= A COMPUTE! Books Publication $12.95 US

. COMPUTE!'S FIRST BOOK OF

: ATARI
GRAPHICS

Games, Tutorials, Programs And Other Helpful Information
- For Owners And Users Of Atari® Personal Computers.

/

eccececccceccecececocccececcececceccececececcecceeeecr

DP9 PDP99P99P9997995979V9M799 V7995997959999

From The Editors Of COMPUTE! Magazine

COMPUTE!'S FIRST BOOK OF

AIARI
GRAPHICS

Published by COMPUTE! Books,
A Division of Small System Services, Inc.,
Greensboro, North Carolina

A
Small System
Services, Inc.
Publication

ATARI is a registered trademark of Atari, Inc

Copyright © 1982, Small System Services, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections
107 and 108 of the United States Copyright Act without the permission of the copyright
owner is unlawful.

“Using Strin%s For Graphics Storage” and “Copy Your Screen To Your Printer” were
originally published in COMPUTE! Magazine, May 1981, copyright 1981, Small System
Services, Inc. “Using The COLOR And LOCATE Instructions To Program Pong-Type
Games” and “Positioning P/M And Regular Graphics In Memory” were originally pub-
lished in COMPUTE! Magazine, September 1981, copyright 1981, Small System Services,
Inc. “Discovering ‘Hidden” Graphics’ and “Adding High-Speed Vertical Positioning To
P/M Graphics” were originally published in COMPUTE! Magazine, December 1981,
copyright 1981, Small Scf/stem Services, Inc. “Put Graphics Modes 1 And 2 At The Bottom
Of Your Screen” and “P/M Graphics Made Easy” were originally published in
COMPUTE! Magazine, February 1982, copyright 1982, Small System Services, Inc. ““Print-
ing Characters In Mixed Graphics Modes” was originally published in COMPUTE!
Magazine, April 1981, copyright 1981, Small System Services, Inc. “Add A Text Window
To Graphics 0, “A Self—Mogifying P/M Graphics Utility,” and “GRAPHICS 8 In Four
Colors Using Artifacts” were originally published in COMPUTE! Magazine, June 1982,
Cos:tyright 1982, Small System Services, Inc. “Mixing Graphics Modes 0 and 8" was origi-
nally published in COMPUTE! Magazine, June 1981, copyright 1981, Small System Ser-
vices, Inc. “Character Generation” was originally published in COMPUTE! Magazine,
February 1981, copyright 1981, Small System Services, Inc. “‘Designing Your Own Char-
acter Sets” was originally published in COMPUTE! Magazine, March 1981, copyright
1981, Small System Services, Inc. “SuperFont” was originally published in COMPUTE!
Magazine, January 1982, copyright 1981, Small System Services, Inc. “TextPlot” was
originally published in COMPUTE! Magazine, November 1981, copyright 1981, Small
System Services, Inc. “Using TextPlot For Animated Games” was originally published in
COMPUTE! Magazine, April 1982, copyright 1982, Small System Services, Inc. “Anima-
tion And P/M Graphics” and “Atari Video Graphics And The New GTIA, Part II”” were
originally published in COMPUTE! Magazine, August 1982, copyright 1982, Small System
Services, Inc. “Extending Player/Missile Graphics” and ““Beware The RAMTOP Dragon”’
were originally published in COMPUTE! Magazine, October 1981, copyright 1981, Small
System Services, Inc. “‘Extra Colors Through Artifacting” was originally published in
COMPUTE! Magazine, May 1982, copyright 1982, Small System Services, Inc. ““Atari
Video Graphics And The New GTIA, Part I’ was originally published in COMPUTE!
Magazine, July 1982, copyright 1982, Small System Services, Inc. “Atari Video Graphics
And The New GTIA, Part Il was originally published in COMPUTE! Magazine, Septem-
ber 1982, copyright 1982, Small System Services, Inc. “Memory Protection” was origi-
nally publisll;ed in COMPUTE! Magazine, July 1981, copyright 1981, Small System Ser-
vices, Inc. “Screen Save Routine” was originally published in COMPUTE! Magazine,
March 1982, copyright 1982, Small System Services, Inc.

Printed in the United States of America
ISBN 0-942386-08-6
10 9 87 645 4 3 2 1

AR B EAEREREREAEREREERELEERLENENRIENR.

EEEEEEEREEEERIN.

»9 9

V.

1
3
16
20

23
25
37

i
ity
46

51
a3
62
1

89
91
98
108

127
129
140
154

164
172
184
188
192

201
203
208
215
224
236
239

245
246

Introduction Robert C. Lock

Chapter One: Fundamentals Of Atari Graphics

The Basics Of Atari Graphics Tom R. Halfhill
Using Strings For Graphics Storage Michael Boom
Using The COLOR And LOCATE Instructions

To Program Pong-Type Games Michael A. Greenspan

Chapter Two: Custemizing The Graphics Modes

How To Design Custom Graphics Modes Craig Chamberlain
Put Graphics Modes 1 And 2

At The Bottom Of Your Screen R. Alan Belke
Printing Characters In Mixed Graphics Modes Craig Patchett
Add A Text Window To GRAPHICS0 Charles Brannon
Mixing Graphics Modes 0 And8 Douglas Crockford
Chapter Three: Redefining Character Sets

Designing Your Own Character Sets Craig Patchett
SuperFont . :.:swmsscsammprs g ome s s ans Charles Brannon
Character Set Utilitieso v v v v o nm oo nan Fred Pinho

Chapter Four: Amination With Character Graphics

TextPloto oo Charles Brannon
Using TextPlot For Animated Games David Plotkin
.High-Speed Animation With Character Graphics . . Charles Brannon
Chapter Five: Animation With Player/Missile Graphics

Introduction To Player/Missile Graphics Bill Wilkinson
A Self-Modifying P/M Graphics Utility Kenneth Grace, Jr.
Adding High-Speed Vertical Positioning

To P/M Graphics David H. Markley
P/M Graphics Made Easy Tom Sak and Sid Meier
Animation And P/M Graphics Tom Sak and Sid Meier
Extending Player/Missile Graphics Eric Stoltman
TheiCollision Registers : « sww s osssmmasiwmm ooy Matt Giwer
The Priority Registers . ::smwsssasmoesse am sz Bill Wilkinson

Chapter Six: Advanced Graphics Techniques

GRAPHICS 8 In Four Colors Using Artifacts David Diamond
Atari Video Graphics And The New GTIA, Part1 . Craig Chamberlain
Atari Video Graphics And The New GTIA, Part2 . Craig Chamberlain
Atari Video Graphics And The New GTIA, Part3 . Craig Chamberlain
Protecting Memory For P/M And Character Sets Fred Pinho
Screen SaveRoutine . ..o mm o cossvmasnss smssss Joseph Trem

Listing Conventions (Guide To Typing In Programs
[e) » O l&"
Index

il

A SN SN SN AN SN SN SN ol AN AN SN GN 0N AN oN AN oF SN UN AN SN AN ON AN 0N AN GN AN oN N SN SN AN AN &

EEEEREREEREREERAEREREREAEEREEREEREREEREREEREELEREENEINENREJ’.

Introduction

Robert Lock, Publisher/Editor-In-Chief, COMPUTE! Publications

This special addition to our First Book Series represents
the first time we’ve published a theme-specific book.
COMPUTE!'s First Book of Atari Graphics contains published
as well as original, unpublished material that has been
carefully chosen to provide any Atari user with helpful,
useful information on the extensive capabilities available
with Atari graphics.

As with our parent publication, COMPUTE! Magazine,
you’ll find a range of tutorials, programs, and more, for
the beginner to the most advanced, ready to type right
into your computer and use.

As with all COMPUTE! Books, we’ve organized the
material and designed the book itself for your ease of use.
We welcome your suggestions and comments on this and
future titles from COMPUTE! Books.

Special thanks to Tom R. Halfthill, our Features Editor,
who bore the organizational brunt of this volume, and to
the entire editorial and production staffs who assisted in
this, our ninth book from COMPUTE! Books. Cover design:
Georgia Papadopoulos. Cover illustration: Harry Blair.

COMPUTE! Books is a division of Small System Services, Inc.
Publishers of COMPUTE! Magazine.
Editorial offices are located at 625 Fulton Street, P.O. Box 5406,
Greensboro, NC 27403 USA. (919)275-9809.

COCccoc oo oo

Fundamentals
Atari Graphics

RPN 0)00000000092000902 2002022

¢ecececcoccCc0oCCcCCCOCOCOCOCOCOCOCCEOECOCOCOCOCOCOCOOOO VT

ég Fundamentals 0f Atari Graphics

The Basics 0f Atari
Graphics

Tom R. Halfhill

If you are new to the Atari and have acquired a bit of familiarity with
BASIC, but have not yet taken the plunge into graphics, this article
will introduce you to the fundamentals.

For some reason, many people are intimidated by the program-
ming steps required to create computer graphics. Probably this
is because creating computer graphics is not as easy as it looks.
The typical buyer of a personal computer is dazzled in the store
by all the fantastic arcade games and impressive graphics
demos with which the sales people are armed. It all looks so
simple. Then the buyer eagerly unpacks the computer at home
and quickly discovers that even crude pictures cannot be
created without screenfuls of cryptic programming that seem-
ingly have more in common with Sanskrit than English.

But there is hope. It's not really that hard — honest. Nobody
is promising that you'll be able to duplicate Star Raiders or Pac-
Man any time soon, but the basics of computer graphics are
quite easy to grasp for anyone who has some knowledge of
BASIC programming. You don’t need to be a math wizard,
either. The most valuable attributes are a willingness to learn
and to experiment. And, of course, to be creative.

Choosing A Graphics Mode
Atari graphics are particularly challenging to learn, mainly
because the Atari computers have extremely versatile graphics.
Luckily, Atari made it easier for us by including many special
keywords in Atari BASIC that are dedicated to graphics. The
first step, then, is to learn those keywords. And by the way, if
you don’t already have your Atari BASIC Reference Manual
handy, take a second to grab it. This book and the Manual
should help to explain each other.

The most basic of the keywords is the GRAPHICS com-

1 Fundamentals 0f Atari Graphics

mand. This tells the computer which graphics mode you want,
which in turn determines how the screen will look. The format
is GRAPHICS (aexp), where (aexp) is any arithmetic expression
that results in a positive integer (in other words, not a negative
number or a fraction). For example, GRAPHICS 6 is a valid
command which tells the computer you want graphics mode
six. GRAPHICS 3 + 3 or GRAPHICS 3*2 would do the same
thing.

%epending upon how old your Atari is, the GRAPHICS
command gives you access to either nine or twelve different
graphics modes. The reason for the difference is that earlier
Ataris (generally, those shipped before late 1981) came with a
TV controller chip called the CTIA. Later Ataris have a GTIA
chip instead. The chips are fully compatible — programs written
on CTIA Ataris will run on GTIA machines and vice versa — but
the GTIA adds three new graphics modes. Users with CTIA
chips can have their computers upgraded if they wish. (See
“Atari Video Graphics And The New GTIA” in Chapter 6.)

So, you have either nine or twelve basic graphics modes to
choose from. In addition, most of them have two variations,
for a total of up to 20 modes.

The modes are of two main types: pure graphics modes
and text modes. The first three modes - GRAPHICS 0, 1, and 2
—are text modes. When you switch on an Atari with a BASIC
cartridge plugged in, it defaults to GRAPHICS 0. GRAPHICS 0
has 24 horizontal rows of up to 40 characters each on the
screen. (If you've counted only 38 characters, it's because the
left margin is pre-adjusted to allow for TVs which overscan, or
cut off the left edge of the screen image.) GRAPHICS 1 and 2
display larger-size characters. GRAPHICS 1 characters are the
same height as those in GRAPHICS 0, but are twice as wide.
GRAPHICS 2 characters are not only twice as wide, but also
twice as tall.

The graphics modes generally used for creating pictures
are GRAPHICS 3 through 8 (3 through 11 on GTIA machines).
GRAPHICS 3 through 8 are mixed modes. That is, they are
combinations of text and graphics modes. For example, type
GRAPHICS 3 into the Atari. You'll see a black screen with a
small blue rectangle at the bottom. That rectangle is called the
text window. Although the upper part of the screen is a graphics
mode for drawing pictures, the text window is a section of

GRAPHICS 0 for displaying text. Think of it as the term implies:

4

1 Fundamentals Of Atari Graphics

a “wall” of GRAPHICS 3 with a “window’” of GRAPHICS 0.

The GRAPHICS 0 text window appears in all the graphics
modes from three through eight. Separate commands, which
we'll soon learn, are required to display graphics or text in each
part of those screens.

If you want a “pure”” graphics mode — a full screen for
graphics with no GRAPHICS 0 text window — simply add 16 to
the mode number of the GRAPHICS statement. For example,
GRAPHICS 3 + 16 switches the screen to GRAPHICS 3 without
a text window. Some programmers would type GRAPHICS 19,
which is the same thing. Adding 16 works for all the modes
except GRAPHICS 0, which ordinarily cannot display a separate
text window.

Just Like Graph Paper

You may be wondering why there are so many graphics modes,
and how to choose among them. The modes differ in three
main ways: resolution, number of colors available, and memory
consumed.

First, resolution. Think of the graphics screen as a sheet of
graph paper. Some graph paper is divided into very small
squares; other graph paper has larger squares. If you had to
draw a picture on graph paper only by coloring in the squares —
not by sketching lines — the graph paper with the smaller squares
obviously would allow you to create a more detailed picture. It
would allow greater resolution.

This is exactly how a computer screen works. The screen is
divided into tiny squares, and graphics are created by “filling
in”” those squares. These squares are sometimes called pixels,
for “picture elements.”” In the highest resolution modes, the
pixels are so small that they do not appear as squares at all, but
as tiny dots.

The Atari graphics modes offer different resolutions. The
higher the graphics mode number, the greater the resolution.
So you can draw much more finely detailed pictures in
GRAPHICS 8, forinstance, than in GRAPHICS 3. In GRAPHICS
8, there are 320 horizontal pixels (or “graph paper squares”)
per row on the screen; GRAPHICS 3 has only 40. So GRAPHICS
8 has a horizontal resolution of 320 and GRAPHICS 3 has a hori-
zontal resolution of 40.

When figuring the vertical resolution, don’t forget about the
text window. These four lines of GRAPHICS 0 at the bottom of

1 Fundamentals 0f Atari Graphics

the screen take up room that could be used for drawing pictures;
thus, it decreases the vertical resolution. Adding 16 to the
graphics mode number regains that resolution. So GRAPHICS
3, for example, has a vertical resolution of 20 pixels; GRAPHICS
3+16 has 24 pixels.

Table 1 shows the resolutions of the graphics modes with
and without the text window.

Another difference is color. GRAPHICS 2 (the double-
height, double-width text mode) normally can display charac-
ters in five colors at a time. GRAPHICS 4 and 6 can display
only two colors. These differences also are shown in Table 1.

The final main difference between the Atari graphics modes
is the amount of Random Access Memory (RAM), or user-
available memory, they consume. You may have guessed that
the first two characteristics — resolution and number of colors —
determine the third. The higher the resolution, and the more
colors available, the more memory is required. We won’t delve
into the details, but it's enough to know that the computer
must keep track of what it is displaying, so the more it displays,
the more memory it needs.

You don’t have to worry about allocating the memory
yourself; the computer automatically seizes the memory it
needs when a GRAPHICS statement is executed. But you do
have to worry about how much memory you have left. A 16K
RAM Atari, for example, normally has about 13,300 of its 16,000
memory bytes free when first switched on (the remainder is
also allocated by the computer for other uses, but we won’t go
into that here). Entering GRAPHICS 8 instantly chops that
down to about 5200 bytes, or 5.2K, because GRAPHICS 8 re-
quires about 8000 bytes just to set itself up. That doesn’t leave
much room for an involved program. In fact, the original
8K Ataris cannot even enter GRAPHICS 8 without memory
expansion.

Again, Table 1 shows how much memory each graphics
mode consumes.

The Chameleon Computer
When we said before that the graphics modes are limited to
displaying a certain number of colors, we didn’t mean that
you're stuck with the same colors all the time. Like a chameleon,
the Atari can change its colors at will — your will.

How many colors can you choose from? If you have an

1 Fundamentals Of Atari Graphics

older CTIA chip in your machine, up to 128 colors are possible.
With the new GTIA, there are 256.

These break down into 16 basic colors, with variable shades
(or luminances) to achieve the 128 or 256 hues.

However, without resorting to the kind of special tricks
described in the more advanced chapters of this book, a much
smaller number of colors is available simultaneously.

All the graphics modes default to certain colors. It’s easy to
change these colors, though, with the SETCOLOR statement.
The format is SETCOLOR (register), (hue), (luminance). These
three values can be arithmetic expressions, but should evaluate
to whole numbers. In addition, the values have certain ranges.

(Register) is a number from zero to four. The “registers”
are really memory locations which control the screen colors.
The foregrounds, backgrounds, and borders of the graphics
modes are in turn controlled by these registers. For example,
the backgrounds of GRAPHICS 1 through 7 are controlled by
register four; since register four defaults to black, the back-
grounds of those graphics modes appear on the screen as
black.

(Hue) allows you to change that default color. You just
plug in a color number from zero to 15 (remember, we said
there were 16 basic colors). Table 2 shows the color numbers,
and Table 3 the default colors for the registers.

(Luminance) simply adjusts the brightness, or shade, of
the color selected by (hue). This must be an even number from
zero to 14, with zero the darkest and 14 the brightest.

So, to change the background of GRAPHICS 3 from black
to green, you could enter SETCOLOR 4,12,8.

That’s it. You can change the color of any color register
this way.

Drawing Pictures, At Last

We haven’t forgotten that the whole reason you're reading this
book is that you want to create graphics. But we had to get the
basics out of the way first. Now for the nitty-gritty.

The graph paper analogy really comes in handy here. In
fact, some actual graph paper often is an indispensable aid
when you're planning complex drawings for a screen.

Picture the graphics screen again as a sheet of graph paper.
Depending on the resolution of the graphics mode, the screen
has certain coordinates. For instance, GRAPHICS 6 without

1 Fundamentals 0f Atari Graphics

the text window (that is, GRAPHICS 6 +16) has a horizontal
resolution of 160 pixels and a vertical resolution of 96. Since
computer work often involves counting from zero instead of
one, the horizontal coordinates range from zero to 159, and the
vertical coordinates from zero to 95. Lock the applicable coordi-
nates in your head whenever working with a graphics mode,
because if you exceed them, you’ll encounter the dreaded
ERROR- 141, CURSOR OUT OF RANGE.

Now, we said before that you didn’t have to be a math
wizard to program computers, and we meant it. In fact, plotting
graphics coordinates is one case where a knowledge of higher
math is actually a detriment. Mathematicians usually plot
coordinates starting from the lower-left corner of a graph;
computer designers start at the upper-left corner. So, according
to the coordinate system we just described, position 0,0 is the
upper-left corner of the TV screen in GRAPHICS 6, and all the
graphics modes.

Look at the figure; it shows how the coordinates run in
GRAPHICS 6+ 16. This is the same for all the modes, except
that the upper limit of the coordinates will differ according to
each mode’s resolution. Coordinate position 159,95 is the lower-
right corner in GRAPHICS 6 +16; in GRAPHICS 5+ 16 it would
be 79,39; and in GRAPHICS 8+ 16, 319,191. (The horizontal, or
X, coordinate always precedes the vertical, or Y, coordinate.)

It's vital to understand how this coordinate system works;
it is the basis for all drawing and positioning on the screen.

For example, to draw a dot on the screen, you “light up”
or “switch on” the pixel at that location, according to its co-
ordinates. This is done with the PLOT statement. The format is
PLOT X,Y — where X is the horizontal coordinate and Y is the
vertical coordinate. PLOT 0,0 will put a dot in the upper-left
corner of the screen. The size of that dot depends on the graphics
resolution; the higher the resolution, remember, the smaller
the dot. PLOT 159,95 would draw a dot (“switch on a pixel”) at
the lower-right corner of the screen in GRAPHICS 6 + 16.

To draw a line, you could simply PLOT a number of dots
in a row. For instance, PLOT 2,4:PLOT 2,5:PLOT 2,6 etc.,
would draw a short vertical line near the left edge of the screen.
But there’s an even easier way: the DRAWTO statement. The
format is DRAWTO X,Y. DRAWTO does just what it implies; it
draws a line to the horizontal and vertical coordinates specified.
Before using DRAWTO, however, you have to include a PLOT

1 Fundamentals Of Atari Graphics

statement to give the DRAWTO a starting point. Afterward,
DRAWTO will pick up where it left off. For instance, you could
draw a square like this:

10 GRAPHICS 6+ 16:COLOR 1;PLOT 5,5:DRAWTO 10,5:
DRAWTO 10,10:DRAWTO 5,10:DRAWTO 5,5

Drawing In Different Colors

You probably noticed the COLOR statement in that last example
and wondered where it came from. A COLOR command is
necessary before executing any PLOTs or DRAWTOs. If you
leave it out, the PLOTs and DRAWTOs will be displayed in the
background color, rendering them invisible. The COLOR
statement, then, selects the color for subsequent PLOT and
DRAWTO statements. The format is COLOR (aexp), where
(aexp) is any arithmetic expression that evaluates to a whole
number (fractions are automatically rounded). Further, that
number should be from zero to three.

Important: don’t confuse COLOR with SETCOLOR. SET-
COLOR selects the foreground, background, and border colors
to be displayed by the color registers, while COLOR determines
the color of points or characters to be plotted on the graphics
screen. Since COLOR is the foreground (plotting) color, it can
be changed with SETCOLOR.

A useful analogy is to think of the colors available on the
Atari as a box of crayons (128 crayons with CTIA machines and
256 crayons with the GTIA chip). SETCOLOR allows you to
select a handful of those crayons at once — the exact number
depending on the graphics mode (see Table 1). In GRAPHICS 6
you can select two. Once you’ve chosen the crayons, COLOR
allows you to choose which crayon the computer will use for
subsequent PLOTs and DRAWTOs. At any time, you can
execute COLOR to switch among the crayons in your hand, or
SETCOLOR to replace the crayons in your hand with other
colors from the box. But don’t carry the analogy too far — when
you change colors with SETCOLOR, everything you've already
drawn changes color, too.

For example, in GRAPHICS 7, the color selected by the
statement COLOR 1 is determined by the value in SETCOLOR
register zero. The default color is orange. So if you PLOT and
DRAWTO in GRAPHICS 7 with COLOR 1, the figure will
appear orange. To get a green figure, you would execute SET-

1 Fundamentais Gf Atari Graphics

COLORD0,12,8:COLOR 1:PLOT, etc. The SETCOLOR statement
would change color register zero from orange to green, and
COLOR 1 would use the new color for all subsequent PLOTSs
and DRAWTOs.

Note that any previous figures plotted in orange would
change to green instantly upon execution of the new SET-
COLOR. This system is known as color indirection and accounts
for the flashing screen colors you may have noticed in those
fancy graphics demos you've admired. Yet, as you see, the
technique is really very simple.

One thing that takes some getting used to is that the
COLOR statement does not get its color from the same registers
in all graphics modes, and some modes are restricted to only
two colors. Refer to the table on page 53 of the Atari BASIC
Reference Manual for a summary of how COLOR and SETCOLOR
take effect in the various modes.

More Graph Paper
That graph paper analogy comes in handy again for two more
graphics statements you'll need to learn.

The first is POSITION. The format is POSITION X,Y —
where X is the horizontal coordinate of the graphics mode and
Y is the vertical coordinate. POSITION is a lot like PLOT, except
it doesn’t draw anything. That is, POSITION X,Y directs the
computer’s attention to point X,Y on the screen just as PLOT
X,Y does, except the pixel at that point is not “switched on.”
Instead, the invisible graphics cursor — similar to the text cursor
you're familiar with in GRAPHICS 0 - is spotted at point X,Y in
preparation for the next command.

This command could be a PRINT statement in one of the
large text modes, GRAPHICS 1 or 2. For example, GRAPHICS
2:POSITION 5,5:PRINT #6;HELLO” would print “HELLO"”
starting at column 5, row 5 on the GRAPHICS 2 graphics screen.
(“PRINT #6;” merely specifies a PRINT to the graphics part of
the screen; a PRINT statement without the “#6;” would print
the message in the text window.) The POSITION statement is
valuable for neatly formatting screens in your programs.

The LOCATE statement is another handy programming
tool. The format is LOCATE X,Y,Z — again, where X and Y are
the horizontal and vertical screen coordinates. The third vari-
able, shown here as “’Z,” returns a value read from the pixel at
point X,Y. That value depends on the graphics mode. In modes

10

1 Fundamentals Of Atari Graphics

three through eight, the value is the color register in use (the
SETCOLOR number) at that pixel position. In GRAPHICS 1
and 2, the large text modes, the value tells which character as
well as which color register is in use at the pixel position. And
in GRAPHICS 0, the value is the ATASCII code for the character
at that location (ATASCII is the character code system; see Ap-
pendix C of the Atari BASIC Reference Manual).

Since LOCATE can determine what is being displayed at a
certain location on the screen, it is sometimes used to detect
collisions (or impending collisions) between objects in games.
(See “Using The COLOR And LOCATE Instructions To Pro-
gram Pong-Type Games,” later in this book.)

Beginning Animation

At this point, if you've been practicing and experimenting with
the principles we’ve covered so far, you know all the basics
you need to draw figures and colorful designs on the graphics
screens. But you're probably wondering how to animate those
images.

Animation is perhaps the most difficult graphics technique
to master. For one thing, fast, smooth animation requires a
great deal of processing speed, sometimes more than is possible
with a relatively slow language such as BASIC. But itis possible,
and there are several methods. We won’t cover any of them in
depth here, but we will introduce you to the simplest forms to
whet your taste a bit.

One method may already have occurred to you. By just
drawing a figure on the screen, erasing it, and re-drawing it at
a slightly different location, you can achieve the illusion of
movement in the same way that cartoonists do. You already
know how to draw a picture with PLOT and DRAWTO. Erasing
it is just as easy — you simply re-draw the image in the back-
ground color, making it disappear. Then you switch back to
the foreground color, re-draw the figure elsewhere, and presto
— it will seem to have moved. Sometimes this is called playfield
graphics. Try Program 1 for an example.

Similarly, the POSITION and PRINT statements may have
suggested another simple method of animation. Consider the
text modes, GRAPHICS 0, 1, and 2. While commonly used for
“title screens’”” and other applications requiring text displays,
they also come in handy for a technique called character graphics.
To make the character A" seem to move across the screen, for

11

1 Fundamentals 0f Atari Graphics

example, you PRINT it at the desired starting location, erase it
by PRINTing a blank space in the same spot, and then re-PRINT
it at the next location. POSITION lets you specify where the
movement will start, and LOCATE can detect collisions with
other characters.

All fine and good, you say, but why would I want to ani-
mate letters of the alphabet?

Have you ever noticed what happens when you hold
down the CONTROL key and press an alphabetic key on the
Atari? The resulting character is an odd shape of some sort. A
number of these shapes are available, known as control charac-
ters. When PRINTed side-by-side, they can be put together to
form robots, spaceships, or what-have-you. The POSITION
and PRINT statements can supply the animation. This is some-
times called control graphics. Try Program 2 for an example.

Both of these methods — playfield graphics and control
graphics — are straightforward and simple. Many fine games
have been written in BASIC using these techniques. In fact,
some computers have no other methods available. However,
fast movement of complex figures does tend to get messy.
Luckily, the Atari computers offer several more advanced
techniques, such as redefined characters graphics (which allows
you to sculpt that “A”" into almost any shape you want), player/
missile graphics, page-flipping, and screen scrolling.

Those techniques are covered later in this book. This article
was merely intended to arm newcomers to Atari graphics with
the basic tools needed to understand the more esoteric subjects.
When you run into roadblocks — and you’ll encounter them as
you forge ahead into the sometimes tricky world of computer
graphics — just keep your manuals handy and remember this
famous American proverb:

“When all else fails, read the instructions.”

12

1 Fundamentals Of Atari Graphics

Figure . Coordinates of GRAPHICS 6 + 16.

< X Coordinate —>
0,0 159,0
/\r/\ ® ® ®
10,5 40,5 60,5

C

0

e °

d 40,40

n

a

t

e

\%

0,95 GRAPHICS 6 +16 159,95
Table 1. Summary 0f The Graphics Modes.
Resolution Resolution
Graphics With Without Colors Memory
Mode Text Window Text Window Available Consumed
0 — 40x24 2 993
1 20x20 20x24 5 513
2 20x10 20x12 5 261
3 40x 20 40x24 4 273
4 80 x40 80 x48 2 537
5 80 x40 80x48 4 1017
6 160 x 80 160 x 96 2 2025
7 160 x 80 160 x 96 4 3945
8 320x160 320x192 2 7900
9 _— 80x192 16 7900
10 — 80 x192 9 7900

11 —_ 80 x192 16 7900

13

1 Fundamentals 0f Atari Graphics

Table 2. Atari Golor Numbers.
*Note: Color TVs may vary.

Color
Number Color*
- 077 Gray o
a 1 o -(;;)ld -
D 2 - Ea;lge
a 3¥ Red-drange _
: 47 i ~ Pink 7
5 Violet o
6 Purple-Blue K
D 7 N 7 7[;ue
o 78 . Ehit Blue
79 ;7 Blue-Creen
jO . ~ Turquoise
11 Green-Blue
:12 G;een N
B Yﬂw-Green
1 Ogngém)
15 7 @Orangei

Table 3. Color Register Default Values.
*Note: Color TVs may vary.

14

Register Color Luminance

Number Number Number Color*
0 2 8 Orange
1 12 10 Green
2 9 4 Blue
3 4 6 Pink
4 0 0 Black

1 Fundamentals Of Atari Graphics

Program 1.

10

20
3

30

40

GRAPHICS &6:CHANGE=1:A=5:E=10:7 "
GRAPHICS 6: FLAYFIELD ANIMATION"
FOrR MOVE=1 7O 2

COLOR CHANGE:PLOT A.A:DRAWTO EB,.A:D
RAWTO B,EBE:DRAWTDO A.B:DRAWTO A.A

IF CHANGE=1 THEN CHANGE=0:NEXT MOV
E

IF CHANGE=0 THEN CHANGE=1:NEXT MOV
E

A=A+1: EB=E+1

IF A>79 OR B>79 THEN GRAFPHICS 2:FPO0
SITION O0,5:7 #6:; "PLAYFIELD ANIMATI
ON":7? ™ ¥ GRAPHICS 2 TEXT WINDO
W %":END

GOTO 20

Program 2.

10

20
25
30
40
S0
&0

70

GRAPHICS 0:A=0:B=10:DIM CHARACTER%
(1) :CHARACTER®="A"

POSITION A,EB:7? CHARACTER®

FOR SLOMD=1 TO 10:NEXT SLOMO

FOSITION A,Bz7? "

A=A+1:1IF *39 THEN 60

GaoT0 20

IF CHARACTERS$<>"{T3>" THEN CHARACTE

R&="{T3":A=0:B=10:507T0 20

POSITION 10,5:7 "CHARACTER ANIMATI
ON®2z7 " WITH A LETTER AND CONTROL
CHARACTER"

15

1 Fundamentals 0f Atari Graphics

Using Strings For
Graphics Storage

Michael Boom

If you've ever been frustrated attempting to PLOT and DRAWTO
your way through a complex pattern or design in Atari graphics,
you might appreciate a method of graphics generation using text
strings to store pixel data. While this string method is not simpler
to use in all cases, its ease of data entry and manipulation pos-
sibilities make it a strong graphics tool.

Simple line drawings over large areas of the screen are best
done using PLOT and DRAWTO commands, since this method
uses less memory and generates images faster than the string
method will. However, if you have a very complex pattern in a
small area of the screen, the string method works well. The heart
of string graphics lies in the fact that if you run a PRINT #6 state-
ment followed by ASCII characters while in graphics modes 3-7,
colored pixels will appear on the screen. Different letters and
symbols will plot different colors, but for our purpose we will
deal only with the letters A, B, C, and D. Each of these letters
plots a different colored pixel in graphics modes 3, 5, and 7:

A plots color 1 (color register #0)
B plots color 2 (color register #1)
C plots color 3 (color register #2)
D plots color 0 (color register #4)
In graphics modes 4 and 6, only the letters A and B need be used,
A for the plotting color, B for the background color.
For a demonstration, typing the command

GRAPHICS 3: PRINT #6; “ABCDA"”
moves the pixel string down and to the right.

Creating A Graphics String

We can now use the above methods to plot a pattern. First graph
out the area needed for the pattern, then fill in the pattern using

16

Y

A

1 Fundamentals Of Atari Graphics

“A”,”B”,”C”, and “D" to represent the colors wanted:

String 1 CDDDDAAAAA
String2 DCDDDDDDAA
String 3 DDCDDDDADA
String4 DDDCDDADDA
String 5 DDDDCADDDA
String 6 AAAAACDDDD
String 7 ABBBADCDDD
String8 ABCBADDCDD
String9 ABBBADDDCD
String 10 AAAAACCCCC

Now break down the graph as a series of strings, in this case ten
string of ten characters each:

String 1is “CDDDDAAAAA"”
String 2 is “DCDDDDDDAA”
etc.

Concatenate the ten strings for more efficient data storage:

“CDDDDAAAAADCDDDDDDAADDCDDDDADADDDCDDA
DDADDDDCADDDAAAAAACDDDDABBBADCDDDABCBA
DDCDDABBBADDDCDAAAAACCCCC”

We have now generated all the data necessary to plot our figure
(a square with an arrow) in the graphics mode, and have stored it
in one long string.

Display

To plot the string on the screen, determine where you would like
the upper left-hand corner of the figure to be located, and enter it
during the run of the following program after prompt “X,Y?".

10 GRAPHICS 5
20 DIM A$(100)
30 A$=""CDDDDAAAAADCDDDDDDAADDCDDDDAD
ADDDCDDADDADDDDCADDDAAAAAACDDDDABBBAD
CDDDABCBADDCDDABBBADDDCDAAAAACCCCC”
40 PRINT “X,Y”;:INPUT X,Y
80 FORK=1TO 10
90 POSITION X,Y +K-1
100 PRINT #6;A$(K*10-9,K*10)
110 NEXT K

In this program, lines 20 and 30 set up our main pixel data string,
and line 40 establishes the upper left corner coordinates of the

17

1 Fundamenials 0Of Atari Graphics

figure. Lines 80 and 110 set up a loop of ten steps, to divide our
main data string into seven rows. Line 90 positions the cursor
for each row, and line 100 prints ten consecutive ten-character
strings on the screen.

Obviously, there are figures which require strings too long
for direct entry in Atari BASIC. In that case, divide the figure
into several rectangular sections, each small enough for inclu-
sion into one string (usually under 100 characters in length).
Then concatenate the string as explained in the Atari BASIC
Reference Manual, p. 39.

Figure Manipulation

Plotting a figure using string graphics is fairly simple and
straightforward. Its real strength lies in figure manipulation
through string reading. Some easy manipulations are:

1. Figure rotation (in 90° increments)
2. Figure inversion
3. Color changes

For figure rotation, using the same example figure and data
string, let’s substitute and add to the previous program. For a
90-degree turn clockwise, add and substitute:

20 DIM A$(100),B$(100

50 FORK=1TO 10: FORL=1TO 10

60 B$(K*10 - 10+L,K*10 - 10+ L) = A$((10 - L)*10+ K, (10 - L)
*10+K)

70 NEXT L, NEXT K

100 PRINT #6;B$(K*10 - 9,K*10)

For a 270-degree clockwise rotation, substitute to the above:
60 B$(K*10-10+L,K*10-10+1)+ A$(L*10+1 - K,L*10+1 -K)
For a 180-degree clockwise rotation, substitute to the above:

50 FORK=1TO 100

60 B$(K,K)=A$(101 - K,101 - K)

70 NEXT K

To change color assignments, add and substitute to the original
program:

50 FORK=1TO 100

60 IF A$(K,K)=""C”" THEN A$(K,K)="A"

70 NEXTK

To invert a figure, substitute to the original program:

18

1 Fundamentals Of Atari Graphics

100 PRINT #6;A$((11 - K)*10 - 9,(11 - K)*10)

To turn a figure left to right, substitute in the 180-degree rotation
program:

100 PRINT #6;B$((11 - K*10 - 9,(11 - K)*10))

The string used to manipulate this 10 x 10 figure can easily be
incorporated into subroutines for use in programs using repeti-

tive figures in different positions. Further experimentation for
more possibilities is definitely in order.

19

1 Fundamentals Of Atari Graphics

Using The GOLOR And
LOCATE Instructions
To Program Pong-
Type Games

Michael A. Greenspan

Here’s the skeleton of a Pong-type game that demonstrates simple Atari
playfield graphics. When you grasp the principles, it will be easy to flesh
out the program yourself.

New Atari owners may be confused (as I was) about the COLOR
and SETCOLOR instructions. These two commands, and
the LOCATE instruction, form the basis of the following Porng-
type game.

In GRAPHICS 3, there are four color registers labeled 0, 1, 2,
and 3, which are accessed by the instruction COLOR X, where X
is the number of the register desired. (COLOR 4 is the same as
COLOR 0; COLOR 5 is the same as COLOR 1, etc.) While COLOR
determines the register used, SETCOLOR enables you to deter-
mine which of the 128 colors are used by your chosen register to
draw points on the screen. Thus, since the SETCOLOR instruc-
tions are identical, the following commands will each puta
dark gold point on the screen at location 1,1:

10 GR.3: COLOR 1: SETCOLORO, 1,2 : PLOT 1,1
10 GR.3: COLOR 2: SETCOLORO, 1,2 : PLOT 1,1

*The SETCOLOR command instructs the computer to set the color of the points
on the screen (that’s the function of the 0) to color 1 (that’s gold) brightness 2. A
two for the first mumber will change the text windotw to that color. A four will
change the background.

Each color register has a different default color that deter-
mines the color of the points plotted in that register if no SET-

20

1 Fundamentals Of Atari Graphics

COLOR 0, X, X instruction is given. Therefore, plotting points in
different color registers will produce different colors in the absence
of SETCOLOR instructions, and identical colors if identical SET-
COLOR instructions are used.

In the program below, a ball moves from left to right and a
joystick maneuvers a paddle on the far right to intercept the ball.
The paddle is plotted in color register 1, and the ball in color
register 2. In order to move the ball, it is replotted in color register
4, whose default color is the same as the background color (and
thus is invisible), and then replotted on the adjacent square in
color register 2.

The LOCATE instruction determines if there is a hit. X and Y
are the X and Y coordinates of the ball. LOCATE X+1, Y, X tells
the computer to LOCATE the point to the right of the ball and to
store the color register of that pointin Z. Since the paddle is plotted
in color register 1, Z=1 means that the ball hit the paddle.

Once you understand the use of COLOR and LOCATE to
move the ball and effect a hit, it is a relatively simple matter to
add boundaries, two or more paddles, sound, etc. (Of course, the
same result can be accomplished by player/missile graphics, but
that's an advanced technique tackled later in this book.)

In the program below, A and B are the X and Y coordinates
of the paddle. X and Y are the X and Y coordinates of the ball. C
relates to random changes in the color of the paddle. S relates to
the speed with which the ball moves.

Program.

1 REM X USING COLOR & LOCATE x

2 REM % MICHAEL A. GREENSPAN X

10 5=51:GRAPHICS 3

20 A=35:B=10:X=0:Y=INT(RND{(O)X19)+1:C
=INT(RND(0) ¥15) +1

25 REM PLOT THE PADDLE

30 COLOR 1:SETCOLOR 0.C.B8:PLDT A,B:PL
0T A.E+1

35 REM MOVE THE PADDLE UP?

40 IF STICKE(0)=14 THEN COLOR 4:PLOT A
.B:PLOT A,B+1:B=E—-1:IF EB<O THEN B=
0

50 IF STICK(0)=14 THEN GOTO 30

55 REM MOVE THE FPADDLE DOWN?

21

1 Fundamentals 0f Atari Graphics

60

70

V=

80

85

0
25

100

105
110

22

IF STICK(0)=13 THEN COLOR 4:PLOT A
.B:PLOT A,B+1:RB=RB+1:IF R>19 THEN E
=19

IF STICK(0)=13 THEN GOTO 30
REM PLOT THE BALL AND HOLD IT AT T
HAT LOCATION WHILE THE COMFPUTER CO
UNTS FROM 1 TO S
COLOR 2:PLOT X.Y:FOR D=1 TO S:NEXT
D
REM CHECK IF THE EALL HIT THE PADD
LE
LOCATE X+1,Y,Z
REM MOVE BEALL TO THE RIGHT IF IT H
AS NOT REACHED THE END OF THE ROW
IF Z<>1 THEN IF X<=35 THEN COLOR
4:PLOT X.Y:X=X+1:G0TO 30

REM IT°S A MISS

IF Z<>1 THEN IF X>35 THEN MISS=MI
SS+1:7 "HITS—";HIT;" MISSES-";MI
5S5:COLOR 4:FOR B=0 TO 19:PFLOT 35,
BE:PLOT 36.R

IF Z<>1 THEN NEXT B:S5=5+10:G0T0 2
Q

REM IT*S A HIT

HIT=HIT+1:? "HITS-";HIT:;" MISSES
-":MISS:5=5-10:COLOR 4:FOR E=0 TO

19: PLOT 35,B:PLOT 34,B:NEXT B:GO

TO 20

‘ Chapter2

Customizing
The
Granhlcs Modes ‘

ettt

eeoeecoco0oCCCOOCOOCOCOCCOCCOCOCCOOCOCOCOOCPOCCCRORPPOONTYT

2 Custemizing The Graphics Modes

How To Design
Custom Graphics
Modes

Craig Chamberlain

Itis well known that the Atari 400/800 computers have superior
graphics. One of the things that makes the Atari graphics superior
is the fact that the graphics capabilities are flexible. This versatility
is demonstrated by the several unique graphics modes that can
be generated by the hardware. The Operating System recognizes
12 of these modes, but there are also five other modes available.
The table describes some characteristics of the various graphics
modes.

There are two varying factors which distinguish one graphics
mode from another. First, the pixel size or resolution (number of
pixels it takes to fill the screen) can differ. Second, the number of
color possibilities per pixel may change. The various modes offer
different combinations of these two qualities. Because there are
so many modes to choose from, it is easier to find one to suit a
particular application, which is one reason why Atari graphics
are so versatile.

In BASIC, the GRAPHICS command (or GR. in Atari BASIC)
is used to change the screen from one graphics mode to another.
A number from zero to 11 must follow the GRAPHICS command.
This number corresponds to the 12 graphics modes supported by
the Operating System. An overview of the general characteristics
for these modes is given here.

Operating System Graphics Modes

0 primary text (default mode)
1,2 color text
3,5,7 three-color bit-mapped graphics, various resolutions
4,6 one-colorbit-mapped graphics, various resolutions
8 high-resolution mode, one color
1 specialty modes (explained in other articles)

2 Customizing The Graphics Modes

For all graphics modes except mode zero, a small, four-line
text window is provided at the bottom of the screen. If this text
window is not desired, it can be eliminated by adding 16 to the
number after the GRAPHICS command. Whereas a GRAPHICS
3 changes the screen to mode three with a text window,
GRAPHICS 19 changes the screen to mode three with no text
window.

Whenever the screen is changed to a new mode using the
GRAPHICS command, the screen is automatically cleared, in
case any unwanted data might have been left in the screen mem-
ory. To defeat this automatic clearing of the screen, add 32 to
the number after the GRAPHICS command. This is of little
use, however, to BASIC programs.

Using the GRAPHICS command changes the whole screen
to a new mode. But is it possible to mix graphics modes? Of
course. The text window at the bottom of a screen is actually
mode zero combined with the other mode above it. But then,
what says that the text window has to be at the bottom of the
screen, or that the text must be shown in mode zero? What if it
is necessary to use the other graphics modes not supported by
the Operating System and BASIC? Doing all these wonderful
things requires a little more technical knowledge of Atari
graphics, and it starts with something called the display list.

When BASIC is given a GRAPHICS command, the Operating
System not only reserves room for display data, but also creates a
display list. A display list is a sequence of bytes in memory that,
among other things, defines the format of the screen.

We'll talk more about the display list, how to find it and how
to change it, but first we must delve just a little deeper into Atari
graphics terminology.

When you see a screen of a certain graphics mode, you are
actually seeing a screen of several identical mode lines. A mode
line is equivalent to one row of the screen. It is a horizontal strip
or section of the screen and is one pixel high. Therefore, the vertical
resolution (how many rows) of a graphics mode tells how many
mode lines are needed. Each mode line determines the number
of pixels and colors that will span from left to right (how many
columns).

For example, a mode zero screen offers resolution of 40
across by 24 up and down. In order to produce a mode zero
screen, 24 mode lines of mode zero will be required. Each of
those mode lines will consist of 40 characters across.

26

~

2 Customizing The Graphics Modes

So, the idea of a full-screen graphics mode does not really
apply. Rather, a full screen is a bunch of mode lines stacked
vertically to fill up the screen.

A mode line is just as high as a pixel, but the actual height
of a mode line can vary. The unit used for measuring the height
of a mode line is the scan line. Just as a screen consists of mode
lines, a mode line consists of a certain number of scan lines.
Different mode lines have different numbers of scan lines. The
table shows how many scan lines are contained in each mode
line.

Why all the fuss about scan lines? Because there is a limit
to how many scan lines can be displayed on a screen. As a rule,
whenever the Operating System creates a screen of any graphics
mode, it always uses just the right number of mode lines so
that the scan line total equals 192. One hundred ninety-two is
the maximum number of scan lines that the average television
set can display without excessive overscan (cutoff). A screen can
have fewer than 192 scan lines without any problem, but to use
many more than 192 is only inviting trouble.

Anyway, remember that different mode lines have different
numbers of scan lines, and the desirable total scan line count is
192. These two factors control the vertical resolution in a mode
as follows:

Given a graphics mode, take 192 scan lines, divide by the
number of scan lines per each mode line, and the result is the
proper number of mode lines for that particular graphics mode.
And, as demonstrated earlier, one mode line corresponds to
one horizontal row on the display, so the number of mode lines
is the same as the number of rows, which is called vertical
resolution.

Now, how was that again? Here’s an example using our
familiar friend, graphics mode zero. According to the chart, a
mode line in mode zero consists of eight scan lines. One
hundred ninety-two scan lines divided by eight scan lines per
mode line is 24 mode lines. Indeed, the vertical resolution of
mode zero is 24 rows.

This is where the display list comes in. The display list
describes how many of which mode lines are used to fill the
screen from top to bottom. According to our previous example,
a display list for a mode zero screen will have to indicate that
24 mode lines of mode zero are to be used. Actually, a mode
zero display list looks like this:

27

2 Customizing The Graphics Modes

Mode Zero Display List

112
112
112
66
XXX
XXX

NN NDND NN

65
XXX
XXXX

It is immediately noticeable that there are no zeroes in the
display list. On the other hand, the number two is certainly
used often enough. This brings up an important point. The
number found in a display list to indicate a mode line is not the
same number used by the Operating System for that mode.
The table presented at the end has a column marked IR CODE.
The label IR stands for Instruction Register. The column shows
the hardware equivalent (IR number) for all Operating System

28

()]
L_:% Customizing The Graphics Modes

modes, as well as for modes not supported by the Operating
System. Mode three uses an IR code of eight. IR code fouris a
multicolor character text mode not normally available. Mode
zero is indicated in a display list by an IR number two, which
explains the frequent occurrence of that number in the display
list example.

The number two, however, is not the only number in the
display list example. Now it is time to fully explain the structure
of the display list and reveal what the other numbers mean.

The number 112 is used three times at the beginning of the
display list. Together, these three numbers tell the video
hardware to display 24 empty scan lines at the top of the screen,
before the place where the picture starts. These are not mode
lines, and do not count as part of the 192 scan lines. Instead,
they are called “blank lines,” and they creace a border at the
top of the screen in the background color, just before the 192
scan lines of display. This convention is used by the Atari to
reduce overscan problems.

An entry in the display list can show from one to eight
blank lines. The number to be used in the display list is derived
using the following process:

To show N blank lines, the display list number is (N-1)*16.
To show 8 blank lines, 8-1=7 and 7*16 =112, so every use of
the number 112 in the display list causes the hardware to show
eight scan lines in the background color. Three uses of 112 gives
a total of 24 blank lines.

0 1blank line
16 2 blank lines
32 3 blank lines
48 4 blank lines
64 5 blank lines
80 6 blank lines
96 7 blank lines

112 8 blank lines

The next number in the display list looks like a 66, but it is
nota 66. Itis a 64 +2. The 2 indicates that a mode zero mode
line should follow the blank lines. The 64 is a “load memory
scan counter”” (LMS) command, and means that the next two
bytes form an address which points to where the display mem-
ory (screen data) starts. Because the display data is always put
at the top of memory, the two numbers after the 66 will vary on

29

different computers, according to the amount of RAM installed
in each computer.

Since the address of the display memory is broken down
into two bytes, a little bit of math will be needed to reconstruct
the address. The two bytes are in low-byte, high-byte format.
To compute the address, take the high-byte (the second of the
two numbers), multiply it by 256, then add it to the low-byte.
The result is the address of the first byte of display memory. If
a 10 were POKEd at this location on a mode zero screen, the
upper leftmost character on the screen would be changed to an
asterisk. Adding 20 to the address and doing another POKE will
cause an asterisk to appear in the middle of the top row of the
screen.

The important point to remember is that by adding 64 to a
normal mode line number, in this case a 2, the graphics
hardware will not only process the mode line, but perform a
LMS command as well. The two bytes immediately following
the mode line with the 64 added will form an address that tells
the hardware where the following display data resides in mem-
ory. The LMS operation actually happens before the mode line
starts.

The LMS command is normally used at the beginning of a
screen, on the first mode line, but it can be done on any mode
line, or on several mode lines, for special applications. Display
lists created by the Operating System always have only one
LMS command, on the first mode line, except for modes eight
through eleven, which for technical reasons require another
LMS command in the middle of the display list.

The next numbers in our example display list are a bunch
of 2’s. There are 23 of them, to be exact. These are the remaining
23 mode lines of mode zero. Remember that the first one was
the mode line with the LMS command.

Following the mode lines are a number 65 and a final two
bytes. The 65 is another special number which technically means
“perform a display list jump and wait for vertical sync.”” For
our purposes, the 65 simply means “’this is the end of the display
list; go back to the beginning of the display list when the televi-
sion scanning beam is ready to start drawing another frame.”
The two bytes after the 65 are in low-byte, high-byte format
and represent an address. This address points to the top of the
display list. Now would be a good time to tell where the display
list is placed. Whenever the Operating System is requested to

30

create a screen of a certain graphics mode, it always puts the
display list just before the display data. So, just as the display
memory address varies according to the amount of memory in
the computer and the graphics mode, so will the display list
address vary.

That concludes the explanation for a normal mode zero
display list. It should now be obvious that mixing modes on
one screen is just as easy as changing the mode lines in the
display list. But first, we need to know how to determine exactly
where the display list resides in memory. We know that the
address of the beginning of the display list is given at the end of
the display list, after the 65, but that won’t do us any good if
we don’t know where the display list is located in the first

lace.
g Fortunately, there is a way to find the address of the be-
ginning of the display list. The same address given in the two
bytes after the 65 is also stored in memory locations 560 and
561.

SDLSTL $0230 560 shadow display list address low-byte
SDLSTH $0231 561 shadow display list address high-byte

The address is broken down into two bytes and must be
reconstructed using the same procedure shown earlier. In
BASIC, the standard method is to use the variable DL for the
display list address:

DL = PEEK(560) + 256*PEEK(561)

After issuing a GRAPHICS 0 command and assigning DL,
a PEEK(DL) should return a 112, as will PEEK(DL + 1) and
PEEK(DL +2). But PEEK(DL + 3) will return a 66.

To change mode lines in the display list, POKE statements
must be used. For example, a POKE DL + 20,4 will put a multi-
color text mode line in the middle of the mode zero screen. Try
typing on that row and see what happens.

Next, type some characters below the multicolor text mode
line, do a POKE DL +20,7, and watch carefully. A mode two
line will now be in the middle of the screen, but there will be
side effects as well. Two problems will be evident: the bottom
of the screen is now a little lower than before, and text below
the mode line is not properly aligned.

As for the first problem, a quick glance at the chart will
reveal that we replaced a mode zero line of eight scan lines

31

2 Customizing The Graphics Modes

with a mode two line of 16 scan lines. The display now has
more than 192 scan lines, hence the bottom of the screen appears
lower.

This problem can be fixed, somewhat. It is necessary to
delete the eight extra scan lines, which can be easily done by
getting rid of the last mode line. Eliminate the last mode line by
executing these instructions:

POKE DL + 28,65
POKE DL + 29, PEEK(560)
POKE DL + 30, PEEK(561)

All we did was place the “end of display list” command a
little earlier in the display list, which effectively cuts off any
display below that point. There is a new problem, however,
because now there are only 23 rows, but the Operating System
still “thinks” there are 24. Hmmm. We traded one problem for
another. Let’s change the subject and explore the problem of
the incorrectly aligned text.

The text below the mode two line has been displaced by 20
characters. The explanation for this is really quite simple. We
replaced a mode zero line that needed 40 bytes of data with a
mode line that, according to the chart, requires only 20 bytes.
There are now an extra 20 bytes on the screen, but the Operating
System again is not aware that a change has been made. The
text could be realigned with a POKE DL +21,7 but then there
would be 40 extra bytes, or essentially, enough for another
row.

All of these problems are conflicts with the Operating Sys-
tem. The Operating System establishes the display list but does
not monitor it. Changes to the display list only affect the
hardware and screen display. Such problems are not always
easy to deal with, so they are discussed in separate articles.
The key things to remember are:

1. The display should not exceed 192 scan lines.

2. When creating a custom display list, the number of mode
lines is limited by the number of mode lines normally allotted
for the current mode. (You can mix only up to 24 mode lines on
a mode zero screen.)

3. Care must be taken that the mode lines do not require a
larger total amount of memory than was designated for the
current mode. (Changing several 20-character mode lines to 40-
character mode lines would be one way to cause this problem.)

32

sustomizing The Graphics Modes

We have now covered the main points of what a display
listis, why it is needed, what purpose it serves, how to find it
in memory, how to change it, and what problems can be ex-
pected as a result of these changes. The display list also controls
horizontal and vertical fine scrolling, and a special interrupt,
but these are more advanced topics.

To further demonstrate how to modify a display list, three
BASIC programs have been provided.

Program 1 prints a display list of mode three with a text
window, then changes the bottom text lines to mode one. The
display list in this case consists of the 24 blank lines
(112,112,112), the LMS command on the first mode three mode
line (64 +8=72), the address of the display memory, more mode
three mode lines (8,8,8,...), another LMS command on the first
line of the mode zero text window (64 +2 =66), the address of
the text window memory, the remaining three mode lines of
mode zero (2,2,2), and the return (65) followed by the address
of the beginning of the display list.

Program 2 creates a mode three screen with a text window,
but then moves the text window to the top of the screen. Brief
screen flitter is normal.

Program 3 displays from three to 24 blank lines at the top
of the screen, then mixes 14 different modes on the screen. Try
moving the cursor around and typing in the different modes.

Tahle. The Graphics Modes.

OS IR C SL Vv H B
0 2 1 8 24 40 40
= 3 1 10 - 40 40
= 4 4 8 24 40 40
- D 4 16 12 40 40
1 6 4 8§ 24 20 20
2 7 4 16 12 20 20
3 8 3 8 24 40 10
4 9 1 4 48 80 10
5 10 3 4 48 80 20
6 11 1 2 9% 160 20
- 12 1 1 192 160 20
7 13 3 2 9% 160 40
- 14 3 1 192 160 40
8 15 1 1 192 320 40
0OS OSMODE V ROWS (MODE LINES)
IR IR CODE H COLUMNS
C COLORS (PLAYFIELDS) B BYTES

SL SCAN LINES

33

2 CGustomizing The Graphics Modes

Program 1.

100 GRAPHICS 3:REM 3 COLORS, 40X24
110 COLOR 1:REM GOLDEN ORANGE
120 PLOT 0,0

130 DRAWTO 19,19

140 COLOR 2:REM LIGHT GREEN

150 DRAWTO 38,0

160 DL=PEEK(S60)+2546XPEEK (561)
170 REM DL 18 ADDRESS OF DISFLAY LIST
180 FOR K=0 T0O 33

190 PRINT "PEEK(DL+";

200 PRINT K3

210 PRINT ")=";

220 PRINT PEEK((DL+K)

230 FOR J=1 TO 333:REM DELAY LOOP
240 NEXT J

2530 NEXT K

260 PRINT CHR$(125);:REM CLEAR TEXT
270 PRINT "NOW WATCH THE MODE"
280 PRINT "LINES GET CHANGED"

290 PRINT "AT THE BOTTOM"

300 PRINT "OF THE SCREEN";

310 FOR K=1 TO 999

320 NEXT K

330 POKE DL+25,64+6:REM CHANGE LMS
340 FOR K=1 TO 333

330 NEXT K

360 FOKE DL+28.,6

370 FOR K=1 TO 333

380 NEXT K

3920 POKE DL+29,6

400 FOR K=1 TO 333

410 NEXT K

420 POKE DL+30,6

430 FOR K=1 TO 333

440 NEXT K

450 PRINT

440 FPRINT

470 FOR K=1 TO 333

480 NEXT K

490 PRINT CHR$%${(123);

S00 END

34

2 Customizing The Graphics Modes

Program 2.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

GRAPHICS 3
DL=PEEK (S60) +256¥PEEK (561)
LMSLO=PEEK (DL +4)
LMSHI=PEEK (DL+5)
TLO=PEEK (DL+26)
THI=PEEK{(DL+27)
POKE DL+3,64+2
FOKE DL+4,TLO

POKE DL+%,THI

FOR K=DL+6 TO DL+8E
POKE K.2

NEXT K

POKE DL+9,.64+8
POKE DL+10,LMSLO
POKE DL+11,LMSHI
FOR K=DL+12 TO DL+3Z0
POKE K,.8

NEXT K

COLOR 1

PLOT 0,0

DRAWTO 19,19

COLOR 2

DRAWTO 38,0

END

Program 3.

100
110
120
130
140
150
160
170
180
190
200
210
220

GRAFPHICS ©
FOR K=1 TO 23

PRINT "ATARI ATARI ATARI ATARI"
NEXT K
DL=PEEK (560) +256¥PEEK (561)

POKE DL,O

POKE DL+1,0

FOKE DL+2,0

FOR K=16 TO 112 STEP 16

POKE DL,K

FOR J=1 TO 100

NEXT J

NEXT K

35

2 Customizing The Graphics Modes

230
240
250
2460
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

36

FOR K=16 TO 112 STEP
POKE DL+1,K

FOR J=1 TO 100

NEXT J

NEXT K

FOR K=1&6 TO 112 STEP
POKE DL+2,K

FOR J=1 TO 100

NEXT J

NEXT K

FOR K=1 TO 23

READ P

POKE DL+S5+K,P

FOR J=1 TO 100

NEXT J
NEXT K
DATA 3
DATA 8
DATA 1
DATA 1
END

16

16

?;i Gustomizing The Graphics Modes

Put Graphics Modes
1 And 2 At The Bottom
0f Your Screen

R. Alan Belke

Most of you who are regular readers of COMPUTE! are familiar
with the mixing of the graphics modes. The only problem is
that you can’t use a mode past its regular range. That is, if you
wanted to use mode 1 past line 20 or mode 2 past line 10, you
couldn’t. So you were stuck putting text you wanted at the top
of the screen or in the text window. Until now, that is!

What'’s The Display List?

First we'll look at the ““display list” to see what it is and what it

does. Figure 1 shows the display list for mode 3. You can verify
this by running Program 1. Locations 560, 561 contain the start-
ing address of the list.

Figure 1.
112,112,112,72,112,158,66,96,159,2,2,2,
65,78,158

The purpose of the list is to tell the computer how to display
the information stored in the screen and/or text memories. Let’s
see how it does this. The first three bytes (112) set up the margin
at the top of the screen. Next comes what I call an address byte
(72), in this case, a mode 3 address byte. (Figure 2 shows what
the address bytes are for each of the modes.) This byte pulls
double duty. First, it sets the first line to mode 3. Then it tells
the computer that the next two bytes contain the address of the
screen memory.

Figure 2.

MODE 01 2 3 45 6 7 8
ADDRESS BYTE 66 70 71 72 73 74 75 77 79

The next 19 bytes (8) set one line each to mode 3. I call these

37

¥ Customizing The Graphics Modes

mode 3 bytes. You get the value for these bytes by subtracting
64 from the address byte (72-64 =8). From this, we can deduce
that any byte with bit 6 on is an address byte. Also, notice that
19 mode 3 bytes with the mode 3 address byte give you 20 rows
of mode 3, which fills the screen up to the text window.

For whatever mode you are in, you will have one address
byte and the number of rows, minus one, regular bytes. For
example, mode 7 will have a mode 7 address byte (77) and 79
regular mode 7 bytes, giving you 80 rows. To find out how
many rows each mode has, check the ““Table of Modes and
Screen Formats.” It's on the inside back cover of your Atari
BASIC Reference Manual.

The Last Three Rows Of The Text Window

Now here’s the important part. The next byte (66) is a mode 0
address byte. But, instead of the next two lines containing the
address of the screen memory, they contain the address of the
text editor memory. This is the start of the text window. Modes
1 through 8 use the screen memory. Mode 0 uses the text editor
memory. As you may have already guessed, the next three
bytes (2) are mode 0 bytes, giving us the last three rows of the
text window. If we were in a full screen format, these last six
bytes would not be here.

Now we are to the end of the list. This next byte (65) is also
an address byte. But it has a special purpose. It tells the com-
puter that it has reached the end of the list and that the next
two bytes contain the starting address of the list. (The same as
locations 560, 561.)

Before we go on, let me say that the bytes that contain the
addresses may vary, depending on the mode you’re in and on
the amount of memory you have. All the other bytes will be
the same.

So how do we get modes 1 and 2 on the bottom of the
screen? It’s simple! Basically, all we do is change the mode 0
bytes to mode 1 or 2 bytes. Presto! The computer now displays
the text editor memory in modes 1 or 2.

Let’s look at Program 2 to see how this is done:

Line 10: sets the margins to 40 characters per line and selects
mode 3 with text window. Then it finds the address of the
display list.

Line 20: searches the list for the start of the text window.
Line 30: changes the mode 0 bytes to mode 1 bytes.

38

There are a few things to be aware of. Even though you are
using modes 1 and 2, you're using the text editor memory; so
the computer thinks in 40-column, not 20-column, lines, which
means two lines now equal one old line. Here is an example.
Suppose we use an empty PRINT statement, planning to leave
a blank line. Sorry, it won’t work. We would have two blank
lines. What we do is put 20 spaces in front of what we want
printed on the second line. Also remember that we are using
the text editor, so PRINT #6 will not work. Try some different
things yourself.

What About Mode Two?

Well, that’s almost as simple. Mode 2 lines are twice as wide as
modes 1 and 0; so there are only two combinations using mode
2 possible: two rows of mode 2 or one row of mode 2 with two

rows of mode 1. We can use only the amount of room that was
originally there. Program 3 uses the latter option from above:

Lines 10-20: same as Program 2.

Line 30: basically the same as in Program 2; only this time we
make the second line mode 2. And, since we use one less byte,
we have to move the end of the list one location forward.

By now you should be able to change the text window into
any combination of modes 1 and 2 you want. If you have a pro-
gram that would work better with the text at the bottom of the
screen or the text window as modes 1 or 2, get to work, experi-
ment! Remember, you're the boss.

Program 1.

10 GRAPHICS 3: A=PEEEKA{(SSO0)+FPEEK {(S61) %2
56

20 D=PEEK{(A):7? D3",":;:IF D<>465S THEN A
=A+1:60T7T0 20

30 ? PEEKEK{(A+1):;",";PEEK(A+2)

40 GOTO 40

39

2 Customizing The Graphics Modes

Program 2.

10

20

30
40

S0

POKE 82,0:GRAPHICS 3:A=PEEK (560) +F

EEK(561) X256

IF PEEK(A)<>b6 THEN A=A+1:G0TO 20

POKE A,70:POKE A+3.6:FOKE A+4,6&6:F0D

KE A+5,6

? " ATARI AND COMPUTE:® AN UNEE

ATABLE "

? w TEAM FOUR LINES
MODE 1"

COLOR 2:SETCOLOR 1,10,6:PLOT 17,1:
DRAWTO 17,10:DRAWTO 9,18

PLOT 19,1:DRAWTO 19,18:FLOT 20,1:D
RAWTO 20,18

FLOT 22,1:DRAWTO 22,10:DRAWTO 30,1
8

GOTO 90

Program 3.

10

20

30

40

S0

60

70

80

29

40

FOKE 82.0:GRAFHICS 3:A=FPEEK(S560) +F
EEK(S561) %256

IF PEEE{(A)<>b66 THEN A=A+1:G0TO0 20

POKE A,70:FOKE A+3,7:POKE A+4,6:P0

KE A+5,65:POKE A+6,PEEK{(A+7) :POKE

A+7 ., PEEK (A+8)

? " ATARI AND COMPUTE'! 1 LINE OF
MODE 2 *

? " 2 LINES OF MODE 1"

COLOR 2:SETCOLOR 1,10,4:PLOT 17,1:
DRAWTO 17,10:DRAWTD 9,18

PLOT 19,1:DRAWTO 19,18:PLOT 20,1:D
RAWTO 20,18

PLOT 22,1:DRAWTO 22,10:DRAWTO 30,1
8

GOTO 90

2 Customizing The Graphics Modes

Printing Characters
In Mixed Graphics
Modes

Craig Patchett

One of the problems of custom graphics modes is how to print
characters on mode lines that are out of the usual range of that
mode. For example, if we design a graphics mode such that the
30th line is mode two, we would get an error message if we
attempted to print on that line. This is because the Atari thinks
itis in the regular mode two, which allows only twelve lines of
characters. We must therefore find another way to put the
characters on the screen.

As you may already realize, the screen is just a type of
window looking into a part of memory. If you change that mem-
ory, what you see on the screen also changes. The solution,
therefore, is just to POKE the characters into the memory loca-
tions that correspond to the positions on the screen where we
want them to appear.

Where Is The Screen In Memory?

Here is how to find the display list in memory:
BEGIN = PEEK(560) + PEEK(561)*256 + 4

But, you may well ask, what does this have to do with the screen
memory, or display memory, as we will call it here? It just so
happens that the first two memory locations in the display list
point to the beginning of display memory in the following fash-
ion:

DISMEM = PEEK(BEGIN) + PEEK(BEGIN + 1)*256

How Do We Calculate The Exact Memory Locations
To POKE Into?

Each mode line uses up a certain amount of memory. As you
might guess, different modes use different amounts of memory

41

2 Custemizing The Graphics Modes

per line. To be more exact:

MODE Guit.2 3.4.85 607 B
MEM/LINE 40 20 20 10 10 20 20 40 40

So all we have to do is figure out how much memory is used
before the mode line that we want to print on, and add that to
DISMEM to determine where we want to start POKEing. As an
example of how to do this, let’s suppose we have a graphics
mode with four lines of mode 1, 50 lines of mode seven, three
lines of mode four, and three lines of mode two (4*8 +50*2 + 3*
4+3*16=32+100+12+48=192); and we want to print on the
second line of mode two. Checking the table above, we go:

4 lines of mode 1=4*20= 80
50 lines of mode 7=50*40= 2000
3 lines of mode 4=3*10= 30
1 line of mode 2 =1*20= 20

(remember, we count only the lines above the one we want
to print on)
For a grand total of: 2130

Therefore, memory location DISMEM + 2130 represents the
first character in the second line of mode 2 for this particular
mode. Memory location DISMEM + 2131 represents the second
character, and so on up to DISMEM + 2149 for the 20th character.
We know that POKEing the appropriate value into the
appropriate location will cause the desired character to appear
at the desired screen location. Since we already know how to
determine the appropriate memory location, we now ask:

How Do | Calculate The Appropriate Value For A Character?

It turns out that the value to POKE for a given character cor-
responds to the order in which the character descriptions are
stored in ROM (see “Designing Your Own Character Sets” in
Chapter 3). As a quick memory refresher:

ATASCII VALUETO

VALUE POKE

0-31 64-95

32-95 0-63
96-127 96-127

For reverse characters, just add 128 to the value of the normal
character.

42

g Customizing The Graphics Modes

My Brain Is In Hibernation; How Do I Convert A Character String
To Its Appropriate Values?

I'll leave you with the following self-explanatory subroutine
that will take the (predefined) character string PRINTME$ and
the starting memory location STARTHERE (also predefined
and equal to DISMEM + offset) and POKE PRINTMES$ into the
appropriate memory locations. Enjoy!

Program.

I0000

J0010
30020

J0030
Z0040

I0050
I0060
I0070
30080
F0090
30100
30110
I0120
I0130

JI0140
30150

REM This loop will act on each

character in PRINTME®$

FOR ME=1 TO LENA(PRINTME®)

REM Find ATASCII wvalue of chara

cter

VALUE=ASC(FRINTME® (ME.ME))

REM Subtract 128 temporarily 1+
its a reverse character

VALUE=VALUE-128% {({VALUE>127) : REHM
See note below

REM Make the appropriate value

adjustments

VALUE=VALUE+&64 X (VALUE<3I2) -32% (V

ALUE>Z1 AND VALUE<?4)

REM Convert back to reverse 1f

necessary

VALUE=VALUE+128% {ASC(PRINTMES (M

E.MEY) >127)

FOKE STARTHERE+ME—-1.,VALUE:REM K

emember, ME starts at 0, not 1

7 VALUE

REM Go to next character

NEXT ME

REM A1l done. say goodby

RETURN

Note that (condition) equals 1 if the condition is true, 0 if
it’s not. Thus, X=126:PRINT (X=126) :PRINT(X =127) will
print a 1 followed by a 0.

43

2 Customizing The Graphics Modes

Add A Text Window
To GRAPHICS 0

Charles Brannon

The text window can be a useful feature in the graphics modes,
enabling a simultaneous text and graphics display. The text
window is very similar to a miniature GRAPHICS 0 text screen:
all the editor functions are supported, and scrolling and screen
clearing are confined to the small four-line window.

This same capability would be useful for a GRAPHICS 0
display. For example, a menu (a list of choices) could be pre-
sented in the top 20 or so lines of the screen, and the user’s
input taken in the lower four lines of the text window. Any
errors, such as the user typing editor keys in an INPUT state-
ment, would not interfere with the rest of the screen. Conve-
niently, any scrolling when caused by a line like this one:

1530 PRINT “NAME";: INPUT N$:IF LEN{N%)
>8 THEN FRINT "¥T0OO LONGXx":6G0T0 1
S0

would not cause the menu above it to scroll as well.

How i