(ATARI Versmn

(ATART Version)

Stimulating
Simulations

Second Edition

The Hayden Microcomputer Series

BEAT THE ODDS: Microcomputer Simulations of Casino Games
Hans Sagan

MUSICAL APPLICATIONS OF MICROPROCESSORS Tt
Hal Chamberlin

TEN EASY PIECES: CREATIVE PROGRAMMING FOR FUN AND PROFIT*
Hans Sagan and Carl Meyer, Jr.

CONSUMER'S GUIDE TO PERSONAL COMPUTING AND MICROCOMPUTERS*
Stephen J. Freiberger and Paul Chew, Jr.

THE FIRST BOOK OF KIMt
Jim Butterfield, Stan Ockers, and Eric Rehnke

SMALL COMPUTER SYSTEMS HANDBOOKt
Sol Libes

HOW TO BUILD A COMPUTER-CONTROLLED ROBOT+
Tod Lootbourrow

HOW TO PROFIT FROM YOUR PERSONAL COMPUTER*
Ted Lewis

THE MIND APPLIANCE: Home Computer Applications*
Ted Lewis

THE 6800 MICROPROCESSOR: A Self-Study Course with Applications*
Lance A. Leventhal

THE FIRST BOOK OF MICROCOMPUTERS
Robert Moody

MICROCOMPUTERS AND THE 3 R's: A Guide for Teachers*
Christine Doerr

DESIGNING MICROCOMPUTER SYSTEMS*
Udo W. Pooch and Rahul Chattergy

*Consulting Editor: Ted Lewis, Oregon State University

tConsulting Editor: Sol Libes, Amateur Computer Group of New Jersey and
Union Technical Institute

(ATARI Version)

Stimulating
Simulations

Second Edition

C. W. Engel

NNNNNNNNNNNNNNNNNNNNNN
eeeeeeeeeeeeeeeeeeeeee

Note to User

The programs in this book were not originally written in Atari
BASIC and therefore will not run on the Atari computer without
some modification. The supplement in the Appendix contains those
programs from the book that require changes. All of these programs
have been run and tested on an Atari 400 and Atari 800 computer,
and you should encounter no difficulty in using them. Where the
word “LPRINT" is used in a program, what follows it will be printed
out on the Atari printer. If you do not have one, simply replace
“LPRINT” with “PRINT.” This will direct the printed output to your
television screen.

It has not been possible to convert every single program in the
book for use on the Atari computer. The programs for which no Atari
equivalent has been written are:

1. Soccer |, page 9

2. Starship Alpha, page 46

If you carefully study the original program listings in the book,
and the Atari versions given in the Appendix, you will quickly see
what the differences are in Atari BASIC, and it will be easier for you
to convert programs from other books and magazine articles for use
on your Atari computer. Good luck and happy computing.

ATARI is a registered trademark of the Warner Communications
Company and is not affiliated with Hayden Book Co., Inc.

ISBN 0-8104-5197-2
Library of Congress Catalog Card Number 79-88327

Copyright © 1977 by C. William Engel. Copyright © 1979 by Hayden Book
Company, Inc. All rights reserved. No part of this book may be reprinted, or
reproduced, or utilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying and recording,
without permission in writing from the Publisher, with the exception that
programs may be stored and retrieved electronically for personal use.

6 7 8 9 10 1 PRINTING
82 83 84 85 86 87 88 YEAR

(ontents

Introduction 1
Soccer, 9
Art Auction 20
Monster Chase 24
Lost Treasure 28
Gone Fishing 34
Space Flight 40
Starship Alpha 46
Forest Fire 59
Nautical Navigation 65
Business Management 71
Rare Birds 77
Diamond Thief 83
The Devil’s Dungeon 89

Appendix: Program Conversions for the Atari 101

'
:

Ak Y il it
il it -, nnetth hlslenth

N
[

1'1'!4-!:!.!!:5_: PEE. -
i

(ATARI Version)

Stimulating
Simulations

Second Edition

INTRODUCTION

Simple number games and puzzles are frequently developed by beginning
computer hobbyists. While some enthusiasts develop computer systems that
monitor environmental conditions, compute income tax, or serve as
expensive burglar alarms, most continue to use their computers primarily
for recreation. This book is designed for the person who is beyond the
simple number-game stage of software development and would like to develop
some interesting simulations. It is assumed that the reader is familiar
with most of the BASIC commands and has written some simple programs.

Most of the programs in this book are written so that the computer
does not do all of the "thinking" but forces the player to develop
strategies for achieving the objectives. A general overview of a simula-
tion is illustrated in the flowchart below.

SET
INITIAL
CONDITIONS

OUTPUT STATUS
OF
REAL WORLD

INPUT
HUMAN
DECISIONS

INCREMENT
TIME

COMPUTER
DETERMINES
RESULTS

=

OUTPUT
RATING

2 Stimulating Simulations

The simulations presented in this book are written in BASIC and can
be easily adapted to almost any system.* The programs vary from 500 to
2,000 bytes or 32 to 115 1ines of BASIC. Some of the Tines have multiple
statements; but, since the Tline numbers are multiples of ten, it would be
easy to modify the programs to operate with single statements.

Each simulation begins with a scenario describing the rules,
conditions and objectives to be achieved. The rules have been written in
second person, because some programmers like to condense the rules and
place them in a subroutine for access by the operator. A sample run and
a general flowchart with Tine numbers provide additional information about
each program. A description of the variables precedes the program
listing. Some program modifications are suggested. The minor modifica-
tions require only adjustments of variables in specific lines, while major
modifications require additional programming. In some cases, supplemental
playing boards, graphs, and charts are supplied for recording information
on the progress of the simulation.

A brief description of each program is given below.

1. ART AUCTION (48 lines)
One buys and sells paintings to make a maximum profit.
This is a fast simulation and does not require extra
materials.

2. MONSTER CHASE (48 1ines)
A monster is chasing a victim in a cage. The victim must
elude the monster for ten moves to survive. This is a
fairly quick simulation that doesn't require too much
thinking.

3. LOST TREASURE (74 Tlines)
A map of an island that contains treasure is presented.
The adventurer travels over different terrain with a
compass that isn't very accurate in an attempt to find the
treasure. This is a short simulation that requires about
15 moves. A map is provided.

4. GONE FISHING (83 lines)
The objective is to catch a Tot of fish during a fishing
trip. Half of the catch spoils if the time limit is
exceeded, time is lost in a storm, and the boat sinks if it
is guided off of the map. There are also sea gulls and
sharks to watch. A chart is needed to keep track of good
fishing spots.

5. SPACE FLIGHT (68 1ines)
The task is to deliver medical supplies to a distant planet
while trying to stay on course without running out of fuel.
Graph paper is required to plot the course.

6. STARSHIP ALPHA (98 Tlines)
This expanded space flight is written in "real time." As
commander of a large spaceship, the player must make quick,

*RND(1), for example, generates a number from @ to 1 in MITS BASIC.
RND(1) must be replaced with RND(@) for the TRS-80 computer.

Introduction

logical decisions regarding landing instructions, crew
morale, the black hole, radiation, aliens, and the use of
shields, gyros and lazer beams.

7. FOREST FIRE (77 Tines)
The objective is to subdue a forest fire with chemicals and
backfires. The success of a firefighter is based on the
time needed to control the fire and to completely
extinguish it.

8. NAUTICAL NAVIGATION (70 lines)
This simulation requires the navigation of a sailboat to
three different islands, using a radio direction finder.
The wind direction is an important variable. Graph paper,
protractor and ruler are needed to plot the course.

9. BUSINESS MANAGEMENT (92 Tines)
In this simulation, raw materials are bought and finished
products are produced and sold. The cost of materials and
production and the selling price vary each month. The
objective is to maximize the profits. No extra materials
are required.

10. RARE BIRDS (75 lines)
This is a bird watching simulation. The objective is to
identify as many different birds as possible. A record of
those identified is helpful and a bird watching chart is
provided.

11. DIAMOND THIEF (83 Tines)
One assumes the role of a detective is this simulation. A
thief has just stolen a diamond from a museum. Five suspects
must be questioned to determine the thief. A floor plan of
the museum and a chart indicating suspects and times are
provided.

12. THE DEVIL'S DUNGEON (115 Tines)
A fantasy adventure into a bottomless cave. The player
must chart his way, fight monsters, poisonous gas and
demons to escape with the gold.

The SOCCER program developed in the last section of the Introduction
is designed for two players, although it could be modified so that the
computer is one of the players. In this simulation, each player controls
a team of five soccer players whose objective is to kick the ball across
the opponent's goal line. This program is written in three stages to
illustrate the procedure for modifying and expanding already existing
simulations.

In addition to extending the simulations in this book, the reader
might try combining some of them. For example, one could use the money
earned in Art Auction to start the Business Management simulation. After
twelve months of business, the profits could be used to buy a boat to use
in the Gone Fishing simulation. A larger boat could survive more storms,
hold more fish, and allow fishing in deeper water. The ultimate
objective could be to catch the most fish.

The computer hobbyist is Timited only by the imagination in
simulating real events. It is the author's desire that this book provide
some fun and, at the same time, stimulate further development of creative

4 Stimulating Simulations

simulations. Some additional ideas for simulations are suggested below.

Hunt Big Foot

Race a Sailboat

Inhibit the Andromeda Strain
Stop the African Bee Invasion
Climb Mountains

Survive in the Wilderness
Find Gold or 0il

Swim from Sharks

Dispatch Airplanes, Trains, or Trucks
Herd Sheep

Explore Caves

Catch Butterflys

—
QWO NOO TS WM

—
N =

The next section offers some guidelines for developing simulation
activities.

DEVELOPING SIMULATIONS

A Creative Process

If one has a mathematical problem for computer solution, the
programming process can be approached in the following manner: 1) Develop
the flowchart. 2) Define the variables. 3) Write the initial program.

4) Debug. 5) Run. In developing a simulation activity, however, there is
a great deal more creative effort involved; and the steps Tisted above are
not necessarily implemented in sequence. One can compare the development
of a simulation program to that of a creative artist such as a painter.
The blank computer memory is the canvas and BASIC language represents the
paint and brushes. An artist continually retouches and reworks the
painting until the final product meets the artist's criteria for success.

Most technological advances, such as television and radio, are
"one-way streets" -- one observes what takes place. The observer seldom
creates, composes or interacts with such devices. Developing simulation
programs for computers can provide intelligent people with an opportunity
to react with their environment in a problem-solving mode.

Selecting a Topic

The first task in developing a computer simulation is to select a
topic. Almost any idea could serve as a starting point; however, the
reader's own interests and hobbies are usually the best resource for
ideas. The possibilities are unlimited. One could develop simulations on
cooking, stamp collecting, gardening, racing cars, dating, jogging or
dreaming. With a T1ittle research, a Tong-desired ambition could become
material for an exciting simulation -- a safari across Africa, a trip
around the world, or a walk on the moon. The creative programmer can be
transported to any time or any place in the universe via the computer
simulation.

Once a topic for the simulation is selected, the next step is to
write down a fairly detailed description of what the program will
accomplish. This narration will become the scenario. To illustrate this

Introduction 5

process, the author has chosen "survival in a jungle" as a topic.

Jungle Survival Scenario

You have crashed somewhere in the middle of an uninhabited
jungle island in the Pacific. You will have to select a limited
quantity from the provisions on the plane. The more provisions
you carry, the slower you will travel. As you travel across the
island, you will encounter various hazards with which you must
deal. The terrain will consist of mountains, rivers, plains,
swamps and lakes. Crossing a mountain range will be slow, but it
will provide a more direct route. Traveling down a river will be
easy, but a variety of unpredictable hazards will occur. Your
objective is to hike to the perimeter of the island in as few
days as possible.

The scenario should provide answers to the following questions.

What will the operator do?)

What feedback will the computer provide?

What surprise elements wiil produce fun and excitement?
What are the winning conditions?

How will the success of the simulation be measured?

1w =

The writer must realize that the first scenario is only an approximation
to the final product. As the program is developed and field tested, the
scenario will probably change considerably.

While developing the scenario, the writer should begin to visualize
a sample run. In the case of the jungle survival program, a sample run
might Took something 1ike the following.

CHOOSE YOUR PROVISIONS: 1 FOOD
2 WATER

N XXX

READY TO START JOURNEY?

YOU ARE AT POSITION 42,43. IN THE CLEAR
CHOOSE THE DIRECTION OF YOUR NEXT MOVE? N
HOW FAR WOULD YOU LIKE TO GO? 32 MILES

YOU ARE AT POSITION 42,42. IN THE MOUNTAINS
CHOOSE THE DIRECTION OF YOUR NEXT MOVE? E
HOW FAR WOULD YOU LIKE TO GO? 10 MILES

YOU FELL INTO THE RIVER!

The sample run listed above has several problems. First, the
distance the player can travel in a given time-interval should be Timited.
Also, one should probably be able to see mountains ahead. At this point
in the development of the program, however, the writer should have decided
that the output of the computer will include the location of the player,
the type of terrain, and a request for the player to select the direction
of travel.

6 Stimulating Simulations

Flowchart

The next step in developing a simulation is to construct a general
flowchart. In the case of the jungle survival simulation, the first
flowchart might take the following form.

PLACE ON
ISLAND

T

SELECT
PROVISIONS

&
——

GIVE LOCATION ¥

|

INPUT DIRECTION

|

DETERMINE HAZARDS

o =)

It is not necessary to provide all of the details in the flowchart
in the beginning. It is better to start writing the program and develop
the flowchart along with the program. The flowchart should provide a
graphic aid to the programming and need only be developed to the extent
that the programmer feels it is necessary to keep track of the flow of
ideas.

Selecting the Variables

It is a good idea to keep a Tist of the variables used in the
program. If such a 1ist is not referred to and continually updated, the
same variable might be used to represent two different things. Usually
the letters, I, J, K, are used for indexing loops; and the first one or
two letters of a word are selected for major variables in the program,
e.g., T for time. It is also useful to designate a range for the
variables.

In the jungle survival program, a list of the variables might be as
follows.

Range
X,Y position on island 0 - 100
T time on island 0 - 100
E energy of survivor 0 - 100
W weight of provisions 0 - 50

MX ,MY location of mountains
LX,LY location of Takes

Introduction 7

CX.cy location of clearings
M direction of movement

The 1ist of variables should be expanded as needed during the writing of
the program.

Subroutines

One of the reasons given for using subroutines is to T1imit the amount
of repetition in a program. Another use of subroutines is to provide
flexibility in developing a program. The main parts of a program can be
written first and subroutines can be used to add the details later. The
use of subroutines frees the writer from having to determine in advance
how many lines are needed between main parts of the program. Also, the
main parts of the program can be more easily identified if subroutines are
used to handle the details.

The use of subroutines, as described above, is illustrated below.

FLOWCHART WITH SUBROUTINES FLOWCHART WITHOUT SUBROUTINES

FIGHT LION N

SUBROUTINE
main/, \\can be Y
program easily
flow expanded
FIGHT LION

details PROGRAM

in main

program . may be

hard to

<:::> expand

Writing the Program

After developing a rough flowchart, one can start to write and test
the first part of the program. It is not usually a good idea to type in
and test a long, complicated program in its entirety. The writer should
make sure that the first part of the program works independently. Usually
after some experimentation with the initial part of the program, one will
think of new ideas; and the flowchart and/or scenario will be revised.

The programmer should not forget to keep an updated version of the program
on a disk or tape to avoid a second typing of the program due to an
accidental Toss of memory.

Sometimes the writer may find a particular objective very difficult
to program. Rather than spend considerable time trying to achieve what
may be impossible, it would be advisable to change the scenario. Quite
often such "open-mindedness" leads to a more interesting or more elegant
simulation than was originally anticipated. The writer, on the other hand,
should not hesitate to program what might seem Tike a complex idea. Many

8 Stimulating Simulations

times complex ideas are easy to program, while simple ideas are very
difficult to program. The programmer should not strive for perfection.
Most programs could probably be "neater" or more elegant with the invest-
ment of a few more hours of programming time; however, the only
accomplishment might be to save a few milliseconds during the run.

The simulation should be fairly simple at first, until it is running.
Then the programmer can add the "bells and whistles" if desirable.
Sometimes too much complexity distracts from the enjoyment of the
simulation, especially if it takes another computer to operate the
simulation.

When writing a program, one should keep all program statements
involving a similar idea together. Such a practice will make debugging a
program much easier. A brief summary of the instructions for the
simulation is also worthwhile if memory capacity is sufficient.

It is sometimes difficult to provide an appropriate balance between
skill and luck. The chance factors provide interest, excitement and
intrigue; however, too much luck does not provide sufficient challenge.
Also, with too many chance factors, it would be difficult to compare
different runs of the program. An interesting possibility would be to
provide a variety of options at the beginning of a program that determines
the balance of Tuck and skill.

Field Testing

When the program is in a "playable" form, it should be tested by
several different players. An unanticipated method for achieving the
objective may be discovered or the objective may be almost impossible to
achieve. Most Tikely, one will find that many new ideas will result from
feedback from these players, and some will be easily incorporated into the
program.

The writer will find that the simulation will never reach, but only
approximate, the ideal. The fun and excitement of creating, modifying,
and expanding your simulation will never end.

In the next section of this book are fifteen simulations that are in
a playable form; however, they are only the beginning for the person with
a creative mind.

Introduction

MODIFYING AND EXPANDING SIMULATIONS

Each program in this book concludes with a Tist of suggested
modifications. This section illustrates how to modify and expand a simple
program, SOCCER I, to the more sophisticated SOCCER II and SOCCER III.
These three programs require two people to operate the computer, where
each person controls five players on a playing field.

The objective in SOCCER I is to eliminate the opponent's players.
SOCCER I is the least sophisticated of the three programs and does not
provide for incorrect inputs from the keyboard.

In SOCCER II, the objective is to be the first team to pick up a ball
that is resting in the middle of the field. Sidelines are drawn in this
program, and a player's movement can be stopped by pressing the space bar.
Incorrect key entries are ignored.

In the Tast version presented here, SOCCER III, one must kick the
ball across the opponent's goal Tine. When a player touches the ball, it
moves in one of three random directions toward the goal, unless it is
blocked by an opponent. Injured players appear on the sidelines.

The technique of modifying and/or expanding existing programs is very
valuable. It would be a good exercise for the student to continue expand-
ing this program by using the suggestions Tisted at the end of the
SOCCER III section.

SOCCER I

Scenario

This simulation requires two people to play. One person controls the
five letters, A, B, C, D and E; another person controls the five numerals,
1, 2, 3, 4 and 5. In the beginning, the letters appear on the left side
of the screen and the numerals appear on the right side of the screen. A
small dot will appear on either the left or right side of the screen to
indicate which player can take a turn.

A turn consists of moving one of the five players by entering the
appropriate numeral or letter, followed by an arrow entry to indicate the
general direction of movement. A player moves ten spaces each turn. If a
player Tands on an opponent, the game is over. Incorrect key entries must
be avoided in this program or the program will halt.

9

Sample Run
A 1 1 1
B 2 B A 2 B A 2
1 |¢c 3 2 |¢ 3 3| ¢
D D 4 D 3 4
E E 5 3 5
1 1
B A 2 B A 2
4 |c 5 | ¢ 6 NUMBERS WIN!
D 3 4 D 4
3 5 3 5

10 Stimulating Simulations

SOCCER I FLOWCHART

F

10
SET
50
PRINT
CHARACTERS
- 100
INPUT INPUT
CHARACTERS DIRECTION
501-506 200
MOVE e ___y PICK NEW
SUBROUTINES LOCATION

ouT
OF BOUNDS
?
N

HIT
OPPONENT
?

FINISHED
MOVING

1 4

400

SET LOCATION
AND INDICATOR

Introduction 13

SOCCER I PROGRAM

Variables
1.0k Indices
p Player
L(T) Location of player
X$ Input character
N ASCII code of character
Y$ Input direction
D ASCII code of direction
L 01d Tocation
M New Tocation
EsF Temporary variables

Program Listing

5 REM SET

10 DEFINT I-W:DEFSTR X-Z:CLS:P=1:RESTORE

20 FOR I=1 TO 1P:READ L(I):NEXT

30 DATA 198,326,454,582,719,249,377,505,633,761

35 REM PRINT
50 FOR I=1T05:PRINT@L(I),CHR$(64+1);:NEXT:FOR I=6T01@:PRINTEL(I),
CHR$(43+I) ;:NEXT:SET(9,47)

55 REM INPUT
60 X=INKEY$:IF X=""THEN 6Q:REM NO SPACE

70 N=ASC(X)
80 IF P=1 THEN N=N-64 ELSE N=N-43
90 L=L(N)

100 Y=INKEY$:IF Y=""THEN 100
110 D=AScC(Y)

195 REM START MOVE

200 FOR I=1 TO 19

210 IF D=1p THEN M=L+58+3*RND(3)

220 IF D=91 THEN M=L-58-3*RND(3)

230 IF D=9 THEN ON RND(3) GOSUB 5p1,5@2,503

240 IF D=8 THEN ON RND(3) GOSUB5p4,5p5,506

250 E=(M-3)/64:F=(M+4)/64

260 IF M<64 OR M>895 THEN M=L:GOT0350

270 IF INT(E)-E=p OR INT(F)-F=p THEN M=L:GOT0350

275 REM CHECKS

280 FOR K=1 TO 1P

290 IF K=N THEN 349

300 IF M<sL(K) THEN34p

310 IF P=1 AND K<6 THEN M=L:GOTO 349

320 IF P=2 AND K>5 THEN M=L:GOTO 349

330 CLS:IF P=1 PRINT@41Q,"LETTERS WIN!";ELSE PRINT@41p,
"NUMBERS WIN!";

335 FOR I=1 TO 1P@P:NEXT J:RUN

340 NEXT K:PRINT@L," ";:L=M:PRINTGM,X;

350 NEXT I

395 REM FINISH MOVE
400 L(N)=M

12 Stimulating Simulations

410 IF P=1 THEN P=2 ELSE P=1

420 IF P=1 THEN SET(P,47):RESET(127,47)
430 IF P=2 THEN SET(127,47):RESET(P,47)
450 GOTO6Q

501 M=L+3:RETURN

502 M=L-61:RETURN

503 M=L+67:RETURN

504 M=L-3:RETURN

505 M=L+61:RETURN

506 M=L-67:RETURN

Soccer I1I

This program is an extension of the previous program, SOCCER I. It is
a good idea to have SOCCER I running before proceeding with the modifica-
tions and additions suggested in this section.

Scenario

In this simulation, as in SOCCER I, two people control five players
each. The major difference is the objective -- to be the first to land on
a ball resting in the middle of the field. You can eliminate more than one
of your opponent's players. Also, you can stop your own player's movement
by pressing the space bar.

A border is drawn around the field, and prompts are printed at the
bottom of the field to indicate each player's turn and the character that
has been entered. Inappropriate entries from the keyboard are not
accepted. The strength of the players, which diminishes with each move and
increases when resting, determines the players' ability to move and
eliminate opponents.

Sample Run
A 1 A 1 A 1
8 2 B 2 B 2
3
1| ¢ * 3 4 * 3 7 *
D 4 D 4 D
c 4
E 5 E 5 3 5
LETTERS NUMBERS LETTERS
A 1 A ji A 1
B 2 B ? 2
3
2 * 3 5 * 3 8 B
D c 4 D D
4 4
E 5 3 5 £ 5
NUMBERS LETTERS
A 1 A 1
B 2 B 2
3 % 3 6 * 3 9 LETTERS WIN!
D 6 4 D
4
E 5 E 5

LETTERS NUMBERS

Introduction 13

SOCCER IT PROGRAM

Variables
The same as for SOCCER I with the following additions:

S(N) strength

Program Listing
The same as for SOCCER I with the following changes:
To replace the dot indicator with the word, LETTERS, and to add
the ball in the middle of the field, eliminate :SET(,47) from
1ine 50 and add Tine 52.
52 PRINT@96Q,"LETTERS";PRINT@481,"*";:PRINT@990,"I";

Add Tine 40 to draw two horizontal and two vertical lines.

40 FOR I=4 TO 123:SET(I,2):SET(I,42):NEXT:FOR I=2 TO 42:
SET(4,1):SET(123,1):NEXT

Add Tines 72 and 74 to insure that the correct characters are
entered from the keyboard.

72 IF P=1 AND (N<65 OR N>69)THEN 6@
74 IF P=2 AND (N<49 OR N>53)THEN 6P

To make sure that an eliminated player is not moved, add line 85.
85 IF L(N)<p THEN 69

To print characters and directional arrows on the screen, add the
following lines.

92 PRINT@99P,X;
111 I=p

112 IF D=8 PRINT@99P,CHR$(93);:1=1
114 IF D=9 PRINT@99P,CHR$(94);:1=1
116 IF D=1p PRINT@999,CHR$(92);:1=1
118 IF D=91 PRINT®999,CHR$(91);:I=1

120 IF I=p PRINT@99p,"?";
To stop movement of player, add the following Tines.

205 Y=INKEY$:IF Y=""THEN Y="Z"
207 IF ASC(Y)=32 THEN 4pp

Add the following to the end of Tine 400.
:PRINT@999,"I";

To win, add line 272.

272 IF M=481 GOTO 339

14 Stimulating Simulations

To have the movement and elimination of other players depend upon
the strength, make the following additions and changes.

In Tine 200, replace 1P with S(N).

Add Tines 325 and 327.

325 IF S(N) =S(K) THEN L(K)=-1:G0T034p
327 GOTO 349

Add Tine 440 to adjust strength.
440 FOR J=1T01P:S(J)=S(J)+3:NEXT J:S(N)=S(N)-I

To print "LETTERS" and "NUMBERS", change lines 420 and 430 as

follows.
420 IF P=1 THEN PRINT@96@,"LETTERS";:PRINT@1Q16," s
430 IF P=2 THEN PRINT@1Q16,"NUMBERS";:PRINT@96Q," e

Program Listing

5 REM SET

10 (See Soccer I)

20 FOR I=1TO1@:READ L(1I):S(I)=5:NEXT
30

35 (See Soccer I)

40 FOR I=4T0123:SET(I,2):SET(1,42):NEXT:FOR I=2T042:SET(4,I):
SET(123,1):NEXT

50 (See Soccer I)

52 PRINT@96Q,"LETTERS";PRINT@481,"*";

55

70 (See Soccer I)

72 IF P=1 AND (N<650R N>69) THEN 60
74 IF P=2 AND (N<49 OR N>53 THEN 60
80 (See Soccer I)

85 IF L(N)<p THEN 69

90 (See Soccer I)

92 PRINT@99P,X;

100

110 (See Soccer I)

111 I=p

112 IF D=8 PRINT@999,CHR$(93) =
114 IF D=9 PRINT@99p,CHR$(94) =
116 IF D=1p PRINT@99P,CHR$(92);:1
118 IF D=91 PRINT@99p,CHR$(91);:1I
120 IF I=p PRINT@99p,"?";

195 (See Soccer I)

200 FOR I=1TO S(N)

205 Y=INKEY$:IF Y=""THEN Y="7"
207 IF ASC(Y)=32 THEN4pQP

210

270 (See Soccer I)
272 IF M=481 GOT0330

Introduction 15

275

320 (See Soccer I)
325 IF S(N)>=S(K) THEN L(K)=-1:G0TC34p¢
327 GOTO0349

330

395 (See Soccer I)

400 L(N)=M:PRINT@99p,"I"

410 (See Soccer I)

420 IF P=1 THEN PRINTG96Q,"LETTERS";:PRINT@1P16," W
430 IF P=2 THENPRINT@1Q16,"NUMBERS" ;:PRINT@960," "3
440 FOR J=1T01P:S(I1)=S(J)+3:NEXT J:S(N)=S(N)-1I

450

506 (See Soccer I)

Soccer III

This program is an expansion of the previous program, SOCCER II.
SOCCER II should be working well before one begins to develop SOCCER III.

Scenario

The movement of the players in SOCCER III is the same as in the
previous program, SOCCER II. In order to win in SOCCER III, however, one
of your players must kick the ball across the opponent's goal Tine. The
distance the ball is kicked will depend on the strength of the player.
When eliminated, a player appears on the sideline. Strength is not a
factor in eliminating opponents as in SOCCER II, since it might be
possible for an opponent to block the movement of the ball indefinitely.

Sample Screen Display

A 1 A 1
2 2
_aek
B * 3 c D-~~ 3
D
4 4
E 5 E 5

16 Stimulating Simulations

SOCCER II AND III FLOWCHART

10
325
HIT
ELIMINATE OPPONENT
40
SOCCER III
i R b s a
PUT ON
SIDELINES |
50 l_--_-r“_—-‘ v
400
SET
LOCATION
AND
60 INDICATORS
M
INPUT ;
CHARACTER (
! B
|
I
72 I 4
]
iyl
100 2
|
]
I
|
1
]
]
111 - . |
</ DIRECTION >l -4
U 0K? y Y
Ny, o D <
200
PICK NEW MOVE

LOCATION [*=~ = SUBROUTINES

Introduction 17

¥

205 TSTOP™
< MOVEMENT .
\\ 7 /,

~ ¢ -
Ny o”

250
330 272 7"
WIN <" GET BALL SSec = - — 3
N ? # l
[
[
[
|
END |
(
|
I
1
|
|
|
l
[
SOCCER II1I
600
BALL MOVE

RETURN

18 Stimulating Simulations
SOCCER III PROGRAM

Variables

The variables are the same as SOCCER II with the following additions.

07 Indices

B Location of ball

c Temporary location of ball
G,H Temporary variables

Program Listing
The 1isting is the same as in SOCCER II with the following changes.
To set the ball, add B=481 at the end of Tine 1p.
To check if the ball is hit, replace line 272 with the following
272 IF M=B THENG6QQ
and replace Tine 330 with the following.
330 GOSUB47p
Eliminate 1ines 325, 327 and 335.
To place a player on the sideline, add the following lines.
470 Z="ABCDE12345":FOR Q=1TO K:Y=MID$(Z,Q,1):NEXT Q
480 L(K)=-9:IF K<6 PRINT@993+2*K,Y;
490 IF K>5 PRINT@993+2*K,Y;
495 RETURN

To move the ball, add the following Tlines.

600 IF P=1 THEN G=3

610 IF P=2 THEN G=-3

615 H=64*(RND(3)-2)

620 FOR T=1 TO S(N)/5

630 C=B+G:C=C+H:E=(C-3)/64:F=(C+4)/64

640 IF INT(E)-E=p THEN CLS:PRINT@41p,"NUMBERS WIN";:GOT0640
650 IF INT(F)-F=p THEN CLS:PRINT@41Q,"LETTERS WIN";:GOT0O650
660 IF C<127 OR C>831 THEN M=L:GOT0289

670 FOR Q=1 TO 1P

680 IF C=L(Q) THEN M=L:GOT028p

690 NEXT Q

700 PRINT@B," ";:PRINT@C,"*";:B=C

710 NEXT T

720 GNT028P
For better blocking, change Tine 680 to the following.
680 IF C=L(Q) OR C=L(Q)+64 OR C=L(Q)-64 THEN M=L:GOT0289

Introduction 19

SOCCER IIT MODIFICATIONS

Modifications with Instructions

The following modifications are not absolutely necessary but provide
the reader with a variety of interesting options.

To add directions, insert the following lines.

2 CLS:PRINT@389,"WANT INSTRUCTIONS (Y OR N)";
4 Y$=INKEYS$:IF Y$=""THEN 4
6 IF Y$="Y"THEN GOSUB8PP

800 PRINT"TO WIN GET * ACROSS GOAL."

801 PRINT"* MOVES TOWARD GOAL WHEN TOUCHED BY PLAYER."

802 PRINT"TO MOVE PLAYER, PRESS LETTER OR NUMERAL THEN ARROW."

803 PRINT"STOP PLAYER BY PRESSING SPACE BAR."

804 PRINT"PLAYER IS OUT OF GAME IF HIT BY OPPONENT."

805 PRINT"PLAYERS BLOCK *."

806 PRINT"DISTANCE PLAYER MOVES AND BALL GOES DEPENDS ON STRENGTH."

807 PRINT"PLAYER LOSES STRENGTH WHEN MOVING. GAINS STRENGTH WHEN
RESTING."

808 PRINT"TEAM THAT KICKS BALL MAINTAINS CONTROL."

809 PRINT"PRESS ANY KEY TO PLAY."

810 Y$=INKEY$:IF Y$=""THEN81p

811 RETURN

To allow the player who kicks the ball another chance to dribble or
pass, add the following Tine.

720 L(N)=M:PRINTGL," ";:PRINT@M,X;:GOTO6D
To make the ball easier to hit, add the following Tine.

272 IF M=B OR M=B-3 OR M=B+3 OR M=B-61 OR M=B-67 OR M=B+67 OR
M=B+64 OR M=B-64 THEN 609

To keep score, add the following lines.

640 IF INT(E)-I=p THEN PRINT@41p,"NUMBERS SCORE";:NS=NS+1:G0T0750

650 IF INT(F)-F=p THEN PRINT@41p,"LETTERS SCORE";:LS=LS+1:G0T0750

750 FOR I=1 TO 1PPP:NEXT

760 PRINT:PRINT"LETTERS:";LS:PRINT"NUMBERS:";NS:FOR I=1 TO 200Q:
NEXT:GOTO 1P

To keep time, add the following Tines.

450 TT=TT+1:PRINT@995,TT;
452 IF TT=1PPTHEN CLS:IF LS>NS PRINT@41Q,"LETTERS WIN":END ELSE
PRINT@410,"NUMBERS WIN":END

Modifications

Injured players on the sideline return after three or four moves.
Provide a goal keeper.

Use a timer and scoring device.

Add more players.

Implement regulation soccer rules.

Allow passing to teammates.

QOB wMN =

20

ART AUCTION

Scenario

In this simulation, you will be given an opportunity to buy and sell
up to five paintings. The objective is to make a large profit by buying
the paintings for as little as possible and selling them for as much as
possible.

In order to buy a painting, you must bid against a secret bid made
by another buyer (the computer). When a painting is offered for sale,
three numbers will be given that represent the mean and range of bids
for this particular painting. For example, "200 300 400" indicates
that the mean bid price for the painting is 300, and about 70% of the
time the price will be between 200 and 400. (Note that higher priced
paintings tend to have a larger range of prices.)

After you buy your paintings, you will be given an opportunity to
sell them. You will receive from one to five offers, but you do not know
in advance how many offers will be made. The offers will be, on the
average, 50 higher than the bids made during the buying phase. If you do
not accept an offer, and it is the last one, then the offer will be
automatically processed. Sometimes it will be wise to accept an offer
that is less than the purchase price rather than gamble on a higher offer
that does not materialize.

When all of the paintings that you have bought have been sold, you
will be given your total profit for all of the transactions.

Sample Run

BUY PAINTING 1

PRICES: 546 553 560 BUY PAINTING 5

YOUR BID? 560 PRICES: 274 346 417
OPPONENT BID 565. YOUR BID? 350

YOU WERE OUT BID. OPPONENT BID 311.

YOU BOUGHT IT.
BUY PAINTING 2

PRICES: 336 449 562 SELL PAINTING 4
YOUR BID? 400 YOU BOUGHT IT FOR 600.
OPPONENT BID 440. AVERAGE OFFER IS 564.
YOU WERE OUT BID. OFFER 1 IS 649.
ACCEPT? Y
BUY PAINTING 3
PRICES: 213 288 363 SELL PAINTING 5
YOUR BID? 300 YOU BOUGHT IT FOR 350.
OPPONENT BID 324 AVERAGE OFFER IS 396.
YOU WERE OUT BID. OFFER 1 IS 365.
ACCEPT? N
BUY PAINTING 4
PRICES: 403 514 625 YOUR PROFIT IS 64.
YOUR BID? 600 PLAY AGAIN?

OPPONENT BID 497.
YOU BOUGHT 1IT.

Variables

P(5)

ART AUCTION PROGRAM

Prices

Price range

Set flag if painting is bought
Opponent's bid

Your bid

Indices

Profit

Number

Dividend

Quotient

Program Listing

5

10
20
30
40
50
60
70

95

100
110
120
130
140
150
160
170
180

195
200
210
220
230

240
250

260
270
280
290
300
310
320
330
340
350

REM SET PRICES AND RANGES

DIM P(5),S(5),F(5)

FOR I=1 TO 5

P(1)=100+INT(900*RND(1))
S(I)=INT(P(I)*RND(1))

IF P(I)<500 THEN S(I)=INT(P(I)*.7*RND(1))
F(I)=0

NEXT I

REM BUY PAINTINGS

FOR I=1 TO 5

GO SuB 500

PRINT: PRINT "BUY PAINTING"; I:PRINT:PRINT
PRINT "PRICES:"; INT(P(I)-.5*S(I)); P(I);
PRINT: PRINT: INPUT "YOUR BID"; YB

PRINT "OPPONENT"S BID"; CB; "."

IF YB>CB THEN PRINT "YOU BOUGHT IT.": F(I)
PRINT "YOU WERE OUT BID."

NEXT I

REM SELL PAINTINGS

FOR I=1 TO 5

IF F(1)=0 THEN 310

FOR K=1 TO INT(5*RND(1))

GO SUB 500: CB=CB+INT(100*RND(1))

PRINT "SELL PAINTINGS"; I

PRINT "YOU BOUGHT IT FOR"; F(I): PRINT "AV
P(1)+50

PRINT "OFFER"; K; "IS"; CB; "."

INPUT "ACCEPT"; Y$

IF Y$="Y" THEN 300

NEXT K

P=P+CB-F(I)

NEXT I

PRINT: PRINT "YOUR PROFIT IS"; P; "."
INPUT "PLAY AGAIN"; Y$

IF Y$="Y" THEN RUN

END

Art Auction

INT(P(I)+.5*S(I))

=YB: GO TO 180

ERAGE OFFER IS";

21

22 Stimulating Simulations

495
500
510
520
530
540
550
560
570
580
590
600

Minor

S wWwn —
e & e s e e

Major

-—

REM NORMAL DISTRIBUTION SUBROUTINE
D=0
N=INT(65536*RND(1))
FOR J=1 TO 16
Q=INT(N/2)
D=D+2*(N/2-Q)

N=Q

NEXT J
CB=P(I)+S(I)*(D-8)/8
CB=CB+20*RND(1)
CB=INT(CB)

RETURN

ART AUCTION MODIFICATIONS

Number of paintings -- lines 10, 20, 100, 200
Starting prices -- line 30

Price spread -- lines 40, 50

Built-in profit -- lines 230, 250

Error in price range -- line 580

Number of offers -- line 220

Have one or more of the paintings a forgery that is worth nothing.
Have one or more of the paintings that have a low purchase price
be very valuable.

Have more opponents bid against you.

10

140

160

180

240

270

310

ART AUCTION FLOWCHART

SET
PRICES
AND RANGES

<

INPUT
BID

A

BUY
PAINTING

Y <

PRINT
OFFER

Art Auction

500

NORMAL
DISTRIBUTION
SUBROUTINE

23

24

Scenario

MONSTER CHASE

In this simulation you are locked in a cage with a hungry monster

who has a life span of ten turns.
takes place on a 5X5 grid.
entering N, E, S, or W.

in the same place.

Your movement and that of the monste

You may move north, east, south, or west by

If you enter any other letter, you will remain

The monster is programmed to move along one of the arrows toward

you as shown below :

M

D

%!

Your only means of survival is to outwit the monster for ten turns.

Sample Run

.....

MOVE 1

MOVE 2

.....

DIRECTION? S

MOVE 4
DIRECTION? W

MOVE 5
DIRECTION? W

DIRECTION? N

MOVE 7
DIRECTION? W

MOVE 8
DIRECTION? N

EATEN
PLAY AGAIN?

Variables

100
110
120

210
220
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

Monster Chase

MONSTER CHASE PROGRAM

Your row and column

Monster's row and column
Temporary variables

Your move (N,E,S,W,0)
Direction of the monster (1-8)
Turns (1-10)

REM DISPLAY GRID

FOR I=1 TO 5

FOR J=1 TO0 5

PRINT TAB(8)

IF I=X AND J=Y THEN PRINT “M";: GO TO 100
IF I=R AND J=C THEN PRINT "Y";: GO TO 100
PRINT *. Yz

NEXT J

PRINT

NEXT I

INPUT "DIRECTION (NESW0)"; M$

IF M$§="N" THEN R=R-1

IF M$="E" THEN C=C+1

IF M$="S" THEN R=R+1

IF M$="W" THEN C=C-1

IF R*C=0 OR R>5 OR C>5 THEN PRINT "OUT OF BOUNDS": GO TO 520
IF R=X AND Y=C THEN PRINT "EATEN": GO TO 520

IF X=R AND Y<C THEN D=1

IF X>R AND Y<C THEN
IF X>R AND Y=C THEN
IF X>R AND Y>C THEN
IF X=R AND Y>C THEN
IF X<R AND Y>C THEN
IF X<R AND Y=C THEN
IF X<R AND Y<C THEN
D=D+INT(3*RND(1)-1)
IF D=0 THEN D=8

IF D=9 THEN D=1

IF D>1 AND D<5 THEN X=X-1
IF D>5 THEN X=X+1

IF D>3 AND D<7 THEN Y=Y-1
IF D<3 OR D=8 THEN Y=Y+1
IF X=0 THEN X=X+1

jer e e e Jles R o)
o owonnmonn
NP> WN

IF Y=0 THEN Y=Y+]
IF X=6 THEN X=X-1
IF Y=6 THEN Y=Y-1

25

26 Stimulating Simulations

490 IF X=R AND Y=C THEN PRINT "EATEN": GO TO 520
500 NEXT T

510 PRINT "YOU SURVIVED!"

520 INPUT "PLAY AGAIN"; Y$

530 IF Y$="Y" THEN RUN

540 END

MONSTER CHASE MODIFICATIONS

Minor

-—
.

Grid size -- lines 20, 40, 50, 280, 470, 480
2. Turns to win -- line 30

Major

Have more than one monster.

Chase a little monster while a big monster tries to get you.
Have the monster fall in quicksand.

Require food in order to maintain energy.

S w -
e e e

MONSTER CHASE FLOWCHART

Monster Chase

<

10 y
SET 300
INITIAL DETERMINE
CONDITIONS MONSTER
DIRECTION
II[r
410
DISPLAY MOVE
GRID MONSTER

210

280

27

INCREASE
TIME

28

LOST TREASURE

Scenario

You have landed somewhere on an island that has treasure, woods,
mountains, a cave, a bluff, an oak tree, and, of course, sea water all
around. Your objective is to find the treasure as quickly as possible
without falling into the shark-infested water.

You can move north (N), east (E), south (S), or west (¥) one square
at a time. Your compass, however, is not very accurate. There is only an
80% chance that you will move in the intended direction. There is a 20%
chance you will move diagonally to the left or to the right. Each time
that you move you will receive feedback regarding the type of terrain on
which you are traveling.

If you fall into the sea, you will be placed back on the square
occupied prior to your unfortunate move, unless you disturb the sharks.
The chance that the sharks will eat you the first time you fall in is 20%.
The second time you fall in the chance of being eaten is 70%. The third
time you fall in will be your last!

Since you have a map of the island, you will be able to determine
your approximate position. For example, if you are in the woods and you
move east two squares and find that you are in mountains, then you are
most likely located in the north-east corner of the island. The reason
you can't be sure of the exact location is that you may have veered off to
the right or left. With practice, you should be able to find the treasure
in less than fifteen moves.

Sample Run

RUN

YOU ARE IN THE CLEAR.

MOVE(NESW)? S

YOU FELL INTO THE OCEAN. YOU ARE IN THE MOUNTAINS.
EATEN BY SHARK. MOVE(NESW)? E

PLAY AGAIN Y OR N? Y

YOU ARE IN THE CLEAR.
MOVE(NESW)? S

YOU ARE IN THE WOODS. YOU ARE IN THE WOODS.
MOVE(NESW)? N MOVE(NESW)? S

YOU ARE IN THE CLEAR.

MOVE(NESW)? E

YOU FOUND THE TREASURE IN 9 MOVES.
PLAY AGAIN Y OR N?

Lost Treasure

LOST TREASURE FLOWCHART

10
SET
TERRAIN
180
SET
YOUR
LOCATION
—
220)
PRINT
LOCATION
310)
INPUT
YOUR
MOVE
460

500
PL

EEI Y
470
FIND AY
AGAIN

TREASURE
? ?

29

30

Stimulating Simulations

LOST TREASURE MAP

W @E

S

OCEAN

[

3\:>
Q)

Ei
< Cd

LA 1A

OCEAN
Legend
Mountains ///1\ Oak Tree e
(B Lo+
s
Woods [.j"l‘\‘\jxf' Cave &
=~

Bluff
1

Treasure @

=Moo

Variables

L
S
R
C
R
T

Listing

5

10
20
30
40
50

60
70
80
90

100
110
120
130

140
150
160
170

175
180
190
200

205
210
220
230
240
250
260
270
280
290
300

310
320
330
340
350
360

s 'CT Temporary storage

Lost Treasure 31

LOST TREASURE PROGRAM

(R,C) Locations

Probability of being eaten by shark
Your row !
Your column ‘\

Number of turns \\

REM SET TERRAIN
DIM L(9,9)
§=.2

1 TO 9: FOR J=1 TO 9

FOR I=1 TO 6
READ R,C
L(R,C)=1
HEXT I

FOR I=1 TO 6

(o2 &, B0~ OV]

REM YOUR LOCATION
R=INT(9*RND(1)+1)
C=INT(9*RND(1)+1)
LF SOR((R-5)#2+(C-5)#2)<2 THEN 180

REM START MAIN LOOP

FOR T=1 TO 100

PRINT "YOU ARE ";

J=L(R,C)+1

ON J GO SUB 250,260,270,280,290,300: GO TO 310
PRINT "IN THE CLEAR.": RETURN
PRINT "IN THE WOODS.": RETURN
PRINT "IN THE MOUNTAINS.": RETURN
PRINT "NEAR A CAVE.": RETURN
PRINT "ON A BLUFF.": RETURN

PRINT "NEAR AN OAK TREE.": RETURN

INPUT "MOVE(NESW)"; M$

RT=R: CT=C

IF M$="N" THEN R=R-1: GO SUB 380
IF M$="E" THEN C=C+1: GO SUB 420
IF M$="W" THEN C=C-1: GO SUB 420
IF M$="S" THEN R=R+1: GO SUB 380

32 Stimulating Simulations

370 GO TO 460

375 REM MOVE SUBROUTINE

380 J=INT(TO*RHD(1)+1)

390 IF J>2 THEN RETURN

400 IF J=1 THEN C=C+1: RETURN
410 C=C-T: RETURH

420 J=INT(10*RND(1)+1)

430 IF J>2 THEN RETURN

440 IF J=1 THEN R=R+1: RETURN
450 R=R-1: RETURH

455 REM IN OCEAN, FOUND TREASURE?

460 IF R<1 OR R>9 OR C<1 OR C>9 THEH 490

470 IF L(R,C)=6 THEN PRINT "YOU FOUND THE TREASURE IN"; T: GO TO 550
480 EXT T

490 PRINT "YOU FELL INTO THE OCEAN."

500 IF RMD(1)<S THEN PRINT "EATEN BY SHARKS!": GO TO 550
510 S=S+.5: R=RT: C=CT: IF S>1 THEN S=1

520 PRINT "THE PRNBABILITY OF BEING EATEN"

530 PRINT "BY A SHARK NEXT TIME IS"; S; "."

540 GO TO 480

550 INPUT "PLAY AGAIN"; Y$
560 IF Y$="Y" THEN RUN

570 END

580 DATA 2,3,3,5,3,9,4,1,7,2
590 DATA 1,2,3,7,5,2,6,8,8,3

LOST TREASURE MODIFICATIONS

Minor

1. Probability of first shark attack -- line 20
2. Grid size -- Tlines 30, 180, 190, 460

3. HNumber of woods -- lines 60, 580

4. Number of mountains -- lines 100, 590

5. Landmarks' locations -- lines 140, 150, 160
6. Location of the treasure -- line 170

7. Movement error -- lines 380, 420

8. Amount you disturb shark -- line 510

Major

1 Vary number and amount of treasure.

2. Add parameters of water and/or food to maintain your energy level.
3. Hunt a moving treasure.

4. Modify direction of movement.

5. Add quicksand.

6. Include landmarks placed at random that are not on the map.

7. Randomly place treasure before each hunt.

rost preasur® -

NOTES

34

GONE FISHING

You are going on a fishing trip. The sea is an 8X8 grid, forming 64
fishing locations. You will start at the dock, square (1,1), and try to
catch as many pounds of fish as you can. You may move one square at a
time horizontally or vertically by entering a north(N), south(S), east(E),
or west(W). Entering an F allows you to fish in the same place again, and
a B allows you to start another fishing trip immediately. If you select a
direction that takes you off the grid, your ship will sink. You must
return to the dock in sixty moves, which is equivalent to six hours. If
you don't return in time, half of your catch will spoil.

The chance of catching fish is different for each square and is
determined at the beginning of the trip. The chance of catching fish in a
given square will remain the same throughout the trip or will decrease if
the fish are scared by a shark. The maximum number of fish that can be
caught in each square (density) is also determined at the beginning of the
simulation. This number varies from 1 to 5. The maximum number of fish
you can catch in a square will decrease only if sea gulls eat some of the
bait. The maximum weight of a fish in a particular square is the product
of the row and column; therefore, the further out you go, the bigger the
fish.

The longer you fish, the greater the chance of an afternoon storm
occurring. If you hit a storm, you will lose .5 hour. One of the more
difficult manuvers of the trip is to fish as long as necessary to accumu-
late a large catch without getting Tost in a storm. Also, there is a 4%
chance that you will experience some unexpected event during each move of
the trip. Be sure you return to the dock before six hours have elapsed.
Your rating as a fisherman will be the number of pounds of fish you catch
divided by five.

You may wish to use the fishing grid on page 4.6 to record the best
fishing spots. A small marker can be used to keep track of your location
on the grid.

Sample Run

RUN

NO BITES

AT LOCATION 1 1

TOTAL LBS. THIS TRIP IS 0.
YOU HAVE FISHED FOR O HOURS.
MOVE(N,S,E,WN,F,B)? E

NO BITES

AT LOCATION 1 2

TOTAL LBS. THIS TRIP IS O.
YOU HAVE FISHED FOR .1 HOURS.
MOVE(N,S,E,W,F,B)? S

YOU CAUGHT 1 FISH,

EACH WEIGHING 2 LBS.

AT LOCATION 2 2

TOTAL LBS. THIS TRIP IS 2.
YOU HAVE FISHED FOR .2 IIOURS.
MOVE(N,S,E,W,F,B)? S

NO BITES

AT LOCATION 3 2

TOTAL LBS. THIS TRIP IS 2.
YOU HAVE FISHED FOR .3 HOURS.
MOVE(N,S,E,W,F,B)? E

YOU CAUGHT 4 FISH,

EACH WEIGHING 2 LBS.

AT LOCATION 3 3

TOTAL LBS. THIS TRIP IS 10.
YOU HAVE FISHED FOR .4 HOURS.
MOVE(N,S,E,W,F,B)? E

NO BITES
AT LOCATION 4 6
TOTAL LBS. THIS TRIP IS 10.

SEA GULLS ATE SOME OF YOUR BAIT.
CATCH WILL BE SMALLER THIS TRIP.

YOU HAVE FISHED FOR .8 HOURS.
MOVE(N,S,E,W,F,B)? S

Gone Fishing

YOU CAUGHT 4 FISH,

EACH WEIGHING 15 LBS.

AT LOCATION 4 3

TOTAL LBS. THIS TRIP IS 155.
YOU CAUGHT A 50 LB. SHARK.
TOTAL LBS. THIS TRIP IS 205.

YOU HAVE FISHED FOR 1.8 HOURS.

MOVE(N,S,E,W,F,B)? W

YOU CAUGHT 1 FISH,

EACH WEIGHING 3 LBS.

AT LOCATION 3 3

TOTAL LBS. THIS TRIP IS 208.
WATER SPOUT DISPLACES YOU.
YOU ARE NOV¥ AT LOCATION 4 5

YOU HAVE FISHED FOR 2.6 HOURS.

MOVE(H,S,E,W,F,B)? W

NO BITES
AT LOCATION 1 2
TOTAL LBS. THIS TRIP IS 211.

YOU HAVE FISHED FOR 3.2 HOURS.

MOVE(N,S,E,W,F,B)? W

YOU ARE BACK AT THE DOCK
AFTER 3.2 HOURS OF FISHING
CLEAN 211 LBS. OF FISH.

YOU RATE 42 AS A FISHERMAN.

35

36 Stimulating Simulations

GONE FISHING FLOWCHART

10 370
SET
INITIAL P$§ng
CONDITIONS
A
160
PRINT
NO BITES
200
PRINT
AND SIZE
230

PRINT
LOCATION,

PRINT
SUMMARY ,
RATING

PRINT
RESULTS

Gone Fishing 37
GONE FISHING PROGRAM

Variables

P(I,d) The probability of catching a fish

D(I,J) The maximum number of fish in square (I,J), from 1 to 5

W Weight of each fish caught, from 1 to RXC

p The total number of pounds of fish caught at a given time

R Row in which you are fishing

C Column in which you are fishing

N Number of fish caught in a given turn

T Time in tenths of an hour, maximum 6 hours

M$ Move(N,E,S,W,F,B), where N,E,S, and W are directions, F allows
you to fish again in the same square, and B allows you to start
the fishing trip over again

Listing

5 REM SET PROBABILITIES AND DENSITY
10 DIM P(8,8),D(8,8)

20 FOR I=1 TO 8: FOR J=1 TO 8

30 P(I,d)=.7*RND(1)

40 D(I,Jd)=INT(RND(1)*5+1)

50 NEXT J,I

60 P(1,1)=0: P=0: R=1: C=1

145 REM MAIN LOOP

150 FOR T=0 TO 6 STEP .1

160 IF RND(1)>P(R,C) OR D(R,C)<1 THEN PRINT “NO BITES": GO TO 220
170 H=INT(RND(1)*D(R,C)+1)

180 W=INT(RND(1)*R*C)+1

190 P=P+N*y

200 PRINT "YOU CAUGHT"; N; “FISH,"

210 PRINT "EACH WEIGHING"; W; "LBS.,"

220 PRINT "AT LOCATION"; R; C

230 PRINT "TOTAL LBS. THIS TRIP IS"; P; "."

325 REM UNEXPECTED EXPERIENCES

330 IF RND(1)<T/60 THEN PRINT "STORM -- LOST 1/2 HOUR": T=T+.5
340 J=INT(100*RND(1))+1

350 IF J>4 THEN 370

360 ON J GO SUB 600,700,800,900

370 PRINT "YOU HAVE FISHED FOR"; T; "HOURS."

380 INPUT "MOVE (N,S,E,W,F,B)"; M$

390 IF M$="E" THEN C=C+1

400 IF M$="N" THEN R=R-1

410 IF M$="W" THEN C=C-1

420 IF M$="S" THEN R=R+]

430 IF M$="B" THEN RUN

440 IF R<1 OR R>8 OR C<1 OR C>8 THEN PRINT "GROUNDED--SUNK!": GO TO 550
450 IF R=1 AND C=1 THEN GO TO 500

460 NEXT T

470 PRINT "TIME UP. THE SUN HAS SET."
480 PRINT "HALF OF YOUR CATCH HAS SPOILED."
490 P=P/2

38

Stimulating Simulations

495 REM SUMMARY OF TRIP
500 IF T=0 THEN PRINT “STILL AT DOCK": GO TO 10
510 PRINT "YOU ARE BACK AT THE DOCK"
520 PRINT "AFTER"; T; "HOURS OF FISHING."
530 PRINT "CLEAN"; P; "LBS. OF FISH."
540 "YOU RATE"; INT(P/5); “"AS A FISHERMAN."
550 INPUT "ANOTHER FISHING TRIP(Y,N)"; X$
560 IF X$="Y" THEN RUN
570 END
595 REM SUBROUTINES
600 IF R+C<9 THEN RETURN
610 PRINT "FISH SCARED BY SHARK."
620 PRINT "NOT BITING AS OFTEN."
630 FOR I=1 TO 8: FOR J=1 TO 8
640 P(I,d)=P(I,d)-.1
650 NEXT J,1
660 RETURN
700 PRINT "SEA GULLS ATE SOME OF YOUR BAIT."
710 PRINT "CATCH WILL BE SMALLER THIS TRIP."
720 FOR I=1 TO 8; FOR J=1 TO 8
730 D(I,Jd)=D(I,Jd)-1
740 NEXT J,I
750 RETURN
800 PRINT "WATER SPOUT DISPLACES YOU."
810 R=INT(8*RND(1)+1)
820 C=INT(8*RND(1)+1)
830 PRINT "YOU ARE NOW AT LOCATION"; R; C
840 T=T+.2
850 RETURN
900 PRINT "YOU CAUGHT A 50 LB. SHARK."
910 P=P+50
920 PRINT "TOTAL LBS. THIS TRIP IS"; P; "."
930 RETURN
GONE FISHING MODIFICATIONS
Minor
1. Grid size -- lines 10, 20, 440, 630, 720, 810, and 820
2. Maximum probability of catching fish in a square -- line 30
3. Maximum density of fish in a square -- line 40
4. Maximum time of fishing -- line 150
5. Storm probability -- line 330
6. Rating scale -- Tline 540
Major
1. Catch different kinds of fish, such as, sharks, whales, or mermaids.
2. Change the goal to catching the biggest fish.
3. Use fuel to run the boat.
4, Add a choice of hook sizes and fishing depth.
5. Add different kinds of hazards, such as whales, reefs, UFO's.
6. Let fishing success depend on time of day.
7. Fix weather conditions and fishing conditions at the beginning of
the trip.
8. Utilize sonar devices to help locate fish.
9. Allow ship to move in a diagonal direction.

[$2]

FISHING MAP

Gone Fishing

39

40

SPACE FLIGHT

Scenario

In this simulation, you are living in the year 2062 as the captain
of a space ship. Your orders are to deliver medical supplies from Alpha
at coordinates (10,10) to Beta at coordinates (80,80). Your rating as
a space pilot will depend upon how fast you can make the trip.

During each time interval, you will be able to determine the
following information:

Total time elapsed

Location in terms of X and Y coordinates
Amount of fuel left

Speed

The angle at which you are moving

Your distance from the planet.

AT WN —
P - e

To change direction or to increase or decrease speed, you can fire
one of two kinds of rockets: main (M) and half (H). These rockets take
one unit and 1/2 unit of fuel, respectively. A "C" will allow you to
coast for five time intervals.

Once you decide how much fuel you are going to burn, you must decide
on the direction in which you will be firing the rockets. You are able
to rotate your space ship with small thrusters as it drifts in space. The
directions are shown below:

900
1350 450
1800 0o
2250 3150
2700

Once you fire your main rocket for three or four turns to increase
your speed, you can conserve fuel by drifting through space. You must
start to fire in the opposite direction to slow down before arriving at
Beta. In order to meet arrival conditions, you must be within a distance
of one and at a speed of less than one.

You may wish to make copies of the grid at the end of this section to
aid in plotting your course. If you find that you are off course, you may
have to fire a "correction" rocket. In order to estimate the angle of
firing, you can use a force diagram as shown below.

Example 1: Correction

Course 420 —
Speed 5

Example 2: Retrofire

Sample Run

DATA READOUT
0 HOURS 10 LITERS
LOCATION 10 10
VELOCITY: O
DEGREES: 0
D=98.995
COMMAND(0,M,H,C)? M
ANGLE? 45

DATA READOUT
.01 HOURS 9 LITERS
LOCATION 10.6776 10.67
VELOCITY: .952905
DEGREES: 45
D=98.942

Fire 2550 —

Space Flight

~\/Fire at 350°

Resulting course 30°
Speed 6

——Resulting Course 75°
Speed 3

DATA READOUT
.05 HOURS 5 LITERS
LOCATION 20.1487 20.8211
VELOCITY: 5.0035
DEGREES: 50
D=84.1685
PROBLEM SUPPORT SYSTEM
COMMAND(0,M,H,C)? 0

DATA READOUT
.33 HOURS 1 LITERS
LOCATION 79.1844 81.0019
VELOCITY: .023181
DEGREES: 58
D=1.29189
COMMAND(O,M,H,C)? H
ANGLE? 315
ARRIVED!
THE TRIP TOOK .33 HOURS.
YOUR RATING IS 66.
PLAY AGAIN? N
0K

41

42 Stimulating Simulations

SPACE FLIGHT FLOWCHART

S —
10
SET
X,Y,VX,VY,
Z,V,F,D,P,G
100 ‘ ‘
DATA OUT
200

PRINT
HAZARDS

HAZARDS

?
N

300

INPUT

THRUST

600

350

INPUT

ANGLE 610
360

COMPUTE
vX,V,
VY,D,Z 650

®

Y
PRINT
RATING

Variables

<>
<3
=<

=

G’E;Uf‘}'ﬂcaa—l<l\l

Listing

10
20
30

100
110
120
130
140

200
210
220
230
240
250
260
270
280

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

<
-<

Space Flight 43

SPACE FLIGHT PROGRAM

Location

Speed

Angle of coast
Velocity

Time

Distance to planet
Index for hazards
Fuel

Angle input
Temporary Variables
Rating

Coast count
Accuracy of gyros

X=10: Y=10: VX=0: VY=0: Z=0: V=0
F=10: D=98.995: P=3.1416: G=1
FOR T=0 TO 10 STEP .01

PRINT " DATA READOUT:": ?

PRINT T; "HOURS "3 F; "LITERS" ' \
PRINT "LOCATION:"; X; Y: PRINT "VELOCITY:"; V
PRINT Z; "DEGREES"

PRINT "DISTANCE:"; D

J=INT(50*RND(1)+1)

IF J<6 THEN PRINT "PROBLEMS: ";

ON J GO SUB 230,240,250,260,270: GO TO 290

PRINT "GYROS ANGLE ERROR": G=G+1: RETURN

PRINT "FUEL LINE": F=F-.5: RETURN

PRINT "LIFE SUPPORT": T=T+.05: RETURN

PRINT "ALIENS": VX=0: VY=0: RETURN

PRINT "METEORS.": VX=VX+RND(1)-.5: VY=VY+RND(1)-.5
RETURN

IF F1>0 THEN F1=F1-1: GO TO 450

INPUT "COMMAND(O,M,H,C)"; C$

IF C$="M" THEN B=1: GO TO 350

IF C$="H" THEN B=2: GO TO 350

IF C$="C" THEN F1=5

GO TO 450

INPUT "ANGLE"; A: A=A+(20*G*RND(1)-10*G)
A=A*P/180

L=COS(A): M=SIN(A): F=F-1/B
VX=VX+(1+.4*RND(1)-.2)*L/B
VY=VY+(1+.4*RND(1)-.2)*M/B

IF VX=0 AND VY>=0 THEN Z=90: GO TO 450
IF VX=0 AND VY<0 THEN Z=270: GO TO 450
Z=ATN(VY/VX): Z=7*180/P
Z=Z+INT(10*RND(1)): Z=INT(Z)

IF VX<0 THEN Z=7Z+180

X=X+VX: Y=Y+VY

44 Stimulating Simulations

530
540

600
610
620
630
640
650
660
670
680

Minor

SUhwnN —

Major

NOoO O s wWwN —

V=SQR(VX42+VY+2)
D=SQR((X-80)+2+(Y-80)+2)

IF F<O THEN PRINT "OUT OF FUEL": GO TO 660
IF D<1 AND V<1 THEN PRINT "ARRIVED": GO TO 630
NEXT T

PRINT "THE TRIP TOOK"; T; "HOURS."

R=200*T

PRINT "YOUR RATING IS"; R; "."

INPUT "PLAY AGAIN"; Y$

IF Y$="Y" THEN RUN

END

SPACE FLIGHT MODIFICATIONS

Starting position -- lines 10,20
Amount of fuel -- line 20

Time 1imit -- T1ine 30

Planets location -- lines 540, 20
Arrival conditions -- line 610
Probability of problems -- line 200

One must fire small thruster rockets to rotate ship.
Have meteors hit ship.

Use meteor shields.

Fight aliens.

Visit more than one planet.

Provide planets with gravitational force.

Have refueling stations.

100

90

80

70

60

50

40

30

20

10

Space Flight

900
1350 450
1800 0o
2259 8159
2700

45

10

20

30

40 50 60 70 80 90

100

46

STARSHIP ALPHA

You are the commander of a large spaceship traveling to the distant
planet, Omega. You must make decisions regarding the use of shields,
gyros, and lazer beams and solve all navigational problems. You must
choose between Tanding on a planet to "recharge" your engines or
continuing your journey. When an alien spaceship is near, you will have
to decide when to bring down your shields to perform a radar search. You
will have to avoid the black hole and a planet emitting radiation. Should
you continue at warp speed or slow down? Watch out for space storms and
meteors! How is the morale of your crew?

The success of your mission will depend on your ability to make
logical decisions that will affect you, your crew and your spaceship.
Since the program is written in a "real time" mode, you will have to make
these decisions quickly.

Objective

Your objective is to eliminate the alien spaceship with your lazer
beam and Tand on the planet symbolized by "#". You should try to
accomplish this mission in as short a time as possible.

Flight Termination

Your flight is terminated if the energy of your ship, your crew's
morale or time falls below zero.

Motor Commands

The curser controls,e, =, %t ,¥ , are used to turn on the motors.
While one of the motors is firing, its corresponding arrow is displayed on
the video. An x-y coordinate system is used to keep track of the Tocation
of your ship, the planets, the black hole, and the alien. Only one
command can be given in each time-interval. The velocity of the spaceship
will increase or decrease depending on which motor is being fired. Note
that motors that face in opposite directions cannot be fired simultane-
ously. A1l motors can be turned off by pushing the entry key.

Each time-interval that a motor is firing, one unit of energy is
being used and the temperature of the engines increases by one.

If the velocity is .2 in the x direction, this means that the
spaceship will move .2 units to the right each time-interval. If the
motors are not being fired, the ship will coast in space. A speed over
2 "warp" for vx or vy will utilize an additional unit of energy per time-
interval and a "TOO FAST" message will be displayed.

Gyros "G"

Pressing a G key will turn on the gyros, which cost one unit of
energy each turn (time-interval). The gyros will give you better control
of the motor firings and the velocity will change only by .1 each time-
interval, instead of the random velocity change that occurs without the
gyros. The gyros will allow you to gain better control when attempting a
soft landing on a planet.

Starship Alpha 47

Shield "S"

Pressing the S key will place an electronic shield around your
spaceship. Such a shield costs one unit of energy each turn. The shield
will protect you from radiation and alien lazers. You cannot perform a
radar search or fire your lazers when the shield is up.

The gyros and shield can be terminated by pressing the clear key.

Radar Search "R"

Pressing the R key will cost ten units of energy and flash the
position of the alien on the screen. Make sure the shield is down'

Fire Lazers "L"

Pressing the L key will cost you ten units of energy. The alien will
be eliminated if it is within ten units of your ship. If the alien is
further than ten units, you will receive a "MISSED" message.

Coordinate Check "C"

Pressing the C key will display the coordinates of each planet.
Knowing the position of each planet will be useful in making a landing.

Instructions "I"

Pressing the I key will give you a brief summary of the scenerio.
The format of the summary is left to the discretion of the programmer
because its length and detail should vary considerably with the amount of
memory available and the environment in which the program is being used.
The instructions should begin with 1ine 700. The present program
initiates a time-delay at this point in the program.

Landing on a Planet

You begin your journey with 200 units each of energy and crew morale.
Two hundred units is probably not sufficient to meet the objectives of the
mission; therefore, during your journey, it will be necessary to land on a
planet where you will recover your 200 units of energy and morale.

In order to successfully Tand on a planet, you must be within two
units of the planet and both the x and y velocities must be Tess than .2.
If you pass within two units of a planet with velocities greater than two,
up to ten units of energy will be consumed each time-interval to maintain
a cool heat shield.

Landing on the "#" planet after the alien is eliminated will complete
the mission.

The Alien
One alien is randomly placed near the center of the universel at the

beginning of the mission. The alien moves one unit per time-interval
randomly in one of four directions, N, E, S, or W, throughout the universe.

IThe space within the coordinate system defined under Anti-space.

48 Stimulating Simulations

If you are within ten units of the alien and your shield is down you will
receive a message, You can locate the alien anywhere in the universe by
using a random search.

If you are within ten units of the alien, the alien has a 10% chance
of "zapping" you if your shields are down. If you get "zapped" you will
lose up to 20 units of energy and up to 20 units of crew morale.

The coordinate system goes from 0 to 127 for x and from O to 32 for
y. If you travel "out of bounds" you will receive an "ANIT-SPACE"
message. Your ship will lose up to ten units of energy and your crew will
lTose up to ten units of morale each time-interval you are in anti-space.

Black Hole

The black hole is Tocated randomly at the beginning of the mission.
If you travel within ten units of the black hole, your ship will lose up
to ten units of energy and your crew will lose up to ten units of morale
for each time-interval you are in this area.

The shield will not protect the ship against anti-space or the
black hole.

Radiation

At the beginning of the mission, one of the planets is randomly
selected as "hot". The amount of radiation emitted from this planet can
be monitored. You will Tose up to R units of energy and R units of morale
each time-interval, where R is the amount of radiation hitting the ship.
The shield will protect the ship and its crew from radiation.

Motor Temperature

As the motors are firing, the temperature increases. When the
temperature is over 20 units, a "TOO HOT" alarm is given. An additional
unit of energy is required to cool the hot motors. If the motors are not
used, they will cool one unit per time-interval.

Morale
The morale of the crew drops one unit each time-interval.

Miscellaneous Hazards

There are five random events, each with a 1% chance of occurring.
They are as follows:

EVENT RESULT OF OCCURENCE
Meteor Hit X,y position displaced
Fuel Leak lose a maximum of 20 units of energy
Crew I11 lose a maximum of 20 units of morale
Space Storm ship stops; Tose a maximum of 20 units
of morale

Heat Problem temperature climbs a maximum of 20 units

Starship Alpha 49

Sample Screen Display

*****TOO HOT*****

VX=0.1 VY=0.3 . BLACK HOLE 62 ENERGY 125
X=1.7 Y=7.7 TEMP 30 MORALE 87
RADIATION 1 TIME 94.4
STARSHIP ALPHA PROGRAM
Variables
A$ Format for vx,vy; "##.#"
B$ Format for s,y,T; "###.#"
c$ Format for energy, morale, black hole,radiation; "###"
VA Input
A,B Location of black hole
C Planet with radiation(1-1p9)
D Shield flag for defense(p or 1)
E East flag(p or 1)
F Energy or fuel(p - 209)
G Gyro flag(p or 1)
H Temperature or heat
[,d4,K Index variables
L,M Temporary variables
N North flag
P Morale(p - 20P)
Q Distance to alien(20@ if no alien)
R Radiation level
S South flag
T Time
u,v Location of alien
W West flag
X,Y Location of ship
VX, VY X and y velocities

PL Distance to planet

50 Stimulating Simulations

Program Listing

10
15
20
25
30
35

40
45

50
55
56
57
60
65
70
75
80
85
90
95
100

105
110
115
120
125
130
135
140
149
150
155
170
175
180
185
190
195
200

205
210

215
220
230

235
240
245

CLS:DEFSTR Z:DEFINTI,J,K:DIML(11):A$="##.#" :BS="###. 4" :CE="###"
X=3:Y=25:SET(3,25) :F=200:P=2pP:T=1pP

A=3P+RND(50) :B=RND(32)

U=3P+RND(50) :V=RND(32) :C=RND(10)

PRINT@783, "*k*skkk!t ; TAB(4])" *kokkrxtt

PRINT@832,"VX="}; TAB(ll)"VY‘" TAB(29)"BLACK HOLE";TAB(52);
"ENERGY" ;
PRINT@897,"X=";TAB(IZ)"Y=”;TAB(35)”TEMP";TAB(52)"MORALE";
PRINT@99Q,"RADIATION" ; TAB(52)"TIME" ;:FOR I=7P4T0767 :PRINT@I,".";
NEXT

FOR I=1TO1p:READ J:PRINT@J,"*";:NEXT:PRINT@242,"#";
DATA79,209,595,4p1,168,564,93, 223 ,420,543,242
DATA12,3,34,1ﬂ,38,28,34,19,81,7,1ﬂ4,25
DATA59.3.62,10.73,18,63,25,100,1p

Z=INKEY$:IF Z=""THEN179

1=ASC(Z):1F Z="C"THEN GOSUB6QQ

IF Z="I"THEN GOSUB7@p

IF Z="G"G=1:PRINT@961,"GYROS";

IF Z="S"D=1:PRINT@972,"SHIELD";

IF Z<>"R"OR D=1THEN1P5

PRINT@793,"RADAR SEARCH";:F=F-10:G0SUB50@

IF Q=2PPPRINT@799,"NO ALIENS";:GOSUB5@P:GOTO1P5

FOR J=1T04:PRINT@792,"ALIEN LOCATION";:SET(U,V):GOSUBSQQ;
RESET(U,V) : GOSUB5@P :NEXT

IF Z<"L"OR D=1THEN125

PRINT@794 ,"FIRE LAZERS"; :GOSUB5PP:F=F-10

IF Q>1@PRINT@795,"MISSED" ; : GOSUB5PP:G0OT0125

PRINT@792,"ALIEN ELIMINATED";:Q=2p@:P=1pQ:GOSUB50P

IF I=91THEN PRINT@779,CHR$(91);:N=1: S [}

IF I=1PTHEN PRINT@779,CHR$(92);:S

IF I=9THEN PRINT@768,CHR$(94);:E=
IF I=8THEN PRINT@768,CHR$(93);:W=
REM CLEARS

IF I=31PRINT@96Q," "3 :G=P:D=p

IF I=13THEN PRINT@768," "5 :iN=D:E=0:S=D:W=P

IF G=1THEN L=PELSE L=1

IF N=1THEN VY=VY+1p+L*RND(50)
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>