

The Atari Assembler

The Atari Assembler

Don Inman Kurt Inman

~ Reston Publishing Company, Inc.
K A Prentice-Hall Company

Reston, Virginia

ISBN 0-8359-0237-4
ISBN 0-8359-0236-6 pbk.

©1981 by Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book
may be reproduced, in any way or by any means,
without permission in writing from the publisher.

10 9 8 7 6 5 4

Printed in the United States of America

Chapter 1

Chapter 2

Chapter 3

Contents

LIST OF ILLUSTRATIONS ix

PREFACE xi

INTRODUCTION 1
Computer Architecture, 4

Review of BASIC, 7

Graphics Keywords, 8

MACHINE LANGUAGE FROM BASIC 12
Binary Number Patterns, 12

Hexadecimal Notation , 14

Hexadecimal-to-Decimal Conversion, 16

How the Machine Language Program Works, 21

Summary, 24
Exercises, 25
Answers, 26

MEMORY USE 28
Atari Memory Map, 28

How BASIC Finds the Machine Language Program, 30

Passing Variables to Machine Language Subroutine, 33

Using the One-Variable Program, 35

Passing More Than One Variable, 36

A Machine Language Loop, 40

New Instructions Used, 43

Tracing Through the Subroutine, 45

Summary, 48
Exercises, 49
Answers, 50

v

IIi CONTENTS

Chapter 4

Chapter 5

Chapter 6

Chapter 7

GETTING STARTED WITH THE ASSEMBLER
52

The Writer/Editor, 53
The Assembler Program, 57
Executing the Machine Language Program-The Debugger,

62
Summary, 70
Exercises, 71

Answers, 72

SPECIAL-PURPOSE REGISTERS AND
ADDRESSING MODES 73

The Accumulator, 74
The X and Y Registers, 74
The Processor Status Register, 82
The Stack Pointer Register, 87
Addressing, Modes, 88
Summary, 93
Exercises, 93
Answers, 94

BRANCHING OUT 96
Examples Using Forward Branches, 98
Examples Using Backward Branches, 99
Using the Carry Flag, 102
Using the Zero Flag, 108
Using the Negative Flag, 111
The Overflow Flag, 116
Summary, 116

Exercises, 117
Answers, 118

ASSEMBLER REVIEW 120
Source Program Format, 120
Methods to Use Operands, 123
The Assembler Writer/Editor Mode, 124
The Debug Mode, 131
Exercises, 139
Answers, 142

Chapter 8

Chapter 9

Chapter 10

Chapter 11

DESIGNING A PROGRAM 144
Absolute Indexed Addressing, 146

CONTENTS vii

Using the Add Five Pairs of Numbers Program, 148

Using the Add Ten Program, 153

A Variation of the Add Ten Program, 155

Yet Another Variation, 158

Summary, 1 59

Exercises, 160
Answers, 162

ADDITION AND SUBTRACTION 164
Two-Byte Addition, 165

Two Programs in Memory, 170

Two-Byte Subtraction, 172

Negative Numbers, 174

Multiple-Byte Addition and Subtraction, 178

Decimal Arithmetic, 179

Summary, 184

Exercises, 185
Answers, 186

SHIFT AND ROTATE 188
Arithmetic Shift Left, 191

Logical Sh ift Right, 198

Rotate Left, 202

Rotate Right, 205

Summary, 209

Exercises, 209

Answers, 211

MULTIPLICATION, DIVISION, AND
SUBROUTINES 213

Eight-Bit Multiplication, 214

Using the 8-Bit Multiplication Program, 218

Eight-Bit Division, 221

Subroutines, 225

Using a Subroutine, 228

Summary, 232

Exercises, 232
Answers, 234

viii CONTENTS

Chapter 12

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

PROGRAMMING PRACTICE 236
Using a Logic Function, 237

Entering the Subroutine, 241

Program to Sound Off, 245

Play Notes Program, 248

Program to Shape Sound, 249
Program to Print on the Screen, 252

You're On Your Own, 256

6502 INSTRUCTIONS-FLAGS AFFECTED 257

6502 INSTRUCTIONS-ADDRESSING MODES
259

FREQUENCY VALUES FOR THREE-OCTAVE
SCALE 261

AT ARI ASSEMBLER ERROR CODES 263

ATARI OPERATING SYSTEM ERRORS 264

ATASCII CHARACTER SET 265

INDEX 268

Illustrations

RgureNo. Page

1-1 Language Cartridges
1-2 Steps in Assembly Language Programming 1
1-3 Machine Language Subroutine from BASIC 2
1-4 Atari Building Blocks 4
1-5 6502 Functional Elements 5
1-6 8 Line Data Bus 6
1-7 Program Counter 6
1-8 Last In, First Out Stack 7
1-9 Processor Status Register 7
2-1 Program Flow Including Subroutine 12
2-2 Decimal-Binary-Hexadecimal Equivalents 14
2-3 Eight-bit Conversion 16
2-4 Hex Digit-to-Decimal Conversion 17
2-5 Hex Code Conversion Exercise 18
2-6 Flowchart for Addition Subroutine 19
2-7 Decimal Equivalents of Hex Codes 20
2-8 Machine Language Subroutine 21
3-1 Memory Map 28
3-2 Memory Used for Machine Language Subroutine 31
3-3 Hex Code Storage 32
3-4 Machine Language Exercise 42
4-1 Our Atari 800 System 52
4-2 Use Flow of Assembler Cartridge 53
4-3 Buffer Memory 54
4-4 Machine Language Program Storage 61
4-5 Program Trace 64
5-1 Processor Status Register 82
5-2 Effect of Instructions on Flags 85
6-1 Forward Branches 100
6-2 Backward Branches 101
6-3 Status Flags for Branches 102
6-4 Signed Number Wheel 113
7-1 Statement Fields 120
7-2 Buffer Memory 125

ix

Figure No. Page

7-3 Altered Buffer Memory 126

8-1 Memory Blocks Used 145

8-2 Functional Blocks 145

8-3 Block B Parts 145

8-4 How Memory is Used 147

8-5 Block B Parts - ADD TEN Program 152

8-6 Memory Use in ADD TEN Program 153
8-7 Data Tables 157

9-1 Functional Blocks for Addition 166
9-2 Storage for Two Byte Addition 166
9-3 Detailed Steps for Functional Blocks 167
9-4 Flowchart for Two Byte Addition 167
9-5 Data Used in Example 169
9-6 Two-Byte Addition Exercises 170
9-7 Two-Byte Subtraction Exercises 174
9-8 Two-Byte Hex Signed Numbers 177
9-9 Multiple-Byte Addition Flowchart 179
9-10 Decimal Addition Exercises 183

10-1 8-bit Binary Place Values 189
10-2 (a) Before ASL 192

(b) This is What Happens 192
(c) After ASL 192

10-3 Trace of the Shift Program 195
10-4 (a) Original Value 197

(b) After One Shift 197
(c) After Two Shifts 197

10-5 Operation of LSR 198
10-6 Memory Use for Shift Right 198
10-7 LS R Exercises 202
10-8 Rotate Left Wheel 202
10-9 Accumulator and Carry Rotates 205
10-10 Rotate Right Wheel 205
11-1 Memory Use for Multiplication 214
11-2 8-bit Multiplication Flowchart 215
11-3 Printout of Assembled Multiplication Program 218
11-4 Multiplication Exercises 219
11-5 Memory Use for Division 221
11-6 Division Flowchart 222
11-7 Printout of Assembled Division Program 224
11-8 Division Exercises 225
11-9 Subroutine Flow 226
11 -10 Sound Subroutine Flow 230
11-11 Data for Sound Program 231
12-1 Logic Program Flowchart 239
12-2 Sound Off Program Flow 245
12-3 Approximate Values for Three Octave Scale 247
12-4 Data for SOUND SHAPER Program 252
12-5 ATASCII Codes for PRINT ON THE SCREEN 254

x

Preface

Due to the spectacular growth of the use of personal microcompute rs such as the
Atari 400 and 800 models, more and more people a re acq uiring their own com­
puters. These new users naturally want to make the most of the capabilities of
this versatile tool. After conquering BASIC language, an assembler is the next
logical step.

The Atari Assembler Cartridge provides the ideal too l. It is powerful, and
yet simple to understand and use . It provi des all the features necessary to take
the drud ge ry out of hand assembling machine language programs .

We have written this book with two main o bjectives in mind:
(1) to provide simple, detailed directions for using the Atari Assembler

Cartridge;
(2) to provide fundamental in format io n on programming in assembly

language.
The book is written for the beginning asse mbly language programmer who

has some knowl edge of BASIC language p rogramming. Steps for using the assem­
bler are give n in detail. Sketches of the video screen are shown at intermedi ate
and final stages for entry and execution of programs. Machine langu age instruc­
tions are explained both verba lly and pictorially. Every effort has been made to

make the book easy to read and understand .
We believe the approach to assembly language programming through

BASIC is sound. We assume you have a knowledge of BASIC, and we try to ease
you gently into asse mbl y language using your existi ng knowledge of BASIC.

Chapter exerc ises and answers are given to reinforce what you have learned .
Although th e book is not meant to cover the Atari Assembler Cartridge or the
6502 instruction set completely, it provides enough detail to a llow you to use
both at an intelligent leve l. From that po int, you a re encouraged to use what
you have learn ed to ex plore assem bl y language to the depth that you desire.

xi

Chapter 1

Introduction

This book is primarily concerned with th e operation and use of the Atari
Assembler Cartridge. The Assembler Cartridge plugs into the left slot of the
Atari computer replacing the BASIC language cartridge.

/ / / /
Asse mbl er BASIC

ed ito r co mputin g
co mput in g

language /
langu age

V
Assemb ler BASIC
Ca rt ri dge cartrid ge

Figure 7-7 . Language Cartridges

Through the Assembler Cartridge programs, an assembly language program
is written and edited . It is assembled into machine lanaguage codes, and the ma­
chine language program is then executed to produce the desired results. The

steps in this procedure are outlined in Figure 1-2.

En te r assembly
language program

~
2 Assemble into a

machin e language
program

~
3 Execute th e

mac hin e language
program

Figure 7-2. Steps in Assembly Language Programming

7

2 INTRODUCTION

Our discussion of the Assembler Cartridge and its use will begin in , Chapter
4. Instead of jumping right into the cold waters of assembly language program­
ming, you should try a more gentle approach. In this chapter and the next, you
will learn about the Atari's organization (or architecture) and go through a quick
review of its BASIC language, with which we assume you are familiar. You will
learn to create and execute machine language programs from within a BASIC
program of your own in Chapters 2 and 3 (see Figure 1-3). We are using this ap­
proach because most users of the Model 400 and 800 Atari computers will prob­
ably do most of their programming in the Atari BASIC language supplied in
cartridge form with their computers . This will allow you to learn the fundamen­
tals of machine language programming through a language with which you are
already familiar .

Figure 7-3. Machine Language Subroutine from BASIC

BASIC language instructions must be translated or interpreted (by the
BASIC language cartridge) before the computer can understand what is to be
done. Because of this extra step for translation, instructions in BASIC cannot be
executed as quickly as instructions written in machine language. A program writ­
ten in BASIC also uses more memory space than the equivalent program written
in machine language.

It is possible to write most of a program in BASIC and write parts ~hat
must be done quickly and efficiently in machine language. The machine language
parts of the program are accessed as subroutines from the BASIC program. These
subroutines can be "understood" directly by the computer, and no time is wasted
for interpretation. Chapters 2 and 3 will thoroughly explain this method and
provide sample demonstrations and step-by-step instructions.

Although the computer can execute machine language instructions faster
than it can execute BASIC instructions, it takes the programmer longer to write
a machine language program.

There are several disadvantages to machine language :

1. Each instruction has its own numeric code which the computer
understands. The programmer must either memorize these codes (Heaven for­
bid!) or look them up in a table each time they are used:

Examples:

Hex Code

A9

AO

80

INTRODUCTION 3

Operation Performed

Load the accumulator with the number follow­
ing the hex code.

Load the accumulator with the number con­
tained in the memory location that follows the
hex code.

Store the value in the accumulator into the
memory location that follows the hex code.

2. Each machin e language Operation Code (Op Code) must be placed in
memory in the correct sequence for the successful operation of the program.

3. When branches are made to change the sequential operation of a pro­
gram, the programmer must calculate and include in the instruction exactly how
many memory locations must be skipped to arrive at the correct instruction.

4. The detail work involved in machine language programming is tremen­
dous, and the chance for programming errors is very high.

Assembly language eliminates many of the drawbacks of machine language
programming. Compare the following list to the disadvantages of machine lan­
guage.

1. Each assembly language instruction has its own mnemonic code which
is an abbreviation of the operation to be performed.

Examples:

Mnemonic
Code

LOA

LOA

STA

Operand

14

$1100

$11 05

Operation Performed

Load the accumulator with the
number 14.

Load the accumulator with the value
contained in memory location 1100.

Store the value contained in the
accumulator in memory location
1105.

These mnemonic codes are much easier for a programmer to work with
than the numeric codes of machine language.

2. The assembly language program has line numbers similar to
BASIC, and the program is automatically placed into the correct sequence
of memory locations by the assembler.

3. Through the use of labels (combinations of words, letters and/or
numbers) branches are made to labeled instructions, and no calculations
are req uired (the assembler does it for you).

4 INTRODUCTION

4. The assembler creates the machine language program for you
from the mnemonic codes, eliminating all the time-consuming detail work.
The chance for programming errors is much less than for programs con­
structed by hand in machine language.

The Atari Assembler Cartridge will be introduced in Chapter 4 after you
learn a little more about how the computer works in its own language.

COMPUTER ARCHITECTURE

We assume that you are familiar with your Atari BASIC programming lan­
guage and now wish to investigate the computer's capabilities through its own
language.

Programming in the machine's language requires that you become familiar
with the fundamental building blocks {or architecture} of the Atari computer.
The two building blocks that you will be most concerned with are the Central
Processing Unit and the computer's memory.

6502
Central Processing Unit

(CPU)

Memory

Figure 7-4. Atari Building Blocks

You will need an understanding of how the computer's memory is used for
storage and retrieval of information. You will get to know the binary codes used
to "instruct" the computer. These codes are referred to as the instruction set of
the Central Processing Unit.

It sounds very complicated, but we will move slowly. One thing will be
introduced at a time, and we will repeat previously discussed information at fre­
quent intervals.

The Atari 400 and 800 model computers use a Central Processing Unit
{CPU} called the 6502. The 6502 is a member of a family of microprocessors de­
veloped by MOS Technology, Inc., the MCS650X product family . This CPU can
process, or execute, a set of instructions {listed in Appendix A} that are identi­
fied by their machine language codes. The codes are composed of binary num­
bers that are 8 binary digits {bits} long.

Binary digits come in two denominations. A binary digit is either a 1 {one}
or a 0 {zero}. A machine language code which can be recognized by the 6502
CPU is made up of 8 of these binary digits .

Examples:

Binary code

10101001

10101101

10001101

COMPUTER ARCHITECTURE 5

Instruction

Load the accumulator with the number following
this instruction.

Load the accumulator from the memory location
that follows this instruction.

Store the value that is in the accumulator in the
memory location that follows this instruction.

Note that each code is exactly 8 binary digits (8 bits) long. The block of 8 bits is
called a byte. The accumulator, mentioned in the instruction, is a special storage
location called a register. It can hold one byte of data at a time.

The accumulator (often referred to as register A) is probably the busiest
register (a special temporary storage location) in the system. All operations be­
tween memory locations must be communicated through the accumulator or
one of the other registers. The accumulator is used as a temporary storage when
moving data from one memory location to another. Operations on data are per­
formed in the accumulator. Therefore, it is used in many of the machine lan­
guage and assembly language instructions. It "accumulates" the results of succes­
sive operations on data as the instructions request.

It is convenient for a programmer to think of the 6502 microprocessor as
consisting of several functional elements. Figure 1- 5 shows the registers (special
storage locations within the CPU) that are used repeatedly as the computer per­
forms its many and varied chores. Some of these elements are used for specific
purposes, and others are used for general purposes as needed by the programmer.

The 8-bit accumu lator (A)

The 8-bit X In dex register (X)

The 8-bit Y Ind ex register (Y)

The 16-bit program counter (PC)

Th e 16-bit stack pointer (S)

The 8-bit Processor Status Register (P)

Figure 7-5. 6502 Functional Elements

Data is transferred between memory and the processor's internal registers
over 8 bidirectional data lines called the data bus. Each bit of a data byte passes
along its own line . However, the transfer of the whole byte (a ll 8 bits) of data
takes place at the same time. Even though each bit travels along a separate path
(line) of the data bus, the byte is transferred as one complete unit. Thus the
structure of the 6502 microprocessor is said to be a byte-oriented structure. The
8 lines together are referred to as a bus.

6 INTRODUCTION

OJ To memory _ To registers

Os _

°4 -

°2 -0\ _

Bidirectional
data bus

(data passes in
either direc ti on)

Figure 7-6. 8 Line Data Bus

The X and Y registers are also used for temporary data storage. In addi­
tion, they have the ability to be incremented and decremented by a programmed
instruction. When the X or Y register is incremented, the value in the register is
increased by one. When X or Y is decremented, the value in the register is de­
creased by one. Therefore, the X and Y registers can be used as counters (or
pointers) to store data into successive memory locations or to load data from
successive memory locations. This ability to point to successive memory loca­
tions is called indexing (hence their name : index registers). They can also be
used as counters to determine conditions for ending a series of repeated opera­
tions (a loop). The 6502 instruction set includes several special instructions to
load the index registers with predetermined values to facilitate the execution of
loops in a manner similar to BASIC language FOR-NEXT loops.

The 16-bit program counter acts as a program address pointer to assure
that instructions are executed in the desired order. Instructions of a program are
stored in consecutive locations in memory. They are made up of machine lan­
guage operation codes and/or address bytes and numbers to be operated on. To
control the desired sequence of operations of a program, the program counter is
used as a pointer to designate the position in memory where the microprocessor
will obtain each successive instruction . The program counter is incremented, after
each instruction is "fetched," to point at the next instruction to be performed.

Mem ory Instruct io n
loca tio n or data

Iprogralllr 1000 A9
cou nter

1001 00

1002 69
1003 01

1004 C9

Figure 7-7. Program Counter

The stack is a special area of memory that is used to save data according
to the sequence in which it is stored. It acts like a Last-In, First-Out file system
(Figure 1-8). The 16-bit stack pointer keeps track of where data has been stored

REVIEW OF BASIC 7

Figure 1-8. Last-In, First-Out Stack
{[~Last on willbe

Stack '@ th e first off

within the stack. It contains an address designating the current location of the
top of the stack. The stack pointer and the program counter are large enough
(16 bits) to hold a full-length address (0 through 65535).

Individual bits of the 8 -bit Processor Status Register are used to keep track
of specific effects that instructions have on the "status" of the computer. The
presence or absence of an effect is shown by whether a particular bit has been
set to one or reset to zero . These individual bits are also called flags. Flags used
by the 6502 microprocessor are Carry, Zero, Interrupt, Decimal, Break, Over­
flow, and Negative. These conditions (or effects) are discussed in more detail as
they are needed in understanding the instructions. Your first encounter will be
with the Carry flag in Chapter 2.

Bit nu~~:; I ~ I ~ 15 1 : I ~ I ~ I ~ I ~ I
)11 t L- i:;~",""

Interrupt disable
Decimal mode
Brea k command

L-_______ Expansion
L-________ Overfl ow

'------------ Negat ive result

Figure 1-9. Processor Status Register

REVI EW OF BASIC

In Chapter 2, we will introduce the use of machine language programs that
are entered through the use of BASIC language programs. The machine language
program will be a subroutine of the BASIC program. Atari's BASIC includes a
function that is used to transfer from the BASIC program to such a machine lan­
guage subroutine. It is known as the USR function.

Example:

120 X = USR(1000)

~GO to the machine language sub­
routine at memory location 1000

8 INTRODUCTION

The balance of this chapter is devoted to the review of some of the BASIC
statements, commands, functions, and keywords used by the Atari 400/800
computers. Special attention should be given to the USR function as well as the
POKE, PEEK, and ADR keywords. If you feel the review unnecessary, proceed
to Chapter 2.

Atari BASIC uses statements and keywords that are different from other
BASIC language versions due to the computer's special graphics and sound capa­
bilities. These are briefly described here. For more complete descriptions refer to
the Atari BASIC Reference Manual.

Graphics Keywords

COLOR Primarily selects the app ropriate color register, but specific uses de­
pend on the graphics mode in use.

DRAWTO Draws a line from a PLOTted point to the point specified.

FI LL Not really a keyword but an I/O operation that fills an area on the screen
between plotted points and lines with a specified color.

GET Used to input the code byte for the character displayed at the cursor
location.

GRAPH ICS Controls which graphics mode is to be used.

LOCATE Stores the color number that controls a particular point on the screen
in the specified variable.

PLOT Plots a point in the graphics window based on the X,Y coordinates speci-
fied.

POSITION Places the cursor at a particular location on the screen.

PUT Used to output data to the screen for display.

SETCOLOR Sets the color register specified by loading it with the hue and
luminance data specified.

Sound and Game Keywords

PADDLE Returns the status of the specified controller (a number between 1
and 228 depending on paddle position) .

PTRIG Returns a number representing the status of the trigger button of a con­
troller (0 if button pressed, otherwise 1).

SOUND Plays a note through one of four specified voices, with the pitch, dis­
tortion, and volume sp~cified.

STICK Same function as PADDLE, but for joystick controllers.

STRIG Same function as PTRIG, but for joystick controllers.

GRAPHICS KEYWORDS 9

Special Keywords

Four keywords that are of special importance to us are: ADR, PEEK,
POKE, and USR. These words provide a link between BASIC and machine Ian·
guage programs.

ADR This function returns the memory address of a specified string. Knowing
the address enables the programmer to pass data to USR subroutines. A
two-step process is used to obtain the address of a matrix of numeric val­
ues. First use a DIM statement for a string of length 1. On a separate
BASIC program line, ask for the address of the string variable.

Example:

200 DIM A$(l)

'---- stri ng A$
210 PRINT ADR(A$)

The address of the matrix wi ll be one more than the address of the stri ng
A$.

The ADR function must be used with care . If your program (made
up of the data matrix) is not addressed correctly, the computer may go off
to Never-Never Land (the wrong place) and not return. If this happens,
you can turn the computer off, wait about 5 seconds, and power up again.
Your prograrn will have gone bye-bye in the meantime. Start all over again.

PEEK This function all ows the user to PEEK into a specified memory location.
The user can then rnake use of the information that is "seen" there in hi s
BASIC program.

Examples:

200 PRINT "THE LEFT MARGIN IS SET AT"; PEEK(82)

This memory 10cation~yS contains
the position at which printing on the
screen begins for each lin e (ordinarily 2).

210 PRINT" THE RIGHT MARGIN IS SET AT"; PEEK(83)

This memory location ~ the right­
most position at wh ich a character is
printed on the screen (ordinarily 39).

Any memory address (given in decimal form) in your Atari may be PEEKed
at without disturbing its contents. This app lies to either ROM (Read Only
Memory) or RAM (Randorn Access Memory). RAM is the kind of rnemory

70 INTRODUCTION

that may be either written into or read from. ROM can only be read from.
We wi" often use this instruction in Chapter 2 to PEEK at machine lan­
guage programs that we have entered in memory.

POKE This function is the opposite of PEEK. You can use it to insert or mod­
ify the contents of RAM memory. We wi" use it in Chapter 2 to POKE in
machine language programs.

Examples:
150 POKE 82,8 ____

Ch ange the left margin for screen
160 POKE 83,30 ______ printing to position 8

Change the right margin to 30

This would perform the following function.

0123456789012345678901234567890123456789 -+- Screen
PRINTED MATTER ACCEPTED positions
ONLY FROM POSITION 8-30 (0-39)

POKE, like PEEK, can be used in either the direct or deferred program
mode. You cannot POKE data into ROM memory. Data can only be read
from ROM, not written. Since a POKE statement actually changes data
stored in memory, great care must be taken when using it. If incorrect data
is POKEd into memory or if data is POKEd into the wrong memory loca­
tion, disastrous results may occur. When you want to use POKE, refer to
the Atari memory map in Appendix G of the Atari BASIC Reference
Manual.

One precaution before indiscriminately using POKE. PEEK first
and write down the value in that memory location into which you wish to
POKE. Then, if the POKE doesn't produce the desired result, you can
POKE the original value back where it was.

USR This function "ca"s" a 6502 machine language subroutine and returns
with the result of the subroutine's execution. It wi" be used in Chapter 2
to execute the machine language programs that are POKEd into memory.
The format used for this function is:

USR(X,Y,Z,)

An inte~r ~ Optional input arguments
arithmetic expression (variables that are passed
that evaluates to an to the subroutine)
integer. It is the deci-
mal address of the be-
ginning of the machine
language program.

GRAPHIC KEYWORDS 77

Definitions

The following definitions were condensed from the Atari BASIC Refer­
ence Manual for a quick review.

ARRA Y A list of places where items can be filed away for future use.

ARRA Y VARIABLE A name for an array consisting of one or more elements.

BASIC statement Similar to a sentence in English; requests the computer to do
something.

BREAK KEY Pressed to stop a program's execution.

CONCATENATION The joining of two or more strings.

CONSTANT A number or string without a variable name .

DEFERRED PROGRAMS Those stored in memory (with line numbers) for
future execution.

DI RECT PROG RAMS Those executed immediately as each line is entered from
the keyboard.

EXPRESSION May consist of any combination of legal variables, constants,
operators, and functions used together.

FUNCTION A computation built into the computer's operating system so that
it can be used by the user in his programs.

KEYWORD Any reserved word used by BASIC that cannot be used for other
purposes.

LOGICAL LINE Each numbered line in a BASIC program; consists of one to
three physical video screen lines terminated by a RETURN.

NESTED LOOP One loop (inner loop) executed within another (outer loop).

OPERATOR Symbols used to perform operations such as arithmetic, compari-
son or logic.

RETURN KEY Pressed to enter each program line.

STRINGS A group of characters strung together with quotes.

VARIABLES The name for a number or string.

For a complete list and discussion of Atari BASIC, refer to the Atari
BASIC Reference Manual. With this brief review let's move right on to Chapter 2.

Chapter 2

Machine Language
from BASIC

Short machine language programs can be written and executed from
BASIC through the use of the USR function. In this way, it is possible to exe­
cute part of a program in BASIC, "jump" to a machine language subprogram and
then return to BASIC again. Figure 2-1 shows the flow of such a program.

Jump

Return

language
subprogram

Figure 2-7. Program Flow Including Subroutine

The computer can only understand instruction codes written in fixed-length
binary numbers. These binary instruction codes are called machine language.

BINARY NUMBER PATTERNS

The computer interprets these bits as being one of two numeric symbols, 0
or 1. The pattern of 1 's and O's makes a meaningful word, or a complete idea, to
the computer. Therefore, we need to learn these words if we are to communicate
directly with it.

72

BINARY NUMBER PATTERNS 73

=0
OFF

-:;:\gl / ~
-' --1 .. 0:

An example of a pattern of 8 computer bits {a pattern with a size and
shape that the computer can understand} is shown.

o 1 o 1 1 o 1 1
OFF ON OFF ON ON OFF ON ON

The computer would recognize this pattern as a unique number code and
would respond by taking a specific action or using the number as a specific piece
of data.

The Central Processing Unit {CPU} of the Atari computer was originally
manufactured by MOS Technology, Inc . At the present time, two other com­
panies {Synertek and Rockwell} also manufacture the CPU. This unit is named
the 6502 microprocessor. It is called a Central Processing Unit because all instruc­
tions and numerical values are routed there for processing.

The 6502 microprocessor {and hence, the Atari computer}, like many other
microprocessors, only understands instructions which are coded in blocks of eight
binary digits, called bytes. Therefore, the biggest hurdle to machine language
programming is to learn to work with information in binary form.

0 0 +- block of 8 bits or 1 byte

OJ +- one bit

01 +- two bits {not worth much these days}

0 +- four bits {sometimes referred to as a
nybble}

0 0 +- eight bits (commonly called a byte)

The Atari uses words that are eight bits in length, that is, it can digest
words whose size is one byte. All instructions and numerical values must be sent
to its Central Processing Unit in th is byte size. A typical instruction, shown be­
low, loads the computer's accumulator with the one byte of data following the
instruction in a machine language program.

74 MACHINE LANGUAGE FROM BASIC

Load Accumulator from the L Register

MNEMONIC CODE BINARYCODE
(A bbreviation)

LOA 10101001

Don't let the computer terminology throw you. The accumulator is similar
to a memory location that is used in special ways which we will discuss later on.
We are just introducing it here to show the format of an instruction.

The BASIC Language Cartridge, provided with your Atari, automatically
interprets BASIC language statements and decimal numbers so that the compu­
ter can understand them. Therefore, when you are programming in BASIC, you
enter decimal numbers and the results are displayed as decimal numbers even
though the computer is working with binary numbers.

H EXADECIMAL NOTATION

Machine language codes are usually given in a third number system called
hexadecimal. The hexadecimal system has a base of 16 and is used as a short­
hand to represent binary numbers. Figure 2-2 shows a chart that demonstrates
equivalent decimal, binary, and hexadecimal numbers.

Decimal Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 0
14 1110 E

15 1111 F

Figure 2-2. Decimal-Binary Hexadecimal Equivalents

HEXADECIMAL NOTA TlON 75

We will often refer to this shorthand as hex. Four binary digits may be
represented by one hex digit. Thus, our 8-bit instruction may be represented by
a 2-digit hex number by breaking the byte (8 bits) into two parts .

Binary Number

10 1 1 1 1 1 0 11

~l/
~

/' Part
"'~

Part ~
0111 = 7 hex One ..,. Wo 1101 = D hex

Binary Two Parts HEX

Therefore:

Each place value in the binary system is a power of two, just as each place
value in the decimal system is a power of ten. Two is called the base of the bi­
nary system, and ten is called the base of the decimal system. If we look at the
place values of the binary numbers 0000 through 1111, we can attach more
meaning to them.

Binary Places Decimal
2 3 22 21 2° Equivalent

0 0 0 1 0+0+0+1 = 1
0 0 1 0 0+0+2+0 = 2
0 1 0 0 0+4+0+0 = 4
1 0 0 0 8+0+0+0 = 8

Using combinations of these place values, we may obtain any decimal value from
o through 16 or any hex value from 0 through F.

Examples:

0101
1001
1100
1011

22 + 2° = 4+1 = 5 decimal and also 5 hex
23 + 2° = 8+1 = 9 decimal and also 9 hex
23 + 22 = 8+4 = 12 decimal which is C hex
23 + 21 + 2° = 8+2+1 = 11 decimal which is B hex

Let's now take a closer look at how we may express any 8-bit binary num­
ber by two hex digits. We saw earlier that the highest hex digit (F) corresponds
to the four-bit binary value 1111. The next higher binary value is 10000. The
one is in the 24 place which equals 16. Therefore, we have one 16 and nothing
else. This can be expressed by the hex value 10, which means one 16 and no 1 'so
There is a direct relationship between upper 4 bits of an 8-bit binary number and
the sixteen's place digit of a hex number.

76 MACHINE LANGUAGE FROM BASIC

Binary Places Hex value
27 26 25 24 761

0 0 0 1 1
0 0 1 0 2
0 1 0 0 4
1 0 0 0 8

24 = 16

25 = 2*16 = 32
26 = 4*16 = 64
27 = 8*16 = 128

Next look at the binary place values of the complete 8-bit number.

Binary Places Decimal Hex
27 2 6 25 24 2 3 22 21 2° Equivalent Equivalent

0 0 0 0 0 0 0 1 0+0+0+0+0+0+0+ 1 = 1 1
0 0 0 0 0 0 1 0 0+0+0+0+0+0+2+0 = 2 2
0 0 0 0 0 1 0 0 0+0+0+0+0+4+0+0 = 4 4
0 0 0 0 1 0 0 0 0+0+0+0+8+0+0+0 = 8 8
0 0 0 1 0 0 0 0 0+0+0+ 1 6+0+0+0+0 = 1 6 10
0 0 1 0 0 0 0 0 0+0+ 32+0+0+0+0+0 = 32 20
0 1 0 0 0 0 0 0 0+64+0+0+0+0+0+0 = 64 40
1 0 0 0 0 0 0 0 1 28+0+0+0+0+0+0+0 = 1 28 80

Figure 2-3. Eight-bit Conversion

Using combinations of all eight bits, you may obtain any decimal value
from 0 through 255, or any hex value from 0 through FF. If we break an 8-bit
binary number into two four-bit parts, each part may be represented by one hex
digit.

Examples:

Binary 011011 01 64+32+8+4+1 = 109 in decimal
Split binary 01101101

Hex 60 6*16+13 = 109 decimal

Binary 11000101 128+64+4+1 = 197 in decimal
Split binary 11000101

Hex C5 12*16+5 = 197 decimal

Binary 10101100 128+32+8+4 = 172 in decimal
Split binary 10101100

Hex AC 10*16+ 12 = 1 72 decimal

HEXADECIMAL-TO-DECIMAL CONVERSION

Hex codes made up of one digit are quite easily converted to decimal val­
ues. If you haven't memorized the equivalents by now, here is a table of the
values again.

HEXADECIMAL-TO-DECIMAL CONVERSION 17

!-Iexadecimal Decimal

a a
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10

B 11
C 12
0 13
E 14
F 15

Figure 2-4. Hex Digit-to-Decimal Conversion

A two-digit he-x code is also easily converted to its decimal equivalent if we

keep in mind two things:

1. The decimal equivalent of each hex digit (as in the previous table).

2. The place value assigned to each hex digit.

Place values in the decimal number system are powers of ten. The least sig­
nificant place in a decimal integer is valued at 10°. This is called the one's place
(10° =1). The next place to the left is valued at 101 and is called the ten's place
(101 =1 a).

Examples:

89 = (8 x 101
) + (9 x 10°)
or

(8 x 10) + (9 x 1) = 80 + 9

I I t \
digit place digit place

(~ value value

23 = (2 x 101
) + (3 x 10°)
or

(2 x 10) + (3 x 1) = 20 + 3

The hexadecimal place values are powers of sixteen (hexadecimal = 6 and
10). The least significant place in a hex integer is valued at 16°. This is the one's
place (16° =1) . The next place to the left is valued at 161 and is called the six­
teen's place (161 =16).

78 MACHINE LANGUAGE FROM BASIC

Examples:

23 hex = (2 x 161
) + (3 x 16°)

or
(2 x 16) + (3 x 1) = 32 + 3 decimal

digi/ PILe 1 \ = 35 decimal

value digit place
value

89 hex = (8 x 161
) + (9 x 16°)
or

(8 x 16) + (9 x 1) = 128 + 9 decimal
= 137 decimal

A9 hex = (10 x 161) + (9 x 16°)
or

(10 x 16) + (9 x 1) = 160 + 9 decimal
= 169 decimal

See if you can fill in the decimal equivalents of the following hex codes.

Hex Decimal
Code Equivalent

68
18
A9
3F
69
41
8D
00
18
60

Figure 2-5. Hex Code Conversion Exercise

If you have converted the hex codes of Figure 2-5 correctly, you are ready
to enter your first machine language program. The codes are machine language
instructions and data. Remember though, you are entering them from a BASIC
program. Therefore, you must use the decimal form for entry. Check your an­
swers now by looking at Figure 2-7.

Before the discussion of the machine language subroutine, let's take a look
at the BASIC program used to enter and execute the subroutine.

HEXADECIMAL-TO-DECIMAL CONVERSION 79

BASIC PROGRAM-ADD TWO NUMBERS

100 REM INITIALIZE STORAGE ADDRESS
110 CLR: DIM E$(l), E(10)

120 REM POKE IN SUBROUTINE
130 FOR Y = 1 TO 10
140 INPUT N
150 POKE ADR(E$)+Y,N
160 NEXTY

170 REM CALL SUBROUTINE
180 X=USR(ADR(E$)+l)

190 REM PRINT RESULTS
200 GR.O:PRINT "THE SUM IS ";
210 PRINT PEEK(6144)
220 END

Notice line 110. After the DIM statement for E$, it is necessary to dimen­
sion an array (E in this program) to the number of codes that are being used in
the machine language program. This saves the necessary memory locations to re­
ceive the codes POKEd in by the FOR-NEXT loop in lines 130 through 160.

A flow diagram for the BASIC program and its machine language subrou­
t ine is shown in Figure 2-6.

Figure 2-6. Flowchart
for Addition Subroutine

SUBROUT INE

Add the two numbers
and store the result,
then return to BASIC

20 MACHINE LANGUAGE FROM BASIC

When you type RUN, the machine language subroutine is POKEd into
memory . Each time through the input loop, enter one decimal equivalent of one
hex code following the question mark (input prompt). The inputs are the deci­
mal values that you put in Figure 2-5.

Hex
Code

68
18
A9
3F
69
41
80
00
18
60

Decimal
Equivalent

104
24

169
63

105
65

141
0

24
96

You are adding these
two decimal numbers

Figure 2-7. Decimal Equivalents of Hex Codes

After all 10 codes have been entered, the machine language subroutine is
executed. On return from the subroutine the result is printed.

Enter the program and RUN it. This is the way it should look on the
screen just before you press RETURN after the ninth input.

?104
?24
?169
?63
?105
?65
?141
?O
?24
?96 _--- The 10th input

After you press RETU RN the tenth time, the screen is cleared and your
result appears.

THE SUM IS 128
READY

•

HOW THE MACHINE LANGUAGE PROGRAM WORKS 27

Congratulations! You have just completed your first machine language
program. When your BASIC program executed line 180, the USR function
caused the execution of the machine language subroutine.

Figure 2-8 shows each hex code, the mnemonic code that will be used
when you use Assembler language, and an explanation of the purpose of each
code.

Hex Mnemonic
Code Code Explanation

68 PLA Pull one byte off the stack and place it in the accu-
mulator

18 CLC Clear the Carry flag

A9 LOA Load the accumulator with the value immediately
following

3F Value loaded (3F hex = 63 decimal)

69 ADC Add the hex value that follows to the value in the
accumulator

41 Value added (41 hex = 65 decimal)

80 STA Store the value in the accumulator into the memory
location that follows

00 Least Significant Byte of memory

18 Most Significant Byte of memory

60 RTS Return from subroutine

Figure 2-8. Machine Language Subroutine

Notice that some codes consist of single bytes (68, 18, 60), some consist
of two bytes (A9 and 3 F, 69 and 41), and one consists of three bytes (80 and
00 and 18). Data and memory addresses accompany the appropriate instruction
to form mUlti-byte instructions.

HOW THE MACHINE LANGUAGE PROGRAM WORKS

So far, we have said little about the the individual machine language codes.
These codes have little or no meaning to you at this time, but each does have a
precise meaning to the computer. Let's consider them in the following groups.

1. 68

2. 18

22 MACHINE LANGUAGE FROM BASIC

3. A93F

4. 6941

5. 800018

6.60

1. The first instruction (68) is the machine language code that tells the
computer to pull one byte of data off the stack and place it in the accumulator.

The stack is a special area of memory where the computer keeps certain
numbers and addresses in a specific order for later use. Each new item going
onto the stack is placed on top of the stack. All other items are "pushed down"
one place when a new item goes on top.

Example:

3 items on the stack

New item is pushed on from the top .

When the USR function "calls" a machine language program from BASIC,
the BASIC address to which the machine language is to return when done is
ptaced on the stack in two separate bytes-low-address byte first, then high­
address byte on top .

Top

Bottom

~
G
The Stack

+- High byte of return address

+- Low byte of return address

Following this, the computer puts any variables being passed to the machine lan­
guage subroutine. The last item placed on the stack at this time is the number of
variables that were passed. In our example, we didn't pass any variables. There­
fore the stack looked like this when the machine language subroutine was called.

Bottom ~
+- Number of variables passed

yy +- High byte of return address

xx +- Low byte of return address

Top

I n order to have the return address available when the subroutine has been com­
pleted, we had to remove that zero on top of the stack. So, we used the instruc-

HOW THE MACHINE LANGUAGE PROGRAM WORKS 23

tion (68) to pull the top value off the stack. It was placed in the accumulator by
the instruction. The stack now has the return address on top ready for use.

Top

Bottom

[Yvl­
G-

The Stack Now

High byte of return address

Low byte of return address

The Accumulator Now

The number (0) in the accumulator will not be used, but we had to get it off
the stack in order to access the return address bytes when needed .

2. The second instruction (18) clears the Carry bit of the Processor Status
Register (resets it to zero). The add instruction (fourth instruction) will auto­
matically add the Carry bit when two numbers are summed . Since you do not
want a carry to be added in, the instruction is used to ensure that the Carry bit
is zero. Later, you will be doing some multiple-byte additions with larger num­
bers. At that time, you will see that the Carry bit must be used when adding all
but the Least Significant Byte.

3. The third instruction consists of two hex codes (or two bytes) :
A93F

A9 is the hex representation for the instruction, "Load the accumulator with the
value that immediately follows." The 3F is the number that is loaded.

4. The fourth instruction consists of the two hex codes (two bytes):
6941

69 is the hex representation for the instruction "Add the number that follows to
the value in the accumulator." The result will replace the value in the accumula­
tor. The hex value 41 is the number that is a.dded.

5. The fifth instruction consists of three hex codes (three bytes) :
800018

80 is the hex representation of the instruction, "Store the value that is in the
accumulator into the memory location that follows." The memory location used
is 1800 hex (6144 decimal). Notice that the memory location is too large to be
expressed as one byte. Therefore, two hex codes are used. Notice also the order
in which the high-address byte (18) and the low-address byte (0) are given. The
low-address byte is first, followed by the high-address byte. This convention is
followed when instructions contain a two-byte address.

6. The last instruction consists of a single hex code (one byte):
60

60 is the hex representation of the instruction, "Return from subroutine." This
single instruction tells the computer to return to the place where it came from .

24 MACHINE LANGUAGE FROM BASIC

The computer takes the top two bytes off the stack in order to find where it
shou ld return in the BASIC program and obtain the next BASIC statement.

A machine language program is executed in sequential order by memory
locations just as a BASIC program is executed by line numbers. There are excep­
tions like the BASIC GOTO and GOSUB statements. Machine language programs
can perform similar tricks with JUMP and BRANCH instructions, as you will see
later.

Although this book is mainly concerned with Assembly Language pro­
gramming and the Atari Assembler Cartridge, you should realize that the com­
puter actuall y works with machine language codes. The assembler language is
merely an easier method to remember and enter machine language codes, as you
wil l see in later chapters.

We have used six machine language instructions in this first program. Since
machine language instructions are coded numbers, they are hard to remember.
However, each one of them has a mnemonic code (an abbreviation for the mean­
ing of the instruction) that is used in assembly language programming.

INSTRUCTIONS USED SO FAR

Machine
Language Assembler

Code Mnemonic Function

68 PLA Pu ll one byte off the stack and place in the
accumu lator

18 CLC Clear the Carry bit

A9 LDA Load the accumulator with the hex value
that follows

69 ADC Add (with carry) the hex value that follows
to the accumu lator

8D STA Store the value in the accumulator into the
memory location that follows

60 RTS Return from the subroutine

SUMMARY

In this chapter, you have learned :

• To access a machine language subroutine from a BASIC program by the
USR function of BASIC;

EXERCISES 25

• That machine language instruction codes are binary numbers that can
be entered in hexadecimal form;

• That some instruction codes occupy one byte, some two bytes, and
some three bytes;

• How the "push down" stack is used to store numbers and addresses
temporarily;

• How the numbers are pulled off the stack;

• That every machine language subroutine must have a Return from Sub­
routine instruction to send control back to the main program; and

• The following machine language instructions:

68 PLA Pull one byte off the stack and place it in the
accumulator

A9 LOA Load the accumulator with the value imme-
diately following

69 AOC Add the hex value that follows to the value in
the accumulator

80 STA Store the value in the accumulator into the
memory location that follows

60 RTS Return from Subroutine

18 CLC Clear the Carry flag

EXERCISES

1. Hexadecimal codes are a short way to write
(decimal, binary)

tion codes which the computer can understand.

2. Ii/hat kind of numbers are used in BASIC language programs?

(binary, hex, decimal)

instruc-

26 MACHINE LANGUAGE FROM BASIC

3. Fill in the hexadecimal and decimal equivalents of the following binary num­
bers.

(a) 1101 = hex =

(b) 0110= hex=

decimal

decimal

decimal (c) 10101001 = __ hex = ___ _

4. When using a machine language subroutine from BASIC, you enter instruc-
tion codes in form, and the BASIC interpreter converts them

(hex, decimal)
to ____ ---,_ form.

(hex, decimal)

5. What is the three-letter abbreviation for the function used in Atari's BASIC to
call a machine language subroutine?

6. If you want to call a machine language program from BASIC and had dimen­
sioned the variable E$ to 1 (100 DIM E$(l)) for this purpose, what is the
BASIC line that would call the subroutine?

500

7. What is the last instruction that every machine language subroutine must exe­
cute to get back to the BASIC program?

8. Suppose you wish to store the dec imal value, 72, in the memory location
1925 hex. The number 72 is now in the accumulator. The machine language
instruction to store the value would consist of three bytes in the following
order. Fill in the blanks.

80

9. In exercise 8, what hex value would be loaded into memory location 1925?

1. Binary

2. Decimal

3. (a) 1101 =Dhex=13decimal
(b) 0110= 6 hex = 6 decimal

ANSWERS

(c) 10101001 = A9 hex = 169 decimal

4. Hex
Decimal

ANSWERS 27

5. USR

6. 500 X = USR{ADR{E$)+1)

,'------------ This may be some other variable

7. 60 or RTS or Return from Subroutine

8.80
25 (Don't forget the reverse order)
19

9. 48 (4*16+8 = 72)

Chapter 3

Memory Use

When you use BASIC language and machine language programs together,
you must use separate portions of memory for each language. Atari's BASIC in­
terpreter (in the BASIC ROM Cartridge) takes care of allocating the memory lo­
cations used in the BASIC language part of your program. You must make sure
that your machine language part uses a different area of memory.

ATARI MEMORY MAP

Certain areas of the computer's 65536 memory locations are used by the
Atari Operating System (SK of ROM) and by the ROM cartridges (such as
BASIC or Assembler) that may be plugged into the computer console. We can­
not POKE machine language programs into these areas. The Operating System
and ROM cartridges also use some of the system's RAM space. We must not
POKE into those areas as we might destroy our own program or cause some
other programming disaster.

Figure 3-1 shows a map of the Atari's memory. Look closely and you can
see areas of memory called Free RAM. These areas may be safely used for your
programs. However, as stated above, you must keep BASIC and machine lan­
guage programs separated.

MEMOR Y USES

High memory
Operating system, floa ting
po int arithmet ic, hardware
reg isters , and o th er dedicated
uses

FREE RAM fo r your use

BASIC program, var iabl es, etc.

Operating system and BASIC

Low memory d ed i ca ted uses

Figure 3-7. Memory Map

28

ATARIMEMORYMAP 29

BASIC Program I~
Separate blocks

/ofmemory
Machine Language /

Program

The technique which we have been using so far is to DIMension a string
variable E$ to one {1}. This saves one memory location immediately following
the area used by our BASIC program. The address of this location will vary from
program to program depending on the length of the BASIC program, but the ma­
chine language memory locations will always follow the BASIC program. We will
demonstrate this with three short BASIC programs which are of different lengths.
They all end by printing the address of the memory location saved for E$.

DEMO PROGRAM #1

10 CLR: DIM E$(1)
20 PRINT ADR{E$}

Enter and RUN Demo Program #1 . You will see that one location was
saved for E$ at address 11182.

RUN
11182

READY

•

10 CLR: DIM E${l}

DEMO PROGRAM #2

20 FOR X = 1 TO 10 +-- A very short time delay
30 NEXT X
40 PRINT ADR{E$}

Enter and RUN Demo Program #2. You will see that the location saved
for E$ is now at address 11221 . Since Demo Program #2 is longer than Demo
Program #1, the location saved for E$ has a higher address.

RUN
11221

READY

•

30 MEMORY USE

DEMO PROGRAM #3

10 CLR: DIM E$(l}
20 FOR X = 1 TO 10
30 PRINT X;
40 NEXT X
50 PRINT
60 PRINT ADR(E$}

Enter and RUN Demo Program #3. You will see that the address saved for
E$ is higher yet because Demo Program #3 is longer than the other two.

RUN
12345678910
11235

READY

•

We have made use of the memory location saved for E$ to find a safe place
in RAM (out of the way of our BASIC program and other reserved areas) for our
machine language subroutines. We POKEd the machine language subroutine into
a memory area that started at the next higher location than that saved for E$.
We will continue to use this method.

HOW BASIC FINDS THE MACHINE LANGUAGE PROGRAM

You may wonder how your BASIC program knows where to find the ma­
chine language subroutine. Let's take another look at the program used in Chap­
ter 2 that added two numbers .

First section

100 REM INITIALIZE STORAGE ADDRESS
110 CLR: DIM E$(l), E(10}

Save one memory ~ S~e 10 locations for
location for E$ machine language subroutine

HOW BASIC FINDS THE MACHINE L ANGUAGE PROGRAM 37

Second section

120 REM POKE IN SUBROUTINE
130 FOR Y = 1 TO 10
140 INPUT N
150 POKE ADR{E$}+Y,N

POKE 10 hex codes into
successive memory locations
(E$+1 through E$+10) 160 NEXT Y

Third section

170 REM CALL SUBROUTINE Jump to the machine lan­
guage subroutine starting in
memory at address {E$}+1

180 X = USR{ADR{E $}+1}

High.
1

Low

'-------'

language locations
E$

\BASIC program

Figure 3-2. Memory Used for Machine Language Subroutine

The fourth section of the BASIC program prints the results of the machine
language program .

Fourth section

190 REM PRINT RESULTS
200 GR.O: PRINT "THE SUM IS" ; +-- Print the label
210 PRINT PEEK {6144}
220 END

---- Print result that the machine
language program has placed
in memory location 6144
{1800 hex}

The computer saved one location for E$ in an area of memory that is out
of the way of your BASIC program. At lines 130 through 160, the program
POKEs the machine language codes into the memory just above the space that
was saved for E$. Your BASIC program "calls" the machine language program at
line 180 by the USR function. The USR function specifies the address where the
machine language program can be found . Thus the USR function works like the
BASIC statement: GOSUB

32 MEMORY USE

x = USR(AOR(E$}+l}

Call for machine ~ L th' "bmu';", '"H~
language subroutine at this address

The machine language hex codes are stored in memory as follows:

Memory Hex code
Address Stored

E$+l 68
E$+2 18
E$+3 ,4.9
E$+4 3F
E$+5 69
E$+6 41
E$+7 80
E$+8 00
E$+9 18
E$+lO 60

Figure 3-3. Hex Code Storage

The Atari also has the capability of passing one or more quantities to a
machine language program through the USR function.

Example:

100 A=5
110 X = USR(AOR(E$}+l ,A}

\.--.---- Pass the value of A to the
machine language program

The value of variable A is palced on the stack as described in Chapter 2.
The value is placed there as a two-byte hex number.

Let's review that process again :

1. The address to which the computer is to return in your BASIC program
is placed on the stack.

Rl ca
+-- High byte of return address

+-- Low byte of return address

PASSING VARIABLES TO MACHINE LANGUAGE SUBROUTINE 33

2. The value of variable A is placed on top of the stack. If A = 5,

00 ~ High byte of A

05 ~ Low byte of A

yy ~ High byte of return address

xx ~ Low byte of return address

3. The number of variables passed is placed on top of the stack.

01 ~ Number of variables passed

00 ~ High byte of A

05 ~ Low byte of A

yy ~ High byte of return address

xx ~ Low byte of return address

Your machine language program may then pull the values off the stack and use
them.

PASSING VARIABLES TO MACHINE LANGUAGE SUBROUTINE

Following is an addition program that will demonstrate this methods. It
allows you to input a value that is passed to the machine language subroutine.
The value of five is added to your input by the machine language subroutine.
The result is placed in memory so that the BASIC program can find it.

BASIC PROGRAM-ONE VARIABLE PASSED

100 CLR: DIME$(l), E(l 0)

200
210
220
230

300
310
320
330
340

FOR Y = 1 TO 10
INPUT N
POKE ADR(E$)+Y,N

NEXTY

GR.O: PRINT "INPUT A"
INPUT A
X = USR(ADR(E$)+l,A)
PRINT PEEK(6144)
END

Input machine language
subroutine (10 bytes)

Input a positive decimal integer less
than 251
Call subroutine
Print sum of your number and 5

34 MEMOR Y USE

When the BASIC program is executed, the value of A will be placed on the
stack, and your machine language program will pull it off and use it. The result
will be printed when you come back to your BASIC program.

The following machine language subroutine shows the contents of the
accumulator, memory storage location, and stack as the subroutine is executed .

MACHINE LANGUAGE SUBROUTINE
Original
Stack

01
E$+1 68 Pull top value off stack and ha

put into accumulator la
yy
xx

Accumulator ~ New Stack

~ la
yy
xx

E$+2 18 Clear the Carry bit

E$+3 68 Pull High byte of A off stack
and put into accumulator; not used

Accumulator B

E$+4 68 Pull Low byte of A off stack
and put into accumulator

Accumulator G;]

E$+5 69 Add the number that follows

E$+6 05 Five is added

Accumulator ~

New Stack

[E yy
xx

New Stack

rYvl
~

E$+7 8D Store accumulator into memory that follows

E$+8 00 Low byte of memory

No. of variables
high and low
byte of A

return address

USING THE ONE-VARIABLE PROGRAM 35

E$+9 18 High byte of memory

Memory 1800 Accumulator Stack

E$+ 10 60 Return from Subroutine

USING THE ONE-VARIABLE PROGRAM

fYYl
~

To enter and use the program, follow these steps.

1. Enter the BASIC PROGRAM- ONE VARIABLE PASSED.

2. RUN the BASIC program and ENTER these hex codes (one at a time in
response to the? prompt).

?104
?24
?104
?104
?105
?5
?141
?O
?24
?96

3. After the last entry, the screen will clear and the INPUT prompt will
appear on the screen.

(INPUT A?-

Try typing 95 and press the RETURN key.

INPUT A?95

100 ~

READY ~ 95+5 = ·100

-
You may try other numbers by typing GOTO 300 in response to the

READY prompt. This will repeat step 3. Do not type RUN at this time or you
will have to enter all the hex codes again as in step 2.

36 MEMORY USE

PASSING MORE THAN ONE VARIABLE

More than one variable can be passed from your BASIC program to your
machine language subroutine by the USR function. The next program demon­
strates this. It passes two variables, A and B. These two values are then summed
by the machine language subroutine. Notice the changes in the BASIC program
and the subroutine.

BASIC PROGRAM-TWO VARIABLES PASSED

100 CLR: DIM E${l}, E(16) 16 bytes this time

200 FOR Y = 1 TO 16
210 INPUT N POKE subroutine
220 POKE ADR{E$)+Y,N
230 NEXTY

300 GR. 0: PRINT "INPUT A";
310 INPUT A Two numbers input
320 PRINT "INPUT B";
330 INPUT B Both A and B put on
340 X=USR{ADR{E$)+l,B,A) the stack
350 PRINT PEEK(6144)
360 PRINT "PRESS RETURN TO REPEAT";
370 INPUT A$:
380 GOTO 300 Go back to try again

When line 340 is executed, the USR function causes the stack to be filled
like this:

TOP 2 +- Number of variables passed

ha +- High byte of A

la +- Low byte of A

hb +- High byte of B

Ib +- Low byte of B

yy +- High byte of return address

BOTTOM xx +- Low byte of return address

PASSING MORE THAN ONE VARIABLE 37

Remember, when data items are pulled off the stack, they come off the
top . The last item put on the stack is the first one taken off the stack. You may
notice that two bytes are used for each number that was pushed on the stack.

When a two-byte number is Llsed, one byte is referred to as the Least Sig­
nificant Byte (LSB). The other is referred to as the Most Significant Byte (MSB).

Example:

MSB (Most Significant Byte)

27 26 2s 24 23 22 21 2°

0 0 0 0 0

LSB (Least Significant Byte)

27 26 25 24 23 22 21 2°

0 0 0 0

Don't confuse the Most and Least Significant Bytes with the Most and Least Sig­
nificant Bits. Each byte has an MSB (Most Significant Bit) and a LSB (Least Sig­
nificant Bit) .

MOST SIGNIFICANT BYTE

1 0 0 0 0 0

t t
most least
significant significant
bit bit

LEAST SIGNIFICANT BYTE

0 0 0 0 1

t t
most least
significant significant
bit bit

To use a two-byte number, you consider the Most Significant Byte as an exten­
sion of the Least Significant Byte . The place values of the Least Significant were
assigned powers of two from 0 through 7.

38 MEMORY USE

LSB

o 000 o = 64+4+2 = 70 (decimal)

The place values of the Most Significant Byte are assigned the next higher powers
of two (8 through 15).

MSB

o o o o 0 = 32768+2048+256 =
35072 (dec imal)

The decimal value resulting fro m the combined bytes (considered as one num­
ber) is:

a o o a o o 000 o

In decimal : 32768+2048+256+64+4+2 = 35142
Split into 4-bit parts:

10001001
'--v--'

HEX digits 8 9

Hex format: MSB LSB

89 46

0100 0110 +- This binary value

4 6

163 162

8 9

is equivalent to
+- this hex value

161 16°

4 ' 6 ~ 8*4096 = 32768
+ 9*256 2304
+ 4* 16 64
+ 6*1 6

35142
(dec imal)

The use of two-byte numbers allows us to use large r inputs (up to 65535) .
However, our machine language program is only designed to add single-byte inte­
gers (0-255) . Therefore, the High bytes of the variable A and the variable B are
both zero. If you input numbers whose sum is larger than 255, you will get an
incorrect result.

The mach ine language program is longer th is time, consisting of 16 hex
codes (16 bytes).

Address

E$+1

E$+2

E$+3

E$+4

E$+5

E$+6

E$+7

E$+8

E$+9

E$+10

E$+11

E$+12

E$+13

E$+14

E$+15

E$+16

PASSING MORE THAN ONE VARIABLE 39

MACHINE LANGUAGE SUBROUTINE

Hex Code

68

18

68

68

80

01

18

68

68

60

01

18

80

00

18

60

Function

Pull top value off stack and store in accumulator

Clear the Carry flag to prepare for addition of
Low bytes of numbers

Pull High byte of A and put in accumulator

Pull Low byte of A and put in accumulator

Store low byte of A into memory location that
follows

Low byte of memory used for storage

High byte of memory used for storage

Pull High byte of B and put in accumulator

Pull Low byte of B and put in accumulator

Add with carry the value in the accumulator and
the value in the memory location that follows

Low byte of memory

High byte of memory

Store the result in the memory location that
follows

Low byte of memory used for storage

High byte of memory used for storage

Return from subroutine

Enter the BASIC program now and RUN it so that you can enter the ma­
chine language codes in the usual way. After the 16 hex codes have been entered,
the screen clears and you will see the following.

(INPUT A?-

~TrY135
INPUT A?135
INPUT B?-

~TrY99
INPUT A?135
INPUT B?99
234
PRESS RETURN TO REPEAT?-

40 MEMOR Y USE

A new instruction is used at E$+10 of the Two Variable program. It is
ADC (ADd with Carry) with a hex code of 6D. We used the hex code 69 for
addition in earlier programs. Why the difference? Well, some of the functions,
such as addition, can be performed in several modes. This will be more thorough­
ly discussed in Chapter 5. The 69 instruction adds the value immediately follow­
ing it to the value in the accumulator. The 6D instruction adds the value that is
contained in the memory location that follows the instruction to the value in the
accumulator. Some instructions can be performed in only one mode, but others
can be performed in more than one mode. Even though the instruction may per­
form the same function, each mode of the instruction performs the function in a
different way. Therefore, each mode has a different hex code (called an Opera­
tion Code or Op Code for short) for each mode.

So far you have only seen machine language routines that proceed straight
through consecutive memory locations. All of the arithmetic operations were
performed in the accumulator, called the A register. The 6502 microprocessor
has other registers which are used in different ways.

Since the computer is ab le to perform repetitive operations, such as a
FOR-NEXT loop, in BASIC, you probably realize that similar operations can be
done in machine language. In Chapter 1, a brief discussion of the X and Y index
registers was given. Let's take a look now at how they can be used.

A MACHINE LANGUAGE LOOP

You have no doubt used FOR-NEXT loops many times in BASIC. In the
next machine language subroutine, we'll utilize a similar looping technique using
the X index register as a counter. Here is a comparison of the FOR-NEXT loop
and a description of a machine language loop that would do about the same
thing.

BASIC

FOR X = OTO 9
PRINT X

NEXT X

MACHINE LANGUAGE

Load X register with zero.

j
store the value in the X register into memory.
I ncrement the X register.
Compare the X register with 10.

loop Branch back if X is not equal to 10.

Return if X does equal 10.

The machine language program will be more detailed than the BASIC pro­
gram. Each step must be implemented through exact machine language instruc­
tions.

A MA CHINE LANGUAGE LOOP 47

Here is how the BASIC program and machine language subroutine will be
accomplished.

FLOW OF BASIC PROGRAM

Clear arrays and set memory

READ in mac hine language
instructions

POKE instructi ons into
memory

Clear th e screen and
call th e subroutine

PRINT th e counts used in
th e rn achine language
program

FLOW OF SUBROUTINE

Store th e co un t in
memor·y

I ncrement th e co unter

The hex codes for the machine language instructions are given in Appen­
dixes A and B. A more complete description of the instructions can be found in
the MCS6500 Microcomputer Family Programming Manual.* The instructions
are listed by their mnemonic codes. The operation codes are given in hexadeci­
mal form. Therefore, you need to convert them to decimal form in order to
POKE them into memory from your BASIC program. Calculate the decimal
equivalents for the machine language subroutine that follows. Fill in the blanks

in the table.

*Published by MOS Technology, Inc., 950 Rittenhouse Road, Norristown, PA 19401.

42 MEMORY USE

MACHINE LANGUAGE SUBROU TI NE

Address Hex Dec im al Mnemonic Com ments
Code eq ui va lent code

E$+ l 68 PLA Pul l byte o ff stack

E$+2 A2 LOX 0 } Load th e X register with ze ro

E$ +3 00

E$+4 8A TXA Tran sfe r th e va lu e in X regis ter
to th e accumul ator

E$ + 5 9D ST A 1800,X

E$+6 00 Store the va'lue in acc umul ato r
int o memo ry

E$+7 18

E$+8 E8 INX Increment the count in the
X reg iste r

E$+9 EO CPX OA

~ Co mpare the va lu e in X with

E$ + 10 OA
'10 (dec im al)

E$ + ll DO BNE F7

~ Branch back if X = 10 (dec imal)

E$+ 12 F7 to ad dress E$ +4

E$+13 60 RTS Return from Subroutin e

Figure 3-4. Machine Language Exercise

This subroutine uses several new instructions.

NEW INSTRUCTIONS USED 43

NEW INSTRUCTIONS USED

Six new instructions appeared in the machine language subroutine. At
E$+2 the hex code A2 was used . This is the operation code for the instruction,
"Load the X register with the value that follows it." In our subroutine, we are
loading the X register with zero. Therefol'e the instruction at E$+2 and the data
(O) at E$+3 go together.

At E$+4, the hex code 8A was used. This is the operation code for the in­
struction, "Transfer the value that is in the X register to the accumulator." We
are going to store this value into memory, but to do this we must first place it
into the accumulator. The accumulator is quite often used as a temporary stor­
age location in passing data from one place in the computer to another.

At E$+5, the hex code 9D is used . This is the operation code for the in­
struction, "Store the value that is in the accumulator into memory." This is a
different mode of the store accumulator instruction. This mode adds together
the memory location following the instruction to the value contained in the X
register. The value in the accumulator is stored into this calculated address. The
X register is used to index the memory location. The same instruction can be
used several times to store values in different memory locations by changing the
value in the X register.

At E$+8, the hex code E8 is used. This is th e operation code for the in­
struction, "Increment the value that is in the X register." The value is increased
(incremented) by one. Thus, each time the computer passes through the loop, a
new memory location will be used in the instruction at E$+5.

AT E$+9, the hex code EO is used. This is the operation code for the in­
struction, "Compare the value that is in the X register to the value that follows
the EO operation code." The value OA (10 decimal) follows this instruction.
Thus the value in the X register is compared with OA (hex). This supplies the
computer with a condition (X=OA or X10A) so that it can make a branching de­
cision at the next instruction.

At E$+ll, the hex code DO is used . This is the Operation Code for the in­
struction, "Branch if the previous condition is not equal." Otherwise go on to
the next sequential instruction. For values of X less than OA, the computer will
branch back to the instruction at location E$+4. When X reaches OA, the com­
puter will go on to the instruction at E$+ 13. The computer goes through this
loop 10 times (for X values of 0 through 9) and then returns to the main pro­
gram. The value F7 used at location E$+ 12 is a signed hexadecimal equivalent of
the decimal value -9. In other words, the computer must branch back nine steps
if the given condition is true (X10A). The size and direction of branches will be
discussed in Chapter 5.

We'll trace through the machine language subroutine step by step later in
this chapter, but let's first take a look at the BASIC program which loads, calls,
and prints out the results of the machine language subroutine.

44 MEMORY USE

BASIC PROGRAM

100 REM INITIALIZE MEMORY
110 CLR:DIM E${l), E(13)

120 REM ENTER MACHINE CODES
130 FOR N = 1 TO 13
140 READ C +- Read codes from DATA
150 POKE ADR{E$)+N,C +- Place in subroutine
160 NEXT N

170 REM CALL SUBROUTINE
180 X=USR{ADR{E$)+l)

190 REM PRINT RESULTS
200 GR.O +- Clear screen
210 FOR N = OTO 9
220 PRINT PEEK{6144+N) +- Print the counts used
230 NEXTN for machine language loop
240 END

250 REM DECIMAL DATA
260 DATA 104, 162,0, 138, 157,0,24,232,22
4,10,208,247,96

~ Machine codes in decimal form
(from Figure 3-4)

The FOR-N EXT loop at lines 130 through 160 READs in the decimal
equivalents of the hex codes and POKEs them into the correct memory locations
for the machine language subrout!ne. Remember, that even though BASIC needs
the data in decimal form, the codes will be inserted into memory in binary form.
The first few bytes of the program will actually be stored like this :

E$+l 101 1 0 1 0 0 01 =64+32+8= 104 decimal
~~

6 8 +- hex code

E$+2 11 0 1 0 0 0 1 0 1 = 128+32+2 = 162 decimal
~~

A 2 +- hex code

E$+3 I 0 0 0 0 0 0 0 0 I = 0 decimal
~~

o 0 +- hex code

TRACING THROUGH THE SUBROUTINE 45

TRACING THROUGH THE SUBROUTINE

The best way to understand a program is to put yourself in the place of
the computer and perform each instruction as it occurs in the program. Let's
now trace through the operations performed by the computer in our subroutine.
To do this, we will have to keep track of what is happening in register X, the
accumulator, and in the memory storage locations. We might also show what is
contained on the stack.

As the machine language subroutine is called, the stack contains:

~}
+-- Number of variables passed

+-- Retu rn address

When the first machine language program is executed, the stack changes.

Address
E$+l

Instruction
Pull byte off stack

I:: I } ~ R""m add""

Only the return address remains. Now, the rest of the subroutine.

Address Instruction X Accumulator Memory

E$+2 Load X
E$+3 with zero 0

E$+4 Transfer X to A 0 0

E$+5 Store accumulator
E$+6 in (1800+X)

1800-+ 0 E$+7 0 0

E$+8 Increment X 0

E$+9 Compare X
E$+10 with OA

Gx = 1, not OA))

E$+ll Branch back to 0
E$+12 E$+4 if X fOA

E$+4 Transfer X to A

46 MEMORY USE

Address Instruction X Accumulator Memory

E$+5 Store Accumulator 1801 -+ CD
E$+6 in (1800+X)
E$+7

E$+8 Increment X 2

E$+9 Compare X 2
E$+10 with OA

0X=2J not OAD

E$+l1 Branch back to 2
E$+12 E$+4 if XjOA)

E$+4 Transfer X to A 2 2

E$+5 Store Accumulator 2 2 1802 -+ GJ
E$+6 in (1800+X)
E$+7

E$+8 Increment X 3 2

E$+9 Compare X 3 2
E$+10 with OA

GX=3J not OA0

E$+ll Branch back to 3 2
E$+12 E$+4 if XjOA

E$+4 Transfer X to A 3 3

E$+5 Store Accumulator 3 3 1803 -+ [2]
E$+6 in (1800+X)
E$+7

This process continues with the value in X being increased by one. That
value is transferred to the accumulator and then put into the memory location
whose address is 1800+X.

The X register is used as a counter for the loop and also to index the mem­
ory storage (store into successive memory locations from 1800 upwards). We
continue the trace after X has been incremented to 9 and the branch has been
taken back to E$+4.

TRACING THROUGH THE SUBROUTINE 47

Address Instruction X Accumulator Memory

E$+4 Transfer X to A 9 9

E$+5 Store Accumulator 9 9 1800--{~1
E$+6 in (1800+X)
E$+7

E$+8 Increment X A 9

E$+9 Compare X A 9
E$+lO with OA

GX=OA, at last))

E$+11 Branch back to A 9
E$+12 to E$+4 if X fOA

E$+13 Retul-n from Subroutine

The return address is taken from the stack. The stack is now empty.
Thus, when the subroutine is completed, the values assigned to the X regis­

ter (0 through 9) have been stored into memory.

DATA STORED BY SUBROUTINE

Hex Decimal Value
Address Address Stored

1800 6144 0
1801 6145
1802 6146 2
1803 6147 3
1804 6148 4
1805 6149 5
1806 6150 6
1807 6151 7
1808 6152 8
1809 6153 9

Notice that the last value placed in the X register (OA) was not saved in
memory .

When the subroutine returns to the BASIC program the values stored in
the above memory locations are printed out on the screen.

48 MEMORY USE

0

2
3
4
5
6
7
8
9

READY

•

SUMMARY

In this chapter, you have learned:

• How to convert a hexadecimal number to its decimal equivalent;

• How memory is allocated in the Atari computer;

• How to set aside memory locations for a machine language subroutine;

• How to use the X index register to count the number of times that a
loop is executed in a machine language program;

• How to test the X register to determine when to exit a loop;

• How to trace a machine language program by performing the instruc­
tions yourself;

• That some instructions can be used in more than one way (more than
one mode);

• That the USR function can pass values from your BASIC program to
your machine language program;

1080 A=5: B=6
1090 X=USR(ADR(E$)+l ,A,B

• That numbers passed by the USR function are pushed onto the stack as
two-byte numbers;

• The following new machine language instructions:

A2

8A
LDX

TXA

Load the X register with the value that follows.

Transfer the value in the X register to the accu­
mulator.

9D

E8

EO

DO

STA

INX

CPX

BNE

EXERCISES 49

Store the accumulator's contents into the mem­
ory location that follows, indexed by the X

register.

Increment the value in the X register.

Compare the value in the X register to the value

that follows.

Branch forward, or back, the number of steps
given if condition is not equal to zero.

EXERCISES

1. Convert the following hexadecimal numbers to their decimal equivalents.
A2 hex = decimal

3B hex = decimal
9E hex = decimal

work space

2. It is not safe (or at least caution must be used) to POKE _ _____ _
BASIC, machine

language instructions in the area of memory below your _ _____ _

BASIC, machine

language program instruct ions.

3. If your BASIC program dimensions the string variable E$ to one, you are
saving space in the memory area above your BASIC program. At what
address would it be safe to start a machine language program called from
your BASIC program?

4. Does the location saved for E$ depend upon the length of your BASIC
program?

5. Data assigned to variables can be passed from a BASIC program to a ma­
chine language subroutine. Even though no variables are passed to the sub-

50 MEMORY USE

routine, the subroutine must perform some operation on the stack before a
return can be made from the subroutine. What is that operation?

6. Suppose that the X register contains the value 7, and the accumulator holds
the value 1 A. The computer executes the instruction :

E$+7 9D STA 1800, X
E$+8 00
E$+9 18

In what memory location is the value 1 A stored?

7. The BASIC program of page 44 and the subroutine of page 42 are to be
executed. The only change made is to line 210 of the BASIC program . It is
changed to:

210 FOR N = 3 TO 5
Show what will be printed on the screen when the program is executed.

r ~ Answer here

8. What changes would be made to the machine language subroutine on page
42 if you wanted the loop to count to 20 decimal instead of 10 decimal?

address hex code

9. What changes would you make to the BASIC program on page 44 to print
out the 20 values stored by the changed machine language program (exer­
cise 8)?

260 DATA

1. A2 hex = 162 decimal
3B hex = 59 decimal
9E hex = 1 58 decimal

2. Machine
BASIC

3. E$+l or ADR{E$)+l

ANSWERS

4. Yes (Space is saved for E$ at the end of your BASIC program.)

ANSWERS 57

5. One byte must be pulled off the top of the stack (the number that tells how
many variables were passed, zero in this case) before the return address is
available.

6. Location 1807 (1800+7)

7.
3
4
5

READY

•

,'------ the value in X

8. E$+10 14 (16+4 = 20)

9. Line210FORN=OT01 9
Line 260 DATA 104,162,0,138,157,0,24,232,22,
4,20,208,247,95

"'- change these values
~~--------------~/

Chapter 4

Getting Started
With the Assembler

Only the 400 or 800 computer and the Assembler Cartridge are necessary
to write, assemble, and execute assembly language programs. However, some stor­
age device (an Atari 410 Program Recorder or Atari 810 Disk Drive) is recom­
mended. Otherwise, you wi ll have to enter your program from the keyboard
each time that you want to use it. The Atari 820 printer is an optional addition.
It will allow you to make permanent records of your programs in a form that is
easy to read .

In writing this book, the authors used the system elements shown below in
solid lines. Those elements in broken lines are optional.

TV

8K memory

Cassette

Figure 4-7. Our A tari 800 System

Communication between elements of the Atari 400/800 system is man­
aged by the Atari Operating System contained in a 10K ROM (1 O,OOO-byte Read
Only Memory) using some associated RAM (Random Access Memory) . The
Assembler taps into the Operating System as needed .

The Atari Assembler Cartridge contains three separate programs:

1. The Writer/Editor

2. The Assembler

3. The Debugger

The Writer/Editor Program, just as the name implies, is used to write and
edit your assembly language programs. Assembly language is a shorthand that

52

THE WRITER/EDITOR 53

uses English like abbreviations to represent instructions to the computer. It also
uses numbers in decimal or hexadecimal form to provide data for the programs.

The Assembler Program translates the abbreviations provided by the Writer/
Editor into machine language codes and data that the computer can understand.
It also takes care of assigning the instructions and data to their proper memory
locations.

The Debugger Program is used to execute, test, or trace the operation of
the machine language program that the Assembler produced.

You can see that the three programs are used in a logical order. If the De­
bugger produces a faulty program, you may return to the Writer/Editor Program
for changes. The process is then repeated until satisfactory results are obtained.
Here is a diagram of the order in which the three programs are used .

No

Writerl Editor

Write assembl y language
program and make changes

Assembler

Assembl e machine
language program

Debugger

Execute the mac hin e

Figure 4-2. Use Flow of Assembler Cartridge

THE WRITER/EDITOR

Before we get too involved in the technicalities of assembly and machine
language, let's power up the computer and try a short sample program.

Place the Assembler Cartridge in the left slot of the computer, make sure

54 GETTING STARTED WITH THE ASSEMBLER

that your TV set is connected and turned on, and turn on the computer. This is
what you should see on the screen :

This message tells you the Writer/Editor
Program is being used. f;~~ Cursor indicates that it's your turn to type.

A small amount of memory space (108 locations) is used to store the char­
acters typed in for the line that you are currently typing. This area or memory is
called the Current Line Buffer. The buffer is written over as each new line is
typed in. It is located in an area of 384 locations (180 HEX) which is reserved
for the Assembler Cartridge.

An area of memory just above that saved for the Assembler is used for the
Edit Text Buffer. It stores all the input from the keyboard as you are writing the
Assembly Language Program. As you enter more and more from the keyboard ,
the Edit Text Buffer fills up. No upper bound is specified. However, it is possible
to exceed the memory limits of your computer.

End of -- lelF
8 K memory (He x)

t Edit tex t buffe r

0880 -I--------i} Assembler cartrid ge and
(H ex) current lin e buffer
0700 -1---------1

(H ex)

Figure 4-3. Buffer Memory

To find the location of the Current Line Buffer and the Edit Text Buffer,

type the command :

SIZE (and press the RETURN key)

The display:

Memory location

EDIT
SIZE

of Current Line 0700
Buffer

EDIT

•
Ready for more /

0880

t
The memory address
of the location where
the next character
typed will appear (in­
creases as you type)

1C1F

t
The highest
memory loca­
tion available
in your com­
puter

THE WRITER/EDITOR 55

The numbers displayed will differ according to the amount of memory in
your system. Remember, our system is the Atari 800 with 8K or RAM and no
disk.

You can find out, at any time, how long your program is by using the
SIZE command. Subtract the first number (700 in our case) + 180 from the sec­
ond number. The result is the approximate number of characters in your program.

Before we enter our program, let's take a look at the format used for writ­
ing assembly language programs. The program to be assembled is called a Source
Program. The Source Program consists of statements just as a BASIC program
does. The statements are numbered just as BASIC lines are numbered. Every
statement must start with a line number in the range of 0 through 65535. After
each statement is entered using the Writer/Editor Program of the Assembler
Cartridge, it is terminated (or entered) by pressing the RETURN key.

The format used for each statement is divided into five fields.

Field Field Field Field Field
1 2 3 4 5

Statement Label Op Code Operand Comment

Number (Optional) mnemonic (Not always (Optional-
required-de- like a RE-

Exactly one Space pends on the MARK in
space between
fields 1 and 2 if
field 2 is used-
otherwise 2
spaces

Examples:

1. No label used
20 CLC

stateLt I oJ Code
Number

No label-so
two spaces

2. No label used
30 LDA

State~ lop cLe
Number

No label-so
two spaces

instruction) BASIC)

Space Space

I Th is instruction-Clear the Carry bit

#0

t
Operand
(In Immediate Addressing Mode-#)

This instruction-Put zero in the accumulator

56 GETTING STARTED WITH THE ASSEMBLER

3. Label used
40 LOOP ADC #1 t'" stateL. 1 L!bel Op Code Operand

Number
Label used­
so one space

(In Immediate mode)

This instruction-Add one to the value in accumulator

4. No label used
50 CMP #3

stateL. lop JOde \perand
Number (In Immediate mode)

No label -
so 2 spaces

This instruction-Compare the value in accumulator with 3

5. No label-operand gives branch location
60 BNE LOOP

stateLt I Op to de Jperand
Number (a label this time)

No label-
so 2 spaces

This instruction- If the 2 values are not equal, go back to the instruction
with the LOOP label

Now, let's write an assembly language program using the above statements.
When we left the computer, it was in the Edit mode.

EDIT
SIZE
0700

EDIT

•

0800 1C1F

We must first tell the assembler where to start our machine language pro­
gram, called the Object Program, in memory . We do this with a special command.

THE ASSEMBLER PROGRAM 57

The starting memory location of the machine language progl'am must be high
enough above the Edit Text Buffer (0880 in our case) so that the two programs
do not overlap.

Type: 10 *=$1000

,,/ t \
Line 2 spaces Starting address ($ indicates a hexadecimal value)
number

Then the balance of the program is entered. Remember to press the RETURN
key at the end of each line (just like you do in BASIC).

20 CLC
30 LDA #0
40 LOOP ADC # 1
50 CMP #3
60 BNE LOOP

The program must conclude with an END statement (called a PSEUDO OPERA­
TOR or Directive) . Every program should have one and only one END Directive.

70 END

t
one space

THE ASSEMBLER PROGRAM

After the program has been entered using the Writer/Editor Program, the
next step is performed by the Assembler Program . The assembler will convert
the assembly language instructions to machine language codes and assign mem­
ory locations to the mach ine language codes.

The video screen at this time (before going to the Assembler Program)
shows :

EDIT

10 *=$1000

20 CLC
30 LDA#O
40 LOOP ADC #1
50 CMP # 3
60 BNE LOOP

70 END

Let's check to see how much memory has been used by our assembly lan­
guage program. Remember, when we typed SIZE earlier, we saw:

58 GETTING STARTED WITH THE ASSEMBLER

r:'DIT
SIZE
0700 0880 1C1F

To see how much memory has been used, once again type: SIZE.

60 BNE LOOP
70 END
SIZE
0700 08D4 1C1F
EDIT

• t
New value

Our program has used 8D4-880 or 54 (hex) memory locations:

+-- 1C1 F Top of our memory

+--? End of mach ine language program

+-- 1000 Start of mach ine language program

+-- 08D4 Top of Edit Text Buffer

+-- 0880 Beginning Edit Text Buffer

Notice that there is an unused area between the assembly language pro­
gram (Edit Text Buffer) and the machine language program. That is good. When
longer assembly language programs are used, care must be taken that machine
language and assembly language programs do not overlap. We can now proceed
to the Assembler Program.

You now type: ASM (and press the RETURN key)
Each machine code is displayed fo llowed by the assembly language instruc­

tions that created it.

60 END
ASM
0000 10 *= $1000

1000 18 20 CLC

1001 A900 30 LDA#O

1003 6901 40 LOOP ADC#l

1005 C903

1007 OOFA
~

The assembler created
this machine language
program.
(Object Program)

50

60

70 ENO

THE ASSEMBLER PROGRAM 59

CMP#3

BNE LOOP

\
Assembly language
(Source Program)

The assembly language Source Program that you entered is shown on the
right side of the screen. The machine language Object Program that the assembler
produced is shown on the left side of the screen with the memory locations that
were assigned to each machine language instruction. Let's examine the programs
line by line to see how the instructions match up.

Machine Language Assembly Language

10 *= $1000 ASM
0000 Line 10 assigned the starting address of the ma­

___________ chine language program to 1000 (hex).

1000 18 20 CLC

1001 A900

10036901

The instruction CLC is assembled into the ma­
chine language code : 18. The instruction 18 is
placed in memory location 1000.

30 LOA #0
The instruction LOA #0 is assembled into the
machine language code: A900. The instruction
A9 (from LOA #) is placed in memory location
1001, and the data (00) is placed in location
1002.

40 LOOP AOC#l

The instruction AOC #1 is assembled into the
machine language code: 6901. The instruction
69 (from AOC #) is placed in memory location
1003, and the data (01) in location 1004.

60 GETTING STARTED WITH THE ASSEMBLER

1005 C903

1007 DOFA

50 CMP#3

The instruction CMP #3 is assembled into the
machine language code: C903. The instruction
C9 (from CMP #) is placed in memory location
1005, and the data (03) in location 1006.

60 BNE LOOP

The instruction BNE LOOP is assembled into
the machine language code: DOFA. The instruc­
tion DO (from BNE) is placed in location 1007,
and the length of the branch (F A) is placed in
location 1008. The branch if taken goes back to
memory location 1003 where the LOOP began.

70 END

Line 70 tells the assembler where to stop. No
machine code is created.

We have used five assembly language instructions in this program. These in­
structions consist of a mnemonic code that is an abbreviation of its English lan­
guage meaning and usually an operand. These meanings are given below.

Mnemonic Operand

CLC

LDA #0

ADC #1

Meaning

CLear the Carry bit of the Processor Status
Register (set it to zero).

11111111111111101

farry
o
I

LoaD Accumulator with the immediate oper­
and (#0)

ADd to accumulator with Carry the immediate
operand (#1).

CMP #3

BNE LOOP

THE ASSEMBLER PROGRAM 67

Add 1

CoMPare the value in accumulator with the im­
mediate operand (#3)

Accumulator

Branch on result Not Equal to the instruction
with a label of LOOP

~

YES

The machine language program has been assembled and is stored in the
computer's memory as follows:

Memory
Location

1000

1001

1002

1003

1004

1005

1006

1007

1008

Machine
Code

18

A9

00

69

01

C9

03

DO

FA

Instruction CLC

Instruction LOA #

Data loaded

Instruction ADC #

Data to be added

Instruction CMP #

Data to be compared

Instruction BNE

Data telling where to branch

Figure 4-4. Machine Language Program Storage

62 GETTING STARTED WITH TI-I E ASSEMBLER

EXECUTING THE MACHINE LANGUAGE PROGRAM­
THE DEBUGGER

You have used the Writer/Editor Program to write the assembly language
program and the Assembler Program to assemble it into machine language codes

and allocate memory locations. It's now time to use the Debugger Program to
execute (or run) the machine language program.

After the program was assembled, you probably noticed that the computer
returned to the Writer/Editor Program and displayed the word EDIT followed

on the next line by the cursor.

EDIT

•

You enter the Debugger

Program by typing: BUG -

The computer responds: --... ~

EDIT
BUG

DEBUG

•

The computer is now waiting for a DEBUGGER command. There are sev­

eral, but we'll only look at two of them right now to avoi d confusion. The first
h as the form:

~GfOrGOTO
~ XXXX represents the hexadecimal digits of the memory

location of the beginning of our program

If you type: G1000 (and press the RETURN key), the program will exe­
cute immediately . You will see the following on the display:

EDIT
BUG

DEBUG
Gl000
1009
DEBUG

•

THE DEBUGGER 63

..... ~o------------- You typed this

A=03 X=OO Y=OO P=33 5=00
________ Computer

responds

What does all th is mean?

1. The number 1009 tells you that the program stopped at this memory
location. It executed all the instructions from location 1000 through
1008.

2. The only other value on the line that we are presently concerned with
is: A=03. A stands for Accumulator. The value 03 shows that the accu­
mulator holds a value of 3 when the program ended. This is just what
we wanted. Our program put an original value of 0 in the accumulator
(LOA #0). It then added a 1 each time through the loop until the accu­
mulator contained a value of 3. Then the computer stopped.

Let's watch it count, step by step, as the program is executed. Notice that
the DEBUG message was displayed at the end of the previous program execution.
This means that we are still in the Debugger Program and can tryout our second
DEBUGGER command. We can perform a step-by-step trace of the program by
typing:

Tl000

~ "-
(and press return)

T for TRACE Starting memory location 1000

This is what we then see on the display :

64 GETTING STARTED WITH THE ASSEMBLER

1000 18 CLC
A=OO X=OO Y=OO P=32 5=00

1001 A900 LDA #$00
A=OO X=OO Y=OO P=32 5=00

}
+-- { The top two lines Will}

scroll off the screen

1003 69 01 ADC #$01 +-- One added to accumulator
A=Ol X=OO Y=OO P=30 5=00

1005 C903 CMP #$03
A=Ol X=OO Y=OO P=BO 5=00

1007 DO FA BNE $1003
A=Ol X=OO Y=OO P=BO 5=00

1003 6901 ADC #$01 +-- Branch back and add 1 more
A=02 X=OO Y=OO P=30 5=00

1005 C903 CMP #$03
A=02 X=OO Y=OO P=BO 5=00

1007 DO FA BNE $1003
A=02 X=OO Y=OO P=BO 5=00

1003 69 01 ADC #$01 +-- Branch back and add 1 more
A=03 X=OO Y=OO P=30 5=00

1005 C903 CMP #$03
A=03 X=OO Y=OO P=33 5=00 "Now comparison is equal-

1007 DO FA BN E $1003/ so no branch
A=03 X=OO Y=OO P=33 5=00

1009 00 BRK BRK for break-program
A=03 X=OO Y=OO P=33 5=00 stops

DEBUG

•
Figure 4-5. Program Trace

Notice that the Accumulator (A) increases by one each time the ADC #01
instruction is executed at location 1003. The value in the accumulator is shown
following each instruction line as: A=nn (where nn is a two-digit hex value). The
values that you see in the other registers may differ from that shown here. Do
not worry about them for the time being. You should only be concerned with
the accumulator at this time. Registers are covered in Chapter 5.

If you want to see how fast the computer can count to 255 (FF HEX),
let's modify the compare value at line 50 to:

50 CMP #~ The $ denotes a hex number (when not used, a
decimal value is assumed.)

With this modification, the computer will not stop when the value in the accu­
mulator equals 3 but will go right on to FF. We could enter a whole new pro-

THE DEBUGGER 65

gram to accomplish this change, but it's easier to alter the program that we
already have.

We left the computer in the Debugger Program after tracing our last pro­
gram. We need to get back to the Writer/Editor Program to change line 50.

Type: X (and press RETU RN)

1009 00
A = 03 X = 00 Y=OO P=33 S=OO

DEBUG
X

EDIT

•

BRK

~ You type the X

To take a look at the previous Assembler Program, guess what command
is used.

Type: LIST (and press RETURN)

/
Just like

·BASIC

EDIT
LIST

10 *=$1000
20 CLC
30 LDA#O
40 LOOP ADC #1
50 CMP#3
60 BNE LOOP
70 END

•
All that you have to do to change line 50 is to type in the new line (with

the line number of course).

Type: 50 CMP #$FF (Don't forget the $ sign.)

66 GETTING STARTED WITH THE ASSEMBLER

70 END
50 CMP #$FF

•

To verify that the change has been made, LIST the program again .

70 END
50 CMP #$FF
LIST

10 *=$1000
20 CLC
30 LOA #0
40 LOOP ADC #1
50 CMP #$FF. ... +- Yes, the change was made.
60 BNE LOOP
70 END

Another way to replace the value to be compared would be by the Editor's
REPLACE statement. We could have accessed the Edit mode and typed:

REP;t;;(i;FF/
7

~I \
Replace the old the new

three backslashes

value value

The result would have been the same.
Even though the change has been made to the assembly language program,

it has not been made to the machine language program. We must assemble the
modified program.

THE DEBUGGER 67

Type: A5M (and press RETURN)

60 END
A5M
0000 10 *= $1000
1000 18 20 CLC
1001 A900 30 LDA #0
1003 6901 40 LOOP ADC # 1
1005 C9FF 50 CMP #$FF
1007 DO FA 60 BNE LOOP

70 END

EDIT

•
Remember, we must use the Debugger Program to execute the program.

50 type: BUG

EDIT
BUG

DEBUG

•
Now run the program by typing: Gl 000

DEBUG
Gl000
1009
DEBUG

•

A=FF X=OO Y=OO P=33 5=00

"-There it is

Wow, that was quick! How do we know the computer didn't just print the
final result instead of counting all the way? Let's slow it down by tracing the
program.

Keep your eye on the column that prints the value in the accumulator (A).
The results will go by pretty fast as the screen fills up and scrolls upward. It will
take between 2 and 3 minutes for the accumulator to reach FF.

68 GETTING STARTED WITH THE ASSEMBLER

Type: Tl000 (and press RETURN)

The screen scrolls merrily on its way. After some time it finally stops at
the end of the program.

1007 DO FA BNE $1003
A=FF X=OO Y=OO P=33 S=OO

1009 00 BRK
A=FF X=OO Y=OO P=33 S=OO

~EBUG /

Yes, it really did count up to F F.

It did take awhile for the computer to trace through the program. That's
because it had to look up and print out all those values in the registers. It works
much faster when you leave it alone and don't ask it to perform any extra tasks.

We have found out that we can increase the value in the accumulator by
adding one to it. We can also subtract values from the accumulator. Why not
start with a value of FF and subtract one from it each time through the loop? To
do this we need two new instructions.

SBC (SuBtract from accumulator with borrow; borrow is the opposite of Carry,
but they call it SBC)

SEC (set the Carry bit. This will replace the Clear Carry instruction.)

We can use our old program to model the new one.

ADD PROGRAM SUBTRACT PROGRAM

10 *=$1000 10 *=$1000
20 CLC +- Clear and set -+ 20 SEC
30 LDA#O +- Start at -+ 30 LDA #$FF
40 LOOP ADC #1 +- Add and Subtract -+ 40 LOOP SBC #1
50 CMP #$FF +- Go until -+ 50 CMP#O
60 BNE LOOP 60 BNE LOOP
70 END 70 END

If you still have the Add Program in memory (check by entering the Writer/
Editor Program and LiSTing the program), you can change lines 20, 30, 40, and
50. Then assemble the new program. Otherwise, enter the complete new Sub·
tract Program, and then assemble it.

After assembling the new program, enter the Debugger Program and exe­
cute it by typing:

G1000

EDIT
BUG

THE DEBUGGER 69

DEBUG
G1000
1009
DEBUG

A=OO X=OO Y=OO P=33 S=OO ,
• It quickly counts down to zero .

You can verify the action by using the trace feature. Use the BREAK key
to stop the program at a convenient point. As shown by the following display,
we stopped ours shortly after it started .

Type: T1000

DEBUG
T1000
1000 38 SEC

A=OO X=OO Y=OO P=B1 S=OO
1001 A9 FF LDA #$FF

A=FF X=OO Y=OO P=B1 S=OO
1003 E901 SBC #$01

A=FE X=OO Y=OO P=B1 S=OO
1005 C900 CMP #$00

A=FE X=OO Y=OO P=B1 S=OO
1007 DO FA BNE $100

A=FE X=OO Y=OO P=B1 S=OO
1003 E901 SBC #$01

A=FD X=OO Y=OO P=B1 S=OO
1005 C900 CMP #$00

A=FD X=OO Y=OO P=B1 S=OO

1007 1
DEBUG

•

D ~ We pressed the BREAK key
here .

Accumulator down from FF to FD

If you let the program execute until the accumulator counts down to zero,
you'll find out that the computer can count backwards just as fast as forwards.
Keep your eye on the Accumulator as the data scrolls by.

Let's take a break now to sum up what you have learned so far. Several
small doses of assembly language are easier to take than a few very large ones. A
more complete coverage of the Assembler features is summarized in Chapter 7.

70 GETTING STARTED WITH THE ASSEMBL ER

SUMMARY

The Assembler Cartridge consists of 3 programs:

1. Writer/Editor- Used to write and edit assembly language programs.

2. Assembler-Used to translate assembly instructions into machine code
and to assign memory locations for the machine language program.

3. Debugger- Used to execute machine language programs.

Key Words Used
Writer/Editor

1. EDIT -a prompt to let you know you are in the Writer/Editor Program.

2. SIZE- Displays memory locations of Current Line Buffer, Edit Text
Buffer, and your machine's highest available memory.

3. LIST- Lists the assembly language program on the video screen.

4. BUG- A command that transfers control from the Writer/Editor Pro­
gram to the Debugger Program .

5. ASM - A command that transfers control from the Writer/Editor Pro­
gram to the Assembler Program.

Debugger

1. DEBUG- A prompt to let you know that you are in the Debugger Pro­
gram.

2. GXXXX- A command which executes the current machine language
program beginning at memory location XXXX (each X is a hex digit).

3. TXXXX- A command to trace each step of the current machine lan­
guage program as it is executing from memory location XXXX (each X is again
a hex digit).

4. X-A command that transfers control from the Debugger Program to
the Writer/Editor Program.

I nstructions Used:

Assembly Language
Instructions

(for Source Program)

LDA#O

ADC #1

CMP#3

Machine Language Comments
Code Produced

(for Object Program)

A900 Load accumulator with zero­
Immediate Addressing mode

6901 Add 1 to the accumulator­
Immediate Addressing mode

C903 Compare value in accumulator
with 3-1 mmediate Addressing
mode

BNE LOOP

END

SBC #1

CLC

SEC

DO FA

E901

18

38

EXERCISES

EXERCISES 77

Branch on result not equal to
zero back to the instruction
labeled LOOP-Relative Ad­
dressing mode

A Directive-no machine code
is generated.

Subtract 1 from the value in
the accumulator-I mmediate
Addressing mode.

Clear the Carry bit

Set the Carry bit to 1

1. Assembly language programs are written using the _ _____ _
Program of the Assembler Cartridge.

2. The Program of the Assembler Cartridge is
used to translate assembler language programs to machine code.

3 . Machine language programs are executed from the
Program of the Assembler Cartridge.

4. The Source Program is assembled into the Program.

5. The function of LDA #0 is to load the accumulator with zero. Give
the function of the following assembly language instructions.
(a) LDA#$FF
(b) ADC#10
(c) CMP#$lE ___ _ _ _ _________ _

Exercises 6 through 10 refer to this assembled program.

ASM
0000 10 *= $1000
1000 18 20 CLC
1001 A901 30 LDA#l
1003 6902 40 LOOP ADC#2
1005 C903 50 CMP#9
1007 DO FA 60 BNE LOOP

70 END

~ ~

Mach ine language Assembly language
program program

72 GETTING STARTED WITH THE ASSEMBLER

6. The accumulator is first loaded with what number?

7. What number is added each time through the loop?

8. What will be the number in the accumulator when the program has
passed through the loop the last time? ___ _____ _

9. If a trace of the machine language program was executed, the trace
would display accumulator values that are from __ _

(odd, even)
through ___ .

10. Lines 30 and 50 in the assembly language program could be changec
so that the display of a trace would display accumulator values that
were even from 0 through 8. Show the two modified assembly lan­
guage lines that would make this change.
30
50

ANSWERS

1. Writer/Editor

2. Assembler

3. Debugger

4. Object

5. (a) Load the accumulator with FF (hex)
(b) Add 10 to the accumulator (lOis decimal-no $ sign)
(c) Compare the value in the accumulator with 1 E (hex)

6. 1

7. 2

8. 9

9. odd, 1,9

10. 30 LOA #0
50 CMP #8

Chapter 5

Special-Purpose Registers
and Addressing Modes

The 6502 microprocessor used in the Atari 400/800 computers has several
special-purpose registers. These registers hold 8 bits (1 byte) of data just like
memory locations but are used for specia l purposes. You have seen displays of
the data contained in these registers in the trace of the program in Chapter 4.

Example:

1004 C903 CMP
A=03 X=OO Y=OO P=33 S=OO

~// 1 ~
Accumulator X register Y register Processor

Status
Register

#03

Stack
Pointer
Register

We will discuss these special registers in the order listed below.

1. The Accumulator-Most operations on data are performed here. You
can te ll from the short program in Chapter 4 that the accumulator is a very busy
place.

2. The X register- This register is used as a scratch pad or as an index in
certain addressing modes.

3. The Y register-This register is used in the same way as the X register.

4. The Processor Status Register- This register contains a record of the
microprocessor's status as each instruction is executed . Each bit of this register
holds one item of status information.

5. The Stack Pointer Register-The data in this register is the memory loca­
tion of the top of the stack. The stack is a special block of memory at addresses
01 FF down through 0100 (hex).

73

74 SPECIAL-PURPOSE REGISTERS AND ADDRESSING MODES

THE ACCUMULATOR

The programs in Chapters 3 and 4 showed how the accu mulator can be
loaded with a number in the Immed iate Addressing mode. One program also
added a number to this value (using the Immediate Addressing mode) and then
compared the result with the value 3 (agai n in the Immediate Addressing mode).
All of those operations were performed using only the accumulator and data
held in certain memory locations of the program.

A branch instruction (BNE in the Relative Addressing mode) was also
used in the program. To determine whether to take the branch or not, the com­
puter examined the Processor Status Register. It looked at one bit (the zero bit)
of the Processor Status register.

THE X AND Y REGISTERS

Let's now develop a short program to demonstrate some action taking
place in the X register. It will be very similar to the programs used in Chapters
3 and 4.

1. LOX #0 Load the X register (LOX) with zero using the Immediate
Addressing mode (#0) .

2. INX Increment the X register (INX) using the Implied Addressing
mode (no operand used).

3. CPX #3 Compare the value in the X register (CPX) with 3 using the
Immediate Addressing mode (#3).

4. BNE LOOP Branch if the result (X register-3) is not equal to zero
(BNE) back to the instruction that you have labeled LOOP (INX in this program) .

The program is written using the Writer/Editor Program of the Assembler
cartridge as before. When you are in the Edit mode, type NEW to erase any old
program that may still be in the Edit Buffer. This does not erase the memory
contents (the previously assembled machine language program). Enter the
program as shown.

EDIT
10 *=$1000
20 LOX #0
30 LOOP INX ~ You enter this.
40 CPX #3
50 BNE LOOP
60 END

•

THE X AND Y REGISTERS 75

Then you use the Assembler Program to assemble the machine language
program.

50 ~BNE LOOP You type this.
60 END
A5M
0000 1 0 *= $1000

1000 A200 20 LOX #0

1002 E8 30 LOOP INX

1003 E003 40 CPX #3

1005 DOFB 50 BNE LOOP

60 END

EDIT

•

Now enter the Debugger Program and execute the run.

1005 DOFB 50 BNE LOOP

60 END

EDIT _---,..------You type these.
BUG-"'---7 I

DEBUG
G 1 000 ~r----__ ---J

1007
DEBUG

A=OO X=03 Y=OO P=33 5=00

t • Yes, the X register ends with
'-------------the value 3.

76 SPECIAL-PURPOSE REGISTERS AND ADDRESSING MODES

This time, trace the program step by step. Type : Tl000

WATCH 1000 A2 00 LDX #$00
the A=OO X=OO Y=OO P=32 5=00

X"'r 1002 E8 INX
go up A=OO X=Ol Y=OO P=30 5=00
at 1003 EO 03 CPX #$03
1002 A=OO X=Ol Y=OO P=BO 5=00

\\ 1005 DO FB BNE $1002 +-- The
A=OO X=Ol Y=OO P=BO 5=00 assembler

1002 E8 INX calcu lated
A=OO X=02 Y=OO P=30 5=00 this branch

1003 EO 03 CPX #$03 location.
A=OO X=02 Y=OO P=BO 5=00

1005 DO FB BNE $1002 Your X
A=OO X=02 Y=OO P=BO 5=00 register

1002 E8 INX should be
A=OO X=03 Y=OO P=30 5=00 disp layed

1003 EO 03 CPX #$03 as ours is.
A=OO X=03 Y=OO P=33 5=00 The other

1005 DO FB BNE $1002 registers
A=OO X=03 Y=OO P=33 5=00 may

1007 00 BRK differ.
A=OO X=03 Y=OO P=33 5=00

DEBUG

•

Notice that the value in the X register increases each time that the compu­
ter executes INX at location 1002. Notice also that the program stops at loca­
tion 1007 with the instruction BRK (BREAK).

The computer uses the BREAK instruction to stop itself at the end of a
program. We'll discuss the BRK instruction more thoroughly in Chapter 9.

Next, let's modify the program to count in both the accumulator and the
X register. We' ll use one new instruction:

TAX

No, it's not reall y tax time. This is just a mnemonic code that stands for:
Transfer Accumulator to X register. When th is instruction is executed, t he data

THE X AND Y REGISTERS 77

currently in the accumulator is transferred to {or copied into} the X register. The
data also stays in the accumulator.

Accumulator X Register

Copy accumulator into X register (TAX)

Type: X and press the RETURN key to get back to the Writer/ Ed itor
mode. Now you can erase the old program by typing:

NEW

Wow! This is just like BASIC. The old program is erased and you are ready
to write the new program.

PROGRAM TO COUNT IN ACCUMULATOR

AND IN THE X REGISTER

EDIT
10 *=$1000
20 CLC New Instruction, Transfer
30 LDA#O content of Accumulator to
40 TAX +- the X register
50 LOOP ADC #1 +- Add 1 to accumulator
60 INX +- Increment X register
70 CPX #3
80 BNE LOOP
90 END

•

78 SPECIAL-PURPOSE REGISTERS AND ADDRESSING MODES

Then assemble it:

80 BNE LOOP

90 END
ASM

0000 10

1000 18 20

1001 A900 30

1003 AA 40

1004 6901 50 LOOP

1006 E8 60

1007 E003 70

1009 DOF9 80

90 END

EDIT

•

Now enter the Debugger Program.

EDIT
BUG

DEBUG

•

*= $1000

CLC

LDA#O

TAX

ADC#l

INX

CPX #3

BNE LOOP

To see what happens as a program is executed, the trace feature of the
assembler is a tremendous aid. Let's use it again to watch our program in action.

Type : T1000 and press the RETURN key

THE X AND Y REGISTERS 79

1007 EO 03 CPX #$03
A=Ol X=Ol Y=OO P=BO 5=00

1009 DO F9 BNE $1004
A=Ol X=Ol Y=OO P=BO 5=00

1004 69 01 ADC #$01
A=02 X=Ol Y=OO P=30 5=00

1006 E8 INX
A=02 X=02 Y=OO P=30 5=00

1007 EO 03 CPX #$03
A=02 X=02 Y=OO P=BO 5=00

1009 DO F9 BNE $1004
A=02 X=02 Y=OO P=BO 5=00

1004 69 01 ADC #$01
A=03 X=02 Y=OO P=30 5=00

1006 E8 INX
A=03 X=03 Y=OO P=30 5=00

1007 EO 03 CPX #$03
A=03 X=03 Y=OO P=33 5=00

1009 DO F9 BNE $1004
A=03 X=03 Y=OO P=33 5=00

100B 00 BRK
A=03 X=03 Y=OO P=33 5=00

DEBUG

•
What happened? The first part of the program rolled by so fast that we

couldn't read it. The video screen can only hold 24 lines of information at one
time. Now what?

Looking in the Atari Assembler Manual, I see a DEBUGGER command:

5XXXX Single-step operation

Let's try that. The instructions in the manual say to type in 5 followed by
the address of the first instruction. Then type 5 and press the RETU RN key. Do
this last operation repeatedly to see each step. Here goes.

DEBUG
51000
1000 18 CLC

A=03 X=03 Y=OO P=32 5=00
DEBUG

•

The value 3 is left over
from the last program. NEW
does not change the ma­
chine language memory or
registers only the Text Edit
Buffer.

80 SPECIAL-PURPOSE REGISTERS AND ADDRESSING MODES

The computer stops here, but it's only waiting for you to type an 5 and
press RETURN. 50 ...

5
1001 A9 00 LDA

A=OO X=03 Y=OO P=32 5=00
DEBUG
5
1003 AA TAX

A=OO X=OO Y=OO P=32 5=00
DEBUG
5
1004 6901 ADC

A=Ol X=OO Y=OO P=30 5=00
DEBUG
5
1006 E8 INX

A=Ol X=Ol Y=OO P=30 5=00
DEBUG
5

#$ 01

1007 EO 03 CPX #$03
A=01 X=Ol Y=OO P=BO 5=00

DEBUG
5
1009 DO F9 BNE

A=Ol X=Ol Y=OO P=BO 5=00
DEBUG
5
1004 69 01 ADC

A=02 X=Ol Y=OO P=30 5=00
DEBUG
5
1006 E8 INX

A=02 X=02 Y=OO P=30 5=00

$1004

#$01

Accumulator
cleared to zero

X register
cleared to zero

+-One added to
accumulator

+- X register
incremented

+- One added
again to
accumulator

+- X register
incremented
again

this continues until X=03

1007 EO 03 CPX
A=03 X=03 Y=OO P=33 5=00

DEBUG
5
1009 DO F9 BNE

A=03 X=03 Y=OO P=33 5=00
DEBUG
5
100B 00 BRK

A=03 X=03 Y=OO P=33 5=00
DEBUG

•

THE X AND Y REGISTERS 87

#$03

$1003

+- Is X=3?

Yes

+- Do not
branch this
time

We have now used the A (accumulator) and the X registers. 5ince the Y
register is used in the same way as the X register, we will pass it over for the time
being. You no doubt noticed that the value in the Y register did not change in
each of the programs that we used.

Before we leave this program, let's go back to the Writer/Editor Program.
You do this by typing an X and pressing the RETURN key.

DEBUG
X

EDIT

•

Remember, you can list assembly language programs in the assembler's
Writer/Editor Program just like you Ll5T in BA51C.

82 SPECIAL-PURPOSE REGISTERS AND ADDRESSING MODES

EDIT
LIST

10 *=$1000
20 CLC
30 LDA #0
40 TAX
50 LOOP ADC #1
60 INX
70 CPX #3
80 BNE LOOP
90 END

•

This feature of the Writer/Editor Program can be very helpful when editing
a program to make changes due to programming errors or to make modifications
for any other reason_

THE PROCESSOR STATUS REGISTER

This register holds seven bits of information about the status of the micro­
processor. The <)ighth bit of the register is not used. The individual information
bits are called flags. These flags are always in one of two conditions: SET to one
(1) or RESET to zero (0). The flags are called : Carry, Zero result, Interrupt
disable, Decimal mode, Break command, Overflow, and Negative result. Here is
the position that each flag occupies in the register.

Bit

where: N
V
B
D

Z
C

Figure 5-7. Processor Status Register

= Negative result
= Overflow
= Break command
= Decimal mode
= Interrupt disable
= Zero result
= Carry

THE PROCESSOR STA TUS REGISTER 83

Bo, Carry bit This bit is modified as a result of certain arithmetic and logic
operations. It can also be SET or RESET by programmed instruction. We
will be using it later.

B1 , Zero bit This flag is automatically SET when any data movement or arith­
metic operation has a result equal to zero. It was tested by the BNE
{Branch on result not equal} in the programs of Chapter 4 and Chapter 5.
See page 59 for an example.

B2 , Interrupt disable bit This flag controls the effect of the interrupt request
pin of the microprocessor. We will not be concerned with this bit for now.

B3 , Decimal mode bit This flag controls whether or not the addition and sub­
traction operations are performed by the computer as binary or decimal.
More on this later.

B4 , Break command bit This bit is SET only by the microprocessor. It is used
during interrupts. It appeared in our display at the end of the programs
when we had executed a trace or single-step execution.

B5 , Expansion bit This bit is not used at present. It is reserved for future ex­
pansion of the 6502 microprocessor.

B6 , Overflow bit This bit is used to indicate that an overflow has occurred in a
signed binary arithmetic operation. More on this later when we get to signed
number arithmetic operations.

B7 , Negative bit This bit tells whether the result of some arithmetic operation
is negative or not. We'll discuss this in detail when we get to signed number
arithmetic operations.

It may seem like we are putting you off on many of the flags in the Proces­
sor Status Register. We are! We'll introduce each of the flags as they are used by
our programs. The first one that you have encountered is the Zero flag.

If you look back to the trace of the program in Figure 4-5, the first and
second execution of the CMP # 3 instruction at location 1005 shows:

First
execution -+ 1005 C903 CMP # $03

A=Ol X=OO Y=OO P=BO S=OO

Second
execution -+ 1005 C9 03 CMP #$03

A=02 X=OO Y=OO P=BO S=OO

/
Notice that the Processor Status Register {P}
holds the value BO.

84 SPECIAL-PURPOSE REGISTERS AND ADDRESSING MODES

B 0
~~

o o 0 I 0 I 0 I
"Zero flag = 0 (not SET)

This means that when the value in the
accumulator was compared to 3, the result
(1-3 or 2-3) was not equal to zero.

Therefore, the BNE (Branch on result not equal to zero) was taken.
However, when this same instruction was executed the third time, the dis­

play showed:

Third
execution -+ 1005 C903 CMP #$03

A=03 X=OO Y=OO P=33 S=OO

tp has changed

The Processor Status Register now holds 33.

3 3
~~

1010111101011111

" Zero flag = 1 (SET)

The value in the accumulator (03) is equal
to 3. The result (03-03) does equal zero.

The branch (BNE) is not taken, and the execution of the program stops.
You can see that by looking at certain bits in the Processor Status Register,

the computer can make decisions (such as the order in which instructions are
executed) depending on certain conditions. This type of decision making adds
great power to the capability of both the computer and the programmer.

Some instructions affect the status bits of the Processor Status Register
and others do not. Here is a table of the instructions we have covered so far and
the flags that they affect in the Processor Status Register.

THE PROCESSOR STATUS REGISTER 85

Instruction Status Bits Affected

PLA l,C
LOA N,l
ADC N,Y,l,C
STA none
RTS none
CLC C
LOX N,l
TXA N,l
INX N,l
CPX N,l,C
BNE none
CMP N,l,C
SBC N,Y,l,C
TAX N,l
SEC C

Figure 5-2. Effect of Instructions on Flag Bits

The following table shows the status flags that are affected by each 6502
instruction. X means that the flag is affected. The result will depend upon the
condition, or status, resulting from the operation performed by the instruction.
A one indicates that the flag is set. A zero indicates that a flag is reset.

Mnemonic Operation Performed Status Flags

Code N V B D I Z C

ADC Add memory to accumulator with carry X X X X
AND AND memory with accumulator X X
ASL Shift left one bit (memory or accum.) X X X

BCC Branch on carry clear (If C=O)
BCS Branch on carry set (If C=l)
BEQ Branch on result zero (If l =l)

BIT Test bits in accumulator with memory X X X
BMI Branch on result minus (If N=l)
BNE Branch on result not zero (If Z=O)

BPL Branch on result plus (If N=O)
BRK Force Break 1
BYC Branch on overflow clear (If Y=O)

BYS Branch on overflow set (If Y=l)
CLC Clear carry flag 0
CLD Clear decimal mode 0

Mnemonic Operation Performed Status Flags

Code N V B 0 I Z C

CLI Clear interrupt disable flag 0
ClV Clear overflow flag 0
CMP Compare memory and accumulator X X X

CPX Compare memory and index X X X X
CPY Compare memory and index Y X X X
DEC Decrement memory by one X X

DEX Decrement index X by one X X
DEY Decrement index Y by one X X
EOR Exclusive OR memory with accumulator X X

INC I ncrement memory by one X X
INX Increment index X by one X X
INY Increment index Y by one X X

JMP Jump to new location
JSR Jump to new location save [tn. add.
LDA load accumulator from memory X X

lDX load index X from memory X X
lDY load index Y from memory X X
lSR Shift right one bit (memory or accum.) 0 X X

NOP No operation
ORA OR memory with accumulator X X
PHA Push accumulator on stack

PHP Push processor status on stack
PlA Pull accumulator from stack X X
PlP Pull processor status from stack X X X X X X X X

ROl Rotate one bit left (mem. or accum.) X X X
ROR Rotate one bit right (mem. or accum.) X X X
RTI Return from interrupt X X X X X X X X
RTS Return from subroutine
SBC Subtract memory and borrow from

accum. X X X X
SEC Set carry flag 1
SED Set decimal mode 1
SEI Set interrupt disable flag 1
STA Store accumulator in memory
STX Store index X in memory
STY Store index Y in memory
TAX Transfer accumulator to index X X X
TAY Transfer accumulator to index Y X X
TSX Transfer stack pointer to index X X X
TXA Transfer index X to accumulator X X
TXS Transfer index X to stack pointer
TYA Transfer index Y to accumulator X X

86

Flag abbreviations are:
N Negative result flag
V Overflow flag

Expansion flag (not labeled)
B Break command flag

THE STACK POINTER REGISTER 87

D Decimal mode flag
I Interrupt disable flag
Z Zero result flag
C Carry flag

The Flags are up!

THE STACK POINTER REGISTER

Temporary storage is sometimes required to save current values of a regis­
ter while it is being used for a second task. When that task is finished, the origi­
nal value is replaced in the register. The microprocessor uses an area of RAM
called a stack for this purpose. Values that are saved in this area are arranged like
a stack of cards with each card having a value. Each value saved is placed on the
top of the stack. When the values are retrieved, they are taken from the top of
the stack also. The last value put on the stack is always the first value taken off.

SUok { Last on will be the first off

The Stack Pointer Register is a 16-bit register that keeps track of the mem-
ory address of the top of the stack .

Example:

Suppose the top of the stack is originally at address 01 FF. If two
data values are placed on the stack, the Stack Pointer Register would
then contain the value 01 FD .

Stack Pointer
originally

101 FF I

01FD
01FE
01FF

? +- Next value here
65 +- 2nd value placed on
10 +- 1 st val ue placed on

88 SPECIAL-PURPOSE REGISTERS AND ADDRESSING MODES

Stack Pointer
now

~ the next location where data is to be placed

The process is reversed when data is taken off the stack. The stack pointer
would be automatically incremented to point at01 FE and the value 65 returned.
When ready to remove the value 03, the stack pointer would again be incremented
and the 03 returned. The Stack Pointer Register would then contain 01 FF again.

There are four machine langu age instructions that the programmer may
use to move data on or off the stack. Data may be saved and retrieved from the
Accumulator or the Processor Status Register.

1. PHA (PusH Acummulator on stack)
Op Code = 48

Implied mode

2. PHP (PusH Processor status on stack)
Op Code = 08

Implied mode

3. PLA (PulL Accumulator from stack)
Op Code = 68

Implied mode

4. PLP (Pul L Processor status from stack)
Op Code = 28

Implied mode

ADDRESSING MODES

There are several different addressing modes used by the 6502 micropro­
cessor. Some instructions are only used in one addressing mode. Others may be
used in more than one mode. So far, we have only used three modes: the Imme­
diate, the Implied, and the Relative.

The addressing modes may be classified into two types: Indexed and Non­
Indexed. Let's first consider the Non-Indexed Addressing modes. They are the
simplest to use and understand.

The Implied Addressing Mode

Instructions using Implied Addressing are one byte long. That byte con­
tains the Op Code, which designates an operation that is internal to the micro­
processor, and no operand is involved. Examples that we have used in this chap­
ter are INX and TAX.

page 74 INX (Increment X register by one)
Op Code E8

Status flags effected: Nand Z

page 76

ADDRESSING MODES 89

T AX (Transfer Accumulator to X register)
Op Code AA

Status flags effected: Nand Z

The Op Code totally defines the operation of Implied Addressing Instructions.
Therefore, only one byte is needed to describe the operation. Instructions used
in this mode are not used in any other mode.

The Immediate Addressing Mode

Instructions using the Immediate Addressing mode employ two bytes to
describe the operation. The first byte contains the Op Code specifying the opera­
tion and the addressing mode. The second byte contains a constant value known
at the time a program is being written. Putting these values directly in the pro­
gram saves the programmer from loading them into memory and retrieving them
when needed.

You have used the following Immediate Addressing mode instructions in
Chapters 3, 4, and 5.

page 42

page 42

page 57

page 57

page 57

CPX (Compare to X register)
Op Code EO (If Immed iate Addressing)
Second byte OA (Value X is compared to)

Status flags affected: N,Z and C

LOX (Load the X register)
Op Code A2 (If Immediate Addressing)
Second byte 00 (Value loaded in X)

Status flags affected: Z and C

LOA (Load the Accumulator)
Op Code A9 (If Immed iate Addressing)
Second byte 00 (Value loaded)

Status flags affected: Nand Z

AOC (Add to Accumulator with carry)
Op Code 69 (If Immediate Addressing)
Second byte 01 (Value added)

Status flags affected: N,Z,C and V

CMP (Compare to Accumulator)
Op Code C9 (If Immediate Addressing)
Second byte 03 (Value accumulator is compared to)

Status flags affected: N,Z and C

Immediate addressing is the simplest way to manipulate constants. All of
the instructions used in this mode may also be used in other modes. The Op
Code of the instruction will be different for each mode that it is used in so that
the computer will know which mode is desired.

90 SPECIAL-PURPOSE REGISTERS AND ADDRESSING MODES

The Relative Addressing Mode

All of the branch instructions use this, and only this, mode. They are two­
byte instructions. The Op Code occupies the first byte. The second byte con­
tains a signed number that specifies the length of the branch (if the branch is
taken). The second byte is ignored if the conditions existing do not require the
branch to be taken. At the time the decision (to branch or not) is taken, the pro­
gram counter is pointing at the next instruction. You have used one instruction
in the Relative Addressing Mode, BNE.

page 60 BNE (Branch on result not equal to zero)
Op Code DO
Second byte FA (equivalent to -6: back 6 locations)

Status flags affected: none

Branches are made, or not made, depending on the status of certain flags
of the Processor Status Register (N,V,Z or C). Only branch instructions use this
mode.

The Absolute Addressing Mode

Absolute Addressing Instructions contain three bytes: one for the Op
Code and two for the address operand . The low-order address byte occupies the
second byte, and the high-order address byte occupies the third byte. The pro­
grammer can therefore specify a full 16-bit address to access any memory loca­

tion. It is considered to be the normal mode for addressing. You have used this
mode in Chapter 2 with a STORE instruction (page 21). This mode will be used
again in the next chapter.

Example:

LDA (Load Accumulator)
Op Code AD (If Absolute Addressing)
Second byte F3 (low-order address)
Third byte 10 (high-order address)

Status flags affected: Nand Z

This example would load the value that is contained in memory location
10F3 into the accumulator. The value held in lOF3 remains the same.

---------~ ~ Accumulator

Memory 10F3

The Zero Page Addressing Mode

Zero Page instructions are two bytes long. The first byte contains the Op
Code, and the second byte contains the low-order byte of the address operand.
The high-order address byte is assumed by the microprocessor to be zero (there­
fore, its name). The zero page of memory runs from 0000 through OOFF. Each

ADDRESSING MODES 97

consecutive block of 256 locations is called a page of memory. The advantage of
zero page instructions is t he saving of one byte in the instruction. The time neces­
sary to execute the instruction is therefore shorter than that of Absolute Ad­
dressing. The user should organize his use of memory so that the most frequent­
ly accessed memory is in the zero page. This cannot always be done because
manufacturers of computers quite often use this memory in their operating
system. We have not used any instructions in this mode yet.

Example:

lDA (load the Accumulator)
Op Code AS (If Zero Page Addressing)
Second byte 80 (low-order address byte)

Status flags affected: Nand Z

This example would load the accumu lator with the contents of memory
location 0080.

We will hold off a discussion of Indexed Addressing modes until Chapter
8, where they are first used.

INSTRUCTION SET WITH ADDRESSING MODES

Mnemonic Op
Code Codes "tJ \.)

<I> <I>
..... :B ><
a ~)...

~)... ~
~ ~ ~ ~ <I> <1>- <1>-

~ ~- ~-~ .~ g> g> g> "tJ ~ "tJ
E: i) 0.; 0.; Q., ~ ~ ~ <I> \.) \.)

<I> -- -- -- <I> '';::; >< <I>

~ ~ a a a '-E: a a e -- ~ ~ :B \.) v, v, v,

~
.....Q .Q .Q \.) .§ <I> <I> <I> <I>

~ ~ "C ~ ~ ~ "C "C "C -- Cl::: ~

ADC - 69 65 75 - 6D 7D 79 - - 61 71 -

AND - 29 25 35 - 2D 3D 39 - - 21 31 -
ASl OA - 06 16 - OE 1E - - - - - -

BCC - - - - - - - - - 90 - - -

BCS - - - - - - - - - BO - - -

BEQ - - - - - - - - - FO - - -
BIT - - 24 - - 2C - - - - - - -

BMI - - - - - - - - - 30 - - -

BNE - - - - - - - - - DO - - -

BPl - - - - - - - - - 10 - - -

BRK - - - - - - - - 00 - - - -

BVC - - - - - - - - - 50 - - -
BVS - - - - - - - - - 70 - - -

ClC - - - - - - - - 18 - - - -
ClD - - - - - - - - D8 - - - -
CLI -

1=
- -

1= 1= 1= 1= 1
58

1- 1= 1=
-

ClV - - - B8 - -1 1

Mnemonic Op
Code Codes

~ <.:>
~ ~

....)... ~ ><
2 ><: ><:)... ~

~ t::
~ ~ ~~ ~~

~~ ~~ - t::

~ g> g> g> ~ -~ ~ ~
E: 0..:. 0..:. 0..:. ~ ~ ~ ~

~ <.:> <.:>
~ - .~ >< .~ ~ ~ c c ~ <.:> E: e e e '" -Cl ~

~ ~ ~ <.:> .§ ~
-Cl -Cl ~ ~

':t: ~ ~ ':t: ':t: ':t: Cl:: t:: t:: .!:: - - -
CMP - C9 C5 D5 - CD DD D9 - - C1 D1 -
CPX - EO E4 - - EC - - - - - - -

CPY - CO C4 - - CC - - - - - - -
DEC - - C6 D6 - CE DE - - - - - -

DEX - - - - - - - - CA - - - -

DEY - - - - - - - - 88 - - - -
EOR - 49 45 55 - 4D 5D 59 - - 41 51 -
INC - - E6 F6 - EE FE - - - - - -

INX - - - - - - - - E8 - - - -

INY - - - - - - - - C8 - - - -

JMP - - - - - 4C - - - - - - 6C
JSR - - - - - 20 - - - - - - -
LDA - A9 AS B5 - AD BD B9 - - A1 B1 -
LDX - A2 A6 - B6 AE - BE - - - - -

LDY - AO A4 B4 - AC BC - - - - - -
LSR 4A - 46 56 - 4E 5E - - - - - -
NOP - - - - - - - - EA - - - -
ORA - 09 05 15 - OD 1D 19 - - 01 11 -

PHA - - - - - - - - 48 - - - -
PHP - - - - - - - - 08 - - - -
PLA - - - - - - - - 68 - _. - -
PLP - - - - - - - - 28 - - - -

ROL 2A - 26 36 - 2E 3E - - - - - -

ROR 6A - 66 76 - 6E 7E - - - - - -

RTI - - - - - - - - 40 - - - -
RTS - - - - - - - - 60 - - - -
SBC - E9 E5 F5 - ED FD F9 - - E1 F1 -
SEC - - - - - - - - 38 - - - -
SED - - - - - - - - F8 - - - -
SE I - - - - - - - - 78 - - - -

STA - - 85 95 - 8D 9D 99 - - 81 91 -

STX - - 86 - . 96 8E - - - - - - -
STY - - 84 94 - 8C -- - - - - - -
TAX - - - - - - - - AA - - - -
TAY - - - - - - - - A8 - - - -
TSX - - - - - - - - BA - - - -

TXA - - - - - - - - 8A - - - -

TXS - - - - - - - - 9A - - - -

TYA - - - - - - - - 98 - - - -

EXERCISES 93

SUMMARY

The flexibility of the 6502 microprocessor used in the Atari 400/800 com­
puters is achieved through a variety of addressing modes and special -purpose
registers.

The registers discussed in this chapter include :

• Accumulator {A register)-Most operations performed on data take
place in this register.

• X Index Register-Used as a scratch pad or as an index in some address­
ing modes.

• Y I ndex Register-same function as X I ndex Register.

• Processor Status Register {P register)-Contains the microprocessor's
status as each instruction is executed.

• Stack Pointer Register {S register) - Contains the memory location of
the top of the stack.

The addressing modes discussed include:

• Implied-One-byte instructions that need no operand.

• Immediate-The first byte specifies the operation; the operand (second
byte) is a one-byte data item.

• Relative- Used for branch instructions; first byte specifies the kind of
branch; the one byte operand tells how far and in what direction to
branch.

• Absolute-A three-byte instruction; first byte specifies the operation;
the other two bytes give the operand that consists of a memory address
to be used.

• Zero Page-Similar to Absolute Addressing, but only a single-byte oper­
and is necessary for the memory address to be used .

EXERCISES

1. How many bits of inform ation can be contained in the accumulator?
bits

2. Name the two index registers.
and

3. The status flags are contained in which register?
register

4. The register into which data is loaded, stored from, and in which arithmetic
operations are performed is called:

94 SPECIAL-PURPOSE REGISTERS AND ADDRESSING MODES

Question 5 through 8 refer to the following program :

10 *=$1050
20 LDX #0
30 LOOP INX
40 CPX #2
50 BNE LOOP
60 END

5. Which index register is used in the program?

6. Which status flag is used to determine if a branch is taken? _____ _

7. What values will appear in the index register as the program is executed?

8. What will be the starting address of the machine language program when it is
assembled? ________ _

9. The assembler cartridge's Writer/Editor command to display the assembly
language program on the video screen is :

(NEW,. LIST, RUN)

10. The bits of the Processor Status Register are labeled as shown:

INIVI IBIDI IZICI
(a) Bit Bl contains the flag.

(b) Bit B7 contains the flag.

(c) The Carry flag is contained in bit ____ _

11. When using the stack, the Stack Pointer Register contains the memory ad­
dress of the top of the stack. The last item placed on the stack will be the
________ item removed from the stack.

(first, last)

12. How many bytes are used by an Implied Address instruction? ____ _

13. What addressing mode is used by Branch instructions? _______ _

14. Which instruction is shorter (fewer bytes):

Absolute or Zero Page?

ANSWERS

1. 8 bits

2. X and Y

3. Processor Status Register

4. The accumulator (or A register)

5. X

6. Zero (or Zero flag)

7. 0,1,2 (or 00000000,00000001,00000010 binary)

8. 1050 (hex)

9. LIST

10. (a) Z (or Zero flag)

(b) N (or Negative flag)

(c) Bo

11. First

12. 1 (one)

13. Relative

14. Zero Page

ANSWERS 95

Chapter 6

Branching Out

In Chapte rs 3, 4, and 5 we have used a branch instruction (BNE) to per­
form a program loop. Branch instructions are two-byte instructi ons whi ch use
the Relative Addressing mode. That is, the address to which the branch is to be
taken is calculated relative to the current position of the program counter. The
program coun te r (see page 000) is used as a pointer to des ignate where the micro­
processor will o bta in the instruction th at is to be executed following the instruc­
tion that is cur re ntly being executed. It is a lways one in struction ahead of the
computer execution .

Example:

As this instructi on --+

is being executed,

Program
Counter points

here

Memory

1008

Op Code

DO

1009 F9

100A 00

Instruction

BN E

BRK

Therefore, the branch is taken relative to the program counter (or one memory
location beyond the second byte of the branch instruction) . The ope rand (sec­
ond byte-F9 in this example) used with the branch instruction tell s how far and
in what direction th e branch should be taken.

When used as the operand in a branch instruc tion such as BNE, all hex
values from 01 through 7F cause a branch forward fro m the current position of
the program counter. The fo ll owi ng instruction wou ld cause a branch forward
from memory locatio n 100A (where the program counter points as the BNE in­
struction is executed) to hexadecim al memory locat ion 1012 (1 00A+8).

96

1008
1009

DO
08

BNE 08

BRANCHING OUT 97

An example of the above as used in a section of a program follows :

1006 EO CPX 03 Compare the value of the
1007 03 X registe r with 03 hex.

1008 DO BNE 08 Branch, if Y is not equal to

Pm,cam 1 1009 08 03, forward 8 steps.
counter r---+- 100A
starts

I
100B I

I

here I 100C I
I

1000 I
I
I 100E I

Branch
I

100F I
I

forward I 1010 I
I

8 steps I 1011
if X L- 1012
not=03 1013

1014

All hex values from 80 through F F are used by branch instructions as
backward (or negative) branches. In the "Program to Count in Accumulator"
(Chapter 5) the instruction used is:

1008 DO

1009 F9

BNE LOOP The assembler looked for the label LOOP
and counted back to see where to find it.

Branch, if X is not equal to 03, backward
7 steps.

The branch is made backward (or in the negative direction) since F9 is between
80 and FF. Counting back 7 steps from location 100A puts the branch destina­
tion at 1003, the start of the loop .

PROGRAM TO COUNT IN ACCUMULATOR

1000 A9 LDA#O
1001 00
1002 AA TAX

Branch r--- 1OO3 69 ADC#l
back 7 1004 01

1005 E8 INX
1006 EO CPX #3
1007 03
1008 DO BNE
1009 F9

Program ~100A 00 BRK
Counter
here when BNE is executed

98 BRANCHING OUT

We will not go into the method used by the computer to determine the values of
negative numbers. Instead, we will provide tables to determine the operand used
with the branch. The assembler takes care of these details if you provide it with
appropriate labels.

Remember that forward branches will use an operand in the range of 1
through 7F, and backward branches will use an operand in the range of 80
through FF.

EXAMPLES USING FORWARD BRANCHES

l. 100E DO BNE 07
100F 07

... 1010
I
I
I
I
I

t....1017

Program counter starts at 1010
Branch desired to 1017(7 steps)

Look up in table:
Steps Branch

Forward Operand
(Decimal) (Hex)

7 07 +- Operand

If condition tested is not equal to zero,
branch forward to 1017 (1010+7 steps).

2. 1010 DO BNE 1 F Program counter starts at 1010
1009 1 F Branch desired to 102F (31 decimal steps)

r-101O
I
I
I
I .

L 102F

Look up in table:
Steps Branch

Forward Operand
(Decimal) (Hex)

31 1 F

If condition tested is not equal to zero,
branch forward to 102F (1010+lF hex steps).

+- Operand

3. 100E DO BNE 77 Program counter starts at 1010
100F 77 Branch desi red to 1087 (119 decimal steps)

r-- 10lO
I
I
I

L1087

Look up in table:
Steps Branch

Forward Operand
(Decimal) (Hex)

119 77

If condition tested is not equal to zero,
branch forward to 1087 (1010+77 hex steps).

+- Operand

4. 100E
100F

~101O
I
I
I

L 106B

DO
5B

EXAMPL ES USING BACKWA RD BRANCHES 99

BNE 5B Program counter starts at 1010
Branch desired to 1 06B (91 decimal steps)

Look up in table:
Steps Branch

Forward
(Decimal)

91

Operand
(Hex)

5B +- Operand

If condition tested is not equal to zero,
branch forward to 106B (101 0+5 B hex steps).

EXAMPLES USING BACKWARD BRANCHES

1.

r 100B

I
I
I

: 1010
: 1011
L..l012

DO
F9

BNE F9

Program counter starts at 1012
Branch desired to'l OOB (-7 steps)

Look up in table:
Steps Branch

Backward Operand
(Decimal) (Hex)

7 F9 +- Operand

If condition tested is not equal to zero ,
branch backward to 100B (1012-7 steps).

2.

r OFF3

I
I
I

: 1010
: 1011
L..1012

DO
El

BNE El

Program counter starts at 1012
Branch desired to F F3 (-31 decimal steps)

Look up in table :
Steps Branch

Backward Operand
(Decimal) (Hex)

31 El +- Operand

If condition tested is not equal to zero,
branch backward to FF3 (1012-1 F hex steps).

3.

r OF9B
Program counter starts at 1012
Branch desired to F9B (-119 decimal steps)

I
I
I
I

: 1010
: 1011
41012

DO
89

BNE 89
Look up in table:

Steps Branch
Backward Operand
(Decimal) (Hex)

119 89

If condition tested is not equal to zero,
branch backward to F9B (1012-77 hex steps).

+- Operand

TABLE TO DETERMINE FORWARD BRANCHES

Steps Branch Steps Branch Steps Branch
Forward Operand Forward Operand Forward Operand

(Decimal) (Hex) (Decimal) (Hex) (Decimal) (Hex)

1 01 49 31 97 61
2 02 50 32 98 62
3 03 51 33 99 63
4 04 52 34 100 64
5 05 53 35 101 65
6 06 54 36 102 66
7 07 55 37 103 67
8 08 56 38 104 68
9 09 57 39 105 69

10 OA 58 3A 106 6A
11 OB 59 3B 107 6B
12 DC 60 3C 108 6C
13 00 61 30 109 60
14 OE 62 3E 110 6E
15 OF 63 3F 111 6F
16 10 64 40 112 70

17 11 65 41 113 71
18 12 66 42 114 72
19 13 67 43 115 73
20 14 68 44 116 74
21 15 69 45 117 75
22 16 70 46 118 76
23 17 71 47 119 77
24 18 72 48 120 78
25 19 73 49 121 79
26 1A 74 4A 122 7A
27 1B 75 4B 123 7B
28 lC 76 4C 124 7C
29 10 77 40 125 70
30 1E 78 4E 126 7E
31 1F 79 4F 127 7F
32 20 80 50

33 21 81 51
34 22 82 52
35 23 83 53
36 24 84 54
37 25 85 55
38 26 86 56
39 27 87 57
40 28 88 58
41 29 89 59
42 2A 90 SA
43 2B 91 5B
44 2C 92 5C
45 20 93 50
46 2E 94 5E
47 2F 95 SF
48 30 96 60

Figure 6-7. Forward Branches

700

TABLE TO DETERMINE BACKWARD BRANCHES

Steps Branch Steps Branch Steps Branch
Backward Operand Backward Operand Backward Operand
(Decimal) (Hex) (Decimal) (Hex) (Decimal) (Hex)

1 FF 49 CF 97 9F
2 FE 50 CE 98 9E
3 FO 51 CO 99 90
4 FC 52 CC 100 9C
5 FB 53 CB 101 9B
6 FA 54 CA 102 9A
7 F9 55 C9 103 99
8 F8 56 C8 104 98
9 F7 57 C7 105 97

10 F6 58 C6 106 96
11 F5 59 C5 107 95
12 F4 60 C4 108 94
13 F3 61 C3 109 93
14 F2 62 C2 110 92
15 Fl 63 Cl 111 91
16 FO 64 CO 112 90

17 EF 65 BF 113 8F
18 EE 66 BE 114 8E
19 ED 67 BO 115 80
20 EC 68 BC 116 8C
21 EB 69 BB 117 8B
22 EA 70 BA 118 8A
23 E9 71 B9 119 89
24 E8 72 B8 120 88
25 E7 73 B7 121 87
26 E6 74 B6 122 86
27 E5 75 B5 123 85
28 E4 76 B4 124 84
29 E3 77 B3 125 83
30 E2 78 B2 126 82
31 El 79 Bl 127 81
32 EO 80 BO 128 80

33 OF 81 AF
34 OE 82 AE
35 00 83 AO
36 DC 84 AC
37 OB 85 AB
38 OA 86 AA
39 09 87 A9
40 08 88 A8
41 07 89 A7
42 06 90 A6
43 05 91 A5
44 04 92 A4
45 03 93 A3
46 02 94 A2
47 01 95 Al
48 00 96 AO

Figure 6-2. Backward Branches

707

702 BRANCHING OUT

4.

r OFB7
Program counter starts at 1012
Branch desired to FB7 (-91 decimal steps)

I
I
I

: 1010
: 1011
!-1012

DO
AS

BNE AS
Look up in tab le:

Steps Branch
Backward Operand
(Decim al) (Hex)

91 AS

If condition tested is not eq ual to zero,
branch backward to F B7 (1 012-5B hex steps).

NOTE-All of the above calculations were performed with hex numbers. Hexa­
decimal subtraction will be discussed in Chapter 9. The table in Figure
6-2 will give you the necessary operand for backward branches .

All branch instructions, li sted in the fo llowing table, use the Relative
Addressing mode. The status flags that determine the condition on which the
branch is taken, or not taken, are given in the tab le.

Mnemonic Instruction Status Conditions
Code Flag for Branch

BCC Branch on Carry Clear C 0

BCS Branch on Carry Set C 1

BEQ Branch on result zero Z 1

BMI Branch on result minus N 1

BNE Branch on result not zero Z 0

BPL Branch on resu lt positive N 0

BVC Branch on overflow clear V 0

BVS Branch on overflow set V 1

Figure 6-3. Status Flags for Branches

In order to demonstrate some of the branch instructions, we will write
some short demonstration programs that perform arithmetic operations.

USING THE CARRY FLAG IT I I I I I lei Process Status Register
'-Carry Bit

Suppose you were using the machine language subroutine on page 39,
and you input the deci mal numbers 123 and 133. The result of their sum would
be di splayed as ze ro because the result is too large to be contained in one byte.
An extra bit is needed to express the true result.

USING THE CARRY FLAG 703

The sum of that problem :

Decimal Binary

123 01111011
133 10000101

Sum = 1 00000000

/ ~
extra 8 bits displayed

When an extra bit (as in this example) occurs from the addition of two 8-
bit numbers, the computer automatically sets the carry flag (C=l) . You can ver­
ify this by using the Atari Assembler Cartridge to enter the following program .

EDIT
10 *=$1000
20 CLC

' 30 LDA #$7B
40 ADC #$85
50 END

•

+- Clear the carry flag
+- Load hex 7B (decimal 123)
+- Add hex 85 (decimal 133)

Then assemble the program by typing : ASM

EDIT
10 *=$1000
20 CLC
30 LDA #$7B
40 ADC #$85
50 END
ASM
0000 10 *= $1000

1000 18 20 CLC

1001 A97B 30 LDA #$78

1003 6985 40 ADC #$85

50 END

EDIT

•
Notice the symbols (# and $) used with the operands in lines 30 and 40 of

the Source Program (the Assembly Language program) . The # symbol tells the

704 BRANCHING OUT

computer that the LDA and ADC instructions are to be used in the Immediate
mode. The $ symbol tells the computer that the numbers in the operand are to
be treated as hexadecimal values. The symbols are a necessary part of the assem­
bly language instruction.

Enter the Debugger Program and trace the program. In this way, you can
watch the changes in the Processor Status Register (P) where the status flags are
stored. You will want to keep your eye on the Carry bit (flag) in the Processor
Status Register before and after the add instruction is used.

EDIT
BUG

DEBUG
T1000-

+- Type BUG to enter the DEBUGGER

+- Type T1 000 to trace the program
beginning at memory location 1000

1000 18 CLC
A=OO X=OO Y=OO P=BO 5=00

1001 A9 7B LDA #$7B
A=7B X=OO Y=OO P=30 5=00

1003 69 85 ADC #$85
A=OO X=OO Y=OO P=33 5=00

1005 00 BRK
A=OO X=OO Y=OO P=33 5=00

DEBUG

-
Notice that at step 1003 the accumulator changed to zero, and the Processor
Status Register changed from 30 to 33. The accumulator tells us that the sum is
zero, but consider what the P register shows.

NY BDIZC

~ \ 0 \ 0 \1 \1 \ 0 \ 0 \ 0 \ 0 I +- Before step 1003

PROCESSOR ~ ~
5T ATUS 3 0 CARRY FLAG
REGISTER

----I 0 1 0 11 11 1 0 1 0 1 1 Ill+- After step 1003
~~

3 3

USING THE CARRY FLAG 705

We can consider the result to be a combination of the carry bit and the
value in the accumulator.

In Hexadecimal 1 + 0 0 100
/ ,

carry bit in accumulator

In decimal this would be 256 + 0 = 256

By expanding our program, we can store the results in memory by making
use of the the Branch on Carry Clear (BCC) instruction. Use the NEW command
to clear the EDIT Buffer.

Using the Writer/Editor Program of the Assembly Cartridge:

EDIT
10 *=$1000
20 CLC
30 LDA #$00
40 STA $1050
50 LDA #$7D

60 ADC #$A4
70 STA $1051
80 BCC END
90 INC $1050
100 END

•

Load and store 0 in 1050

(7x 16)+13 = 125 decimal

(10x16)+4 = 164 decimal
Sum = 289 decimal

256 + 32 + 1

1 2 1 hex

~ '-v-"

" stored in 1050 stored in 1051

The program adds two hex numbers and stores the low 8 bits from the
accumulator into memory location 1051. If there was a carry, memory location
1050 will be incremented at line 90. If no carry is made, the instruction (BCC)
at line 80 will cause the computer to skip over the INC instruction at line 90 and
go to the end of the program. Thus, memory location 1050 will contain the
extra bit when a carry has been made but will be zero if no carry was made. The
combination of memory locations 1050 and 1051 will provide the complete re­
su lt. Assemble the program and execute it. Then look at the results:

Assembly
Type: ASM

0000

1000 18

1001 A900

10 *= $1000

20 CLC

30 LDA #$00

706 BRANCHING OUT

1003 805010 40 STA $1050

1006 A97D 50 LOA #$70

1008 69A4 60 ADC #$A4

100A 805110 70 STA $1051

1000 9003 80 BCC END

100F EE5010 90 INC $1050

0100 END

EDIT

•
Notice that the ST A operand and the INC operand take two bytes for the

address involved. The $ sign once again indicates a hexadecimal value. The
Branch on Carry Clear operand shows a forward branch of 3 steps from 1 OOF to
1012 where the program stops.

This is the first time you have used the INC instruction. It is used to incre·
ment by one the value in the specified memory location. It is similar to the INX
instruction (increment the X register) that you used earlier.

Example:

INC (Increment memory)
Op code EE (If Absolute mode addressing)
Second byte 50 (Least significant address byte)
Third byte 10 (Most significant address byte)

Status flags affected: Z and C

DEBUG and Execute

Type: BUG

BUG

DEBUG

•
Type: Tl 000 (to trace the program)

DEBUG
Tl000
1000 18 . CLC

A=D7 X=OO Y=OO P=BO 5=00
1001 00 LOA #$00

A=OO X=OO Y=OO P=32 5=00
1003 805010 5TA $1050

A=OO X=OO Y=OO P=32 5=00
1006 A9 70 LOA #$70

A=7D X=OO Y=OO P=30 5=00
1008 69 A4 ADC #$A4

A=21 X=OO Y=OO P=31 5=00
100A 805110 5TA $1051

A=21 X=OO Y=OO P=31 5=00
1000 90 03 BCC $1012

A=21 X=OO Y=OO P=31 5=00
100F EE 50 10 INC $1050

A=21 X=OO Y=OO P=31 5=00
1012 00 BRK

A=21 X=OO Y=OO P=31 5=00
DEBUG

•

USING THE CARRY FLAG 707

Carry is set,;
-no branch

p 10011 00011

3

C flag

Notice that a branch was not made at 1000 (the Carry flag was not clear,
it was set). Therefore the memory location 1050 was incremented at line 1 OOF.

I Check Results I

To check the results, you will want to display the memory locations 1050
and 1051 to verify that the answer is correct.

DEBUG
01050,1051

1050
DEBUG

•

01 21

o for Display
(Display memory
locations 1050 through
1051)

\
the hex result = (OX163 }+(lX162 }+(2X16}+1

o + 256 + 32 + 1
= 289 decimal

708 BRANCHING OUT

We could use the Branch on Carry Set (BCS) instruction in the previous
program instead of the Branch on Carry Clear.

Using BCC Using BCS

010 *=$1000 010 *=$1000
020 CLC 020 CLC
030 LDA #$0 030 LDA #$0
040 STA $1050 040 STA $1050
050 LDA #$7D 050 LDA #$7D
060 ADC #$A4 060 ADC #$A4
070 STA $1051 070 STA $1051
080 BCC END } {

080 BCS SET
090 INC $1050 change 090 JMPEND
100 END 100 SET INC $1050

110 END

The result of these two programs would be the same. The program using
BCS would jump to the END at line 90 if the Carry flag had not been set. It
would branch from line 80 to line 100 if a carry had been set.

The JMP instruction at line 90 in the second program is similar to a branch
instruction. However the jump is made regardless of any condition. Therefore it
is called an unconditional instruction. It is used here in the Absolute Addressing
mode.

All BRANCH instructions are dependent on some condition expressed
by the status flags in the Processor Status Register.

All JUMP instructions are unconditional.

USING THE ZERO FLAG I 1 1 I I 1 1£1 J Processor Status Register
-- Zero bit

I n Chapter 4, you used a program which counted from 1 through FF. The
counting loop was accomplished by comparing the value in the accumulator with
FF and using the Branch on result Not Equal zero (BNE). This was the assembler
program :

10 *=$1000
20 CLC
30 LDA #0
40 LOOP ADC #1

50 CMP #$FF
60 BNE LOOP

No
70 END Yes

USING THE ZERO FLAG 709

The companion instruction to BNE is BEQ (Branch on result EQual to
zero). The counting program could be written to use the BEQ instruction in the
following way:

10 *$1000
20 CLC
30 LDA#O
40 LOOP ADC #1
50 CMP #$FF Yes

60 BEQ END 8
70 JMP LOOP
80 END

Use the assembler to enter and trace each program. You can see from the
flowcharts that the first program (using BNE) is more straightforward. However,
you do have the option of using either instruction (BNE or BEQ). In some pro­
grams the BEQ instruction would be the best choice.

If you time the traces of the two programs you will find that the first pro­
gram is a little faster. You can see by the printout of the traces that one more in­
struction must be executed each time the second program passes through the
counting loop. '

T race of BN E program :

Video Display at the end of the trace:

instru;tions1
in this
loop

1007 DO FA BN E $1003
A=FD X=OO Y=OO P=BO 5=00

1003 6901 ADC #$01
A=FE X=OO Y=OO P=BO 5=00 A=FE P=BO

1005 C9 FF CMP #$FF /
A=FE X=OO Y=OO P=BO 5=00 ..IBranch is taken

1007 DO FA BNE $1003 back to 1003
A=FE X=OO Y=OO P=BO 5=00 /

1003 6901 ADC # $01
A=F F X=OO Y=OO P=BO 5=00

1005 C9 FF CMP #$FF A=FF P=33
A=FF X=OO Y=OO P=33 5=00 --------

1007 DO FA BN E $1003 Branch is not taken
A=FF X=OO Y=OO P=33 5=00 jprogram ends

1009 00 BRK
A=FF X=OO Y=OO P=33 5=00

DEBUG

•

110 BRANCHING OUT

This trace took approximately 2.3 minutes.
Notice the Processor Status Register after the Compare instruction:

B 0
~~

First, when A = FE LI 1 __ 0 __ 1 ___ 0_0 __ 0_0---l1

3 3

L zero Flag = 0

Result not = 0
Branch taken

~ ~.

Second, when A = FF 10 0 1 0 0

L Zero Flag = 1
Result = zero
Branch not taken

Trace of BEQ Program :

Video Display at the end of the trace:

4
instructions

in this
loop

10094C0310 JMP $1003
A=FD X=OO Y=OO P=BO S=OO

1003 6901 ADC #$01
A=FE X=OO Y=OO P=BO S=OO

1005 C9 FF CMP # $ FF
A=FE X=OO Y=OO P=BO 5=00 -First A=FE

1007 FO 05 BEQ END ~
A=FE X=OO Y=OO P=BO S=OO 'A~I Branch not taken

1 009 4C 03 10 J M P $1 003
A=FE X=OO Y=OO P=BO 5=00

1003 6901 ADC #$ 01
A=FF X=OO Y=OO P=BO S=OO

1005 C9 FF CMP #$ FF
A=FF X=OO Y=OO P=33 5=00 -Second A=FF

1007 FO 05 BEQ END)
A=FF X=OO Y=OO P=33 5=00 Branch is taken

100C 00 BRK to the end
A=FF X=OO Y=OO P=33 5=00

DEBUG

•

USING THE NEGA TlVE FLAG 17 7

This trace took approximately 3.1 minutes.

Once again, notice the Processor Status Register after the Compare in­
struction:

First, when A = FE o 0 0 0 I

L Zero Flag = 0
Branch is taken

Second, when A = F F LI0 __ 0 ____ 0 __ 0 ___ 1--J1

L Zero Flag = 1
Branch is not taken

The BEQ program took a longer time to trace than the BNE program. This differ­
ence in timing would not be noticed if the program is run in the normal manner.
However, in the trace mode, the time for printing the extra step is noticeable.

USING THE NEGATIVE FLAG INI I I I I I I
t
Negative bit

Processor Status
Register

Once again, let's use a variation of the counting program to see how some
branch instructions decide whether a number is positive or negative. We'll first
use the Branch on result Plus (BPL) instruction. The N (negative) flag is reset to
zero for positive numbers and is set to 1 for negative numbers when certain in­
structions are executed. If the Negative flag has been reset to zero, the BPL in­
struction will cause a branch to be taken (because the result is positive) . If the
Negative flag has been set to 1 (result negative), the branch will not be taken.

BRANCH ON RESULT PLUS DEMONSTRATION

Using the assembler cartridge, enter the following program in the
Writer/Editor mode. Type NEW to clear the last program:

10 *=$1000
20 CLC
30 LDA#O
40 LOOP ADC #1
50 BPL LOOP
60 END

Assemble the demonstration program . Then enter the Debugger Mode and
trace the program.

772 BRANCHING OUT

A5M
0000

1000 18

1001 A900

1003 6901

1005 10FA

EDIT
BUG

DEBUG
Tl000

10

20

30

40 LOOP

50

60 END

The end of the trace looks l ike this:

1003 6901 ADC #01
A=7F X=OO Y=OO P=30 5=00

*= $1000

CLC

LOA #$00

ADC #$01

BPL LOOP

+- Enter Debugger

+- Trace the program

1005 10 FA BPL $1003 +- Branch back to 1003
A=7F X=OO Y=OO P=30 5=00

1003 6901 ADC #$01
A=80 X=OO Y=OO P=FO 5=00

1005 10 FA BPL $1003
A=80 X=OO Y=OO P=FO 5=00

1007 00 BRK
A=80 X=OO Y=OO P=FO 5=00

DEBUG

•

+- Notice change in P
when A = 80

+- Branch not taken

Notice that the branch loop was executed until the value in t he accumula­
tor reached 80. This was the first negative va lue reached.

1 1 1 1 1 1 1 1 10 10 1 0 1 0 1

+
N set to 1

Process Status Register

USING THE NEGATIVE FLAG 713

Negative values can be more dramatically seen by starting with zero in the
accumulator and subtracting one each time through a loop.

Operation Result Signed Decimal
Equivalent

0-1 FF -1
FF -1 FE -2
FE -1 FD -3
FD - 1 Fe -4

etc

83 - 1 82 -126
82 -1 81 -127
81 - 1 80 - 128

Yo u might think of 8-bit signed numbers as locations on a large number
wheel rather than the usual number line. Then they would look like this.

N egati ve~ __ O+--_>Positive

10

-64~~--------~~~--------~~ + 64

- 128

Figure 6-4. Signed Number Wheel. Hex Values Inside,­
Decimal Equivalents Outside

114 BRANCHING OUT

To demonstrate the subtraction of one from the accumulator, we'll use the
Branch on result Minus (BM I) to create a loop. The carry bit is used in subtrac­
tion in the borrowing process. When using addition , we cleared the Carry bit be­
fore performing the operation. In subtraction, we must set the carry bit before
performing the operation. Here is the program as entered during the assembler's
Writer/Editor mode.

10
20

C
30
40

Loop 50

*=$1000
LOA #0

LOOP SEC
SBC #1
BMILOOP

while minus 60 END

./ Set the carry bit
~ for subtraction

Assemble the program. Then enter the Debug mode and single step through
the first part of the program .

ASM
0000

1000 A900

1002 38

1003

1005

EDIT
BUG

DEBUG
51000

DEBUG
51000

E901

30FB

10 *= $1000

20 LOA # $00

30 LOOP SEC

40 SBC #$01

50 BMI LOOP

60 END

+- Enter Debugger

Single step starting at 1000

+-- First step
1000 A900 LOA #$ 00 Load 0 in accumu lator

A=OO X=OO Y=OO P=33 5=00

USING THE NEGATIVE FLAG 775

DEBUG
5
1002 38 SEC

A=OO X=OO Y=OO P=33 5=00
DEBUG

+-- Type 5 and press RETU RN
Set Carry flag

5 +-- Third step
1003 E901 SBC #$01 Subtract one

A=FF X=OO Y=OO P=BO 5=00 A=FF; Negative flag on

DEBUG "'-_-----
5
1005 30FB BMI $1002

A=FF X=OO Y=OO P=BO 5=00
DEBUG
5
1002 38 SEC

A=FF X=OO Y=OO P=B1 5=00
DEBUG
5
1003 E901 SBC #$ 01

A=FE X=OO Y=OO P=B1 5=00
DEBUG
5
1005 30 FB BMI $1002

A=FE X=OO Y=OO P=B1 5=00
DEBUG
5
1002 38 SEC

A=FE X=OO Y=OO P=B1 5=00
DEBUG

ST:P" th~' PO;")

+-- Fourth step
Branch if negative

+-- Fifth step
Set Carry flag

+-- Sixth step
Subtract one again

+-- Seventh step
Branch if negative

+-- Eighth step
Set Carry flag

You can see that this will go on for some time before we finally reach a
non-negative number. You can also see that the computer considers FF and FE
as negative values and therefore branches back to subtract again. It will branch
back until the accumulator reaches 7F. By looking at the Signed Number Wheel
in Figure 6-4, you will find that 80 is interpreted as a negative value (-128 deci­
mal) . However, 7F is interpreted as positive (+127 decimal). Therefore, the
branch will not be taken at that point.

Instead of plodding on through all the negative integers up to and includ­
ing -128, change to the Trace mode to finish up the program. After the last DE-

776 BRANCHING OUT

BUG prompt, type T1000 and press RETURN . Now the computer will trace
through the program, and you can see the END resu lt.

As seen on the display:

1005 30 FB BMI $1002
A=80 X=OO Y=OO P=B1 S=OO

1002 38 SEC
A=80 X=OO Y=OO P=B1 S=OO

1003 E9 01 SBC #$01
A=7F X=OO Y=OO P=71 S=OO

1005 30 FB BMI $1002
A=7F X=OO Y=OO P=71 S=OO

1007 00 BRK
A=7F X=OO Y=OO P=71 S=OO

DEBUG

•

THE OVERFLOW FLAG

~ 80 still considered
negative-branch

~ Negative flag off (P = 71)

~ 7 F considered positive­
no branch taken

Two branch instructions BVC (Branch on oVerflow Clear) and BVS
(Branch on oVerflow Set) can also change the normal sequential operation of a
mach ine language program. If you are not performing arithmetic with signed
numbers, the Overflow flag may be completely ignored . We will discuss arith­
metic with signed numbers in Chapter 9.

I V I I I I I I I Processor Status Register.

t
overflow flag

SUMMARY

This chapter discussed branch instructions-what they are and how they
are used . You learned that:

• All branch instructions are made in the Relative Addressing mode;

• Branch instructions cause a branch when a specified condition is true;

• The Program Counter is moved relative to its current position when a
branch is taken;

• The second byte of a branch instruction tells how far and in what direc­
tion (forward or backward) the Program Cou nter is moved;

EXERCISES III

• Forward branches are taken when the second byte of the branch in­
struction is in the range of 1 through 7F;

• Backward branches are taken when the second byte of the branch in­
struction is in the range of 80 through FF;

• The following status flags are used to determine the condition for
branches:

Negative
Overflow
Zero
Carry

• The condition is true when the specified flag is set to one;

• The condition is false when the specified flat is reset to zero;

• Hexadecimal numbers can be interpreted as negative values if they are
in the range of 80 through FF and as positive values when they are in
the range of 1 th rough 7 F;

• All branch instructions consider zero a positive value.

EXERCISES

1. When the following instruction is being executed, at what memory location
is the Program Counter pointing?

(1010,1011, or 1012)

Memory Op Code Instruction

1010
1011

DO
F9

BNE

2. What status flag will determine whether the branch in Exercise 1 is taken or
not? flag

3. Which direction (forward or backward) will the branch in Exercise 1 be
taken? ___ ____ _

4. Using the tables in Figures 6-1 and 6-2, give the hex operand that should be
used to make the following branches:

(a) forward 38 decimal steps _ _____ _
(b) backward 100 decimal steps ____ _
(c) forward 93 decimal steps _____ _
(d) backward 42 decimal steps _ ____ _

5. Give the two-byte branch instruction which would branch backward 11
decimal steps if the result of an operation were positive.

118 BRANCHING OUT

Op Code Mnemonic

6. If two hex values are added and the result is greater than FF, what flag will
be set?

(Negative, Zero, or Carry)

7. What hex value would be in the accumulator following the execution of
these two instructions? ______ _

LOA #$7A
AOC #$87

8. Tell the contents (0 or 1) of the following flags after the two instructions in
Exercise 7 have been executed.

Zero flag
Negative flag ___ _
Carry flag ___ _

9. Tell which mode of the assembler is used for the following: (Modes are:
EOIT, A5M, OR OEBUG)

(a) to Ll5T a source program ______ _
(b) to run an object program _______ _
(c) to display a memory location used to store a result in a machine lan-

guage program ______ _
(d) to trace an object program ______ _

10. Tell what the following mnemonic codes represent:
(a) BCC ___________________ _
(b) BEQ _________________________________ ___
(c) BPL ___________________ _
(d) BC5 __________________________________ __

(e) BN E _____________________________________ _
(f) BMI __________________________________ _

ANSWERS

1. 1012 (always one instruction ahead)

2. Zero flag

3. Backward

4. (a) 26
(b) 9C
(c) 50
(d) 06

5. Op Code
10
F5

Mnemonic
BPL

6. Carry flag for sure (Possibly N,Z)

7. 01

8. Zero flag 0
Negative flag 0
Carry flag 1

9. (a) EDIT
(b) DEBUG
(c) DEBUG
(d) DEBUG

10. (a) Branch on Carry Clear
(b) Branch on resu It EQual zero
(c) Branch on result PLus
(d) Branch on Carry Set
(e) Branch on result Not Equal zero
(f) Branch on result M I nus

ANSWERS 119

Chapter 7

Assembler Review

This chapter summarizes what you have learned about the Atari Assembler
and adds some new features that have not been discussed so far.

An assembly language program is made up of statements containing state­
ment numbers, labels, Op code mnemonics, operands, and comments. The pro­
gram, which is written in the Writer/Editor mode of the Assembler Cartridge, is
called the source program. You assemble the source program in the Assemble
mode. This produces a machine language program, called the object program.
The assembler places this program in memory. The object program is then exe­
cuted in the Debug mode to produce the desired result.

SOURCE PROGRAM FORMAT

The source program is made up of statements that begin with a line num­
ber and is terminated by pressing the RETURN key. Statements are broken up
into the following fields, some of which are optional.

Figure 7-7. Statement Fields

Every statement must start with a statement number that is in the range of
o through 65,535. You should number your statements in such a way that new
ones may be inserted at a later time in case you want to alter your original pro­
gram. Multiples of 10 work well for this purpose (i.e ., 1 0,20,30,etc.). The Writer/
Editor has convenient commands for automatically numbering or renumbering
programs (see page 129). A statement may be up to 107 characters in length.

720

SOURCE PROGRAM FORMAT 127

The label f ield is optional. If it is used, it follows the line number with
exactly one space between the last digit of the line number and the first letter
of the label. A label must start with a letter and contain only letters and num­
bers. It can be as short as two characters or as long as the limitation of the state­
ment length. If a label is not used, two spaces or a tab is used between the state­
ment number and the Op Code Mnemonic field (which follows the label field).

Examples:

With label 20 LOOP

State~ ~~ label
number space

With no label 20 Op Code

t
two spaces, or

20---..--...0p Code

atab~
The Op Code Mnemonic must be one of those given in Appendix A or B.

This field starts at least two spaces beyond the statement number (if no label is
used) or one space after the label. A mnemonic placed in the wrong field will not
be identified as an error in the Writer/Editor mode, but will be identified as
Error -6 when you assemble the program (See Appendix D for Error codes.)

Examples:

With label

With no label

20 LOOP CLC

one space ~ ~ Code for Clear Carry

50 INY or

two spats)
Op Code

50~INY

L8 spaces from
a tab

INcrement Y Register

The field of the operand starts at least one space, or a tab, after the
mnemonic field. Some Op Code mnemonics require an operand, while others
do not. The form of the operand that is appropriate for each mnemonic code
that uses one is given in Appendix A.

122 ASSEMBLER REVIEW

Examples:

For hex operand ~ LD\ #20~

two spaces Op co~ Operand hex
Immediate Addressing mode

30 LDA $1100

/ \
Load accumulator-from memory

location 1100

For decimal operand 30 LDA #32

/ \perand (decimal 32)
Immediate Addressing

10 LDA 4352

/ \perand (decimal 4352}
Absolute Addressing

(no #sign)

The last field, comment, appears on the listing of a source program but is
not assembled . Therefore, it does not appear in the object program. There are
two ways to enter comments.

• One way is to enter it in the comment field which occupies the remain­
der of the statement following the operand (if there is one) or the
mnemonic code (if there is no operand). At least one space separates it
from the last fi eld used. There may not be enough room to put the en­
tire comment in its field. In that case, you can extend your comment
into the next line.

Examples:

20 CLC GET READY FOR ADDITION
~

comment
Extend comment

30 BNE LOOP IF THE COUNT HAS NOT / to new line
REACHED ZERO GO BACK TO LOOP (no line number)

• A second way is to put the comment on its own line. In that case, one
space follows the statement number, and a semicolon is used before the
comment.

METHODS TO USE OPERANDS 123

Examples:

30 CLC
40 ;GET READY FOR ADDITION

and
30 BNE LOOP IF THE COUNT HAS NOT
40 ;REACHED ZERO GO BACK TO LOOP

METHODS TO USE OPERANDS

Line numbers, Op Code Mnemonics, and comments are straightforward
and easy to use. The operands are sometimes tricky and deserve some more ex­
planation.

Operands may be in the form of hexadecimal numbers, decimal numbers,
or letters. The programmer has the option to use whichever form is desired.

A number used as an operand is interpreted as a decimal number by the
assembler unless it is preceded by a $ sign. If a $ precedes the number, it is inter­
preted as a hexadecimal number.

Examples:

40 LDA 4500 ~ 4500 is interpreted as a decimal number
50 STA $1100 ~ $1100 is interpreted as a hexadecimal number

If a group of letters has been used as a label or have been assigned a nu­
meric value, the letters may be used as an operand.

Examples:

20 ABC=$33
30 DEF=51
40 LOOP CLC

80
90

/LOOP was used as a label previously

BNE LOOP
CMP DEF

------ Decimal value 51 or

90 CMP $ABC ---Hexadecimal value 33

I n add ition to providing data, the operand also tells the computer what
addressing mode to use for the operation specified by the Op Code Mnemonic.

724 ASSEMBLER REVIEW

Examples:

20 LDA #12

30 CPY $1212

40 STA $1250, Y

50 ADC ($2B,X)

60 CMP {$3C),Y

70 INC $3C

80 INC $20,X

The # sign indicates the Immediate
Addressing mode

Absolute Addressing mode (no # sign)

Absolute Indexed mode (note: ,Y added)

Indexed Indirect mode (note: parentheses)

Indirect Indexed mode (note : placement
of parentheses)

Zero Page mode

Indexed Zero Page mode

THE ASSEMBLER WRITER/EDITOR MODE

The Writer/Editor mode (referred to as the Edit mode for convenience)
controls the communication between you, through the keyboard, and the video
screen. When you power up your Atari with the Assembler Cartridge installed,
you should see the Edit mode prompt on the screen. If you do not see the Edit
prompt at this time, some error or malfunction has occurred. Check your Oper­
ator's Manual to make sure you have followed all procedures correctly.

r:DIT

'-------- cursor

Any entries from the keyboard will now appear in successive locations
across the screen starting at the cursor () position. The screen is 38 locations
wide. If the end of a line is reached, there is an automatic "wrap around" so that
your entries continue on the next line.

EDIT 38 locations,
10 ;THIS PROGRAM WILL DEMONSTRATE ADDI/" then wrap

around

We have discussed some of the following commands used in the Edit
mode. Others are new to you .

THE ASSEMBLER WRITER/EDITOR MODE 725

1. SIZE is used to find the location of the Current Line Buffer and Edit
Text Buffer. Three numbers are displayed when the SIZE command is executed.

EDIT _____ You type : SIZE
SIZE'-
0700 0880 1C1F

M,::::ttiOO of (,mo,y Io<,tioo wh",
(

Highest RAM
location available
in your computer

Current Line next character typed
Buffer will be placed

End of __ 1C1 F

8K memory)

3C1Ffor16K
5C1 F for 24K 0880
7C 1 F for 32K
9C 1 F for 48K

0700

~
Edit _ Your Source Program
tcx t goes here
buffer

}

Assc mbler cartr idge and
cu rrent line buffer

, CUITent line bei ng
typed is temporaril y
stored here

Figure 7-2. Buffer Memory

The middle number in the example (0880) increases as the Edit Text
Buffer is filled by your program. Therefore, the SIZE command can be used to
find out how much memory is being used as you enter the Source Program. The
machine language Object Program should be placed at memory locations higher
than that occupied by your Source Program.

2. LOMEM is used to change the location of the Buffer Memory area. You
have not used this command yet and may never use it. If you wanted to use 256
memory locations between 0700 and 0800 in your assembled program, you
would use the LOMEM command like this:

EDIT
LOMEM 800

EDIT

•
Your memory would now be organized for use as shown in Figure 7-3.

726 ASSEMBLER REVIEW

l C1F

0980

0800

0700

~ Edit text buffe r

}
Assemb ler ca rtridge and
current lin e buffer

}
Cou ld be used in
assembled program

Figure 7-3. Altered Buffer Memory

Now give the SIZE command again.

EDIT
LOMEM 800

EDIT
SIZE
0800

EDIT

•

0980 1C1F

The location of the buffer areas cannot be changed after you have started
writing a program. If you use the LOMEM command, it must be the first com­
mand after you power up.

3. LIST is used to display, on the video screen, the program that is cur­
rently in the Edit Text Buffer. It can be used in several forms.

(a) LIST to display the whole program

EDIT
LIST

10
20
30

*=$1000
CLC
LDA#O

40 LOOP ADC #1
50 CMP #$FF
60 BNE LOOP
70 END

EDIT

•

THE ASSEMBLER WRITER/EDITOR MODE 727

(b) LIST 40 to display only line 40

EDIT
LIST 40

40 LOOP ADC #1

EDIT

•

(c) LIST 50,70 to display all lines 50 through 70

EDIT
LIST 50,70

50 CMP #$FF
60 BNE LOOP
70 END

EDIT

•

4. NEW is used to clear the Edit Text Buffer. It does not clear the memory
occupied by a previously assembled machine language program- only the Edit
Text Buffer. After this command has been executed, you cannot restore any
Source Program that existed previously in the Edit Text Buffer.

If the program in 3a under LIST is in the Edit Text Buffer, and you type
NEW, the Edit Text Buffer will be cleared.

EDIT
NEW

EDIT
LIST

EDIT

•

_---- You typed NEW

---then LIST

----- Nothing is there

5. DEL is used to delete statements from the Edit Text Buffer. You have
not used this command. It allows you to delete one line or several successive
lines.

128 ASSEMBLER REVIEW

Suppose the program of 3a is still in the Edit Text Buffer, and you want to
delete line 20.

EDIT
DEL 20

EDIT
LIST

10
30

*=$1000
LDA#O

40 LOOP ADC #1
50 CMP #$FF
60 BNE LOOP
70 END

EDIT

•

________ Line 20 is gone

Now, take out lines 40,50, and 60.

EDIT
DEL 40,60

EDIT
LIST

10 *=$1000
30 LDA #0
70 END

EDIT

•

+- Not much left now

6. REP is used to replace a specified string in the Edit Text Buffer with a
different specified string. Thus, a program change can be quickly made by one of
the several forms of this command. Suppose you once again have the program of
3a in the Edit Text Buffer.

(a) To replace the first occurrence of the string "LDA #0" with "LDA
#5":

THE ASSEMBLER WRITER/EDITOR MODE 729

EDIT ~ -----Old string

REP/LDA #O/LD~~
EDIT ~ ~ N,w "do,
• ~ backslashes

(b) To replace all occurrences of the string "LOOP" with the string
"CIRCLE":

EDIT
REP/LOOP/CIRCLE/,A ,A added after
~ last backslash

EDIT

•
Lines 40 and 60 would be changed to:

40 CIRCLE ADC #1
50 BNE CI RCLE

Other forms of this command are explained in the Atari Assembler Manual.

7. NUM is used to number the statements automatically in an assembly
language program. It can be used in several forms.

(a) To increment the statement numbers by 10:

EDIT
NUM

- Prints a 10 and skips one space

Type in the first line and press RETURN

EDIT
NUM

10 *=$1000 - Type another space, *=$1000 and

20 • ~ press RETURN

Prints 20 and skips one space

130 ASSEMBLER REVIEW

(b) To increment by a value different than 10:

EDIT
NUM 3

3 ~ Now starts at 3

Type in first line and press RETURN

EDIT
NUM 3

3 *=$1000 -- Type space then *=$1000 and
6 • press RETU RN

~ Prints 6 and skips one space

(c) To force a new line and change the increment (or the starting line):

EDIT
NUM

10 *=$1000
20 CLC
NUM 50,3

50 LOA #0
53 LOOP AOC #1
56·

~ Regular NUM

- New NUM form

~ New line number, 50
__ New increment, 3

Press RETU RN to cancel the NUM command.

50 LDA #0
53 LOOP AOC #1
56 Press RETU RN here
• NUM is no longer active

8. REN is used to renumber statements in the Edit Text Buffer.

(a) To renumber statements in increments of 10 starting with 10, type :
REN then press RETU RN

(b) To renum ber statements in increments of 5 starting with line number
10, type:
REN 5 and press RETURN

THE DEBUG MODE 737

(c) To renumber all statements in increments of2 starting with line num­
ber 20, type:
REN 20,2 and press RETURN

9. ASM is used to transfer from the Writer/Editor Program to the Assem­

bler Program.

10. BUG is used to transfer from the Writer/Editor Program to the Debug
Program.

There are also commands to save and retrieve programs or specific blocks
of memory. Their use is described in the Atari Assembler Manual and will not be
repeated here. Each of these commands

LIST, ENTER, ASM, SAVE, and LOAD
are used in several forms depending on whether you wish to use the video screen,
printer, cassette recorder, or disk drive.

THE DEBUG MODE

The Debug mode, which is entered from the Writer/Editor mode by typing
"BUG", allows you to alter or execute the Object Program that has been assem­
bled. It also allows you to enter and change data tables that the Object Program
uses. The prompt shown on the video display when you are in this mode is the
word, DEBUG .

EDIT ______ You type BUG to enter DEBUG
BUG

DEBUG

•
The command to return to the Writer/Editor mode from the Debug mode

is the letter, X.

EDIT
BUG

DEBUG
X

EDIT

•

*"" Type BUG to enter Debug mode

*"" Type X to leave Debug

*"" Now you're back in the
Writer/Editor mode

To demonstrate the commands used in the Debug mode, enter the follow­
ing program.

732 ASSEMBLER REVIEW

EDIT

NUM -- For automatic numbering by 10

10 *=$1000
20 LDY #0
30 LDA #0
40 LOOP CLC
50 INY
60 ADC #1
70 CPY #3
80 BNE LOOP
90 END

100 -

Now assemble the program.

80 BNE LOOP
90 END

ASM- Type: ASM and press RETURN

0000 10 *- $1000

1000 AOOO 20 LDY #0

1002 A900 30 LDA #0

1004 18 40 LOOP CLC

1005 C8 50 INY

1006 6901 60 ADC#l

1008 COO3 70 CPY #3

100A DOF8 80 BNE LOOP

90 END

EDIT

-

Now, go to the Debug mode.

EDIT
BUG

DEBUG

•

THE DEBUG MODE 733

There are three ways to execute a program. The method that you choose
will depend on whether you want to display the steps as they are executed or
not.

1. To execute the program without a display, type: G1000 and press the
RETURN key .

DEBUG
Gl000
100C A=03 X=OO Y=03 P=33 5=00
DEBU~-VJ n-

• - ~ The memory location which is one beyond
where your program ended is displayed along
with the contents of the registers as the ---'
program ended.

Register A (the accumulator) contains a 3. The Y register also contains a 3.
This is as you would expect.

2. To TRACE a program, type Tl000 and press RETURN. The display
will show each instruction as it is executed along with the contents of the regis·
ters after the instruction has been executed.

DEBUG
Tl000
1000 AO 00

A=OO X=OO Y=OO P=33 5=00
LDY #$00

1002 A900 LDA #$00
A=OO X=OO Y=OO P=33 5=00

1004 18 CLC
A=OO X=OO Y=OO P=32 5==00

1005 C8 INY
A=OO X=OO Y=Ol P=325=00

etc., until the program has ended

734 ASSEMBLER REVIEW

3. To SINGLE STEP through a program, type S1000 and press RETURN.
The display will show the results of the first instruction. To continue the single
step procedure, type the letter S and press the RETU RN key for each successive
instruction that you want executed.

DEBUG
S1000
1000 AO 00

A=03 X=OO Y=OO P=33 5=00
DEBUG
S

LDY #$00

1002 A9 00 LDA #$00
A=OO X=OO Y=OO P=33 5=00

DEBUG
S
1004 18 CLC

A=OO X=OO Y=OO P=32 S=OO
DEBUG

•
4. To DISPLAY the contents of memory, type the letter D followed by

the address of the memory location that you want to examine.

(a) To display a single memory location.

DEBUG ~
D1005,1005 ____

"--- comma Address to
1 005 C8 be displayed

DEBUG'" _______
• ~ Address to be displayed

Contents
(b) To display up to 8 consecutive locations

DEBUG ~ __ ---- Only the starting
01000 ... address is given

1000 AO 00 A900 18 C8 69 01
DEBUG

•
(c) To display more than 8 consecutive locations, type D, the starting

address, a comma, and the ending address.

THE DEBUG MODE 735

DEBUG , .. ------- End
Dl 000,1 vO'O~B~ ______ -- Start

'---
1000 AO 00 A9 00 18 C8 69 01
1008 CO 03 DO F8
DEBUG

•
(d) Notice that in band c above, memory was displayed with a block

of 8 locations per full line. This will result when the requested start­
ing location ends in 0 or 8 (i.e ., 1000, 1008, 1010, 1018, etc.)
However, if the starting address does not end in 0 or 8, a block
containing fewer than 8 values will be displayed on the first line.

Examples:

DEBUG
Dl002,100B

1002 A9 02 18 C8 69 01 ____ only 6 locations

1008 CO 03 DO FB displayed
DEBUG
Dl005,100B

1005 C8 69 01 ... ----- only 3 locations
1008 CO 03 DO FB displayed
DEBUG

•
5. You can LIST a block of memory with the contents DISASSEMBLED

into assembly language mnemonics. Type L followed by the starting address or
the starting and ending address, just as you do for the display command.

(a) For only one instruction:

DEBUG
L 1000,0
1000 AO 00 LDY

Complete instruction
starting at 1000
(two bytes)

#$00

\
Assembly
mnemonic
equivalent to
memory
contents

736 ASSEMBLER REVIEW

DEBUG
L 1004,0
1004 18~ CLC

Complete instructions -----Assembly
starting at 1004 mnemonic
(one byte)

(b) For several instructions:

DEBUG
L 1000,1005
1000 AO 00 LDY #$00
1002 A900 LDA #$00
1004 18 CLC
1005 C8 INY

DEBUG

•
(c) Since the DEBUGGE R starts disassembling from the specified start­

ing location, you must be sure that the specified starting location
corresponds to the first byte of some instruction in your program.
Otherwise the DEBUGGER is confused, or interprets the code as
something different than intended.

(1) Confusion:

DEBUG

L 1 OO~ A bad address

1009,03 ??? There is no legal
instruction whose

DEBUG

•
(2) Misleading address:

DEBUG
L 1001,0

1001 00

code is 03

A legal instruction

BRK --but not intended
mnemonic

THE DEBUG MODE 737

6. As shown in earlier programs, the contents of memory can be changed.

(a) Changing one address:

DEBUG
Cl003<05 >------- Changes contents

of 1003 to 5
DEBUG

•

(b) Changing successive locations. The comma increments the location
to be changed .

DEBUG
Cl000<A9,00,AO ~.--- Puts A9 in 1000

00 in 1001
DEBUG AO in 1002
Cl 007<02,,06 ~

---- Puts 02 in 1007
DEBUG 06 in 1009

• but does not change 1008

7. The contents of a block of memory can be MOVED to a different mem­

oryarea.

Example:

Original
Memory
Location

1100
1101
1102
1103

The move command is then given.

DEBUG ~~~~------------

M 1150<11 00,11 03

,~-----------------
DEBUG

•

Memory
Contents

40
41
42
43

Block to be moved

Beginning address to
which data is to be
moved

738 ASSEMBLER REVIEW

Memory now looks like this:

Memory Memory
Location Contents

1100 40
1101 41
1102 42
1103 43

1150 40
1151 41
1152 42
1153 43

8. To VERIFY that data has been moved as desired or that two blocks of
memory contain the same data, you can compare two blocks of memory.

Example:

Using the results of item 7.

DEBUG-r ------- Block to be compared
V1100<1150,1153 to 1100-1103

DEBUG

•
-+-------- If the two blocks

match, nothing is
displayed

Ifl151 contains31,not41 :

DEBUG
V11 00 1150,1153

1151 31 1101 41
~ Mismatch is displayed

DEBUG

•
Other commands and variations of the ones shown in this chapter are given

in the Atari Assembler Manual. You should explore the manual thoroughly and
experiment with all commands so that you can use all the facilities of the Assem­
bler Cartridge.

EXERCISES 739

Since this entire chapter is a summary of the Assembler commands, no
chapter summary is given. Go right on to the chapter exercises.

EXERCISES

1. The five statement fields of a Source Program are given below. Tell which
are always used and which are somtimes used in a Source Program statement.

(a) Statement number __________________ _

(b) Label

(c) Op Code Mnemonic _________ _________ _

(d) Operand ____ ________________ _

(e) Comment _____________________ _

2. The assembler will interpret some numbers as decimal and others as hexa­
decimal depending on the specified operand. Give the interpretation of the
following:

(a) LDA#$13 _________ _

(b) LDY#14

3. The SIZE command is given, and the computer displays :

EDIT
SIZE
0700

EDIT

•

0880 3C1F

The computer is then turned off. It is then turned on and the following com­
mands are given. Fill in the display as shown after the final SIZE command.

EDIT
LOMEM 900

EDIT
SIZE

EDIT

•

740 ASSEMBLER REVIEW

Exercises 4 through 10 refer to the following program :

EDIT
LIST

10
20
30

*=$1000
CLC
LDA #0

40 LOOP ADC #5
50 CMP #$50
60 BNE LOOP
70 END

•

4. Give the value in the accumu lator at the end of each of the first five passes
through the loop.
1st 4th ___ ___ _ _
2nd _______ _ 5th _ _ _____ _
3rd _______ .

5. (a) Wi ll the accumu lator ever contain the hexadecimal value 50? ____ _

(b) If so, how many times will the loop be executed? ________ _

6. What wou ld be the command used to list all lines from 30 through 60,
inclusive? ________________________ _

7. Give the command that would de lete line 20. _______ ____ _

8. Give one command that will change the word LOOP in lines 40 and 60 to
the word ROUND. ________ ___________ _

9. Give a command that wou ld renumber the program starting with statement
nu mber 100 and numbering each successive statement in increments of 5.

10. Give the command to enter the Debugger mode and show the prompt that
results.

EDIT

•
The fo ll owing exercises assume that the program preced ing Exercise 4 has

been assembled, and that you are now in the Debugger mode. The assembled
Object Program is now stored in the following memory locations.

EXERCISES 747

Memory Contents

1000 18
1001 A9
1002 00
1003 69
1004 05
1005 C9
1006 50
1007 DO
1008 FA
1009 00

11. What is the command to:

(a) execute the program ________ _

(b) trace the program

(c) single step the first instruction ________ _

12. If the command: 01000 is executed, show the displayed result.

DEBUG
01000

DEBUG
•

13. Show the display resulting from the command: L 1000,0

DEBUG
L1000,0

DEBUG

•

14. If you wanted to change the program so that it would add ten (hex OA)
each time through the loop instead of 5, show how to change one memory
location to accomplish the change.

142 ASSEMBLER REVIEW

DEBUG

DEBUG

•
15. Show a command to move the program so that the first instruction will be

in memory location 1120.

DEBUG

DEBUG

•

1. (a) Always
(b) Sometimes
(c) Always

ANSWERS

(d) Sometimes (Some Op Codes require operands)
(e) Sometimes

2. (a) Hexadecimal
(b) Decimal

3.

ISIZE
0900 OA80

4. 1st 05 4th 14
2nd OA 5th 19
3rd OF

5. (a) Yes
(b) Sixteen times

6. LIST 30,50

7. DEL 20

8. REP/LOOP/ROUND/,A

9. REN 100,5

3C1F

10.

11. (a)
(b)
(e)

12.

13.

14.

15.

EDIT
BUG

DEBUG
•
Gl000
Tl000
51000

DEBUG
D1000
1000 18 A9 00 69 05 C9 50 DO

DEBUG
•

DEBUG
L 1000,0

1000

DEBUG
•

DEBUG
C1004<OA

DEBUG
•

DEBUG
M1120<1000,1009

DEBUG
•

18

ANSWERS 743

CLC

Chapter 8

Designing a Program

A program is usually written to solve a specific problem. The method of
solving the problem should be determined before any attempt is made to write
the program to solve it. Since assembly language programming is not interactive
like BASIC, a detailed plan is needed for each assembler program .

Sample Problem: Add five pairs of two-digit
numbers and store the results.

1. In analyzing the stated problem, you can see that some area of memory
is needed to hold the five pairs of numbers that are to be added. These will be re­
ferred to as data tables.

2. You must also provide for five results. Since you will be adding two­
digit numbers, the sum may be greater than two digits. Therefore, it will be ne­
cessary to provide for two memory locations for each sum. This group of mem­
ory locations will be called the result table.

3. The addition will be performed on two pairs of numbers at a time with
the data being accessed from the data tables and the results stored in a different
table.

4 . You must allocate the necessary memory locations for the program as
well as the data and result tables.

NOTICE that you do not know at this time how long the assembled
assembled program will be. Therefore, you must estimate where the starting

location of the data will be. We allowed lots of room for the program.

Now that you have stated the problem in realistic terms, you should think
through the program in functional blocks.

744

DESIGNING A PROGRAM

111 3

) 1
Block of 10 memory
locations for resul ts

110A

11 09

} t Block of 5 memory
locatio ns fo r 2nd numbers

1105
1104

} t Block of 5 memory
locat ions for 1 st numbers

1100
????

1
} Block of' m,m,

locat ions for
the assembled
program

1000

Figure 8- 7. Memory Blocks Used

A. LOAD the data
into memory

B. ADD the data and
STORE the results

Figure 8-2. Functional Blocks in memory

745

Think about Block A. You could load the data into the correct memory
locations using the Assembler Cartridge in the Debug mode. You could also load
the data tables from the program itself. The latter method consumes time and
memory space, so we will use the first method . It is more direct, is easily changed
(if needed), keeps the program simple, and will enable you to use another Assem­
bler Cartridge capability . Therefore, your program will be reduced to Block B.

Let 's now expand Bl ock B into func tional parts.

Block B 1. Load one 2-d igit number
into the acc umulator.

2. Add the second 2-d igit
number.

3. Store the resu l t.
4. Go back and repeat until

all 5 sum s are performed.

Figure 8-3. Block B Parts

746 DESIGNING A PROGRAM

The Absolute Indexed Addressing mode will be the most efficient way to
load, add and store the numbers. You can use both X and Y registers to index
the instructions. The program might consist of the following.

AOD FIVE PAIRS OF NUMBERS

LOY #0 Load the Y register with an initial value of
zero. This will index the load and add in-
structions as well as serving as a loop
counter.

LOX #0 Load the X register with a value of zero. X
will serve to index the pair of stored
results.

LOOP CLC Start of loop. Clear Carry bit in preparation
for adding a pair of numbers.

LOA $1100,Y Load the accumulator from memory loca-
tion 1100+Y.

AOC $1105,Y Add with carry the number in memory loca-
tion 1105+Y.

STA $110B,X Store the least significant byte of sum in
memory location 110B+X.

BCC SKIP If there was no carry, branch to the instruc-
tion labeled SKIP.

INC $110A,X If there was a carry, increment memory lo-
cation 110A+X.

SKIP INX Increase X by two for
INX two-byte result
INY Increase Y by one for next load and sum.
CPY #5 See if Y = 5
BNE LOOP If Y f 5, branch back to instruction labeled

LOOP for next pair of numbers.
ENO End of the program

ABSOLUTE INDEXED ADDRESSING

The load, add, increment, and store instructions are all used in the Abso­
lute Indexed Addressing mode. In this mode, a base address is specified. The
value contained in either the X or Y register is added to the base address to ob­
tain the memory address actually used.

Examples:
Suppose the Y register holds the value 3, the X register holds 6, and
the following values are in memory.

ABSOLUTE INDEXED ADDRESSING 747

Memory Value

1100 12
1101 34
1102 56
1103 78
1104 9A
1105 BC
1106 DE
1107 FO
1108 01
1109 23

Here is what happens when you execute the following instructions.

LDA $1100,Y would load the accumulator from memory location 1100+3, or
1103

ACCUMULATOR

ADC $1105, Y would add the value 78 to the value in memory location 1105+
3, or 1108 (value is 01)

ACCUMULATOR ~
ST A $11 OB,X would store the value in the accumulator into memory location

11 OB+6, or 1111

MEMORY 1111 G
The value for X and Y is originally loaded as zero. The Y value is incre­

mented once each time through the loop, and the X register is incremented twice
each time. Thus, a new value is loaded, a new value is added, and the result is
stored in a new pair of locations.

y= X= Loaded value Added value Result
from from stored in

0 0 1100 1105 110A and 11 OB
1 2 1101 1106 110C and 110D
2 4 1102 1107 110E and 110F
3 6 1103 1108 1110 and 1111
4 8 1104 1109 1112 and 1113
5 A END OF PROGRAM

Figure 8-4. How Memory is Used

Now you are ready to use the computer with the Assembler Cartridge.

748 DESIGNING A PROGRAM

USING THE ADD FIVE PAIRS OF NUMBERS PROGRAM

With the Assembler <;:artridge in the left slot of the Atari, you might first
input the program from the Edit mode.

EDIT
10 *=$1000
20 LDY #0
30 LDX #0
40 LOOP CLC
50 LDA $1100,Y
60 ADC $1105,Y
70 STA $110B,X
80 BCC SKIP
90 INC $110A,X
100 SKIP INX
110 INX
120 INY
130 CPY #5
140 BNE LOOP
150 END

•

You then assemble the program.

150 END
ASM
0000 10 *= $1000

1000 AOOO 20 LDY $0

1002 A200 30 LDX #0

1004 18 40 LOOP CLC

1005 B90011 50 LDA $1100,Y

1008 790511 60 ADC $1105,Y

USING THE ADD FIVE PAIRS OF NUMBERS PROGRAM 749

100B 9DOBll 70 STA $llOB,X

100E 9003 80 BCC SKIP

1010 FEOA 11 90 INC $110A,X

1013 E8 100 SKIP INX

1014 E8 110 INX

1015 C8 120 INY

1016 C005 130 CPY #5

1018 DOEA 140 BNE LOOP

150 END

EDIT

•

Next, you must place the data in the appropriate tables. Notice that you
are putting zeros in the result table. This must be done to make sure the loca­
tions used for the high-order bytes of the result are filled with zeros originally.
Since you are using the INCrement instruction to place the carry bit into the
high-order byte of the result, you must make sure that a zero is in the memory
to begin with. You must be in the Debug mode to enter the data.

140 BNE LOOP
150 END
BUG

DEBUG

•

The DEBUG Command for changing values in memory is:

CXXXX<yy where the X's represent hexadecimal digits in the memory
address to be changed. The y's represent the one- or two­
digit hex number to be placed in the specified memory
location.

150 DESIGNING A PROGRAM

To change a number of consecutive memory locations the command takes
the following form.

CXXXX<aa,bb,cc,dd where XXXX is the first memory location to be
changed. aa,bb,etc., represent hex values to be in­
serted into consecutive memory locations starting
at XXXX. Up to 16 data values may be inserted at
one time. Then a new starting address is needed.

DEBUG
Cll 00<12,34,56,78,9A,BC,DE,FO, 1,23,0,0 J Type in 16
,0,0,0,0 codes

DEBUG
Clll0<0,0,0,0

DEBUG

•

'" Then press RETURN
------ Press RETURN again

after entering four
more zeros

There, the data is all in place, and the program has been assembled. As one
final check, use the DISPLAY Command in the Debug mode to look at the pro­
gram and the data.

Display the program.

DEBUG
D1000,1019

1000 AO 00 A2 00 18 89 00 11
1008 79 OS 11 9D OB 11 90 03
1010 FE OA 11 E8 E8 C8 CO OS
1018 DO EA

DEBUG

•

/program

-Eight values displayed
on each line

Check the hex codes against those on page 148. If they agree, then check
the data.

USING THE ADD FIVE PAIRS OF NUMBERS PROGRAM 757

DEBUG
Dl100,1113

/ data tables

1100 12 34 56 78 9A BC DE FO
1108 01 23 00 00 00 00 00 00
1100 00 00 00 00

DEBUG

•

OK, now you can run the program.

DEBUG
G1000
lOlA
DEBUG

•

A=BD X=OA Y=05 P=33 $=00

Finall y, check the results by displaying the result table.

DEBUG
Dll0A,110B

110A 00 CE ~ 12+BC = OOCE
DEBUG
D110C, 11 OD

110C 01 12 ~ 34+DE=0112
DEBUG
Dll0E,110F

110E 01 46 ~ 56+FO = 0146
DEBUG
D1110,1111

111 00079 ~ 78+01 = 0079
DEBUG
Dl112,1113

111200 BD ~ 9A+23 = BD
DEBUG

•

752 DESIGNING A PROGRAM

Suppose the sample problem changes. Instead of adding the ten numbers
in pairs, you might want to add all ten numbers together.

Sample Problem 2: Add ten two-digit numbers and store the result.

Once again, expand Block B of the Functional Blocks of Figure 8-2. This
time we want to:

Block B 1. Load the first 2-digit number
into the accumulator.

2. Add the temporary total
(originally set to 0)
and store the new temporary
total.

3 . Load the next 2-digit number.
4. Repeat steps 2 and 3 until

a ll ten numbers have been added .

Figure 8-5. Block B Parts-Add Ten Program

Notice the differences between the solutions to Sample Problem 1 and
Sample Problem 2.

Solution to Sample Solution to Sample
Problem 2 Problem 7

LDY #0 ~{ LDY #0
LDX #0

LOOP CLC LOOP CLC
LDA $1100,Y LDA $1100,Y
ADC $110B ~{ ADC $1105,Y
STA $11 OB STA $llOB,X
BCC SKIP BCC SKIP
INC $110A INC $110A,X

SKIP INY

~rlP
INX
INX
INY

CPY #OA CPY #05
BNE LOOP BNE LOOP

END END

You can see that the solution to Sample Problem 2 uses fewer instructions
than the solution to Sample Problem 1. The temporary and final sum is stored in

USING THE ADD TEN PROGRAM 153

memory locations 110A and 110B. The temporary sum is added to each two­
digit number each time the loop is executed, and the new sum is stored back in
the same location. For that reason, the X register is not needed in the second
solution.

This is how the memory locations are used as each two-digit number is
added.

Loop Accumulator Temporary 110A 1108
Number Loaded Sum Stored

1 12 00+12 00 12

2 34 12+34 00 46

3 56 46+56 00 9C

4 78 9C+78 01 14

5 9A 14+9A 01 AE

6 BC AE+BC 02 6A

etc.

Figure 8-6. Memory Use in Add Ten Program

USING THE ADD TEN PROGRAM

The steps to use the program follow previous directions. We will not give
the steps in detail, but we will show the results.

In the Edit mode :

1. Enter the Program.

2. Assemble the Program.

In the Debug mode:

3. Load the data.

4. Run the program.

5. Display results.

754 DESIGNING A PROGRAM

1. Enter the Program.

10 *=$1000
20 LOY #0
30 LOOP CLC
40 LOA $1100,Y
50 AOC $110B
60 STA $llOB
70 BCC SKIP
80 INC $110A /Note that we can enter the
90 SKIP INY number of steps (10) as:
100 CPY #10 • #10 for decimal values
110 BNE LOOP or
120 END #$10 for hexadecimal values

I
Th is indicates hex.

2. Assemble the program.

ASM

0000 10 *= $1000

1000 AOOO 20 LOY :f:ID

1002 18 30 LOOP CLC

1003 B90011 40 LOA $1100,Y

1006 600Bll 50 AOC $110B

1009 800Bll 60 STA $110B

100C 9003 70 BCC SKIP

100E EEOA 11 80 INC $110A

1011 C8 90 SKIP INY ~ #10 in decimal

1012 COOA 0100 CPY #10 Assembled as a
hex value, OA

1014 OOEC 0110 BNE LOOP

0120 END

A VARIA nON OF THE ADD TEN PROGRAM 755

3. Load the data in the Debug mode.

BUG

DEBUG
Cll 00<12,34,56, 78,9A,BC,DE,FO, 1,23,0,0,

-- • Resu lts

" Data
4. Run the program.

DEBUG
Gl000
1016 A=5C X=OO Y=OA P=33 S=OO

5. Display the result.

DEBUG
DllOA,110B
110A 04 5C _ Result in locations 110A and 110B

A VARIATION OF THE ADD TEN PROGRAM

There is usually more than one way to program a solution to a problem,
and a good programmer is continually seeking ways to make his programs more
efficient. Let's look at a slight variation of the last program that eliminates one
two-byte instruction.

THE TWO ADD TEN PROGRAMS

First Program Second Program

10 *=$ 1000 10 *=$ 1000
20 LOY #0 ~***-- 20 LOY #10
30 LOOP CLC 30 LOOP CLC
40 LOA $1100,Y 40 LOA $1100,Y
50 ADC $110B 50 ADC $110C
60 STA $110B 60 STA $110C
70 BCC SKIP 70 BCC SKIP
80 INC $110A 80 INC $110B
90 SKIP INY ~***-- 90 SKIP DEY
100 CPY # 10 ~***7 100 BNE LOOP
110 BNE LOOP omitted 110 END
120 END I *** denotes program changes I

756 DESIGNING A PROGRAM

The second program counts downward from ten to zero as the loop is
executed over and over. Because of this, the results and data tables are placed
in slightly different memory locations. Each value is offset by one location.

One instruction, CPY #10, is omitted from the second program. This is
possible because the zero bit of the Processor Status Register is set when the Y
register is decremented to zero after the last time through the loop. Therefore,
the BNE instruction can be used directly following the DEY instruction with no
comparison necessary. Since you were counting upwards from 0 through 10 in
the first program, the value in the Y register had to be compared to ten before
the BNE instruction could be used .

A comparison of the assembled programs shows that the second program is
two bytes shorter. It ends at memory location 1013, whereas the first program
ended at memory location 1015.

The data tables are accessed similarly for the two programs, but the mem­
ory addresses are offset in the second program due to the way that the Y register
is decremented.

First Program

0000 10 *= $1000

1000 AOOO 20 LOY #0

1002 18 30 LOOP CLC

1003 B90011 40 LDA $1100,Y

1006 600B11 50 AOC $110B

1009 800B11 60 STA $110B

100C 9003 70 BCC SKIP

100E EEOAll 80 INC $110A

1011 C8 90 SKIP INY

1012 COOA 0100 CPY #10 this instruction
unnecessary in

1014 OOEO 0110 BNE LOOP second program

0120 END

A VARIA T/ON OF THE ADD TEN PROGRAM 757

Second Program

0000 10 *= $1000

1000 AOOA 20 LOY #10 initial va lue 10
instead of zero

1002 18 30 LOOP CLC

1003 B90011 40 LOA $1100,Y

1006 600Cll 50 AOC $llOC different
memory

1009 800Cll 60 STA $110C locations used

lOOC 9003 70 BCC SKIP

100E EEOBll 80 INC $110B

1011 88 90 SKIP OEY cou nti ng down

1012 OOEE 0100 BNE LOOP

0110 ENO

First Program Tables Second Program Tables

Data Memory Data

12 1100 No t used

1
34 1101 12
56 1102 34

Data 78 1103 56
accessed 9A 1104 78 Data

in this BC 1105 9A accessed
orde r DE 1106 BC in reverse

j FO 1107 DE order
01 1108 FO

I 23 1lO9 01
Low-byte resu lt 110A 23

High-byte resu lt 110B Low-byte resu lt
No t used 110C High-byte result

Figure 8-7. Data Tables

758 DESIGNING A PROGRAM

Naturally, executing the second program produces the same result as the
first even though the numbers are added in the reverse order.

One new instruction was introduced in the second program.

DEY (DEcrement the Y register)
Op Code 88

It is a one-byte instruction used only in the Implied Addressing mode. It
works just the opposite as INY (Increment Y). The value in the Y register is de­
creased (or decremented) by one when the instruction is executed.

Some programmers might object to the changes in the locations of the
data tables. This change was done so that the branch instruction could make di­
rect use of the condition of the zero bit following the DEY instruction. If the
data was located as in the first program, the following sequence would result on
the last pass through the loop.

Old Instruction Present Memory New
y Executed Sum Last Y

Accessed

SKIP DEY 044A 1101 0

~S b·· 0 BNE LOOP 044A ets zero It In

"" Since the zero bit is set, the branch would not
be taken back for the last number. Therefore,
the final sum (044A) would be incorrect.

YET ANOTHER VARIATION

Processor Status
Register

Another variation could be used to keep the data tables in their original
position, but it would require that you change the order of the instructions and
move the CPY instruction back into the program.

SUMMARY 759

Third Program

10 *=$1000
20 LDY #10
30 LOOP DEY • Move DEY up here
40 CLC
50 LDA $1100,Y - For Y values of9,8,7,
60 ADC $110B~ 6,5,4,3,2,1,0
70 STA $110B
80 BCC SKIP
90 INC $110A - Back to original values
100 SKIP CPY #0
110 BNE LOOP -----CPY back in
120 END

You can see that you have a considerable amount of freedom in designing
a program. Any program is a good program if it solves the problem for which it
was designed. Usually, good programs can be improved for efficiency and quick­
ness of execution. Programming provides for large amounts of individualism and
creativity. Enjoy it!

SUMMARY

• In this chapter you've learned how to design an assembly language pro­
gram to solve a specific problem. The suggested steps are:

1. Analyze the problem by deciding how the solution will be accom-
plished generally.

2. Decide what memory locations will be used for data and results.

3. Think through your solution in functional blocks.

4. Expand each block into steps that the computer can handle.

5. Write the program in terms of the expanded functional blocks.

• You learned how to handle data with tables accessed by the Absolute
Indexed Addressing mode to load, add, and store data. Instructions
used in this mode were:

1. LDA $1100, Y Load data into the accumulator from memory (lo­
cation 11 OO+the value in the Y register)

2. ADC $1105, Y Add the data from memory (location 1105+the
value of Y register) to the data in the accumulator

760 DESIGNING A PROGRAM

3. ST A $110B,X Store the accumulator's contents into memory (lo­
cation 11 OB+the value in the X register)

4. INC $110A,X Increment the content of memory {location 110A+
the value in the X register)

• You learned to enter data with the change memory command in the
Debug mode.

Examples :

Cll 00<12,34,56, 78,9A,BC,DE, FO, 1,23,0,0

,0,0,0,0
\ 16 items entered consecutively starting at

memory location 1100
Clll0<0,0,0,0

\4 more items entered consecutively

starting at memory location 1110

• You learned that an index register can count down as well as up .

Down --+ DEY Decrement the Y register
Up --+ INY Increment the Y register

• You learned to change a program to solve a new problem and to make
variations of existing programs.

• You learned that there may be several ways to program a solution to a
given problem.

EXERCISES

1. In which mode (EDIT, ASM, or DEBUG) were the data entries loaded into
memory for the programs in this chapter? ____________ _

2. What addressing mode is used for the following instruction?

STA $1500,Y

3. If the accumulator holds a value of 10, and the Y register holds 5, into what
memory location will the lObe stored if the instruction in Exercise 2 is
executed?

EXERCISES 767

4. The following values are in the computer as shown.

Accumulator Memory Data Y Register

1100
11 01
1102
1103

05
33
22
24

Then the following sequence of instructions is executed. Fill in the data in
the appropriate blanks below.

LOA $1100,Y
AOC $1101,Y
INY
STA $1100,Y

Accumulator

D
Memory Data Y Register

1100

1101 D
1102

1103

5. If the instructions of Exercise 4 were executed again using your results for
Exercise 4, what would the new values be?

Accumulator Memory Data Y Register

D 1100

1101 D
1102

1103

6. Suppose you are in the Debug mode, and you execute the command:

C1100<A4,F3,C5,19

Show what would be in the following memory locations.

Memory

1100

1101

1102

1103

1104

Data

Hint: One of the memory locations is
not changed by the command. Place
an XX in that location.

162 DESIGNING A PROGRAM

7. Give one DEBUG command to display all four memory locations of Exercise
5. __ ___

8. Fill in the blanks in the table below for the following program.

10 *=$1000
20 LDY #0
30 LOOP CLC
40 LDA $1101,Y
50 ADC $l1OO,Y
60 INY
70 STA $1100,Y
80 CPY #4
90 BNE LOOP
100 END

End of Y Accumulator Memory
Loop Register 1100 1101 1102 1103 1104

0 0 00 01 02 03 04 05

1

2

3

4

9. Show the hex and decimal values for the following Assembler notations.

#24 hex decimal
#$24 hex = decimal

ANSWERS

1. DEBUG

2. Absolute Indexed Addressing

3. 1505 {hex}

4. Accumulator Memory Data Y Register

0
1101 D5

G 1101 33
1102 55
1103 24

5. Accumulator Memory Data

G
1100 05
1101 33
1102 55
1103 79

6. Memory Data

1100 A4
1101 F3
1102 C5
1103 19
1104 XX +- (don't know)

7. 01100,1103

8.

AtEnd Y

of loop # Register

0 0
1 1
2 2
3 3
4 4

Accumulator

00
03
06
OA
OF

9. #24 18 hex = 24 decimal
#$24 24 hex = 36 decimal

7700 7707

01 02
01 03
01 03
01 03
01 03

ANSWERS 763

Y Register

G

Memory

7702 7703 7704

03 04 05
03 04 05
06 04 05
06 OA 05
06 OA OF

Chapter 9

Addition and Subtraction

You are now familiar with the way that computers add and subtract num­
bers. Since the size of registers and memory is limited to 8 binary digits, addition
and subtraction must be performed with pieces of data of the same size. Keep in
mind that the largest decimal integer that can be expressed in 8 bits (one byte) is
255.

You learned in Chapter 6 to test for the Carry bit to see if the sum of two
8-bit numbers was larger than the accu mulator could hold.

Example:

hex

7D
+A4

121

binary

01111101
+10100100

00100001
~

-----sum in the accumulator
extra bit
sets the Carry flag

In this way you can tell when the sum of two 8-bit numbers is larger than can be
held in a register or memory location . However at some time you will want to
add numbers that are larger than 255. To accomplish this, the computer must
handle the number in more than one byte. The computer can add a byte from
each of two numbers, store the result, and then add the second bytes of the two
numbers. Then you can displ ay the two parts as one complete number.

764

TWO-BYTE ADDITION 765

Example:

hex

6E61
+219C

8FFD

binary

0110111001100001
+0010000110011100
~~

1
add these bytes
fi rst and store

111111101 I
FD

then add these bytes and
store in different location [200011111

The complete result is 8FFD 8F

TWO-BYTE ADDITION

A paper-and-pencil addition of two-byte numbers will help us decide how
to write a program to perform the operation on the computer. Suppose we want
to add these two-byte hex numbers.

Most S~~~~fican~ Least Significant

/ / Byte

55A4 = 01010101 10100100
+3CB3 = 00111100 10110011

The binary addition
by bytes --+

01010101 10100100
+00111100 10110011

1 01010111
I~

+- LSB first

Extra Least Significant Byte (LSB)
is in the of result

Carry bit

Then MSB 01010101 10100100
+00111100 10110011

+ 1 01010111

10010010
~

Most Significant Byte (MSB)
of result

+- from LSB

766 ADDITION AND SUBTRACTION

MSB
The final result = 10010010

\ !
9 2

LSB
01010111

\ !
5 7 HEX

Notice that in this example a carry results from the addition of the Least Signifi­
cant Bytes. The ADC {ADd with Carry} instruction will automatically add in this
carry bit to the sum of the Most Significant Bytes. Therefore, it appears that the
two-byte numbers are summed by adding first, the Least Significant Bytes and
second, the Most Significant Bytes.

1. Add and store the
least significa nt by tes

2. Add and store the
most signifi cant bytes

Figure 9-7. Functional Blocks for Addition

It looks like a very straightforward program. Set up a block of memory to
store the bytes that are to be added and the bytes of the result of the addition.
Since there are two bytes for each number, set aside 6 bytes.

Memory
locat ion

t
1100
1101
1102
1103
1104
1105

Value
stored ,

1-----1 LSB of 1st numb er
1--__ -1 MSB of 1 st numb er
1--__ -1 LSB of 2nd number

MSB of 2nd number
1----; MSB of resu lt} The o rd er of

LSB of resu lt -- th e result is
reversed for

co nvenien ce of
display

Figure 9-2. Storage for Two-Byte Addition

The first two-byte number to be added is stored in memory location 1100
{Least Significant Byte} and 1101 {Most Significant Byte}. The second number is
stored in memory location 1102 {Least Significant Byte} and 1103 {Most Signifi­
cant Byte} . These values must all be loaded before the program is executed. You
know how to do this in the Debugger mode.

TWO-BYTE ADDITION 767

Break down the functional blocks into detailed steps and use the mnemonic
instructions that you have become familiar with .

Bl ock 1 LOA $1000 _ Absolute addressing mode
from memory 1000
(LSB of 1 st number)

AOC $1002 _ Ad d LSB o f second number
ST A $1004 _ Store accumulator into

appropriate memory location

Bl ock 2 LO A $1001 - Load MSB of first number
AOC $1003 - Add MSB of second number
ST A $1004 - Store accumulator into

appropri ate memory location

Figure 9-3. Detailed Steps for Functional Blocks

One thing that you must remember about the ADC instruction is that the
Carry bit (if set) is added to the sum. When you add the Least Significant Bytes,
you must be sure that the carry bit is off (reset to zero). Therefore, a CLC (Clear
Carry bit) is needed before the Least Significant Bytes are added.

If you draw a flowchart of the operations that must be performed it will
help you write the program step by step.

Bloc k 1

Block 2

Figure 9-4. Flowchart for Two-Byte Addition

768 ADDITION AND SUBTRACTION

If a program is short, like this one, and you have a detailed flowchtlrt, as
in Figure 9-4, you can write the program directly from the flowchart in the
Writer/Editor mode.

EDIT
NUM 100,10 ----- Number lines from 100 in

steps of 10
100 *=$1000
110 CLC Clear carry for adding LSB
120 LOA $1100
130 AOC $1102
140 5T A $11 05
150 LOA $1101
160 AOC $1103 ---- A carry may be added to M5B
170 5TA $1104
180 .ENO ____ Press RETURN to exit

190 ----

Notice that LOA, AOC, and STA are all used in the Absolute Addressing
mode this time. You can use that mode since you know exactly where each
piece of data is in memory or where you wish to put it in memory.

Once the program has been entered, assemble it.

180 END
190 ._______Type: A5M
A5M

0000 100 *= $1000

1000 18 110 CLC

1001 AOO011 120 LOA $1100

1004 600211 130 AOC $1102

1007 800511 140 5TA $1105

100A AD0111 150 LOA $1101

1000 600311 160 AOC $1103

TWO-BYTE ADDITION 769

1010 8D0411 170 STA $1104

180 END

EDIT

•

Now, the program is assembled. It resides in memory locations 1000
through 1012. Don't forget the data. Use the data shown in the paper-and-pencil
example so that you can check the results:

55A4
+3CB3

9257

Place the four pieces of data in the four specified memory locations.

MEMORY

1100

1101

1102

1103

Data

A4

55

B3

3C

LSB 1 st number

MSB 1 st number

LSB 2nd number

MSB 2nd number

Figure 9-5. Data Used in Example

You are now ready to go to the Debugger mode to enter the data into the
memory locations shown in Figure 9-5. Remember how to do it with the Change
Memory command?

EDIT
BUG

DEBUG
Cll00<A4,55,B3,3C

•

All four pieces in
consecutive memory
locations

Now execute the program and display memory locations 1104 and 1005
to see the sum.

770 ADDITION AND SUBTRACTION

DEBUG
C1100<A4,55,B3,3C
G1000 ------Execute

1013 A=92 X=OO Y=OO P=32 5=00
DEBUG
D11 04,1105 Display result

1104 92 57 _______
~---------Correct

DEBUG

•
Before leaving the Two-Byte Addition Program, try adding the pairs of

numbers given in Figure 9-6. Use the Change Memory command to put the
numbers in memory. Place your answers in the appropriate boxes in Figure
9-6. Check your results against the answers given in the answers to chapter
exercises.

First Second Sum
Number Number

OOOA OOOB
13C5 OF24
6666 333E
37AB A09D
E111 2000

Figure 9-6. Two-Byte Addition Exercises

Beware of the last exercise in Figure 9-6. Can you tell what result will be
displayed after the program has been executed?

TWO PROGRAMS IN MEMORY

Suppose you wish to have an addition program and a subtraction program
in the computer at the same time. Only three changes are necessary to convert
the addition program now in the computer, to a two-byte subtraction program.
It would be time consuming to rewrite the program, but you can quickly copy
the addition program to a different block of memory with the DEBUGGER's

TWO PROGRAMS IN MEMOR Y 777

Move command. Then you can modify the original addition program to perform
subtraction instead.

You have probably noticed that a BRK instruction (Op Code 00) is inserted
at the end of each program when it is assembled. The END statement of the
Source Program creates the BRK statement. The BRK instruction should be in­
cluded as you move the original program.

1000
1001

1012
1013

1020
1021

1032
1033

18
AD

11
00

18
AD

11
00

Original addition program

Move original program
to these locations

If you don't remember how to use the Move command, see Chapter 6 or
follow this procedure:

1104 92 57 ~ Answer from addition

DEBUG
M 1 020<1 000,1013 ~ Move

DEBUG

•

772 ADDITION AND SUBTRACTION

Verify that the two programs are the same before going on to be sure that
the move was made correctly.

M1 020<1 000,1013

DEBUG
V1 020<1 000,1013

DEBUG

•
----No mismatches displayed

therefore no mistakes

Now, you're ready to change the original program so that it will subtract
instead of add.

TWO-BYTE SUBTRACTION

Subtraction of two-byte numbers is performed in a similar manner. The
Two-Byte Addition Program can be modified by three minor changes:

• At memory location 1000:
change 18 (CLe) to 38 (SEe) +- Set the carry bit instead of clearing it

• At memory locations 1004 and 1 OOD:
change 6D (ADe) to ED (SBe) +- Subtract with borrow instead of add
with carry

The change at 1000 sets the carry bit in preparation for the subtraction
just as it did the One-Byte Subtraction Program of Chapter 4. The add with
carry instruction (ADe) is replaced by the subtract with borrow (SBe). The
subtract instruction is used in the Absolute Addressing mode. The address which
contains the number to be subtracted follows the Op Code, as it followed the
ADC instruction in the addition program. Thus, the Least Significant Byte of the
value to be subtracted is contained in address 1102. The Most Significant Byte
of the value to be subtracted is contained in address 1103.

The changes:

V1 020<1 000,1013

DEBUG
C1000<38
C1004<ED
C100D<ED

•

TWO-BYTE SUBTRACTION 773

You now have two machine language programs in the computer. The Two­
Byte Addition Program was assembled starting at location 1000 but was moved
to 1020 through 1032. The Two-Byte Subtraction Program is now in locations
1000 through 1013. You can now use either program by choosing the correct
memory address for the G command which executes the program starting at the
location that you specify.

Before you execute either program, put the original numbers (55A4 and
3CB3) back into memory locations 1100 through 1103.

Cll00<A4,55,B3,3C

•
You can now use either program.

Gl000

+-- Be sure you use the
correct order

+-- First use subtraction

1013 A=18 X=OO Y=OO P=32 S=OO
DEBUG
01104,1105

1104 18 Fl

DEBUG

•

1104 18 Fl

DEBUG

+-- Answer: 18 Fl for subtraction

G 1020 +-- Now addition

1033 A=92 X=OO Y=OO P=32 S=OO
DEBUG
01104,1105 +-- Display result

1104 92 57~ Answer: 9257 for addition

DEBUG

•

774 ADDITION AND SUBTRACTION

Check the subtraction with paper and pencil to make sure that the subtrac­
tion result is correct. We hope you like bi~ry subtraction. There are lots of
borrows.

55A4 = 0101 0101 1010 0100
-3CB3= 0011 1100 1011 0011

0001 1000 1111 0001 binary

8 F ~ Yes, it checks

Try the subtraction exercises in Figure 9-7. Watch the result of the last
two exercises in the table. Can you explain the results?

First Last Difference
Number Number

FFFF 0112
76A3 6DCB
590A 3A1B
2222 3333
0000 0004

Figure 9-7. Two-Byte Subtraction Exercises

The problem involved with the last two exercises in Figure 9-7 is that you
are trying to subtract a positive number from a smaller positive number.

2222
-3333

and 0000
-0004

Algebra students know that the result of each of these exercises is a negative
number. You actually saw these results displayed on the screen.

EEEF and FFFC

This means that a method must exist to determine whether a number is positive
or negative.

NEGATIVE NUMBERS

I t is possible to look at the way data is represented in the computer in a
different way. If signed numbers (those that are either positive, negative, or
zero) are to be represented, the computer must have some way to tell them apart.

Consider an 8-bit block of data as being com posed of one sign bit and
seven data bits.

NEGA TlVE NUMBERS 775

Bit position -+ I 7 I 6 I 5 I 4 I 3 I 2 I I 0 I
Sign ------./ 7 Data
position positions

1. If the sign position holds a zero, the data is considered to be a positive
number.

Examples:

o 1 1 1 +127 (64+32+16+8+4+2+1)
o 1 1 0 +126 (64+32+16+8+4+2)
0 0 1 +125 (64+32+16+8+4 +1)
0 0 0 +124 (64+32+16+8+4)

0 0 0 0 0 0 1 1 +3 (+2+1)
0 0 0 0 0 0 1 0 +2 (+2)
0 0 0 0 0 0 0 1 +1 (+1)
0 0 0 0 0 0 0 0 +0 ()

\
Zero is considered a positive
number by Branch Instructions

2. If the sign position holds a one (1), the data is considered to be a nega-
tive number.

Examples :

0 0 0 0 0 0 0 -128
0 0 0 0 0 0 1 -127
0 0 0 0 0 0 -126
0 0 0 0 0 -125
0 0 0 0 0 0 -124

o 1 1 -5
o 0 -4
o 1 -3
1 0 -2

-1

776 ADDITION AND SUBTRACTION

We have learned to interpret positive binary numbers as positive decimal
numbers, but what about these negative critters? They don't look familiar at all.
However, it is plain to see that each 8·bit code could represent all the integers
from -128 through +127.

00000000 +0
00000001 = +1

01111110 +126
01111111 +127
10000000 -128
10000001 -127
10000010 -126

11111110 -2
11111111 -1

~ positive

....----- negative

J
Zero and
above
positive

below zero
negative

Let's take a look at the negatives and see if there is any meaningful rela­
tionship to their positive counterparts.

Consider the positive number 126
Its one's complement
Its two's complement

Compare the latter with -126

01111110.
10000001
10000010
10000010

The binary representation of a negative number (-1 through -127) is equal to
the two's complement of its positive counterpart.

-127 = the two's complement of+127
-126 = the two's complement of +126
-125 = the two's complement of + 125

-2 the two's compl ement of +2
-1 the two's complement of+1

Therefore, you can interpret the form of the results of the last two exam­
ples in Figure 9-7 by converting the displayed results as follows :

NEGA T/VE NUMBERS 777

1. 2222
-3333

EEEF hex = 1110 1110 1110 1111 binary
take the one's
complement 0001 0001 0001 0000
add one for the
two's complement 0001 0001 0001 0001

Therefore, EEEF hex = negative 1111 hex

2. 0000
-0004

FFFC hex = 1111 1111 1111 1100 binary

one's
complement 0000 0000 0000 0011
two's
complement 0000 0000 0000 01 00

Therefore, FFFC hex = negative 0004 hex

When thinking in terms of signed two-byte hex numbers, all numbers from
8000 through FFFF are considered negative. All two-bytes hex numbers from

0000 through 7FFF, are considered positive.

Figure 9-8. Two-Byte Hex
Signed Numbers

Unsigned
Value

0001
0002
0003

7FFD
7FFE
7FFF
8000
8001
8002
8003

FFFD
FFFE
FFFF

Signed
Value

+0001
+0002
+0003

Positive

+7FFD
+7 FFE
+7FFF
-8000
-7FFF
-7FFE
-7F FD

Negative

-0003
-0002
-0001

778 ADDITION AND SUBTRACTION

For two-byte numbers, the sign position is considered to be in the Most
Significant Bit of the Most Significant Byte.

Most Significant Byte Least Significant Byte

Bit~ 7 6 5 4 3 2 1 0 7 6 5

I:]J; I I I I I ~ I I
Sign-.J 15 Data bits

position

Thus numbers such as:

0000000000010000 = 0010 hex
0010011111100110 = 27E6 hex
0110111110101001 = 6FA9 hex

4

I I

would be interpreted as positive numbers, but numbers such as:

1 000000000000000 = 8000 hex
1010011111100101 = A 7E5 hex
1111 011 0101111 00 = F6BC hex

would be interpreted as negative numbers.

3 2 1 0

I g;1

A complete discussion of the arithmetic of signed numbers is beyond the
scope of this book. A more thorough discussion of signed numbers and signed
number arithmetic can be found in the MOS Technology Programming Manual
available in some computer stores or from MOS Technology, Inc., 950 Ritten­
house Road, Norristown, PA 1940l.

For our purposes, we must realize that certain branch instructions test the
result of numbers to see whether they are negative or positive. This determina­
tion depends on whether or not the Negative flag of the Processor Status Regis­
ter has been set to 1 or not. The Negative flag is set to 1 when the computer
interprets the results of certain instructions as negative numbers (a 1 in bit 7
resulting from the operation performed by the instruction). In Chapter 5, a table
shows the effect that each instruction has on the various flags in the Processor
Status Register.

MULTIPLE-BYTE ADDITION AND SUBTRACTION

To add or subtract numbers that require more than two bytes, an exten­
sion of. this two-byte proced ure can be made. The operation is always performed
from the Least Significant Byte forward (or from right to left) .

1. I Clea r carry bit I
~

2. Load LSB of 1st numb er
Add LS B of 2nd nu mb er

Sto re result

~
3. Load next byte of 1st number

Add next byte o f 2nd number
Store result

--.
4. Repea t step three un ti l a ll

th e by tes have bee n added

!
5. Load MSB of 1st number

Add MSB o f 2nd number
Store result

t
6. r END 1

DECIMAL A RITHMETIC 779

~
~.

First
Byte

c!fJ
~ Second

Byte

~o A ll go ne

Figure 9-9. Multiple-Byte Addition Flowchart

DECIMAL ARITHMETIC

Are you tired of converting binary to hex to decimal? If so, the 6502 in­
struction set inc ludes an instruction to help you out. If you are carefu l to ex­
press the values that you wish to add or subtract as binary-coded-decimal (BCD)
numbers, the Atari can add or subtract those numbers and express the resu lt as a
decimal value. What are binary-coded decim al numbers? That's just a fancy name
for a binary number that has been separated into two 4-bit parts. These parts are
then interpreted as decimal digits.

Examples:

Binary Binary-coded-decimal Decimal

01011 000 0101 1000 58
10010011 1001 0011 93
0001011 0 0001 0110 16

780 ADDITION AND SUBTRA CTION

Since each four bits is interpreted as a decimal digit, the binary inputs
must be chosen with care.

11001001 = 1100 1001
itL--____ NOT a BCD value

10101011 = 1010 1011
'\...--\~-- NOT BCD values

Each 4-bit part must be one of these :

BCD DECIMAL

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

The instruction needed to request the computer to perform decimal addi­
tion or subtraction is :

SED (SEt Decimal mode)
Op Code = F8

Implied Addressing mode
One byte long.
Status flags affected : D

This instruction sets the Decimal fl ag in the Processor Status Register to 1.

;
'------- Decimal flag

set to one
.---r-r---1, ,'--,'--1 ,...." ,----;,r---l,

Processor Status Register

DECIMAL ARITHMETIC J8J

Once this instruction has been used, all of the Add and Subtract instruc­
tions will be carried out as decimal operations because of the status of the Deci­
mal f lag. The operation of any of the other instructions are not affected. If t he
SED instruction has been executed in a program, and a binary addition or sub­
traction is desired, the computer must execute the Clear Decimal mode instruc­
tion.

zero.

CLD (CLear Decimal mode)
Op Code = D8

Implied Addressing mode
One byte long
Status flags affected : D

Th is instruction resets the decimal flag in the Processor Status Register to

Suppose that you want to add the decimal numbers 18 and 23. You might
use this program.

ADD TWO DECIMAL NUMBERS

SED
CLC

LDA$1000
ADC$1001
STA $1100

Set decimal mode
Clear the carry bit
Load accumulator from memory location $1000
Add value from memory location $1001
Store the sum

Enter and assemble:

EDIT
NUM 100,10

100 *=$1000 +- Enter it
110 SED
120 CLC
130 LDA $1100
140 ADC $1101
150 STA $1002
160 END
170
ASM +- Assemble it

0000 100 *=$ 1000

782 ADDITION AND SUBTRACTION

1000 F8 110 SED

1001 18 120 CLC

1002 ADOOll 130 LOA $1000

1005 600111 140 ADC $1001

1008 800211 150 STA $1002

160 END

EDIT

•

Go to the DEBUGG ER, execute the program, and display the result. Be sure to
load the data in 1100 and 1101 first.

EDIT
BUG

DEBUG
Gl000
100B
DEBUG
01102,1102

+- Execute
A=41 X=OO Y=OO P=38 S=OO

+- Display

1102 41 __ ----------- Resu lt
DEBUG'-

•

The decimal result of 18+23 is 41. If we had been adding the hexadecimal
values of 18 and 23, the result wou ld have been 3 B. Remember, 18 and 23 in
hexadecimal notation are different values than 18 and 23 in decimal notation.

3B hex and 41 decimal are not equivalent values

Now let's execute the program starting from location 1001 (omitting
the Set Decimal instruction) and observe the result.

DEBUG
Gl00l
100B
DEBUG
Dl102,l102

DECIMAL ARITHMETIC 783

A=41 X=OO Y=OO P=38 S=OO

1102 41 __ ------------ Same result
DEBUG"-

•

Once the SED instruction has been executed, all additions in the program
are performed in the decimal mode. The CLD (Clear Decimal mode) in·
struction must be executed to get back to binary addition.

The advantage of decimal addition is that it relieves you of converting
numbers from one base to another for interpretation. You can enter decimal
values (such as 23 and 18) and obtain decimal results (41).

Try the Add Two Decimal Numbers Program with other pairs of decimal
values. Substitute them for the values that you originally put in memory loca·
tions 1100 and 1102. Use the Change Memory command to input the values in
Figure 9·10.

The first change would be:

Cll 00<51,23

•

First Second Sum
Number Number Displayed

51 23

68 14

29 17

33 99

72 45

Figure 9· 7 O. Decimal A ddition Exercises

184 ADDITION AND SUBTRACTION

What is wrong with the last two exercises in Figure 9 -1 O? Make sure that
the sum of the two numbers is less than 100 in this program. Any sum whose
value is greater than 99 will not fit in the accumulator or any memory location.
Remember, this is an 8-bit computer. Here is what will happen to you if you in­
sist on experimenting (we secretly encourage you).

Last exercise example :

ell00<72,45 Load data
G 1000 Execu te
100B A=17 X=OO P=F9 S=OO
DEBUG
Dll 02,1102 Display result

1102 17 You know it means 117,
DEBUG but it just can't show
• all of it

Since the 6502 microprocessor handles blocks of data in 8-bit sizes, some
provision must be made for the situation which results when a sum is larger than
can be held in 8 bits. This technique was shown in earlier chapters with hexa­
decimal arithmetic. The same method will work with decimal addition and sub­
traction.

SUMMARY

In this chapter you have learned:

• To break large numbers into more than one byte in order to perform
two-byte arithmetic,

• To retrieve, add (or subtract), and store separate bytes of two-byte
numbers using the Absolute Addressing mode,

• How the carry flag is used for two-byte addition and subtraction,

• How to move blocks of data from one area of memory to another,

• How signed numbers may be interpreted:
negative if Most Significant Bit is set to 1
positive if Most Significant Bit is reset to 0,

• The significance of the status flags on the Processor Status Register for
branch instructions,

• That addition and subtraction can be performed on numbers larger than
two bytes,

EXERCISES 185

• To write numbers in binary-cod ed-decimal (BCD) form so that the com­
puter can perform decimal addition and subtraction,

• How to use the Set Decimal mode and Clear Decimal mode to perform
either decimal or binary arithmetic.

EXERCISES

1. If the two-byte hex numbers 9B and 66 are added, will the sum be too large
to be held in the accumulator? _____________ _

2. Tell how the computer will handle the sum in Exercise 1.
(a) Number in accumulator _________ _
(b) The Carry flag will be _________ _

(zero, one)

3. The following data is stored (or to be stored) in the specified memory loca­

tions

Address Data

1100 3F
1111 A3
1112 +- Put sum here

Give the assembly language instructions to load the number from address
1110, add the number from address 1111 and store the result using the Abso­
lute Addressing mode.
(a)
(b)
(c)

4. In perform ing an addition or subtraction operation on the Least Significant
Bytes, the Carry flag must be appropriately set or reset. The assembly instruc­
tion:
(a) for addition is __________ _

(b) for subtraction is

5. Show where the data would be placed by the following instruction .
C1120<15,A4,32,CC

Address Data

1120

1121

1122

1123

786 ADDITION A ND SUBTR A CTION

6. Write the DEB UGGER command that wou ld move t he data from where it is
in memory in Exerc ise 5 to memory block 1105 t hrough 1108 .

7. Tell whether the fo ll owing signed numbers wou ld be interpreted as negative
or positive.
(a) 10100111 b inary
(b) 7 F hex ___________ _ _

(c) 01011111 b inary __________ _

(d) A3 hex

8. Two-byte signed numbers are considered :
(a) positive if in the range of _____ _ through ___ ___ _
(b) negative if in the range of through ___ ___ _

ANSWERS

Figure 9-6

First Second Sum
Number Number

OOOA OOOB 0015
13C5 OF24 22E9
6666 333E 99A4
37AB A09D 0848
El11 2000 0111 Most Significant Bit is lost

Figure 9-7

First Last Difference
Number Number

FFFF 0112 FEED
76A3 6DCB 0808
590A 3Al B lEEF
2222 3333 EEEF Last two are negative resu lts
0000 0004 FFFC

Figure 9-10

First Second Sum
Number Number Displayed

51 23 74
68 14 82
29 17 46
33 99 32
72 45 17

1. yes

2. (a) 01
(b) one (true answer is 101)

3. (a) LOA $1110
(b) AOC $1111
(e) STA $1112

4. (a) CLC
(b) SEC

5
Address Data

1120 15
1121 A4
1122 32
1123 CC

6. M 11 05<1120,1123

7. (a) negative
(b) positive
(e) positive
(d) negative

8. (a) 0000 through 7FFF
(b) 8000 through FFFF

ANSWERS 787

Most Significant Bit is
lost in last two answers

Chapter 10

Shift and Rotate

You learned to add and subtract in Chapter 9, but these two operations
are only half of the four basic arithmetic operations. What about multiplication
and division? The 6502 microprocessor has no instructions that will directly
perform multiplication and division. However, think of the way that you per­
form these operations with pencil and paper.

You perform a series of additions, subtractions, and shifts to get the
partial answers into the correct place value.

Examples:

(a) Multiplication

23
x 32

46 ~ 1) Two 23's = 23+23 = 46
69 ~ 2) Shift one place left
_------3) Three 23's = 23+23+23 = 69

736 4) Add 46+69 = 736

(b) Division

32

23) 736
69 -1) Three 23's = 23+23+23 = 69

--- 2) Subtract
46-- 3) Shift right and bring down
46-4) Two 23's = 23+23 = 46

0-5) Subtract

You know that the computer can add and subtract, but you must learn
how to manipulate numbers with instructions that will shift the numbers left
or right before you tackle the multiplication and division operations.

Let's take another look at the structure of 8-bit binary numbers so that
you can better understand the consequences of changing place values.

788

SHIFTANDROTATE 789

Binary Decim al

27 = 128

Figure 70-7 . 8-bit Binary Place Values

You can see from Figure 10-1 that each place value is double that of the
place value immediately to its right. In other words, shifting a binary digit one
place to the left doubles its value.

Study the following examples which demonstrate the results of a single
shift left for each digit.

1.

Shifted

Binary
00000101

II
00001010

Hex
5

A

Decimal
5

10

790 SHIFT AND ROTA TE

2. Binary Hex Decimal
00000111 7 7

III
Shifted 00001110 E 14

3. Binary Hex Decimal
00010010 12 18

I I
Shifted 00100100 24 36

4. Binary Hex Decimal
01101001 69 105

Shifted
III I
11010010 D2 210

From the previous examples, you can see th at a shift of one place to the
left doubles the value of an 8-bit number. In the decimal paper-and-pencil multi­
plication and division examples, you made shifts which changed the place values
by powers of ten .

23
X 32

46 ~--- 2 X 23
69 ~ shift left a power of ten because 3x 23 is really 30x 23

736

In binary multiplication :

101
X 11

1 01 ~-----1 X 101
101 Shift left a power of two because

1111 1 X 101 is really lO x 101

You rea lly do it in two parts

101
x 1

101

101
x l0

+ 1010 1111

The shifting is just a short cut to perform separate operations as one unit.

In thi s chapter, we will describe the four shift and rotate instructions
in the 6502 instruction set. We will also use subroutines, short min i-programs
that can be branched to from several different locations.

F irst, we will demonstrate how the shift and rotate instructions work
and then show some applications.

ARITHMETIC SHIFT LEFT 797

The four instructions are:

1. ASL (Arithmetic Shift Left),

2. LSR (Logical Shift Right),

3. ROL (ROtate Left), and

4. ROR (ROtate Right).

ARITHMETIC SHIFT LEFT

The first instruction that we will look at is ASL. This instruction shifts
every bit in a particular byte of data one position to the left, as we have been
discussing in previous examples.

One thing we didn't discuss earlier. If the 8 bits are shifted left, what hap­
pens at each end?

The 2° bit goes to 21
21 bit goes to 22
22 bit goes to 23

23 bit goes to 24
24 bit goes to 25

25 bit goes to 26

26 bit goes to 27
But where does the 27 bit go, and where does the 2° bit come from?

Each time that the ASL instruction is executed, the Carry flag assumes the
value that was in the leftmost bit (27) before the shift occurred. All the rest of
the bits are moved left one position, and a zero is moved into the rightmost
position (2°).

Here is an example that shows the contents of the accumulator before,
during, and after the instruction is executed. The value, B1, is in the accumula­
tor before execution.

792 SHIFT AND ROTATE

Acc umulator

111 0111 1101010111

@]
Ca rry bit

Figure 70-2 (a). Before ASL

Accumulator

Carry bit

Figure 70-2(b). This Is What Happens

Accumu lator c: 11110101 01 qol

Carry bit

Figure 70-2(c). After ASL

o

Enter the following short little program, and you can see the computer
shift the value in the accumulator when the ASL instruction is executed. The
program places a one in the accum ulator and shifts it left one place.

EDIT
NUM 100,10

100 *=$1000
11 0 CLC
120 LDA #1
130 ASL A
140 END
150 •

- Load a 1 (00000001 binary)
--- Shift left o nce

ARITHMETIC SHIFT LEFT 793

Assemble the program.

150
A5M

0000 100 *= $1000
1000 18 110 CLC
1001 A901 120 LOA #$01
1003 OA 130 A5L A

140 END

EDIT

•
Now, enter the DEBUGGER and set the accumulator to zero by using the

Charge Register command.

EDIT
BUG

DEBUG
CR<O

•
Trace the program by typing: T1 000 and pressing the RETU RN key.

See the
Accum.

Now
shifted

T1000
1000 18 CLC

A=OO X=OO Y=OO P=32 5=00
1001 A9 01 LOA #$ 01

A=Ol X=OO Y=OO P=30 5=00
1003 OA A5L A

A=02 X=OO Y=OO P=30 5=00
1004 00 BRK

A=02 X=OO Y=OO P=30 5=00

DEBUG

•

Accumulator
00000000

00000001

00000010

194 SHIFT AND ROTATE

Now, reset the accumulator to zero before going on to the next program.

DEBUG
CR<O

You only shifted left one time in the previous program. What happens if
you shift left 8 times in succession? Would there be anything left in the accumu­
lator? What would be the condition of the Carry flag? Try it.

Enter the program shown below and assembl e it.

010 *=$1000
020 CLC
030 LOA #1
040 ASL A
050 ASL A
060 ASL A
070 ASL A 8 Left sh ifts
080 ASL A
090 ASL A
100 ASL A
110 ASL A
120 END

This program sets the carry bit to zero, puts a 1 in the accumulator, and shifts
the accumulator left 8 times. When the program is done, the accumulator should
be zero and the Carry flag should be set, because the bit which forms the 1 in
the accumulator was shifted left through every bit and then out of the accumula­
tor and into the Carry bit. To see this for yourself, type "BUG" and press RE­
TURN. Then type "DR" and press RETURN again. You should see the registers
as they are below.

You typed these

DR
A=OO X=OO Y=OO P=30 S=OO

DEBUG

•
The accumulator is zero, and as you can see, the Carry bit is not set in the Pro­
cessor Status Register {Pl.

r-I o--o----o--o--o----'o~ Carry bit

Processor Status Register = 30 hex

ARITHMETIC SHIFT L EFT 795

Now, execute the program by typing: G 1 000, and press the RETU RN key.
You should see the fo ll ow in g:

DEBUG
Gl000
100B A=OO X=OO Y=OO P=33 5=00
DEBUG

•
The Processor Status Register has changed, and the Carry flag (bit 0) is set.

/ r------ Carry bit
~10---0------0--0----~11

Processor Status Register = 33 hex

Now try typing "T l000" to Trace the program. You will be able to see the regis­
ters as they are changing after each step in the program . Be sure to press RE­
TU RN after typing "Tl 000" .

DEBUG
T1~~~

1~~~ 18 CLC 000
A =~~ X =~~ Y=~~ P=32 S =~ ~ Carry Cleared

1~~1 A9 ~1 LDA #$~1 Accum ulator

A =~l X =~~ Y=~~ P=3~ S=~~ Q 00000001
1~~3 ~A ASL A <3~

A=~2 X=~~ Y=~~ P=3~ S =~~ 00000010
1~~4 ~A ASL A

A =~4 X=~~ Y=~~ P=3~ S =~~ 00000100
1~~5 ~A ASL A

A =~8 X=~~ Y=~~ P=3~ S =~~ 00001000
1~~6 ~A ASL A

A =l~ X=~~ Y=~~ P=3~ S=~~ 00010000
1~~7 ~A ASL A

A =2~ X =~~ Y=~~ P=3~ S=~~ 100100000
1~~8 ~A ASL A

A =4~ X=~~ Y=~~ P=3~ S=~~ 101000000
1~~9 ~A ASL A(;l

A =8~ X=~~ Y=~~ P=8~ S =~~ 0 110000000
l~~A ~A ASL A

A =~~ X=~~ Y=~~ P=33 S=~~~0 ...-1 00000000
l~~B ~~ BRK

A =~~ X=~~ Y=~~ P=33 S =~~ QJ

Figure 70-3. Trace of the Shift Program

796 SHIFT AND ROTATE

After the first instruction of the program (CLC) is executed, the Processor
Status Register (P register) shows a value of 32. This means the Carry flag is
zero. If a carry had occurred, the P register would read 33. Note that the Zero
flag (bit 1 of the P register) is set.

10 0 o 0 o
" ,,'-_---- Carry flag

Zero flag
P Register after CLC Instruction

After the next step (LOA #$01), which loads the 1 into the accumulator,
the A register = 01 and P=30, indicating that when the 1 (a non-zero value) was
loaded, the Zero bit was turned off.

000 0 0 0 0 10 0 o 0 0 0

A Register P Register

• Note the pattern in the accumulator after each left shift. As the original
1 is shifted, the value in the accumulator is effectively doubled.

• Notice that when the value of 80 was in the accumulator, the P register
changed to BO. When a value greater than 7F results from a shift, the
Negative flag (bit 7 of the P register) is turned on. As you found out
earlier in the book, the computer considers any number with its 7th bit
on (all hex numbers between 80 and FF) as negative for comparing pur­
poses (such as those used by branches).

After the last shift instruction is performed, the A register becomes zero
and the bit that formed the value of 80 has been moved over to the Carry bit of
the P register. The Negative flag is off (since the A register is zero). This leaves
the P register with its Carry and Zero bits set to 1.

10 0 0 0 0 0 0 0

A Register

10 0 o 0 1 1

P Register

As we mentioned earlier, shifting a number left has the effect of doubling
that number. This can be used to make a simple multiplication program. This
program can only mUltiply a number by a multiple of two, though. If you want
to multiply a number by 2, shift it once. You shift it twice to multiply by 4,
three times for 8, etc. The program shown below is an example of multiplying
8 by 4. Enter the program and assemble.

ARITHMETIC SHIFT LEFT 197

010 *=$1000
020 CLC

j~ 030 LDA #8
040 A5L A -Doubled
050 A5L A --- and redoubled j~~~ 060 END

Now enter DEBUG and run it.

BUG
DEBUG
Gl000
1005
DEBUG

•

A=20 X=OO y=OO P=30 5=00

lsx 4=20?

The accumulator now holds the number 20 (hex), which is the same as 32 in
decimal, 8x 4=32, right?

You have to be careful when you multiply numbers this way, though, be­
cause if you have a number like 80 (hex), and you try to mUltiply it by 4 by
shifting it left twice, you are going to get an answer of zero in the accumu lator
and the Carry bit.

Accumulator

11101010101010101

@]
Carry bit

Figure 10-4(0). Original Value

Accumu lator

Accumulator c:TI 01 0 I 01 01010101

Carry bit

Figure 10-4(b). After One Shift

C:0I 010101010101
o >?'

Carry bit G '00 1 ~

The early bird gets the bit

Figure 10-4(c). After Two Shifts

798 SHIFT AND ROTA TE

We have used the ASL instruction in the Accumulator Addressing mode.
This instruction as well as the other shift and rotate instructions may be used in

that mode or the Zero Page, Zero Page Indexed, th e Absolute, or the Absolute
indexed mode as indicated in the tables in Chapter 5.

The ASL instruction, as well as other shift and rotate instructions affect
the Negative, Zero, and Carry flags in the Processor Status Register when they
are executed.

LOGICAL SHIFT RIGHT

The LSR (Logical Shift Right) instruction, despite the word "Logical"
rather than "Arithmetic," does the same thing as the ASL, except in the oppo­
site direction. Each time it is executed, a zero is moved into the leftmost bit, the

rest of the bits are shifted to the right, and the rightmost bit goes over into the
Carry flag.

Accuillu lator-

o
7 6 5 4 3 2 o Carry bit

Figure 70-5. Operation of LSR

We will demonstrate this instruction by loading a value to be shifted into the
accumulator from a memory location, and shift it right a given number of times.
After each shift, the value of the accumulator is stored in another memory loca­
tion . Every shift after the first stores the value in the next highest memory loca­

tion.

Address Data

1100 Original value

11 01 Number of shifts

1102 Result of 1 shift

1103 Resu It of 2 sh ifts

1104 Result of 3 shifts

1105 etc.

Figure 70-6. Memory Use for Shift Right

LOGICAL SHIFT RI GHT 799

The program is detailed below.

Instruction Remarks

*=$1000 Start the program at location 1000

CLC Clear the Carry bit

LD X #0 Set the memory pointer to zero

LDA $1100 Get the value to be shifted

LDY $1101 Load the number of times that the number is
to be shifted into Y

LOOP LSR A Shift it once

STA $1102,X Put it in t he next memory location

IN X Point to the next locatio n

DEY Find out if we have shifted enough

BNE LOO P If not, go back and shift

This program wil l take the number that you put in location 1100 (hex) and shift
it right just as many times as you have to ld it to in location 1101. The results of
each shift will be stored starting in location 1102 and continuing for as many
locations as there are shifts. Enter the program be low and assemble it.

R IGHT SHIFTER PROGRAM

010 *=$1000
020 C LC
030 LDX #0
040 LDA $1 100
050 LD Y $1101
060 LOOP LSR A
070 STA $11 02,X
080 IN X
090 DEY
100 BNE LOOP
110 END

200 SHIFT AND ROTATE

Now enter DEBUG and put any value you want to see shifted into locationll00.
Suppose the value is 80 (hex). You would enter:

BUG ~--__ -J~-j--';-'v'""\,-----""",
DEBUG You typed these
Cll00<80

Now enter the number of times that you want the number to be shifted into lo­
cation 1101 . Suppose it is 7. You type :

Cll01<07

You now have:

Address Data

1100 80
1101 07

Now you are ready to run the program. Type : Gl000, and press the RETURN
key . To see the results, type Dll02,1108. This will let you look at the seven lo­
cations used to-store the shifted values.

Gl000
1011
DEBUG

X=07 Y=OO P=32 S=OO

Dll 02,11 08 ~----~-----.....l, You typed these

1102 40 20 10 08 04 02
1108 01
DEBUG

•
And there they are! Note the values in the registers when the program was fin­
ished :

• The accumulator contains the last shifted result.

• The X registe r contains the number of times that the accumulator was
shifted.

• The Y register is zero, indicating that all 7 shifts have been performed.

• The P register shows that the Carry flag is not set. That is because there
were not enough shifts made for the one to be bumped over into the
Carry bit.

If you could see the data in memory locations 1102 through 1108 in bi­
nary form, the shifts would be more apparent.

LOGICAL SHIFT RIGHT 207

Address Binary Data

1102 01000000

1103 00100000

1104 00010000

1105 00001000

1106 00000100

1107 00000010

1108 00000001

Now try shifting 8 times and see what happens. Change memory location
1101 and execute the program again. Display memory locations 1102 through
1109 th is time.

C1101<8
G1000
1011 A=OO X=08 Y=OO P=33 5=00
D11 02,11 09

1102 40 20 10 08 04 02
1108 01 00
DEBUG

•
Notice the P register contains 33 at the end of the run. The Carry bit was

turned on by the last shift right.
Show what values would be in the four registers if you executed the pro­

gram with the following values in memory.

Address Data

1100 80
1101 OA

A= _ _ X= __ Y= _ _ P= __

Try entering the values in Figure 10-7 at locations 11 00 and 11 01 . Fill in
the values in memory at the end of the program's execution.
the values in memory at the end of the program's execution.

202 SHIFT AND ROTA TE

(a) Address Data (b) Address Data (c) Address Data

1100 91 1100 33 1100 E7

1101 03 1101 04 1101 06

1102 1102 1102

1103 1103 1103

1104 1104 1104

1105 1105

1106

1107

Figure 7 0- 7. LSR Exercises

The two rotate instructions basically do the same thing as the shift instruc­
tions, with one important difference. I nstead of throwing out the Carry bit and
filling in a zero at one end of the byte, the Carry bit is rotated back into the
original byte again.

ROTATE LEFT

The rotate left instruction (ROL) tells the computer to think of data in
terms of blocks in a wheel instead of blocks in a straight line.

Figure 70-8. Rotate Left Wheel

ROTA TE LEFT 203

Or as is more conventional:

~'1}:G:G:GJ1fl ~
Carry

When a large number of rotations are made in succession, no bits are lost.
They merely go round and round to different positions. It's something like the
game of musical chairs except that no one takes any of the chairs away. There's
always a place for each bit of data to go.

The next program sets the Carry bit and loads the accumulator with 1.
Then the accumulator is rotated left eight times. On the last rotate, the Carry
bit is set by the 1 that has been rotated through the accumulator. The accumula­
tor ends up with a value of 80 due to the original carry that has rotated through
the accumulator.

Enter the program and assemble it.

010 *=$1000
020 SEC
030 LDA #1
040 ROL A
050 ROL A
060 ROL A
070 ROL A
080 ROL A
090 ROL A
100 ROL A
110 ROL A

Now run the program by entering the Debugger mode and typing: G1 000.
(Don't forget the RETURN key .) You should see :

G1000
100B A=80 X=OO Y=OO P=B1 5=00
DEBUG

•
/~-------- Negative f lag

11 0 0 0 0 0 0 0 1 11 0 1 1 0 0 0 0 Carry flag

A Register P Register

204 SHIFT AND ROTA TE

You can see from the P register that the Carry and Negative flags are set.
The carry was set when the 1 that we had in the accumulator was shifted all the
way over and out of the accumulator and into the Carry bit. The Negative flag
was set when the value of the accumulator became CO (and stayed set for 80)
due to the shifting.

Examine the trace of the program that follows.

DEBUG
T1000
1000 38 5EC

A=OO X=OO Y=OO P=31 5=00
1001 A9 01 LDA #$01

A=Ol X=OO Y=OO P=31 5=00
1003 2A ROL A

A=03 X=OO Y=OO P=30 5=00
1004 2A ROL A

A=06 X=OO Y=OO P=30 5=00
1005 2A ROL A

A=OC X=OO Y=OO P=30 5=00
1006 2A ROL A

A=18 X=OO Y=OO P=30 5=00
1007 2A ROL A

A=30 X=OO Y=OO P=30 5=00
1008 2A ROL A

A=60 X=OO Y=OO P=30 5=00
1009 2A ROL A

A=CO X=OO Y=OO P=BO 5=00
100A 2A ROL A

A=80 X=OO Y=OO P=B1 5=00
100B 00 BRK

A=80 X=OO Y=OO P=B1 5=00
DEBUG

•
In the first step, the Carry flag is set by the 5EC instruction. Then a 1 is

loaded into the accumulator. After the first ROL instruction, bit 7 of the accu­
mulator (a zero) has been moved into the Carry bit, resetting it (as shown by
P=30). The old value of the Carry bit (a one) is moved into bit 0 of the accumu­
lator. All the rest of the bits in the accumulator have been shifted one position
to the left, giving a value of 03 in the accumulator.

Figure 10-9 shows the binary results of each step in the program.
After the seventh rotate instruction has been executed, the accumulator

has a value of CO. This sets the Negative flag, making P=BO. After the next ro-

Step Instruction

1000 SEC

1001 LOA #01

1003 RO L A

1004 ROL A

1005 ROL A

1006 ROL A

1007 ROL A

1008 ROL A

1009 RO L A

100A ROL A

Carry

1

1

0/

0

0

0

0

0

0

(1/

Accumulator

00000000

1/00000001

I
00000011

00000110

00001100

00011000

00110000

01100000

V 11000000

I
100000g..0

ROTA TE RIGHT 205

This is the
way it rotates

the last time
around

Figure 70- 9. A ccumulator and Carry Rotates

tate, bit 7 of the accumulator (a one) gets moved into the Carry bit, setting it
and making P=Bl. The value, 80, is left in the accumulator.

ROTATE RIGHT

The rotate-right instruction (ROL) works in the opposite direction as ro­
tate left. As successive rotate-right instructions are executed, the bits in the accu­
mulator and carry go around and around clockwise.

or

Carry

Figure 70-70. Rotate-Right Wheel

206 SHIFT AND ROTA TE

A rotate-right instruction executed following a rotate-left instruction
would put all bits back in their original place.

Example:

1. Originall y

2. ROL A causes

3. ROR A causes
Back to original

Carry Accumulator

I don't know why anyone would want to do that, but you might think up
a reason.

To demonstrate the ROR instruction, look back to the Right Shifter Pro­
gram and see how it might be changed to make it a Right Rotater Program. Only
this time provide the following initial values:

• Carry bit = 1

• Memory location 1100 = 0

• Memory location 1101 = 0

• Rotate right memory location 1100 8 times

• Store the resu lt of each rotation in successive memory locations from
1111 through 1118

You might do it like this :

0100 *=$1000
0110 SEC
0120 LOY $11 01 ________ Remember that shift and
0130 LOOP ROR $1100 rotate can be used in the
0140 LDA $1100 } Absolute Addressing mode
0150 STA $l111,Y
0160 INY ~ Transfer result to locations
0170 CPY #8 1111 through 1118
0180 BNE LOOP
0190 END

We changed the program quite a bit to show you that there's more than
one way to achieve the same result. The Y register now serves as a loop counter
and as an index to store the result of each rotate.

ROTA TE RIGHT 207

Enter the program and assemble it. Then go to the DEBUGGER to store
the initial values in memory.

BUG

DEBUG
Cll00<0,0 ~,--- This will set both 1100 and
• 1101 to zero

5ingle step the program and watch the accumulator change as it is loaded
from 1100 each time the instruction at 1007 is executed. Also watch the Y regis­
ter change at 1000.

(1100<0,0
51000
1000 38 5EC

A=OO X=OO Y=OO P=33 5=00
DEBUG
5
1001 AC 01 11 LOY $1101

A=OO X=OO Y=OO P=33 5=00
DEBUG
5
1004 6E 00 11 ROR $1100 --You can't see it

A=OO X=OO Y=OOO P=BO 5=00 doitbut
DEBUG
5
1007 AD 00 11 LOA

A=80 X=OO Y=OO P=BO 5=00
DEBUG
5
100A 99 11 11 5TA

A=80 X=OO Y=OO P=BO 5=00
DEBUG
5
1000 4C INY

~th''';tb
1O(i00000 I Accumulator

$l1l1,Y

A=80 X=OO Y=Ol P=30 5=00 ~'-----Y changed

208 SHIFT AND ROTA TE

DEBUG
5
100E CO 08 Cpy #$08

A=80 X=OO Y=Ol P=30 5=00
DEBUG
5
1010 DO F2 BNE $1004

A=80 X=OO Y=Ol P=30 5=00
DEBUG
5
1004 6E 00 11 ROR $1100 Rotate again

A=80 X=OO Y=Ol P=30 5=00
DEBUG
5
1007 AD 00 11 LDA $1100

A=40 X=OO Y=Ol P=30 5=00 There it is
DEBUG \01 OOOOOO \Accumulator

Continue single stepping unti l the program ends. When finished, display
memory locations 1111 through 1118.

DEBUG
D1111,l118

1111 80 40 20 10 08 04 02
1118 01

DEBUG

•

You are now able to manipulate data in four ways. Proceed to the sum­
mary and then the exercises.

EXERCISES 209

SUMMARY

This chapter contains discussions of shift and rotate instructions to pre­
pare you for multiplication and division operations which follow in the next
chapter. You learned that:

• Multiplication and division operations are performed by a series of addi­
tions, subtractions, and place location shifts;

• Shifting a binary digit left one place doubles the place value of the digit;

• Shifting all bits of a binary number left one place doubles the value of
the binary number;

• Shift and rotate instructions may be used in the following address
modes;

Accumulator, Zero Page, Zero Page Indexed, Absolute, and Absolute
I ndexed (however, only the X register can be used for indexing);

• The following diagrams show the operation of the shift and rotate
instructions:

ROL

ROR

EXERCISES

1. What would be the decimal equivalent of the result of shifting the following
binary number two times left?
o 0 0 1 0 1 1 0 (binary number before shifts)

decimal equivalent after two shifts

210 SHIFT AND ROTATE

Exercise 2 through 6 assume the following binary digits are in the accumu­
lator and Processor Status Register. Show the contents of each after the speci­
fied instructions have been executed.

Accumulator 10 0 0 0 It at the beginning
~ of each exercise

P register 10 0 0 0 0 o 1 .
N V B D Z C

2. After: ASL A Accumulator I I I I I I I ASL A
ASL A P register I 0 111 1 I 0 I 0 I I

3. After: LSR A Accumulator I I LSR A
P register I 1 0 I I 01 0

4. After: ROL A Accumulator [I I I I ROL A
ROL A P register 1 I 0 I I 01 0

5. After: ROR A Accumulator
I I I I I I I ROR A

P register I I 0 11 I 10101 I
6. After: ROR A Accumulator

I I I 1 1 I I LSR A
ROL A P register 10111110101 I
ASL A

7. Assume you are using the Right Shifter Program, and you use the following
command sequence:

DEBUG
CllOO< FF,08
G1000

(a) Show the bits contained in the accumulator at the end.

I 1 I I
(b) the Carry bit is _ _ __ _

(set, reset)

I
I
I
I

1
I
I
I

I
1

ANSWERS 277

8. In exercise 7, show the contents of these memory locations in hexadecimal
notation.

1102

1103

1104

1105

1106

1107

1108

1109

ANSWERS

From Figure 10-7

A=OO X=OA Y=OO P=32

(a) Address Data (b) Address Data (c) Address Data

1100 91 1100 33 1100 E7
1101 03 1101 04 1101 06
1102 48 1102 19 1102 73
1103 24 1103 OC 1103 39
1104 12 1104 06 1104 1C

1105 03 1105 OE
1106 07
1107 03

1. 88 decimal (64+16+8)

2. Accumulator 0 0 0 0 0

P register 0 0 0 0 0 N=l, Z=O, C=O

3. Accumulator 0 0 0 0 0 0

P register 0 0 0 0 0 N=O, Z=O, C=l

4. Accumulator 0 0 0 0

P register 0 0 0 0 0 N=l, Z=O, C=O

212 SHIFT AND ROTATE

5. Accumulator 0 0 0 0 0

P register 0 0 0 0 N=l, Z=O, C=l

6. Accumulator 0 0 0 0 0

P register 0 0 0 0 0 0 N=O,Z=O,C=O

7. (a) 10 0 0 0 0 0 0 01

(b) set

8.
1102 7F
1103 3F
1104 1F
1105 OF
1106 07
1107 03
1108 01
1109 00

Chapter 11

Multiplication, Division,
and Subroutines

Since the 6502 instruction set does not contain instructions for multiplica­
tion and division, it is up to you to develop methods to perform these operations.
MUltiplication can be thought of as a series of additions.

Example:

3x 12=12+12+12
and

5x 16=16+16+16+16+16

You can very easily write a program using a loop to add one number a
specified number of times to obtain the same answer that would result from
multiplying the two numbers.

MULTIPLICATION BY ADDITION

CLC
LDX#5
LDA #0

LOOP ADC $1100
DEX
BNE LOOP

END

Load X with one number

Add second number each
time through the loop

If a second number (1 0 for example) is loaded into memory location 1100,
and the program is assembled and executed, the accumulator would contain the
desired result at the end of the program.

AI though it is very quick and easy to write a program for this method, you
can see that it would be time consuming to execute the multiplication of large
numbers. That would require many passes through the loop. It would work for
8-bit numbers but would have to be redesigned for larger numbers requiring
more than 8 bits. Due to the inefficiency of the program, it is seldom used.

Division could be performed in a similar manner, subtracting the divisor
each time through a loop. However, that method has the same drawbacks of
the mUltiplication method.

213

214 MULTIPLICATION, DIVISION, AND SUBROUTINES

Since you've learned all about shifts and rotates in Chapter 10, let's see if
you can make use of them to solve multiplication and division problems.

EIGHT-BIT MULTIPLICATION

Let's start with 8-bit numbers and look at the multiplication process first.
Remember, the computer does its arithmetic using binary numbers. First look at
a pencil-and-paper example of binary multiplication. Multiply 18 (decimal) by
58 (decimal) using both decimal and binary multiplication.

Decimal Binary

18 _ Multiplicand _ 0001 0010

x 58 - Multiplier - x 0011 1010

144 0000 0000
90 0 0010 010

1044 00 0000 00

IT CHECKS!

000 1001 0
0001 0010

o 0010 010
00 0000 00

0100
4 (decimal)

16 (decimal)
+1024 (decimal)

- 1044 (decimal)

Notice that your mUltiplication involves adding the multiplicand every
time that a one appears in the multiplier. Of course, there is a shift to the left
each time a bit of the multiplier "is used just as there is in decimal multiplication.
You also proceed from right to left as you "use up" the bits of the mUltiplier.

The program that we will use does much the same thing. The first part of
the program will initiali ze the memories with the appropriate values. We will
store these quantities in memory as follows:

Memory Contents
Address

1100 Most Significant Byte of product

1101 Least Significant Byte of product

1102 Multiplicand (12)

1103 Multiplier (3A)

Figure 77-7. Memory Use for Multiplication

EIGHT-BIT MUL TlPLlCA TlON 275

The accumulator will temporarily hold the Least Significant Byte of the
product as the program is executed. You may notice that the mUltiplier is used
from left to right (the opposite of the usual paper-and-pencil method) to simp­
lify the process.

---­Used first

o o
"""-----Used last

The mUltiplier is sh ifted left as it multiplies.

The flowchart in Figure 11-2 clarifies the action in the program.

Figure 7 7-2. 8-bit Multiplication Flowchart

Load X registe r with 8

Load accumulator with divisor

Sto re it in memo ry 1100

Load acc umula to r wi th least
signifi cant byte o f di vidend

Store it in memory 1101

Load accumula to r with most
signi f icant byte of di vidend

Loop 8 tim es

Shift me mo ry 1101 left

Rota te acc umul ato r left

No

Subtrac t di visor from accumulator

Increment me mo ry 1101 (qu o tient)

Decrement the X registe r

No

Store remainder in 1102

276 MUL TlPL/CATlON, DIVISION, AND SUBROUTINES

The housekeeping chores at the beginning of the program are easy for you
now. You have used each instruction in this section of the program before. They
are all either load or store instructions in various addressing modes.

This section of the assembly language program would look like this:

EDIT
NUM 100,10

100 *=$1000
110 LDX # 8
120 LDA #$12 Let the computer
130 STA $1102 load the data
140 LDA #$3A

~
this time!

150 STA $1103
160 LDA #0
170 STA $1100
180 STA $1101

The loop section performs the multiplication. Two instructions appear
that you learned about in the last chapter. One of them is ASL (Arithmetic
Shift Left). It is used to shift the contents of the accumulator at statement num­
ber 190. It is also used in the Absolute Addressing mode at statement number
210. When used in this mode, the bits of the specified memory location (1103)
are shifted left.

Example:

Memory 1103 before ASL $1103

To carry --I 0 \ 0 \ 0 \ 1 \ 0 I 0 \1 \ 0 \

~;~;l:,or I oiot~ ;(~,101o 1-0
Register

appears by magic

Memory 1103 after ASL $1103

We will make use of the fact that the Most Significant Bit from the shift is
moved to the carry bit of the Processor Status Register.

At statement 200, you will make use of the ROL (Rotate Left) instruction
in the Absolute Addressing mode. In Chapter 10, you used this instruction with
the accumulator. This time it is used to rotate the bits in memory address 1100.

EIGHT-BIT MUL TlPLlCA TlON 277

Example:

Memory 1100 before ROL $1100

~ 1 0 1 0 1 0 1 0 1 0 1 0 1 1 10 1

:~ ~:rry / / / / / / /
Processor

Status
Register

101 0 101010111 0 l x l
Memory 1100 after ROL $1100

Old can y bit

X is e ither 0 or 1
depending on the
Carry bit when t he

instruction is
executed

As each instruction is executed, the Most Significant Bit moves into the Carry
bit of the Processor Status Register. In the ASL instruction, the Least Significant
Bit is fi ll ed with a zero. In the ROL instruction, the Least Significant Bit is fi ll ed
from the Carry bit of the status register (either a 1 or a 0). The instructions de­

rive their names from the action that they cause.

Shift Left Roll Left
r-~~~.- r0.....-..--+-

Lost~ 17 6 5 4 3 2 1 0 1-+0 ~ 10 ~ -;-; ~ b
ASL ROL

Here is the section t hat performs the loop, which is the heart of the pro-
gram.

190 LOOP ASL A

200 ROL $1100
210 ASL $1103
220 BCC SKIP

230 CLC
240 ADC $1102
250 BCC SKIP
260 INC $1100
270 SKIP DEX
280 BNE LOOP

After the loop has been executed 8 times (once for each bit in the multi­
plier, the Least Significant Byte of the result wi ll be in the accumulator. This is

stored in the fi nal section of the program in memory location 1101 for later dis­

play. The program then ends.
The Most Significant Byte of t he result is now in memory location 1100,

and the Least Significant Byte of the result is in memory location 1101.

218 MUL TlPL/CA TlON, DIVISION, AND SUBROUTINES

The Last Section

290 ST A $1101
300 END

USING THE 8-BIT MULTIPLICATION PROGRAM

Enter the program in the Writer/Editor mode. Then assemble it. We used
the Atari 820 Printer as we assembled the Multiplication Program so that we
could see the complete program at one time. It is a long program, and it may not
a" show on the video screen. Here is what our printed assembled program looks
like.

0000 0100 *= $1000
1000 A208 0110 LDX #8
1002 A912 0120 LDA #$12
1004 8D0211 0130 STA $1102
1007 A93A 0140 LDA #$3A
1009 8D0311 0150 STA $1103
100C A900 0160 LDA #0
100E 8D0011 0170 STA $1100
1011 8D0111 0180 STA $1101
1014 OA 0190 LOOP ASL A
1015 2E0011 0200 ROL $1100
1018 OE0311 0210 ASL $1103
101B 9009 0220 BCC SKIP
1010 18 0230 CLC
101 E 6D0211 0240 ADC $1102
1021 9003 0250 BCC SKIP
1023 EE0011 0260 INC $1100
1026 CA 0270 SKIP DEX
1027 DOEB 0280 BNE LOOP
1029 8D0111 0290 STA $1101

0300 END
.. ~

Figure 11-3. Printout of Assembled Multiplication Program

You're ready to execute the program. You don't have to load any data
this time as the program is going to do it for you. Enter the DEBUGGER and
execute the program.

EDIT
BUG

DEBUG
Gl000
102C
DEBUG

•

USING THE 8-BIT MUL TlPLICA TlON PROGRAM 279

A=14 X=OO Y=OO P=32 S=OO

The result of the multiplication can be found in memory locations 1100
(Most Significant Byte) and 1101 (Least Significant Byte). You can display them
both at once by typing:

DEBUG
01100,1101

1100 04 14
DEBUG

•

01100,1101

Hmmm, let's see:
0414hex=
0000010000010100 binary =
4+16+1024 = 1044 decimal.

It checks with our previously hand-calculated result.

While you are in the Debugger mode, make changes to the multiplier and
multiplicand. They are in memory locations 1003 and 1008. Try using the fol­
lowing pairs of hexadecimal numbers and put your results in the appropriate
places in Figure 11-4.

Multiplier Multiplicand Result
(7003) (7008) (7700 and 7070)

03 09

lA E4

3C 08

A4 C2

FF FF

Figure 77-4. Multiplication Exercises

220 MUL TlPLlCA TlON, DIVISION, AND SUBROUTINES

Remember, there is a Change Memory command in the Debugger mode.
Here are two ways to get ready for the first modification.

DEBUG
C1003<03

DEBUG
C1008<09

DEBUG

•
or

DEBUG

~ Intwo,t,p,

C1 003<03 , , , , , 09 .. ,------ In one step

DEBUG

•

Most people working with machine language programming agree that an
assembler removes much of the drudgery. If the previous multiplication program
had been programmed in machine language directly, there would have been
many details to take care of.

• Individual addresses would have had to be assigned to each instruction
and its operand.

• Branch locations would have had to be calculated.

• Individual Op Codes would have had to be looked up in an instruction
table.

• Conversion between decimal and hexadecimal notation would have
been necessary.

The Atari Assembler programs make life much easier. The Writer/Editor
Program cannot execute a program directly, but it takes care of assigning Op
Codes and the operands that go into the machine language Object Program.

The Assembler relies on the Debugger Program for execution of the assem­
bled program and for examination of memory for results. The combination of
Editor, Assembler, and Debugger are hard to beat. The Assembler does all the
detail work, and the Debugger provides the execution and debugging capabilities.
Of course, the Editor allows you to communicate your wishes to the Assembler.

After that brief introduction to multiplication, let's move on and take a
look at the division process.

EIGHT-BIT DIVISION 227

EIGHT-BIT DIVISION

Once again, we'll take a look at pencil-and-paper division before looking at
the computer's method_ Since division is the inverse operation of multiplication,
we'll use the same numbers that we used in the multiplication example with one
exception_ That exception is made to the dividend so that the division examp le
will not come out even. There will be a remainder.

Example:

1046 (decimal) 58 (decimal)

Decimal Binary

18 quotient

58) 1046
58

~ ___ ---"l,---,O::..;O=-lC-:::.O quotient

0011 1010) 0100 0001 011 0

466
464

2 remainder

i
It checks

0011 1010

111 011
111 010

10 remainder

0010 = 12 HEX = 18 dec .
1 0 = 2 HEX = 2 dec.

Just as in multiplication, you can see shifts being made as the division takes
place. Place value is very important in this process. Notice that a subtraction is
made only if the divisor is smaller than part of the dividend that is being tested.
A one then is placed in the quotient. If the divisor is larger, a zero is placed in
the quotient.

Our assembly language program for division will look much the same as
the multiplication program. The first part of the program places the appropriate
values in their respective memory locations. Figure 11-5 shows the placement of
the data.

Memory Contents
Address At the Start AttheEnd

Accumulator Most Significant Remainder
Byte of dividend

1100 Divisor Quotient

1101 Least Significant -

Byte of dividend

1102 - Remainder

Figure 77-5. Memory Use for Division

222 MUL TlPLlCA TlON, DIVISION, AND SUBROUTIN ES

The flowchart for the program is given in Figure 11-6. The accumulator
and memory location 1101 begin with the original dividend. Each time through
the loop, the contents of memory location 1101 are shifted left, and the accu­
mulator is rotated left. If a carry occurs from the shift of memory location 1101,
it will appear as a 1 in the Least Significant Bit of the accumulator when it is ro­
tated. If no carry occurs from the memory 1101 shift, a zero appears in the
Least Significant Bit of the accumulator. Thus each time through the loop, the
dividend is shifted one place from memory 1101 to the accumulator. This lets
the computer compare the divisor with the most significant part of the dividend
for a trial division .

Load memory 1102 with 12

Load memory 1103 with 3A

Load accumula to r w ith ze ro

Store zero in m emory 1100

Store zero in me mo ry 11 01

Loop 8 Tim es

Shift accumul ato r lef t

Ro tate MS B of produ ct left

Shi ft multipli er left

No

Figure 77-6. Division Flowchart

EIGHT-BIT DIVISION 223

The division is accomplished by comparing the divisor with the accumula­
tor. Every time that the divisor is smaller than, or equal to, the accumulator, the
divisor is subtracted from the accumulator and memory 1101 is incremented by
one. This means a 1 is appearing in the quotient.

If the divisor is larger than the accumulator, no subtraction is made and
memory 1101 is not incremented. This means a zero appears in the quotient.

As the bits in the accumulator and memory 1101 move to the left, the
quotient appears in memory 1101 from the right (0 if divisor did not go into
dividend, 1 if divisor did go into dividend).

After the loop is completed (8 passes through), the remainder is placed in
memory location 1102. When the program is complete, you'll find the 8-bit quo­
tient in memory location 1101 and the remainder in memory location 1102.

The housekeeping chores are similar to those of the MUltiplication Pro-
gram.

10 *=$1000
20 LDX #8
30 LDA #$3A
40 STA $1100
50 LDA #$16
60 STA $1101
70 LDA #4

The main part of the program comes next. The rotate instruction appears
in a different form in the loop in this program. We are using ROL A to rotate
the accumulator. It works the same way as it did when we rotated a memory lo­
cation. Only this time, the accumulator's contents are rotated . The loop is again
executed 8 times using the X register as a counter.

80 LOOP ASL $1101
90 ROL A
100 CMP $1100
110 BCC BRANCH
120 SBC $1100
130 INC $1101
140 BRANCH DEX
150 BNE LOOP

When the loop has been completed 8 times, the contents of the accumula­
tor (the remainder) is stored in memory location 1102 for ease of display.

160 ST A $11 02
170 END

224 MUL TlPLlCA TlON, DIVISION, AND SUBROUTINES

Enter and assemble the program now. The assembled program shoul d
look like t his:

0000 10 *= $1000
1000 A20S 20 LDX #S
1002 A93A 30 LDA #$3A
1004 SDOOll 40 5TA $1100
1007 A916 50 LDA #$16
1009 SDOlll 60 5TA $11 01
100C A904 70 LDA #4
100E OEOlll SO LOOP A5L $11 01
1 OJ 1 2A 90 ROL A
1012 CD0011 0100 CMP $1100
1015 9006 0110 BCC BRANCH
1017 EDOOll 0120 5BC $1100
lOlA EE0111 0130 INC $1101
1010 CA 0140 BRANCH DEX
101E DOEE 0150 BNE LOOP
1020 SD0211 0160 5TA $1102

0170 END

Figure 77-7. Printout of Assembled Division Program

Enter the Debugger mode, execute the program, and disp lay the resu lts.

EDIT
BUG

DEBUG
Gl000
1023 A=22 X=OO Y=OO P=32 5=00
DEBUG
Dl101,1102

/,,----- - Quotient
1101 12 02

\'----- Remainder
DEBUG

•
T his checks with t he hand calculated result.
Try the additional division prob lems given in Figure 11-S. The answers

appear at the end of the chapter exercises.

SUBROUTINES 225

Dividend Divisor Result

MSB LSB (1003) Quotient Remainder

(1000) (1008) (1107) (7702)

01 00 10

OA Be DE

OA 05 9F

05 AA 83

7F FF FF

Figure 77-8. Division Exercises

If you try any other examples, make sure that the quotients do not exceed
FF. The program will not work for quotients larger than one byte.

SUBROUTINES

Quite often, a set of instructions must be executed at several different
places within a program. Rather than write the instructions at each place they
are used in the program, it is more efficient to write the instructions once, as a
subroutine to your program. Each ti me that you wish to execute the set of in­
structions, you insert the Jump to SubRoutine instruction.

Example:

Suppose that you have a subroutine labeled SUBEEP. The JSR
instruction would be:

JSR SUBEEP

Once you have executed the subroutine, you must have a way to get back
to the main program. And you must come back to the instruction that follows
the JSR instruction that sent you to the subroutine. This is done by placing a
RTS (ReTurn from Subroutine) instruction as the last instruction executed in

the subroutine.

Subroutine
Instructions

D: RTS

226 MUL TlPLlCA TlON, DIVISION, AND SUBROUTINES

The subroutine could be "called" from the main program by the JSR
SUBEEP instruction. The subroutine would be executed, and control would be
returned to the main program as follows:

j

Main Program

Instru cti ons SUBEEP
1st ti me ~ Instructi ons r-I

~_--.J

I
I
I
I
I
I
I

1st tim e

12nd time
I

RTS

JSR SUBEEP ---- -..,J I

More instru c ti on s~-- ______ -:-_J

j
: 2nd time

END

the main program?

Figure 11-9. Subroutine Flow

Remember the stack that was discussed in Chapters 1 and 5? When a JSR
instruction is executed, the computer automatically places the memory address
contained in the program counter on the stack. Then, when the RTS instruction
is executed at the end of the subroutine, the computer takes the address from
the stack and places it back in the program counter. The execution of the main
program then continues from that point.

Jumping to the Subroutine

SUBROUTINES 227

Program 1020 JSR SUBEEP When the JSR instruction is
Counter --- 1021 next instruction /" executed, the program

counter is "pointing" to the
next instruction.

G
Stack
~

The address 1021 is placed
on top of the stack.

The address of the subroutine is placed in the program counter.

Program Counter

The program counter then forces the computer to execute the instructions
beginning at location 1100 (the subroutine).

Program
Counter

~
Pointing to the
next instruction

Returning from the Subroutine

The subroutine
is executed

1100

1125 RTS

When the RTS instruction is
/ executed, the computer goes to J the stack

Stack ./'" The address is
.s:\ / removed from the
~ stack

Program Counter And placed back in I the Program Cou nter.

1021 Fl\

This forces the computer to execute the next instruction starting at loca­
tion 1021.

228 MULTIPLICA TlON, DIVISION, AND SUBROUTINES

You should remember that the stack is made up of 8-bit memory loca­
tions. Addresses may be 16 bits long. Therefore, the process is a I ittle more com­
plicated than the previous description indicates. The address is actually placed

on th' 'took" two "&?_:. ____ ~~;~~~~de;r b:::
e
0f~r:~P

~T ~ - other values may be here
Stack

When the RTS instruction is executed, the return address is also picked off
the stack in two separate bytes. In other words, the RTS instruction reverses the
process performed by the JSR instruction. They work together just like the GO­
SUB and RETURN instructions of BASIC.

Subroutines in assembly language may be nested, just as subroutines in
BASIC.

USING A SUBROUTINE

Let's return to the 8-bit multiplication program used earlier in this chapter
and add a sound subroutine that will playa different sound each time one of the
bits of the multiplier is used. You will need to insert many new instructions in
the original program. Several new instructions will be introduced which use the
stack to save and retrieve information .

THE MAIN PROGRAM (Unchanged Portion)

100 *=$100

110 LDX #8
120 LDA #$12
130 STA $1102 Data Initialization
140 LDA #$3A
150 STA $1103
160 LDA #0
170 STA $1100
180 STA $1101
190 LOOP ASL A
200 ROL $1100
210 ASL $1103 Multiplication Loop
220 BCC SKIP
230 CLC
240 ADC $1102
250 BCC SKIP
260 INC $1100

USING A SUBROUTINE 229

MAIN PROGRAM (Changed Portion)

270 SKIP PHA
280 PHP
290 TXA
300 PHA
310 JSR SUBEEP -- Here's where you GOSUB
320 PLA • You come back here
330 TAX
340 PLP
350 PLA
360 DEX
370 BNE LOOP
380 STA $1101
390 BRK • Program ends here

Subroutine SUBEEP

400 SUBEEP LDA #$C8
1024 410 STA $CE

420 LDA #AO
430 STA $D201
440 LDA $1103,X
450 STA $D200

SUBEEP 460 LDA #$AF
470 ALOOP STA $D201
480 LDA $CE
490 JSR DELAY Jump to nested sub

1051 500 SEC -- Return here
510 SBC #$01
520 CMP #$9F
530 BNE ALOOP
540 RTS -- End of SUBEEP

1059 550 DELAY LDY #$13 • Start of nested sub
560 DELAY2 DEY

Nested 570 BNE DELAY2
Subroutine 580 DEX

590 BNE DELAY
600 RTS End of Nested sub

1061 610 END

The program is executed in the order shown in Figure 11-10. The sub­
routine SUBEEP is called eight times from the main program. The subroutine
labeled DELAY is nested within subroutine SUBEEP.

230 MUL TlPLICA Tl ON, DIVISION, AND SUBROUTINES

110

t
310
320

t
390

Maill program

JSR SUBEEP

BRK

SUBEEP

~ 400 - t
~ 490 JSRDELAY

500
1-'------

rl SEC

t
540 RTS

I

Figure 77-70. Sound Subroutine Flow

Delay

550

t
600 RTS

I

The frequency of the sound is controlled by the value stored in 0200
from the data table at 1103+ X. The aud io control register at 0201 controls the
volume of the sound.

Since the 6502 microprocesso r has only two index registers (X and Y), a
new programming technique is demonstrated at 270-300 and 320-350. The
main program and the subroutines use the X register and accumulator for differ­
ent purposes. Therefore, before the subroutines are ca ll ed, all the values in regis­
ters X, A, and P are saved o n the stack so that the registers may be used by the
subroutines in their own way.

PHA PusH the Accumulator o n t he stack
PHP PusH the P register on the stack

TXA and PHA Transfer X to Z, then PusH A on the stack

When JSR is executed, the information goes on the stack in this way.

Top

Bottom

Stac k

When SUBEEP's RTS instruction is executed , the return address is pulled
off the stack leaving the following data.

Low ~.--­
High ... ---

USING A SUBROUTINE 237

To Program
Counter / X-reg. 7 - Now on top

/ P reg. 7
/ A reg. 7

Stack

The computer then returns to the main program and executes in order:

PLA } __ Pull off top of stack and
T AX transfer to X register

PLP - Pull off stack and place in P register

PLA ~ Pull off stack and place in A register

Notice that values are pulled off the stack in the reverse order of the way
they were pushed on. This restores everything to the proper place.

Enter the program as given and assemble it. Then go to DEBUG and enter
the data in the data table at 1104 through 11 OB.

Address Data

1104 48
1105 60
1106 78
1107 90
1108 A8
1109 CO
110A D8
110B FO

Figure 77-71. Data for Sound Program

Execute the program and see how you like the notes that are produced by
the sound subroutine SUBEEP. If you want to change the notes, change the data
shown in Figure 11-11. The frequencies are picked off in reverse order from
110B through 1104.

232 MULTIPLICATION, DIVISION, AND SUBROUTINES

SUMMARY

You have now seen how two operations for which the computer has no in­
structions can be performed by putting together groups of other instructions.
Although the 6502 microprocessor has no mUltiplication or division instructions,
the operations can be performed as a series of additions, subtractions, and shifts
or rotations. You have learned in this chapter to:

• Apply the shift and rotate instructions in programs to multiply and di­
vide numbers;

• Use a demonstration program that multiplies two 8-bit numbers to pro­
duce a 16-bit result;

• Use a demonstration program that divides an 8-bit divisor into a 16-bit
dividend producing an 8-bit quotient and an 8-bit remainder;

• Use a subroutine called by a JSR (Jump to SubRoutine) instruction and
return to the main program with a RTS (ReTurn from Subroutine)
instruction;

• Use the stack to save and retrieve information when registers or coun­
ters must be used in more than one way;

• Use the following other new instructions;
PHA Push the value in the accumulator onto the stack
PHP Push the P register's contents onto the stack
PLA Pull the top value off the stack and put it into the accumulator
PLP Pull the top value off the stack and put it into the P register

• Use a subroutine producing musical tones

EXERCISES

1. Multiply the decimal numbers 28 and 37.
(a) Using decimal notation (b) Using binary notation

(c) Check the binary result

+------­
+-------

28=
x 37= ______________ _

EXERCISES 233

2. According to the flowchart in Figure 11-2, which bit of the multiplier is
used first?

(most significant, least significant)

Exercises 3-7 refer to the following sketches of the Carry bit and the accu­
mulator before and after one of the shift or rotate instructions are given.

(a) Carry Accumulator (c) Carry Accumulator

[IJ 1010101111 before [IJ 101010111 1 before

[TI 110101110 1 after IT] 100101011 1 after

(b) Carry Accumulator (d) Carry Accumulator

OJ 10101011 1 1 before OJ 101 010111 I before

[TI 1101011111 after CD 1101010111 after

3. Name the shift or rotate instruction performed in a.

4. Name the sh ift or rotate instruction performed in b.

5. Name the shift or rotate instruction performed in c.

6. Name the shift or rotate instructi on performed in d .

7. Fill in the blanks which would result from successive operations for your
answers from Exercises 3, 4, 5, and 6 .

Originally: Carry Accumulator

QJ I 010101111

The instructions for your answers to :
3, then 4, then 5, then 6 are executed .

Final conditions:

Carry Accumulator

o
8. The 8-bit multiplication program of Figure 11-3 is to be used to mUltiply

120 (decimal) by 73 (decim al) .
(a) What hexadecimal values must be loaded into which two memory

locations?

Address Data

234 MUL TlPLICA TlON, DIVISION, AND SUBROUTINES

(b) Show how to use the DEBUGGER to load the values by one command.

DEBUG

9. The assembly language instruction used to call a subroutine labeled SUBBY

would be:

10. The last instruction executed by a subroutine must be: ______ _

Answers to Figure 11-4

Multiplier Multiplicand

03 09
1A E4
3C D8
A4 C2
FF FF

Answers to Figure 11-8

Dividend Divisor

01 00 10
OA BC DE
OA 05 9F
05 AA 83
7F FF FF

1. (a) Using decimal notation

28
x37

196
84

1036

ANSWERS

Result

00 1B
17 28
32 AO
7C 48
FE 01

Result
Quotient Remainder

10 00
OC 54
10 15
OB 09
80 7F

(b) Using binary notation

18=
X 37=

(c) 4
+8

+1024
1036

2. Most Significant Bit

3. ASL A

4. ROL A

5. LSR A

6. ROR A

7. Final conditions:

Carry Accumulator

~ 1000101111
8. (a)

Address Data

1003 49
1008 78

(b)

00011100
00100101
00011100

00000000
00011100

00000000
00000000

00011100
0010000001100

the data could be reversed

DEBUG
C1003<49"" , 78

9. JSR SUBBY

10. RTS

ANSWERS 235

Chapter 12

Programming Practice

Much can be learned about programming by using, analyzing, and modify­
ing programs written by other people. By this time, you are familiar with the use
of the Atari Assembler Cartridge and should feel at ease using it. Therefore, we
have devoted this last chapter to programs for you to use and modify to fit your
own needs. Suggestions are given for some modifications, and you will no doubt
think of others.

We have not covered all of the features of the Assembler Cartridge but
have tried to present those that we think you will use most.

Programming requires much practice. Therefore, you should try other pro­
grams to investigate all aspects of the 6502 instruction set, as well as Atari
Assembler Cartridge commands and statements. Seek out those instructions that
you are not familiar with, study the descriptions, and write some short simple
programs that make use of them.

The assembler can be used to develop machine language subroutines that
can speed up and make your BASIC programs more powerful. Many applications
using sound effects, high speed graphics, animation, and certain functions not
available in BASIC can be performed by machine language subroutines.

As we cautioned earlier, your machine language programs require their
own area of memory. If you are using assembled subroutines accessed from
BASIC, you must be careful that your machine language programs are assembled
in an area of memory that is not used by the BASIC program. There is an area of
memory from 0600 (1536 decimal) through 06FF (1791 decimal) that can be
used for this purpose. These 256 bytes that are available will be adequate for
most of your machine language subroutines. All programs in this chapter use this
area. There are also 7 bytes of zero page memory that have been reserved for
your use by the BASIC cartridge (locations CB through 01 or 203 decimal,
through 209, decimal). In addition, locations 04 and 05 of zero page are used to
return parameters (numerical values) from machine language subroutines to
BASIC through the USR function.

The Assembler User 's Manual, supplied with your Assembler Cartridge,
contains several entertaining programs. The manual also shows a method to pre­
pare an assembled subroutine and a BASIC program which will access the sub-

236

USING A LOGIC FUNCTION 237

routine. We will concentrate in this chapter on similar programs that use only
the Assembler Cartridge. You may rewrite them to be accessed from BASIC if
you wish . Our first program will demonstrate both methods of using the assem­
bled program.

BASIC language can perform logic functions by means of the statements
NOT, AND and OR. There is another logic function in the 6502 instruction set,
the Exclusive OR. Our first program demonstrates its use.

USING A LOGIC FUNCTION

The 6502 microprocessor has instructions that extend the logic functions
NOT, AND and OR used in BASIC. One of these instructions performs the logic
function Exclusive OR (Assembly mnemonic EOR). This instruction compares
two binary numbers, one bit position at a time. If the two bits are alike, a zero
is placed in the corresponding bit position of the result. If one of the compared
bits is a 1 (one) and the other is a 0 (zero), a 1 (one) is placed in the correspond­
ing bit position of the result.

Example:

0 0 first number

0 0 0 0 second number

1 0 1 0 1 0 0 1 result of EOR

un~ / unlke t utike\ \ t
unlike

like like like like

You see that a 1 results in a given bit position if there is a one in the cor­
responding bit position of either one number or the other number, but not if
there is a one in the corresponding bit position of both numbers.

The above example shows that the. result of performing an Exclusive OR
on the hex numbers B7 and 1 E is A9.

Let's now write an assembly language program to perform the same Exclu­
sive OR as the example.

EOR SOURCE PROGRAM

100 *=$0600 start program at 0600
110 LDA #$B7
120 EOR #$lE EOR B7 and lE
130 STA $1000
140 END

238 PROGRAMM ING PRACTICE

Enter and assemble the program.

ASSEMBLED DISPLAY

130 STA $1000
140 END
ASM
0000 100 *= $0600

0600 A9B7 110 LDA #$B7

0602 491E 120 EOR #$lE

0604 8D0010 130 STA $1000

140 END

EDIT

•
En ter the DEBUGGER and execute the program

ED IT
BUG

DEBUG
G0600
0607 A=A9 X=OO Y=OO P=BO S=OO
DEBUG

•

DEBUG
Dl000,1000

1000 A9
DEBUG

•

Display memory
1000 to see
EOR resu lt

USING A LOGIC FUNCTION 239

There it is, very short and quick. Now let's see how we might access a simi­
lar subroutine from BASIC. The values to be Exclusive ORed will be passed from
the BASIC subroutine to the subroutine. The subroutine will pull the values off
the stack, EOR them and pass the result back to BASIC. The flow of the pro­
gram and subroutine is shown in Figure 12-1.

BASIC program

A=USR(1536, 183, 30)

} ~
Add ress of 1 st 2nd

Mach ine language
subroutine

subroutine I number number
(0001111 0) I

EOR(183 & 30) RTS

I (10110111)

I
I

I
I

BASIC program

PRINT A
END

Figure 72-7. Logic Program Flowchart

The BASIC program is very short. Do not enter it in the computer yet. Re­
member the procedure mentioned earlier.

100 REM ** EOR SUBROUTINE PROGRAM **
110 GR.O
120 A = USR(1536, 183,30)
130 PRINT "183 EXCLUSIVE OR WITH 30 IS":A
140 END

Notice the USR function at line 120. The data in parentheses following
the address 1536 is placed on the stack for use by the subroutine in this order:

STACK

Top aa

bb

cc

dd

ee

--- number of bytes passed

--- high byte of 1 st number

___ low byte of 1 st number

--- high byte of 2nd number

___ low byte of 2nd number

where aa, bb, cc, dd, and ee are
hexadecimal representations

240 PROGRAMMING PRACTICE

The machine language subroutine will pull the top byte off the stack. It is
not used. The high byte of the 1 st number is then pulled off and saved (in mem­
ory $CC). Then the low byte of the 1 st number is pulled off and saved {in mem­
ory $CD}. You now have this condition:

Top

STACK

dd --high byte-2nd number
1-----1

ee --low byte-2nd number

MEMORY

OOCC high byte- l st number

OOCD low byte- l st number

The subroutine then pulls off the high byte of the second number {from
the stack} and Exclusive ORs it with the high byte of the first number (from
memory $CC). The result is stored in memory $D5. You now have:

Top

I STACK I

ee low byte- 2nd number

MEMORY

OOCC high byte-l st number

OOCD low byte-l st number

ODDS high byte-result

Next, the subroutine pulls off the low byte of the second number {from
the stack} and Exclusive ORs it with the low byte of the first number {from
memory $CD}. The result is stored in memory $D4. You now have:

Top
I STACK I

?? all variables
passed by USR
are gone

OOCC

OOCD

00D4

ODDS

MEMORY
.. -

high byte-l st number

low byte-l st number

low byte- result

high byte-result

Last of all, the RTS {Return from SUbroutine} instruction is executed.
The values stored in $D5 and $D4 are passed back to the BASIC program as the
decimal value for the variable A.

This is what the machine language subroutine looks like:

ENTERING THE SUBROUTINE 247

100 *=$0600
11 0 EXOR PLA _ number of data bytes

120 PLA ...__get high byte-1st number
130 STA $CC -and store
140 PLA } . now the low byte
150 STA $CO
160 PLA --- high byte-2nd number
170 EaR $CC --exclusive or
180 STA $05 --and store
190 PLA

~
now the low bytes

200 EaR $CO -+--

210 STA $04
220 RTS -now return
230 ENO

ENTERING THE SUBROUTINE

Now, go through the steps outlined in the
Assemb ler User's Manual.

1. Place the Assembler Cartridge in the computer and
enter the assembly language subroutine.

2. Assemb le the program to make sure that you have
no errors.

EOIT
ASM

0000
0600
0601
0602
0604
0605
0607
0608
060A
060C
0600
060F
0611

EDIT

•

68
68
85CC
68
85CO
68
45CC
8505
68
45CO
8504
60

0100 *= $0600
0110 EXOR PLA
0120 PLA
0130 STA $CC
0140 PLA
0150 STA $CO
0160 PLA
0170 EOR $CC
0180 STA $05
0190 PLA
0200 EOR $CO
0210 STA $04
0220 RTS
0230 END

242 PROGRAMMING PRACTICE

3. Use 3(a) for cassette storage or 3(b) for disk storage and assemble again.

(a) For cassette:

EDIT
ASM,,#C: Press RETURN

After the "BEEP" press RETURN AGAIN

L 7)
(b) For disk: (c==:v= Y

(ASM,,#D:EXOR.OBJ Press RETURN

4. Take out the Assembler Cartridge and replace it with the BASIC cartridge.

5. Wait for the BASIC READY prompt.

r=EADY
6. Use 6(a) for cassette or 6(b) for disk.

(a) Follow the normal procedure for loading from tape with:

(CLOAD and press RETURN

(b) Type in DOS to raise the Disk Operating System.

DISK OPERATING SYSTEM
COPYRIGHT 1979 ATARI

A. DISK DIRECTORY
B. RUN CARTRIDGE
C. COpy FILE
D. DELETE FILE(S)

I. FORMAT DISK
J. DUPLICATE DISK
K. BINARY SAVE
L. BINARY LOAD

9/24/79

E. RENAME FILE M. RUN AT ADDRESS
F. LOCK FILE N. DEFINE DEVICE
G. UNLOCK FILE O. DUPLICATE FILE
H. WRITE DOS FILE

SELECT ITEM

•

Then type L to load a binary file.

SELECT ITEM
L
LOAD FROM WHAT FILE?

•

Now, type: EXOR.OBJ

SELECT ITEM
L
LOAD FROM WHAT FILE?
EXOR.OBJ

ENTERING THE SUBROUTINE 243

and press RETURN

After the file is loaded, the computer will return to the SELECT ITEM
PROMPT.

SELECT ITEM

•

Type B and press return to rerurn to BASIC.

SELECT ITEM
B

READY

•

7. You should now be back in the BASIC READY mode.

244 PROGRAMMING PRACTICE

8. Enter the BASIC program .

100 REM ** EOR SUBROUTINE PROGRAM **
110 CLS
120 A = USR(1536,183,30)
130 PRINT "1 83 EXCLUSIVE OR WITH 30 IS";A
140 END

•
You are now ready to execute your program-A LMOST. First check to

make sure the machine language subroutine is in memory. This can be done by
checking the first location of the subroutine. Type:

PRINT PEEK(1536) and press RETURN

The computer should respond with the value 104 (the decimal equivalent of the
first machine language instruction, PLA).

If the computer responds correctly, execute the program with the RUN
command. If it doesn't correspond correctly, go back to the Assembler Cartridge
and try it all again. Verrrrry carefully.

(RuN
1

169 ~
~ The decimal equivalent

of the EOR result.

128+32+8+1 or

10101001 in binary

You may use the Exclusive OR with other values by changing line 120 of
the BASIC program .

120 A = USR(1536, 183,30)
~ These values may change.

Do not change the value 1536 as that is the memory location where the sub­
routine begins. The other two values (183 and 30) may be changed to any posi­
tive integer in the range of 0 through 65535 .

The remaining programs in this chapter will show only the versions of the
programs that may be run directly in the Debugger mode of the assemb ler. Feel
free to change them to subroutines to be accessed from BASIC as in the EOR
program.

PROGRAM TO SOUND OFF 245

PROGRAM TO SOUND OFF

This program uses three sound registers (or channels) for playing music
chords. The data is placed in the appropriate registers, and the sound produced
is sent to your TV set. Be sure that you have the volume of your TV set turned
to a reasonable level before running the program. The program controls the vol­
ume produced, but the TV volume control must be set high enough to make an
audible sound.

The last chord produced will keep playing until a new note is placed in the
sound registers. Therefore, the last part of the program sets the volume down to
zero. There are other ways to accomplish the same result, but why not let the
computer do it for you ?

We have used comments in the source program that label each part of the
program and the data values used. I t is good programming practice to do so. If
you save the source program on tape or disk, the comments will help you deci­
pher the program when you enter it again . The flow of the program is shown in
Figure 12·2.

First sec tio n: Enter
and play first chord

th en let it play

t
Seco nd sec ti on: Enter I I Delay slubroutin e I
and pl ay second chord

th en let it pl ay
(1)

Last sect ion: Tu rn
th e vo lume off (2)

Figure 72-2. Sound Off Program Flow

SOUND OFF SOURCE PROGRAM

100 *=$0600
110 ;FI RST CHORD SECTION
120 LDA #$ 79 FIRST NOTE
130 STA $D200
140 LDA #$88 SECOND NOTE
150 STA $D202
160 LDA #$99 THIRD NOTE
170 STA $D204
180 LDA #$AF TONE AND VOLUME
190 STA $D201

246 PROGRAMMING PRACTICE

200 STA $D203
210 STA $D205
220 JSR DELAY PLAY AWHILE
230 ;SECOND CHORD SECTION
240 LDA #$Cl FIRST NOTE
250 STA $D200
260 LDA #$D9 SECOND NOTE
270 STA $D202
280 LDA #$F3 THIRD NOTE
290 STA $D204
300 LDA #$A8 TONE AND VOLUME
310 STA $D201
320 STA $D203
330 STA $D205
340 JSR DELAY PLAY AWHILE
350 ;TURN VOLUME OFF SECTION
360 LDA #$AO
370 STA $D201
380 STA $D203
390 STA $D205
400 BRK END OF MAIN PROGRAM
410 DELAY LDX #$FF
420 LOOP LDY #$FF
430 LOOPl DEY
440 BNE LOOPl
450 DEX
460 BNE LOOP
470 RTS
480 END END OF SOURCE PROGRAM

Enter the program, assemble it, and execute it in the usual way. See if you
like the sounds produced . If not, take a look at the table of music notes in Fig­
ure 12-3. You may alter frequency values in the program as long as you stay in
the range of 0 (highest note) to FF hexadecimal (lowest note) .

To understand the tone and volume controls, you must look at the volume
in binary form.

Example:

195 decimal = AF hexadecimal
= 1010 1111

A F highest volume

~ selects pure tone (no noise)

PROGRAM TO SOUND OFF 247

Natural Frequency
Scale Note Value (hex)

C 10 High
8 1F
A# 21
A 23
G# 25
G 28
F# 2A
F 2D
E 2F
D# 32
D 35
C# 39
C 3C
8 40
A# 44
A 48
G# 4C
G 51
F# 55
F 58
E 60
D# 66
D 6C
C# 72
C 79 Middle
8 80
A# 88
A 90
G# 99
G A2
F# AC
F 86
E C1
D# CC
D D9
C# E6
C F3 Low

Figure 72-3. Approximate Values for Three-Octave Scale

248 PROGRAMMING PRACTICE

The first hex digit (A in example) controls the noise content of the tone.
We chose a pure tone. The second hex digit controls the volume. Its range may
be from 0 (lowest volume = off) to F (highest volume).

You should try different values to obtain different sound effects. All you
need to do is change the values for frequency, tone and volume . Check the com­
ments in the source program to find the values to be changed .

1. Changes may be made in the source program .

(a) In the Edit mode change lines:
120, 140, 160, 180 for the first chord
240, 260, 280, and 300 for second chord

(b) Assemble the program again.

(c) Execute it from the Debugger mode.

2. Changes may be made in the object program .
Use the Debugger mode to change memories:

0601, 0606, 060B and 0610 for first chord
061 E, 0623, 0628 and 062D for second chord

PLAY NOTES PROGRAM

This program uses a single sound channel to playa series of notes. A time
delay is used between the notes so that they can be heard for a reasonable length
of t ime. Once again, make sure that the volume on the TV set is turned up. By
looking at the frequency table of Figure 12-3, you can see that the program
plays one octave of the scale .

ASSEMBLER PROGRAM

100 *=$0600
110 ;PLAY NOTES
120 LDA #$AF -Volume
130 STA $D201
140 LDA #$F3 Freq.lstnote
150 jSR RPT
160 LDA #$09 Freq. 2nd note
170 JSR RPT
180 LOA #$C1 Freq . 3rd note
190 JSR RPT
200 LDA #$86 etc.
210 jSR RPT
220 LOA #$A2
230 jSR RPT

PROGRAM TO SHAPE SOUND 249

240 LDA #$90
250 jSR RPT
260 LDA #$80
270 jSR RPT
280 LDA #$79
290 jSR RPT
300 LDA #$AO TURN VOLUME OFF
310 STA $D201
320 BRK END OF PROGRAM
330 RPT STA $0200
340 LDX #$ FF
350 jSR DELAY

360 RTS -Back to main subroutine

370 DELAY LDY

~FF~ 380 LOOP DEY --Play the note awhile

390 BNE LOOP
400 DEX
410 BNE DELAY

420 RTS Back to RPT subroutine

430 END

Enter the program and assemble and execute it. Does it sound reasonable
to you?lf not, changes can be made where the frequencies are loaded into the
accumulator. The duration of the notes can be changed by the LDY and LDX
instructions in the RPT subroutine.

This program could be changed so that it would access the frequencies
from a data table. The frequencies could then be accessed by an indexed load
instruction. This might be a little difficult since the X and Y registers are already
being used in the time delay subroutine. You would have to save their values on
the stack, and retrieve them after the time delay had been completed. We have
covered the use of the stack instructions before. Therefore, you know how to
make these changes if you wish.

Notice in line 300 and 310 that the value AO was stored in memory lo­
cation D201. This sets the volume to zero . If those two lines were omitted, the
last note would keep playing even though the program had ended .

PROGRAM TO SHAPE SOUND

This program uses one sound channel to shape the sound that is produced.
If you look at a graph of the volume of the sound produced over a period of
time, it would look something like this:

250 PROGRAMMING PRACTICE

Volume ;1 ~
'-y-J' y I'------y---J

Attack Peak Decay

Time

You can see that the sound goes through three distinct periods. You have
used the frequency, tone and volume variables before. Now, you have a chance
actually to vary the shape of the sound produced.

We have chosen one of the three time constants-the decay time. It will be
changed as the program is executed. It is varied from 50 to 200 (decimal) within
a loop in steps of 25 (50, 75, 100, 125, 150, 175 and 200) . The sound is thus
shaped as follows:

~ 1st

~ 2nd

~~3rd
etc.

SOUNOSHAPERPROGRAM

100 *=$0600
110 ;INITIALIZE TIMES
120 LOA #$3C FREQUENCY
130 STA $0200
140 LOA #$32 PEAK
150 STA $CO
160 LOA #$OA ATTACK
170 STA $CC
180 LOOP LDA $1000 COUNTER
190 TAX
200 LDA $1000,X
210 STA $CE DECAY
220 DEC $1000
230 LDA #$AO VOLUME
240 ATTK STA $D201
250 LDX $CC
260 JSR DELAY
270 CLC

PROGRAM TO SHAPE SOUND 257

280 ADC #$01
290 CMP #$80
300 BNE ATTK
310 LOA #$OE
320 PEAK LOX $CD
330 JSR DELAY
340 SEC
350 SBC #$01
360 BNE PEAK
370 LOA #$AF TONE,VOLUME
380 DCAY STA $0201
390 LOX $CE
400 JSR DELAY
410 SEC
420 SBC #$01
430 CMP #$9F
440 BNE DCAY
450 LOA $1000
460 BNE LOOP
470 BRK
480 DELAY LOY #$13
490 ROUND DEY
500 BNE ROUND
510 DEX
520 BNE DELAY
530 RTS
540 END

This may be your longest program yet. Enter and assemble it. Check the
highest memory location used. Remember, we must stay between 0600 and
06FF or we will run into some memory that we shouldn't be using.

0655 60

EDIT
BUG

DEBUG

•

0530
0540 END

RTS

Last location
looks OK

--------- So go on to DEBUG mode

252 PROGRAMMING PRACTICE

Before you execute the program, remember that you may not have entered
the data to be used as the counter and the decay times. Refer to the table below,
and enter the data in the Debugger mode.

Address Data

1000 07 - 7 notes to be played
1001 C8
1002 AF
1003 96 -the decay times
1004 70
1005 64
1006 4B
1007 32

Figure 72-4. Data for Sound Shaper Program

Now execute the program. You should be able to detect the differences in decay
time.

You might want to experiment with the other parameters (attack time,
peak time, frequency or volume). Feel free to modify our program to suit your
own purposes.

PROGRAM TO PRINT ON THE SCREEN

Hidden away in your Atari's memory are lots of nice little subroutines that
might save you much time and effort. We found one hidden away at memory lo­
cation $F6A4. It will display on the screen the character whose ATASCII code is
in the accumulator.

Example:

jumpto~
subroutine

LOA #$41
~ AT ASCII code for

JSR $F6A4 the letter A

~ location of display
subroutine

The instructions above would display the letter A, and then the
cursor would move one place to the right, ready to display what­
ever comes next.

You must be careful when you use this subroutine if you are using the X and Y
register in your program. Your values (in X and Y) will be destroyed by the sub­
routine as it also uses these registers. Therefore, you must make provision to save
them (the stack is the ideal place for this).

The program that we will use is short, but you will have to load in lots of

PROGRAM TO PRINTON THE SCREEN 253

data in a data table. The X register and the Absolute Indexed Addressing mode
will be used to load the accumulator with the ATASCII codes from the data
table. The AT ASCII Character Set is given in Appendix F.

PRINT ON THE SCREEN

100 *=$0600
110 ; PRINT ON THE SCREEN
120 LDX #$2B NUMBER OF CHARACTERS
130 LOOP TXA
140 PHA SAVE NUMBER
150 LDA $1100,X LOAD CODE
160 JSR $F6A4 DISPLAY CHARACTER
170 PLA GET NUMBER BACK
180 TAX
190 DEX COUNT DOWN
200 BNE LOOP GO BACK IF NOT DONE
210 LOOP1 JMP LOOP1 CIRCLE HERE
220 END

Enter and assemble the program . Now comes the chore of loading the
data. Go into the Debugger mode and enter the data as shown.

EDIT
BUG

DEBUG
Cll0l<9B,9B,98,6,E,7,98 ---__ Press RETURN

DE8UG
Cll 08<2,0,16,98,7 ,D,6,9B

DEB UG
ClllO<O,O,O,98,44,4E,45,20

DE8UG
Cll18<65,68,74,9B,64,65,68,63

DEBUG
Cl120<61,65,72,98,65 ,76,61,68

DEBUG
C1128<20,75,6 F,59

DE8UG

•

at end of each line

What is
all th at?

254 PROGRAMMING PRACTICE

We're not going to spoil the purpose by telling you what all those numbers
represent yet. If you can't wait, Figure 12-5 shows what character is represented
by each code.

Before you run the program, clear the screen by holding down the I SH I FT I
key and pressing thel CL~AR I key.

Now, execute the program by typing:

(G0600

This is what you see:

G0600
You have
reached
the END

•••
(!)
•

Screen is cleared

and press RETURN

The last lines of the program keep the display on the screen while the com­
puter goes around and around doing nothing. Press the BREAK key to stop the

program.
Here are the AT ASCII codes used in the program.

Memory Hex A TASCII Character
Address Code Displayed

112B 59 Y
112A 6F 0

1129 75 u
1128 20 SPACE

1127 68 h
1126 61 a
1125 76 v

PROGRAM TO PRINT ON THE SCREEN 255

1124 65 e
1123 9B CARRIAGE RETURN
1122 72 r
1121 65 e
1120 61 a

111 F 63 c
111 E 68 h
1110 65 e
111C 64 d
111B 9B CARRIAGE RETURN
111A 74 t

1119 68 h
1118 65 e

1117 20 SPACE
1116 45 E
1115 4E N
1114 44 D
1113 9B CARRIAGE RETURN
1112 00 0
1111 00 (:J
1110 00 C?
110F 9B CARRIAGE RETURN

110E 06 .0
110D OD CJ

110C 07 <:::>
110B 9B CARRIAGE RETURN
110A 16 0
1109 00 0
1108 02 ()

1107 9B CARRIAGE RETURN
1106 07 ~
1105 OE D

1104 06 <?
1103 9B CARRIAGE RETURN
1102 9B CARRIAGE RETURN
1101 9B CARRIAGE RETURN

Figure 72-5. A TASCII Codes for Print on the Screen

256 PROGRAMMING PRACTICE

Now, you can create your own graphics and messages by replacing our
codes with any that you choose from Appendix F. You can lengthen or shorten
the data table, but be sure you put the corresponding number in line 120 of the
source program. Fill the screen and have fun!!

YOU'RE ON YOUR OWN

We are going to leave you at this point. You now have a fundamental
knowledge of how the Assembler Cartridge works. You also have a background
in the 6502 instruction set. With the understanding you now have, you can ex­
plore other assembly language features. These can be found in your Atari Assem­
bler User's Manual. You should also explore the operation of all instructions in
the 6502 set. The more that you work with assembly language programming, the
more you will probably like it.

If you intend to do a sizable amount of assembly language programming,
we recommend the use of the Atari 810 or 815 Disk Drive along with the Atari.
820 or 822 or 825 Printer. We have used the 810 Disk Drive along with the Atari
820 printer and find them both very convenient for assembly language pro­
gramming.

Good Programming!

Appendix A

6502 Instructions­
Flags Affected

X in the box means the flag is affected. The result will depend upon the
condition, or status, resulting from a previous operation. A one (1) indicates that
the flag is set, a zero (0) that a flag is reset.

Mnemonic Operation Performed Status Flags
Code N V 8 D I Z c

ADC Add memory to accumulator with carry X X X X
AND AND memory with accumulator X X
ASl Shift left one bit (memory or accum.) X X X

BCC Branch on carry clear (If C=O)
BCS Branch on carry set (lfC=l)
BEQ Branch on result zero (If Z=l)

BIT Test bits in accumulator with memory X X X
BMI Branch on result minus (If N=l)
BNE Branch on result not zero (If Z=O)

BPl Branch on result plus (If N=O)
BRK Force break 1
BVC Branch on overflow clear (If V=O)

BVS Branch on overflow set (If V=l)
ClC Clear carry flag 0
ClD Clear decimal mode 0

CLI Clear interrupt disable flag 0
ClV Clear overflow flag 0
CMP Compare memory and accumulator X X X

CPX Compare memory and index X X X X
Cpy Compare memory and index Y X X X
DEC Decrement memory by one X X

DEX Decrement index X by one X X
DEY Decrement index Y by one X X
EOR Exclusive OR memory with accumulator X X

257

258 6502 INSTRUCTIONS-FLAGS AFFECTED

Mnemonic Operation Performed
Code

INC Increment memory by one
INX Increment index X by one
INY Increment index Y by one

JMP Jump to new location
JSR Jump to new location save rtn. add.
LOA Load accumulator from memory

LOX Load index X from memory
LOY Load index Y from memory
LSR Shift right one bit (memory or accum.)

NOP No operation
ORA OR memory with accumulator
PHA Push accumulator on stack

PHP Push processor status on stack
PLA Pull accumulator from stack
PLP Pull processor status from stack

ROL Rotate one bit left (mem. or accum.)
ROR Rotate one bit right (mem. or accum.)
RTI Return from interrupt

RTS Return from subroutine
SBC Subtract memory and borrow from accum
SEC Set carry flag

SEO Set decimal mode
SEI Set interrupt disable flag
STA Store accumulator in memory

STX Store index X in memory
STY Store index Y in memory
TAX Transfer accumulator to index X

TAY Transfer accumulator to index Y
TSX Transfer stack pointer to index X
TXA Transfer index X to accumulator

TXS Transfer index X to stack pointer
TYA Transfer index Y to accumulator

Flag abbreviations are:

N Negative result flag
V Overflow flag

Expansion flag (not labeled)
B Break command flag

D Decimal mode flag
I Interrupt disable flag
Z Zero result flag
C Carry flag

Status Flags
N v 8 D I Z C

X X
X X
X X

X X

X X
X X

0 X X

X X

X X
X X X X X X X X

X X X
X X X
X X X X X X X X

X X X X
1

1
1

X X

X X
X X
X X

X X

Mnemonic
Code

ADC
AND
ASl
BCC
BCS
BEQ
BIT
BMI
BNE
BPl
BRK
BVC
BVS
ClC
ClO
CLI
ClV
CMP
CPX
Cpy
DEC
DEX
DEY
EOR

Appendix B

6502 Instructions­
Addressing Modes

Op Codes

l.... >-2 >< >< >-
-S!

<:u <:u~ <:u~ <:u <:u~ .l:!~
~ -~ i5' i5' g> .l:! ~
§ ~ 0:: 0:: 0.. ~ ~ ~

-~ <:u - -E: e e e 0 0 0 -u ~ ~ '" ~ u E: <:u <:u <:u -t::l
"C - N N N "C "C "C

- 69 65 75 - 6D 7D 79 -

- 29 25 35 - 2D 3D 39 -
OA - 06 16 - OE 1E - -

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- - 24 - - 2C - - -
- - - - - - - - -

- - - - - - - - -

- - - - - - - - -
- - - - - - - - 00
- - - - - - - - -
- - - - - - - - -

- - - - - - - - 18
- - - - - - - - 08
- - - - - - - - 58
- - - - - - - - B8
- C9 C5 D5 - CO OD 09 -

- EO E4 - - EC - - -

- CO C4 - - CC - - -
- - C6 D6 - CE DE - -
- - - - - - - - CA
- - - - - - - - 88
- 49 45 55 - 40 5D 59 -

......
u ~

.~
<:u
~

~ ~
s:::: s:::: - -~ '" -- <:u u u

...... ~ <:u .~ -S! ~ ~ ~ <:u
s:::: s:::: ~ c::t::: - -

- 61 71 -

- 21 31 -
- - - -

90 - - -
BO - - -
FO - - -

- - - -
30 - - -

DO - - -

10 - - -
- - - -

50 - - -
70 - - -

- - - -

- - - -

- - - -
- - - -

- C1 D1 -
- - - -
- - - -
- - - -

- - - -

- - - -

- 41 51 -

259

260 6502 INSTRUCTIONS- ADDRESSING MODES

Op Codes
...... "!;) <..>

.~
<U

'- >- ~
c ><: ><: >- "!;) ~ <U t::: t::: ..:: <U <U~ <U~

<U~ ~~ - -::: -:: ~ ~ ~ <U
~ "!;) "!;)

§ "!;) c: c: c: ~ ~ :::
-~ <U <..> <..>

<U - -.-::;
~ .~ .~ Mnemonic ~ e e e c c c - ..:: ~ <..> '" '" .(l Cl.. "!;) "!;)

Code
<..> .§ <U <U <U .C) .C) .§ <U t::: t::: t::: "<J:: N N N "<J:: "<J:: "<J:: ~ - - -

INC - - E6 F6 - EE FE - - - - - -

INX - - - - - - - - E8 - - - -
INY - - - - - - - - C8 - - - -
JMP - - - - - 4C - - - - - - 6C
JSR - - - - - 20 - - - - - - -
LOA - A9 A5 B5 - AO BO B9 - - A1 B1 -

LOX - A2 A6 - B6 AE - BE - - - - -

LOY - AO A4 B4 - AC BC - - - - - -

LS R 4A - 46 56 - 4E 5E - - - - - -
NOP - - - - - - - - EA - - - -
ORA - 09 05 15 - 00 10 19 - - 01 11 -

PH A - - - - - - - - 48 - - - -

PHP - - - - - - - - 08 - - - -

PLA - - - - - - - - 68 - - - -

PLP - - - - - - - - 28 - - - -

ROL 2A - 26 36 - 2E 3E - - - - - -

ROR 6A - 66 76 - 6E 7E - - - - - -
RTI - - - - - - - - 40 - - - -
RTS - - - - - - - - 60 - - - -
SBC - E9 E5 F5 - EO FO F9 - - E1 F1 -
SEC - - - - - - - - 38 - - - -
SEO - - - - - - - - F8 - - - -
SEI - - - - - - - - 78 - - - -

STA - - 85 95 - 80 90 99 - - 81 91 -

STX - - 86 - 96 8E - - - - - - -
STY - - 84 94 - 8C - - - - - - -
TAX - - - - - - - - AA - - - -
TAY - - - - - - - - A8 - - - -
TSX - - ~ - - - - - BA - - - -
TXA - - - - - - - - 8A - - - -
TXS - - - - - - - - 9A - - - -
TYA - - - - - - - - 98 - - - -

Appendix C

Frequency Values
for Three-Octave Scale

Natural Frequency
Scale Note Value

C 10 High
B 1F
A# 21
A 23
G# 25
G 28
F# 2A
F 2D
E 2F
D# 32
D 35
C# 39
C 3C
B 40
A# 44
A 48
G# 4C
G 51
F# 55
F 5B
E 60
D# 66
D 6C
C# 72
C 79 Middle
B 80
A# 88
A 90
G# 99

261

262 FREQUENCY VALUES FOR THREE-aCTA VE SCALE

Natural Frequency
Scale Note Value

G A2
F# AC
F 86
E C1
0# CC
0 09
C# E6
C F3 Low

Appendix D

Atari Assembler Error Codes

When an error occurs, a short "beep" is heard and the error number is
displayed.

Error Number

2

3
4
5
6
7
8
9

10

11
12
13

14
15
16
17
18

19

Explanation

Insufficient memory for the program to be assembled.
The number xx cannot be found for the "DEL xx,yy"

command.
An error in specifying an address {mini·assembler}.
File named cannot be loaded.
Undefined reference label.
Syntax error in a statement.
Label defined more than once.
Buffer overflow.
No label given before "=".
The value of an expression is greater than 255 where one

byte was required.
Null string used where invalid .
Address or address type specified is incorrect.
Phase error·an inconsistent result found from Pass 1 to

Pass 2.
Undefined forward reference.
Line is too large.
Source statement not recognized by the assembler.
Line number too large.
LOMEM command was attempted after other command{s}

or instruction{s}. LOMEM must be first command if used.
No starting address given.

263

Appendix E

Atari Operating System Errors

Errors numbered above 100 refer to Operating System and Disk Operating
System. Refer to DOS manual for comp lete list of DOS errors.

Error Number

264

128
130
132
136

137
138

139

140
142
143
144
145
146
162
165

Explanation

The BREAK key was hit during an I/O operation.
A nonexistent device was specified .
Command is invalid for the device selected.
END OF FILE READ HAS BEEN REACHED. This error

may occur when reading from cassette.
Record was longer than 256 characters.
Device specified in the command does not respond. Make

sure it is connected and powered.
Device specified in command does not return an acknowl-

edge signal.
Serial framing error.
Serial framing error.
Serial data checksum error.
Device done error .
Diskette error- read-after-write comparison failed.

Disk full.
File name error.

Appendix F

ATASCII Character Set

AT ASCI I is an abbreviation of AT ARI ASCII. Letters and numbers have
the same values as those in ASCII, but some of the special characters have been
assigned differently. Characters 80-F F (hex) are just reverse colors of 1-7F ex-
cept for the characters shown (9B-9F and FD, FE, and FF).

HEX CHARACTER HEX CHARACTER HEX CHARACTER

0 D A ~ 14 C
G B ~ 15 ~

2 IJ C ~ 16 (I
3 CI D iii 17 C
4 CJ E ~ 18 ~
5 ~ F ~ 19 ()
6 r;, 10 g 1A ~
7 ~ 11 ~ 1B ~
8 ~ 12 = 1C 0
9 ~ 13 C) 1D 0

265

266 ATASCII CHARACTER SET

HEX CHARACTER HEX CHARACTER HEX CHARACTER

1E C 32 2 46 F

1F C 33 3 47 G

20 Space 34 4 48 H

21 35 5 49

22 36 6 4A

23 # 37 7 4B K

24 $ 38 8 4C L

25 % 39 9 4D M

26 & 3A 4E N

27 3B 4F 0

28 3C < 50 P

29 3D 51 Q

2A * 3E > 52 R

2B + 3F 53 S

2C 40 @ 54 T

2D 41 A 55 U

2E 42 B 56 V

2F 43 C 57 W

30 0 44 D 58 X

31 45 E 59 Y

HEX CHARACTER HEX

5A z 6A

58 68

5C \ 6C

5D 6D

5E 6E

5F 6F

60 c 70

61 a 71

62 b 72

63 c 73

64 d 74

65 e 75

66 f 76

67 g 77

68 h 78

69 79

ATASCI/ CHARACTER SET 267

CHARACTER

k

m

n

o

p

q

t

u

v

w

x

y

HEX CHARACTER

7A

78

7C

7D

7E

7F

98

9C

9D

9E

9F

FD

FE

FF

z

D
[I]
~
[J
[]

Carriage Return

I" I IBUZU ri

~ D~I~t~
~ .:hara.:t~r

~ Ins~rt
Lr.J .:hara.:tcr !

Index

A

Absolute addressing mode, 90
Absolute indexed addressing mode,

146
Accumulator, 5, 74
Addition, 164
Addressing modes, 88
Architecture, 4
Arithmetic Sh ift Left, 191
Assembler cartridge, 1, 53
Assembler program (of the cartridge),

53,57, 120
Assembly language, advantages, 3
AT ASCII character codes, 252, 265

B

BASIC cartridge, 1
BASIC, review, 7
Binary-coded-decimal (BCD) numbers,

179
Binary-hexadecimal relationsh ip, 14
Binary numbers, 12
Bits, 13
Branch backward, 97,101
Branch forward, 96, 100
Branch instructions, 102
Bytes, 13

268

c

Carry flag, 102
Cartridge (assembler), 1
Cartridge (BASIC), 1
Central Processing Unit (CPU), 4

D

Data bus, 5
DEBUGGER program (ofthe

cartridge), 53,62, 131
Decimal arithmetic, 179
Disassemble, 135
Division, 221

E

EDIT mode (same as WRITER/
EDITOR),124

Edit text buffer, 125
Error codes, 121,263, 264
Exclusive OR, 237

F

Fields used in assembler statements,
120

Flags (status), 7, 82
Format (assembly language), 55,120

H

Hexadecimal-decimal relationship, 16
Hexadecimal notation, 14

Immediate addressing mode, 89
Implied addressing mode, 88
Instruction set (6502), 91, 257, 259

L

Label (assembler statement), 120
Least Significant Byte, 37
Logical Shift Right, 198

M

Machine Language, disadvantages, 2
Memory map, 28
Mnemonic codes, 60,121
Most Significant Byte, 37
Multiplication, 214

N

Negative flag, 111
Negative numbers, 174

o

Object program, 56, 59
Operand, 121
Overflow flag, 116

INDEX 269

p

Passing data: BASIC to machine
language, 33

POKE machine language from BASIC,
19

Processor Status Register, 7, 82
Program counter, 6, 96, 227
Program design, 144

R

Registers, 5, 73
Relative addressing mode, 90
Rotate Left, 202
Rotate Right, 205

s

Signed numbers, 113
6502 instruction set, 91,257,259
Sound programs, 245,248,249
Source program, 55, 59, 120
Stack, 6, 22, 87, 226
Stack Pointer, 6, 87
Status flags affected by instructions, 7,

85,257
Subroutines, 225
Subroutine to display on the screen,

252
Subtraction, 172

T

Trace (of a program), 45, 63

u

USR function, 31

270 INDEX

w

WRITER/EDITOR program (of
cartridge), 52, 53, 124

x

X Register, 74

y

Y Register, 74

z

Zero flag, 108
Zero page addressing mode, 90

the
Assembler

Don Inman Kurt Inman
Now you can master assembly language programming and learn
how to use the Atari Assembler Cartridge with your Atari 400
or 800 model computer at the same time! This excellent guide­
book is designed for readers with some BASIC language pro­
gramming knowledge, but assumes no assembly language back­
ground.

Your BASIC background leads you gradually into assembly
language programming. THE AT ARI ASSEMBLER takes an easy
pace through each program. Sketches of the video screen show
you each stage of entering and executing the sample programs
and step-by-step instructions help you make the transition from
BASIC programming to the Atari's own language.

The authors know just how important it is to learn by doing.
As you explore the Atari Assembler Cartridge and discover how
to program in the assembly language, you are urged to tryout
instructions and programs on the computer, checking your
results on the video screen. By the time you complete this book,
you will be designing your own creative assembly language pro­
grams.

Cover design by Steve Oliff

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company
Reston, Virginia 0-8359-0236-6

	Cover

	Contents

	Illustrations

	Preface

	1: Introduction
	2: Machine Language from BASIC

	3: Memory Use

	4: Getting Started with the Assembler

	5: Special-Purpose Registers and Addressing Modes

	6: Branching Out

	7: Assembler Review

	8: Designing a Program

	9: Addition and Subtraction

	10: Shift and Rotate

	11: Multipication, Division, and Subroutines

	12: Programming Practice

	Appendix

	A: 6502 Instructions Flags Affected

	B: 6502 Instructions - Addresing Modes
	C: Frequency Values

	D: Assembler Error Codes

	E: O/S Error Codes
	F: ATASCII Character Set

	Index

