASE=HIBASE*256+LOBASE
5210 SCRN=DLBASE+DLSZE: REMStarting address of Scre.-en RAM
5220 X=SCRN:

GOSUB 110
5230 SCRNHI=HIBYTE:

SCRNLO=LOBYTE: REM Find Screen Hi and Lo bytes
5240 SCRLWIN=SCRN+48: REMBeginning of Scroll window
5250 SCROLL=ADR(SCROLU)
5260 DLIROUT=ADR<DLIROUTS)
5270 PMOVER=ADRlPMOVERS)
5280 ANIMATE=ADR(ANIMATESI
5290 AUTOMOVE=ADR(AUTOMOVESI
5300 MFILL-ADR(MFILU)
5310 BUFFER-ADR(BUFFERS)
5320 PLRFRAMES-ADR(FRAMEMEMS)
5330 FRMLSTMEM-ADR(FRMLSTMEMS)
5340 RETURN
5350 REM
6000 REM S.t Up the Disp1.ay List
6010 GRAPHICS 2+16: REMSet to Graphics mode 2
6020 POKE 559,0: REM Turn off screen DMA
6030 POKE DLBASE,112: REMSet up top border, 24 SCM! lines
6040 POKE DLBASE+l,112
6050 POKE DLBASE+2,112
6060 POKE DLBASE+3,71: REM LMS for line 1
6070 POKE DLBASE+4,SCRNLO
6080 POKE DLBASE+5,SCRNHI
6090 POKE DLBASE+6,7+128: REM Line 2 lwl DLI>
6100 FOR 1..0 TO 6: REMLoop for lines 3-9
6110 WINDOW-SCRLWIN+I*LINELEN
6120 BYTE=87: REM LMSand HSCRL
6130 IF 1=2 OR 1=5 THEN

BYTE-87+128: REMDLI, LMS and HSCRL for lines 5 and 8
6140 IF 1=6 THEN

444 / Appendix A

BYTE=71: REM No scroll for line 9
6150 POKE DLBASE+7+3*I,BYTE: REM LMS and HSCRL
6160 X=WINDOW:

GOSUB 110
6170 POKE DLBASE+8+3*I,LOBYTE
6180 POKE DLBASE+9+3*I,HIBYTE
6190 NEXT I
6200 POKE DLBASE+28,7+128: REM Last 3 lines
6210 POKE DLBASE+29,7
6220 POKE DLBASE+30,7+128
6230 POKE DLBASE+31,65: REM Jump on VBLANK to beginning of DL
6240 POKE DLBASE+32,LOBASE
6250 POKE DLBASE+33,HIBASE
6260 X=DLIROUT:

GOSUB 110
6270 POKE 512,LOBYTE: REM Address of DL for DLI handling routine
6280 POKE 513,HIBYTE
6290 REM Tell ANTIC where the DL is
6300 POKE 560,LOBASE
6310 POKE 561,HIBASE
6320 SETCOLOR 0,15,4:

SETCOLOR 1,12,4:
SETCOLOR 2,0,10:
SETCOLOR 3,0,12:
SETCOLOR 4,9,8: REMBrn, grn, wht, wht, blue

6330 RETURN
6340 REM
7000 REM Initia.1ize P1a.yer-Missi1e Gra.p hics
7010 TEMP=PEEK<l06)-DIF-4: REM Set aside Player-Missile area
7020 POKE 54279,TEMP: REMTell ANTIC where PM RAM is
7030 PMBASE=256*TEMP: REM Find PM Base address
7040 FOR I=O TO 3
7050 PLR<I>=PMBASE+128*I+512: REM Set addresses of Players
7060 PMWIDTH<I>=53256+I: REM Set addresses of Player Widths
7070 NEXT I
7090 POKE 623,1: REM Set priority - Players in front
7100 POKE 53277,2: REM Enable Player display
7110 TEMP=USR(MFILL,PLR<O),512,0): REM Use memory fill routine to clear Players
7120 RETURN
7130 REM
8000 REM Set Up A1terna.te Character Set
8010 HICHRB=PEEK(106)-DIF-4: REM Reserve space (512 bytes)
8020 CHRBAS=HICHRB*256: REM Find start of Character Set
8030 REMRead in data, skip first 28 characters
8040 OFFSET=28*8:

CHARS-35
8050 RESTORE 23000
8060 READ TOTAL:

TEMFaO
8070 FOR I-CHRBAS+OFFSET TO CHRBAS+OFFSET+CHARS*8-1
8080 READ BYTE:

POKE I,BYTE:
TEMP=TEMP+BYTE

8090 NEXT I
8100 IF TOTALOTEMP THEN

GRAPHICS 0:
PRINT "ERROR In Character Set Data":
END

8110 REM Clear out first char (background)
8120 FOR I=CHRBAS TO CHRBAS+7
8130 POKE 1,0
8140 NEXT I
8150 RETURN

8160
10000
10010

10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120

10130
10140
11000
11010
11020
11030
11040
11050
11060
11100
11110
11120
11130
11200
11210

11220
11230
11240
11250
11260
11270
11300
11310
11320
11330
11340
11400
11410
11420
11430
11440
11450
11500
11510
11520
11600
11610
11620
11650
11660
12000
12010
12020

Appendix A I 445

REM
REM Read in Frame
OFFSET=O:
OFFSET2=0:
DIM FRAMELIST(OBJSll
RESTORE 21000
FOR K=1 TO OBJS
FRAMELIST(KI=FRMLSTMEM+OFFSET
OFFSET=OFFSET+(FRAMES(KI+3)*NUMPLR5(K)
FOR 1=0 TO NUMPLRS(KH
FRMDATA(K,I)=PLRFRAMES+OFFSET2: REMStore addresses of frame data
OFFSET2=OFFSET2+PLRFRMMEM(K)
POKE FRMDATA(K,I1,FRMSIZE(K): REMPoke Frame size at beginning of each set of frame data
FOR J=l TO PLRFRMMEM(KH
READBYTE
POKE FRMDATA(K,I1+J,BYTE

NEXT J:
NEXT I:

NEXTK
RETURN
REM
REM INITIALIZE ROUTINE STRINGS
REM SCROLL
DIM SCROLU(3161
SCROLL$U)=" «(Routine String goes here») "
SCROLL$(91l=" «(Routine String goes here») "
SCROLL$(81)"" «(Routine String goes here») "
SCROLU(271)=" «<Routine String goes here») "
REM DLI
DIMDLIROUT$(94)
DLIROUT$(1)=" «<Routine String goes here») "
DLIROUTS(91)=" «<Routine String goes here») "
REM Read Color Values DLI Table
DLITBLSZE=15:
RESTORE 25510
DIM DLITABLES<DLITBLSZEI
DLITABLE=ADR(DLITABLES)
FOR 1=0 TO DLITBLSZE-1
READBYTE
POKE DLITABLE+I,BYTE

NEXT I
REM PMOVER
DIM PMOVER.(1861
PMOVERSU 1=" «<Routine String goe. here») "
PMOVERS(91l=" «<Routine Stringgoe. here») "
PMOVER.U81l." <((Routine String goes here») "
REM AN:I:MATE
DIM ANIMATE.(294)
ANIMATES(1)-" «<Routine String goes here») •
ANIMATES(91 I"" «<Routine String goe. here») "
ANIMATE.(81)." <<<Routine String goes here») "
ANIMATES(271)"" «<Routine String goe. here») "
REM AUTOMOVE
DIM AUTOMOVE.(74)
AUTOMOVE.m." «<Routine String goe. her.») "
REM MFILL routine
DIM MFILU(41 I
MFILL$(ll=" «<Routine String goes here») "
RETURN
REM
REM Set Parameters For Routines
PARAMBASE=1024: REMParameter Base address
PMBAS=PARAMBASE: REMHi Byte of PLROLocation goes here

446 I Appendix A

12030
12040
12050
12060
12070
12080
12090
1.2100
12110
12120
12130
12140
12150
12160
12170
12180
12190
12200
12210

12220
12230

12240
12250

12260

12270
12280

12290
12300
12320

12330
12340
12350
12360

12370
12380
12390
12400
12410
12420
12430
12440
12450

12460
12470
12480
12490
12500
12510
12520

12530

PMBUF=PARAMBASE+l: REMAddress of a 128 byte buffer
INITANIMATE=PARAMBASE+3: REMInitialize Frame Animate routine
INITAUTOMOVE=PARAMBASE+4: REMInitialize Player Automove routine
SCRLINIT=PARAMBASE+5: REMPoke a 1 to initialize the scroll routine
FOR 1=0 TO 3
HPLR(I)=PARAMBASE+6+I: REMPlayer horizontal "shadow" registers
VPLR(I>=PARAMBASE+l0+I: REMPlayer vertical "shadow" registers
RATE(I)=PARAMBASE+14+I: REMAnimate rate "shadow" registers
FRMLSTPTR(I)=PARAMBASE+18+I*2: REMPointer to Frame Lists
MOVERATE(I)=PARAMBASE+32+I: REMHorizontal movement for AUTOMOVE

NEXT I
SCRLADR=PARAMBASE+26: REMAddress of scrolling window
SCRLLEN=PARAMBASE+28: REM Line length of scrolling window
SCRLCLK=PARAMBASE+30: REMNumber of Color Clocks per screen byte
SCRLSTEP=PARAMBASE+3l: REMStep size of scroll each jiffy
DLIADR=fARAMBASE+36: REMAddress of DLI table
VVBLKD=54S: REMDeferred Vertical Blank Interrupt Vector
CRITICAL=66: REMCritical Flag
PO=l:
Pl=2:
P2=4:
P3=8: REMControl bits for the four Players
FST2P=PO+P1
LST2P=P2+P3:
ALLP=PO+P1+P2+P3
TEMP=USR(MFILL,PARAMBASE,94,Ol: REM IMPORTANT: Clear out parameter area
X=PLRlO):
GOSUB 110:
POKE PMBAS,HIBYTE: REMPoke Hi Byte of Player 0 into PMBAS
X=BUFFER:
GOSUB 110:
POKE PMBUF,LOBYTE: REMPoke address of buffer
POKE PMBUF+1,HmYTE
X=SCRLWIN:
GOSUB 110
POKE SCRLADR,LOBYTE
POKE SCRLADR+l,HIBYTE
X=LINELEN:
GOSUB 110
POKE SCRLLEN,LOBYTE
POKE SCRLLEN+1,HIBYTE
POKE SCRLCLK,7: REMSet to 8 color docks per byte
X=DLITABLE:
GOSUB 110
POKE DLIADR,LOBYTE
POKE DLIADR+l,HIBYTE
REM
REM Set Up Fra.me Lists
DIM POINTER(OBJS,1)
FOR K=l TO OBJS
FOR 1=0 TO NUMPLRS(Kl-1
LET POINTER(K,Il=FRAMELISTlK)+I*FRMLSTSIZElK): REMPoints to start of each Frame List
X=FRMDATA(K,IH
GOSUB 110
POKE POINTERlK,Il,LOBYTE: REMPut in address of Frame Data
POKE POINTERlK,Il+ l,HIBYTE
FOR J=l TO FRAMESlK): REMMake up a Frame List lnumbers 1 thru FRAMES)
POKE POINTERlK,Il+J+i.r

NEXT J
POKE POINTERlK,Il+FRAMESlK)+2,O: REMEnd of frame list marker

NEXT I:
NEXTK
RETURN

12540 REM
13000 REM Install Interrupt Routines
13010 POKE CRITICAL,lI REMOpen CRITICAL "valve", set up detour
13020 X=SCROLL+6:

GOSUB 110
13030 POKE VVBLKD,LOBYTE: REMSet VBLANK vector to SCROLL
13040 POKE VVBLKD+1,HIBYTE
13050 X=DLIROUT+6:

GOSUB 110
13060 POKE SCROLL+4,LOBYTE: REM Points SCROLL to DLIROUT
13070 POKE SCROLL+5,HIBYTE
13080 X=PMOVER+6:

GOSUB 110
13090 POKE DLIROUT+4,LOBYTE: REM Points DLIROUT to PMOVER
13100 POKE DLIROUT+5,HIBYTE
13110 X=ANIMATE+6:

GOSUB 110
13120 POKE PMOVER+4,LOBYTE: REMPoints PMOVER to ANIMATE
13130 POKE PMOVER+5,HIBYTE
13140 X=AUTOMOVE+6:

GOSUB 110
13150 POKE ANIMATE+4,LOBYTEI REMPoints ANIMATE to AUTOMOVE
13160 POKE ANIMATE+5,HIBYTE
13170 POKE CRITICAL,OI REMClose CRITICAL "valve", routines installed
13180 POKE SCRLINIT,1
13190 POKE 54286,192: REM Enable DLI's
13200 RETURN
13210 REM
20000 REM FRAME DATA
20010 REMNumber of objects
20020 DATA 5
20030 REM
20040 REMNumber of Frames, Frame Si%e, Number of Players
20050 REM. (Walking Man)
20060 DATA 5,19,2
20070 REM. (Tree Trunk)
20080 DATA 1,52,1
20090 REM. (Tree Top)
20100 DATA 1,26,1
20110 REM. (Truck)
20120 DATA 1,25,2
20130 REM. (Car)
20140 DATA 1,13,2
20150 REM
21000 REM Fra.me da.t. -For Walking Man
21010 REMFrame 1, Player °
21020 DATA 0,0,0,0,0,0,0,3,15,29,59,51,7,7,15,252,224,112,48
21030 REMFrame 2, Player °
21040 DATA 0,0,0,0,0,0,0,1,7,15,31,55,55,7,111,125,248,192,193
21050 REMFrame 3, Player °
21060 DATA 0,0,0,0,0,0,3,7,15,31,31,31,31,222,254,251,231,206,15
21070 REMFrame 4, Player °
21080 DATA 1,3,3,3,1 ,7,15,31 ,30,62,62,63,63,60,124,120,112,112,252
21090 REMFrame 5, Player °
21100 DATA 0,0,1,1,1,0,7,31,31,31,31,31,15,15,13,31,123,112,124
21110 REMFrame 1, Player 1
21120 DATA 0,28,62,62,62,28,240,240,240,240,251,255,220,192,192,227,118,60,24
21130 REMFrame 2, Player 1
21140 DATA 0,0,56,124,124,124,56,224,224,224,224,246,254,192,128,192,224,224,248
21150 REM Frame 3, Player 1
21160 DATA 0,112,248,248,248,112,192,192,128,128,128,224,224,0,0,0,0,0,128
21170 REM Frame 4, Player 1
21180 DATA 192,224,224,224,192,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Appendix A I 447

448 / Appendix A

21190 REM Frame 5, Player 1
21200 DATA 0,224,240,240,240,224,128,128,128,128,170,240,0,128,192,128,192,0,0
21210 REM
22000 REM Frame data -For Tree
22010 REM Player 2, Tree Trunk
22020 DATA 2,2,132,128,64,0,149,165,210,211,219,251,255,254,126,126,126,126,126,126
22030 DATA 126,126,126,120,126,126,126,120,126,122,126,126,126, 126,126, 126,126,126,126,126
22040 DATA 126,126,126,126,126,126,120,120,255,255,219,137
22050 REM Player 3, Tree Top
22060 DATA 24,24,60,60,126,126,126,255,255,255,255,255,255,255,255,255,255,255,255,1
22070 DATA 126,60,60,60,24,24
22080 REM
22100 REM Frame data -For Truck
22110 REM :?layer 2, Truck Cab
22120 DATA 0,0,0,0,0,15,25,17,17,17,17,17 ,31,31,255,255,255,255,255,255
22130 DATA 255,255,255,28,28
22140 REM Player 3, Truck Body
22150 DATA 255,255,255,255,255,255,255,255,255,255,255,255,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255
22160 DATA 255,255,255,12,12
22170 REM
22200 REM Frame data -For Car
22210 REMPlayer 2, Car back
22220 DATA 7,9,17,17,17,31,63,127,255,255,255,56,16
22230 REM Player 3, Car front
22240 DATA 192,64,32,32,16,248,255,255,255,254,255,28,8
23000 REM Character Set Data
23010 DATA 38646
23020 DATA 0,3,15,31,63,63,127,127
23030 DATA 0,192,240,248,252,252,254,254
23040 DATA 127,127,127,03,63,31,15,7
23050 DATA 254,254,254,252,252,248,240,224
23060 DATA 4,31,4,31,4,4,4,4
23070 DATA 48,48,48,63,54,54,54,54
23080 DATA 3,3,3,3,3,3,3,3
23090 DATA 255,195,219,219,219,219,219,219
23100 DATA 12,12,12,252,108,108,108,108
23110 DATA 0,0,0,252,108,108,108,108
23120 DATA 127,127,127,127,127,127,127,127
23130 DATA 254,254,254,254,254,254,254,254
23140 DATA 1,3,7,15,31,63,127,255
23150 DATA 1,1,3,3,7,7,15,15
23160 DATA 128,192,224,240,248,252,254,255
23170 DATA 3,3,7,7,15,0,0,0
23180 DATA 192,192,224,224,240,0,0,0
23190 DATA 156,220,252,252,252,252,254,255
23200 DATA 128,128,192,192,224,224,243,243
23210 DATA 128,128,192,192,224,224,240,240
23220 DATA 255,255,39,39,255,39,39,255
23230 DATA 0,0,0,63,54,54,54,54
23240 DATA 255,255,228,228,255,228,228,255
23250 DATA 255,24,24,24,255,24,24,24
23260 DATA 255,255,255,255,255,255,255,255
23270 DATA 251,251,255,252,254,254,255,255
23280 DATA 192,192,192,192,192,192,192,192
23290 DATA 0,0,0,255,102,102,102,102
23300 DATA 248,248,252,252,254,254,255,255
23310 DATA 57,59,63,63,63,63,127,255
23320 DATA 31,31,63,63,127,127,255,255
23330 DATA 127,127,127,127,63,03,30,0
23340 DATA 255,255,255,255,255,254,124,0
23350 DATA 254,254,254,254,252,252,120,0
23360 DATA 255,255,255,0,0,0,0,0
23370 REM

25500 REM DLI Color Va.lues
25510 DATA 234.90.152.234.90.198.10.0.198.0,0.6.0.0.10

10 REM HORIZONTAL FINE: SCROLLING
20 REM
30 GRAPHICS 0
40
60 REM Find Display List
70 POKE DLIST+15,1S: REMTurn horizontal scroll bit (2+16)
SO POSITION 1,10:

PRINT "This is a demo of horizontal scrolling! "I
90 FOR 1=0 TO
100 POKE HSCROL.I
110 GOSUS
120 NEXT I
130 FOR 1=15 TO 0 STEP -1
140 POKE HSCROL.I
150 GOSUS 500
160 NEXT I
170 GOTO90
500 FOR W=1 TO 5:

NEXTW
510 RETURN

10 REM VERTICAL FINE SCROLLING
20 REM
30 GRAPHICS 0
40 HSCROL=54276
50 VSCROL=54277
60 DLIST=PEEK(560)+PEEK(561)*256: REMFind Display List
70 POKE DLIST+15.34: REMTurn vertical scroll bit (2+32)
80 POSITION 1.10:

PRINT "This is a demo of vertical scrolling! "I
90 FOR 1=0 TO 7
100 POKE VSCROL.I
110 GOSUS 500
120 NEXT I
130 FOR 1=7 TO 0 STEP -1
140 POKE VSCROL.I
150 GOSUE500
160 NEXT I
170 GOTO90
500 FOR W=1 TO 5:

NEXTW
510 RETURN

10 REM DIAGONAL FINE SCROLLING
20 REM
30 GRAPHICS 0
40 HSCROL=54276
50 VSCROL=54277
60 DLIST=PEEK(560)+PEEK(561)*256: REMFind Display List
70 POKE DLIST+15.50: REMTurn horizontal and vertical scroll bits (2+16+32)
80 POSITION 3.10:

PRINT "This is a demo of diagonal scrolling! ":
90 FOR 1=0 TO 7
100 POKE HSCROL.I:

POKE VSCROL.I
110 GOSUS 500

Appendix A I 449

450 I Appendix A

120 NEXT I
130. FOR 1=7 TO 0 STEP-1
140 POKE HSCROL,I:

POKE VSCROL,I
1SO GOSUB 500
160 NEXT I
170 GOTO 90
500 FOR W=1 TO 5:

NEXTW
510 RETURN

24000 REM SCROLL Routine DATA
24010 DATA SCROLL,11020,316,29349
24020 DATA 184,80,3,76,98,228,216,173,5,4,240,247,16,72,165,224,141,89,4,165,225,141,90,4,173
24030 DATA 48,2,133,224,173,49,2,133,225,173,30,4,141 ,80,4,169,192,141 ,81,4,173,31 ,4,160,0
24040 DATA 78,80,4,144,7,74,78,81,4,200,208,244,141,80,4,173,31 ,4,45,30,4,24,109,70,4
24050 DATA 205,30,4,240,14,144,12,176,4,80,173,208,89,238,80,4,45,30,4,141,70,4,77,30,4
24060 DATA 141,4,212,173,80,4,24,109,68,4,141 ,68,4,144,3,238,69,4,173,68,4,56,109,81,4
24070 DATA 141,68,4,144,3,238,69,4,173,69,4,205,29,4,144,40,208,8,173,68,4,205,28,4,144
24080 DATA 30,169,0,141,68,4,141,69,4,141,80,4,173,26,4,141,66,4,173,27,4,141,67,4,184
24090 DATA 80,19,208,103,80,159,173,68,4,24,237,81,4,141,68,4,176,3,206,69,4,173,66,4,24
24100 DATA 109,80,4,141,66,4,141,82,4,144,3,238,67,4,173,67,4,141,83,4,160,3,177,224,201
24110 DATA 65,240,41 ,41,80,240,32,41,16,240,26,200,173,82,4,145,224,24,109,28,4,141,82,4,200
24120 DATA 173,83,4,145,224,109,29,4,141,83,4,173,200,200,200,208,211,80,166,173,89,4,133,224,173
24130 DATA 90,4,133,225,184,80,153,169,128,141,5,4,173,30,4,141,70,4,169,0,141,68,4,141,69
24140 DATA 4,173,26,4,141,66,4,173,27,4,141,67,4,184,80,207
25000 REM DLl: Routine DATA
25010 DATA DLIROUT,11110,94,12803
25020 DATA 184,80,10,76,98,228,169,0,141,75,4,240,246,72,138,72,152,72,165,224,141,93,4,165,225
25030 DATA 141,94,4,173,36,4,133,224,173,37,4,133,225,172,75,4,177,224,72,200,177,224,170,200,177
25040 DATA 224,200,140,75,4,168,104,234,234,234,234,234,234,234,234,234,141,10,212,141,24,208,142,25,208
25050 DATA 140,26,208,173,93,4,133,224,173,94,4,133,225,104,168,104,170,104,64

10 REM COPY PROGRAM
20 REMProgram to transfer duplicate lines from PLAYER program to SCROLL
30 REM
40 DIM LN$(l20)
50 OPEN 11,4,O,"D:PLAYERS.TXT"
60 OPEN 12,8,O,"D:SCROLL.BAS"
70 FOR 1=1 TO 41
80 READ LNNUM
90 INPUT +1ILN$:

IF VAULN$)()LNNUM THEN 90
100 PRINT +2;LN$:

PRINT LN$
110 NEXT I
120 CLOSE +1:

CLOSE +2
130 REM
200 REM Lines To Copy
220 DATA 30,50,60,70,80,100,110,120,130,140,180,190,280,290,380
230 DATA 390,400,490,530,5000,5300,5340,5350,11000,11600,11610,11620,11650,11660,12000
240 DATA 12010,12190,12200,12240,12530,12540,13000,13010,13170,13200,13210

Appendix B

Character Set Grid/
ATARI ROM Character Set

Figure B.1: Grid for creating character set figures. See also Chapter 5.

Appendix B I 451

452 / Appendix B

Column 1 Column 2 Column 3 Column 4

n CHR n CHR n CHR n CHR n CHR CHRn

112 Pc96

n CHR

80 Dc64p48@

n CHR

o16Spacea

17 33 A 49 Q 65 G 81 1:1 97 a 113 q

2 18 34 B 50 R 66 IJ 82 = 98 b 114 r

3

4

5

6

7

8

10

11

12

14

I;'

/I

$

+

1

20

21

22

23

24

:HI

31

3

4

5

6

7

8

<

>

35

36

37

38

:\9

40

41

42

43

4;'

47

c

D

E

F

H

J

K

L

:--1

()

51

52

53

54

55

:'.JI

;,

(,0

iiI

(" J,-

S

T

u

v

w

x

v

z

67

68

70

71

72

73

74

,:>

83

84 C
85

86 (J
87

88

90 1:1
.i.. I;J
(DO
(DD

99

100

101

102

103

104

105

101,

11)7

1111,

J

Ill)

111

c

d

e

t

h

k

III

11

()

115 s

l Lti t

117 1I

1 IIJ v

11 \) vv

LW x

121 \'

1')') Z

123 D
124 I

'IE'12;' • 'I
I

121;

I
1"- ...

Figure B.2: The order of the ATARI character set in ROM. (Reproducedwith
permission of ATARI, Inc.)

Appendix C

Listing Conventions

HOW WE REPRESENT THOSE INVISIBLE ATARI
CHARACTERS

Throughout the listings in this section are many characters that
either can't be printed by our printer or are hard to find on the ATARI
keyboard (because they're not obviously indicated). To make it easier to
enter the programs, we will use the following conventions:

1. All inverse video characters (characters entered after pressing
the "ATARI Key" - light background and dark letters instead of dark
background and light letters) will be underlined. In the following
example, the letters C, E, and F should be entered in inverse video:

S$="ABCDEFGHI"

2. Control characters (those entered while the control button is
depressed) will be surrounded by curly brackets { }. All of the ATARI' s
graphics characters are accessed while depressing the control (CTRL on
the keyboard) button. In the following example, the letters B, G, and H
are control characters:

C$="A{B}CDEF{G}{H}IJ"

3. Special cursor and screen keys will be represented by printing
the name or description of the key within curly brackets { }. To enter
these special keys into a string, you will need to press the ESC key first.
This puts the code for the key into the string instead of actually carrying
out the action. In the following example, we want to clear the screen on
line 100. To do this, first tap the ESC key, then hold the shift key down
and press the key with the word CLEAR on it (it has -< on it). When the line
is executed, the screen will clear:

100 PRINT "{CLEAR}"

Appendix C I 453

454 I Appendix C

In the next example, the cursor key with the arrow pointing down is
used. When this line is executed, the computer will print the word HI,
move the cursor down one line, and then print BYE. To enter this
character, first press the ESC key, then hold the CTRL key down and press
the key with the down arrow and = on it:

110 PRINT "HI{DOWN}BYE"

When executed, you will see the following on your screen:

HI
BYE

4. When a number appears before a curly bracketed word, it means
we want you to enter that character the indicated number of times. In the
following example, we want you to enter the letters" ABCDE," then one
cursor down, then five cursors left, and finally the letters "FGHIJ":

120 PR I NT "ABCDE{ DOWN}{ 5 LEFT }FGH I J"

When this line is executed, you will see the following on the screen:

ABCDE
FGHIJ

This technique of embedding the cursor characters enables us to create a
block of characters which can be PRI NTed with one statement.

5. When spaces are important to an animation, as they are in the
programs in Chapter 5, we will represent a space with a lowercase b that
has a slash through it:

This will enable you to enter the correct number of spaces. As
before, if the 1'\ character is underlined, enter the space as an inverse video
character.

6. In Chapters 8 and 9, our black box machine language routines
are presented. Since it would be too confusing to present the actual
representations for the routines in the listings, the lines containing the
routines will contain the message:

«<Routine String goes here»>

MORE ABOUT THE LISTINGS - HOW THEY WERE
CREATED

You may have noticed that our printed listings are formatted
differently from programs listed on your screen. We used a special
program' to print them in a manner which emphasizes their structure,
thus making them more readable and easier to understand. All
FOR/ NE}{T loops are indented so that it's easy to see where the loop
starts and ends. I F / THEN statements are indented so that you can see
exactly what will be executed if the condition is TRUE. Also, the
multiple parts of all statements (separated by colons) are printed on a
separate line. Of course, when you enter the programs, the structure will
disappear - don't try to enter each statement on a separate line!

One disadvantage to this method is that our stretched-out listings
make the programs appear to be longer than they really are. Don't let the
number of pages it takes to display each program discourage you from
entering them!

'Our listing program was based on the ATARl Program Exchange product called BLIS-BASIC
Program Lister by Image Marketing. Inc. (APX-20049). We modified the program so it would print the
special codes for spaces and cursor and screen control keys. and also so it would use the ATARI 825
Printer's proportionally spaced font.

Appendix C / 455

Appendix D

The String Loader Program

HOW TO STORE MACHINE LANGUAGE ROUTINES IN
STRINGS

As mentioned in Chapter 8 when we first introduced programs
containing machine language routines, loading the bytes of the routine
into a string is an excellent storage method when using ATARI BASIC.
Here is the String Loader program along with the DATAfor MF ILL, the
first machine language routine we introduced.

Appendix 0 I 457

Appendix D / 459

Figure 0.1: Listing of String Loader program.

Once you have entered this program, you may re-use it for all our
subsequent machine language routines just by deleting the old DATA
statements for MF ILL and entering the new ones for the next routine you
want to use. The program will read the name of the routine, its starting
line number, how long it is, check whether it was entered correctly, and
then save the finished "routine string" on the storage device of your
choice. All this is taken care of automatically.

Initialize (lines 100-150) This section sets all the variables to
their initial values. In line 110, the string and array variables are DI Men-
sioned. DEI,) $ will contain the name of the device on which you will
store your routine strings (disk, cassette, or screen editor), and
STRNAME$ will hold the name of the routine string. There are two byte
values which cannot be represented in a string and must be handled
separately: quotation marks (ATASCII 34), which would prematurely end
a string, and the end-of-line character (ATASCII 155), which would end
the statement line. These characters are singled out and their positions in
the string are stored respectively in the arrays QUOTE and EOL.
QUOTE$ is set to the quotation mark character and CHAR$ temporarily
holds the character representation of the current byte.

In line 140, the name of the string, the routine's starting line number
and size, and a checksum value (E RRCHECK, to make sure the DATA
was accurately entered) are read in from the DATA statements.

Choose and Open Output Device (lines 800-960) This section
asks you on which storage device you want to store your routine strings.
Once stored on either disk or cassette, they can be merged into any
program with the ENTER command. If you have a disk drive, type D (or
D2 if you want to use your second drive), and type C if you want to use
your cassette recorder. If the E option is selected, the screen will clear
and the routine will be printed on the screen. If you enter a non-existent
device, you will have another chance to input a valid response.

460 I Appendix D

Begin Printout (lines 160-310) This is where all the work is
done. On line 170, the first line which contains the DIM statement for the
string is printed out. In line 180, STRSTART (String Start) is set to the
position of the next open string character as saved in STRPNTR (String
Pointer). STREND (String End) points to the last string character on the
next line which is 89 characters later (there are a maximum of 90
characters per line). A check is made to see whether STRSTART is
larger than the number of bytes in the routine (S I ZE). Then the LIN E
number is incremented by 10 (line 190) and the heading for the first string
line is printed (line 200).

Next, the loop is started. START keeps track of the number of bytes
read. BYTETOT keeps a running total of all bytes read to make sure that
the final sum matches the value stored in ERRCHECK. If the user wants
to display the strings on the screen, a subroutine at lines 50-80 is called.
It checks for cursor or screen control characters and, if any are found,
causes the ESCape character to be printed on the screen first (delayed
mode). (Note: to enter the ESC character into the string in line 80, you
must press the ESC key twice.)

Lines 260-270 set the position of quotes and end-of-line characters
for later printout. If one of these characters has been discovered, a space
is temporarily stored in the proper position of the string. Line 290 sends
the program back for the next line of characters.

Verify Accuracy ojData (lines 400-410) These lines check for
any errors which may have been made during entry. If you receive an
error message here, all DATAmust be rechecked. First count the number
of bytes in each DATA statement to make sure it's correct. If you get an
ERRORS, then you left out some bytes.

Insert Quotes andEnd-Of-Line Character (lines 500-650) These
lines will print out any special characters found using the CHR$ func-
tion. For example, if the thirty-first byte was a 34 (quotation mark) then
the following line might be printed to the output device:

11730 ROUTINE$(31 ,31)=CHR$(311)

As it turned out, none of our routines contain either a 34 or a 155.

Memory Fill RoutineData (lines 29000-29030) This is where we
placed the byte data for the MF I LL routine. Line 29010 contains the
name of the routine, its starting line number, the number of bytes the
routine contains, and the checksum value. Each line which follows
receives 25 byte values until there are no bytes left. If the program tells
you that you have made a mistake in entering this data, this makes it
easier to check that each line contains the correct number of bytes.

Using the Program The operation of this program is very simple.
If you have a disk drive, type D (or D2 if you want to use your second
drive). The section of program code will be written to your disk and
automatically named (with the routine's name). When you are ready to
merge the routine into a BASIC program, first load your program into
memory (or type NEW if starting from scratch), and then type:

ENTER "D:nafTle.STR"

where name is the string name of your routine, MF ILL in this case. The
ENTER command tells the computer that information will be coming
into memory from the following device instead of from the keyboard.

To use with a cassette recorder, press C when prompted. You will
hear two beeps from the computer. This means you are to press the PLAY
and RECORD buttons on your recorder and then press RETURN. You
will hear a high pitched tone from your television speaker, then some
distorted sounds (the routine). To merge the routine into a program, use
the command:

ENTER "C:"

Programs aren't stored with names on cassette so you must keep track of
their location with the tape counter.

If you want to use the screen option, either to watch the routine
being written out or because you don't want to use a disk or cassette,
choose option E. The screen will clear and you will see the lines being
formed. By positioning your cursor over the first line, and pressing
RETURN for each statement, you can enter each line into a BASIC
program. If you haven't first typed NEW, these lines will be merged into
the String Loader program currently in memory.

Here are screen photos of a sample run of this program using the E
option for screen output.

Appendix D I 461

a) (continued)

462 / Appendix D

b)

Figure 0.2: Screen photos of String Loader program sample run.

Appendix E I 463

Appendix E

Complete List of Parameter Table Entries for Black Box
Routines

VARIABLE
NAME

PARAMBASE
PMBAS
PMBUF
INITANIMATE
INI TAUTOMOI)E
SCRLINIT
HPLR(0)
HPLR(1)
HPLR(Z)
HPLR(3)
1,IPLR (0)
1,IPLR (1)
I)PLR(Z)
VPLR(3)
RATE(0)
RATE(1)
RATE(Z)
RATE(3)
FRMLSTPTR(0)
FRMLSTPTR(1)
FRMLSTPTR(Z)
FRMLSTPTR(3)
SCRLAOR
SCRLLEN
SCRLCLK
SCRLSTEP
MOI,!ERATE (0)
MmlERATE (1)
MOI,!ERATE (Z)
MOI,IERATE (3)
OLIADR

OFFSET
FROM

PARAMBASE

o
I
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
18
20
22
24
26
28
30
31
32
33
34
35
36

ADDRESS
(DECIMAL)

1024
1024

1025,1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042,1043
1044,1045
1046,1047
1048,1049
1050,1051
1052,1053
1054
1055
1056
1057
1058
1059

1060,1061

DESCRIPTION

Start of Parameter area
Page address of Player 0 (hi byte)
Low and High bytes of Player Buffer
Flag to initialize ANI MATE
Flag to Initialize AUT 0M0 1,1 E
POKE I to tum on routine, 0 off
Player 0 Horizontal Shadow Register
Player I Horizontal Shadow Register
Player 2 Horizontal Shadow Register
Player 3 Horizontal Shadow Register
Player 0 Vertical Shadow Register
Player I Vertical Shadow Register
Player 2 Vertical Shadow Register
Player 3 Vertical Shadow Register
Player 0 Animation Rate Shadow Reg.
Player I Animation Rate Shadow Reg.
Player 2 Animation Rate Shadow Reg.
Player 3 Animation Rate Shadow Reg.
Player 0 Pointer to Frame List
Player I Pointer to Frame List
Player 2 Pointer to Frame List
Player 3 Pointer to Frame List
Low and High bytes of scrolling window
Widths of scrolling window in bytes
Color clocks per mode line byte - I
Step size to scroll each jiffy
Player 0 Horizontal Velocity
Player I Horizontal Velocity
Player 2 Horizontal Velocity
Player 3 Horizontal Velocity
Low and High bytes of DLI color table

464 I Appendix E

The following addresses are read-only addresses - don't change their values:

PLROX 38 1062 Player 0 Horizontal Position
PLR i x 39 1063 Player I Horizontal Position
PLR2X 40 1064 Player 2 Horizontal Position
PLR3X 41 1065 Player 3 Horizontal Position
FLPOS0 62 1086 Player 0 Frame List Position
FLPOSl 63 1087 Player I Frame List Position
FLPOS2 64 1088 Player 2 Frame List Position
FLPOS3 65 1089 Player 3 Frame List Position

CONTROL BITS FOR ROUTINES
In the following tables, X means that bit is not used.

PMOVER

Used when routine is called: TEM P=USR (PMOljER , FLAG)

Bits of FLAG byte
Bit Number X X X X 3 2 1 0
Bit Value: 8 4 2 1

FLAG for Player #: 3 2 0

EXAMPLES FLAG VALUE

Move Player 1 only 0 0 I 0 2
Move Players 0, 2 & 3 I 1 0 I 13
Move all Players I I I 1 IS

ANIMATE

Used to POKE into INITANIMATE for "Ready" signal

Bits of FLAG byte
Bit Number: 7 X X 4 3 2 1 0
Bit Value: 128 16 8 4 2 1

Resume Animation
Modify Frame Rate only
FLAG for Player #: 3 2 0

EXAMPLES FLAG VALUE

Begin Animation,
Players 0 & 1 0 0 0 0 3

Modify Frame Rate,
Players 2 & 3 0 I I I 0 0 28

Halt All Animation 0 0 0 0 0 0 0
Resume All Animation 1 0 0 0 0 0 128

Appendix E I 465

AUTOMOVE

Used to POKE into INITAUTOMOl.JE for "Ready" signal

Bits of FLAG byte
Bit Number: 7 X X X 3 2 1 0
Bit Value: 128 8 4 2 1

Resume Player Motion
FLAG for Player #: 3 2 0

EXAMPLES FLAG VALUE

Begin Player Motion
Players 0 & 1 0 0 0 1 1 3

Halt All Motion 0 0 0 0 0 0
Resume All Motion I 0 0 0 0 128

Appendix F

Source Code Listings of Assembly
Language Routines

For those Assembly Language programmers among our readers, we
have included the complete source listings of our "black box" routines.
They contain enough comments to make them fairly clear. Feel free to
use all or part of them in your own Assembly Language programs.

Notice that there are two versions of MFILL. Version I was written
for ATARI BASIC and is the one included in all of our programs.
Version 2 will work for either ATARI BASIC or ATARI Microsoft
BASIC. To use with Microsoft BASIC, just change the value in line 280
from I to O.

All the other routines will work with either BASIC. In PMOVER,
change the value in line 670 from I to 0 for Microsoft BASIC. The rest
will run in Microsoft without any changes.

10 ; MFILLer. 1
20 ;
30 ; COPYRIGHT (C) 1982 BY DAVID FOX AM> /'IITCf£LL HAITE
10 ;

0000 0100 •TITLE "CUHFILL1.ASl1;vDl.00 ,810907-8201107"
DOOO OUO .PAGE "Iief1or':j Fill Routine"

0120 ;
0130 ; BY COREY L. KOSAK
0110 ;
0150 ; Called frOl'l BASIC with TEIf'=USR01FILL ,START ,LEN ,BYTE>
0160 ;
0170 ; THIS IS THE ATAR! BASIC VERSION (USE ver.2 WITH HBASIC)

0000 0180 1= $600
OOCB 0190 LO = fCB ;POINTER TO DATA
ooce 0200 HI = fCC
OOCD 0210 LEtt..D = feD ;LOCTH IN BYTES
OOCE 0220 LENiI = feE
0600 68 0230 If"ill F1..A lREKOVE STACK BIAS
0601 68 0210 F1..A ;AOORESS...
0602 85CC 0250 STA HI ;HI
06011 68 0260 F1..A
0605 85CB 0270 STA LD ;LD
0607 68 0280 PlA lLOCTH...
0608 85CE 0290 STA LENiI ;HI

Appendix F I 467

468 / Appendix F

060A 68 0300 PLA
060B 8SCO 0310 STA L.Eti.0
0600 68 0320 PLA
060E 68 0330 PLA
060F AOOO 03'10 LOY "00
0611 AA 0350 TAX
0612 SA 0360 L()(f TXA
0613 91CB 0370 STA (LOl,Y
0615 C8 0380 INY
0616 0002 0390 Bt£ Of{
0618 E6CC 0100 INC HI
061A A5CD 0110 (I(LOA LENLO
061C 0002 0120 BNE 01<2
061E C6CE 0130 DEC LDf{I
0620 C6CO 01'10 (1(2 DEC LEtl.O
0622 A5CD 0150 LOA LEHLO
0621 OSCE 0160 LEN«
0626 OOEA 0170 Bt£ LlXP
0628 60 0180 lXH: RTS

lLO
IBYTE TO FILL HI (SHJll.0 E£ ZERO - SO IGtO*: In
10ATA

;SAVE nu BYTE IN X-REG
;AN> TRANSFER IT BACK
;STCH: BYTE
;BlIP POINTER
10m IT Rll.L OVER?
IYES, INC HI BYTE
IDECRB£HT LENGTH BYTES

lOOES
:••• , ••?
It<<l, GO BACK IQE
ILEAIJE.

10; MFILL ver.2
20 ;
30 ; COPYRIGHT (Cl 1982 BY DAVID FOX At{) HITCI£LL WAITE
40 I

0000 0100 •TITLE "CUHflLL.ASHlv02.00,810907-810907"
0000 0110 .PAGE Fill RQlJtine"

0120 I
0130 I BY COREY L. KOSAK
0140 I
0150 ; This version will work in both HBASIC and Atari &'lSIC. To use,
0160 ; execute the following lines frOM within BASIC where START is
0170 I the first address to fill:
0180 I POKE START,LENLO :REH Low of of to filll
0190; POK£ START+l,LEtfiI :REH High of
0200 I PM START+2,BYTE :REH B';lte value to fill
0210; TEtf>=USROfTLL,STARTl:REH Call routine
0220 I
0230 ;
0240 ; B=$4000,FREL
0250 ;

4000 0260 &'lSE = $1000
0270 I

0001 0280 ABASIC = ;O=t'eASIC, l=ATARI BASIC
0290 I

0000 0300 1E00 .IF ABASIC (MEOO
0310 I
0320 ARG--sE3
0330 LEN=fE0
0340 I

0000 0350 AEOO .IF l-ABASIC @PRo:;
8360 ;

OOCS 8378 ARC = feB I TEIf>
I I

Appendix F I 469

06FE 0380 LEN = $6FE
0390 ;

0000 0100 f'R(X; I" BASE
0110 ;
0120 START

1000 0130 .IF 1-MASIC tt«lSfWE
1000 68 0110 PlA
1001 68 OiSO Pl.A
1002 m 0160 STA ARC+l
1001 68 0170 Pl.A
1885 S5C8 0188 STA ARC

0190 ;
0500 NJSAVE

1007 A002 0510 LOY ..02
0520 UXf2

1009 E:1C8 0530 LOA (ARC),Y
100B 99FD06 0510 STA LEN-l,Y
180E sa 0550 DEY
100F OOFS 0560 Bt£ LIlP2
1811 E:1C8 0570 LOA (ARC),Y

0580 ;
0590 LOCf

1013 91C8 0600 STA (ARG>,Y
1015 AA 0610 TAX
CLK-HFILL.ASH;v02.00,810907-810907

Fill Routine

1016 ADFE06 0620 LOA LEN
1019 0003 0630 Bt£ OK
101B CEFF06 0610 DEC LEN+l

0650 (J{
101E CEFE06 0660 DEC LEN
1021 ADFE06 0670 LOA LEN
1021 ODFF06 0680 W LEN+l
1027 FOOS 0690 BEQ DOt£
1029 SA 0700 TXA
10lA C8 0710 !NY
1028 00E6 0720 Bt£ LIXP
1020 E6CC 0730 nc ARC+!
102F OOEl 0710 Bt£ LOOP

0750 ;
0760 00t£

1031 60 0770 RTS
0780 ;

1032 0790 .00

10; PMOVER
20 ;
30 ; aPYRIGHT (C) 1982 BY DAVID FOX AI«) ttITQ£LL WAITE
10 ;

0000 0100 •TITLE "CLK-PHOVER.ASI1;vD2.10-810713,8206Z0"
0000 0110 .PAGE "Pla';ler Iio\Ier Routine"

0120 ;

470 I Appendix F

11 RESERVED ANIl1ATE, AUTOHOVE, SCRll.L, AN> If'ILL

;PLRS 0-3 XCOORDINATE
IPLRS 0-3 YCOORD
IPLRS 0-3 FRAt£ CIWa RATE
;PLRS 0-3 FRAt£ LIST ADDRESS
IPLRS 0-3 C(lJ(TDOfN TD£RS ItANY JIFFIES UNTIL FRAI'£ CHAta)
IPLRS 0-3 FRAt£ LIST
1SCREEN ADDRESS SCROL1.ER
ICOARSE SCROLL FOR SCROLLER (O-LIt£LENl
IFIt£ SCROLL POSm (0-7)
1M 0-3 IGIZOOH. STEP
IClIlRENT IN TAEl.E
11 RESERVED PIIJI.8

;HIBYTE OF F1.AYER HISSILE AREA (LooYTE EOOALS 0)
lAODRESS OF 128 BYTE BlFFER f'MO\.{R)
Inm LOCATIOO Fffi ANIl1ATE
IINIT LOCATIOO FOR AUTOOJE
IINIT LOCATIOO Fffi SCRlllER
IF1.AYERS 0-3 XClXe>INATE (FOR P!'IlVER)
IPLRS 0-3 YClXe> (FOR P!'IlVER)
IPLRS 0-3 RATE (Fffi AHII'IATE)
IPLRS 0-3 FRAI£ LIST POINTERS (Fffi ANII'IATE)
ISCREEN ADDRESS (Fffi scnu
1l.DE LEN;TH OF SCRIllED AREA SCRClU
I CLOCKS IN SCREEN BYTE (FOR SCRCl.U
ISCRW. STEP SCRCl.U
IPLRS 0-3 IIJRIZOOft. STEP AUTOOJE)
lAOORESS OF COLOR TAEl.E

$1000=

1= $100

0130 ley COREY L. KOSAI<
a1'1O I
0150 IB=i1000,FREL
0160 I
0170 BASE
0180 I
0190
0200 I
0210 iCAS8l.f DATABASE EIlJATES
0220 I
0230 PMBAS 1= 1+1
0210 PMBUF 1= 1+2
0250 (V{DID{[T 1= 1+1
0260 AUTO!NIT 1= 1+1
0270 SCRlINIT 1= 1+1
0280 IR.R 1= 1+1
0290 VPL.R 1= 1+1
0300 RATE 1= 1+1
0310 FLSTPTR 1= 1+8
0320 SCRl.ADR 1= 1+2
0330 SCRLLEN 1= 1+2
0310 5CRLCLK 1= 1+1
0350 SCRLSTEP 1= 1+1
0360 tllVERATE 1= 1+1
0370 DLIADR 1= 1+2
0380 I
0390 IIlOCALI DATABASE EIDTES
0100 i ll£SE LOCATIlM (If£ 1l0CAL1 TO TI£ ROOTIt£S
0110 I AN) StIl1J) IHOTI BE tD:>IFIED BY 11£ t«IST PROOIW1
0120 ;

0126 0130 OOX 1= 1+1
012A 0110 OOY 1= 1+1
012£ 0150 1= 1+1
0132 0160 0f'lDR0 1= 1+9
013A 0170 1= 1+1
013E 0180 POSO 1= 1+1
0112 0190 OSAOR 1= 1+2
0111 0500 CPOS I. 1+2
0116 0510 FPOS 1= 1+1
0117 0520 OXSTEPO 1= 1+1
0119 0530 DlIPOS 1= 1+1
011C 0510 Pltl 1= 1+1
011D 0550 PH2 1= 1+1
011E 0560 PtI3 1= 1+1
OW 0570 f'tt1 1= 1+1
0150 0580 EXl 1= 1+1
0151 0590 EX2 1= 1+1
0152 0600 EX3 1= 1+1
0153 0610 EX1 1= 1+1
CLK-PMOVER.ASM;v02.10-810713,820620
Pla';lE!r Mover Rootine

0000

0100
0'l01
0'l03
010'l
0105
O'lOb
O'lOA
010E
01112
O'llA
011C
O'llE
011F
8120
0121

1000

0151
0159

0620 1= 1+5
0630 ZSAI,(1= 1+1

:ZERO PAGE SAVE AREA Fll< PtKlVER
;ZERO PAGE SAl,(AREA FOR ALL OTHER ROOTD£S

Appendix F I 471

•IF l-PBASIC It«lSAVE
LOX H06 lSAVE ZERO PAGE lOCATIIJf.) (t«I'T t£CESSARY IIlASIC)

lSAVE 110 PARN£TER

HIM: PlAYER XClDOI*TES

;l=ATARI BASIC, O=ttiASIC

;SI<IP OVER VBUf{ EXIT ROOTIt£

It«.HlER OF PARNtS (KJST BE 1)
Ita BYTE - DISCARD
IlO BYTE
1M IN 'ARC'

lRETl.fiH FRlJt IHTERRlfT

10ISASLE AUTlHlVE SO PlAYERS AREN'T KlVEJ) OIJT OF SOC

;000
IWlRDWARE REGISTERS

UXf6

lfXP4
EXIT

fEO
$E1
fE3
fEZ

$DOOO
$E162
1

=
=
=

=

LOX H03

a.V
&\Ie STARTl

1= BASE

lM ZERO-l,X
STA PttSAVE-l,X
DEX
Bt£
PlA
PlA
PlA
STA ARC

lOA OOX,X
STA 1flISP0,X
DEX
BPl
BI1I

0150

OOEO
00E1
00E3
00£2

0610 ;
0650 1f'OSP0 =
0660 XITWJ =
0670 ABASIC =
0680 ;
0690 ZERO
0700 (t£
0710 ARC
0720 TEW
0730 I
0710
0750 ;
0760 START

1000 B8 0770
1001 5010 0780

0790 ;
0800 EXIT

1003 1C62£1 0810
0820 ;
0830 WINT

1006 AZ03 0810
0850 UXf1

1008 802601 0860
100B 900000 0870
100E CA 0880
100F 10F7 0890
1011 30FO 0900

0910 ;
0920 STARTl

1013 0930
1013 AZ06 0910

0950 lfXP6
1015 B5DF 0960
1017 905301 0970
101A CA 0980
101B DOFB 0990
1010 68 1008
101E 68 1010
101F 68 1020
1020 85E3 1030

1010 tmWE
1050 I

1022 A5E3 1860 lOA ARC
1021 85E2 1070 STA T'Etf>
1026 AC0101 1080 lOY AUTOINIT
1029 AZOO 1090 LOX HOD
1028 SE0101 1100 STX AUTOINIT
402£ 16£2 1110 UXf7 lSR Tat>
4030 9006 1120 IlCC t010lJE
4032 B00601 1130 lM Ifl.R,X
CLK-PMOVER.ASH;v02.10-810713,820620

Hover Routine

0000
E162
0001

1035 902601 1110 STA OOX,X

472 I Appendix F

lRE-ENAflE AUTCKIVE

; 'M' IS APOINTER
;TO HOST PR(K;RAt1'S
ITEtf'ORARY BlFFER

;IIM: PLAYER INTO TE!'fORMY et.Ff'ER

;BACK TO BASIC

lAOO $80 TO 'ZERO' TO
111M: TO NEXT PlAYER

;GET t£XT PlAYER'S BIT INTO CARRY
;IF IT'S AIH:, t1QI,,£ PLAYER

;'ZERO' IS APOINTER TO
IPlAYER 0

;REI£tIBER ANIMATE'S STATUS
;STmE IN TEl'f
;TELL ANDtATE TO HALT (X STILL ElJJAI..S 0)

;OCREJ£NT PlAYER NlJ1BER
;lXH WITH ALL 1 PLAYERS?
;Na, LOIP
;RESTORE ANIMIHIT BYTE TO
;IliAT IT WAS ORIGINAlLY
lSET XTO 5

L0Cf5

LOA (ZERO),Y

LSR ARC
BCS OOIT

RTS

LOY H7F

LOA ZERO
KBO

STA ZERO
Bt£ It«:
It«: ZERO+l

LOX 1$00
STX ZERO
LOA f>teAS
STA ZERO+l
LOA Pl1BUF
STA ONE
LOA Pl1BUF+1
STA M+l

IHX
CPX If01
Bt£ L0Cf7
STY AUTOINIT

LOA ANIMIHIT
STA IDf'
STX ANIMIHIT

•IF l-ABASIC @NOREST
LOA PItSAUE,X ;RESTORE ZERO PAGE TEI'fMARIES
STA ZERO,X
DEX
IlPl

IHX
CPX 1$01
Bt£LOCf
LOA TEl'f
STA ANIMIN!T
IN)(

10SF A5E0
1061 1980
1063 115E0
1065 0002
1067 EbEl

1150 IOI{M
E8 1160

1039 E001 1170
DOFl 1180
seOl/01 1190

1200 I
1010 AZOO 1210
1012 86E0 1220
1011 ADOOOIl 1230
1017 85El 1210
1019 AOO101 1250
101C 85E1 1260
101£ 000201 1270
1051 a5E5 1280

1290 I
1300 ; f£RE 1£ DISABLE AHIHATE SO IT IXESN'T 00 BIZARRE
1310 ; THINGS TO PLAYERS Itm.E I£'RE 1IJVIt«; 1l£I1
1320 ;

1053 A00301 1330
1056 85E2 1310
1058 BE0301 1350

1360 ;
1370 LOCf

1058 16E3 1380
1050 BOlE 1390

1100 NEXT
1110
1120
1130
1110
1150
1160 nc

1069 E8 1170
106A E001 1180
106C DOED 1190
10bE A5E2 1500
1070 800301 1510
1073 E8 1520

1530 LOCfS
1071 1510
1071 B05101 1550
1077 95E0 1560
1079 CA 1570
107A 10F8 1580

1590 t«r<EST
1600
1610 ;
1620 DOlT

1070 A07F 1630
1610 l.OCf2

107F 81EO

107C 60

Appendix F / 473

CLK-PHOVER.ASHlv02.10-S10713,SZ0620
Hover Routine

iOSl 1660 STA (!H:),Y
sa 1670 DEY ;NEXT BYTE. ARE WE DCM?
10F9 1680 8Ft LD:f2 LOOP.

i086 1690 STX PHl ISAVE X-REG
1700 LOA OOY,X ;THIS GNARL.Et> I£SS OF COO[OOS UP WITH
1710 PHA ITI-£ "OESTINATIOO" COORDINATE IN TI£

iOeo 1720 LOA VftR,X IX-REG, TI£ ImCE" Y IN
1730 STA OOY,X HI£ Y-REG, AN> HOVES TI£ DESTINATIOO

AS 1710 TAY IY CIDOINATE INTO TI£ SUCE Y
11094 68 1750 PLA ICIXROINATE LOCATIOO
11095 AA 1760 TAX
11096 BEIIDOII 1770 STX PHZ

17BO LOOP3
11099 SCIfEOIi 1790 STY Ptl3 ISAl.{ Y-REG
409C BA IBOO TXA ITRAHSFER X-REG TO Y-f\£G
4090 AS IBI0 TAY
409£ BIE4 1820 LOA (ot£),Y IGET DATA BACK FRC»t ElFFER
40AO Ac4E04 1830 LOY Ptl3 Y-REG
40A3 91EO 1810 STA (ZERO),Y I DATA IN PlAYER IN to SPOT
40A5 C8 1858 IHY II£XT BYTE
401\6 1802 1868 BPI.. (J(10m TI-£ Y-REG HIT saO?
40AS A800 1878 LOY hOO lSET IT BACK TO 0.

1880 (J(
10AA EB 1890 IHX
48AB 1002 1900 BPI. IJ(2 10m TI-£ X-REG HIT sao?
40AD A200 1910 LOX ••00 lSET IT BACK TO 0

1920 IJ(2
40AF EC1D04 1930 CPX PH2 lHAVE WE aPIED ALL 128 BYTES?
4082 DOE5 1910 Ilt£ LOOP3 IND, aPY tGE
4881 AE1COI 1950 LOX PH1 ;RESTCRE X-REG
1087 Be 1960 ClV IBRANCH BACK TO 'I£XT' TO
4088 501\5 1970 eve I£XT lPOJE ANOTI£R PlAYER

1980 ;
10BA 1990 .00

10; ANIMATE
20 ;
30 I COPYRIGHT (C) 1982 BY DAVID FOX At{) tfITCI£LL WAITE
40 I

0000 0100 .TITLE "CUHMHATE.ASMlvOl.05-B107H,B20619"
0000 0110 .PAGE "Interrupt-driven Pla':fer Anillater"

0120 ;
0130 i BY COREY L. KOSAI<
om ;
0150 I B=S1000,FREL
0160 i

1000 0170 BASE = .1000
0180 I

0000 0190 1= .100
0200 I

474 I Appendix F

11 LIX:ATIONS RESEIMD FOR NmlATE, AUTOOJE, SCRW., AN> /FlU.

IPlRS 0-3 XCCXR>INATE
IPlRS 0-3 YCCXR>
IPlRS 0-3 F'RAI£ CHN«iE RATE
IPlRS 0-3 FRN£ LIST ADDRESS
IPlRS 0-3 cn.tmlOlN TIJ£RS (101 IWn' JIFFIES !MIL FRA/£ OWG
1M 0-3 FRN£ LIST PDSmON
ISCREEN ADDRESS lDW.ER
ICOMSE SCRll.L SCROLLER (O-L.D£I.EN)
IFItI SCRCll POSITION (0-7)
IPlRS 0-3 IDIZOOAL STEP
IClMENT POSITION IN TALE
11 LIX:ATIlHi RESEND FOR PtOJER

;HIBYTE Cf f1.AYER I1ISSILE AREA (LOOYTE EOOAlS 0)
;ADDRESS Cf 128 BYTE Btf'FER F'tIlVER)
11m LOCATION ANIHATE
IINIT AUTIKM:
IINIT SCRW.ER
If1.AYERS 0-3 XCOORDINATE F'tIlVER)
IPLRS 0-3 YCIJR) PIOJER)
IPlRS 0-3 RATE ANIMATE)
IPlRS 0-3 FRAtE LIST POINTERS ANDtATE)
ISCREEN ADDRESS SCRIl.ll
ILD£ Cf SCRIllED AREA SCRIll)

CLOCKS IN SCREEN BYTE SCRIll)
ISCRIl.l STEP SCRIll)
IPlRS 0-3 IDIZOOfL STEP AUTOOJE)
IADDRESS (f TAB..E

0100
0101
0103
0101
0105
0106
010A
010E
0112
011A
011e
011E
.11F
0120
0121

0210 lCAS8lf DATABASE EQUATES
0220 I
0230 PtIlAS 1= 1+1
0210 PHBUF 1= 1+2
0250 AND1IHIT 1= 1+1
0260 AUTOINIT 1= 1+1
0270 SCRlINIT 1= 1+1
0280 tfI..R 1= 1+1
0290 VPlR 1= 1+1
0300 RATE 1= 1+1
0310 FLSTPTR 1= 1+8
0320 SCRLADR 1= 1+2
0330 SCRLlEN 1= 1+2
0310 SCRLCU< 1= 1+1
0350 SCRLSTEP 1= 1+1
0360 IOJERATE 1= 1+1
0370 DllADR 1= 1+2
0380 I
0390 IIlOCAII DATABASE EIlJATES
0100 I ll£SE UlCATIlHi ARE 1l0CAl.1 TO TI£ RWTIt£S
0110 I AN> SHlJU) INOTI BE ID>IF'IEO BY TI£ I«J8T PROORAI1
0120 I

0126 0130 OOX .. 1+1
012A 0110 OOY .. 1+1
012E 01lS0 1= 1+1
0132 0160 DADRO .. 1+8
013ft 0170 1'II'R0 1= 1+1
813E 0180 PDSO .. 1+1
0112 0190 OSADR 1= 1+2
0111 0'00 CPCI 1= 1+2
0116 0'10 FP08 1= 1+1
0117 0'20 DXSTEPO 1= 1+1
0118 0'30 DLIPDS 1= 1+1
011C PI11 1= 1+1
0110 PIt2 1= 1+1
011E PH3 .. 1+1
ew 0'70 PH1 1= 1+1
elISe 0510 EXl a= 1+1
0151 tX2 a= 1+1
0152 0600 00 a.. 1+1
0153 0610 EX1 I.. a+1
ClK-ANIMATE,ASMlvOl,05-B10711,820619
Interrupt-driverl AniMater

0151 0620 f'I1SAVE 1= itS ;ZERO PAGE SAVE AREA FOR PliJVER
0159 0630 ZSAVE 1= 1+1 ;ZERO PAGE SAVE AREA FlJ< AlL OTIER ROOTII£S

0610 ;
0000 0650 1f'OSP0 :: $DOOO
E'162 0660 XITVBV :: fE162

0670 ;
OOEO 0680 ZERO fEO
00E2 0690 Ot£ :: fEZ

0700 ;
0150 0710 1= BASE

Appendix F / 475

0720 ;
0730 START

1000 B8 0710 ClV
1001 5003 0750 BVC STARTl ;SKIP OVER VBl..AN< EXIT ROUTIt£.

0760 ;
0770 EXIT

1003 1C62E1 0780 .Jf' XITVBV
0790 ;
0800 STARTl

1006 DB 0810 an ;CLEAR DEC I100E ATAR! BASIC!
1007 A203 0820 LOX 1$03 ;SAVE ZERO PAGE TElf>S

0830 LOCP1
1009 B5E0 0810 LOA ZERO,X
100B 9D5901 0850 STA ZSAlJE,X
100E CA 0860 !lEX
100F 10F8 0870 BPL UKP1

0880 ;
1011 "00301 0890 LOA ANIl1IHIT ;READ IHIT BYTE
1011 FOED 0900 BEG EXIT ;IF IT'S ZERO, LEAVE.
1016 3018 0910 BKI DOIT ;IF >127, CfERATE NlRWtiY

0920 ;
1018 OA 0930 ASl.. A ;GET '+16' BIT 000 '+128' BIT
1019 OA 0910 ASl.. A
101A OA 0950 ASl A
1018 805001 0960 STA EXl

0970 I
101E A200 0980 LDX HOO PLAYER •

0990 I
1000 LCXf

1020 1E0301 1010 LSR ANDaNIT IPLAYER BIT SET?
4023 BOlO 1020 Fa 11M: IYES, mIZE PlAYER
1025 9002 1030 BCC I£XT ;SKIP OVER Bt.tKET-MI1iADE

1010 I
1050 E&:XIT

1027 FOM 1060 BEG EXIT
1070 I
1080 I£XT

1029 E8 1090 IN)(It£XT PLAYER
10lA E001 1100 CPX 1t01 ;DOt£?
102C DOF2 1110 BNE LlXP ;t«J, UXP
102E A980 1120 LOA .tao lSET INIT BYTE TO
1030 800301 1130 STA AHIMINIT
CLK-ANIMATE.ASM;vOl.05-B10714,B20619
Interrupt-driven AniMater

1140 ;
4033 002B 1150 BNE: DOlT E'.RAM:H TO DOlT

1160 ;
1170 MOVE

4035 BOOEO'! I1BO LOA RATE,X ;DOES RATE=O?
1038 0002 1190 E:NE STORE ;NO, STORE lT
103A A9FF 1200 LOA UIT ;YES, CHAtG: lT TO fIT

1210 STORE
103C 902E01 1220 STA OOATEO,X ;HOVE PARA/'IS INTO LOCAl AREA

476 / Appendix F

1230 ,
103F SA 1210 TXA ,MULTIPLY XBY 2
1010 OA 1250 ASL A
1011 AS 1260 TAY ,At{) f1JT INTO Y
1012 891201 1270 LOA FLSTPTR,Y ,11O'v£ ADR INTO LOCft. AREA
1015 993201 1280 STA OADRO,Y
1018 B91301 1290 LOA FLSTPTR+l,Y
1018 993301 1300 STA 0ADR0+1,Y
101£ AD5001 1310 LOA EX1 ,WAS '+16' BIT SET?
1051 3006 1320 Bi'II t£XT ,YES, OOO'T INITIALIZE FRAtE I
1053 BOOE01 1330 LOA RATE ,X
1056 9D3A01 1310 STA
1059 A901 1350 LOA "01
1058 903E01/ 1360 STA POSO,X
10SE 00C9 1370 Bt£ t£XT 'OC(H). BRANCH1380 ,

1390 DOIT
1060 MOO HOD LOA "00 , 'ZERO' POINTS TO
1/062 BSEO 1110 STA ZERO ,PLAYER
1061 AD0001 11/20 LOA PleAS
1067 B5El 1130 STA ZERO+l

1110 I
1069 A200 1150 LOX 1.00 ,START WITH PlAYER 10

1160 LOCPZ
1068 BOZE01 1170 LOA ORATEO,X IIS THIS ASPECIAL
106£ F009 1180 BEG t£XT2
1070 C9F'F 1190 CI'f ItFf I"RATE=O" PlAYER?
1072 F025 1500 BEG CHANCE2 IYES. FILL PLAYER.

1510 I
1520 NOTZERO

1071 DE3AOI/ 1530 DEC TDfiO,X lHAS TDE OOT THIS PLAYER?
1077 F019 1540 BEG CHANGEIT IYES, CHAta FRAHE

I
1560 NEXT2

1079 ASEO 1570 LOA ZERO lPOINT TO t£XT PLAYER
1078 1980 1580 EOR "80
1070 85E0 1590 STA ZERO
107F 0002 1600 Btl: It«:
1081 E6£1 1610 It«: ZERO+l

1620 I
1630 It«:

1083 E8 161/0 INX llOJE TO NEXT PLAYER
1/081 EOOI! 1650 CPX 1.01/ ILAST PLAYER?
CLK-ANIHATE.ASH'vOl.05-810711,820619

Pla';ler Anil'later

1086 00E3 1660 Bt£ L0Cf2 ,NO. LOCf'
1670 ,
1680 LOCfS

1/088 BDSB01 1690 LOA ZSAVE-l.X IRESTlJ<E ZEJi:O Pia LOCS
1088 9SDf 1700 STA ZERO-l,X
1080 CA 1710 DE)(
10SE 00F8 1720 Bt£ LOCfS
1090 F095 1730 BEG £&:XIT ;lJN::(N). BRANCH TO EXIT

17'10 ;
1750 DWaTI

'1092 802£0'1 1760 LOA !JU'TEO,X ;RESET TDER
'l095 C9Ff lnO Of' Wf
'l097 0002 1780 Btl: NOTSPECIAL

1790 CHAHGEZ
'l099 A901 1800 LOA "01

1810 NOTSPECIAL
1098 9D3A0'1 1820 STA
109E SA 1830 TXA ;SET Y=XJ2
'l09F OA 18'10 ASl A
10AO AS 1850 TAY
'lOAl 89320'1 1860 LOA QADRO,Y ;HOIJE PLR ADDRESS
'lOM 85E2 1870 STA 1»£ ;000 '1»£'
40Ab 89330'1 1880 LOA QADRO+l,Y
40A9 85E3 1890 STA 1»£+1

1900 ;
40AB FE3E04 1910 D«: POSO,X ;D«:REl£HT POSITIlJI IN TAEtE
40A[1lO3E8'1 1920 LOA POSO,X

1930 ZAPPa
4081 AS 19'10 TAY
'1082 81E2 1950 LOA (1)>£),Y ;GET FRAt£ •
408'1 0009 1960 Bt£ II(;IF IT'S tOf-ZERO, JjI) T 111(1
4086 A902 1970 LOA "02 ;RESET FRill£ POSITION
4088 9D3E8'1 1980 STA POSO,X
4088 OOF4 1990 Bt£ ZAPPO ;tKON>. BRAt«:H TO ZAPPO

2800 B8t£XT2
40BO 50BA 2010 1M: t£XT2 ;BtD<ET-BRIGADE

2020 ;
2030 II(

40aF 80500'1 2010 STA EXl ;STfH: FRAt£ • tm«.JS 1»£.
40C2 CES081 2050 DEC EXl
10es AOOO 2060 LOY "00
'lOC7 81E2 2070 LOA (lJ£),Y ;PUT ADDRESS (J'
40C9 48 2080 PHA ;FRAt£ DATA
10CA es 2090 !NY ;000 1lJ£1

40es 81E2 2100 LOA (ot£),Y
10CO 85E3 2110 STA lJ£+1 ;STfH: IT
10CF 68 2120 PLA
1000 85E2 2130 STA IH
100288 2110 DEY ;SET YTO ZERO
1003 81E2 2150 LOA (Qt£),Y ;STfH: FRAt£ I£IGHT
100s 80510'1 2160 STA EX2 ;FRAt£ IEIGHT

2170 :
CLK-ANIHATE.ASH;vOl.05-810711,820619
Interrupt-driven AniMater

2180 ;PERfCRH:
2190 ;F'AA'tEtUIlER TI/'lES IEIGHT + FRAHE ADDRESS + 1
2200 ;

1008 A900 2210 LOA 1$00 :nITS IU.TIPlIES (FRAHEMJI1BER-1>I/£IGHT
'lOOA A008 2220 LOY "08

2230 NEXTBIT
'lODC '1E500'1 2210 LSR EXl ;FRAHEIU1BER

Appendix F / 477

478 / Appendix F

2250 BCC
18 2260 a.C
605101 2270 AOC EXZ

2280 ;
mOALICH

10ES 111 2300 LSR A
10E6 6£5281 2310 EX3

88 23Z0 DEY
10EA DOn 2330 Bt£ t£XTBIT
10EC AS 2310 TAY ;HIBYTE !F RESll.T INTO Y

2350 ;
10EO A05281 2360 LOA EX3 ;lOOYTE IF RESlLT IN A-REG
10FO 38 2370 SEC :+ 1
18Fl 65EZ 2380 AOC ll£ :+ FRAt£ ADDRESS
10F3 85EZ 2390 STA ll£
10F5 98 2100 TYA :NOW ADD TI£ HIBYTES
10F6 2110 AOC ll£+1
lOF885E3 2120 STA ll£+1
10FA 8E5001 2130 STX EXl ;SAI.{ x
10FO BDZA81 2110 lOA OOY,X ;GET PlAYER YctDO
1100 AS 2150 TAY :PUT IN Y-REG
1101 AlOO 2160 LOX "00

2170 :
2180 l1XP3

1103 8C5281 2190 STY EX3 :SAI.{ Y
1106 SA 2500 TXA UOJE XINTO Y
1107 AS 2510 TAY
1188 BIEZ 2520 lOA (ll£), Y ;IOJE FRAt£ INTO PlAYER
111A ACS201 2S3O LOY EX3 ;RESTIH Y
1180 91EO 2510 STA (ZERO),Y
110F C8 2550 IHY
1118 E8 2560 INX
1111 £CSI01 2570 CPX EXZ ;HAtJE WE ClPIED All BYTES?
111100ED 2580 Bt£ LIXP3 ;Nllt LIXP

2590 ;
1116 AES001 2600 LOX EXl ;RESTIK X
1119 BD2E01 2610 lOA tRATEO,X
111C C9f'F 2620 (;If) ttFF ;15 RATE=tFF?
111£ 0003 2630 Bt£ t«ITFF
1128 FE2E81 2610 It«: tRATEO,X ;YES, SET RATE=O

2650 t«ITFF
1123 B8 2660 a.v
1121 5097 2670 BVC BBt£XT2

2680 ;
1126 2690 .00

10 i AUTOHOVE
20 :
30 i af'YRIGHT (C) 1982 BY DAVID FOX AND 1IIT0£ll. WAITE
10 i

0000 0100 •TITLE "a.K-AUTOOJE.ASt1;vOl.01-810721,820619"
0000 0110 .PAGE "Autoflatic Pla';ler ttover"

0120 i

Appendix F I 479

;PlRS 0-3 XCl:XR)IHATE
;PlRS 0-3 YCl:XR)
;PlRS 0-3 FRAI£ CIWa RATE
IPlRS 0-3 FRAI£ LIST ADDRESS
IPlRS 0-3 TIlERS (1Ol ItANY JIFFIES oon. FRAI£ CIWa)
IPLRS 0-3 FRAI£ LIST POSmll4
ISCREEN ADDRESS F£R SCRIl.LER

SCRW. POSITION FOR SCRIl.LER (Om>
IFD£ SCRIl.L POSITION (0-7)
IPLRS 0-3 tDUZOOAL STEP
;MRENT POSITIII4 IN CWJR TABlE
;4 LOCATI[N; RESERVED FOR PtIJlJER

;HIBYTE Cf F1.AYER HISSD.£ AREA (LOOYTE EOOALS 0)
IADDRESS Cf 128 BYTE BlfFER f'KlVER)
;IHIT LOCATIII4 F£R IWDtATE
IIHIT LOCATIII4 F£R AUTOIOJE
;IHIT LOCATIII4 F£R SCRtl.LER
;PlAYERS 0-3 XCllRlINATE PtIJVER)
;PlRS 0-3 y CllRl PtIIVER)
IPlRS 0-3 RATE (F£R ANIMATE>
;PlRS 0-3 FRAI£ LIST POINTERS ANIMATE>
ISCREEN ADDRESS SCR!l.U
;LIt£ L.EN;TH Cf SCRlllED AREA SCR(LU
;CIl.£R ClOCKS IN SCREEN 8YTE (F£R SCRll.U
ISCRW. STEP (F£R SCRll.U
;PlRS 0-3 IDUZOOAL STEP (F£R AlJTOIOJE)
;ADDRESS Cf CIl.£R TABlE

$1000=

1= $1000000

0400
0101
0103
0104
0405
0106
840A
840E
8412
841A
041C
841E
041F
8420
8424

0130 lay L. KOSAK
0110 I
0150 ;B--S1000,FREL
0160 I
0170 BilSE
0180 I
0190
0200 ;
0218 ;CASBlf DATABASE E(D\TES
0220 I
0230 PMBAS 1= 1+1
0210 PIIlUF 1= 1+2
0250 ANIMINIT 1= 1+1
0260 AUTOIHIT 1= 1+1
0270 SCRlIHIT 1= 1+1
0280 tfl.R 1= 1+'1
0290 VftR 1= 1+'1
0300 RATE 1= 1+'1
0310 FLSTPTR l= 1+8
0320 SCRl.ADR 1= 1+2
0330 SCRLLEN 1= 1+2
0310 SCRLa.K 1= It1
0350 SCRlSTEP 1= 1+1
0360 ItOVERATE l= 1+'1
0370 DlIADR 1= 1+2
0380 ;
0390 ;IlOC/lLI DATABASE EllJATES
0100 ; Tl£SE LOCATI[N; ARE l1..OC/lLI TO TI£ RMIt£S
0110 I iW) SKl.lO INOTI BE to:lIFIED 8Y TI£ I«lST PRl:GWt
0120 I

0126 0130 OOX 1= 1+'1
012A 0110 OOY 1= 1+1
012E 0150 1= 1+1
8432 0460 llADRO 1= 1+8
843A 0470 l= 1+1

0480 POSO 1= 1+4
0112 0490 0SiIDR II: 1+2
8411 0500 CPOS 1= 1+2
8116 0510 FPOS III 1+1
8117 0520 OXSTEPO III 1+1
8418 0530 DlIPOS 1= 1+1
8411: 0510 Pltl l= 1+1
8440 0550 PK2 l= 1+1
041E 0560 PK3 1= 1+1
844F 0570 PK4 II: 1+1
8458 8580 EXl I- 1+1
.151 0590 EX2 II: 1+1
0452 0680 EX3 1= 1+1
8453 0610 EX4 1= 1+1
CLK-AUTOHOVE.ASHlvOl.01-810721 t820619
AutoNtic Pla';ler Hover

1000

0151
0159

0620 PI1SAVE 1= 1+5
0630 ZSAVE 1= It1

;ZERO PAGE SAVE AREA PtOJER
;ZERO PAGE SAVE AREA ALL OTffR R<lJTIt£S

480 I Appendix F

0610 i
E162 0650 XITVBV = fE162

0660 i
ODEO 0670 ZERO = fEO
OOEZ 0680 llt£ = fE2

0698 i
0150 0700 1= BASE

8710 ;
0720 STMT

1000 B8 0730 ClV
1001 5003 0710 8VC STMTl

0750 i
0760 EXIT

1003 1C62E1 0770 ..If' XITVBV
0780 ;
0790 STMTl

1006 08 0880 ClD iClEAR 1lECDW.. 1'OlE!!!
1007 A00101 0810 LOA AUTOINIT iINIT BYTE SET?
100A FOF7 0820 IlEO EXIT it«J, I.EAl.t
100C 3017 0830 BtlI IIMTt£I1 iNIRW.. CFERATIOO If >127

0810 ;
100E A200 LOX HOO ;START WITH PLAYER 10

0860 I.QP
1010 1E0101 0870 LSR AUTOINIT ;IS TI£ err FOR THIS PLAYER SET?
1013 9006 0880 IU t£XT 1t«J, SKIP OVER lfOATE
101S 802081 0890 LOA I«I\IERATE,X ;I«I\IE PAIWtS INTO LOCAL LOCATIlM
1018 901701 0900 STA OXSTEPO,X

0910 NEXT
101B E8 0920 IHX
101C E801 0930 CPX H01 IARE II: I'll DCI£?
401E DOF8 8NE L.CKP INO, SO I.QP
4020 A980 09S0 L.Df\ HaO
4022 800101 0960 STA MODar ISET INIT BYTE TO teO

0978 I
0980 I«I\IEnet

A203 0990 LOX "03 ISTART WITH PLAYER .3
1000 L.CKP2

4027 BD4704 1810 L.Df\ OXSTEPO,X IREIID STEP
40ZA 4980 1020 EOR HaO IRMRSE mN
40ze OB 1030 PW
4020 lB 1010 CL.C
40ZE 702604 1.50 ADC OOX,X IADO STEP TO Cl.D xt:fDD
4031 9805 1060 8CC CCL.EAR

1070 I
4033 2B lOBO PL.P
4034 300C 1890 BHI lJ(ICARRY SET IS lJ(, IF STEP IS tEGATM
4036 1103 1100 8PL. IWl

1110 I
1120 ca.EAR

1038 28 1130 PLP

AutoItatic PICl':t@l'

1139 1187 1118 BPllJ< ;CARRY ClEAR IS OK, If STEP IS POSITItJE

1150 ;
1168 8M>

1138 A988 1170
11]) 901711 1180
1HI MOO 1190

1218 ;
1218

1112 902611 1228
1115 CA 1230
1816 111lf 1210
1818 3189 1250
111A 1268

LOA 1$80
STA OXSTEPO,X
LOA "00

STA OOX,X
OEX
8ft L£KP2
BHI EXIT
.00

;ZERO TI£ STEP. (STIP FlR THIS PLAYER)

;ZERO TI£ XCllR) IF THIS PLAYER

;STOOE XCIXRO
;00 NEXT PLAYER
;LAST PLAYER? NO, LIB'
;YES, LEAVE.

Appendix F I 481

10 I SCROLL
20 ;
30 I CtFYRIGHT (C) 1982 BY DAVID FOX AM) tlITCI£LL WAITE
10 ;

0000 0100 •TITLE "CIJ(-SCRlli..ASHlv01.09-B10719,B20619"
0000 0110 .PAGE "Interrupt-driven Screen Scroller"

0120 I
0130 ; BY COREY L. KOSAK
0110 ;
0150 ; B=S1000,FREL
0160 ;

1000 0178 BASE = .,008
0180 ;

8808 0190 1= .,00
0200 I
0210 I CASrlF DATABASE EIlJATES
0220 I

0100 0230 PteAS 1= 1+1 IHIBYTE IF PLAYER ItISSn.E f!i9. (LIIlYTE EOUALS 0)
0101 0210 PtBf" 1= 1+2 lAOORESS IF 128 BYTE BlFFER (Fm PtIJIJER)
0103 0250 AHII1INIT 1= 1+1 ;OOT Fm ANIMTE
0101 0260 AUTOINIT 1= 1+1 lOOT Fm AUTOtIlVE
0105 0270 SCRLOOT 1= 1+1 IINIT Fm SCRW.ER
.,06 0280 IflR 1= 1+1 ;PLAYERS 0-3 XCllR)IHATE (Fm PtIJIJER)
81IA 0290 VPlR 1= 1+1 ;PlRS 0-3 YCIJR) PtIJlJER)
010E 0308 RATE 1= 1+1 ;PLRS 0-3 RATE AHII1ATE>
8112 0310 FLSTPTR 1= 1+8 ;PlRS 0-3 FRAME LIST POINTERS AHII1ATE)
841A 0320 SCRLADR 1= 1+2 ;SCREEN ADDRESS SCRIl.L>
841C 0338 SCRI.LEN 1= 1+2 ILD£ I.OOTH OF SCRIl.lED AWl (Fm SCRtl.L>
I11E 0340 SCRLCLK 1= 1+1 CLOCKS IN SCREEN BYTE SCRlll.>
011F 0358 SCRLSTEP 1= 1+1 ISCRlll STEP SCROJJ
0420 0360 IOJERATE 1= 1+1 IPlRS 0-3 tlJUZOOAL STEP AUTCKIVE)
.,21 0370 DlIAIlR 1= 1+2 IADDRESS IF TAIlLE

0380 ;
0390 ;1l.OCIL1 DATABASE EllJATES
0100 ; THESE L.OCATIIH ARE Il.IX:ALI TO 1l£ RIl1Ilt£S
0110 I AN) StDJ.D INJTI BE ItOOIFIED BY 1l£ taiT PROORAH
0120 ;

0126 0130 OOX I- 1+1 IPLRS 0-3 XCOORDINATE
812A 0110 OOY .. 1+1 IPLRS 0-3 YCOORD
.,2E 01S0 .. 1+4 ;PLRS 0-3 FRAME awa: RATE

482 I Appendix F

0132 0160 OADRO .. 1+8
013A 0170 TIHRO I. 1+1
01:1 0180 POSO I. 1+1
0i12 0190 0SiIDR .. 1+2

0500 CPOS I. 1+2
0416 0510 FPOS I. 1+1
8417 0520 OXSTEPO I. 1+1
8118 0530 DI.IPOS I. 1+1
011C 0510 PHl .. 1+1
0110 OSSO Ptt2 .. 1+1
011E 0560 PtI3 I. 1+1
OW 0570 PtI1 .. 1+1
0150 oseo EXl I. 1+1
0151 0590 EX2 I- 1+1
0152 0600 EX3 II: 1+1
0153 0610 EX1 1= 1+1
CLK-SCROLL.ASHlvOl.09-B10719,820619
Interrupt-driveo Screen Scroller

1M 0-3 FRAt(LIST AIDESS
1M 0-3 1'ItDS (1OI1Wn' JIFFIES IMrIL FIW£ DWa)
1M 0-3 FRN£ LIST
ISCREEN ADDRESS scra.L.ER
ICOMSE SCRllL SCRaJ.£R (O-SCRlLEN)
IFIt(SCRllL POSIlD (0-7)
1M 0-3 IGIZOOAI. STEP
ICLEfT POSm IN TIVU
11 LOCATUIfS RESERVED PtIJVER

11 LOCATIlM RESER\tD HaMATE, AUTlJOJE, SCRW., AN> If1LL

ISI<IP OVER Vfl.AN{ EXIT ROOTIt£

;ZERO PAGE SAVE ffet FOO PtIJVER
:ZERO PAGE SAVE ffet FOO ALl OTHER ROOTIt£S

:SA'.(ZERO PAGE TEtf'S

:CLEAR DECDW.. ID)E roo ATARI BASIC!
IIS H£ INIT BYTE SET?
:til, lfAl.(
lYES, INIT EVERYTHING

lHOVE DISPlAY LIST POINTER
;INTO TEI'fORARy POINTER

$EO
fEZ

$E162
$D101
$230

=
=

CLD
LOA SCRlINIT
BED EXIT
BPI. B8INIT2

1= BASE

CLV
BVC STARB

LOA ZERO
STA ZSAVE
LOA ZERO+1
STA ZSAVE+l
LOA SOLSTL
STA ZERO
LOA SDLSTL+l
STA ZERO+l

E162
0101
0230

0450

OOEO
10EZ

0151
0159

0620 F'HSAl{ 1= 1+5
0630 ZSAVE 1= 1+'1
0610 ;
0650 XTIVBV =
0660 HSCRIl.l =
0670 SOLSTL =
0680 :
0690 ZERO
0700 lH:
0710 :
0720
0730 :
0710 START

1000 B8 0750
1001 5003 0760

0770 I
07BO EXIT

1003 1C6ZE1 0790
OBOO :
0810 STARTl

1006 DB 0820
1007 A00501 0830
100A FOF7 0810
100C 1018 0850

0860 I
100E ASEO 0870
1010 805901 0880
1013 A5El 0890
1015 8D5A01 0900
1018 A03002 0910
1018 85E0 0920
1010 AD3102 0930
4020 SSEl 0910

0950 I
0960 I tG 1£ SPLIT SCRlSTEP INTO ACOARSE

Appendix F I 483

0970 I Att1 FINE STEP, Att1 ALSO Ct1fUTE, IlIA
0980 I SCRLClJ<, TI£ ttKIER IF BYTES PER SCREEN LJl£ <IN WIDE PlAYFIELD>
0990 I

1022 AD1E01 1100 LOA SCRLClJ< III<M ClOCK WLLE TO EXl
1025 805001 1810 STA EXl
1028 A9CO 1020 LOA 1tC0 IBYTES PER I100E LJl£
102A 8OS101 1030 STA EX2
1020 AD1F01 1010 LOA SCRLSTEP ISHUT llJT FINE SCRW.
1030 1'1000 10S0 LOY "00 ICfFSET IN SCREEN BYTE TAElE

1060 ClOOP
1032 1ES001 1170 LSR EXl ISHUT RIGHT CLOCK WLLE
103S 9.07 1080 Bee CW£ IANY BITS LEFT?
1037 11'1 1090 LSR A IYES, SHIFT !lCRW. WLLE
1038 1ES101 1100 LSR EX2 IOIVIDE I100E L.It£ BY 2
1038 C8 1110 INY IAte> IlI.»P POINTER

OOF1 1120 BNE CllXf IAlJolAYS TAI<EH
1130 CD<K

CLK-SCROlL.ASH;vOl.09-810719,820619
InterruPt-driverl Screen Scroller

103E 805001 1110 SlA EXl ;STmE COARSE STEP
1150 ;

1011 A01F01 1160 LOA SCRlSTEP
1011 201£01 1170 At«> SCfItCLK ;GET FIt£ STEP

1180 ;
1017 18 1190 ClC
1018 601601 1200 AOC FPOS ;ADD cmRENT FIt£SCROlL WLI£
1018 C01E01 1210 CMP SCRlCLK ;om IT GO OVER a.OCK WLI£?
101E FOOE 1220 BEG (](;t«F'E.
1050 900C 1230 ace (J{ ;t«F'E.
1052 8001 1210 IlCS IHeIT ;SKIP OVER BOCKET-EmGADES

1250 ;
1260 B8EXIT2

1051 50AO 1270 BVC EXIT
1280 B8INIT2

1056 0059 1290 Bt£ B8INIT
1300 ;
1310 INCH

1058 EES001 1320 INC EX1 ;VES. IHCREi'lEHT COARSE STEP
1058 201E01 1330 Att1 SCRlCLK ;AN> PUT FINE STEP IN RAta

1310 ;
1350 CI<

10SE 804601 1360 STA FPOS ;STCH:IN CURRENT SCRIll WLLE
1061 101E01 1370 SCRLCLK IHSCRW. REGISTER IS
1061 800101 1380 STA HSCRIll ; I BACKWARDS I

1390 ;
1067 AD5001 1100 LOA EXl IGET COARSE SCf«l.L STEP
10M 18 1110 ClC
1068 601101 1120 AOC CPOS IADO CI.RDT SCRaJ. WLLE
106E 801101 1130 STA CPOS ;AN> STCH: BACK
1071 9003 1110 Bee Cl<1
1073 EEiS01 liSO INC CPOS+l

1160 I
1170 01(1

484 / Appendix F

1076 AD1101 1180 LOA CPOS IADO EX2+1 TO TEST Ftft
1079 38 1190 SEC IEtc) CF SCREEN
107A 6OS101 lS00 ADC EX2
1070 8D1101 lS10 STA CPOS
1080 9003 Ul20 Bet lJ(S
1082 EE1e01 lS30 INC CPOS+l

1S40 OKS
10SS AD1S01 1"0 LOA CPOS+l
1088 C01001 lS60 Of 8CIlLEN+l IIiU I(SCRtlLED TO EDGE CF SCREEN?
1088 9028 lS70 Bet 1](2 H«J, II' RE I](
101) 0008 lS80 1M: RESET IYES, SET BACI< TO IlEQlttm«i
10SF A01101 lS90 LOA CPOS IMAYBE?
1092 C01C01 1600 Of SCRU.EN
109S 901E 1610 Fa lJ(2 II'RE I](

1620 RESET
1097 A900 1630 LOA "00 ISET POINTERS TO IlEQlttm«: CF
1099 801101 1610 STA CPOS ISCREEN I.Ih£
109C 801S01 16S0 STA CPOS+1
CUK-SCROLL.ASM;vOl.09-810719,820619
InterruPt-driven Screen Scroller

109F 805001 1660 STA EXl
10AZ AD1A81 1670 LOA SCRI..AOR ;HOVE START ADDRESS
10AS 80'1201 1680 STA OSADR ;OF SCROLL IID{)()W
10AB A01B01 1690 LOA SCRI..AOR+l ;INTO LlV4.. AREA
10AB 801301 1700 STA OSADR+l
10AE BB 1710 QV ;J.W OVER BOCI<EJ BRIGIilE IlRfi(;l£S
i0AF 5013 1720 BVC (J(6 lAt{) DOH I TSlIlTRACT EX2

1730 ,
1710 B8IHIT

10Bl 0067 1750 Bt£ INIT
1768 BBEXIT

1083 509F lnO BVC BBEXIT2
1788 ,
1790 (J{2

1085 ADi101 1800 LOA CPOS ,SlIlTRACT TIE EX2 IE ADDED EARlIER
10BB 18 1810 QC
1089 E05181 1820 SBC EX2
10BC 80+101 1830 STA CPOS
i0Bf 8003 1810 BCS (J(6
i0Cl CE1501 1850 DEC CPOS+l

1860 (J(6
i0C1 A01201 1870 LOA OSADR
10C7 18 1880 QC
10CB 605001 1890 AOC EXl ,ADO STEP TO SCREEN ADDRESS
10CB 801201 1900 STA OSADR lAM> toJE 000 EX3 At{) EX1
i0CE 805201 1910 STA EX3
1001 9003 1920 IlCC (1(3
1003 EE1301 1930 nc OSADR+l

1910 I
1950 CI<3

1006 1\01301 1960 L.DA 0SADR+1
1009 8D5301 1970 STA EX1
10DC A003 1980 LOY "03 ,SKIP lM:R FIRST nm IX. INSTRlCTIlHi

Appendix F I 485

1990 LlXf
10DE BlED 2000 LOA (ZERO),Y lCET BYTE IN DISPLAY LIST
10EO C911 2010 Of ..11 IJW? (00 (f DUST?)
10E2 F029 2020 BEO [)(J£ IYES, IlJIT

2030 I
10E1 2"0 2010 AN) ..50 IHSCRW. UtS BITS SET?
10E6 F020 2050 E€Q t«lCtWa INO, FCRGET IT
10E8 2910 2060 AN) ..10 1HSCRW. SET?
10EA F01A 2070 E€Q NSCRW. INO, 8I<IP CM:R t£XT TWO BYTES
10EC C8 2080 INY INEXT 2 eYTES ARE IItOY ADDRESS If ClRREHT LINE
10£0 A05201 2090 LOA EX3 IIlJlJE SCREEN ADDRESS
10FO 91EO 2100 STA (ZERO),Y IINTO DISPLAY LIST
10F2 18 2110 a.C
10F3 601C01 2120 ADC SCRU.EN IAN> ADD SCRI..L.OOTH
10F6 8OS201 2130 STA EX3
10F9 C8 2110 IHY
10FA A05301 2150 LOA EX1 100 HIBYTE
1OFO 91EO 2160 STA <ZERO),Y
10FF 601001 2170 AOC SCRll.EN+1
0UK-SCROLL.ASHlvOl.09-810719,820619
Interrupt-driven Screen Scroller

1102 BDtJ301 2180 STA EX1
2190 I

1105 AD 2200 .BYTE fA/) I"LOA A8Sll..UTE" IFCOOE SI<IPS NEXT 2 BYTES
2210 I
2220 N5CR(U

1106 C8 2230 !NY
1107 C8 2210 !NY

2250 I
2260 to::HIKE

1108 C8 2270 !NY
1189 0003 2280 Btl: Ulp ;AUlAYS <DISF1..AY LIST ItlSTN'T BE LIJaR THAN ZC".J6 BYTES)

2290 ;
2300 BBEXIT3

1108 50M 2310 BVC B8EXIT
2320 I
2330 I)(J£

1180 A05901 2310 LOA ZSAVE lRESTmE ZERO PAGE TEtflS
1118 85E0 2350 STA ZERO
1112 ADSA01 2360 LOA ZSAVE+1
111585El 2370 STA ZERO+l
1117 B8 2380 a.V
11185099 2390 BVC BBEXIT

2100 I
2110 !HIT

111A A980 2120 LOA ttSo
111C 800501 2130 STA SCRlOOT lSET INIT BYTE TO "(»4"
111F AD1E01 2110 LOA SCRlOUK lSET SCROLL POINTERS TO LEFT IF SCREEH
1122 8D4601 2150 STA FPOS
1125 A900 2160 LOA "00
1127 801181 2170 STA (]lOS
112A 801581 2180 STA (]lOS+1
1120 AD1A01 2190 LOA SCRlADR IttOlJE SCREEH ADDRESS TO LOCAl AREA

486 / Appendix F

1131 801281 2500 STA OSAOR
1133 AD1B81 2510 LDA SCRLAIlR+1
1136 801381 2520 STA 0SA0R+1

2530 LEAVE
1139 B8 2510 a.V
11311 58CF BI.t 1lIlEXIT3 IlEAVE.

2560 I
11X 2570 .00

10; DLIROUT
20 ;
30 ; aPYRIGHT (e) 1982 BY DAVID FOX AND ItITCI£LL WAITE
10 ;

0000 0100 •TITLE "ClK-DLIRlllT.ASI1;1I01.06-Bl0B06,820619"
0000 0110 .PAGE "DLI Color Changer"

0120 ;
0130 I BY COREY L. KOSAK
OliO I
0150 I B=$1000,FREL
0160 ;

1000 0170 BASE = $1000
0180 I

0000 0190 1= $100
0200 I
0210 I CASElf DATABASE EllJATES
0220 I

0100 0230 PIIlAS 1= 1+1 IHIBYTE (f PLAYER /'lISSll.E AREA (U13YTE EllJALS 0)
0101 02iO PlIllf' 1= 1+2 IADORESS (f 128 BYTE BlfFER PtiJVER)
Oi03 0250 AHDtIHIT 1= 1+1 1m AHDtATE
0101 0260 AllTOINIT 1= 1+1 1m AllToo.JE
0105 0270 SCRUNIT 1= 1+1 1m SCRlllER
0106 0280 IflR 1= l+i IPL.AYERS 0-3 X lm\'I)INATE (FeR PllJlJER)
01DA 0290 VPlR 1= l+i IPlRS 0-3 Y lm\'I) PIOJER)
010E 0300 RATE 1= l+i ;PlRS 0-3 RATE (FeR ANIMATE)
0112 0310 FLSTPTR 1= 1+8 IPlRS 0-3 FRAI£ LIST POINTERS (FeR AHDtATE>
011A 0320 SCRLAIlR 1= 1+2 ISCREEH ADORESS (FeR SOO..I.>
011C 0330 SCRLLEN 1= 1+2 1LD£ LEN;TH (f SCRIl.LED AREA (FeR SCRlll)
OUE 0310 SCRlCLK 1= 1+1 ICIl..eR ClOCKS IN SCREEN BYTE (FeR SCRO..L)
011F 0350 SCRLSTEP 1= 1+1 ISCRlll STEP (FeR SCRlll)
0120 0360 IDJERATE 1= 1+1 IPlRS 0-3 toUZOOAl STEP AllTOOJE)
0121 0370 DLIADR 1= 1+2 IADORESS (f CIl..eR T(illE

0380 I
0390 IIlOCAlI DATABASE EllJATES
0180 I TI£SE lOCATIlH) ARE 1l0CAl1 TO 11£ RflJTIt£S
0110 I AN> !Hll.D It«)TI BE IU>IF1ED BY 11£ IIlST f'R(X;RAtl
0120 I

0126 0130 oox 1= l+i IPlRS 0-3 X lm\'I)INATE
81ZA 0110 OOY 1= l+i IPlRS 0-3 Ylm\'I)
012E 0150 CRATEO 1= l+i IPlRS 0-3 FRAI£ owa: RATE
0132 0160 lW)R0 1= 1+8 IPlRS 0-3 FRAt£ LIST ADORESS
01311 0170 1= 1+1 IPlRS 0-3 TD£RS OOlItANY JIFFIES lM1l. FRAt£ ctWa)
81:£ 0180 POSO 1= 1+1 ;PlRS 0-3 FRAt£ LIST
0112 0190 OSAOR 1= 1+2 1m ADORESS FeR SCRW.ER

Appendix F / 487

1111 0500 CPOS 1= 1+2 ;COARSE saw. POSITIll4 FIR SCRIl.LER (0-LIt£l.EH>
0116 0510 FPOS 1= 1+1 ;FIt£ saw. POSITIll4 (0-7)
0i17 0520 OXSTEPO 1= 1+1 :Pl.RS 0-3 IDmOOH. STEP
0118 0530 DlIPOS 1= 1+1 ;CIRQT POSITIll4 IN Ctl.M TAElE
011C 05i0 PHl 1= 1+1 ;1 LOCJITm4S RESEm FM PIOJER
0110 0550 Ptt2 1= 1+1
011£ 0560PIt3 1= 1+1
OW 0570 PM1 1= 1+1
0150 EXl 1= 1+1 ;1 LOCJITIIHl R£SERI.{D FIR ANIl1ATE. AUTOOJE. SCRll.L. AN> IfILL.
0151 0590 EX2 1= 1+1
8152 0600 EX3 I'" 1+1
0153 0610 EX1 1= 1+1
ClK-DlIROUT.ASHivOl.06-810806,820619
DL.I Color Changer

0151 0620 f'I1SAI,{ 1= lIt5 iZERO PAGE SA\.{ AREA FIR PItJVER
0159 0630 ZSA\.{ 1= 1+'1 iZERO PAGE SAVE AREA FIR ALL OTHER RfJ.!IDES
8150 0610 DLIl 1= 1+1
015E 0650 DLIZ It= lItl

0660 i
0018 0670 C£l.PFZ = $0018
0019 0680 CIl.Ff3 = $0019
001A 0690 In.BIf(= $DOIA
E162 0700 XITVBV = fE162
MOA 0710 NSYNC = f010A

0720 i
OOEO 0730 ZERO = fEO

0710 i
OW 0750 It= BASE

0760 i
ono START

1000 B8 0780 CLV
4001 SOOA 0790 I'M: OLIDO iSKIP OVER VBLAN< EXIT ROOTIt£

0800 i
0810 EXIT

1003 4C62E1 0820 ,jf' XITVIlV
0830 i
0810 VBIHT

4006 A900 0850 LOA "00 ;ON VBLAN<, ZERO Ttf Cll.lR TAElE POINTER
4008 8D1804 0860 STA DlIPOS
400B FOF6 0870 BEQ EXIT iL.£Al.t

0880 i
0890 DLIDO

400D "S 0900 PWl iSAVE A,X. &YON STACK
400E SA 0910 TXA
400F 18 0920 PWl
4010 98 0930 TVA
1011 18 0910 PWl

0950 ;
1012 A:5EO 0960 LOA ZERO ;SAVE ZERO PAGE LOCS
4011 805001 0970 STA DlIl
1017 A:5E1 0980 LOA ZERO+1
4019 8D5E01 0990 STA DLI2

488 I Appendix F

101C AD2101 1.00 LM DlIADR IIIJIJE ADDRESS [f TraE
101F §O 1010 BTA ZERO IINTO POINTER
1021 A02S01 1820 LOA DI.IADR+l
1021 1030 BTA ZERO+1

1010 I
1026 AC1B01 11:50 LOY DLlPOS IGET TraE POINTER INTO Y-REG
1029 B1EO 1060 LM (ZERQ),Y
1028 18 1070 PHA IA-eIlPF2

1080 I
102C C8 1090 !NY IGET n£ t£XT ctl.OR
1020 B1EO 1100 LM (ZERO),Y
102F M 1110 TAX IX-eIlPF3

1120 I
1030 CB 1130 INY IAt() n£ NEXT
CLK-DlIROUT.ASH;v01.06-B10B06,SZ0619
DlI Color Changer

1031 BIEO 1110 LOA (ZERO),Y
1033 CB 1150 INY
1031 BC1B01 1160 STY DLIPOS to TAEU POINTER
1037 AB 1170 TAY ;Y=C(l,.1W{
1038 6B 11BO PLA ;A=CllPF2
1039 EA 1190 NlF ;PUT 1B CYa..E DELAY IN
103A EA 1200 NOP ;TD1Itt; PRlREtI
1038 EA 1210 NlF
10X EA 1220 NlF
10:1> EA 1230 NlF

EA 1210 NlF
10:F EA 1250 NlF
1010 EA 1260 NlF
1011 EA 1270 NlF

1280 ;
1012 BDOAD1 1290 STA WSYNC ;WAIT Fm SYtI:
1015 801800 1300 STA al.PF2 ;OOICI< STmE THJSE I

1018 BEl9DO 1310 STX al.PF3
1018 BCIADO 1320 STY Cll.BN<

1330 ;
101£ AD5D01 1310 LOA DLIl ;RESTmE ZERO PAGE LOCS
1051 BSEO 1350 STA ZERO
1053 ADSE01 1360 LOA DLI2
1056 B5El 1370 STA ZERO+l

1380 ;
1058 6B 1390 PLA ;Atf) REGISTERS FRIJ1 STACK
1059 AB 1100 TAY
10SA 6B 1110 PLA
1058 M 1120 TAX
10SC 68 1130 PLA
1050 10 1110 RTI ; Atf) FRIJ1 1t£t«:E.

1150 ;
10SE 1160 .00

Appendix G (Courtesy of ATARI)

ATARI Hardware and Shadow
Registers

Appendix G I 489

HARDWARE REGISTER OS SHADOW

Address Address
Name Description Hex Dec Name Hex Dec

ALLPOT Read 8 line Pot Port State 0208 53768
AUOCI Audio Channel I Control 0201 53761
AUOC2 Audio Channel 2 Control 0203 53763
AUOC3 Audio Channel 3 Control 0205 53765
AUOC4 Audio Channel 4 Control 0207 53767

AUOCTL Audio Control 0208 53768
AUOFI Audio Channel I Frequency 0200 53760
AUOF2 Audio Channel 2 Frequency 0202 53762
AUOF3 Audio Channel 3 Frequency 0204 53764
AUOF4 Audio Channel 4 Frequency 0206 53766

CHACTL Character Control 0401 54273 CHART 2F3 755
CHBASE Character Base Address 0409 54281 CHBAS 2F4 756
COLBK Color Luminance of Background OOIA 53274 COLOR4 2C8 712
COLPFO Color Luminance of Playfield 0 0016 53270 COLORO 2C4 708
COLPFI ColorLuminance of Playfield I 0017 53271 COLOR I 2C5 709

COLPF2 Color Luminance of Playfield 2 0018 53272 COLOR2 2C6 710
COLPF3 Color Luminance of Playfield 3 0019 53273 COLOR3 2C7 711
COLPMO Color Luminance of Player-Missile 0 0012 53266 PCOLRO 2CO 704
COLPMI Color Luminance of Player-Missile I 0013 53267 PCOLRI 2CI 705
COLPM2 Color Luminance of Player-Missile 2 DOI4 53268 PCOLR2 2C2 706

COLPM3 Color Luminance of Player-Missile 3 0015 53269 PCOLR3 2C3 707
CONSOL Console Switch Port OOIF 53279 Set to 8 during VBLANK
OLISTH Oisplay List Pointer (high byte) 0403 54275 SOLSTH 231 561
OLISTL Oisplay List Pointer (low byte) 0402 54274 SOLSTL 230 560
OMACTL Oirect Memory Access (OMA) Control 0400 54272 SOMCTL 22F 559

GRACTL Graphic Control 0010 53277
GRAFM Graphics for all Missiles 0011 53265
GRAFPO Graphics for Player 0 0000 53261
GRAFPI Graphics for Player I OOOE 53262
GRAFP2 Graphics for Player 2 OOOF 53263

GRAFP3 Graphics for Player 3 DOlO 53264
HITCLR Collision Clear DOlE 53278
HPOSMO Horizontal Position of Missile 0 0004 53252
HPOSMI Horizontal Position of Missile 1 0005 53253
HPOSM2 Horizontal Position of Missile 2 0006 53254

490 / Appendix G

HARDWARE REGISTER OS SHADOW

Address Address
Name Description Hex Dec Name Hex Dec

HPOSM3 Horizontal Position of Missile 3 0007 53255
HPOSPO Horizontal Position of Player 0 0000 53248
HPOSPI Horizontal Position of Player I 0001 53249
HPOSP2 Horizontal Position of Player 2 0002 53250
HPOSP3 Horizontal Position of Player 3 0003 53251

HSCROL Horizontal Scroll 0404 54276
IRQEN Interrupt Request (IRQ) Enable 020E 53774 POKMSK IO 16
IRQST IRQ Status 020E 53774
KBCODE Keyboard Code 0209 53769 CH 2FC 764
MOPF Missile 0 to Playfield Collisions 0000 53248

MOPL Missile 0 to Player Collisions 0008 53256
MIPF Missile I to Playfield Collisions 0001 53249
MIPL Missile I to Player Collisions 0009 53257
M2PF Missile 2 to Playfield Collisions 0002 53250
M2PL Missile 2 to Player Collisions DOOA 53258

M3PF Missile 3 to Playfield Collisions 0003 53251
M3PL Missile 3 to Player Collisions OOOB 53259
NMIEN Non-Maskable Interrupt (NMI) Enable D40E 54286 Set to $40 by IRQ code
NMIRES NMI Reset 040F 54287 written to by NMI code
NMIST NMI Status D40F 54287 read by NMI code

POPF Player 0 to Playfield Collisions 0004 53252
POPL Player 0 to Player Collisions DOOC 53260
PIPF Player I to Playfield Collisions 0005 53253
PIPL Player I to Player Collisions 0000 53261
P2PF Player 2 to Playfield Collisions 0006 53254
P2PL Player 2 to Player Collisions OOOE 53262
P3PF Player 3 to Playfield Collisions 0007 53255
P3PL Player 3 to Player Collisions OOOF 53263
PACTL Port A Control 0302 54018 Set to $3C by IRQ Code
PAL PALiNTSC indicator 0014 53268

PBCTL Port B Control 0303 54019 Set to $3C by IRQ Code
PENH Light Pen Horizontal Position 040C 54284 LPENH 234 564
PENV Light Pen Vertical Position 0400 54285 LPENV 235 565
PMBASE Player Missile Base Address 0407 54279
PORTA Port A 0300 54016 STICKO,I 278,279 632,633
PORTB Port B 0301 54017 STICK2,3 27A,27B 634,635
POTO Pot 0 0200 53760 PADDLO 270 624
POT! Pot I 0201 53761 PAODLI 271 625
POT2 Pot 2 0202 53762 PAOOL2 272 626
POT3 Pot 3 0203 53763 PAODL3 273 627

Appendix G / 491

I 628 IPOT4 Pot 4 0204 53764 PAOOL4 274
POT5 Pot 5 0205 53765 PAOOL5 275 629
POT6 Pot 6 0206 53766 PAOOL6 276 630
POT7 Pot 7 (right paddle controller) 0207 53767 PAOOL7 277 631
POTGO Start POT Scan Sequence 020B 53771 Written during VBLANK

PRIOR Priority Select OOlB 53275 GPRIOR 26F 623
RANDOM Random Number Generator 020A 53770
SERIN Serial Port Input 020E 53774
SEROUT Serial Port Output 0200 53773
SIZEM Sizes for all missiles OOOC 53260

SIZEPO Size of Player 0 0008 53256
SIZEP1 Size of Player 1 0009 53257
SIZEP2 Size of Player 2 OOOA 53258
SIZEP3 Size of Player 3 OOOB 53259
SKCTL Serial Port Control 020F 53775 SSKCTL 232 562

SKREST Reset Serial Port Status (SKSTAT) 020A 53770
SKSTAT Serial Port Status Ol0F 53775
STIMER Start Timer 0209 53769
TRIGO Joystick Controller Trigger 0 0010 53264 STRIGO 284 644
TRIG1 Joystick Controller Trigger 1 0011 53265 STRIG1 285 645

TRIG2 Joystick Controller Trigger 2 0012 53266 STRIG2 286 646
TRIG3 Joystick Controller Trigger 3 0013 53267 STRIG3 287 647
VCOUNT Vertical Line Counter 040B 54283
VOELAY Vertical Delay 001C 53276
VSCROL Vertical Scroll 0405 54277

WSYNC Wait for Horizontal Sync 040A 54282 Used by keyboard click routine
I

Appendix H I 493

Appendix H

Graphics Memory Map Modes

RAM
BYTES
10241 32 BYTES DL

OECREASING
RAM

768

34 BYTES IlL 32 BYTES IlL 54 BnES DL 56 BYTES DL

960 400 480 400 4BO
512 BYTES BYTES BYTES BYTES BYTES

CHARACTER CHARACTER CHARACTER BIT BIT
MAP MAP MAP MAP MAP

24 BYTES DL 20 BYTES DL 34 BYTES DL 32 BYTES DL

200 240 200 240
BYTES BYTES BYTES BYTES
BIT BIT BIT BIT

256 MAP MAP MAP MAP

808YTES 80 BYTES
UNUSED coUNUSED .0 UNUSED UNUSED

TOP OF
FREE RAM 160 BYTES 160 160 BYTES 160 160 BYTES 160 160 BYTES 160

1 TEXT BYTES TEXT ByTES TEXT BYTES TEXT BYTES
WiNDOW UNUSED WINDOW UNUSED WINDOW UNUSED WINDOW UNUSED

(Figure continues)

494 / Appendix H

RAM
BYTES

20 YTBYT 0

1 8192 176 ES L.., 2B ES DL,

80 UNUSED) 80 UNUSED)
DECREASING
RAM

6144

6400 7680
BYTES BYTES

94 BYTES DL.... 104 BYTES DL,
BIT BIT
MAP MAP

4096 I-
96 UNUSED) 96 UNUSED)

...
3200 3840

94 BYTES DL..... 104 BYTES DL..... BYTES BYTES
BIT BIT

2048 MAP MAP

1600 1920
54 BYTES DL.... 56 BYTES DL, BYTES BYTES

BIT BIT 1280
TOP OF MAP MAP BYTES
FREE RAM 800 BYTES 960 BYTES UNUSED

1
BIT MAP BIT MAP 640 BYTES

320 UNUSED UNUSED 16 UNUSED.... 16 UNUSED....160 UNUSED
160 TEXT 160 UNUSED 160 TEXT 160 UNUSED 160 TEXT 160 UNUSED 160 TEXT 160 UNUSED

Figure H.1 : Graphics memory map modes.

Index

A
Abel, Robert and Associates: 16, 126, 128
acceleration of gravity: 267
Adam Powers: 120
ADC: 74
address 559: 257
adjusting the color: 215
ADR: 275
aliasing: 110
alphanumeric: 50
amplitude: 40
analog: 40, 42

-to-digital converter: 74
analytic: 102

methods, curves: 102
ANIMATE: 290,300
animation: 4, 6, 155

cycle: 28
rostrum: 124
stand: 120, 124

Animation: 174,312
antialiased: 124
antialiasing: 110
Antic: 189,240,245,372

E: 270
4: 192, 193, 194, 195, 197,205, 240,

257, 258, 336, 338, 390
mode 4: 192

aperture: 98
Apple Panic: 270
Apple III: 137
Apple II: 70
artifacts: 172
ASCII: 70, 71, 72
assembler: 274
assembly language: 139, 153, 273
ATASCII: 353,355,375
"attract" mode: 21
Aurora: 116
Automated Simulations, Inc.: 202
AUT 0 M0 I,JE: 307
Autumn waterfall: 233
AVA: 115

B
background: 212

colors: 141
bandwidth: 69
BASIC: 82, 137

keywords: 153
Microsoft: 230

benchmark: 151
Bezier curves: 103
bias: 308
binary: 42
bit plane: 53
bits: 52
black box: 153, 273
Blair, Preston: 8, 174,313
blank lines: 338
Blinn, James: 19
block piz: 65
border: 212

colors: 141
Bouknight's algorithm: 121
bouncing ball: 261
Bouncing Ball: 286
Bresenham's Algorithm: 82
Broderbund Software, Inc.: 270
B-spline curve: 104
"bucket brigade": 219
Bugs Bunny: 15
built-in character sets: 155
bus: 49,50

C
C: 35, 116, 138
cathode ray tube: 37
Caverns of Mars: 389
eel animation: 15
eels: 15,115, 124
central processing unit: 49
character definition: 165
character-generator ROM: 71
character graphics: 72
character set: 164

flipping: 181

Index 1495

496 / Index

Chicken: 391
CHR$: 275
Christensen, Greg: 389
Christopherson, Leo: 292
chromatics: 126
chrominance: 69
CIRCLE: 147
clipping: 87
coarse scrolling: 149, 339, 340
Code Works, The: 174
coherence: 93, 106, 109

techniques: 106
Cohl, Emile: 15
COINC: 148
collision detection: 254
collision registers: 254
color

artifacts: 172
burst: 69
clocks: 189, 190
cycling: 115
map: 209
mapping: 60, 62, 209
map table: 62
register animation: 220
registers: 62, 150, 176, 207, 209
subcarrier: 69
table: 62

COLOR: 282
computer-aided animation: 118
computer animation: 8
computer-assisted animation: 8, 118, 123
computer-generated animation: 118
control points: 102
cos: 86
cosine: 86
CPU: 49, 50, 273
Crawford, Chris: 350, 389
Cray I: 28, 80
CRAY X-MP: 7, 123
CRITICAL: 284
cross-hair: 73
CRT: 37
"Crush, Crumble, and Chomp!": 202
CTIA: 172, 189,220,240
CTRL key: 160,230
cubic patch program: 121
curvatures: 9
curves: 101

analytic methods: 102
synthetic methods: 102

cyclic animation: 159, 292

D
DAC: 42, 43, 44, 48, 55, 56, 59, 69, 74
Dancing Demon: 292
database: 8
Datamax UV-I: 63
DDA: 82,83
Death Star: 16
DEC-VAX 780: 5
dejagging: 110
density effects: 125
depth

buffer algorithm: 106
cuing: 94
perception: 94

De Re Atari: 351
Desvignes, Pierre: 12
"detour value": 284
Dicomed D-48: 28, 33
diffuse illumination: 109
digital

plotter: 31, 37
tablets: 114
-to-analog converter: 42

Digital Differential Analyzer: 82
Digital Effects: 16, 116
digitizing

camera: 124
table: 77, 120
tablet: 172

Disney: 8,17
Studios: 15, 125

display
file: 66
list: 151, 189, 192, 193,200,239,336

interrupts: 151, 204, 320, 350, 362
processor chip: 336
processor instructions: 66

dissolve: 28
oI STANCE: 148
distortion: 179
DL: 200,336
DLI: 350, 367, 390
DLI ROUT: 364
DMA: 257,258,360,372
dot matrix: 142
dots: 189
double-line resolution: 241
double width: 251
Dragonslayer: 118
DRAW 1: 146
DRAW I AT X,Y: 10

E
eased: 123
Eastern Front (1941): 350,389
edge: 99
Edgington, Abe: 182
elasticity coefficient: 256
Embargo: 390
EOL: 355
ERROR 4: 383
Evans and Sutherland Picture System II: 134
Example

I: 161
2: 174
3: 184
4: 197
5: 223
6: 226
7: 232
8: 261
9: 286
10: 300
11: 313
12 321
13: 368
14: 383

Exploding Bomb: 195

F
faces: 99, 106
faired: 123
Felix the Cat: 15
fields: 46
fill: 93, 146
Fill: 230
filling: 15, 124
fills: 93
film recorder: 9, 33, 59, 115
fine scrolling: 102, 149, 345
Flash: 276
flicker rate: 7
flip books: 6, 14
flip-flop: 76
flood: 146
FLOOD: 230
flooding: 124
Flubber: 269
Flying Bird program: 162
font: 169

editing programs: 169
FONTEDIT: 174
Forth: 35, 139

frame
buffer: 9, 57, 64
data: 293, 298
list: 293
rate: 7

frames: 7, 156
FREEZE: 148
frequency: 179

G
Galloping Horse: 184
GDL: 146
Gebelli Software, Inc.: 387,388,390
Genesis planet: 115
Gertie the Trained Dinosaur: 15
GET: 147
global control: 103
Go-Motion: 118
GOSUB: 152
GOTO: 152
Gouraud shading technique: 109
Gouraud's algorithm: 122
GPRIOR: 252,387
GRACTL: 259, 260
GRAPHI CS: 189

0: 164, 168
2: 352
3: 257
5: 196
7: 225
7'/2: 270
9: 220
10: 217,220,221,250
11: 220

Graphics Control: 259
Graphics Definition Language: 146
graphics mode: 139, 211
gray scale: 48, 54
Great Movie Cartoon: 318, 383

H
"handedness": 97
hardware

color register: 364
register: 245
scrolling: 149

Harris, John: 331, 332
HCOLOR:. 83
HGR: 143
hidden line

elimination: 96
removal: 105

Index 1497

498 I Index

hidden surface: 33
removal: 105

high-level language: 273
highlights: 107
high resolution: 141
high-tech computer: 5
holdout mattes: 127
Hooper, Bill: 387, 390
horizontal

blank: 350
fine scrolling: 358
position register: 243, 244
scan lines: 190, 278

Homer, William G.: 12
HPLOT: 82, 145
HSCROL: 347
hue: 199

IBM PC: 72
IBM Personal Computer: 70, 153
in-between: 8

frames: 156
in-betweening: 123, 124
Industrial Light and Magic: 118
Information International Inc.: 16, 119
input devices: 49, 73
intensity

cues: 96
modulation: 65

J

"jaggies": 110
Jaw Breaker: 331
Jet Propulsion Laboratory: 19
"jiffies": 295
jiffy: 363
joystick: 74
judder: 156
juggler, the: 2
Juggler, The: 3; 119
jump on vertical blank: 341
JYB: 341

K
keyboard: 49, 50, 73
key frames: 123, 156
key positions: 156
kineograph: 14
kinetic depth effect: 96
kinetoscopes: 14

kinoras: 14
Knowlton: 15
Kohlhase, Charles: 19

L
Lambert's Cosine Law: 121
Lambert's Law: 109
laser printer: 32
lasers: 60
Lawrence Livermore National Laboratory: 28,
33

Leatham, James: 129
left-handed system: 97
Light Cycles: 18
light pen: 76, 114
LINE: 145, 146
line plotter: 31
Link Flight Simulator: 64
listing conventions: 160
LLNL: 33
LMS: 200, 339, 358
load memory scan: 200
Load Memory Scan: 339
local control: 103
location

106: 168
559: 257
623: 193, 252
756 (decimal): 166,353
53277: 259
54279: 257

Logo: 34, 137
low-cost paint systems: 116
low-level language: 273
LSI: 109
Lucasfilm: 8, 17,32,35,60, 118

Ltd.: 16
lum: 199
luminance: 69

M
Mach bands: 109
machine code: 274
machine language: 274

routines: 153, 273
MAGI: 16,28, 126
Magic Paint Store, The: 62, 207, 212
MAGN I FY: 148
mass storage device: 49, 51
Match Racer: 387
Mathematics Applications Group, Inc.: 126
matrix: 87

Max, Nelson: 28, 33
McCrellish, Fred: 181
MF ILL: 275, 276
Mickey Mouse: 15
Microsoft BASIC: 230
missiles: 242
mnemonics: 272
mode selection: 143
MOT ION: 148
motion control photography: 118
motion tests: 9
mouse: 74
Mouskattack: 332
moving

a player: 282
color curtain program: 223

Mr. Magoo: 15
multiplane: 335
multiplexors: 52
Mutoscopes: 14
Muybridge, Eadweard: 12, 182

N
Na r r 01 PIa y fie 1 d : 360
New York Institute of Technology: 30, 32
Nor tIlalP 1 a \' fie 1 d: 360
NTSC: 68,69
NYIT: 31,32, 115

o
object blend sequence: 28
object code: 274
1 K boundary: 168
On-Line Systems: 269,331,332
opaquing: 15, 124
operating system: 189
OS: 189, 192,284
oscilloscope: 39, 46
"out of sync": 46

P
PAC-MAN: 270
pages: 143
paint: 146

system: 26
systems: 25, 113, 114

palette: 26, 207
pan: 7

parallel
processing: 66
projection: 95

parameter table: 274
Paris, John: 10
Pascal: 34, 35, 82, 137
pels: 51
pencil testing: 124
Penguin Software: 116
persistence of vision: 6, 46
perspective projection: 95
phase animation: 15
phase modulated: 69
Phenakistoscope: II
Phong technique: 109
phosphor: 56
phosphors: 38
picture element: 189
Pinocchio: 15
pipelining: 66
Pixars: 60
pixel mode: 139
pixels: 51, 189
Plateau, Joseph: 11
player-missile graphics: 239
players: 148
Players: 204
playfield: 190

colors: 141
pixel: 212
width: 360

PLOT: 82, 145
plotting: 145, 151
PMBASE: 242
PM graphics: 240
PMODE: 143
PMOI.JER: 278
POINT: 145
polygon: 93, 98, 121
polyhedrons: 99
Popeye: 15
Potter, Mike: 391
Praxinoscope: 14
PRESET: 145
pnrmuves: 137
PR I NT: 153
PRIOR: 193
pnonty: 149

control: 252
PSET: 145
PUT: 147

Index I 499

500 I Index

Q
quadruple width: 251

R
RAM: 49,51
ramping: 40
raster graphics: 44
ray-tracing: 28
read-only memory: 49
read/write memory: 49
real-time: 9

animation: 9, 123
reflectance: 107

coefficient: 109
repetition raters: 40
Reynaud, Emile: 14
RF modulator: 68
RGB: 56,68

monitor: 68, 69
right-handed system: 97
ROM: 49, 51, 71, 164

character set: 166
rotate: 84
rotation: 86
rotoscope: 120
rotoscoping: 127
rubber stamping: 115
run-length encoding: 64, 116
Running Boy: 313

S
scale: 84
SCALE: 80
scaling: 84, 87
scan

conversion: 64, 93, ns
line algorithms: 106

scanning generators: 46
screen

memory: 70, 164, 189
RAM: 72

SCREEN: 143
SCROLL: 363
scrolling: 149
Scrolling Street Scene: 367
SDMCTL: 258,260, 360
segmentation: 66
SETCoLoR: 195,212,213, 282
shading: 9, 97, 107
shadow: 97

registers: 244, 246, 280, 364

shaft encoders: 74
shapes: 146
Shoup, Dick: 116
SIGGRAPH: 35
silhouette films: 15
SIN: 86,147
Sinclair/Timex ZX-81: 48
sine: 86
single-line resolution: 241
single width: 251
Smith, Alvy Ray: 8, liS
Snow White: 15
software: 82
Solitaire Group: 387, 390
SOUND: 179
source code: 274
Space Invaders: 204
Special Effects: 116
sprites: 148
stack: 93
staircase effect: 110
Stanford, Leland: 25
STARP: 248
Star Trek II: 115
Star Wars - A New Hope?: 16
state machine: 296
STEP: 145, 147
"stepper" motors: 118
stereo display: 341
stereoscopic: 96
string/array pointer: 248
String Loader: 275, 276
strings: 275
stroke graphics: 43, 44, 64
subcarrier signal: 69
SubLogic A2-3Dl: 132
SubLogic Communications Corporation: 129
surfaces: 101
surfacing: 97
Synapse Software: 391
sync

circuits: 45
pulses: 45, 46, 55
signals: 48, 69

synthetic: 102
methods, curves: 102

SYSTEM RESET: 166, 212, 252

T
tablet: 77
TAN: 147
Taylor, Richard: 126

tearing: 279
terminals: 9
TE>(T: 143
text mode: 139, 142
texture: 97, 107
texturing: 97
Thaumatrope: 10
THAW: 148
Thomas, Frank: 8
Threshold: 269
Times Square display: 30
transformation: 9, 78, 81, 84
translate: 84
translation: 84, 87
transparency: 107, 109
Trial and Error: 157
Triple I: 119, 126
TRON: 17, 125, 127
Turtle graphics: 137

u
user-defined character sets: 164
U5R: 277

v
variable value table pointer: 247
VAX: 7,35
VBI: 280, 284, 289, 298, 331
VBLANK: 280
vector

generators: 66
graphics: 44
processors: 123

vertex: 99
vertical blank: 150, 280

interrupt: 150, 280, 284
Vertical Blank Interrupt: 203
Vertical Player movement: 246
vertical refresh: 46

rate: 46
vertical retrace period: 280
vertices: 99
video

l/O'section: 49
interlace: 46
scanning circuits: 51

Video Palette 3: 26
viewing

direction: 98
transform: 91

viewpoint. 98
viewport: 91, 114
voice: 179
volume: 179
VVBLKD: 284
l.,Jl)6LK D: 289
VVTP: 247

W
Walking Man: 173, 174,300
Walt Disney: 335
Wheel of Life: 12
Wid e PIa y fie 1 d: 360
window: 91
windowing transform: 90
wire frame: 92, 121

structure: 26
Woody Woodpecker: 15
working resolution: 352
world coordinates: 91
Wozniak, Steve: 70
write-only register: 245

X
xI 0: 232
XITVBV: 284, 299
X-Wing Fighter: 17

Y
YX Algorithm: 93

Z
Zajac: 15
ZGRASS: 63
Zoetrope: 12
zooming: 87, 115
Zoopraxiscope: 14

Index 1501

More BYTE Books Coauthored by Mitchell Waite
This is just one of four books coauthored by Mitchell Waite and
published by BYTE/McGraw-Hill. You'll find the same friendly,
easy-to-follow style and user-centered approach in each of the titles
listed below. If you enjoyed and learned from this book, you'll
certainly find the others in the Waite series equally helpful.

APPLE BACKPACK: Humanized Programming in BASIC, by
Scot Kamins and Mitchell Waite. This book aids all computer users
by establishing the "user-friendly" approach to programming in
BASIC. The authors present concrete methods for developing
programs that are not only easy to use, but also hard to misuse.
Specific topics include clear screen formatting, crashproofing
programs, developing built-in verifications and validations,
presenting directions on the video display, and writing helpful,
thorough documentation. Appendices feature an educational game
program embodying the authors' user-centered approach and a
humanized telephone-message-recording program with model
documentation, both with complete Applesoft BASIC listings.

808618088 16-bit Microprocessor Primer, by Christopher Morgan
and Mitchell Waite. The new, vastly more powerful 16-bit
microprocessors are destined to become the basis for the next
generation of personal computers, and this book provides the
understanding you need to harness this remarkable advance in
technology. Using a comfortable, down-to-earth approach, the
authors detail the design and capabilities of the Intel 8086/8088
16-bit microprocessor. Also examined are two 16-bit
"coprocessors," the 8087 Numeric Data Processor and the 8089
I/O Processor. In addition, the authors survey the current scene in
16-bit technology, reviewing software and products such as the new
8088-based IBM Personal Computer.

Word Processing Primer, by Mitchell Waite and Julie Area, The
first book of its kind, Word Processing Primer focuses on the
newly available microcomputer-based text-editing programs. The
authors begin with a review of the field, giving a working
knowledge of the equipment and programs that make text editors
work. A section on text formatting shows you how to control the
final appearance of your printed copy, and a review of ancillary
software, such as programs that check grammar or spelling and
those that generate indexes or personalized form letters, shows the
potential for customized applications. The book goes on to tell you
what to look for when choosing a word processor, and a mini-
catalog compares features, capabilities, limitations, and prices of
many of the most popular pieces of software and equipment.

ANIMATION MAGIC

Programs From COMPUTER ANIMATION PRIMER

Animation Magic is a two-sided diskette containing all of the animation demonstration programs and
Assembly Language Source code from Part Two of this book. The programs are an excellent collection which
illustrates the power of the ATARI Home Computer. Included are the examples covering Character Set
Animation, Color Register Animation, Player-Missile Graphics, Fine Scrolling, and Display List Interrupts.

Many of the programs make use of special' 'black box" machine language routines. By black box, we
mean that it is not necessary to understand how the routines work. Just plug in the values and call the routine to
move Players across the screen, scroll a background scene, or allow the use of many extra colors on the
display.

CALL TOLL FREE TO
ORDER DIRECTLY
1·800·327·7172

AVOID DELAYS - PLEASE PRINT
ALL INFORMATION CLEARLY

When the programs on the disk are used in
conjunction with this book's clear and thorough
explanations, they form an excellent tutorial. We
think you will find the programs an interesting and
efficient way to learn how to maximize the use of
your ATARI Home Computer.

Animation Magic is ideal for the programmer who doesn't have the time or inclination to enter the pages
of BASIC listings into the computer. The source code for the black box routines, developed with the ATARI
Assembler-Editor cartridge, can be modified for custom applications. Any of the programs or routines can be
incorporated into your own programs which can then be marketed. Only an acknowledgment at the beginning
of the program and in the documentation is required.

r:----------cut here _

!II ORDBR FORM II [.1
==IN FLORIDA CALL 1·305·862·6917

To order Animation Magic, simply use the
form on this page. You may send a check or money
order for $19.95 plus $3.00 shipping and handling
payable to Adventure International, or you may use
your VISA or MasterCard. Mail to:

SHIP TO:
Name _
Address _
City
State Zip _
Phone

Adventure International
P.O. Box 3435

Longwood, FL 32750

or you may order directly by calling Adventure
International toll free at 1-800-327-7172 (in Florida
call I -862-6917). Ask for Animation Magic, cata-
log number 52-0223.

I CATALOG NUMBER auanh.Y! ITEM NAME IPRICE EACH TOTAL PRICE

0 , 5 , 2 10 2 2 3 I Animation Magic 119.195
SHIPPING AND HANDLING TOTAL

Payment MERCHANDISE

n Check enclosed COD· ORDERS $10.00 TO $2500 Add S300 FLORIDA RES
:J VISA 0 MasterCard ADO 5% TAX
·COD Charges are paid by 300the customer.

"""imm)
Card" Expires:

M,G. Bank.

SIgnature

•..... BOX J<l3S
LONGWOOO l A 321')0

30e; 862 6917

