From the editors of $14.95

THE

A.N.A.L.O.G. Computing

FINELLL

COMPENDIU

The best ATARI® Home Computer Programs from the first ten issues of A.N.A.L.O.G. Computing Magazine.

—— e

| ATARIGOO

IATTI

THE

BNELLOG

COMPENDIUM

he best ATARI® Home Computer Programs from the first ten issues of A.N.A.L.O.G. Computing Magazine.

From the editors of
A.N.A.L.O.G Computing

A.N.A.L.O.G Magazine Corp.

Worcester, Massachusetts

This book is dedicated to
our parents.

Copyright © 1983 A.N.A.L.O.G. Computing Corp.
A.N.A.L.O.G. Corp. is in no way affiliated with Atari.

ATARI and 800 are trademarks of Atari, Inc.

All rights reserved.

No part of this publication may be reproduced, in any form or
by any means, without the prior written permission of the
publisher.

Printed in the United States of America
ISBN 0-914177-00-1
10987654321

Table of Contents

EVEEOTUICTION 05 w55 5 5w 5000 55 7008545500 0 50505 555 5830 #5958 5 0 B0 650 o o o ik 0 0 350 o m Jon A. Bell
Checksum Programs

CICHECK i 50 v 055 6 505506505508 5 6 5505 156 858 45,5 5.4 15 o100 oo ok im0 1o o v m et 1w o o Tom Hudson
DiCHECKZ . ettt e e Istvan Mohos and Tom Hudson
Programming Utilities

Unleash The Power of Atari’s CPUottt et et Ed Stewart
Console BUutton SUbroUtingttt i e e Jerry White
TrapPIiNg YOUr Alari .ottt e et e et e e e Donald B. Wilcox
Bassnotes in BASIC e e e Jerry White
AUDGCTL DB ¢ 5 51655505 5505 55080570 500856508 550w 15 80508 605 5 81856 03 555 68 0 805 50 8 305 4 R0 5 o 6 6 6 600 00 B0 3 0 0o o Jerry White
Variable Listero e e e e Tony Messinna
BUNCIUS L e e e Tony Messina
OYS/ OVAY e s mrim im0 500055 50 4 500506500 60 0 65 5055 508 50 66 0 B0 505 5. 6 80 B B 0 B e s Robert Hartman
Faster Character DUMPS .. oiitti ittt ittt it it e et et et ettt ettt Joseph Trem
O (7 o] o o111 T P Mark Chasin
Graphics

GraphiCs O GTIA DM . . ottt ettt ittt ettt ettt e et ettt ettt e e te ettt
(@1 o[I T 4T S
TAAGIE DEITO: 5 ts im0 5550555500808 505555565 50 80608 050§ 558 508 50 850 5 95 8 505 8 o e 68098 5080 0 03 B m 4 mm tm m mm m me
AL SYMBDO| DEIMO! 5c s oo mma s sisimsmes s mssio s e s ssss s s s 88 e es s s s s esasssn:ss s Craig Weiss
GraphiCs 10 G A DeMO . o . ittt ettt ettt ettt e ettt et ettt et e et te e e enananeaanenns
MOVING Players in BasiC .. .uvvtn ittt it it it ittt ettt et et et et e Jerry White
USING DLIS csxsimsmsanininsimiamims ams mae s msisisins@aissBuimsios s 0i@aisidi®oinim Joseph Trem
A Graphics Clipping ROUtINEottt e e et i et e i Tom Hudson
3-D Graphs Made Fastand Easy ...t i it Tom Hudson
SPREIE DEIND e oo e e o e me o 5 w0 ms0 00 559 0 5 o 555 20 8 8 30005 o B w0t 0 6 85 3 5 i 9 B o o i 03 i @ o s b 0 o 10 0 o o
GraphiC ViolBNGE s msuwsamsmsmmsmss e s s mes 555 688 b 585 67656858808 RTH5 680500 Tom Hudson
Graphies 11 GTIADEING i s msm s wms o5 e m s 16 s 080895 50916 5508 60 008 5 805 0308 58 05 518 6 08 18 o 6 6 6 50 8 ¥ 10 0 0 06 08 00 L6 09 3 08
Atari 1020 Printer DEMO i ettt ittt e e e e et e e et Tom Hudson
RaINDOW DBMIO . .ottt ettt ettt e e e e e e e
SWIF DEIMVO" ¢ 5005055557815 8.8 518 % 508 5570 85 555 B8 B3k 5 0 5 68 SN0 06 6 BB 6 95,6 5 B RSB B8 B 5 R R S B AW R MRS
STOWHAKE DETITO « 15 s mrs s msis i mms o8 o s s m s s 81905 55 6855565 £ 95 M 8EE 3% G E T8 TS EE S HEEaeEHEEsEE TR
GraphiCs 8 COlOr DEMO .. i ittt ittt ettt e et e e et e et e et et e et
o 1 =0 0 =Y o T PP
CirCle/ RAAIUS DEING S . v i s o o558 507 5558 515 61508 515 5508 55 55509 805 0 506 515 0 508 506 M3 0 01865 o R0 6000 80 o B 05 0 B BT F 8 B 8
PYEIEY DIEIMIO 15 51555 1555 505 5 8 3 05 805 65,5 50 8 o 5660 6 903100066 606 58 188380 66 B0 870 0B 0650 66060 06 B S 6 198 5 816 (B 918 M B &
Atari 1020 Printer DEMOSo i ittt ittt i e ettt e Tom Hudson
Disk Utilities

Disk Files: Using NOTE and POINTottt ee e Jerry White
Disk DireCtory DUMD ..ottt e i e ettt c it e e e e Tony Messina
BUITDY . « e i e om0 100 10010 0 i e o w5 8 5056 0 6 5 e e G B b A BRI B AR S MG AR R SRR Charles Bachand
The Black Rabbit 2.0 « :s s iassssmisasmsmainss st essms@ise: s gsass@oipessssnsssass Brian Moriarty
Disk TOOI 1, REV. B ittt e e e e et et it e e e Tony Messina
Home Utilities and Education

Home Energy Consumption Analysisoiiiiiiiiiiiiiiiiii i iiinneennn, Joseph E. Harb
Y711 Ve T 1 = U1 1= Regena
Entertainment

Motorcycle Maze Rider.ot i i e it ce i Charles Bachand
DN BaE .., o 0o 555056505 005 6150805555 5.5 58 05, 50506 8 615 M55 505 9 80§ 86516 506 57 5 18 60 5 19 54508 5.6 %0 8 /8 81 8 1903 8 56 308 Art V. Cestaro lll
Triple Threat DiCe. .. i vttt i e et e et e e ittt ittt . Michael A. lvins
BUCYLCIE: v« v s v 1000w w0 0 v 0 101 w0 i s 0 v B o s i e 6 B B AR SR GBI GBS RS Dan Devos
Color SIot MACKING: & csswomesmsms amemsims oosms s ssesamssessesssssiessgssssessnssn Micheal A. lvins
Halls Of The Leprechaun King ...« Keith Evans and Ted Atkinson
SHUNEMI AN .ottt e e e e Stephen Pogatch
Dungeons and Dragons Character Generator. ...t i, Bob Curtin
Dungeons and Dragons Housekeeping 2...... ..ottt i, Bob Curtin
ThUunder ISIANE v voeveie e cnm e eimmrimsie b i s % bbb o b P E O s RS W@ Craig Patchett
=1 1= (o R e L T Rick Messner
Harvey Wallbangert i i it ittt Charles Bachand

Fill M@0 WD AT e vre oo esm i e o oo 508 5505 505897500500 56 60060 006065655 06 037678 006 /0 96 IS 0808 606 80 8 9 08 18 2 19 Tom Hudson

13
15
16
18
19
20
24
30

34

101
110

117
119
123
126
128
135
140
143
149
158
161
166
175

PAGE 4 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

Introduction

Lee Pappas and Mike DesChenes of Worcester, Massachusetts bought their first Atari home com-
puters in November of 1979. Their first year as Atari owners was spent developing their program-
ming skills, blowing away Zylons, and tearing out their hair because of the lack of support for their
new machines. Where was the information that they (and thousands of other Atari owners) so
desperately needed? From the seeds of this frustration, Atari users groups began sprouting up all
over the country. New Atari owners started pooling their knowledge and linking their collective
consciousness via bulletin board systems. Nevertheless, there was no dedicated publication for
their systems, no single source of information that could link Atari owners together. Lee and Mike
decided to do something about it.

In November of 1980, they started an Atari-only publication called A.N.A.L.O.G. 400,/800
Magazine. The first issue was only 40 pages long, and had a modest print run of 4000 copies. Grati-
fyingly, it sold out. Almost three years and 15 issues later, A.N.A.L.O.G Computing has grown to
over 160 pages, with a world-wide distribution of over 80,000 copies — and no end in sight.

With the smaller print runs of the earlier issues, we had virtually no returns. Supplies of back
issues sent out from our editorial offices were quickly exhausted. Reprints were done of issues 2, 3
and 4. These sold out, too. Compounding the problem was the fact that the newcomers to
A.N.A.L.O.G. wanted any and all issues previous to the first one they purchased. The later the
issue, the more back issues they needed. The solution? This book.

The A.N.A.L.O.G. Compendium is not intended as an all-encompassing primer on Atari pro-
gramming. Although many of the programs included here were originally written as tutorials, it was
never our intention to publish a textbook. The A.N.A.L.O.G. Compendium is presented solely
as a collection of programs to benetit those who missed out on our first ten issues. Some of the
programs here have been revised and improved since they originally appeared in the magazine.

We have also included several programs never before published.

Whether you're interested in utilities, tutorials or games, we hope you enjoy our first book.

Jon A. Bell
Managing Editor
A.N.A.L.O.G. Computing

CHECKSUM PROGRAMS

Important!

All of the programs in The A.N.A.L.O.G. Compendium were listed from working copies of
the program in order to minimize errors. However, there is a strong possibility of readers mis-typing
programs, especially when entering lengthy listings. Before you type in any of these programs, it is
strongly advised that you read pages 7-10. (C:CHECK and D: CHECK 2). These programs will assist
you in checking for typing errors when entering in programs from The A.N.A.L.O.G. Compen-

dium.

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 7

C: CHECK

16K Cassette

by Istvan Mohos and Tom Hudson

When typing programs into your computer from
the A.N.A.L.O.G. Compendium, there is always
a chance of making a mistake. C:CHECK will help
you find such errors very easily. Type in the accom-
panying program and SAVE it. Follow the instruc-
tions below to check C:CHECK as you would any
other program.

CHECKIing your typing.

L. Type in the program listing from the Com-
pendium. Visually check it for obvious errors
(missing lines, etc).

2. LIST the program to be checked to
cassette. Use the command:

LIST *C:*

3. LOAD C:CHECK and RUN it.

4. C:CHECK will ask you if you want the
output to go to the screen or printer. Type S for
screen or P for printer and press RETURN.

5. C:CHECK will ask for an issue number.
For the Compendium, type 99 and press RE-
TURN. If you read A.N.A.L.O.G. Comput-
ing Magazine, you can use C:CHECK to check
the programs in each issue. Just type the issue
number and press RETURN.

6. Position the tape to the beginning of the
program to be checked and press PLAY on the
program recorder. Press RETURN.

7. C:CHECK will begin reading the program
from tape and generate a checksum table. This
data should match the “CHECKSUM DATA"”
printed after the program listing you are
checking. The following example shows how to
check for errors.

Sample Compendium CHECKSUM DATA:

18 DATA 34,455,234,22,55,38,93,45,114,
285,633,442,453,23,31,2957
168 DATA 82.94,64,73,347,199,287,84,15
6,368,59,48,98,9,342, 2382

318 DATA 65,356,101,25,547

Sample C:CHECK output:

18 DATA 34,455,234,22,55,38,244,45,114
2 285,633 ,442,453,23,31,3108

168 DATA 82,94,64,73,347,199,287,84,15
6,368,59,40,98,9,342,2382

318 DATA 65,101,34,280

Each line of the program being checked has
its own checksum value. If any characters in the
line are incorrect, the checksum value will be
different from the corresponding value in the
Compendium. The checksum data is set up so that
there are 15 checksum values in each line with the
16th value containing the total of the checksums.

The line number of the checksum line tells which
line number is first in the checksum group. In the
example above, the first line checked in the first
checksum line is 10, and its checksum is 34. The first
line checked in the second checksum line is 160, and
its checksum is 82. The first line checked in the third
checksum line is 310, and its checksum is 65.

Let’s assume the CHECKSUM DATA above was
listed in the Compendium, and you typed in the
program and checked it with C:CHECK.

The first thing to do would be to look at the total
of the values in the first line. This value should be
2957, as shown in the Compendium CHECKSUM
DATA. However, in the results in the C:CHECK
output, the total is 3108. This means that there is an
error in the 15 checksum values in this line. Com-
paring the Compendium checksums to the
C:CHECK output, we find that the seventh check-
sum is 244 in the C:CHECK data, and should be 93.
This means that there is an error in the seventh line
of the program. Note the error and continue
checking. The rest of the line is correct, so we go on
to the second line.

Now we check the total of the second line of

checksum data. The total of 2302 in our C: CHECK

PAGE 8 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

data matches the total in the Compendium, so we
can go on to the third checksum line.

The third checksum line is different from the
others in that it only checks four lines. This is
because it is at the end of the program, and the pro-
gram did not have an even multiple of 15 lines. The
line is checked the same as the others. As you can see,
the total of the line should be 547, but is only 200 in
the C:CHECK data. Looking at the C:CHECK
output, you will notice that there is one less check-
sum value (the 356 in the Compendium checksum
data). This means that the first line in the program
after line 310 is missing. The last checksum in this
line is also incorrect. Itisa 34 and should be 25. This
means that the third line after line 310 in the pro-
gram is incorrect.

To summarize, there were 3 errors in the program
we checked. Two errors were caused by mistakes in
the lines, and a third appeared because a whole line
was missing.

...Qnce you have noted all errors, type NEW and

press RETURN. This erases the C:CHECK

Program. Next, bring the program being checked

into memory by positioning the tape and typing:
ENTER “C:”

If the program had errors, correct the lines in
error. If there were no errors, the program is correct
and ready to run. O

188 REM AdY DEBUGLTING a4ID

BY TISTUGN MOHDS
118 REM UERSION 2 MODS AND CASSETTE
128 REM UERSION BY TOM HUDSOMW
138 GRAPHICS 8:7 :2 “"This run will LIS
T data statemwents ta the screen or

printer "

i48 7 :7 "Thics #ATA is created by eval
uating each character of a user pro
gram, LISTed to tape.,":?

i58 DIM DUTS(1) ,T5(128% ,CR5(1)

i@ 7 "QUTPUTY TO QCREEN 0R PRINTER";:: 1

NPUT QUTS:TIF OUTS{R"S" aND QuTrsOvpP" 1

HEHW 148

1786 IF OQUTS='S' THEWN OPENM #2,8,.8,"E:":

GOTO 268

188 CLOSE #Z:7 "[JREADY PRINTER AWD PRE

55 [TAELT; : INPUT CRS

i98 TRAP 180:0PEN H7,3.8,"P;"

288 7 :7 "ENTER ISSUE MUMBER';:TRAP 28

A:THPUT T55UE

2if8 7 :7 U"READY TAPE anNd PRESS [JRITI
;:OPEN B1,4,8,"0 7 7

228 Z-O:LINECOUNT=Z:PLINCZ 1H=Z

2IR TRAP I40:INPUT 81 IS:LINECOUNT=LIN
ECOUNTH1:LINUM-UAL (T5(1,52)

248 NLCKZMLCK+1:IF NLCK}1 aND NLCK{16
THEN 298

2508 IF LIMECOURT=1 THEN 288

268 7 HZ;TOTAL:NLCK=1

278 IF OQUTS="5" THEN PLINZ-PLIN+1:IF PL
IN=1i@ THENWN 7 "PRESS [IHFI] TO CONTINUE
"y INPUT CR5:PLINCH

288 TOTAL=Z:? HZ;LINUM;'" Data *;

298 CHKSUM=Z:IF TISS5UE>T THEW H=2

388 FOR I-1 TO LEN(IS) :PRODUBCT=H®¥ASC(TI
SCY,I3) :CHKSUMSCHKSUMEPRODUCT : HoHHL IF
K=4 THENW HcZ1

ZI18 MNEHT T:CHHSUM=CHESUMIHXISS KoH+1:X
F H=4 THEN K=1

?29 CHESUM-CHKSUM-10AGX*INT {CHKSUIKM 1688

T30 7 HZ CHKSUM;" , " : TOTAL-TOTAL+CHKSU
M:GO0TO 238

348 CLOSE #H1:IF LINECOUNT=Z THEW X748
358 ? H72:7074L

I68 CLOSE H#2:END

378 7 UR§":? “"Your typed-in prograw wa
& not properiylIsTed to tape."

3ag 7 7 "please LIST your programs to
tape, thenRUN *;CHRS(I4) ;""CHECK" ;CHRS(
I42 ;" 3gain.":CLOSE #2:CLR :END

CHECKSUM DATA
(See pgs. 7-10)

188 hava 198,759,11,135,191,594,198,88
6,763,467,931.106,465,572,167,6297

258 pavta 764,922,11,168,375,783,384,25
9,534,898,875,136,732,361,7114

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 9

D:CHECK 2

16K Disk

by Istvan Mohos and Tom Hudson

When typing programs into your computer from
the A.N.A.L.O.G. Compendium, there is always
a chance of making a mistake. D: CHECK2 will help
you find such errors very easily. Type in the accom-
panying program and SAVE it. Follow the instruc-
tions below to check D:CHECK2 as you would any
other program.

CHECKIing your typing.

1. Type in the program listing from the Com-
pendium. Visually check it for obvious errors
(missing lines, etc.).

2. LIST the program to be checked to disk.
Use the command:

LIST “D:progname”

3. LOAD D:CHECK2 and RUN it.

4. D:CHECK will ask for a filename. Re-
spond:

D:progname

and press RETURN.

5. D:CHECK2 will ask for an issue number.
For the Compendium, type 99 and press RE-
TURN. If you read A.N.A.L.O.G. Comput-
ing Magazine, you can use D:CHECK2 to
check the programs in each issue. Just type the
issue number and press RETURN.

6. D:CHECK2 will execute. The screen will
go black in order to speed up the program.

7. When D:CHECK?2 finishes, it will display
final instructions. At this time you should type
NEW and press RETURN.

8. When D:CHECK2 executed, it created a
BASIC file on disk called BUG. ENTER it into
your computer with the command:

ENTER “D:BUG”

This file should match the “CHECKSUM
DATA” printed after the program listing you are
checking. The following example shows how to
check for errors.

Sample Compendium CHECKSUM DATA:

10 DATA 34,455,234,22,55,38,93,45,114,
285,633 ,442,453,23,31,2957
160 DATA 82,94,64,73,347,199,287,84,15
6,368,59,40,98,9,342,2302
318 DATA 65,356,101,25,547

Sample “D:BUG”” CHECKSUM DATA:

18 DATA 34,455,234,22,55,38,244,45,114
,285,633,442,453,23,31,3108

160 DATA 82,94,64,73,347,199,287,84,15
6,368,59,48,98,9,342,23082

3168 pDATA 65.181,34,200

Each line of the program being checked has its
own checksum value. If any characters in the line are
incorrect, the checksum value will be different from
the corresponding value in the Compendium. The
checksum data is set up so that there are 15 check-
sum values in each line with the 16th value contain-
ing the total of the checksums.

The line number of the checksum line tells which
line number is first in the checksum group. In the
example above, the first line checked in the first
checksum line is 10, and its checksum is 34. The first
line checked in the second checksum line is 160, and
its checksum is 82. The first line checked in the third
checksum line is 310, and its checksum is 65.

Let’s assume the CHECKSUM DATA above was
listed in the Compendium, and you typed in the
program and checked it with D:CHECKZ2.

The first thing to do would be to look at the total
of the values in the first line. This value should be
2957, as shown in the Compendium CHECKSUM
DATA. However, in the results in the BUG file, the
total is 3108. This means that there is an error in the
15 checksum values in this line. Comparing the
Compendium checksums to the BUG checksums,
we find that the seventh checksum is 244 in the BUG
data, and should be 93. This means that there is an
error in the seventh line of the program. Note the
error and continue checking. The rest of the line is
correct, so we go on to the second line.

Now we check the total of the second line of
checksum data. The total of 2302 in our BUG file
matches the total in the Compendium, so we can go
on to the third checksum line.

The third checksum line is different from the
others in that it only checks four lines. This is
because it is at the end of the program, and the pro-
gram did not have an even multiple of 15 lines. The
line is checked the same as the others. As you can see,

PAGE 10 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

the total of the line should be 547, but is only 200 in
the BUG file. Looking at the BUG file, you will
notice that there is one less checksum value (the 356
in the Compendium checksum data). This means
that the first line in the program after line 310 is
missing. The last checksum in this line is also incor-
rect. It is a 34 and should be 25. This means that the
third line after line 310 in the program is incorrect.

To summarize, there were 3 errors in the program
we checked. Two errors were caused by mistakes in
the lines, and a third appeared because a whole line
was missing.

Once you have noted all errors, type NEW and
press RETURN. This erases the D:CHECK2
program. Next, bring the program being checked
into memory by typing:

ENTER “D:progname”

If the program had errors, correct the lines in
error. If there were no errors, the program is correct
and ready to run. O

18 REM Hd99 DEBUGGHING AaTh
BRY T5TUAN HOHNOS

28 REM UERSTION 7 MODS BY TOM HUDSON

Ig GRAPHICS 8:7 7 “"This run will LIST
d43ta statements with the name: [E
;, T the disk.™

48 2 2 “The [pATA i5s crested by ev
aluating each character of 3 user prog
rawm, LYSTed Tt disk.®":?

58 DIM FIS{15)

EgsrtﬂﬁE Bi:? "ENTER FULEMAME™: :TNPUT
78 PINCPEEK(5593:7-0:REM

88 7 7 "ENTER ISSUE WUMBERY::TRaP 8a:
INPUT TISSUE
98 TRAP H8:0PEN H1.4,8,FI5

igd ON ¥ GOTO 186,288

118 7 UK :? UDTSABLING SCREEM...STaND
8BY, .. ":FOR T=1 70 BOO:MEXT T: PDRE 559,
Z:REM debug bhefore paking

120 LIMECOUNT=Z:DIM IS5{17ZH2
13I8 TRAP 158:INPUT BL:IS:LINECOUNT=LIN
ECOUNTHL

148 GOTO 136

158 CLOSE BL:Q-THT{LINECOUNTAI5Y:DIM ©
(LIMECOUNTY ,R{0X,55(52:IF (LINECOUNT=Z
NOR T5=ry THFN 510
168 IF ASCLIS501,133448 OR ASC{TIS5{1,11)
»57 THEN 338
i78 X=-1:G0O7T0 98
138 RANGE=Z;;LINE-Z:FOR I=1 70 5:55{(1.1
1= MINERT X
198 COUMT=Z
280 INPUT HI:IS:T1:COUNT=COUNT+1
218 IF I5(T, Tl(?" * THEN S55(7,T)¥=1I5(T,
TYIETSTH#A: GOTO zZia
228 LIMEZUALISS)
238 RIRANGEIZLINE:RAONGEZRANGE+1
748 TRAP 279:INPUT #1:I5
258 COUNT-COUNTHL:IF COUNT:}S THEN 138
768 GOTH 248
278 CLOSE #1:X=2:607T0 98
288 FOR T=i T0O LIMECOUNT:CHECKSHM=Z
Z938 GET U1 ,NUMBER:PRODUCT-H¥HWUMBER : CHE
gzﬁgM?CHECKSUM+PQODUCT:E:X+1:IF H=-4 TH
I08 TIF NUHMBER=-155 THENW I29
Ii8 GOrTo 7948
128 CHECKSUM-CHECKSUM-1BBAXINT {(CHECKSU
EX%BBB):C(I):CHECKSUM:IF I55UE>9 THEN
IIB NEXT X
348 CLOSE R1:NDPEH H1,8.8,Y0: 308" L TNE=
RIZIITEM=7

358 COUNT=15:TOTAL=Z:IF LINHECOUNT{I5 T

HEW COUNTZLIMECOUNT

I6B PRINT H#1:LINE;® DaTa *f;

I78 FOR I=1 TO POUNT DnTUM—F(15*ITFM+I

JIPRINT B1;DATHM; ", ; : TOTAL=-TOTAL+DATU

MINEXT I

380 PRINT fi:T70TaL

3989 TTEM-ITEMHL:LINECOUNTZLINECOUNT-15

PIF LINECOUNT{1 THEN 428

488 LINE-RC(ITEM)

418 GOTO 3I58

428 CIOS5E #1:POKE 559,PIK

438 7 "K[JTa check E]IE data against pri

nted data statements, type HEW. Th

en type:®

448 7 “ENTER ";CHRS{Z4) ;"D : UG
Type LIST after the

READY prompt .

458 7 :7 "The line number of each data
statementcoincides with the €first 1in
e 0f the"

468 ? "user prograwm which the d4ata sta
tewment evaluates.,”

478 ? "Mumbers within Pach data statem
ent represent consecutive lines of
the User program, !

488 7 "The 1ast number is the total.®
438 ? :7? “Check the number of eac
h state- ment against the printed ver
sion;"

588 ? "only in case of a discrepancy C
heck 23ch numberr in the data statews
f 1

dlﬁ Z "Eake note of”¥he linesstontaisi
ng the bugs. Then ENTER Y;CHRS5(I4);'"D:
yourprngﬁﬁklﬂlﬂ"

528 7 “"to make the correctinns,":FEND
538 POKE 559,PIK:? "RJ“:? “Your typed-
in progran was not properiylIsTed to d
isk

548 7 :? “Please LIST your program to
disk, thenRUN " :CHRS(I4) :"D:CHECK'";CHR
S(Xdl'“ Again.*:CLR :END

CHECKSUM DATA
(See pgs. 7-10)

1A DATH 44,815,767,524,686,389,806, 850
,86,721,971,593,591,704,974,9471

168 pATa 482,125,389,696,567,797,442,5
61,238,89,717,216,943,541,299,7094

216 pafe 7139,711,741,427,244,435,7288,5
B4,553,441,711,499,8083,322,515, 7993
468 DaTa 246,684,486,232,123,708,480,7
74,508, 4145

PROGRAMMING UTILITIES

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 13

UNLEASH THE POWER
OF ATARI's CPU

by Ed Stewart

Would you like to get as much as a 30% increase in
speed from your ATARI 6502 CPU? Would you
also like to get this benefit without any additional
capital expense? If your answer is no, you probably
don’t like apple pie, either...but if your answer is
yes, read on, and I will tell you how to accomplish
such a feat with one simple BASIC POKEin the right
place.

First, a little background information about one
of the many things going on inside your ATARI
computer. The particular thing that I want you to
know about is how display information reaches your
TV screen. There is a hardware chip called ANTIC
that has most of the responsibility for seeing that the
display gets to your TV screen. ANTIC does this by
operating independently from the main 6502 CPU
in your computer. ANTIC is, in fact, a primitive
CPU in its own right. It executes a program which is
located in RAM, just as the 6502 executes a program
in RAM or ROM. We can therefore call the ATARI a
multiprocessing computer, since more than one
CPU may be active at any time.

A peculiar and somewhat unfortunate thing hap-
pens when a multiprocessing system such as the
ATARI is actively executing instructions — both
CPU s desire access to memory simultaneously. The
two CPUs cannot both access memory at the same
time, so one must wait until the other completes its
access request. This memory access conflict is
common to all computers containing more than one
CPU — from micros to macros — and is generally
not something to be concerned about.

The ANTIC chip fetches its data from memory
using a technique called “Direct Memory Access’’ or
DMA. Whenever this memory fetch is occurring,
the 6502 is temporarily halted. DMA is said to be
“stealing” a portion of the computer’s available
time, called a cycle. There are 1,789,790 cycles of
computer time available per second. If DM A had not
“stolen” that cycle of computer time, the 6502

would not have been halted and, therefore, would
have finished its program instructions sooner. It is
only logical to conclude that the more this DMA ac-
tivity occurs on behalf of the ANTIC chip, the more
our 6502 will be slowed down.

The ANTIC chipre-displays the entire TV display
60 times each second. During this period, many
computer cycles are stolen from the 6502. During
each of these 60 times, the ANTIC chip also “‘inter-
rupts”’ the 6502 and causes it to perform such tasks
as updating various software timers and reading
game controllers (joysticks and paddles). When the
6502 finishes what it must do in response to the
ANTIC “interrupt,” it may continue with what it
was doing previous to being sidetracked by ANTIC.
You should be getting the picture by now that, al-
though ANTIC is indispensable, it causes a slow-
down in the 6502 CPU. But how much?

[wrote a simple BASIC program for my ATARI
800 in an attempt to answer this question. A
FOR/NEXT loop was executed 100,000 times with
no intervening statements as follows:

28 FOR I=1 TO 18088088:NEXT I

The first thing to measure was how long this loop
executes with no ANTIC DMA active. A POKE
559,0 turned DMA off, and the TV screen went
black. A POKE 559,34 turned DMA back on, and
the original display was restored. The FOR/NEXT
loop was executed in graphics modes 0-8 with DM A
active, and the executive times were observed as
shown in Table 1. The execution times with DMA
increased from as little as 10% for graphics 3 to as
much as 47% for graphics 8.

It is easy to see that — if you do a lot of number
crunching and you don’t need the TV screen, soft-
ware timers or game controllers — then turn off the
ANTIC DMA for a while, and you’ll get your answer
back sooner. It is also apparent from the chart below
that your programs will execute faster if you are
using graphics modes 3, 4, or 5.

PAGE 14 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

I hope you have learned a little bit more about the
ATARI computer and how the ANTIC DMA inter-
feres with the 6502 CPU. You may someday be able
to leash that latent power within during a computer
chess tournament, and — when someone asks how

in the world you did it — you can smile and say, “‘me
and my DMA.” O

GRAPHICS EXECUTION % INCREASE

MODE SECONDS (over no-DMA)
NO DMA 148
GRAPHICS 0 216 46
GRAPHICS 1 188 27
GRAPHICS 2 186 26
GRAPHICS 3 163 10
GRAPHICS 4 164 11
GRAPHICS 5 167 13
GRAPHICS 6 173 17
GRAPHICS 7 185 25
GRAPHICS 8 218 47

Graphics 9 GTIA Demo

gE: GRAPHICS 9 GTIA DEMO (OVAL)

GRAPHICS
c_o.SETcOLon 4,C,0
X=8 T0 39
v:o T0 95
768 XWH=39-X:YH=95-Y:COLOR INT (SOR CXMIEXM
+YHEYID /76 . 5)
88 PLOT X,Y
98 PLOT 79-X%,Y
88 PLOT X,191-Y
PLOT 75— ,191-Y
NEXT
NEXT %
C=C+1:IF c)15 THEN C=8
SETCOLOR 4
FOR rxn£-1 TO 500 :NEXT TIME
c0TO 1

CHECKSUM DATA
(See pgs. 7-10)
186 DATHA 682,253,174,886,298,293,938,61

7,923,418,747,766,767,154,494 ,8402
160 pATA 433,716,1149

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 15

CONSOLEBUTTON
SUBROUTINE

16K Cassette or Disk
by Jerry White

The ATARI BASIC Reference Manual describes
decimal location 53279 as “Console switches” (bit
2= Option; bit 1= Select; bit 0= Start. POKE
53279,0 before reading. O= switch pressed).

The would-be BASIC programmer has got to be a
bit confused after reading the above. In BASIC, you
normally don’t think about bit settings, and the
beginner has a long way to go before he or she will
have to worry about such things.

The point is that a BASIC PEEK (53279) will tell
you which console buttons, if any, are pressed. You
can see how pressing one or more buttons changes
the value of that location with a one-line program.
Enter line 10 below, then type RUN and RETURN.
Watch the screen as you press the various console
buttons, then press BREAK to abort.

18 PRINT PEEK(53279):GOTO 16

Now for a somewhat more useful demonstration,
enter the CONSOLE BUTTON SUBROUTINE.
Note that although it is a subroutine, it has been set
up so that it will run withoutany additional code. Of
course, you could access it from your own program
with a GOTO 30000.

This routine provides the user with three options.
It will allow you to RERUN THIS PROGRAM (the
program currently in RAM), RETURN TO BASIC
(which is a fancy way to say END), or RUN A
MENU PROGRAM from diskette. Naturally, you
could change these options to whatever your own
program requires. The START button is used to
execute the option that is currently displayed, using
inverse video. Pressing the OPTION or SELECT
buttons will change the previously highlighted op-
tion back to normal video and highlight the next op-
tion. When the desired option is highlighted, the
START button is used to say “DO IT.”

Since this is a routine you will modify and include
in many of your own programs, it should be LISTed
onto cassette (LIST “C:”) or disk (LIST “D:
BUTTON. LST,” 30000, 30170). When vyou
want to include it as part of your own program
currently in RAM, ENTER “C”: from cassette or
ENTER “D: BUTTON. LST” from disk. OJ

@ REM CONSOLE BUTTON SUBROUTINE

1 REM BY JERRY HHITE 6/5/82

380808 GRAPHICS :POKE 752,1:POKE 710,4

8:POKE 82,2: POKE 281.,9

lesie ? “8&44 lise the LARE] or EldNdw]
button to":? :? * highlight your choi
ce below, then"

36828 ? :? "} press the button.™
:FOR ME= 0 TO 8:POKE 53279, HE'NEHT ME:G

0sSUB 381868:5EL=11

Jagle POSIYION SEL,SEL: 7 "HAATIRGIEN
ROGRA

30848 BUTTON-PEEK(S3279):IF BUTTON=7 7T

HEN J00848

23950 GOSUB 38148:IF CHOICE-6 THEN 361
380868 SEL=SEL+Z:IF SEL>15 THEN SEL=11:
GO51iB I8168:60T0 06630

38878 IF SEL=-13 THEN GOSUB 38168:P0SIY

ggg 11,5EL:? *HEFIMTIRINT-ER{s : GOTO 36

386868 IF SEL=-15 THEN GOSLB 36180:PO0SIT

gg:oll,SEL:? iERIIN MENU PROGRAMEEET R !

38898 GOTO IG640

381086 POSYTION 11,11:7 "RERUN THIS PRO
GRAM™:? :? ,"RETURN TO BASIC™:? :7 ,"R
UN MENU PROGRAM'':RETURN

36118 TRAP J0000:POKE 261,108:IF SEL=1S5
THEN ? "R":? :7 ,“LOADPING MENIU*:RUN *
D:MENU":TRAGPFP 480060

36128 IF SEL=-13 THEN GRAPHICS @8:7 :7 "
ESSIC":? nys;: sPOKE 752,8:TRAP 408080:E
36136 TRAP 46000:RIN

Ieid4e GOSUB 36176

38156 CHOYCE=-BUTTON:BUTTON-PEEK (532793}
cIF BUTTONC)>7 THEN 38158

36168 GOSUB 3I0170:RETURN

36178 FOR ME-Q TO 8:POKE 53279 ,ME:NEXKT
ME :RETURN

CHECKSUM DATA
(See pgs. 7-10)

8 DATA 874,8082,472,699,6768,842,127,1937
:960,185,623,205,215,413,935,7819
Iai138 DaTA 746,141,237,526,717,2367

PAGE 16 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

TRAPPING YOUR ATARI

by Donald B. Wilcox

It is often frustrating to be forced to restart a
program because an inadvertent error caused the
program to crash. ATARI BASIC provides a special
word — TRAP — that often can be used to prevent a
program from ending before intended. Many errors
are subject to automatic correction or compensation
through a little extra effort on the part of the pro-
grammer.

If you are not yet familiar with the TRAP state-
ment, the following examples show how to use it to
detect INPUT errors. These occur when the user of a
program types invalid values into a numeric vari-

able.

18 INPUT X
28 PRINT K
38 GOTO 18

In the above listing, typing a non-numeric re-
sponse to the INPUT statement in line 10 (such as
accidentally pressing return with no number en-
tered) will result in an “ERROR-8 AT LINE 10"
message. By adding a TRAP statement, this problem
can be avoided completely.

18 TRAP 10:INPUT X
28 PRINT X
I8 GOTO 18

In the slightly modified exaniple above, if an input
error occurs, the TRAP statement will catch the
error and go back to line 10 to try the INPUT again.

After perusal of these five examples, you should
be able to understand how to make your programs
less vulnerable to errors that prematurely end your
program.

Listing 1 — If you mistakenly create a new
file using a file name that already exists, you will
destroy the already existing file. No error message
will warn you of the impending disaster. Listing
1 will prevent this.

Listing 2 — If you try to OPEN a non-
existent file, you will get an error message 170 and

your program will crash. This can be prevented by
using Listing 2.

Listing 3 — If you try to input data from

a disk file beyond the end-of-file, you will get
an error message 136, and your program will termi-
nate. You may not always know beforehand where
the file data ends, so an automatic end-of-file trap
can be programmed easily to prevent the error. List-
ing 3 solves this problem.
Listing 4 — You forgot to turn on your printer
or interface unit and get error message #138.
If you attempt to use the Continue command
after you turn on the correct unit, your program will
continue beginning at the line number that follows
the line that caused the error. Often this can create
erroneous results (not always detected), because the
instructions on the line that caused the error may not
have been executed correctly before the error.

Listing 5 — You are reading in data with a
READ statement and you do not want to use an
end-of-data dummy value as a flag, nor do you want
to count the entries to determine when all the data
has been read. Listing 5 demonstrates a simple
method to prevent error #6 (Out Of Data) from
prematurely terminating your program.

Finally, for those of you who are relatively new to
ATARI BASIC, there are several locations (ad-
dresses) that you may PEEK to find out which error
occurred and which line caused the error. Location
195 contains the error number. Locations 186 and
187 contain the line number where the error
occurred, low byte, high byte, respectively. To dis-
play this information on your screen, use the fol-
lowing statements:

1@ REM DISPLAY ERROR NUMBER

ZB REM AND LINE NUMBER OF ERROR

28 PRINT PEEK{1953;" AT LINE ";PEEK({iS8
GIFPEEK(1872#256

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 17

Listing 1.

%ggszg‘":CLn :REM CLEAR SCREEN AND Va
118 REM PREVENT ERASURE OF PROGRAM ALR
EADY STORED ON DISK)

é§%1g}" ATRAPS (6) ,A5C124) ,NAMES (8) ,FIL
130 REM SET UP DISK SUFFIX 'D:°* FOR FI
LE NAME. IOCB IS FILECDEVICE) NUMBER
148 FILES="D:":JIOCB=2:IN-4:GNL=38

158 REM GNLU=8 IS5 THE OUTPUT MODE

168 SET=168:CLOSE RIOCB:IF ATRAPS="SPR
UNG' THEN PRINT " FILE NAME DID NOT PR
EVIOUSLY EXRIST":GOTO 288

178 TRAP SET:PRINT "ENTER FILE NAME"™
180 INPUT NAMES:FILES(I)-NAMES:ATRAPS=
“SPRUNG" : OPEN #IOCB,IN,O,FILES

198 PRINT FILES;" ALREADY EXISTS':? "l
igeﬁ DIFFERENT NAME":CLOSE #IOCB:GOTO
280 OPEN #IOCB,GNU,8,FILES

218 PRINT FILEg;" OPENED SUCCESSFULLY™
228 CLOSE B#IOCB

e
Listing 2.

188 PRINT “R":CLR :REM CLEAR SCREEN AN

D VARIABLES

118 DIM ATRAPS (6) ,NAMES (5) ,FILES(8)

128 REM SET UP DISK SUFFIX FOR FILE NA

ME. IOCB IF THE FILE(DEVICE) MNUMBER.
IN=4 I5 THE INPUT MODE

138 FILES="D:":IOCB=2:IN=4

148 REM WRITE ERROR IF TRAP IS5 SPRUNG.
IT IS GOOD PRACTICE TO CLOSE FILES T

0 PREVENT ERROR #3129 IF YOU LOOP BACK

150 REM TO A4 PREVIOUS PART OF YOUR PRO

GRAM THAT OPENS A FILE.

168 SET=168:CLOSE RIOCB

178 IF ATRAPS="SPRUNG" THEN ? "ERROR 1

78, FILE ";FILES;"™ NON-EXISTANT":FOR D

=1 TO 1886:NEXT D:GOTO 180

188 REM KEEPS MESSAGE ON SCREEN TEMPOR

ARILY BEFORE RETURNING TO BEGINNING OF
PROGRAM

198 TRAP SET:PRINT “TYPE IN FILE NAME™

:PRINT DO NOT INCLUDE °'D:' PREFIK":IN

PUT NAMES

288 FILES(3I)-NAMES:REM CONCATENATES FI

LE NAME ONTO DEVICE PREFIK 'D:°

218 ATRAPS="'SPRUNG"

228 REM IF THE °OPEN' STATEMENT WORKS,
WE HAVE A& VALID FILE NAME ALREADY 5TO

RED ON DISK READY FOR INPUT

238 OPEN HIOCB,IN,8,FILES

248 PRINT “FILE ";FILES;"™ OPENED SUCCE

SSFULLY"

258 CLOSE #IOCB

@
Listing 3.

160 PRINT "K":CLR :REM CLEAR SCREEN AN
D VARIABLES

116 REM CATCH END-OF-FILE ERROR

1%0 pIM ATRAPS(6) ,A5C124) ,NAMES (8) ,FIL
ES(18)

130 FILES="D:":I0CB=2:IN-4:GNL=8

148 REM 'D:' IS FILE NAME PREFIX. IN=
4 IS INPUT MODE. GHNU=8 I5 OUTPUT MODE
. IOCB I5 DEVICE(FILE) NUMBER

1560 REM FIRST MWE MUST CREATE A FILE AN
D PUT SOME DATA IN IT BEFORE TRYING TO
READ THE DATA.

168 PRINT "ENTER A FILE NAME":PRINT "D
0 NOT INCLUDE THE 'D:" PREFIX"
170 INPUT NAMES:FILES (I)-NAMES:REM CON
CATENATES PREFIX AND FILE NAME
188 OPEN #IOCB,GNU,8,FILES
196 REM WRITE DATA ONTO FILE.
280 PRINT H#IOCB;'FIRST"
218 PRINT BIOCB;''SECOND"
228 PRINT #IOCB;'LAST"
238 CLOSE MIOCB:REM IT IS GOOD PRACTIC
E TO KEEP A FILE CLOSED WHEN NOT USED
248 REM FAILURE TO PROPERLY CLOSE A FI
LE CAN CAUSE IT TO BE LOST
258 REM
268 REM READY TO READ THE FILE
270 OPEN #IOCB,IN,8,FILES
288 SET=318:TRAP SET
298 REM READ DATA FROM FILE AND PRINT
EACH VALUE A5 IT IS5 READ
388 INPUT #IOCB,AS:PRINT AS:GOTO 290
318 PRINT “"FINISHED READING FILE SUCCE
326 HEM DELETE_LINE 20

AND YOU WILL &
ET AN ERROR MESSAGE 136 (END OF FILE)

Listing 4.

180 PRINT “K":CLR :REM CLEAR SCREEN AN
D VARIABLES

%éo REM CATCH DEVICE TIMEOUT ERROR # 1
1728 REM YOU FORGOT TO TURN ON AN INPUT
OR OUTPUT DEVICE

138 DIM ATRAPS (6)

148 SET=148:IF ATRAPS="CAUGHT'" THEN PR
INT “TURN ON I/0 DEVICE"™

158 TRAP SET:ATRAPS="CAUGHT"

168 LPRINT “PROGRAM RAN SUCCESSFULLY"™
178 REM RUN THIS PROGRAM MWITH PRINTER
TURNED ON AND OFF

188 REM CHAONGE LINE 168 TO USE DISK, I
NTERFACE, OR SOME OTHET I/0 DEVICE

Listing 5.

188 PRINT "R":CLR :REM CLEAR SCREEN AN
D VYARIABLES

118 REM READ DATA AND TRAP OUT-OF-DATA
ERROR 186

128 SET=148:TRAP SET:REM DELETE THIS L
INE AND ERROR 36 MWILL OCCUR

138 READ N:PRINT N:GOTO 138

146 PRINT "FINISHED READING DaATA"™

i58 paTh 26,4,156,83,12

PAGE 18

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

BASSNOTESIN BASIC

16K Cassette or Disk

by Jerry White

Those of you who have written music using
ATARI BASIC may have noticed that even the
lowest note available in distortion level 10 is not
really a low bass note.

The secret to getting a deep, rich bass note is to use
distortion level 12. The BASIC program called Bass-
note will display the notes and pitch numbers for
two octaves of low bass notes.

It will also play the deep bass introduction to the
theme from Barney Miller. While doing this, the
sound commands used will be displayed on your
screen. [

éﬂ REM BASSHOTE TUTORIAL 8Y JERRY WHIY

zZa 7

38 GOSUB 2%8:G05UB 19%0:G0T0 168

46 S0UND 8,0,8,0:READ PITCH:D-12:VU=14:
SETCOLOR 2, PITCH @:50UND Q,PITCH,D,V

58 POSITION i8, 20:7° " SOUND 8, "'PITCH
lll l.lDl'l llnu-ll IllR[T“R"

68 FOR HOLD=1 To 200: NEKT HOLD:S50UND @
(B,8,8:PITCH=0:D=A:V=08:G05UB S8:RETURN
78 FOR HOLD=1 TO 58:NEXT HOLD: RETURN
88 FOR HOLD=1 TO 25:NENYT HOLD:SOUND 8,
8,8,08:RETURN

98 DATA i82,98,85,82,75,72,67,67,68,57
,68,67,75, 67 51 6@ @

186 FOR TIMEZ1 ToO 2: G05uUB 48:605U8 68:

GOSUB &6

élﬂ GOSUB 40:GOSUB 78:GOSUB 48:G0SUB 7
128 GOS5UB 40:GO0S5UB 68:GOSUB 68

%39 GOSUB 40:G05UB 78:G05UB 40:GOSUB 7

148 GOSUB 48:GOSUB 68:G0SUB 60

158 FOR QUARTERNOTE={ TO 8:GOSUB 40:G0

SUB 78:NEHT QUARTERNOTE

168 GOSUB 40:GOSUB 88:G05UB 48:GOSUB 8

a

ézﬂ GO5UB 40:GOSUB B8B6:RESTORE :NEXT TI

%88 gESTORE :GOSUB 48:G05UB 66:POKE 75
a:

190 ? 1?7 ," PITCH = NOTE":GOSUB 316

'200 ? 17 VZISCZE™,Z7-DM,28=D ,'I0=CH

? lei:c "’..33:8 ll,l'xﬁ:null'llx?:n "
228 ? "48=GH","42=G ","45-FH#","48=F "
238 7 “Si=E ", “55=DH","57=D ","68=CH"
248 7 "63I=C _","67-B ","72=AM","75= a
258 7 "82=GH","85=GC ", I0=FH","I7=F "
Z68 7 "182=E":GOSUB 3ie
276 2 :7 " THE ATARI BASIC SOUND COMM
288 7 :7 “50UND_VOICE,PITCH,DISTORTION

,VOLUME" :GOSUB 310: RETURN

290 GRAPHICS O:POKE 752,1:GOSUB 318:7?
THE THEME FROM BQRNEY MILLER"
388 7 :? “BASSNOTES USING SOUND DISTOR
TION 12":GOSUB I1@:RETURN
318 FOR CTRLR=Z 7O 36:? "=";:NEXKT CTRL
R:RETURN
328 REHM OO0 MM I M3
338 REM ¥ D=DISTORTION V=-VOLUME *
348 REM ¥ GOSUB 58 FOR WHOLE MNOTE 3*
358 REM ¥ GOSUB 78 FOR QUARTER NOTE *
368 REM ¥ GOSUB 88 FOR EIGHTH NOTE *
ggg ggn ¥ GOSUB 76868 TO DRAW A LINE
SOOI DI MMM I MMM N M M

CHECKSUM DATA
(See pgs. 7-10)

i@ paTh 785,653,272,597,653,822,191,72
1,617,779, 221 95,227,61, 557 6431

168 pATA 242, 874 327 262 121 388,408,41
232,893,691, 764 69 86,692,5318

SiﬂsbﬁTﬁ 45 788 982 780 31 927,785,886
;2064

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 19

AUDCTL DEMO

16K Cassette or Disk
by Jerry White

AUDCTL is an abbreviation for AUDIO
CONTROL, and a label given to decimal location
53768. For those interested in reading up on the
functions of the various sound registers, I strongly
recommend that you read the SOUND chapter in
De Re ATARI about three times, and that you try
the little demonstration routines supplied.

For those who don’t really care to know why
things happen, but like to take advantage of the
amazing range of sound effects that are available
from BASIC, I submit the following little demo
program. In a nutshell, POKE commands into deci-
mal locations 53760 through 53767 are used to create
a full C major chord. To further enhance the
effect of this program, we slide up to the higher C
note in line 180.

At the prompt, you may enter a value which will
be POKEd into decimal location 53768. Start by
entering zero, so you can hear the effect with no
distortion before we begin experimenting. By enter-
ing other values from 1 to 255, you will notice some
strange sounds coming from your TV speaker.

There is probably no better way to learn how to
create sound effects than by trial and error. Hope-
fully, this little demonstration will provide some

food for thought. O

18 GOSUB 158:REM QUDCTL DEMO BY JERRY
WHITE 652782

28 FOR OFF=8 TO 3J:S50lND OFF,08,8,8:NEXT
OFF:REM TURN OFF ALL SOUNDS

I8 7 :7? “ENTER 4 NUMBER BETWEEN 8 AND"
+? 255 THEN PRESS [ARfT:I";

48 POKE 764,255:TRAP J0:INPUT NUMBER
50 NUMBER=INT{NUMBER) :If NUMBER{8 OR N
UMBER> 255 THEN 38

68 POKE 53760,243:POKE 53762,81:POKE 5
I764,96:POKE 53766,121:REM C MAJOR

78 FOR X=53761 TO 53767 STEP 2:POKE X,
162 :NEXT K

82625“ DISTORTION=18 VOLHUME=2 (18%16+%2
98 POKE 53768, NUMBER:REM aUDCTL

168 FOR X=243 70 68 STEP —-1:POKE 53768
JHINEXY H:REM SLIDE SOUND

118 ? :? “pPRESS [§E8 7O END™:? "PRESS A
NOTHER KEY TO CONTINUE" :POKE 764,255
128 KEY=PEEK(764):IF KEY=-28 THEN POKE
82,2:7 7 “BASIC'™:? "IS5";:END

138 IF KEY<{>255 OR PEEK(532793(>7 THEN
149IGOT0 1Z28:REM WHATCHA WANT? PRESSA

158 GRAPHICS B:S5ETCOLOR 2,9%,8:POKE 82,
5:? :REM CLEAR SCREEN/LEFT MARGIN=S

i68 ? :? "This progran was designed"
178 ? :? "to demonstrate the effects™
i88 ? :? "made possible by altering"
198 7 :? ""the audio Control Register®
2808 7 :7? "3t decimal location 53768*
218 2 :7? "({5d288) .":RETURN

CHECKSUM DATA
(See pgs. 7-10)
i0 DATA 414,918,846,958,678,674,194,76
3,431,47,269,213,84,763,717,7953
168 pATA 368,641,576,412,839,359,3187

PAGE 20 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

VARIABLE LISTER

16K Cassette or Disk

by Tony Messina

Have you ever written a program and then tried to
go back and document all of the variables that were
used? If you’re one of the elite 10% who are orga-
nized, you probably wrote down all of your variables
and their meanings as you wrote the program. If
you're like the other 90% of us, who write a program
and then spend several agonizing hours documenting
it, then help has arrived.

The following utility was written to help me keep
track of my variables. It doesn’t tell me what I used
them for, but it does tell me what I used. This utility
is just the start of another utility I’'m working on (a
cross reference program). You can run out and spend
anywhere from $9.00 to $45.00 for any of a multi-
tude of utilities, but I don’t have much money — and
writing the things myself has taught me more about
the inner workings of the ATARI than any listing
could. Let me explain how your ATARI stores vari-
able names. It will help you to understand how and
why the program works.

Behind the scenes.

Within the heart of your ATARI lurks the Vari-
able Name Table. This table contains all of the
variables used (and, sometimes, not used) by a pro-
gram. How do they get there? Good question. When
you type in <A=10> for example, the ATARI
BASIC cartridge takes the “A’” and puts it in the first
available slot of the Variable Name Table. It also
stores the value of our “A’ into the Variable Value
Table. Sounds simple, so far. . .now enters the curve.
IN ATARI BASIC, variable names can be up to 128
characters long. How does the interpreter know
where one variable name ends and the next one
begins? What about string variables and dimen-
sioned variables?

Here’s the scoop. The very last character of each
variable name is stored in the table as an inverse char-
acter. Our “A” character would actually be stored in
the name table as an inverse A, since the beginning

and ending character for the variable is A. If the vari-
able name was “TEST,” then “TES” would be
stored as normal characters and the last “T"’ would
be stored asan inverse ““T.”” TESTS$, a string variable,
would be stored as “TEST” (normal) and “$”" (in-
verse). If a variable has dimensions [e.g., DIM A
(26)], then the variable is stored as “A’” (normal)
and “(” (inverse). Knowing where the Variable
Name Table starts, we should be able to go in and
pick out all the variables in any given program.

How do we know where to stop? The end of the
table is denoted by a blank byte following the last
character of the last variable name. For the purpose
of our utility, however, we want to stop picking off
variables when we encounter the first variable of the
utility program. Armed with this information, let’s
try our first experiment.

Listing 1.

S REM TYPE 4 CONTROL COMMA BETWEEN THE
QUOTES IN LINE 78 TO PRODUCE A HEART

18 ? CHR5(125) :REM #CLEAR SCREEN¥

28 _7 "AS5CII","CHAR","ADDRESS":REM ¥ HE

ADINGS *

I8 A-18:TEST1=18:DIM BS5{1),YES(5,5) :RE

M ¥ SQMPLE VARIABLES *

48 START=PEEK(138)+PEEK(131)%*256:REM *

GET DECIMAL START ADDRESS OF VAR NAME

TABLE *

58 2 " "PEEKC{STARTY,® ";CHRS(PEEK(S5TA

RT32,* ";S5TART:REM ¥ PRINT ASCII, LETT

ER GND ODDRESS *

68 START=STARTH+1:REM ¥ GET NEXT ONE ¥*

78 IF PEEKCSTARTI=ASC("¥"'3 THEN END :R

EM ¥ IF BLANK THEN END ¥

gg EOTO 58:REM ¥ GO PRINT NEXT CHARACT

CHECKSUM DATA
(See pgs. 7-10)

S pATA 3I31,198,962,568,625,198,352,787
»538,4463

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 21

As you can see, the variables for the program itself
were printed to your screen. This was just a sample
for the non-believers out there. The variables pre-
sented are representative of all types used by the
ATARI: regular, string and dimensioned. Another
thing you will notice is that the variables follow the
order in which they were typed. Line 30 is the first
place variables were typed in. If we look at the output
of our program, we see that the variables follow the
same order as Line 30: A,TEST1,B$,YES and START.
The address of each letter is also printed in the last
column. This will be helpful when we conduct our
other experiments, so type in this program.

[hope this little demo illustrated the points I made
previously. Here is an explanation of how the utility
operates.

The program.

Listing 2 is the utility program. Program flow is as
follows:

32500 clears the deck and initializes the util-
ity variables. 32502 clears the screen and out-
puts a message to the printer. 32504 takes the
contents of the current address and stores it in
TEMP. A check is then made to see if TEMP is
an inverse character (i.e., >=128), or if it is a
blank. If one of the conditions is true, the
program goes to the subroutine at Line 32514
to find out what the character is. If neither con-
dition is true, we drop through and store the
value from TEMP, and store it into the appro-
priate location in VAR$. We are building our
variable name in VARS$ for output to the prin-
ter. A check is made of the error flag ERRER. If
set, an asterisk is appended to our variable name
in VARS. If clear, then SKIP is checked. If it is
set (“‘set’’ meaning it is equal to 1), then it’s time
to print our variable name. If clear (“clear”
meaning it’s equal to zero), we increment the
current address CURADD, the character count
CHARCNT and then go back for the next line.

32514-32522 are the subroutine lines used
to determine the type of variable. We get here if
the value in TEMP was an inverse character or a
blank. If the content of TEMP is an ASCII
blank, then the program goes to Line 32512,
prints out some information and stops. If
TEMP contains an inverse “$,” then we change
it to a normal “$” (TEMP-128) and GOTO
32522.1f TEMP contains an inverse “‘(,”" then it
is changed to a normal “(,” and we GOTO
32522. Ifall of the above fail, then we assume an
ASCII number or letter. It is changed to a
normal character, and a check is made to see if
the new number falls between 48 and 90. If you
look in Appendix C of the ATARI manual, you
see that ASCII 48-90 contains the numbers,
some other characters and then the letters A-Z.

If the value in TEMP does not fall between any

of these values, we have an error, and the error
flag is set. If everything is okay, line 32522
increments the number of variables VACNT,
sets the skip flag SKIP to 1 and returns.

32524 appends an asterisk to our variable if
an error occurred, sets ERRER back to 0 and
returns.

32526-32528 check what is in the string
VARS$. If the actual name VARS$ is there, then
the program ends. If not, then the variable name
and its address in RAM is printed. The charac-
ter count CHARCNT is cleared (set to zero),
SKIP is cleared, VARS$ is cleared, and we return
to build the next variable name.

32512 prints the start and end address of the
name table. It also prints out the number of
variables in the target program.

How to use it.

Type the program in exactly as shown in the list-
ing. When you've finished, check everything and
then save it using the LIST“D:VARLST” for disk or
LIST“C:” for cassette commands. The reason we use
LIST rather than CSAVE or SAVE“D:filename”’ is
so that we can merge the utility with your target pro-
grams without disturbing anything. Once the pro-
gram is saved, you can load in any BASIC target
program. By target program, I don’t mean a program
that has target in it; | mean any program you want to
obtain a variable listing from, utilizing the utility.
Once the target program is loaded, use the following
commands to merge the utility. If you have a cassette,
cue up the utility and type ENTER*“C:” and hit RE-
TURN. After the beep, press the play button, hit
RETURN again and the program will load. For disk
users, type in ENTER “D:VARLST”. The program
will then load from disk. Once the utility is loaded,
type in (using direct mode) GOTO 32500 and the
utility will do its thing.

This utility is set up for output to a printer. If you
don’t have one, simply replace all LPRINTs with
PRINTSs. Be prepared to hit CONTROL 1 to stop the
screen listing, so you can copy the variable names.
Hit CONTROL 1 again to resume output.

You are probably wondering why I have the
address printed out. If you don’t want it printed,
REPLACE Line 32528 with the following:

32528 LPRINT UVARS:CHARCNT=8:5KIP-8:VaAR
S RETURN

This will prevent the address from being printed and
leave you with a clean piece of paper to document
your program. There is a method to my madness in
printing the address.

The method.

Consider this. . .if we know the address locations
of our variable names, it would follow that, if we
POKE different characters into the table, we could
change our variable names. This is not only true, but
offers other potential benefits and (if the reader is

PAGE 22 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

not careful) problems. Beware!! The following ex-
periments should be tried after reading the following
paragraph.

The interpreter does not care about variable
names, other than when they are initially defined.
After that, it doesn’t care. Why? Well, once you
define a variable, it is assigned a number from 128-
255. The first variable is assigned 128, the second
variable is assigned 129, etc....up to 255. In the
tokenized version of your program, these variable
number assignments become important, not the
names. When you list your program, the interpreter
scans the tokenized form of your program in mem-
ory, and matches all the numbers with KEYWORDS,
such as GOTO, REM, COLOR, etc. When he hits a
variable number — 128, for example — he says,
“Oh...This is a variable; its number is 128, but, to
me, that’s variable number 1. Let me go into the
Variable Name Table and get the name. Since it’s
number 1, it is the first name in the table.” Once the
name is retrieved, it is put up on the display. All of
this happens in mere microseconds, but that’s what
your interpreter does. If we happen to change the
names in the table, the interpreter will blindly go in
and grab whatever is or isn’t there. He grabs the vari-
able name based on the number, not the name. Re-
member the inverse character at the end of each vari-
able name? Joe Interpreter uses this as a signal to tell
him when he has gotten the whole thing. Enough
theory, next experiment.

Experiment #2.

Let’s try changing some names. If you haven’t
done so, type in the short example program at the
beginning of this article. If you did type it, then load
it. RUN the program and follow along with me. On
the screen you should see the variable “A” in in-
verse. Let’s change it to “Z”. In direct mode, type the
following:

POKE ADDRESS,aS5C{"&"2

Make sure the “Z” isaninverse “Z.” The address will
vary with the amount RAM you have and the con-
figuration, so use the address that is on the screen
(e.g., the address given for variable ““A’"). Hit RE-
TURN and, when READY appears, LIST the pro-
gram. The former statement “A=10"" will magically
be replaced by “Z=10"!

Let’s try once more. Let’s change “TEST1” to
“BLAHI1”. First re-RUN the program, then, in
direct mode, type the following:

POKE ADDRESS,A5C{"B"} :POKE ADDRESS5+1.4
SC{"L"):POKE ADDRESS+2,a45C{"a"):POKE A
DDRESS+3 , A5C(VH")

(“A”):POKE ADDRESS+3,ASC(“H”)
Again, we have the starting address of “TESTI1”.
Since each letter occupies one byte, then “T” begins
at the address listed in your output; “E’ is located at
the address+1, etc. Since the 1isalready thereand in
inverse, we don’t have to use inverse letters in our
POKE statements above. Use the regular old every-

day non-inverse letters between the quotes. Hit RE-
TURN and LIST the program. If you did everything
right, “TEST1”’ will be replaced by “BLAH1". Of
course, we only replaced variable names with those
that had the same length. For experimenting, use the
same length name because you can really make a
mess out of things. If you are adventurous, try any-
thing!! Just remember that the variable names must
end in an inverse character.

Experiment #3.
RUN the program again, then, in direct mode,
type the following:

FOR Z=-FIRSTADDR YO LASTADDR:POKE Z,155
'NEKT Z

Substitute the appropriate addresses on the screen
for FIRSTADDR and LASTADDR. When READY
appears, LIST the program. Surprise! All you see now
is KEYWORDS. Not a variable in sight! Run the
program — yes, just type RUN. Surprise II. It works
just like normal. Except where the variables once
were is now filled with empty space. Whahappened??
The 155 POKEd into the name table is a non-
printing character. The interpreter picked up the
name and even printed it on the screen...we just
couldn’t see it. You could do this to that secret pro-
gram of yours and let your friend borrow it. When
he LISTs it to learn all of your secrets. . . boy, will he
get a surprise. Try it! I have, and what a ruckus it
caused. Be sure to save a copy of the original for
yourself, or you may be the one who is surprised!

The last experiment.

For our last trick, try this. First load the program,
or, if you didn’t save it, type it in again (SAVE it this
time). Now RUN it. In direct mode, type the follow-
ing:

FOR A=FIRSTADDR T LASTADDR:POKE 4,A5C
(""¥"] :NEHT a4

Again use the addresses that are on the screen. When
READY appears, LIST the program. Check out all of
the garbage!! T'll let you figure it out for yourself.
(Hint — The interpreter searches for inverse charac-
ters.)

Final notes.

VARLST will interfere if your target program has
the same line numbers as the utility. I started at
32500 as all of my program line numbers fall way
below that figure. If necessary, change the line num-
bers higher or lower, but remember to change all of
the GOSUBs and GOTOs. Also, if your target has
more than 119 variablesinit, VARLST will not load.
[’ve never seen a program with that many variables,
but it is possible. If you have any variable names
longer than 30 characters, VARLST will not work.*
Have fun experimenting! [J

*Dimension VARS$ larger in this case.

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 23

Listing 2.

32588 CLR :DIM UARS(3IB) :TABLESTART=PEE
K{1IB)+PEEK (131X ¥#256 : CURADD=-TABLESTART
PCHARCNT=1:UACNT=-0:ERRER=-O:INV=-128
32502 SKIP=@8:7? "“R":LPRINT "THE FOLLOMWI
NG UARIABLES ARE IN THIS PROGRAM":FOR
H=1 TO 58:NEXT H

32504 TEMP-PEEK (CLURADD) :IF TEMP>=INV O
R TEMP=ASC('"¥") THEN GOS5UB 32514

325086 UARS {CHARCNT,CHARCNTI=CHRS (TEMP)
:IF ERRER THEN GOSUB 12524

325688 IF SKIP THEN GOSUB 32526

32518 CURADD=CURADD+1:CHARCNT-CHARCHNT+
1:607T0 32584

32512 LPRINT :LPRINY "TABLESTART= '";Ta
BLESTART:LPRINT “TABLE END = *;CURADD-
4:LPRINT "B OF VARIABLES= *";VACNT-1
32513 END

g%g{; IF TEMP=ASC("¥") THEN POP :GOTO
22516 IF TEMP=ASC (") THEN TEMP=TEMP-
128:607T0 32522

32518 IF TEMP=ASC{"[I") THEN TEMP=TEMP-
128:60T0 32522

32520 TEMP-VEMP-128:IF TEMP{48 OR TEMP
>38 THEN ERRER=1

32522 VACNT-UACNT+1:SKIP=1:RETURN
32524 VAR5 (CHARCNT+1,CHARCNT+1)="3":ER
RER=B:RETURN

g%gZB IF VARS="UARS" THEN POP :GOTOD 32
32528 LPRINT VARS,,," ADDRESS= " ;CURA
DD-CHARCNT+1:CHARCNT=0:5KIP=8:VARS="":
RETURN

®
CHECKSUM DATA
(See pgs. 7-10)
12508 DATA 256,390,285,624,952,663,823

,957,377,141,159,129,984,932,148,7340
22528 patTa 715,715

Circle Demo

18 HC=1608:YC=80

28 RD=68:INC=18:Y5=8.75
I8 GRAPHICS 8:COLOR 1
48 GOSUB 1880:END

1888 REM
1918 REM
1828 REM
18638 REM
1848 REM
1858
1068
ie7e
iase

x-coordinate of center
y-coordinate of center
circle radius

drawing increment 1-3680
y—scaling factor

:PLOT XC,YCHRD¥®YS
CIRCLE=8 70 368 STEP INC
KCOORD=KC+SIN(CIRCLE)*RD
YCOORD=YCH+COS5 (CIRCLE)*RD¥*YS
DRAWTO KCOORD,YCOORD
NEKT CIRCLE:RETURN

=G b -
WESOM

wa (Y ae aw

CHECKSUM DATA
(See pgs. 7-10)

18 DATA 118,981,32,473,165,240,167,278
,180,184,463,8,40,284,645,4258
1118 pATA 469,958,422 ,8638,442,3159

PAGE 24

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

BUNCRUSH

16K Cassette or Disk

by Tony Messina

In our last episode, we left our hero (Bruno Bit-
mangler) tearing out his hair, looking for his lost
energy variable E amidst all the garbage on the TV
screen. Meanwhile, Bruno Jr. screams, ‘I wanna
play Missile Command!” and Mrs. Bitmangler
shouts, “Both of you get in here...DINNER is get-
ting COLD!” If only our hero had BUNCRUSH, his
problem would be solved. What’s a BUNCRUSH?
It’s the BASIC Unembellished No-Cost Cross Ref-
erence Utility and Software Helper. If you want to
get it up and running, type in Listing 2 and skip to
the “How to use BUNCRUSH?” section. Those of
you who want to learn a little more about the ATARI
BASIC token structure and how BUNCRUSH was
developed should read on.

Design considerations.

Several major considerations were involved in
designing BUNCRUSH. The list I used was as fol-
lows.

1.) Build upon the concepts presented in
Utility #1 — Variable Lister (see page 20)

2.) Allow use with both Cassette and Disk
systems.

3.) Allow screen or printer output.

4.) Output should include the variable name,
its associated line reference numbers and be
neat in appearance.

5.) Make the output fast and simple.

6.) Provide flexibility for user modifications.
With these considerations in mind, [sat down and

wrote BUNCRUSH. It’s been rewritten three or four
times. Each time it was improved and streamlined.
Listing 2 is the final version.

With all the above ground rules set, I'll dive into
the background material, namely ATARI token
structure.

BASIC’s background.

As was explained in the last utility article, vari-
ables are assigned numbers in our token program.
Names do not matter, unless we want to print out a
program listing. It follows that, if we could locate the
start of our token program, scan each line for a
variable # (128-255), save the line numbers that
contain the variables we are looking for and print out
this information, we would be all set. Of course, we

would have to do this for every variable number, and
it could take some time. We’ll worry about the time
later. The first question is: where does the tokenized
version of our BASIC program begin? Glad you
asked! The start location can be found at address
135,137 (Decimal) or $88,89 (Hex). This is not
where the program begins, but rather the pointer to
where it begins. To obtain the decimal location
number, we would execute the following BASIC
statement.
TOKEN=PEEK (136) +PEEK (137) %256

The variable token would be set equal to the start
address of our token program. Now what? Well, it’s
time to scan the program from start to finish for our
first variable. Before we do this, I'll digress into my
“Here’s how a tokenized BASIC line is set up’’ tap
dance routine.

[saw a hand in the back of the room. .. “What's
this ‘tokenized program’ you keep referring to?”’ I'm
sorry. . .let me explain. When you type in a program
line in BASIC and hit RETURN, several things hap-
pen. First, the BASIC cartridge takes each item you
typed in and converts it into tokens for its own use.
Each command (GOTO, TRAP, etc.), operator (+,
-, =, etc.)and function (STR$, SIN, COS, etc.) hasa
special token associated with it. The interpreter
scans, tokenizes, places the token in the program area
and continues till it hits your carriage return. If
everything is correct with respect to syntax, the
cursor appears on the left side of the screen, and you
can continue on with the nextline. If you make a mis-
take, the interpreter stops scanning and prints the
line out with an error message and an inverse cursor
to show you where it stopped.

After you correct your mistake, the interpreter
goes through the line again. This process continues
until you have entered your entire program.

The tokenizing process is used to save space by
converting the ASCII input to tokens. For example,
the Restore command would normally take 7 bytes
(one per letter). Through tokenization, it only takes
1 byte containing the number 35 Decimal. Tokens
serve another important purpose. At Run-Time, the
BASIC interpreter fetches a token. This token is
actually an index for a jump table. This jump table

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 25

points to the various routines within the system.
When a token has been executed, BASIC returns,
fetches the next token and continues the process of
execution.

With that simple explanation out of the way, let’s
look at the structure of a tokenized line of BASIC.
Each line varies depending on its length and the
number of multiple statements in it. Some items
don’t get tokenized. ASCII strings are an example. In
a statement such as PRINT “This is a test,”’ the
PRINT statement will get tokenized. When the in-
terpreter encounters the quotes, it replaces them
with a 15-token (string follows token), saves one
space, then puts each letter of the string in one byte
until it hits the last quote. The byte after 15 then gets
updated to the number of ASCII characters in the
string. Similarly, numbers are put in BCD represen-
tation. BCD numbers take up 6 bytes for the number
itself. For example, with PEEK 130, the PEEK would
get a token of 70, and the ““(’’ a token of 58. Then a
14 would be placed next. Fourteen is the “BCD
number follows token.”” After the 14 would be the 6
byte BCD representation of 130 (65 1 48 0 0 0).
Don’t worry, no need to memorize BCD numbers.
Just remember how they appear. Anyway, our
example of a simple tokenized BASIC line follows.

BASIC line:
20 PRINT PEEK(Z)

Tokenized form (in decimal):
Bytes (1) (2) (3) (4) (5) (6) (7) (8) (9)(10)
20 0 10 10 32 70 58 128 44 22
Bytes 1 and 2 — Line number LSB MSB FO
RMAT
Byte 3 — Numerical offset to the next line
number in bytes
Byte 4 — Numerical offset to next statement
number of bytes. This is used to keep track of
where the interpreter is when a line has multi-

ple statements; i.e., 10 GOTO 20:GOSUB 200:

PRINT X:GOTO 5 — The remainder of the

bytes consists of the tokenized form of our

BASIC line.

Byte 5 is the token of PRINT.

Byte 5 is the PEEK token.

Byte 7 is the left parenthesis token (“‘("").
Byte 8 is the variable number assigned to Z.
Byte 9 is the right parenthesis token (*)”).
Byte 10 is the end of line token.

To help you get a feel for these concepts, I've in-
cluded the ATARI BASIC TOKEN TABLE 1. I've
also included a short program that p