

The Creative
Atari

The Creative
Atari

Edited by: David Small, Sandy Small, and
George Blank

Creative Computing Press
Morris Plains, New Jersey

David Small, Sandy Small, and George Blank are frequent con
tributors to Creative Computing magazine.

Unless otherwise noted, all work contained in this volume is that of
the editors. Special thanks to John Anderson for technical
assistance.

Copyright © 1983 by Creative Computing Press.

Cover illustration: Copyright © Mike Carroll , Creative Associates, Newhall , California.

All rights reserved. No portion of this book may be reproduced - mechanically, electronically, or by any other
means, including photocopying - without written permission of the publisher.

Library of Congress Number: 82-71997
ISBN 0-916688-34-8

Printed in the United States of America.

10 9 8 7 6

Creative Computing Press
39 E. Hanover Ave.
Morris Plains, NJ 07950

5 4 3 2

Preface

If you own an Atari computer, you should already be familiar with Creative Computing magazine.
If you are not, than you have missed out on some of the best material ever published regarding the
Atari 400, 800, and new 1200 XL computers. Our commitment to the Atari machine has been a
steady one, and includes information you won't find in any owner's manual or technical reference
sheets. The Atari tutorial and programming techniques offered in the pages of Creative over the
past three years have been consistently presented in a way you can understand and build upon and
much of this material is still available through no other source.

But fear not, newcomers to the fold, because this book is for you . It contains all the material you
have missed, and more. And all of it concerns the Atari personal computer and only the Atari .
Which, you will probably agree, is by far the best microcomputer in its class.

If you are not sure you agree, then you really need this book. It shows you in simple terms how
to get the most from your machine in the realms of graphics, sound, memory, animation, disk
storage, and a dozen other topics . We don't assume you are anything more than an enthusiastic
beginner, and step-by-step examples are a hallmark of ours. We know that learning by doing is the
best way to learn.

If you are already an old fan of Creative Computing, this book is still for you. In addition to
giving you a single reference for all Atari material we've yet published, it includes new material,
published now for the first time.

You won't find a single theme here, with all the articles winding neatly around it. What you will
find is an Atari almanac, a meaty compendium, full of valuable, "hands-on" projects to keep you
and your Atari busy for months and months to come.

In addition, you will find in-depth tutorials, product reviews, philosophical ramblings, insider's
gossip, and insights into the impressive powers, as well as occasional weaknesses (and how to get
around them) of the Atari machine.

Of course, for up to the minute Atari developments, tune in to Creative Computing every month!

v

John Anderson
Associate Editor

Creative Computing

Contents

Preface v Greater Graphics Control 71

The Atari Machine 9 The Atari Graphics Composer 73

Artifacting With Graphics 7-Plus 74

Part I. Atari Graphics Tutorial Part III. Hardware and Software

How A TV Works 13 Bits & Bytes 81
Character Generation 15 Physical Types of Memory 83
Dot Graphics Line 17 Atari Music Composer 85

ANTIC and CTIA 19 CompuServe 86

More Memory Secrets 21 Build Your Own Light Pen 89

Examining the Display List 23 Atari Si lencer 93

Modifying Display Memory 24 Basic A+ 95

Display List Opcodes 26 Monkey Wrench 97

Notes & Discussion 27 String Arrays " 98

Basic and Color 30 Talk is Getting Cheaper 99

Display List Interrupts 33 Axlon RAMDisk 103

Player-Missile Graphics 39 Joy tricks 105

Character Sets 46 New RAMS for Old 109

K-DOS 111

Part II. Graphics Tips Keyboard for the Atari 400 112

The Mosaic 64K RAM Card 114

Design Philosophy and GTIA Demos 55 Atari 1200 " 116
Graphics Seven Plus 59 Letter Quality Alternative 117

Player-Missile Design Aid 64 Atari Word Processors 119

Animath 67 Atari Text Editor Program 122

VisiCa lc 123 Deluxe Invad ers & K-razy S hooto ut 183

Ata ri Resources 125 Dog Daze & Cavern s of Mars 184

Questions & Answers 126 Canyo n C limber 186

Atari Languages 129 Clowns & Balloo ns 186

Getting Along Witho ut TAB 132 Pool 187

Te lecommunications & Memory Loca ti ons 133 Naut ilus 188

The Upstart Ata ri 135 Shamus , 189

Self Modifying Programs 138 Miner 2049'er 189

Super Text Mode 141

Neater Numerica l Tables 147

Interfacing Your Atari 149
Part IV. Disk Drive Tutorial

Atari Strings and Text Handling 152 Atari DOS 193

An Atari Library of Sound 153 Atari Diskfile Tutoria l - Part I ., 196

Origina l Adventure in 32K .. , 156 Atari Diskfile Tutoria l - Part II 198

From Burn-Out to Born Again 163 Atari D iskfile Tutoria l - Part III 200

Speedread + 165 Using Disks With Atari Basic 204

Eastern Front 166

M iss ile Comma nd & Astero id s 168

Star Ra ide rs 170
Part V. User Programs

Basketball 171 Maze mas ter 209

Warlocks Reve nge & Kayos 171 Monster Combat 215

Gamma Hockey 172 Scurry 225

The Wizard a nd the Princess 173 Colli sion 228

Graphics Adventures on the Atari 175 Air Defense 230

Cypher Bowl & Kra zy Ant ics 178

Not Just Fun in Games 180 A ppendi x

The Atari Machine
I first saw Atari's Mean Machine at an education

and-computers conference last September. A lot of
pompous Educators had come to receive the word
from some Foundation People about the blessings
that small computers and videodisk were about to
bring to them. I was there with Stuart Greene, an
associate and filmmaker who also has a sense of what
computer graphics ought to do.

Well, there was a keynote address from the highest
Foundation Person, and good things were said; and
then a wonderful thing happened .

Up got Ludwig Braun with his fierce mustache and
apologetic manner, Lud Braun who has tried
indefatigably for so long to arouse the educational
establishment to the educational potential of simula
tion and little computers; up got he, at an Advent
screen, and said he had a new machine to show us.

He turned on the Atari.
Here is what we experienced.
We are on a spaceship, cruising at near-light speeds.

Stars are on the screen, but they part before us, moving
smoothly out/i'om a common center as we cleave the
void. A low rumble-ship's noise or remanant Big
Bang- accompanies our movement.

The pilot turns . The stars still move apart for us,
but now the center of diverging motion has moved to
another part of the screen. Stars pass each other- they
must be the near ones- and we see that the display
really shows us moving through stars in three
dim ensions.

PLANETS shoot by.
Enough of the slow stuff. Let's take this baby out

for a spin .
Acceleration! The rumble rises in pitch and volume.

The stars really start to fly a part. HYPE R WAR P
ENGAGED, flashes a warning on the screen. Faster
and faster shoot the stars, as from a Fourth-of-luly
sparkler, AND NOW THE SCREEN IS RED IN
SUDDEN SILENCE, AND IT FLASHES "HYPER
WARP"!

And out again! There is roaring anew, and new stars
split to let us pass, but we are slowing down now. The
rumble lowers. We have gone halfway across the
universe .

Stuart and I were shouting and cheering and
clapping. I think I may have been on my feet with
excitement. The Educators turned to stare at us.
"What does this have to do with Education?" asked
their faces. Guys , if you don't know, we can't tell you.

I've been in computer graphics for twenty years, and
I lay a wake night after night trying to understand how
that Atari machine did what it did .

As I have always known the field, there are basically
two kinds of computer graphics machines. The bit
map machines , the video type, have a fixed number of
dot positions , and if you want to "move" a shape, you
have to keep erasing it at one spot and re-writing it at
the next. (The Apple computer's hi-res is of this type.)
Either the movement is cyclically jerky, as your move
ment subroutine reaches different picture elements, or
you have to prepare a "next frame" in a different area
of core , which may be slow, and flip the new image to

Ted Nelson, 8631 Fairhaven, Apt. 109-13, San Antonio, Texas 78229.
9

Ted Nelson

the screen when it's all ready. (The Apple allows this.)
Problems arise when a moving figure crosses a still

figure ; restoring the background after a moving shape
has passed is a real problem. Preparing an unseen
Next Frame that restores the background is again the
solution, but that takes still more time.

Then there's the other kind of graphics machine ,
the Super kind - the "calligraphic" display- where
points and lines are individ ually placed on a rasterless
screen. Special hardware steps through a display list in
core, putting each part of the picture where the
program says. Each time the screen is refreshed, the
points and lines can be moved individually as your
program changes the screen positions specified by the
display list. (Examples are the Picture System from
Evans and Sutherland for $100K, or in the $15K ball
park, Imlac's PDS-4 and DEC's VT-ll.)

But this , this new machine , was something else.
In a package under one thousand dollars, and using

a conventional raster screen-a TV - the Atari com
puter was doing smooth motion in all directions at
once, seemingly in 3D.

This had to mean, I reasoned , that there was some
sort of a DMA readout from core (as in the calli
graphic machines), in order to match the raster-timing
demands of the TV screen. But then there would have
to be some sort of address translator, allowing the
element itself to remain ona display list in core, where
its screen address could be changed between frames.

But then there would also have to be some list,
corresponding to the picture arrangement on the
screen, of where everything was in core.

It just didn't make sense.
Well, I know how it works now , dear reader, and I

wish I could tell you. But , unfortunately, Creative
Computing. as a software producer, has signed a non
disclosure agreement with Atari, so that anything I've
learned through these channels I can't published . But
aha, if I can find it out through other channels , says
Dave Ahl in his Solomonic wisdom, then I can publish
it. So I will be spying assiduously, dear reader, to find
out what I already know so I can tell you about it. Ah,
modern life.

The Atari machine is the most extraordinary
computer graphics box ever made, and Star Raiders is
its virtuoso demonstration game. Be not misled by the
solidity of the Star Raiders capsule you must push into
place; it is not hardware. It is a program.

Yes, friends, all the effects I have described - and
many more indeed - can be programmed on the Atari.

There is just one problem.
They won't tell you how.
That's right. You can buy an Atari computer and

they won't give you instructions on how to work it.
Everything is under wraps. Oh, of course you can
program the 6502 chip, that's in there, same as in the
Apple. But that other stu/f those mysterious peek
and-poke locations that move the stars, and whatever
else they do do, are a deep dark secret.

Now, I'm pretty sure that if you wanted to bring a
case before the Federal Trade Commission, there's
some statute saying you're entitled to get operating

The Atari Machine

instructions for wha teve r you buy. So if you want to
make a federal case out of it, you ca n probably get the
inside data in about three years for a quarter of a
million dollars in legal costs. However, there's a faster
way.

Wait.
The hacker's race is on. Who can figure it out first?
Even if nobody violates Atari's e laborate security,

I'll wager that most or all of the secrets of the Atari
machine wi ll be out by the end of 1980- probably
including secrets that the Atari people didn't know
existed. Because there is nothing like a real challenge
to delight a computer hacker, and this is a real
challenge.

Now, there are all kinds of signs in the wind. For
instance, one California company, advertising in these
very pages, says they have a book on the Secrets of the
Atar i. Not to mention a di sassembler that will ferret
out even the deepest secrets of Star Raiders.

I called them about the book and they sa id well , it
wasn't quite ready yet, and when I asked for ga lleys
they a lluded to how it wasn't quite written yet, but I'm
sure it will be a very good book when it comes out, and
that they won't be the only sources for the information.
Because if there's one thing that makes the world go
round it's gossip, especially juicy true gossip, like how
to control horizonta l scroll or interrupt on raster-line
co unt Oust to take fictitious exampfes).

An interesting question is why Atari is bothering to
hide the information at a ll, and from whom. Is the
information being hidden from the purchaser of the
Atari comp uter? That would hardly seem proper, let
alone sane . From rival hardware manufacturers?
Fiddle de dee . The last thing any hardware rival would
do wou ld be to sink hundred s of grand in copying the
Atari special chips. Anyone who has the temerity to
design a computer always thinks he can do it better
anyway. (One conceivable possibility is that Third
World Manufacturers might try to build imitat ion
Ataris - as has been done for the TRS-80, but not the
App le. It seems a lot of effort fora far-fetched threat
especially considering the system price, which is a n
extraordinary va lue; it's hard to see how Taiwan or the
Philippines could compete with it in price for severa l
years. Perhaps the Atari folks arejust that sure of their
own infallibility that they worry about others horning
in on a multi-million-unit market.)

Another interpretation is that the Atari people are
trying to hobble potentia l software rivals . If nobody
else knows how to get the hotshot effects, then the
Atari guys have an advantage with their software,
right? Again a strange not ion . Since Atari makes the
machines, why do they mind? (Anyway, Ata ri is being
cooperative with independent software vendors ,
provided they don't tell how it works. So the whole
thing is very mysterious.)

What It Can Do
The on ly way to explain fully what the Atari will do

is to reveal its internal ha rdware structure. As
explained above, that cannot happen here yet. How
ever, there is a very simple way for you to study

10

the capabilities of the Atari machine: that is to go to
your loca l video-game arcade and play the Atari
arcade games. Everything they do, the Atari computer
will do. (I know of only one exception: the "Lunar
Lander" Atari game, which uses vector graphics and is
therefore incompatible.) Two very good examples for
study, if you can find them, are "Basketball" and
"Star Raiders."

(I regret that Sky Raiders is a shoot-ern-up game,
or, indeed , that our socie ty has such a high regard
for games where you get high scores for murdering lots
of imaginary adversaries. It could be argued that
Vietnam, the Body-Count War, was born in the
arcades of yesterday, and that Star Trek games are
sett ing us up for World War Three - but that's a dif
ferent art icle . A nyway, consider that the effects yo u
are see ing can be put to peaceful uses, like the teaching
of physics and watching the flowers grow.)

Here are some things yo u shou ld look at.
The way that the whole screen can be filled with

shaded grap hics, that is, pictures made out of colors
or grey levels. (Co lors are not much used in Atari
arcade games, with some exceptions like the multi-car
Speedway game. But the co lors are just fine on the
Atari computer.)

The way that pictures of sma ll objects can move
across this overall picture without disturbing it.
(Examples: basketball players in the Basketball game;
automob iles in the speedway game; the hook and
ladder truck in the Fire Truck game, which can
actua ll y be driven across people's lawns and drive
ways, and through their houses, wit h very satisfying
sound effects.)

Of a ll the Atari arcade games , the most portentous,
in my opin ion , is Star Raiders. This is a bombard ier
game in which you get points for destroying cities,
factories and power lines . (Again, ignore the s hoot
em-up aspect.) What you see is a continuing pan orama
unrolling below your bombsight: the aerial view of the
cou ntrys ide. The video monitor is mounted vertically ,
and the aerial view descends down the screen
sideways on the video.

In other words, what you are seeing is horizontal
scroll of detailed graphics relative to the monitor.

Another feature that merits your close attention is
the interaction between moving objects and the back
ground. [n the basketball game, for instance, not o nl y
do the two players move around in front ofa full back
grou nd picture; they also block one another: either the
black player is in front of the white player, or vice
versa. You may have an interesting time thinking
about what hardware this implies.

Moving objects may also interact with the back
ground picture. For instance, in the "Star Raiders"
game, a bomb wh ich is on target creates an explosion
on the ground. This implies interesting interact ion
between the data about moving objects and the data
about the background .

Well, Space Troopers, that's it for now. The Atari is
like the human body - a terrific machine, but (a) they
won't give you access to the documentation, and (b) ['d
sure like to meet the guy that designed it. 0

Part I

Atari Graphics Tutorial

How a TV Works
In order to understand how the Atari does its work ,

we need to know how a TV set works. (If you already
know all about raster scan and similar concepts, you
can probably skip this part.) Go turn on a TV and
look at the screen very closely. You will see a number
of thin horizontal lines very closely packed together.
Any picture on the TV is made up of these lines.

Inside a TV picture tube, painted on the inside of
the front surface, is a substance called phosphor.
Phosphor has an interesting property: when an
electron hits it, the place where the electron im
pacted glows briefly. (A good analogy is this: A
meteorite hitting the atmosphere glows briefly also;
an electron alone, like a meteor without an atmo
sphere, doesn't glow.)

Inside the picture tube there is a device for firing
electrons at the phosphor. This device is called an
electron gun and sends a continual beam of electrons
in a very accurate path (see Figure I). When the
electron gun fires, an electron leaves it, travels to the
phosphor, and the phosphor glows briefly where it
hits. Since the gun fires a steady stream of electrons,
the place the gun is aimed at glows continually while
the gun is firing. The picture on your TV is composed
solely of these glowing dots.

At this point, we have an electron gun firing onto
the phosphor of the screen. The TV picture shows one
brightly glowing dot in the middle of the otherwise
dark screen. If you will enter and RUN program
number I, you will get a good idea of what this looks
like.

In order to draw anything on the screen bigger than
a small dot, other areas of the screen must also be
energized by the beam. This is done with charged
"deflection plates", which bend the beam of electrons,
causing the glowing dot's position to move on the
screen . When the dot is moved from one point to
another, a line appears; this is because the beam of
electrons lights the dots in between the starting and
ending points on the way. These individually lit dots
appear to be a solid line because they are packed so
closely together. Enter and RUN program number 2
to get a line drawn on the screen. If you have a very
sharp picture , you wjll be able to see the individual
dots.

However, if we trace the line just once, it will stop
glowing quickly because if there aren't any electrons
hitting the phosphor, it stops giving off light. In order
to display a line that does not fade, the electron beam
must hit the glowing dots 30 or more times a second .
At that speed, or faster , the phosphor doesn't have
time to fade out before the beam energizes again. If
the line isn't retraced, or "refreshed", 30 or more times
per second, it will visibly begin to flicker.

Any steady image you see on the TV is being con
tinuously refreshed. The most common refresh rate is
60 times per second . If this refreshing process stops ,
the TV screen will quickly go blank. Television
stations send information continuously to the TV,
even when the screen is "frozen" (d uring a test pattern,

13

for instance) . An Atari continually sends signals that
mean "READY" to the TV, over and over, 60 times
per second when the TV displays "READY" right
after you switch it on.

Elecb-on
Gun

10 '::;F:APH I C":; :::+ 16
20 ::ETCOLOF' 2, 0 J (1
30 :::ETCOLOF' L 0., 14
4(1 COLOr: 1
5tl PLOT 160.< 92
btl I~UTO 60

Program 1.

Glo",ing
Phosphor
Dot

\

-.

-----------~ .

Figure 1.

10 GRAPHICS 8+16
L'0 :::ETCOLOR 2, 0, 0
3tl ::;£TCOLOR 1.. ~L 14
40 COLOR 1
50 PLOT 1,96
611 D~JTO 319, %
70 GOTO 70

Program 2.

The electron beam is moved in a standard pattern
by the deflection plates. The beam starts at the top left
of the screen. It scans horizontally across the top right
of the screen, and shifts down one line. It then scans
from left to right again. The beam does not scan from
right to left. It moves back to the left hand side before
scanning again and does not just scan backwards.
Then the beam traces the next line down, and con
tinues until it reaches the end of the screen. This
scanning process is called "raster scan", and the lines
themselves are called "scan lines" (Figure 2) .

When the beam is being traced in this fixed path,
the electron gun's intensity is being varied. When
many electrons hit the phosphor, it glows brightly,
and when fewer electrons hit, the image is not as
bright. By varying the intensity of the beam we can get
shades of grey on the TV image.

In summary, the phosphor is painted on the inside
of the picture tube. Electrons fired from an electron
base regulate how much the phosphor glows, allow
ing control of brightness levels. The TV traces a beam
as a vertical stack of horizontal lines , moving from left

How A TV Works

to right. The beam is then turned off momentarily to
retrace to the left edge of the screen. When the beam
reaches the bottom of the screen, the beam is turned
off again and the electron gun starts over at the top .

Raster Sc."m

.--------- --------

~-------------- -- -~ I
~-------------- - - - ~ I

~-------------- - --?I -------- ~---~~-

Figure 2.

Just for fun, assume that a TV screen is two feet wide
and that there's 192 scan lines. Actually there are
more than 192, but we will assume 192 because that is
all that the Atari will allow us to use. On every refresh
the electron beam traces (2 feet) x (192 scan lines), or
384 feet. Since there are 60 refreshes per second, that's
23,040 feet per second, or roughly four miles. There
are 3600 seconds per hour, so a TV beam traces at
14,400 miles per hour. This is a pretty conservative
estimate, too .

What about color? How does that work? Color is
very similar to black and white in operation . Instead
of a phosphor that only prod uces shades of grey, the
screen is split up into many small dots. Inside each dot
is a place that when hit with a beam of electrons will
glow one of several colors (Figure 3). The gun is
aimed very precisely at these sub-dots, so that when
it's signaled, for example, to show a blue dot at a
particular time in the refresh, it hits the blue "sub
point" that causes that dot to glow blue . There are a
finite number of dots on the screen , because each color
must be represented, packed tightly, next to each
other. Each dot is in a fixed position. The Atari knows
the position of all the color dots, and draws graphics
or characters using them.

All a TV transmitter does is synchronize with the
TV and then send it a continuing stream of color and
brightness, or luminance information. The TV
handles scanning back and forth and putting the
information coming to it on screen at the right color /
luminance . (Color and luminance information will be

[4

referred to as color / lum from now on.) The TV station
doesn't specify to the TV just where a given color/lum
dot should be displayed; rather, it sends that informa
tion at the time when the TV scan will have reached the
proper point. The Atari works in the same manner.

An Atari needing to plot a dot at a particular point
can not directly tell the TV to "put it here", and give
it X and Y coordinates. Instead, it has to wait until
the electron beam has reached those coordinates in its
top to bottom scan, then send the TV color and
luminance information for that dot. Incidentally, the
Atari must immediately send information for the next
dot over as well, and if the one dot is meant to stand
out (as in our example) the next dot over must be dark,
as set by its color and luminance information.
Remember that the Atari must do all this for every lit
dot on the screen sixty times per second to keep a
steady TV picture.

Since the Atari conforms to TV standards, it must
display everything with horizontal lines composed of
individual dots. This includes lines and characters; all

. must be composed of dots having a certain color and
certain intensity. In the next section we will examine
how the Atari produces characters.

Color' TV Do t Matrix

Figure 3.

Character Generation
When you turn on your Atari, the word READY

appears. We know that the letters of READY have to
be made out of dots with color and lumina nce.

Figure 4 shows a n R with a grid on top of it.
Wherever in that grid the R crosses a square, the
sq uare is filled up. Thus we get a rough "R" from the
shape of the squares. These sq uares can be thought of
as dots. If we send the TV this pattern , line by line, by
having it turn on the filled-in dots and leave the ot hers
off, an "R" will appear on the sc reen. Since we've
broken the " R " up into eight horizontal segments, the
"R" on the TV screen will be eight scan lines high.

"READY" is just a bit more difficult. We must first
send the top "s lice" of "R", then the top sl ice of "E",
then "A", "0", "Y", then finish out the scan line, then
produce the next slice of the "R ", and so forth . After
eight scan lines are done, we will have our "READY"
on the TV sc reen. We have no choice abo ut what order
the lines are plotted in (left to right, top to bottom.)

We can display any character we want , or any shape,
through these methods. For example, if we wanted to
display a triangle , we'd split it up into hori zonta l
segme nts and se nd its parts as dots (Figure 5).

R I-·epresent ed in dot mat r i x

Figure 4.

Switch on your Atari and examine the READY
cha racters. You'll be able to see the sca n lines and
individual dots if the picture is sharp and clear.

The Atari must refresh the TV sc reen 60 times each
second, or the dots will stop glowing and fade away. In
order to regenerate the screen , the Atar: must have a
copy of the information on the screen internally to
send 60 times per second. The Atari saves a copy of
the current TV image in memory .

Let's find out how this can be done. The Atari is
trying to represent the letter "R" in memory. It thinks
of an "R" as a group of eight horizontal slices of e ight
on / off dots. Now this corresponds nicely to our
concept of bits . An unlit dot can be represen ted by a

15

Triangle as character

Figure 5.

o bit, and a lit dot is represented by a I bit. Since
there are eight bits in each slice, there is one byte
(8 bits) per slice. (Do you believe in coincidences?)
So let's go back to our figure of the "R" broken up into
slices and represent it as bits / bytes instead (Figure 6).

It takes 8 bytes, each composed of8 bits, to store the
shape of the "R" in the Atari's memory. When refresh
time comes. around, the Atari takes the first byte,
sends it to the display as a blank dot for each 0 bit, and
a lit dot for each I bit. After completing the rest of the
sca n line, it us es the second byte, and so forth, of the
"R ". After 8 sca n lines are done , and 8 bytes, it is
finished with the "R". The "EADY" characters are
also sto red in memory as shapes, represented by 8
bytes eac h.

R as dot-matrix and bit patterns

.01111.00".0

.0 1.0 .0.0 1 .0.0'

.01 fJ.0.01 0.0

.0 11 11.0.0ff

.0101.00" .0.0

.0 1.0.0 ff 1 .r.0"

.0 .0.0'.0.0.0.0 ff

Figure 6.

Character Generation

If the Atari used this approach, we would need 8
bytes for each character on the screen. There are 40
characters per li ne, and 24 lines, total ing 960 char
acters, with 8 bytes per character. That is 7,680 bytes.

In order to clear up any confusion, we will use an
analogy. Imagine a chessboard with 40 squares across
and 24 down. On each square we put one letter. This
is the Atari's "d isplay memory", where we save a copy
of what's on the display screen for refresh purposes.
When the Atari needs to do a refresh each sixtieth of a
second , it starts at the upper left hand corner of the
chessboard, and finds an "R" stored there. It sends
that to the display , along with the "EADY" in the
squares next to it. In order to save the shape of each
character in the square, we need 8 bytes per character
(Figure 7). Consider the chessboard as stored in
memory a row at a time , in one long line, near the end
of RAM.

Atal~ i SCI- -een , l...1pper 1 e ft h a nd CQI-ner .s h o LlJn

01111000 '01111100 '00010000 '01111000 '01000100 '
01000100 '01000000 '00101000 '01000100 '00101000 -01000100 '01000000 '01000100 '01000100 '00010000
01111000 '01111000 '01111100 '01000100 '00010000 (Sc r een

01010000 '01000000 '01000100 '01000100 '00010000 c o nti nue s

~l~O~~~O '~~~ :~f~O~f~O '~~fOO :OO~f?OOO 3 5 mo re)

o 000 00 '0 0 ·0 000 00 '0 000 ·000 0000
(Screen

t t t t t ~ cont i nues
2 3 mo re)

8 b\)t es
I

per
character

(Each ··1·· is represented b y a lit d ot, eac h "Qf"

by an unl i t d o t.)

Figure 7.

This approach to display memory is called "bit
mapping". The name refers to the fact that every bit in
display memory corresponds to one unique dot on the
screen . (The bit is "mapped" onto the screen). It gives
you the capability of controlling every display dot by
modifying the memory. (How many dots? Since there
are 40 characters across, and 8 dots per character,
there are 320 dots across one scan line of the screen.
There are 24 rows, 8 scan lines vertically each, for a
total of 192 scan rines.) There isjust one problem with
thi s approach, and that's the amount of memory re
qu ired to do things this way.

Memory is a scarce commodity on any computer.
At the retail price, 16,000 bytes will cost you $99.
Dedicat ing nearly 8,000 bytes to display memory is
not very good if it can be avoided . That would be one
sixth of the total memory even if you have spent the
money to get the full 48K. That memory is needed for
other purposes , such as storing your Basic programs.

Remember in our chessboard (memory), we are
saving the shape of every letter. There's going to be a
lot of redundancy. There is a number of "space"
characters on the screen most of the time, each of them

16

occupying 8 bytes. What we could do is define the
shape of each character once, then in our display
memory, tell the Atari where to look for the shapes
of each character. The shapes of these characters do
not change, so we can store them in the ROM operat
ing system cartridge and not use the limited RA M.

Our "chessboard" used to have 8 bytes per square,
saving the shape of a character. Instead of 8 bytes ,
let's use one. A byte can store a number from 0 to 255 .
For each possible character the Atari can generate , we
will assign a unique number. Atari does it this way:
A is 33, B is 34, and so on. (For READY: 50, 37, 33 , 36,
57). Other characters, such as commas or asterisks ,
have their own numbers. We save those numbers in
the chessboard.

The operating system ROM cartridge has a com
plete tab le of character shapes, 8 bytes per character.
Given a character number stored in display memory,
the Atari can determine the character's shape. From
that shape the letter is disp layed.

Our 40 X 24 chessboard now has numbers in it. In
the upper left hand corner the first five numbers are:
50, 37 , 33, 36, 57 (Figure 8). The Atari knows these
numbers to be READY, because the display list in
struction identifies this as a character mode while the
shape-table identifies which characters and then
generates the display . Let's calculate the RAM
memory we are using with this technique: one byte per
character, with 960 characters (40 X 24) , means 960
bytes used. This is one eighth of what we used before
with the "bit mapping" approach. Because of this
efficiency, this is the approach the Atari uses. The
first 40 bytes of display memory represent the char
acters on the first row of the display screen, the next
40 bytes the second row, and so on. Spaces are char
acters by themselves represented in disp lay memory by
a 0 byte.

Upper left hand corner o f Atari Sc r e e n

53 3 7 33 3 6 57 llll 0.0'1 lm l !!!! I (blanks)
!!ll !!ll !!ll !!!! !!!! ll!! fI!! !!ll!!!! (b I anksl
Jl3 Ill!! I !!!!I!!!!I !!!! !!!! !!ll !!B 0!! (blanksl

t t t t t
Each c harac ter now oc cupies o ne b y te .

Figure 8.

Let's go through the process of displaying
"READY". The Atari determines that it is time for a
screen refresh. It starts with the uppermost scan line
on the screen. In that line it starts with the left char
acter's top slice. It looks to the display memory chess
board, and finds a 50 there. It looks up the 50 in its
collection of character shapes, and finds the shape
"R". It outputs to the display the top slice of the "R",
composed of eight on-off dots from the top byte of
"R". The display gets this information, composed of a
group of color and luminance information, and it dis
plays the first eight dots . The Atari sees the 37, looks
it up ("E"), sends the top slice of it, and so on. [t

finishes the other characters , "ADY" on the first scan
line , then goes on and finishes that scan line by dis
playing the spaces. For the second scan line on the
sc reen, it uses the second slice of the "R", then the
"EADY", and so on. After eight sca n lines, it is
finished with the first row of characters. It repeats this
process 24 times, for there are 24 rows on the sc reen.
This entire process is completed 60 times every second
(Figure 9).

Dot Graphics Lines
Remember our discussion of bit-mapped memory?

That is how lines are produced on the Atari . We have
one bit for each dot on the screen, and if that bit is "set"
(I), the Atari switches on the corresponding dot on the
TV. This uses a great deal of memory. The inside back
cover of the Atari Basic Manual has a chart of the
amount of RAM required for each graphics mode .
Graphics 8 requires 7900 bytes. This compares with
the value we calculated of 7,680 bytes. (The difference
is due to various tables and other information the
Atari must keep track of in this mode.) Also examine
the number of displayable dots in X and Y directions.
There are 320 horizontal dots and 192 scan lines.
That's 40 characters X 8 dots per character (320),
and 24 lines X 8 scan lines ([92). You now should have
a good idea of what happens inside the machine. Just
eliminate the character squares on the chessboard,
using the bytes per square technique, a nd you will have
320 X 192 dots , each one represented by one bit inside
the Atari. The first scan line (320 dots) thus occupies
40 bytes (40 X 8 bits is 320 bits), the next scan line the
next 40 bytes and so forth.

How does the Atari di splay a line? It turns on the
dots on the screen that the line "passes over". It does
this by turning on the bits in memory and letting the
video refresh circuits use that memory to refresh the
screen. Run progra m 3, and you will be able to see the
individua l dots light up and watch the line shift over
discrete hori zo ntal increments to draw a diagonal.

17

Disp l ay Memo ry t r ans lated t o characters

sa 3 7 33 3 6 57 20 00 fla 00 (blanks)

I I "R" ---I To " E" ---
"A" ---
" 0" --- TV
"Y ---
"(blank) " _

Figure 9.

The Atari uses display memory in one of two
fundamentally different ways; "character addressing"
(reserving one byte per character where the number in
that byte is a unqiue character number) or " bit
mapping" (reserving one memory bit for each screen
dot).

10 GPAPHICS ::;+16
20 :;:ETCOLOF: 2. f}. (1
3(1 SETCOLOP L \3) 14
40 COLOP 1
5(1 PLOT 1) 1
6(1 CJPAWO 319 .. 1
70 OPAI·nO L 191
30 DPAmO 1 .. 1
9~1 GOm 913

Program 3.

Another computer, the Apple , has "Lo-Res"
graphics (which are character addressed) and "Hi
Res" graphics, which are bit-mapped . There is no
middle ground, just one or the other. Many people,
familiar with the Apple, ask about the Atari's
"Hi-Res" graphics . They are thinking in Apple terms,
and these just do not apply as well to the Atari. The
answer to the above question is "which Hi-Res mode
are you referring to?"

Dot Graphics Lines

There are 14 different display operation modes in
the Atari. Some are character addressed, some are
bit-mapped , and some are in between. Let's restrict
ourselves for now to the Basic graphics modes, which
you are probably familiar with . We will return to the
modes the Basic manual does not tell you about. All
these different modes give you a great deal offlexibility
and ease in doing complex graphics.

The character modes, 0, I, and 2, are pretty easy to
understand. Mode 0 we have been looking at. Mode I
is just mode 0 characters stretched out to twice their
width. Mode 2 is mode 0 characters stretched to twice
their height and width. Since both I and 2 involve
characters twice the width of graphics 0 characters,
S X 2 = 16 dots wide, it will not surprise you to learn
you can only fit half as many on one line (20). Modes
3-0 are graphics modes, and do not involve characters.
In order to learn about them we will have to define a
word , the "pixel".

A "pixel" is a group of screen dots that the Atari
treats as one. They will all be the same color and will all
be represented by just one memory location. If the
single bit in memory that represents this group of dots
is on, then the whole group is lit, and vice versa. Now,
the size of a pixel is not fixed. Different graphics
modes have different pixel sizes. A pixel can be as
small as one dot or as large as 64 dots. Graphics 8 gives
us the highest amount of control over the screen with
one dot per pixel , allowing us to program every dot in
dividually. In Graphics 3 each pixel is 8 rows ofSdots.
The size of the pixel determines the amount of graphics
detail possible. Imagine a pixel to be a square of paper
of varying size. A graphics S pixel would be the size of
one TV dot. A graphics 3 pixel could be a quarter of an
inch on a side. Everything going on the screen must
be plotted using those squares . If you're using the
larger squares, you are not going to be able to get a lot
of detail. The smaller the square, the finer the detail
you can draw with.

Fewer of the larger pixels can be fit on the TV at the
same time, so it is reasonable to assume they will use
less memory. If you will examine the graphics modes
table on the back of the Atari manual , you will see this
is the ca se. With finer detail and smaller pixels, more
memory is used.

If you were drawing ten line bar graphs on the
screen, you would not need fine detail. The pixels can
be huge and it will not make any difference. If you are
drawing a finely detailed picture, you will need small
pixels and "high resolution", or fine control. In the
first case, you can use a coarse detail graphics mode
and not waste memory. Since the Atari has several
modes , you can select the mode you need for the
application and not be forced to use the highest
resolution for all graphics.

The Atari manual states that only one graphics
mode can be used at a time, with the option of
putting a graphics 0 text window at the bottom of the
screen. If you tried to mix them, and displayed data
meant for graphics 0 in graphics 8, the character in the
upper left hand corner, from READY, would be "R".

18

In graphics mode 0, the "R" is represented by a 50, so
the first byte of display memory would have that data
in it. A 50 is a bit pattern of 00 II 00 I O. I f we switched
to graphics 8, that would be the bit pattern we would
have on the top scan line (blank, blank, dot, dot,
blank, blank, dot, blank.) The other data in display
memory would also be sent to the screen as random
data . All data in display memory must be consistent
with the graphics mode it was written in.

The Atari manual attempted to simplify matters for
users and prevent them from having a lot of problems
by announcing that graphics modes cannot be mi xed .
This is not so, but in mixing modes you have to know
a lot about the machine and how televisions really
work, and most people do not have that knowledge.
The really fancy graphics capabilities, such as mixing
modes, were left to Atari's own top programmers.
That is what we are going to explore next.

We will set up a sample problem and solve it using
mixed graphics modes . The problem is to draw a graph
on the screen, titled with big letters , subtitled in small
letters , with a finely detailed graphics plot and labels
on the lower axis. You could do this all in the highest
resolution mode, but you would be a lot older by the
time you were finished. You would have to compose
all the lettering out of individual dots, and that would
take quite some time. Atari has taken a lot of the work
out of this process and saved the programmer a lot
of time .

The Dark Secrets of ANTI C and CTIA
Let's quickly review some of the TV concepts. There

are 192 hori zo ntal scan lines on the TV. Each sca n line
is composed of 320 dots. The lines are traced
horizontally, left to right , one at a time. The top line is
traced first, the bottom line last. This entire process
happens 60 times per second.

The information sent to the TV is stored in the Atari
memory in one of two ways, e ither by character
addressing (where we define a letter by assigning a
number to it, and use a shape table to plot it) or bit
ma pping (where a bit in memory directly represents a
pixel, or group of dots .) If we bit-map memory we
must not display the bit-mapped data in character
fashion, and vice versa, otherwise we will get random
litter on the TV.

The main processor of the Atari is called a 6502. The
6502 moves data in and out of memory, and performs
instructions at the rate of I. 7 million per second. (This
does not mean that 1.7 Basic instructions are executed
each second. In order to interpret and act on just one
Basic instruction , many 6502 instructions must be
executed.) Refreshing the TV screen is a job that ta xes
even this sort of speed. There are 320 dots on 192 scan
lines, individually refreshed 60 times a second; 320 X
192 X 60 is 3.7 million dots each second. We want the
6502 to be doing things like running Basic programs,
not worrying about the TV screen. So the people who
designed the Atari gave the 6502 some help , in the
form of a very fast , dumb slave computer called the
ANTIC. ANTIC lives to do display work only, and,
like the 6502, is a microprocessor.

Any computer has memory and a processor. The
processor gets its data and instructions from memory,
does it s process ing, and places da ta back into memory.
The Atari has so many demands put on it by its
graphics abilities that it comes equipped with two
processors . The 6502 handles all the usual computer
processing; executing Basic programs, writing data to
disk , and so forth . The 6502 gives ANTIC a program,
and places data in display memory. But once that's
fini shed, the ANTIC geb the display from memory to
the TV all by itself.

ANTIC feeds a chip called CTIA. CTIA is the color
television interface which generates the output signal
for the TV. It is not a processor, but a smart custom
chip only found in the Atari. ANTIC gives the CTIA
the data it needs to generate the 3.7 million dots every
seco nd . CTIA has to kee p up with that rate , and has
to be fed with data at that rate. ANTIC is in charge of
memory control.

The 6502 and ANTIC share memory, and the com
puter is designed to keep them from trying to use the
sa me memory at the same time . So while a refresh is
going on, and ANTIC is frantically pulling data from
memory a nd feeding CTIA , it turns off the 6502.
When ANTIC is finished , it turns the 6502 back on.
This process is called "direct memory access", or
DMA, because the 6502, which normally manages
memory, has nothing to do with it. If ANTIC's DMA
is turned off, the video display would be lost im-

19

mediately, because it would not have any data to re
fresh the display.

There are many books on 6502 machine language.
It takes a while to learn machine language, and a lot of
practice to become good at it. However, there are no
books on ANTIC's machine language. Remember,
ANTIC is a processor and has a program , written in its
machine language. It isn't 6502 language, because
ANTIC is tailored to display work. It is a display
oriented language.

There are many ways you can use ANTIC's pro
gram. One of them is mixing graphics modes on the
screen.

ANTIC's program is called a "display list". This
display list is located in memory, just as the 6502's
programs are. A NTIC generates displays by executing
these display list instructions. A display list instruction
is either one or three bytes long.

ANTIC single byte instructions generate displays
a nd manage a "display block". A display block is a
group of adjacent horizontal scan lines (a group of
scan lines all together, with no spacing between them)
which are all in the same graphics mode. They are the
height of one data element in display memory .

A graphics 0 display is one row of characters. Since
characters are 8 scan lines high, the display block
height is 8 scan lines. A graphics 2 display block, where
characters are 16 scan lines tall, is also 16 scan lines
high . A graphics 3 display block, where pixels are 8
scan lines high is 8 scan lines , and a graphics 8 display
block is I scan line high . Each data element in display
memory produces some kind of graphic image on the
screen, and the height of that image is the block
height.

A display block is only one row of characters or one
row of pixels in a graphics mode. There are 24 display
blocks being shown on the screen in Graphics O. Think
of them as long, thin horizontal bars extending the full
width of the screen. They are stacked on top of one
a nother.

In graphics 8, there are 192 display blocks, all
stacked on top of each other. This is because graphics
8 di splay blocks are only one scan line high. Display
blocks do not have a fixed height. The height depends
on the graphics mode one is in.

Let's look at a table of the various graphics modes
from Basic and how high each mode's display block is.

Basic Graphics Mode

o
1
2
3
4
5
6
7
8

Size of Display Block

8 v lines/ char
8 v lines/ char
16 v lines/ char
8 v lines/ point
4 v lines/ point

·samc·
2 v lines/ poinl

·same·
1 v line/ point

1/ Verlically Slackable

24 vertically Slacked
24 vertically Slacked
12 vertically Slacked
24 verlically Slacked
48 vertically Slacked

96 verlically Slacked

192 vertically Slacked

The Dark Secrets of ANTIC and CTIA

Inside a display block, the graphics mode cannot
change. This means if something on the screen is in a
given display mode, everything next to it is also in that
same mode. Although the mode cannot change inside
a display block, the blocks above and below that dis
play block can be in different modes . This means we
can mix modes on the screen by stacking the different
display blocks that we want. This only allows us to
mi x modes in horizontal layers , not in vertical stripes.

Remember the graph we wanted to create? First, we
would stack a graphics 2 display block (the title) on top
of two graphics Odisplay blocks (the subtitle) on top of
a bunch of graphics 8 display blocks, on top of the
graph itself (see Figure 10.) It saves a lot of time to mix
graphics modes and not have to go through all the
work of plotting your characters in high resolution
dots.

Let's follow ANTIC through the display refresh
process . We will use our earlier example, the word
READY on the screen in graphics 0, in the upper left
hand corner.

Sample Atari "Display (Mixed Modes)

~~~---------------------------------------

2 

111 
111 

MODE 2 TITLE 
And here is the Mode If subtitle 
which ie two 1 ines hi~h. 

t 
"'. 
~ 

'" x 

:':j 

~ 
111 

111 

" If 
II 

Ilf 
Here 
Here 
Here 
Here 

29' 3111 411 5l! 60 
sine 2 of the labelling. 
s Ine 3 of the labelling. 
5 1 ne 4 of the labelling. 
5 1 ne 5 of the labelling. 

Figure 10. 

7111 8ff 9111 I ffll 

ANTIC has an instruction in its display list which 
keeps it waiting until the time rolls around for a new 
screen refresh (every sixtieth of a second). Once this 
occurs, ANTIC starts work . It needs to know what to 
put on the very first scan line. It looks to the display 
list for instructions. In our example, a graphics 0 dis
play block is first. Mode 0 has 40 characters per display 
block, and it takes 8 scan lines to plot the block. 
ANTIC turns off the 6502 and grabs 40 bytes from the 
start of display memory, which are the numeric 
rep resentations of "READY" and 35 spaces. ANTIC 
knows that since this is a character mode, these 40 
bytes actually represent shapes stored in a shape table, 

20 

so it goes to the shape table and finds all of their 
shapes. Over the next eight scan lines, ANTIC plots 
the READY as we learned in the previous chapter. It 
consults the display list again for what to do with the 
ne xt display block , then grabs another 40 bytes from 
display memory using the Graphics 0 displa y bl.ock, 
right below the first 40, and plots another line of 
graphics 0 characters, and continues. After 24 display 
blocks, the display list tells ANTIC to stop and wait 
for the next refresh . The 6502 is turned back on again. 
In graphics 0, the 6502 is turned off about 30% of the 
time. In graphics 8, it is turned off about 60% of the 
time. One way to speed up calculations on the Atari is 
to turn off the display completely. 

If we were in graphics 8, ANTIC would have to 
look to the display list 192 times , and find a graphics 8 
instruction that same number of times . Now if the dis
play list tells ANTIC to first plot a mode 2 row of 
characters, then two mode 0 rows, then a bunch of 
graphics 8 blocks, it will do that. This is how we mix 
graphics modes. 

Clearly, you have to map out your displays in ad
vance and also map out your display memory . Since 
display memory is used by ANTIC as a result of 
plotting display blocks of data, the memory must have 
the exact amount of data needed stacked in the same 
way as the display blocks . 

Go to the sample graph. A line of graphics 2 char
acters takes up 20 bytes of memory. That is because 
only 20 characters (double wide) fit on one line in 
graphics 2. Since this is the first display block , these 
bytes must be at the start of display memory, where 
ANTI C will start looking for data for that mode 2line. 
ANTIC plots them, and while doing so , moves 
forward 20 bytes in memory. Next it needs 40 bytes for 
data for the first of two graphics 0 display blocks. 
That 40 bytes must immediately follow the 20 bytes of 
mod e 2 data in memory, because that is where ANTIC 
will be looking for them . Next, another mode 0 line 
(40 more bytes), then a mode 8 line. The mode 8 line 
uses 40 bytes per display block (320 points , with 8 
points stored per byte, is 40 bytes), bit mapped rather 
than character addressed. The data following the 
second mode 0 line must be bit mapped format , ready 
for graphics 0 display. 

ANTIC has no idea where you want bit mapped or 
character addressed data to start and end other than 
where it is in display memory when ANTIC needs 
more data. You control that through the display list. 
If you store 41 bytes of data for a mode 0 line, it will 
not wrap around. ANTIC will just use that extra byte 
as the first data byte for the next display block and 
could interpret it in either graphics or character mode, 
depending on the display list. 

Just for practice, and as an exa mple, let's lay OLlt a 
sample display list and display memory, which follows 
from the display list's needs , for OLlr graph. 

We design OLlr displays around the 192 available 
scan lines. We will mix graphics modes, but mLlst 



make the total number of scan lines used come out to 
exactly 192. 

Here is how we allocate the 192 scan lines: 

16 X I = 16 lines in graphics 2 for our title. 
8 X 2 = 16 lines in graphics 0 for our subtitle. 

120 X I = 120 lines in graphics 8 for the actual graph. 
5 X 8 = 40 lines in graphics 0 for the labels. 

This gives us a total of 192 scan lines. 
There is no great penalty if we do not come out 

exactly at 192 scan lines. If we ha ve a few less, the dis
play just will not reach to the bottom of the screen. If . 
we have a few more, we will get some bizarre displays 
(you may want to try this out later on). Going past 
192 can result in weird things happening, as ANTIC 
will keep sending information after it reaches the end 
of the screen. 

We have allocated 192 scan lines in 120 display 
blocks. Next we will allocate display memory. This is 
done by adding up the individual display block re
quirements . 

20 bytes X I line = 20 bytes for the first block in 
graphics 2. 

40 bytes X 2 lines = 80 bytes for the next two blocks in 
graphics O. 

40 bytes X 120 lines = 4800 bytes for the next 120 
blocks in graphics 8. 

40 bytes X 5 lines = 200 bytes for the last five blocks in 
graphics O. 

More Memory Secrets 
Remember when we calculated the memory require

ments of the various modes? The Atari manual chart 
gives numbers a little larger than the ones we cal
culated . For example, in graphics 0, we need only 
960 bytes to store the character numbers (40 X 24 
characters = 960), yet the manual said 993 bytes. The 
remaining bytes are the display list memory area. Let's 
recalculate the graphics 0 display memory and display 
list req uirements . 

A graphics 0 display list, as we will shortly see in real 
life, looks like this: 

3 bytes which instruct ANTIC to leave the top of the 
screen blank. 

3 bytes which instruct ANTIC where to find display 
memory. 

24 bytes which instruct ANTIC that there are 24 
graphics 0 display blocks. 

3 bytes which instruct ANTIC to wait for the next 
refre sh to begin, then go to the top of the display list 
and start all over again. 

This totals 33 bytes. 
Add these 33 bytes to the 960 bytes of the graphics 0 

display memory, and you will have 993 bytes , which is 

21 

This gives us a total of 5100 bytes for display 
memory. 

To get our graph on the screen, we set up display 
memory with the needed data, character addressed for 
modes 0 and 2 and bit mapped for the mode 8 blocks, 
then set up the display list with its 120 display block 
instructions, and finally tell ANTIC to get going. It 
will, and the display will pop up on the TV. A quick 
review of the paper and pencil process: 

I. Design your display as display blocks. 
2. Map out the display list from those blocks. 
3. Map out display memory from the display list. 
It is much easier to plot a title in large letters using 

graphics mode 2, where you just have to put the right 
20 bytes of data into display memory and put in a 
mode 2 display list instruction, than to construct the 
letters out of individ ual high-resolution dots. The 
Atari will do all the constructing for you, and save 
you a lot of time. Since programmer time is becoming 
the most expensive factor in owing a computer, this 
sort of time saving is very important. 

We are going to need some tables on how many 
bytes the various graphics modes consume. We will 
also have to look at how color is stored in the Atari so 
you will know how display memory is actually 
formatted, while also understanding the idea of bit 
mapped memory. We will then start examining and 
modifying display lists to get some nice effects. If you 
can, have an Atari available to tryout the examples. 

what the Basic manual says. You can carry out this 
same calculation for other graphics modes. 

Depending on the graphics mode, we have a variable 
number of colors available to color a given character 
or dot on the screen. 

There are 16 colors available, numbered 0-15. There 
are also 8 different luminances available, numbered 
0-15 . Each consecutive pair of luminance values, 0 and 
I, 2 and 3, and so on generate the same luminance, so 
there are only 8, not 16 luminances. All this color and 
luminance information takes 4 bits to save color in
formation and 4 bits to save luminance information. 
This totals 8 bits , or one byte, to save the color and 
luminance for one point. 

A competitive computer to the Atari stores one byte 
of color and luminance information for each dot in 
memory. We would use 320 x 192 bytes, or 61,440 
bytes. Since 65,535 bytes is all of memory, we would 
be using nearly all of it for display! So we need to come 
up with a better approach. 

The Atari has five "color registers" instead. These 
color registers are 8 bits long, and save color informa
tion in the first four bits, with luminance information 



More Memory Secrets 

in the last four. In memory when we want to specify a 
color, we instead specify the number ofa color register 
that contains the color we want to have the data dis
played in . 

When CTIA, busily plotting data from ANTIC, 
looks to a graphics point and sees "0 I" as its color, it 
does not plot the point in color I, but looks to color 
register I, gets whatever color is stored in there , and 
plots the point in that color. A lot of memory is saved 
this way. 

Graphics 0 and 8 do not have color information 
saved in their memory data. That is why it is easy to 
calculate their memory needs. Modes I and 2 actually 
use the top 2 bits of each character number to save a 
color register number. The graphics modes other than 
8 work in one of two ways. They reserve either one or 
two bits per pixel, and use those I or 2 to "point to" 
color registers . 

With I bit , we can specify 2 colors (0 or I). 

With 2 bits, we can specify 4 colors (00 , 0 I, 10, II). 

Hence, if we use a 2-bit mode, we can specify a pixel 
to be in one of four colors, and if we use a I bit mode, 
we can specify one of two colors. In your Basic 
manual's graphics section, it mentions that modes 3, 5 
and 7 are "four color modes", and modes 4 and 6 are 
"two color modes". You havejust learned why. Modes 
4 and 6 use less memory than their 4 color counterparts 
at the same resolution, for they use only I bit per pixel, 
not 2. 

Graphics X Y Lines/ # Bits/ Pts/ 
Mode Pts Pts DB Point Byte 

0 40 24 8 8 1 
1 20 24 8 (8) 1 
2 20 12 16 (8) 1 
3 40 24 8 2 4 
4 80 48 4 1 8 
5 80 48 4 2 4 
6 160 96 2 1 8 
7 160 96 2 2 4 
8 320 192 1 1 8 

A typical graphics 7 (2 bits - four co lor) display 
block is 2 scan lines high and has 160 points across 
(2 dots per pixel horizontally and 2 scan lines per pixel 
vertically) . Since there are 160 points , and 2 bits per 
point to save color information, that is 320 bits , or 40 
bytes of information per block. The information is 
stored 4 pixels per byte, all packed in together. If we 
had a graphics 7 display block at the top of the screen, 
the first byte would contain the data for the first four 
points. The first point on the screen would have its 
color data in the first two bits of the first byte (bits 8 
and 7) , the second point in bits 6 and 5, and so on. If 
there is 00 specified as the color information, the point 
is not plotted. Rather, background color and 
luminance are used in plotting that pixel. 

Below is a handy table of the various graphics 
modes , how they are mapped in memory, and the 
memory requirements. 

If we store 8 points per byte, we are only using I bit 
to determine color. If we store 4 points per byte, we 
are using 2 bits and have a 4 color mode. 

We add 9 to each display list length to handle the 
overhead instructions in the display list (see the 
previous example) . These instructions are the same in 
each display list , hence the constant length. 

The total RAM requirements will match the back of 
your Basic manual. The only difference will be in 
graphics 8, which has bytes that are unaccounted for; 
these are extra display list instructions made neces
sary by the length of display memory. 

DMem D List RAM req'd RAM/I 
Length 

, 
Length (DM+DL) DispBI 

960 + 24 (+9)= 993 40 
480 + 24 (+9)= 513 20 
240 + 12 (+9)= 261 20 
240 + 24 (+9)= 273 10 
480 + 48 (+9)= 537 10 
960 + 48 (+9)= 1017 20 
1920 + 96 (+9) = 2025 20 
3840 + 96 (+9)= 3945 40 
7680 + 192 (+9)= 7891 40 

22 



Examining the Display List 

The display list is written in ANTIC machine 
language and is a program. Do not expect the opera
tion codes, stored in the bytes of the DL, to match 
what you think they should be. For example, a "0" is 
not a graphics 0 instruction. 

ANTIC instructions come in one or three byte 
sizes. The three byte instructions are really one byte 
instructions with 2 extra bytes of data. These 2 bytes of 
data specify a memory location and are examined 
together as one 16-bit address. The address can specify 
any location in memory. Since ANTIC needs to be 
able to go anywhere in memory, these are the in
structions that enable it to do so. 

One instruction is the number "2". It is a one byte 
instruction that tells ANTIC to generate a graphics 0 
display block, and we will be seeing a lot of them . Let's 
go ahead and display the display list in your machine 
on the printer, or on the screen if you do not have a 
printer. (If you do not have a printer, change every 
LPRINT in the program to PRINT.) Enter and run 
program 4. 

Your printout will look like Figure II. If you have 
48K of RAM memory in' your Atari, it should be 
identical. Let's examine the program and see how it 
works . 

Line 10 examines two locations in memory through 
the PEEK statement. You may want to go back and 
reread the chapter on memory concepts if you are 
getting lost. The locations are at addresses 560 and 
561 , and together they specify the start of the display 
list. They form a 16 bit address, so line 10 takes both 8 
bit values and multiplies one by 256 in order to make 
the number a 16 bit value for us to use. This value is 
the memory add ress of the beginning of the display list. 

Line 10 assigns START to the address in memory 
where the display list begins. The program prints the 
address in line 20 and a title in line 30. Lines 40, 50, and 
60, display the next 50 bytes' memory location, value, 
and 16 bit interpretation of that value , since some of 
these bytes will be parts of 16 bit addresses. Examining 
our output, we see that the byte at address 39968 con
tains a value of 112. The next byte is also 112, and so 
forth. 

We have marked the two 16 bit addresses in the dis
play list. Other than that, you can ignore the 16 bit 
column, as does ANTIC. Only in 3 byte instructions 
does it take the last two bytes and combine them to 
form a 16 bit address. Remember our display list is 
only 33 bytes long in graphics O. We have printed out 
50 locations . Let's start at the top of the display and 
work down, seeing what ANTIC does with each 
instruction . You could think of this as a program with 
the memory locations as line numbers. Should your 
Atari have less memory than mine, the memory 
locations will be lower, but that is no problem. Every
thing done here can be applied to a lower memory 
Atari as well. 

The first three bytes contain the value 112. Instruc
tion 112 calls for a display block 8 scan lines high with 
no characters. This tells ANTIC to take a break , do 

23 

nothing with display memory, and generate 24 back
ground color scan lines (8 scan lines for each value of 
112). Many televisions "overscan", and if we do not 
leave a border around the display area some of that 

5 GRAPHICS B 
6 PRINT "REro\'" 
Ie START=PEEK<741 )+2S6IPEEK(742) 
ze LPRHIT "START (J' 01.="; START 
25 LPRINT "FUJ< (1 BYTE) (2 BYTE)" 
3il FOR ;a)R=START TO START+se 
40 LPRINT I'iIOR,PEEK( ADQR),PEEK(AODR>t256 
*PEEK(I'(X)f<+I) 
6e t£XT AOOR 

Program 4. 

START OF DL=39967 START (J' DL=39967 
~ (I BYTE) (2 BYTE) FUJ< (I BYTE) 
39967 e 28672 39967 B 
39968 112 20784 39968 112 
39969 112 20784 39969 112 
39970 112 17008 39970 ...ll2. 
39971 bb 164se 39971 66 
39972 64 400de 39972 64 
39973 156 668 39973 ..l56.. 
39974 y- 514 39974 2 
39975 2 514 39975 2 
39976 2 514 39976 2 
39977 2 514 39977 2 
39978 2 514 39978 2 
39979 2 514 39979 2 
39900 2 514 39900 2 
39981 2 514 39981 2 
39982 2 514 39982 2 
39983 2 514 39983 2 
39984 2 514 39984 2 
39985 2 514 39985 2 
39986 2 514 39986 2 
39987 2 514 39987 2 
39900 2 514 39988 2 
39989 2 514 39989 2 
399ge 2 514 399ge 2 
39991 2 514 39991 2 
39992 2 514 39992 2 
39993 2 514 39993 2 
39994 2 514 39994 2 
39995 2 514 39995 2 
39996 2 16642 39996 2 
39997 ~ 8257 39997 '"""6'5""" 
39998 32 39968 39998 32 
39999 156 156 39999 ..lli 
40000 e- 9 481!00 e 
40001 e 12893 40001 e 
4eee2 sell 13618 4eee2 sell 
40003 53 L' 11829 40003 371 ' 
40004 46N 46 40004 33" 
4eee5 e 9 4OOe5 36!l 
40006 e 9 40006 57 Y 
400e7 B 9 40007 e 
40008 e 9 4OOB8 e 
40009 B 9 4i!OO9 e 
400113 e 9 400113 e 
40011 e 9 40011 e 
40012 13 e 40012 e 
40013 e 8 40013 e 
40014 e 8 40014 e 
40015 e 9 40015 e 
40016 e e 40016 e 
40017 e 9 40017 9 

Figure 11. 

(2 BYTEl 
28672 
20784 
20784 
17008 
16459 "'1),1\ 1. 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
514 
16642 is .1'JVll 

B 
12893 
9522 
8485 
9249 
14628 
57 
9 
e 
9 
e 
e 
e 
9 
9 
e 
8 
9 

area could be lost off the screen. The 112 instructions 
do not look to display memory. The next 3 bytes are 
all one instruction. They tell ANTIC where display 
memory is, and tell it where to get data if it is needed,. 
The next 24 instructions (all with the value "2") are 
graphics 0 display instructions. They instruct ANTIC 
to generate 24 graphics 0 display blocks, using data 
from the display memory. The last instruction in the 
display list is executed over and over, in a loop. This 
particular instruction tells ANTIC to wait until the 
beginning of the next screen refresh, then go to the 



Examining the Display List 

address given in the next two bytes . The 16 bit transla
tion of those two bytes is 39968 . If you 100 k at the top 
of the display list printout, you will see that this is the 
start of the display list. 

The fourth display list instruction told ANTIC 
where to look for the display memory. The 16 bit value 
is 40,000. That is the beginning of display memory. 

Bytes 40000 and 4000 I are O's. A 0 in character mode 
is a space. There are two leading blanks for the left 
margin. The next 3 bytes contain data . They are the 
lette rs "R", "U", "N", displayed on the screen and in 

memory when this progra m was executed. If you we re 
to PEEK farther into display memory, you would find 
that the first 40 bytes reflect the first line displayed in 
graphics 0, the next 40 represent the next line , and so 
on. The other listing reflects what a READY would 
look like in display memory. 

If you have less memo ry , for example a 32K 
machine, the addresses are going to be different. Your 
printout will tell you where the display list and 
memory are located. Everything is identical , except 
that it is located in a different part of memory . 

Modifying Display Memory 
It is possible to modify display memory directly by 

POKEing a new value in. If we do so , ANTIC will 
interpret the new value as data and start displaying it 
on the screen. Choose a display location two di splay 
blocks down (two rows) and in the middle of the 
screen. Since each display block is 40 bytes long, that 
will be the start of the display memory + 100. Type: 

POKE 40100,46 (RETURN) 
*Note : If you do not have 48K of memory in your 
Atari , do not use this . Instead find the beginning of the 
display memory by dumping the display list and look
ing for the 16 bit address in that listing. It will be the 
5th and 6th bytes of the display list, and will be an 
address immediately following the end of the display 
list. For example: if the 16 bit conversion says 17,250, 
then add 100 to that to get 17,350, and type PO K E 
17350,46 (RETURN). 

An "N" will have magically appeared two rows 
down in the center of the screen. (A 46 is the code for 
an N) . We have just directly modified display memory. 

Move around in memory a bit from the sta rt of dis
play memory to the end, and try POKEing in the 46 in 
other locations . You will get N's appearing all over. 
Try POKEing in other numbers than 46, and you will 
get other characters appearing on the screen. Do be 
careful to stay inside of the display memory area. If 
you go past display memory into the display list, un
predictable things will happen. 

Try a FOR-NEXT loop from 0 to 255 a nd POKE 
the value into a display memory location . You will 
see all the possible letters alternating in one location . 
You could also use a series of memory locations with 
a FOR-NEXT loop to fill them with data. Here are 
two examples. 

M EM LOC=XXXXX (fill in where you want data 
modified.) 

FOR CHAR=O TO 255 
POKE MEMLOC,CHAR 
NEXT CHAR 

24 

Fill a whole selection of display memory full of N's . 
MEMSTART#XXXXX 
M EM END=MEMST ART + 100 
FOR LOC=MEMSTART TO MEMEND 
POKE LOC,46 
NEXT LOC 

You can do si milar things by POKEing into display 
memory in other graphics modes . 

We will pick one of the 24 graphics 0 blocks, and 
change it to a graphics 8 block by POKEing into the 
display list. ANTIC will display the contents of those 
40 memory locations as graphics 8 dots on one scan 
line (the size of graphics 8 blocks) . The whole dis
pla yed area will shorten by 71ines because the graphics 
8 block is 7 lines shorter than a graphics 0 block . The 
letters on that line will be rep laced by a graphics 8 line 
with dots on it, with the character data represented 
as dots. Above and below the graphics 8line, there will 
be the usual character data. Since both graphics 0 and 
8 use 40 bytes per display memory block, we do not 
have to worry about the start of other lines being in the 
wrong place. 

Pick a byte in the middle of the graphics 0 i nstruc
tions in the display list. We picked 39984 (see Figure 
I J) . It can be any of the "2" graphics instructions , but if 
you pick one in the middle, it will show up better. Now 
the code for a graphics 8 display block is 15, so to 
modify that byte to a 15, we: 

POKE 39984,15 (RETURN) 
A middle line of characters is gone and there is a 

very small line of dots where they used to be; that's our 
grap hics 8 display block . (If you had a blank screen in 
graphics 0 when you PO KEd in the 15, you will not see 
a ny dots . That is because graphics 0 with a bla nk 
screen is display memory filled with O's , and graphics 
o di sp lays O's as blanks .) 

When you LIST a progra m on the screen , you will 
see the "black hole" effect. A line of characters will 
scro ll up normally , hit the character line that is now a 



graphics 8 line , and disappear. It will be a group of 
dots. As the display scrolls up one more line , it will 
reappear out of that group of dots and something else 
will take its place . The dot pattern will shift a lso as the 
da ta on that line shifts. (Screen scrolling is ac
complished through rewriting display memory). This 
is completely consistent and normal. Display memory 
has not changed , only the way ANTIC interprets that 
memo ry. If we wanted to restore the di splay block to 
graphics 0, we would type: 

POKE 39984,2 (RETURN) 
to put the graphics 0 code back in. 

RESET will completely rewrite the di sp lay list and 
clea r out display memory. It is a good way to restore 
your display if you make a lot of mistakes . 

If yo u change all the graphics 0 opcodes to graphics 
8, your complete screen size will be 24 sca n lines, or 
just the top one eighth of the screen, and if you LIST a 
program, yo u will get a wildly shifting dot pattern 
where the characters used to be . You can use a FO R 
NEXT loop to modify all of the display list opcodes 
from 2s to 8s, and then back, for a yo-yo effect. 

If graphics 0 is opcode 2, and graphics 8 is opcode 
15 , what a re 3,4,5 ... 14'1 The Atari has 14 graphics 
modes, not the 9 that the Basic manual describes . A 
complete listing of graphics opcodes follows. It gives 
the display list opcodes, the Basic graphics number, 
whether it is a character or graphic mode, how high a 
display block it is in, the number of colors allowed, 
and the X and Y dimensions of the sc reen. 

Some of these modes are just va riations on other 
graphics modes . POKE them into the di splay li st to 
try them out. One mode has 10 sca n lines for letters, 
instead of 8. This one is for use with letters yo u would 
like to appear above or below the regular 8 scan lines, 
for things like exponents or subscripts . 

Instead of having ANTIC show the display memory, 
let 's have it show another part of memory. If we alter 
the address where ANTIC is told display memory's 
location, it will put whatever (proba bly garbage) it 
finds on the new location on the screen . We will 
choose an area of memory that is constantly changing 
all the time . This will make for an interes ting a nd 
ra pidl y changing display. Type NEW for a new pro
gram, then : 

I POKE 39972, I : POKE 39973 ,0 
RUN (RETURN) 

The reaso n I do these POKEs with a program is the 
instant either POKE is executed , the screen display 
will become illegible. What you will have is a rapidly 
fli ckering display reflecting low memory , where a lot 
of work is done. If you add: 

2 FOR N= I to 65000 
3 NEXT N 

and run it , yo u will watch the computer's memory as 
Basic executes from a neat ringside sea t. For those of 
you with a di splay list in a different place,just change 
the appropriate locations. You should have no trouble 
figuring out which they should be, if you have followed 
the examples to this point. 

25 

If yo u would like to see ANTIC become misaligned 
with where the lines ought to sta rt and end, try insert
ing a mode 2line in the middle of the display list. Since 
mode 2 uses only 20 bytes per line, the remaining 20 
will be picked up by the next graphics 0 line , and 
cause problems. Try it and watch the result. 

Here are a few hints on making your own display 
li sts a nd custom displays. 

S ta rt with a Basic di splay list longer than or equal to 
the length of the one you intend to have. It is very 
easy to shorten a display list. Just move the last in
st ruction up a few bytes . Your display memory will be 
a llocated by Basic this way, and you will avoid 
problems. 

Do not try to POKE too much data. POKE is pretty 
slow . Until you learn machine language it is best to 
use PRINT or other Bas ic commands as much as 
poss ible. 

If we were actually going to generate the graph in 
the example , we would start with a graphics 8 display 
list, move the jump instruction at the end up so we 
have the right number of display blocks , modify the 
block a ppropriately, then use POKEs for the titles and 
la bels. The regular graphics 8 PLOT and ORA WTO 
commands would work fine for actually drawing the 
graph, if we modify the display slightly. 

With our graphics 2 instruction at the start of the 
di splay list , we have misaligned memory with ANTIC. 
So move the display memory pointer back 20 bytes, 
a nd all will be well once again. 

Your best bet at thi s point is to experiment with 
yo ur own custom display lists and memory setups. The 
experience will be most helpful in later sections. 

We will continue with furth'er adventures in the 
di sp la y li st. Next we will describe all the ANTIC 
opcodes (we have listed only the graphics related ones 
so far), have some discussions on how to use them, 
a nd find out some more of the tricks the display list 
can acco mplish for us . This will help you design and 
implement displays faster a nd more effectively. 

We will also discuss display list interrupts. Some 
spectacular di splay generation programs are included 
in thi s section . 

Antic Code Basic G r. M ode Char/ Graphics DB lines Colors X Y 
2 0 Char 8 2 40 24 
J none Cha r 10 2 40 odd 
4 none Char 8 4 40 24 
5 none Char 16 4 40 12 
6 I Char M 5 40 12 
7 2 Char 16 S 20 12 
1\ J Graphic 8 4 40 24 
9 4 Graph ic 4 2 80 48 
10 S G raphic 4 4 80 48 
II 6 Graphic 2 2 160 96 
12 none Graphic I 2 160 192 
IJ 7 Graphic 2 4 160 96 
14 none Graphic I 4 160 192 
15 1\ Graphic I I 320 192 



Displa y List Ope odes 
There are three main groups of display list opcodes. 

There are also some modifiers which ma y be added to 
the bas ic opcodes, much like a sharp or fiat may be 
added to a musical note. Just as certain notes may not 
have a sharp or flat added, certain di splay list opcodes 
may not have certa in modifiers . 

Here are the groups: 

1. Blanking opcodes. 
When ANTIC encounters one of these, it generates 

a certain number of blank scan lines, in the color a nd 
luminance of the background or border. It does not 
look to display memory or do anything else , it just 
generates blank scan lines. From I to 8 blank scan lines 
can be generated by these opcodes. The blank lines , 
like a ny display block, extend fully across the screen 
hori zo ntally. 

Modifiers: Only a display list interrupt modifier 
may be added to blanking opcodes. 

2. Character/Graphics opcodes. 
When ANTIC encounters one of these , it fetches 

bytes from display memory, determines the graphics 
mode, and puts a display on the screen. A complete 
list of these opcodes is available in the previous 
chapter. 

Modifiers: Horizontal scroll, vertical scroll, load 
memory scan and a display list interrupt modifiers 
may be added to these opcodes. 

3. Two special codes. 
J M P is a JU M P for ANTIC. It tells ANTIC to con

tinue looking for instructions at a different address. 
It is equivalent to a GOTO in the display list. It is 
followed by the 16 bit address of the next opcode. 

JVB (Jump and wait for Vertical Blank) tells 
ANTIC to jump to the start of the display list , and wait 
for a new screen refresh to begin. It is followed by the 
16 bit address of a display list to execute when the next 
screen refresh begins . You've seen this before, at the 
end of the graphics 0 display list. 

Modifiers: Only a display list interrupt may be 
added to a jump opcode. 

4. Special instructions. 
JMP 01 hex (I decimal) 
JVB 41 hex (65 decimal) 

Modifiers: 
To add a modifier to a given opcode, just add the 

value given for that modifier to the base opcode, then 
use the total as the opcode. 

1. Horizontal Scrolling. 
This capability added to an instruction mea ns that 

the display block may be horizontally scrolled. Add 
10 hex or 16 deci mal. 

2. Vertical Scrolling. 
This capability allows smooth vertical sc rolling. 

Add 20 hex or 32 decimal. 

3. Load Memory Scan. 
(A 3 byte instruction is implied if you use thi s 

modifier.) This tells ANTIC where to find display 
memory , and resets ANTIC's pointer to the locat ion , 

26 

losing the current display memory pointer location. 
Add 40 he x or 64 decimal to the opcode. 

4. Display List Interrupt. 
The exec ution of this instruction causes ANTIC to 

force the 6502 to generate an interrupt. The inte rrupt 
service routine will be at the address pointed to by 
memory locatio ns 200, 201 hex (512, 513 decimal). 

mank Lines 

Number I.)f blank scan lines 
I 
2 
J 
4 
S 
(, 

7 

Characler I Graphics Modes 

BiJsil: G raphics Mode 
(if any J 

0 

J 
4 
5 
6 

Special InslruClions 
JMI' 0 1 hex 101 01 
JVB 4 1 hex 165 01 

VeniL'a\ 
Size 

H 
10 
H 
16 
~ 
16 
~ 
4 
4 

Hex upcode 
UO 
10 
20 
.10 
40 
50 
60 
70 

Hurizonl<.l\ Colurs 
Size.! 

R ill 
H 121 
H 4 
H 4 
16 
16 
H 4 
4 2 
4 4 

2 

4 
4 
2 

Decimal opL'ude 
uo 
In 
12 
4~ 

64 
HO 
% 
11 2 

riraphks/ Hex Decimal 
C haracter 

C 02 2 
C OJ .I 
C 04 4 
C OS 
C On 
C 07 
G OH 
G 09 <) 

G OA 10 
G 08 II 
G DC 12 
G 00 iJ 
G OE 14 
G OF 15 



We have cove red "playfield graphics" (or graphics 
generated by the display list) , ANTIC, and CTIA 
hardwa re in some depth. You now know how to 
generate some amazing graphics . 

There is much information to present he re. We will 
give lot s of examples and ideas for their use to help 
you und ers tand . The ANTIC opcodes a llow yo u to 
mi x grap hics modes, to program di splay memory for 
mixed modes, and to format di splay memory. 

In the next section, we will cover di splay list in
terrupt s a nd co lor ha ndling in deta il as a method for 
ac hieving 128 colors on the screen a t the same time. 
The actua l goal (the 128 shades of color) is not nearly 

Notes & Discussion 
I . Ho ri zo ntal and vertical scrolling are good additions 
to gra phics capabilities. They make displays easier 
and provide some effects that would be almost im
poss ibl e to generate otherwise. 

Scro lling is causing the display to a ppea r to "roll 
by", so that when an object on the disp lay comes into 
view, it moves across the screen and di sa ppears on the 
other end . (The Atari coin-op games where yo u fl y 
over e nemy terrain, bombing targets that roll by 
und ernea th yo u, is an example of scrolling. These 
games could be implemented on the 400 / 800 using 
sc rolling techniques.) 

In orde r to have a display scroll , we must first send 
it to the screen in unmoved format, then move it , then 
se nd it again. This will cause the display to shift once. 
Repeated ly doing this causes a scrolling effect. All our 
displays, ge ne rated by ANTIC and CTIA, are stored 
in memory and sent to the display sixty times a second. 
So wha t we ha ve to do is change display memory in 
such a way that it will cause the display on the sc ree n to 
scro ll. 

If the di sp lay memory is changed so that all in
formation in it is copied 40 bytes up , in graphics 0, 
then on the next refres h the former top line will be re
placed by the information from the line below it. 
(Lines are 40 bytes long, remember.) You have seen 
thi s effect when the Atari scrolls so met hing up off the 
screen, as happens during a long li st ing. If we were to 
move the data in the displa y memory upjust one byte , 
the sc reen would scroll to the left, for the contents of 
the second byte would now be dis played in the first 
byte'S sc ree n pos ition, and so on down the screen. 
See Figu re 12. 

This is a good way to do sc rolling if you are working 
in assemb ly lang uage. The amo unt of data tha t must 
be moved, howeve r, (960 bytes in g ra phics 0) is so 
large tha t it becomes imp oss ible for Basic to do thejob 

27 

as important as the method beind it , but without the 
e nd point to work towards , the information presented 
is not useful or functional. By the end of the section, 
you will be able to generate the 128 color display and 
yo u will also have a good idea of how the Atari handles 
color. 

After we cover display list interrupts, we will 
exa min e Player-Missile graphics. This is a 
se parate graphics generation system that is in
dependent of display lists and other special graphics 
feat ures of the Atari. Player-Missile graphics allow 
high speed animation. 

s~'ro;>"o, '"'0" -:' R~~ 
A Memory ( 
D 
Y 

A f ter Memory Rewrite_~_~_ 

EADY Start _______ --<eo~ 

~
E Display 

D Memory 
'r 

Figure 12. 

quickly enough. There is a way , however, to do scroll
ing from Basic without moving a large block of 
memory. Instead of having ANTIC look at the same 
place in memory for display memory data and moving 
that data around, let'sjust change where ANTIC looks 
and leave memory alone (see Figure 13). The Atari 
does hot have a fixed unchangeable location in 
memory for display memory, unlike other machines. 
We can change where ANTIC looks for data with 
two POKEs. 

Fo r example, if we were to tell ANTIC that screen 
memory started one byte down from where it really 
did , ANTIC would skip the first real byte of screen 
memory, and the screen would seem to scroll to the 
left. ANT IC would not know the difference, yet the 
sc reen would have horizontally scrolled. If we were to 
te ll ANTIC the screen memory starts 40 bytes down 
from where it really does, the screen will scroll up. 



Notes & Discussion 

Before Memory Rewrite~ ___ _ 

Start ________________ ~~ 

~~ Display 

o Memory 
y 

Start 

A fter Memory Rewr i t.-=e:--____ ~ 

EAOY 

~
E P;-;;t;;';'- &>1 

A Display 
o Memo;-y 
y 

Figure 13. 

You can obtain some good demonstrations this way. 
Try program 5 to scroll the screen horizontally , 
program 6 to scroll it vertically, and program 7 to 
scroll it both ways. All these programs do is change 
the pointer ANTIC uses to find display memory. They 
are a good deal of fun to leave running in a computer 
store somewhere. 

All this gives us is coarse horizontal / vertical scroll
ing. When we rewrite display memory, we shift 
characters 8 dots or 8 scan lines (in graphics 0) . This is 
a long way to shift things on the screen, and we do not 
get smooth motion. The Atari computer has the 
ability to smooth out this scrolling process. You can 
shift the display the number of "fine" dots or lines you 
need to span the distance between coarse movements 
smoothly, a dot or a line at a time. You cannot scroll 
more than the distance between one coarse scroll using 
the fine scroll machinery. Compare it to the fine tuning 
on a television set; you cannot change channels with 
the control, but you can smooth out the gaps between 
channels. Fine scrolling is limited to 0-7 dotsflines in 
graphics 0 or 0-16 dots/lines in graphics 2. 

On the Atari scrolling is only a positive value. You 
cannot scroll something down using the scrolling 
hardware; you must start with it scrolled fully up and 
then scroll it "less upwards" to achieve a downward 
effect. How much you wish to display scrolled is 
written into a certain memory location. 

In order to make a smoothly scrolling vertical dis
play, we would need to select our "coarse" vertical 
position with the display memory and ANTIC pointer, 
then select how many "fine" scan lines to scro ll up 
from that position using the scroll register. Presum
ably we would increment the scroll register slowly 
from 0 to 7, moving the display up . When we reached 
7, we would rewrite display memory or change 

28 

20 START=PEEK(560)+256*PEEKC561) 
30 REM ANTIC DISPLAY HEMORY POINTER 
10 ~EM IS AT START+1 AND START+5 
50 REM 
100 X=PEEKCSTART+1)+256*PEEKCSTART+5) 
110 PRINT "START OF OISP HEMORY=";X 
200 FOR Y=X TO X+80 
20:5 PRINT "POINTER=";Y 
210 REM SPLIT Y UP INTO TWO BYTES 
220 YHI=INTCY/256) 
230 YLO=Y-CYHI*256) 
2~O POKE START+~.YLOlPOKE START+5.YHI 
250 FOR DELAY=l TO 20lNEXT DELAY 
260 REM 
270 NEXT Y 

Program 5. 

20 START =PEEKC5 6~)+256*P~EKC56 1 ) 

30 REM ANTIC DISPLAY HEMORY POINT ER 
10 REM IS AT START+1 AND START+5 
50 f,EH 
100 X=PEEKCSTART+1)+256*PEEKCSTART+5) 
110 PRINT "START OF DISP MEMOR Y=" ; X 
130 REM 
110 REH SCROLL UP 
200 FOR Y=X TO X+C 10*20) STEP 10 
210 GOSUE: 1000 
260 REM 
270 NE XT Y 
500 REM SCROLL DOWN 
510 FOR Y=X+C10*20) TO X STEP - 10 
520 GOSUI:: 1000 
530 NE XT Y 
550 REM 
600 REM SCROLL LEFT 
610 FOR Y=X TO X+10 
620 GOSUE: 1000 
630 NEXT Y 
610 REH SCROLL RIGHT 
650 FOR Y=X+10 TO X STEP - 1 
660 GOSUE: 1000 
670 NEXT Y 
680 GOTO 110 
990 REH CALCULATE HI. LOW BYTES 
1000 YHI=INTCY/256) 
1010 YLO=Y-CYHI*256) 
1030 POKE START+1.YLO:POKE START+5,YHI 
1010 F(ETURN 

Program 6. 

20 START=PEEK(560)+256*PEEKC561) 
30 REM ANTIC DISPLAY MEMORY POINTER 
10 REM IS AT START+1 AND START+5 
50 f,EM 
100 X=P EEKC STAR T+1)+256*PEEKCSTART+5) 
110 PRINT "STAFn OF DISP MEMORY="; X 
130 REM 
110 REM SCROLL UP 
200 FOR Y=X TO X+C10*20) STEP 10 
21 0 GOSUE: 1 000 
260 REM 
270 NEXT Y 
500 REM SCROLL DOWN 
510 FOR Y=X+C10*20) TO X STEP -10 
520 GOSUE: 1000 
530 NEXT Y 
510 GOTO 110 
550 REM 
990 REM CALCULATE HI, LOW BYTES 
1000 YHI=INTCY/256) 
1010 YLO=Y-(YHI*256) 
1030 POKE START+1,YLO:POKE START+5,YHI 
1010 f,ETURN 

Program 7. 



ANTIC's pointer to get the eighth and final line. Then 
we would start over, incrementing our vertical scroll 
from 0 to 7, and continue until we were done. A down
ward scroll is not very different. Just move the scroll 
register from 7 to 0 and then rewrite memory. 

The display list entry for a given display block must 
be modified to allow scrolling. If you write something 
to the scroll register, but do not change the display list, 
nothing happens. 

Some details on how fine scrolling 
is implemented. 

ANTIC normally displays a fixed number of scan 
lines per display block. For example, in graphics 0, it 
displays 8 scan lines. When we vertically scroll, 
ANTIC does not do this anymore. When ANTIC en
counters the beginning of a "scrolled zone ", a group of 
display list opcodes with vertical scroll modifiers, it 
treats the beginning and the end of the scrolled zone 
differently than it normally would to achieve the 
scrolling effect. 

When ANTIC finds the first scroll marked display 
block, it does not display the normal number of scan 
lines for that block. It only displays the bottom "slices" 
of that display block, the exact number is determined 
by what is in the scroll register you have written to. 
Because the top display block is shortened, the display 
below that point moves up. For example, if there is a 
4 in the scroll register, only scan lines 4,5,6 and 7 of the 
display block are shown, which are the lower slices of 
a character. 

The display blocks in the middle of the scrolled zone 
(the ones with their vertical scroll modifiers set) are 
displayed normally, although their position is shifted 
up as a result of the first one having a short display 
block. When ANTIC reaches the end of the scrolled 
zone, it displays only the top few lines of the display 
block. If the scroll register had a 4 in it, ANTIC would 
only display lines 0, I, 2, and 3; the top half of the 
characters. ,This is necessary to make the total number 
of scan lines in the scrolled area be the same. If the 
total should change, the display below the scrolled 
area would shift up and down with the scrolling, and it 
would not be limited to the zone indicated by the dis
play list. Since the top and bottom blocks of the scroll 
area always have a total displayed amount of one dis
play block, we get a fixed size scrolled zone, even 
though the displayed data varies . Also note that you 
"lose" one display block height, because the total of 
the two outer display blocks is now one display block 
height. 

This is a strange way of doing things , but very 
effective. If you run program 8, you will see vertical 
scrolling in action. This program writes two separate 
vertical scrolled zones into the display list, then scrolls 
them using the register. When you run the program, 
you will note the size of the display shrinks by two dis
play blocks. These are the "lost" scrolled display 

29 

5 VSCFWL.L.='5'1277 
10 START=PEEK(560)+256*PEEK(561) 
20 REM *** PUT SOME DATA ONSCREEN. 
,10 GF(AF'HICS 0 
35 FOR T=l TO 2'1 
36 PRINT "THIf, H; LINE t"; T 
,17 NEXT T 
'10 REM *** AL.TER DISPLAY L.IST TO V 
'15 REM *** IN TWO AREAS. 2 + 32 = 3'1 
60 FOR Y=START+l0 TO START+13 
70 PQf(E Y,3'1 
80 NEXT Y 
81 FOR Y=START+17 TO START+20 
82 PQf(E Y,3'1 
EI3 NEXT Y 
8'1 REM *** SCROL.L. UP 
90 FOR Y=O HI 7 
100 POKE VSCROL.L.,Y 
10:i GOSUE: 200 
110 NEXT Y 
115 REM *** SCROL.L DOWN 
120 FOR Y=7 TO 0 STEP - 1 
130 POKE VSCROLL.,Y 
135 GOSI.H:: 200 
1'10 NEXT Y 
150 GOTD '/0 
160 REM *** SHORT DELAY LOaF' 
200 FOR T=1 TO 50iNEXT T 
210 RETURN 

Program 8. 

blocks. Note how the scrolled letters seem to disappear 
behind the fixed letters. They are not really dis
appearing, they are just not being plotted. (Figure 14). 

Scroll Registers 

Name Address 

Hex Decimal 

Vertical Scroll D405 
Horizontal Scroll D404 

57239 
57238 

Scrolling Up Vertically 

(normal) 1 Scroll Register. H 
(nonnal) LINE 2 
(seroll) LINE 3 All of LINE 3 is displayed 
(scroll) LINE 4 

(serol I) LINE 5 None of LINE 6 is di5played 
(normal) LIr£ 7 
(normal) LINE B 

(normal) LINE 1 Scro ll Regi5t~r ~ 3 

~~~;e;-~ ! LIIIE 2 
L....I..I_ ..J Part of LIIIE 3 is displayed

(5croll) LII\E 4

("croll) LIIIE 5
(....... _ .. 11' I TII.IC" I:

(normal) LIi'E 7 Part of LINE 6 is di5played

(normal) LINE B

LII\E 1 Scroll Register ~ 7
LINE 2
LINE 4 None of LINE 3 is displayed
LIIIE 5
LINE 6 All of LINE 6 is displayed
LINE 7
LIIIE B

Figure 14.

Notes & Discussion

2. Load Memory Scan (LMS)
This introduction is nice to know about when you

are starting out and is essential later on when you start
creating complex displays.

When ANTIC first learns where displa y memory is,
it takes the 16 bit memory address and stores it in an
internal (ANTIC) register. When it would like some
data from display memory , perhaps 40 bytes of
character data for a line of graphics mod e 0, ANTIC
looks to this register to find out the current line of dis
play memory. ANTIC fetches the byte at that location.
It then increments this register by one each time it
gets a byte to point at a new byte.

It is tricky, because this internal register is really
only 12 bits long. The other 4 bits are latches which
cannot count. That means that as ANTIC goes along,
if it should hit a 4K boundary in absolute memory (a
1000 hex address point),it will start all over again at
the beginning of the previous 4K section of memory.
This problem causes extreme frustration , eve n at
Atari. It is quite difficult to diagnose as it resembles
other problems . It is also very commonplace. Do not
let your di splay memory cross a 4K boundary without
resetting the display memory register with the load
memory scan (LMS) opcode modifier. Place the 16 bit
value of the next display memory in the two following
bytes , low byte first , then high byte. You ha ve seen this
instruction before. It is the 66 a t the beginning of the
graphics 0 display list we printed . The 66 is a 20pcode
(a graphics 0 instruction) , with a 64, the LMS
modifier, added to it. If you actually counted the 2's
in the previous example, you would find only 23 2's;
the 24th display block is taken care of by the "hidden"
2 in the 66 instruction.

This instruction also accounts for some of the
graphics 8 display list instructions. Graphics 8 uses
7680 bytes of display memory. That is more than 4K

Basic and Color

(4096 bytes). The graphics 8 di splay list must ha ve two
or more LMS instructions to reset the memory address
regi ster inside ANTIC.

The di splay list itself cannot cross a I K boundary
for s imilar reasons. ANTIC's pointer to di sp lay
memo ry is 16 bits long, but the top 6 bits are la tches
only; they cannot count. You must use the JMP
ANTIC instruction to pass a I K boundary in the
display list. If yo u start getting bizarre display list
results , check this. Follow the JM P instruction with
the 16 bit address to continue executing the display li st.

3. Display List Interrupts
Setting this bit in an ANTIC opcode (modifiers are

nothing but top bits set in the opcodes) will cause the
following actions:

I. A "memory" location on the ANTIC chip is
checked. If the top bit is not set, the interrupt bit is
ignored.

2. If it is set, ANTIC completes the display block
where it found the interrupt, up until the beginning of
the last line of the block .

3. The 6502 receives a "non-maskable inter rupt"
(very high priority) and is sent to the memory location
whose add ress is written into 200 and 20 I hex
(512,513 decimal). At the memory location whose
address you POKEd into 200, 201 Hex you s hould
have an interrupt service routine which eventually
returns the 6502 to what it was doing.

Display list interrupts are incredibly powerful tools
to use in your display 's construction. If we needed to
get a large number of colors on the screen at the same
time, we could use a display list interrupt to specify a
color change to occur between two displa y blocks.
When plotting the screen, every sixti eth of a seco nd,
the Atari would change a color register (and a plotted
color) in mid-refre sh. Using this capability req uires
knowledge of a 6502 assembler language.

(Background for Display List Interrupts)

The Atari was designed to be able to create a wide
variety of TV displays . The designers knew that many
new applications would be thought of long after the
hardware was produced , and thus made everything as
open ended and flexible as poss ible .

Let's discuss how the Atari handles color, under
stand why there is a five color limit , and then get
around this limit by using so me of the fle xib ility de
signed into this machine. One de monstration program
included in the next section will show 128 s hades of
color on the same screen. We will give you the tools
needed to generate your own custom di sp lays with as

30

ma ny colors as you like, and also provide a demonstra
tion program called "Sunset ", a multicolor disp lay that
will help to slow sales of Apples at your local com
puter shop.

Why five colors'! When the designers of the Atari
worked out the details of its color handling, they
dec id ed on a technqiue which would give the user as
much fle x ibility as possible, rather than locking him
into just one method. They had the examp le of the
Apple, and how it handled colors, to examine a nd
improve upon. They decided the Apple approach was
not fle x ible enough , and came up with their own.

Insid e the Atari is stored a copy of what is currently

going on the TV screen. This is called " displa y
memory". For a give n point on the screen, or a group
of points, some way of determining the color to be
used when plotting must be stored in this memory. In
the Apple the co lor of the point(s) is stored directly . In
the Atari, the color information is stored in a "color
regi ster". When in di splay memory , the color of a
point is specified, and a co lor register number is
stored rather than the actual color code.

To plot a red point , one tells the display memory
that this point will be plotted in the color and bright
ness stored in color register I , then one puts color red
at some brightness into that color register (see
Figure 15) .

D!3play Memory of
(lr'!.t five dot~:

US"!: Color Use Cclor Use Color U~e C.:>lor Use Color
Register ReS'15t-er Regl5ter Reilster Reg l 3 ter -I 2 I • 3

~~ I I I
ANTIC Anti>': f etches dl5p l ay data and f eeds

, t t..:. the CTIA chip .

CTJA

CI'"Jlc·r Reg . S
Cvlc-r Reg , I

3=n
Co l o r Re:-t , 2

~
Co i <:·r Reg . 3
C::· \ or Reg . •

CTIA p l ots the
P'=,lnts USllli: the
c'Ol .. :lI"s In the
'.:·,:,]or r egl5ters .

Figure 15.

=n-t--:,
11

T here are five ava il a ble co lor registers, numbered 0
through 4 . Color register 4 is also known as the
"background co lor register". It specifies the color and
intensity for a ny place o n the screen where nothing
e lse is written. (In graphics modes 3 to 7, this means
the color of the area between any plotted pixels. In
mode 0, it means the area around the character display
field , the border area, not the color behind char
acters .)

Th is approach may seem more complex than neces
sary, but it has adva ntages. It saves memory, as only
two bits at most are required to specify the co lor ofa
pixel in the display memory. It a dd s flexibility. A ll
we have to do to change the co lor of every point on
the screen using the same co lor register is modify that
register, which can be done with one PO K E sta tement.
To turn the entire screen red , then black , ("RED
ALERT"), we merely need to POKE statements. In a
machine without the Atari's sop histication , massive
and slow rewrites of display memory wou ld be re
quired .

Co lor registers a re one byte long. The upper four
bits determine the color (0-15) , the lower f ou r specify
the brightness . Only the top three of the four bright-

31

ness bits are used, so there are eight levels of bright
ness, and 16 co lors, or 128 total shades of color. Note
that in this register, values 0-15 are color #0 in different
intensities, 16-31 are color I, and so on. If we just
cou nt this register upwards, we will pass through a ll
16 co lors, each increas ing in intensity to the highest
level before moving on to the next color. If you wi ll
run program 9, you will see the screen counted
through a ll the different shades . The table below li sts
the different colors.

20 REt1 ~L POSSIBLE COLORS .
25 POKE 709, 14 :REM SHADOW REGISTER
30 FOR C=0 TO 255 STEP 2
4e POKE 710.,C :REM ~ REGISTER
50 F'F.~Hn II COL OF: REG I STER=" j C
60 FOR OELA,"!'=l TO l00:HEXT lE..~y
70 ~~)(T C

Program 9.

Value
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Color
Grey
Gold or Light Orange
Orange
Red-Orange
Pink
Blue
Purple-Blue
Blue
Blue
Light Blue
Turquoise
Green-Blue
Green
Y e llow-G reen
Orange-Green
Light Orange

Color Register Va lues (as
stored in upper 4 bits a/" color
register).

How Basic Handles Colors
Up in high memory there is some memory which is

not read-write, regu lar o ld RAM. When one writes or
reads from these locations, one is communicating with
other chips in the Atari which help support th e 6502
(Figure (6). One chip , called CTlA, handles colors
and graphics generation. There are five locations
("hardware color register addresses"), which are the
five color registers. Now CTIA looks at these registers
to find out the color needed whenever it plots a given
character or point. During the refresh process of up
dating the scree n, it looks at the registers many times ,
fetching the colors for displayed data.

Basic & Color

908.0 DOS tab l es . OS

First 16K
n:emory
b 0ard

Second 16K
t1-emory

B·;:.a,rd

8 0'88
\ .'2 Th i r d 16K

tl-emor:.J

Ek>a,rd

1/ 2 Third 16K

tl~m0ry

6 ';:.ard
CB 0' B"

tab le!!> .
Th is sect l 'on

6592 ~ l-ea . .,r memory is
a l waY5 RAt1

Ba:5ic stor age ; moves (rea.d - wr l te) .
into' f ree memory as
pr·.:-gl-arr, g r ows . 1ft he u ser hasn't

I nst.:l I I ed a secQf'",a

Fr-ee Nemo r . 16K board, 490'0 -
8 .0'.0'0 9 d0 not e:· i 3 t

D15P i a List. dnd the DL / DI'l trio \'-=

D1SP l 03Y Memcl-y .

I f the user has a
ThiS a r ea is RAM £!: th lf' ·-j 16~< bvard, the
rll~:ht S i de carb- i dge , A t a l' I Wi l l u s e I t as

I f i nsta lled. RAr1 (mov ing dOl'll) DL
Th i S a ,'e is RAM Qr: OM) '..!nl~~~ a ca.rt-
left S ide cart ridge , ridge I S plugeed I n.
I f I nsta ll ed 1,ll k e I f S·') , t h e meff'lr,·r y 15
BASI C or ASSEMBLER) . t hen P(IM (rea.d ,,:,n l y)

D0'Se eTIA CHIP 3:f
caeS-OJlSS are unused .

Th~~~ addresses a r -=
n.:.t memorv but
"t he:r At.3r l chq.: $.

D200 POKEY CHIP
030 . ~PIA CH I P
D 4se ~ ANTI C CH IP
E02 8 L Op~ra t I ng System
FFFF Ror1 ca f-t r idge.

ThiS 1 5 all ROIl
(rea,d -oni ,:.') .

A tar"i Memory Layout and Support Chips.

Figure /6.

The operating system also maintains five "shadow
registers". These are normal RAM memory locations.
At the beginning of each screen refresh , these five color
shadow registers are copied into the corresponding
five hardware locations. Basic deals with these
shadow registers .

One reason for maintaining these shadows is that
the CTIA color register locations are "write only". One
cannot read out of those locations where the color
was just written in . They are not memory locations;
they are chips , which we write to by POKEing sim
ulated memory locations. If we wanted to read a color
register and we did not have it stored somewhere (in a
shadow register), we could not. Being able to read
registers is handy, for example, in rotating a color
from one register to the next; you use the shadow
registers for this.

Basic's SETCOLOR (color reg #), (col #), (lum #)
takes : (16 X color #) + lum and POKEs that value into
the shadow register. One sixtieth of a second later, at
the beginning of a screen refresh , the operating system
copies this value into the CTIA hardware color
registers and that chip then begins using it to plot data
on the screen. A direct POKE to the operating system
shadow locations is equivalent to a setcolor. For
example: SETCOLOR 2,4,10 is the same as POKE
710,(4* 16)+ 10.

The designers of Basic also had to come up with
some way for the user to specify what color a given
point or character should be. For this they have the
COLOR (#) statement. It specifies which color register
to use when plotting data, and remains in effect until
the next COLOR statement.

The argument , or number, is not a color register
number. The designers of Basic tried to keep the user
away from bits and bytes discussions. The COLOR
argument at first appears random.

32

The argument of the COLOR statement is the data
that is written into display memory to specify colors.
The Atari has 2 and 4 color graphics modes , using I
or 2 bits to specify color register. For example,
COLOR 0 is usually background because a 00 written
into display memory plots nothing, therefore forcing
the background color to appear there .

No /e: SETCOLOR (n), color, !um always se/s color
regis /er n. The color regis/et" number given is
equivalenl /0 /he SETCOLOR regis/er number.

In character modes (0, 1,2) more than I or 2 bits are
written into display memory. The COLOR argument
is actually the character byte written in memory.

Now you understand the five color limit , for there
are only five color registers.

More than Five?
A refresh on the TV screen occurs sixty times per

second. The electron beam starts at the upper left
hand corner, goes all the way right for one scan line,
then does the next line down left to right , and so on.
CTIA is responsible for feeding data to the TV in
synchronization with this scan . For every dot plotted
up on the screen, CTIA looks again to its hardware
color registers to find the color.

N ow while a screen refresh is very fast to us , it is not
especially fast compared to the speed of the 6502 pro
cessor. We must not think of a screen refresh being an
instantaneous event, we must think in terms of how
long the 6502 sees it taking, which is roughly an Ice
Age or so.

If we could change a color register that CTIA was
using halfway through a screen refresh, the screen
below that point would reflect CTIA using the new
colors. For example, if we were in graphics 7 and
modified the background hardware register halfway
though a refresh from green to blue, the screen will
shift from green to blue in the middle of the TV frame
for all those background points (see Figure 17).

Hardware Registers (CTIA)
0016 (53270)
001 7 (5327 1)
001R (53272)
0019 (53273)
OOIA (53274)

O.S. Locations (Shadows)

2C4 (708) PFO
2C5 (709) PF I
2C6 (7 10) PF2
2C7 (711) PF3
2C8 (712) PF4(BAC K)

Color Regislers .

If we were to put Basic to work changing the color
register as fast as it could (i .e. FO R R=O to 255: PO K E
53274,R : NEXT R) we would find that Basic would
not be able to get more than one change in each frame .
This is because Basic is so slow in execution , and this
is why only five colors can be shown at one time if we
use Basic. The five colors do not include players and
missiles, which can have independent colors.

Basic needs high speed help to assi st in getting a
demanding job done. We have to use machine
language.

Machine Language
Machine language, the human eq uiva lent of which

is called assembly language, is a n art few peop le
reall y love. The Atari wil l execute mac hine la nguage
instructions in times measured in the milli on ths of a
second. Machine code is hard to unde rsta nd , a pain to
debug, a nd ge nerally has ot her a nnoy ing character
istics, which is why "high leve l" languages such as
Basic were deve loped in the first place.

We will provide an assembly ro utine that is easy to
load and use from Basic. The routine will ha ndle the
de mands of the 6502 so yo u d o not have to wor ry
abo ut them. By setting up various ta bles, aga in from
Bas ic, in a fairly easy way, you can have as many colors
o n the scree n as you like, al l with o ut worrying a bout
assembly , exec ution speeds , timing, a nd so on.

Display List Interrupts

T he Ata ri co mputers really have two processors.
One is called ANTIC and the other is the regular 6502.
ANT IC has it s own spec ial language and is devo ted to
di splay work. ANT IC works with "display block s".
A display bl ock is a g rou p of hori zo nta l scan lines, a ll
in the sa me di splay mode. Think of it as a long thin
ho ri zo nta l bar, 8 scan lines high in graphics 0, 16 scan
lines in g raphics 2, and I scan line in graphics 8. The
he ight is determined by the size of plotted data in the
particula r m ode. Atari di splays a re composed of
stacked di splay blocks. There are 24 stacked blocks in
gra phics 0, which means 24 lines of tex t , and 96
stacked bl ocks in graphics 7.

Previous sections have shown how to modify the
program ANTIC uses , called a " di spla y list", to
ac hieve mi xed g raphics modes a nd other effects , such
as scro lling. There is one change to the display list we
have not yet covered, because of its co mplex ity and
the req uirement of using assemb ly language . The
remaining to pic is the disp lay list inter rupt. In
assembly la ng uage, a display list interrupt is g ive n the
labe l DLI.

A display li st interrupt is es ta blished by setting the
top bit of a di splay list instructio n. (To Bas ic pro
gra mmers , this means to add 128 to the instructio n.)
For exa mple, a graphics 0 instruction with a DLI
added is (2 + 128) , or 130. Any di splay li st instructi o n
ca n have a n interrupt added.

ANTIC finds the top bit of the instructi o n se t (128
ad ded). It goes ahead and co mpletes the current in-

33

Graphics Mode Color Register COLOR(~ I
Cha racter Modes

o 0 - Unused Not used in
I - C harac ter 1um only graphics sense.
2 - Char backgnd color/ lum
J - Unused
4 - Border co l/ lwn COLOR FI- Values.

1.2 0 - 3: C haracter NOI used in
4 - backgnd/ border graphics s~nsc.

Graphics Mode.~
4.6: One Bi! 0: Poin! color/ lum COLOR I

1. 2. J: Unu"ed
4: Backgnd COLOR 0

.1 . .s. 7: Two Bil 0: Point color/ lum COLOR 1
I: Point color/ lum COLOR 2

Notes:
SETCOLOR (0). colo r. lum always sets colo r registe r n.

Hence . Iht! color rcgista nu mber givcll is cquva lent 10 the
SETCOLOR register number.

In (; h aptt~ r m:;ck s {O. 1. 21 illure (hun 1 ur 2 hil S an.: wrill c il
into display memory. H ence the COLOR arguml!lIt is actually
the charu c: ter byte written in memol) ' .

Figure 17.

s tructi o n or display block until the las t scan line. At
the beginning of the las t sca n line, ANTlC turns a nd
te ll s the 6502 to process the request immediately .

The 6502 looks at loca tions 512 a nd 513 in memory.
In these it finds 16 bits of address (stored in low byte,
hig h byte format, for you advanced coders) . The 6502
jumps to that address . A POK E to an ANTIC location
is required to enab le this so rt of interrupt before the
6502 will be bothered .

At the location whose address we put in 512 a nd
513 we must have an asse mbly la nguage routine
wa iting to "service the interrupt", or make the 6502
do whatever it is we want the computer to do. At the
end of this routine, we send the 6502 back to its
o ri gina l tas k with a n RTI (return from interrupt) in
structio n (see Figure 18) .

This is probably a new concept to Basic pro
grammers. The best Basic ana logy is the TRAP state
ment. TRAP specifies a line number to go to if there is
a n erro r, just as 512 a nd 513 spec ify where to go if
the re is an interrupt. Pres umably, a t that line number
yo u have written a routine to ha ndle e rrors. This is the
equ iva le nt of the inte rrupt se rvice routine. You never
know w here an error might hap pen when yo u are
executing yo ur Basic code, just as you neve r know
whe n a n interrupt will occur.

T he development of an assem bly language routine
that will be as fl ex ible a nd easy to use as possible,
yet run on any memory size Atari, is quite a task .

Display List Interrupts

11e mor y
Addr ess

512 • 51?

B Da t a
1530' .0 a 6 5 0'2

~ Instr.

Pa rt 1 o f 3 . ANTIC and
the 6502 are both n'~, '~ma.l1 ~.1

proc~55 lng away . The 6Sfi!2
is e x e c u t ing 5a .sic at the
moment a nd ANT IC i s ml dwd)-'

through the: disp l ay J 1St, in
the midd l e o f a s creen r e fresh .

3gggg 0 ANTI C TV
L ,

~ ANTI C di scovers a di ~p l ay 1 i st
32766 M interrupt i n i t s c ur r ent

ins t r uc ti o n . I t compl ~t e5 t hat
disp l ay b l ock unt i I the

,'remor :;)
Addr ess

5 12) 5 1

12 e B.@"

B
15J!Jgg a

::s Ins t: r . bD-9. t a

3aaM 0
L

o
.32 7 6 8 M

Hernor',)
Address

512 , 51

123HZ

B Dat""

CD

(t a p,
t ap)

15.00.0 a ~---<>I 65B 2

c

30 000 0
L

32 763 M

I ns"t r.

l ast scan line .

Part 2: o f 3 .

1. AhlTIC I nter)"upts the 650' 2 .

2. The 65.02 l ook s t e. 5 12 . 5 13
find a loca ti o n.

J . it beg i ns e'}(ecut l ng a t that
l ocat 1011.

TV

Part 3 o f 3 .

The 650" 2 ',:omp letes i t s
r out i ne up at 123fJB a nd
ret u.rns to exec ut i n li Ba s i c .

ANTIC, sat i s fi ed, get s o ff
the 650' 2 ' So ca..se .

TV

Figure 18, Display List Interrupt Processing.

Details, Details
The assembly routines must be able to fit an ywhere

in memory, since the memory size on different com
puters varies, as does program size. We've placed the
entire routine into a string (PR$) , and we will let the
Atari decide where to put it.

A string is a collection of characters , fr eq uently
letters , numbers , and punctuation. Inside the machine

34

PR$ Storage Area
Basic Sees: The 6502 sees:

12

97

23
34

PR$ (I) 72 PHA instruc tion
PR$ (2) 138 TXA instruc tion
PR$ (3) 72 PHA instructi on
PR$ (4) 152 TYA ins b-uct ion
PR$ (5) 72 PHA instructi o n
PR$ (6) 172 and 5 0 forth

23
56
43
15

32

86
255
121

132

Figure 19. Storing an assembly program as a string.

all those characters are stored as bytes of memory, one
per character. An assembly routine is also a collection
of bytes. Since the Atari stores a string as a group of
bytes , one at a time , in memory, we could make the
string's characters (bytes) be the same as our assem bly
routine , and store the program in the string (see
Figure 19).

The Basic sub-routine to be provided reads the
bytes of the assembly program into the string, one at
a time. The CH R$ function takes the contents of the
argument and direct ly stores it into the string, which
is just what we want since we do not care about the
actual characters. After the routine sets up the string,
it links our table of colors to the program, enables dis
play list interrupts, and returns.

The method for specifying colors is to build a table
of them, five at a time (for the 5 color registers). Each
time there is a display list interrupt , starting at the
top of the table, the next fivecolorsarecopied into the
hardware registers by the serv ice program (in PR$).
The idea is that the first display list interrupt causes
the first five bytes of the table to be copied into the
hardware registers , caus ing the colors of CTIA to
change at that point. The next display list int errupt
causes the second group offive color bytes to be copied
into the hardware registers, again changing the colors ,
further down the screen. By setting interrupts and
modifying the display list from Basic, you can change
colors any time you like from one displa y block to th e
nex t. This lets you get a s many colors on the screen
a s you want , oriented towards display blocks (see
Figure 20) :

COL$ Storag~
5 6 CTIA

COL$ (1)

COL$ (2)

:J
COL$ (3) a
COL$ (4)
COL$ (5)
COL$ (6) 36
COL$ (7) 11 2
COL$ (e) 134
COL$ (9) 16 9
COL$ (t a) 3 4
COL$ (t t) 0
COL$ (1 2) 255

236

At th~ s tart o f t he refresh, the 6 53'2 is int e r rupted.
The r o uti ne , r e a l izing it's the s t a rt o f a r efres h , start s
at the t op o f the COL$ t abl e and copies f i ve c o l ors
t o t he e TIA reg isters, loJhere t he~' a r e used f o r pl o tting .

Figure 20. COL $ Multip le Co lor Interrupt Handling .

How shal l we set up the table'? Let's use another
string, COL$. The first five bytes (characters) of the
string will correspond to the first display list interrupt
colors, the next five bytes for the next five, and so on.
Since th e rout ine can handle a maximum of255 bytes ,
this means we have a total of 255 / 5=51 interru pts ,
which is plenty.

The next prob lem is how the assembly routine
determines when we are at the top of the screen, in
order to know when to start over at the top orthe table
in the string. Th is is done by setting an interrupt at the
very first d isplay list instruction on the screen, which
is a 112 (8 black scan lines). There is a hardware
register called VCOUNT which tells us which scan line
we are on, from the top of the screen . We read it , and
if it corresponds to the blanking line at screen top , we
know to start at the beginning of the tab le again . The
routine requires this interrupt to be set. If it is not,
random colors wi ll be generated at the 6502 sails past
th e end of COL$, using any data in memory to deter
mine color and luminance.

The Basic subroutine is called after you set up
COL$, which is the table of colors. It requires that the
location of COL$ be fixed in memory before it tells the
assembly program the location of the color table.
After the subrout ine is executed control returns to the
Basic program that called it (see Program listing 10).

Place your interrupts where you need a color
register change, make sure you have the colors ready
in the table (COL$) , and the assembly routine will do
the rest. The moment the display list is modified, the
process of copying the new color codes into the hard
ware registers begins and the co lors will change on the
screen.

Basic keeps "operating system shadow registers"
of the colors in the five hardware registers . When we
do a SETCOLOR, we change these operating system
registers. At the start of each TV refresh , sixty times a
second , these shadow registers are copied by the
operating system into the hardware registers. Here

35

the colors stay, unchanged, for CTIA to use , unless
something like our special assembly language routine
changes them.

The routine requires the "blank 8 li nes" instruction
executed at the top of the frame to have an interrupt.
ANTI C creates that display block , generating blank
lines, and on the last scan line of the block interrupts
the 6502. The 6502 looks at COL$, pulls out five bytes
from the beginning of the table (since th is is the top of
the screen) , and copies those bytes as color numbers
into the hardware registers. At that point the colors

10000 REM ~~~~~~~~*~*~~~~****** •• ~
10010 REM
10020 REM * DLI DRIVER I DAVE SMALL
10030 REM * YOU MUST DIM AND FILL
10010 REM * COLS PRIOR TO GOSUB HERE
10050 REM
10060 DIM PR$(50)
10080 F~EM

10090 REM ~ READ PROGRAM INTO PR$
10100 F,EM
10110 READ X
10120 IF X=255 THEN 10300
10130 PR$CLENCPRS)+l)=CHR'CX)
10110 GOTO 10110
10150 F,EM
10160 REM * PROGRAM AS BYTES
10170 REM
10180 DATA 72,138,72,152,72
10190 DATA 162,0,173,11,212 ,2 01,0 7 ,210,3
10 2 00 DATA 171,01,02
10 Z1 0 DATA 160, 0
10220 DATA 189,03,01
10230 DATA 153,22,208
10210 DATA 232,200,192,5,208,211
10250 DATA 112,05,06
10260 DATA 101,168,101,170,101,61
10 27 0 DATA 00,01,02,03,01,05
10280 DATA 255
1 0290 r~EM

10300 REM * LINK COLS TO PRS
10310 F~EM

10320 P=ADRCPRS)
10330 PHI=INTCP/256)
10310 PLO=CP-PHI~256)
10:1~JO F~EM

10360 C=ADRCCOLS)
1037 0 CHI =INTCC/256)
10:180 CLO=CC-CHI*256)
10:190 m : M
10100 REM ~ POKE IN COLS ADDRESS
10'110 REM
1012 0 PR$C21,21) =CHRSCCLO):REM LOWCOL
101:10 PRSC22,22) =CHR$CCHI):REM HI COL
101'10 F~EM

10150 REM * POKE IN PROGRAM LOAD ADDR
10'160 F~EM

101 7 0 PXHI =INTC(P+11) / 256)
10180 P X LO=CP+11)-CPXHI~256)

iO'I 9 0 r'F('H 16,16)'''CHf~$Cr'XLO) !I~EM XLO
10500 PRSC1 7 ,1 7)=CHR$(PXHI):REM XHI
10510 PRSC:13,3:1)=CHRSCPXLO):REM XLO
1052 0 PRSC31,31) =CHR$CPXHI):REM XHI
105:10 I '~[M

10510 REM ~ POKE IN INTERRUPT ADDRESS
10~; ~;0 r~EM

10560 POKE 512,PLO
10570 POKE 513,PHI
10 0;00 REM
10590 REM * ENABLE INTERRUPTS CANTIC)
10600 F~EM

10610 POKE 51286,128+61
10 6Z 0 m , M
1063 0 REM ~ ALL SET! RETURN.
10 6'10 m : M
10 ,, :"; 0 f~ETUf~N

106 6 0 REM .~~*~.*~*~~~.~~~~.* ••

Program 10.

Display List Interrupts

fWf 48H r.1)
TXA 8fi-l 1380
fWf 48H 720
T'fA 98H 1~'O
fWf 48H 72D
LOX Itfl A2H 1&"0

OOH 00
LOA $04tl8 ~ 1730

OOH 110
D4H 2120

Cf1' 117 C9H 2010
87H 70

BEQ SKIP FIlJ 2400
83H 30

LOX $8Hl2 lEi 1740
81H 10
02H ill

SKIP LOY 110 A!lJ 1600
OOH 00

LOOP LDA $0304, i(BIll 1890
83H 30
94H 40

STA $0016,Y 99H 1530
16H 22D
OOH 2080

INX EBH 2320
IHY C8H 2000
CP'l 115 C!lJ 1~'O

85H 50
BtE LOOP OOH 2080

F4H 2440
STX W506 BEH 1420

85H 50
86H 6ll

PLA 68H 1040
TAY ASH 1680
PLA 68H IB4D
TAX AAH 1700 Program IDA. Assembler PLH 68H 1940
RTI 4!lJ 640 roUline for di5play list
(SCRl) OOH 00 interrupts FO/17
(SCR2) 81H 10 Program 10. (SCR3) 02H ill
(SCR4) 83H 30
(SCRS) 04H 40
(SCRG) 85H 50
mil) FFH 2S5O

generated by CTIA change to the new values just
entered.

These color values will stay on the screen until the
next refresh unless we place another d isplay list
interrupt somewhere, and have five more colors ready
in COL$. If we do , at the end of the display block in
which the interrupt is set the color register will again
change. At each refresh (every sixtieth of a second) the
operating system shadow registers will once again be
copied into the hardware registers, just to be replaced
by our colors again, and this cycle will continue as long
as the DLI instructions are in the display list.

We have to determine where on the screen we want a
color change, what color registers to change, (the color
registers are used differently in various graphics
Modes), and then insert in the right values to make a
multi-colored screen.

Our example is in graphics 0, the character mode. It
will plot the top section of the screen in one color, the
bottom in another.

Graphics 0 uses the five color registers as follows.
Color registers 0 and 3 are unused. Register I deter
mines the luminance of the characters, with same color
as register 2. Register 2 contains the color and

36

luminance of the background, and register 4 contains
the color and luminance of the border.

We need two groups of five colors stored in COL$.
The first group will cover the colors from the first dis
play list interrupt, at the top of the screen, to the
second interrupt midway down the screen. The second
will cover from mid screen to the bottom.

COL$ is set up with the following colors:

Color Register
Number Function

o Unused.

2

3

4

Luminance of charac
ters. Color is same as
reg 2.

Color and lum of
backgnd behind
characters. Not border.

Unused.

Border color and lum.

Group 1

Col reg 0, unused COLS(1)=CHRS(O)

Luminance of characters = 10 COLS(2)=CHR.S(10)

Backgnd color-Ium of green , COLS(3)=CHRS(12*16)+6
which is color # 12, intensity 6.

Col reg 3, unused COLS(4)=CHRS(0)

Border Color reg, orange at 6 COLS(5)=CHRS(2*16)+6
Orange = color 2.

Col reg 0, unused

Col reg I, lum = 10

Col reg 2, red at 6

Col reg 3, unused

Group 2

COLS(6)=CHRS(O)

COLS(7)=CHRS(10)

COLS(8)=CHRS((J*16)+6)

COLS(9)=CHRS(O)

Col reg 4, border, blue at 6 COLS(10)=CHRS((7*1())+6)

Our colors are now set up. We call the routine with
GOS U B 10000. It returns control to Basic. We must
now set our interrupts in the display list.

A graphics 0 display list is shown on the next page to
help us visualize what we will be modifying.

We POKE (112 + 128) into START + 0, to set our
first interrupt (as soon as that POKE is executed , the
Atari's colors will all change to the values in the first

START= PEEK(560)+256*PEEK(S6 1)

START +0 112 (blank 8 lines) interrupt here required
+1 112
+2 112
+ 3 66 (2. a graphics 0 ins truc tio n. + 64=ll11s)
+4 data byte
+5 data byte
+6 2 graphics 0 instruc ti o ns
+ 7 2

+29 2 last graphics 0 instruc ti o n

(hall until next refresh).

Sample Graphics Display Lis I
five bytes, and another interrupt midway down the
graphics 0 instruction at START + 6 + 15: POKE
2 + 128).

On the screen will be the colors specified, changing
at the interrupt points to the new colors in COL$.

Push BREAK to halt the program. The screen stays
changed! This is because the program and color strings
are still in the same locations and no one told ANTIC
to stop the interrupts. However, as soon as the strings
get shifted or destroyed, perhaps during editing, the
computer will not have an interrupt service routine
anymore, and it will quietly die. (Use RESET to avoid
this.) The way to exit the multicolor mode is to remove
the interrupts from the display list.

For the next demonstration we will escalate things
and put 16 colors on the screen at once in graphics O.
We will make each of the first 16 graphics 0 display
blocks a different color.

We will need 16 interrupts; the one at the top of the

110 REM * 16 COLORS AT THE SAME
TIME.

12 0 DIM COL$(255)
130 REM * INITIALIZE COLS IN GROUPS
1 '! 0 N''''!
150 FOR C=l TO 80 STEP 5
160 COL$(C'=CHR$(O):REM UNUSED
170 COLS(C+l)=CHR$(O):REM LUM
180 COLS(C+2)=CHRS(N):REM COLOR
190 COLS(C+3)=CHRS(0)
2 00 COLS(C+'!'=CHR$(2 1:REM GREY

E:()fWEF(
2 0~'i N=N+16
210 NE XT C
2Z0 F,EM
230 REM * NOW CALL DLI HANDLER
2 '10 F(EM
2~50 GOSLJE: lOOOO
260 F,EM
270 REM * NOW DO DL WORK
280 START=PE~E~(560) + 256*F:'f~E.{ (56 :l)

29 0 POKE START , l12+1 28
29 5 PO~'E S l· ART·~ 3t 2·+·6 ~·t · :L 28

3 00 F(E:M
3 10 REM ~ NOW POKE IN 1 4 MORE

(CFUO)
37 0 F([11
3 3 0 FOR D=S TAR1',t'6 TO START ·t6 + 14
310 POKE: D, 7+1 2 8
3:i O NEI l D
:16 0 [, [11
37 0 RE: M PRO GRAM IS NOW RUNNING .
::\f! 0 F:EI1
~. i 0 (1 \'3 T 1lF'

Program 11.

37

screen (112) , the one at the first true graphics 0 in
struction, which is the 66 (66=64+2 - the 64 tells
ANTIC that a display memory address follows , while
the 2 is the graphics 2 instruction), and 14 more in the
graphics 0 (2) instructions.

COL$ will have a length of 80 bytes , 16 interrupts
multiplied by 5 colors or 80 long.

Instead of 80 sets of basic instructions , (COL$=
C H R$" .) we will use a short loop. Remember that
adding 16 changes to the next color (see Program II).

N=6 (grey color, 6 intensity)
FOR C= I to 75 STEP 5
COL$(C)=CHR$(O) (colreg O"unused)
COL$(C+ I)=CH R$(O) (character illumination)
COL$(C+2)=CHR$(N) (color, shifts 16 each loop)
COL(C+3)=CH R$(O) (unused)
COL(C+4)=CH R$(2) (black border)
N=N+16 (bump up one color)
NEXT C

This loads COL$ with our desired 15 color changes,
with only the background color changing between
each one, at the same lum.

We call the assembly routine, then set our interrupts
with another loop:

POKE START, 112+ 128 (8 blank lines, then interrupt)
POKE START+3,2+64+128 (load memory scan,

graphics 0, and interrupt)
FOR 0=START+6 to START+6+13 (14 total)
POKE 0 ,2+ 128
NEXT 0

This produces 16 colors on the screen at once . You
will want to play with this routine and try different
luminances for characters and background, and even
the border.

One variation on this is to shift the characters
through the string in a circular fashion once you have
the interrupt enabled. The effect on the screen is
rotating colors , with the shades of color slowly shifting
up . This can be done by changing COL$, 5 bytes at a
time.

(This is program II with a rotate) .

CO LI $=CO L$(76,80) get last five characters
COLl$(6)=COL$(1,75) append first 75
COL$=COLl$ and shift it into col$

The rotating effect is quite spectacular and we will
be using it again.

If you were mixing graphics modes you could just
add an interrupt and more colors to shift displayed
colors between modes. This can be quite helpful in
drawing attention to a certain display. Flashing the
display can be accomplished by just rewriting one
byte in COL$ to 0, then back . This will change a color
register on the screen immediately. All you have to
do to modify the colors on the screen is mpdify the
string.

A total of 128 shades of colors on the same screen is
the limit of the Atari . The first time we saw this, the

Display List Interrupts

110 DIM COL$(255)
120 REM * DRAW FIGURE
125 GRAPHICS 7+16
126 FOR R=O TO 4
127 SE~TCOl_OR R,O,R*2
128 NEXT R
129 C[)l.or~ 1
130 Cl.=1
140 FOR X=1 TO 120 STEP 40
150 COLDF~ CL
160 Cl.=CL+1
17 0 FOR Y=1 TO 95
180 c'Llll X,Y
190 DRAW TO X+40,Y
200 NE XT Y
210 NEXT X
230 REM * LOAD COLORS
240 CL=O
25 0
260
VO
2El O
29 0
3 00
310
320
330
3 40
3~jO

360
370
:WO
,1'J 0
'100

FOR T=l TO 33*5 STEP J

COL$(T)=CHR$(CL)IREM COL REG 0
COL$(T+1)=CHR$(CL+64)IREM COLREG 1
COLS(T+2)=CHR$(CL+128)IREM COLREG 2
COL$(T+3)=CHR$(CL+192)IREM UNUSED
COLS(T+4)=CHR$(CL+l'J2'IREM COLREC 4
CL=CL+/
NE XT T
REM * CALL DRIVER
GO(,UE: 10000
REM * SET INTERRUPTS
START=PEEK(560)+256*PEEK(561)
POKE START,l12+128
FOR D=START+7 TO START+7+96 STEP 3
POKE D,13+1 281R EM GR. ?
NEXT D

'1'10 GOTD 410 Program 12.

programmer dedicated the 6502 processor to updating
color registers . It did nothing else. Here is our version
that will run along with Basic.

Since we can only have 51 interrupts, we cannot do
it the easiest way, where we shift into graphics 8 and
use 128 interrupts (there are 192 scan lines in graphics
8). We use mUltiple color registers on the screen , side
by side, and shift them four at a time, in graphics 7.

Graphics 7 uses four of the five color registers : 0,
1, 2, and 4 (background).

We generate the four blocks, each using one color
register, by a simple nested loop and draw. (See pro
gram 12).

Graphics 7 has 96 display blocks, so let's set a dis
play list interrupt every third block, for 32 total, plus
one at the top of the page for 33 . We will load each

In order to get 128
co lors onscreen
I"ith only 32 total
il7lerrupts. we need
to change 4 colors
per interrupt (i.e ..
32 x 4 = 128). We
must also display 4
colors per line.
which calls for a
four color mode:
graphics 3. 5. or 7.

Colo!- Color
Reg . R-eg.

0'1

Color
Reg .

£12

Co l or'
Reg.

H4

LJ .,~--~--- //

..... ~-.- --....--------~--------------
Here :\. a diagram of how the screen is set up in terms o{
blocks of area of a given color register; this is done I"ith
Basicfil! rOUline. bw the XIO jil! would work equally well.

38

color register with a shade of color different from its
neigh bors just by counting up the 128 possible shades,
and offsetting. (See program 12 listing, COL$ initial
ization). Remember, a change of2 is required to change
one shade of color. We poke in the DLI's as usual, this
time using 13+ 128 (13 is for graphics 7) for 32 of them
and the usual one at the top, 112+128.

There you have 128 shades of color at once. Let's try
to rotate them.

All we need to do to rotate these colors upwa rd is
shift them by five. The value in color register four will
be shift ed into register 3, and as such become invisible
until it is shifted into 2. A better routine could bypass
the " hole" in the colors.

COLl $=COL$(6)
COLl $(161)=COL$(1 ,5)
COL$=COLl

This is program 12 with a rotate.

When doing string manipulations, use a scratch
string and only copy it into COL$ when you're finished
fiddling with it. This helps prevent the Atari from
moving the string without warning with a changed
length and also prevents weird screen flickering that
would occur if COL$ should temporarily be too short
to provide enough data.

Sunset
Let me now presenUhe Sunset program which takes

such a terrible toll on prospective Apple buyers .
It is based on a program which appeared in Creative

Computing which had spirals, one inside the other.
Colors were shifted between them (each spiral was in
a different color register, and they were in graphics 7).
The idea behind this routine is to use the shifting intro
duced in the previous program on the spiral routine.
The initialization is a bit tricky . Each color register is
started up a bit offset from the others, so that each will
have a considerably different color than the others,
and the background is left completely off until halfway
down the screen . The colors are shifted with the top
half of the string shifted up and the bottom halfshifted
down, an effect very much like a sunset over water. I
have added a few random stars in the background on
the upper half to twinkle as the color registers change .
(See Program 13 on the following page) .

The Atari variable table can get full of holes, if you
do lots of editing, and the Atari has strange ways of
cleaning up unused strings. If you start getting un
expected problems, try listing the program to storage
the n entering it back in with LIST and ENTER. This
will clean up the variable table.

That wraps up display list interrupt concepts . You
can use DLI's for other things, if you know assembly
la nguage , like switching character sets in the middle of
the page .

Now that we have covered playfield graphics pretty
well, let's look at rede~ining character sets.

110 f(E M ,.,.,.
120 REM ,.,.,. DAVE SMALL
130 REM ,.,.,.

3BO f(EM ,.,.
390 TOP1$ =TO P$(1,1 2 0)
'100 TOP$=TOP$1121,12S)
'110 TOP$(6)=TOP1$

61 0 FOR 1=0 TO 5"360 STE P 75
650 X-XO+R~COS(I):'{ :~ YO~' F~~SI i4(I)

660 ()f(AWTO X,Y

1QO DIM TOP1S (12S) ,BOT1$ (12S)
150 DIM TOP$(12S),BOTI(12S)
160 DIM COL$(Z55)

'120 TOP$(S,5) =CHR$IROT)
670 NEXT I:R=R+ 1 2:C=C+1:COLOR C
6El 0 NE XT t(

1 26 IF ROT)255 THEN TOPI15,5)=CHR$10)
'DO f(EM

690 ZEI=1
7 00 FOR LOOP = l TO 50
710 cm.UR ZB

170 REM ,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.*,.,.,.,.,.
lS0 REM" INITIALIZE SCR EEN FOR DISP
190 GOSUE: 550
200 REM" INI TI ALI ZE CO L $
2 10 GOSUE: 790
220 REM ,. I NITIALIZE ASSE MBL Y
23 0 GOSUB 10000

'110 BOT 11=BOT$11,S)
'150 B(lT$=BOT$ 1 6)
'160 BOT$(121)=BOT1$
't70 fU, M
'ISO CO L$ll,125)=BOTI
'190 CO L$(126) =TOP $
50 0 NE XT fWT
510 GOTD 3'tO

7;>' 0 XEl=I NTIRNDIO)*159)+ 1
73 0 YEl=INTCRND(O'''17)+ 1
7'1 0 PLOT XB,YB
750 ZS=ZB+1:IF ZB='1 THEN ZB = 1
760 NEXT LOOP
77 0 Fd,TUfW

240 REM x***xxxxx***x. __ .*******
250 REM,. DIS PLA Y LIS T
260 ST=PEEK(56 0)+256"PEEK(561)
270 POKE ST,112+12S:RE M TOP INT(15)
2S0 POKE ST+3, 13+6q+128 :REM LM S,D LI
29 0 FOR Y=6 TO 6+96 STEP 2:RE M HI SRS
3 00 POKE ST+ Y,1 3+ 128

530 REM *xx**xx*xxxxx************
510 REM FROM CREATIVE CO MPUTING ••
55 0 GRAPHICS 23:DEG :SETCOLDR

7 ElO F~ E~ M *~**********************~
79 0 REM ,.,.~ INIT CU Ll
BOO FUR T= 1 TO ;>.55 STEP J

BlO COL$(T,T) =CHR$IT)

3 10 NEXT Y

;>. , ' t , 10: DIM C ClI

S60 SETCD LDR 0,0,10
570 SETCD LDR 1,0,6
SEll) SE1'CO ~ OF~ 2,0,2
590 R=2 0:(:O LOR 1:(::::1
600 XO=79:YO='17

f.IZO T1=' \'+BO
D:lO T2",T "1 60

320 RE M **xxxx**xx*xx**********
330 REM ROTA TE COLI IN HAL VES
3 10 FOR RO Te O TO 300 STEP 2
350 SANDY "' O
360 BOTS=COLSll,125)
370 TOP$=COL$1126,250)

610 FOR K=O TD 3:CIK) =K+1*2:NEXT K
620 FOR K=l TD 3

810 IF T1)255 THEN T1=T1 -;>'56
E15() l :r:' "'2>255 ' 1 '~' IE :: N l '2 =:T2--256
D60 COLSCT +1,T+1) =C HRS (Tl)
870 COLS(T+2, T+ 2 '=CHR$(T2)
8D o COL$IT+3 ,T +J'=C HR$ (0)
890 CO L$IT+'1,T+1'=C HRS(O)
'1 00 NEXT T 630 X=XO+R"COS(360):Y = YO:PLOT X,Y

Program 13.

Player-Missile Graphics

Introduction
Until now we ha ve spe nt our time learn ing " play

field" graphics . Playfield graphics are gra phics in
vo lving t he di splay list and di splay memory. On mos t
co mputers, hav ing those two so ftware controllable
li sts would mean you would have enough powe r to
create almost any image yo u would ever want to.
Remember that Atari is a leade r in co in-ope rated
a rcade ga mes, and most of the g ra phics-o ri ented
ga mes tha t people pump so ma ny quarters int o in vo lve
a lot of a nimation .

Anima tion is not an easy task on a displa y. One
must co pe with ma ny problems to ge t a good a nima
ti o n effect. Animation involves moving objects across
the display, which invo lves constant display memory
rew rites. That by itself is not too difficult. D oi ng so
many rewrites does tend to ti e up the 6502 processo r,
so it is hard to ge t o ther things done a t the sa me time.
If yo u a re a nimating an object in the mid st of a fi xed
playfield image, such as a pong ba ll in the pong co urt ,
yo u have to ha ndle such pro blems as how to ha ndle an
ove rl a p betwee n the pong ba ll a nd the playfield image.

For this, Atari added a second co mpletely in
depende nt gra phics system to the co mputer. This
second system can be used simultaneo usly with the
no rmal playfie ld graphics. The new grap hic sys tem is
ca lled "Player-Missile graphics".

39

').' 10 f,ETUW,

T he A tar i 400 / 800 des ign was for a "video game
ho me co mputer " (to quote the hardware ma nua l).
a nd A tari after all is a leade r in the coin-op video ga me
field. They make the tremendousl y successful
"Aste ro id s" and "Battlezone" games. In fact, the la test
Ata ri ho me video system, th e System X, is basically a n
Ata ri 400 under a fan cy cover.

T his seco nd graphics sys tem is intended for high
speed a nimation a nd ma kes implementing such
a nima tion much eas ier.

Player-Missile Concepts
A TV picture is built up o ut of ho ri zo ntal scan lines

se nt from a so urce synchronized with the TV's scan
ning. In OUl·case, the source is the Atari, busily sending
data to the TV as colorfluminance information and
ge nera lly trying to kee p up with the tremend o us
amo unt of work to be done . ANTIC was designed to
he lp th e ma in 6502 processor of the Atari in generating
displays. We ha ve covered ANTIC in prev iou s
sect ions.

The seco nd video chip is ca lled CTIA. CTIA is the
chip that handles assig ning co lo r a nd va rious othe r
ta sks. ANT IC is more concerned with getting data
fro m memo ry in time a nd feeding it to CTIA. The
Atari is strain ing to keep up with the TV . CT IA
seemed to have some time left over in this process.

Player-Missile Graphics

Atari enginee rs decided to give CTIA so mething e lse
to do.

CTIA a lread y keeps track of where it is h o ri zonta lly
o n each scan line. So Atari decided to have CT IA keep
track of a memory location a t the same time. In this
location is a number that corresponds to a horizo nta l
position on the TV screen. Atari ca ll s the memory
location whe re horizontal position information is
stored a " hor izo ntal position register".

If CT IA , while busily sca nning across the scree n,
find s that its ho rizontal position at the moment eq ua ls
the horizontal position in this register, it wi ll look to
anot her register (memory locat io n) , a nd grab a byte
of data from it. The second register is the Graphics
Data Register. CTIA takes the first bit of data in this
register, puts it on the screen as a dot if it is a I, o r sk ips
it if it's a O. Fo r the next do t ove r, it does the same
thing. CTIA works its way left to right on the sc reen,
following the TV sweep, plotting 8 bits of data from
the graph ics data register. It plots the 8t h bit first (the
most significa nt or left hand bit). It puts these 8 dots of
data o n the scree n a t a colo r and luminance specified
by yet ano ther register, the "co lor / luminance
register", which has the same format as a playfield
graphics co lor register.

Let's say we have 150 sto red in the horizonta l
position register , a color of bright green at 10 intensit y
stored in the colorfluminance reg ister, and a bit pat
tern of 11001011 sto red in the g raphics data reg ister.
When CT IA, buzzing across the screen at high speed,
finds its current position is 150, it w ill plot dot dot
(sk ip) dot (skip) dot dot from its current position,
working to the right. The dots wi ll be bright green. It
will fin ish o ut the rest of the scan line normally. Next
line down, it wi ll also find the 150 midway ac ross the
screen, and copy the graphics data register once

Horizontal Position
Register : 150 '-.....

110.lH011
Graphics Data

Figure 21.

The Player

40

again onto the line. This process wi ll happen every
time it comes to 150 horizonta lly (see Figure 21).

The final display will be a vertica l green st ripe at
horizontal position 150, exactly matching the bit pat
tern in the graphics data register. Let's go ahead and
run a program to d o just this, so you ca n see what it
looks li ke. Enter a nd run program 14.

5 REM **** DEFINES
10 HPOSO=532'18
20 BITSO=53261
30 COL.O"lO'l
'10 SIZEO=53256
100 REM **** PROGRAM 1
110 REM **** GENERA TE A FIXED PLAYER
120 REM
130 REM **** SET HORIZ POSITION
1'10 POKE HPO SO,120
150 REM **** SE l' COLOR
160 POKE CDL.O,202:REM B.GRN,IN TEN =10
170 REM **** SET DATA
180 POKE BITSO,218:REM 1011 0101
190 REM **** SET SIZE
200 POKE SIZEO,O

Program 14.
Let's modify the program to learn about the

registers it uses. Let's change the colorfluminance ,
th e graph ics data, a nd the horizontal position
registers. The effec t will be, respec ti vely, changing
the co lo r of the stripe, the bit pattern of the stripe, and
the stri pe 's hori zo nta l pos ition. Run programs 15 , 16,
and 17 to see these effec ts .

5 REM **** DEFINES
10 HPOSO=·532'18
20 [:lTSO=53261
30 COL.0=70'1
"to SIZEO=53256
100 REM **** PROGRAM'!
110 REM **** SHIFT PL.AYER COL.ORS
120 F<EM
130 REM **** SET HORIZ POSITION
1'10 POKE HPOSO,150
170 REM **** SET DATA
180 POKE BITSO,203:REM 1100 1011
190 REM **** SET SIZE
2 00 POKE SIZEO ,O
300 REM **** SHI FT PL.AYER COL.OR
3 10 FOR PCOL.=O TO 255 STEP 2
320 POKE CO L.O,P COL
,130 NEXT PCOL.
3'10 COTD 310

Program 15.

5 REM **** DEFINES
10 HF'OSO=532'18
2 0 8ITSO=53261
30 COLO=70'1
"to SIZEO=53256
100 REM **** PROGRAM 2
110 REM **** ROTATE A PLAYER
120 REM
130 POKE HPOSO,150:REM HORIZ POS
150 REM **** SET COLOR
160 POKE COL.O,202:REM [: GRN , INTEN'10
190 REM **** SET SI ZE
200 POKE SIIEO,O
300 REM **** MODIFY BIT PATTERN
310 FOR T=O TO 255
320 POKE BITSO,T
325 FOR DELAY=l TO 100:NEXT De LAY
,130 NE:XT T
3'10 c(rro 310

Program 16.

5 REM **** DEFINES
10 HPOSO =5324E1
20 [:ITS 0 =-53261
:l0 COL.0"704
40 SIZEO=53256
100 REM **** PROGRAM 2
110 REM **** ROT~TE A PLAYER
120 F~EM

150 REM **** SET COLOR
160 POKE COLO,202:REM B GRN,

INTEN"-l Il
170 REM **** SET DATA
lE10 POKE BITSO,203:REM 11110 1011
190 REM **** SET SIZE
200 POKE SIZEO,O
:l00 REM **** ROTATE RIGHT
:l10 FOR T=40 TO 200
:l20 POKE HPOSO,T
:l30 NEXT T
:l40 GellO :l10

Program 17.

There is also a "size" register. The size register tells
CTIA how big to make the dots when it plots them on
the screen, in horizontal terms. It can make them
normal size, twice normal, or four times normal. All it
does is plot the same dot one, two or four times before
moving on to the next one. The stripe will grow to the
right , with the left position remaining constant (this is
because the left border is still at position 150, where
CTIA starts the display). Run program 18 to see this
particular effect. A 0 in this register means x I, a I
means x2, and a 3 means x4.

5 REM **** DEFINES
10 HPOSO=5324E1
20 8ITSO=53261
:l0 COLO=704
40 SIZEO=53256
100 REM **** PROGRAM 5
110 REM **** MODIFY PLAYER SIZE
120 REM
130 REM **** SET HORIZ POSITION
140 POKE HPOSO,120
150 REM **** SET COLOR
160 POK'E COL.O, 20 2 :F~EM E: CF~N, INTEN= 1 Il
170 REM **** SET DATA
lE10 POKE BITSO,203:REM 11110 11111
:l00 REM **** SHIFT PLAYER SIZE
:l10 POKE SIZEO,O
:115 PRINT "SIZE NORMAL"
:l20 GOSUE: 1000
:l30 POKE SIZEO,1
335 PF\INT "SIZE X 2"
:l40 GOSUE: 1000
:l50 POKE SIZEO,3
:l55 PRINT "SIZE X 4"
:l60 COSUI:: 1000
:l70 GerrO :HO
1000 FOR Z=l TO 1000:NEXT Z:RETURN

Program 18.

The st ripe is known as a "player". An object only 2
bits wide, but otherwise the same as a "player," is a
"missile". Hence, the name "player-missile".

What good is a green stripe in the middle of the TV
that does not even shut off when we press BREAK to
quit running the program? We do not have to leave
data in the graphics data register on all the time. Let's
say we leave it all O's for awhile, starting from the top
of the sc reen. CTIA will plot only the usual playfield

41

stuff and no player dots. But if we should suddenly put
a IIIIIIII into that register , it will plot that in scan
lines from there on. We can turn it off by putting the
o back in that register, and we have a square sitting in
the middle of the screen. It will really be a stripe, with a
lit square in the middle of it, but to us, it will appear to
be just a square (see Figure 22).

The Square P 1 a~)er Graphics Data

11111111

Figure 22.

We could make the shape something other than a
square by putting different data in the graphics con
trol register. We could construct a space ship out of
"slices" of bits , then feed them in one at a time, one
slice per scan line. This way a player could be a space
ship on the screen , which is how Star Raiders works.
We could move it horizontally by changing the
horizontal position register, or vertically by changing
where we start putting data in . And we will have this
object on our TV screen. There are 4 available players
and 4 missiles, all independent. A list of the control
memory locations is shown on the next page.

This table lists a number of CTIA addresses, which
can a lso be found in later discussions of the various
hardware tables. Logically, since CTIA controls
players, they should be CTIA addresses.

Missiles have the same colors as their players do.
Missiles can be grouped together to form a fifth 8 bit
player; four missiles 2 bits wide, positioned together,
equal one player 8 bits wide. All missiles have the
same data, which is us ually 2 bits anyway.

Some of the above demo programs will now become
clear. We se t player O's horizontal position to 150 by
putting that value into the approximate register with
a POKE statement. The color/luminance is bright
green, intensity ten, and the graphics data informa
tion is CB hex or 203 decimal. We do not write the
color/luminance information to the location listed
above.

Remember back when we were doing display list in
terrupts and we talked about operating system

Pia yer-Missile Graphics

Object Horizontal Graphics Color/Lum O.S.* Size
Number Position Register Data Register Register Shadow Register

Player 0 0000-(53248) 0000-(53261) 0012-(53266) 704 0008-(53256)
Player 1 0001-(53249) 000E-(53262) 0013-(53267) 705 0009-(53257)
Player 2 0002-(53250) 000F-(53263) 0014-(53268) 706 000A-(53258)
Player 3 0003-(53251) 0010-(53264) 0015-(53269) 707 000B-(53259)

Missile 0 0004-(53252) 0011 -(53265) same as PO 000C-(53260)
Missile I 0005-(53253) same same as PI same
Missile 2 0006-(53254) same same as P2 same
Missile 3 0007-(53255) same same as P3 same

O.S. Shadow Registers**

O.S. Location Hardware Register

-ANTIC - -CTIA-

22F H (5590) 0400 H (OMA CTL)*** 26F H (6230) 001B (PRIOR)
2F3 H (7550) 0401 H (CHA CTL) 2CO H (7040) 0012 (Player 0 Color)
230 H (5600) 0402 H (Dlist L) 2CI H (7050) 0013 (Player 1 Color)
231 H (5610) 0403 H (Dlist H) 2C2 H (7060) 0014 (Player 2 Color)
2F4 H (7560) 0409 H (CH BASE) 2C3 H (7070) 0015 (Player 3 Color)

2C4 H (7080) 0016 (PlayField 0 Color)
2C5 H (7090) 0017 (Play Field I Color)
2C6 H (7 100) 0018 (Play Field 2 Color)
2C7 H (7110) 0019 (Play Field 3 Color)
2C8 H (7120) OOIA (PlayField 4 Backgnd Color)

Refer also to Atari columns listing hardware register addresses.

* O.S. or Operating System-A control progam that allows the computer to react with other programs. and
handle input and output.
** Shadow Register - An area in memory that stores information to be transferred to a hardware control
device.
*** OMA or Direct Memory Access-Allowing information in memory to be transferred from one location or
device to another without using the main microprocessor. The Atari uses the Antic microprocessor to transfer
information from memory to the television screen.

Abbreviations CTL = Control OList = Display List H = High Byte L = Lo w Byte

Player-Missile Controls

shadow addresses? These are addresses the o perating
system maintains in RAM that a re copied into the
actual hardware addresses with eac h scree n refresh.
We found that the five playfield (not player) operating
sys tem shadow registers were copied into the hard
ware reg isters on CTIA, and our display list inte rrupts
ove r-wrote that data a few scan lines down . The same
thing a pplies to player-miss ile colors. If they are put
directly into the hardwa re regi sters, the change will
last ju st as long as the ne xt refres h; less than a s ixti et h
of a second. You will see a very brief fla sh of color. If
you would like permanent colors for your players , lise
the shadow registers .

You ca n also use a display list interrupt routine to
change a player 's color halfway thro ugh a refrcs h. The

42

Atari people "shadowed" a good number of registers
just for the ease of having the machine restore them
to the o ri ginal va lue at the beginning of th e refresh.
These shadow reg is ters include the 0 M A controls, the
pointers to where the display list is .

The informatio n given so far is helpful. You can get
so me rea lly neat color effects running players back and
forth . Try program 19 for this effect and feel free to
modify it in a ll sorts of ways. Note the effect when two
player stripes run over one another, or when a playe r
runs over a playfield object, such as a lett er or a
graphics mode dot.

This is known as a "collision". When two players or
miss il es o r playfie ld objects have two "on" bit s ty ing
to get through CTIA at once, we have a priority con-

flict that needs to be reso lved. CTIA mu st dec ide
whether to le t the player o r the letter "shine through"
when a letter is plotted beneath a player. T he Atari
act uall y has incred ible fl exibi lity, and g ives yo u many
different ways to set up priorities betwee n players,
missiles,and the playfield objects . The Atari a lso writes
data to a "co lli sion register" to let you kn ow that a
collision occ urred. You can le t the Atari's hardwa re
worry about whether there's been a colli sion betwee n
yo ur spacesh ip a nd a photon torpedo (y ou r playe r and
yo ur missile). You no longer have to scan tables of X
and Y co-ordinates in yo ur program to see if they ha ve
co llided . Ins tead , just look at the colli s ion register
eve ry now and then.

20 REM DEMONSTRATES PRIORITY
30 POKE 623,2:REM PO HIG HES T
10 REM POKE A 2 TO HAVE PLAYERS

~'; 0 f(E M Ht-,VE LOWU(PFUmUTY Tll t-,N
f:- l..AYE

60 POK E 7 01 ,1 : REM COLOR PO GREY - LO
7 0 POKE 7 05,5 U:REM COLO R PI

O I~ ANGE "" HI
UO POKE 7 06,90:REM COLOR P2

PUF(P LE···· HI
90 POKE 707 ,1 96 :REM COLOR P3

GF(EEN "' LO
1 0 0 F(EM
110 POKE S326 1 ,255 :REM BITS PO
120 F'() KE: 5~J262,255:F~ E:: M E:::I:T!:; F:' l
l:JO POI{ E 5:1263 , 255 :f~[: M ~~ :I:T!:; F~2

11 0 POKE 53261,255:REM BI TS P3
1. ::; 0 PI'([NT ' 'PLAYER 0 GF(E Y"
11,0 PI'(J:NT "f"LAYU(1 "' [)f(A NGE "
170 PF([NT "Pl..AYEF;: 2 PUFWLE"
HIO !"'F(un "F'·l..A y[Y::l Cf(f::EN"
190 REM CYC LE THROUGH PRIORITIE S
200 FOR X=1 TO 15
;?1 0 F"O I<E b;~:'I, X
??O Pf(]Hf ''F''FGORITY CODE " ,,; X
230 FOR T"36 TO 2 18 STEP 3
210 POKE 53218,20+ T:REM PLAYER
250 POKE 53219, T:R EM PLAYER 1
260 POKE 53250,218 - T:REM PLA YER 2
270 POKE 53?5 1 .239-T:REM PLAYER 3
280 FOR Z= 1 TO 15 : NEXT Z.
?90 NEXT T
:100 NEXT X
:J l0 ceno ZOO

Program 19.

Ta ke for exa mple the popular game Asteroids. On
the Apple a horrendous amo unt of time is spent c heck
ing to see if a spaces hip has co llided with a rock , o r a
miss ile has co llided with a rock , or a playe r, o r a nother
sh ip. That is what slows the Apple ga me down so
much; a ll that c hec king in the softwa re takes a long
time. In the Atar i yo u do not need to. Just update the
posit ions of t he players a nd missiles, and c hec k the
co lli sion reg iste rs . It wi ll tell yo u a ll yo u need to
know. In Star Raiders, missiles fired a t the enem y are
just players wit h high speed changes in the player data
register. The enemy sh ips are ot her players , and
co llisions between the m and miss ile players are
checked in the hardware . That is why they run so fa st.

You must select which priority scheme yo u wou ld
like to use wit h a POKE. There is a hardwa re loca ti o n,

43

which is located on the CTIA chip , but use the shadow
regi s ter a t 623 decimal instead .

Se lect e ither 8,4,2 or I to POKE. Adding those
numbe rs g ives wi ld results consisting of black regions
where they overlap. (See the table below which cycles
thro ugh a ll the diffe rent priority schemes.)

Add 10H to the number yo u POKE in (16 D) to let
all m iss iles become the co lor of playfield 3. T hi s way
you can position them all together to be one object of
the sa me co lor. Play field 3 is not used frequently in
playfield g raphics, and this is why. T he color is then
made ava ila ble for a fifth p layer, such as the ball in
Ata ri Bas ketball.

Add 20H (32 Decima l) to have a different color (a
logica l OR) occur during overlap or collision.

"Play" refers to playe r. " P-F" refers to a playfield or
di splay li s t generated, color register.

Use this priority cha rt a fter you have laid out yo ur
priorities and decided which object sho uld be in fro nt
of another.

8
P-FO
P-F I
Play 0
Play I
Play 2
Play 3
P-F 2

Loca tio n DOIB (53275) contains the priority data. Use OS
632 D as this l.Iddress is shadowed .

Select e ithe r 8, 4, 2, o r I to POKE with . Adding them gives
odd rcsuhs consisting of black overlapping regions. (Experi·
mcnt!)

4 2 I
P-FO Play 0 Play 0 Highest Prio rity
P·F I Play I Play I
P-F2 P·FO Play 2
P-F 3&5 P·F I Play 3
Play 0 P·F 2 P-FO
Play I P·F3&5 P·F I
Play 2 Play 2 P-F2

P-F 3&5 Play 3 Play 3 P-F 3&5
BA CKGND BACKGND BACKGND BACKGND Lowest Priority

Add IOH (16 D) to let a ll miss iles become the colo r o f play
field J. Thus you l;ai1 position all the misssil es for a fifth
player o bject. Add 20 H (J2D) to have a different color (a
logical OR) occur du ring an overlap.

"Play" refe rs to a Player. " P-F' refers to a play fi e ld . o r
disp lay list generated. object. (Remember Ihe fo ur available
color registers'!)

Usc this priority t: hart af tr you have decided who shou ld
have prio rity over whom. to se lect the scheme that you wish.

Player-Missile DMA
So far we have vertical stri pes on the screen a nd

so me inte resting color effects. If Basic was not fast
enough to switch co lor registers in the middle of a
sc reen refresh in th e di splay list interrupts chapter , it is
unlikely it can sudde nly start doing it now. So we a re
stuck wit h assemb ly la ng uage a nd tying up the 6502
turning the graphics data on and off.

Yo u need a thoro ugh understanding of how playe rs
are ge nerated to use rea ll y creative g raph ics. T he
people a t Atari tho ught of the p ro blems they wou ld
have with ty ing up the 6502. Remember that we did
not want to tie the 6502 up doing displa y work.
ANT IC was created to hand le the tremendo us
mem o ry access need s back then . The designers of the
Atari used ANTIC to help with playe rs and miss iles as
we ll.

Re member "DMA",? That is where ANT IC too k
ove r memory in order to satisfy the needs of CT IA in

Player-Missile Graphics

doing a scree n refresh. You will reca ll ANTIC even
e lbows the 6502 out of me mory to get to me mory
m o re quickly. This DMA is going on a ll the time
whenever there is a screen refres h. Now th ere is a
mem o ry location we ca n write to , DMA CONT ROL
(DMACTL) which controls thi s DMA process.

Let's say we told the ANTIC chip to completely
quit us ing DMA. The screen would go blank. ANTIC
would no longe r be forcefeeding CT lA a nd there
wo uld be no da ta to plot. But the 6502 would no
longe r be getting shut o ff by ANTI C, and would not
lose so much time just s itting around waiting for
ANTIC to fini sh up. It could continue running you r
Basic programs, a t considerably highe r speed, a bout
30-50% faster , d epending on how much graphics data
wo uld otherwise be written. This is so mething to keep
in mind if yo u eve r have so me seri o us amount of pro
cessing to do in slow Basic and would like some fre e
processing time. If you were to set up a short, custom
di splay li st a nd memory , or just a few lines, ending
with an in structi o n to wait for the nex t refresh , tha t
would a lso help free up the 6502. The less d a ta ANTIC
must fetch from display memory, th e more time is
avai la ble for the 6502. You co uld ha ve a di splay lis t as
short as one graphics inst ruction .

Now most articles on player-mi ss il e graphics do not
cover the basics, like POK Eing the ha rdwa re registers
direc tly. They rely strictl y on Playe r-Missile DMA. It
loses a lo t of the concepts invo lved and takes away
some of the other possibilities in playe rs. Who need s
P-M DMA to set up two stripes a t e ither ends of the
sc reen as paddles for a "Pong" ga me?

Let's set up a ta ble in me mory. It will be 256 bytes
long. Each byte in memory will co rres pond directly to
one horizonta l scan line on the TV . (You will note tha t
a playe r extend s all the way off th e sc ree n , past where
ANTIC and CTIA are generating playfield.) Now if
we te ll them , by enabling two "switches" (actually
POK Es to DMA controls) we will no longe r ha ve to
transfe r data directl y into the CTIA gra phi cs register.
CTIA will get the graphics data byte that c o rrespond s
to the particula r scan line number from ANT IC.
ANTIC will look at the ta ble, dec id e what sca n line
we are currently on, and pass the byte on the tabl e
wh ose number matches the scan line number to CTIA .
CT IA will use that byte to plot the playe r or miss ile on
the scree n. Once yo u set up the 256 byte table and
sw itch AN TI C on, the 6502 is once aga in freed up to
do so mething e lse. The Playe r-Miss ile Direct Memory
Access (P-M DMA) is then completely a ut o matic
(Figure 23).

Using this method, a n object is defined by a few" I"
bit s in this table which corresponds directl y to the
ver ti ca l stripe o n the screen . If we turn on some bit s,
they will show up a t the ne xt refres h. If we move them
upward in the byte table, the plotted o bject will move
up. We control the hori zo ntal position using the
hor izo ntal position register, the color us ing the co lor
regis ter, a nd co ntrol the size using the size reg iste r.

44

P l ayer Miss le DMA Memory Mapped to TV Screen

Player

Player
!1iss !e
DMA 111111 r--+---__
Memory 1 1 1 1 1 1

111111
111111

Figure 23.

Now there a re a lot of things you must do to
initiali ze this DMA process. You have to reserve a
location in memory for the 256 byte ta bles. You have
to POK E into va rious DMA control locations, set
co lors, a nd so o n. Ra ther than trying to list them one
by o ne, let's just take a working example a nd go ove r
it to show how it works.

Let's look at Program 20 for a fine example of 0 M A
use for P-M graphics .

Line 30 contains a PO KEto an operating system
loca tion which ins tructs the system to work with a
no rma l s ize playfie ld ; i.e. 40 characters across. The
loca ti o n is a shadow reg iste r for a hardware reg ister on
ANTIC named DMACTL. There are two electrical
switches th a t need to be turned on to a llow P-M DMA
to beg in , an d this is one of them. This one controls
a ll of DMA , not ju st Player-Miss il e. The other swi tch
is called G RACTL.

10 DIM AS(lO) ,BI(lOO)
;, 0 Gf,AF'HICS B
3 0 PDI<E :::j~j9 , 62
10 F'OKE 5324B ,1 20
~.';O F'OI<E l O-l, Utl
6 0 I=PEEK(106) - U
70 PDI<E ::;'1Z79,1
[10 PDI<E ~; 3Z77,3

9 0 F'[)fT ~';32~'d>,3

100 J = I~ 2S6 +10 Z1

110 FOR Y=J+I Z0 TO J+1 37
12 0 Fil:AD Z
l el O f'OI<E Y, Z
110 NEXT Y
150 FDR X=1U TO ZZl:GOSUB 50 0:

NEXT x
160 con) 1: ';0
320 f 'OI<E Y, Z
500 POKE 532'18,X
~'; 1 0 FiETU I~N

600 DATA 6 0, 6 0, 60,60,60,60
6 1() DA" 'A 255,255,255,255,255,255
620 DATA 6 0,60, 6 0, 60,6 0, 6 0

Program 20.

line 40 is a PO KEto the hori zo ntal pos ition regis te r
for Player 0, putting the player at 120. line 50 is a
POKE Playe r O's shadow color register for a pink
color. We need 256 bytes for our DMA table for
Player O. We must run all the playe rs and miss il es with
DMA, so we need considerably more than 256 bytes.
T he total co mes out to 2048 bytes fo r o ur "bitmaps"
of the playe rs.

We need to find a place in free mem o ry to put thi s
2048 bytes. Remember when we were using alternate
cha racte r sets tha t requ ired 1024 bytes? We m odified
the top of the memory pointer, located in loca tion 106,
a nd mo ved it back to make sure we had a n a rea of
memory the Atari would not use. We will d o the same
thing he re, mo ving the point er back 8*256 o r 2048
bytes back .

We then POK E the mem ory page numbe r (address j
256) into a loca tion called PM BAS E. This te ll s
AN TI C where to start fe tching data for CT IA .

We POKE a locatio n ca lled G RACTl, fo r
GRAphics ConTrol regist er. GRACTl is th e second
of two switches that has t o be turned o n to enable
P-M graphics. We POKE a 3 into there to tell ANTIC
a nd CTIA to sta rt using P-M DMA. We POKE playe r
D's size reg iste r at 53256 with a 3 to make ou r player 4
times norma l size .

Our Pl aye r is now being plo tted on th e screen.
Whatever junk is in memory at thi s point is now bus il y
being pulled out of memo ry by ANTIC and fed to
CT IA. The area o f memory we are us ing is empty.
T he Graphics in struction a t the beginning of the pro
gram, before we moved the memory pointer back ,
c leared it o ut for us. We should put some so rt of bit
pattern into mem o ry to create a di splay. T he program
does that nex t.

line 280 sets J equal to I (which is the sta rt of the
P-M table) * 256 (beca use that va lue was in 256 byte
pages.) J po ints to the beginning of the P-M table in
me mory. We a dd 1024 to it , the Playe r 0 data is 1024
bytes from the beg inning o f the table, with the ot her
players and miss iles around it. The table looks like
the exa mple show n to the right.

There is a lso a P-M DMA mode where only 1024
bytes are used , 128 per playe r. In thi s mode eac h byte
represent s no t o ne but two sca n lines . This is known as
a "do uble line resolution" in the manua ls. Ju st a dj ust
the addresses a bove for ha lf as much data .

J now equa ls the beginning of the Player 0 bit map
data. The FOR loo p in the program runs from J+ 120
to J + 137, for 18 lines in th e middle o f the sc ree n.
Data is read in a nd copied into those bytes. This
data is in the form of a "Cross", where the 60's o n to p
a nd bottom a re: 00111100 a nd the 255's are: 11111111.
This dat a will be sent to the scree n in the form of d o ts
for I bit s a nd bla nks for 0 bit s, so at thi s po int we have
a cross o n the sc ree n, still in pink. We have a loo p
wh ich po kes th e hori zontal pos ition registe r from 48
to 221, a nd sta rts ove r at 48 aga in. This will m ove o ur
playe r stripe, with the cross in the middle of it , ac ross
the screen (see Figure 24).

45

There s hould not be a lot of mys tery left in playe rs
a nd miss il es now. ANTIC is just POKEing our CT IA
graphics data registers for us. This helps free up the
6502. We move the player horizontally with a POKE,
ve rtica ll y by copying bits in thi s table up and d ow n,
a nd se lect color and size with POK Es . We will lea rn
how to read collisions la ter.

Pl ayer
Missle
DMA
Memo ry

PMBASE * 256 = start of this area

BASE ADDRESS

+ 0
-- wasted space.

+ 767

+ 768
-- Missile Data. Missile data is

packed side by side, 4 missiles
of 2 bits per byte .

M3: M2 : MI : MO

+ 1023

+ 1024
-- Player 0 bitmap. Top byte is top

line of TV (above viewing area).
+ 1279

+ 1280
-- Player I bitmap.

+ 1535

+ 1536
-- Player 2 bitmap.

+ 179 1

+ 1792
-- Player 3 bitmap.

+ 2047

Player -Mi551e Memory Map Example

j
Figure 24.

The Beginner's Guide to Character Sets

An important part of the design of the Atari com
puters was to obtain varied and interesting graphics
displays . Atari designed into their machine as much
software-controlled hardware flexibility as possible .
In this way they hoped to achieve widely varied effects
without changing the basic hardware.

We have covered a variety of playfield (i.e. display
list generated) graphics and gotten familiar with
player-missile graphics. Now we will cover another of
the many playfield features, the ability to redefine a
character set.

A character set is the table of shapes the Atari uses
to define each character. This character set, or shape
table is what makes an "A" character look different
from a "B" on the screen. With the Atari, these shapes
may be altered at will.

With most computers , you cannot change the char
acters the designers give you. The shapes are stored
in ROM and cannot be modified except by creating a
new ROM , a task beyond most of us. This places a
limitation on those machines, for reprogramming
character shapes is a powerful tool for certain
applications.

If we are writing a program to teach the Russian
language, we would naturally like to be able to write
words in that language. But Russian ha s characters
not found in English. With most machines, you are
stuck at this point. Unless you use slow and clumsy
high resolution graphics to draw characters, you can
not use the Russian characters.

On the Atari, it is easy to design your own char
acters. You can use new letters for the Russian lesso n,
and save yourself a lot of time and effort.

If you need some small figures on a character screen,
but do not want to worry about mixing graphics
modes , a character set might solve your problem. You
can control dots the size of an individual graphics 8
pixel with custom characters, for that is the s ize dot
characters are built from. You can even mi x those
special symbols in with your other text. For math
ematicians needing special characters such as summa
tion and integral characters, this could be a real help.

As soon as you begin to consider characters as
graphics 8 figures drawn at high speed on the screen,
more and more interesting possibilities will occur to
you for the use of reprogrammed characters . We will
review a bit about character shapes and generation,
then learn how to modify them.

Character Shapes
The Atari plots letters and graphics on the screen

using individual TV dots. It uses 320 horizonta l dots
and 192 scan lines for this purpose. Characters are
8 X 8 groups of dots, that is 320 / 8 or 40 characters
across and 192 / 8 or 24 rows. There is no space on the
screen between characters. Such space is provided for
within the character shapes. This makes possible con
tinuous script letters, which "now" from one to the
next with no interruption. It also enables screen

46

graphics uSll1g characters that have no "breaks" in
them.

Character shapes are stored as an 8 X 8 group of
bits. A lit dot is represented by a" I" bit, an unlit dot by
a "0" bit (Figure 25). Since each horizontal "slice" of
the character is 8 bits, the Atari's designers put each
slice into one byte, for a total of eight bytes per char
acter. There are 128 different possible characters, and
the y are stored all grouped together, so the complete
"character set" is 128 X 8 or I 024 bytes long.
(Figures 26 and 27) .

Every time a character is displayed , the Atari con
sults this table .

Byte ., 1
B:",te .. 2

B:vte ., 3

Byte ., 4
Byte ., 5
Byte ., 6
B:",te ., 7
Byte ., 8

Character Set
11emo r ::-,

Z Z Z Z Z Z Z Z
/!J 1 1 1 1 /!J /!Jff

D Z 1 1 Z 1 1 Z .I!!

Z 1 1 Z Z 1 Z Z -
Z 1 1 Z Z 1 Z Z -

Z 1 1 Z 1 1 Z Z

Z 1 1 1 1 Z Z Z
Z Z Z Z Z Z Z .I!!

8 bytes in memory
per character.

Figure 25.

A Each character is stored as an 3 b :>,te shape
B table o f dot patterns.
T ro
'E
fT
G
H
T
K There are t 28 characters pel~ c haracter set.

or 128 x 8 '" 1.0'24 bytes total.

Ea,:;h c hara<::ter has a fi x ed p os ition in the

c harac ter set.

Figure 26.

Character Set
Memory

~: Each char acter shape is 8 bytes long.

~ ~ ~~ ANTIC finds the start of the c haracter set ,

~3 ~ 4! takes the character number, and mLll t lpl ies

~§.... ;: that b~,I 8 to find the pos i t i on 0 f the start

o f any character~' s pos i t i o n.

(Actually, the beginning of chal~acter set memory

has other characters in it than letters; the.se ot-e

used for clarity) .

Figure 27.

When ANTIC finds a display list entry to generate
characters (modes 0, I and 2 to Basic users), it looks to
the current location in display memory, kept in an in
ternal ANTIC register. Let's assume graphics O. One
graphics 0 instruction means 40 characters are plotted
in one row for one display block . In a character mode ,
one byte of display memory represents one character,
so ANTIC fetches 40 bytes. Each character has a

uniquc number, 0-127, and ANT IC uses that number
to look up the cha racter's shape in the characte r set.

F irst, ANT IC must find the c ha ract e r se t. Tha t is
easy . T he charac ter set is se nt to ANTIC eve ry sixtie th
of a second by the operating system as part of the
screen refresh process. It is cont ro ll ed by location
2F4 Hex or 756 decimal. T hi s loca ti on we w ill call
C H BAS, for "CHaracter set BASe". The number in
this byte, when multipli ed by 256, spec ifies the start
of the cha racte r set in memory. In the Ata ri , like a ll
6502 processor machines , memory is divided up int o
"pages". Eac h page is 256 bytes lo ng, exac tly cor
res ponding to 8 bits of add ress. In a 16 bit add ress , the
upper eight bits spec ify which page number, and the
lower 8 bit s spec ify which byte within the page. Be
cause the c haracte r se t always sta rt s on a n even page
mark , we on ly need to tell ANT IC where to find the
cha rac te r se t's first page. Next, we must find the g roup
of 8 bytes wi thin the charac te r se t that represent the
shape for a n individual c ha racte r.

The c haracter number in display m emory , known
as the "i nte rna l character set number" (this is not
A T ASC II!) is multiplied by 8 . This is then added to
the CH BAS*256 number to give ANT IC th e start ing
address in memory of the particular c haracter's shape
table . When displaying the character, ANT IC takes
the first byte of the shape tab le, displays it as 8 on or
off dots according to the bits in the shape tab le, then
moves down one byte in the s hape table for the next
line. After eight passes , it has moved down 8 sca n lines
and read 8 bytes and is finished with the cha racte r
(Figure 28).

Ch~ra.:.t er Set
Merrorv

A
B
T
D ::::::---L-

I[:::!:~::
B 1 1 II Bill II

II liB II 1 II II

I II 1 1 II 1 1.3 II

t 0 1 1 1 1 0 .3 II
II II 0 II II II II II

ANTIC pulls the data from the shape table
in order t o plot a g i vel"l character .

It plots one line at a time out of the
character ~et table. fro m top to bottom.

Figure 28.

If we te ll ANT IC the shape table began somewhe re
else in memory , it would look to the new location and
sta rt using whatever data was there to displa y char
acte rs. You will reca ll th a t earli er we told ANTIC that
disp lay memory was located in low memory , to watc h
it display pages 0 a nd I of memory, a n area where
there is a ll so rt s of activ it y go ing on, as characters .
T h is is th e same id ea. If the new area of memory hap
pens to be a table of cha racte r sha pes, redefined to
what we wan t them to be, ANT IC will use th e m with
out comp la int.

47

We cannot change the existing cha racter set. It is
sto red in ROM (read-only-memory) and can no t be
modified. So what we need to do is copy that ROM
character set int o RAM (Read-Write-Memory),
where we can modify it , and then tell ANTIC to sta rt
looking to RA M for the character set. All we do (to
c ha nge w here ANT IC looks) is POKE a new page
numbe r in memory into locat io n 756. A s ixt ieth of a
second later, the ope ra ting system will give ANTIC
tha t new va lue as part of the scree n refres h, and it
will sta rt usi ng it.

Our de monstration program s wi ll demonstrate this
process and show us how characters are stored .

Program 21 begins at the start of the unmodi fiab le
character set the A tari norma ll y uses, the ROM
characte r set. It fetches 8 bytes per characte r, breaks
each byte up into indi vidual bits , and displays them
as "O"'s and " I"'s. T he program goes through the
ent ire character se t this way, displaying what the
cha rac te rs look like in bina ry patterns. See the li sti ng
for an examp le. You ca n see how ANTIC uses the " I"
bits to plot lit dots a nd thus characters.

80 DIM BINS(B)
90 REM O.S. S HA~OW FOR CHBAS=2F4 HE X
100 CH= 2*256+15*16+4
130 CHBAS=P EE K(C H)W2 56
200 REM
210 FOR CHNUM=0 TO'127
21 1 PRINT CHNUM.CHRS(CHNUMI
212 GOSUB'220
213 PRIIH
214 NE XT CHNUM
215 REM FIDDLE CHRS VALUE TO ROM VAL
220 IF CHNUM c32 THEN CH=C HNUM+64
230 IF CHNUM c96 THEN IF CHNUM >3 1 THEN CH=CHNUM-32
240 IF CHNUM >85 THEN CH=CHNUM
250 REM PULL 8 BYTES. TRANSLATE.PRINT
260 CLOC=C HBAS+(B*C H)
270 FOR B=0 TO 7
280 BYTE=PEEK(CLOC+B)
290 GOSIJB 500
300 PRINT B+l;"* ";BINS
310 NE XT B
320 RETURN
500 REM DECIMAL TO BINARY
505 BIN$="
510 DIV=12g
515 BYTE1=BYTE
520 FOR T=1 TO B
53 -" B i T ·~ irH(BY T El/DIV)

5 35 IF 3 IT="! THEN BIN1H T.T)='j'
54 0 IF 3I T=! TH~N BYTE1= BYTE1-DIV
550 DIV=INTCDIV/2)
560 NEXT T
;; I -2 RETURN

Program 2 1.

You are going to soon not ice that cha racters are no t
stored in AT ASC II order. They are in the o rder orthe
internal cha racter set, which is a diffe rent thing. You
can find a li sting of the internal o rder on page 55 of
your Basic manual.

Program 22 dumps the specified characte r to the
printer; just type in the letter whose bit pattern you
wou ld li ke to be displayed. It is converted int o an
ATASCI I number, then into the internal character set
number, then displayed. This program is hand y in

Character Sets

showing how to convert from AT ASCll to internal
format. To find the right bytes in the character set, the
internal number is just multiplied by 8 and added to
the number that represents the start of the character
set, which you will recall is just how ANTIC does it.

80 DIM BIN$(8)
90 REM 0.5. SHADOW FOR CHBAS=2F4 HEX
100 CH=2*256+15*16+4
130 CHB AS =PEEK(CH)*256
200 PRINT "ENTER CHARACTER NUMBER"
210 INPUT CHNUM
2 11 PRINT CHNUM,CHR$(CHNUM)
212 GOSUB 220
213 PRINT
2 14 GOTO 200
2 15 REM F IDD LE ~HR$ VALUE TO ROM VAL
220 IF CHNUM C32 THEN CH=CHNUM+64
230 IF ~HNUM (96 THEN IF CHNUM>31 THEN CH=CHNUM-32
240 IF CHNUM >95 THEN CH=CHNUM
2 5 0 REM PULL 8 BYTES. TRANSLATE.PRINT
260 CLOC=CHBAS+(8*CH)
270 FOR E=0 TO 7
280 BYTE=PEEK(CLOC+B)
290 GOSIJB 500
300 PRINT E+1;"~ ";BIN$
3 10 NE XT B
320 RETU RN
500 REM DECIMAL TO BINARY
505 EIN!="
510 DIV=128
515 BYTE1=BYTE
520 FOR T=1 TO 8
5 30 BIT=I NT< BYTE1IDIV)
535 IF ~ iT=l THEN BIN$(T,T)="I"
540 IF 3IT=1 THEN EYTE1=BYTE1-DIV
550 DIV=INTIDI V! 2)
560 NE XT T
~ 10 RE T!)RN

Program 22.

The character set we are currently looking at is in
ROM, as previously mentioned. Let's learn how to
move it to RAM to allow us to modify it. This will
consist of three steps:

I. Finding a place to put it. We need 1024 free
contiguous bytes of RAM.

2. Copying the ROM character set to RAM.
3. Changing the "pointer" ANTIC uses to find the

character set from its old ROM location to the new
RAM location.

Step I is tricky. To properly understand how to do
this , we must delve into some Atari memory secrets.

When the Atari is first turned on, a check is made to
determine where RAM ends. This can be anywhere
from 8K to 48K from the beginning of memory; it de
pends on how many memory boards you have in
sta lled. In location 106 decimal (6A hex) is stored the
page number of the first byte of non-existent memory.
In other words , 256*PEEK(106) is the address of the
first byte of nonexistent memory.

Now the Atari uses the very top of RAM memory ,
wherever that might be , for the display memory and
display list storage. Right below that is free RAM, and
below that is Basic storage. (Basic and the graphics
modes "grow" towards each other into free RAM
when they use more memory) . So whenever a graphics
command is executed , and the Atari need s to set up a

48

new display memory-display list, it checks location
106 to see where RAM ends. It the n backs up the re
quired number of locations and puts the display
memory in (Figure 29). Think of memory location 106
as the Atari's "fence", used to find the end of memory.

I

Address

HHIil

. ?1?

. 1??

. ?11
???

??1
???

t

1

Usage

Operating System

Bas i c Program Storage
Grows Downwards into Free Memory

Free Memory
(Size varies)

Display List

Display 11emor;!
Grow UpVJards 1 nto Free Memory

1'/ (Cart r idge ,etc, or end of RAf'1)

Hence, PEEK (06) marks the last address of usable
memory to the Atari. The display memory i.s put
immediate ly above it.

Figure 29.

Now let's assume we POKE 106, PEEK(106)- 4).
This will move back the end of memory fence by 4
pages. Each page, you will recall, is 256 bytes , so that is
4 times 256 or 1024 bytes moved back . We then
execute a graphics command , so the Atari will move
the disp lay memory list out of that 1024 byte area ,
behind our fence (Figure 30). In this way we reserve
1024 bytes for memory starting on a page border.

(free)

(free)

(disp l ay
area)

r------j llJ6 "fence"

(d i spl a y
ar':!a.)

'-___ ----' 1.06 " fence"

(memo r y now
open for
user 's
needs)

IH 2 . bytes

When the IlJ 6 "fence" i .'3 moved upward~. and a
gr~phic5 comma.nd re-executed, memory below it
is l e ft open for user 's appl icati ons (character
sets, pl ayer - missi Ie graphics , and s o forth) .

Figure 30.

There a re severa l ad vantages to get ting 1024 bytes
this way. It does not matter what size memory
machine you have , as long as the minimum 1024 bytes
are available . It does not matter how long your Basic
program is or what graphics mode you are in. You can
see it is quite a handy general purpose thing to have.

This is also the preferred technique to use when
reserving memory for the P layer-Missile bitmap area.
8 pages are required for a 2048 byte bitmap (single
line resolution) or 4 for 1024 bytes (double line
resolution). You will see this byte 106 modification in
most articles on Player-Missile graphics.

We now know the beginning of the RAM area, and
where the ROM character set starts (EOOO Hex or
57344 Decimal) . Let's copy the ROM character set to
RAM (Program 23). This program moves the 106
pointer back 4 pages a nd copies the character set over.
It takes a while ; around ten seconds is needed to copy
1024 bytes. Basic just is not very fast at copying da ta.

60 REM COPIES CHARSET TO RAM
100 MEMTOP=PEEK(1(6)
110 GRTOP=MEMTOP-4
120 POKE 106,GRTOP
130 REM RESET
140 GR APHICS 0
141 LIST
160 CHROM=PEEK(756)*256
170 CHR AM =GRT OP*256
180 PRINT "COPYING . "
500 FOR N=0 TO 1023
510 POK E CHRAM+N,PEEKICHROM+N)
520 NEXT N
530 PRIN T ·COPIED."
535 REM NOW MODIFY POINTER
5 40 POKE 75S,GRTOP

Program 23.

Finally, the CH BAS pointer is changed to reflect
the page of the beginning of our new RAM area.
ANTIC is now using the RAM character set
(Figure 31).

Program 23 is not going to show you much, for
ANTIC will still be displaying characters as usua l. So
let's watch the copy process in action . This time we will
move t he character set pointer first, then do the copy.
Your screen will suddenly start display ing whatever
junk is in memory at the start of the copy as the po inter
is changed, then more and more letters will a ppea r as
Basic gets more and more character shapes copied into
the RAM tab le. At the end of the copy, the sc ree n will
once again appear normal (Program 24).

Program 25 presents an interesting variation. It
copies characters from ROM and RAM upside down.
It does this by copying the eighth byte of eve ry char
actel' into the first byte of that character 's new bit
map, the seve nth to the seco nd , and so forth. The
resu lt is that the new RAM bitmap is an in ve rt ed
image of the ROM bitmap. This is a lot of fun. The
characters will still be on the screen, and you can
even edit them . They will just be upside down .

Program 26 shows another useful variation. It makes
eve ry cha racter's last byte be a 255 . or solid l's . This
puts a so lid line at the base of the characters , a nd there
is thus a line at the bottom of each of the 24 character
rows. If yo u ha ve been wondering how to underline a
particularly important concept on the Atari sc reen,
yo u ha ve just found out how .

49

Basic

The ROM character set \s copied
Free t o RAM, then the CHBAS po int er
RAM ANTIC uses is c hanged to tell

ANTIC to u~e the RAM charact ers .

Di sp lay
Memory

PEEK (lJJ6) RAM CHBA5 POINTER (new)

C-SET

]
......-

MEMTOP

ROM- CHBAS POINTER (old)

C-Set

Figure 31.

l.HIS I:!N I:!lI:!tn INi\3~.130 S:)~331'1

Sample o f inverted c harac ter's . Editing and
all cursor fu.nctions can be performed with the
Ata.ri in this mode .

Figure 32.

Program 27 illustrates another handy character set
feature. W e can POKE different va lues into the
CH BAS po inter and thus switch between multip le
character sets immediately. In program 27 we have two
character sets, on e normal, one flipped upside down.
The program switches between them rapidly for an
effect that is hard on the eyes . Assembly language pro
grammers take note: with a display list interru pt , you
can change character sets midway down the screen,
The poss ibilities with that are amazing. Just POKE
a new value into the ANTIC hardware address for
C HBAS,

Now let's assume we have decided to modify a ROM
character set to accustom one of our needs . Let's work
it out by hand the first time. Incidentally, an editor
based on this hand working out is not too difficult to
write, and there are many out on the market. None
however , have the storage scheme that we will be
discuss ing shortly.

60 REM COPIES CHARSET TO RAM
10 0 MEMTOP=PEEK(106)
110 GRTOP=MEMTOP-4
120 POKE 106,GRTOP
1 30 REM ' RE S ET
1 40 GRAPHIC S 0
141 LI 5T
160 CHROM=PEEK(756)*256
170 CHRA M=GRTOP *25 6
1 72 REM NOW MODI FY POINTER
1 73 PO KE 756,GRTOP
180 PRINT "COPYING . "
500 F OR N= 0 TO 1 023
5 1 0 POK E CHRAM+N,PEEKICHROM+N)
520 NE XT N
530 PRINT · COPIED."

Program 24.

Character Sets

50 REM COPY CHARSET UPSIDE DOWN
100 MEMTOP=PEEK(106)
110 GRTOP=M EMT OP -4
115 CLOC=GRTO P
120 POKE 106,GRTOP
130 REM RE SET GR . 0 DM/DL AREA
140 GRAP HI CS 0
141 LI ST
150 CH=756
160 CHROM=P EEK (CH)*256
170 CHRAM=GRTOP*256
175 PRINT " CHRAM= " ;CHRAM;" CHRO M=";CHROM
180 PRINT " CO PYING . "
190 REM COP Y ROM TO RAM
300 POKE CH,CLOC
5 0 0 FOR N=0 TO 1023
51 0 POK E CHR AM+N, PEE KCC HR OM+N)
520 ~IE X T t·1
530 PRINT "COP IED. "
55 0 REM NOW COPY UP SIDE DOWN
600 FOR CHNUM=0 TO 127
610 FOR E1 TE=0 TO 7
6 1S Z=PEE K(CHROM+(CHNUM*8'+EYTE)
6 2 0 POKE (CHNUM~8)+ (C H RAM ' + (7-BY TE),Z

630 NE XT EYTE
63 5 NE XT CHNUM
640 PRI NT "REC OPI ED ."

Program 25.

100 MEMTOP=PEEKC 1(6)
110 GRTOP=MEMTOP-4
115 CLOC=GRTOP
120 POKE 106,GRTOP
130 REM RESE T GR.0 DM/DL AREA
140 GRAP HI CS 0
141 LIST
150 CH=756
160 CHROM=PEEK(CH)Y.256
17 0 CHRAM=GRTOP*256
17 5 PRINT "CHRAM= " ;C HRAM;" CHR OM = ";C HR OM
180 POKE CH,GRTOP
6 00 FOR CHNUM= 0 TO 127
6 10 FOR EYTE=0 TO 7
6 15 2 =PEEK (CHROM+CC HNUM*8'+B YTE)
6 16 IF 3 YTE=7 THEN LET 2= 255
6 2 0 POKE C C H NlM~8) + (CHRAM)+ (BYTE),Z

630 I~E X T EYTE
63 5 NE XT CHNUM
6 4 0 PR INT "RECOPI ED."

Program 26.

First, let 's des ign the character we want as an 8 X 8
dot matrix

00111100
01000010
I 0 100 101
100000 0 1
10100101
100 1 1 00 1
01000010
00111100

T his is, of course, the character from the " Have a
Nice Day!" button.

Let 's determine the bit pa tterns. You ca n do this by
either conve rtin g eac h nibble (4 bits) to hex and t hen
go ing to decimal , or for th ose of yo u with out binary
experience, just add the number show n o n the top of
the co lumn to the total for that line whe never the dot it
represents is on. For exa mple, in the diagram, 16 and 8
are "on", so add 16 + 8 = 24.

50

45 REM THEN FLIP S BACK AND FORTH
10 0 MEMTOP=PEEK (106)
110 GR TOP=M EMT OP-4
1 15 CLOC=GRTOP
12 0 POKE 106,GRTOP
130 REM RESET GR . 0 DM/DL AREA
140 GRAP HI CS 0
141 LI ST
150 CH= 7 56
160 CHROM=PEEK(CHI*256
170 CHRAM=GR TOPY.256
17 5 PRINT "CHRAM=";C HRAM;" CHROM=";C HR OM
180 PRINT " COP YI NG. "
190 REM COPY ROM TO RAM
300 POK E CH,C LOC
5 00 FOR N=0 TO 1023
5 10 POKE CHRAM+N,PEEKC CHR OM +N)
520 NE XT N
5 30 PRINT "COPIED . "
550 REM NOW COPY UP S IDE DOWN
60 0 F OR CHNUM=0 TO 127
6 10 FOR EYTE= 0 TO 7
6 15 Z=PEEKCC HROM+(CHNUM*8)+BYTE)
620 POK E (CHNUM Y.8)+ CC HRAM)+(7 - BYTE),Z
6 3 0 NE XT EYTE
635 NE XT CHNUM
640 PR ! NT "RE COPIED."
7 (' 0 RUI FL I P
7 10 POK E CH,224:REM NORMAL RO M
720 POK E CH, CLOC
73121 GO T-) 71 0

Program 27.

At the end of this process, you will have 8 bytes of
data which represent the bitmap for that character.
Next, let's figure o ut which c haracter we a re go ing to
rep lace with our SM IL E c ha racter. How about the
space character'! There are plenty of those on the
scree n. The space character is the first one in the
ROM-RAM c haracter set , character number 0, in
internal code . So what we do is POKE these 8 bytes
int o the location where the space character's bitma p
is located, replacing them with the SM ILE character.
See program 28, which is just our routine to copy the
cha racte r set from ROM to RAM with the add ed
POKEs (the numbers a re in the DATA statement).

If we wanted to replace a nothe r charac ter , we would
mUltiply its characte r number by 8, add that number
to the add ress of the start of the c haracter set, and
start POKEing there. That is why "LOC=(CHBAS
+ (8+0))" was used . Replace the 0 wit h whatever
number you wis h.

At this point your Atari wi ll be smiling proudly at
yo u from eve ryplace a space used to be. Take a minute
to enjoy the happ iness of your success .

Storing & Retrieving Your
Character Set

You do not have to re-POKE yo ur cha racte r set
each time you want to use it. After a ll , the POKE
method of copying the 1024 bytes from ROM to RAM
is one of the greatest sleep inducers known. Let 's so lve
all these problems with so me custom routines for
character set work. They a ll work off of stri ng manipu-

la ti o ns, which a re a mo ng the m os t powerfu l a nd
usa ble o n the A ta ri . The reason fo r the ir power is the ir
speed in a n othe rwise s lo w Bas ic ; the string ma nipu
lat io n ro utines a re just high speed asse mbly la nguage
co py routines. Let 's subve rt them to o ur purposes, and
have asse mbly speed witho ut a ll the hass les.

Eac h string is sto red in me m o ry a s a co ntinu o us
g ro up of bytes . A string has a 0 1 Mensio ned le ngt h, a
"c u rrentl y in use" length , a nd a loca ti o n in me mory.
Let's ass ume th ey bo th have length 1024 . A nd let's
ass ume tha t th e storage loca ti o n whe re the Ata ri
thin ks R A M$ is in mem o ry just ha p pe ns to be o ur
R A M c ha rac ter set area . Le t 's further ass ume tha t
ROM $ is in th e ROM c ha rac te r set a rea (o r so the
A ta ri thinks). Wha t will ha ppen when we then execute
R A M $=R O M$?

T he Bas ic st r ing manipula ti o n ro utin es will co py
1024 bytes (dimensioned le ngth) fro m R OM$ to
R AM$, a nd thus co py the RO M c ha rse t to the R A M
cha rset at ex tremely high speed!

Yo u ca n modify the R A M c ha rac te r set a ny way
yo u wish . Bea r in mind yo u ca n d o this with e ithe r a
PO KE o r a string o pe ra to r; whe n yo u m o di fy the
strin g, yo u a re modifying the R AM cha racte r se t.
(Yo u ca nnot m odify ROM $.) Le t's writ e R A M$ o ut to
di sk. The A ta ri will sto re yo ur charac te r se t o ut o n
di sk as a string. Let 's rea d it bac k in at so me la te r
d a te, still usin g a ll string ma nipula ti o n ope rat ors ,
a nd sto re it back int o the c ha racte r set a rea. Yo u will
have just st o red a nd recove red yo ur cha racte r set. No
ha ssles with bits a nd bytes, just a PR I NT to d isk a nd
a n IN PUT la te r o n.

T he po wer o f the copy ca pa bility is a lso usa ble in
playe r-miss ile g ra phics. Yo u ca n ass ig n a string to t he
playe r bitma p a rea , and then move the player up a nd
d own at high speed using a $=$ ope ra ti o n . T hi s is a
ni ce fas t way to mo ve a playe r ve rtica ll y, which befo re
required e ither assembly la nguage o r slow POK E
co pies. A nd strings may be used fo r da ta sto rage. T he
di splay list inte rru pt ro ut ine listed earlie r used a st rin g
to sto re da ta bytes for co lo r reg iste rs , a nd a no ther
strin g t o ho ld the asse mbl y prog ram used for the
interrupt ha ndling .

Let's lea rn ho w to cha nge where the A ta ri thinks a
strin g is loca ted in mem o ry. T he n we will ge t to the
ac tua l subrou tines you ca n use.

T he Ata ri kee ps two ta bles in me mo ry fo r Bas ic
(a m ong o th ers) th a t d ea l with string va ri a bles. O ne is
ca ll ed th e va ri a ble tabl e, the o ther th e arra y ta ble.
T he re a re 128 poss ible va ri a ble na mes o n th e A ta ri ,
n umbe red 0-1 27 . a nd the va ria ble ta ble ha s a n 8
bytc entry fo r eac h na me in use . A ll the e ntri es a re
pac ked toget her. Fo r strings this entry has d im en
sio ned a nd in-u se length , a nd where in the a rray ta ble
th e string is sto red . The a rray ta ble is th e o ther ta ble.
In it the s tr ing's actua l da ta is ke pt. So, wha t we have
to do is' a lt er t he dimensio ned a nd in- use le ngth as
show n in th e va ria ble ta ble, both to 1024, th en modify
where t he Atar i t hinks th e va riabl e is sto red in the

51

a rray ta ble. T he o nl y tri cky pa rt t o this is tha t the
a d d ress o f where the string is actu a ll y sto red is re la tive
to the a rray ta bl e; in o the r wo rds, a "0" for thi s va lue
d oes no t mean the string starts at location 0 , it sta rt s
a t t he beg innin g o f the a rray ta ble.

Yo u ca n find the beg inning o f the va ria ble ta ble by:
VT= P EE K(134)+256* P EE K(135)

T he beg inning o f the a rra y ta ble is fo und by:
A T= PEE K(140)+256*pee k(141)

We will examine the actual layo ut of the va ria ble
ta ble e ntries a ss uming that RAM $ a nd ROM $ a re the
first t wo va ria bles in the va ri a ble ta ble . In rea lity
to d o thi s they must be the first variables types
in a NE W prog ra m o r EN T E Red from a p ro
g ra m LI STed to di sk. (A SA VE-LO A D will no t wo rk ,
it sto res the va ri a ble ta ble along with the prog ra m .)
So if yo u're sta rtin g o ut with a new progra m , just
ha ve the D IM line (10 DIM R A M $(I), ROM $(I) as
the first line o f yo ur program a ft e r ty ping NE W ; if
yo u a re adding these t o a n ex istin g progra m , ma ke
sure th a t the first line a nd LIST it t o di sk and ENTE R
bac k to rewrite the ta bles.

T he va ri a ble ta ble entry is c rea ted fo r an y va ria ble
refe renced by yo ur progra m. This includes va ri a bles
yo u used o nce and the n d eleted ; they a re still there
taking up space. Yo u can run o ut of space in the
vari a bl e ta ble when it gets too full o f these no n
ex istent vari a bles. LI ST , the n ENTE R fr o m di sk
fo rces a new vari a ble ta ble t o be built.

He re's th e va ria ble ta ble with expla nations.

Location Value Meaning

VT+O 129 "This is a string"
VT+l 0 "This is variable # 0"
VT+2, VT +3 ?? 16 bits . Location fro m

the sta rt of AT.
VT+4, VT+5 ?? DIMensioned length .
VT + 6, VT+7 ?? In-use length

T hi s is the e ntry fo r R A M$, th e first strin g in t he
ta bl e. T he entry fo r ROM $ immedi a te ly foll ows.

T hi s s ubroutine sho uld now become c lea r. It
modi fies the address a nd length of R A M $ to tha t of
th e c ha racte r set. It not o nl y co pies ROM$ to R A M$,
it a lso m o difies the varia ble table data for ROM $. (All
the m odifying, by the wa y, is quite speedy, so the
R A M $=ROM $ st ill exec utes much faster tha n the
prev io us POK E co py). (See Prog ra m 29) .

Character Sets

60 REM COPIES CHARSET TO RAM
70 RE M POKES POINTER B/4 COPY
80 REM HDDS SMILE
100 MEMT OP=PEEKC 106)
110 GRTOP=MEMTOP-4
120 POKE 106,GR TOP
130 REM RESET
140 GRA PHI CS 0
141 LIST
145 CHR OM= PEEK(756''f.256
150 REM NOW MODIFY POINTER
160 POK E 756 ,GRT OP
170 CHR AM= GRTO P*256
180 PRINT "CO P YI NG."
500 FOR N= 0 TO 1023
510 POKE CHRAM+N,PEEKCCHROM+N)
520 NE XT N
530 PRINT 'COPIED,"
540 REM ABCDEFGHIJKLMNOPQRSTUVWXYZ
550 REM 1235678:3 0 !' .$y'& '@()<)- =+lIE
1000 REM S MILE BUTTON LAYOUT:
1010 REM 00000000 00 00

REM 0 11 001 10 1020 66 102
1030
1040
1050
1060
1070
1080
1089

REM
REM
REM
REM
REI1
REM
REM

01 10011 0
00000000
01000010
001111 '~0
000110'~0

'2I00000 f~0

66 102
00 000
42 66
3C 60
18 24
00 00

1090 DATA 00 .102.102.000 .66.60.24.00
11 00 FOR ADDR =CHRAM TO CHRAM+7
1110 READ DAT:POKE ADDR.DAT
1120 NE XT ADDR

Program 28.

5 REM PROGRA M TO COPY ROM TO RAM
6 REM USING STRING MANIPULATOR S
7 RE M
8 REM NOTE MOST CALCULATIONS ARE NOT
9 RE M HARDCODED TO ALLOW OTHER USE
10 DIM I,AM"(1) , ROMt(1): REM VT ENTRY 1
90 REM GET ARRAY,VARIABLE,DL,DM LOC
105 AT=FEE K(140)+2 5 6l1EPE EI« 141)
110 VT=FEEI« ·I 34)+256l1EPEEI« 135)
120 FOKE 10S,PEEK! 10SI- IS :REM 4K MOVE
125 GRAPHICS 0:RE M RESET OUT OF TOP AREA
130 RAMLOC=P EEIU 106)lIE258
150 REM CA LCULATE OFFSET FROM AT
160 OFFRAM=RAMLOC -AT
170 OFFROM=(14'f.4096)-AT
220 REM CALC ULATE LO,H I BYTES
225 LEN S=1025 :R EM C-SET LENGTH
230 LENHI=INTCLENS!256)
240 LENLO=IN T(LENS - (LENHI lIE256)
245 REM
2500FFRAM H=INT (O FFRAM!256)
260 OFFRA HL=INT(OFFRAM-(25 6l1EOF FRAMH)
270 O FF RON~ =iNT(OFFROM ;2 58)

2800FFR OML=INT(OFFROM-(256l1EOFFROMH))
300 REM REWRITE RAMI DATA'IN VT
310 REM VT+0 = 129
3c>~ REI! \i T + 1 = ,z. (',,'AP. *0)
330 POKE VT+2,OFFRAML:REM OF FSET
3 4 0 POKE VT+3,0FFRAHH:REM OFFSE T
350 POKE VT+4 , lENLO:REM DIM LENG T ~

360 POKE VT+5, LENHI:REM DIM LENGTH
370 POi<E VT+6,LEN LO:REt! USED LENGTH
380 POKE VT+7, LENHI: REM USED LENGTH
400 REt! REWRITE ROMI DATA iN VT
41 0 REM VT+8 = 129
420 REM VT+S = 1 (VAR #@)

430 P:)KE VT+10, ') FFR OML:REM OFF SET
440 POKE VT+ll ,OF FR OMH : REM OFF SE T
450 POKE VT+12,LENLO:REM DIM LENG TH
460 POKE VT+13, LENHI:REM Dlt! LENG TH
4 70 POKE VT+14,LENLO:REM USED LENGT H
480 PO KE VT+1 5,LE NHi:REM USED LEN GT H
5'~0 RE f! RES:O~: E t:t-·j!3:{4'3 P(' iNTER
511!' POII, E 756 I PEEI'-: ~ "l (,,;)

515 PEM N0t~ DO COP Y .
52(' RAM !f:=ROM :ff;

Program 29.

52

Part II
Graphics Tips

Design Philosophy and G TIA Demos

This last year marks a period of
incredible growth for the Atari computer.
The Atari Program Exchange got going
and is now shipping a large volume of
Atari software. This exchange provides
low-cost but relatively high quality software
written by outside users.

Last year at this time there was no
lawbreakers, Asteroids, or Missile Com
mand; now these programs are being
surpassed (Have you seen Mouskattack
yet? The cover art alone is worth the
purchase price.)

Last year we had the Basic and Assembler
cartridges, neither of which was designed
for speed or for large programs. Now we
have Microsoft Basic , the awesome new
Editor/ Macro Assembler, Pilot, Forth , Lisp,
and according to a letter I just received ,
Algol.

The tools to develop high quality software
are now available; and it is a safe bet that
more good software will be appearing on
the market.

Outside manufacturers are also producing
a wide variety of hardware for the Atari.
There are several modems available, one
of which I will review shortly (the direct
connect Microconnection).

There is also a good deal of hobbyist
oriented equipment , such as EPROM
burners, I/O port connectors, and whatnot,
and a light pen is now available from non
Atari sources.

Percom Corp. in Texas is now marketing
an entire line of Atari-compatible single,
double and quad density disk drives, and
other companies have introduced Win
chester drives. Atari has even published a
list of outside vendors of software and
hardware for their machine.

And did I mention the news that Atari
has surpassed Apple in sales? And rumors
of new A tari machines are currently flying
(something may be announced in June, I
am told). This machine is here to stay , and
will continue to grow for quite some time.

What Is an Atari?
If you own an Atari , you may be curious

to learn what you have bought. I searched
long and hard for a definition of what
Atari has produced; "home computer" is
too vague. After all , it does have a specific
and limited place in the market. For example
Atari dropped the 815 double density dual
disk drive when it did not conform to their
definition of a "home computer."

The definition I finally found , is a "home
computing appliance." Chew on those words
for a while ; they contain the essence of
the design and marketing strategy of the
Atari. This is a second-generation consumer
oriented machine, carefully designed and

oriented towards the home market from
the ground up .

Atari is not in the business market. They
have no intention of competing with Tandy,
Apple, and IBM, who are currently beating
their respective heads together trying to
capture that field. Atari stands with Texas
Instruments in the home computer market
place with a strategy of aiming at the home
user.

Products designed for home use
principally games, home finance, and
education/ development-are released and
pushed hard. Pilot offers a good example
of the educational potential of this machine,
and the games available for the Atari are
becoming the standard for the home
computer ind ustry.

Bear in mind also that this is a consumer
machine. It is not designed for a hardware
or computer professional. It is designed
for an average person who wants a "home
computing appliance ."

It is not as hardware oriented as the
Apple . It doesn 't have a collection of open
"slots" on the various busses available.
What housewife seeking help with her
checkbook honestly cares whether or not
she can access the interrupt request line
with a plug-in card?

The layout is for a consumer. The
machine is attractively styled, .and goof
proof. Memory and the Operating System
are packaged in cartridges located under
the front cover, and joysticks plug in easily
under the front keyboard.

Many of the programs available can be
used by a consumer with little knowledge
of computers; they plug in on ROM car
tridges (most four-year old kids r know

LOGO
1 TRAP 80
2 DIM A$(30),SINEC450)
3 GOSUB 30000
4 DEG
10 GRAPHICS 10

can master this trick), and the system Reset
key is protected against accidental press,
and so on.

I remember being told that "The Atari
isn't a serious machine because it doesn 't
offer PASCAL." I have heard this sort of
complaint many times, always directed at
something the Atari lacked, be it Cobol,
Fortran-1933, or whatever. The people who
voice these objections (in most cases,
computing professionals) don't understand
that the Atari home computer is Atari's
very serious attempt to make a computer
that a home user can get along with-not
necessarily a programmer, just a home
user. It may not have the current languages
that are in vogue today (and possibly gone
tomorrow). But this is by design and not
by default.

So, while the Atari may not at first
glance look like a powerful computing
machine, with lots of lights , integrated
circuits, and cables all over the place, it is.
It has just been designed for a home
computer user according to Atari's idea of
who the home computer user is.

Oh, and yes , Pascal is now available for
the Atari.

GTIA Demonstration Programs
As of January 1982, Atari began shipping

all Atari 800 units with GTIA graphics
chips. The GTIA chip replaces the CTIA
graphics chip and allows three more
graphics modes. Don't worry, the operating
system ROM and the Basic cartridge were
written with GTIA in mind. GTIA is a
superset of the CTIA functions.

Several short demonstration programs
for the GTIA exist. I don't know where

15 FOR 1=1 TO B:READ A:POKE 704+1,1.1G+G:NEXT I
20 COLR=I:'1'=1
30 FOR X=10 TO 69
40 COLOR COLR
50 PLOT X,141-'1':DRAHTO X,191-'1'
52 PLOT 79-X,141-Y:DRAHTO 79-X,191-'1'
54 FOR Q=36 TO 43
55 PLOT Q,191-Y:DRAHTO 0,141-'1'
56 NEXT Q
60 '1'='1'.1.23
65 COLR=COLR+l:IF COLR>8 THEN COLR=1
70 NEXT X
80 X=USRCADRCA$))
90 FOR J=1 TO 12:NEXT J
100 GO TO 80
1000 DATA 2,4,6,B,6,4,2,2
30000 REM ••• SET UP ASS'1' PROGRAM
30010 RESTORE 31000
30020 FOR Z=1 TO 27
30030 READ X:A.CZ)=CHR$CX)
30040 NEXT Z
30050 RESTORE
30060 RETURN

55

GTIA Demos

they were written, but I would assume
somewhere at Atari by someone with a
preliminary GTIA chip.

Below are several listings of sample G TlA
programs. Users with CTIA graphics chips
can try these programs, but don't expect
spectacular results. Users with GTIA chips
will be in for a pleasant surprise, indeed.

Feel free, as always, to modify them,
and if you come up with a really neat
effect, I'd appreciate a listing or a disk/ tape
(I'll return your disk/ tape, of course.) The
address appears at the beginning of the
column.

By the way, if the author of these
programs would care to step forward , I
will certainly give him credit. I would like
to know who wrote them.

Be sure to include the following two
lines a t the end of LOGO, HYPNO,
ESCA PE, MELONS, SAS, and
WHIRL.

31000 DATA 104, 162, 0, 172, 193,
2, 189, 194,2, 157, 193,2,232,224,8,
144, 245, 140, 200

31010 DATA 2, 96, 65, 65, 65, 65,
65, 65 0

HYPNO
2 DIM AI(30)
3 GOSUB 30000
10 GRAPHICS 10

MELONS
2 DIM AI(30),SINEC450)
3 GOSUB 30000
4 DEG
9 FOR 1=0 TO 90:? I :A=SIN(I):SINE(I)=A:SINE(180-1)=A:SINE(180+1)=-A:

S I NE(360- I)= -A: S I NE (360 + I)=A: NEXT I
10 GRAPH I CS 10
15 RESTORE :FOR 1=1 TO S:READ A:POKE 704+I,A:NEXT I
18 FOR P=1 TO 2
20 0=1
25 A=30
30 FOR ANG=180 TO 270 STEP 8
40 X=20*SI NE (A NG+90)+25
50 Y=A*SINECANG)
55 Z=X:IF P=2 THEN Z=79- X
60 COLOR 0
65 IF ANG=180 THEN OLDX=Z:OLDY=Y
70 PLOT OLD X,96+0LDY
75 DRAWTO Z,96+Y
77 OLDX=Z:OLDY=Y
80 REM
90 NE XT At1G
95 O=O+I:IF 0)7 THEN 0=1
100 A=A-l
110 IF A)-30 THEN 30
200 FOR ANG=0 TO 180 STEP 10
2 10 COLOR 8
220 X=4*SINE(ANG+90)+25
225 Z= X:IF P=2 THEN Z=79-X
230 Y=3i*S INE(ANG)
240 PLOT Z,96+Y
250 DRAWTO Z,96-Y
260 NE XT ANG
300 FOR 1=1 TO 25
310 X =RND(0)~6+23

315 Z=X: IF P=2 THEN Z=79-X
320 Y=RND(0)~50+71
330 COLOR 0
340 PLOT Z,Y
350 NE XT I
400 NE XT P
900 REM X=USR(ADR(AI»
910 FOR J=1 TO 10:NEXT J
920 GO TO 900
10@0 DATA 226 ,228,230,232 ,230,228,226,70
300@0 REM ~~* SE T UP ASSY PROGRAM
30@ 1@ RESTORE 3 1000
3002@ FOR Z=l TO 27
30@3@ READ X:AICZ)=C HRI(X)
3004@ NE XT Z
3005@ RESTORE
3006@ RETURN

15 FOR 1=1 TO 8:POKE 704+1,(1-1)lIf32+22:NEXT I
20 0=1

ESCAPE
2 DIM AI(30)

30 FOR Y=0 TO 191
40 COLOR 0
50 PLOT 0,Y
60 DRAWTO 79,191-Y
70 0=0+0.416666666:IF 0)8 THEN 0=1
75 REM FOR T=l TO 100:NEXT T
80 NE XT Y
120 0=1
130 FOR X=79 TO 0 STEP -1
140 CO LOR 0
150 PLOT X,0
160 DRAW TO 79-X,191
170 0=0+1: IF 0)8 THEN 0=1
180 NE XT X
190 REM COLOR 0:PLOT 0,0:DRAWTO 79,191:PLOT 79,0:

DRAW TO 0,191
200 X=USR(AD-R(AI))
210 FOR J=1 TO 4:NE XT J
220 GO TO 200
30000 REM *** SET UP ASSY PROGRAM
30010 RESTORE 31000
30020 FOR Z=l TO 27
30030 READ X:AI(Z)=CHRI(X)
30040 NE XT Z
3005@ RESTORE
3006 0 RETURN

3 GOSUB 30000
10 GRA PHI CS 10
15 FOR 1=1 TO 8:READ A:POKE 704+I,A+224:NEXT I
17 0=1
20 FOR 1=0 TO 38
4 0 COLOR Q
4 2 X=I
45 Y=I~2
5''-' PLOT X , Y
60 DRAWTO 79-X,Y:PLOT X,Y+1:DRAWTO 79-X,Y+1
6 2 DRAWTO 79-X,190-Y
6 4 DRAWTO' X,190-Y:PLOT 79-X,190-Y+l:DRAWTO X,190-Y+l
66 DRAWTO X,Y
70 0 =0+1: IF 0)8 THEN 0=1
80 NE XT I
100 X=USR(ADR(AI»
1 10 FOR J=l TO 24:NEXT J
120 GO TO Hl0
1000 DATA 2,4,6,8 ,6,4,2,2
30000 REM *** SET UP ASSY PROGRAM
300 10 RES TORE 3 10 00
30020 FOR Z=l T0 27
30030 RE AD X: A$(Z)=CHR$(X)
30('4 0 NE XT Z
:3':105'" RI:S TORE
:;:':.~I~ €.\? RI:::T IJ RN

56

SAS
2 DIM A$(30),SINE(450)
3 GOSUB 30000
4 DEG
B ? "STAND BY'
9 FOR 1=0 TO 90:? I:A=SIN(I):SINE(I)=A:SINE(180-1)=A:

SINE(1+180)=-A: SINE(3S0-1)=-A: S INEO: l+3S0)=A: NE XT I
10 GRAPHICS 10
15 RESTORE :FOR 1=1 TO 8:READ A:POKE 704+I,A+224:NEXT
19 C='l
20 FOR ANG=0 TO 359
30 X=40+30~SINE(ANG+90)

40 Y = 96+80~SI NE(ANG)

50 CO LO R I NT(C)
6'" PLOT 65,96
70 DRAWTO X, Y
75 PLOT 65,95
77 DRAW TO X ,Y-l
78 FLOT S5,94
79 DRA.ITO X, Y-2
8 00=USRIADR(A$»
85 C=C+0.5 : IF C>=9 THEN C=1
90 NE XT ANG
9 000=USR (ADR(A $ »
3;0 FOR 1=1 TO 14:NEXT
'320 GO TO 900
1 000 DA T A 2,4 ,6, 8/6~4, 2/2

30 0 0 0 REM ~ ~. SET UP ASSY PROGRAM
3 ~0 1 0 RES TOR E 31000
3 '~020 FOR 2 =1 TO 27
~ 0030 READ X:AS'Z)=CHR$O: X)
3 1:'04(.1 NE X T Z
:: r~'(1 5 0 RESTORE
3 ':' 0 S 0 RE TURN

BRASS
10 GRAPHICS 9
15 SETCOLOR 4,15,0
20 FOR Y=55 TO 0 STEP'-10
30 FOR X=0 TO 24
4 0 C=X: IF X> 11 THEN C=24-X
45 C=C +3
50 Z= Y +(X)
55 D= I NT(SORe 144-(X-12).(X-12 »)/2
57 CO LOR 15-C
5 .0 • PLOT Z, Y+7 -D
S0 DRANTO Z , Y+7 +D
-;0 CO LOR C
~0 DR AWTO Z,180-Y+0
i :~. 0 t'iE XT X
130 NE XT Y
2 ':' 0 G·) TO 200

RAINBOW
100 REM GTIA TEST

WHIRL
2 DIM A$(30),SINE(450)
3 GOSUB 30000
4 DEG
B ? "STAND BY'
9 FOR 1=0 TO 90 :? I:A=SIN(I):SINE(I)=A:SINE(180-I)=A:

SINE(1+180)=-A: SINE(360-1)=-A: S INE (1+360)=A: NEXT I
10 GRAPHICS 10
15 RESTORE :FOR 1=1 TO 8:REAO A:POKE 704+I,A+224:NEXT
17 GOSUB 2000
20 F OR ANG=0 TO 359 STEP 2
25 0=8
30 X=20.SINECANG+90)+40
40 Y=20*SINECANG)+96
42 COLOR 0 :PLOT X,Y: IF ANG < 180 THEN 90
43 AS=0
45 FOR H=1 TO 45
50 LOCA TE X,Y +W,OH: IF OH=0 THEN AS=I
55 IF AS=1 THEN 80
57 CO LOR Q
60 PLOT X,Y+H
7~ 0=0- 1: IF 0 , 1 THEN 0=8
80 NEXT W
90 NEXT ANG
95 2 =20 :U=20
1 7 5 Q=O +I:IF 0,8 THEN 0=1
900 X=USR(ADR(A$»
9 10 FOR 1=1 TO 3 :NE XT
920 GO TO 900
1000 DATA 2,4,6,8,6,4,2,2
2000 REM THI S I S THE HEART OF DIZZY
2020 0=1
2030 FOR Y=0 TO 191
2040 CO LOR 0
2050 PLOT 0,Y
2060 DRAWTO 79,191-Y
2070 0=Q+0 .416666666:IF 0 >8 THEN 0=1
2080 NE:n Y
2130 FOR X=79 TO 0 STEP -1
2140 CO LOR 0
21 5 0 PLOT X,0
2160 DRAHTO 79 - X,191
2 170 0=0+1: IF 0>8 THEN 0=1
2180 NE:-:T X
22312 RETURN
30000 REM *** S ET UP ASBY PROGRAM
30010 RESTORE 3 1000
3 0 020 FOR Z = 1 TO 27
30030 READ X:A$O:Z)=C HR$ (X)
30040 NEXT Z
30050 RESTORE
3('060 RETURN

115 GRAPHICS 10:FOR 2=704 TO 712:REAO R:POKE Z,R:NEXT Z
116 DATA 0,26,42,58,74,80,10S,122,138,154
130 F OR X=1 TO 8:COLOR X:POKE 7S5,X
140 PL OT X*4 +5,'~ :DRAWTO X*4+5 ,15 9 :PLOT X*4 +1,159:POSITION X*4+1,0:XIO 18,.6,O,O,
·S: •
1.50 NE XT X
230 FOR X=8 TO 15: CO LOR 16-X:POKE 765,16-X
Z ~ 0 PLOT X*4+5 , 0 :DRAWT O X.4+5,159:P LOT X*4 + 1 ,159 :POS ITI ON X*4+1,0: XIO 18,.6 ,O,O,

:;: "" '" NE~:T X
3 0 0 COLOR 0:PLOT 65,159:DRAWTO O,159
4 00 FOR X=1 TO 8:2=PEEK!704+X):Z=Z+IS: IF 2>255 THEN Z=26
420 POKE 704+X,Z:NEXT X:FOR Y=1 TO 5:NE XT Y:GOTO 400

57

GTIA Demos

ROLL
5 DEG
1'21 GRAPHICS 1'21
15 FOR 1='21 TO 7:POKE 7@5+1 , 128+2:NEXT
17 POKE 7'215,136
2'21 FOR ANG=18@ TO 36'21+18'21 STEP 6
3'21 X=8+8 l1!CO S(A NG)
4'21 Y=16+8l1!SIN(ANG)
5'21 COLOR (ANG-18@)/45+1:PLOT X,Y
6'21 DRAWTO X,5@+ Y
7'21 CO LOR @:PLOT X,Y
9'21 NEXT ANG
12'21 FOR ANG=18@ TO 36'21+18'21 STEP 6
13'21 X=26+8l1!COS(ANG)
14'21 Y=16+8l1!SIN(ANG)
15'21 COLOR 9-(ANG-18@)/45:PLOT X,Y
1 60 DRAW TO X,50+Y
170 COLOR @:PLOT X,Y
190 NEXT ANG
22'21 FOR ANG=180 TO 36'21+18'21 STEP 6
23'21 X=4 4+8l1!COS(ANG)
24'21 Y=16+8l1!SIN(ANG)
25'21 COLOR (ANG-18@)/45+1:PLOT X, Y
c6@ DRAWTO X, 5@+Y
270 COLOR @:PLOT X,Y
290 NE XT ANG
32'21 FOR ANG=180 TO 360+18'21 STEP 6
33'21 X=62 +8l1!COS(A NG)
34'21 Y= 16+8l1!SIN(ANG)
35'21 COLOR 9-(ANG-18@)/45:PLOT X,Y
360 DRAWTO X,5@+Y
370 COLOR @:PLOT X,Y
390 NEXT ANG
41'21 GO TO 5'210
420 F OR ANG=18@ TO 360+18'21 STEP 6
430 X=50+8l1!COS(ANG)
44 0 Y=16+8l1!S IN(ANG)
450 COLOR (ANG-180)/45+1:PLOT X,Y
460 DRAWTO X,50+Y
470 COLOR 0:PLOT X,Y
490 NE XT ANG
5{'0 A=PEEI« 705)
510 FOR 1=705 TO 711
5 20 POKE I, PEEK(1+1)
530 NE XT 1
540 POKE 7 12,A
55 0 GO TO 50'21

BALL
100 REM GTIA TEST

RING
100 REM GTIA TEST
110 DIM C(22,2)
115 GRAPHICS 10:FOR Z=704 TO 712:READ R:POKE Z,R:NEXT Z
116 DATA 0,26,42,58,74,90,106,122,138,154
118 LIM=22:T2=3.14159l1!2/LIM
120 GOSUB 2500:FOR V=1 TO LIM:T=T+T2:GOSUB 2500:NEXT V
2'210 GO TO 1000
400 FOR X=1 TO 8:Z=PEEKC704+X):Z=Z+16:IF Z>255 THEN Z=26
420 POKE 704+X,Z:NEXT X: POKE 77,0:GOTO 400
1000 REM
1010 FOR R=1 TO 8:T6=R
1020 GOSUB 1520:NEXT R
111 0 FOR R=9 TO 15:T6=16-R
1120 GOSUB 1520:NEXT R
12 10 FOR R=16 TO 23 :T6=R-15
1220 GOSUB 1520:NEXT R
1310 F OR R=24 TO 30: T6=31-R
1320 GOSUB 1520:NEXT R
14'21 '21 IF T3= 1 THEN GO TO 400
1410 T3=I :GOTO 1010
1520 COLOR T6:V=0:GOSUB 2000:PLOT X,Y:FOR V=1 TO LIM:T=T+T2:

GOSUB 2000:GOSUB 3000:DRAWTO X,Y:NEXT V:RETURN
2'2100 X=(30-R)lI!C(V, 1 >+40: Y=(60-R)lI!C(V, 2 >+80: RETURN
25 '21'21 C(V, 1)=S I N(T): C(V, Z)=COS(T): RETURN
3000 IF T3=1 THEN IF (R=1 AND V) t1) OR R>1 THEN POSITION

X,Y:POKE 765,T6:XIO 18, *6,0,0,"S:"
3010 RE TU RN

115 DIM C(8):GRAPHICS to:FOR Z=704 TO 712:READ R:R=R*16+8:C(Z-704)=R:POKE Z,R:NE
XT Z
116 DATA -.5,1,3,4,5,7,9,12,13
118 LIM=22:T2=3.14159l1!2 / LIM:COL=3:EI=I:DIM D(LIM,2)
120 GOSUB 1500:FOR V=1 TO LIM:T=T+T2:GOSUB 1500:NEXT V
400 GOTO 1000
490 REG=705
500 FOR X=1 TO 8:POKE REG,C(X) :REG=REG+l:IF REG>712 THEN REG=705
510 NEXT X:REG=REG+l: IF REG>712 THEN REG=705
520 POKE 77 ,0:G OTO 500
11300 REI1
1005 FOR E=1 TO 10:E2=INT(E/2-0.5)
1010 FOR R=El TO El+E2:CR=8-CO L:IF CR=0 THEN CR=8
1015 V=0:COLOR CR:GOSUB 2000 :PLOT X,Y
1020 FOR V=1 TO LIM:T=T+T2:G OSUB 20@@:DRAWTO X,r:IF V>=LIM/2 THEN COLOR COL
1025 NE XT V:NE XT R:CO L=COL+l : IF COL=9 THEN CO L=1
1030 El=El+INT (E/2+@.5):NEX T E
1200 GOTO 49'21
1500 0(V, 1)=S I N(T): DC V, 2)=COS(T) : RETURN
2000 X= (30-R)lI!0 . 6l1!O(V, 1 >+4'21: Y=60l1!D(V, 2 >+8'21: RETURN

58

Graphics Seven Plus

First came the TRS-80, Model I. It
provided character-oriented graphics.

Next came the Apple. It provided both
character and line graphics (one or the
other).

Now we have the Atari. It provides 14
graphics modes, some character-oriented,
some line-oriented.

"Fourteen modes?" you say. "The Basic
manual lists nine." Well, that 's because
Basic only allows you to access nine directly.
However , there are others lurking within
the machine waiting for a programmer to
find them. All are variations on the available
modes , some quite useful. One is so useful
that this article will be devoted to discussing
its use.

All character-line graphics on the Atari
("playfield graphics") are generated by the
close co-operation of two chips , Antic and
CTIA. Antic fetches data for 3.7 million
poin ts per second (320 per line x 192 lines
x 60 per second) and feeds it to CTIA
which generates the TV picture from that
data. To determine what sort of image
should be generated (character, line , pixel
size, etc.), Antic looks to his program, the
display list. This program coexists in memory
with all the usual Basic and 6502 programs.
Anyway, his program, composed of indi
vidual instruction codes, tells him what
sort of image to generate.

There are 14 image-generating codes in
Antic's program. Now when Basic was
designed , for some reason it was decided
to allow access to only nine of these codes,
rather than the full 14. And in particular,
the highest resolution four-color mode was
left out. This is "graphics 7 +., (also known
as "graphics seven-and-a-half.")

We got a great deal of mail from people
asking how to use this graphics mode when
we documented its existence back in the
July 1981 Creative. (If you wish to see a
tutorial on the Atari for the Basic pro
grammer, go back to the June issue and
read the "Outpost" columns to date. Sadly,
we can't explain how Antic and such work
in each article because the explanation is
so long , but we can refer you to previous
issues to get a background.)

It takes a bit of work and a fair grasp of
what goes on inside the Atari, but the
results are well worth it: in the highest
four-color mode, we can get double the
resolution of graphics 7 using graphics
7+.

Graphics 7, you will recall , gives us 96
vertical x 160 horizontal pixels in four
colors. Graphics 8 gives us 192 vertical x
320 horizontal, but only in one color.
Graphics 7+ gives us 192 vertical x 160
horizontal in four colors.

This is an extremely useful mode.
Graphics 8 has several disadvantages; single

dots sometimes become red or blue when
white was intended because of "artifacting ,"
and candy-stripes tend to appear on all
near-vertical lines. Graphics 7 has pixels
the size of 2 x 2 graphics 8 dots, and is too
"chunky" for really accurate graphics.
Graphics 7+, with double the vertical
resolution , brings us close to the limits of
most monitors in terms of color resolution ,
with 2 x 1 graphics 8 dots. No artifacting ,
no funny stripes, just nice colors in truly
high resolution.

I should also mention that the graphics
7+ resolution is equal to the resolution of
a player or missile at size xl.

Here at Houston Instruments, where I
work , we have a project going to interface
a plotter, capable of eight colors , to a
digitizer. The image to be plotted must be
displayed on the TV. Graphics 7 resolution
is unacceptable; the individual pixel is too
large for a quality display. But graphics
7+ provides twice the resolution while
retaining the four colors of data. (Now,
you'd like to know how I plan to get eight
colors, right? I must confess to having a
few sneaky ideas how to do so, and I
promise to document the method should I
succeed.) However, for now, four colors
at 160 x 192 will do nicely .

A Look at Graphics 7 and 8
Graphics 7 + is midway between 7 and

8, so let's look at 7 and 8 to help understand
how to generate 7+ .

Graphics 7 is a "four color" mode. This
means that for every point on screen, two
bits of information are saved in memory.
Depending on which of the four numbers
possible is saved in those two bits, one of
four color registers is selected to display
color. (Actual color information is not saved
in the display memory; rather, a color

Program 1.

10 REM PROGRAM 1 -- DAVE SMALL
20 REM PROGRAM TO GENEHATE
30 REM SAMPLE DISPLAY
'10 HEM
50 HEM 81: BASIC VEHSION
60 HEM
70 GRAPHICS 7
80 COLOR 1
90 PLOT 1,1
100 DRAW TO 159,1
110 COLOR 2
120 DRAWTO 159,80
130 COLOR 3
1'10 DRAWTO 1,1
I'll FOR Z=l TO 20
1'12 COLOR (INT(RND(0)*3)+1)
1'13 PLOT (INT(RND(0)*159»,

(INT(RND(0)*80»
1'1'1 NEXT Z

GR.7

150 PRINT "NDTE EACH Gf(APHICS
7 PIXEL"

160 PRINT "USES TWO SCAN LINES."
170 GOTO 170

59

register number is saved, with the actual
color being stored in the register.) Hence,
one byte (eight bits) in graphics 7 display
memory , looks like this:

ww xx yy zz
where w, x, y, and z are the information
for a given point on screen.

Program 2.

10 REM PRDGRAM 2 -- DAVE SMALL
20 REM PROGRAM TO GENERATE
30 REM SAMPLE DISPLAY
'10 REM
50 REM 8~(BASIC VERSION
60 REM
70 GRAPHICS 8
75 SETCOLOR 2,0,0
80 COLOR 1
90 PLOT 1,1
100 DRAWTO 159,1
120 DRAWTO 159,80
1'10 DRAW TO 1,1
I'll FOR Z=l TO 20
1'12 COLOR (INT(RND(0)*3)+1)
1'13 PLOT (INT(RND(0)*159»,

(INT(RND(0)*80»
1'1'1 NEXT Z

GR.8

150 PRINT "NOTE EACH GRAPHICS
8 PIXEL"

160 PRINT "USES ONE SCAN LINE."
170 GOTO 170

Program 3.

10 REM PROGRAM 3
20 REM
(30 REM GONVFRT ~-, ;z TO · GR.~+

'10 REM DAVE · SMALL
50 REM 8K BASIC VERSION
60 REM
70 REM CREATE IMAGE
530 REM *************************
5'10 REM ** FROM

CREATIVE COMPUTING ••
5'15 REM ** ' GENERATES MULTICOLOR

SPIRAL
550 GRAPHICS 7:DEG :DIM C(3)
555 PRINT "CREATING IMAGE."
590 R=20:COLOR l:C=l
600 XO=79 lYO='I7
610 FOR K=O TO 3:C(K)=K+l*2:NEXT K
620 FOR K=l TO 3
630 X=XO+R*COS(360):Y=YO:PLOT X,Y
6'10 FOR 1=0 TO 5*360 STEP 75
650 X=XO+R*COS(I):Y=YO+R*SIN(I)
660 DRAWTO X,Y
665 C=C+l:IF C)3 THEN C=l
667 COLOR C
670 NEXT I:R=R+12
680 NEXT I(
690 Z8=1
700 PRINT "MODIFYING DL."
1000 REM GR.7 TO GR.7+
1010 START=PEEK(560)+256*PEEK(561)
1020 POKE START+3,l'1+6'1:REM LMS
1030 FOR Z=START+6 TO START+6+96
10'10 IF PEEK(Z)=13 THEN POKE Z,l'1
1050 NEXT Z
1059 REM REMOVE THIS STOP

FOR LOOP ••
1-060 STOP
1100 REM GR.7+ TO GR.7
1110 FOR Z=START+6+96 TO START+6

STEP -1
11'10 IF PEEK(Z)=l'1 THEN POKE Z,13
1150 NEXT Z
1155 POKE START+3,13+6'1:REM LMS
1160 GOTO 1020

Graphics Seven Plus

The memory is mapped starting from
the upper lefthand corner of the screen,
from the beginning of display memory,
across the screen, down one line, and so
on. Hence, since we have 96 x 160, or
15,360 points, and four points stored per
byte , we use 3840 bytes of data .

When Antic generates graphics 7 he
does two scan lines of the same data. Hence,
each Antic instruction generates two scan
lines, and 96 of these instructions generate
192 lines-the height of the screen.

In graphics 8, we only save one bit of
information per point. That bit is used to
determine at what intensity a point is plotted,
and where the background color and
intensity and foreground intensity are stored
in color registers. Since only one bit is
saved per point, a graphics 8 display memory
byte looks like this:

abcdefgh
where each letter represents one point.
There are 320 x 192 points, 8 to a byte ,
which comes out to 7680 bytes of data.

Each graphics 8 Antic instruction gen
erates one scan line, so there are 192 of
them to a full screen.

Now graphics 7+ has the same vertical
resolution as graphics 8-one line per Antic
instruction. It also has the same horizontal
resolution as graphics 7 (160) , and the four
colors. Do you begin to see why it is such a
useful mode?

Note that different information must be
written into display memory to draw a line
in a different mode. In particular, in graphics
7 or 7+ two bits must be written for each
pixel, whereas in graphics 8 one bit must
be written. This will be very important
shortly. An operating system routine, stored
in the ROM plug-in cartridge, handles all
of the bit-shifting and masking to write the
required bits into memory, based on what
graphics mode it thinks it is in .

Time for some sample programs: The
first generates a simple graphics 7 display.
The next generates a simple graphics 8
display. This is to allow you to compare
the resolutions. See Programs 1 and 2.

Next, we will take a graphics 7 display
and convert it to graphics 7+.

What will happen? Well, first, since we
have 96 instructions in graphics 7, each
generating two scan lines, we get a total of
192 scan lines. If each of those 96 instruc
tions generates only one scan line, as in
graphics 7 +, the screen will only be half
filled (only the top 96 scan lines). The
same display that graphics 7 had in it will
be retained, it will just shrink vertically . .

So for our third program, let's take a
graphics 7 display , and convert it to graphics
7 + . You'll see the effect of doubling your
vertical resolution, and won't believe how
fine a line can be drawn in four colors. All

we'll do is take the 96 bytes of Antic's
program, when he's in graphics 7, and
convert them from an Antic code 13
(graphics 7) to a 14 (graphics 7 +). See
Program 3.

Pretty neat, right? Nice resolution. Now
if we could only get the whole screen in
that resolution .

Well, we can. We could go the tough
way, where we allocate memory, build .
192 graphics 7 (14) instructions, set memory
pointers to display memory, ad infinitum.
Were we working in assembly language,
we would have to do it that way . But
there's an easier way: take an existing display
list and convert it. That way Basic has
already allocated memory space and so
forth , and we don't need to worry about
fooling it into leaving memory alone.

We can take a graphics 8 display list,
already 192 instructions long, and convert
the IS's (Antic code for graphics 8) to 14's.
That part is easy, just a FOR-NEXT loop
to convert every 15 to a 14. The only
slightly tricky part is catching the LMS
instructions (64 + 15 or79), changing them
to 78, and leaving the display memory
data bytes alone. (See August 1981 for a
discussion of LMS). This way, the right
amount of screen memory is already
reserved for us, the display list is set up,
pointers and all, and we've saved a great
deal of work.

Next, since graphics 8 uses a different
bit pattern to display material, we'll have
to fool the operating system into thinking
we're really in graphics 7 so it uses the
graphics 7 bit/shift routines. This is a matter
of one POKE to the low memory location
where the operating system looks each
time it does a line draw to determine what
graphics mode it is in. The location contains
the graphics number currently in effect.
We will, thus, POKE a 7 in there; it should
currently contain an 8 from when graphics
8 was set up .

Well, here we go. (See Program 4.) We
set up graphics 8, change the display list to
graphics 7+, and do a three-color draw at
the top of the screen. No problem, works
fine. But when we try to draw anywhere in
the lower half of the screen, we get an
ERROR #141 - cursor out of range .

Many, many people have tried the above
routine to get into graphics 7+ . All of
them have run into this problem. You see ,
the operating system, while drawing a line,
constantly checks to see if the line is going
off of the visible area . Should it do so , an
ERROR 144 is returned and the line drawing
process stops. The OS thinks we're in
graphics 7 (96 x 160), so when we try to
draw below line 96, it thinks it is at the
bottom of the screen and terminates the
draw. In computerese this is known as

60

Program 4.

10 REM PROGRAM "I
20 REM
30 REM CONVERT GR.8 TO GR.7+
"10 REM DAVE SMALL
50 REM 8K BASIC VERSION
60 REM
65 DIM C(3)
70 REM DISPLAY LIST MODS
80 GRAPHICS 8
90 PRINT "CONVERTING DL

FROM 8 TO 7+."
100 START=PEEK(560)+256*PEEK(561)
110 POKE START+3,1"1+6"1
120 FOR Z=START+6 TO START+6+192+6
130 IF PEEKCZ)=15 THEN POKE Z,l"1
1"10 IF PEEKCZ)=15+6"1 THEN POKE Z,

1"1+6"1:Z=Z+2:REM
(SKIP LMS DATA BYTES)

150 NEXT Z
200 REM
210 REM LET OS THINK WERE IN GR.7 ••
220 pm:E 87,7
390 PRINT "CREATING UPPER

HALF IMAGE"
"100 YADD=l
"110 GOSUB 500
"120 PRINT "CREATING LOWER

HALF IMAGE"
"125 YADD=30
"130 GOSUE: 500
"1"10 STOP
500 REM
530 REM *******************~*****
5"10 REM ** FROM CREATIVE COMPUTING ••
5"15 REM ** GENERATES

MULTICOLOR SPIRAL
550 DEG
590 R=10:COLOR l:C=l
600 XO=79:YO="I7
610 FOR K=O TO 3:C(K)=K+l*2:NEXT K
620 FOR K=l TO 3
S30 X=XO+R*COS(360):Y=YO:PLOT

X,Y+YAOD
6"10 FOR 1=0 TO 5*360 STEP 75
650 X=XO+R*COSCI):Y=YO+R*SIN(I)
660 DRAWTO X,Y+YADD
665 C=C+l:IF C>3 THEN C=l
667 COLOR C
670 NEXT I:R=R+12
680 NEXT f:
690 Z8=1
700 RETURN

"bounds checking"-and anyone who has
watched football knows what "out of
bounds" means. (See , these computer snob
words really do have humble beginnings).

What Do We Do?
We can't POKE an 8 into the OS location,

because then the draw routine will use the
wrong bit shifting routine and we'll get all
sorts of crazy bit patterns and colo rs . (Feel
free to try it-there are many interesting
effects obtainable this way. Just delete the
POKE 87,7 in Program 3.) And we can't
get by with a POKE 7" .because then the
OS thinks we're going out of bounds.
Because both bounds checks and draw
routine selection are based on the same
location, we're stuck. (The memory location
is called DINDEX and is located at 57 hex
or 87 decimal).

The problem resides in the extreme care

taken to avoid out-of-bounds conditions.
If we could draw out of bounds, and have
the Atari blindly do the draw instead of
telling us we were wrong, then graphics
7+ would work. Even though the operating
system might conclude that we were out
of our minds and drawing off the bottom
edge of the screen, it would continue to
draw in the right places for our graphics
7+ to work. (Screen memory , by the way ,
is 3780 bytes in graphics 7 and 7680 in
graphics 7+. Graphics 7+ and graphics 8
use the same memory size .)

Well , the as routine is in ROM and
cannot be modified , short of pulling the
chips out and putting new ones in. As I am
no hardware expert this solution isn 't
acceptable. Besides, if I did, my programs
would run only on my machine. However,
it did bring to mind an analogy which
solved the problem. Character sets are
stored in ROM, also, and are unmodifiable,
unless they are copied into RAM first. So
why not copy the as draw routine into
RAM, zap the bounds check, and use it
for graphics 7 +?

To make a long story even longer, that 's
what I did . The rest of the article describes
this process. The first time through, I did
it all in Basic , but that was too slow, so I
recoded the slow parts in 6502 assembler.
Those routines I used in the graphics 7+
driver. (They should be usable in any
graphics mode; they just ignore all bounds
checks. However, the Atari caution extends
beyond overprotecting the user; a line drawn
out of bounds could go sailing straight
through memory reserved for other things,
and crash the Atari. Just be careful; don't
try to draw from 1,1 to 3000,6700.)

The final result is three assembly routines.
They are fast and efficient and both fit
into page 6 in memory (600-700 hex) , 256
bytes set off by Atari for a user's own
purposes and left untouched by Atari
routines. The first modifies the graphics 8
display list to a graphics 7 +. The second
copies the as draw routine into free RAM
for modification. I use Basic for the small
amount of POKEing that must be done in
the as routine to make it work properly in
its new memory location (it involves relocat
ing a few addresses) and to ORA W a line
using the as routine (it just takes arguments
from the Basic USR call and feeds them to
the draw routine).

To use graphics 7+, one does a graphics
8 call, calls the first USR routine to set up
the 7+ display list, calls the second routine
to fetch the draw routine in RAM and
modify it, and then all is ready. Line draws
are made in one of two forms:

X=USR(third routine,X coordinate , Y
coordinate , color #} or X=USR(third ,X 1,
Yl,X2,Y2,COLOR}

Program 5.

0250 *= $0680
02FB 1390 ATACHR $2FB
05A 1340 OLDROW = $5A
06FD 4CFC7C 1790 JMP $7CFC
10
20.: PROGRAM 5 LISTING ••
22 1400 ICCOMZ = $22
30
40 THREE ASSEMBLY ROUTINES FOR
50 PAGE 6:
54 1370 ROWCRS = $54
55 1360 COLCRSL= $55
56 1350 COLCRSH= $56
57 1380 DINOEX $57
60 855C 1500 STA OLDCOLH
68D 809706 0330 STA FETCHH
69E D005 0520 BNE NOT15
70 : 1.CONVERTS DL FROM GR.8 - GR7.5.
80 : 2.COPIER FROM OS ROM TO RAM.
90 : 3.GR7.+ DRAWTO. FULL SCREEN
0100 GR.7+ DRAW ROUTINE.
0110 ,

COLOR DATA
FROM Y

O.S ••• MUST MOD

CIO DF,AW FLAG

TO Y
TO X LO
TO X HI
CURR GR. MODE

(FETCH STMT)

0120 : COPYRIGHT 1981 BY DAVID M. SMALL
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220

;---------~--------------------
ROUTINE 1:
ASSEMBLY ROUTINE TO CONVERT
A GR.8 DISPLAY LIST TO A GR 7.+
DISPLAY LIST.
CONVERTS ALL 15'S TO 14'S
CONVERTS ALL (64+15) TO (64+14)
(BUT WILL SKIP LMS DATA BYTES)

0230 PLACED IN PAGE 6.
0240
0270
0310
0350
0370
0380 LOOP 202 TIMES. CHANGE 15 TO
0390 15, 79 TO 78, SKIP LMS DATA.
0400
0440
0450 IF GR.2 ENCOUNTERED, QUIT --
0460 HAS A TEXT WINDOW.
0470
0500
0550
0590
0660
0680
0681
0684
0687
0690
0693
0695
0696
0697
0698
0720
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920

68 0260 PLA
AD3002 0280 LDA 560
8D9606 0290 STA FETCHL
8DAC06 0300 STA STOREL . ,
A200 0360 LDX *0
BD3412 0430 LOOP LDA $1234,X

0410 FETCHL *+1
0420 FETCHH »:+2

C942 0480 CMP *66

. ,
·l-----------~---------------·

ROUTINE 2:

COPIES O.S. ROM TO RAM (DRAW
ROUTINES) TO ALLOW BOUNDS
CHECf(REMOVAL.

COPIES $FCFC TO $FE14
TO $7CFC TO $7E11

(THIS l~ QUITE EASY TO CHANGE
TO CUSTOMIZE FOR YOUR ATARI:
ON A 40K-48K MACHINE THIS
IS RIGHT BELOW THE DL/DM.)

(65092-64764= 328
328 - 256 = 72)

0930 1-- $FCFC TO $FDFB ($FF BYTES)
1010
1020 $FDFC TO $FE44
1100

61

SATISFY BASIC

(FETCH STMTl
(STORE STMT)

INIT X
GET DL BYTE

Graphics Seven Plus

The first performs a DRA WTO from
the old cursor location to the specified X
and Y coordinates. The second performs
a line draw between the specified points
(equivalent to PLOT Xl ,Yl , : DRA WTO
X2,Y2). Both routines perform the draw
in the specified color, not the color of the
current COLOR statement.

Alas, the OS draw routine is too long to
fit into the small page 6. So it must be
stored elsewhere in RAM. Finding a free

space in RAM isn't too hard. However,
finding a space that is free on evelJ10ne :s
Atari is pretty hard. Memory sizes range
from 8K to 48K (40K with Basic cartridge).
I decided to tailor the routine for my 40K
system and let users do relocation as
necessary for their own systems. Nowadays
there is so much player-missile memory
being reserved, charset arrays, and so forth
that a general solution is very difficult.

OS routines start at SFCFC and end at
SFE44 (inclusive). They are copied to
57CFC through S7E44. Several JMPs inside
are relocated back to the RAM routine,
making this a non-relocatable routine. (The
fact that I am copying it down an even
58000 makes it quite easy to relocate.) It
should be simple to do this for other size
memories; the calculations are self-docu
menting in the OS and assembly listings.
Just make sure the JMPs are changed to
JMP to the point in RAM where the
corresponding statement to the ROM
statement is. Note that 57E44 is just below
the DL/DM in a 40K or 48K (same thing
with a Basic cartridge) machine. Hence it
is in a relatively "safe" area.

For Advanced Programmers

Program 5, continued
The following is a bit technical but is

intended for assembly programmers. The
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1410
1480
1560
1610
1650
1690
1700
1710
1760
1770
1780
1800
6000

. ,

ROUTINE 3:

THIS ROUTINE IS CALLED FROM
BASIC TO PERFORM A DRAWTO
FUNCTION IN GR 7.5. THERE ARE
TWO POSSIBLE CALLS:

D=USR(Xl,Y1,X2,Y2,COLOR)
D=USR(X2,Y2,COLOR)

FIRST WILL DRAW A LINE BETWEEN
THE SPECIFIED COORDINATES IN
SPECIFIEDCOLOR. SECOND WILL
"DRAWTO" FROM OLD LOCATION TO
SPECIFIED COORDINATES.

THIS ROUTINE REQUIRES THE O.S.
DRAW ROUTINE BE COPIED INTO
RAM AND MODIFIED. SEE ARTICLE.

PULL OFF AND STORE ARGS

SETUP IS DONE. OTHER MISC:

CALL DRAW RAM ROUTINE

END
68

060000 855B
1510

1520
PLA

STA OLDCOLL

Program 6.

'9000 REM LOADER
9010 Z~x256+8x16
9020 READ Zl
9030 IF Zl=-l THEN RETURN
9040 pm:E Z,Zl
9050 Z=Z+l
9060 GOTO 9020

GET FROM X LO

,10000 DATA 104,173,48,2,141,150,6,141,172,6,173,49,2,
141,151

10010 DATA 6,141,173,6,162,0,189,52,18,201,66,240,29,
201,15

10020 DATA 208,5,169,14,76,171,6,201,79,208,2,169,78,
157,52

10030 DATA 18,232,201,79,208,2,232,232,224,203,144,220,
96,162,0

L0010 DATA 104,189,252,252,157,252,124,232,224,0,208,
245,162,0,189

10050 DATA 252,253,157,252,125,232,224,75,208,245,96,
104,201 ,3,240

10060 DATA 15,201,5,240,1,96,104,133,92,104,133,91,
104,104,133

10070 DATA 90,104,133,86,104,133,85,104,104,133,84,
104,104.141,251

10080 DATA 2,169,17,133,34,76,252,124
11000 DATA -1

62

Program 7.

10 REM PROGRAM -- ASSEMBLY VERSION
15 REM REQUIRES AUTORUN.SYS OR LOAD
20 REM
40 REM DAVE SMALL
50 REM 8K BASIC VERSION
55 REM
56 IF PEEf:(1536+128) <> 104 THEN PRINT "ASSEMBLY

NOT LOADED •• ":STOP
60 REM DEFINES
61 CONVERT=6x256+8x16:REM $0680
62 COPY=6x256+11x16+10:REM $06BA
63 DRAW=6x256+13x16+6:REM $06D6
65 DIM C(3)
67 REM
70 REM OISPLAY LIST MOOS
80 GRAPHICS 8
90 X=USR(CONVERT)
97 REM
200 REM
210 REM LET OS THINK WE'RE IN GR.7 ••
220 pm:E 87,7
230 REM
300 PRINT "PERFORMING OS COPY."
310 X=USR(COPYl
320 REM RELOCATION
321 POKE (7x4096+13x256+9x16+8),(7x16+14):REM

FE TO 7E
FD98,

322 POKE (7X4096+14*256+2x16+6),(7*16+14):REM FE26,
FE TO 7E

323 POKE (7x4096+14*256+4*16+1),(7*16+13)!REM FE41,
FD TO 7D

324 REM NOP OUT BOUNDS CHECKS
325 L=7*4096+13x256+15*16+6
326 FOR Z=L TO L+2
327 POKE Z,234:REM NOP
328 NEXT Z
350 REM
390 PRINT "CREATING FULLSCREEN IMAGE"
500 REM
530 REM *x*x***x**x*x*x*xxx*x*x**
540 REM x* FROM CREATIVE COMPUTING ••
545 REM xx GENERATES MULTICOLOR SPIRAL
550 DEG
590 R=20:COLOR l:C=l
600 XO=79:YO=85
610 FOR K=O TO 3:C(K)=K+lx2:NEXT K
620 FOR K=l TO 3
630 X=XO+RxCOS(360):Y=YO+R*SIN(360)
636 Z=USR(DRAW,X,y,X,y,O):REM (PLOT)
640 FOR I=O TO 5*360 STEP 75
650 X=XO+RxCOS(I):Y=YO+R*SIN(I)
662 Z=USR(DRAW,X,Y,C):REM (DRAWTO)
665 C=C+1:IF C>3 THEN C=l
670 NEXT I:R=R+20
680 NEXT f:
690 Z8=1
700 STOP

The bounds check is a simple JSR. This
is changed to NOP (no-operation) with
three NOP codes.

Programs 5, 6, 7, and 8 are listings of
four assembly IBasic routines. (The Atari
OS listing is copyrighted and doesn't appear
here , but you can easily look up the
addresses specified to find where 1 am
copying from yourselL)

Program 5 is the page 6 assembly listing.
Program 6 is the assembly program con
verted to DA TA statements. This program
is appended to your code to load the
assembly routine. Program 7 is the "Sunset"
multiple color spiral run in graphics 7+,
using an already loaded assembly routine,
and provides an example of using graphics
7+ when the routines are loaded. Finally,

Program 8.

10 REM PROGRAM 8 -- DEMOS LOAD THRU
15 REM DATA STATEMENTS.
20 REM
40 REM DAVE SMALL
50 REM 8K BASIC VERSION
54 GOSUB 9000
55 F,EM
56 IF PEEK(1536+128'<>104 THEN PRINT

"ASSEMBLY NOT LOADED •• ":STOP
60 REM DEFINES
61 CONVERT=6*256+8*16:REM $0680
62 COPY=6*256+11*16+10:REM $06BA
63 DRAW=6*256+13*16+6:REM $0606
65 DIM C(3'
67 REM
70 REM DISPLAY LIST MODS
80 GRAPHICS 8+16
95 X=USR(CONVERT'
96 GOTO 200
97 REM
200 REM
210 REM LET OS THINK WE'RE IN

GR.7 ••
220 POf(E 87,7
230 REM
300 REM
310 X=USR(COPYI
320 REM RELOCATION
321 POKE (7*4096+13*256+9*16+8',

(7*16+14':REM FD98, FE TO 7E

Program 8 is an example of using the DA T A
statements of Program 6 to load and draw
a pretty figure using graphics 7+.

Feel free to delete the REM statements;
I document the code heavily in order to
make it easy to understand , but the docu
mentation isn't needed in the final copy. (I
also break up all hex opcodes for clarity;
these could be calculated to save the
machine the work each runthrough.)

On using AUTORUN.SYS: This is a
handy way for disk users to load these
routines. Boot up DOS (2.0S)' and run
Program 6. Next, go to DOS. Do the binary
save (K), from $600 to $6FF:

K
AUTORUN .SYS,600,6FF (return)

and thereafter when you boot up with that

322 POKE (7*4096+14*256+2*16+6',
(7*16+14':REM FE26, FE TO 7E

323 POKE (7*4096+14*256+4*16+1',
(7*16+13':REM FE41, FD TO 7D

324 REM NOP OUT BOUNDS CHECKS
325 L=7*4096+13*256+15*16+6
326 FOR Z=L TO L+2
327 POKE Z,234:REM NOP
328 NEXT Z
350 REM
390 r(EM
400 SETCOLOR O,2,4:REM RED
410 SETCOLOR 1,7,4:REM BLUE
420 SETCOLOR 2, 13,4:REM GREEN
500 DEG
505 X2=SIN(O'*70+70:Y2=COS(O,

*80+80
507 Z=USR(DRAW,X2,Y2,X2,Y2,O'

:REM PLOT
508 C=1
510 FOR X=O TO 360 STEP 4
520 Xl=SIN(X*I.5'*70+70
530 Yl=COS(X*2'*80+80
531 X2=SIN(X+120'*40+60
532 Y2=COS(X-40'*50+60
540 Z=USR(DRAW,Xl,Yl,X2,Y2,C'
545 C=C+l:IF C=4 THEN C=1
550 NEXT X
560 GOTO 560
9000 REM LOADER
9010 Z=6*256+8*16
9020 READ ZI

63

disk, the graphics 7+, routines will be
loaded automatically .

Generally DOS and Basic will leave these
routines alone once loaded unless you re
boot the system or have a particularly
nasty crash . Hence , even users without
disks may not have to reload the data each
program run .

Conclusion
Well, there you have it, graphics 7+.1

hope to see more and more use of it!
These routines can easily be copied into a
AUTORUN.SYS file and automatically
loaded along with Basic, or POKEd into
memory when needed. Enjoy the world of
double resolution graphics 7. 0

9030 IF ZI=-1 THEN RETURN
9040 POf(E Z,ZI
9050 Z=Z+1
9060 GO TO 9020
9999 REM DATA FOR GR 7+ DRIVER
10000 DATA 104,173,48,2,141.150.6,

141,172,6.173.49.2.141,151
10010 DATA 6.141.173.6.162.0.189.

52,18,201,66,240,29,201,15
10020 DATA 208.5.169.14.76,171.6.

201,79.208.2.169.78.157.52
10030 DATA 18.232,201.79.208.2.

232.232.224.203.144,220.96.
162.0

10040 DATA 104,189.252.252.157.
252,124,232,224,0,208,245,
162.0,189

10050 DATA 252,253,157,252,125,
232~224.75.208.245.96,104.
201.3.240

10060 uATA 15.201.5.240.1.96.104.
133.92.104.133.91.104,
104.133

10070 DATA 90.104.133.86,104.133,
85.104,104.133.84.104.104.
141.251

10080 DATA 2.169.17.133.34.76.
252.124

110no DATA -1

Player-Missile Design Aid

Player/ Missile Design Aid (PMDA) is a
program which aids you in designing your
own player/ missile graphics. Player/ missile
graphics are a powerful tool provided by
Atari for designing games. However, design
ing and encoding each player/ missile
character can be a time-consuming process.
Further, using the normal method of
designing these players on graph paper,
the designer is never sure exactly how the
player/ missile graphic will look when
displayed on the screen.

Player/Missile Design Aid was written
to facilitate this process and allow the
designer to see the player/ missile graphic
he is designing while he is working on it.

Whenever PMDA is awaiting your direc
tion, it shows a blinking cursor on the
screen . To move the cursor, simply push
the joystick in the direction you wish to
move the cursor. The cursor will continue
to move in that direction until you release
the joystick or push it in a different direc
tion.

To start, LOAD the PMDA program
and type RUN. PMDA will then display a
title screen and begin setting up. Once set
up is complete, PMDA displays a screen
containing an 8 x 24 bit map which will be
used to design your player graphic.

Note that a bit which is off (0) is displayed
as a plus sign (+) and a 'bit which is on (1)
is displayed as a solid white block . To the
immediate left of the bit map is a column
of line numbers and to the right is the
decimal POKE value for each line. Initially ,
this latter field is all zeroes. As bits are
turned on, however, this will change to
correspond to the new value of the line
(byte).

On the right side of the screen is a list of
commands, a status line , and a prompt
line which indicates the action to be
taken.

Some explanation of the status line is in
order. The first item is the current player/
missile mode (M=nn). The two digits are
the actual decimal value which is POKEd
at SDMCTL (559) to produce the desired
mode . M=46 indicates that you are in
double-line mode (the default); M=62
indicates that you are in single-line mode .

The second item is the player size or
width (W=n). The digit following is the
desired value to be POKEd in the player
size register (in this case , SIZEPO (53256)).
W=O indicates single width (the default);
W=1 indicates double width; and W=3
indicates quadruple width . The last item is
the color/luminance for the player/ missile
graphic (COLOR=). The digits following
are the actual decimal POKE value in the

Tom Gurak, 24 North St., W. Albany, NY 12205.

player/ missile color register (in this case,
PCOLRO (704)).

I would like to point out that I am not
attempting to explain player/ missile
graphics as there has been much information
published already on this subject. I am
merely attempting to present enough
information to enable you to understand
the operation of the Player/ Missile Design
Aid.

Finally, we are ready to begin designing
our player/ missile graphic. Using the
joystick, position the blinking cursor to
the bit position in the map which is to be
changed. Pushing the fire button on the
joystick will cause the bit to be flipped
from off to on, or vice-versa. As bits are
turned on, the actual player/ missile graphic
will begin to take shape in the area between
the bit map display and the command list .

It is also possible to "draw" a line in any
direction. To accomplish this, position the
cursor to the desired starting position of
the line , press and hold the fire button ,
and push the joystick in the desired direc
tion . Remember that if you pass over a bit
position which is already on, it will be
turned off.

To use the commands (each of which is
described later) , position the cursor to the
first character of the desired command
and press the fire button . The command
list may be reached by moving the cursor
to the left or right until it leaves the bit
map display. To return the cursor to the
bit map, simply move the joystick left or
right.

When the player/ missile graphic is
completed and all options (mode, width,
and color) are set correctly, you can either
write down the status line settings and the
decimal values for each line (byte) of the
player/ missile graphic or you can use the
Save Data command to save this data .
The data saved takes the form of a Basic
language DATA statement which may be
added to your own player/ missile graphic
program by using the Atari ENTER com
mand. This eliminates the need for a run
time subroutine to load the data. The format
of the DAT A statement is explained later.

Commands
Shift All t : Shifts all 24 lines of the

graphic up one line and leaves a blank (0)
line at line 23.

Shift All t : Shifts all 24 lines of the
graphic down one line and leaves a blank
(0) line at line O.

Shift All -: Shifts all 24 lines of the
graphic right one bit position and leaves a
blank (0) column of bit positions at the
extreme left.

Shift All-: Shifts all 24 lines of the
graphic left one bit position and leaves a

64

Tom Gurak

blank (0) column of bit positions at the
extreme right.

Shift Line t : Shifts all lines from the
line you indicate to line 23 up one line and
leaves a blank line (0) at line 23. Select the
first line to be shifted by positioning the
cursor on the desired line and pressing the
fire button when prompted by the pro
gram.

• ...~ ... I- 16 COt1HtlN()'j .
1 . · 214
2 • 254 5hi ft ult ,
3 • 254 SI1i f, .. II ! 4 · m'ilill

Shi ft Oil
5 · Sh i. ft Oil .
6 · 254 51-1 i. ft L i ile ,
7 ... · ... Shi f'l Li .'le ,
8 ++++ +++t 0 Shi ft Li ne +

• +++++ ... I- 0 Slli ft l.l!'l(' .
1" + +4+ t- o BI an" Oil
1.: .+t. + 0 81an". I. i,e
1" t+"" t- O Blan" f:olu,"Ir
1;' .. +t++ 0 Cha1"l£,e Hode
1" .+ 0 ~~~~9:,~~idtO 11; t++++~+ t- O
11; .. +++ 0 set Co 1 or
17 +t+++T++ 0 Poke Color
18 +++++i-+ • 0 S-lIJe Cata
10 +++++++ .• 0 Load Data
2. ++++ .. +++ 0
21 ++++++++ 0 H:::46 H=e COlC/A-:;;1'50
22 +++++ .. ++ 0
23 ++++++++ 0 Push FIRE to ChangE'

Tank.

Shift Line t : Shifts all lines from the
line you indicate to line 23 down one line
and leaves a blank (0) line at the line
selected. Line selection is the same as
described for Shift Line t above.

Shift Line -: The single line which you
select is shifted right one bit posi tion and a
o bit is left at the extreme left of the line.
Line selection is the same as for Shift Line

t Shift Line-: The single line which you
select is shifted left one bit position and a
o bit is left at the extreme right of the line .
Line selection is the same as for Shift Line

t Blank All: All bit positions are set to O.
Before proceeding, you will be asked to
confirm your request by pressing the fire
button. If you do not want the command
to proceed, push the joystick in any direc
tion.

Blank Line: The single line which you
select will have all its bit positions set to O.
Line selection is as described for Shift
Line t .

Blank Column: The bit position which
you select will be set to 0 in all lines. Select
the bit position by moving the cursor to
the desired position and pressing the fire
button when prompted by the program.

Change Mode : This changes the mode
from double-line (M=46) to single-line
(M=62) and vice-versa .

Change Width : This changes the player /
missile graphic width from single (W=O)
to double (W= 1) ; double to quadruple
(W=3); or quadruple to single.

POKE P / M: This allows the user to
enter a previously-defined character when
only the POKE values are known. Use the

keyboard to enter the value for each line
when prompted by the program. The Return
key must be pressed after each value. Enter
three nines (999) followed by Return to
indicate that you are done.

Set Color: This sets the color of the
player/missile graphic only. Using the key
board , enter the Atari color value (0-15)
followed by Return , then enter the lumi
nance value (0-14, even numbers only)
also followed by Return. These values will
be converted to the corresponding color
register value and POKEd into PCOLRO
to change the color of the player/ missile
graphic displayed.

POKE Color: This sets the color of the
player/missile graphic only. Using the
keyboard, enter the decimal value to be
POKEd into the player/missile color
register.

Save Data: This saves the player/missile
data as a Basic language DATA statement.
The format on this statement is described
later. Prior to beginning the operation ,
you are asked to confirm your intent by
pushing the fire button. To cancel the
operation, push the joystick in any direction.
The data saved include the mode , width,
and color settings followed by the POKE
values for each line from 0 to the last non
zero line.

Load Data: This loads previously-saved
player/ missile data. Before beginning the
operation , you are asked to confirm your
intent by pressing the fire button. To cancel
the operation , push the joystick in any
direction. Upon confirmation, a Blank All
operation will be performed. The player/
missile graphic will be loaded and displayed
with the same mode, width, and color as
were in effect when it was saved.

Messages
Color?: Use the keyboard to enter the

Atari color value and press the Return
key.

Enter POKE Values: Use the keyboard
to enter the POKE values for a play /
missile graphic. Press Return after each
one and use 999 followed by Return to
indicate you are finished .

Luminance?: Use the keyboard to enter
the Atari luminance value and press
Return.

No P/ M Data to Save: The Save Data
command was selected but there are no
non-zero bits in the bit map. No action is
required.

POKE Color?: Use the keyboard to enter
the POKE value for the player/missile color
register and press the Return key .

Pos Cursor for Blank : Position the cursor
to the line/ column to be blanked and press
the fire button to complete the Blank
command.

Pos Cursor for Shift: Position the cursor
to the appropriate line for the Shift operation
and press the fire button to complete the
Shift command.

Processing ... : A long-running command
is executing. No action is required.

Push FIRE to Change: The cursor is
located within the bit map and pressing
the fire button will cause the bit at the
cursor position to be flipped .

Push FIRE to Confirm: A Blank All,
Save Data, or Load Data command has
been selected and pressing the fire button
will cause the command to continue. The
command may be cancelled by pushing
the joystick in any direction.

Push FIRE to Select: The cursor is located
within the command list and pressing the
fire button will cause the command at
which the cursor is positioned to be exe
cuted.

Ready Tape Recorder: Insert a cassette
tape, press Play or Record and Play depend
ing on the operation selected, and press
the console Return key.

Save Data Format
The Save Data command produces a

Basic language DATA statement which
has the following format:

Lineno DATA mode, width, color, dataO,
data1, ... datan ,-1

Lineno is the line number. The first save
will create a statement with a line number
of 32000. For each subsequent save , the
line number is incremented by 10.

DAT A is written as shown to identify
the Basic language statement type .

Mode is the POKE value for the player/
missile mode (double-line or single-line).

Width is the POKE value for the player/
missile size register.

Color is the POKE value for the player/
missile color register.

DataO is the POKE value needed to
create line 0 of the player/ missile graphic.

Datal is the POKE value needed to
create line 1 of the player/ missile graphic.

Datan is the POKE value needed to
create line n of the player/missile graphic.
The last line saved is the last non-zero line
found in the bit map. Leading zero lines
and any zero lines within the body of the
player/ missile graphic will be saved.

-1 is wri tten as shown to indicate the
end of the player/ missile data. 0

5 TRAi1=PEEKI 106)-8 ' POKE 106, TF1i1
11:) GRAPHICS 2+16'SETCOLOF: 4 .. 9,4';- #6;' #
6 ,? #6;" F'LA''''ERllI SS I LE" ,-r #6
20 ? #6;" DESIGN AID"? #6'; #6'? #6
;" -8'l'-",,;, #6 '-;' #6;" TOr1 GlR
AK"
30 K0=l3' U=I ' K2=2' f::5=5' K7=7 ' K8=8' KW=Hi'
KI2=12'K13=13'1<15=15'KI9=19'K22=22'K23=2
3 '1<27=27' f:256=256, K512=512

65

40 ATRACT=??' SDr1CTL=559 ' F'COLF.:0=7£14' CRSIH
H=752 ' I-f'OSP0=53248'SIZEF'0=53256 ' GRACTL=5
3277 'F1tlOF.:=54279
70 Pf1BASE=TF.:Arm256+K512
80 FOR 'i=F't"18A3E TO F't"18A:3E + 768 ' PCfE 'i, K0 '
NE:'(T 'i
90 POKE prlADF.: , TF:AtH'r-BASE=F'r18ASE+34
H)0 uHl 8$(1) .. 1¥ 1) .. S$(6),A$< 4), U(5),C$
(6): 8$="+11 : 1$=11 Ir~.}e~·'5e I.)ideo 81 ank II : S$=II
Shift "'A$="All "'L$="Line "'C$="8hi-~:"
110 SN=31990' l,m=~H1S=46
120 om F'$(13) _,0$(15), T$(7;"P$="F'ush FIR
E to ", G:I$=" Pos Cl~-SOI-- for- "
140 FOR I,J=K0 TO K256tKl0 ' flE:'iT I,J
150 GRAPHICS K0' SETCOLOR K2_, f':0_, K0' SETCOL
OR KLKI2,K12'POKE CRSINH,Kl'-;' " ";
161:) F'a<E SDr1CTL .. f1S' POKE PCOLF.:0 .. K12' POkE
@ACTL _. TPOKE HPO:;P0,119
170 GOSlB H)00
200 POKE ATRACT..KI)'LOCATE :~+f<5,'i .. OCH=12
8'CC=OC+H
210 F'OSITIOH :'i+K5,'i';- CHR$(CG); 'H=-H'CC=
CC+H 'FC~ 1~=K0 TO K2T t-IDn IH'=STI CK(K0) ,
T=STRIG(f::0)
215 IF F'=K15 AND T THEN 2W
220 F'OS IT ICn-1 :~+1(5, Y';- CHR$(OC>; 'IF T THE
ft .300
222 IF CSI,J THEt-1 GOTCt C~:T
225 IF)(=1<:22 THEN 400
230 CC=A~;(:(E:n' IF OC=CC THE/-I O::=ASC< 1$)
240 F'OSITIOtl :~+I':S,'i '-; CHF.:$W:); 'A=F'I18ASE
+Y' F'r-1=FfEK(A)' 1~r1=IHT(K2'-'(1<.7-:'()+0 _ 5)' IF 0
C=ASc(B$) THEft F'f1=F'r1+i,U-1' GOTO 260
250 P1-1=prH~r1
260 I·fi='," GOSU8 :3130
270 IF F'< >K15 THEt-1 300
280 F'=STICK(K0)' IF ftOT STRIGO(0) THEfl 2
70
300 XC=KI) , ','C=K0' IF F'>K8 AND F\K12 THEt~ :~
C=-Kl'GOTO 320
3W IF F'>4 AND F'(K:3 THEN :'~:=n
320 IF F'=6 OR P=f<10 OF.: P=14 TH£t~ '1'C=-I<I'
GOTO 33.5
330 IF F'=K5 OR F'=9 01': P=K1.3 ll£N YC=Kl
335 IF X=I<22 AND :~C Af£J YC TrEN YC=K0
340 X=X+)L' Y='.,,+YC
343 IF CSW THEft GOTO CRT
345 IF >(K8 AND X>=I<O THEN 365
350 IF 1(=K22 THEt~ 380
355 IF X=21 OF.: :';=K23 THEN X=KO'),=K£1' GOSU
B 1101-) ' GOTO 200
357 IF NDT STRIG(KEn THEft 357
3613 X=K22 ,y'=K2 'GOSl13 1150' GOTO 200
365 IF '1'>K23 THEN '1'=K0' GOTO ~'OO
3713 IF \WO THEN 1'=1<23
375 GOTO <''00
380 IF NOT STR WTI) THEtl 380
385 IF '1'<K2 THEt-1 ''''=I<J9'GOTO 21)0
390 IF)' >K19 THEt~ '(=1<2
395 GOTO ~'OO
400 A='.,.'-Kl ,ON A GOTCt 410,421),430,440,450
,460,470,480,490,500, 510,231)1), 2200 _, 150~3_,
900,1~)0,1700,1900
4W GOSlB 1200 ,'t3=DY.,.'E=1<:23,'y'I=Kl 'GOTO 7
00
420 GO·31.ll 1200 ' '(:3=1<23' YE=KO' ,(I=-Kl 'GOTO
700
430 GOSlB 1200' '1':3=K0 ' YE =K23 ':"'s=f<7 ' I':E =K0 '
Xl=-Kl 'GOTO 750
440 GOSrn 1200' '6=1<:1) , 'iE =K23 ' 1~3=KO ')(E =K7 '
X I =1<1 'GOTO 750
450 VI =K1 ,GOSU8 581)' '(S=YE -Kl ' 'iE =K23 ' GOTO

700
460 \'$=1<23o'y'l =-1< 1 'GOSUB 580' GOTO 7~10
470 XS=K7' r:E=KO' :~I=-Kl 'GOSUB 500, VS=YE' G
OTO 750
480 >S=K0':~E=K7'XI=Kl'GOSUB 5&3o'-(S=\'E'I:;O
TO 750
490 GOSU8 2500, GGSUB 1200' GO:31£ j£100' GOT
o 200
501) QJSLE; 590' GOTO 650
5Hl :>(=1<0' Y=KO' T$=C$(KLK5)'GOSlB 1160 'CS

Player-Missile Design Aid

H=Kl 'CRT=515'GOTO ;0'00
515 Y=K0' IF NOT T THEN 530
520 IF :';>K7 THE~j)(=K6' GOTO 200
525 IF >;<K6 TH~j X=1<7
527 GOT!) 2£1£1
53£1 QJSLf; 126(H~tl= n-lT< 1<2,'(K7-:>;)+05;" FOR
I~Y=KO TO 1<23' UJCATE :>;+K5, lU., OGo IF OC=AS

C(B$;' THEfJ 55£1
5'*1 A=FtEASE +W'! ' Ft1=F'EEK(A) 'PI1=F'tHtl GOSU
B 800
55£1 F'OSITIIJ·j :;(+K5,I,f;"';' B$; 'NEiIT l~\,
57£1 CSI,J=1<6' IF X=K22 THHj GOSUB 115£1' GOTO

200
575 GOSUI:: 11£1£1' GOTO 2£1£1
580 T$=S$.(KL 1(5)' GOTO 600
59£1 T$=C$.(I< 1, K5)
60£1 X=KO'Y=K0'POSITION K19,I<2301 Q$;1$;'
GOS1J3 13f~HSloJ=fT CRT=610' QJTO 20£1
610 X=KO' IF T TI£H 365
620 YE='r" GOSU8 1200, F.:ETURt·j
650 POSITION 1<5 .. 'iE' FO~: 1~:,:=f«(I TO fJ ,;. 8:1'.;
'fJE:>:T l,e
660 A=Ptf:ASE+'iE' 1,'/='iE ' F't'1=K0' GO:;UB t:00 , GO
TO 570
7~30 FOR fri=YS TO E-'·n STEP ",'10 FOF.: IJ:':=K0

TO k7'LOCATE I,N+I'::5 .. I,ri+'iLOGF'OSITIOt'i 1,((
+K5,1~""'+'iI ,'C' CHRi\OC>.:
7113 POSITImj 1~:>\+k5 .. 1~'i';' CHF.::j\OC\: ,fjD:T j,j
X, A=Pt'f;R;E +Iofi' F'tI=F'EH:< A+'r' I ;., GO:3U8 800' t·lE
XT l'j'(
720 mTO 65(1
750 FeR I,t;'=!,::; TO 'iE' FOR 1~:'<=i;:3 TO :'<E - :,.(1 S
TEP "I
760 LJ)::ATE I,J:<+1<5+:'< r..I~',", OC POSITIO!1 I,J)(+I<5
+:~L l,fr 1 CHF.::$(OC \: 'F'OS IT lOti I,Ji(H::5, I,j'i' , ';" C
HR$(OC ;'; 'NE~:T l~~:
77£1 F'OSITIOfi :'iE+I<5 .. 1,f;";' 8$; 'A=Pt1E:ASE.+I,j'i'
F'M=PEEK(A;' IF :< I =-I<! THEfJ PII= HIT(F't'1·K2 ;.
GOTO 7Ul
775 F1'I=F'tlW2' IF Ffl>=1<256 THEf-l F'tI=F'tl-K256
780 mS1jB :::00, tiE';T I,ri' I~OTO 570
800 FfKE A, Pt1 F'OS IT I C~i 14 .. l,tI' ,? pr·v"
F.:ETURti
900 GOSU8 990, '0 "Co lor'" ; 'GOSU8 1400' IF P
<1(£1 OR P>KI5 OR PC Hm:p> THEll 93&
910 A=p:n6
920 GOSUE: 993:? IILul"(l.i.nanc~lI.; :C;OSU8 140;.J:
IF P<KO OF: P>14 OR POU;T(P"'l2):H2 THB-i
9<:'B
930 A=A+P' POKE F')JL~:f1, A
940 GO.SI.JE: 950, GOTO 57"~
950 A=F'EH\FCOLPO)'F'CISITIot'l ;O~:: .. 21' "COl
OR=" .: A.; " ';' F.:ETU:;:H
990 PI)3ITIC~1 K19,K23;' "

"; 'F'CI::;ITIOt·l K19,K2.:loF:ETI§Ji
1000 FC~ ';'=KO TO K2.:~>PO::;ITIJJN K2,'r''' ';';'
FOF: :"(=KO TO ~I per:; I II GU i:+V5, " " 8$; 'iE<
T ::
WW A=Pt'1E:A::;E +';', F't'l=KO' i,iY=';' ,GG:3Ut; E;e~;' NCO:
T 'i
1020 FuS I T I Oil K27 .. KO ,;. "Corr,li1t·(;:';'
103~) POSITIOt-l K27.,V2';'· S$;A$.;"Esc Esc E5
c Up-Arro'!!"; ' PO::; IT IOU V2?, 3 ,;. S$; A$; "Esc

Esc E5c Oo~m-Arrol.IJII j
le4f1 PIj3ITION K27 .. 4';' ~;$;A$;"E5c Esc Esc
Risht-HtT'O;}" ; 'FOSI TIOt-l K27., K5' .;.. :::$; A$.: "

E5c Esc Esc Left.-At-·r·ol.r.l11 j

1050 PIj3ITIOtl K27,6';'- S$;U;"E5C Esc Esc
Up-ArT'o'!!" ; 'PCr:; I T I or'l f27 , V? ,';" S$; L$; "Esc
Es:c Esc [loum-ArroJ))I' j

1060 PtJ3ITIOt-l K27 .. f<:::";' S$; U; "Esc Esc Es
c ~:i9ht-Arroi}JlJj :F'OSITICN K27 .. 9:"[" SiLjll
E5c Esc Esc Left-Ht-rOJ,J Il

.;

1072 F'OSITIO~1 1<27,K13";' "Ch:;.nse tlode";
Hl75 F'OSITIOfl K27.,14';' "Ch:;.nge I,Jldt.h "; 'F
OSITHll K27,K15";' "Poke P ... 'tl".;
1080 POSITION V2? .. 16';'- ":3et Color' '' ; 'F'tJ:,;j
lION ~:2?} 17:"? lIPoke C010I-· iI

.;

W90 FUSITIOfl 1<27 .. 18";" ":;.l' .. !e [r:;.t.:;." j' F0:31
lION I<2? .. 19:"? "Lo."id D=it..i" .; : GOSU[; 2400 :GO
SUB 2::"'50' GOSUB 950

1095 IF CSIoJ THEtl F:ETUF.:ii
1100 H="Change "'GOTO 1160
1150 H="Seled ", GOTO 116,,1
116<1 F'O::;ITIOt-l K19 ,f23';" Pt.;T$.,' GO::;UE: DJ
£1
117~J SCUlD V0,KO .. f::O.,KOF.:ETUPH
120~J F'CrSITIOii 1<19 ., f2.3'·;'· "F'rocessin9".; 'FG
R 1~=f<1 TO U 0 ,.;, " ";, tlDo:T I,J' ::;OUt(1 f;:fl, 25~J
,6, K2 ' F:ETUF.:fl
1300 SCUlD K8,5~MJ2,4'FOF: l,j=i:0 TO k2H:
E>(T I~' WtND K0 .. KO, f::O., KO ' F:ETUFi:
1400 F'=f<O' l,j=KO 'OPEH # I .. 4,0, "f<' " ,GO:,U8 1.3
£10 'F'Of~E CP:3 I t·lH., 1<0 ,;, ";' ";
1410 GET #LI~'IF i,j=155 THW 1490
142£1 IF l,j=126 THEH F'=HiT(P· 'flO::";' "E5': L
eft-An-'o'!} SF·a.:e Esc Left-ArrOl.'}" ; 'GOTO 14
Ie
14.30 IF I'N? AflD 1,J<5E: THEti P=P',:UO+(l.H8
),t CHRt(l.D; ' GOTO 1410
1440 ? "Esc Ctl-Cle:;.r·"; ' GOTO 1410
1490 CLOSE # 1 'F'OI'E CF.:::.! iil!, f: I ' "" ; 'REW
RN
1500 F'CI3ITlOtl K19 ,K2T;'- "Enter F'oke 1).ljU
e5 "; ' FOF: If;'=/(O TO f;:23
1510 F1j3ITIOtI U3., I,r,"Go::;tj[; 1400 , IF F'=999

THEt·l 1590
1520 IF F,(K0 OF.: P>=f::25,o THEH 1510
1530 PtI=F" GaSUE: 210[1
1560 F1j, I TI Oti K 13, I,ii ,';' " ".:' Hf}':T if,' GOm
~70

159~3 A=F'i·1EiHSE+~·{l : F't1=F'EEK(A) : GO::;U~: E:~10 : F{;
:3 IIIOt·i f:J 3,1{{:? II ;1; :F'OF' :GOTO 5('0
1680 GO:;UE: 990 : F'CSITlot·~ K19 .. ~<2.3 : ? IipokE
Co 1 ot-· II

.; : CG::tl[, 1':;((1: IF P< kO OF: F' >=1:::2.56 Of.::
PO HIT< F'· 2 /~'2 THEr 1 1600

1610 A=O ' GO TO 9.30
170,,1 FOF: 'r'E =K23 TO KO ::;TEF -K I ' IF F'EEi:\ F'
t'18A::;E +'iE >< >KO THEH 1720
1710 tiE:<T 'iE' F'C;:; IT IOiI fU 9, K23 ,;. "tio p. t1
0.'1 t=i f-tO ::;::t,l,Ie ;1.;: FOF.: l·J=KO TO K.SI2: HE:=<T !.j :

GO TO 570
172~3 peiF' : GO::;U8 25(1(1: GCJ::,U8 1790 : A=Kf~
17.30 OF'Et-{ #L::: .. O., flC : II ::)t·j=::;t-i+i:jO · TJ=::;T~::t ;.:
SN) :G09JE: lE;l~J:Ti·=ll DATA il:CO:;U8 lS1(l ; T~~

=STRi:(r'1:3 >: GOSUE: 181 Ci
17.35 H=::;TR$(i·jD;" GO::,UE: W)(), T$=,,;TF::i\ FEEK
(F'COLPO > > : GOSUG 180~=i
174£1 FCf: 1,r,'=f(O TO 'iE Ptl=PEEf\ r'l1DA':,E +i,j':"
T $=:3TF:$(F'1I ;. ' GO::;U[: 1 :::00
1760 tlE:<T lof," H="-I" · GCl:3UE: I:::I}O · FtiT #1 ,1
55 'CLOSE # 1 ' GO TO 570
1790 POSITICN K19,f':2.3' c' "F.:e.1d"1 hl"e F.:e.:o

r·der "; ' F.:ETU~:t-l
1:::00 F'LIT # L 44
1:310 FCf.: 1,J:':=Ki TCr LEH(T $ HtlT # i.. ASC/ H\
l,j:":, I{< :') ' tlDa 1,1:': ' F.ETUFN
1900 GO~;LIE: 2500 ' GOSUE: ; 2fu) • (51,j=,·:; • GO::,U8
1000' CW=KO '::;OUtiO 0., (j, [I, I)
1905 GCr3UE: 1790 ' OFHi IIL4 .. 0.,"C"'FCr~: l{(=
K0 TO VW'GET #LA'tE:T loI:(
1910 I~Cr3UE: 20.:(1' tlS=F't1 'GO:3Ui:: 2400 ' ;~O~;U[: :::
£100 ' I,JO=F'tl ' GOSUE: 22$j ' GCr:,UE: 2000' POKE PCO
LR0, pr'l ' GOWE: 950
1920 FOR l,fr'=KO TO V23'GCI:3U8 2000' IF P=45

THEtl F'OP ,GO TO 1990
1930 F'=F'tl' W3UE: 2100' 11D':T If,'
1990 CU)::;E II I 'GOTr:r 570
2~300 F'tI=VO ' FO~: I.J:(=KO TO 4' GET II I , F' , IF P=
44 THEtl F'OP ' GrJTO 2090
21310 IF F'=45 THEt·~ POP GO"iO 2090
2020 F't1=F'tlil i I} fi)AU CHFJ(F' ;. ;. • tiE)':! I,J;":
2139~1 F.:ETUF.:H
2100 A=12:::' FOr.: l,j>(=kO TO K7'F'r}:,ITICir·i I{<+:·::
5,H'/, IF P{A THEtl 2120
211£1 ;.- It; ' P=F'-A GOTO 21.3~)
2120 ;. 8$.;
2130 A=A.,·V2 ' t·1E::T 1-1>: ' A=F'!1Br:l':;E t!.j';' ' GO:3UE: :::0
6 ' ~:ETI..fN
::::::Utl IF I,m=!::o THEr i I,JD=;:!' GOTO 2230
2210 IF l·m=Vi THEti I,m=] G:jTCr 223[,1

66

2220 I~O=i:O
2230 GOSUB 2250: GOTO 57t1
2250 POI':E :, lZEF'O , 1",[1 ' F'CI::; IT WU 24 , 2 i ,;. "I,j=
" ; 1.[1 , F.fTUF:N
23~J(1 GCr:;LIB 12(H3: IF tt:;=46 THEH t6=62 GOTO

2330
231 ~3 r-1S=46
2330 GCr:;UE: 2400' FOF: i{;'=KO TO (2.3' F'ii=F'EEi:
(Pt1::;AUE+i'j'(;" POI<E F'11BA:;E +I,j'i', F'1I' POKE Pii::AU
E +l{() K0: t'~E:;n l.f-(: GOrO 57(1
2400 POKE :;Di'l;~TL,rt:;' F'CISITIOrl KI9,21';' "tl
=" ; r'lS; 'F't'EAt)E =Pt'1E:A::,E
241fl 1·j)(=K512+34 IF 11:::=46 THEti 2430
2420 l,j:":= 1024+6:::
243~J FH::ASE = T~:AI·t::~t<256+~'J:}:: : F.~ETUF.Ji
250(1 IF NOT :oTR IGUO::O ;' THEii 2:.30
2505 GCr:;UE: 993 F'G, IT IOt·1 K 19 , f230;' P$; "C:.
nf i r"!I) II .; : GOSUB 1300: LOCA TE :;;:+K.5) 'r') OC : H= i;2
8'CC=OC+H
25W F1:r3ITIOfl ;'(+L5,'i';' CHF.:$(CC,; ' H=-H ' CC
=O:+H 'FOF.: l,j=K:O TO r23' NE:'<T i,j ' F'=:::TI Cl/ K~3 ::'
' T=:,TRIG(KO;'
2520 IF P=K15 At·iD T THEil 2510
2530 FuSITI Otl :<+K5,'i';' CHF:$(OC" IF F' ::Yi
5 THEt-l POP 'GOT!} 570
2540 F.:ETU~:fl

Animath

The graphics potential of the Atari
personal computer is a powerful educa
tional tool. It can be used to transform
the chores of learning into the fun of
learning.

A growing number of companies now
produce educational software for the
Atari computer, but the quality of this
software varies widely. A good children's
educational program draws children to
play with it, and allows learning to happen
along with the fun.

When you think back to your school
days (assuming you're not still there), what
did you find to be the worst part of the
learning process? For us it was drill and
practice. Here's a children's educational
program that makes addition practice
enjoyable using an interesting type of ani
mation.

The program is called Animath, for
animated math program, and it uses a
modified character set to create a saunter
ing gorilla. Player I missile graphics are
also used to spice up the game.

There are several commercial programs
which can be used to create modified
character sets. Perhaps the best-known
of these is Fontedit, from Iridis #2. We
used a program similar to this to write a
"gorilla" font to disk. The original version
of this program called the font from disk
and loaded it into memory. The Atari
character set is a part of ROM , so the
font must be moved to RAM, where it
can be modified by the appropriate
POKEs into memory.

We knew that many Atari owners uti
lize ca~sette storage, so we wrote a little
utility to save the font as data statements
at the end of the program. There are 24
modified characters, represented as 24
data statements. Because the characters
are set up in 8 x 8 blocks, each of the
eight numbers in the individual data
statements is one 8-bit word, or byte.

After the gorilla is POKEd into RAM,
he can be animated by the POSITION
command. By changing the positions of
his arms and legs, we simulate motion,
and the gorilla is able to run down the
screen to the first problem.

Thanks to Basic A + from Optimized
Systems Software, we were able to get an
accurate list of variables. The first list we
generated contained several variables we
couldn't find. After listing the program to
disk and entering it back in the computer,
we came up with an accurate variable
table, without all the variables that had
been eliminated in earlier incarnations of
the program. It's always wise to LIST,

Jerry Wright, 18812 116 Ave., SE, Renton,
WA 98055.

Jerry Wright and Lloyd Oilman, Jr.

o REt'l 'HAN Jtol ATH ElY LLO YD OL LI'lAhIN AND .JERR Y WRIGHT Ie)

198 1 El Y LJ SOFTWARE

2 DIM I~U$ (5), TI~$1 3),ElN$13),A$ I I):NU$= " II: P= 4: PO~~E 764 ~ 2 55

3 Q-PEEKl l (6) : Q-Q-5:POKE 10 6 , Q: Q-Q+l: Q-Q* 256

4 S OUND O, 8, 8 , 4:GOS UEI 6 100

5 S TA RT-573 4 4 :FOR NOW-O TO 1023 :eH-PEEK ISTART+NOW):POKE

Q+ NOW ,eH:NE XT NOW

6 FOR NOW-264 TO 463 :READ CH: POK E Q+NOW ,eH:NE XT NOW

8 I - PEEKI I (6)-8 :POKE 5 4 279 ,1

11 GRAPHI CS 17 : POKE 7 5 6 ,Q /256:SETCOLOR 4,1, 2

12 T-20 : SE TeOLOR 2 , 0,0

15 POKE 53248~95 : POKE 5324 9 , 127 :POKE 704 ~11 7 :POKE 705~ 11 7 :

PO KE 53261 ~ 255: POKE 53262 ~ 255 :POKE 53256~ 3 :POKE 53257 ~ 3

~~ L=- 1: X= i:WAL=5()I)

40 POSITION X+ l, 2 : ') #6;" [AEI]" ;: F'[)SI T I[) N X+l , 3 : ')

#6; " (CD] " ;: POSIT I ON X+ l, 4 : ? # 6 ;" [EF]" ;

55 TN$12 , 2)-STR$II NT IRN Dl l)* 10»

: ElN$12,2)-STR$I INT I RND I 1) *1 0» :L- L+I: I F L=PR THEN GO TO 700 0

56 POSIT I ON 2 ~ O : ? # 6 ;W. "/ "~ L~

57 TNSll, l)-STRSI INT IR NDI I)* 10»

: ElN$ I 1 , 1) -STR$ lINT I RND I 1) * 10))

58 TN-VAL I TN$) : ElN-VAL I ElN$)

60 POSI T I [) N X+l, 20 : ') #6;TN$; :POS I TI [) N X, 2 1: 7

#6;"+ "; BN$; :POSITIDN X~2.2 : ? #6." ". ,

70 PDSIT IIJ N X, 23 : ') #6;" " ; : CiClS UEI W,~L

100 SOU ND 0 , 8,8,4

120 I F RNDI l. »0 . 95 TH EN FOR D- l 0 TIJ 5 !3TEP - 1: S0UN D

I, D,10, I NT IRNDll)* 10) :NEX T D: S OUND 1,0 ,0 ,0

140 GOS UB 60t)

180 IF RNDl l) ; 0 . 95 TH EN F[)R D- l 0 TO 5 S TEP -l : S [)UND

I,D,10,8 :NEXT D: SOUND 1 ,0.0,0

184 GOS UEI 6(10

185 IF RND (1»0 . 95 TH EN F IJ R D=15 TIl 0 STEP -l:SOW~D

1,100,8.D : FOR E-l TO 20 :NEXT E :NEXT D:SIJ~~D 1 .0 .0, 0

1 '75 t3lJ!3UB 600

200 GO TO 120

500 FIJR A-2 TIJ 17

~j(l l GOSUB 2000

535 NE XT A

5 4 0 RETURN

600 TRAP 840:K-PEEK(764)

67

Animath

then ENTER programs when they are
finished, to clear the Atari variable table
of all but the variables actually being
used.

Variable Table
NU$-String holding answer input by
player
TN$-String holding randomly generated
top number
BN$-String holding randomly generated
bottom number
A$-String to hold player input to ques
tions
P-Horiwntal position of individual num
ber input by player as an answer
START - Beginning location of character
set in the operating system
NOW - Variable loop pointing to next
character in the character set
CH - AT ASCII number of character set
Q-Location of RAMTOP (PEEK (106))
I - Location of PLAYER/MISSILE Base
Address
T - Variable for top end of volume in
motion sounds
L-Number of problems completed
X - Horiwntal position variable
WAL-Gorilla movement subroutine
PR-Number of problems chosen
W - Number of problems successfully
completed
TN - Actual top number of problem
BN-Actual bottom number of problem
D-Decreasing pitch used in booming
sound
E-Timing loop variable
A - Vertical position of gorilla or erase
pattern
K-ATASCII number input f1"om key
board
N - Actual number input from keyboard
AMT -Answer: total of answer numbers
in the ones, tens, and hundreds columns
J-Sum of top number (TN) and bottom
number (BN)
C-Number of times gorilla goes through
movement routine
B-Volume of motion sound routine
ending in variable T, also wait routine
F - Flag set to 0: input character set. Flag
set to 1: jump directly to main body of
program
WT - Wait routine

The Program
Lines 0 through 4 introduce our

authors, and set up our new character
set. Line 2 DIMensions the various strings
we will need, and makes sure that the
string to hold the answer is empty.

In line 3 we find the top of our available
memory by PEEKing RAMTOP, which is
location (106) in memory. Then we fool
the operating system into believing that

610 IF "::=31 THEN N=l:GOTO 700

615 IF f<;;;:30 THEN N=2:GOTO 700

620 IF "::=26 THEN N=3:GOTO 700

625 IF K=24 THEN N=4:130TO 700

6:30 IF 1<=29 THEN N~'5: GO TO 700

635 IF ">~27 THEN N=6: 130TO 700

640 IF "::='51 THEN N=7:G01'O 700

645 IF 1(=53 THEN N=8:130TO 700

650 IF K=48 THEN N=9:130TO 700

655 IF K=50 THEN N=0:1301'O 700

660 IF K=12 THEN AMT=VAL. (I\IU$) :130Te) 800

670 IF "::=33 THEN NU$=" ":P=4:1301'1J 705

690 RETURN

700 P=P-l:IF P(1 THEN K=33:130TIJ 670

701 NU$(P,P)=STR$(N):PIJKE 764,255

705 POSITIIJN X,23:? #6;NU$:RETURN

800 cl=TN+8N

810 NU$=" ":P=4:F·IJKE 764,255:PIJSI1'IIJN X;23:? #6;NU$

820 POSITION X+1,2:? #6;" ";:POSITION X+1,3:? #6;"

";:POSI1'ION X+l,4:? #6;" ". ,

830 POSITION X+l,8:? #6;" ";:POSITION X,8+1:? #6;"

";:POSI1'ION X,8+2:? #6;" ". ,
835 IF AMT=cl THEN WAL=500:W=W+l:GOTO 1000

840 POKE 764,255:X=8:WAL=900:GIJSU8 1010:GIJTIJ 4000

900 T=30:FOR A=2 TO 17:130SU8 30rnJ:NEXT A:T=20:RETURN

1000 IF X=8 THEN 5rnJO

1005 X=I:T=10:A=17:FOR [;=1 TO 20:130SU8 2000:NEXT

C:T=20:FIJR 8=1 TO 200:NEXT 8:GOSU8 1010:130TO 55

1010 FOR A=17 TO 23:POSITIIJN O,A:? #6;"

";:NEXT A:RETURN

2000 POSITION X+l~A-l:? #6;11 ". ,

2005 POSITIIJN X+l,A:'? #6;"[NO]";:PIJSITIIJN X+l,A+l:?

#6;"[PQJ";:POSITION X+l,A+2:? #6;"[RS)";

2006 FIJR 8=1 TO T:SIJUND 3,200,8,B:NEXT 8

2007 PIJSITIIJN X+l,A:? #6;"[TU]";:PIJSITIIJN X+1,A+1:?

#6;"[YV]";:POSITIIJN X+l,A+2:? #6;"[WX]";

2008 FIJR 8=1 TIJ T:SOUND 3,200,8,B:NEXT B

2009 PDSITIIJN X+l,A:'? #6;"[AB]";:PIJSI1'IIJN X+l , A+l:?

#6;"[CDJ";:POSITIIJN X+l,A+2:? #6;"[EF]";:SDUND

3~O,O~O:RETURN

3000 POSITION X+l~A-l:? #6;'1 " . ,

3001 PIJSITIIJN X+l,A:? #6; ·'NO"; :PIJSITIIJN X+l"co,+I:'? #6; "PO";

3002 FOR 8=1 TIJ T:SIJUND 3,170,8,8:NEXT 8

68

the available memory is five pages smaller
than it actually is, so we won't accidentally
load our program on top of the changes
we are going to make.

We then get an even number above
our new RAMTOP (by adding 1) and
multiply this number by 256. This new
value of Q gives us the starting location
of our new character set.

We use the number 256 because the
Atari 6502 microprocessor divides mem
ory into 256-byte "pages," and we must
start the new character set at the begin
ning of an even page mark.

Line 4 begins the river sound and jumps
to the introduction and instructions.

The subroutine at 6100 prints out the
name of the program, and the authors.
Then there is a pause at line 6120, so the
title can be read, followed by a jump to
the section asking for the number of
problems desired -line 6000.

If this is the first time the program has
been run, the F flag is set at 0 and a
message asks the player to wait while the
character set is set up. The program then
returns to line 5.

The Atari character set can't actually
be changed, because it is permanently
embedded in ROM starting at address
57344. So we must move it into RAM. We
do this in line 3 by PEEKing the character
set and then POKEing it into the space
we have set aside above RAMTOP.

Line 6 reads the DATA defining the
new characters and POKEs it into our
new locations. In line 11 we POKE the
location of our new character set into
location (756), just above RAMTOP in
the Character Base Register.

There is a stream in our graphics jungle.
In line 8 we create this by turning on two
Players and setting their location just
below RAMTOP then POKEing this into
the Player/Missile Base address 52479.

Jumping to line 15, the horizontal
position of Player 0 is POKEd into 53248,
Player 1 into 53249. POKEs (704) and
(705) set the color, POKEs (53261) and
(53262) set up the shape and POKEs
(53256) and (53257) set up Player size.

We keep track of the number of times
the Gorilla finds a problem with the
variable L, and use the variable X as the
X coordinate of our gorilla's location.
Atari Basic accepts names as well as line
numbers in GOTOs and GOSUBs, so we
give the movement subroutine a name,
WAL.

Line 40 sets the starting location of the
animal by using a position statement in
X/Y coordinate form. Line 55 then ran
domly selects a top number which is
placed in TN$ and a bottom number,
placed in BN$.

3003 POSITION X+ 1, A:? #6; "TU";: F'OSI TION X+1, A+1: ~., #6; "Y~''';

3004 FOR B=1 TO T:SOUND 3, 170,8,B :NE XT B

3005 pm,ITION X+1,A : '" #6;"AB";:POSITICIN):+1,A+1:~"

#6; " CD";:SOIJND 3,O,0,0:RETLIRN

4000 T=10,FOR A=17 TO 2 STEP -1:GOSLl8 30rnJ:PClS ITION

8 ,A+I: 'C #6;" ";:NEXT A:T=20:GClTO 0->

5000 130SLJ8 1(:)10:T~2():X=1:(30TO 55

6000 '" "} HOW ~lANY PROBLEt'lS WOUL.D YOU L I I<E" ; : INPUT F'R

6005 IF F=l THEN 11

6010 '" "}JIJST A ~lINUTE, WHILE I LET THE GORI L.LA

OUT OF HI S CAGE. ":RETURN

6100 GRAPHICS I:SETCOLOR 2,0,0:POSITION 6,4 : '"

6 ; " [an'imathJ":pm:E 7 52,1: "' '' A MATH PROGRAt1 BY"

6110 ? " LLIJYD OLL~lANN AND ,JERRY WR I (3HT" : ? " CHARACTER

DESIGN MII<E POTTER": F'm:E 752 ,1

6120 FOR WT=1 TO 1000:NEXT WT :'" "}":GOSIJ8 6000:RETURN

7000 GRAPHICS O:POI<E 704,0:POI<E 705,0:POI<E 710,0

70 10 ? "THI S TIME YOU GOT ";W;" OUT OF ";L:'" "RIGHT.":'"

"DO YOU WANT TO TRY AGAIN'" (Y/N)":INPUT A$

7020 IF A$<>"Y" THEN END

7030 W=O:L=O :F=I:GOTIJ 6000

10060 DATA 255~255 ~255,255,255, 255 , 255,255

10080 DATA 240,240,240 ,240, 2 40,240, 240 ,240

10090 DATA 1, 1, 1, 1,1,1, 1,1

10100 DATA 128,128,128,128,128,1 28,128,128

1011 0 DATA 3,3,3,3,3,3 ,3,3

101 20 DATA 192, 192 , 192,192 ,192, 192, 192,192

10160 DATA 63,127,255,227,227,227,231,238

69

Animath

Line 56 places the number of problems
successfully answered next to the number
of problems tried, and line 57 gets more
numbers for the number strings. Line 58
gets the value of the strings and places
them into variables TN and BN.

Line 60 places the numbers in their
proper positions at the bottom of the
screen.

In line 60 we jump to the gorilla anima
tion section. This time WAL=500 so in
line 500 we find the vertical positions for
the gorilla in a FOR/NEXT loop and jump
to the actual movement subroutine at line
2000.

Lines 2000 through 2009 draw the
gorilla and move his arms and legs, while
making the movement sound. Then the
subroutine jumps back to line 501 where
it gets a new position from the variable A
in the FOR/NEXT loop. It then goes back
to the movement routine until it reaches
vertical position 17 on the screen. Next
we jump back to line 100 for a sound
routine and then jump to line 600.

This is the keyboard routine - where
we PEEK location (764) to find the inter
nal code of the last key pressed. The
computer runs through a series of IF/
THEN statements to determine which key
has been pressed by the player, and
compares it to a list of valid inputs. The
first number input goes into the ones
column, the second into the tens column,
the third into the hundreds column, and
the fourth into the thousands column.

This is done by setting up a number
holding string (NUS). The position of the
number in the string is determined by line
700, which starts with P=4, so the first

number is placed in the fourth position of
NUS, the second number in the third
position and so on. Line 705 prints the
NUS on the screen and then the Atari
loops around to line 120 and back through
the keyboard routine until Return is
pressed at line 660.

Line 670 allows you to recover if a
mistake is made. All you have to do is
press Delete/Backspace or the Space Bar,
the NUS is cleared , and you start back at
the ones column. You then repeat the
procedure until you have what you feel is
the correct answer.

Pressing Return takes you out of the
loop at line 660 where this time the value
of the numbers in NUS is transferred to
the variable AMT. We then jump to 800
to find out if the answer is correct.

Line 810 clears NUS and resets location
(764) by POKEing in 255.

Lines 820 and 830 blank out the
standing gorilla, then 835 determines if
the answer is right. If it is, the gorilla
walking routine (WAL) jumps back to
line 500, adds 1 to the amount answered
correctly, and jumps to line 1000.

If AMT doesn't equal J, then the gorilla
movement subroutine is set to 900, the
horizontal position (X) is moved over 8
places, and the gorilla runs through the
subroutine at line 400 which forces him
into the river. A reverse FOR/ NEXT loop
carries him downstream in subroutine
3000. Then the program jumps back to
line 55 where the new value of X swims
him upstream with the subroutine at line
900, and gives him a new addition pro
blem to answer.

If the question was answered correctly,

70

the program jumps to the subroutine at
2000 through 2009, where the gorilla
jumps up and down with joy. The routine
then sets the sound volume variable T to
20 and the horizontal position variable X
to 1 and then jumps back to the main
program loop at line 55.

When the number of problems chosen
(PR) equals the number actually done
(L), the program goes to line 7000 where
it displays a score and offers a chance to
play again.

We hope this program and accompa
nying explanation have given you an idea
of some of the things that can be achieved
with the Atari Personal Computer. We
enjoy this system thoroughly, and hope
that many more people will soon see the
Atari as a computer with truly incredible
possibilities.

Instructions
After the program is loaded and the

player has chosen the number of pro
blems, the gorilla will come on the screen
and run down to the first problem. The
answer should be typed in with the first
number in the ones column, the second
in the tens column, and the third in the
hundreds.

If you make a mistake , just press the
space bar. When you have the correct
answer, press the return key. The gorilla
will tell you if you are right.

In the listing that follows , several char
acters are in square brackets. These
should be typed in as inverse characters.
The Epson MX-80 prints a ..] "instead of
a clear sign, so when you see that symbol
type Escape, then Control and Clear
together. 0

Greater Graphics Control Marni Tapscott

The Ata ri has nine graphics modes .
Modes 1 th rough 8 have a split screen,
however, the split screen may be overridden
by adding 16 to the mode number. Modes
1 and 2 a re text modes with five colors.
Cha racte rs in graphics mode 1 a re twice
as high and twice as wide as those in
mode O. Characters in mode 2 a re twice
as high a nd twice as wide as those in
mode O.

If yo u have eve r tried to use the Atari
graphics cha racte rs in mode I o r 2 only
to be dismayed by a screen full of hea rts,
or have had diffic ul ty using all fi ve colors
available in those modes, read on. Solutions
to some of th e problems encounte red in
both a reas will be discussed.

T he cha rac te r se t in gra phics mode 0
has 128 cha rac ters , upper a nd lower case
le tte rs, .punctuation , numbers and A tari
graphics characters. However. in gra phics
modes I and 2, only 64 cha rac te rs a re
ava ilable at a time. There are three choices:
numbers, upper case le tte rs and punc tu
a ti on including a blank space; the Ata ri
graph ics charac te rs and lower case le tters
with no blank space ; or your own character
se t.

Creating Blank Spaces
Frequently, you will wa nt to use bla nk

spaces as we ll as the graphics charac te rs.
T here are two ways of c rea ting blank
spaces. One is to give up one of the five
colors available; simply make color register
o the same color as the background and
proceed to plo t o th er cha rac te rs using
only color registe rs 1, 2 and 3. T his is the
straightforward solution. The short program
in Listing I illustrates thi s a lt e rn a tive .

The second meth od of c reating blank
spaces req uires more work; one characte r
must be rede fin ed . Novice programmers
may be put off by the imposing sound of
"redefining a charac ter set," but I have
discovered that it is not difficult and tha t
it can open the door to grea ter graphics
control and c rea tivi ty.

It is important to point out tha t one or
several characters can be redefined without
redefining the whole cha rac te r se t. There
are fo ur basic steps.

First , we must a lloca te space in RAM
for the cha racter se t and protec t it fro m
Basic. T he top of RAM is the e nd of the
section of memory accessible to the use r.
The physical to p of RAM is stored in a
location called RAMTOP. The area above
the value sto red in RAMTO P is Read
Only Memory or ROM whi ch conta ins
permanent storage of prog rams and da ta
that may never be changed. The opera ting

Marni Tas ps co tt , 297 M isso uri St., Sa n
Francisco, CA 94107.

system , for example, is stored here.
If we store a lower value in RAMTOP,

we effectively rese rve a section of RAM.
The ope ra ting system will be fooled into
thinking less RAM memory is ava ilable ,
and we can keep our new charac te r se t
from being changed or erased by sto ring
it in this area.

When I refer to "up" in memory , I a m
refe rring to those memory loca tio ns with
higher numbers; "down" refe rs to memory
loca tions with lower numbers. The diagram
in Figure 1 may help .

Step one: Rese rve memory fo r the new
charac ter set. G raphics modes I and 2
re q uire 5 12 by tes o r two pages for
redefining a character se t. In mode 0, we
need 1024 bytes or four pages to rede fine
the 128 charac te rs avai lable . We PEEK
at wha t is stored in RAMTOP (loca tio n
106), subtrac t the appropriate number of
pages (each page = 256 bytes) from tha t
value and POKE it back into 106.

Step two : Move the present cha racte r
set fro m ROM into the rese rved sec tion
of memory . T his is easily accomplished
with a FOR/ NEXT loop PEEKing the
charac te r set in the ROM loca tion and
POKEing it into the new locati on . The
characte r set containing upper case letters,
numbers and punctua tion is located at
57344 in ROM a nd the a lt e rn a te set
c onta ining th e g raphics c ha rac te rs is
loca ted at 57856 in ROM.

Step three: Inform the ope ra ting system
where the new charac ter se t is located
with a POKE 756, X where X equa ls the
address of the new charac te r se t. Every
ti me a graphics state me nt o r rese t is
executed , the value in location 756 is reset
to 224, the sta rting page address of the
old charac te r set in ROM, so it is best to
include this POKE sta tement afte r a ny
graphics mode stateme nt.

Step fo ur : Redefining the charac te rs .
The de fin it ion of a cha racte r uses 8 bytes
in memory. Eight O's must be po ked into
memory to take the place of an ex isting
cha racte r. Since the heart is the first
character in th is set, I fou nd it easiest to
replace. T he first 8 bytes o r locations 0
th rough 7 in the sec tion o f memory we
have set as ide conta ins the hea rt . If we
POKE O's into these loca tions we will
fin a lly have a blank space. Inc identa lly,
the reason the sc reen fills with hea rts in

Listing I .

110 GRAPHIC S 1 : ~OK E 756, 2 26

End of
Memory

ROM

New character
se t sto red he re

New to p of RAM
after 2 pages
have been
subtracted from
RAMTOP

R AM

0
Beginning

of Memory

Figure I.

120 ? "THIS IS WHA T HAPPENS WHEN 756 I S POf(ED WITH 226 IN GR. 1"
130 FOR WAIT = 1 TO 2 000 : NE XT WAIT
140 SET COL OR O, O, O: REM SET COLOR REGI STER ° TO S AM E CO LOR AS BACKG ROUND
150 ? " THIS IS WHAT HAP PE NS WH EN A COLOR REGI STER IS MADE SA ME COL OR AS

E:ACI(GRO LI NO. "
160 FOR WAIT =1 TO 2 000 :NEXT WA I T

71

c:::i
00
0\ -.
g

<..i
~

~
~

~
<Il

~
a
" ~
~

;>.

a :...
t:l.

~
~

-<::
U

Greater Graphics Control

modes 1 and 2 when you are trying to use
the graphics characters is that the heart is

stored in the same relative position as the
blank space in the other character set.

Listing 2.

100 REM CHARACTER REDEFINITION
110 REM STEP ONE: SET ASIDE MEMORY FOR CHARACTER SET
12 0 POKE 106 , PEEK(106)-2
130 GRAPHICS 2+16:REM GR.STMT.HERE PREVENTS OVERLAP OF DISPLAY LIST

8. CHARACTER SET
110 REM STEP TWO MOVE: CHARACTER SET INTO NEW LOCATION
150 A=PEEK(106)*256
160 FOR B=O TO 511
170 POKE A+B,PEEK(57856+B)
180 NEXT B
-190 REM STEP THREE: POKE NEW ADDRESS OF CHARACTER SET
20 0 POKE 756,PEEK(106)
210 REM STEP FOUR: CHANGE HEART TO BLANK SPACE
22 0 FOR c=o TO 7
230 POKE A+C,O
210 NEXT C
250 REM
310 REM SET UP COLOR REGISTERS
330 SETCOLOR 0,13,8:REM GREEN
310 SETCOLOR 1,1,a:REM PINK
350 SETCOLOR 2,10,a:REM TURQUOISE
360 SETCOLOR 3,2,8:REM GOLD
365 SETCOLOR 1,12,1:REM BACKGROUND COLOR TO GREEN
370 REM
390 COLOR 60:PLOT 5,5:REM GREEN ARROW
100 COLOR 2a:PLOT 6 ,5:REM PINK ARROW
110 COLOR 188:PLOT 7,5:REM TURQUOISE ARROW
120 COLOR 156:PLOT 8,5:REM GOLD ARROW
150 GOTO 150:REM KEEPS DISPLAY ON SCREEN

Figure 2.

Column I Column 2 Column :1 Column "'

CUR CIIR D CIIR D CHR CIIR D CUR D CIIR

" Spact' IIi :1:2 @ 4/\ (i· \ C 110 g ~jli C 11 2

17 :U ,\ . j !) \l liS G II I ~ !J7 \1]

11\]·1 :i() till IJ 1I2 = !IU h 114

I ~ J :I:, C !'d Ii/ g IU " !I!J I I:;

20 :IIi Il !i:.! T liB 0 II·, C 100 Ii 1 II i

"" :2.1 :17 !j:l 1I I i! ! CI lEi ~ 101 11 7

I_e ').) JB :,., V 7() ~ III; III IO:! 1] /\

:!:I :I! I (; :,:; \I' 71 ~ 1\7 ~ 10:\ ~ I I !)

Il 2·1 40 " :,(; X 72 ~ lIlI ~ III·' \:.!fI

:.!:i ·11 ;), 7:1 fI II!) () IO!) l :!l

III 21; ·12 ;,/1 /. ;. , ~ !IO g I(H i \ :.!:.!

II -,- .1:\ !i ~ J 7:; '" !J] 'I] 1117 12:1

12 :!B < ·1·' l iO 7(; ~ !J:! 0 111/\ \:.!.,

U :!! J ·I:i ~ I Iii .. ~ !U D Ifl!) I:.!!i

1·1 :In > ·Hi ~ Ii:! 1\ 71\ ~ !)., CI lill 12';

1:-, / :1 \ .] :- " 1,;1 7! J tt !t;, C III 12 ';'"

Figure J.

Table 907-CIIARACTER/COLOR ASSI(;NMENT

COl n '('rsion 1 {;mn','r,'ilull 2 COII\','rsiulI :1 {;fIlH' t' r .'iiulI ·1

MOUE 0 ~SLTC()U lR ~ # 0:l:! II 0 :I~ #- ." I:! :-.i(I.," ! :

!'OKI: ;:;Ii.:.!:.!·']'()K I: 7[,(i.~~"

MOUE I SI:"IUJUlN: I) - 1:12 11']2 # - :l:! 11 - :12

OR S [TCI~I.(JR 1 NON!: 1I 0l i 4 II - I i ., :\,1);-": 1:

MOUEl SI:lUH .. ()R 2 11 0 Ui{) /I ~ lI iO 1I' !Jli II • ~JI ;

SLTC()1.0R J /l o l:!8 II • 1 ~)2 II o (i.' 1I 0 1:!H

72

CIIR

'I

D

P!i ..
~

These four steps eliminate the heart
and define a blank space. Now we are
ready to assign colors and positions to
characters.

Assigning Color and Position
There are two methods ; we may use

either the POSITION and PRINT #6
statements or the COLOR and PLOT
statements. Color manipulation is less
obvious when using POSITION and PRINT
#6 statements.

The AT ASCII number that corresponds
to both the character and the color desired
must be obtained through some experi
mentation.

Since the other method employs charts
already avai lable in the Atari Basic Refer
ence Manual, this method will be described
in greater detail. For convenience the charts
from pages 55 and 56 in the Atari Basic
Manual have been reproduced here.

First, the four colors desired are estab
li shed in the co lor registers using SET
COLOR statements. SETCOLOR 0,1,8
establishes gold in register O. Next , find
the character you wish to use in the chart
in Figure 2. Make note of both the number
next to the character and the column in
which it is located. Looking at the second
chart in Figure 3, add or subtrac t the
number listed here according to the color
desired. The "columns" on the first chart
correspond to the "conversions" on the
second chart.

For example , I want a gold up arrow to
appear at Row 5, Column 5. The up arrow
is 92 in Column 3 in Figure 2. Looking at
Figure 3, we subtract 32 from 92 since
gold is in color register O. The statement
below accomplishes our goal:

COLOR 60 :PLOT 5,5
Listing 2 is a short program which

illustrates both the redefinition of the heart
character to a zero and the use of SET
COLOR, COLOR and PLOT statements
for full use of all five colors. (The fifth
color is the background coloL) One word
of caution regarding running the program:
always press the system reset button before
re-running because the system continues
to subtract pages in memory until it
interferes with the display memory.

Suggestions for further experimentation
are:
• Redefine more characters for greater
graphics variety .
• Combine two or four or more characters
for a large r, more complex shape.
• An imate shapes through color rotation .
• Animate shapes through redefinition of
a figure (animal, person) in several positions
and rotation of positions.

The Atari Graphics Composer David Lubar

Everyone who has come within thirty
feet of an Atari knows that the machine is
capable of great graphics. Everyone who
has come closer than that knows how
tough it is to ge t those great graphics. By
producing the Atari Graphics Composer.
Versa Computing has taken care of the
hard work. leaving the user free for
creativity and experimentation. This set
of utilities performs five main functions;
hi-res drawing. medium-res drawing. text
writing. geometric figure creation. and
player creation. The combination is pow
erful enough to allow a wide range of
graphics.

The high-res mode allows drawing with
paddles or joystick on a four·color screen
with a resolution of 320 by 160. There is
one background color. which can be
changed at any time. and three foreground
colors. While the luminance of the fore
ground colors can be changed. the color
value is predetermined by the background.
In this mode. the user can either draw
freestyle . or draw lines between any two
points. Other options include fill and brush
routines. There are two types of brushes;
normal brushes fill an area with a solid
pattern. the air brush puts a pattern of
dots over an area. Combining these. one

SOFTWARE PROFILE
Name: Atari Graphics Composer

Type: Graphics utility

System: Atari 400 or 800, 32K RAM,
Basic Cartridge, paddles or
joystick.

Format: Disk or Tape

Language: Basic and Machine
Language

Summary: Versatile system for
graphic creation

Price: $39.95 on disk or tape

Manufacturer:
Versa Computing, Inc.
3541 Old Conejo Rd. Suite 104
Newbury Park, CA 91320

can color in a picture , then add shading.
The fill routine. written in Basic , is not
fast, but it is very thorough , filling in most
irregular patterns without missing any
spots.

Another nice feature is the accelerating
crosshair. When the joystick is moved to
a new position . the crosshair moves slowly
at first , then speeds up . This allows for
fine control over a small area and less
waiting time when crossing the screen.

David Lubar is a former associate editor for
Creative Computing magazine.

While the quality of any graphics done in
this mode depends, obviously. on the user's
artistic ability, the capability is there to
produce detailed pictures.

The medium-res mode provides a screen
with 160 by 80 resolution. with one back
ground and three foreground colors. These
colors can be changed at any time. (For
those unfamiliar with the Atari. a change
in color actually changes a color register.
thus not only do future lines appear in
that new color, but lines drawn previously
with that color also change to the new
color.) As with the hi-res mode . medium
res also provides a fill routine and a
selection of brushes .

Player creation is now a simple and
dynamic process.

The text mode places characters from
any of four fonts on the hi-res screen. In
the disk version of this package. users
can switch between any of the modes
using hi-res without losing the picture on
the screen. Thus a scene can be drawn
using the drawing mode. then labeled in
the text mode. Along with upper and lower
case, all special Atari symbols are sup
ported. Also. the program will accept any

user-generated fonts. though the docu
mentation doesn 't cover the process of
font creation.

To write on the screen . the user first
positions the cursor at the desired starting
point. using joystick or paddles . thcn typl'S
"T" for text. From that point until the
escape key is pressed. all typcd characters
will be d isplayed on the screen. Editing
keys such as delete still perform their
usua l function. If the user has switched to
lower case. the program won't recognize
any cOIllmands. but it will prompt the
user to press the SHIFT and ALL CAPS
keys.

The geo-maker Illode allows the creation
of a variety of geometric figures. froIll
circles and arcs to triangles and parallelo
grams. Figures are defined by specifying
points. A circle. for example. is defined
by its center and any edge point. Triangles
and parallelograms require three points.
The circle and arc take the longest creation
time . while other figures appear rapidly .
The geo-maker includes a routine for Moire
patterns. The user specifies the step value
and. if desired . a window area. then uses

Figures and Moire pattern made with the
geo-maker.

AIARZ FONT

CDMPuter Fanl:

sty 1 :i 511 Font 'i
H""Ee~ zot;lI

1..-____ ,

Cube was done using the draw-to and fill routines of the hi-res mode.
Lettering was added in the text mode.

73

Atari Graphics Composer

the joystick or paddles to fill an area with
the pattern.

One of the mos t attractive features of
the Atari is the ability to use playe rs in
animation. These shapes are usually coded
by hand. The Graphics Composer has
automated the process . Playe r creation is
potentially the most valuable utility on
the disk . It presents the user with a grid
for designing players. Each large dot turned

on in the grid is also displayed in true size
on the screen. Onc <' a playe r is created . it
can be saved. and the decimal va lu es
representing the playe r can be displayed.
allowing the user to put that player in hi s
own programs.

Beyond exp laining a ll th e functions of
th e programs. the documentation a lso
describes how to use the picture loading
routine in other programs. thus making

Artifacting With Graphics 7-Plus

The technique of artifacting to pro
d uce special color effects is often
mentioned but seldom explained . One
reason for the brevity in instructions is
that even though it is possible to
achieve high resolution, multiple
color, and graphics displays with
artifacts, Basic and the Operating
System (OS) do not support artifact
ing in a user-friendly manner. This
discussion will present an introduction
to television color artifacts similar to
that seen in many other places , then
proceed to describe a method and
program listings to more easily use
artifacts in Atari Basic. Because the
reso lution of the resultant display is
half way between GR. 7 and GR. 8 it is
often referred to (affectionately) as
"Graphics 7-Plus" or GR. 7+. It is in
fact Antic mode l4 and may be seen
in its more refined and domesticated
incarnations in several high-resolution
games (particularly those with the
weird colors.)

Making Artifacts with Graphics 8
Television color artifacts are pro

d uced when a color cell on the screen
containing a red, a blue, and a green
dot is hit by an electron beam smaller
than the cell. If the beam were as big
as the cell all three color dots would
glow producing a spot on the screen in

Harry G. Arnold, 109 Newhaven Road, Oak
Ridge, TN 37830.

one of Atari's 128 (or is it now 256?)
colors . When for some reason the
beam only hits half of a color cell,
one of two colors shows up , depending
on which half of the cell was hit. These
two colors will usually be some shade
of yellow I green and so me s hade of
blue l purple (with red l brown pos
sible) depending on which background
color was specified. One reason that
only half of a color cell may be hit is
that the horizontal resolution of GR. 8
is equal to half of a color cell. You
probably have seen this effect show
up as multi-colored lines when draw
ing in GR. 8. If you were to observe
the GR. 8 colors closely yo u would
find that all of the odd-numbered
horizontal pixels are one color while
all the even-numbered ones are a
second color. These two colors are the
artifact colors. Two lines plotted and
drawn side-by-side (vertically) will
produce a third color, usually white.
Listing 1 demonstrates artifacting by
this technique.

In Listing I, Line 520 draws vertical
lines only on odd-numbered pixels and

Listing I. Artifact Colors using GR. 8.

500 GR. 8: SE. 2,0,0: COLOR 1
510 FOR 1= 0 TO 20 STEP 2
520 PLOT 41~ I, 50: DR. 41.1,100
530 PLOT 80. I, 50: DR. 80+1,100
540 PLOT 120 • I, 50: DR. 120tl,loo
550 PLOT 121 • I, 50 : DR. 121+1,100
560 NEXT I

74

pictures created on this system retrievable
by other software.

Anyone doing. or planning to do . graph
ics work on the Atari should se ri ously
consider the Alari Graphics COl1lposer.

. 0

Harry G. Arnold

Line 530 only on even-numbered ones,
while Lines 540 and 550 draw two lines
together to produce the three artifact
colors (on a fourth background color.)
To experiment with the variations in
color, change the SE. 2,0,0 in Line 500
to different values. Table I lists some
approximate colors that are possible .
If your computer was built before 1982
and does not have the GTIA upgrade
the colors will be different (probably
reversed).

So, there it is. Four colors in GR. 8,
right? Well, not quite . Since we only
plotted every other pixel or used two
together to produce the colors each
vertical line is twice as wide as the
normal GR. 8line. Thus the horizontal
resolution was cut in half to 160 pixels
- the same as GR. 7. The vertical
resolution did not change, however,
and remained at 192 pixels - the same
as GR. 8. Hence the nickname GR. 7+.
The colors are also in between those
of GR. 7 and GR. 8, for even though
there are four colors as in GR. 7, they
are all controlled by one register as in
GR. 8. Still it is a multiple color, high
resolution graphics mode and we just
accessed it with Basic. It is a different
graphics mode than any we could
normally access.

Drawing and Filling in
Graphics 7-Plus

The above method is somewhat
cumbersome when many different

shapes and even simple diagonal or
horizontal lines are to be drawn . So,
let's experiment with ways to use the
OS DRAW and FILL routines in
GR. 7-Plus even though they were not
made for it.

One way to use the DRAW and
FI LL routines is to use GR. 7 to create
the screen display, then switch to
GR. 8 to display it. When GR. 7
creates data for a colored pixel on the
screen it uses two bits of display
memory for each pixel. In Figure I the
options available with four pairs of
these bits are shown (0 means "off", I
means "on"). Two bits together that
are both "off" produce the back
ground color, while anyone or both
bits of a pair that are "on" will pro
duce color from one of the three color
registers in GR. 7. When the GR. 7
display list fetches 40 bytes for display,
with 8 bits per byte, it gets 320 bits. But
since each pixel in GR. 7 requires two
bits , GR . 7 only produces 160 pixels
per line from the 320 bits per line in
memory - but each pixel can be one
of four different colors.

Figure 1. Bil pairs in GR. 710 produce
colored pixels.

Back- COlor /COlor Color
round 1 2 3

When GR. 8 creates the display data
it only stores one bit per pixel. When
the GR. 8 display list gets 40 bytes of
data it will produce the full 320 pixels
per line with that data. Thus, with only
one bit per pixel to work with, no color
information can be included. A pixel is
either on or off because a bit is either
on or off. Thus, GR. 8 would interpret
the data represented by Figure lone
bit at a time and simply display a light
or a dark pixel according to the status
of each bit. But notice in Figure I that
each pair of GR. 7 bits corresponds
to either an even- or an odd-numbered
pixel in GR . 8. Therefore GR. 8 would
interpret the GR. 7 display data as
artifact colors , just as it did the lines
drawn on odd or even pixels in Listing
I. Each GR. 7 Color command cor
responds to one of the GR. 8 artifact
colors.

Let's draw a display with GR . 7 then
cha nge to GR. 8 without erasing the
display. To do this we will simply add
32 to the Graphics mode number

Lisling 2. Drawing 3 Colors wilh GR. 7Ior GR. 8 Display.

500 GR. 8 :GR. 7:REM GR. 8 Just clears out old garbage first
510 COLOR l:PLOT 50,60:DR. 50,30
520 DR. 25,30:COLR::.l:POS. 25,60:GOSUB 580
530 COLOR 2:COLR:. 2:PLOT 100,60
540 DR. lOO,30:DR. 70,30
550 POS. 7O,60:GOSUB 580
560 COLOR 3:COLR=3:PLOT 150, 60
570 DR. 150,30:DR. 125,30:POS. 125,60:GOSUB 580:GOTO 590
580 POKE 765,COLR:XlO 18,#6,0,0,"S:":RETURN
590 END

(e .g. GR. 8 + 32) . Listing 2 will draw
and fill three colors in GR. 7 (then we
will add a line to change to GR. 8).
Now, after examining the display, add
the following line and run again.

590 GR. B+32:SE. 2,0.0

Nobody is going to claim that this is
of much use as it looks, but we have in
fact used the DRAW and FILL
routines to create f ou r colors in GR. 7
that were interpreted as four artifact
colors in GR. 8. If we cou ld just clean
up the trash and center the di splay we
could d raw the bottom half of a GR. 8
screen using the GR. 7 display memory
and Basic Graphics statements.

Now, let's do it the other way
around . The display data are sent to
the screen by a special microprocessor
called Antic. It knows where to find
data, how much to send, and in which
graphics mode because of the display
list whose address is stored in memory
at locations 560 and 561. The OS on
the other hand puts the display data in
memory. It knows where to put it
because the screen memory address is
stored in locations 88 and H9. It knows
which graphics mode because the
mode number is stored in memory at
location 87. If we use the GR. 8 com
mand to set up a Graphics 8 display
list, Antic will fetch each line of
memory and display itas GR. 8 data
each pixel either on or off, no color.
If we POKE 87,7 the OS will put the
display data into memory as GR . 7
data with the appropriate color bits
set. This sounds exactly like the
situation we encountered when ex
plaining Figure I, doesn't it? Add
Listing 3 to Listing 2 to see this effect.

The end result is the same as before
with one important exception; the

Listing 3.
Adding GR. 7 Dala 10 Lisling 2.

590 IF J> 0 THEN END
600 GR. 8+32
610 POKE 87, 7
620 SE. 2,0,0:COLOR 1
630 J-l:GOTO 510

75

display started at the upper left hand
corner of the screen this time, and was
therefore more controllable. Since the
GR. 8 display list only generates one
line of TV scan per pixel and GR. 7
data were created assuming there
would be a GR. 7 display list to
generate 2 lines per pixel , there were
only enough data to fill the upper half
of the screen. However, the bottom
half was still filled with the data we
generated before. Even though the
bottom half still needs fixing, let's just
observe this important point for the
time being: it is possible to fill a
Graphics 8 screen (i.e . use a GR. 8
display list) with Graphics 7 display
data .

A More Useful DRA W for
Graphics 7-Plus

Let's examine what happens when
we run Listings 2 and 3. Graphics 8
requires 7680 bytes of display data.
Graphics 7 only requires half that
amount or 3840 bytes because its dis
play list is supposed to tell Antic to
generate twice as many display lines on
the screen as Graphics 8 does . By
setting up a Graphics 8 display using
the GR. 8 command , 7680 bytes of
memory are reserved for the display
data. However, when we draw the dis
play using the Poke to location 87, we
are generating Graphics 7 display data
in memory, so only 3840 bytes are
stored in memory. The result is that
the display only fills the upper half of
the screen. How can we fill the re
maining 3840 bytes? We did it earlier
using the Graphics 7 to draw then
switching to Graphics 8 without
erasing the memory. Let's find a better
way.

When we first set up a Graphics 8
display the OS reserves 7680 bytes of
display memory. It also puts the
location of the upper left screen corner
data in memory locations 88 and 89
and in the display list. The OS then
proceeds to consult locations 88 and 89
whenever it stores display data in
memory, while Antic consults the dis
play list when it retrieves data to dis-

Artifacting

play on the screen. Under standard
conditions these two sets of screen
data addresses are the same. However,
if we were to set up a Graphics 8 dis
play, then change memory locations 88
and 89 to show the address of the upper
left corner of the screen to be 3840
bytes lower than the Graphics 8 screen
corner, it should be possible to draw
on the bottom half of the Graphics 8
screen since Antic still finds the corner
of a display twice as big. Since the
Graphics 8 display is twice as big as
the Graphics 7 as far as memory is
concerned, the effect of moving the
display pointer for the Draw and Fill
commands is to cause draw and fill to
occur on the bottom half of the
screen. To draw on the top half of the
screen again, we simply Poke the
original values back into locations 88
and 89.

Now, let's see if we can put it all
together and draw a complete
Graphics 8 screen with Graphics 7
data. We will set up a Graphics 8 dis
play list with the GR. 8 command
which will reserve 7680 bytes for dis
play memory. Then we will tell the OS
to put Graphics 7 data into that
memory with a POKE 87,7 just as in
listing 3. We will then proceed to dra w
the upper half of the screen display
using Graphics 7 BASIC statements,
then we will add 3840 bytes to the
location of the upper left corner of
the screen data and Poke this into
locations 88 and 89. After that , the OS
will think that the middle of the screen
Lisling 4. Drawing on BOlh Halves of
a Graphics 7-Plus Screen.

10 OIl-! D88(1),089(1)
20 A~OP=O:BOTTOM:l:GOTO 500

500 GR. 8+16:POKE 87,7
510 088(ATOP)=PEEK(88) :089(ATOP):PEEK(89)
520 BOTCORNER::D88(ATOP) + 256*D89(ATOP) +

3840 .
530 089(BOTTmn = INT(OOTCORNER/256)
540 088(BOTTOH) :: BOTCOIlNER -

256*089(BOTTOM)
550 ORAl>':: 300: APLOT:. 300 : FILL ': 400
560 SE. 2,0,0
570
580
590

is the upper corner and will do any
further drawing on the bottom half.
Since the Graphics 8 display list was
unchanged , Antic fetches display data
from the original left corner all the
time even though we change the
locations for putting data into
memory. Listing 4 is an example of
this procedure. (Type NEW just to
ensure that previous listings are
erased.)

Now continue the li sting with these
lines to draw o n the scree n.

600 COLOR l:PLOT O, O:OH. 79 , 95
610 COLOR 2:PLOT 159 , 0:OR. 79,95
620 COLOR 3:PLOT 79,0 :OR. 79,95
630 POKE 8e ,08S(BOTTON):POKE 89 ,

089(BOTTml)
640 COLOR l:PLOT 79,0 :OR. 159,95
650 COLOR 2:PLOT 0,95 :0R . 79 ,0
660 COLOR 3 :PLOT 79,0:OR. 79 , 95

9999 GOTO 9999

Now, the only problem we ha ve left
is where to make the line segme nts
coincide. (Notice tha t all PLOT,
ORA W, and POSITION commands
will be limited to the Graphics 7 cursor
range of 0-159 horizonta l by 0-95
vertical.) However, curved lines and
diagonal lines that are off-center
sound like the kind of dirt y drudgery
work a computer was made for. When
it comes to ma tching the upper and
lower half of the screen, why don't we
just let the computerdo our bookkeep
ing? Listing 5 (lines 200-350) will
accomplish this bookkeeping (it also
contains a repeat of Listi ng 4 for
reference: lines 500-560). 00 not run it
yet, because some minor adjustments
obviously must be made to draw and
plot with it. To make these adjust
ments , add the following lines:

600 OEG:COLR~l
610 FOR 1:0 TO 360 STEP 5
620 X::I/3:Y=80<:'SIN(I)+95
630 GOSUB ORA'oI
640 NEXT I
650 REJ.1 Just in case the old listing

wasn't erased first
660

Now it is possible to draw lines all
over the screen in a transparent
manner with only minor adjustments
to the normal PLOT and ORA W pro
cedures. Instead of typing:

COLOR l:X= l:Y: 2:0RAIVTO X, Y

We type (as a numbered line) :

COLR"' l:X:: l:Y= 2:GOSUB ORA'"

Notice that it is not necessa ry to use
APLOT on the very first point to be
plotted . However, any time we wish to

Brief explanation of Listing 4:

skip to a new location to continue
drawing we simply type (again only as
a numbered line):

X= l:Y: l:GOSUB APLOT

(APLOT and COLR are used because
COLOR and PLOT are "reserved"
words in Basic and will result in error
messages .)

Let's try our original crossed lines
with this new listing. Replace lines
600-640 as follows:

600 COLR::l:X= O:Y= O:GOSUB ORA:'l
610 X=159:Y= 190:GOSUBDRAW
620 X:159:Y:0:(lOhR=2:GOSUB APLOT
630 X::0:Y:..190:GOSUB ORAW
640 COLa = 3:X:.. 79:Y:. O:GOSUB APLOT
650 X:.. 79:Y = 190:GOSUB ORAW

9999 GOTO 9999

A detailed explanation of Lines
200-350 is a bit involved . Suffice it to
say that any time a ORA W command
crosses to a different half of the screen
(upper or lower) the crossover point
must be computed and the line must
be drawn to the crossover point in the
current screen half. Then the other half
of the screen must be Poked into loca
tions 88 and 89 after which the cross
over point is PLOTted on the new half
and the ORA W proceeds to it s
original destination . At no time is the
value of Y for the PLOT and ORA W
commands allowed to exceed 95.5,
even though the computer operator is
allowed to let Y range up to 191.

Just to check everything out, try
adding these lines to the previous
listing.

600 GOTO 1000
l0000EG:J=1
1010 COLK= J
1020 FOR K: 0 TO 315 STEP 45
1030 FOR 1= 0 TO 950 STEP 10
1040 Y:: I '''SIN(I-K)/13+ 95
1050 X= I"-GOS(I-K)/23+ 75
1060 IF I:. 0 THEN GOSUB APLOT:NEXT I
1070 GOSUB ORAl,
1080 NEXT I
1090 J=J-tl:IF J>3 THEN J=l
1100 COLa-: J
1110 NEXT K
9999 GOTO 9999

Line 500 Sets up t he Graphics 7-Plus display
Line 510 Finds the upper left screen corner used by the OS
Line 520 Converts the two bytes into a decimal value then

adds 3840 to find the lower half's upper corner
Lines 530-540 Convert the decimal value for the lower half

into a low byte and a high byte
Lines 570- 590 Just in Case you did not type NEll.'
Lines 600- 620 Oraw on the upper half (Cursor range--159X95)
Line 630 Pokes the lower half into OS merrory
Lines 640 to 660 draw the lower half (Cursor range--159X95)
Line 9999 is necessary because we used the whole screen option

in line 500

76

FILLING in Graphics 7-Plus
"So, what good are lines?" you ask,

" I want color-filled areas." As you
might expect the previously explained
techniques can be extended to provide
a semi-transparent FILL command .
Notice the weasel-word qualifier on
"transparent." As you are probably
aware, FILL (i.e. XIO 18,tt6,0,0,"S:")
only works according to rules estab
lished on some level of thought other
than our own. When we try to make it
behave predictably under ordinary
circumstances we can expect some dif
ficulty, let alone when trying to draw
on two different screens (or halves of
screens) at once. So, with that caveat
let us proceed.

Listing 6 shows lines to add to listing
5 in order to make FILL cross screen
hal ves in Graphics 7-Plus. Again a
detailed explanation would expend a
lot of words just to say that we must
compute the crossover points in
between the two halves of the screen,
fill to them , Poke the other half of the
screen into memory at locations 88
and 89, then fill on the remaining half.
Most of the tests are simply to keep
the cursor within range under a variety
of combinations of possibilities.

In this case, we gained some con
venience, however , which will help
make up for the FILL glitches that
crop up from time to time. POSITION
and the POKE to 765 are now auto
matic and XIO has been replaced.

To use the FILL command you
must first draw the right and upper
sides using the GOSUB ORA Wand
GOSUB APLOT method as before.
Then, instead of typing

pas. 0 ,159:POKE 765 ,I:XIO 18, #6 , 0 , 0 ,"5:"

we simply type (as a numbered line)

x:: O:Y = 159 :GOSUB FILL

The color will be the last value as
signed to CO LR and the X and Y
values must be the lower left corner
of the area to be filled. Add these lines
to the previous listing to observe the
fill in operation.

600 SE. 2,0,0:COLR:: 1
610 X=159:Y=190:GOSUB APLOT
620 X =159:Y: O:GOSUB DRA'Il
6)0 x:. O:Y =0: :GOSUB DRAVI
640 X::.159:Y-= 190:GOSUB FILL
650 X"-O:Y -=190 :COLR: 2:GOSUB APLOT
660 X: 76:Y: 95:GOSUB DRM,
670 Xc. O:Y::: l:GOSUB DRAW:X: O:Y: 190:

GOSUB FILL
680 COLR :: 3:X ::156 : Y:: 190:GOSUB APLOT
690 X-::: 79:Y= 96:GOSUB DRAW
700 x-= O:Y-= 190 :GOSUB FILL
710 GOTO 710

Listing 5: PIal and Draw SubrOUlines for Graphics 7-Plus.

10 DIM D88(1),D89(1),QX(I),XFLAG(I):XF
LAG(O)=O:XFLAG(I)=O
198 GOTO 500
199 REM ****DRAW SUBROUTINE****
200 COLOR COLR:QX3=X:QY3=Y:Y=INT(QY3+0
.5>
205 IF Y>95.5 THEN QN=I:IF QY1 <95.5 TH
EN QN=O:GOTO 225
210 IF Y<95.5 THEN QN=O:IF QY1 >95.5 TH
EN QN=I:GOTO 225
215 DRAWTO X,Y-96*QN:QX1=X:QY1=Y
220 RETURN
225 QX 2=X :QY2=Y
230 GOSUB 265:X=INT(X+0.5):GOSUB 280
235 DRAWTO X,Y-96*QN:QN=I-QN
240 POKE 88,D88(QN):POKE 89,D89(QN)
245 GOSUB 265:X=INT(X+0.5)
250 PLOT X,95-95*QN
255 DRAWTO QX2,QY2- 96*QN
260 QXI=QX2:QY1=QY2:X=QX3:Y=QY3:RETURN

The background color can be pro
duced in the same manner as the other
three colors. It is important that the
only COLOR specifications be made
with the COLR= statement from this
point on in using the listings.
- To experiment with how the dif
ferent colors look when plotted on one
a not her, remove Line 710 and (if you
left lines 1000-9999 in from the pre
vious listings) observe how the spiral
behaves as it crosses the different fill
areas. Also, change Line 1010 (1010
COLR=O).

Five Colors?
Yes, you saw it , too, a fifth color

Table I. Some ArtiFact Colors.

Setcolor Color I Color 2

2,0,0 Yellow Green Blue
2, 1,0 Yellow Green Purple
2,2,0 Yellow Brown Purple
2,3,0 Orange Yellow Blue Purple
2,4,0 Orange Yellow Blue
2,5,0 Yellow Orange Blue
2,6,0 Yellow Green Blue
2,7,0 Yellow Green Light Blue
2,8 ,0 Light Green Light Blue
2,9,0 Medium Green Light Blue

2, 10,0 Green Blue
2,11,0 Green Blue
2, 12,0 Bright Green Blue
2, 13.0 Light Blue Blue
2.14,0 Yellow Green Blue Purple
2,15 ,0 Orange Green Purple

77

265 Y=95+QN:X=«Y-QYI)*(QX2-QX1)/(QY2-
QY1»+QXl
270 IF ABS(QY2-QY1)=1 THEN X=(QX2+QXI)
/2
275 RETURN
280 IF XFLAG(QM)=O THEN XFLAG(QM)=1:0X
(QM)=X:OM=I-QM:XFLAG(QM)=O
285 RETURN
299 REM ****APLOT SUBROUTINE****
300 COLOR COLR:QX3=X:QY3=Y:Y=INT(QY3+0
.5>
310 IF Y)95.5 THEN QN=I:GOTO 330
320 QN=O
330 POKE 88,D88(QN):POKE 89,D89(QN)
340 PLOT X,Y-QN*96:QX1=X:QY1=Y:DRAW=20
0:X=QX3:Y=QY3
350 RETURN
499 REM ****SET UP GR.7+ SUBROUTINE***
500 GRAPHICS 8+16:POKE 87,7
510 D88(0)=PEEK(88):D89(0)=PEEK(89)
520 DISP2=D88(0)+256*D89(0)+3840
530 D89(1)=INT(DISP2/256)
540 D88(1)=DISP2-256*D89(1)
550 DRAW=300:APLOT=300:FILL=400
560 SETCOLOR 2,0,0:COLOR I:COLR=1

(counting background) appeared when
colors I and 2 were plotted close
together. Anytime Color 2 is drawn to
the immediate right of Color I, a fifth
color will appear unless the line drawn
is horizontal. Such knowledge could
be used to add another color in limited
amounts, or it could be just another
bug to look for, depending on your
project.

So there you have it; Graphics
7-Plus in Basic. The program listing to
set it up is but 48 short lines of Basic,
and the method for using it is similar
to the use of PLOT and DRAWTO in
any other Basic program. A bonus is
that FILL works in a more transparent

Color 3 Background

White Black
Light Yellow Brown Green
Light Yellow Sienna
Light Pink Red Orange
Pink Red
Pink Purple
Pink Blue Purple
White Dark Blue
White Medium Blue
White Blue Black
Lime Dark Grey
Lime Grey Green
Lime Black Green
Light Green Black Green
Light Yellow Yellow Brown
Light Orange Orange

Artifacting

manner even though the usual FILL
idiosyncracies are a little more annoy
ing with artifact colors.

This is but one more example of how
the built-in flexibility of the Atari
makes it possible to extend the ap
plication into areas beyond the limits
of the original software design . If play
ing with this introduction to artifacting
with Graphics 7-Plus has been en
lightening, perhaps you may be able to
use it. If the inherent bugs are too
frustrating then you might try some
language other than Basic that does
not rely so heavily on the existing
OS ORA Wand FILL routines . Either
way, happy artifacting.

Listing 6: Lines to Add to Listing 5 for FILL Subroutine.

399 REM ****F ILL SUBROUTINE****
400 POKE 765,COLR:QX3=X:QY3=Y:Y=INT(QY
3+0.5)
405 IF Y) 95.5 THEN QN=l:IF QY1<95.5 TH
EN QN=O:GOTO 435
410 IF Y<95.5 THEN QN=O:IF QY1) 95.5 TH
EN QN=l:GOTO 435
415 POSITION X,Y-96*QN:XIO lB,*6,0,0,"
S:":QX1=X:QY1=Y
420 IF FLAG THEN FLAG=O:RETURN
425 XFLAG(0)=0:XFLAG(1)=0:X=QX3:Y=QY3
430 RETURN
435 QX2=X:QY2=Y:GOSUB 265:FLAG=1:80SUB

415
440 QN=1-QN:X=INT(X+0.5)
445 POKE BB,DBB(QN):POKE B9,DB9(QN)
450 GOSUB 265:X=INT(X+0.5)
455 Y=QY2:GOSUB 2BO
460 X=QX2:IF XFLAG(l-QM)=O THEN QX(l - Q
M)=«95-QY1)*(X-QX1)/(Y-QY1»+QX1:XFLA
G (l-QM) =1
465 PLOT QX(QM),95-95*QN:DRAWTO QX(l-Q
M),95-95*QN
470 GOTO 415

78

Part III

Hardware and Software

Bits and Bytes
Question: How do you put four elephants in a

Volkswagen?
Answer: Two in the front and two in the back.
It is a sad fact of life that every device yet made by

mankind is subject to limits . We know that a Volks
wagen is not designed to transport elephants. The
Atari computer is a device with a lot of ability and
thousands of potential applications, many of them
probably beyond the expectations of the designers,
but it does have limits.

The most fundamental limitation of the Atari as a
general purpose computer concerns its memory
constraints . In order to fit a great many capabilities
in a small device at a reasonable price; decisions,
compromises, and tradeoffs had to be made. This is
especially true of the graphics capabilities of the Atari.
Great flexibility , even at the cost of complexity , was
one of the design objectives of the computer.

If you design a device so that a user has few options,
it should be reasonably simple to operate. When you
turn on a light at home, all you have to do is throw a
switch, and perhaps occasionally change a light bulb.
You do not have to be aware of hundreds of miles of
light poles and wire cables, of transformer substations,
and perhaps a complex nuclear power plant that make
it possible for you to have light when you throw
the switch.

The Atari is capable of operating on this level. You
open the door on the top, plug in a Missile Command
cartridge, plug a joystick into the front, press the
Start button, and you are ready to defend your cities
against nuclear attack. You need to know absolutely
nothing about programming.

But the Atari also allows you to create your own
programs , and every trick that is used in Star Raiders
and EaSlern Fro/1/ is available to you as well. There is
no way to give you so many options and so much
power and keep the process as simple as throwing a
switch.

It would be possible to simplify the process more
than the Atari does by converting every instruction
into plain English. Perhaps you could have a computer
that could interpret a series of instructions like this :
• draw a man with blue eyes and blond hair
• make him a little taller
• give him a white shirt with a red and gold striped tie
• make the gold stripes thinner

This kind of graphics, while possible, would require
a vast amount of development expense and lots of
memory, and would lead to its own restrictions . In
order to fit many capabi lities into a small amount of
me mory, the Atari had to omit features that would
make the graphics easier to use and understand .
Instead,the programmer (that means you!),must gain
a basic understanding of how the computer works.

The most basic element of information in any
computer can be thought of as a two position switch.
You can picture it as a light bulb that is either on or
off, as a box that is empty or full , as an electrical circuit
that is charged or not charged, or in any of several

81

other ways. But the important thing is that there are
only two possibilities. This fundamental unit of
memory is called a bil. There are many bits of memory
in your Atari.

(The 16K memory carlridge 11701 came Wilh your
computer has 131,072 bils 0/ memor) '. You can add
111'0 more such carl ridges 10 an Alari 800,/or a lotal
0/393,216 bilS. The operaling s)'slem car/ridge con
tains 8/,920 rnore bils 0/ memory, and your Basic
carlrid!{e another 65 ,536.)

Since any bit in memory can function as a two way
switch, with possibilities as dramatic as turning the
screen on or off, the computer can be very complex . In
fact, a single bit in a fixed loca tion can turn the screen
display of players on or off. Much of the process of
learning how to do fancy graphics on the Atari is
learning how to find these special locations in memory
and set the "switches" the way you want them .

In most of the memory locations in your Atari
computer, a bit of memory is actually a tiny electrical
circuit. This circuit is either charged with a voltage , or
has no charge. As an easy way of referring to the state
of one of these circuits, we use the numbers Oand l. If a
bit of memory has a charge, it represents a "I" bit.
If there is no charge, it represents a "0" bit. If you
were to hook up a tiny light bulb to a single memor),
cell (one bit) , it would actually glow when the bit
represented a "I" and not glow when the bit was a "0".
Many older computers had lights on the front to do
just this; and the user could see what was in each
memory location.

A group of 8 bits of computer memory organized
into one unit is called a byte. The 8 bits of memory
usually are in different locations in memory, but the
computer is designed to treat them all as a single unit.
The bits are organized so that position is significant.
Each byte has a bit pal/ern that is a series of eight ones
or zeroes representing the value of each bit.

A bit has two possible electrical states, on or off.
How many does a byte have? There are 256 possible
combinations of ones and zeroes in the eight bits that
make up a byte. Just as a bit can represent either 0 or I,
a byte can represent a number from 0 to 255. (That is
256 numbers . Programmers start counting at ze ro .)

That may seem strange . Imagine a blackboard that
was only wide enough for one digit to be written upon
it. How many different numbers could it hold? The
answer is 10, ranging from 0 to 9. If it had room for
two digits, the possibilities would range from 0 to 99,
giving 100 different possibilities. Since there are ten
different possibilities for each digit , there are 10 times
10, or 100 different possibilities for 2 digits , 10 times
10 times 10 or 1000 different possibilities for 3 digits,
and so on for numbers with more digits.

Since there are only two possibilities for a bit, there
are only 2 times 2, or 4 possibilities for 2 bits. This
means that the eight bits in a byte can represent 2 times
2 times 2 times 2 times 2 times 2 times 2 times 2, or 256
different n um bers .

Bits and Bytes

There are thousands of differen t bytes in the
memory of your Atari . Each of them is organized and
assigned a number, which is called its address. Each
byte has eight bits ass igned to it , and every bit is a
completely separate elect rical circuit , or memory cell.
You might wish to think of the memory of your
computer as a very long street, with houses on only
one side of the street , each house numbered in order,
0, 1,2,3, 4, etc. Each of these houses (a byte) has eight
rooms (eight bits). In every room, the lights are either
turned off or turned on (0 or I) .

You can locate any byte in memory to examine it
by its number. The possible range of numbers with the
current operating system is from 0 to 65,535. There is
at least one device , the Axlon Ramdisk, that expands
the Atari's memory to 262,144 bytes . These numbers
may seem strange at first. Why not a "round" number
like 100,000? The answer is that with two possibilities
for each bit , the possib le addresses must be a power
of two.

How large a number can be represented by a certain
number of bits? Here is a table for 0 to 18 bits . If you
would like to check it out, just write down every
possi ble combination and count them . For example,
with three bits you could have 000, 00 1,010, 0 II , 100,
101 , 110, or III; eight different possibilities .

Bits Combinations
o 0
I . . " 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256 (one byte)
9 512

10 1024 (also known as "I K")
II 2048 (2K)
12 4096 (4K)
13 8 192 (8K)
14 16384 (16K)
15 32768 (32K)
16 65536 (Atari memory size - 2 bytes)
17 131072 (128K - Note this is NOT "131 K")
18 256144 (The Atari can be expanded to this)

Because the processor in the Atari uses 16 bits to
address memory, it can address 65,536 memory
locations, numbered in order from 0 to 65,535.

How Your Atari Works
The "brain" of your Atari computer is a micro

processor. a n integrated circuit. This processor is
called a #6502, and its major function is to com
municate with the memory in your computer. It
receives instructions from memory and reads and
writes instructions from and to memory and other
devices (such as the cassette recorder, joysticks, the

82

disk drive , and the screen) that appear to the pro
cesso r (as if the other devices were a lso memory).

The 6502 starts at a location in memory and in
terprets the content of that first location as a com
mand. From then on, the instructions tell it what to do
with the other locations in memory and where to look
nex t. The processor can only do this with the main
memory, so every program mu st be in the random
access memo ry at the time it is executed, or run .

Si nce we a re limited to 65,536 locations in memory,
a nd have to do everything in those locations, we must
discover a way to store characters, displays, Basic
varia bles and a nything else as bytes of data.

Here are some ways information is stored:
Characler slring.I·. Each character (a letter, number,

sy mbol, punctuation mark or space) is stored by
representing that character as a number and storing
the number into a byte. Since there are 256 different
poss ible patterns in a byte, the Atari has 256 different
characters. Each character is represented as a unique
byte , and the computer looks up the number on a table
in the operating system to determine what pattern to
display on the screen.

Basic variables. Atari Basic is not limited to
numbers between 0 and 65536, although it is limited to
line numbers between 0 and 32767. This is because
line numbers are stored in one bit less than two bytes,
while Basic variables are stored as a group of 6 bytes.
Bas ic encodes numbers in a way that makes them easy
to work with , not in the manner we have been dis
cuss lI1g .

Basic programs are stored in coded bytes , not as
tex t. Each possible Basic statement type is given a
unique number , and that number is stored as a single
byte instead of as the letters tha t you typed into the
computer. Whenever you li st a program, those codes
are translated back into letters that you can read . The
details of this coding will be explained later in this
book.

An important point to remember is that the 6502
processor sees data as bits and bytes . We think of data
as characters, variables, or language keywords.
Sections of memory are dedicated to different func
tions . For example, the operating system RO M hold s
6502 machine language instructions, data for the
display of characters on the screen, and text messages.

Physical Types of Memory
Computer memory is physically located on in

tegrated circuits. While auxiliary "mass storage" is
available on floppy diskettes or cassette tape, in
formation must be loaded into the integrated circuit
chips before the processor can work with it. It is
important to know and understand the types of
memory in order to take advantage of the special
features of the Atari.

The best known type of integrated circuit is RA M,
or "Random Access Memory." Random access means
that any byte in that memory can be selected and
accessed at any time. This is unlike a cassette tape,
where you have to read through the tape from the
beginning until you come to the information you
want. However, Random Access Memory is not the
best way to describe this memory, as other types of
memory, including ROM, can also be accessed the
same way. A better description is "Read-Write
Memory," for the distinguishing feature of RAM is
that information can be written to and read from the
chi p electronically in a few microseconds. The in
formation can be and usually is changed frequently ,
often many times within the space of a single second .

The principal disadvantage of RAM is that in
formation is stored only as long as electric power is
continuously available to the chip . If the electric power
is interrupted for even a fraction of a second, the
information will be lost. The Atari power supply is
designed to smooth out some minor power fluctua
tions , but it is still possible and even common for
information to be lost dueto momentary loss of power
or voltage fluctuations. The chips were designed to
store a lot of information in a small area. This re
quired very low currents and close tolerances, which
made the chips very sensitive.

But if RAM can only store information as long as
power is available, how do we "wake up" the Atari
computers? How can we store the information that the
computer needs to get going, even when the power is
turned off? We cannot read a program from disk or
cassette. The computer .leeds a program to do that.
Not too long ago , the operators of small computers
had to physically load a boo/strap program into the
computer by setting switches for each bit. ("Let's see
now, up for I and down for 0, so 0010 0 III is down,
down, up, down, down, up, up, up. Now we throw the
switch to load that byte and go to the next add ress ... ")
After a program of 60 or 70 bytes was loaded, that
program could be run to load a longer monitor pro
gram from paper tape. If one bit was wrong, after
throwing 500 switches, the program crashed and the
operator had to start over. Fortunately , the Atari uses
a better way.

Our second type of chip is called a "ROM", for
"Read Only Memory". ROM is not affected when the
power is turned off. The data in ROM is permanently
burnt into the chip. (There are certain types of ROM
which can be erased for special applications.) You
cannot write anything to ROM because the hardware
will reject it. Since ROM is always readable, it can be

83

used to provide an initial program for the micro
processor to run. The operating system, the com
puter's main program, is stored in ROM . Remember
ROM is used for programs that never need to be
changed and those programs that can survive a power
loss.

The Basic and Star Raiders cartridges contain pro
grams written in machine language. Since the cartridge
can survive a power loss when unplugged , it must be
ROM. If you open up the cartridge, you will find two
ROM chips. Atari cartridges have programs stored
in ROM.

The ROM operating system is located inside the
board that is plugged into the top of the Atari . This is
a program the Atari uses to start upaftera power loss .
RAM cartridges with 8K or 16K of memory provide
the read-write memory of the Atari .

An 8K RAM memory board has 8,192 bytes avail
a ble and a 16K RA M board has 16.384 bytes available.
The Atari can handle three 16K boards or 48K of
read-write memory. There is 64K of total memory
in the machine. The last 16K is split up into several
other uses. One use is in the Operating System,ROM.

Think of the memory as a long thin line of bytes,
each numbered individually. If we have a 16K board
plugged into the Atari, and we write to any location
from 0 to 16,383, we'll physically write something into
the chips on that board. If we have a second 16K
board, that will be the bytes from 16,384 to 32,767 .
A third board handles the next 16,384 bytes of
memory. The last 16K of memory, (the total memory
is in four 16K parts) from byte number 49,152 to
number 65,535, is split up into other functions that do
not require read-write memory. If you read location
60,000, you'll be reading from the Operating System
ROM board. You cannot write to this.

Certain tools are provided in Atari Basic that are
useful in gaining a better understanding of the
memory. One of the tools is a function called FRE.

FRE is a way to determine "the number of remain
ing free bytes in RAM." When we type in a Basic
program, we sta rt to use RA M to store it. The storage
in RAM is limited , so for every line typed in, there is
less free RA M left. RA M has many purposes. Part of
the operating system is stored there. Any tables that
have to be saved must be stored in RAM since you
cannot write to a location in ROM. Basic programs
that you type in are stored in the remaining free RA M.
FRE tells us how much RA M is left unassigned and is
usable for the storage of Basic programs.

With only one 16K board in the Atari , we have only
16K of read-write memory. There will be considerably
less space for storing Basic code. If we write to a byte
that is not physically located on the memory board ,
our data will disappear and be lost. Extra memory is
very handy, and this is why people are willing to spend
extra money for it.

Two other Basic statements that will be valuable to
us are PEEK and POKE. Peek gets a byte directly
from a memory location that you specify, and puts it

Physical Types of Memory

into a va riab le yo u designate . The number that wi ll be
shown wi ll be the contents of that byte, a number from
o to 255. POKE takes the number yo u give and puts it
directly into the memory loca tion that yo u indicate.
The number that yo u poke sho uld not be greate r than
255 (a larger number wi ll not work).

This is the for ma t of PEEK: Variab le=PEEK
(add ress).

For examp le: to set variable A to the va lue of the
conte nts of memory location 40,000, use:

A=PEEK (40000)
Let's say we wanted to dump a la rge sect ion of

memory to the printer. Here's a short program to do it.
100 ST A RT=40000
110 SEND=50000
200 FOR LOCATION=START TO SEND
210 LPRINT LOCATION , PEEK(LOCATION)
220 NEXT LOCATION
230 END
It's ha rmless to PEEK anyw he re in memory. It will

teach you a grea t d ea l abo ut the mac hine. You can
look at a Basic program in memory a nd find o ut
exact ly what it looks like t o the computer as bytes.

POKE puts somet hing in to memory. Be cautio us
because if you randomly poke into memory yo u 'll
event ua ll y rew rite a byte that the Atari needs to keep
funct ioning. The result will be that the computer wi ll
"cras h." You must then e ither press RESET or turn
the power off and on aga in .

Type NEW to clear ou t a ny Basic program in
memory, then type PRINT PEEK(8000) . T his will
show you what memory location 8000 currently
co ntai ns.

Type POKE 8000, 100 to change the memory
contents to 100. Now a PEEK at 8000 will return the
number 100.

Many things can be done in the Atari wit h PEEKs

84

and POKEs. S ince everything the Atari does is based
in memory, and PEEK and POKE are the only direct
Basic memory modification statements, we'll be seeing
a lot of them.

Let's review what we have covered so far. The Atari
has up to 64K of memory , meaning there is around
64,000 individually numbered bytes. Each byte is
composed of 8 bits. Bits can be e ither on or off, I or O.
A byte stores numbers through representing them wit h
patte rns in its in terna l bits. S ince there a re 256 possible
combinatio ns in 8 bits , a byte can store numbers from
o to 255.

The microprocessor the A tari uses has 16 bits
ass igned to memory. T he range of numbers 16 bits
ca n represent is from 0 to 65,535. Because of this , the
hig hest memory locatio n the At.ui can look at is a lso
65 ,535.

Memory is composed of RAM or ROM. T he lower
40,000 or so locat ions of me mory are RAM, depend
ing on how much RAM memory yo u have insta lled. If
you have in sta lled just one 16K board , then the lower
16K of the 48K RAM a rea will be actua l memory and
the other 32K wi ll be unusable. The upper 16K of
memory is assigned to va ri o us purposes. Some of it is
ROM , some is for othe r purposes.

Basic has seve ra l statements that a ll ow us to directly
work with memory. PEEK a llows us to directly
exam ine a ny byte . POKE allows us to directly modify
a byte. FRE tells us how much free RAM we ha ve
a va ilab le for storage purposes.

This shou ld give you a pretty good overview of
memory. We'll be dealing with memory throughout
t he book in more spec ific ways; for examp le, h ow is a
str in g stored in memory? Let's move on now to the
graphics sec tion. In it we're go ing to deal mostly with
memory and how to use it to generate grap hics images .

Atari Music Composer

We've been using the Atari Music Com
poser in ho me ed ucation and some school
situations. We would like to share our
initia l experience and preliminary ideas
here , and suggest o th er things that could
be done .

The manual for the Music Composer
sugges ts it can be used to develop skills in
li stening. pe rceptio n , music no tati o n ,
composing (melodies , harmony and coun
terpoin t) . musical relationships, and building
musical struc tures from simple parts. We
found we could do a ll these things and
more. a lways in a pleasant and rewarding
educa tional environment. Nearly all of our
trials were in a home setting; but some
were in a summer class for 8 to 14 year
olds interested in using computers .

For those who know other music boards
fo r small computers (ALF. MicroMusic.
Micro Tech. Symtek). this one is comparable
with five impo rtant diffe rences .

1) Nothing extra is needed. The circuitry
is built into th e Atari and the audio is
amplified by the TV set (or monitor) which
is used as the display device fo r the
computer. You can also take the audio
out of a 5-pin jack on the side of the Atari
800 to feed any o ther amplifier.

2) Most people will use it asgiven . Since
th e Compose r software is in ROM it can't
be changed. Programs can be written in
Basic e ithe r to ge nera te data files tha t can
be read by the Composer. or to play the
Composer's data files with other tonal char
ac te ristics .

3) Use is very straightforward , with most
of the options so obvious that a manual is
not needed. The user works through menu
pages linked in a hierarchica l structure,
with clear mnemonics and using normal
keys for insert , delete and cursor control.

4) The system protects rather well against
common use r e rrors. New users , witho ut
previous experience with computers , get
melodies to play back about as they intended
them. and a re not likely to lose them acci
dentally .

5) The user has little or no control over
tone quality. a ttac k and decay , crescendo,
and the like.

The basic building block is a musical
phrase; up to ten can be stored in memory.
Phrases are arranged in up to fo ur voices.
with dynamics. repetition and transposition
specified in a list of statements which looks
li ke a compute r progra m. Indeed. the

Karl Zinn, Universit y of Michigan, Center for
Research on Learning & Teaching, Ann Arbor,
M148104.

David Zinn, Greenhills School, Ann Arbor,
M148104.

composition activity can be used to develop
prog ramming concepts such as sequencing
a nd iteration. Building a mel ody and
coun te rpoint from phrases is good practice
in music education as well.

Phrases, voices or an entire composition
can be saved on tape or disk , and re trieved
la ter, perhaps with new arrangements . We
much prefer disk because it is faster. but
the casse tte was adeq uate when we put
o nly one data file on the beginning o f a
tape. (You will have discovered this problem
with positioning the tape when read ing a
file fro m the middle of a tape if you use
cassette on the Atari. We have hea rd that
this software problem in cassette control
will be fixed by Atari in a future re lease o f
th e operating system.)

We already said we hardly needed the
manual. This should be true for almost
a ny experienced computer user, and per
haps many novices. We find a fi ve-minute

SOFTWARE PROFILE
Name: Atari Music Composer

Type: Music

System: Atari 400 or 800, 8K

Format: Cartridge

Summary: Very well done at a simple
price.

Price: $59.95

Manufacturer:
Atari , Inc.
1272 Borregas Ave.
Sunnyvale , CA 94086

de mo to be enough to get anyone started;
a few things may not be obvio us , suc h as
"FN" as the abbreviation for "File Name"
in a prompt , and the prefix "D :" needed to
specify that the fil e is to be re trieved from
(or saved on) disk instead of casse tte. But
the manual is well-organized with clea r
descriptions and photos o f th e sc reen in
various states. We recommend it to th ose
who would rather learn systematically than
by ex ploration. One part provides an overall
description with things to do; ano th e r
provides the file structure for th ose who
wish to do things with Basic as well; it
includes programs for listing files. composing
music. a nd arranging harmo ny. A last part
summa rizes each of the commands .

We have many stories to te ll abo ut o ur
use of the Music Composer. and plan to
do so in a later article a ft e r we have
experience with a grea te r variety of use rs
and in o ther educational settings. Perhaps
you can ge t an idea from these brief no tes:

85

Karl Zinn & David Zinn

Piano music ente red into the A tari was
played and displayed by the computer in a
regular way which made obvious some
syncopation which had been hard for the
student to catch and perform otherwise.
Some band music was entered so that the
cornet playe r could practice (at home)
with the o ther parts played by the Atari . A
band part in th e Atari was used as a model
(and a metronome) for repeated practice
o f a diffic ult sequence , gradually coming
up to the required speed. Music heard
only on the a ir was entered and reviewed
(and played for fun), exercising notation,
interval recognition , note duration, time
signature, key signature and other music
components. The pleasure of this activity
for kids cOfltrasts with the reluctant response
of some stud ents to "dictation" exercises.

Music already stored in the Atari was
mod ified in various ways (e.g ., tempo and
counterpoint) to change the style. Musical
rounds and fugu es were explored , pushing
the complexity until the sounds were no
longer pleasing to the arranger or composer.
Timbre (tone quality) was explored by
writing parts in unison and then transposing
the m to various partials (harmonics) one
octave away . an octave and a fifth , two
octaves, etc. Original compositions were
developed by entering familiar melodies
in up to ten phrases and rearranging them
in interesting ways (such as those compo
sitions of P.D.Q. Bach as discovered by
Professor Pe te r Schickele!)

What we missed most while using the
Atari Music Composer is a display of all
four voices at once (as on a regular musical
score or piano music). Sometimes it is
difficult to find the part you wish to modify ,
since yo u can look at only one phrase at a
time , and o ne measure in that phrase.
Getting everything on the screen at once
is a lot to ask of an 8K ROM application
cartridge operating with an 8K RAM (yes,
all these cartridges work on the 8K Atari
400 as well as our 48K 800) and displayed
on a n o rdinary TV. If it weren't for the
lack of resolution in TV rasters Atari might
have avoided the problem of where to put
the note stems by displaying each voice on
a separate staff. Having a printout of the
score wo uld be really nice, and get around
the TV display limitations.

At times we could enter music aschords
instead of notes in separate voices. A good
composer a id offer many options for entry
of music. But being limited to one , entry in
phrases and voices is the right one for this
beginner's composer. Other advanced aids
a re a lso missing: tone quality , envelope
(a ttack and decay), inversion , and other
opera tions on musical patterns. We suspect
that some of these can be done from Basic.

Although it is nice to be able to get all of

CARTR IDGE 1.1 II (ARTRIDG[

a t!i-1\
ATAR I 400™ ATARI800™

Inse rting the TELELINK cartridge

instruction brochure. a registration card.
an applica tion for an account with Compu
Serve. an instruc tion ca rd for hook ing up
to CompuServe In formation Service. and
a sealed envelope containing a CompuServe
use r identifica tion number and a secret
password allowing yo u one ho ur of free
access to the ne two rk.

The Atari 850 Interface includes a 102-
page inst ruc tion manual th at a lso cove rs
the Atari 830 Modem. Howeve r. who is
willing to read 102 pages of heavily technical
ma terial just to learn how to use an add o n
device on a computer system? Fortunately .
you can use the manual strictly for refe rence.
finding what you want in the table o f con
tents.

Before you can usc Telelink I to connect
to CompuServe, you must have a local
access telephone number. The card telling
yo u how to access the timesharing service
gives you Atari's toll free customer service
number and tells you to call them for the
access number closest to you. The customer
se rvice to ll free number is very busy, and
it took me about 20 calls over two days to
get through. Once I did get connected, the
representat ive gave me the names of cities
in my area code with access numbers , and
the telephone numbers.

Setting Up Your System
I will assum e that you already kno w

how to connec t your Atari computer to a
monitor o r TV set. and only d isc uss the
rest of the syste m. If yo u have a disk drive,
disconnect it. as the cartridge is no t set up
to work with the disk operating system.
and th e two conflict.

If you place the Atari 850 Interface on
the table in front of you so that the label
faces you. you will see the foll owing:
Plug the power supply into the connector
on the left and connect it to a wall outle t.
Connect the I/O cable from the computer
to the leftmost one of the two I/O con
nectors. If you have the printer that uses
the I/O connec tors. connect the printer to

th e right front connector. If you have the
Atari 825 printer. there is a connector fo r
this on the right end of the interface
module .

On the bac k of the interface module are

four identical seria l con nectors. labeled
from o ne to four. Plug the sma ll con nec tor
o n th e cable tha t comes with the Atari 830
modem into connector one on the interface.
directly behind the power connecto r. Your
interface is now connec ted.

The connectors and switches on the
Atari 830 modem are all on the same end ,
as follows:

onnect the other end of the modem cable
fro m th e ex pa nsion interface to the large
connector on th e modem. Then plug th e
power supply for th e modem into th e
connector on the modem and into a wall
o utle t. If the power LED in the center of
the modem should come on. set the originate
answer switch to OFF.

Bring your te lephone over to the com
puter. Place the handse t so that the cord
hangs over the end of the modem tha t

Power Input

Connectors

contains the connectors and switches. This
is a lso plainly marked on the label in the
top cente r of the modem. Your system is
now connected and ready to go.

Making the Connection
Plug in your ca rtridge. and close the

cartridge door. Turn on the television set
o r monitor. Then set the left switch on the
modem to 0 (for o riginate) and the right
switch to F (for full duplex) . Both switches
shou ld be all th e way to the left. The
power LED on the modem should g low
red . Next turn on the Atari 850 inte rface
module using the switch on the front. The
power LED next to this switch should come
o n.

Afte r the rest of these connections a re
made. turn on th E; computer. If you turn
on the compute r before the interface . o r
have the disk drive connected , the program
to ope rate the interface will not load
properly . You sho uld now hear a se ri es of
beeps from the television speaker to indicate
that the program is loading. After the
program has initia lized , the words Tele link
I will appear on the screen.

Now. dial the telephone access number
for CompuServe that you obtained from
Atari Customer Service. Unless the number
is busy, it should ring a couple of times,

87

Power
Connector

FullIHalf
Duple. Switch

th en answer with a steady tone. When you
ge t the tone , place the telephone handset
in the crad le on top of the modem. Even
before you finish placing the handse t in
the c radl e , th e two computers should
recognize each other and the READY LED
o n the modem should come on.

Type CONTROL C on your keyboard.
The TV screen should go blank , then
CompuServe will print the message :

USER ID:

Respond by typing in the identification
number in the envelope that came with
your Telelink cartridge. Now CompuServe
will print another prompt on your screen:

PASSWORD:

Type in your password. exactly as It IS

given in the envelope. The letters will not
appear on the screen . so that you can keep
your password secret if someone is watching.
If you get it wrong . the computer will
prompt you to try again.

CompuServe will now take a few seconds
to log yo u in. It will recognize you as a new
user and print a greeting message . plus
give you instructions on using the system.
It would be very helpful to have a printer
turned on at this time to save the instructions
for future reference. You will also be given
an opportunity to open an account. either
under Maste r Card or Visa o r to be billed
monthly, once your free hour is up .

Most of th e time using the CompuSe rve
network is as easy as reading th e message
on your screen. typing a number or a le tter.
and pressing RETURN . A few commands
require you to type three o r four letters.
but these are ex plained.

My first time on the ne two rk . I read
thro ugh the instructions fo r the various
services, logged into the Atari Newsletter
and sent a message to customer service.
read several c urre nt stories from the New
York Times, and looked through the other
services. Then I typed EXIT and Compu-

CompuServe

Serve logged me off the system and told
me that I had been connected for 29
minutes.

There are literally hundreds of other
computer services that you can connect
to with Telelink or similar systems from
other manufacturers. There are other
timesharing services, including The Source
and universities such as the Dartmouth
Time Sharing Service. There are many
free message services all over the country.
While some of them emphasize a particular
computer system, most welcome all comers.
You may want to try some of the services
listed in the table. After you dial the number
and get the tone, place your handset in the
cradle and press RETURN a couple of
times. The various systems should take
you from that point. Please note that some
of these numbers may be out of date when
this article appears . Once you log onto
several of them , you can usually find out
about many more . Some of these numbers
are only in operation after normal business
hours for timesharing , as they are owned
by businesses that use the lines during the
day.

The Telelink Program
As timesharing programs go , Telelink I

is very limited, but it is also one of the
easiest such programs to use. It is per
manently set up for 300 baud (a rather
slow rate of communication, especially
when you are paying the phone bill),
transmits even parity with one stop bit
while receiving even parity or no parity,
does not allow you to write files to disk,
and has a fixed character set. If you try to
access a computer system that does not
accept any of these limitations, you will
not be able to communicate. Actually .
most timesharing systems are either set up
this way or allow the user to specify his
own configuration.

Telelink stores print characters in a
buffer. so that you do not always have to
wait for the printer to read the screen.
You can turn the printer on and off from
the program. It can communicate either
Full Duplex (both computers sending
messages at the same time) or Half Duplex
(the two computers must take turns.)

General Use
CBBS Pasadena CA (2IJ) 795-.17HH
(Community Bulletin Akron OH (216) 745-7H55
Board Service) Cambridge MA (617) H64-:lHI,)

User Groups
Forum 80 (TRS-80) Chicago (.112) 26,)-HOH.l

Ft. Worth (HI 7) 92:1-000')
COMM 80 (OCTLIG - TRS 80) CA (714) 526-:l6H 7
ABBS IApple) Seattle (206) 244-54:1H

New York (212) 44H-6576
PET BBS Ypsilanti Ml (3 I 3) 4H4-0732
NORTHSTAR At lanta (404) '):19-1520

Interest Groups
Genealogy Fairfax VA (7OJI97H-7'i61
Amate ur Rad io Washington DC I7OJI2HI-2 12'i
C ommodities Kansas City IHI6ILJ:lI-:lIJ'i
Avionics O lathe KS (')i.\17H2-511'i

Computer Stores
Program Store Washington DC (2021337-46')4
Peripheral People Seatt le WA 12061 nl-DATA

For more information about the two most popular commercial timesharing ne tworks.
use these numbers. Thev are not numbers for computer access .

CompuServe
The Source

Columbus OH
Mc Lean VA

161414S7-H6(J0
17m, H21-6660

Control characters that can be sent by
Telelink I include TAB, ESCAPE ,
CONTROL A through CONTROL Z
(including Linefeed, Bell, XON, and XOFF),
RETURN , BACKSPACE, and RUB
OUT.

The Atari 850 Interface
The 850 Interface module allows you to

add four RS-232 serial ports and a parallel
printer port to your Atari 800 or 400
computer. This allows you to connect
printers , modems, and other standard
peripherals to your computer. Although
you would probably have to write the
software yourself, you should be able to
use it to connect lab equipment, a graphics
tablet, a plotter, or other special purpose
devices.

Atari does not currently offer any printer
cables for use with the 850 Modem. except

88

the one that comes with the 825 Printer. If
you do not want to buy a $995 printer to
get a $30 cable , you may be forced to
create your own . To do that, you will need
the part numbers and manufacturers of
the appropriate connectors. The 25-pin
parallel port uses an AMP connector. part
number AMP 205-208-1. The IS-pin parallel
ports use either AMP or Cannon COII

nectors, part number AMP 205-206-1 or
Cannon DB-15-P. The RS-232 serial ports
use either the AMP 17-20096-1 or the
Cannon DB 9-P connectors.

The Atari 830 Modem
This modem is a standard acoustic

modem, very similar to the Novation CAT.
By buying it from Atari, you get the Atari
name on the label , and a cable that you
know will connect to your interface , and
Atari service. 0

Build Your Own Light Pen

In this article, we'll take stock of a
promising, yet somehow neglected
input device for the Atari computer:
the light pen. We will look at the cap
abi lities of such a device, and review a
pen available for the Atari as well as
other machines . We shall go on to out
line steps involved in the construction
of an inexpensive but fully functional
pen , using readily available parts.

If light pens don' t sound to you like a
topic that should necessarily elicit
heated controversy or a complex and
somewhat absurd tale, you are justified,
but incorrect. Remember, you own an
Atari, so anything is possible. Read on.

In the atmosphere of inspiration that
couched the design of the Atari 400/800
computer, foresighted engineers built a
great many capabilities directly into the
hardware of the machine. Among these
was the capability to support a light pen
without the need for any additional
controller boards. Even today, not too
many other machines can make this
claim. A light pen can be quite simply
plugged into controller port 0, as if it
were a paddle or joystick. It can be read
straightforwardly with the statements
PEEK(564) and PEEK(565). And that is
all there is to it. That is, from an en
gineering point of view, you understand.

Those with machines of recent ac
quisition may not be aware that at one
time Atari itself slated a light pen for
production. It was to cost less than $100.
In the second quarter of 1981, a prod
ucts brochure that showed the device in
use was released. It was a stubby, fat
hunk of plastic with a tip switch on it.
And what pretty multi color pictures it
supposedly drew.

Mail-order houses, as they are wont to
do, accepted back orders on the Atari
pen for some time. Though the decision
to kill it was made over a year ago, the
product was listed in a few retail rosters
until only a few months ago.

At some point during its short
development, a decision was made to
pull the pen. The reasons for this remain
somewhat vague. Some have suggested
that the tip switch was flaky, making the
device unreliable.

Another explanation I have heard
from more than one reliable source goes
like this: The Atari is designed as the
machine for everybody, including novices
and kids. Marketing was skitterish about
the idea of a tiny kid fooling around a
TV tube with a big pointy stick. One
false move and gazonga: Mommy finds

John Anderson is an associate editor for
Creative Computing magazine.

Billy on the living room floor, a victim
of implosion! "Think of the lawsuits,"
said the legal department. "Pull the
pen," said marketing.

Stop laughing. This mayor may not
have been the last straw concerning the
Atari light pen. Whether it was or not,
the pen was pulled from production very
swiftly, and it is unlikely the decision
will ever be reversed . A few did manage
to get off the assembly line, however,
and the few people who own them quite
properly regard them as collector's
items.

Hobbyists like myself, who have read
about the capabilities of light pens and
know also of the built-in pen capabilities
of Atari machines, awaited the appear
ance of Atari-compatible light pens from
other sources. Surprisingly, at least to
me, no cheap pen has become available
in the ensuing time. It is too bad, really.
The peripherals can do a lot to make a
microcomputer friendlier.

Just how can they do this? Kind of
you to ask. First, let's find out what they
do.

Light On The Subject
A light pen, when touched to or

aimed closely at a connected monitor or
TV screen, will allow the computer to
determine where on that screen the pen
is aimed. The driver program may sub
sequently take that information and do
various things with it, but the job of the
pen itself is quite simply to make a time
measurement, which will be translated
into x and y coordinates representative
of a position on the CRT.

The capability may seem remarkable,

l ________ ~------_~

MEASURE TIME FROM
BEGINNING OF SCAN LINE
TO POINT OF PEN (B TO C)
FOR HORIZONTAL POSITION

Figure 1.

89

John Anderson

and it is, though .a simple explanation of
how it works may dispel some of the
awe. You may be aware that a TV or
raster monitor typically refreshes at a
rate of 60 frames per second. That is to
say the electron gun or guns draw 60
pictures on the screen in one second. But
it is impossible to draw an entire picture
at once. Rather, the picture is drawn by
the scan line, starting in the upper left
hand corner, moving to the right. When
a line is completed, work begins on the
next line. The Atari standard is 192 scan
lines per frame. (An excellent explanation
of this mechanism was provided by Da
vid Small in the June and July 1981 is
sues of Creative.)

Now let's imagine we have a special
kind of transistor: one that is sensitive to
light. We have hooked this transistor to
our Atari, and aimed it at a point on the
screen. By noting when a scan goes by
and measuring the interval between scan
lines or entire screen refreshes, we can
get a good idea where the phototransis
tor is pointed on the video screen. The
pen then allows us, through software, to
generate x and y vectors corresponding
to a point on the screen, which we may
then use to draw pictures, make a choice
from a menu of alternatives, or answer
questions put to us by a program. Figure
1 is a simplified diagram of the process.

As opposed to input via the keyboard
or even a paddle or joystick, a light pen
can be a dramatically friendly periph
eral. Imagine needing merely to point
the device at your choice on the screen,
in order to make that choice. Or to draw
a picture on your CRT as straight
forwardly as you might use a crayon on
a piece of paper. These are the kinds of

I MEASURE TIME FROM

I
BEGINNING OF REFRESH
TO CURRENT SCAN (A TO B)

,FOR VERTICAL POSITION

Light Pen

possibilities a light pen affords.
By the way, you would have to work

extremely hard to push a light pen
through a CRT. It just isn't something
you could do without extreme effort,
assuming you could do it at all.

Mightier Than The Sword
Soon after the Atari pen bit the dust, a

third-party pen for the Atari appeared
from Symtec Corporation. This pen is
about the most professional you can find

~'

Symtec Light Pen.

for any machine. It is, in fact, an adapta
tion of the same model used in pro
fessional minI and mainframe
operations. Its barrel is of heavy, ex
truded aluminum, with a coiled tele
phone handset wire leading to an
Amphenol connector. It includes a sen
sitivity trimmer adjustment. Everything
about the Symtec pen is top of the line,
including the $150 price tag.

Figure 2 provides an example of the
drawing capabilities of the Symtec pen.
The software driver I used to create the
caricature (portrait) of our fearless lead-

Figure 2.

10 GRAPHICS 7+16
20 SETCOLOR 4,O,14:COLOR 3
30 X=PEEK(564)
40 IF X<70 THEN X=X+230
50 Y=PEEK(565)
60 IF Y<17 OR Y>112 THEN 50
70 X=X-75 : Y=Y-14
80 IF X<O OR X>159 THEN 30
90 TRAP 30: IF STICK(0)=15 THEN

PLOT X, Y
100 GOTO 30

Figure].

er, Mr. Ahl, appears as Figure 3. In ten
lines, the code evidences how elementary
a driver can be. This is an obvious bene
fit of the fact that so much of the work is
already done in hardware.

If you wish to endow your Atari with
professional light pen capability, the
Symtec pen is literally without rival on
the market. The pen is also available for
the Apple, IBM PC, and VIC-20 ma
chines. For more information, contact
Symtec, 15933 West 8 Mile, Detroit, MI
48235. (313) 272-2952.

Penlight Light Pen
Of course, many Atari hobbyists will

be unable to budget that kind of money
for a light pen purchase. I believe the
market exists for an inexpensive pen, but
no company has yet stepped forward
with such a product. Other inexpensive
pens, for machines such as the Apple
and TRS-80, can be modified for use
with the Atari. I reasoned, however, that
it wouldn't entail very much more work

Home Brew Light Pen.

to start from scratch. It would also be
much cheaper.

The result: for a couple of hours work
and about $10 worth of hardware, you
can put a homemade Atari light pen to
work with your system. While it will
have neither the accuracy nor the feel of
the Symtec pen, it will be perfectly
serviceable for many applications, and
loads of fun to play with. It is also easy
to make. So let's make one!

First, you've got to stock some parts.
Get down to the nearest Radio Shack,
and pick up the following: one photo
transistor, model number 276-130, 89
cents: 1/2 watt lOOK ohm resistor, model
number 271-045, 19 cents for two: pen
light, model number 61 -2626, $1.99.

You will also need a few other pieces
of paraphernalia. These include: DE-9
connector plug for the controller port on
the Atari , and five-conductor shielded
cable (you cannot use an existing Atari
joystick, as it lacks necessary pin-outs); a
couple of feet of insulated bell or
stranded wire; and the plastic top to a
Bic pen. You may also want a grommet

90

or strain relief for the pen top.
For tools, you'll need this array: low

wattage soldering iron and solder; wire
cutters (needlenose pliers are handy
too); X-acto or razor knife; ,scissors or
reamer; small flat blade and Philips
screwdrivers; long stick pin or safety
pin; and insulating electrical tape.

Got these things together? Let's get
going. First, unscrew the cap on the pen
light, and disassemble the light bulb and
bayonet assembly from the white plastic
pen tip. Next, gently press the switch
assembly down through the barrel of the
pen with the Philips screwdriver. We
don't want a penlight anymore, and we
need all the real estate inside it in order
to convert.

The cable we connect will feed
through the hole where the on/ off
switch used to reside. You will pop the
switch out through the open side of the
barrel, along with two springs and a
black plastic retaining collar. When
these things have been pushed out, the
barrel will be empty, and that's the way
we want it.

Using a closed pair of scissors or a
reamer, enlarge the switch hole on the
metal barrel top until it accommodates
the wire, grommet, or strain relief on the
connector wire you have chosen. When
this is accomplished, push the pen barrel
onto the wire (it would be embarrassing
to construct the entire pen, then discover
you left the barrel aside, and have to dis
assemble all your work to fit it on).

Take the phototransistor, and hold it
so that the bottom is facing you . Turn it

1. EMITTER
2. BASE (NOT USED)
3, COLLECTOR

PHOTOTRANSISTOR
EMITTER~

~- ~COLLECTOR

PLAIN LEAD ~
RESISTOR PLAIN LEAD

Figure 4.

PLASTIC TIP

Figure 5.

until it is oriented along the lines of the
diagram presented as Figure 4. This will
indicate the positions of collector, base,
and emitter leads of the component. You
can clip the base lead short, as we will
not be making use of it.

Solder directly to the collector lead
one lOOK resistor, along with a plain
lead about four or five inches long, as in
dicated in Figure 4. Solder another lead
of about the same length to the emitter
lead, also as indicated. Don't use a high
wattage iron or apply heat for too long,
as you run the risk of blowing the
transistor.

Using the X-acto knife, cut all the
way around the plastic tip of the pen
light, at a distance of about Vs of an inch
up from the threaded side, as indicated
in Figure 5. Run the blade around the
plastic tip repeatedly, until a rudi
mentary trench begins to appear. Once it
does, use the flat blade screwdriver to
widen and deepen the groove. This
groove will hold the touch ring, which
we shall use as the switch on our pen, in
place.

Next, using the stick pin or an open
safety pin, you will put a hole in the
groove. Place the end of the pin in the
groove, then put the tip of the soldering
iron on the pin. Grasp the pin with the
pliers or far enough back to avoid burn
ing yourself. The plastic will melt only
around the pin, and you'll have a clean
hole through the pen cap. Work the hole
out to about the diameter of a pencil
lead. The touch ring wire will have to fit

PIN, ~ HEATED BY IRON,~
WILL PUT HOLE ~
IN GROOVE ~

Figure 6.

out and back into the pen through this
hole. Figure 6 will help you gain a clear
idea of what you're trying to do.

Figure 7 indicates the manner of
construction of the touch ring. Strip a
five inch or so length of wire entirely. If
it is stranded as opposed to solid wire,
make sure that you have twisted it to
gether thoroughly, or it will unravel
while you are threading it into the pen
tip. The wire will loop all the way
around the pen tip, into the groove hole,
and should be tightly twisted to itself on
the inside.

We are now ready to wire up the pen.
Figure 8 provides a wiring diagram for
connection to controller port O. We shall
be using the analog reading of Paddle (0)
to tell us whether the touch ring is open
or closed. The ground, pin 8, and the
Paddle (0) hot lead, pin 9, form the
touch ring circuit. As it turns out, this is

"LASSO" TIP WITH
BARE WIRE

an extremely convenient manner in
which to activate and deactivate the pen.
The resistor is connected between the
collector and + 5 volts, which is pin 7.
The collector is also connected directly
to pin 6, which is the hot pen lead. The
emitter attaches to ground, which as
stated, is pin 8 on the controller plug.

After the connectors have been sol
dered together with their respective
leads, a test of the pen is in order, to
make sure everything will be working
when it is assembled. Plug the pen in,
boot Atari Basic, and type the following:

10 SETCOLOR 2 , 0 , 14 : SETCOLOR
1 ,0,0: ?
PEEK (564), PEEK (565),
PADDLE (0) : GOTO 10
Upon running the program, hold the

photo transistor up to different points on
the screen, and ascertain that you are
getting different readings for each po-

PUSH WIRE
U ENDS THROUGH

HOLE

PULL TIGHT,
BRAID WIRE TOGETHER

Figure 7.

91

Light Pen

sltlon. Don't worry yet whether the
readings are perfectly reasonable. Just
make sure they change when the pen po
sition changes. If they don't, you prob
ably made a wiring mistake somewhere.

When you touch the leads coming
from pins 8 and 9 together, the last value
printed in the program loop should
move well down from its default, 228. If
you are getting different PEEK values
and paddle values, all is well, and you
are in the home stretch.

Using the insulating tape, wrap up the
pen wiring assembly so that nothing will
short out when it is squeezed into the
pen barrel. There is plenty of room in the
pen for the assembly, so you shouldn't
have to force anything.

Next solder two four- or five-inch in
sulated leads to connectors 8 and 9,
which will detect our touch ring. One of
these leads will connect directly to the
tail of the touch ring, and the other will
ground to the exterior barrel of the pen.
This is easily effected by wrapping a gen
erous length of stripped lead through the
square hole in the plastic tip, as in
dicated in Figure 9. Then, when the
plastic tip is screwed on, a good ground
connection will be made via friction fit.

It is imperative that the connection to
the touch ring itself be well insulated
your electrical tape will come in handy
again here. Make sure no bare wire is
left to accidentally short the switch.
That way it will only close when your
finger shorts it.

We're almost done. Bet you have been
wondering what our Bic pen top is for.
Well, now we need it. Cut off the tip and
the bottom with the X-acto knife, as
shown in Figure 10, so just about a half
inch from near the top is left. This

1 2
o 0 o

4
o

000 0

987 6

5
o

NOTE: THIS IS THE PLUG.
THE JACK WIRES UP IN

MIRROR IMAGE.
6 - (PENHOT) - DIRECTLY TO
COLLECTOR
7 - (+ Sv) - TO RESISTOR AND
TOUCH RING
8 - (GROUND) - TO EMITTER
9 - (PADDLE 0 HOT) - TO PEN
BODY

Figure 8.

remaining collar will act as a guide for
the phototransistor in the pen tip. Press
it into the plastic tip, tapered side first,
as shown.

After making a final inspection to en
sure all bare wire has been insulated,
push the wiring assembly into the barrel
of the pen, leaving just the phototransis
tor peeking out about a half inch, and of
course the switch leads and tip. Care
fully screw on the tip, making sure that

Figure 9.

the phototransistor is seated well in the
pen collar, and that a satisfactory
ground connection is being made be
tween the lead looped outside the plastic
cap and the barrel of the pen. And that's
it.

CUT HERE TO MAKE
RET AININO COLLAR

HIC PEN CAP

Figure 10.

There are some hardware 800 models
which cause the light pen to be read
from port 4 on the 400. If you have a
400, plug the pen into port 4 and sub
stitute PADDLE (6)for all references
to PADDLE (0) in the demo programs.

10 GRAPHICS 7:SETCOLOR 1,0,0:SETCOLOR 2,12,14:SETCOLOR 4,0,14 : COLOR
20 POKE 752,1:? 'TO DRAW, TOUCH THE PEN TO THE SCREEN,"
30 ? 'THEN TOUCH AND RELEASE THE RING."
40 IF PADDLE(0)=228 THEN 40
50 X=PEEK(564):IF X<50 THEN X=X+230
60 Y=PEEK(565)
70 X=(X-95):Y=(Y-14)
80 TRAP 50:IF PADDLE(0)<228 THEN PLOT X,Y
90 If PADDLE(0)<228 THEN 90
100 ? :? :? 'TOUCH THIS BAR TO REVERSE COLOR, AND"
110 ? 'BELOW THIS BAR TO ERASE."
120 X=PEEK(564):IF X<50 THEN X=X+230
130 Y=PEEK(565)
140 X=(X-95):Y=(Y-14)
141 IF Y>96 THEN 10
142 IF Y>83 AND Y<96 THEN 300
150 TRAP 120:IF PADDLE(0)<228 THEN DRAWTO X,Y
160 If PADDLE(0)<228 THEN 160
170 GOTO 120
300 Y=O:SETCOLOR 4,0,0:? :? :? "TOUCH THE RING TO CONTINUE ... "
310 IF PADDLE(0)=228 THEN 310
320 X=51:Y=0:SETCOLOR 4,0,15:GOTO 20

Figure 11.

10 GRAPHICS O:SETCOLOR 2,0,0:SETCOLOR 4,0,0
20 ? :? :? :? :? 'Question 1."
30 ? :? 'How .any zweckas does It take to fill'
40 ? "a quackenbush?"
50 :?: ?
60 "DONE'
70
80 ? "DTWELVE"
90 ?

100'? "DHUNDREDS AND HUNDREOS"
110 ?

120? 'DWHO CARES ABOUT QUACKENBUSHES?"
130 Y=PEEK(565)
140 POSITION 2,22:IF Y>60 AND Y<64 AND PADDLE(0)<226 THEN? "You Must

have a tiny quackenbush! •
150 POSITION 2,22:If Y>66 AND Y<70 AND PADDLE(0)<226 THEN? "No, but

there are In a dozen.
160 POSITION 2,22 IF Y>76 AND Y<60 AND PADDLE(0)<226 THEN? "You bet

I t does. budd
170 POSITION 2,22 IF Y>62 AND Y<66 AND PADDLE(0)<226 THEN? 'That's

the wrong att tude to have.'
160 60TO 130

Figure 12.

92

Conduct another test, identical to the
earlier one. If results are unsatisfactory,
you'll have to undo things and find out
where you went wrong. If you are hav
ing trouble activating the touch ring, try
wetting your finger before you dismantle
anything. Because we are reading the
resistance between the ring and the bar
rel of the pen, a dry finger can some
times be the culprit.

You should now have a relatively neat
looking as well as functional light pen,
that passes the one-line software test
with flying colors. The time has come to
begin refining that software
dramatically.

I will provide two starting points. Fig
ure 11 is a drawing program, which will
give you an idea of how good (or bad)
the pen is at locating itself. I built three
pens, and the calibration seemed pretty

Atari Silencer
It is commonly known that, in ad

dition to the capability of driving
sound through a television or monitor
speaker, the AT ARI has an onboard
speaker, similar to the Apple II. This
speaker can and does serve in a
number of capacities, not the least of
which is to sound a prompt or signal
tone, to flag a specific mode or
indicator.

Users of the 410 program recorder
are famili a r with the record and play
tones sounded as an indicator before
data input or output to tape . All users
should be familiar with the chirp of
keyboard feedback. This feature lends
a surer "feel" to the keyboard than
that found with other computers.

These features are, essentially, well
designed and helpful. However, I've
discovered that there are times I wish I
could fit a silencer onto my AT AR I
800 Late night editing sessions or
programming when my roommate is
trying to catch forty winks have
caused friction. Certain programs I
use very frequently, like the A TA RI
Word Processor, seem to exploit the
feature to a point beyond distraction.
These features are helpful in a noisy
office environment, but seem a bit
heavy-handed in a quiet work area at
home, the most common environment
for the AT ARl. I nearly discontinued

John Anderson is an associate editor for
Crealive Compuling magazine.

consistent among them. Of course your
monitor will have much to do with pen
calibration.

The first place to look is line 70. Val
ues in this line should be altered until
the plot occurs right underneath the pen
tip. If the left side of the screen reads
okay but the right half is out, you may
have to fiddle with the value in line 50.
Don't get nervous. For most folks, the
values shown in the program will be
pretty close to perfect.

You will quickly see that the pen is
much more accurate at vertical measure
ment than at horizontal. This is prob
ably its biggest shortcoming, though it
has others. For one, the screen must be
extremely bright to get a good reading.
For this reason I have included an op
tion to reverse color, which is chosen by
pointing the pen to the text window and

exploration of a hi-res adventure
because the program continually
prompted for pressing RETURN with
a long, shrill "blat" - shades of
operant conditioning! Is it too much to
ask to be able to turn the thing on and

Figure 1

touching the ring. To erase, move the
pen below the bottom edge of the text
window.

Figure 12 is a simple menu selection
program to give you an idea of the
convenience of a light pen for varied
information input. The pen you have
built is more than accurate enough to
support a function such as this. The
squares in the listing ar~ obtained by
pressing the Atari key,· followed by a
space.

Needless to say, these examples are
presented just to get you started. Your
imagination can take it from here. So
there you have it. You need never be sty
mied again when people ask you about
the light pen capabilities of the Atari
machine. In fact, they may be sorry they
asked! 0

John Anderson

off at will?
What could be simpler than the in

stallation of a single pole, single
throw switch to cut out the speaker
when desirable? A "take-a parter" since
earliest childhood, I had already

10 In.
-i!I ,,''''It """'mY('" ''''5'" ,eup , li m"""

" 9

'''''1ft
5 in.

C.

B.

B. t~
7
~ C.

Socket Socket Switch

Figure 2 Press here

)yluu.."
To speaker

tl llU!lb

93

~

·s
N
<:::!
~
<:::!

~

~ .;;;
S-a
C'J

"0'
~
~
;::
;:s
a
'-'

'" :;::
.9
~
t:
'" ;:s -->:::::

Atari Silencer

Figure 3 Figure 4

\-._--,)

Bottom Panel

• CWItCh wlli be piaced he<e

snooped around a bit inside the
AT ARI, and knew how easy it really
would be. But, I still had a problem.
The mere thought of snipping wires or
drilling holes in my pristine machine
made the hairs on the back of my neck
stand on end. Also, though my war
ranty had long since expired, I wasn't
happy with the idea of doing anything
that couldn't be undone. Service
people can be put off quickly when
they see user modifications. I deter
mined, rather wistfully, that I could
live with the buzzers.

Then, while staring at all the little
packages hanging on the wall of a
nearby Radio Shack, I made a
fascinating discovery - I saw a
prod uct called "two prong connec
tors," catalog number 274-342 - $2.49
for a package of six. I noticed that the
fit would be quite close to the con
nector used on the AT ARI speaker. I
then noticed "SPST micro miniature
toggle switch," catalog number
275-624 - $1.59. Smaller than the
smallest switch Radio Shack had
stocked previously - it occurred to
me that it would fit between the vent
slots on the bottom of the AT ARI. I
suddenly envisioned a switch mod
ification that was totally, and easily,
reversi ble.

The modification was a complete
success. Now that I can toggle the
speaker off, I realize it's something I
should have done long ago. In case I
need to bring the computer in for
service, the modification can be
slipped out in under five minutes.

The Project
If you wish to modify your AT ARI,

you will need, in addition to the
products listed above, about two feet
of bell or other light wire , a flat blade

Speaker leads

Computer chassis

~

•
and Phillips screwdriver, soldering
iron and solder, and a bit of tape .

Snip the wire into two ten inch
lengths . Then, take one of the wires
and snip it into two five inch lengths.
Strip a quarter inch of insulation off
the ends of all the leads. Twist the
shorter wires onto the longer wire in
the manner indicated in Figure I. This
will make the modification easier to
slip in and out later. Next , solder two
connectors and the switch to the wires
as indicated in the diagram. Unscrew
all collars around the neck of the
switch. Notice you are using only the
sockel connectors, not the plug con
nectors. Leftovers can be saved for
another project. .

Now you are ready to begin the
operation. Flip your AT ARI over
onto something soft, like a pillow.
Unscrew the five screws that hold the
bottom panel , and lift it toward you.
Notice that the controller ports must
be cleared in order to remove the
panel. Can you believe how small that
speaker is? You now know another
reason why yo u're lucky to own an
ATARI. You don 't depend on that
little thing for all your sound effects.
To disconnect the speaker, pull gently
on the connector. Once the speaker is
disconnected , remove it from the
machine.

Orient the connector so that it
matches the view in Figure 2. Using a
screwdriver or toothpick, press down
on the silver tongue on the top of the
plastic connector, as you gently pull
the wire from the side. Don't force
anything! When you've pressed the
tongue down far enough, the contact
will slide right out. Pull both contacts
out of the plastic container.

Next, take the bottom panel you
removed earlier and hold it so that the

94

Socket B.

Socket A .

~

~

vents are at the bottom, as shown in
Figure 3. You will mount the switch
in the left-hand vent, where there is
room to spare, and nothing nearby
that might get shorted out. Insert a flat
blade screwdriver between the two
vent slots where the switch will be
mounted. (It's a good idea to stay over
to the left - this will make the switch
easier to reach .) Gently twist the
screwdriver to spread the slot, then
press the neck of the switch through.
The plastic will have to bend a bit to
accommodate the switch. Put on a
washer, then screw on the lock nut to
fasten the switch in place.

The final installation will be
facilitated by repositioning the back
panel so that the computer looks like
an open valise . This way, the wire
between switch and speaker will not be
stretched. First, press the speaker
contacts into the middle connector, as
indicated in Figure 4. The speaker can
now be repositioned in its place.
Gently connect the far socket to the
speaker leads from which you removed
the original connector. Spreading
them a bit may insure a tight fit.
Finally , tuck the wire away under the
keyboard post and away from boards
and the speaker itself. There's enough
room on that side of the computer to
insure that the modification will not
interfere with any other hardware.

You may wish to tape the original
connector to the wire itself. Then,
should you wish to remove the mod
ification, the original connector will
be right where you left it.

Screw the back panel on , plug things
back in , and run a test. You can easily
use the keyboard REPEAT function
in memo pad mode to do this.

Listen . You can almost hear a pin
drop!

A New Basic For the Atari - Basic A+ Mike Dunn

Atari Basic was originally written by Optimized
Systems Software, at the time a division of Shepard
son Microsystems. There have been two patterns of
Basic in microcomputers originating from Hewlett
Packard and Digital Equipment Corp. Bucking the
trend toward the DEC orientated Microsoft dialect,
Atari Basic was patterned after the Hewlett-Packard
model , as were NorthStar and Cromemco Basics .
Contained in a n 8K ROM cartridge, the Atari now has
some new Basic's available. One is Microsoft Basic
and the other is an extens ion of the original by
Opimized Systems Software, now an ind ependent
company. This article is about OSS's new Basic A+
and Disk operating system, OS / A+, both written by
the same individuals who wrote the original Atari
Basic.

The new Basic adds 5K of new features to the
original Basic, with a total of 43 new statements and
functions. Basic A+ is a structured Basic and has
many user-ori ented features that make your Atari
easier to use. The statements 1F. .THAN .. END IFand
WHlLE .. ENDWHILE help you write programs in a
structured style, and the listi ngs produced will
automatically be displayed with the proper indents.
Nested loops are easily followed. Lower case and in
verse characters can be used for commands, but LIST
In upper case.

For business use an extens ive PRINT USING
capability as well as a TAB functions are included.
There are commands for deve loping fixed length
records for random access files , and an INPUT" .. "
statement that a llows you to specify the prompt dis
played; it is also self-trapping so it will automatically
reprompt if the input given is in error. Other im
provements include the ability to use subscript with
INPUT and READ statements , and added string
handling functions such as string concatenation using
"," and new commands such as FIND that search for
a particular subst ring . Aiding in program develop
ment are TRACE functions, SET and SYS commands
that a llow easy changing of default values instead of
POKEs, meaningful error messages instead of num
bers, and the ability to call up the disk directory
easily in Basic , "IF ERR" instructions can be used to
test e rrors and direct the program flow. You can
DELete any lines between two numbers and easily
move back and forth between Basic and Assembly
Language with seve ral spec ial commands. Two-byte
words are directly accessible with DPEEK and
DPOKE functions. All the variables used in th e pro
gram can be instan tl y li sted, and all the usual Disk
commands are directly available.

The most exciting feature is the extensive se t of
Player-Missile Graphic commands that make using
these specia l functions as easy to use as PLOT and
ORA WTO with regular graphics. T he Atari comes
with 9 graphics mod es, with various amounts of
reso luti on and numbers of co lors available. In-

dependent of this system called the playfield, is a
system of Graphics called Player-Missile Graphics,
that allow incred ible feats such as overlays with user
defined priorities, machine speed graphics, collision
registers, shape tables. These special effects that can
be seen in Atari games such as Star Raiders. With
Atari Basic, using PEEKs and POKEs and machine
language subroutines, these special hardware registers
can be accessed, but with Basic A+, simple Basic
commands allow you to use this system with ease.
There are 14 of these commands available for use, as
well as new integrated joystick commands that
simp lify Joystick use . These joystick commands also
make the movements "silky" in feel and much
smoother than found in even the ROM Atari Games.

Program number I listed in this article is similar to
the one by C hri s Crawford of Atari, Inc., published in
January 81 "Compute" magazine. In that article, Chris
explained how to use Player - Missile Graphics by
defining a space ship and moving it around the screen
with ajoystick. The shape table made first by a binary
image, is then converted to Hex and then to decimal.
The Shooting of missiles is also demonstrated in this
article . Some important features illustrated in the pro
gram li sted here include the format that the listing is
printed in , as this is the way the program actually
appears on the screen. The commands that begin
"PM .. . " a re some of the special Player-M issil e graphic
commands of Basic A+. Line 100 begins the W H I LE ...
EN OW H I LE loop and wil l execute as long as W H I LE
is non-zero. Also note the simple commands to use
the j oys tick. Line I 10 moves the spaceshi p arou nd the
screen . The secon d program draws the same space
ship , then shoots missiles. The BU M P command on
line 260 access the collision registers, as many lines
between IF. .. END IF as yo u wish.

Basic A+ comes on a disk, and can be easily changed
by a F IXER pl"Ogram if "bugs" are discovered. In the
future, many other us efu l items are planned to further
enhance Basic A+ . An APPLE version is also planned ,
compatible with the Atari version, so programs from
one will work on the other (except, of course, hard
ware dependent features such as Player- Missile
Graphics).

A new disk operatil1g system called OS / A+ has been
also released as an independent but integrated part of
the package. It includes an Assembler, as well as
man y utilities in a command oriented format rather
than the menu driven format of the Atari DOS.
BATCH processing data via EXECUTE fil es makes
the Disk sys tem more powerful than ever before, as it
allows the user to string together a series of programs,
and a STAR TU P. EXC command allows you to
spec ify any file to be run on booting the disk. OS / A+
is compatible with the Atari DOS II and the Basic
cartridge.

Basic A+ cos ts $80.00 and OS / A+ is also $80.00
while the set is $150 .00. Either works independentl y

Mike Dunn, Atari Computer Enthusiasts Newsletter, 3662 Vine Maple Drive, Eugene, Oregon 97405.

95

Basic A +

of the other , but the set is an ideal combination . The
advantages are many; the disadvantages includ e th e
ina bility to use Atari LOAD (tokeni zed) files without
first LiSTing them, and the inability to share your
mas terpieces with other Atari owners unless they have
thi s Bas ic . Software developers can get a "runtime "
mas te r Basic A+ to include with their programs for a
o ne-time lice nse fee , rega rdless of the numbe r of
copies they sell. Of course, the main competitor to this
Listing 1.

5 GRAPHICS 0
10 SETCOLOR 2,O,O:V=4:3:H=60
20 PHGRAPHICS 2
:30 WIDTH=l
50 PMCLR 0
60 PHCOLOR O,B,8
70 PO=PMADR(o)
75 FOR ADDR=PO+V TO PO+V+4:

REM DRAW PLAYER

Listing 2.

100 GRAPHICS 4:PMGRAPHICS
2tPMCLR O:PMCLR 4

110 V=4:3:H=60tSET 7,1
120 COLOR :;::PLOT 70,10:DRAWTO 70,14
150 SETCOLOR O,4,12tPMCOLOR 0,13,8
160 PO=PMADR(o)
170 FOR ADDR=PO+V TO PO+V+4
1:::0 READ DATAtPOKE ADDR,DATA
190 NEXT ADDR
200 REH MOVEHENT LOOP
210 WHILE 1:VS=VSTICK(o):HS=HSTICK(O)
220 H=H+HS:V=V-VS:PMMOVE O,H;VS
no IF NOT STRIG(o):REM SHOOT IT
240 MISSILE O,V+2,1:JUNK=BUMP<O,O)

96

package will be Atari's Microsoft Bas ic. The ad
va ntages of Microsoft are well known, including the
hu ge a mount of published software available , but
Microsoft does not have the powerful structured com
mand s available in A+. It does also include a set of
playe r-missile g raphi cs commands. For me, the ease of
use of Player-Missile graphics, and the ability to eas il y
interface machine language programs with Bas ic
justify th e expense of O.S .S .'s products.

:35 READ DATA:POKE ADDR,DATA
:::7 NEXT ADDR
';'0 REM MOTION ROUTINE
100 WHILE 1 :REM FOREVER
110 VS=VSTICK«J):HS=HSTICKW)
120 H=H+HS:V=V-VS:PMMOVE O,H;VS
1:30 ENDWHILE
200 DATA 15:3t1:39,255,189,15:3

250 FOR MH=H TO 255:PMMOVE 4,MH
2t.0 IF BUMP(4,8):REM HIT IT~
270 FOR VOL=15 TO 0 STEP -0.5
2:::0 SOUND O,:32,O,VOL
2:::5 NEXT VOL
290 MH=254:PMMOVE 4,MH
295 JUNK=BUMP<O,O)
300 ENDIF
:310 NEXT MH:PMCLR 4
::;:20 ENDIF
::;:50 ENDWHILE
400 REM NEVER GET HERE
410 DATA 153 ,189,255,1:39,15:;:

Monkey Wrench

Prehensile Programming
Basic programmers, whether profes

sionals or struggling novices, stand to
benefit from any help they can get. Atari
Basic is a relatively friendly language in
which to work , thanks to extensive syn
tax checking and a versatile editor. It is
an excellent system for learning-yet it
has some drawbacks.

Monkey Wrench attempts to correct
some of these, and does a very good job
of it. It provides nine new Basic com
mands, as well as a machine language
monitor with 15 commands. It also bears
the real distinction of being the first (and
currently only) ROM board for the right
hand slot of the Atari 800.

SOFTWARE PROFILE

Name: Monkey Wrench

Type: Basic Utilities Package

System: Atari 800 8K

Format: ROM "Firmware"

Language: Machine

Summary: Provides several helpful
additions to Atari Basic

Price: $49.95

Manufacturer:
Eastern House Software
3239 Linda Dr.
Winston-Salem, NC 27106

Installation
I cannot in good conscience call

Monkey Wrench a ROM cartridge, as it
has no case to speak of. The only disad
vantage of this is the possibility of install
ing it backwards in the computer-a
potentially devastating disadvantage.
Atari cartridges will not install any way
but correctly . Further, the board must be
installed with the chips facing away from
the keyboard - perhaps counterintuitive
to the notions of many users. Needless to
say, care should be taken on this point.

My machine has been around for
nearly two years without ever having any
thing stuck in the right-hand slot. Hence,
when I first plugged in Monkey Wrench,
I got some rather glitchy results, ranging
from a blank yellow screen (you may be
familiar with that one , it's an operating
system bug), to some spectacular elec
tronic "rain" blowing across the screen.

The manual suggests cleaning the con
tacts with alcohol. I used a little contact
cleaning spray and plugged the board in
and out several times. When [looked at

John Anderson is an associate editor for
Creali, '£' COIII/Wlillg magazinc.

the board contacts, they were filthy. I
cleaned them with a pencil eraser,
plugged the board back in, and got the
title display. I then experimented for over
an hour without any problems. It is also
mentioned in the manual that the 850
interface must be off before booting
Basic with Monkey Wrench.

Operation
Monkey Wrench is "transparent" ; that

is to say, after the title display indicates
that it is functioning, it will not evidence
itself again until called . The sole excep
tion to this surfaces when the user tries to
move the cursor with "control arrow"
keys. The cursor movement arrows are
now accessed without the need to press
control , while the plus , minus, equal , and
asterisk keys are accessed by pressing
control.

This option takes a bit of getting used
to , but is a much more convenient key
board configuration for Basic editing.
Nine times out of ten, you'll want to use
those keys for cursor movement. If this
function is for some reason undesirable,
you can toggle it off with a simple ">E"
command, reverting to normal keyboard
operation.

It's Got Your Number
Ready for an editing session in Basic?

Well get set for it, because you won 't
have to worry much about numbering ,
renumbering, or deleting blocks of line
numbers any more. Automatic line num
bering is easy; simply enter ">a", fol
lowed by your choice of starting line
number and the increment value you
want. When you press return, those line
numbers will be displayed automatically.

This may seem to some to be a minor
convenience. AliI can say is once you get
used to it , you'll never want to be without
it.

The same goes for block deletion,
accessed by "> d" followed by the first
and last line numbers in the range to be
deleted. Certainly you could sit and
patiently delete each line of the block . In
a substantial modification , however, this
would become tedious very quickly , and
the real benefit of this feature would be
seen.

Most powerful and beneficial of the
numbering commands is renumber," > R"
followed by the starting line value and
the increment value you select. Monkey
Wrench will renumber your Basic pro
gram in whatever configuration you wish,
changing not only line numbers but all
references to line numbers occurring
within the program.

I experimented with renumbering
three of my own Basic programs (of some

97

John Anderson

complexity), and it works perfectly each
time. It should be noted however, that I
do not use "names" to call subroutines, a
friendly and helpfol capacity of Atari
Basic, i.e., "GOSUB MAINLOOP." As
Monkey Wrench is unable to distinguish
between "name" constants and any
others in a program, this will cause prob
lems in renumbering. This is true of any
renumbering routine , and may be reason
enough to steer away from "naming," at
least when confronted with a choice
between quick and painless renumbering
and named subroutines.

Because the renumber command uses
screen memory as a buffer, there is a
limit to the length of a program that can
be renumbered . By changing the graphics
mode , the total length can be brought to
about 1000 lines of code-probably more
than you'll need for any single program
file.

Some More Than Marginal Additions
By pressing "> M", screen margins can

be reconfigured without the need for
cryptic POKEs. Since the Atari screen
defaults to 38 characters, many program
mers (especially those with video moni
tors) will want to move the margins out to
a full 40 characters.

For those who wish to commune with
the Atari CPU, the command ">#" will
convert decimal values to hexadecimal,
while ">$" will convert hex values to
decimal. For beginning machine language
programmers (of which category I am a
lifetime member) these utilities are indis
pensable.

Typing "> T" followed by hex values
will perform a memory test. Don't be
shocked if you discover some bad bits of
RAM in your Atari. I did, in two
machines. The only disadvantage to this
function is that testing is very lengthy,
and looks just like a system lock-up unless
bad bits are turning up.

Monitor Does Not Support Disk
In addition to these commands, a small

machine language monitor is provided.
Memory location contents can be dis
played between any two addresses , and
be toggled to display the AT ASCII equiv
alents of these contents , as well as dis
assembled . The 6502 register contents
can be displayed, memory and registers
altered, and searches conducted within
code for ASCII strings or hex characters.

Memory can be saved and loaded , but
very unfortunately, only to cassette.
Thus, this monitor will be of only limited
utility to all but the most single minded
hackers. The monitor is handy for devel
oping short machine language subrou
tines within Basic programs, and while it

Monkey Wrench

will run without Basic, it will probably
not be of much use in this mode.

The utilities offered by Monkey
Wrench are easier to use than disk-based
utility programs. They never have to be
loaded, and are not co-resident with the
program you are working on, at least as
far as the screen editor is concerned. All

commands are available at the touch of a
button or two, and with the exception of
the RAM test, are uniformly quick to
execute. This "transparent" quality will
be most appreciated by the intermediate
programmer, at whom the package is
best aimed.

You will note that I hedged a bit about

String Arrays in Atari Basic

Atari Basic differs from most other
micro-Basic dia lects in its handling of
strings. Atari Basic allows strings of
any length (limited only by the hard
ware resource of memory). At the
same time an expression like A$(X,Y)
inA ta ri Basic is a su bstri ng reference,
standing for that piece of A$ begin
ning at the Xth character position of
A$ and running through the Yth
position. I n many other Basics
A$(X, Y) is a string array reference,
implying the existence of an array of
many strings and referring to the par
ticular string at row X, column Y in
the A$ array of many strings.

It is inevitab le that those used to
reading and programming other
Basic's will perceive this difference as
a shortcoming of Atari Basic. In fact
this is not necessarily a shortcoming
at all, but rather a reasonable design
decision in implementing a Basic. If
the use of substring operations will be
more common than the use of string
arrays and this is a reasonable assump
tion for micro-computer applications,
then one can eliminate slow and
clumsy specia l function calls such as
MID$(), LEFT$(), RIGHT$()
in favor of compact, direct substring
references like A$(). Properly done,
this results in a Basic which is faster
in executing more common opera
tions. For the occasional application
where a string array is needed, it is
possible to build your own string
arrays in Atari Basic by setting up a
single "large" string, and then defin
ing a calculation to convert a row-and ,
column reference into the correct
substring reference for the "piece" of
the "large" string corresponding to the
row-and-column reference which was
made. If you stop and think about it,

David E. Carew, Interactive Management
Systems Corp ., 3700 Galley Rd., Colorado
Springs, CO 80909.

there are no "rows and columns" in
a computer's memory. Those Basic's
which provide arrays do so by simu
lating rows and columns out of a
straight list of memory addresses, or
positions in memory. We can easily
duplicate this behavior by simulating
"rows and columns" out of a straight
list of character positions in a single,
large string. This article is to show
exactly how this can be done.

Suppose we wish to have a string
array 4 rows by 3 columns, with each
string in the array having a maximum
length of 20 characters. We start by
setting these quantities up in variables:

100 ROWMX = 4: COLMX = 3:
LNGMX = 20

Given these quantities, we know how
long to make our "array" string:

150 TTSIZ = ROWMX * COLMX
* LNGMX

200 DIM ARR$(TTSIZ)

We could perform the reference
conversion calculations each time a
reference is made in the program, but
since each repeat of a particular refer
ence would imply a repeat of exactly
the same calculation, it is more effi
cient as well as more convenient to
perform the conversion calculations
once and store the results in such a
way tha t they are easily accessed as
needed . One table (numeric array) for
the beginning substring positons and
one for ending substring positions
allows for convenient addressing; and
this is illustrated below:

206 REM BG [S BEGIN SUBSTR
TABLE, EN [S END SUBSTR

210 D[M BG(ROWMX,COLMX)

220 DIM EN(ROWMX , COLMX)
230 REM INITIALIZE "STR$

ARRA Y" CONTROL TABLES
240 FOR RW=I TO RDWMX :

FOR CL=I TO COLMX

98

what Monkey Wrench does in and to
RAM. The fact is that it does eat up some
memory, including part of page six,
which could cause some rare problems.
Remember also that each cartridge eats
up 8K when plugged in: Basic and
Monkey Wrench will bring free memory
on a 48K machine down to about 30K. D

David E. Carew

250 BG(RW,CL)=COLMX *
LNGMX * (R W-I)+(LNGMX*
(CL-I)+I)

260 EN(RW,CL)= BG(RW,CL)-I
+ LNGMX

270 NEXT CL: NEXT RW

The only step remaining would be to
initialize ARR$ to all blanks (or some
other appropriate filler).

Having made these extra arrange
ments to start with, then every occur
rance of another Basic's ARR$(X,Y)
expression might be replaced with an
Atari Basic equivalent:

ARA$(BG(X, Y),EN(X,Y»
This solves the address conversion

part of the problem. A detail or two
may remain. In most string-array
Basic dialects, ARR$(3,4) may have
a length of zero, or any other length
up to some maximum. In Atari
Basic, using string-array simulation,
ARR$(3,4),EN(3,4» has a length of
LNGMX exactly, no more and no less.
The consequences of this detail depend
on the application . For instance, a
string-array Basic may test for an
empty array cell using a LEN func
tion, like this:

6000 If LEN(A$(3,4»= 0 THEN, . .
The equivalent array-simulation

code might involve a string of length
LNGMX initialized to all blanks.
Then an empty cell is not LEN equal
zero, but rather equal to the "always
empty" string, e.g. :

6000 IF A$(BG(E,Y),EN(X ,Y» =
NUL$ THEN, ..

Also , placing a string shorter than
LNGMX into a simulated array may
require taking its length into account.

7000 ARR$(GB(X,Y) ,BG(X,Y)
- I + LEN(NEW$»=NEW$

The above code places a short (i.e. ,
LEN(NEW$) =LNGMX) NEW$ into
the X,Y cell of ARR$, beginning at th e

first character position of the cell and
taking as many positions in the cell as
req uired by the length of NEW$. This
statement is obvious ly longer, less
intuitively clear and certainly some
what slower executing than the non
Atari Basic equivalent:

7000 ARR$(X,Y) = NEW$

However, the simulation still pro
vides a single statement, directly sub-

stitutable for the non-Atari equiva
lent, if for example you are covering
a listing from some other Basic. I have
found that other details I have encoun
tered are similarly susceptib le to fairly
happy solutions.

The next time you have an applica
tion which cries out for stri ng arrays
(or a possible conversion of a listing
which already uses string arrays) you
might consider the approach sug-

gested here . Once you have mastered
string array simulations for the rela
tively rare situations where you
actually need them, then Atari Basic's
compensating payoff of quicker,
cleaner substring manipulation seems
all the sweeter.

Talk is Getting Cheaper John Anderson

Giving your computer the power of
speech is no mere frill or gimmick. The
potential of such capability, for the han
dicapped as well as microcomputer users
at large , is dramatic.

For as long as microcomputers have
been around, the cost of such potential
has remained a prohibitive factor. But
that is changing fast.

Following is a look at three speech
synthesis packages for the Atari com
puter. These packages represent the
range of possible configurations: the first
is an independently powered piece of
hardware , which can hook up to any
microcomputer using a serial or parallel
port; the second consists of an Atari
specific external module , driven by soft
ware; the third works entirely in software ,
using the synthesizer chip already in the
Atari .

The Echo GP
I have had an opportunity to experi

ment with the Echo Speech Synthesizer,
from the Street Electronics Corporation ,
for quite a while now. It is a sophisticated
unit, while at the same time fun to use.

It is based on the Texas Instruments
TMS 5200 speech processor chip . This is
in contrast with its nearest competitor,
the Votrax Type 'n Talk , which uses the
Votrax chip.

The unit makes use of its own 6502
microprocessor, and interfaces as if it
were a printer. It is available in RS-232
serial or Centronics parallel versions. This
means tha t the 850 in terface is needed to
drive the Echo from an Atari computer.
We received the serial version, and con
trolled it through the 850 using Atari
Basic .

John Anderson is the associate editor of
Creative Computing magazine.

Upon power-up , the Echo unit responds
with the phrase "Echo ready ," to let you
know all is well. One of the first points
the user will notice is that the Echo is
capable of intoning a sentence. Rather
than speaking in monotone, the pitch of
the voice is dynamic. This makes for a
more intelligible and less grating speech
quality.

You can use the internal speaker of the
unit or route the sound to an external
speaker. I found it convenient (as did

Do Re Mi
Octave I 12 15 18
Octave 2 31 34 37
Octave 3 53 56 58

those around me) to use an earphone
when involved in speech editing sessions.

Textalker
Textalker is the ROM based program

Echo uses to convert English into speech.
Echo can translate English text into
phonemes directly, with an impressively
low error rate . It can be disorienting , but
even when Echo mispronounces a word
or syllable, the listener can usually make
sense of the sentence from its context.

Fa So La Ti Do
20 23 26 29 31

39 44 48 51 53
61 63

Figure 1. A rough pitch table to give the synthesizer a singing voice. Flats and
sharps can also be supported, but I have not taken the time to locate them.

1. 0 HEM ECHD !3INGS ITS HEAFn (JUT
20 HEM ASSUMES !3EFUAL POFn IS (JPEN AND CClNF IGUF~ED
30 DIM 1$(100)
40 F~ E A D 1$
50 IF I$::ISTClP" THEN STOP 1090 DATA THE
bO PFUNT :1:1,1$, 1100 [){~H\ "l29F
90 GOTD '10 :l :I.1 0 [)ATI~I F(AIN
:lO 0 0 DATA ",12F 1 L?O DATA ",31F
1010 DATA SDME 1130 D!nA B()~l

102.0 DAH'I ,:31 F :I. :l4 0 DMt'l ,12F
1030 DAHl WHEHE 11::'i 0 DAHl S~(IE!:;

10'10 DATA ,2S)F 1160 [){,HI 'l2bF
1 (I:',:i 0 [){,HI DAV 1170 DATA AHE
:LObO [){~TI~ ,23F :L180 DATA , 2J F
1070 DATA EH l:L90 DATI~ BLUE
lOBO DATPI ,2bF 1200 DAHl STOP

Figure 2. With a singing synthesizer your micro won't be in Kansas anymore. The
character" 7 "is what control-e looks like on the screen.

99

Talk is Getting Cheaper

This is not to say that Echo has the
diction of Henry Higgins. In fact, it takes
a bit of time to become accustomed to
the unique "accent" of the unit . As is the
case with some foreign speakers, accus
tomed listeners will typically understand
words that first-time listeners will miss .
Echo has trouble with the "g" sound in
words like "go," and "I" sounds give it
problems as well .

In this respect, the monotone of the
Type 'n Talk wins out. (A thorough
review of the Votrax unit appears in the
September 1981 issue of Creative
Computing.) Though it also has its share
of vocal peculiarities, it does, on the
whole , enunciate more clearly than the
Echo . And yet, for extended periods, I
would much rather listen to the Echo.
The monotone of the Votrax unit gets me
down after a while-too "computerish."
It was an unfortunate design decision.
The Votrax chip itself, as we shall soon
see, does allow for software pitch control
which results in much more natural
sounding speech.

The features of Echo are accessed
through control characters. For instance,
pressing CONTROL-E will enable the
Textalker command set. Following this
character with a number from 1 to 63 will
determine pitch, which can be toggled
from f (for flat, meaning unintoned), to p
(for pitched , meaning intoned) . In what I
think is a first for microcomputers, I
found that the Echo could be program
med to "sing" through careful use of these
commands. In fact, the unit provides for
about three octaves. Not a bad range! A
pitch table and sample program appear
below.
be controlled by text punctuation. A
comma will create a pause, a period will
cause a drop in pitch at the end of a
sentence, and a question mark will result
in a rise in pitch .

Textalker can also be commanded to
pronounce each punctuation mark it
encounters. Similarly, the user may
choose to have all upper case letters pro
nounced as letters- (use this mode to get
IBM to sound right), or to have all words
spelled out letter by letter.

The rate of speech may also be com
pressed resulting in twice the text in the
same amount of time. Remarkably, this
function sometimes increases rather than
decreases the intelligibility of certain
sentences.

According to the documention, the
Textalker component of the Echo Speech
Synthesizer "contains close to 400 rules
which allow it to correctly pronounce
over 96% of the thousand most commonly
used words in English."

I was pleasantly surprised at how well
Echo did with unaltered text. Having
worked with phonemically-based sythe
sizers in college, I realized this was quite
a feat. Of course there are some words
Echo has trouble with . Fortunately, an
appendix, which outlines the kinds of fixes
to apply to these words , is provided . They
are as simple as the addition of a space,
such as "cre ate" for the word "create ,"
or the spelling of the word "question" as
"kwestchun."

Phoneme Generator
In addition to the Textalker module,

speech can be programmed at the pho
nemic level, using the Speakeasy
Phoneme Generator, also resident in
firmware. This mode is selectable by the
character CONTROL-V, and provides for
much more detailed control. Stress,
pause, pitch, volume, and rate controls
can be embedded directly into the text
strings.

This approach requires the use of a
phoneme code , detailed in the documen
tation . It bears little resemblance to any
phonetic alphabet I have come into con
tact with, but the 48 sounds it provides
are more than enough to do the job.

Male DB-9
(to serial
port #1)

Pin 1
Pin 2
Pin 3
Pin 4
Pin 5
Pin 6
Pin 7
Pin 8
Pin 9

Male DB-25
(to Echo GP)

No connection
No connection
Connects to pin 3
Connects to pin 2
Connects to pin 7
Connects to pin 20
Connects to pin 5
Connects to pin 4
No connection

Figure J. Wiring a cable for connection
to the Atari 850.

10 OPEN ,"'1,:l2,O,"f~:I.:"

ZO XIO ::I6,11,1.0.6," I:n:"
~-lO Dlt1 H<:LOO)

Unfortunately , the effort it takes to
achieve satisfactory results using this
approach is somewhat unreasonable ,
especially in contrast to the serviceable
job Textalker does. However budding
linguists should take note. The phonemic
approach offers great experimentation
potential. I did manage to get the Echo
speaking a little German.

The Echo Speech Synthesizer lists for
$300, which is admittedly a bit stiff. Still ,
it is comparable to the price of the Type
'n Talk. And if you want your micro to
sing Thomas Dolby tunes, the Echo is the
only choice.

Hooking Up
In March of this year Creative ran a

review of the Echo Speech Synthesizer
board for the Apple II. At that time ,
Textalker and Speakeasy were in the
development stage . The Speech Synthe
sizer offers much greater flexibility and
power, as well as the capability for con
nection to any personal computer.

However this does not automatically
imply easy connection . Even with our
experienced people here at the magazine ,
it took us a while to make the Echo
conversant with the Atari .

The documentation that arrived with
our Echo was preliminary. All the infor
mation we needed was there; I do hope
that the final documentation will be an
improvement, though.

The real fault lies with the 850 interface
module documentation : it provides begin
ners with quite a run for their money.
Here is a way to succeed .

The first thing to do is wire an interface
cable, by connecting a DB-9 male to DB-
25 male connector. The pinouts given in
Figure 3 work with serial port number 1
on the 850.

Next you need to configure the Echo
and port number one so that communi
cation may be established. I used a data
transfer rate of 1200 baud . This entails
setting the DIP switches on the bottom of

4 0 1 $ "" II 1 1 :;i F' HIT 1-1 E f~ E , T HIS 1 BEe Hue F'." F~ E (~ [) y
WHEN YOU MU~." ()\)Ef(."

1.>0 F'fUNT l1, 1$
7 (I INPUT J~~

BO PfUNT 11 ,1$
9(1 COrD 70

Figure 4. It is this simple to configure serial port number one and input text for
synthesis. Again the "7 " character sigmfies control-e. Don't forget to boot the
device handler prior to running the program

100

the Echo so that positions 1 and 2 are on,
while position 3 remains off. Position 4
also remains in the off position to enable
"handshaking," as we say in the trade .

The serial port is configured through
software. Figure 4 shows an example of
this configura tion, as well as a short
program a llowing for straightforward
experimentation with the unit.

Make sure the 850 device handler is
booted whenever using the serial port.
This occurs as an autorun.sys file on the
Atari DOS disk . Make sure it is resident
on any program disk for use with the unit.
Power up the 850, then boot a disk with
the handler file . You will then be set to
go.

For more information concerning the
Echo, contact Street Electronics, 1140
Mark Ave., Carpinteria, CA 93013.

The Alien Group Voice Box
The Echo has everything it needs to

effec t speech synthesis onboard. Like a
printer, it awaits a stream of characters ;

it would just as soon pronounce text files
from bulletin board services, Compu
serve , or the Source. The Atari, thus, is
free to do whatever processing you have
in mind , while the Echo works
independently.

This is a fine capability, but also an
added expense . The Voice Box from
Alien Group takes some of the internal ,
ROM based capabilities of the Echo , and
efficiently uses Atari RAM for thei r
storage. The Voice Box uses a Votrax
SC-Ol chip , and connects directly to the
Atari input/output jacks . It will neces
sarily be the final connection in the I/O
daisy chain, as it offers no jack of its own.

The exte rnal module is no bigger than
a transistor radio, and draws power direct
ly from the Atari . It lists for $170, in
cluding driver software, which is available
in cassette or disk versions.

The Voice Box is manipulated from
Atari Basic , and does not offer an RS-232
handler program. Using patches from
Basic, however, it can be controlled from

SAM Speaks Apple II
The Apple II has no special advan

tage ovt(r the Atari when it comes to
speech ~ynthesis . The Echo, Votrax,
and many other voice systems work
equally well for both computers.

The history of software-only synthe
sizers for the Apple dates back to 1979
when Softape published a program
called Apple Talker. That program has
been discontinued, but Muse publishes
The Voice, an inexpensive program
that serves the same purpose. Sirius
Software, the renowned game pub
lisher, produces Audex, a general pur
pose audio program that can be used
to approximate speech. For the most
part, these programs deliver results
that are interesting, but only sporadi
cally intelligible.

Hardware voice products for the
Apple also abound. Voice input can
be recognized by peripherals from
Scott Instruments, among others.
Mountain Computer carries a remark
able input-ouput device that turns an
Apple into a digital audio recorder.

At $130 for the Apple version, SAM
is the first product to combine unlim
ited vocabulary, impeccable intelligi
bility, and reasonable price.

The SAM package includes a little
bit of hardware and a little bit of soft
ware. The hardware is a board con
taining a digital-to-analog converter, a

tiny amplifier, and an even tinier vol
ume control. The software includes all
the programs described in the main
part of this article.

SAM sends output to an 8-ohm
speaker. You can use the speaker
inside your Apple or, for better results,
attach a slightly la rger one. Installing
SAM is no more complicated than
hooking an Apple to a TV set.

SAM uses the simplest possible
interface to a sound system. In
exchange for the simplicity of the
hardware , the developers had to write
large and complex programs. The pro
gram that produces sijeech based on
phonetic codes occupies 9K of RAM.
Another program that translates
English text into phonetic codes
requires an additional 6K. These pro
grams live in an area usually reserved
for Applesoft string variables . The
English translator also overlaps the
memory associated with the second
graphics image (Hi-Res page 2) of the
Apple.

Because of these requirements,
SAM can not cooperate with most
other programs. You can not add
speech capability to your word pro
cessor or terminal program, for
example . Pascal , Logo, Graforth, and
most other languages can not use
SAM.-MC

101

a machine language program.
Your machine must have at least 16K

to run the Voice Box. If you have 32K or
more, you can run two additional pro
grams included with the package : the
Ra ndom Sentence Generator and the
Talking Face. More about these later.

When the driver program is run, the
box responds with the phrase "Please
teach me to speak," or if a dictionary is
loaded, the words "Yes, Mahster ," to let
you know eve rything is working .

While calling on its own phonetic input
code , as does the Echo, the system also
uses a unique approach to convert char
acter strings into speech sounds. English
text and phonetic code may be freely
intermixed, rather than requiring separate
modes , as is without exception the case
with every other text-to-speech system I
have seen.

Dictionaries
The key to working with the Voice Box

is the creation of your own dictionaries .
These are the "word equations" specified
to translate words into phonemes. For
example, by typing "spek=speak," you
will e nsure that each time the word
"speak" is encountered, it will be pro
nounced correctly. Dictionaries are saved
and re-called , as independent files , to
cassette or disk. In addition to those you
create, three pre-written dictionaries are
supplied with the driver software .

Dictionaries eat up computer memory
quite quickly-each word equation takes
up ten bytes. In order to store phonemes
more effeciently, word fragments can be
stored. You ca"n define fragments to be
recognized only at the beginning or the
end of a word , or at every occurrence.

Because dictionary size is limited , the
dictionary approach itself is necessarily
limited . Even with 48K , no dictionary is
going to produce impressively accurate
text-to-speech capability. In this respect,
the Echo has a much more sophisticated
algorithm. This is the main trade-off
between the two systems.

In fact, if you have more than 32K, you
must change the dimensions of a string
statement in the Voice Box driver pro
gram in order to store larger dictionaries.
The documentation clearly states how to
do this .

Other Features
Similar to the Type 'n Talk , the Voice

Box sports a potentiometer knob on the
front of the case, that can be used to vary
the speed and pitch of the speech. The
Voice Box unit allows for pitch control
through software , too. Control is
restricted to four registers, utilizing the

Talk is Getting Cheaper

Figure 5.

PHONETIC ALPHABET
FOR S.A.M.

The exa mple words have the sound of the pho neme, not necessarily the same letters.

VOWELS

IY feet
IH pin
EH beg
AE Sam
AA pot
AH budget
AO talk
OH cone
UH book
UX loot
ER bird
AX gallon
IX digit

DIPHTHONGS

EY made
AY high
OY boy
AW how
OW slow
UW crew

The fo llowing symbols are used in tern ally
by some of S.A.M.'s rules. but they are also
available to the user.

YX
WX
RX
LX
IX

DX

d iphthong end ing
diphthong ending
R after a vowe l
L after a vowel
H before a non-front
vowel or consonant
"flap" as in pity

VOICED CONSONANTS

R r ed
L allow
W aw ay
WH whale
Y y ou
M Sam
N man
NX song
B bad
D d og
G again
J judge
Z zoo
Z H pleas ure
V seven
DH then

UNVOICED CONSONANTS

S
SH
F
TH
P
T
K
CH
IH

Sam
fish
fi sh
thin
p oke
t alk
c ak e
speech
ah ead

SPECIAL PI-tONEMES

UL settle (= AXL)
UM as tronomy (= AX M)
UN fun ction (= AX N)
Q kitt-en (glo ttal stop)

I," ote The symbol for the "H" sound IS /H . A glottal stop is a forced stoppage of sound .

Figure 6.

° GRAPHICS 0
10 REM --DEMO--
20 DIM SAM$(255):SAM=:::192
25 X=(l
30 SETCOLOR 2,O,OtSETCOLOR 1,O,O:SETCOLOR 4,O,O!SETCOLOR 3,0,0
40 SPEED=::::20:::tPITCH=:::209
45 X=X+5!IF X::Q·5 THEN x=o
50 POKE SPEED,XtPOKE PITCH,100
60 SAM$="ULEHKTRAA4NIXK / HULUW·QSIXNEY5SHUNS ."
70 A=USRISAM)
:::0 GOTO 45

102

slash and the backslash characters to
move between them . This negates the
musical capabilities of the unit, but is a
step ahead of the monotone of the Type
'n Talk.

Because so much of the Voice Box is
RAM resident, you must decide how
much of the memory of the Atari to allot
to dictionary space, in addition to your
own Basic programs, and the Voice Box
driver. The disk version includes a pared
down driver program for incorporation
into other programs. The documentation
also gives hints for memory conservation.

In the 32K version , several o the r fea
tures appear. The first is the Random
Sentence Generator. The Voice Box will
compose random but grammatically cor
rect sentences from its stored word lists.
These can be modified with word lists of
your own creation. I obtained some ra ther
strange results in my attempts a t this.
While many were semantically bizarre, 1
must_ admit the sentences were gram
matically unassailable . Be prepa red for a
few shocks when you try this.

There is also a mode called The Talk
ing Face. This displays an animated face,
with impressive lip synch simulated as
words are articulated by the Box. I am
sure this feature would be a big hit with
the kids .

The documentation accompanying the
system is a bit uneven in places , but
manages to cover all the features of the
Voice Box in a scant nine pages. The
phoneme list is quite complete. The
documentation also goes as far as to
suggest to assembly language program
mers a means of updating data to the box
while running machine language ani
mation routines.

While the Voice Box is not really in the
same league as the Echo, it offers many
of the same features for much less money .
For more information contact the Alien
Group , 27 West 23rd St., New York , NY
10010.

The Software Automatic Mouth
In the September 1982 issue of

Creative, I mentioned that the Atari was
capable of speech synthesis using only its
internal hardware. The game Tumblebugs
taught the Atari its first words: "We
gotcha!" This came as a happy revelation
to many.

Well with Software Automatic Mouth ,
SAM for short , Mark Barton has brought
this possibility to fruition. He has created
a disk -based, unlimi ted speech syn thesis
program , requiring no external hardware.
And the speech quality of SAM competes
favorably with the best systems available
for microcomputers.

SAM uses the Atari sound chip, Pokey,
to generate speech. Even with my unbrid
led faith in the capabilities of the Atari , I
was quite surprised at how well it does
the job. Pokey is at least as intelligible as
its two competitors, the TI and Votrax
chips.

SAM is the only package around that
dares to include lengthy prepared speech
demonstration programs to show off its
articulative powers. My colleagues agreed
that no break-in period was necessary in
order to understand SAM.

The documentation supplied is equally
impressive. It not only makes operation
of the program very simple, but provides
background information concerning lin
guistics and speech synthesis. It helps to
make the program into an excellent tu
torial on the subject.

I did encounter one snag , if only in my
eagerness to get rolling with the package .
You must copy all the Basic programs
from the master disk to a new diskette.
The autoboot assembly language program
that constitutes SAM runs from the mas
ter , but support programs must be loaded
from the new disk. The reason is that the
support programs require a mem .sav file.
The write-protected master disk will , of
course, re turn an error if a mem .sa v
attempts to write to it. The documen
tation clearly states that you must use an
un-write-protected new disk with a
mem.sav file on it. In my excitement to
get going, I did not heed these instruc
tions, and ended up wasting some time.

Support programs included with the
package are: Reciter, which is an English
text-to-speech translation program; Sayit ,
the short Basic program which makes
experimentation simple; Demo and
speeches, two files that impressively

Axlon RAMDisk

demonstrate the powers of SAM; and
Guessnum , a spoken version of a number
guessing game.

An RS-232 handler program is also
provided, allowing SAM to act as Echo
does to read telecommunications text.

It is extremely simple to work with
SAM from Basic . All that is needed is to
define SAMS as it appears in Basic, and
then invoke either SAM or Reciter
through a USR call. You can also effect
machine language patches from Basic.

Speech Quality
The really remarkable thing about

SAM is its (his?) intonation-SAM can
be extremely expressive. Control of stress
place men t is easy. The phonetic code is a
bit strange , but very nicely laid out in the
documentation (see Figure 5). A ref
erence card is also provided .

Similar to the Echo, punctua tion is
"understood," A hyphen is read as a short
pause , and is handy for delineating clause
boundaries. A comma inserts a pause
equivalent to two hyphens. A question
mark also inserts a pause , as well as
making the pitch rise at the end of a
sentence. Likewise a period makes the
pitch fall .

SAM is capable of speaking only 2.5
seconds without a break. If a string
exceeds that length , a short break will
automatically be inserted. If you don 't
like the placement of automatic breaks ,
you can stipulate their positions with
hyphens. The breaks are so short as to be
hardly noticeable, and cause few
problems.

SAM can be controlled more creatively
and flexibly than Echo or Voice Box. The
pitch and speed of SAM speech can be
altered through with POKE statements. I

128K Memory System for Atari
A while ago a group of employees left

Atari and formed Axlon Co . to manu
facture add-on products for the Atari com
puter. They produce a 32K RAMCram
card, and a 256K RAM system, complete
with expansion interface.

So when ads began to appear for their
RAMDisk, I was intrigued. I couldn't
resist calling them for more details.

They turned out to be most friendly and
mailed me a loaner RAMDisk for evalu
ation. This review is based on my use of the
product for a month.

The RAMDisk arrives in a 9" x 11" xl"

blue box which contains a manual, a
diskette, and a memory cartridge. The
manual is housed in an attractive notebook
with the diskette in a side pocket.

The memory board looks like an Atari
16K cartridge except that it has no top or
sides. (It does have front and back covers,
though.) This is probably to help the
RAMDisk get rid of heat.

The manual is well written, and very,
very clear. I decided to trust it immedi
ately, and began following the setup direc
tions.

103

got some wild results playing with these.
A sample program, Figure 6, shows how
speed effects can be achieved.

The timbre of speech can be varied to
make SAM sound quite human-or like a
droid from Star Wars.

An 18-page English-to-phonetic code
dictionary appears in the documentation
to help in speech programming. In
addition, SAM flags phoneme input
errors. When a bad phoneme occurs in
the immediate execution mode , an error
is flagged in the same way as syntax errors
in Basic. By PEEKing decimal address
8211 , you can trace these problems when
they occur in the deferred mode.

At the incredible price of 560, there
must be a catch, right? Well there is , sort
of. Because SAM uses the Atari to do all
its work, DMA is shut down during artic
ulation . This means the screen goes blank
~uring speech-no animation, no text,
nothing. The documentation tells you
how to re-enable DMA during speech,
but warns that this distorts SAM's speech
rather badly. However, this blanking takes
place only during articulation. As soon as
a string is finished, DMA returns and all
is normal.

I cannot overstate how impressed I am
with the Software Automatic Mouth. It is
a remarkable feat of software savvy, and
probably one of the best buys available
for the Atari computer. Its higher-priced
competitors have their advantages, but
would do well to strive for the same strong
documentation this package has. If you
wish to give your Atari the power of
speech, have a disk drive, and are on a
limited budget, look at this program. For
more information, contact Don't Ask
Software , 2265 Westwood Blvd. Suite B-
150, Los Angeles, CA 90064. D

Getting Started
First, one boots up the system with a

normal Atari 2.0S DOS disk . The Axlon
disk is fast formatted and uses Atari di
rectory formats and such, but does not
contain DOS.SYS or DUP.SYS, so you
can't boot up with it. Next, I ran a Basic
program called CREATE to create a boot
disk (a disk used whenever the system is
powered up or re-booted). Following the
instructions, I put in the Axlon disk, then a

Axlon RAM Disk

blank disk, and created a boot disk. No
problem-very easy to do.

Next, I turned the computer off, re
moved my middle 16K board, and put in
the RAMDisk. Two memory boards are
required, for some reason, on either side of
the RAMDisk. Perhaps they keep it from
getting the electrical equivalent of lonely .

Then, I booted up using the new boot
disk . A most foreboding message flashed
onscreen for about five seconds, just long
enough for a speed reader to comprehend
it. It pointed out that the Axlon MMS
(Memory Management System) was an
end-user initiated change to Atari DOS
and that Axlon doesn't condone making
copies and distributing them.

Here is my first complaint with the
MMS, Axlon's DOS 2.0S: you have to sit
through this silly legal message every time
you boot up with the MMS disk. The first
time, it's fun, and even witty. The second
time, half witty, and after that, not funny
at all. I was ready to disassemble the boot
file and "short out" the message after a
month of seeing it.

Once you're through the message, you
get to Basic or whatever you're running.
The RAM Disk hardware operates just like
a normal 16K cartridge unless you specifi
cally tell it not to. There's just about the
same amount of free memory as before. So
I typed DOS.

Next surprise. No click, whirr of the
disk. The DOS menu popped up right
away, just like the old DOS 1, but appar
ently without the memory sacrifice, ac
cording to FRE(O). And my, how the DOS
menu has changed.

The Menu
First, the top line is not Atari 2.0S

anymore. It is the Axlon RAMDisk MMS
System V 1.0. Most of the options look the
same, but two are disabled: writing DOS
files and creating MEM. SA V.

Second complaint. I don't care about
MEM.SAV; I never use it. But I want to be
able to write the DOS files after formatting
a disk. The DOS and DUP files are on
nearly every disk I have, making for few
bootup problems . But Axlon doesn't want
complaints about folks copying DOS, so
they disabled it. Aside from these two
changes the menu is a duplicate of the
Atari 2.0S menu.

How do you use the RAMDisk? The
RAMDisk contains 128K bytes of
memory. A diskette contains around 90K.
So the Axlon MMS makes "disk #4" the
RAMDisk memory area. You literally use
the 90K of the memory board as disk
number 4.

You can copy to it, open files on it, close
them, NOTE/ POINT them, and so forth.

You can copy an entire disk to RAM. You
can run directories, lock files-everything
you can do to a normal disk-to the
RAMDisk (disk 4). In short, the RAMDisk
replaces disk 4.

Here's an example. Let's say I have one
disk drive and I need to duplicate a disk. I
load the Axlon MMS, go to DOS, and J
(duplicate disk) from 1 to 4. This copies the
whole diskette into RAM. Next, I put in
my destination disk, and copy from 4 to 1.
All done. (No more swapping diskettes
back and forth.) This is very nice and very
easy. It is also fast. I could load 220-sector
binary files in less than a second from the
RAMDisk. This compares to more than 30
seconds for a disk drive.

Software houses should take note here.
The RAMDisk is a very good thing for
you. Let's say you need to make 100 copies
of a given diskette . Without the
RAMDisk, you can either use two drives
one to read the master and one to write the
destination disk (wearing the master and
its drive out)-or use one drive and swap
disks like mad. With the RAMDisk, you
copy the master into RAM, then proceed
to make your copies from RAM. This
product would well pay for itself in saved
time and disk drive wear-heavy use is
hard on Atari drives . (By the way, I found
that DOS and DUP did copy if I used the
DUP DISK option; you just can't create
them originally) .

From Basic Assembler, and so forth, the
RAMDisk is just disk 4. SAVE or LOAD;
the operations run very fast. Anyone with
a program that is running slowly due to
disk I/ O should look into the RAMDisk.
A speedup factor of 20 would be easily
achieved, and that's conservative. In ad
dition, you needn't put up with disk errors
and the like.

How It Works
By now you're probably curious how

this thing works, so here 's what I found (in
the manual, all clearly laid out). In the
Atari, the address space from 4000 to
7FFF is normally the second 16K board in
stalled in the machine. The RAMDisk
allows 4000-7FFF to be any of eight indi
vidual 16K boards, one at a time. Due to
many arcane hardware considerations you
can't access all 128K at once, only a 16K
chunk of it. But which 16K is instantly se
lectable. This is called "bank selection."

For example, Axlon apparently puts
their MMS DOS Menu on one of the 16K
banks . Then, to switch to DOS, they just
select that particular 16K, and run (that's
why DOS comes up so fast). But also note
that DOS does not take up normal 16K
programming space this way; the contents
of the 16K you were working in before you

104

typed DOS are on another of the 16K
boards, ready for use as soon as it is rese
lected. (The MMS handles the swapping
back and forth to use the 90K disk area).

If you're confused, just imagine you
have a pile of eight 16K memory boards
and you could plug or unplug them at will
into the middle slot. This is how the Axlon
board works.

Physically it uses Motorola 64K x 1
chips. The raw cost of the chips on the
board I calculated to be around $250, so
the price of the board is quite reasonable.
The construction of the board is very high
quality. '

Uses
Extremely high speed animation is pos

sible using bank selection. You don't have
to use the Axlon board as a RAMDisk.
You can select which 16K you want di
rectly . So several images (display lists and
memories) can be stored, and switching be
tween them determines which image is
being displayed. Some impressive effects
could be obtained (only) this way. Alas, I
didn't have time to do much of this .

One thing I did use the system for was
holding temporary files during develop
mental work. By having the RAM Disk
hold various versions of a Basic program I
was developing (with SAVE), I greatly
speeded up the development time.
However, there is a problem with this:
turning the Atari off causes the contents of
the board to be lost. And I have locked up
the Atari past RESET working many,
many times.

The diskette that comes with the
RAMDisk also has several options to
check the board out and fiddle with
MEM.SA V. It even has a complete copy of
the manual (over 300 sectors) as files.

Disadvantages
And now I come to the parts I don't like

about the RAMDisk .
I have already mentioned a few points,

but my main problem with this unit is that
it is a limited function device. It is like a
plotter; some people can use it, others
can't. Software houses and people with
heavily disk-bound programs could make
great use of this product. People who need
incredible animation memory also could.
But I can't for the life of me think of an
other use for it. It was a nice convenience
when copying disks, but it just wasn't that
great a help . It would take a volume oper
ation for it to make a difference . For your
average Atari user, another disk unit,
which costs the same (or even a bit less) is
probably a better buy. You can just do
more with it.

Technical Aides
The bank selection is done in the COOO

area, currently unused by Atari. My Atari
sources tell me this will change in a year or
so, as the operating system acquires more
capabilities. The Axlon people will have to
modify their board at that time.

Sector copying programs do not work
with this board .

Microsoft Basic has real problems with
this board. I tried the whole month to get
them to work together and couldn't. As
the new Basic is just plain wonderful and
everyone will be buying it, the Axlon

Joy tricks

Ever stare at the controller jacks in the
front of your Atari computer and imagine
all sorts of exotic hardware to connect up
to it? I have , and while my work on a fully
articulated robot arm is progressing quite
slowly, there are a few modification
projects I've undertaken that require little
time, cost very few dollars , and provide
nice results.

End Discrimination Against Lefties
As a left-handed gamesman, I've long

suspected that my scores have been held
down by the fact that joysticks are
designed for righties. It's a very simple
matter to turn a standard issue Atari
joystick (fire button top left) into a lefty
stick (fire button top right).

When you disassemble the joystick, be
careful not to lose any of the screws or
the little spring that sits in the trigger
button . Hold the circuit board so it
resembles the configuration in Figure 1.
Note: newer Atari joysticks have all the
connectors on one side of the PC board

John Anderson is an assochlte editor for
Crellril '£" CUllllwring magazine.

people had better get some new software
out fast.

The board throws only minimal RF in
terference, and if you run your Atari
without the top cover on for heat dissi
pation, you will notice minor wavy lines on
your TV.

Axlon plans a RAMDisk for Apple II
and Apple II Plus computers in the near
future.

Conclusion
This is a solidly built, well documented

product. It has several very useful applica-

while older ones have three connectors
on each side.

The leads must be removed from the
board (grasp the collars; do not pull on
the wires themselves) and reattached as
shown. That's all there is to it-except to
prominently label your new lefty joystick
so that it does not drive some poor righty
mad. The stick is now "referenced" with
the trigger to the upper right.

A Pushbutton Peripheral For Under 88
I've been thinking about a home brew

controller jack peripheral for quite some
time now, but the genesis o f this idea
really belongs to Rick Rowland. Though
the controller is at its best when playing a
limited number of games, you can do
quite a bit with it. If you have a joystick
that has seen better days and is ready for
retirement, you can reincarnate it as a
pushbutton peripheral.

The idea is simple: create a panel of
push buttons to control all joystick func
tions. The Asteroids you'll find in arcades,
as well as Space Invaders , Galaxian, and
other games, use button rather than
joystick input. You can open up this realm

105

tions. People who can use it in those appli
cations will be most pleased with it. But
those who want high speed disk I/ O or
temporary storage will not find it of much
use. It certainly expands the capabilities of
the Atari, but you may not need your capa
bilities expanded in that direction. Con
sider it as you would a piece of other
special purpose peripheral equipment,
such as a digitizer or modem. Will you use
it? If so, it is a good product.

RAMDisk, Axlon Co., 170 N. Wolfe
Rd ., Sunnyvale, CA 94086. $699. 0

John Anderson

at home with a few parts readily available
at Radio Shack, and the cord from an old
stick (you may try finding a DE-9 plug at
an electronics store, and making a cord
yourself).

You need only a few short snips of
wire, some switches, and a box to mount
it all in. I used three packages of push
button switches (Radio Shack catalog
#275-609). These are momentary contact
switches, packed two to a package. I
mounted five of them in a deluxe project
case (Radio Shack #270-222). The total
cost of these items was under $8.00, and
created a new and enjoyable input
device.

Probably the toughest thing about the
whole project is putting the mounting
holes into the project case. If you don't
have access to a drill with a suitably sized
bit or hole cutter, you can do what I did:
use your soldering iron to start the hole,
and then ream it to size using the blade of
a scissors. The two tricks to this technique
are to work slowly, constantly checking
the diameter of the hole against the switch
collar, and not burning and/ or cutting
yourself. It can be done, and that's an

Joy tricks

Figure 1.

o ® o

o

~~BROWN
BLUE

~~BLUE-

GREEN;;;; BLKW;~ BLACK -WHITE~~ BLK;;~ BLACK-

ORIGINAL WIRING

Figure 1A. New Style Joystick.

T = Trigger

L = Left

R = Right

D = Down

U = Up

~!I!!!!!!!!!!~BROWN
""..._. WHITE

~_ .. BLACK

~_~BLUE
~ ______ !!I GREEN

................... ORANGE

ORIGINAL WIRING

106

"LEFTY" MODI FICA nON

~11111!!!!!!~ BLUE
........ _. BROWN
______ BLACK

U~~GREEN
~ ... ______ !!! WHITE

.................. ORANGE

"LEFTY" MODIFICA nON

Figure 2.

0

(0
(0 0 (0

0

"Arcade" Style

advantage of a plastic project case
(another is its low price).

Refer to Figure 2 for possible button
configurations. The first is the "classic"
Asteroids format. If you're building a
peripheral just to play Asteroids, this is
the way to go. The second is what we
might call a "clock-directional" format,
which in the long run proves to be a more
versatile set-up. I made up one of each,
and prefer the clock-directional arrange
ment for a variety of games.

You will need a groove in the box
portion of the case to allow the cord to
pass through. You may again use the
soldering iron to do this, making the
groove only wide enough to push the
retaining collar in. This way it won't be
easy to yank the wire out by its roots.

In order to wire up the new peripheral ,

Figure J. Flip-Side Wiring Diagram.

"Arcade" Style

0 0 (0 o

0 (0 0 0)

0 0 0 o

"Clock-Directional" Style

T = Trigger

L = Left

R = Right

D = Down (Hyperspace)

U = Up (Thrust)

refer to Figure 3. As far as I know, this
color scheme is standard. In order to
attach connectors to the pushbuttons,
you'll want to press each connector lightly
between the jaws of a pliers. If you are
careful about this, you will create a good
connection without losing the ability to
remove the cable later. Those of you who
wish to make your own cord will
have to find a DE-9 connector, (which
may not be easy), and wire it as shown in
Figure 4.

Necessarily , diagonal motion is tough
with this configuration, as it requires two
buttons to be pressed simultaneously. As
a result, games in which the player moves
in one dimension are especially suited for
pushbutton input (Asteroids is a notable
exception) . If you feel really brave, try it
with a maze game, like lawbreaker.

Double Your Fire Power
If you construct a pushbutton peri

pheral with the parts I've listed above,
you will have an extra button left over. It
is a relatively simple matter to attach this
button to the handle of an existing joy
stick, thereby adding a second trigger in a
very handy place. It's nice to be able to
fire with the same hand that steers, and
because the conventional trigger remains
enabled, you can easily squeeze off more
shots this way.

Use a blade of your trusty (and by this
time, quite dull) scissors to press a hole
through the top of the stick. Next, dis
assemble the stick, following the instruc
tions given above for the "lefty" modifi
cation. Remove the white plastic stem
from inside the handle. Using a saw or
serrated kitchen knife , cut off about a

BLUE

"Clock-Directioual" Style

107

Joy tricks

TRIGGER - ORANGE

half an inch from the top of the stem.
This will provide the needed room for the
switch.

Unscrew all collars and retainers from
the neck of the button. Solder two 12-
inch lengths of wire to the switch con-

UP- WHITE

DOWN -BLUE

LEFT-GREEN

RIGHT - BROWN

COMMON - BLACK

tacts, braiding these leads together. Pass
them through the hole you made on top
of the stick, and through the white plastic
stem. Then screw the pushbutton directly
into the top of the joystick handle. The
other ends of the leads attach as shown in

Atari Game Controllers
If you like the idea of a pushbutton

controller, but lack the time, talent, or
inclination to construct one, you may
want to purchase one of the ready
made controllers described below.

Starplex Controller
The Starplex controller from Star

plex Electronics, offers an authentic
"Asteroids-style" button configuration,
as well as the fastest set of pushbuttons
I have ever seen. In addition, an
optional AA battery powers a "rapid
fire" mode, automatically repeating
fire faster than you can do it by hand.

Because the pushbutton array is
large and has a light touch, the con
troller takes a bit of getting used to.
Eventually , however, I found that the
lightning fast direction changes pos
sible with Starplex resulted in higher
scores.

It should be mentioned that because
many games do not allow a new shot

to be fired until an old one leaves the
screen, the "rapid-fire" option will not
always work optimally. Still, you can
fire continuously merely by holding
the button down, rather than having
to re-press the trigger for each shot (or
battery of shots). Over the long haul
this reduces fatigue , and the incidence
of "joystick elbow."

The unit lists for $29.95, which is a
bargain for the most authentic game
of Asteroids this side of the coin-op. It
improved my score on several other
games as well.

Starplex Electronics, Inc., E23301,
Liberty Lake, WA 99019. (509) 924-
3654.

K Y Enterprises
The controller offered by KY Enter

prises uses a directional-style configu
ration, less suitable for Asteroids but
more versatile overall. For those unfa
miliar with the arcade configuration,

108

Figure 4. Atari Controller Jack Pin
Configuration and Color Code.

This is the jack - the plug wires up
"mirror-image"

5 4 3 2 1

9 8 7 6

Figure 5. Reassemble the stick, remaining
mindful of that little spring that sits on
the original trigger button. You will
effectively have doubled your firing abil
ity. Remember, however, some games do
not allow for excessively rapid fire play.

it is much easier to master this logical
layout.

The unit exhibits extra sturdy con
struction-as if its makers knew it
would have to withstand a few bounces
off the floor. It is very large, and can
be cradled or used on a tabletop by
even the tiniest kids. The buttons
themselves sit in raised collars, and,
though not as fast as the buttons or
the Starplex unit, appear to be the
"regulation" coin-op standard. They
are large and easy to control.

The KY Enterprises controller is
priced at $26.95, and is available in
left- or right-handed models. They also
manufacture controllers for the
handicapped.

KY Enterprises, 3039 East Second
St., Long Beach, CA 90803.

Accu-Play
A third pushbutton controller, the

Accu-Play Control Board, we did not
have an opportunity to test. It sells for
$29.95 from Accu-Tech Products,
10572 Swinden Ct., Cincinnati , OH
45241.

o ®
Or7l7aFO

o

_____ .. BLACK-

GRN BLK §im~ BLACK - ORANGE-

Figure 5. Second Trigger Wiring. Figure SA. New Style Stick.

New RAMS for Old

The procedure outlined below
enables adventuresome Atari llsers to
upgrade 8K memory boards to 16K.
While savings of up to $100 per board
are possible. llsers should be aware
that this modification voids the warranty
on the memory boards.

If you have an Atari 800 with two 8K
memory boards and don't want to upgrade
memory by throwing away two expensive
modules, you can now upgrade them to
two 16Ks for a fraction of the cost of new
16K boards. This upgrade can be done by
almost anyone, and does not require
extensive hardware knowledge. All it takes
is a bit of soldering. The theory is as
follows:

The 4116 dynamic memory is a very
popular memory chip used by , among
others, Apple , TRS-80, and Atari. This
chip is inexpensive and readily available.
It is arranged as a 16K x 1 in a sixteen pm
DIP and comes in many different speeds.

Steve Olsson, 3392 Clipper Dr., Chino, CA
91710.

The 4116 memory also has a half brother,
the 4108. The 4108 is very similar to the
4116, except it is arranged as an 8K x 1.
In reality, the 4108 chip is a 4116. Besides
the label, there is only one real difference:
the 4108 is a 4116 that has a problem.
When the chips are manufactured , bad
ones are thrown into the reject pile and
good ones are shipped. From the reject
pile some chips are again sorted and
shipped. Chips with the upper half bad
and lower half good are sold as 4108-A ,
and those with the upper half good are
sold as 4108-B.

Atari now buys a 4108 chip and accesses
only the good half of it on the 8K memory
board. If Atari were to install completely
good 4116 memory chips and access the
entire chip, a 16K memory board would
result.

The point is , instead of throwing away
the 8K module (which is nearly identical
to the 16K module) , why not replace the
8K memory chips with 16K memory chips?
Several jumper options must be changed,
and the 8K memory must be removed
from its sockets and replaced with 4116s.

109

Steve Olsson

The whole process is extremely easy and
should take about 30 minutes.

In order to begin the procedure , the
first thing to do is order eight 4116 RAMS
per board being upgraded from a local
supply house . (Care must be taken to
choose a reputable supplier. The parts
should be guaranteed 100% operational).
The cost of the chips ranges from $30 to
$60. The chips must to have a maximum
access time of 200 nS in order to work in
the Atari.

Once the 4116s are in hand , open the
top of the A tari and remove an 8K memory
module. Remove the two screws that hold
the memory module together. Pop off the
metal cover and snap open the module
along the edge connector. The circuit
board now lifts out of the module .

Six jumpers on the front (component
side) of the board labeled A, B, C, D , E, F
are now exposed. They are actually
resistors of very low value but function as
jumpers only.

The edge connector is labeled 1-22 on
the front and A-Z on the back. (Notice
omitted letters G, 0, Q, I due to similarities

New RAMS

in shape.) The letters connected together
by small pieces of etch are: U-T, S-R , and
N-P. Also notice the etch from W to ZSOI
pin IS. All of these small etches must be
completely removed with a razor blade
or X-acto knife.

Atari was nice enough to add solder
holes to all of the connections which must
now be soldered. Connectors to be soldered
together with small pieces of wire are:
ZSOI pin IS-U, T-S, P-R, and M-N.

On the front side of the board , jumper

Program I.

10 GRAPHICS 8
20 SETCOLOR 2 , 0 , 0
30 COLOR 1
40 FOR y=o TO 159
50 PLOT O,Y
60DRA\>IT0319,Y
70 NEXT Y

C must be installed and all other jumpers
removed. On the back of the board a
very small solder connection must be made
to the connector H as far away from the
edge as possible. This wire must be added
to hook that signal to jumper D on the
side next to the letter (as shown in Figure
4). Make this connection from the back
of the board even though the letter is on
the front of the board.

The next step is to remove the 8 DIPs
labeled CS03, CSOS, CS07, CS09, CSll ,
CS13, CSlS, and CS17 from their sockets
and replace them with the 4116s. Replace
the board in the module, screw it back
together, and the modification IS

finished!
In order to test the memory , use the

Photo I. The open 8K modu le.

Photo 2. The component side of the
memory board.

Photo 3. C lose up o f the jumpers A-F.

Photo 4. Correct ly installed 16K jumpers
on back of board.

Pho to 5. The etch side of the completed mod .

Pho to J.

following procedures : Inse rt only the
module under test into the Atari then use
the ?FRE(O) command to see if the Atari
recognizes an increase in memory. If
everything looks OK at this point, use
graphics 8 mode . Type SETCOLOR 2,0,
0, which makes the background black. If
no spots appear, make the screen white
by using Program 1. If, after running this
program, there are no holes in the screen
pattern, assume the last 8K of memory
has no solid errors.

Program 2.

2 Xl=14*256
4 X2 =65*256
6 X= 14

10 POKE 10 6 , X:GRAPHICS °
20 FOR X=Xl TO X2
30 POKE X,.255
40 NEXT X
45 FOR x=xl to X2
50 IF PEEK (X) <> 255 THEN PRINT
" ERR- II ; X
60 POKE X,D
70 NEXT X
80 FOR X=Xl TO X2
90 IF PEEK (X) <>O THEN PRINT
II ERR-" ; X

100 NEXT X

After this test run Program 2 to check
more of the memory . This program checks
each memory location (without interfering
with Basic) and reports failures to the
screen. A few failures could mean there
are some bad chips; many failures probably
mean the module was wired wrong or the
chips are very bad. The failure will probably
have to be determined from the failure
report generated by Program 2, which
reports the address of failure. PEEK and

Photo I .

Pho to -t.

110

POKE must be used to determine which
bit is bad. Program 2 cannot check the
first SK of memory in the module, but if
the program runs without strange things
happening it is probably all right.

If a memory board is known to be good,
place it in slot 1 in memory. If the total
memory is now 24K, change lines in Pro
gram 2 to :

2 Xl 32*2S6
4 X2 96*2S6
6 X 32

If the total memory is 32K, change
lines in Program 2 to :

2 Xl = 64*2S6
4 X2 =128*2S6
6 X = 64

The program can now be run . This will
completely test the new memory mod ule ,
and will take about 10-14 minutes to run.
If you had only one 8K module that is
now a sixteen, you will have to hope the
first SK of memory is good until you get
more. The first SK is impossible to test
with only one module.

If your computer passes all these tests ,
the memory in your Atari has just been
doubled. If you have any trouble that is
not understandable and have rechecked
the procedure to verify that it was done
right, you probably have bad RAMs.

This simple procedure will, I hope, save
many people lots of money , allowing them
to operate with a disk drive and have
plenty of memory left for the other
p~rn~. 0

Photo 2.

K-DOS - An Alternative to Atari DOS

K-DOS from K -Byte is an alternative to
the Atari Disk Operating System, DOS II.
The file management system of K-DOS is
compatible with Atari DOS, but offers a
greater level of control over peripheral
devices and memory. Although it offers
many features which will be appreciated
by every Atari user, K-DOS will be of
most use to the serious programmer.

Since the benefits to be gained by using
K-DOS are the result of certain trade
offs, the potential buyer should think hard
about how much a more convenient disk
operating system is really worth .

Chief among these trade-offs is the
amount of memory that K-DOS leaves
available to the user. K-DOS is memory
resident, so most of its features are
immediately accessible, but it also takes
up a great deal of space. With a Basic
cartridge inserted, the amount of free
memory available in a 40K system is
25,228 bytes. This is almost 7K less than
the 32,274 bytes available with Atari DOS,
or the 31 ,758 bytes available with
OS/ A+.

Besides reducing the amount of mem
ory available for programming, the large
size of K-DOS puts the start of low
memory above $3000. (An optional pro
gram included with the package lets you
remove the plain English error messages,
which saves enough bytes to bring the
end of K-DOS just below $3000). Machine
language programs which are assembled
to run just above the end of Atari DOS,
may conflict with K-DOS, and may not
run under it.

If you have memory to spare, however,
K-DOS offers many attractive features. It
is, for example, a pleasure to use: all DOS
functions are accessible from Basic, Pilot,
the Assembler cartridge, or whatever
program environment you happen to be
in .

Since K-DOS is command driven, you
need not call up a menu to execute a
DOS function. You simply precede the
command by a comma (or some other
character which you can define as signifi
cant to DOS), and the DOS function is
executed without changing program
environments.

The syntax required for command lines
is flexible, so commas can be replaced by
spaces, lower case is acceptable, and the
DOS environment automatically resets
the inverse character shift. Device
defaults are supplied whenever possible ,
and short abbreviations are allowed, so a
minimum of keystrokes is required to
perform any function. Error messages

Sheldon Leemon, 14400 Elm St., Oak Park,
MI48237.

appear in plain English, rather than a
frustrating number code.

Unlike OS/ A +, which puts you back
in the operating system every time you
hit System Reset, K-DOS will only bypass
Basic if you hit the Start key along with
System Reset. And unlike Atari DOS, the
device handler for the 850 interface unit
boots automatically if it is turned on.
There is no need for a separate
AUTORUN.SYS file.

The reason that K-DOS can let you use
DOS command lines from Basic is that it
re-routes all input to the line editor
(although it gives you a command, KILL,
which will take its "hooks" out of the
handler table if desired) .

This greater level of control over the
system is characteristic of K-DOS. For
example, the 6502 BREAK instruction is
vectored to get you back to DOS any
time the instruction is encountered, rather
than having the system hang up. You may
get a little better idea of what this means
if you slip in the Basic cartridge and type
INPUT (RETURN).

With Atari DOS II, the system locks
up, and the only way to recover is to turn
the computer off and reboot. With K
DOS, a BRK message appears, and you
enter DOS. You should even be able to
recover from the dreaded "editing lock
up," which occurs when Basic moves a
block of exactly 256 bytes (You must still
know enough about how Basic works to
reset the statement pointers, however, as
that particular bug tampers with your
program code before it crashes the
system).

Another aspect of the system control
offered by K-DOS is that it allows you to
stop disk I/O just by hitting the BREAK
key, without destroying your data . It also
tries very hard to read and write marginal

SOFTW ARE PROFILE

Name: K-Dos
Type: Operating system
System: Atari 400/ 800, 48K

preferable
Format: Disk
Language: Machine
Summary: Versatile, but memory

hungry alternative to
Atari DOS

Price: $89.95
Manufacturer:

K-Byte
P.O. Box 456
1705 Austin
Troy, MI 48099

III

Sheldon Leemon

sectors before bombing out, which is
important, given the notorious speed
fluctuation of older Atari disk drives.

K-DOS puts some nice touches on some
of the original DOS functions. For exam
ple , INIT combines formatting and
writing DOS files to the new disk in one
operation, although these functions are
still available separately. The duplicate
disk function offers the option of a
straight sector copy for boot-disks that do
not have file information on them, and
also allows the faster write without verify
and continuous retrying of bad sectors.

There is a separate APPEND com
mand, which allows you to enter data at
the end of a file directly from the key
board. The append function uses any
space available in the last sector, rather
than starting a new sector as Atari DOS
does. The binary load command prints to
the screen the location in memory into
which the file is being loaded, if you so
desire, which is much more convenient
than reading the headers and calculating
the addresses by yourself.

But K-DOS doesn't take up all that
memory for the sake of a few slight
modifications. It also contains a complete
machine language monitor which allows
you to examine memory in hexadecimal
and ASCII formats, alter memory by
typing in either hex or ASCII values, and
examine and alter the contents of the
registers. K-DOS gives you two ways to
execute a machine language program. GO
runs the program after closing all devices,
and does not preserve the registers.
PROCEED continues a program after a
breakpoint has been reached , without
changing the contents of the registers or
the status of any device, making it a very
handy debugging tool.

Similarly, the command XIT allows you
to get back to a Basic program that calls
DOS, and continues to run that program
from the point at which DOS was called.

A null device handler has been added,
so that you can test I/O operations
quickly by directing them to N:. LOMEM
lets you examine and alter the bottom of
memory available to a cartridge. This
allows you to reserve space for machine
language programs, or just to reduce the
amount of memory available to see if a
Basic program will run on the minimum
16K system. UDC allows you to add your
own user-defined commands to the
system.

In addition, K-DOS offers many com
mands which allow you to access certain
routines used internally by DOS, just by
giving a one-word command. For
example, COLD and WARM provide an
easy way to coldstart or warms tart a

K-DOS

cartridge. RESET reboots the 850 handler
when you have expanded the drive buffers
-or just forgotten to turn it on when you
booted up.

TEXT corresponds to a GRAPHICS 0
call in Basic, and opens the screen device,
which is handy for moving the display list
when you want to load a program into
high memory. CLOSE closes all files,
turns off the sound, resets YBLANK
vectors, and turns off Player-Missile
graphics. ER followed by a number will
print the English error message for that
error number, which is very handy when
you want to interpret I/O errors that are
generated by Basic.

None of these functions is earth
shaking, and all can be accomplished in
other ways with a little effort, but the
author's attitude was that as long as the
routines for doing them were already in
DOS, it made sense to allow them to be
accessed easily.

Unfortunately, the lack of depth in the
documentation runs somewhat counter
to this intention of allowing the program
mer easy access. The glossy K-DOS Hand
book is nicely bound, comes with a pocket
summary card, is clearly written, gives
examples of the proper syntax for each
command, and covers most of the com-

mands very well.
However, it treats some of the more

esoteric commands in a cursory manner.
Take, for example, the explanation of the
UNLOAD command: "Tries to erase area
where cartridge is; unloads any RAM
based cartridge and resets LOMEM back
to end of DOS." The beginner will no
doubt read this sentence, re-read it once
to verify that all of the words are in
English, and then press on, no better or
worse for the experience.

The experienced user, on the other
hand, might gather from this explanation
that it is possible to load a program into
RAM, and fool the system into thinking
that the program is cartridge-based, allow
ing an easy transition back and forth
between that program environment and
DOS. The inference would then be that
the UNLOAD command erases this pro
gram, and lets the system know that no
cartridge is present. But how do you set
up this "RAM based cartridge" in the first
place? No clue is given, leaving the
experienced user perhaps more frustrated
than the beginner.

Another example of a similar sort is the
system equate files that are supposed to
give the user access to system routines,
such as the one to type text messages

from a buffer. There are no detailed
examples of how to use them, however,
and the internal commenting is too scanty
to allow most users to benefit from them.
Features like these could be real selling
points to the ambitious programmer if
they were treated less superficially in the
documentation.

My impression of K-DOS is that aside
from these omissions in the documen
tation, it is a convenient tool for the user
who is serious about programming.

As one who uses his computer mostly
for programming, I have found K -DOS
especially helpful in developing software
that combines Basic with machine lan
guage subroutines. But I think that K
DOS will be of much less interest to the
casual programmer who may have less
than 40K of memory.

While such a user might appreciate
some of the features, he would probably
never take advantage of the machine
language monitor, the null device, or
many of the other goodies which make K
DOS so big-and so expensive. If you fall
into that category, you might be better
off spending the money on something that
will let you gobble dots, eradicate insects,
or save the universe. 0

Standard Keyboard for the Atari 400 Robert N oskowicz

While shopping for a home computer,
I did quite a bit of research, eventually
narrowing my decision to a choice be
tween the Atari 400 and 800. With a little

Robert Noskowicz, 44 York St., Old Bridge, NJ
08857.

more investigation I found that the only
differences between the two are the three
most obvious: 1) easy access to additional
memory, 2) the two ROM slots and 3) the
keyboard. The processors-operating
systems and ROM-are exactly alike.
Since Atari stiJI has not used the second

ROM slot, and the 400 can be fairly easily
upgraded to 48K, the only appreciable
difference is the keyboard. The 400 has a
flat membrane keyboard compared to the
standard typewriter keyboard on the 800.
I didn't feel at that point that the differ
ences warranted the approximate $400

Figure 1. Ribbon cable on original keyboard is numbered 1-22. Keyboard is viewed from the back in above diagram.

112

Photo 1.

additional cost for the BOO, so I purchased
the 400.

After 6 months of use, I was extremely
happy with my computer except for the
keyboard. I found that the flat keyboard
impairs the ability to enter data quickly
as well as causing discomfort when enter
ing a substantial amount of information
into the system. I went from "I'll get used
to it" to "It's not all that bad" to total
exasperation.

What I will explain here is what I did to
cure my problem: I added a standard
keyboard to my machine.

First I opened my computer to deter
mine how the keyboard was interfaced. I
had the Atari Technical User's Notes but
they did not contain any schematics for
the keyboard. After calling several home
computer stores to see if they had any
information on changing keyboards, with
no luck , I called Atari's toll free number
in California. If you have ever called

Photo 3.

..
Photo 2.

Atari, you already know that (like most
computer manufacturers) they do not like
you to make changes in their hardware
and provide very little technical help.

I realized that I would have to do
everything myself. The one thing I did
know was that the decoding of the key
board is done in the processor. The
keyboard, in the case of the Atari, is just
a bunch of momentary ON switches, 61
to be exact. I sat down with my ohm
meter, went from point to point, and drew
the keyboard layout (Figure 1).

The next step was to purchase the
necessary parts. The keyboard that I
bought from a firm in California has 62
keys and costs $35. It is called a bare
keyboard because it is not mounted on a
PC board. Initially I intended to mount
the keyboard on the computer but my
wife suggested that I use a cable and
keep it separate.

This was an excellent idea since I keep

Photo 4.

113

the computer on a Parsons table in front
of my TV and sitting on the couch slouch
ing over it can be a real pain in the neck,
literally. Now I can keep the keyboard on
my lap which I find extremely com
fortable.

If you decide to go this route, you will
need about seven feet of ribbon cable
which costs approximately 60 cents per
foot. I used 25-conductor cable because I
wanted to have a connector between the
computer and the new keyboard so that I
would be able to disconnect it. Otherwise
it would only require 22-conductor.

The connector is a 25-pin RS-232 type
made for ribbon cable. It costs about $14
per set. If you want a case for the key
board, you can purchase one for about
$56. If you are like me and wish to save
some money, go to your local hardware
store and buy a small Permanex tool box
which costs about $6 and cut it to shape.

Some of the keys on the new keyboard

Keyboard for the Atari 400

are in different locations. You can leave
them as is or move them about, providing
you follow the wiring layout in Figure 1.

One thing I had to do on the new
keyboard was to keep the Cap/Lock key
from locking, since on the Atari the Cap
Key does not lock.

The first step was to wire up the new
keyboard (Photos 1 and 2). Since I had

The Mosaic 64K RAM Card

one extra key, I used two keys in series
for system reset. This prevents me from
accidentally resetting my computer.

Next I soldered the new ribbon cable
to the back of the Atari keyboard where
the original cable is soldered, leaving the
original in place (Photo 3). You will notice
that I routed the cable to one side and
mounted the male connector into the side

Atari Supercharge

I found the prospect of dismantling
my Atari 800 to install the Mosaic
Select (64 K memory board) a bit
frighte ning since I had never been
inside a computer before. As it turned
out, however, I shouldn't have
worried. The computer won't fall apart
just by breathing on it, and it is not
really any more delicate than a stereo
or ca lculator.

My new memory board was actua ll y
designed for the Atari 400 , but had
been especially modified (components
added) to work in the 800. Even
though the installation manual was
written for the 400 , it was clear and
complete enough to be of great help
in modifying the 800. (By the time
you read this, Mosaic shou ld have the
memory board for the 800 avai lable
and yo u won't have to translate in
structions from the 400 manual.)

Once the computer is disassembled,
only two modifications need to be
made:

First, a two-wire cable needs to be
so ldered to the main board . It may be
best to use a pencil-type so ldering iron
with a very small tip. If you have not
soldered a printed circuit board
before, this is the one step you may
want someone e lse to do.

The second modification requires
relocat ing one of the computer chips
from the main board to the new
memory board and installing a pre
assembled flat ribbon jumper cable
from the socket on the main board to
the memory board .

LeRoy J. Baxter, 15601 S.E. Oatfield Rd.,
Mi lwaukee, OR 97222.

T he rest of the job is just a matter
of reassembling th e computer in
reverse order from its disassembly -
a task that can be done in one evening
and, with a littl e practice , cou ld
probably be done in less than a half
an hour.

Mosaic uses on ly the best com
ponents and gives an amazing four
year gua rantee that is not limited by a
lot of hedges and / or disclaimers.

Just Another Memory Board?

The Mosaic 64K Select is memory
expansion with a difference . The
diagram in Figure 1 tells the story.

First, Select expands the RAM of
your Atar i 400 to the design maximum
of 48 K and then goes on to g ive you 4K
more RAM located in the unused
ROM area. Further, this 4K of addi
tional RAM is rea lly 16K - it is
addressab le as four software-se lect
able banks of 4K eac h. The Atari 800
can support three of these boards ,
giving you 32 banks of 4K each for an
astounding 192K of RAM .

Further, Mosa ic has taken great
pains to make their 64K memory
board totally compatible with all
existing software. The 4K banks are
placed in the unused area between the
Bas ic cartridge and the Operating
System ROM - an area presently
untouched by Basic, the Operating
System, DOS , or a ny softwa re. The
met hod chosen for Bank Switching
a lso precludes any software incompat
ability as Bank Switching is ac
compli shed by writ ing (ie. POKE) to
ROM. Since th e ROM areas are cast

114

of the casing. I then assembled the com
puter and tested the Atari keyboard to
make sure that nothing shorted. So far,
everything tested OK. I then plugged my
new keyboard in and tested it. It worked
fine.

The keys on the new keyboard are
parallel to the Atari, so either keyboard
can be used. 0

LeRoy J. Baxter

in stone (silicon) , as it were , nothing
is actua ll y written - it is the act of
writing that is important. The specific
address that you try to write to
determines the Bank that wi ll be
se lected (see Listing 1).

Note that while the Mosaic 64K
Select is totally software compatible, it
is not compatib le wit h certain hard
ware modifications such as the 80-
column board.

With the Basic cartridge removed ,
machine-language programs such as
the Atari Word Processor or Visica lc
see 52K of continuous RAM - a big
boost in available RA M .

With the Basic cartridge installed
(or Microsoft loaded) , the normal

OPERATING
SYSTEM

ROM

HARDWARE I/O

r:w 4K RAM
bank 1 2

f--

BA SIC Cart.
or

RAM

---------- -- ----

2K
AM

48K RAM
Cant inuous

I
Figure I .

40K max imu m RAM is ava ilab le,
a long wit h th e four 4K banks that
Basic ca n't see (at least not without
help).

What good is " invis ible" memory?
One of the big problems wit h using
machine-la nguage routines with Basic
has bee n finding a sa fe place to put
them. Until now, page 6 (memory
starting a t 1536) has been a popular
place. Too popula r in fact, and a
dangerous place since under ce rtain
conditions, cassette input will use the
bottom half of page 6 as a buffer. Any
mac hine-la nguage routine sto red there
will be lost. This can be especia lly
damaging if t he routine is a Vertical
Blank ro utine .

In co ntrast, mac hin e- la nguage
routines or data stored in the Select
Banked Memory a reas a re 100% safe.
An e ntirely new program may be
loaded wi thout affecting anything
sto red there. In add ition, a lo t more
room is ava il a ble - a whopping 4096
bytes instead of just 256 bytes for
page 6.

If yo u ha ve a Mosaic Select, try this:

10 POKE 65472+0,0:REM SELECT BANK 0
20 DIM AS(19):AS . "this is. LOA D test"
30 FOR X.l TO 19:POKE 49152+X,ASC(AS(X,X»:NEXT X

then type :

RUN
NEW
LOAD "D:file na me" (l oad any pro

g ra m) or load a program from
cassette

finally (in Direct Mode):

FOR hi TO 19 ? CHRS(PEEK(49152)+X; :NEXT X

Press ing System Rese t does not
affect the stored data . Only turning off
the computer or overwri(ng the d ata
wi ll destroy it.

Player / Missiles and Character Sets

With norma l memory management ,
finding a suita ble place fo r P layer /
Miss ile data and / or redefined C har
acter Sets can be a problem. Care must
be used to pos iti on PMBASE and / or
CH BAS on th e a ppropria te I K or 2K
boundary. If the memo ry a rea is
rese rved by mo ving RAMTOP, then
ca re must also be used to preven t the
Display Memory from crossing a 4K
bou ndary. The pitfa lls a re ma ny and
often la rge bl ocks o f memory end up
unu sed .

Other Applications

The Mosa ic Select is in keeping with
the open-ended , nature of the Atari

it se lf. Ma ny addit ional app licat ions
come to mind:

I) Relocate the S tring-Array space
to the banked memory area. This
cou ld be useful for cha ined Adve nture
prog ra ms or for F inanc ia l/ Budget ap
plicati o ns that do different things with
the sa me data . The String-Array data
wou ld be instantl y avai la ble to each
prog ra m as soo n as it was loaded a nd
run.

2) D ifferent sets of data cou ld be
loaded into each of the fo ur banks,
letting one program act li ke four. Each
se t of da ta wou ld be instantly available
with a single POKE.

3) The possibility exis ts that rela
tively short Basic programs (less than

Lisling 1.

4K each) co uld be sto red in each bank,
a llowing four tota ll y independen t (a nd
one Master) programs to be in
memory at once and ava ilable with
just a few POKEs.

4) Machine-language programming
Utilities, DOS Utilities, a nd / or
Wedges could be stored in these banks.
T hese utility programs would be easily
accessed but would not be affected by
LOADs, SAVEs, or RUNs. Nor
would they eve r conflict with the Basic
program area or the Display List /
Display Memory. Different utilities
co uld be stored in each ba nk a nd
accessed when needed.

5) Fo r Assembly-la nguage pro
g ra mmers using the Atari Assembler-

5 REM "YOUR NAME IN LIGHTS" (C) 198 2 b y LeRoy J. Ba x ter
6 REM I F TOO MUCH FLI CK ER, ADJUST TV BRIGHTNESS AND CONTRAST
1 0 POKE 106,207 :RE M RAISE RAMTOP
20 BNKBAS=65 4 7 2: BANK=0:BANKSELECT=20 00
30 POKE BNKBAS+1 , BANK: GRAPHICS 5+16
35 REM GET START ADDR OF GR.5 DISPLAY LIST
40 AL=PEEK(560) :AH=PEEK(561) :AD=AL+256*AH
50 POKE BNKBAS+2,BANK:GRAPHI CS 5+16
60 POKE BNKBAS+3,BANK:GRAPHICS 2 +1 6:B=PEEK(560)+256*PEEK(561)
70 POS ITION 8,5:? #6 ; "your " :POSITION 8,6:? #6; "name "
75 REM MOVE GR.2 DISP LAY LIST TO START AT SA ME LOCATION AS GR , 5 LIST
80 FOR X=O TO 18:POKE AD+X,PEEK(B+X)
90 IF PEEK(B+X)=65 THEN POKE AD+X+1 ,AL:POKE AD+X+2 ,AH :X=18
100 NEXT X
110 POKE BNKBAS+O , BANK:GRAPHICS 5+16:POKE 710,1 54
115 REM NOW DRAW TO GR . 5 SCREENS - 1 /3 OF DATA TO EACH BANK
1 2 0 FOR X=O TO 15 :READ A:POKE 1750+X,A:NEXT X
1 3 0 FOR X=O TO 10:REA D A:POKE 1710+X,A:NEXT X
140 FOR X=O TO 2:POKE BN KBAS +X ,X :COLOR X+1 :PLOT X*2, 1 9:DRAWTO X*2,28
150 PLOT 79 - X*2,19:DRAWTO 79 -X*2,28: NEXT X
160 FOR Z=O TO 2:COLOR Z+1 :BANK=Z
170 FOR X=39 TO Z STEP -1 :GOSUB BANKSELECT:PLOT 39-X , 18 - Z:PLOT 40+X,18-Z:PLOT 39
-X,29+Z:PLOT 40+X,29+Z:NEXT X
180 READ A: FOR X=1 TO A:GOSUB BANKSELECT:PLOT 39 -Z , 18-X-Z:PLOT 40+Z, 18-X-Z : PLOT
39 - Z , 29 +X+Z :PLOT 40+Z,29+X+Z:NEXT X
1 90 FOR X=1 TO 4:GOSUB BANKSELECT:PLOT 39 - X-Z,18-A-Z:PLOT 40+X+Z,18-A-Z:PLOT 39-
X-Z,29+A+Z:PLOT 40+X+Z , 29+A+Z: NEXT X
200 READ A : FOR B=1 TO A:READ X,Y:GOSUB BANKSELECT
210 PLOT 39 - X, 18-Y:PLOT 40+X,18-Y:PLOT 39-X,29+Y:PLOT 40+X,29+Y:NEXT B
220 NEXT Z
230 FOR X=O TO 2:POKE BNKBAS+X,X:POKE 49152,3:NEXT X: REM SHADOW REG. FOR BANK #
240 X=USR(1710):REM START BANK FLIPPING
250 FOR X=O TO 2:POKE 1 700,X : FOR T=1 TO 20 :NEXT T : NEXT X:GOTO 250
280 REM PAGE FLIP ROUTINE
290 DATA 174,0,192 , 224 , 3,240,3 ,1 74,164,6,157 ,1 92,255,76,95,228
300 REM SET VBLANK ROUTINE
31 0 DATA 104,162,6,160,214, 169,6,32,92,228,96
320 REM SCREEN DATA
340 DATA 10,24,5,1 1 ,6, 11, 7, 1 2 ,8,1 2,9, 13, 10 , 14,10,15 , 9,16,8 ,17, 7 , 1 7,6,17,5,17,4,1
7,3, 1 6
350 DATA 2, 16, 1,1 5, 1 ,14,2 ,1 3 , 3 , 13,4, 13,5 , 14,6 ,1 4 , 6,15,5, 1 5
360 DATA 6,37,6,8,7,8,8,9,9,9, 10, 10,11 , 11 ,12 ,1 2 ,1 3, 13,14 ,14,1 5, 15,1 6 ,1 5, 1 7,16,18
,1 6, 19, 17, 20, 1 7 , 21,17
370 DATA 22, 16 , 23 ,1 6,24,15,25 ,1 4,25 ,1 3,24 , 12,23,12,22,11,21 , 11 ,20,10,19,10,1 8, 10
, 17,11,16,12,17,13
380 DATA 18,14,19,14,20,15,21,14,20,13,20 ,1 4
390 DATA 2 , 54,7,5 , 8,5,9,5,10 , 5,1 1 ,6,12,6,13,6,14,6, 15,6,16,7 ,1 7,7,18,7,19,7 , 20,8
,21,8,22,8,23,8
400 DATA 24 , 9,25,9,26 , 9 , 2 7,9,28,9,29,10,30, 10, 31 , 10,3 2, 10, 33,9,34,9,35 , 8,36 , 8,37
,7 , 37 , 6
410 DATA 36,5 , 35 , 5,34 , 5 , 33,4,32,4,31 , 4 , 30 , 4 , 29 , 4,28,5,27,5,26,5,25,6,26 ,7, 27,7,2
8,7,29 ,7
4 20 DATA 30,8 , 31, 8,32,7 , 32 , 6,31, 6,31 ,7
2000 POKE BNKBAS+BANK,BANK:BANK=BANK+(BANK<3) - 3*(BANK=2):RETURN

lIS

Mosaic 64K Ram Card

Editor, machine-language routines
could be written and assembled in the
memory area where they will reside -
a lot easier than writing relocatable
code.

6) The fact that each bank is se lected
bya single POKE allows various forms
of "Page Flipping." The program in
Listing 1 demonstrates how this can be
done. A separate display is placed into
each bank and then the banks are
flipped using a short machine
language Vertical Blank routine. This
kind of page flipping a llows color
blending a nd the mixing of text and
graphics.

Note that with 4K in each bank,
Graphics 6 is the highest reso lution
mode that can be used . A Graphics 7
Display Memory can fit into 4K, but
not both the Display List and the
Display Memory.

New Member of the Family

Atari 1200

Well you mayor may not have heard
the news , but the Atari 1200 has
arrived . Here is a first look at the
l200XL, a nd the new wave of periph
era ls and software designed to work
with it.

T he Atari 1200XL was unvei led on
the east coast at a press conference at
the Plaza Hotel in New York City. At
least a dozen working units were on
display there for us microcomputer
types to play with, and that's exactly
what we did, (at great length). The
unit should become generally avai lable
by the middle of 1983.

With 64K RAM standa rd , the
1200XL also offe rs twelve user pro
grammable function keys , inter
national character set, and built-in
diagnostics . Designed to be entirely
compatible with the models 400 and
800, owners of the Atari 1200 need not,
therefore, have to wait for software to
be developed to run on their machines .
Although no true innovations are
present in the 1200, competitive
pricing will doubtless make it a major
contender in the home microcomputer
market this year. No price was an-

John Anderson is an associate editor for
Creative Comp1lting magazine.

A lso note that if overlaying different
graphics modes , either the Display
Li sts must start at exactly the same
memory locat ion, or the Display Lists
must be chained .

As with the Atari itself, the li st of
app lications goes on , limited only by
the programmer's ability and imagina
tion .

The Future
The first practical app lications will

probably be Programming Utilities
and Wedges that can be relocated to
lower memory areas if Select has not
been installed . The 64K board wi ll
mean that more of these utilities can
be in memory and availab le to the pro
grammer at anyone time with less
interference with the main program.

The second most practical applica
tion might be for Player / Missiles and

The Atari XL.

nounced at the conference, but the
word was tha t the list price would be
well under $ 1000.

Other features of the unit are the
fo llowing: keyboard disable function;
a uto sc reen shut-off when untended;
help key; LED power, keyboard lock,
and character set indica tors; and one
touch cursor movement.

The ROM cartridge slot and con
troller jacks have been moved to the
side of the machine , and number
exactly half that of the Atari 800; one
cartridge slot and two controller jacks.
T he determination was made that this
was quite enough, and that an extra
slot or contro ller jacks would have
only added expense to the machine.
There has been no scrimping on the

116

Character Set data. By simply writing
to a location in this area and then
reading that same location, the
existence of 64K can be determined .

POKE 49152.3:IF PEEK(49152)~3

THEN PMB AS~ 4915 2/256: etc .

Assembly-language programs can
check aga inst RAMTOP. If RA MTOP
is greater than 192, then 64K is in
sta lied.

I am sure that the future will see
commercia l programs written that will
test for the existence of 64K RA M and
will load in more data for bigger and
better programs if it is installed .

T he Mosaic 64K RAM Select
appears to be an innovation whose
time has come.

John Anderson

keyboard, however. It is of the highest
q ua lity.

New Peripherals, Too
Three new peripherals were a n

nounced a long with the 1200XL. The
1010 program recorder will allow in
expensive sto rage and retrieval of data
using audio cassettes. The unit feature s
data and a udio channels, as did its
predecessor, the model 410. It will li st
for $99 .95 .

T he model 1025 80-co lum n printer
wi ll list for $549. I t is a customized
Okidata Microline 80, and will run in
seria l at a claimed speed of 40 cps. The
dot matrix print is clear and crisp,
though not of letter quality.

On the Ie.li-hand side of the machine is
a single cartridge slot and t\\'O
controller jacks.

The unIque 40-column color
printer / plotter, dubbed the model
1020, will offe r text and graphics in
four co lors at a li st price of$299. It will
be capable of changing the size and
style of its character se ts , and 16 colors
of pen will be a va ilable.

The only disk drives I saw in all my
snooping about were the o ld model
8 10 clunke rs, which are compatible
with the 1200, but certainly look out
of place nex t to them . I ex pect we will
be see ing a new drive from Atari within
the ne xt half year - conceivably a
31'2" model, as compact as the new
10 10 program recorder.

New Software Announced
Along with the new hardware, a

numbe r of new so ftware packages
were a nnounced . DeFender and
G"alaxian were on hand and running
a t the Plaza , and shou ld be avai lable
now. Both looked to be very high
quality clones of their arcade name
sakes . I was especially impressed with
DeFender; as was the case with Pac
Man , the Atari computer version
makes the YCS version look embar
rassingly primitive.

£. T. Phone Home will evoke the
film £. T. with hi-res graphics and fine
scro lling across four screen widths .
Yo u are Elliott , helping little E.T.
place that long di stance call.

Fo ur othe r arcad e game ad a ptations
ha ve bee n announced by Atari as well.
Dig Dug is a popular coin-op maze
ga me, a bit like Pac-Man ac tua ll y dig
g ing hi s pa th as he goes.

Qix is a unique and engaging video
ga me. The object is to surround Qix
with boxes of color. The game tran
sce nd s the " twitch" as pect with
strat egy a nd a lack of patte rned play.

Donkey Kong and Donkey Kong
Junior have also bee n li censed to
Ata ri , and will beco me avai lab le for
the 400 / 800 / 1200 soo n. These ex-

The Awri 1020 is a 40 column, j our
co lor printer and pIo tter. A t a /ist iJrice
of $299, it off ers much versatility.

treme ly popular coin-op titles will be
avai lab le within a coup le of months.

Family Finan ces has been designed
to kee p d e tailed records of family. in
come a nd expenses as well as estab li sh
a budget. It is ava ilable on diskettes
only .

Timewise turns the Atari into a n
e lectronic ca lendar , offering basic time
management programs for the home,
office , or sc ho o l. While keeping trac k
of a ppointments, holidays, and other
spec ia l da tes , the progra m will a lso
print out schedules and ca lenda rs.

Atari Writer is a ROM-based word
processo r that runs in 16K . It can save
files to disk or cassette .

Atari Music I is the first in a series
of Music Learning Software . It teaches
fund a mentals of music theory, in
cluding note reading, steps, m ajor
sca les , and major keys. The four les
sons of the program use tutorial s,
ex plora tory modes, drills, tests , and
built-in video games to reinforce con
cepts.

Juggle:1" Rainbow is the first in a
series of Early Lea rning products
designed to teach pre-reading skills to
children of three to six years. Using
graphics a nd so und , Juggle :s' Rainbow
teaches c hildren the concepts of above ,
below , ri ght and left. Line a nd circle

A Letter Quality Alternative
For Atari Users

You want lette r quality capabilities
o n yo ur Atari system, but Atari makes
o nly dot matrix printers. So you
dec id e to wait until they produce a

Nanc y Blumenstalk Mingus, 15 E. Genesse SI.,
Wellsville. NY 14895.

lette r quality printer instead of fight
ing with interfacing to non-Ata ri
printers, right? Well, you don't really
have to wait. By using the Atari 850
interface module you can use any
paralle l printer or RS232 serial printer
on the market.

117

The Atari 1025 80-column printer is
the equivalent to the Okidata Micro
line 80.

games help children learn to dis
tinguish between the "tricky" letters,
b ,d ,p , and q .

Juggle's House uses the same tech
niques as Juggle's Rainbow to teach
the concepts of upperjlower and
inside / outside.

Atari continues to evidence a
sensit ivity to and understanding of the
consumer microcomputer market.
There is utterly no doubt that Atari
will remain a leading contender in
graphics and so und machines for some
time to come.

For more information, contact
Atari Incorporated, 1264 Borregas
Avenue, P .O. Box 427, Sunnyvale,
CA 94086.

The Atari 1010 program recorder
handles a digital and audio track .

Nancy Blumenstalk Mingus

But, be forewarned . Interfacing
other products to the Atari is not as
easy as Atari would lead you to
believe. I found this out the hard way.
Although Atari does give you a ll the
information necessary to utilize the
interface module properly, you must

A Letter Quality Alternative

glean the facts out of three different
manuals, and that takes a consider
able amount of time. This article will
explain some of the problems encoun
tered in interfacing an Anderson
Jacobson 832 (RS232) to the Atari,
and give some solutions that should
apply to many other RS232 printers
as well.

One of the hardest problems in
using an RS232 printer on the Atari
is getting a connector cable between
the printer and the interface module.
Although the literature on the 850
says it is standard RS232, it only has
9-pin connectors. Most printers use a
25-pin connector. So you need a cable
to convert the proper signals coming
from the 25-pin connector into signals
recognized by the 9-pin connector.
Now I'm no electronics expert so I
wouldn't even attempt to create my
own cable. Since I use port one on the
850 to connect a modem, I wanted
port two to be my printer port. With
the wiring diagram for port two and
the wiring diagram for the Anderson
Jacobson printer in hand, I located a
good electrician and he kindly wired
everything correctly for me. If you
don't know anyone in your area who
does this kind of ,work, your local
Atari dealer should be able to help
you.

Once everything is connected prop
erly, there are a few other things you
need to remember when using the
printer. The most important of these
concerns the disk drive. If you plan
on using a disk drive with your inter
face module and printer you must
have DOS II as your disk operating
system. There is a special file in DOS II
called AUTORUN.SYS which auto
matically runs when you turn on the
computer. This affects the power up
sequence you use. You must turn on
the printer, then the disk drive, then
the interface module and finally the
computer. Also, be sure you have the
BASIC ROM PAC in place.

Most of the above procedure is
explained in the 850 manual, but they
make no mention of the AUTORUN.
SYS file. The problem we kept
encountering was error number 130
when we tried to open the printer port.
This message indicates that the inter
face module can find no such device .
What had happened was that the Sys
tem diskette we had created from the
Master diskette had not copied the
AUTORUN.SYS file. Once we copied
the file on to the System diskette, we
could then open the printer port.

Trying to print or list on the

Pin 1 Data Tenni nal Re ady (DTR, Re a dy Out)
Pi n 3 Send Data (Out)
Pin 4
Pin 5

Pin 6 Data Set Ready (DSR, Ready In)

~
~

~
~

Pin functions of Serial Port Nos. 2 and 3 in 850™
Interface Module (9-pin female connector)

printer is now a fairly simple matter. If
you wa nt to print to it you do the
following:

OPEN #2,8,0 ,"R2:"
where:

OPEN signifies initialization of a
device or file .

#2

8

o

"R2:"

indicates the channel num
ber being used. It can be
any number one through
eight.
means opening the channel
for output only, which is
all that is required for a
printer.
this argument is not used,
so will always be zero.
refers to the port being
used. The two signifies port
two.

Then any subsequent printing state
ment would take the following form:

PRINT #2;"Anything" ,va riable

where:

PRINT is the standard BASIC
PRINT command .

#2 is the channel previously
defined in an 0 PEN.

Last, to close the device or file , you
would enter:

CLOSE #2

where:

CLOSE means you are terminating
the use of a channel.

#2 is the channel being closed.

Again, this is explained fairly well in
the interface module manual. The
LIST command however, is somewhat
confusing. To LIST to the printer,
instead of LIST#2 as you might
expect, you must type:

LIST "R2"

where:

LIST functions the same as
usual.

"R2" is the port number you are
listing through.

Now that you know how to connect
your printer, list a program and print
lines to the printer you're almost
ready to start. There's one last prob
lem left to deal with. The default con
figurations of the RS232 ports as
shown in the 850 manual need one
modification, because the ports do
not send a line feed when they send a

,\tar l to ,'\nderso n Jacobson !.J l ring Ch art

Pi n ll"o . on
.\ J Connector

118

S1una! Name

S i gna l G r ou n d
Output
I npl! t
UTa
USR

Pin No . on
At a ri Con n ecto r S i gnal f'j<lmc

Signa l Gro u nd
Rece i ve
Send
DTR
OS 1~

carriage return. That is, when the print
head returns to the left margin of the
paper, the paper does not roll up one
line. So all those lines you know how
to print, print right on top of each
other. This produces an interesting
effect, yet it is impossible to read. To
change this, yo u must reconfigure this
one aspect of the printer port you are
working with. Again, I use port num
ber 2 and the command I use is:

XIO 38,#2,64,O,"R2:"

where:
XIO

38

#2

64

o

is a specia l command used
to configure various aspects
of a port.

is the pa rticular XIO com
mand type.

is the cha nnel number being
used .
is a decimal code meaning
turn on line feed.

as in the OPEN command,

The Atari Word Processors

Word processing may not be the appli
cation of choice for the Atari 800 Home
Computer, but there are many times when
an Atari user would like to set words on
paper in a tidy fashion.

This goal is attainable using any of the
five programs described here .• Unfortunately
none of them offers all the features of the
best of the word processors available for
the Apple or the TRS-80.

Let's have a look at what is available,
and perhaps you will discover the one that
is best fo r you.

An Unfriendly Keyboard
The looks of the Atari 800 are deceptive.

Superficially , the keyboard resembles that
of the IBM Selectric, but the right shift
key is one silly little centimeter to the right
of where an experienced typist expects to
find it.

The quotation mark , used constantly in
Basic programs, is over the 2 rather than
next to the return key. The clear screen
key is where the underline should be and
is too close to the end parenthesis ")" for
comfort.

Corrections are made with a full-screen
editor using the cu rsor almost as if it were
a correcting pencil. But the cursor control
keys on the Atari are all in shift mode; you
must depress the control key each time
you use the cursor.

On the other hand , the Atari does offer
upper/ lower case capability without hard
ware assists , and , unlike the Apple, the
shift key is fully functional as delivered .

Like the Apple , the Atari 800 offers
only a 4O-column display. Unlike the Apple,

Philip Good, Info rmati on Research, 10367
Paw Paw Lake Dr., Mattawan, MI 49071.

no one has yet marketed an 80-column
adapter. And none of the three Atari full
screen word processors makes use of the
Atari high-resolution graphics to generate
a 60+ column character set.

Bare-Bones Word Processors
For less than 520, ei ther of two bare

bones word processors will allow you to
use the Atari to create and edit messages
for an electronic bulletin board, display
them on the monitor or TV screen, store
and retrieve text and programs, and produce
a hard copy.

With Letter Writer, 519 from CE Soft
ware, you use the insert key to insert text,
and the delete key to delete text errors.
The program provides only two ed iting
features of its own to le t you ind ent
paragra phs and skip lines.

T he Letter Writer printer formatter a llows
you to set the line length (though not the
left margi n) , insert new pages as required,
and right justify your text. The program
will operate with any parallel connected
printer. I used Letter Writer, a 530 interface
cable from Mactronics Inc., and a C. Itoh
printer to prepare some reports recently.

But Letter Writer is st ill not a best buy.
That honor goes to Bob's Mini Word
Processor, which costs just 515 from Santa
Cruz Ed ucational Software.

The Mini-Processor allows you to create
fi les, save or load them, modify them, and
create hard copy . While editing, you have
full control over the tab , delete, back space,
clear, insert, and cursor control keys. But
you can also advance through the text a
page a t a time or move with a single
command to the beginning or end of the
text. You may interchange "pages" of text,
though you cannot cut and paste any section
smaller than a page.

119

"R2"
this argument will stay zero.

is the printer port.

Before you can do a list you must
enter this command , and to be safe,
you should include it in any program
you write where you plan to print
more than one line on the printer.

And now you should be in fairly
good shape to start using that nice
letter quality printer.

Good luck.

Phillip Good

The Mini-Processor works with serial
but not parallel printers, using an Atari
850 interface.

Inadequate Documentation
Ideally , any software package should

include four types of documentation :
• Tutorials to get you started; the more
examples and the more demonstration files,
the better.
• A quick-reference manual including a
detachable command reference card to
keep near the keyboard.
• A comprehensive reference manual.
• Application notes for programmers.

Figure 1.

Method One: Menus
A block of text can be deleted using the

menu tree.
1. Repeat steps 1-4 under "Delete Next
Character".
2. Recall the page that contains the text to
be deleted .
3. Type E in response to the next menu
prompt.
4. Press return .
5. Type T in response to the next menu
prompt.
6. Press return.
7. Type S in response to the next question.
8. Press return.
9. Position cursor at the beginning of the
block to be deleted .
10. Type G and press return. A right
parenthesis in inverse video will appear in
column one and a blank line will be
inserted.
11. Position cursor after the last line of
text to be deleted.
12. Type D in response to the next ques
tion .

Atari Word Processors

Atari 's Word Processor has all four, but Atari Letter Text
the tutorials and reference manual are Table 1. Atari Text Editor. WP Perfect Wizard
completely incomprehensible . The com- $150 $140 $99
bined manuals are more cumbersome (and Overall
bulky) than any of the more than sixty years on market 1/2 1/2 1/2
manuals I recently reviewed. Figure 1 shows back-up no $20 by mail $5 by mail
instructions for deleting a block of text uses Hi-Res graphics no no no
from pages 31-32 of the Atari manual. menu driven yes yes no

See, it's as easy as a,b,c,d,e,f,g,h,i,j,k,l. can display multiple files no no no
Don't ask how to move a block of text; displays text on screen
that takes 28 steps (Method 1). Whoever as it will appear in print yes no no
wrote this Atari manual (I think it was a can print one file while
committee) also wrote the mainframe editing another no no no
manuals that drove us to using personal handles files larger than memory yes no no
computers in the first place. can edit programs as well as text no no yes

All three word processors-Atari's, Letter control characters can be customized no no no
Perfect, and Text Wizard-do provide Documentation
detachable quick-reference cards. Text getting started slow slow easy
Wizard has only one example, which you tutorials hopeless no no
must type in yourself, and no demonstration examples yes none one
files. The Text Wizard tutorials also serve help menus cumbersome no no
as the comprehensive reference section-or reference material cumbersome yes good
is it vice versa? My manual was missing a separate reference card yes yes yes
page-the page that told how to save the

File Control file I had just created.
continuous back-up by page no no

Letter Perfect has no demonstration files
and only one example-a form letter. You save file and continue editing yes yes yes

must buy a second UK product for another automatic back-up on file save no no no

$150 to make use of the example. file protect safeguard yes yes no
insert a second file with one command yes yes yes

Text-Editors insert a portion of a second file no no no

The Atari Word Processor has the best
display a second file no no no

text-editor of the three full-screen word
display file directory no yes yes

processors , if you can figure out how to
kill file (and create space) no yes yes

use it. You can display text on the screen
can prepare files for transmission no no yes

as it will appear in print. You can work Scrolling (or cursor movement)
with files much, much larger than memory. by word no no no
And you will automatically save what you by line yes yes yes
have edited as you move from page to by sentence no no no
page. (Unfortunately, you will destroy the by screen yes no yes
old text as you do so; back-up is not to beginning or end of workspace yes yes yes
automatic.) to beginning or end of document yes no no

Text Wizard is the only one of the three horizontal scroll yes no no

which lets you edit programs as well as Delete
text, enter insert mode for the rapid insertion by word yes no no
of many paragraphs of text, and move or by line yes yes yes
copy entire blocks of text simply and by sentence no no no
rapidly . delete recover yes no no

Letter Perfect is the only one of the by screen yes no no
three to provide a block delete safeguard, by block yes yes yes
and to let the user set tabs with a cursor. block delete safeguard no yes no

There is an extensive list of simple editing continuous delete no yes no
functions that can't be done with any of Insert
the three including : key ph rases no no no
• Print one fi le while editing another. typeover (fast) yes yes yes
• Display a second file. insert mode (for many words) no no yes
• Automatically back-up on file-save . push ahead (for one or two letters) yes yes yes
• Insert key phrases with a single key- split and glue a line at a time no no no
stroke. intermediate buffer yes yes no
• Use wild cards in a search and replace block whole sections complex no copy yes command.

delete and restore yes yes no

Printer-Formatters The tables shown are reeoduced from "Choosing a Word Processor," by Phillip
You will probably have to settle for less Good. Copies of this boo malt be obtained from Information Research , 10367 Paw

than letter quality with an Atari. None of Paw Lake Drive, Mattawan, 149071. Cost is $14.95 plus $2.00 for shipping and
handling.

120

the full-screen Atari word processors
Table 1. continued

reviewed here supports the special features Atari Letter Text

of a Qume or a Diablo. Atari owners must
Search WP Perfect Wizard

content themselves with one of two dot find phrase anywhere in document yes * *
matrix printers-the Atari 825 (the Cen- find with user option to replace yes yes yes

tronics 737 in disguise) or an Epson MX- find and replace n times no no no

80. The Epson is by far the better buy, find and replace all in document yes no no

even though it will not support underlining, find and replace all in memory yes no no

superscripts, or subscripts. use wild cards no no no

You can't alter the number of lines per ignore upper/ lower case in matching no no no

inch with any of the three full-screen word Screen Format
processors. You are limited to a one-line format entire text yes no no
heading. You can't use soft or phantom format different parts differently no no no
hyphens; that means you will need to spend set line length yes no no
time printing and reformatting until you set tabs with cursor no yes no
get it right. You will spend less time with set tabs by command yes no no
the Atari word processor perhaps, because * Not applicable.
it lets you view your material on the screen
just as it will appear on the printer. But the Table 2. Atari Text Formatter.
screen display is so inefficient and time-

Atari Letter Text consuming, you may find it faster to use
the print and guess method of Text Wizard WP Perfect Wizard

Overall
or Letter Perfect. display on screen as it will print yes no no

None of the three lets you interrupt and print one file while editing another no no no
resume printing, whether to answer the mail-merge or file-merge no extra $ extra $
telephone or to pause for text entry from letter quality printers supported no no no
the keyboard. None of the three has mail-
merge capability . You can get mail-merge Layout

capability for Letter Perfect by purchasing set from a men u yes no no

UK's Data Manager. A mail merge option menu may be skipped yes

for Text Wizard is in the works. under user control while printing no no no
characters per inch yes yes yes

A Lost Cause? lines per inch no no no
I don't think the Atari is a lost cause. width limitation 80 80 80

With very little programming effort, one Page Control
can correct its keyboard deficiencies. The one line heading yes yes yes
cursor control keys can be reprogrammed
for lower case use. This has already been

multi-line heading no no no

done by Eastern House Software in their
heading and footing no yes yes

Atari Monkey Wrench . The Atari high
page numbering yes yes yes

resolution graphics can be used to create
odd/ even page distinction yes no no

a 60+ column display without hardware
conditional new page yes no no

assists. Both of the bare-bones word pro- Text Control
cessors already support letter quality justify yes yes yes
printers; there is no reason the more center yes yes yes
expensive full-screen word processors phantom hyphen no no no
cannot provide the same support. D conditional formats no no no

mult iple columns yes no yes
Vendor's List reverse line feed no no no
Bare-Bones Printer Control

Bob's Mini-Word (SIS), Santa Cruz
Educational Software, 155425 Jigger Dr. ,

underline yes yes yes

Soquel , CA 95073. (408)476-4901.
bold face yes yes yes

Letter Writer ($20), CE Software, 238
vary bold face intensity no no no

Exchange St., Chicopee, MA 01013.
super- and sub-script yes yes yes

(4 13)592-4761.
change ribbon colors no no no
kerning no no yes

Full-Screen
change control characters no no no

Letter Pelfect (5140), UK Enterprises,
proportional spacing yes yes yes

P.O. Box 10827, St. Louis, MO 63129. Output Control
Text Wizard ($99), DataSoft Inc. , 19519 interrupt/ resume no no no

Business Center Dr. , Northridge, CA 91324. pause for text entry from keyboard no no no
(800)423-5916. pause for variable entry no no no

Word Processor (SI50), Atari Inc., 1265 start/stop at designated page/ record yes yes yes
Borregas, Sunnyvale , CA 94086. (800)538- print multiple documents no no yes
8543. print multiple copies no yes no

121

Atari Text Editor Program Elwood J. c. Kureth

I'd be willing to bet that a fair num
ber of people who own a computer
and a line printer do not own a type
writer. Of those individuals who don't
own one, it would probably be safe to
assume that its absence cou ld be
attributed to the fact that (a) the need
for a typewriter has never arisen , or (b)
they don't need (or use) a typewriter
often enough to warrant purchasing
their own.

If you already own a typewriter
(as I do) in addition to your computer
and its related items, and you a lready
type with confidence, then perhaps
this program will be of little use. How
ever, if you're like me, you usually end
up making a few mistakes , which
means erasing or starting all over
again.

This program was written for an
Atari 800 with a n Epson MX80F/ T
printer. It's not a word processing
program by any means; in fact , it's
very limited in its application. What it
allows you to do however , is put text
on the screen , edit it, and send it to a
printer in two different print modes.

edit the line the cursor just left. If you
wish to make a change to a line of text ,
it must be done while the cursor is on
that line.

You may move the cursor back
wards by using either the DELETE/
BACK S key or theCTRL<--keys.
Using the DELETE/ BACK S key will
delete the character the cursor covers.
Let's say you have the word
"MICROOCOMPUTERS", and yo u
wish to delete the second "0" from
that word. This action could be ac
complished one of two ways. The
DELETE/ BACK S key could be usrd
until the cursor is over the second
"0", thereby deleting it, as well as a ll
the characters that had followed it.
Now it would be necessary to retype
the rest of th~ word .

The alternate method would be to
use the CTRU>--keys, moving the
cursor backwards to the immediate
right of the second "0" (cursor would
be covering the "C"). At this point you
would hit the DELETE/ BACK S key,
which would move the cursor over the
"0" (deleting it), followed im
mediately by the CTRl.:-- > keys to the
point where you'd left off. The cursor
will automatically stop at that point
if you hold the keys down.

CAUTION: With the exception of

the abovementioned example, any
t ime you move the cursor backwards,
your first action when moving it
forward again must be to type at least
one character, as opposed to im
mediately using the CTRL-- >keys to
start moving the cursor forward. If,
in the example used above, you over
shoot the "0" and the cursor winds
up over the "M", instead of using the
CTRL--:> keys to move the cursor, you
would first type the letter "M", then
CTRI::--> (or type) to the right of the
"0", then DELETE/ BACK S over the
"0", then (whew!!) CTRI.:-->to the
point at which you started backwards.

The last line of text must be fol lowed
by a RETURN. Then , it's simply a
matter of hitting a CTRL P , and your
text is transfered from screen to paper.
More copies? Just hit a CTRL P.

If you desire to type new material,
you must first clear the memory by
hitting the ESC key. If this is not done ,
two things can happen when you print
out the new text. First , the previous
material wil l be printed out before the
new text. Secondly, if you hit a
SYSTEM RESET, run the program,
type new material , and edit that new
material , you could get a rather con
fusing text. Always hit the ESC key
.first after you're through printing
your material.

RUN it and you will be asked to set
the right margin (up to 80 columns).
Hit a RETURN to enter the number.
You will then have to determine if you
want emphasized print. This type of
print is much bolder than normal print
and approaches letter quality . Simply

"Y" "N" (RETURN ' 1 REM ATARI VERSION- -BY ELWOOD J . C. f(URETH,JR.
type or no IS 5 OPEN 111,4, 0, ",~ ": OPEN 117,8,0, "P": GRAPHICS I)

necessary because the keyboard 10 POKE 752,1: M=O: COUNT=O: BUZZ =O:? 117; CHR$ (27); CHR$ (64)
"reads" your input). Next, yo u will be 15? CHR$ (125): POSITION 5,5: ? "SET RIGHT MARGIN (uP TO 80)";: INPUT MARGIN: IF MAR

bl GIN >80 THEN GO TO 15
prompted for single or dou e space. 20 POSITION 2,5: ? "DO YOU WANT EMPHASIZED PRINT(Y OR N)":GET *l,LTTR:IF LTTR<>89
After your selection, you will face a AND L TTR(>78 THEN GOTO 20
blank screen. The first key you hit will 22? CHR$(125):POSITION 5,5: ? "SINGLE OR DOUBLE SPACE(S OR D)"

23 GET 1I1,SPACE:IF SPACE(>83 AND SPACE<>68 THEN GOTO 22
display the cursor, and away you go. 24

Four spaces from the end of each 25

line a warning buzzer will sound , just ;~
like the bell on a typewriter. The 30

cursor will not advance once you have 35
37

reached the right margin; it will, how-

? CHR$(125); :POKE 752,0
GET 111, IT
IF IT=156 OR IT=157 OR IT=254 OR IT=255 OR IT=125
IF IT=126 OR IT=30 THEN GOTO 500:REM BACKSPACE
IF BUZZ=MARGIN AND IT< >155 THEN GOTO 25
IF IT=16 THEN GOTO 600:REM PRINT
IF IT=31 THEN GO TO 900:REM ADVANCE CURSOR

ever, backspace or RETURN. So
there's no need to worry a bout over
running your margin.

3 8 IF IT=27 THEN GO TO 20~):REM CLEAR MEMORY
40 COUNT=COUNT+l :BU ZZ=BUZZ+l:IF BUZZ=MARGIN-4 THEN?
41 IF IT=155 THEN ? CHR$(O);:GOTO l~)O : REM RETURN
42 M=M+l
45 POKE 6000+M, IT: ? CHR$(PEEK (6000+M»;:GOTO 25
500 IF IT=126 THEN POKE 600 0 +M,0
510 7 CHR$(IT);:GET 1I1,IT

THEN GOTO 25

II}" ;

NOTE: A HEART (CHR$(O)) will
appear each time a RETU RN is hit.
The heart will help you keep track of
your lines on a 40 column screen.

515 IF IT=126 OR IT=3 0 THEN t1=M-I: BUZZ=BUZZ-l : GOTO
520 IF IT=155 THEN GO TO 100 0

500

Let's say you have a 37 or less char
acter line on the screen (79 or less
character line for an 80 column
screen) , and yo u want to change a
character. If the cursor has a lready
advanced down one physical line (due
to a RETU RN or end-of screen
return) you wi ll be unable to correct ly

5 .30 GOTO 45
600 FOR X=1 TO COUNT: IF LTTR =89 THEN 7 117;CHR$(27);CHR$(69);
620 ? 117;CHR$(PEEK(6000+X»;:NEXT X:GOTO 25
900 M=M+l:BUZZ=BUZZ+l
905 GET 1I1,IT
907 IF M>COUNT AND IT=31 THEN GOTO 905
908 IF IT=31 THEN ? CHR$(IT) ;:GOTO 900
910 IF IT=155 THEN GO TO 100 0
920 GOTO 45
1000 COUNT=COUNT+l:POKE 6000+COUNT, 155:? CHR$(PEEK(6000+COUNT»;
1 I) 1 0 IF SPACE=68 THEN COUNT=COUNT + I: F'OKE 6(1)(>+COUNT, 155: 7 CHR$ (PEEK (6000+COUNT))

1020 M=COUNT:BU ZZ=O:GOTO 25
2000 POKE 752, I: ? " } ":POS ITION 7 ,5: 7 "**** PLEASE WAIT **** "
2010 FOR FILL=1 TO COUNT:POKE 6000+FILL,O:NE XT FILL:7 CHR$(125) :GOTO 10

Elwood J.e. Kureth, HHD, 14th Maintenance
Bn., APO New York 09169.

122

VisiCalc: Reason Enough for Owning a Computer

Ideally your computer should be
able to act like a cross between an
electronic piece of paper and a pocket
calculator. That seems to be just what
the people at Personal Software, Inc.
had in mind when they developed
VisiCalc. VisiCalc is not merely a piece
of interactive software, but in some
respects is more like a separate pro
gramming language. It is extremely
powerful , and handles many varied
jobs with aplomb. When used properly
it can save a great deal of time that
would ordinarily be spent program
ming or using several pieces of soft
ware. VisiCalc cannot do some of the
things that high level languages can
do, but what it can do, it does very well
indeed.

It takes much less time to learn
virtually everything there is to know
about the VisiCalc system than it takes
for any other programming language
you can think of. In my case it took
about seven days averag ing about one
and one-half hours a day to become
conversant with all that VisiCalc has to
offer. This is in sharp contrast to the
various high level programming lan
guages that demand much more of the
learner in exchange for their greater
flexibility.

Not only does it take only a short
period of time to understand the entire
VisiCalc system, but it takes almost no
time to begin getting results from this
remarkable piece of software. This is
an opinion that I share with everyone
that I have demonstrated this system
to , as well as several people in the
computer business who already use
VisiCalc or supp ly it to other users.

A Window Into The
Computer's Memory

After you load in the VisiCalc disk
you will have the basic electronic sheet
of paper on your screen . As you can
see from Photo 1, it has 20 rows and
four co lumns. Each location in this
grid is identified by the number of the
row and the letter-code at the top of the
column , for example, A 1. The cursor in
VisiCalc is much wider than the usual
single-character cursor; it takes up the
entire entry that it occupies on the grid .

Any entry on the sheet can either
be a number, a word, or a function of
the contents of other locations. This is
one of the reasons that VisiCalc is so
powerful. Whenever a location is
changed by the user, all of the loca
tions that depend on it are auto
matically recalculated. It is this aspect
of VisiCalc that is so striking and so
useful.

Let us say you have told the
VisiCalc sheet to derive column C in
some way from columns A and B. Then
if, for some reason, you change any of
the values in columns A or B, new
results in column C will be displayed
automatically. This is like using FOR
. . . NEXT commands in immediate
mode without ever having the contents
of your memory leave the screen.

Although what you see is limited
by the number of spaces that can be
displayed on your screen at once, the
electronic sheet is actually much
larger. There are 254 rows and 63
columns where information can be
stored, and the amount you can store is
lim ited more by the size of your com
puter's memory than it is by the
VisiCalc sheet.

Keeping track of the remaining
memory is very simple since it is con
stantly displayed in the upper right
hand corner of the screen.

You may only see 20 rows of data
at one time, but the number of columns
can be varied by changing the width of
the columns. You can also store more
information in one of the grid loca
tions than it appears able to hold. The
system will remember exact ly what
was entered regardless of how narrow
you choose to make the visib le col
umns. The screen will display as many
characters as you allow for, beg inni ng
from the left of your input.

In addition to the grid, there is
space at the top of the screen where
other important information is dis
played .

The white bar d isplays the con
tents of the location where the cursor
is currently residing . This can either be
a value (v) or a label (I). These terms
are analogous to numeric and alpha
numeric variab les that one deals with
when using Basic; except just a value
can be an expression referring other
locations in the tab le.

Two Independently
Scrollable Windows

If you are not satisf ied with the
information that you can see on the
screen at one time, you can split the
screen in either the horizontal or
vertical direction and look at whatever
portion of the sheet you li ke in either
window. A common use of this feature
is to display the upper left corner of
your sheet in the left window while the
lower right portion of your work is dis
played in the right window. That way
you can change your initial entries and
watch your totals change at the same
t ime. Photo 2 shows an example of how

Doug Green, Cortland Jr.-Sr. High School, Valley View Drive, Cortland, NY 13045.

123

Doug Green

Photo 1.
this might be put to use while analyzing
the family budget for the upcoming
year. I nstead of wondering idly what
would happen to your savings for the
year if the electric bill goes up five
dollars a month, you can find out just
by typing over the information that you
would like to see changed . As you
might guess, this will change the entire
row that lies beyond the changed data,
along with all of the column totals that
depend on these figures .

Photo 2.

The Replication Feature
Another impressive feature of this

system is the ability to replicate similar
functions down a row, across a column,
or in both directions at once. For
examp le, if you wish to have VisiCalc
derive values for column C by sub
tracting those in column B from the
corresponding values in column A, all
you need do is type in the directions
for the first location in column C along
with directions for replication. This will
cause column C to be completed in an
instant.

If you are trying to complete a
table of entries that depends on the
values stored in the top row and the
left hand co lumn , all you need do is
supp ly the directions for the entry
located at row two, column two along
with the replication commands and
the screen will fill before your eyes,
much faster than most users could

VisiCalc

type in the specific formulas to per
form such a task.

Cursor Control
The - and - keys are used to

move the cursor from side to side and
up and down, while the space bar is
used to change the di rection of cursor
movement from horizontal to vertical
and back. For rapid movement you can
hold down the repeat key. There is also
a GOTO command that allows you to
move the cursor to any location on the
sheet with just a few keystrokes.

The little dash in the upper right
hand corner of the sheet tells you
which way the cursor is currently pre
pared to move. The letter next to this
dash , either a C or an R, lets you know
the current direction that the recal
culation will occur in. You can instruct
VisiCalc to recalculate down the
columns (C) or across the rows (R).
This will depend on how you have set
up the entries in your table.

The ESC key is used to recover
from Simple typing mistakes. If you
press it often enough it will erase all
that you have typed in since you last hit
the return key. As you enter data for a
given location it appears on the so
called prompt line, the line between the
white box at the top of the sheet and
the grid. When you close an entry by
hitting return , or moving the cursor to
another ·location on the page, the con
tents of the prompt line are calculated
(if necessary) and placed in the loca
tion on the grid that you have just dealt
with .

More Functions And Commands
There are a number of other func

tions that are available to VisiCalc
users. These are all listed in Table 1,
but a few deserve special mention . The
sum function is especially useful to
anyone dealing with columns of num
bers that must be added. (Think of all
the time operators of small businesses
can save by not having to bang num
ber after number into a calculator.
With VisiCalc they only need to be
written once.) You can also ask for the
average of a range of val ues along with
other common functions used in bus
iness, science, and mathematics.

The list of commands is also im
pressive. With a few key strokes you
can blank out any location, add or
delete a row or column , move a row or
column to a new location on the page,
or repeat a number or letter across any
location in the grid. This last com
mand is especially useful for drawing

SUM

MIN

MAX

COUNT

AVE

NPV

LOOKUP

PI

ASS

INT

EXP SORT
LN LOG10
SIN ASIN
COS ACOS
TAN ATAN

NA

ERROR

»»

Scientific
Notation

VlslCalc Functions

Calculates the sum of the values in a list

Calculates the minimum value in a list

Calculates the maximum value in a list

Results in the number of non-blank entries in a list

Calculates the average of the non-blank values in a list.
The maximum number of values in the list is 255.

Calculates the net present value of the cash flows in a
list, discounted at the rate specified. The first entry in
the list is the cash flow at the end of the first period, the
second entry is the cash flow at the end of the second
period, etc. .

Used with a list of items that are ranked in ascending
order. This function returns the value from the list that
is less than or equal to the value referenced in the
command given.

Returns the value. of 3.1415926536

Returns the absolute value of the value given

Returns the integer portion of the value given

Calculates the appropriate function . The trigono
metric calculations are done in radians

Results of a calculation are not available. This makes
all expressions using the value display as NA.

Results in an "Error" value that makes all expressions
using the value display as ERROR.

This means that there is not enough room to display
the calculated value in the room available. Making the
columns wider will often allow the value to be dis
played.

VisiCalc will automatically shift to scientific notation if
necessary in order to display a value in the space
alotted.

Table I.

lines across the page like those in
Photo 1. There are a number of com
mands that can change the format of a
given location or the entire window
that the cursor is located in. The
choices for these format com mands in
clude: general, integer, dollars and
cents, left- or right-justified columns,
and graphing . This final command can
be used to construct simple bar
graphs for information displayed in a
range of entries selected by the user.
This is shown in Photo 3.

Other commands couple or un
couple the movements of pairs of
windows, fix the titles on the screen

124

Photo 3.

as the cursor moves down or to the
right , and replicate formatting acrossa
whole column or row, orthe entire con
tents of the current window. These
commands require between two and
five keystrokes each depending on
what is being accomplished . (The
Clear command requires three key
strokes, a fact that saved me from
clearing the VisiCalc sheet at a time
when I was really trying to do some
thing else.)

VisiCalc manages its own storage
in its own format. It provides storage
commands allowing you to save files
on disks or cassette tapes, load files
from a disk or a cassette , delete a file
from a disk , or initialize a blank disk so
that it will be ready to receive VisiCalc
files for storage. It is easy to ask for a
list of the file names on a given disk.
You can also print the contents of your
sheet on a disk as a "text file. " This
file can be read by other programs in
Basic, for example , and the informa
tion can be further processed in this
manner. (This feature permits you to
perform whatever other functions you
may feel are missing.)

Similar commands will result in
the printing of your electronic sheet
by your printer. The output will be what
is actually on the sheet , as opposed to
what appears in the window , so be sure
to pay attention to the line width of
your printer . In any case you can
specify the portion of the page that will
be printed with the issuance of the
proper print command .

Atari Resources

Where do you get more help and
information about your Atari? Obvi
ously, Creative Computing ' is one
source, and there are several others.
If you are a beginner, the Atari Basic
self-teaching guide that came with
your computer will get you started.
When you send in your warranty
card, you will recieve the Atari
400/800 Basic Reference Manual,
which is much better, and actually
answers most of your questions. I
had three questions when I first
started programming the Atari:

Stay Tuned
Your purchase of the VisiCalc

package includes an instruction book
that contains an introduction and four
lessons. As I read through the book
and carried out the examples I found
the text to be easy to understand. The
explanations were certainly cleaner
and better than those I have seen in
most systems programing manuals.
Along with the book, which is in a
handsome 10 x 7% inch three-ring
binder, you receive the VisiCalc ref
erence card. This contains a summary
of all of the Vi siCalc commands and
functions and is extremely useful for
users who are new to the system. It
would also be invaluable to infrequent
users . When you send in your warranty
card you will receive the first copy of
the VisiCalc Newsletter free . Original
owners are also protected from any de
fect in the disk for 90 days, and re
placement thereafter for $15.00.

The people at Personal Software,
Inc. are planning to improve the system
and offer the updated versions to
original owners at a reduced price.
They also encourage users to sug
gest changes and additions to improve
the system. As a VisiCalc user I would
suggest that they add some of the more
commonly used statistical functions to
those listed on Table 1. The ones that I
would suggest would be: standard
deviation, one or more correlation co
efficients, and perhaps the ability to do
a t-test and a least-squares linear re-

1. How do you concatenate strings?
2. How do you array strings?
3. How do you obtain keyboard input

without stopping the program?

Atari had given me the name of
someone in the plant to call for
questions, so I called and left my
questions. Within hours they called
back with the answer; "We don't
know." The next day my preliminary
reference manual arrived, and it had
answers to all three questions! The
answers were not easy to find, but

125

gression; but new functions , must use
up too much memory.

Machines And Memory Requirements
Although the version I used was

designed for an Apple system , it will
soon be available for other makes of
small computers including Pet and
Atari. It is only available on disk and
requires a minimum of 32K of RAM.
Additional memory will allow for the
storage of a much larger electronic
sheet but all of the systems ' features
are avai lab Ie for users of 32K systems.

The version that I used (version
35) requires 23K for the resident pro
gram. This means that for a 32K sys
tem there remains only 9K for storage
of the electronic sheet. This still allows
for a reasonable amount of storage,
but for most business applications it
would be a good idea to have 48K avail
able.

Worth The Money?
If you are in business, the chances

are that the cost of a VisiCalc disk will
be one business expense you will
gladly bear. The current suggested
retail price is $150.00. This may be a
bit steep for someone who only needs
to do his check book and the family
budget, but for almost anyone in bus
iness, education, or any science
related field it is not on Iy worth the
initial expense, but reason enough to
purchase a small computer system in
the first place. 0

they were there.
1. To concatenate a string variable,

follow these steps:

a. Dimension the recieving
string large enough to hold
the combination.

b. Determine the length of the
original string with the LEN
function.

c. Assign the string to be
combined to the next loca
tion In the receiving string.

Atari Resources

Here is a program to do it:
10 DIM A$(10):DIM B$(5)

20 A$ ="THIS "

30 B$= "+THAT"

40 A$(LEN(A$)+l)=B$

50 PRINT A$

2. String arrays are difficult in Atari
Basic. Essentially, you have to
dimension a very large string,
store all other string data as
substrings, and do your own
bookkeeping to keep track of
where each item is. The Alpa
numeric Sort routine in Appendix
A of the Reference manual uses
this method. One advantage of
Atari Basic is that there is no ar
bitrary limit to the size of a
string, as there is in Microsoft
Basic, so there is a lot of
flexibility.

3. To strobe the keyboard, PEEK lo
cation 764 in memory to deter
mine when a key is pressed. To
obtain a single character from
the keyboard, OPEN the key
board as an input device and use
the GET command:

10 X=PEEK(764) :IF X<255 THEN PRINT X

20 GOTO 10

10 OPEN #1 , 4, 0, "K : "

20 GET #l, A

30 PRINT CHR$(A)

Other sources of information include
Compute! magazine which divides its
attention between the Pet, the Atari, and
the Apple. The cost is $20.00 a year for 12
issues. For a subscription, write:
Compute!, P.O. Box 5406, Greensboro,
NC27403.

Two magazines published soley for
Atari owners are A.N.A.L.O.G. (6 issues,
$12.00 a year) and ANTIC (6 issues,
$15.00 a year). Write to A.N.A.L.O.G. at

P.O. Box 615, Holmes, PA 19043 and to
ANTIC at 297 Missouri Street, San
Francisco, CA94107.

I have since received the regular
Basic Reference Manual, and it is
even better than the preliminary one.
One nice new feature is an excellent
memory map. Some information is
still not released, but I get the
impression that this is because Atari
is reluctant to release it in its
prelimiM ry form , not because they
are trying to hide something. I know
that they have been particularly
helpful to friends of mine who have
signed non-disclosure forms.

Tutorial Series
One excellent source of informa

tion is Iridis. Iridis was first adver
tised as a magazine, but now
describes itself as "a series of
tutorials about the Atari Personal
Computer." It is sold, not by sub
scri pt ion , but by ind ividual issues.

Iridis I contains four programs
with explanatory articles, three col
umns , and an explanation of their
format for printing control charac
ters. You can purchase it either with
the programs on cassette ($9.95) or
on disk ($12.95).

The four programs include
"Clock," a high resolution wall clock
with moving hands, ticking and
chimes ; "Zap," where a joystick-con
trolled snake moves around the
screen eating bits of food and
growing; "Logo," which displays the
Iridis logo in dozens of different
shades , with instantaneous changes
from one color to another; and
"Polygons," which constructs geo
metric patterns .

Each program is listed, and a
"behind the scenes" article following

Questions and Answers

The following are answers to some
of the mail we have received of late.

Q. PEEK(741)+256*PEEK(742) (from
July '81) is not a good way to find the
display list. PEEK(560) is. Why didn't
you?

A: Knowledge about the Atari is a rapidly
unfolding thing. We pass on what we know

when we know it. And remember, we write
columns about four months before you
read them. Since we are experimenting
with the Atari a ll the time, and learning
more , sometimes we discover a better way
of doing things about which we have already
written. No matter; we try to give the best
of what we know at the time.

126

each listing explains the program in
detail. These listings are very well
done, and contain fascinating
glimpses into programming tech
niques. For example, you can test to
see if the START button is pressed
by checking to see if memory
location 53279 contains anything
other than 7.

The three columns are "Novice
Notes, " with programming tips for
the beginner, "Hacker's Delight ,"
which goes into detail about how the
machine works, and "Oddments,"
which contains features too short to
deserve an article, but too significant
to be ignored.

Iridis I comes in manual format, 6
inches by 9 1/2 inches , and contains
32 pages . The print is quite small,
and appears to be typeset with a
smal! Icom puter :word processor and
pri nter. Except for a chart on the last
page showing the Atari control
characters, there are no illustrations .

You may order Iridis from The
Code Works, Box 550, Goleta, CA
93017

Itty Bits
As a closing feature, here is a

calculator program I use frequently
to balance my checkbook, do my
taxes, and for any other adding
machine functions. Although it is
very short, it is one of my favorite
programs. To clear the memory,
enter the present value of the
accumulator (B) as a negative
number.

10 INPUT A B=B+A PRINT B GOT010

Q: In the DLI article (December 1981)
you don't use memory page 6. Why? If you
did, you could fix the location of the
program and avoid the relocation code.

A: First , we left the page alone so the
user could use it along with the DLI routine.
Remember, the DLI routine will coexist
and coexecute a long with many assembly

routines as it is an interrupt handler. Hence,
it is potentially more useful located outside
of page 6.

Second, it gives us a chance to explain
all about string handling and the general
principles behind regarding a string as just
a collection of bytes in memory, useful in
other ways besides merely holding char
acters. These are tutorials, remember, and
often the stated goal is far less important
than the getting there . The principles behind
the demonstration will be far more useful,
in many ways, than will be the demontra
tion.

Q: In the July article you show a mixed
mode display, which I can't produce. Could
you send me the code for this? (Multiply
this by 80 letters or so.)

We omitted the code because I was
addressing the principle of stacking display
blocks, and the code is somewhat confusing.
It tends to raise more questions that it
answers, but I have included it here for
the curious. See Listing l.

Basically we are modifying a graphics 8
display list to:

GR.2
GR.2
GR.O
Gr.8 x lots
We are not duplicating the July display

exactly, but you can with the principles in
the code.

We use two GR.2 lines to make the
memory requirements come out to 40 bytes,
to keep "in sync" with graphics 8. We then
put data into the first 120 bytes of OM for
character output.

Listing 1.
10
20
30

REM
REM
REM

GRAP H PROGRAM
LAYOUT :

40 REM 1 LINE GR.2 20 BYTES 15
50 REM 1 LI NE GR . 2' 40 32
50 RE~1 1 LINE GR.0

120 LINE GR.8
00 40

70 REM
80 REM 1 LINE GR . O
g0 REM 1 LINE GP.0
100 REM 1 LH1E GR.0
110 REM I LINE GR . 0
200 REM SET MODE

80+(4800) 160
+40 16B
+40 175
+40 lB4
+40 192

210 GRAPHICS'B+15 : REM FAKE LAST FOUR
220 REM DISPLAY LIST
230 ST =PEEK (560) +256*PEEK(561)
240 REM ST+0.ST+l.ST+2=112 .. LEAVE BE
242 REM ST+3=7g . CHANGE TO 7+64 .
243 POKE S T+3 ,7 +64
245 REM ST+4.+5=DATA. LEAVE BE.
246 REM 5 T+6.ST +7= 15. MOD TO 7.2.
247 REM (MOD E 2. THEN MODE 0) .
248 POKE 5T+6,7
24g POKE ST+7.2
250 REM DM + 0 - DM + 29 = MODE 2 Ll
255 GOSIJB 1000

Character data is translated from
AT ASCII to INTERNAL format for dis
play ; they are not the same. A machine
language routine here would be quite nice;
there is probably one in the operating system
that could be used . The INTERNAL codes
are then POKEd into memory.

Because we now generate 16+ 16+ 8+ 189
scan lines , instead of 192, we have a total
of 229 generated lines. This will probably
cause your TV to "roll." So we chop out
the lower 40 graphics 8 instructions by
moving the JVB instruction up . I copy the
data bytes first, then the JVB byte, to
prevent the JVB taking off into random
memory.

Or so we thought. (And so we told you.)
JVB is the jump and wait for vertical blank;
it makes the display list into a GOTO
loop, so we said. Except that just by accident
we found out that where it jumps to doesn 't
matter. That's right: the data bytes following
the JYE are irrelevant. Why? Because at
the start of every screen refresh, the
operating system copies the display list
location shadows (560, 561) into Antic and
re-sets him to the start of the OL. So all is
well even if Antic , at the end of the OL,
jumps off to kingdom come.

Except: during disk accesses, where
apparently the Vblank routine copy is
nulled . Then the screen will go wild. (See
what I mean about "rapidly changing
knowledge"?)

Along these lines , a fun display is to set
up two display lists and two display mem
ories, and have Antic execute them
alternately. (Use a OLI in the first 112

340 DM=PEEK(ST+4)+255*PEEK(ST+5)
410 REM POKE INTO MEMORY
420 FOR T=I TO 20
430 POIIE DM+(T-l) .ASC(A$(T.T))
440 NEXT T
450 A$=" MODE 2 SECOND LINE •
450 REM 12345578g012345S7890
470 REM TRANSLATE A~ TO INTERNAL

CSET
480 GOSUB 500
485 REM POKE INTO MEMORY
4g0 FOR T=1 TO 20
433 POK E Dt1+20+< T-I). ASC(A$ (T. T))
4gb NE XT T
497 GOTO 600
500 REM SUBROUTINE TO XLATE ASC TO
510 REM INTERNAL C5ET
520 FOR Z=1 TO LEN(A$)
530 IF A·$(Z.Z)=oo 00 THE~I A$(Z.Z)=

CHR.(0)
540 IF ASC(A$(Z. Z))< >0 THEN A$

(Z. Z)=CHR.(ASC(AS(Z. Z))-32)
550 NEXT Z
5£0 RETURn
S00 REM DO MOD E 0 LINE NE XT.

instruction to swap display memories.}
You'll get two displays superimposed on
each other. For example, we had a graphics
o display of Basic code imposed on the
graphics 8 display it produces. Nice, and
nifty for an editor or such. However, it
does tend to flicker.

Q: Speaking of flickers, your OLl routine
has an annoying flicker in midscreen-a
border between two colors that jumps back
and forth. Why?

A: You're right. Next question?
Seriously, the reason for this is that the

6502 just doesn't have enough time to copy
all the data into the CTIA color registers
before the TV scan line begins. In fact, it
can't even start until midway through the
last scan line of the display block with the
interrupt flagged. The TV refresh process
outruns this rather generalized routine.
You'll have to learn assembly language to
deal with this properly; use WSYNC, then
rapidly store up to three colors after the
WSYNC using STX, STY, and STA. You'll
still be offscreen. For those of you I've
lost, the timing of a DLI routine is a very
touchy thing; if you don't know machine
language and how the Atari relates to the
TV, forget it.

This routine will also crash in graphics 8
as it will not complete between interrupts
if you have interrupts on two consecutive
scan lines. If you want that, learn assembly
language, then write your own driver.

On Memory Boards
Q: My Atari dies after being on for a

while. Or, my Atari freaks out unexpectedly.

6710 NEXT T
675 REM PLOT A SAM PLE GRAP H
676 SETCO LOR 2.8.0
680 XMIN=2
690 YI1 I 1'1=5
7100 XMAX=31g
7110 YMA:~=159

720 CO LOR I
725 PLOT 1.70:DRAWTO 319.70:PLOT 1 . 70
726 XSAV=I : YSAV=70
730 FOR X=5 TO 315 ST EP 5
740 Y=INT(RND(0)*701+40
750 DRAWTO X.Y
752 PLOT XSAV+l.YSAV:DRAWTO X+l.Y
753 PLOT XSAV+2.YSAV : DRAWTO X+2.Y
755 XSAV=X:YSAV=Y
7610 NEXT X
770 REM PUT IN 4 TEXT LINES AT BASE/
780 REM AFTER 160 (GR . 8) INSTRUC T IONS
790 GOTO 7g0
1000 FOR Y=5T+150 TO ST+210
j 010 I c· F·EEI« Y)=65 THEN 1100
1020 NEXT Y
1030 PRINT "P LATO OFF.'
1040 ST OP

260 DIM A$(60) 40 BYTES 1100 Bl=PEEK(Y+I)
261 SETCOL OR 4.3.2 610 A$=' A TEXT MODE 0 SUBTITLE" 1110 B2=FEEK(Y+2)
270 A$=" MOD E 2 BIG TITLE 620 REM XLA TE 1120 POKE 5T+162 . B2
280 REM 123456739@1234567Sg0 630 GOS UB 500 1130 POKE ST+151.Bl \
230 REM TRANSLATE A$ TO I NTERNAL CSET 540 REM POKE IN TO MEMORY 1140 POKE ST+160.65
300 GOSUB 50/" 650 FOR T=1 TO LEN(A$) 1150 RETURN
330 REM F I tW D I SPLAY tlEMORY ';';0 POKE DM+40+! T -I). ASC(A$(T. T))

127

Questions and Answers

Or, my Basic programsscrozzle themselves.
Or. ...

A: 1. If you squeeze the last few bytes of
available memory, Basic seems to screw
up. Something in the upper memory man
agement routines fails during tight squeezes,
and there isn't much you can do about it.

2. The Atari memory boards may be
giving you trouble. Here's Small's Memory
Board Fix (which works amazingly often
on bizarre Atari problems):

The Atari memory boards get hot, really
hot, in their enclosed metal cans in the
enclosed metal cage. This heat can mess
things up , particularly in the connectors.
The metal is necessary to avoid spraying
radio frequency interference all over, but
it does cause problems. So every month or
so we pull all the boards out of the Atari
and re-seat them. This re-establishes the
socket connection. Cleaning the ends of
the connector (a pencil eraser works
wonders) and coating them with Lubriplate,
then re-seating them is also a good idea
helps prevent corrosion.

If this fixes it , fine. If not, go the drastic
route (as we had to on one very touchy
800):

1. Remove the lid. Bypass the interlock
with a taped in Q-Tip.

2. Remove the memory board lids (pull
the two Phillips head screws). Re-install
the boards.

This will really help to keep things cool.
Of course , you may not be able to watch
TV nearby (nor will your neighbors) but it
will prevent overheating.

Now that you have the lid open, some of '
you are doubtless going to get the clever
idea of copying ROM cartridges onto disk.
After all, you can boot up , then plug them
in with DOS running. Then, a simple binary
save , right?

Wrong.
Atari has some nasty, nasty surprises

awaiting you if you try this. First, plugging
the cartridges in sends a nice hefty spike
into the memory lines, straight into sensitive
Antic, CTIA, and the 65028. Do you really
want your Atari in the repair shop? All it
takes to destroy these chips is a little static
electricity in the wrong place , and your
body is probably fu ll of it in the winter.

Second, the Atari people have some
special checks to prevent this. For example,
disk I/O doesn't work the way you might
expect from cartridges. Ever had your
directory mysteriously disappear? This
should be food for thought.

On Piracy
Speaking of piracy in general. I have

found copies of my software (what goes
into these articles) floating around all over
the place. This is really embarassing when

the disk that was pirated is a development
disk and you've saved all sorts of junk on
it.

But second , when you think about it ,
the prices you pay for software nowadays
in many cases are pretty low anyway (when
was the last time you could go on a date
for $20) , so why not give the author his
royalties, and get the documentation as
well?

I wish that people didn't consider pro
tection schemes a Scott Adams adventure
#30 to be broken. If you think about it, the
hours you spend breaking the scheme are
equal in dollars to what you would pay for
the software in many cases. (And if you're
thinking about selling copies, don 't; all the
software companies I've talked to are
currently prosecuting people caught doing
this.)

Q: I have 32K. Should I get 48K?
A: Maybe. If you use no cartridges, the

Atari can use up to 48K RAM. If you use
one cartridge, you are reduced to 40K
available; if you use two , 32K. Eventually ,
as more RAM-only programs become
available, 48K will be more and more handy.
For example, Microsoft Basic , which we
are currently testing, requires 48K but has
no cartridges (disk based). We 're in a
transition period , in other words , and it
may be to your advantage to wait a bit ;
hardware prices are dropping quick ly, as
usual.

On Disks
Q: During a disk access, my disk stops

for a while for no reason and then restarts.
Why?

A: A bug in the O.S. program. No , the
disk isn 't stopping to cool off (like an 820
printer) or anything. This is fixed in the
new revision cartridges, which are slowly
becoming available.

Q : What are DOS 2.5, 2.7 , 2.8 , 2S, 2.0S,
2.0D?

A: DOS 2.0S is the final, "cast in concrete"
version of DOS 2. The others are develop
mental versions. They are pre-release
copies. There are lots of 2S disks lying
around; these have a bug in the interrupt
subsystem, so best get rid of them. Also , if
you boot up under 2S , you can't "DOS" to
a 2.0 version of DOS. They're incompatible .
So your best bet is to change your disks
over to 2.0S and use it .

DOS 2.0D is for the double density 815
drive, which has been cancelled , delayed,
sent back , or whatever (depending on who
you talk to) .

Q: What is a "fast formatted disk?"
A: Inside the 8 10 disk drive there is a

microprocessor. When the Atari wants a
given disk sector (128 bytes) , it asks that
microprocessor for it. The micro then spins

128

the disk and moves the head to get that
sector. If you have a disk with a more
efficient layout, you can go between sectors
(without a complete spin between them,
for instance). A "fast formatted disk" has
this improved layout , and , thus, when you
access it , disk I/O is around 20% faster.

Disks that you format with your 810 will
not have this improved layout, because it
lays them out the old, slow way. A new
ROM, called the "C" ROM, can be installed
into your disk drive to make it format
disks the fast way.

Who knows when it will be available?
The rumour mill says that 1) all disk drives
going to Europe have it; 2) all disks to the
East Coast have it; 3) all disks shipped
after September 1981 will have it , etc.
Probably by the time this is printed some
policy will have been established .

For those of you who can't wait , the
Chicago area user's group has constructed
their own version of the format ROM,
which requires a few wiring changes to the
disk and programming a new EPROM (not
your beginner-level stuff) . The Chicago
ROM is 10% faster than the Atari ROM,
which is definitely interesting. The ROMs
work quite well; I've seen them tested.
However, since the Chicago folks developed
them I'll let them document it and take
the credit. Incidentally , modifying a drive
this way (of course) violates the warran
ties.

On GTIA
Q: What's the GTIA chip and how do I

get one?
A: The CTIA chip actually generates

color for your TV. A new chip, GTIA,
replaces CTIA and allows graphics modes
9, 10, and 11 out of Basic . (The operating
system was written with GTIA in mind,
and so was Basic , by the way.) It is an
upgrade to the CTIA chip. The rumour
mill again says it is available everywhere
except where the rumour originates. We
have one as the result of extreme kindness
on the part of Atari , and are testing it. The
added modes are :

Graphics 9: Allows 16 intensities (select
by COLOR #) of pixels to be displayed in
the background color. Great for grey-scale
shading.

Graphics 10: Allows eight different kinds
of pixels to be displayed in a ny of the
standard colors. Uses the four P-M registers
and four play field registers to set colors.

Graphics 11: Allows 16 different colors
for pixels, all in the same intensity .

The pixel size is four bits long , and one
scan line high. This is 80 x 192 resolution ,
an interesting twist on the general rule
that vertical resolution is less than hori
zontal.

There will be a more complete article
on the GTIA chip when it is more widely
available. (The problem is , most people at
Atari don't have them either, and are trying
just as hard to get one. Who do you think
will get priority ?)

On Languages
Q: Forth?
A: Forth is a dynamite programming

language available for the Atari. Its speed
is somewhere between Basic and assembly
language . but much closer to assembly
language. Best of all, it 's a reasonably high
level language (very stack oriented , as a
matter of fact). I'm trying to learn it now.

Atari Languages

Opening the mailbox has become a bit
like Christmas, with users sending in their
latest code and accomplishments, plus new
product announcements. Here's some of
the best we have seen.

Drew Holcomb sends a very nice
graphics demonstration (Listing 1) which
is worth the five minutes it takes to type
in.

Thomas Marshall (those of you on the
CERL PLATO network system know him
as marshall/ phystemp) sends in the fine
program in Listing 2 which uses the DLI
routine (rom the December column. It
puts a 128-color menu onscreen, then allows
the user to move a cursor around the
colors. When the user settles on a color
and presses the button, the decimal value
of the color (for use in SETCOLOR)
appears in players on the top and bottom
of the screen . There are some very nice
techniques being used here; the program
deserves a good look. Thanks Tom.

Dennis Baer (868 Main St., Farmingdale,
NY 11735) has Algol for the Atari. Ac
cording to his letter, it supports all I/O
and graphics also. He also has a word
processor for the Atari written in Algol.
Since there are quite a few folks familiar
with Algol, you might want to get in touch.
He mentioned he is interested in beta
testing his product .

The Young People's LOGO Association
wants to hear from people interested in
Atari Pilot. Contact them at 1208 Hillsdale
Dr., Richardson , TX 75081. They have a

Versions are available from many sources.
Atari lists Forth in their APEX exchange,
but will no t release it yet. Beware of other
versions which may use undocumented
entry points in the ope rating system, and
which will quit working when the new
cartridges a re generally available.

There has been a lo t of good software
written in Forth . I have a synthesizer
program, lent to me by Ed Rotberg of
Atari , which plays the best music I ever
heard from an Atari (and has different
instrument sounds, too; drums, guitar, hand
clapping, etc.). The Atari demo with the
"Disco Dirge" is written in Forth to give
you an idea of its execution speed and

very good newsletter and a great deal of
interest in the Logo language.

Atari in Europe
Finally, Nigel Haslock in Switzerland

wrote to give me details of the European
Ataris. Software houses may be quite
interested in this information . He writes:

- European Ataris run 12% slower if tied
to VBLANK .

-Atari has kept the one CPU clock/color
clock; hence , the 6502 is a 3 MHz model
(not 2 MHZ as in the United Sta tes) , and
is clocked at 2.2 17 MHz or about 25%
faster.

-All European mode ls have GTIA
chips-hence the GTIA shortage here.

-The EOOO and FOOO ROMS are different
(hence many software problems).

-Cassette handling is different and pos
sibly incompatible.

Listing 1.
WH EELS

fl exibility.
Q: Microsoft Basic.
A: You will be hearing a great deal

about this from us. We are currently working
with Microsoft Basic and it is a fantastic
product, indeed. It is much faster than the
Atari 8K cartridge Basic and has many ,
many more functions . It really turns the
Atari into a serious business computer, for
example . Look at the description of Micro
soft Basic in any Apple, TRS-80 or PET
book and you will get an idea what is
available. Add to that many special Atari
functi ons, and soon you will be writing
only in Microsoft. 0

I have also received a great deal of
ma il concerning piracy and disk copy
protection, which Nigel mentions. He tells
of no t being able to fix US-version Atari
programs to work on the European Ataris
beca use of the copy-locks placed on them.
He has a good point.

There is a European market looking
for software. Besides the obvious language
problems, software houses have another
worry - will their software work as it is
with a PAL TV?

Atari has provided a hardware location
to determine if a given machine is PAL
(European) or NTSC (North American) ;
it looks as if it's time to start writing
software to check it.

Atari Basic
For those of you with new Ataris, here

is a short and highly opinionated discussion
of the various languages available for your

5 REM WHEELES WI THIN WH EELS BY D. HO LCO MB
10 GRAPHICS 23 :Y-INTIRNDIO)*16):FOR X=70S TO 7 11:POH E X,Y* 16+ 12: NE XT X: CO LOR 1:0
EG
20 FOR X=1 TO RNDIO)*1+2:A=I NTIRNDIO)*5)*1000+2000:POKE 77,0
30 B=IINTIRNDIO)*11)*INTIRNDIO)*5)A2-79)*INTIIRNDIO)*2)-1)/IA/1500)+79
35 C=IIN T IRN DIO)*1)*I NTIRNO I O)*5)A 2-17)*INTIIRNDIO)*2)- 1) IIA/ 1500)+17
10 D=0:E =I NT I RNO IO)*3) - 1:IF E= O THEN 10
50 FOR y=o TO A STEP l S :F=F+E:IF F(l THEN F=3
6 0 IF F) 3 TH EN F=1
70 COLOR F:O=D+O.OS:ORAWTO B+D*COSIY),C+D*SINIY)
80 NE XT Y:NEXT X
90 FOR Z= O TO 9
100 A=R ND IO)*16 : B=RNDIO)*9+1:C=RND I O)* 3 0+10
110 FOR X= O TO 15 00 /C
120 FOR Y= O TO 2:SETCOLOR Y,A,B:FOR F=O TO C:NEXT F
130 SETCO LOR Y,O,O:NEXT Y:NEXT X:NEXT Z :GOTO 10

129

Atari Languages

use. It may serve to clear up some of the
confusion you may have over which
language is best for you to buy and use.
Doubtless, there will be those who will
disagree with me; feel free to write and
let me know if you do.

Atari Basic, in the 8K cartridge is the
original language for this system, developed
in a great hurry for the unveiling of the
new Atari machines back in 1978. Like
most things done in haste, it lacks
something. In this case, speed and the
fixing of obvious bugs were neglected to
the point where the whole product was
compromised.

All arithmetic done in this Basic is done
in 6-byte BCD. While this gives great
accuracy, it also slows execution to a
craw!' Atari 8K Basic is the slowest Basic
I have ever used . To be sure, all computers
have a tradeoff between memory use and
speed, but this is a little ridiculous.

Add to this the many known bugs that
will crash the machine, the slowness and
occasional inaccuracy of the floating point
operations, and numerous other flaws, and
it just isn't much of a language. It could
have been done better.

Unfortunately, so much of the available
software uses the Basic, and even the
bugs (remember the old saw about "docu
mented bugs" becoming features in the
next version), that Atari can't fix it. We're
stuck with it. Too bad.

For speed reasons, it is just about
impossible to write professional software
in Atari Basic; any assembly program runs
so much faster than the Basic that there is
no comparison. Games written in Basic
are easily identifiable by their slow speed.

In all fairness , the Atari Basic cartridge
was meant for small Basic programs, not
the huge amounts of code it is sometimes
asked to execute, so it must be forgiven.
The overall design structure is just wrong
for fast program execution.

In conclusion, I wish it were better, but
we are stuck with it. Great things have
been done with the computer in spite of
the Basic, and many Atari users have
been forced to 6502 Assembler because
of it.

Speaking of which ...

Atari 8K Editor/Assembler

The 8K Editor/Assembler is a close
relative of the Basic cartridge. It is abso
lutely unacceptable for major software
development. I can remember delays of
up to an hour assembling large programs,
and 1 have heard many other horror stories.
This cartridge is also 8K and has bugs.

For instance, any CPY instruction hangs
the TRACE function. This cartridge has
inspired many software houses to come

Listing 2.

COLO"'~ :tZB
19000 RE M The fClllowing s lJbroutine can
19()Ol RE~M be ildded to pT'ograM 5 of
19002 REM ATARI OUTPOST in the DeceMber
19003 RE~M iss Lle of C,'eative COMp~)tin9.
19004 f~£~ M It addes utilit~ to displi3~ing
19005 F~EM ttle 128 colors available to
19006 REM the Atari. B~ plugging a
19007 REM jo~stick in port 1, the sub-
19008 REM I'c)utine will give ~ou the
19009 REM spec ifi c rtUMber one r)eeds to
19010 REM poke in the color registers.
19011 REM
190;!0
19021
1902 2
1902 3
19024
19025
190 3 0
19031
1 (1032
2 0000
20010
20020
20021
20 022
20030
20040
20041
20042
2004:)
200"1"1
200"tS
20046
200"17
20050
20051
20052
20053
20069

f(EM f"m:E
f(EM POf:E
REM pm:E
F(EM pm:E
F(EM F'm:E
F(EM

7 08,XXX
7 09,XXX
710,XXX
711,XXX
7 12 ,XXX

COLOR
COLOf(
COLOR 2
CoLOF, 3
COL OF, "I

F~EM In progr a M 5, besure to add
REM 110 GOTO 20000
F(EM
X= 105!Y,=ll
A=PEEK(106)-24!PoKE 51279,A!PMBASE=256~A
POKE 559,46!REM DOUBLE LINE RES.
POKE 623,4!REM PLAYFIELD OVER PLAYER PRIORITY
POKE 53277,3!REM TURN ON PM GR.
FOR III=PMBASE+381 TO PMBASE+l024!PoKE III,O!NEXT III!REH CLEAR P-M GR ••••
POKE 53248,X!REM PL 0 POSITION
POKE 53249,X+16!REH PL 1 POSITION
POKE 53250,X+32!REM PL 2 POSITION
POKE 53251,X-32!REM PL 3 POSITION
POKE 53252,X+Q8:REM HI 0 POSITION
POKE 53253,X+56!REM MI 1 POSITION
POKE 53251,X+64!REM MI 2 POSITION
F)O~CE 53Z55,X+7Z:REM HI 3 POSITION
POKE 704,53!REM PL 0 COLOR ORANGE
POKE 705,65!REM PL 1 COLOR REO
POKE 706,145!REM PL 2 COLOR BLUE
POKE 707,27!REM PL 3 COLOR YELLOW
REM PLAYER SIZE! 0=NORMAL,1=00UBLE,3,DQUADRUPLE

20070 PO~'E 53256,1:F'OKE 53257,1:F'O~(E 53258,1:POKE 53259,3
20071 POKE 53260,255!REM SAME CONVENTION BUT 2 BITS FOR EACH MISSILE SIZE
2 0080 REM ~~~ PRINTS MISSILE NOS. ***~*

20090 CHR=17!II=0!FOR III=PMBASE+51 2+Y TO PMBASE+519+Y!PoKE III,PEEKC57344+CHR*8
+II)!II=II+l!NEXT III
20091 CHR =18!II= 0!FOR III=PMBASE+640+Y TO PMBASE+647+Y!PoKE III,PEEKC5734"1+CHR*8
+II)!II=II+l!NEXT III
20 09 2 CHR=24!II=0!FOR III=PMBASE+768+Y TO PMBASE+775+Y!POKE III,PEEKC57344+CHR*8
+II)!II=II+l!NEXT III
20093 FOR N=PMBASE+512 TO PMBASE+l0 24 STEP 1 28
2 0091 FOR M=16 TO 0 STEP - 1
20095 POKE N-M,255!NEXT M!NEXT N
20096 XO=125!XN-125!YO=93!YN=93!COLR=255!Y=8!GOTO 20170
2 0099 REM ***** JOYSTICK ROUTINE ******
2 0100 MoVE =STICKCO)!IF STRIGCO)=O THEN 20230
2 0105 IF HOVE <>7 AND MOVE<>11 AND MOVE<>13 AND MOVE< > 14 THEN 20100
20110 IF MOVE=14 THEN YN=Yo-3!COLR=COLR-2!IF YN<O THEN YN=93!COLR=COLR+64
20120 IF MoVE ~ 13 THEN YN=YO+3:CoLR=COLR+2:IF YN>91 THEN YN=0:COLR=CoLR-64
201"10 IF MOVE=11 THEN XN=Xo-1 0!COLR =COLR-64!IF XN<O THEN XN=125!CoLR=COLR+256
20150 IF MOVE -7 THEN XN=XO+10!COLR=COLR+61!IF XN)1"11 THEN XN=5!CoLR=CoLR-256
20170 LOCATE XO+l0,Yo,CO!CN=CO-2!IF CN<O THEN CN=CO+2
20180 COLOR CO!PLOT XO,YO!ORAWTo XO+5,YO!PLOT XO,Yo+l!DRAWTO Xo+5,YO+l
20190 COLOR CN!PLOT XN,YN!DRAWTO XN+5,YN!PLOT XN,YN+l!DRAWTO XN+5,YN+l
202 00 XO=X N!YO =YN
Z022 0 GOTO 20100
20230 FOR N=O TO 3!POK E 70"l+N,COLR!NEXT N
20235 REM DISASEMBLE CoLR FOR PM PRINT
2 0240 IF COLR >99 THEN CHRO=16+INTCCoLR/l00)!CHR1=16+INTCCCOLR-CCHRO-16)*100) 110)
202"11 IF COLR >99 THEN CHR 2=16 +COLR -CC HRO - 16)*100 -CCHRl-16)*10!GOTO 20300
2 025 0 IF COLR>9 THEN CHRO=16!CHR1=16+INTCCOLR/l0)!CHR2=16+COLR-CCHRl-16)*10!COTO

2030 0
:026 0 CHRO =16!C HR1=16!CHR 2= 16+COLR
20300 II = O!FOR III=PMBASE+512+Y TO PMBASE+519+Y!POKE III,PEEKC57344+CHRO*8+II)!I
1=11 ' -1 ! NEXT :U:I
2 03 10 II=O!FOR III=PMBASE+610+Y TO PMBASE+617+Y!POKE III,PEEKC57344+CHR1*8+II)!I
I-II+l !N EX T III
20320 II = O!FOR III=PMBASE+768+Y TO PMBASE+775+Y!POKE III,PEEKC57344+CHR2*8+II)!I
I =II+l!NEXT I II
20~;OO GO TO ;~0100

Z 0 8<iO F(EM
20900 F(EM
Z090~:j f(EM
Z0910 F<[M
Z0920 F([M
Z0930 F<EM
;> 0 '1"1 0 I'(EM
209:50 F([M

If ~O I _ 1 c h ange g T'aptlics Modes
frOM here, SlJggest ~OIJ

HIf(N"' O TO 7
f"lH:E ~_"124B+ N, 0
NEXT N
to reMove ttle F)la ~e t'-M i ssi le

graphi(~ s frOM the ~iCreer).

130

out with their own assemblers, some of
which are very good. The Atari cartridge
has a handy debugger, but as an assembler,
(how do I put this tactfully?) it is useful
only for assembling small subroutines for
Basic.

One good thing about the Basic and
Assembler/ Editor cartridges is that there
are now books designed to help the
beginner get going with both of them.
This is a good way to learn about the
Atari and to get started but don't limit
yourself to these products once you are
past the beginning stage. Another advan
tage is that they are cartridges, so you
don't have to buy a disk drive or more
memory in order to run them, as is the
case with most other languages.

The above products are supported by a
company called Optimized Systems
Software, located in Cupertino, CA. OSS
also markets a 16K disk-based Basic known
as Basic A + and an assembler in their
operating system called EASMD. La and
behold, Basic A + and EASMD are so
close to the original cartridge code that
they even have the same bugs.

The Basic is just as slow, but it does
have new commands for handling players
and missiles and disk I/O. It is a big step
up from the original Basic, but still needs
work. I would like to see integer variables
and something to speed up the exe
cution?

Microsoft Basic

Atari Microsoft Basic is the Basic that
Atari should have released initially. It is a
19K disk-based Basic. Add to that about
8K of DOS which must also be booted
with it, and the result is 21K of user memory
available for the programmer on a 48K
system or only 13K on a 40K system .

That could be hard to live with. For
instance, if you go into graphics 8, you
have only 13K left on the 48K system,
and only SK on the 40K system. Still,
Microsoft Basic is a very powerful and
convenient language to use, and I have
found few bugs in it. But don't get it
unless you have 40 or 48K.

Microsoft Basic has integer variables
which are very fast, PRINT USING for
business applications, and 4- or 8-byte
accuracy (whichever you select) , which
speeds everything up. It is very much like
TRS-80 Basic or Applesoft. Best of all , it
has several nice features for player missile
graphics, character set redefinition, and
other Atari-specific capabilities.

I like it , and try to use it whenever I
have to do anything serious in Basic. While
the bootup process takes a while , the
time saved in program development is
worth it. Any professional developer should

seriously consider Microsoft Basic.
A 16K single cartridge (yes, you can

put 16K on a single cartridge, check the
hardware manual for details) version of
Microsoft Basic is planned, but some
features, such as renumber or PRINT
USING, may still have to boot in from
disk. More on this later; things haven 't
settled down yet.

Microsoft has extremely good documen
tation which looks even better when
compared to the original Basic document.
It was this documentation that was re
sponsible for the delay in delivering the
product; the disks have been ready to
ship for some time but the manuals weren't.
Considerable time and effort have gone
into them, and it shows. Good job.

Atari Macro Assembler/Editor

The Atari Macro Assembler/ Editor is
a very, very powerful disk-based assembler,
which is a joy to work with. Light years
beyond the original cartridge, it is extremely
fast; it will completely assemble 100 pages
of code in six minutes. It features support
for independent files with Include, macros,
systext files, and raw speed. I have dis
covered a few trivial bugs in it , but this is
one product I can rave about without
reservation. I have worked with it for
more than four months and like it better
each time I use it.

If you have any serious assembly lan
guage programming to do , get the Macro
Assembler / Edi tor.

The Editor is also quite nice , and is
being sold through APEX. It is a powerful
and reasonably fast editor for developing
text with no line numbers. This allows
easy input of data, since you need not
bother to strip off extraneous line numbers.
Pascal, the assembler, and future goodies
rely on the editor to generate source text.

Atari Pascal

Atari Pascal is brand new, and not
reviewed yet. It is not a UCSD Pascal,
but those of you who like Pascal might
want to look it over 'and send me
comments .

Atari Pilot
The Atari version of Pilot is a pretty

clean implementation of the famous edu
cational language. I have not done much
with it but the feedback I have gotten is
all good. The documentation in particular
is extremely well done.

Forth

To understand "Why Forth ,?" you must
look ~t some basic programming philoso
phy. Many languages are unsuitable for
serious software development work. For

131

most high speed games, for example, even
Microsoft Basic isn't fast enough. For
business applications Pilot is out, and so
on.

Well, Forth is difficult to describe, but
let me try: it is a stack-oriented language
which you define yourself. You start with
a basic set of commands (input, output,
arithmetic), and define your own com
mands (called words) from there. The
language executes extremely quickly,
compared to everything except assembler,
and once you get into it, is much easier to
write and debug, which drastically cuts
development time.

Assembly language provides the ultimate
in speed and machine control, but is not
much fun to work with. Even with the
very good macro assembler, debugging
assembly code (especially without very
good debug tools) is a frustrating , time
consuming process. Forth helps the user
get away from that.

The Atari is a very good machine for
Forth. There are so many unique hardware
features that a generic language such as
Basic isn't good at handling them all, but
Forth is.

You can define language commands to
deal with players and missiles, character
sets, vertical blank interrupts, and whatnot.
Each user's Forth thus ends up growing
along with him.

Sandy and I had been thinking of going
to Forth, but it seemed like too much
effort to get started. There were even
two Atari Forths on the market: QS Forth
and Pink Noise Forth. Yet I had a difficult
time following QS Forth, even with its
reasonably good instructions, and it seemed
more a generic Forth implementation than
an Atari-specific Forth. So we waited.

Two things changed our minds: 1) The
book Starting Forth by Leo Brodie, from
Prentice-Hall, which is simply superb and
easy to read (complete with really, really
good illustrations), and 2) V ALForth, a
new Forth based on figForth, which is
currently being sold by APEX.

V ALForth has commands designed
especially to take advantage of the features
of the Atari. It also includes a character
set editor, easy player graphics, a very
nice screen editor, and several other useful
features. We were shown a preliminary
version, and after reading the Starting
Forth book, could dive in immediately
and do things.

The transition is reasonably painless,
and the power of the language unfolds
around the user; I'm very happy to be
working in it and we plan to write our
next game in V ALForth. The stack orien
tation is easy to get used to, especially if
you just consider the stack data as part of

Atari Languages

the instruction set format.
The development speed of Forth has

not been overlooked by Atari. Atari's Coin
Op group has a semi-legendary "Coin-Op
Forth" which is supposed to be quite
something to use. The Atari demo disk
with the "Disco Dirge" background music

is all "coin-op Forth." Rumor also has it
that many of the new Coin-Op games are
written in Forth (Battiezone, for one).
This wouldn't surprise me; it's a powerful
language.

As a point of philosophy , we feel that
as Atari programmers we began in Basic,

moved to 6502 Assembly for speed, and
now, after experiencing assembly debug
ging, are moving to Forth to reduce the
amount of time we must spend on
programming. We have great hopes for
V ALForth and what we have seen already
is very worthwhile.

Getting Along Without TAB -
An Atari Translation Fred Pinho

The lack of a TAB command in Atari
Basic is a source of irritation to many
Atari users. The most common problem
occurs when outputting formatted text;
cumbersome programming is necessary
to accomplish what is relatively simple in
other Basic dialects.

Listing 1.

'10 81=20
50 E:2=81+10
60 T=2'1
80 REM
90 GET C$
100 IF C$="

THEN 90
101 S=O

" THEN S=S+l:IF S(2

120 IF C$=(> "l" AND C$ (> "2" THEN 1'10
130 ON VALIC$)GOSU8 220,230
1'10 IF 181=T) OR 182=T) THEN '100
150 PRINT TA8IE:l) ;D$;TA81T1; "+";TA8

IE:2) ;D$
160 A=INTIRNDll)*5)+1
170 ON A GOSU8 200,210,210,210,200
180 ON 8 GOSU8 250,2'10
190 M=M+l:GOTO 80
200 E:=llf~ETURN

210 E:=2: RETURN
220 T=T- l:RETURN
230 T=T+l:RETURN
2'10 GOSU8 350:RETURN
250 Y=INTIRNDll)*3)+1
260 IF X=Y THEN 250
270 X=Y
280 IF X=l THEN D$="/"
290 IF X=2 THEN D$="I"
300 IF X=3 THEN D$="\"
310 GOSUE: 350
320 RETURN
350 81=81+X-2
360 IF 81 (1 THEN 81=1
370 82=E:1+10
380 IF 82>39 THEN 81=29:GOTO 370
390 RETURN
'100 PRINT TAE:ITI;"* CRASH'!!"

It can also be a problem in other areas
such as games where a given character
must be printed at varying locations on a
line. To illustrate this, the car race pro
gram shown in Listing 1 was translated
into Atari Basic. This program originally
appeared in the November 1980 Creative
Computing as a translation from DEC
PDP/ II to PET Basic. The game depends
on the printing of the walls of the road
and of the car under control of the TAB
command.

The Atari does have a keyboard-con
trolled tab function which can be used in
the programming mode by printing it in
properly configured strings. However,
running the game in that manner would
be difficult. Fortunately there is another
way.

The Atari does not print at the key
board-set tabs unless specifically request
ed to do so by an imbedded tab request
within the string to be printed. Rather it
prints at standard "print positions" posi
tions 0, 11 ,21,31 on a 38-character line) .

Listing 2.

1 REM ATARI TRANSLATION 8Y FRED PINHO
2 REM FROM PET TRANSLATION 8Y D. LU8AR
3 ? "}"
5 DIM D$ll),A$13)
10 POKE 752,1
20 S=O:M·=O
'10 81=20:82=8 1+7:T=2'1
'15 ? " INDIANAPOLIS SPEED TRIALS"
50 ? " SPEED DEMONS WANTED"

Separating the desired strings by a
comma causes each string to be printed
starting at a standard position. The width
between each print position is controlled
by memory location 201. Don't be fooled
by its name in the Atari reference manual.
Although it is called the "Print Tab
Width," it really controls the width of the
print positions (sneaky).

The Atari translation is shown in Listing
2. The parameters to be used in control
ling the width of the print positions are in
line 40: B1 (left side of the road) , B2
(right side of the road) and T (the car).
The actual printing is controlled by lines
150-153. Here location 201 is POKEd with
the width for the left side of the road.
Then printing a blank followed by a
comma spaces the invisible cursor to the
second print position (controlled by B1).
DS, which forms the sides of the road , is
then printed.

Since the cursor has now moved down
to the start of the next line , location 84
(current cursor row) is decremented by 1

AND R. FORSEN

60 ?" ARE YOU WIL.LING TO GIVE IT A TRY"; :INPUT A$

70 IF A$ <> "Y" AND A$ <>" YES" THEN END
80 ? :? :? "PRESS N TO GO LEFT,M TO GO RIGHT,"
81 ? "AND SPACE TO GO STRAIGHT":FOR P=l TO 2000:NEXT P

"110 PRINT "Y.OU SCORED ": M; " POINTS." 85 ? " } "
'120 M=O 90 IF PEEKI76'1)=255 THEN S=S+1 :IF S(2 THEN 90
'130 FOR 1=1 TO 500:NEXT I 100 s=o
460 GOTO '10 120 IF PEEKI76'1) (>33 AND PEEKI 76'1) (>35 AND PEEKI76'1) (>37 THEN 1'10

Fred Pinho, 676 Rollingwood Way, Valley
Cottage, NY 10989.

129 I=PEEKI76'1)-32
130 ON I GOSUB 235,235,220,220,230
1'10 IF 81 >=T OR 82(= T THEN '100
150 F'OI<E 201, E:2:? II 11,0$

132

to cause a return to the original line. The
procedure is now repeated with the width
set for the car (line 152). Here a graphics
heart is used for the car. It doesn't show
on the listing so type control-comma
between the second pair of quotes in line
152. The procedure is repeated once more
for the right side of the road.

The keys N, M and space were used to
move the car. Rather than "opening" the
keyboard and using a GET command,
memory location 764 (last keyboard key
pressed) was used. If you PEEK this
location, you'll find an entirely different
character set code is used instead of the
one detailed in the Atari manual. This
code is read and converted for use in
lines 120-129. Finally , line 140 checks
whether the car has collided with the side
of the road. If so, it branches to the end
of-race routine.

Once I had the program working prop
erly , like most programmers, I could not
resist the urge to improve and upgrade it.
What better way than to make use of the
built-in sound and color capabilities of
the Atari. The sound of a race car was
easy (line 154) since a distortion level of 2
in the SOUND statement gives a very
realistic sound.

For the inevitable crash (Mario
Andretti I'm not), I turned to the January
1981 issue of Creative Computing for a
"percussive sound generator." Modifying
the explosion routine slightly worked well
(lines 403-408).

152 J=PEE~(8.q):POKE 8q,J-l:F'O~(E 201,T!? 11","11
153 J =PEEf«8'1):POKE 8'1,J '-1:POf(E 201,E:l:? " ",0$
15'1 SOUND 0,70,2,7
160 A-INT(5*RND(1»+1
170 GOSLlE: 250
190 M=M+l:GOTO 90
220 T=T - l:RETURN
230 T=T+1:RETURN
235 T=T:RETURN
250 X=INT(3*RND(1»+1
280 IF X=l THEN D$ ="/"
290 IF X=2 THEN D$="I"
300 IF X=3 THEN D$="\"
350 E:l=E:l+X-2
360 IF E:1 (1 THEN E:1=1
361 IF E:1) 26 THEN E:1=26
370 E:2=E:1+7
390 RETURN
.qOO POKE 201,T:? II",I'*II:? I'CRASH!! !":SOUND 0,0,0,0
'101 FOR K=1 TO 10:FOR 1=1 TO 10:SETCOLOR 2,I,1'1:NEXT I:NEXT K
'102 SETCOLOR 2,9,'1
'103 NTE=200:GOSUE: 'I05:S0UND 1,0,0,0:SOUND 2,0,0,0
'10'1 GOTO '110
105 SOUND 2,75,8,lS:ICR=O.79+7 / 100:Vl=lS:V2=15:V3=15
'106 SOUND 0,NTE,8,V1:SCJUND 1,NTE+20,8,V2:SCJUND 2,NTE+50,'I,V3
'107 V1=Vl*ICR:V2=V2*(ICR+0.05)!V3=V3*(ICR+0.08):IF V3)1 THEN '106
'108 SOUND o,O,O,O:RETURN
'110 ? "YOU SCORED ";M;" POINTS."
'111 IF M(=20 THEN? "TRY AGAIN WITH A SLOWER CAR"
'112 IF M>20 AND M(50 THEN? "YOU'RE GETTING E:ETTER.KEEP PRACTICING!"
'113 IF M) =50 AND M(80 THEN? "YOU'RE A HOT ROD'"
'11'1 IF M) =80 THEN? "WOW!'! LET'S GO TO THE DRAG STRIP!!"
'120 FOR 1=1 TO 700:NEXT I:POKE 76'1,255
~30 ? "}":GOTO 20

For the visual portion of the explosion,
a simple rapid rotation of the screen
colors was effective (lines 401-402) . Note
that the SETCOLOR had to be reset in
line 402 to return the screen to the
original color.

Finally I added a crude scoring system
(lines 410-414) and a method of playing

repetitively under player control. In line
420, location 764 had to be POKE with
255 otherwise the last direction key
pressed, prior to a crash, would be printed
after line 60 was executed.

If you get too good for the program,
reduce B2 in line 40. Happy racing! D

Telecommunications and Memory Locations

It has been nearly
three years now since I first unboxed my
Atari 800, and I can report that it has
performed unfailingly over all that time
and heavy use. I'm not saying I have never
had a system crash or lock-up, but the
computer has never required any service
beyond cleaning the board contacts once
in a while (I can handle that).

The machine was and remains an engi
neering triumph, which is still ahead of its
time in terms of capability and cost, as
well as reliability .

John Anderson is an associate editor for
Cr e(Jlil 'e COlll/JUlillg magazine.

Atari owners have had to be a tough
skinned breed now and then over the
past three years, but that has changed.
The "big three" are under the gun. Atari
owners, now numbering over 300,000,
know they made the right decision.

I am a member of this group, and a
satisfying facet the hobby offers to me is
the use of my machine to communicate
with others who feel the same way I do
about it: that the Atari is the best machine
of its class, and that learning its secrets is
an extremely pleasurable pastime.

Last May we instituted a call for review
ers, and many Atari owners responded.
One thing that impressed all of us here at

133

John Anderson

the magazine was our query concerning
modems. Of the respondents who did not
already use their microcomputers for
telecommunication, nearly everyone re
sponded that he had a modem on his
"wish list," and that it wouldn't be long
before he was hooked up. We have also
had a very favorable response to the
possibility of making Creative Computing
downloads available over networks such
as Compuserve and The Source. We are
looking into this possibility.

The Modem Mystique
A great deal of potential presents itself.

The possibilities of travel reservations,

Telecommunications and Memory Locations

ticket purchases, shop at home services,
a broad range of databases at your finger
tips, are very exciting. Telecommunica
tions herald a truly practical role for the
microcomputer in the home.

I do not believe, however, that any of
these practical notions constitutes the real
basis for the "modem mystique." The
thing that excites most people about
microcomputer telecommunication is the
opportunity to express themselves in a
new medium, to tell others how they feel.
They are less interested in using a modem
to pay their bills than to state their
opinions, to have their voices heard, and
to respond to the voices of others.

The bulletin board service is growing
in popularity. This is a phone line tied to
a computer, running a program that
accepts and displays information sent
from other computers. The concept of
the bulletin board is powerful and exten
sible. It creates a new kind of forum-a
medium of communication-through
which ideas can be expressed, shot down,
modified, and spread. The importance of
this kind of interaction, and its potential,
is now being discovered. I think it may be
a while before it emerges as a medium of
major influence, but it is going to happen;
it's happening now.

I maintain contact with about five Atari
bulletin boards regularly. I enjoy leaving
messages as well as reading what others
have to say. I check the download files to
see if there is any software worth trying
out. I find out what other Atari owners
are thinking about, as well as expressing
my own thoughts. I may even start a "real
time" conversation with someone at the
other end.

You may be a new user with questions
concerning hardware. You may be an
assembly language programmer wishing
to share the results of a routine you have
developed. Or, you may simply wish to
voice your opinions concerning Tron or
E. T. or to boast of your latest score at
Zaxxon. The bulletin board is a worth
while place to do it. Your thoughts join
other thoughts, in what amounts to a
marketplace of ideas-ideas that are
shared.

Communication via computer may
seem at first to be rather impersonal, but
this is not the case. Through what other
medium might you become involved in a
lengthy philosophical chat with a sysop
(system operator) hundreds of miles dis
tant and at three in the morning? It is
almost like being able to call your own
user's group meeting whenever the mood
strikes you-and then adjourn it without
muss or fuss. It is at once personal and
yet distant: and therein lies its unique

value.
So get that Atari of yours talking to

other Ataris, the way you've planned.

The Forth Wave
A very hot topic on nearly every board

I have logged onto lately is the Forth
language. This language offers hope to
folks frustrated by the slowness of Basic,
limitations of Pilot, bugs in APX Pascal,
and obscurity of assembler. Although it
has its own unique little quirks, Forth
seems to be a natural for the Atari
machine.

There are many implementations of the
language available for the Atari, but the
definitive version now seems to be Val
forth, from Valpar International, 3801 E.
34th Street, Tucson, AZ 85713. We have
received four packages from them, each

of which shows a high level of profession
alism and promise.

Valforth is a debugged and improved
version of APX Forth, and is available
with a powerful screen editor and utility
package; a player missile graphics pack
age, character and sound editor; and a
display list formatter. We were able to
create very smooth multicolored player/
missile animation as well as modified
display lists with very little fuss. The speed
of movement is not as fast or as smooth
as machine code, but is many times faster
than Basic, and quite acceptable-so are
the ease with which these packages can
be used, and their reasonable cost. I hope
to present a thorough evaluation of all
the Valpar packages in the near future.

Despite whatever you may hear to the
contrary, you need not renounce your

Other Atari Bulletin Boards

Type

AMIS
AMIS
AMIS
AMIS
AMIS
AMIS
AM IS
AMIS
AMIS
AM IS
AMIS
ARMU
ARMU
ARMU
ARMU
ATBBS
TARI-BOARD
TARI-BOARD
CBBS
RBBS
RBBS

R=Ringback L=Limited service

Name

APOGEE

ARCADE

GRASS
MACE
MLBBS
SB- 12
SPACE
TEAM
ARMUD IC
FLEGLG
GREKLCOM
PACE

CP/ M
CP / M
CP / M

Location Phone

Atlanta, GA 404-252-9438
Miami, FL 305-238-1231-RL
Baton Rouge, LA 504-273-3116
Detroit, MI 313-978-8087-R
Chicago,IL 312-789-3610
Grand Rapid s, MI 616-241-1971
Detroit , M I 313-868-2064
Madison , WI 608-251-8538
Boston, MA 617-876-4885-L
Seattle, W A 206-226-1117
San Jose , CA 408-942-6975-L
Washington, DC 202-276-8342
New York , NY 212-598-0719-L
Oklahoma City, 0 K 405-722-5056
Pittsburgh, PA 412-655-3046
Honolulu, HI 808-833-2616
Denver, CO 303-221-1779
Atlanta, GA 404-252-9438
Detroit, M I 313-759-6569-R
Allentown, P A 215-398-3937
Chicago, I L 312-789-0499

The "type" of bulletin board indicates what program is run on the host
computer. Each program has its own strong and weak points; ergo eac h
has its own ad here nts and detractors. It's all part of the fun.

A M IS sta nd s for "Atari Message and Information Service." AR M U DIC
bega n as a mnemonic for the phone number of the original serv ice.

"Ringback" means to let the phone ring once, hang up , co unt to five, and
redia l. This a ll ows a single line to serve as a voice a nd modem connection.

"Limited se rvice" mea ns the board is up only part-time, as opposed to
24 hours a day. If yo u ca n connect once, the hours will be li sted for you.

These numbers were comp iled by the MACE BBS, which is one of the
most popu lar Atari boards in the coun try . Ourthanks to the Michigan Atari
Computer Enthusiasts for this list. Give them a call!

134

worldly ways to grasp Forth. Nor does
mastery of Reverse Polish Notation cause
hair loss or halting speech. Sure, the
language has its peculiarities, but that's
the challenge, right? Anyway, whenever
you hit a real snag, you can ask for help
on a bulletin board service! There's noth
ing like access to someone who knows
the answers when you're trying to learn
something.

Another byproduct of accessing user's
group bulletin boards is the spreading of
rumors. One such rumor I discovered on
the MACE BBS has lamentably been
confirmed: John Harris, brilliant young
author of lawbreaker and Mouskattack,
had the only extant source code for his
latest work, Frogger, stolen during a
charity benefit. It is hard to understand
what the thief had in mind-if we assume
the thief had anything resembling a rea
soning mind. What could he have hoped
to gain by stealing the source code of an
unfinished program? This will certainly
forestall the release of Frogger for some
months, and is sure to have put a real
crimp into John's summer, if not his year.
Upon capture, the thief should be forced

to play Crystalware adventures to their
solution or the thief's collapse, whichever
comes first. (Are you taking any bets?)

Poking Around
I have yet to see a definitive list of

memory locations for the Atari in any
manual, periodical or book. Weare com
piling a list currently, and it will appear
soon in the pages of Creative Computing.
In the meantime, here is a very brief
collection of some of the most interesting
locations, and what values to POKE them
with (all values in decimal):

6S - if = 0, I/O data transfer tones from
TV or monitor will be disabled. Load will
take place in silence. Nice with titles or
especially music, to suppress "noise." If
location 6S <)0, I/O will be audible.

77 - if = 0, attract mode will be sup
pressed. It is surprising to me how many
programs are missing this simple POKE
in any loop of less than nine minutes
duration. Although designed to prevent
"burn-in" on an unattended machine, this
mode drives me nuts. If location 77 =
128, attract mode is enabled without nine
minute clock countdown.

The Upstart Atari

June 4, 1981 , The New York Times ran
a relatively enlightened feature on the
microcomputer and its future in the
home. One of the "experts " cited in the
feature stated the following: " there is
almost no sense at all in buying a com
puter other than a PET, Radio Shack, or
Apple ." A bit further down the page , in
a separate but allied article, the quote
appeared again. this second time with
out the word "almost." The article

John Anderson is an associate editor for
Creali, 'e COli/pUling magazine.

referred to these companies as "the big
three . "

At the time, I was glad to see that the
Tim es had discovered microcomputers,
but was chagrined by what I saw as
expert narrowmindedness. Still, it came
as no surprise to me . I had acquired quite
a stiff upper lip by that time. You see, I
am an Atari owner.

I remember when [first began shop
ping seriously for a micro, right about
the time the first Ataris were shipped. I
had a great deal of trouble getting anyone
to talk about the machine . Sales staff
seemed so resentful in one computer

135

752 - if = 0, makes the cursor "invis
ible." I say invisible rather than disabled
because the cursor still functions as if it
were visible. Nice in title cards and text
programs to clean up screen "look." If
location 752 < > 0, cursor will be visible.

82 - if = 0, enables 40-column screen
width. The Atari defaults to a 38-
character screen width, which was a good
thing for me when I used a regular color
television with the computer. "Overscan,"
as it is called, cut off the left-hand side of
the screen. When I upgraded to a color
monitor (much to my wife's relief), I
noticed two unused columns on the left
side of the screen. A simple POKE brings
them into play. If location 82 = any
number from 0 to 39, that number
becomes the left-hand column. The
default value is two.

83 - Same as above but for right-hand
margin. Default is 39. Less call for this
one, but nice to know, anyhow. Right?

Third party game software for the Atari
400/800 computers continues to pour in
to the magazine. Let's take a look at just a
part of the cream of the latest crop:

John Anderson

store, I wondered aloud why they even
carried the thing. A salesperson
exclaimed to me, through a sneer, that he
did not expect it would be carried for
long .

Even as recently as a year and a half
ago, finding an article concerning the
Atari in a computer magazine was a tri
umph. The machines remained a mys
tery, even to those who owned them.
Documentation and software were scant.
I was told by more than one learned
microguru that [had made an expensive
error. They predicted nothing but early
death.

The Upstart Atari

This was not to be . Despite the bad
press and initial lack of documentation
and software, the Atari was gradually
di scovered to be a superior machine: a
"next-generation" micro , with ROM
cartridge capability, a replaceable oper
ating system, sophisticated color graph
ics capability, and four-channel sound .

Despite initial snobbery and snub
bery, buyers began to opt for a good
machine at a good price. By Christmas
1981 , the Atari was being sold faster than
it could be manufactured .

How did the competition respond to
the introduction of the Atari? With the
introduction of Atari lookalikes. Study
ing these , I realized Atari must have
done something right, to have nearly
everybody else shouting "me too! "
within a year or so.

The Atari has been called a game
machine, and games have certainly sold
their share of units. Ted Nelson took a
look at Star Raiders on a video projec
tion system and proclaimed that the
Atari Personal Computer was the "most
extraordinary (microcomputer) graphics
box ever made ." Yet in addition , the
Atari could do anything the " big three"
could do, and then some . Many prospec-

10000 MT=PEEK (106)
10010 CT·'MT··· U
100 2 0 POKE 10 6,GT
10030 Gf((',P fI H :::; 0

tive purchasers found in the Atari a dou
ble bonus: a chance to have a "serious"
microcomputer, while owning the great
est game machine around.

And , it was friendly. It is easier to do
things ri ght on the Atari, and more
importantly , harder to do things wrong.
The jargon terms machines like this
" user-frie ndly." Never before had a
computer been introduced that was so
easy to use. Until the Atari came along,
you couldn 't expect to take a micro out of
its box, plug it in, and have it work .

In the operating system of the
machine is a powerful , built-in screen
editor, which makes the mechanics of
programming much less formidable on
the Atari than on other machines. I know
for a fact that this , combined with the
syntax-checking function of Atari Basic ,
allowed me to learn Basic programming
at a much faster pace than would have
been poss ible with any other microcom
puter. These features simply allow the
user to recover more gracefully from his
own en-ors, thus vastly increasing the
utility of the machine as a learning tool.

Then there is the cost. I literally " paid
the price" to be the first on the block
with an Atari 800. Now, because of the

10040 SE TCOL OR 2, 0,0
10050 CROM =PEEK(756)-Z56
100 6 0 CRAM =C T- 2 5 6
10070 POKE 756,C T
100UII " " character ,:;(.:.,'1:. I ... OADING"
10090 FOR N- O TO 10 23
10100 POKE CRAM+N,PEEK(CROM+N)
l0110 NEXT N
10120 FOR N=264 TO 471:READ A:POKE CRAM+N,A:NEXT N
l0130 FOR N=776 TO 983:READ AIPOKE CRAM +N,A:NEX T N
l 0 140 ? :., "CHt,f(ACTEF, SET loadf!d": END

popularity of the machine , prices have
dropped dramatically. A bit of careful
shopping can result in a basic unit for
under $700. For this price , you receive
an 800 with 16K of RAM and Atari
Basic . The model 400 is down to about
$250.

The computers have a built-in RF
modulator, and so can be hooked directly
to a home TV. A basic unit isn ' t worth
much without cassette or disk storage
devices , which constitute an add itional
expense, however the Atari disk drive
has also been heavily discounted , and
can be found for under $450. A 48K
disk-based system can be put together
for under $1400, and that is a good bar
gain at today 's (and tomolTow 's) prices.

As for the capabilities of such a sys
tem, let me first insert here a warning to
those who may be unfamiliar with the
moiling and sweaty world of micro
chauvinism. I feel strongly, as do other
Atari owners, that a major part of what a
microcomputer must handle superla
tively is color graphics and sound. I take
this to be a self-evident, foregone and
unimpeachable tenet , and will make no
effort to argue for or defend mysel f upon
that point. If you do not concur, read on

j.0150 [)ATA 32,16El, 1 36tl:36t16E~,1:36~:L36~Ot160,136,136t160,136t136,160,O, 1 68,1~16,lZ

8,128,128,136,168,0

Figure 1.

10160 [)A TA 1 6 0 ,1:36,136,1 36, 136,136~ 1 6 0 t O t 1 6Elt 1 28t 1 28t 168,12Eltl 2fl,168,O,168,1 2 8,1

28, 168 ,1 28, 128, 1 2 8 , 0
10170 DATA 168,136,128,138 , 136 , 136,168 ,0, 136, 136,1 36, 168,136,136,136,0,168,32,32
,~IZ,3Z,32, 16El, 0
101 80 DATA 8,8 ,8 ,8,1 36, l 36 ,168, II ,136,136, 136, 16 0,1 36, 136,136,O,128,128.128.1 28,1
2f.J, 128.16B,O
10190 DATA 136 ,168, l68.1 36,136,136,136,I1,136,136,168.168, 168, 168 ,136,0,168,136,1
36,136,136,136 , 168,0
10200 DATA 1 6 0 ,136,1:36,160,128,128,1 28 ,O,16EI,136,136,136,136,136,16EI,10,160,136,
136.160,136,136,1 36, 0
10210 DATA 1 6EI ,1 36,12Elt16E~,8,:L:36t168tOt16EI,32,:32t:32,32,32,32 ,O,1 ~16, 1 36, 1 36t 1 36t l

36,13b,16B,O
10220 DATA 136, 136 ,136 ,136,136 , 136 ,32,O ,136,136, 136,136,1b8.168,136,0,136,136,13
6,32 , 32, 136 , 136,0
10230 DATA 136 , 136,136,32,32,32, 32 ,0,168,8,8,32,128,128,168,0
10210 DATA 16,8 4 ,68,6f.J,84,68,68,II,80,68,68,80,68,68,80, O,81,68,61,64,64,68,81,0
10250 DATA 811,68,68 ,68,68 ,68, 80 , 0,81 ,64 ,64,84,64,61,84,0,84,64,64,81,64,64,61,0
10260 DATA 84,68,61,69,68,68,84 , 0,68,68,68,81 ,68,68,68,0,84,16,16,16,16,16,84,0
10270 DATA 1,1,4,4,68, 68,84,0 ,68,68,68,8 0,68, 68,68,0 ,64,61,61,64,61,64,84,0
10280 DATA 68,84,81 ,68,68,68 ,68,0,68,68,84,84,84,84,68,0,81,68,68,68,68,68,81,0
10290 DATA 80 , 68 ,68,B O, 64,64,64,O,81,68,68,68,68,6B,B1,5 ,80, 68,6B,8 0,6B,68,68,O
10300 DATA 81,68,64,84,1,68,84,O,84,16,16,16,16,16,16,O,6B,68,6B.6B.6B.68,81,O
10310 DATA 68,68,68,68,68,6B,16,O,6B,68,68,68,84,81,68.0,68,6B,68,16,16,68,68,0
10320 DATA 68,6B,6B,16,16,16,16,O,84 , 4,1,16,61,64,84,O

136

only at your own risk.
The 6502 microprocessor chip is the

central processing unit of a ll current
Atari machines , as it is for two of the
" big three" machines. However in the
Atari , the 6502 chip is backed up by
three others, and therein lies a big differ
ence.

One of these chips , called Antic , is
itself a microprocessor. It is capable of
an exotic potential known as " direct
memory access," or DMA. Antic works
in tandem with another chip, the GTIA
or CTIA, to handle the video display,
thus tak ing the weight of keeping the
video screen " lit up" from the 6502.
The CPU can go on to other important
jobs.

I could attempt to outline each of the
capabi lities of these chips: 256 colors ,
up to 16 shades of a single color, 320 x
192 pixel resolution , player-missile
graphics, modifiable display li sts and
character sets. However there rea ll y are
only two ways to experience their power:
watch an Atari graphics demo, or playa
quality Atari game. The new GTIA chip ,
which replaces the CTlA, extends this
power yet further.

Sti ll another chip , called Pokey, gen
erates, among other things, four channel
sound. This sound can range from pure
tone to many levels of distortion , allow
ing for music as we ll as sophisticated and
comp lex so und effects generat io n .
Sound is routed through the TV speaker,
and so vo lume control is as simple as the
flick of a knob. Sound can be rou ted just
as s imply to your stereo . Nearly al l
music composition and game playing in
my home takes place through head
phones.

The Atari is not without its prob lems.
Much of the so ftware written for it
doesn ' t come close to truly utilizing its
capabi lities. It seems as if many pro
grammers are having trouble rea li zing
what power the Atari puts in their hands ,
and how best to use it. Dual density
drives , 80-column capability, and truly
profess ional word processing packages
are only just now making an appearance.

But relief is in sight. It was a trickle at
first, but third party software began to
pour in. The trickle became a gush , and
the gush became a torrent. Thi rd party
hardware followed soon after. The in
dustry, realizing its in itial underestima
tion of the machine, is compensating.

A variety of talented minds are work
ing with the Atari, investing it with a
variety of new capabilities. The machine
offers one of the most exci ti ng forefronts
in the microcomputer industry today.

Inc identally, the big three will short ly

have to move over. I predict by the end of
this year Atari will be the number one
microcomputer in its class, both in
monthly sa les and total units.

MuIticoIor Characters
Figure I is a short program with a very

neat result: a multicolor character set in
graphics O. The idea goes back quite a
ways: I remember first having seen it in
3-D Supergraphics, from Paul Lutus. A
recent example appears in the assembly
language tutorial Page Six, from Syn
apse Software, whic h uses quite a we ll
done font.

The technique involved in creating
multicolor characters is called artifact
ing. This is the same phenomenon that
sometimes causes ugly glitches in graph
ics 8 displays. By skipping adjacent pix
els, red or blue characters can be formed,
and art ifacting can be used construc
tively.

The approach has its limitations.
Because the default character size on the
Atari is 8 x 8 , skipping adjacent pixels
resu lts in a character three pixels wide. It
is hard to create a font three pixels wide
and at the same time keep N's and M's
from looking -alike, or support lower
case.

In order to compensate, I made' the
font one scan line taller than the default
value , and stuck to upper case. Stil l, I
think you wi ll agree the re sults are
remarkable considering the constraints
of the approach, and wel l worth taking
the time to type.

Lines 10000 through 10020 define the
point in memory at which we will start
our redesigned character set. Lines
10030 and 10040 clear the screen , color
ing it black, so that the artifacted charac
ter set wil l be clear. I suggest the altered
set a lways be used on a black back
ground.

Lines 10050 and 10060 set up the vari
ables we will use to load the original
character se t into RAM , and later for
overwrit ing the redefined characters.
Line 10070 sets the character set pointer
to the beginning of the RAM set. Line
10080 is placed there so you can watch
the transformation take place: you can
pu ll thi s line if you so desire .

Lines 10090 through 10110 load the
entire original ROM character set into

RAM. Then line 101 20 replaces the
upper case A through Z with values
occurring up ahead as data statements .
Likewise line 10130 replaces lower case
a through z with newly defined character
values.

The new upper case and lower case
fonts are the same, with the exception of
a one clock horizontal shift. This means
that the upper case A through Z will be
one color, and the lower a through z
another. Because of differences in the
way art ifacting is handled by the GTIA
as opposed to the CTlA, a GTiA
machine wi ll have, as a result of running
this program , a blue upper case and red
lower case, while a CTIA machine will
have a red upper case and blue lower
case. Not to mention what happens when
printing inverse characters. Try it! All
other characters , as well as numbers,
wi ll remain as default.

You might now incorporate this as a
s ubroutine in other Basic programs
(remember to st ick a RETURN in there
somewhere, and keep the program from
hitting line 10000 other than through that
initial GOSUB) .

Sheldon Leemon, on whose program ,
Instedit, I designed the font , reminded
me that the display list cou ld be modified
to display the fonts in any color. I may
take up this challenge in a subsequent
Outpost. For now, I will leave it to you.
List the program in the modified set; you
wi ll see that it can even function as a
programming tool.

Poking Around
As a result of my comments about

memory locat ions in the November col
umn , I got a slightly indignant letter
from Becky Johnson , at Educationa l
Software (forma ll y Santa Cruz Educa
tional Software). She reminded me that
their publication Master Memory Map
had so ld more than 10 ,000 copies at
$6.95. Well I adm it I hadn ' t seen the
publication at the time , and though it is
st ill not a truly definitive li st, it has got to
be the closest yet. If you w ish more
information, you can contact them at
4564 C herryva le Ave., Soque l, CA
95073. (408) 476-4901.

In the meantime, here are some more
interesting locations to keep you busy:

Disabling the break key. POKE 16,64

:l 0 ? "FLM1HING TEXT": 1':Et1 Pf(ECr::bUH; TE XT HI INVEr(~:lE
20 P(WE 75 :3,:l

Figure 2.

30 FOR N~:l TO lOO:NE XT N
'to POHE 75~.) t 2
50 F~O R N== :l TO 1.00:Nf:XT N
60 GDTO 2 0

137

The Upstart Atari

and POKE 53774,64 to disable the break
key. Very handy to keep users from inter
rupting or getting into a program.

Disabling DMA. PEEK (559), then
POKE 559,0. This will shut down
Antic, allowing the 6502 to speed execu
tion dramatically. POKE 559 with value
initially PEEKed to re-enable screen dis
play. Also handy as a "curtain," in con
cealing the screen during display ini
tialization or other potentially distract
ing moment. This is as opposed, for
example, to resetting graphics mode and
setting color registers to black .

Putting a text window into graphics O.
POKE 703,4. This will force all normal
text into a text window as in graphics

modes. Printing to the upper part of the
screen mu st be accomplished with
PRINT #6 statements. Could be handy
in writing text adventures (maybe even
with the multicolor font). To return to
default, POKE 703 ,24.

Flashing characters . Set up a loop
wherein the value of location 755 varies
from the normal , 2, to I . Figure 2 is an
approach to fl as hing characters .

It is a nice attention getter in pro
grams. We will also look at more sophis
ticated means of obtaining flashing
characters in an upcoming column .

Che cking for keypresses. POKE
764,255 , then PEEK(764) for internal
keycode. Handy to check for any or a

Self-Modifying Programs

Original Atari Basic has its strong
and weak points, as do all computer
languages. Because Atari Basic is a
somewhat renegade dialect , however
(as opposed to the orthodoxy of
Microsoft Basic), it is subject to
especially intense scrutiny. Those who
dislike it tend to detest it; even those
who like it tend toward ambivalence.
C'est la langue.

There is at least one good reason
why Atari Basic is a "splinter
language." It was designed in tandem
with and in order to squeeze the most
from the Atari operating system. And
as such, it is capable of some exotic
tricks - that much is undeniable.

One of these tricks is the ability to

John Anderson is an associate editor for
Crea ri, ·" COIIIl'lII illg magazine.

write-code that in turn rewrites itself.
Imagine the possibilities.

The Atari has a very open-minded
operating system. It will allow the
screen editor to operate from sources
other than a human at the keyboard.
The editor will go so far as to accept
data pushed to the screen from Atari
Basic, and Atari Basic can then
execute commands directly from the
screen editor.

Figure I is a short example of how
this feature can work. First we clear
the screen, and position the cursor.
Then we straightforwardly print code
lines to the screen . These lines will act
as if the Atari has automatically
pushed the RETU RN key over them,
thus incorporating them into the pro
gram (and eliminating any previous
lines with the same line numbers) .
Notice the inclusion of a CONTinue

138

specific keypress. Can also be used to
"press a key" through software: for
example, POKE 764 ,12 will RETURN
automatically.

To enable cassette recorder. POKE
54018,52 to turn cassette play on, POKE
54018,60 to tum it off. Recorder must ,
of course, be set with cassette in place
and play key pressed. Use to sync
recorded sound with programs. 0

John Anderson

command. You must print this com
mand at the bottom of any list of
modifications or the program will
terminate before modification takes
place. The program run must actually
stop, accept the new data, and start
itself again.

The trickiest facet of the technique
is placement of the cursor. If you
position it incorrectly , you can lose
modifications , or get locked into a
loop . A bit of experimentation will
lead to successful results.

Only now is the potential of this
capability being fully explored . Two
new programs from Artworx Software
make use of the technique: Drawpic
saves four color user drawings in
graphics modes 3 through 7, by saving
modified strings; Pla.Fer i Missile
Editor does the same for player /
missile shape tables. You can get more

information concerning these pro
grams from Artworx, 150 North Main
Street , Fairport , NY 14450.

A hint on how you might simply
utilize the techniq ue in your own pro
grams is shown in Figure 2. Here the
user is asked to input data , which is
then incorporated into the modified
program. This program can then be
saved, thus saving the input in
formation .

I've used the simplest possible
approach in this example, saving up
to one hundred phone numbers as
REM statements. You might wish to
improve radically on this approach .

Another use of the techniq ue would
be to delete lines when they are no
longer needed. Line numbers devoted
to user input of variables, for example,
could be deleted after the variable table
has been constructed . This would help
conserve memory.

Countless other applications await
your entry into Atari behavior mod
ification. The limits are set by your
imagination only.

Souping Your Machine
Although the Atari does most things

well, you can now customize it to do
things better. The idea may seem to
you akin to putting slicks on a BMW,
but let me tell you about a few prod
ucts we've tested that can make your
machine faster and more versatile .

The Fastchip. from Newell Indus
tries , replaces the floating point chip
on the operating system board. Float
ing point routines , which involve
mathematical operations with real
numbers as well as integers, run
extremely slowly on a standard Atari .
Newell Industries claims that execu
tion of these routines is boosted to
three times the original rate.

I played Hail To the Chieltwice on
the same machine , once with the
original chip, and once with Fast
chip. Calculations within the program
involve lengthy breaks in the action .
Fastchip cut the waiting at least in half,
from a maximum of II seconds to a
maximum of about 5 seconds. It may
not sound like much of a difference ,
but when you're waiting it is.

If you are into floating point
routines and don't have a lot of time,
Fastchip will help . It lists for $39.95 ,
and installation in an Atari 800 takes
less than five minutes . For more
information , contact Newell Indus
tries , 3340 Nottingham Lane , Plano ,
TX 75074.

You should resist with all your
strength the temptation to confuse

10 REM SE LF - MODIFYING EXAMP LE
20 GRAPHIC S OIPO SITION 2 ,5:REM CLEAR SCREEN AN D POSI TIO N CUR SOR.

Y COOPDINATE NUMBER OF LI NES TO CHAN GE (5)
30 .;, 1 1 0 ; " THE!:>r:: AI([THE L.I NES "
~ 0 .;, 12 0;" TH AT ~I I L L. F([Pl..r,CE "
50 ';1 1 ::10 ; " • THE L.I NES AT THE"
6 [1 .;, I'IO; " • END OF TH E PfW Gf, AM ."
7 0 ., :I. :'jO ;" • NOT E AE: Cf,E VI ATHIN S I~ EMAIN ACCEPT AB L. E ."
SO ? " CONT:F(E M TillS STAH:t1EHr I!:; UWCIAL , t-IND Mu ,n NOT f':E NUME:FI (ED."
9 0 POSI TIO N 2, O: REM REPO SITION CURS OR AT TOP OF SCREEN
100 POK E 812,13:S TO P :REM DON ' T put ADDIT I DNAL. COMMAND S ON THIS LI NE
105 POKE 812,12:REM POKES HAL T PROGRAM, ENABLE EDI TOR, ACCE PT COMMANDS ,

RETU RN TO PROG RAM
1:1.0 REM WAT CH TH ESE L.INE S CHAN GE
120 REM TO TH E L.IN ES STI PUL. ATED
130 REM I N L.INES 3 0 THROUGH 7 0 .
l. 'I 0 rd::M DON'T FORGET TH E " CDN 'l"
150 REM COMMAND AFTER L. INE CHANGES '

Figure 1.

Fastchip with Fast Chip. the disk
drive upgrade chip from Binary
Corporation. This product will
interest Atari owners with original
810 disk drives, as it provides a disk
format 30% faste r than the original.
The company claims that the custom
chip is 10% fa ste r than even the new
Ata ri upgrade chip,

It took about a half an hour for me
to perform the upgrade , and was a bit
more involved than I had initially
anticipated. Still , the instructions are
clea r, and the process is broken into
logical steps ,

Binary Fast Chip without a doubt
provides a fast e r format for your disks,
I found that it cut about twenty
seconds off the load time of a 12K file,
But the disks a re also rather sensitive
- cases arose wherein Fast Chip-

Figure 2,

11 0 REM A PRAC TICAL DEMONSTRAT I ON
12 0 DIM AS (10), N$(Z O) , P$ (:l. 8)
1:J 0 tm ,'lPflI CS 0
1 1\ 0 ? II ;iOOC:*: :«)4()4()I()I()()I()4(:t::»:l1<l«l«:« l«:«:«:l«X<:i<.l« II

1.~:i 0 ? 1I)4(

16 0 ? I')t(

17 0 . ;> " lI<

l BO ., "lI<

19 0 ., " "
2 00 ? " :.
2 :t0 ? ")4(

TEl..EPHDNE DIRE CTOR Y

(L..) I !:rr
(t,) [)[)

(D)LL.ETE
(!:;) r,VE

lI< "

lI< "

lI< "
", ,,

", ,,

", "

", ,,

22 0 ? 1I :t()K "

230 ? " :f.X<:«)f{)I()I(*)K***:«*>K)K)i(}f.}«:«)ol(::«)i(~)C().'("

210 INPUT AS: TRAP 13 0
250 :IT t ,$(l ,ll,, " A" THEN 3 00
260 U ' A$(:I. , ll "' ''[)'' TH E: N 36 0

formatted disks took much longer to
read or write, This was without excep
tion true with disks for use with
Va(/orth, It might therefore be
advisable to wait until you have two
drives, then install a Fast Chip in one.
You can then choose the format to
match the application,

The product lists for $39.95, For
more information, contact Binary
Corporation, 3237 Woodward Ave.,
Berkley, MI 48072,

Perhaps you've wondered if ROM
cartridges could be copied to disk ,
Well they can now, with the Block
from Protronics. The Block allows
you to transfer from a ROM to a
binary disk file, Up to ten ROM
cartridges can be saved to a single disk.
I was unable to find anything that the
Block couldn't copy,

210 I F A"(:L , :I.)" "S" TH EN ::;AVE " [) :Dlf(ECH)F(Y" : F(E M CASS ETT E u m ::f(S "C!:; A','E"
28 0 l..]s r 1 , :LOO
29 0 " 'T f(E SS RETLmN TO CO NTI NU E" : I NPUT M; : GClTO 1:3 0
300 ., " Wl-Ilo,T \'1 1 1 ... 1.. f: E THE L.I ::; TI NG NUME:EF<" ; :INPUT 101
3 1 0 .;. "N~,ME " ; : :rNr'lIT Ni;:" "F"HClNE NUr1E:EF(" ; : INPUT r", : TI'< AP 3 :1.0
320 GRAP HICS O: PO SITI ON 2,2
33 0 .;, 101;" f(EM" , N$; " " ; P't.:·;· " CCl NT "
3'10 PO SI TION 2, 0 : POKE 842,:L3 :STO P
35 0 POKE 842,lZ:GOTO 13 0
3611 ? "L. I!:; TINC NlIM E:EI": TCI DELETE"; : INPUT N:TI'(AP ::16 0
370 GRA PHI CS a:P OSITI ON 2 , 2
380 ., N : .;, " (;ON T"
390 POSIT I ON 2 ,0 :POKE 812, 13:STOP
~OO POKE 842, 12 :GO TO 13 0

139

Self-Modifying Programs

Potential pirates should take note:
the Block itself is a ROM cartridge,
and no cartridge file will run unless
the Block is installed.

The Block lists for $99.95. For more
information, contact Protronics,
17537 Chatsworth , Granada Hills , CA
91344.

The Library Grows
I remember, in the dim recesses of

my mind, a time when information
about the Atari was an extremely rare
commodity. This was in ancient times,
of course: maybe a year and a half ago.
Now it seems a new book about the
Atari arrives here every week. These
are six of the best:

Alari Games and Recreations, by
Herb Kohl, Ted Kahn , Len Lindsay,
and Pat Cleland, Reston Publishing,
Reston, V A 22090. Excellent starter
for novices and kids, with an emphasis
on fun programs the user can type in ,
play, and understand. Includes some
nifty appendices.

Atari Sound and Graphics, by Herb
Moore, Judy Lower, and Bob
Albrecht, John Wiley and Sons , 605
Third Avenue, New York, NY 10158.
The authors pace the text so that new
concepts are introduced at a rate that
can be absorbed. Sound and graphics
are a motivating force with kids, but
many hobbyists will want this one too.

The Atari Assembler, by Don
Inman and Kurt Inman, Reston Pub
lishing, Reston, V A 22090. Best
beginners machine language book
available for Atari owners . Assumes
you have Basic and an editor / assem
bler. Assembly language is tough stuff,
but authors manage to keep th ings
fresh with humor and good examples.

Games/or the Alari, by S. Roberts,
W. Hofacker, 53 Redrock Lane,
Pomona, CA 9 I 766. Includes good
examples of player/ missile movement
from Basic, priority detection, and
patching from Basic to machine
language subroutines. Includes ten
games to be typed in , unfortunately
without much explanation.

Picture This, by David D. Thorn
burg, Addison-Wesley, Reading, MA
01867. A kid's introduction to graphics
through Atari Pilot. Excellent as a
supplement to "Student Pilot," the
reference guide supplied with the Pilot
cartridge.

Your Atari Computer, by Lon
Poole , Martin McNiff, and Steven
Cook, Osborne McGraw-Hill, 630
Bancroft Way, Berkeley, CA 94710. It
may have taken two and a half years ,
but there is finally a manual available

which thoroughly documents the rudi
ments, as well as a nu mber of advanced
topics, concerning Atari personal
computers.

Following a remarkably steady
pace, the book progresses through
beginning operation , getting started in
Basic programming, and includes
comprehensive chapters on the pro
gram recorder, disk drive, and
printers .

The main body of the book deals
with advanced Basic programming,
and stands to serve the proficient Basic
programmer as well as the novice.

Next the book focuses on the
goodies. Graphics and sound are given
a clear and thorough treatment - with
a chapter devoted to ad vanced
graphics techniques. Character set
animation, display lists and player
missile graphics are explained simply
and thoroughly, with examples help
ing to illuminate the way. Those of
you (like myself) who need every last
thing spelled out for you , are bound to
benefit from this approach.

Later chapters examine sound
routines and summarize Basic com
mands.

The book concludes with nine
appendices, each of value to the Atari
programmer. Finally we can turn to a
single resource for an annotated list of
error codes and their meanings, status
and keyboard codes, memory usage
charts , and a listing of important
memory locations.

Your Atari Computer should be
packed with each and every unit Atari
ships, alongside or in lieu of current
documentation . No Atari owner
should be without it.

Scuttiebytes
In the November issue, we gave a

phone number for a Sunnyvale bul
letin board system called TEA M
Atari. Begun by an Atari employee,
the board is unfortunately no longer in
service. Apparently some Atari execs
felt it was inappropriate, which is too
bad.

You might try Bay Area Atari at
(408) 244-6229 . Sorry if we caused any
inconvenience, but it is tough to
compile a BBS list that remains totally
accurate for any length of time.

A question many people are asking
concerns the new Atari 5200 video
system: is it or isn't it a 400 without
a keyboard? The answer: well , yes and
no. It does have 6502, Antic , GTIA,
and Pokey chips. It does run nearly
identical ROM software. However,

140

for reasons somewhat difficult to
fathom, the 5200 has had enough
changes made to ensure incompat
ibi lity with Atari computers . The most
dramatic evidence of this is a rede
signed game controller, which uses an
analog input , in add ition to a tele
phone-style keypad.

The advantages to a handheld key
pad are obvious: the advantages of an
analog joystick perhaps less so. A
potent iometer-controlled stick allows
for better control in games such as
Missile Command, but a digital stick
is faster in quick-turning games like
Pac-Man. The 5200 controller ports
are necessarily redesigned, as are the
cartridges themselves . Whether this
incompatibility is utterly surmountible
remains to be seen, but it certainly
would be a formidable task.

Another topic we hear a lot about is
the "next generation" Atari . Have you
heard about the Atari 600? We have,
although we haven't been able to con
firm anything. It will be a single board
computer , totally compatible with the
400 and 800. It will have RS-232 cap
abi li ty built-in, and a full-stroke key
board. It will come with 48K standard ,
and sport programmable function
keys. We have even heard about an
Atari 1000, with a built-in dual density
drive, and CP/ M capability!

Super Text Mode

After a program is written and de
bugged, it should be cleaned and pol
ished. When you think of all the work
you did to get it working, the least you
can do is mount it well-and that entails
making it look and run right.

The first display a program generates
is supremely important, as it sets the
tone for all that is to follow. If you have
been wanting a professional quality title
card to distinguish your programs, here
is a routine that will fill the bill. It can be
tailored to display your message in a
large, custom font, and then to cycle
through a veritable rainbow of color.
From there, another message can flash
into the text window. After the title card
has cycled fully, the rest of your pro
gram will execute.

Programs that plot and fill character
sets into a non-text mode (in this case
graphics 7) have appeared in Byte, and
Compute! over the past two years. The
routine that follows has some new fea
tures, and allows you to create your
own, customized displays with a mini
mum of fuss.

If you are short on memory for a spe
cific application, or don't have a disk
drive, you might not want to commit
many lines of Basic to the likes of this
routine. However if you have a disk, the
program can run as a separate file,
invoking your main program file as its fi
nal act. It takes about 50 sectors on disk,
and is well worth every bit of that space.

The routine appears in Listing I . I
have left the code relatively free of REM

statements to conserve memory. If typed
in exactly as shown, the program will
display the letters A through U on the
screen, cycle through the rainbow and
text window displays, and then start all
over. In order to display letters V
through Z, change line 120 to RESTORE

862. This will at least give you a view of
all the letters in the font, so you can en
sure that the program has been entered
correctly. The only reason the alphabet
has been split in this manner is because
the screen is capable of displaying only
three rows of seven characters at one
time.

The program breaks down as follows:
Line 10 initializes, while POKE state

ments suppress the cursor and move the
margins out to 40 columns. It also in
vokes two subroutines: the first reads
machine language data into a string
which will then execute the rainbow seg
ment from a USR call in line 30. The sec
ond subroutine reads data which define

John Anderson is an associate editor for
Cre(J{il 'e COli/pUling magazine.

the placement and choice of characters.
Lines 50 through 70 constitute the

secondary message, which will appear in
the text window. There is no reason why
this font, which is in graphics 0, could
not be modified, perhaps along the lines
of the program that appeared in the
Upstart A tari article (see pages 135-
138).

Line 80 creates a pregnant pause, then
starts the whole procedure over again.
Before it does so, however, it POKES the
attract mode into operation. You mayor
may not like the effect this creates, but
the command shows that color back
ground capability is there. This is also
the line from which the rest of another
program would take off.

Lines 130 through 230 are really the
heart of the program, and exemplify a
powerful and efficient manner of reading
plotting (as well as other) information
from an upcoming series of DATA state
ments. This handsome approach has ap
peared in Compute!, though I have
improved upon it here.

Briefly, the following happens when
reading DATA statements: if preceded by
a P, upcoming data pertains to plotting.
Read the numbers, PLOT and ORA WTO

as necessary.
If preceded by an R, the following

data will indicate where the plot should
begin (always at the 0,0 point of any let
ter). These numbers always occur at the
outset of a letter plot, and must be
manipula ted by the user in order to en
sure correct placement. The font is
"proportionally spaced"; for example,
an I is narrower than an M, and care
must be taken to layout words so that
spacing between letters is pleasing.
Shades of art direction! The first number
is the vertical coordinate, the second the
horizontal. And remember, the Atari
does not use the Cartesian coordinate
system, but rather places 0,0 at the
upper left-hand corner.

If preceded by an S, the data pertain
to sound statements. Thus the user can
create a tone for each letter, building
into and moving between chords, if so
desired, by cycling voices . The first
number indicates which voice to use, the
second what pitch. I worked exclusively
with pure tone (10). By altering the
distortion value in line 160, you can
experiment with sound effects .

The next data identifier may seem a
bit mysterious, as it is not used in the
demonstration version of the program. It
is a dummy identifier, placed there only
for possible use as a time delay. As cer
tain lett ers require few er steps to draw
than others (I as opposed to S, for exam-

141

John Anderson

pie, they will plot much more quickly.
By padding the DATA statements for the
letter I with D's, you would be able to
even out its plot time, to create a truly
professional-looking display.

If preceded by a letter F, the numbers
indicate a following fill statement. These
ensure that the insides of each character
will be delineated from the outside, so
that the rainbow can then well up from
with in . And if the word END is en
countered, the job of this section of code
is terminated.

What follows are the somewhat
lengthy DATA statements themselves.
"Why the jump from line number 230 to
650?" the more observant Atarians out
there may ask. "Well, for a good rea
son," I respond. The line numbers that
initiate each letter correspond exactly to
their AT ASCI code times 10.

An observant but somewhat slower
subgroup might ask as a follow-up, "so
what?" Well I'm glad you asked that
question. In a subsequent version of this
program, (which I haven't yet written
because I am hoping one of you will do
it for me), the user will be able to input
an entire message into a character string,
and through the use of techniques out
lined in SelIModifying Programs
(pages 138-140), the program will then
modif)i itself into the specific message ,
deleting all extraneous material.

A hint at a possible approach: I) find
out what letter the user wants, 2) LIST

CHR$ (user's letter) *10+2, give it a new
line number (how about that gap be
tween lines 230 and 650), then re-enter
the line. Do this for + 4, + 6, and + 8,
and you will have the entire letter re
entered. Preset R (origin) and S (sound)
values that the user can fiddle with later.
There will be plenty of time for that,
what with the time saved not having to
edit the whole thing by hand. Then have
the program automatically delete lines
650 through 904 completely. Voila, a
custom title card, in minimal memory!
Disk Utilities

Want to learn more about how your
disk drives work? Need a way to retrieve
data from crashed disks? Want to look
at and alter disk information sector by
sector? Interested in backing up your
disks? If your answer to any of these
questions is yes, you are a candidate for
a disk utility package.

Every time I have been about ready to
write something on disk utilities, an
other package makes makes its appear
ance. The latest I have had a chance to
become acquainted with is Diskey from
Adventure International. This packs the
most features I have yet seen in a disk

Super Text Mode

utility, and is accompanied by a rare bo
nus: sparkling, well-written documenta
tion by the software author himself. The
tutorial value of the manual alone makes
the package worthwhile.

But just wait until you see the soft
ware. Disk maps are presented simulta
neously in hexadecimal and ASCII
format. The software allows for
sector-by-sector data examination and
alteration. It provides tools by which to
salvage damaged disks. It provides func
tions to compare, copy, reformat,
search, create disk files from tape
autoboot files, erase (write zeros), dis
able verify, calibrate drive speed, and
manipulate disk directories as well as
DOS files.

Another unique function of Diskey is
its ability to flag "dead" disk sectors.
This is a capability previously unavail
able in any disk utility I have seen.
Though the potential for misuse is there,
author Sparky Starks stops short of
spelling out a means to write bad sec
tors. He states strongly in the manual
foreword his equation of software pirates
with common thieves.

As a learning tool, Diskey is super
lative. The documentation and software
work in tandem to provide the most
solid disk tutorial you can find any
where. And, hard as it may seem to
imagine, even the driest stuff is pre
sented in a fresh, almost breezy manner.

Diskey is more than a professional
utility: it is obviously a labor of love.
There are many more features in the
software than would have been nec
essary to create a salable package. For
over 50 reasons (the product has over 50
separate commands), Diskey very
quickly attained a pre-eminent position
in my utilities box. How about an assem
bly language tutorial, Mr. Starks?

Obviously, you must have a disk drive
to run the package; in addition, you
must have at least 32K and Atari Basic.
The system is optimally configured,
however, with a 48K system. two drives,
and an 80-column printer like the Atari
825 .

The package lists for $49.95. For
more information, contact Adventure
International. Box 3435. Longwood Fl..
32750. (305) 830-8194.

Poking Around
This part of the column was initiated

as an attempt to respond to the many
questions we have received at the maga
zine concerning Atari memory map
locations, and ways of "tweaking" them.

I have at least three letters from Atari
Basic hobbyists, all asking the same

Listing 1.

~o CLR ~P~KE 7S2T~~~IH D~(~)~&$(~2):TX
HE=~&~POKE 32,G~GOSUB ~O~O:GOSUB ~~O
20 C$(15~~S)=CHR$(%2)
30 X=U~R(ADR(C$)~T~HE}
40 GR~PKXC~ 7+32~~OKE 752~L~SETC~LOm 2
"O~O 50 ? �1 __ • __ • __ ._. __ . ___ •. __ • _____ . ___ · _____ • ___ · __

--,---,_111

60 l' 1,1-'-ourrp'O'ST' 'frARI--'-C:RIEJQI1'I:V'E IC:OIIt1PIlJI
TI:MG-'- III

70 ':l' 11--.--.--,- .--.-- .•. --.---.---·--·-----·.---·--· _____ ,_IN

80 FOm 1=1 TO 2S0~~NEXT I:POKE 77~2S4:
GOT'O 10
'0 RE~ BRA~C~ HER~ TO R£ST OF CO~f
~OO GmAPHI~S 23:S~lC~LOR ~.O~O:SETC~LO
R IpO~L4:SETeOLOR 2,O,~~SfTCOL6R 4,~~O

110 COL~R 2~FCOLO~=1
.120, RIE. S TO RlE, 650
130 RIEA~ D$~IF ~SC(D$)(64 THEN 220
14101 I:fF [),$="pn THEIl>!! RIE.I!'i[)' R~·"" I COLUHII4:' IIiIOS
U6 230lPlOT CQL~H~~RO~:GOTQ I~O
.lL5Jj}, I:F 1!).$ =11 R'" THEM IR~E.~IJ) RQIR'IGI:I!f I' IC,OR:I.GI.
N: lIi,IOT'O 1,301
JI..61ll :IF 1I>,$=:!.r.SIIII ntEMI RE.~1L'I' I.)Ilit:IC:E I' Pli:T'CHI ~ '50101
UH~ W0Ji:CE~PITCH~~~,~:G6TO ~30
1.70 I:IF 1L'I,$="[)o1l1 T'llilEMI .13,0
1301 IF [l,$=II'EHi[lo11i THIEN RE:lrlllIAIN
1.'9'Oi I:fF [>,$ O"f'" THEN I]i:OT'O 1,:1'101
200 REA~ R~~~COLUHNIGOSU8 230~~OSITION

Cll)llIJlIt1H, ROII./:: POKIE: 7'6 5 ~ FC:QL~·IR
2.10' 3U 0 .1l.3, ~6, I' (11,01 I" 'S, : .. : P U)'')!' C OILUHN, IR:O,",
~ (illl'IrO! 1.30
2!G RO~:V~l(~$) :REA~ C~LUHH~GOSU~ 230:
ORIflI!lr.lTtD tOLUMlli ~ R.Q~: GOTO JI.:;).tiJ
230 R~~=RO~+~ORIGINlCOLUHK=COLUHH~CORI:
GI'HI : RIE:TUliR It
6,Sel RIf.H 1.1 A"'- - .- --.--- --'---'--"- -- --,- --.--._-,

652 ~~TA R,.OI,Or~~n~L
654 ~~T~ P,2,7,2~LJ,4~L6,6~Larapl'r25,
1~,2SrL3pF,L~FL~.P~6,~,F,6~lJ,F~7~L2pF
,8,!3~F,L3,L3rllr7

65~ ~~T~ 3,7,7,$p~p~,P,.IL~,~3~L~~7~ZSp7
,25;,,1, , F ~ a, ~ .' f' I' 6, ~ :2: f F,. 4 I 4, I' f' ,2,7, 2: .. 1.3 ,. P' ,,1.
J " 7: r 8 , 7' , 7' , <3 I' 6· I' ~
'6,601 RE.H 118

1111
------.--.---.--.---.-----.--.---.--

6,72 [loAITrAI R,. 01 I 4,4 I 'So 1,2, I' 1,.Jl.
~74 [IoATA P,2,?p2~L3p4,L~.6~l.a~6~~'p$~L
3.F~6,~1,F,6,'· f8~7,~',?,2L,~,P,~~~~'~2
1 ,,1.',,2.3' I J6, 25,.i.3'
6,716, [!tlAll'rAI P, 11., "JI , F I' 2:.Jl. 1 .Jl..t., F ,.1.." L3:" 1., ,,1. "JI"
~~2S~13125,7,f~Z3,4pF~21~Z"F,~'~L,F,8r
!~F,6,2,F,4~4~F,2,7

142

question: how can Basic programs be
made unlistable? First of all, let me go
on record as one of the category of folks
who believe in keeping things listable
wherever and whenever it is feasible to
do so. The problem of code theft is not
nearly as acute in Basic as it is in ma
chine language, nor is that diehard pi
rate going to be deterred by the mere
fact that a program is unlistable in its
usual environment. My feeling is, in the
spirit of enlightenment, if other people
stand to learn something from a bit of
my code, more power to them.

That disclaimer having been duly
filed, let's look at the only tried, true,
and simple method I have seen to help
protect your precious Basic files from
prying eyes.

Most approaches I have seen to
rendering Basic programs un listable are
unsatisfactory. In my Upstart Atari
article, I noted the memory locations
you can alter to disable the BREAK key
(see Poking Around, pp. 137-138). (A
quick aside- a couple offolks wrote in
telling me they experienced problems
disabling BREAK. The POKE com
mands must be reasserted often. For
instance, POKE again after every
graphics mode command. If you put
enough sets of them in your program
or stick them in the right places in the
main loops, yo u will effectively disable
the key.)

I have not found a way to disable the
RESET key, but with the command POKE
580, I you can make the key into a
"true" reset: that is, pressing the key will
initiate a cold start, as if the system has
been powered down and up again. This
will flush any resident program from
memory. To return to the normal RESET
mode, POKE 581, I.

The trouble with merely disabling
these keys is that the program can still
be listed before it is ever run. Still an
other approach I have seen converts pro
gram listings into control characters or
variables into carriage returns . Likewise,
the fixes do not become operative until
the programs are run . If the user asks for
a LIST directly after loading, a full listing
will be obtained.

How then, to protect a program be
fore it can be listed? The answer lies in
the creation of a "RUN only" file . This
type of file can not be LOADed or EN
TERed, nor can it ever be LIsTed. It exe
cutes perfectly in every other respect,
but can only be invoked with the com
mand RUN"D :FILENAME", (or RUN
"e:" if you are using a cassette-based
system). In order to create such a file,
append the following line:

15·381 RE,'" .,ll>liM--'-, -_.- ----.--,------- -.----,--,--
~6Z I>~T~ R,0,66,Sr~~13
634 I>AT~ P,2,J~2~A~v4,L6~~~13~3p1'~1?
~~,%A,A'r2~~17~25~~5,25r~,P,6.7~Fr6,~~
,F,3r~~JFF~3,~3rF,20r~1rZO~7,~,7
636 I>ATA P,25,£,FFZ,1
6"'0 REII1 lII'E u11---.-----.-----.-----.----.--'---.-

S.,Z I>AT~ R,O~$3rS~&~15
6,.,4 D-ltilA P, 2., 1.,,2: r.1."" 6i,.1. ' ;" is; r 7, Jl1.11 7, JL1. r JL
5~1.6~15,J~,7,l~F7~J~~~~r25,L'~25~1~F,2
,.1
7'00 R:Et1 'ilF.'~'i---.---.--.-----.--------.--'---.-

702 ~AT~ R,O.1JLOrS,JL,~8
704 (}!fti1'A P , :2., I." :2: r .IL " r a:, JL"" ei , 7, Jl1. I' 7 , .Jl.1. r JL
5 " .t6, I' 1.S , J 6 , 7 I 2:5 ,. 7 " 2'5, J. I F' ,. 2: p .L
71.0 REIl1 U,(illl---.---.--'---·--.---·--.------'---·-

7.JJ..2: l>~iTA R, 0 ,; 1.~2: r 50 ,2: , 23:
?J.4 I>~TA P,2~7~2,1.3~4,1.~~&,1.$~8,JL~p&,JL
~~F,&,~.t.f,6,'~8,7,JL'p7~2Lp~,P~~~,A~pZ
J,L~f2~,~6,25p~3
7~~ I>ATA P.~3,~,,~4rL~~14,~~,F~L8,~1.,F
,L3FL~,F • .Jl."L3~FF21~LJ~2A~~ .
7L3 &ATA P,Z5,JL~,2SF7,F,23,4,F.2~,2~F~
~~~LFF,3~~rF~6,2,F,4~4rF,2,7 
72.0 REII1 Dllttl HI-.---.--.-----.-----'-----·-'-- --,-

7ZZ ~~lA RtZ5,O,'~3~~3 
724 ~~TA P~2rL3~Z~1.~~2S,~~,2$,L~.Fp~6p 
13~P~2,7,~L,7,F,l~.J3,F,2,~3,P,16,~3,JL 
6,7~25,7.25,A,F~2.L,%,7 
73:0 REI1 UIIIDI-,-----'---.--'-----.-----'---·--·-

732 (}~TA R,25,23FS,O~3L 
734 DATA PtZ.L~2,7,25,7,25,~.F~2.L 
74·1) lilEH mIlJKB-.-----'---·--'---·--.---.--·---·--·-

752 ~~TA R~25,66,S,2~42 
754 ~ATA Pt2f1,2,7,1L,7,Pr1~,J~,A~,~4~ 
3,.Jl.,,2,~'.2'~~FF,8,!~,F,J£,7,P~L~,1~~2 
5,~'~25~13rF,L~,13~Fr16,7~25,7 
756 DATA 25,JL,F~2~L 
715,0 REt1 uu.,tI----,-----.-.-'-.--'--'---.--,---.---
762 GATA R~25,33,S,3,47 
7~4 DATA P~2~L,2,7r1~,7,1~~~~,2S,L'~Z5 
,J", F',:2:I'JL 
77'0 AEt1 nli1 l1 -.---.-----,--.---.----_. __ , ___ . __ _ 

143 



Super Text Mode 

11~2~7~~,L3,F,2~13 
7,10 R.Et1 1M1D:.1-.---.--.---.--.---·--·---·-----'--.. -

7~2 DATA R~50,0~5,2,7~ 
7~4 DATA Pr%,7,2,~3,4,J6,6,~8,8pL~,L~, 
L~~2J~18,23,~6,25,~~~P,8,7,6,'~F~6,~L, 
F,8,J3,FI1~,J3,F,2L~L1~Z1~"L~p?~3,7 , 
7'6 DATA P~%5,13,2S,?,Ft23,4~F~2~~Z,F~ 
.1L 'I , .Ii. , F , 8 I' 1. " f' , 6 , :2 " IF ~ 4 , 4 , F , 2 I' 7 8010 R:EH 'Up,.I ____ . ___ · __ · ___ . __ ' __ ' ___ · ___ · __ ' __ _ 

812 DATA RrSO,44,S~ar'~ 
814 ~ATA Pp2~?,:2,13,4,~6,6,18,8.J~,1~, 
.1L'p2!pL8t23,J6,P,8,7f~~~,F,6,JJ,Fr6rL~ 
Ff,L"L3,fr21,J~,2L,~,1,,7,8t7 
8L6 DAT~ Pf2~r16,27,~,,2~,16~F,25~13,f 
f%5,7.F,Z~t4,F,2L,2,F,~~,J,rF$pl,F,6,2 
, IF /, 4 , 4 , F I 2: " 7' 
8:2.:0 lR:EH 11111:'1-.---.-----.-.-.-.--'---·--·---·--·---· 

822 OAT~ ~~SO~&6,3r1~L03 
8%4 DATA ~r2,L,2,~lJ4,J6,6r18,8~1~,~O, 
£'p12~L7~13,J5,~5~17~L7.1~,25,J~,25~L3 

31:6 [)oAl'A P "~'" 7' p F, 6 I JJL, F , is I; 13, F ,,10 I ' 1..1 ~ F 
, J.O, 7 ~, t5" j7' 
81:3 Ii>ATA Po" 2:5, J3, F 12,::2:, JL3:, F , .Il.~I, 12:, F', lLS; p 

~,~8,7,2S~7,2S,JL,F,2~L 
83:0 A:EH 111'5.1---.-.-------.---.-----.-----.---. 

842 DAT~ R~5G~1]O,S,3,J2& 
844 ~ATA P,Z,JL,2~1~,3,J~,8~13,2S,13,25 
,7,F,8,?~&,L,F,2~1 

8 ~II). III:E" • au"· -.- - -.- -.-.- _.- -- - '-'- - -.- ---- - -'- --. 

852 ~~TA R,50~132p~,O,A46 
8~4 ~~T~ Pr2,~3p2,£~~~~p1~,2A,~S,23p16 
I; 2:5: " 1:J , 2~) , '7 
8S6 ~AT~ Pp:2.:,JL~~2,13,L'p13~F~21~11,21, 
~ • 1." , 7 , :2 I" 7' p 2: , Jl. , po , :2'5 , 7 r If" ,. ~2:~ I; 4 I' IF' , 21. I' :2: , F , 
.J',.l, F. ,,2 1, 1. 
8~~ ~AT~ P~2~pL3,F~2.L~ 
8~-<) [)'~TIll· IE:NI> 
8i1j..o, R:E.H tlIJIN--._-.--.- --.---.. -.----.-----.. -----. 

862 DATA Rp35.Z5rSpO,1~3 
864 ~~T~ P,2,1,Z.7pL4F7pL~~~~16~1~r14, 

144 

POKE PEEK (138)+256*PEEK 
( 139 ) + 2 , 0 : SAVE' . 0 : F I L E -
NAME ' , : NEW 

It does not matter if the line is at any 
time executed by the main program; the 
code therefore remains unaffected in any 
way. It is imperative, however, that the 
line be the chronologically last line of 
code. When you are ready to protect a 
program (that is, do not intend to alter it 
any further), type this line with a higher 
line number than any other in the pro
gram, choose a filename, than GOTO the 
line. Listing 2 is a working example. 

That is all there is to the technique: 
"RUN only" files can be simply gen
erated to disk or tape. Attempts to do 
anything other than RUN will result in a 
nasty case of system lock-up. And yes, 
even autorun files can be protected in 
this manner. 
Scuttlebytes 

Well, we have finally managed to con
firm the existence of the Atari 600, and 
have heard that at least two Atari plants 
are currently tooling up to produce 
them. The 600, as its model number im
plies, will fill the gap between the Atari 
400 and 800., It was rumored that the 
machine would be unveiled at the Win
ter CES in Las Vegas. It will sport 48K 
standard, and a full-stroke keyboard. 
Owners of 400s and 800s need harbor no 
fears of obsolescence: the 600 will be 
completely compatible with its 
predecessors. 

Many Atari types are awaiting with 
curiosity the final verdict on the Com
modore 64, which features graphics, 
sound, and gaming capilities very much 
akin to those of Atari computers. Atari 
has, in the meantime, added to its busy 
legal docket a suit against Commodore, 
concerning the design implementation of 
Commodore joysticks, which are for use 
with the VIC-20 and all latest generation 
machines. It seems the sticks are not 
only Atari-compatible, but nearly identi
cal in many respects. 

Atari, which patented its stick when 
the VCS was first introduced in 1977 
and improved the design several times 
since, claims patent infringement. The 
Atari joystick connector has set an infor
mal design standard in the industry. The 
Colecovision videogame uses an Atari
compatible format, and it was rumored 
that the new microcomputer, to be re
leased by Apple this year will also make 
use of Atari-compatible digital sticks. 
But compatibility and patent infringe
ment are two separate concepts. 
Joysticks 

While we're on the topic of joysticks, 
let me tell you about two hot sticks 



we've been play testing. The first is the 
Pointmaster joystick. This stick has an 
extra long handle with built-in grip and 
handle-mounted trigger button, making 
it perfect for "flyer" games like Star 
Raiders and Protector II. The stick is 
very much like the one in the stand-up 
arcade version of Zaxxon, and once you 
playa few games of Raiders with it, you 
won't want to use anything else. Con
versely, the stick is cumbersome in maze 
games like Jawbreaker or MBAFAS 
(" move back and forth and shoot") 
games like Threshold. Sti ll , at $ 17.95, it 
offers a real boost to your "flyer" game 
collection. 

For more information, contact 
Discwasher, 1407 North Providence 
Road, Columbia, MO, 65201. (314) 449-
0941 . 

The other sticks we looked at, called 
Game Mate 2, are pretty nearly regula
tion Atari sticks, with one big difference: 
they are wireless, and work by remote 
control. My main fear was that there 
would be a time lag between the move
ment of my hand and what I saw on the 
screen. I experienced no such 
sensation-the sticks seemed as fast as 
any I had ever tried . My only reserva
tion is their size. They are quite bulky, 
and take a while to get used to. 

With the YCS, the console power sup
ply plugs into the Game Mate receiver 
unit, and then into the YCS console. For 
the 400 and 800 computers, however, an 
additional 9-volt power supply is a nec
essary purchase. Each stick also takes a 
9-volt transistor battery. The units op
erate at distances of up to 20'. 

Complete with receiver and two 
sticks, Game Mate 2 lists for $99.95, but 
I have already seen this price substan
tially discounted . If the luxury of wire
less sticks is appealing to you, this 
product will assuredly not disappoint. 

For more information, contact Cynex 
Manufacturing Corporation, 28 Sager 
PI. , Hillside, NJ, 07205. (201) 399-3334. 

Games 
Smoothly we seque from sticks to the 

games played with them. We have con
firmed 400/800 versions of Galaxian 
and Defender in ROM form from Atari. 
Both games are spin-offs from the new 
5200 model videogame. The 5200 may 
yet prove to be a boon to owners of Atari 
computer systems, if it spurs game 
development common to all machines. 
Galaxiall has already been demonstrat
ed , and is a solid implementation . One 
can only hope that Defender will be up 
to snuff. 

Datasoft also has an ambitious project 

~i,2~~~~2,~~,L7~~~.Z5.L~,F~Z5,~~F.L7.L 
,F,2,.Jl 
8G6 ~~T~ ~.L~.~~F,~~,~L,F.L4rlJrF.2,~3 

$-?I!)! RE.H t·W· i
.--.----'-,-'---'-----'--'---.--.. ---.--

$,30 RE:~ I,'X""'--'---'-'-------·--'-----·--------

&~2 D~T~ R,~5,~LpS~~,205 
6'4 D~T~ P,1,L.2.7,~pJ0,2,J3.2,1~,8,1~ 
,13,.Jl5,L6.L3f25~J3125,?,F,16,7,FpL3,5. 
IF' ,I 3 , .II. If, 2: r 1, 
8~6 D~lA p,.II.~,~~,F,2,13 

",'00 RE:r1 IIIZSfl--~.--'-'--,-- ,---'----,---.---.-----

Listing 2. 

.to 1 11TH IS P'ROili.R~M IS I1HlLI'S,TAftiLEu 
:2:0 l' IIEfJEMi I 'HOUlGHI TtlfiE RE'S,ET Altl!)on 
3:0! l' nnRE1Ur KI~'Y'-s. REttAI:1it ENI4I8LED. n 
401 l' 
501 l' IITRY Xl' ~ 1m 

60 FOR ~=1 TO ~~60~HEKT ~ 
70 GRAPHreS O~~OTO 10 
30 REM REMEI1BER T'O nGOITO 'J~I:[:I::II 
'0 REH TO SAVE THE UMLISTABLE FILE! 
~OOO~ P~KE PEEK(1~3}+256*PEEK(~3')+2,~ 
~ SA:VIE: lal!):: OIUTPO'5,Tu : NEIi-I 

on its drawing boards right now: 
Zaxxon for the Atari. We can't wait. 

I must admit it: when I first heard 
that Big Five Software was releasing a 
game for Atari , I sort of chuckled . 
Somehow I assumed that because Min er 
2049'er was from one of the best TRS-80 
game houses, it would probably run in 

145 

graphics 5. Did I make a mistake. Miner 
2049'er, in ROM cartridge format , is 
bound to be one of the runaway hits of 
the year. With superlative graphics, hu
mor, and 10 completely different screens 
to master, the game leaves Coleco-
vision 's Donkey Kong pale by 
comparison. 0 



The Challenge is Met 

In my "Super Text Mode" article, I 
posed a challenge to all Atari hackers 
for vas t improvements upon my 
program. The first response I received 
was from Mike Portuesi, a sixteen
yea r-old Atari devotee from Mount 
Clemens, Michigan. 

Mike succeeded in the task with 
satisfyingly little code. His version 
of the program accepts a user message 
as a string, modifies itself to include 
only the letters needed for that specific 
message, then deletes all extraneous 
lines. The user needs only to reposi
tion those letters on the screen, which 
is a very simple process . Tinkering 
with sound values and plotting speed 
will result in a polished title card . 
Creating multiple cards is made 
dramatically less time-consuming. 

The additions appear below (these 
lines must be added to the program 
appearing on pages 142-145). 

For a bit of background and a walk 
through the modifications , I now turn 
things over to Mr. Portuesi : 

Operation of the program is simple. 
Sim ply R UN it , and the program will 
ask you to input your message. Use no 
bla nks, please. There is a 21 character 
limit , because I figure that 21 char
acters are the most you can fit on the 
screen at once (3 x 7), but if you're 
using lots of skinny letters (like "I "), 
simply change the DIM statement at 
line 5. When it finishes running, you 
are left with a customized program. 

The main challenge I faced in the 

Listing 3. 

modification was renu mbering the 
data sta tements to fill the gap between 
line numbers 230 and 650. I couldn't 
live with repositioning the cursor and 
printing new line numbers . I would 
have go ne insane trying to come up 
with a routine to account for missing 
lines and different line lengths . My 
progra m uses a different method , as 
follows: 

I. Get message 
2. For each character of string: 

a . list to screen all associated data 
lines 

b. Use forced-read mode to input 
lines into A$, B$, C$, and D$ 

c. Modify strings to set new line 
numbers 

d . Print strings on sc reen 
e. Force-read th em into the 

ex istent program 
3. Delete lines 650 to 904 
4. Delete lines 5 a nd 859, then 

RESTORE da ta pointer to line 232 
5. Delete modification routine itself. 

The forced-read mode is used not 
only to modify the program, but a lso 
to enter program lines into a string. 

Here is a line by line explanation of 
the added lines: 

5 - DIM strings, GOTO 2000 
2000-2010 - Get message from user 
2020 - Loop for each character in the 

string 
2040-2050 - List all lines relating to 

a spec ific letter 

2000 

2060 - Enter these lines into A$, B$, 
C$, and D$, with forced read mode 
(using INPUT, not STOPping the 
program) 

2070-2100 - Modify A$, B$, C$, D$, 
so as to give them new line numbers 

2110-2120 - Put these lines back out 
on the screen 

2150-2190 - Delete lines 650 through 
904, twenty lines at a time 

2220 - Delete lines 5 and 859, change 
line 120 to RESTORE pointer 

2240 - Delete first half of modifca
tion routine 

2250-2260 - Delete rest of modifica
tion routine, stop program for user 

3000-3030 - Modification subroutine 
A really big problem I had in 

development of the progra m is the 
infamous keyboard lock-up that 
occurs with repeated and heavy edit
ing. This, coupled with the fact that I 
have only a cassette recorder, led to 
heartaches and frustration . I wish 
somebody would do something abo ut 
that. For all the user-friendliness of 
Atari Basic, that bug almost makes me 
want to take the Basic cartridge, sq uirt 
it down with lighter fluid , an d take a 
match to it. 

One quick word of warning: remem
ber to SAVE Mike's additions to the 
program before ever RUN ning the 
modified program! As soon as it runs , 
it deletes the powerful parts of itself. 
Skip any testing until you put a file on 
disk. Otherwise, you too may loo k for 
the lighter fluid . 

5 DIM STRINGS( 2 1),AS(120)~BS(120),C S( 120)iDS~120~:GOTO 
2000? CHRS(125):? "hEASt ENTER YOU~ STR NG' :? '(LESS THAN 21 CHARACTERS, PLEAS 
E! ) " 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2120 
2130 
2140 
2150 
2160 
2170 
2180 
2190 
2200 
2210 
2220 
2230 
2240 
2250 
2260 
3000 
3010 
3020 
3030 

INPUT STRINGS:LINENO=232 
FOR 1=1 TO LEN(STRINGS) 
? CHRS(125): POSITION 2,2 
FOR J=ASC(STRINGS(I,I))*10+2 TO ASC(STRINGS(I,I))*10+8 
LIST J:PRINT "":NEXT J:POSITION 2,3 
POKE 842,13:INPUT AS,BS,CS,DS:POKE 842,12 
AS( 1, 3)=STRS(LINENO): LINENO=LINENO+2 
BS (1,3) =STRS (LINENO) : LI NENO=LINENO+2 
CS(l, 3)=STRS(LINENO): LINENO=LINENO+2 
DS(1,3)=STRS(LINENO):LINENO=LINENO+2 
? CHRS(125):POSITION 2 , 2 
? AS:? BS:? CS:? DS 
GOSUB 3000 
NEXT I 
PNTR=l:? CHRS(125): POSITION 2,2 
FOR 1=650 TO 904 STEP 2 
? I 

STEP 2 

PNTR=PNTR+1:IF PNTR=20 
NEXT I 

THEN PNTR=l:GOSUB 3000:? CHRS(125):POSITION 2,2 

GOSUB 3000 
? CHRS(125): POSITION 2,2 
? 5:? "120 RES. 232":? 859: GOSUB 3000 
? CHR$(125):POSITION 2,2 
FOR 1=2000 TO 2180 STEP 10 :? 
? CHRS( 125): POSITION 2,2: FOR 
FOR 1=3000 TO 3030 STEP 10: ? 
? "CONT" : POSITION 0,0 
POKE 842,13:STOP 
POKE 842,12 
RETURN 

I : NEXT I:GOSUB 3000 
1=2190 TO 2260 STEP 10:? 1: NEXT I 
I : NEXT 1:? "POKE 842,12:?CHRS(125)" : GOTO 3000 

146 



Converting Applesoft Basic to Atari Basic 

Neater Numerical Tables Paul N. Havey 

In Neaten Up Those Messy Numer
ical Tables by Donald J. Taylor 
(Creatil'e Computing. December, 
1981), the a uthor designed a short 
program, written in App lesoft, which 
enables the user to print numbers in a 
neat exponential form. While the pro
gram may be an answer to the dreams 
of many an Apple owner, it is of little 
use to still -d reaming Atari owners. 

Conversion from Applesoft to 
Commodore or TRS-80 Basic is more 
direct than conversion to Atari Basic. 
This is because Atari Basic does not 

Paul N. Havey, P.O. Box 5148, Santa Monica, 
CA 90405. 

Program I. 
10 REM SCIENTIFIC NOTATION FORMAT 

20 REM CONSTANT SIGNIFICANT DIGITS 

30 REM TRUNCATOR / RO UNDER 

40 REM REVISED FOR ATARI BASIC 

45 REM BY PAUL HAVEY 01 DEC 82 

50 REM INPUT: TWO VARIABLES 

60 REM 1. X=NUMBER TO FORMAT 

70 REM 2. D=SIGNIFICANT DIGITS 

75 REM D-l FOR ROUNDING 

80 REM OUTPUT: ONE VARIABLE 

90 REM 1. X$=FORMATTED NUMBER 

support string arrays like the others. 
However, with the unlimited string 
length capability of Atari Basic, 
program conversions are possible for 
Atari owners and, in some cases , 
simplified . 

I nel uded here is a translation from 
Applesoft Basic to Atari Basic of 
Taylor's exponential program. Also 
included is a li sting of the original 
program for comparison. Both pro
grams convert a number to a string 
which is then disassembled. The num
ber is then reassembled by con
catenation into a thousand string 
mantissa and exponential for the 
scientific notation format. Zeros and 
signs are inserted where needed. See 
Table I for a sample of printed output. 

The variable names and time re-

Program 2. 

250 REM ROUNDING ROUTINE 

quirements for the Atari Basic version 
are only slightly different from the 
origina l Applesoft Basic version. 
Table 2 contains a list of variable 
names for the Atari Basic version and 
Table 3 conta ins the time and memory 
requirements for both versions . 

The handling of string variables is 
one of the fundamental differences 
between Applesoft and Atari Basics. 
In Microsoft Basic (and in Applesoft) 
extraction or splitting a string into 
pieces is done by the functions MID$, 
RIG HT$ , and LEFT$. In Atari Basic, 
strings are split by using a subscript or 
set of subscripts. For example, 
A$(6, 12) means that the substring 
starts at the sixth character and ends 
with the twelfth. If one number is with
in the subscript then the subscript 

260 BUF$(2)=BUF$(3):BUF=(VAL(BUF$)+5):BUF$=STR$(BUF): 

IF LEN( BUF$)=D THEN 280 

270 L=ABS(VAL(E$)+1):E$(2)=STR$(L):IF L<10 

THEN E$(3)=E$(2):E$(2,2)="0" 

280 X$=BUF$( 2) : BUF$ (2,2 )=" . ": BUF$ (3 )=X$ (1, D-2) 

Table I . Sample Data Columns. 

100 DIM X$( 20) ,BUF$(20) ,E$(3) ,BUFI$(10) ,S$(1) 

110 S$=" ":IF SGN(X) =-l THEN S$=" " 

Co lumn A 

-4E-04 

Column B 

-4.00E-04 

120 BUF=ABS( X):BUF$=STR$(BUF):L=LEN(BUF$) 

130 IF L>4 THEN IF BUF$(L-3,L-3)="E" THEN E$ =BUF$(L- 2 ): 

BUF$(L-3)="0000":GOTO 230 

140 IF BUF=O THEN X$=" O":GOTO 300 

150 IF BUF<l THEN 210 

160 BUFI$=STR$(INT(BUF)) 

170 E$ ="+0":E$(3,3) =STR$(LEN(BUFI$) - 1) 

180 IF BUF<10 THEN 230 

190 BUF$ (2,2 )=" ." : BUF$ (3, LEN(BUFI$) +1)=BUFI$ (2) 

200 GOTO 230 

210 IF BUF$(3,3)="0" THEN E$=" - 02":BUF=BUF"100: 

BUF$=STR$(BUF) : GOTO 230 

220 E$="-01":BUF=BUF*10:BUF$=STR$(BUF) 

230 BUF$ (LEN( BUF$) +1) ="00000000" 

240 BUF$=BUF$(1,D+1) : BUF$(2,2)="." 

290 X$=S$:X$(2)=BUF$:X$ (LEN(X$)+1)="E":X$(LEN(X$)+1) =E$ 

300 RETURN 

147 

-1.10679718E-03 

-0.0 2 

-0.158113883 

o 
1. 58113883 

10 

47.4 3416949 

200 

790.569415 

40000 

1739 252 . 71 

2 .68793601E+09 

9E+09 

-1.llE-03 

- 2.00E-02 

-1.58E-01 

o 
1.58E+00 

1.00E+01 

4.74E+01 

2.00E+02 

7.91E+02 

4.00E+04 

1.74E+06 

2.69E+09 

9.00E+09 

A = As the Apple and Atari print. 

B = As converted by this program 
(rounded o.!T to three significant digits). 



Neater Numerical Tables 

begins with that character and ends 
with .the last character in the string. 

Table 4 contains a list of Atari to 
Microsoft translations. The LEN(A$) 
function is the same in both types of 
Basic. 

Program 3. 
100 REM SCIENTIFIC NOTATION FORMATTER 

102 REM CONSTANT SIGNIFICANT FIGURES 

104 REM TRUNCATOR / ROUNDER 

106 REM DONALD J. TAYLOR 

108 REM JUNE 1, 1982 

110 REM INPUTS REQUIRED=X AND D 

112 REM X= INPUT 1/ 

114 REM D=I/ DIGITS FOR TRUNCATION 

116 REM D-1=1/ DIGITS FOR ROUNDING 

118 REM X$ =OUTPUT 

120 REM 

122 S$=" ":IF SGN(X)= - l THEN S$="-" 

124 X=ABS(X):X$=STR$(X):P=LEN(X$) 

Atari Basic uses the LEN(A$) func
tions to concatinate two substrings . In 
Microsoft Basic , concatination is done 
with a plus sign. Table 4 shows an 
example of each. 

Microsoft Basic uses subscripts as 

an indication of a string array. Atari 
Basic, while not supporting string 
arrays, can simulate string arrays by 
using subscripts. In Atari Basic, 
simulated arrays that have a ll the 
same length are the most useful. 

Table 2. Atari version 0/ the variable list. 

Name 

S$ 

E$ 
BUF$ 
BUFI$ 

BUF 

L 

Description 

Sign of original number 
(+ or - ) 
Exponent part of number (E) 
Mantisa part of number 
Integer mantisa part of 
number 
Original unformatted , 
unsigned number 
Length of manti sa part of 
number 

X$ Final version of number 
for printing 

X Original unformatted, signed 
number 

126 IF P>4 THEN IF MID$(X$,P-3,1)="E" THEN P$=MID$(X$,P-2) 

The original number "X" is disas se mbled 
into the strings "$$", "E$", a nd "BU F$". 
After processing, the number is 
reasse mbled as the string "X$". : X$=LEFT$(X$,P-4): X$=LEFT( X$ ,1)+" . "+MID$(X$,3):GOTO 140 

128 IF X=O THEN X$=" O":P$=" ":GOTO 164 

130 IF X<l THEN GOTO 136 

132 XI$=STR$(INT( X» 

134 X$=LEFT$ (XI$, 1) +". "+MID$ (XI$, 2) +MID$ (X$ ,LEN(XI $) +2) 

:P$="+O"+STR$(LEN(XI$)-l):GOTO 140 

136 IF MID$(X$,2,1)="0" THEN P$="-02":X$=MID$(X$,3,1)+"."+ 

MID$(X$,4):GOTO 140 

138 P$="-01":X$=MID$(X$,2,1)+"."+MID$(X$,3) 

Table 3. A tari Time and Memory Requiremel1ls. 

Duration with rounding in 
milliseconds: 

Duration without rounding in 
milliseco nds: 

Me mory used in bytes: 

170 

125 
1400 

Table 4. String Operation Comparisons. 
140 X$=X$+ "OOOOOOOO" 

142 X$=LE FT$(X$, D+1) 

162 X$=S$+X$+ "E"+P$ 

164 RE TURN 

Program 4. 

144 REM ROUNDING ROUT I NE: LINES 144 -1 60 

146 X$=LE FT$ (X$ ,1)+MID$ (X$ ,3) 

148 X=VAL(X$)+5 :X$=STR$(X) 

15 0 IF LEN(X$)=D THEN GO TO 160 

152 P=VAL(R IGHT$(P$,3»+1 

154 IF SGN(P)= l THEN GOTO 158 

156 P$="-"+RIGHT$«"0" +STR$ (AB S(P »), 2):GOTO 

158 P$="+"+RIGHT$«"0"+STR$(ABS(P») , 2) 

160 X$=LEFT$(X$ ,1 )+". " +MID$(X$,2 ,D- 2) 

160 

It em It MICROSOFT ATARI 

MID$(A$ , X,Y) A$(X,Y) 

2 LEFT$(A$,X) A$(l,X) 

3 RIGHT$(A$,X) A$(LEN(A$) - X) 

4 A$ =A$+B$ A$(LEN(A$)+1)=8$ 

5 C$ =A$+B$ C$=A$:C$(LEN(C$)+1) =8$ 

6 A$(l)="AAA" A$ (1,3 )="AAA" 

A$(2)="BBB" A$(4 ,6) ="BB B" 

8 A$(3) ="CCC " A$ (7 , 9) ="CCC" 

Table 4 contains the most common st ring operations 
for both Basics. Items I, 2, a nd 3 perform substring 
ex traction. Items 4 a nd 5 concatenate two strings. lt ems 
6 to 8 give exa mples o f string a rray notation. 

148 



Interfacing Your Atari Marshall S. Dubin 

Looking for so me "o ff the beaten 
path" type of excitement? Tired of 
blasting aliens , running through 
mazes, or ba la ncing your checkbook? 
Are you the adventuresome type? 
Well, this could be the project for yo u! 
With a few pa rts a nd a little time in the 
workshop , yo u can have yo ur Atari 
li ghting lights, dialing phones, reading 
and regulating thermostats, a nd 
genera lly comm unicating with the out
side wo rld . 

Through the front controller ports 
of the Atari computer, there a re avail
a ble for yo ur use 16 programma ble 
input / output pins, 8 a nalog to digital 
inputs, and 4 input only pins . These 
contro ller ports can be used with inter
face circuitry to monitor "real world" 
devices such as thermostats or light 
sensors, or to acti va te relays, motors, 
and lights. 

We'll discuss various ways of using 
the front co ntroll er parts to com
munica te with the outside world. For 
the brave r of you, we will be building 
an I/ O inte rface, so that you may 
sense signa ls, and / or turn on small 
relays. This will plug into the front 
port of yo ur computer and allow you 
to con nect va rio us real world dev ices. 
(VIC owners should note that thejoy
stick ports on your machine are 
identi ca l to the Atari ports. With the 
except ion of a ny software d rivers, the 
elect rica l connections should be the 
same.) 

Please note that this kind of inte r
faci ng may void yo ur warranty. If yo u 
a re not sure, then check with yo ur 
dealer or factory representative. Also 
note , that acc idents DO ha ppen . It is 
possible (although unlikely if yo u are 
ca refu l) to do some drastic damage to 
yo ur computer. If yo u are not sure 
ho w to do something then DON'T DO 
IT. Also keep in mind that although 
the power required for digita l work is 
usua ll y between 5 a nd 12 vo lts, a 
relatively safe level, the primaries of 
these power supplies are usually 110 
volts. Follow these few common sense 
rules: 

I. Be ca reful. Always keep high 
vo ltage we ll away from yo ur work 
a rea. 

2. Be neat. Lots of wires sca tt ered 
arou nd tend to short something o ut. 

3. Never do a ny wiring or so ldering 
wi th the power turned on . 

4. Use a low hea t (25 watt) so ld er
ing iron. Do not use a solde ring gun. 
Now let's do so me interfacing! 

Marshall S. Dubin , 2639 Hempstead , Auburn 
Heights. Michigan 48057. 

Figure I. Front panel pin diag ram . 

1-4, PIA.l5;; 2 , 4 SJL- Analog I (inp"") 
Trigger ---\ 6 7 8 9 ~ Analog 2 
+5 volts __ -==r--r=::::" __ system ground 

(Vcc) 

The Basics 
As yo u can see from the pin diagram 

in Figure I, each joystick port has 
several pote ntia l input sources avail
a ble. For exa mple , two of the pins a re 
intended for use with the paddle con
tro llers . These a re ca lled the Analog 
pins. They take a n ana log source such 
as a va riable resistance and convert it 
into a digital signa l. This is in essence 
how the paddles function. They pro
vide a res istance via a potentiometer 
within the paddle unit , between the 
a na log input pins a nd +5 volts D C. 
The co mputer inte rprets the variable 
voltage as a digital number between 0 
a nd 228. This is ca ll ed "on board " 
a nalog to digital conversion . Units 
performing a si mila r function may be 
purchased at a heft y price , but Atari 
ow ners have the use of 8 of these units 
built rig ht in! 

For now, let's concentrate on pins 
1-4 on the joys tick po rts. These are the 
pins of the Peripheral Interface 
A dapler c hip , mor e commonly 
refe rred to as the PIA. Basically the 
P I A provides a mea ns of connecting 
yo ur co mputer to peripherals. The 
PIA chip can be programmed for 
e ither input or o utput. There a re two 
PIA ports of eight bits each ava ilable 
for you r use. Joystick ports I and 2 
co mpose PIA port A, while joystick 
ports 3 and 4 compose PI A port B. 
Each port is one byte (8 bits) and may 
be used toge ther or individ ually to 
provide input a nd o utput functions. 
Some of these functions may be used 
to dri ve a printe r or other accesso ry, 
or even a se ries of power relays which 
ca n control a larms, lights, app liances, 
motors o r other device. 

The snag invo lved in controlling 
larger inte rface devices is bas ica ll y a 
problem of taking a small a mount of 
power and a mplifyi ng it. The ports on 
you r computer a re not made to powe r 
a nything m ore than another chip. The 
manual recommends a maximum of I 
TTL load (a bout I ch ip) a t 50 ma lOpS. 
To be of a ny real use, we must be a ble 
to power at least 12 to 24 vo lts. This 
highe r vo ltage ca n drive a wide variety 
of relays a nd inte rfaces. 

149 

There are several ways to ac
complish this task . The most common 
arrangement is the transistor driver. In 
this arra ngement the computer pro
vides a ve ry small voltage which turns 
on the transistors which in turn switch 
the load. A second way is through the 
use of opto-isolators. The computer 
provides 5 volts which switches the 
LED (light emitting diode) of the 
iso lator. When the diode is lit , thi s 
triggers a photo sensitive tra nsistor 
which is connected to a larger load or 
a relay . 

A third way, and the one we shall 
use, is to employ an integrated circuit 
interface chip . The chip we will be 
using is the SN7407 made by Texas 
Instruments. The 7407 allows a switch
ing of up to 30 volts from the 5 volt 
TTL level of the Atari , with enough 
current to handle a small relay . Using 
thi s one chip, we can drive up to six 
relays from the Atari front ports. 

The SN7407, as shown in F igure 2, 
is an open collector device. To use it 
properly you must connect a 2.2K ohm 
res istor from each output to +5 volts . 
This is called a "pull up" resistor. 
When an output of the 7407 is "on"it is 
actually open - so the resistor su p
plies power to the device yo u are 
dri ving. You can dri ve up to 30 vo lts at 
the outputs (but you may have to 
ta mper with the value of the resistor 
somewhat) . When an output is "off", it 
is shorted to ground , and your device 
sees 0 volts (ground actually). The 
resistor limits this current to a fairly 
low value so you don 't blow the power 
supply or worse, the chip! Now thi s is 
the sequence of events: 

Atari: HIGH (l ogic I) 

7407: OFF - device is OFF. 

Atari: LOW (logic 0) 
7407: ON - device is ON. 

Since the resi stor can't supply much 
cu rrent , the resistor f7407 combina
ti on is see n as the "grou nd side" of the 
circuit. That is, to drive a relay, we 
connect power to one side of the rel ay, 
and the other side to the output of the 
7407. Then when we turn the relay on, 



Interfacing Your Atari 

Current will flow through the relay, 
and then through the 7407 to ground. 

You can easily drive LED's this way 
too (such as for test lights), as well as 
a variety of small relays or solid state 
switches. Just make sure you SI N K the 
current - that is, one end of your 
driven device goes to +5 (through a 
resistor!) and the other end to the 
7407. Sending a "0" (logic level low) to 
the PIA turns the device ON, and a 
"I" (logic level high) turns it OFF. If 
you want to do it the other way 
around, use the inverting 7406 chip, 
which wi ll turn your device ON with a 
high logic level and OFF with a low 
level. Recognize that the default state 
of the PIA when the computer is 
powe red up is all bits high . If you are 
using an inverting 7406, your devices 
would come a li ve when yo u powered 
on the Atari. This is why I prefer to 
use the 7407, since I can power up and 
then have my software drive the 
devices by writing a 0 to the bit I wa nt 
to power a device from. 

Speaking of bits, a few words are in 
order a bout the structure of the ports 
before you run off to warm up your 
soldering irons. The PIA as I men
tioned earlier consists of two ports , 
port A and port B (or PORTA and 
PORTB for a ll you memonic freaks). 
These are controlled through the use 
of the control registers for each port , 
PACTL and PBCTL. You may have 
heard of the PACTL because that's the 
one you POKE to turn on the cassette 
player. The addresses are as follows: 

PORTA 54016 / $0300-
port A add ress 

PORTB 54017 / $030 1 -
port B address 

PACTL 54018 /$ 0302 -
port A control 

PBCLT 54019 / $0303 -
port B contro l 

Figure 3. Logic Probe Schematic. 

L.E. D. 

Figure 2. SN 7407 diagram. 

(+5) 
141 3 1211109 8 

2 3 4 5 6 7 (gnd) 

On power up , the ports are Ini

tiali zed to $FFFF or a ll bits high. To 
use a port for input , just pull the bit of 
your choice low by connecting it to 
ground. To use the port for output, it 
first must be formatted for outp ut. 
The procedure is not complex: 

l. PO K E the control register 
(PACTL or PBCTL) with 56 / $38 hex. 

2. Now poke the port (PORTA or 
PORTB) with 255 / $FF hex. This 
specifies the port will be used for 
output. 

3. Poke PACTL or PBCTL with 
60 / $3C hex . 

4. Now just poke the port (PORTA 
or POR TB) with your data. 

Essentially you have a total of 16 
bits to play with. Just remember that 
two joystick ports make up one PIA 
port. Stick 0 and I are the A side 
and stick 2 and 3 are s ide B. Each joy
stick port is 4 bits or I nib ble . Each 
side of the PIA is 8 bits or I byte. When 
programming for output, you must 
remember that a specific BIT is driving 
a device. Therefore one joystick port 
can drive 4 devices (I for each bit) . An 
entire PIA side will ha ndle 8 devices 
and if you use both A and B sides you 
can trigger 16 individual devices at 
once or in any combination. You must 
POKE into that port a decimal num
be r whose BIN AR Y representation 
will switch on a certain bit or series of 
bits. For exa mple, if I POKE a 255 

150 
+5 vo lt s DC "--~H-------~M./'------, 

probe tip 

grou nd 

I<\. 
2N2222 

or equiva lent 

ISO 

into port A, all bits wou ld be on. If I 
POKE a 12 into port A, bits 3 and 4 
only would be on, since the binary of 
12 is 1100 The individualjoystick ports 
may be read using the shadow registers 
as follows: 

Jack I (STI CK 0) 632 / $278 hex 

Jack 2 (STICK I) 633 / $279 hex 

Jack 3 (STICK 2) 634 / $27A hex 

Jack 4 (STICK 3) 635 / $27B hex 

Each port will return a number 
betweenOand 15. Youalsocanusethe 
BASIC keywords STICK to access 
these ports ego X=STlCK(O), etc. 

The Hardware Part 
Generally, all of the circuits we will 

describe can be breadboarded in any 
way convenient for you. For those of 
you just starting out, and who want to 
do some experimenting, I recom
mend the following workbench sup
plies: 

- a solderless bread board or wire
wrapping set-up for prototyping your 
circu itry. (Such as those made by 
Vector, Ta nd y, etc.) 

- a variety of IC and transistor 
sockets 

- an anti-static mat or spray 

In addition, for this project , you will 
need at least one OE9S connector to 
match the front joystick port, and 
so me multi-conductor wire. 

N ow let's get started by building 
another useful tool for YOll to use: a 
logic probe. Figure three shows the 
construct ion diagram of a two
transistor logic probe. You can "steal" 
the necessa ry 5 volts from the com
puter on board power supply. When 

Pin Function 

I gate I in 
2 gate lout 
3 gate 2 in 
4 gate 2 out 
5 gate 3 in 
6 gate 3 out 
7 ground 
8 gate 6 out 
9 gate 6 in 

10 gate 5 out 
II gate 5 in 
12 gate 4 o ut 
12 gate 4 in 
14 +5 volts DC (VCC) 



10 REI1 t. PROGRA~I TO FOR~IAT P I A PORTS 
20 REI1 
30 GRAPH I CS 0: POS IT ION lei, 2 
40 DI11 10$( 10 ) ,DATA$(3) 
50 PRINT "PIA PORT DEMO" 
6 0 REM 
70 REt'l PORT ADDRESS 
80 REI1 
90 PORTA=54016:PORT8=5401 7 
100 REt1 
liB 'REM . ROUTINE TO CON FI GURE PORT 
120 REM 

2B0 IF 10$( 1, 1) ="0" THEN F=255:GOTO 340 
290 GOTO 250 ' 
3 00 PRII~T 

310 REI1 
320 REM CONFIGURE THE PORT 
330 REM 
3 48 POKE PCTL,56 
3 50 POKE F'ORT , F 
360 POKE PCTL,60 
370 PRINT :PRINT 
3B0 REI1 

130 TRAP 130 : PRINT :PRINT "Configur' e which pOr't ( 1-4) ": 
140 INPUT PORT:IF PORT(1 OR PORT ) 4 THEN 130 

390 REM ENTER YOUR DATA 
400 RE~I 

410 IF 10$ ( 1,1)="1" THEN PRINT "PORT I S FORMATTED 
10,0 REM 
160 REM SELECT PORT CONTROL REGISTER 
170 REM ADDRESS ( PACTL,PBCTL) 
180 REM 

FOR INPUT"~PRINT :GOTO 130 
420 PRINT "NOH Et.JTER YOU R DATA" 
430 PR I NT " ( ENTER A RETURN TO DO ANOTHER PORT)" 

190 IF PORT( 3 THEN PCTL=54018 :PORT=PO RTA 
200 IF PORT) 2 THEN PCTL=54019:PORT=PORTB 
210 PRINT :PRINT 

44(1 INPUT DATA$, : IF DATA$="" THEN PRINT CHR$( 125) : GOTO 130 
450 TRAP 530 
460 REM 
4 7 0 REM PO KE DATA TO PORT/VERIFY IT 
480 REM 220 RE~I 

230 REt1 S ELECT INPUT OR OUTPUT 
240 REI-I 
258 PRINT "Input or Output"; 
260 TRAP 250 :INPUT 10$ 
270 IF 10$ ( 1,1)="1" THEN F=0:GOTO 340 

the LED is on this indicates a logic I or 
high condition, No LED indicates a 
o or low, (Actually that is not exactly 
true, This logic probe cannot detect 
the actua l "0" state, T here are more 
sophisticated probes able to dif
ferentiate high , low, and high im
pedance logic states - but what do 
you want for less than a buck?) 

One potential way to mount the 
probe is to build the unit on a small 
(I " by 2") perfboard , and then slide the 
completed assembly into a large cigar 
tube, A small probe tip could then be 
soldered to the front of the c igar tube , 
and wires for the required 5 volts and 

Figure 4, 7407 Intel/ace (I gate), 

4'7'0 POKE PORT ,VAL< DATA$) 
500 PRINT "VERIFY" ;PEEK ( PORT) 
510 GOTO 440 
520 END 
530 TRAP 400 (1 0 : PR It.JT " I NPUT ERROR, RE- ENTER ";: GOTO 440 

ground could come out the back end, 
These would terminate in small 
alligator clips, 

A Useful Interface Board 
Figure four is a schematic diagram 

of an output interface board which is 
connected to the front ports of the 
computer. 

The heart of the circuit is the 7407 
chip, As you can see , the input 
channels of the 7407 are connected to 
the front port by way of the 2.2K pull
up resistor. Even though the port ini
tializes to FFFF (or all ones), thi s 
maintains a high state until we do 
otherwise, 

The output of the 7407 provides the 
ground side of a relay circuit. The relay 
coi l is connected to the 5 volt supply 
(NOT the one on the computer port!). 
When the 7407 is activated by having 
one of the front port pins pulled low, it 
provides the relay coil with a path to 
ground , and the coil energizes. The 
relay controlled by the coil can be used 
to switch on just about anything, in
cluding other relays to drive larger 
loads , 

Re lay con tacts (to switched circuit) 

During construction be careful that 
all the pins of the 7407 and the 
components are wired correctly. Do 
not forget the pull-up resistors or the 
small capacitors. These help prevent 
power supply interference. If you wish, 
you can substitute small LED's or 
5 volt pilot lamps for the relays. This 
will allow you to see the ports in 
action, 

2.2 K 

To computer ground pin (pin 8) 

II 
small 
rel,ay 
coIl 

To +5 volts DC 
(External 5VDC 

ground supply) 

7407 (I ga te) 

To use additiona l gates, connect them as shown, You only need to connect 
ground (pin 7-7407) and +5 (pin 14-7407) once to power a ll gates. 

151 

Be sure to use an external power 
su pply or 5 volt source. The ground of 
your source should be connected to 
the ground pin on the computer. You 
will not need the 5 volt pin , Incidently, 
you can use the external supply to 
power your logic probe, and still read 
the computer logic signals at the ports. 

Now For a Little Software 
The program listing will provide 

you with a demonstration on how the 
ports are programmed. The program 
first allows you to select a port, and 
program it for either input or output. 
Then you can write data to the port 
and the computer will peek the port 
and verify the data you wrote. You can 
also do this by using the logic probe. 
You will get a logic I for every active 
bit in the port. 



Atari Strings and Text Handling 

Apples, Oranges, TRS-80s and the Atari 
The Atari, unlike the Pet, TRS-80, 

Apple, and Heathkit computers, does not 
ha ve a Basic by Microsoft. This is a mixed 
blessing, or mixed curse, as you choose to 
look at it. The graphics and music handling 
abilities of Atari Basic are a true joy, while 
the string handling is difficult. Since most 
programs published in computer maga
zi nes like this one are not in Atari Basic, an 
understanding of the differences is helpful 
if you wish to convert the programs for 
yo ur own use. Here are some of the 
differences between the Atari and the 
TRS-80, the most common Microsoft 
Basic computer. 

String Handling 
In Atari Basic DIM A$(50) means 

reserve 50 bytes of memory for a single 
variable named A$. You cannot store a 
single letter in a string variable unless you 
dimension it first. One advantage of this is 
that you can control the length of a string 
just by the DIM statement, something you 
cannot do in Microsoft Basic. For 
example, if you put: 

10 DIM ANSWER$(I) 

Then the computer will store only the first 
letter in the string even if it receives a whole 
sentence as a reply. This makes it easy to 
test an answer: 

20 PRINT"ANSWER";:INPUT 
ANSWER$:IF ANSWER$="N" 
THEN50 

In the TRS-80, memory for all string 
variables is reserved by a single CLEAR 
statement, with a default value of 50 bytes 
reserved automatically even without a 
CLEAR statement. In the TRS-80, DIM 
A$(50) means create an array of 51 string 
variables from A$(O) through A$(50). 

In the TRS-80. the maximum length 
of a string ranges from 241 to 256 bytes. 
depending on circumstances. The Atari is 
limited only by memory available. This 
means that the Atari can make up for the 
lack of string arrays through a process of 
storing substrings in a very long string. 
One advantage of the Atari is that string 
sorting is potentially faster, as the TRS-80 
has to pause and reorganize its string 
space. 

Related to the string length is the 
restriction of a TRS-80 program line to 241 
to 255 characters, while the Atari observes 
a different approach and limits you to 120 
characters. Since some TRS-80 program
mers like to put a whole subroutine in a 
single line, you would have to do a bit of 
reshuffling to translate their programs to 
an Atari. The lack of an ELSE command 
further restricts this approach in the Atari. 

Sound 
Neither the Atari nor the TRS-80 

have a built-in speaker, as does the Apple 
II. The Atari send~ sound effects through a 
television set speaker. If you are using a 
monitor that does not have a speaker, you 
do not have sound. Common practice with 
the TRS-80 is to connect an amplifier to 
the cassette output port. 

The real difference in sound is that the 
Atari has a built-in sound capability 
allowing four completely separate voices at 
the same time with over 20,000 sound 
options, including a wide range of musical 
notes for each voice, while TRS-80 Basic 
can only alternate voltages at the cassette 
output port with OUT statements or 
machine language subroutilles . Harmony 
is very difficult with the TRS-80 , but easy 
in the Atari. 

Graphics 
It is not really fair to compare TRS-80 

graphics to the Atari, as the TRS-80 is 
strictly medium resolution black and white 
while the Atari has high resolution color. 
To fairly represent Microsoft Basic, the 
Apple should be included in the discussion. 
One advantage the TRS-80 does enjoy is 
easy mixing of text and graphics on the 
screen, which is more difficult with the 
Apple and the Atari. Also, the TRS-80 has 
a built-in video memory that does not 
require user memory, while the Apple and 
Atari require user memory and, in high 
resolution, lots of it. 

The Atari has 16 different graphics 
modes, and some of the graphics in the 
Atari ROM cartridges, including the 
motion through space in Star Raiders and 
the ability of the basketball players to 
overlay each other in Basketball, promise 
more graphics power than any other 
popular home computer. Right now, a side
by-side comparison of Apple and Atari 
graphics seems a standoff because the 
Atari graphics are not yet documented and 
explained, but if this kind of graphics 
ability becomes accessible to the end user, 
the Atari will be the obvious choice. 

A common problem in high resolu
tion graphics is that it requires a lot of 
memory to store a detailed image. The 
normal sacrifice limits the number of 
colors available in hi-res so you need less 
memory to store color information. The 
Atari limits you to two colors in high 
resoiution, while the Apple gives you four. 
However, the Atari allows you to choose 
your color and tint and even a llows you to 
change the color of an image on the screen 
instantly by changing a color register that 
tells the computer what color to make th e 
image. The Apple cannot match this 
ability. 

152 

My personal favorite among the 
graphics commands of the Atari is the 
DRA WTO statement , which draws a line 
from the last plotted point on the screen to 
any other point. More or less the same 
a bility is present in the H LIN and VLIN 
commands in the Apple, though not as 
easily, nor as fast. In the TRS-80, it is 
necessary to write a subroutine·to plot each 
point individually. 

Text Handling 
Text handling in the Atari is not as 

convenient as the Microsoft Basics . The 
TRS-80 is particularly good at text 
formatting and printing. Microsoft Basic 
allows you to include text in an INPUT 
statement, like this: 

10 INPUT"What is your answer";A$ 
Atari Basic requires a separate print 
statement: 

10 PRINT'What is your answer"; : 
INPUT A$ 

The TRS-80 allows you to print directly at 
any point on the screen with PRINT @: 

10 PRINT @ 572,"X MARKS THE 
SPOT' 

The Atari requires you to position the 
cursor first, then print your message: 

10 POSITION 8, 12:PRINT 
uX MARKS THE SPOT' 
Still another difference in text 

handling is the power of Microsoft Basic's 
PRINT USING command, allowing you 
to specify automatic print formatting with 
a fixed number of decimal points, floating 
dollar signs, fixed spacing, and other con
veniences. These things have to be done by 
manipUlating a string in Atari Basic. 

I have begun to experiment with a 
whole new approach to text in the Atari 
that may be even more convenient. The 
Atari allows you to treat the keyboard, the 
video memory, and any other II 0 device as 
a file. I suspect that once I get used to this, I 
will not really mind giving up PRINT 
USING. 

There is a more definite limitation to 
the Atari in one of the key text handling 
areas, and that is in word processing. Forty 
columns per line is simply not as con
venient as the longer lines on some other 
computers. The problems here are color 
a nd expense. It is much easier and cheaper 
to give text processing ability and sharp 
resolution to a computer which does not 
use a video modulator and does not use 
color. The Heathkit H-89 with 24 lines of 
80 characters has much sharper letters than 
the Atari, yet the Atari limits you to a mere 
38 to 40 characters. A lot of this problem 
could be overcome by designing the Atari 
to be used only with a high quality color 
monitor, but that would price it right out 
of the consumer market. My own solution 



is to use a different computer for word 
processing, including the writing of these 
columns. 

Jumps and Subroutines 
One of the areas in which Atari Basic 

enjoys an advantage over Microsoft Basic 
is in the ability to transfer control to 
another line through a variable. This has a 
lot of potential. Look at these compari
sons: 

Alari TRS-80 

10 GOSUB TIMEOUT 10 GOSUB 500 
20 GOSUB BASKET 20 GOSUB 600 

10 RATlNG= 10 RA=INT(BA/5) 
880 + 4 • BASKET 

20 GOTO RATING 20 ON RA GOTO 900, 
920,940 

The above example illustrates another 
difference. In Atari Basic, a variable name 
may be up to 120 characters long, while the 
TRS-80 allows only 6 and tests only the 

first two. In the Atari, V ALVEI and 
VALVE2 are different variables. In the 
TRS-80, they are the same. 

However, the advantage here is not 
altogether to the Atari. Radio Shack's 
Level II Basic allows an ELSE statement, 
while the Atari does not. 

Alari TRS-80 

10 IF A=5 THEN 50 10 IF A=5 THEN 50 
20 GOTO 100 ELSE 100 

Input/Output 
A major strength of Atari Basic over 

Microsoft Basic is in its generalized output 
routines. This is due to a feature known to 
mainframe programmers as device orien
tation. In Atari Basic, PRINT is a 
generalized output command. While the 
default device is the video screen, the 
computer doesn't really care whether it is 
printing to a line printer, a modem, a 

An Atari Library of Sound 

Of the recognized human senses, it may 
easily be argued that the most important 
are those of sight and hearing. The movie 
industry was quick to realize the importance 
of adding sound to their visual productions. 
First there was simple background music, 
and later, when it became technically 
possible, sound was synchronized to the 
action. Few people today would pay to see 
a silent movie except under special 
circumstances. 

Yet when most of us think of computers, 
we usually visualize someone sitting at a 
video console , typing, and staring silently 
into the screen. Hollywood generally adds 
some "bleeps" and "bloops", supposedly 
electronic, to the background. Real data 
processing centers are usually quite noisy 
with machinery running and several printers 
banging away. These are all artificial sounds, 
however, far removed from what all of us 
experience in daily life. 

Personal computing, of course, need not 
follow the same path. If it is technically 
feasible, why not add the dimension of 
sound to the already accepted versatility 
of a good color graphics system? Why not, 
indeed! Manufacturers of small computers 
are responding in varying degrees to this 

Richard M. Kruse, Xentrix Engineering, Box 
8253, Wichita, KS 67220. 

challenge. It is now up to programmers to 
use this new capability effectively. 

One of the outstanding features of the 
Atari 400/ 800 personal computers is the 
built-in sound generation system. There is 
no need to jury-rig an external amplifier 
and speaker and then operate it with 
"PEEK s" and "POKE s". Atari's sophisticat
ed sound channels are manipulated through 
special Basic commands, and the RF output 
carries the sound information properly 
formatted to be reproduced through the 
speaker of a standard television receiver. 
The television's sound system does not 
have to be of especially high quality to 
adequately handle the range of frequencies 
produced (although it certainly doesn't 
hurt). An added bonus of this system is 
that sound and video are presented side
by-side. Most people will probably find 
this preferable to listening to a disembodied 
sound source physically separated from 
the visual presenration . 

The Ataris give you not just a single 
sound generator , but four identical 
"channels" which may be used separately 
or in any combination. Each channel has 
individually controllable pitch and volume, 
along with a third parameter which Atari 
calls "tone ." The Basic statement which 
activates one of the sound channels has 
the following form: 

153 

cassette tape, a disk file, or the screen. You 
can even use a variable to shift from one to 
another in your program, virtually at will. 
The general format of an OPEN statement 
hints at the power here: 

10 OPEN (Reference number), (in
put/ output/ both), extra printer code), 
device type), device number): (file name). 
(extension) 

Disk file opening might look like this: 
IOOPEN#2,8,O,"D3:LESSON.BAS" 
Chapter 5 in the Atari reference 

manual gives a more detailed explanation. 
What do all these differences mean? 

My answer is: "Not a whole lot!" Nearly 
anything that can be done in one Basic can 
be done in any other Basic, even a limited 
one like IBM Basic. It just takes extra 
effort, a little understanding of what the 
other program is trying to accomplish, and 
a little creative ingenuity. 

Richard M. Kruse 

100 SOUND PI, P2, P3, P4 
Parameters PI through P4 are integer 

values. PI specifies which channel is to be 
activated, identified as zero through three. 
P2 may be any value from 0 to 255, and 
sets the relative pitch or frequency of the 
sound . In the pure tone mode, the pitch 
range is about two and one-half octaves, 
and by using a look-up table of conversion 
factors between musical notes and 
pitch values, playing a melody on the Atari 
becomes almost trivial. Playing four-part 
harmony can be done with some additional 
programming effort. 

One of sixteen different volume levels 
(including off) is selected by the value of 
P4. 

The tone parameter, P3, is a corker. 
There are eight possible values, two of 
which result in relatively pure musical tones. 
The remaining six, however, are not really 
"tones" at all, but special effects settings 
which prod uce strange and wonderful 
sounds that will be variously perceived as 
trucks , helicopters, heavy machinery, and 
warp drives. These effects, like the pure 
tones, may be varied in pitch and volume. 
And always, two or more sound channels 
may be active simultaneously. As you can 
see, the number of possible sounds and 
effects is staggering. Normal sounds can 
be imitated and new ones created, limited 



An Atari Library of Sound 

only by the imagination of the programm
er. 

To stimulate those imaginations, and to 
show the methods used to put these effects 
to work, one dozen varied and useful sound 
effects are presented here . Each effect is 
programmed as a subroutine which will 
run for a certain length of time and then 
terminate . Each subroutine makes use of 
one or more sound registers, and many of 
them accept one or more input parameters 
which modify the effect and/or its running 
time. A brief explanation is presented for 
each, so that you will be able to change 
the effects as desired. 
1. Percussive Sound Generator-(See list
ing 1) 

This is a "building block" subroutine 
which imitates the sound of struck or 
plucked musical instruments or , with 
different parameters, explosions or gun
shots. 

The percussive effect is achieved by 
executing a loop which initially sets a high 
volume level, then repeatedly reduces that 
level by a given percentage until it fa lls 
below a present minimum. The volume 
reduction factor is stored as the variable 
ICR, and it is easy to see that changing the 
value of ICR will change the rate of decay 
of the sound. Since ICR is calculated from 
the input parameter OUR, the decay rate 
can be modified at will each time the 
subroutine is ca lled . The va lue 10 in 
statement 10020 is the tone parameter, 
and results in a pure tone output, so that 
this subroutine will imitate a chime or 
bell. Statement 10010 adds a brief burst of 
white noise at the start of the loop. (It is 
turned off at step 10025.) This enhances 
the initial "strike" effect and is heard in 
the sounds of many musical instruments. 
Statement 10040 turns the sound off 
altogether prior to returning to the calling 
program. While this percussive sound 
routine will run by itself, it can also be 
used in the generation of more complex 
sounds, as will be demonstrated. 

2. DoorbelI-(See listing 2) 
... Now, who could that be? .. 
The familiar "Dinnng , donnng" of the 

doorbell is created by two sequential calls 
to a modified percussive routine. Two 
different pitches and two moderately long 
decays are used. What could be simpler? 

3. Ringing Telephone-(See listing 3) 

... Mildred, would you get that? .. 
The telephone bell is actually just repeat

ed invocations of the percussive sound , 
using a high pitch and a short decay. Notice 
that the two sound registers are set at 
slightly different pitches. This creates the 
strident nature of this effect. The final 

percussive call uses a longer decay time, 
resulting in a fairly natural "lingering" sound. 
The apparently meaningless statement at 
line 10045 simply wastes some time between 
"rings." You will see this same type of 
delay in some of the other routines. 
4. Alarm BelI-(Seeing listing 4) 

... Attention a ll hands! Secure for 
hyperwarp ... 

This is another application of the per
cussive effect, and is almost identical to 
the telephone bell. The main differences 
are that this effect uses a lower pitch and a 
slower repetition rate. One subtle modifica
tion to the percussion routine in both of 
these effects is the use of a larger value in 
testing for the end of the decay (notice the 
variable LM). This is another way to modify 
the decay time and may be preferable for 
fast action. 

S. Explosion-(Seeing listing 5) 
... Hah! Got the little # @ * % !. .. 
T he explosion effect is also based on 

the percussive generator, using "white" 
(actually "pink") noise instead of a musical 
tone. For more volume we use three sound 
registers simultaneously, and to heighten 
the realism each is given a slightly different 
pitch. Finally, we use three different rates 
of decay, the slowest for the lowest pitch. 
This I!ives the "rolling" effect of a really 
"big bang." Entering this subroutine with 
OUR set to zero will give a pretty fair 
imitation of a gunshot, since it's basically 
the same kind of sound . 
6. Siren #1-(See listing 6) 

... is he after me'! ... 
This routine produces the rising and 

falling wail characteristic of e lectro
mechanicalfire and police sirens. The inner 
loop in this sLibr()utine (steps 10020 to 
10035) generates either an increasing or 
decreasing pitch of constant amplitude. 
Each execution of the outer loop (steps 
10015 to 10045) reverses the start, stop, 
and increment values. The delay is used 
again at step 10030 to waste a little time so 
that each execution of the loop takes about 
a second. 

7. Siren #2-(See listing 7) 
... Quickly , Henri! The Gendarmes ... 

This alternate siren effect, which I tend 
to think of as "European," is becoming 
more common in this country as well, as 
police and fire departments switch to purely 
electronic noisemakers. It is one of the 
simplest effects to create, requiring only 
alternating high and low pitches at constant 
volume. The wait loop is used again , at 
step 10025. 
8. Ticking Clock-(See listing 8) 

... You have ten seconds to guess the 
correct answer. .. 

The ticking of a clock (or bomb , heaven 

154 

forbid) can be nicely simulated by repeated 
short bursts of white noise. Tone value 
eight, at a high pitch, serves this purpose. 
To get a tick-tock effect, two alternating 
values are used for the pitch parameter. 

9. Klaxon-(See listing 9) 
... RED ALERT! RED ALERT! Enemy 
sighted at... 

Here, sound registers zero and one 
operate at slightly different pitches to 
generate a loud and strident blast , with 
sound register two filling in a buzzing effect. 
To add to the realism, one sound register 
is used at the beginning and end to build 
up to and decay from the main tone . 

10. Whistle and Bomb-(See listing 10) 
... Hit the deck!. .. 
For this effect, the percussive explosion 

of example five is preceded by a convincing 
anticipatory whistle. Steps 10010 through 
10030 create the whistle , which decreases 
in pitch while increasing in volume. 

11. Steam Whistle-(See listing 11) 
.. . All aboarrrrrd! Next Stop Pottsville ... 
A small amount of white noise from 

sound register zero in step 10025 adds a 
realistic hiss to this whistle variation. As in 
the Klaxon effect, there is a brief build-up 
preceding the main sound, and a decay at 
the end. 

12. Sawing Wood-(See listing 12) 
... And now for something completely 

different... 
This final effect, unrelated to the others, 

is an example of picking a sound at random 
and trying to imitate it on the Atari. For 
sawing wood, you need a buzzing sound .. . 
Subroutine 10065. You need to make it 
rise and fall in pitch as the blade 
moves ... subroutine 10030. For better 
realism, you need two different pitches as 
the blade is pushed forward on the cutting 
stroke and then returned ... statements 10015 
and 10020. 

It is hoped that these relatively simple 
examples will provide the motivation for 
Atari owners to get the most out of one of 
the built-in features of their computers. 
Other possible effects might include animal 
imitations, automobile sounds, factory 
noises, and on and on ... the list of possibilities 
is truly unbounded. 

If you have been programming without 
sound, you will be amazed at the improve
ment to be gained by its use in games and 
audio-visual presentations. Once you grow 
accustomed to this added dimension , it is 
certain that you will no longer be satisfied 
with a dull, mute computer. 

The secret to success of the small personal 
computer lies in your creativity and imagina
tion . Put them to work with Atari sound 
and see what develops. You can't go 
wrong! 



LISTI~G I: PERCUSSIVE SDU~L GE~ERATOR 

le0ee 
leee2 
le004 
10006 
10010 
10el5 
10020 
lee25 
le030 
10e35 
10e4e 

lee0e 
le002 
leel0 
leel5 
1002e 
le025 
le030 
lee35 
HHl4e 
le045 

REM PERCUSSIVE SOUND G~ 
REM ENTER W/2 PARkMETERS 
REM NTE-PITCH. 0-255 
REM DUP-L~GTH OF EFFECT. e-1 0 
SOUNu 1.5.8.6 
VOL-151 ICR-0.79+uUR/50 
SOUND 0.~TE. 10.VOL 
SOUND 1.0.0.0 
VOL-VaLueR 
IF VOL>I THE~ 10020 
SOUN[' 0 . e. e. 0: RETUR~ 

LISTING 2: DOORbELL 

REM uOORbELL 
REI1 ~O E~TRY PARAMETERS 
~TE-105: DUR-7.5: GOSUb 10e25 
NTE-1321 uUR-8.5: GGSUb le025 
SOUNu 0.0.e.01 RETURN 
VOL-151 ICR-0.79+uUR/50 
SOUNu 0.~TE. 10.VOL 
VOL-VOL.ICR 
IF VOL> I TH~ 10030 
RETURN 

LlSTI~G 3: TELEPHONE bELL 

10e00 
lee02 
I i""04 
le010 
leel5 
10020 
10025 
le030 
le035 
1004 0 
10e45 
10e50 
10055 
lee60 
10065 
10070 
le075 
1008e 

10000 
10002 
10004 
10010 
U'H1I5 
le020 
10025 
10030 
10035 
10040 
10045 
10050 
1006e 

le000 
le002 
lee04 
le010 
le015 
10020 
10025 
lee30 
I ""'l35 
10 0/.0 
10e4 5 
10050 
10055 
10060 
10065 
1007 0 
10075 

REJ1 TELEPHONE bELL 
REM ONE ENTRY PARkMETER 
REM TMS-. PINGS 
FOR XX" I TO 35 
IR-0.3: LM-2: GOSUE 10055 
,~EXT xx 
IR-0.91 LM=II GGSUb le055 
SOUNu 0.0.0.0 I SOUi~L 1.0.0.0 
Ti1S-TMS- I 
IF TI1S< I THE,~ RETURN 
FOR WT-I TO 3e01 NEXT WT 
GOTO 10010 
VL-15 
SOUNu 0.40.10.VL 
SOUND 1.42.10.VL 
VL- VL.I R 
IF VL>LM THE~ 10060 
RETURN 

LISTING 41 ALARM bELL 

REM ALARM I=ELL 
REM O~E E,nRY PAhkMETEfi 
REM DUR-APPROX SECOi~CS liUN 
FOR TMS-I TO DUR.12 
VL-151 IRc0.51 LM-31 GOSUb 10040 
NEXT TMS 
VL-101 IR-0.95: L,1-11 GOSUb 10040 
SOUND 0.0.e.0: SOUND 1.0.0.0 
RETURN 
SOUND 0.53.10.VLI SOUND 1.60.le.VL 
VL-VL.IR 
IF VL>LM THEN 10040 
RETUR,>I 

LISTING 51 EXPLOSION 

PEJ1 EXPLOSION 
REM ONE ENTRY PARAMETER 
REM CUR-LNGTH OF EFFECT. e- Ie 
rJTEc20: GOSUb 10025 
SOUNu 1.0.0.0: SOUNU 2.0.0.0 
RETURN 
SOU~D 2.75.8.15 
ICRc 0.79+uUR/100 
VI-151 V2-151 V3c l5 
SOUND 0.NTE.8.VI 
SOUNu 1.~TE+2 0 .8.V2 

SOUi'lL 2.~TE+50.8.V3 

VI-VI.lCR 
V2cV2. Cl CR+ 0.05) 
V3-V3. (I CR+0. (8) 
IF V3>1 THEN 10040 
SOUl'lL 0.e.0.01 RETURN 

155 

LISTING 61 ~1ERlCAN SIREN 

10000 
10002 
10004 
10010 
101'115 
le020 
10025 
10030 
10035 
10040 
Ili"145 
100 50 

nEM 5IREN I 
REM ONE ENTRY PARAMETER 
REi1 LUR- APPROX SECONDS RUN 
LO-501 HI-351 STP--I 
FOR TIM-I TO OUR 
FOF NT E- LO TO HI STEP STP 
SOUND 0.NTE.10.14 
FOR WTcl TO 201 NEXT WT 
NEXT rJTE 
XX-LOt LO~Hl: HI-XX: STPc-STP 
NEXT TIM 
SOU,~[ 0.0.0.0: RETURN 

LISTING 7: EUROPEAN SlREN 

i 0000 
10002 
10004 
100 10 
100 15 
10 020 
101<'25 
11<'030 
IIiHl 35 
101140 

1001'11'1 
10002 
10004 
10006 
10010 
10015 
10020 
10025 
10030 
10035 
10040 
10045 

10000 
100e2 
10004 
10010 
10015 
1002e 
10025 
10030 
10035 
10040 
le045 
10050 
10055 
101<'60 
10065 
101<'70 
10075 

10000 
10002 
10004 
10010 
10el5 
10020 
10025 
10030 
10035 
le040 
10045 
1005e 
le055 
10060 
10065 
10070 
10075 
10e80 
10085 
10090 

REM SIREN 2 
REt-lONE EJHRY PARkMETER 
REM LUR-APPROX SECONL5 RU,~ 

Luc 57: HI-45: NTcHI 
FOR TIM- 0 TO DUh.2 
SOUND 0.NT.10.14 
FOR WT~ I TO 180: NEXT \.iT 
rJT-LO: LO-HI: HI=NT 
NEXT TIM 
SOU,>lD 0.e. 0 .0: FETUP.rJ 

LISTING 81 TICKING CLOCK 
REM TICKING CLOCK 
REM TWO ENTRY PARAMETERS 
REM SIZ-I(FST) TO 10(SLW) 
REJ1 uUR-APPROX SECONLS AT SIZ 5 
TICcSIZ+5: TOC-5IZ+10 
FOR TIM-I TO LUR 
SOUND 0.TIC.6.12: GOSUb 10035 
SOUND 0.TOC.8.12: GOSUb 10e35 
I~EXT Tlell RETURi'i 
SOUND 0.0.0.0 
FOR WTcl TO SIZ.34: ~EXT WT 
RETURi~ 

LISTING 9: KLAXON 

REM KLAXON 
REM ONE ENTRY PARAMETER 
REM DURcAPPROX SECONDS HUN 
FOR TIM-I TO DUR 
FOR NT- I TO 10 
SOUND 0. 100-NT. 10. 10 
NEXT NT 
SOUND 0.90.10.14 
SOUND 1.95.10.12 
SOUND 2.20.2.4 
FOR WT-I TC 200, NEXT liT 
SOUND 1.0.0.01 SOUNL 2.0.0.0 
FOR in- I TO 5 
SOUND 0.90+NT.10.8 
NEXT NTI SOl'HD 0.0.0.0 
FOR I<IT-I TO 1001 ,~EXT l.iT 
NEXT TIMI RETUHr~ 

LISTING 101 WHISTLE AND BOMb 

REM WHISTLE & EOMb 
REM ONE ENTRY PARAMETER 
REM DUR-LNGTH OF EFFECT 
VI-41 FOR NT-30 TO 75 
SOUND 0.NT.10.VI 
SOUND I.NT+3.10.VI*0.7 
FOR WT-I TO DUR*3, NEXT WT 
VI-VI*I.03, NEXT NT 
SOUND 2.35.8.12 
VI-15, V2-151 V3-15 
NT-DUR+51 ICR-0.79+DUR/100 
SOUND 0.NT.8.VI 
SOUND I.NT+20.8.V2 
SOUND 2.NT+50.8.V3 
VI-VI.ICR 
V2-V2* (I CR+0. 05) 
V3-V3*(ICR+0.08) 
IF V3>1 THEN 10050 
SOUND 0.0.0.01 SOUND 1.0.0.0 
SOUND 2.0.0.01 RETURN 



An Atari Library of Sound 

LISTING II: STE~1 WHISTL~ 

REM STEAM WHISTLE 
REM ONE ENTRY PAR~ETER 

LISTING 12. SAWING WOOL 

REr1 SAWING WOOD 
10000 
10002 
10004 
10010 
10015 
10020 
10025 
10030 
10035 
10040 
10045 
10050 
10055 
10060 
10065 

REM R~~ uUR-APPROX SECONuS RUN 
FOR VL-2 TO 14 

10000 
10002 
10004 
10010 
10015 
1002e 
10025 
10030 
10035 
10040 
10045 
10050 
10055 
10060 
10065 
10070 
10075 

REM ONE ENTRY PAR~ETER 
REM DUR-APPROX SECONLS RUN 
FOR TMS- I TO LUR 
ST-6. VL- 12: GOSUE 10030 
ST-8. VL-8. GOS UE 10030 
NEXT TMSI RETURN 

SOUl'lL 16 566 106VLI SOUNu 2666 6 106 VL 
NEXT VL 
som~u 1655 6 106 141 SOUNu 06 56 8 6 3 
FOR WT-I TO uUR*400. NEXT WT 
SOUNU 06 06 06 0 

FOR NT-ST+5 TO ST STEP -I 
GOSUE 10065. NEXT NT 

FOR VL-14 TO I STEP -2 FOR NT-ST TO ST+5 
SOUND 16 55 6 10.VL. SOUNu 26 67.106 VL 
NEXT VL 

GOSU8 10065. NEXT NT 
SOUND 06 06 0.0. SOUND 1.06 0. 0 
FOR WT-I TO 25. NEXT WT 
RETURN 

FOR WT-I TO 251 NEXT WT 
SOUND 16 e6 06 0: SOUNU 26 06 0.0 
RETURl~ SOUND 06NT626VL 

SOUND 16NT 68.VL.0.7 
WT-(WT/5) ".5. RETURN 

Ram Cram Techniques for Atari 
Original Adventure in 32K 

A few months ago something new was 
added to my family. A 1O-lb, 16" by 12" 
by 4" Atari 800 computer. Not only that. 
this new computer had no disk . That's 
right. no disk. Only a cassette recorder to 
save and load programs and 32K (32.768) 
bytes of RAM. After having spent 17 
years of my life talking to big computers 
with million of bytes of memory and 
unlimited disk space (well. almost unlimi
ted). I was understandably a little nervous 
about the usefulness of such a small 
computer. 

About this same time. I had just finished 
several weeks of lunch hours (half hours 
if my boss is readine this) doing some 
fantastic arm chair spelunking. Yes. I had 
become hooked on exploring that colossal 

Robert A. Howell, 20 Richman Road, Hudson, 
NH 03051. 

underground cave where magic is said to 
work and others had found fortunes in 
treasure and gold! 

My large. friendly computer at work 
had been my eyes and hands guiding me 
past giant snake and dragon through scores 
of rooms deep underground. I even tricked 
a troll. I was able to retrieve 15 magnificent 
treasures bringing them to the surface to 
be mine forever"! Once in that cave it 
wouldn't let me give up. as I soon discov
ered. until finally . finally. many lost lunch 
hours (half hours if my boss is still reading 
this) later. every corner and dead end 
had been explored, a map of the cave was 
in hand and I had solved the original 
"Adventure." 

Then a thought came to mind. I promptly 
dismissed it as absurd. But the thought 
kept haunting me until it became a chal
lenge. Could this tiny little 32K computer 

156 

Robert A. Howell 

with no disk which I now owned-could 
it possibly handle "Adventure"? Would 
the original Crowther and Woods Adven
ture program fit into 32.768 bytes of 
memory? I had seen several versions of 
this program advertised wh ich required 
at least one disk drive and 32K or more of 
memory. but none for my little one. Was 
my little computer really equal to the 
task. or was I just fooling myself? 

The challenge lay before me: get 
"Adventure" running in Basic on an Atari 
800 computer with no disk and on ly 32K 
bytes of memory. Little did I realize what 
I was getting myself into when I accepted 
this challenge. A challenge that wou ld 
certainly tell me if this new little addition 
to the family was really a giant in dis
guise! 

Have you ever spent your whole summer 
beside the swimming pool out back. with 



the tops of your hands. shoulders and 
knees burning up from the sun. never 
once getting your swimming suit wet'! No? 
Well then. you have never spent the 
summer trying to cram "Adventure
messages and all-into 32K of RAM. I 
did. And to spare you the gruesome details. 
suffice it to say that I accepted the 
challenge and won! Just as it was time to 
close down the pool for the winter. "Adven
ture" was running on my big computer 
(never again to be called "little"). 

The messages and vocabulary were not 
as extensive as in the original. but they 
were there. along with the rooms in various 
colors (except the "all alike" maze where 
passages and dead ends were all black). 
Almost everything from the original 
"Adventure" was included. 

Now I know what you just said. You 
said. "How did he do it'!" Well if you 
didn't say that then you should have. 
because that's the purpose of this article. 
As a result of my programming effort. as 
well as missing out on a whole season of 
swimming. I learned many techniques for 
efficient use of memory in Atari Basic . I 
am going to pass these along so that you 
will never need to worry about the swim
ming season passing you by. 

Although my examples and techniques 
refer to Apple Basic and "Adventure" 
type programs in particular. most of them 
can be applied to any computer and to 
programming in general. Why purchase 
4SK of memory and two disk drives. when 
in many instances 32K or less of memory 
is all you really need. Why bemoan the 
fact that the latest "GLOP" game from 
the pages of this magazine requires 10K 
of RAM and your computer only has SK. 
Apply a couple of the techniques that I 
am about to describe and you can probably 
get the program into 7K or less without 
losing a single feature! 

REMarks 
Although I realize that adequate docu

mentation is often lacking in many pro
grams today. when memory is at a pre
mium. REMark statements must be sacri
ficed. A remark N characters long including 
imbedded blanks) occupies N+3 bytes if 
on the same line as another statement 
and N+6 bytes on a line by itself. Thus. 
REM's interspersed throughout a large 
program can waste a significant amount 
of memory. 

An alternative which I use successfully. 
is to keep the remarks separately on paper. 
refering to the line numbers in the program. 
As the program is developed and changed. 
these remarks are also updated. Then. 
when the program is finished. a good sd 

of documentation is already available. Also. 
by maintaining an up-to-date set of remarks. 
I found I was able to debug the program 
much more quickly. I estimate I saved 
about 1000 bytes of memory by eliminating 
the REMark statements from my "Adven
ture." 

Line Numbers 
When a new line (with a new line 

number) is added to a program. 6 bytes of 
memory are required by the new line. 
When that same Basic statement is added 
to an already existing line. only 3 additional 
bytes are required. Therefore. 3 bytes of 
memory are saved each time a ne~ state
ment is added to a line which already 
exists. (Multiple statements per line are. 
of course. separated by colons.) To illus
trate the savings that can result. in my 
ve rsion of "Adventure" there are about 
720 individual Basic statements (not includ
ing DATA statements) but only 325 line 
numbers. This saves (720-325)*3 or 1185 
bytes of memory. 

Having written programs for many years 
using one statement per line. I was a little 
apprehensive about how difficult multiple 
statements per line would make program 
legibility and debugging. However. I found 
I had no trouble whatsoever reading the 
program and working with it. even though 
the Basic statements were packed very 
tightly. 

Putting more than one statement on a 
line can cause problems if one is not 
careful. especially in a Basic that contains 
no ELSE capability. Consider the following 
example: 

100 SUM=O 
110 FOR 1=1 TO 10 
120lF A(I} > OTHEN SUM=SUM+A 

(I) 

130 NEXT I 
140 PRINT SUM 

One would be tempted to rewrite this 
sequence all on one line (with one line 
number) as follows: 

100 SUM=O: FOR 1= I To 10: IF 
A(I) > 0 THEN SUM=SUM+A(I): 

NEXT I: PRINT SUM 

However. this puts the NEXT and PRINT 
statements under the control of the IF. 
causing them to be executed only when 
th e IF is true . This will produce incorrect 
results. The proper way to consolidate 
these state ments is: 

100 SUM=O: FOR 1=1 TO 10: IF 
A(I) > 0 THEN SUM =SUM + A(l) 

130 NEXT I: PRINT SUM 

157 

Statements after an IF should be placed 
at the front of the following statement. or 
on a line by themselves if the following 
statement has a branch to it from elsewhere 
in the program. Of course if the statements 
after the IF clause are to be executed 
only when the IF condition is true. then 
they must be left on the same line as the 
IF statement. 

Here is another example which sets X 
to 10 or 20 depending on the value of L: 

100 IF L=R THEN 400 
200 X=10 
300 GOTO 1000 
400 X=20 
500 GOTO 1000 

This section of the program can be neatly 
condensed into two lines as follows (elim
inating one GOTO and saving 27 bytes): 

100 X=IO: IF L=R THEN X=20 
200 GOTO 1000 

Again. the GOTO 1000 must be placed 
on a separate line so it does not fall under 
the control of the IF statement. 

It may not be obvious what will happen 
when some statements in Atari Basic are 
imbedded in the middle of a multi
statement line. Figure 1 lists these state
ments with an explanation of what happens 
to statements which follow each of them 
on the same line. 
Make a similar table for your Basic by 
trying out each statement in a small test 
program. Then keep this table handy for 
reference when you are optimizing a large 
program. 

Another way to eliminate line numbers 
is by inserting a NOT in front of an IF 
condition. For example: 

100 IF A= I AND B> 5 THEN 130 
110 B=B-I 
120 GOTO 1000 
130 PRINT 

may be rewritten on two lines (saving II 
bytes) as follows: 

100 IF NOT(A=I AND B>5) THEN 
B=B-l: GOTO 1000 

130 PRINT 

Here is a different example that may occur 
in a program: 

90 ON X GOTO 100.200.300.400 
100 T=O: GOTO 1000 

These two lines mav be condensed onto 
one line: ~ 

90 ON X-I GOTO 200.300.400: T=O: 
GOTO 1000 

e liminating line 100 ane! saving three 
bytes. 



Adventure III 32K 

There are many other ways that multiple 
statements may be squeezed onto one 
line in order to save memory. A program 
that does not already do this can probably 
be reduced to 75% or 50% of its original 
line numbers. Keep in mind however. that 
a branch to a statement from elsewhere 
in the program requires that statement to 
be at the beginning of a line. Also. in 
Atari Basic this technique is limited by 
the length of a logical line which is equal 
to a maximum of three physical lines or 
120 characters . Greater savings can be 
obtained using Basics which allow more 
characters per logical line. 

Don't Use Constants! 

One of the biggest memory wasters in 
Atari Basic is the use of constants. Each 
occurrence of a numeric constant or a 
line number in a Basic statement is replaced 
by une byte pointing to the memory 
locatiun where the \alue of that constant 
is stured. This value in memory is stored 
in int e rnal binary furm and occupies an 
addit iunal 6 bytes regardless of the size of 
the constant. Therefure. each use of a 
numeric cunstant or line number in a 
statement requires 7 bytes of memory. 
This me thud uf storing numeric constants 
is what wou ld be expected . Now fur the 
bad news. Since Basic is an interpreter 
(that is. every statement is kept in memory 
in almost its urig inal furm and decoded 
each time the state ment is executed). when 
it encuunters a cunstant in a new statement 
be ing entered in . it has nu way of knuwing 
if that constant was used before. Therefore. 
it just goes ahead and cunverts intu internal 
binary furm and stures it in memury again 
using anuth e r 7 bytes. 

Now. suppuse a large program uses the 
cunstant 0 (zero) 50 times. Then that une 
constant occupies 7 times 50 or 350 bytes 
of memory! Likewise . suppose line number 
100 is referenced in GOTO andIF .. THEN 
state ments 50 times throughuut a prugram. 
That one lin e number also occupies 350 
bytes of memury. Su we have 700 bytes of 
me mory be ing used tu sture the twu values 
() and 100. Wouldn't it be nice if each new 
usc uf th e same cunstant ur line number 
wuuld puint to the memory lucatiuns where 
that value was stured the first time'} 

Fortunate ly. there is a way to make 
that happen : by the use uf variables in 
place uf nume ric cunstants and line num
be rs. The first time a variab le is used in a 
s tateme nt fuur things happen: 

I. The variable nam e is placed in a 
tabl e in me mury called the VNT (Variable 
Name T a ble). 

2. Six bytes uf memury are al located to 
store th e value of the variable. 

3. Two additiona l bytes are stored in 
th e VNT which point to th e value of the 
variabl e in me mory . 

4. One byte is placed in the Basic state
ment in place of the variable name. This 
byte points to the VNT. 

Thus N +6+ 2+ I or N +9 bytes of mem
ory are used to store the first occurrence 
of a variab le name (whe re N is the number 
of characte rs in the name of the variable\. 

Now the memory-saving aspect of this 
method comes into play with the second, 
third, etc . time the variable name is used. 
Each subsequent use causes only 1 addi
tional byte of memory to be allocated : 
the byte in the Basic statement that points 
to the VNT. Unlike when a constant is 
used. the 6 bytes of memory to store the 
value is not allocated over and over 
again . 

To use this method of replacing constants 
with variables. one other item must be 
considered. The variable being used must 
be initialized with the value of the constant 
it represents. The most efficient way to 
do this is with READ and DATA state
ments at the beginning of the program. In 
an initialization section. values are read 
in for all the variables which are being 
used to replace numeric constants and 
line numbers. 

A good rule of thumb to use in deciding 
whether or not to replace a particular 
numeric constant or line number with a 
variab le is the following: If the same 

numeric constant or line number is used 
four or more times in a program. memory 
will be saved by converting it to a variable . 
If used three or fewer times. leave it in its 
original form. 

Of course. the more characters there 
are in the variable name and in the 
constant. the more memory will be used 
in the VNT (to store the variable name) 
and in the READ / DATA statements . 
However. the break between three and 
four occurrences seems to work in most 
cases. 

Now you are probably saying to yourself. 
"How can I possibly make any sense out 
of my program if I convert all the constants 
and line numbers to variable names?" And 
I agree . If you can't distinguish between 
the constants and actual variables. then 
reading the program listing becomes 
difficult. 

Therefore . decide on a pattern for 
variable names which will be used to 
represent numeric constants and line 
numbers in the program and stick to this 
pattern. An example of what I use is found 
in Figure 2. 

Then for real variables which do actually 
vary. I use the names J through Y and 
names that contain all letters (such as 
AA. AB. OX. ZZ. etc.). This way I can 
always distinguish constants from variables. 
If the program uses negative and decimal 
constants. then establish a pattern for them 
also . 

Statement Statements following on same line 

DATA 
DIM 
END 
FOR 
GOSUB 
GOTO 
IF . . . THEN 

LIST 
NEXT 
ON aexp GOTO lineno-list 

ON aexp GOSUB lineno-list 

POP 
REM 

RETURN 
RUN 
STOP 
TRAP 

158 

Never executed 
Always executed 
Never executed 
Always executed 
Executed upon RETURN 
Never executed 
Executed on condition true 
Neve: executed on condition false 
Always executed 
Executed when FOR loop is finished 
Executed if aexp is less than I or greater than 
the number of line numbers in the lineno-list 
Executed if aexp is less than 1 or greater than 
the number of line numbers in the lineno-list. 
otherwise executed upon return from the 
subroutine 
Always executed 
Never executed-treated as part of the 
REMark 
Never executed 
Never executed 
Never executed 
Always executed 

Figure I. 



Figure 3 is example of a program segment 
before and after the constant-to-variable 
surgery has taken place . 

No te. when a statement number on an 
IF ... THEN is changed to a variable, a 
GOTO must be inserted (see line 60 in 
Figure 3) . Other than this one exception. 
any place a numeric constant o r line 
number can be used in an Atari Basic 
state ment, a variable can be substituted. 

Constants Variable Names 

0 Z 
lto9 A to I 

10 to 19 AO to A9 
20 to 29 BO to B9 

90 to 99 IO to 19 
100 to 109 AOO to A09 

etc. etc. 

Figure 2. 

Also no te line 40 ; even the dimensions in 
an array can be made variables, thus saving 
the memory th a t would be used to store 
th e constant dimensions. 

Is it rea lly worth the trouble to convert 
most of th e constants and line numbers in 
a program into variables? In my "Adven
ture" program . I changed 58 constants 
and line numbers to variables and saved 
over 3500 bytes! This represents 12% of 
the free memory on a 32K Atari syste m. 
so the effort certainly paid off. The 
max imum number of variable names 
allowed in a single program in Atari Basic 
is 128. This is as big as the VNT can get. 

Therefore. sta rt with the numeric con
stants and line numbers that are used 
most o ften since these will result in the 

greatest savings. Also. instead of converting 
constants which are not used very often, 
consider that GOTO 9 can be changed to 
GOTO D+E. This will save changing the 

Befo re 

40 DIM COUNT (100) 
50 FOR J= I TO 100 
60 IF INT(RND(O)*IO)+ 1> 6 THEN 90 

70 GOSUB 250 
80 COUNT(J)=COUNT(J)+ 1 
90 NEXT J 

cons tant 9 into a variable if 0 and E are 
already defined to be 4 and 5 respectively . 
The constant 9 requires 7 bytes whereas 
D+E requires only 3. a saving of 4 bytes 
o f memory. Use this technique of com
bining variables to re place constants that 
occ ur three or fewer times in a program. 

As can be seen. substitution of va riables 
for of t-used numeric constants and line 
numbers can result in a substantial inc rease 
in memory available in a program. 

Numeric Arrays 
How much memory will the following 

statement use: 

10 DIM A(100). B(100) . C(lOO). 0(100). 
E(IOO) 

If your a nswe r is 500 bytes . you a re no t 
even close. The above dimension statement 
will require ove r 3000 bytes o f memory . 
Yes. 3()()()1 Why'! As we discussed earlier. 
numbers in Ata-ri Basic a re kept in memory 
in internal binary fo rm occupying 6 bytes 
each. Therefore. each of the above arrays 
uses I(X) times 7 bytes of me mory apiece. 
and 5 o f th e m will tak e I ()() times 6 times 
5 o r ]O(X) bytes. Wh en th e memory space 
is tight. there a re two rules to obse rve in 
using numeric arrays: I. Kee p the ir dimen
sio ns as small as possible . 2. Eliminate 
th e m whenever possible . 

There a re seve ral ways to e limina te 
numeric a rrays. I will mention two of 
th e m: Conve rt them to strings. and store 
numeric data in DATA statements and 
access it with READ statements each time 
th e data is required. 

In Atari Basic . strings must be dimen
sio ned . In th e statement: 

10 DIM RS( 1(0) . R( 100) 
R as we now know occ upi es 600 bytes . 
but RS occ upi es only 100 because it is a 
s tring 100 characters long. Now suppose 
in an "Adve nture" program there a re 100 
rooms and th e prog ram keeps track of 
which rooms have been visited and which 
have no t. Eac h e lement o f R( 100) would 
represent a room. R would be initialized 
to all zeros and when a room was ente red . 

After 

10 READ A.AO,AOO.B50.F.l0.Z 
20 DATA 1.10.100.250.6.90.0 
40 DIM COUNT (AOO) 
50 FOR J=A TO AOO 
60 IF lNT(RND(Z)*AO)+A > F THEN 
GOTO IO 
70 GOSUB B50 
80 COUNT(J)=COUNT(J)+A 
90 NEXT J 

Fi.~lIre J. 

159 

th e corresponding element of R would be 
set to I . Since each e lement of R he lds 
only a 0 o r 1. this same function can be 
acco mplished with string RS( I(Xl) using 
approximately one-sixth the memory. First 
RS would be initialized to aU "N" characters 
(representing "No. the room has not been 
ente red " ) as fo llows: 

100 FOR 1=1 TO 100: RS(I.I)="N ": 
NEXT I 

(No te in Atari Basic . RS(i.j) represents 
th e substring from RS starting with char
acter i and ending with character j. 
Therefore. RS(i.i) represents the ith char
acter o f string RS .) Then when room 
number I is entered , R$(I,I) would be set 
to "Y" (indicating "Yes, the room has 
been entered"). At the end of the game, 
the number of rooms visited would be 
counted as follows: 

l(XXl SUM=O: FOR 1=1 TO 100: IF 
R$(I.I)="Y"THEN SUM=SUM+I 

1010 NEXT I 

Of course. if a numeric array is needed 
to store many different values. this method 
will not work. However. for storing just a 
few different values. try using a string 
instead of a numeric array and substitute 
different characters for the various values 
in order to save on memory . 

Now suppose a program uses numeric 
data that never changes. The room move 
table in "Adventure" is a good example 
of this. My "Adventure" has 126 rooms 
and there are 10 possible directions to 
take out of each room (N= 1. NE=2. E=3. 
... NW=8. UP=9. DOWN= 10). If an array 
were used to hold this data. it would contain 
126 times 10 or 1260 e lements. At 6 bytes 
for each element. this table would occupy 
7560 bytes or almost one-fourth of my 
32K memory. The data in this array would 
be room numbers to move into from each 
room. So fo r example . to move West 
(direction 7) from room 29. the contents 
of array element (29.7) would be the room 
number to move into going in that direc
tion. Zero of course would mean no path 
that way. 

This data never changes. Therefore it 
can be put into DATA statements. one 
DATA statement per room. 10 numbers 
(corresponding to the 10 directions) per 
DATA statement. Suppose the DATA 
statement fo r room number I is on line 
10001. room 2 on line 10002. etc. Also 
suppose variable DR contains the direction 
in which the adventurer wishes to go and 
RC the number of the room he is currently 
in . Here is how the program would loca te 
the room number to move into: 

100 RESTORE lOOOO+RC: FOR 1=1 
TO DR: READ RN: NEXT 1 



Adventure in 32K 

The RESTORE locates the OAT A state
ment for room RC. the FOR loop reads 
until the room number corresponding to 
direction DR is read at the end of the 
loo p . RN contains the desired room 
number. Using this technique . I saved 
about 3650 bytes of memory on the room 
move table in my "Adventure" program. 

To go even one step furth e r. I put the 
data for rooms 1. 2 and 3 all on DATA 
statement 10003; rooms 4. 5 and 6 on 
DATA statement 10006 and so fo rth. thus 
e liminating two thirds of th e OAT A 
statements and saving anothe r 600 bytes. 
The RESTORE statement will still work 
in Atari Basic because a RESTORE to 
line 10001 (fo r room I) will actually start 
reading at line 10003 if lines 10001 and 
10002 do no t exist. Of course . the FOR 
loop had to be modifed to read the correct 
set o f 10 room numbers as now there 
were 30 room numbers per DATA line . 
With this modification. the room move 
tab le has now been reduced from 7560 to 
a bout 3300 bytes for a 56'Y., red uction in 
memory used. 

Furthermore . upon examining the room 
move table data . I found that it contained 
many zeros . This occurs because there 
are exits from most rooms in only a few 
of the 10 direc tions. Therefore. I re placed 
n consecuti ve zeros in the DATA state
me tns with the number -n o For example . 
if one of the OAT A statements contained 
~ zeros in a row. these zeros we re e limi
nated and a single -H put in the ir place. 
This was do ne in all DATA statements 
where 2 or mo re zeros occurred toge th e r. 
The read routine was then modified to 
ex pand nega tive numbers back to the 
o riginal number of zeros as th e data was 
read. This modification furth e r reduced 
the room table from 3300 bytes to 2236 
bytes now occupying 70% less space than 
if a 126 by 10 numeric a rray had been 
used. Thus . o ver 5300 hytes of memory 
we re saved with several ve ry simple 
modifications to the room move table part 
o f the program . 

Since numeric data items require 6 bytes 
each when stored in numeric variables or 
a rrays. if th e data does not change during 
program execution. keep it stored in OAT A 
statements and READ it when it is needed . 
Pack it on the DATA statements as tight 
as you can. Othe rwise use string arrays if 
possible. The fewer nume ric arrays a 
program uses. the more memo ry will be 
available to it. 

Strings 
Although strings require less memory 

than numeric arrays . still try to kee p the ir 
length to a minimum. Don't set up AS( 1(0) 

when the max imum length AS will eve r 
be is SO characters. Also. e liminate string 
variables when possible. If three strings 
are defined in a program and one of the 
strings could do the functions o f all three. 
eliminate two o f them. 

"Adventure" type programs always have 
a vocabulary of words which they recognize 
(NORTH. TAKE . DRAGON . INV EN
TORY. DIAMONDS. e tc .). C ut th ese 
words down to the ir first five cha racte rs 
INORTH. TAKE. DRA GO. INVEN. 
DIAMO. etc .} Although some games use 
the first four o r three characters . five is 
about the minimum length which can be 
used and still make the words unique. 
When th e playe r's input is received. each 
word o f it is trun ca ted to fiv e cha ract e rs 
before a search is done aga inst the voca b
ulary in th e program. 

As discussed prev iously with num eric 
data. place th e vocabulary in DATA 
statements and REA D it when it is required. 
In Atari Basic. strings are placed in DATA 
sta te me nts with o ut quotes a nd a re 
sepa rated by com mas. Since Atari Basic 
does no t ha ve string arrays le.g. ASIIOO) 
does no t mean 100 strings . but defines a 
string to be a maximum of !(X) cha rac te rs 
lo ng ). to store th e wo rds o th e rwise. they 
wo uld need to be packed into a string. 
Since the words a re va riab le in length 
I INV EN is fi ve cha racters long but TAKE 
is four. OIL. three. etc. ). this would require 
ex tra program statements and ove rh ead. 
With the vocabulary on DATA statements. 
it may be searched by READing it from 
beginning to end with a spec ia l cha racter 
1* . S. e tc.) marking th e end of th e table. 

This wi ll take a considerable amount 
o f time. espec ially fo r words a t th e end of 
th e table . The refore. a more effi cient way 
is to place all words beginning with the 
same lette r in a separate OAT A sta tement. 
Then a RESTORE is used. keyed o ff the 
first character o f the word being searched 
fo r. to locat e th e DATA statement con
taining all words starting with this le tte r. 

As can be seen. putting bo th numeric 
and string data into OAT A statements 
can be a very effec tive way to reduce th e 
amount o f memory required by a program. 
Before num eric a rrays and strings are set 
up. conside r th e use o f the READ/ DATA 
state ment techniqu e. It may make the 
diffe rence in bei ng abie to ge t a progra m 
into memory. 

Eliminate Unneeded Statements 
When you need to alternate a program 

variable be tween 0 and I. how do you do 
if! Before reading on. take a piece of 
paper and write the Basic statements to 
set B equal to 0 if its value is I and vice 

160 

versa (keeping in mind that Atari Basic 
does not have an ELSE capability). Now 
look at your programming. Is this the way 
you did it? 

10 IF B=O THEN B= I: GOTO JO 
20 B=O 

Or how about this way? 

10 ON B+ 1 GOTO 20: B=O: GOTO 30 
20 B=I 

Or better yet? 

10 ON B+ I GOTO 20: B=-I 
20 B=B+I 

Each of th ese me thods is good and will 
acco mplish the task . but th ey a ll use two 
lines. Is there a way Iwithout us ing ELSE) 
to write this code on one line '? Yes there 
is . A little creative progra mming reveals 
th e following me thod : 

10 B=ABSiB-l) 

The first three examples require 52.00 
and 53 bytes respectively; the last example 
only 20 bytes. The point here is . e liminate 
unn eeded statements wherever possible 
to save on memory. 

I found in my "Adventure" program 
that the statement: 

Z=B : GOTO 90 

occurred 16 times . So I did the obvious ; 
kept the first occurrence of this statement 
and re placed the other IS with a branch 
to the first one. Now I know I have just 
caused a program abort to occ ur in the 
mind of every structured programmer in 
the audience. Please note . I am not against 
s tructured programming . 

In fact. I encourage it along with good 
program documentation wherever possihle. 
However. the preceding exa mple saved 
90 bytes of memo ry . By doing this same 
thing with seve ral o the r statements that 
occurred multiple times in the program . I 
was able to save another several hundred 
bytes. So use of this technique really paid 
off. 

Untokenize The Program 
When Atari Basic places a statement 

into memory . it uses a "tokenized" form. 
That is . each Basic keyw o rd. each 
arithmetic operator and each rela tional 
o pe rator are replaced by a unique I-byte 
code called a token. At the same time (as 
previously discussed). constants are placed 
in memory in inte rnal form and variable 
names are placed in the VNT I Variable 
Na me Table ). This is th e way Basic 
inte rpreters work. Thus. they automatically 
provide some e ffi c iency in the ir use o f 
memory. 

Now. after a new program is entered 



into memory. typica lly a debugging phase 
beg ins. The program is run and rerun 
land rerun and rerun and rerun .... ) many 
times to find and correct as many logic 
errors as possible . In this phase. statements 
are add ed. chan ged. deleted. rewritt en. 
e tc. If the program is large . debugging 
may take many days or weeks. During 
this time a number of variable names which 
we re once used in th e program will 
probably be complete ly e liminated . Or a 
typing error may have ca used the variable 
TB. for example. to be entered when T 
was supposed to be used. Later on. this 
error is discovered and TB is replaced by 
T in the statement. thus completely e limi
na ting the variable TB from the program. 

Sounds logical so far. doesn't it. However. 
something e lse occurs that is not immedi
a te ly obvious . When TB is replaced by T . 
Basic. being an interpre ter. does not know 
that the variable TB has been completely 
eliminated from the program. Basic has 
no way of knowing that TB is now used in 
any other statement. Therefore . TB sti ll 
occupies 4 by tes in the YNT and 6 addi
ti onal bytes of memory are still reserved 
to hold the value of TB . Ten bytes of 
memo ry are being used by TB. Multiply 
this by another 10 or 15 variables that 
may have been used in the program but 
h3ve since been e liminated. and we find 'i 

hundred or more bytes of memory being 
wasted. 

"Well. " you respond . "when I CSA YE 
the program onto tape and then CLOAD 
it back into memory. doesn't the YNT 
and related memory get cleaned up?" 

The answer to this question is "No." 
because a CSA YE causes the tokenized 
version of the program to be written onto 
tape and along with the tokenized program. 
the YNT and associated memory are also 
written. One of the reasons CSA YE works 
this way is because th e tokenized version 
tak es much less time and tape to write 
out. Now wh en a CLOAD is done. the o ld 
YNT still contain ing the unused variable 
names and their associated memory is 
read back in unchanged. 

How do you e liminate the unused vari
ables from the YNT and free up their 
memory bytes? Simple. The program must 
be written o ut in its untok enized fo rm. 
This is th e fo rm th a t is seen on the screen 
when th e program is listed with the LIST 
command. In Atari Basic . this is done 
exactly like a CSA YE except the command 
LlST"C" is used. LIST"C" ca uses the 
program to be LISTed to cassette tape. 
The tape will be written with the untoken
ized version of th e program on ly and not 
include the YNT nor any other values 
from memo ry. 

Note. this process will take two to three 

tim es as long as CSA YE and require at 
least twice as much tape . The ta pe shou ld 
th en be rewo und. NEW typed to c lea r 
memory I this is important to e rase the 
o ld program and YNT). and th e unto ken
izecl version read back in with the command 
EN T ER"C" Iwhich works just like 
CLOAD) . The untokenized statements will 
be read in one by one. re tokenized and a 
ne w YNT co nstructed. Since th e o ld 
variabl e na mes are no longe r in this set of 
Basic statements on tape . they will not be 
ent e red into th e new YNT. 

Whe n I had fini shed debugging my 
"Adventure" progra m. I untokenized and 
re to kenized it and ga ined 150 bytes of 
memory. Th is a llowed me to add a few 
more vocabulary words that I had pre
viously eliminated fo r lac k o f space. Note 
also that a program should be untokenized 
and re to kenized wh enever an ERROR 4 
occ urs. Error number 4 means the YNT 
is comple te ly full with 128 variable names . 
Of course. if th e program actua lly has 128 
legitimate d iffe rent variable names. then 
this me th od will no t work and some of 
th e variable names must be e liminated or 
combined into an array Iwhich takes up 
o nly one slo t in th e YNT). 

Use of POP Statements 
When I finally had th e "Adventure" 

program finish ed. there were 450 bytes of 
J)l emory ava ilable after loading and 50 
bytes free after exec ution began. I fe lt 
th e program was now bug-free and ready 
for th e fin a l tes t : my IO-y ea r o ld son. 
David. But a strange thing began to happen. 
After David played for one o r two hours. 
ERROR 2 would occur and the program 
would abo rt. Error number 2 means o ut 
of memory. This e rror would occur 
randomly after about an hour of play 
without restarting the game. and a lways 
at a different spot. How cou ld this be? I 
had very carefu lly calculated that there 
should be at least 50 spare bytes of memory . 
I was puzzled . It took me a while to figure 
out what the problem was. but I finally 
fo und it. 

When a GOSUB is exec uted . Atari Basic 
puts the re turn address into a push-down. 
pop-up stack in memory . Then when the 
RETURN statement is exec uted. th e top 
address is popped o ff o f the stack and the 
compute r re turns control to th e program 
at this address. Thus the stack is constantly 
expanding and contract ing in memory as 
GOSUB's and RETURN's a re exec uted . 
Now suppose a subroutine branches e lse
wh e re in th e prog ram . neve r executing a 
RETU RN stateme nt. The re turn address 
remains on the stack fo rever. This is exactly 
what was happening in my program. Every 

161 

once in a while the program would exit 
from a subroutine without executing a 
RETURN. Each time this happened . 4 
bytes of memory remained on the stack. 
never to be released. and the stack 
gradua lly expanded until it had eaten up 
the 50 bytes of available memory. 

There are two ways to e liminate this 
problem. The most obvious is to exit from 
every subroutine via a RETURN statement. 
Howeve r. it is not always possible nor 
desirable to do this. Therefore . before 
branching out of a subroutine where the 
RETURN will never be exec uted . a POP 
statement sho uld be inserted. This causes 
th e stack to be popped up one time. and 
th e return address removed . just as if the 
RETURN statement had been executed. 
The format of this statement is: 

100 POP 
In my program . I put several POP state
ments just before the INPUT statement. 
The program continually returns here to 
get the player's next response. Thus. I 
made sure at this point that the stack was 
completely empty. Executing a POP when 
the stack is empty acts like a do-nothing 
statement and does not cause an abort. 
This small modification solved the 
problem. 

One note of caution when using POP 
statements in Atari Basic: FOR loops are 
also placed on th e stack. Therefore. if a 
program is in the middle of a FOR loop 
when a POP is executed. the FOR infor
mation may be removed from the stack. 
This will cause the program to abort with 
error number 13 INEXT encountered with 
no matching FOR) when the corresponding 
NEXT statement is executed. The way to 
avoid this is to make sure POP statements 
are not placed within FOR loops . or to 
make sure that you know exactly what 
order FOR and GOSUB information was 
placed on the stack so it may be correctly 
popped off. Note also that branching out 
of a FOR loop without completely finishing 
the loop does not cause the stack to grow 
and waste memory like GOSUB's do. so 
one only needs to be concerned about 
this problem when branching out of 
subroutines without executing a 
RETURN. 

Message Text 
Approximately one half of the memory 

in my "Adventure" program is text consist
ing of room descriptions and messages. 
Since the origi nal "Adventure" text is too 
large to fit. it had to be cut down. There 
are several way to do this . 

One way is to eliminate completely a 
number of the least used . least important 



Adventure In 32K 

messages. Another way is to delete some 
of the descriptive adjectives and/or change 
the wording so that the message is smaller 
but still retains its original meaning. 
Abbreviating. using contractions and 
substituting smaller words all help con
siderably. Here is an example: 

Original message: "You are in a complex 
junction. A low hands and knees passage 
from the north joins a higher crawl from 
the east to make a walking passage going 
west. There is also a large room above. 
The air is damp here."' 

Abbreviated message: "You're in a 
complex junction. A low N pass joins a 
higher crawl from the E making a walking 
passage W. There's a large room above. 
The air is damp."' Counting spaces. the 
message has been reduced by 2H% from 
204 to 147 characters. 

Half of the room descriptions (63) begin 
with the II characters 'You are in" (includ
ing the space following the word in). I 
eliminated these words from the front of 
those 63 messages and modified the print 
message subroutine to print them if the 
first character o'f the message to be printed 
was not a capital letter. This resulted in 
another 600-byte savings. 

Message text is stored in DATA state
ments. Message number I at line 15010. 
message 2 at line 15020. etc. The start of 
a message is located with a RESTORE 
IS()OO+N*IO where N is the message 
number. Many of the messages extend 
onto multiple DATA statements. 

A special character which is not used 
anywhere else in the message text was 
placed at the end of every message. This 
character is detected by the print message 
subroutine telling it when the end of the 
message has been reached. Adding this 
single character per message was the 
simplest way to allow the program to 
determine the end of a message when the 
messages were variab le in length. This 
method also uses the least amount of 
memory. 

With a little creative rewriting, the 
original "Adventure" message text was 
cut approximately in half so that it fit into 
14K to 15K of memory. but still retained 
its original meaning. The attractiveness 
of the game was not lost. and all of the 
excitement of the original "Adventure" 
was still there even though the messages 
were now in an abbreviated form. 

Miscellaneous 
Here are a few other hints for optimal 

memory use: 
I. Do not use long variable names (Atari 

Basic allows up to 120 character names. 
all characters significant) . Each character 

in a variable name occupies I byte of 
memory in the variable name table. 

2. Replace IF X <> 0 with IF X (which 
is equivalent and saves 3 to 9 bytes 
depending on whethe r the 0 is a constant 
or a variable I. 

3. Use GOSUB's to eliminate multiple 
occurrences of identical program state
ments. 

4. Use as few variable names as possible 
by making them do double and triple duty. 
Rahter than use I. J. K. L. M and N as 
FOR loop variables. or ZO through Z9. 
see if you can get along with using just I 
and J or Z I and Z2. The same applies to 
scratch variables and other variables in 
the program. 

5. Remove unnecessary parentheses and 
rely on operator precedence wherever 
possible (except. due to a known bug in 
Atari Basic. always enclose NOT and its 
associated variable in parentheses-(NOT 
B) instead of NOT B). 

6. Spaces may be used anywhere for 
program readability (except of course in 
strings). Spaces are not stored in memory 
when a program statement is tokenized . 

7. A new iine always requires 6 bytes 
of overhead regardless of the size of the 
line number used. 

H. Change IF NOT (A=B and C=D 
and E=F ... ) 
to IF A <> B OR C <> D OR E <> F ... 
Change IF NOT (A=B or C=D or 
E=F ... ) 
to IF A <> BAND C <> D AND 
E <> F ... 
Memory will be saved in both cases. 

9. Use of the LET keyword does not 
cause extra memory to be allocated. It 
may be included or omitted as desired. 

10. The RUN command clears aJI simple 
numeric variables to zero and sets all strings 
to empty' (length zero) so don't waste 
memory clearing them . However. numeric 
arrays are not cleared' If they must be 
initialized to zero. use a FOR loop (all on 
one line. of course). 

II. Many of the Atari Basic keywords 
can be abbreviated. Abbreviations have 
no effect on memory utilization. 

One last question lingers which must 
be answered: After optimization for 
efficient memory use with these methods. 
how slowly does the program actually run? 
When I had finished the "Adventure" 
program. I did find the response to the 
player's input to be too slow. It was in the 
five to ten second range. However. upon 
investigation I discovered that the program 
was taking five seconds searching the 
vocabulary list. The further down the list 
it had to search. the longer it took. 

162 

Memory Saving-Techniques 
Here is a summary of the memory

saving techniques discussed in the 
accompanying article: 

1. Eliminate REMarks. 
2. Pack multiple statements per line 

to eliminate numbers. 
3. Replace constants and line numbers 

with variables . 

4. Reduce the dimensions of and/ or 
eliminate numeric arrays (convert to 
strings or use DATA statements). 

5. Keep strings small and put them 
on DATA statements. 

6. Eliminate all unnecessary state
ments, especially multiple copies of 
the same statement. 

7. Untokenize and retokenize. 
8. Keep the FOR/ GOSUB stack from 

eating up memory. 
9. Reduce the size of message text. 
10. Use short variable names. 
11. Replace IF X <> 0 with IF X. 
12. Use subroutines to eliminate 

duplicate statements. 
14. Eliminate unnecessary paren

theses. 
15. Rewrite to eliminate NOT. 
16. Don't initialize to zero excep

tion-numeric arrays). 

Therefore. I did sacrifice some memory 
by placing words that start with the same 
letter together on separate DATA state
ments. Then I changed the search routine 
to do a RESTORE to the proper DA T A 
statement keying off of the first letter of 
the word that was being searched for. 
This reduced the search from a maximum 
of 150 words to 20 or less. Also. I placed 
the most often used words at the beginning 
of each DATA statement. Thus the 
vocabulary is not packed as tightly onto 
DAT A statements as it could be. However. 
with this one small change, response time 
is now in the one to two second range for 
most responses. with a maximum of five 
seconds for the GET / T AKE verb which 
has the largest number of program state
ments associated with it. It appears that. 
on the Atari SOO. chaining constants to 
variables . reading from DATA statements, 
jumping all over the place with GOTO's 
and GOSUB's etc. doesn't cost the program 
too much in time. This. of course. may 
not be the case for a program that uses 
some of the fancy Atari sound and graphics 
capabilities. However. for "'Adventure" 
in graphics mode 0 (full screen text). the 
speed is adequate, even when a Basic 
program is highly optimized for memory 
usage. 



From Burn-Out to Born Again 

'Twas the week before Christmas 
and all through the house ... You get 
the picture. I had just come in from 
walking the dog. It was late and, more 
important, the house was quiet. The 
rest of the family was tucked away for 
the night. So was the Atari 800. 

There it sat neatly stacked on the 
living room shelf. Next to the cassette 
player lay operating manuals along 
with little boxes labelled Bio-Rhy thms 
and Star Raiders. 

Vacationing friends had kindly con
sented - after a few subtle hints from 
my nine-year old son-to leave their 
personal computer in our care. So for 
the past week, our living room had 
been an extraterrestrial battle-zone. 
The walls echoed with the sounds of 
hyper-space thrusters, photon-lasers 
and thermonuclear explosions. My 
wife and I kept our distance. She 
could not stand the noise and the 
violence. For me, there were other 
reasons. 

I had spent the better part of my 
early adult life programming, ana
lyzing, and trouble-shooting com
mercial computer systems. As Ilooked 
at the compact console sitting there on 
the shelf, my mind went back about 
ten years . 

I could still remember being ushered 
through a door into a room about the 
size of a basketball court. It was like 
walking into the future. Inside this air 
conditioned, climate controlled world 
sat the company's four computer sys
tems, along with their respective disk 
drives , tape drives, printers, and 
various other peripherals. 

I was led past rows of lights flash
ing on main frame panels. Long lines 
of tape drives danced back and forth. 
Disk packs whirled secretively inside 
their stacked enclosures. Printers 
spewed out reports by the truckload. 
Adrenalin began racing through my 
own system at a speed, I was certain, 
approaching that of the computers 
the mse I ves. 

Each of the four computer systems 
had a nickname. "Poppa Bear I" and 
"Poppa Bear II" were twin systems 
with individual core capacities in the 
megabyte range. These were used to 
run the major financial systems of the 
corporation. "Momma Bear", weigh· 
ing in at SI2K, was devoted to tele· 
processing. It communicated with 
computers across the country. "Baby 
Bear", a little 48K three-partition 

Witold Urbanowicz, 135 Eastern Parkway, 
Brookl)'n, NY 12238. 

machine was used nights for the 
smaller systems, but during the day 
was dedicated to the programming 
and systems people for compilations 
and testing. "Baby Bear" was to be my 
own personal computer for the next 
few years. 

As the years passed, the software 
became more complex , requiring more 
and more core as well as faster and 
faster processing speeds. My skills and 
responsibilities were naturally up
graded to keep up with the larger and 
more complex applications. As dead
lines became more critical and the 
problems more intricate, the pace 
became absolutely frantic. Murphy's 
Law reigned supreme. 

"Baby Bear" became a dim memory 
and my family life was in danger of 
becoming the same. By now it had 
become a frequent occurrence for me 
to work months on end at all hours in 
order to bring a project in on time. For 
the most part, the results of this 
effort- the bOllom line- were meant 
for someone I would never meet in a 
city I would never see. 

Several times after the project had 
been completed, I asked whether it was 
serving the intended users well , only 
to discover that the project had been 
scrapped or that the reports were 
piling up somewhere in a storeroom in 
unopened boxes. 

About the third or fourth time this 
happened, I was sitting in the com
puter room at five in the morning. I 
had gone about 72 hours without 
sleep. It had been months since I had 
seen the kids. I felt as gray and flat as 
the tile floor beneath my feet. It was 
then that I decided to leave the field. 

When I left, I never wanted to see 
another computer in my life. Any thrill 
or satisfaction I may have felt in the 
early pa rt of my career had not just 
disappeared. It had been slowly 
ground out of me. 

All these thoughts and images ran 
through my mind in a matter of nano-

163 

Witold Urbanowicz 

seconds that evening as I stared at the 
Atari on the shelf. It seemed to be 
waiting for me. I wondered if I had put 
enough distance between myself and 
the past. After all I had been out of 
the business for several years. How 
could it hurt to sit down for a few 
minutes to see what the little fellow 
cou ld do? 

In less time than you can say Begin
ners All Purpose Symbolic Instruction 
Code, I had the Atari off the shelf and 
ready to go. Although I had never 
programmed in Basic before , there 
was enough of a logical similarity to 
other high level languages that with a 
little prompting from the Bas ic manual 
I was off and running. 

Over the next few evenings, I rein
trod uced myself to the world of I Fs, 
THENs, GOTOs, strings, subscripts 
and various other programming con
cepts. The feeling was definitely odd. 
1t was like meeting old friends I had 
not seen in years. They had not 
changed one bit - for better or for 
worse. Some, like the nested IFs, still 
caused me no small amount of trouble 
whenever I took them for granted. 
Others, as in the case of the GOTO, 
were still as stra ightforward as ever. 

Then suddenly, about two nights 
before Christmas as I worked my way 
through Sound and Graphics, it hit 
me. Without even realizing it, I was 
having fun. It was like the old days 
when I had worked with "Baby Bear" 
at my first job. But there was a 
significant difference. The room I sat 
in was my own. The light by which I 
worked was soft. The colors and 
fabrics in the room were part of a 
human environment. I did not have to 
fight anyone to get computer time. I 
was a person enjoying a personal 
experience. 

Now it was time to put together 
what I had learned the past few 
evenings. What better way was there 
than to write a program. The question 
was, what to write? The answer came 
quickly. With Christmas not two days 
away, what better project could there 
be than to create a present for the 
children- a small electronic game 
they could play. 

After a bit of thought, I set down 
some basic specifications. The pro
gram would have to be relatively 
straightforward and short. I didn't 
have that much time. Plus I was still 
quite rusty. However, I wanted some
thing that would pose an appropriate 
challenge to my skills. Finally it also 
had to be something the children 



Burn-Out to Born Again 

wou ld find entertaining as well as 
challenging. 

I finally decided on an electronic 
version of the old Shell Game. Work
ing into the early hours of the morning, 
I was ab le to finish the initial logic for 
the game, leav ing the testing for the 
followi ng night. 

And so the proverbial Night Before 
Christmas found St. Nick at his Atari 
testing a last minute present for the 
big day. Time flew, and soon the 
morning light seeped into the li ving 
room to annou nce the arrival of the 
child ren as they made their way to the 
tree a nd the presents which lay 
beneath. They were somewhat sur
prised to find me up at that hour. 

"What are you doing?" they asked. 
"You'll see," I managed to reply. 
Paper ripped and the camera 

cl icked. In less than an hour the booty 
lay displayed. My daughter modeled 
her clothes while my son booped and 
beeped his way to electronic heaven 
with his new hand-held game. 

Severa l hours later, my daughter 
remembered seei ng me when she had 
first awake ned . Leading the kids to the 
living room , I to ld them to turn on the 
computer. This they did and sat down 
to play. I watched as their faces lit up 
while trying to follow the she ll s being 
moved around on the screen. I fol
lowed the squea ls of delight when they 
guessed which she ll the pea was under 
and groaned a long with them when 
their guesses were wrong. Finally my 
daughter turned to me. 

"Daddy, you did this?" she asked. 
I nodded. 
"Rea lly'?" my son added. 
All I cou ld do was beam. 
Seeing the "bottom line" in my 

child ren 's faces, I forgot about the 
hours of frustration the night before 
while debugging the program. The 
thrill and satisfaction I had felt years 
ago when I first worked with "Baby 
Bear" had returned. Unfortunately, so 
did the neighbors. 

I was actua ll y sad to see the Atari 
go. St ill , I had been given a second 
chance to look into the future and 
found once more that it was good. 0 

Listing 1. 
~j DIM A$ (:l) 
7 DIM [: .~ (:l) 
10 MOVE =100:MVA=1:MV2=Z:MV3=3:MV1=1 
20 MV5 =5:PH=0:P :l =1 :P 2= 1:P3=1 
30 X10 =10:X15- 15:X20=20:POS1=1 
10 NEG1 =- 1:NXTMOV=600:RNDMOV=800 
1~j SE TUP ~' 90 0 
50 FRTY =10:FIFTY=50 
60 Y=10:Z =Y:SV2=2 
8 0 X10 ='IO:X60=60:X80=80 

85 ZERO=0 :MVI0 =10 
90 GflAF'HICS :3 
92 cou:m 2 
91 SETCOLOR 1,9,2 
96 GOTO 300 
100 FOR M=MVA TO MVB 
110 coum l 
120 PLOT X,Y 
130 PLOT W,Z 
110 FOR S-SVA TO SVB:NEXT S 
150 COLOfl 1 
160 PLOT X,,! 
170 PLOT W,Z 
180 X=X+XV:Y =Y+YV 
190 W=W+WV:Z=Z+ZV 
200 NEeXT M 
2 0~j coum 2 
210 PUll X,'! 
220 PLOT W, Z 
230 fl[TURN 
300 REeM ~ ~ * MAINLINE * * * 
'100 GflAF'H ICD 7 
1 0 ~j CDl.Dfl 1 
110 SETCOLDR 1,9,2 
115 PLOT 61,39:0RAWTO 62,39 
120 PLDT 61,38:DRAWTO 62,38 
if~~5 Y=32 
127 RNDH=ZEfW 
130 FOR M=MVA TO MV1 
'135 coum 2 
110 PLOT X40,Y:ORAWTO X10+3,Y 
115 PLOT X60,Y:DRAWTO X60+3,Y 
150 PLOT X80,Y:DRAWTO X80+3,Y 
'+55 Y=Y+l 
160 NEXT M 
'165 F'flINT "flEADY?" 
'170 INPUT A$ 
175 IF A$ <> ",!" THEN '1 6~'j 

180 Pl=1:P2=1:P3=1 
'185 FOR M-MVA TO MV1 
190 COLOR 2 
500 PLOT X10,Y:DRAWTO X10+3 ,Y 
505 PLOT X60,Y:DRAWTO X60+ 3 ,Y 
510 PLOT X80,Y :DRAWTO X80+ 3 ,Y 
515 FDR S=SVA TO FIFTY:NEXT S 
520 COI_Dfl 1 
525 PLOT X1 0 ,Y-1 : DRAWTO X1 0+3,Y-1 
530 PLOT X6 0 ,'!-1:DRAWTO X60+3,Y-4 
535 PLOT X80 , Y- 1:DRAWTO X8 0+3,Y-1 
540 Y=Y+POSl. 
51~j NEXT M 
560 GRAPHIC::; 3 
57U CDLDF:: 2 
575 SETCOl_Of~ 4,9, 2 
~wo Y=Xi0:Z "' '! 
5B5 PLDT Xl 0,Y 
59 0 PLOT X15,Y 
592 PLOT X20, '( 
595 NXTCN T=X15 
-!>C' [0 rl YTU n ,c NXTCl IT ·· F·WH 
t.)O~j ~; '')[: : -: S\)E: ···· C~{ 

[; 10 IF NXTCtn "ZEliU TH Ul .~,~.d) 

620 fn·j[H1D'.) '= ( ( I NT( 3)n :: tH> ( 1 » ):Q Oi+i3 nO 
t, ;>.:'. IF f::NDH " fnWt10V fH Etl t,;~ 0 
62,'1 fltWH " HNDt1IJV 
6 :l0 GDTO fWDMU\! 
6~.; 0 GI(AF'HIU; 7 
!,S;:: CIJI...IJF( :·c 
6SQ ~;f~TC(J t .. (JF~ 4,9, 2 
656 Y=XlO+X2,O:XA=Y :X B='!+X20 :XC" Y+Y 
6[;0 WA=XA+3:WB= XB+ 3: WC =X C+ 3 
670 FOR M=MVA TO MV1 
672 C[)UIf': :z 
674 PLOT XA , Y:DRAWlO WA , Y 
676 PLOT XB , Y:DRAWTO WB , Y 
678 PLOT XC,Y:DRAWlO WC , Y 
679 Y=Y-POS.l 
bElO NEXT M 
60~j PFllNT "PICf( A :J HEl.I. . ... A,I::,C " 
bEI7 INPUT At, 
690 Y=:36:Z=Y 
692 IF A'~='''A'' THEt~ 700 
691 If' t.,'~"'''B'' lHDl 7 10 
696 If' A$'""C" THEN 770 

164 

698 GOTO 685 
7 00 C=Pl: X= X10 :W =X+3 
705 GCITO 72~i 

710 C=P2:X=X60:W=X+:3 
715 GOlD 725 
720 C=P3:X=X80:W=X+3 
725 FOR M=MVA TO MVl 
7:30 CDLOFl 2 
732 PLOT X,Y :DRAWTO W, Z 
731 FOR S=SVA TO FRTY:NE XT S 
736 COLO ll 1 
738 PLOT X,Y+4:0RAW TO W,l+4 
710 CDUm C 
714 PLOT X+1,Y+1:DRAWTO X+ 2 ,Z+4 
716 Y=Y-PDS1: Z=' Y 
71EI NE XT M 
750 FOR M=MVA TO NVl 
752 COl.Dfl 2 
751 PLOT X,Y:ORAWTD W,l 
756 FOR S=SVA TO FRTY:NEXT S 
757 COl. iJf( 1 
758 PLDT X,Y+4:DRAWTO W, Z+4 
760 Y=Y - PDSl.: Z=Y 
762 NEXT M 
775 IF C=PDSl THEN 790 
7ElO PflINT ''PICI( ANIHHEfl" 
7El5 GOTO 687 
790 PRINT "GDOD EYES :" 
792 F"FGNT "READY FOR ,,\ CHAL LEN GE " " 
793 PllINT "ENTEr, 1 DR :i OFl 10 DR 2 0' 
791 INPUT CH:CH =MV2*CH 
795 GOTD 3 00 
ElOO X= X10:W=XZO:MV=MV:lO 
803 PH =P1IP1=P3 : P3=PH 
OO~, GOTD SETLW 
010 X=XI 0:W= X15:MU=MV5 
El 13 PH=P1:P1=P2:Pl=PH 
81::i COTO SETUP 
020 X=X15 :W= X2 0:MV =MV5 
813 PH =Pl:Pl=P3:P3=PH 
82~.' GOTD SETUF' 
900 XV=ZERD :YV=PDSl 
905 WV =ZERD : ZV=NEG1 
910 MVB =t1V3 
915 GD SUB MDVE 
92 0 XV =PO:Ji:YV=ZERD 
925 WV=NEGl:ZV=ZERD 
9:30 t1VB=t1V 
9:15 [;DSUB MOVE 
910 XU =ZERO:Y V=NEGl 
915 WV =ZERO : ZV=PDS 1 
9~jO t1VB .... tW3 
9~j~" CD:,I.1[: t1D\}[ 
';>60 GOlD NXTMOV 



Speedread + 

Reading Matters 
Rising above the glut of "me-too" game 

programs for the Atari home computers 
announced at the West Coast Computer 
Faire last spring is a self-improvement 
program called SpeedRead+. It is a ser
ious attempt to help users boost their 
reading speed and comprehension by 
using well designed eye training 
exercises. 

The principle behind SpeedRead+ is a 
simple one. If you can train yourself to 
concentrate on reading text efficiently , 
you will save time, understand more of 
what you read , and feel less tired at the 
end of a long reading session. 

To help users achieve these goals, the 
publisher, Optimized Systems Software, 
provides a machine language program 
that flashes words and phrases on the TV 
screen at speeds from five to five 
thousand words per minute . Three lit
erary classics are included as text files 
with the program: Washington Irving's 
"Rip Van Winkle" and "Legend of Sleepy 
Hollow," and Bret Harte's "Outcasts of 
Poker Flat." 

Easy to Use 
Each eye training exercise is accompa

nied by tips on how to use it to best 
advantage. Once an exercise is selected, 
the user can control both the display 
speed and the width of the text window 
by using either the keyboard or the Atari 
joystick-a nice touch. An option menu 
and display of the current reading rate 
are always just a keystroke away . 

SpeedRead+ starts by loading the text 
of your choice into memory, auto
matically using all the space available. It 
counts every word of text, so that you 
can start a session by specifying the very 
spot at which you left off last time. 

The words flash by on the screen, 
centered under a stationary dot that gives 
the eyes an anchor in the vast expanse of 
the video display. The idea is to hold 
your eyes steady, letting you absorb the 
information without backtracking or 
"tuning out." As you feel more confident 
with the exercise, you can select wider 
phrase modes (up to 38 characters, nearly 
the width of the Atari display) to broaden 
peripheral vision, or you can increase the 
display speed-or both. 

Several Ways to Train the Eyes 
From here the alternatives vary , 

depending on individual needs. A "double 
phrase mode" displays text alternately on 
the left and right sides of the screen. This 
exercise trains your eyes to jump to a 
predetermined point and instantly recog-

Bud Stolker, Landmark Towers , Apt. 1506, 
101 S. Whiting St., Alexandria, VA 22304. 

nize the phrases. It also develops the 
timing and rhythm necessary to read 
printed text efficiently. 

A "random phrase mode" displays text 
anywhere on the screen, although the user 
can select the approximate distance from 
the central stationary dot. The purpose 

SOFTW ARE PROFILE 
Name: SpeedRead+ 

Type: Self-improvement program 

System: 16K Atari 400 or 800, 
16K Apple II 

Format: Disk 

Language: Machine 

Summary: Useful tool for developing 
good reading habits and 
increasing comprehension 

Price: $59.95 

Manufacturer: 
Optimized Systems Software, Inc. 
10379 Lansdale Ave. 
Cupertino, CA 95014 

of this mode is to expand peripheral vi
sion, an essential element in speed read
ing. I found that it took some practice to 
keep my eyes glued to the dot and still 
comprehend the text flashing on the screen. 

The "column phrase mode" most close
ly approximates the kind of reading we 
all do once we tear ourselves away from 
the computer. This exercise trains the 
eyes to travel from top to bottom of a 
column of text, stopping only once per 
line and focusing at the center of each 
line. 

The program displays each column for 
a predetermined number of seconds, then 
replaces it with more text. By pulling 
forward or backward on the joystick, I 
was able to synchronize the speed so that 
the text changed just as my eyes hit the 
bottom line of the column . 

Method Used In World War II 
SpeedRead+ is an updated version of 

the old tachistoscope, a mechanical de
vice that presents visual material for brief 
periods of time. During World War II, 
naval aircraft spotters were trained to 
differentiate friend from foe based on 
images flashed by tachistoscopes equip
ped with mechanical shutters. The tech
nique was highly successful. But when 
they used the machine for character and 
word recognition , researchers found that 
average reading rate gains were unim
pressive (though some people achieved 
spectacular gains). To this day the ef
fectiveness of the tachistoscope is an item 

165 

Bud Stolker 

of controversy. Because SpeedRead+ is 
essentially a computerized tachistoscope , 
it must be evaluated with caution. 

Shortcomings 
The program makes no attempt to 

break the text into meaningful phrases; it 
simply calculates how many words it can 
display at a time and considers that a 
phrase. This hinders its ability to boost 
true phrase recognition and overall com
prehension. 

While it would have been possible to 
mark appropriate phrases in the text (by 
setting the high-order bit of the first char
acter as a flag, for example), this would 
have entailed a great deal of work, would 
have raised the cost of the software con
siderably , and would not have solved the 
problem of marking user-supplied text. 

There are other problems, too. For one 
thing, the three texts are supplied entirely 
in upper case. When was the last time 
you read a book printed in all capital 
letters? Author Zeissman claims that it is 
easier to recognize words when they are 
capitalized. I was taught just the opposite 
in college design classes. He may be right 
in the case of the Atari, however. Its 
lower-case character set is so-well , so 
whimsical-that it could interfere with 
rapid comprehension. 

FILEMAME: OUTCASTS PART 5 
READING SPEED CWP~I): 55 
FLASH RATE: 1 
CURRENT HOR!) NUMBER: 243 

~NTINUE READING 

rnESTART THE PROGRAH 

G!HIT 

Intermediate SpeedRead+ menu. 

Why Bret Harte? 
The choice of texts puzzles me as well. 

While Bret Harte and Washington Irving 
are colorful authors, they hardly typify 
the standard fare of today's readers. Their 
styles and vocabularies are somewhat 
dated, and they appeal, I suspect, to a 
limited audience. I would have preferred 
to see the SpeedRead+ manual included 
on disk so that I could have absorbed it 
for practice. 

Once you have read Harte and Irving a 
few times, of course, you know every 
twist in the plots, and I found a tendency 
to let my mind wander when I should 
have been concentrating. The author has 
thoughtfully provided an explanation of 



Speedread + 

how to create new text files using any 
A tari-compatible text editor (or the 
Assembler cartridge). A good way to ac
quire lots of text is to pull it in over the 
phone lines from a remote system like the 
Source or Compuserve. 

Classroom Use Encouraged 
Along with SpeedRead+ and the text 

files , OSS includes the framework for an 
examination program that lets teachers 
prepare computerized multiple choice 
tests. The exam system, which includes 
automatic score keeping , is designed to 
check students' comprehension levels. 
Each exam may have up to 255 questions. 

The sample test is sketchy indeed, and 
I couldn't help wishing it had been based 
on "Outcasts of Poker Flat," a relatively 
unknown work to many students (and to 
me). It is probably asking too much of a 
teacher to make up a computerized exam 
for each text covered in class, bUl a school 
system with several Ataris might use the 
comprehension exams to advantage . 

I suspect SpeedRead+ will find its way 
into more homes than classrooms, since 
it is best used on a regular basis in a quiet 
place, rather than for a week or two at a 
time at school. 

I found SpeedRead+ a practical and 
useful tool. The morning paper has always 
been my nemesis; a careful reading takes 
as much as an hour a day. By using Speed
Read+ as an exerciser, I have raised my 

Eastern Front 

FAST 

t 
PA USE/ CONTlNUE 
(Red Button) -----t.~ 0 

WIDE ...... -- 0 --.~ NARROW 

~ 
SLOW 

Keyboard commands can be initiated from Atari joystick controller. 

comprehension level (though without, 
alas, cutting my reading time) . The im
provement may be due to the constant 
reminders in the manual to concentrate 
while reading , rather than to any improve
ment in eye movement or phrase recog
nition. At any rate (pun intended), I am 
enjoying my reading more now, and I am 
convinced that SpeedRead+ has contri
buted to my pleasure. 

Good Manual and User Support 
Optimized Systems Software provides 

an excellent 25-page manual that explains 
the theory behind each exercise, outlines 
sample exercise sessions, and gives simple 
start-up instructions for first-timers too 
impatient to read the whole manual. The 
two disks come with a strongly worded 

licensing agreement. 
OSS has an excellent reputation for 

support of its Atari operating system and 
Basic upgrades, and can be expected to 
stand behind this product. They do 
promise telephone support, though I was 
unable to find any significant bugs. 

There is a hint also of future updates at 
reduced rates (or no charge) to licensed 
users. OSS released the Apple disk version 
of SpeedRead+ in May , and they hope to 
have disk versions available soon for the 
TRS-80 and IBM PC . 

This program is a welcome reminder 
that home computers can be much more 
than game machines. I would like to see 
more personal development tools of this 
caliber. SpeedRead+ has much to recom
mend it, and I do so without hesitation . 0 

The Atari Goes to War 

Why would a multimillionaire ex-movie 
star seek a job as President of the United 
States with a salary of a mere $200,000 a 
year, or the head of a major corporation 
join the Cabinet with a salary even lower? 
The answer is that of all the success drives 
that captivate the human imagination, the 
strongest is the lust for power. Power is 
far headier than sex, wealth, or fame , and 
may make the others easier to obtain. 

No exercise of power can compare with 
the job of a commanding general in time 
of war, marshaling millions of soldiers 
and the industrial resources of many nations 
in an a l1-out dnve tor supremacy on a 
battlefield that covers a continent. One 

of the largest such campaigns in human 
history was Operation Barbarossa, the 
German invasion of Russia that began in 
the summer of J 941. During the course of 
this four year campaign , nearly 20 mil1ion 
human lives were lost. Easte rn Front, one 
of the best microcomputer war games 
ever produced , al10ws the player to take 
on the role of the commander of the 
German army , and try to do better than 
the German forces actual1y did. 

In the past, among war games, board 
games have had a major advantage over 
computer games. War gamers like to oper
ate on a theatre level , with an overview 
of dozens or even hundreds of units scat-

166 

tered over a wide area. Until now the 
limitations of computer displays have made 
it difficult to get a satisfying situation 
map. 

Special Features 
In Eastern Front , Chris Crawford has 

produced the first really satisfactory solu~ 
tion to the display problem by using the 
fast fine-scrol1ing ability of the Atari com
pUler to produce a magnificent map of 
Eastern Russia that occupies ten display 
screens. 

Nearly every aspect of the game is a 
technical masterpiece. Eighteen colors are 



Figure 1. The opening display of Eastern Front shows the 
Baltic Sea, with two Finnish Infantry Units (German Allies) in 
Finland and three Russian infantry units. This black and 
white picture does not distinguish between the units, but the 
Russians are red and the Axis are white. The city in the top 
center of the screen, directly below a Russian unit, is Lenin
grad. 

Figure 2. German and Russian units face each other in Central 
Poland. This display shows mountains, rivers, forests, marshes, 
and the city of Kiev, along with Russian and German Infantry 
and Armor units. The cursor is over a Russian Unit. Pressing 
the button would cause the unit to disappear, identigying the 
terrain underneath, and also display information on the unit; 
in this case, the 4th Russian Tank Army, a weak unit with a 
muster level of 79 and a current strength of 77. 

used on the screen at a time. Player missile 
graphics are used to move a cursor over 
the map to give instructions without dis
turbing the map underneath. Several dif
ferent redefined character sets permit the 
natural mixing of a colorful and detailed 
terrain with a text display. Display list 
interrupts are used to set the weather 
conditions, with ice gradually taking over 
the rivers in winter and receding in the 
spring, and making the player deal with 
mud and snow at different times in different 
areas. 

The program uses intricate artificial 
intelligence routines and multiprocessing 
to control the Russians and their allies. 
This means that the longer the German 
player takes to form his strategy, the better 
the Russian strategy will be. The Russian 
side can analyze its position, recognize 
danger and opportunity, avoid traffic jams, 
recognize the effects of terrain, and plan 
accordingly. 

The human engineering of the game is 
also a major accomplishment, with all 
information entered by the player using 
only the joystick, trigger button, start 
button, and space bar. This eliminates 
the drudgery of most war gaming. The 
multiprocessing even allows the German 
player to move the cursor around and 
view different sections of the map while 
the battles are taking place. Of course, 
since all battles and movement a re real 
time. it is impossible to see everything 
that is happening. Excellent sound effects 
do indicate the extent of the overall 

action. 
The computer adds a great deal to 

wargaming, particularly by providing a 
dynamic environment in place of the static 
nature of board games. Each turn , repre
senting one week of actual time, is broken 
dovln into 32 time periods in which units 
move and fight. Thus a player might pro
gram a particular unit to attack an adjacent 
enemy unit and move toward a city. During 
the course of a single turn, that unit might 
destroy the first enemy unit, move forward 
to engage a unit behind it, force the second 
enemy to retreat, turn toward the city, 
and engage in battle a third enemy unit 
that has come up from the reserves during 
the turn. Terrain affects both movement 
and combat, with rivers , forests , marshes, 
mountians, and cities to complicate 
strategy . 

Playing the Game 
At the beginning of the game the Ger

man commander has the advantages of 
concentrated force, short supply lines and 
superior mobility . However, the Russians 
have overwhelming numbers, vast territory, 
and the Russian winter on their side. The 
object of the game for the German com
mander is to push as large a force as 
possible as far East as possible and maintain 
them. Extra points are awarded for cap
turing key Russian cities . The Russians 
are trying to move their forces West , which 
also affects the German player's score. 
The score, which is calculated from week 
to week , can range from 0 to 255 points. 

167 

It is fairly easy to get a high score by early 
fall, but nearly impossible to hold that 
advantage over the winter. 

During the war, large concentrations 
of German troops were bogged down in 
the Pripet marshes between Minsk and 
Kiev, allowing the Russians to concentrate 
their forces. This is a recipe for disaster 
in the game, as it was also a German 
disaster in real life. My own best strategies 
have involved splitting up my forces to 
prevent the Russians from concentrating 
theirs, and avoiding combat with superior 
mobility unless I had overwhelming super
iority . Another possibility might be to crash 
through the Pripet marshes and break 
into open territory beyond, splitting forces 
at that time. Uncertain winter supply lines 
require that the German player draw back 
during that season. 

Regardless of my strategy, my success 
rate in my first ten games was abysmal. 
The game ends automatically after the 
week of March 29 , 1942, and in nine of 
my games my score was 0 on that date. In 
the one game where I held a score to the 
end, I seized the city of Leningrad (worth 
10 points) and defended it to practically 
my last man. My total score was 10 
points. 

After many hours of play, I found only 
a few real weaknesses. Giving all those 
instructions with the joystick can give you 
a sore palm and wrist. The lack of a c1ear
cut set of victory conditions is frustrating , 
as is the overwhelming advantage of the 
Russians. I would also like an option to 



Eastern Front 

be able to see the whole theatre at once , 
however limited the detail might be at 
that time . The designer mentions in the 
instructions that test players became frus
trated with random logistics problems and 
traffic jams, but I tend to think these are 
realistically handled. 
Recommendation 

I have no hesitation in calling this one 
of the very best war games available for a 
personal computer. It is also a virtuoso 
demonstration of the awesome built-in 
capabilities of the Atari computer. This 
game literally could not be done on any 
other computer in as satisfactory an exe
cution. By all means, if you are at all 
interested in strategy games, buy it. 

If you are a serious war gamer, buy it 
even if you have to buy a computer in 
order to run it. Eastern Front comes on 
disk, requiring 32K of RAM, for $29.95. 
It is also available on cassette , requiring 
16K of RAM , for $26.95. The cassette 
version can be downloaded from Micro
Net at a price of $23.25. 0 

The State of the Art 

Figure J. The instruction book contains a map of the whole area covered by the game. 
Gnly one tenth of this area is displayed on the screen at one time. 

Missile Command and Asteroids 

The Atari personal computer has been 
around for a couple of years now . and 
some good software is finally being written 
for it. For some time. th e only software 
availab le was (usually) ei the r written in 
Basic and/ or transla ted from some other 
machine, usually the Apple. None of these 
programs really took advantage o f the 
capabilities of the Atari. 

Now there are quite a few programs 
avai lable which use the features o f th e 
Atari . not just the subse t of them required 
to t ra nslat e a program frllm ano th e r 
mac hine. They use high speed. quality 
g raphics and so und . and were writ te n 
spec ifica lly for th e Atari . 

This review wi ll cove r two of what we 
conside r "State of the Art" game softwa re 
for the Atari. 

T hey are fro m Atari Inc .. and are c lones 

of th e Atari arcade games Asteroids and 
Missile Command. Not surprising ly. th ey 
bear th e same names . 

Both are on ROM cartridges which plug 
into th e left hand slo t. Both cost 539.95. 
and require 16K RAM (no disk needed) 
and joystick(s). 

Missile Command 
This is a popular arcade ga me in which 

an evil fore ign power laun ches a missile 
a ttack against the a rea you de fend . You 
command anti-ballistic missiles. which you 
shoot to inte rce pt th e inco ming missiles. 
sate llites. planes and smart bombs. 

In th e arcade ve rsion . a "trac kball" is 
used to move the cursor fo r a iming. It 
a llows very high speed move ment. and 
very sensitive positioning. (For example. 
hitting a "smart missile" exac tly on its 

168 

Missile Command. 

position is required to destroy it ; otherwise 
the missile dodges ). Since no "t rack batr' 
exists for the personal computer. a joystick 
is used . 

Sound effects include an "air raid siren:' 
various explosio ns . and so forth. They 
are quite familiar to anyone who has played 



the arcade game. and make good use of 
the Atari's capabilities. 

Visual effects are also rather well done. 
There are no longe r three missile bases 
controlled by three buttons. as there are 
in th e arcade version. Instead. there is 
o ne. with "underground reloading" which 
e nables it to be destroyed. yet pop up 
with new missiles a bit later. There are 
three missile bases ill one. all controlled 
by the joystick button. 

The enemy starts with single missiles. 
moving slowly. then escalates to MIR V's 
(missiles which break into multiple missiles). 
satellites and planes (both of which drop 
missiles). and finally smart bombs which 
dodge explosions on the way down. Every
thing begins to move faster. the bombs 
get more dense , and so forth. until you 
are finally overwhelmed. As in the arcade 
version <1 bonus city is awarded for every 
10,000 points. 

There are several variations of missile 
command. An attack consisting solely of 
smart bombs can be ordered up, if desired. 
to allow practice with them (a very useful 
option). There is also a two-player version. 
and an option to "freeze" the game if you 
want to get another beer. 

Rating 
I rated this game the better of the two. 

lt is exce llently done with one exception. 
and that's th e joystick handler. I found it 
very difficult to position the cursor pre
c isely . 

The problem is twofold . First, the cursor 
moves up/dow n/ right / left at the same 
speed, but moves diagonally as a doubl e 
incre ment of up-right, down-left, etc. This 
makes the diagonal move functionally faster 
than the others, which makes linear motion 
darn near impossible . I found myself firing 
multiple missiles near the same point. and 
consta ntly missing. The fine control of 
the arcade version was missing. 

I'm not sure how this could be changed. 
Perhaps the diagonals could be slowed 
down a bit and some sort of fine position 
enabled, with coarse movement occurring 
a bit late r o n th e same joystick press. 

I found the ho me game just as challeng
ing as the arcade ve rsi o n; my top score 
seems to be limited by no t being able to 
position the c ursor with enough accuracy. 
(Part icu larly important with smart 
bombs.) 

Despite my rese rvations, this is a good 
ga me . It ·s not a replacement for Star 
Raiders, but it is well done and fun to play. 
Nor does it ge t boring after a few turns. I 
recommend it. 

Asteroids 
As an addict o f the arcade version of 

Asteroids, I really looked forward to thi~ 
game. I had begun to design an Asteroids 
game for th e Atari (laid out the player 
shapes and so forth . and had the basic 
algorithms worked out 1. but when I heard 
Atari was releasing a version. I gave up . 

I'm not sure I should have. 
Asteroids. as you probably know. is a 

game which places you in a ship in an 
asteroid fi e ld . You shoot at the asteroids. 
which break into smaller asteroids, and 
try to avoid collisions. Occasionally an 
enemy ship e nt e rs the field and fires at 
you. 

This version of Asteroids is apparently 
written in graphics mode 7 (Basic) or Antic 
mode 13. This means it has a "chunky" 
feeling to its graphics . If you have ever 
played TRS-80 as teroids you know what 
I'm talking about. 

This is particularly surprising when mode 
14 is available (graphics 7 1/2) with much 
better four-color resolution. Indeed. I had 
planned to use this mode for my version 
and include three different colors of 

Asteroids. 

asteroids. Even graphics 8 (Antic 15) would 
be a possibility if multicolor as teroids were 
not required . 

Anyway. I find th e low resolution look 
of the asteroids quite annoying. Also 
irritating is the very large distance between 
"turn points" on the ship; in other words , 
a minimum turn is a large distance. 

The missiles are iimited to four and 
probably no t done with P-M gra phics . as 
there is a n opt io n fo r up to four players at 
once. Ah. well. 

The joyst ick is used as follows: right 
and left a re rota te. forward is thrust. back 
is hyper/ flip. your 180 degrees/shields. 
The shields are not " limed" as in Deluxe 
Asteroids. by th e way. making for a rather 
predictable game. 

169 

Rating 
Alas. this one is not as good as Missile 

Command. I liked it. but not enough. and 

it could have been done better. Possibly 
the video game version and this version 
were made as similar as possible to cut 
development costs. I can understand the 
problems, having worked this out myself 
(for example. how to rotate a rocket in 
only 8 bits; it looks pretty weird in some 
angles), but still. much better resolution 
could have been achieved. 

The multi-player option is a lot of fun , 
and my wife and I spend much tim e 
shooting at each other. 

One thing you will notice, again. on 
most Atari games is that they are not 
CPU bound. On a version written for 
another machine , there is a very noticeable 
slowing of the game when there are many 
asteroids present. This is the result of all 
the table updating , checking for collisions. 
and so forth . The A tari version runs at a 
constant speed, and is fast. 

Summary: I play Missile Command much 
more than Asteroids. 

Conclusion 
All in all, these were fun games to play. 

Asteroids will entertain those of you not 
spoiled by the arcade version, which I 
admittedly am. I t is a good sign that these 
games exist, as it means that more good 
software for the Atari is becoming avail
able. D 



Star Raiders and the Atari SOUND Command 

Star Raiders 
That is the excuse you give the 

Internal Revenue Service , your ac
countant, and your husband . Truth
fully, the reason you bought your 
Atari was to play Star Raiders (TM), 
the most addictive computer game 
yet devaloped. 

The game comes as a ROM 
cartridge with a lavishly illustrated 
twelve page instruction manual at a 
cost of $59.95. In addition , you need 
to purchase a joystick, costing 
$19.95 for two . The joysticks are not 
sturdy, and get heavy use, so you 
can use the spare. 

Study of the instruction manual 
takes about 45 minutes and is 
essential to adequately understand 
the game. However, if you have 
someone available who already 
knows Star Raiders, it can be learned 
in 5 minutes by demonstration, if the 
demonstrator will then give up the 
machine. That brings you to the 
point of understanding. To truly 
master the game 'might take years. 

Your mission is to defend your 
star bases from the Zylon fighters. 
You do this by locating the enemy on 
the Galactic Chart, turning on your 
defense shields, hyperwarping 
through space to the enemies' sec
tor, and engaging them in combat 
until the best man, woman, or Zylon 
wins . 

You are rated upon your perfor
mance based upon the level of play 
you have chosen, the number of 
enemy destroyed, the length of time 
it took you, the number of your 
star bases that have been destroyed, 
and the amount of energy you used. 
Final ratings range from Garbage 
Scow Captain, class five to Star 
Commander, class one, with 60 
different possible ratings . There are 
four levels of play , from novice to 
commander. 

The graphics and the sound 
effects are bri II iant. Stars wh iz past 
you, your engines whoosh and your 
torpedoes explode, your klaxon 
sounds a red alert , and the enemy 
fighters speed past you, coming 
from all angles and all si des, fir ing 
their exploding torpedoes. Enemy 
figt1ters explode in clouds of blue 
particles, while the sky flashes red 
whenever you sustain a hit. 

The instrumentat ion of your ship 
is also impressive. In addition to 
your Galactic Chart, which is up
dated by sub-space radio, your color 

coded instruments tell you the range 
to the enemy being tracked on the x, 
y, and z axis, your velocity , sh ield 
status, energy level , the condition of 
your photon torpedoes, engines, 
computer, long range scan, and your 
sub space radio. Your target aquisi
tion computer helps you to steer 
while hyperwarping through space , 
as well as indicating the relative 
pOSition and range to enemy fight
ers. In addition, upon your request it 
will shift automatically from forward 
to aft views from your ship as enemy 
fighters pass by on attack runs. The 
joystick allows you to climb, dive, 
veer right and left, and to combine 
vertical and horizontal movement , 
while twenty more keys on the 
keyboard control speed and function 
selection . 

Star Raiders requi res a color 
monitor or television , as much of the 
information is color coded and does 
not show up in black and white . I 
cannot pin down any definite bugs, 
although it is often hard to orbit a 
star base, and I did have a system 
lockup once in the middle of a game 
that required me to turn the power off 
and on again and restart the game. 

This game goes beyond the 
quality of the games you see in video 
arcades. The sound effects, color, 
and action are just as good, the 
physical environment is a bit less 
impressive, but the real change is the 
strategy. Since an arcade game must 
produce $10 an hour in revenue, 
those games have to be active and 
short. Grand strategy is not possible. 
A home computer does not suffer 
from the same constraint, so the 
game can actually be better, and Star 
Raiders is better. The true video 
arcade addict can just ify the pur
chase of an Atari 400 in a few months 
of unspent quarters . 

If you have an Atari, buy this 
game! If you don 't have an Atari, sell 
your car (you'll never leave home 
again anyway), put your children up 
for adopt ion so they won't take over 
the computer, and buy one. Then 
play Star Raiders until the last 
stardate fades into the collapse of 
the universe. 
Atari Sound 

As a programming feature this 
month, I'd like to d iscuss the Atari 
SOUND command. The format for 
the sound command is as follows: 

SOUND (Voice) , (Pitch) , (Distor
tion) , (Volume) 

170 

You can have up to four voices, or 
notes, that can be played at the same 
time, numbered from ° to 3. Each 
voice is totally independent of the 
others . 

Pitch can range from ° to 255, 
with high C at 29 and low C at 243. 
Distortion (timbre) can take any even 
number from ° to 14. The value 10 
gives a pure tone, while other values 
are used for sound effects. Volume 

Photo 1 

can range from 1, which is hard to 
hear, to a loud 15. If you are using 
three or four voices, you should limit 
the total volume to 32 or less to' avoid 
distortion. To turn the sound off , use 
the command END or set the volume 
for that voice to 0. 

This program will demonstrate 
the range of sound available, display
ing the value on the screen so that 
you can note sound effects you 
would like to use. Really good sound 
effects will mix several voices . 
10 FORA = OT014STEP2 
20 FOR 6 = 0 TO 255 
30 SOUNDO,B,A,8 
40 PRINT"SOU NDO, ";6;", ";A;", 8" 
50 FORC = 1 TO 250 : NEXTC 
60 NEXT 6 
70 NEXT A 

I like SOUND 0,6, 0, 8 : SOUND 1, 
21,0,8 : SOUND 2,27,0,8 : SOUND 
3, 40, 0, 8 for an explosion, SOUND 
0, 17, 8, 8 for a Phaser, SOUND 0, 30, 
8, 14 for a gun shot, SOUND 0, 70, 2, 
8 for a truck motor, SOUND 0, 145, 2, 
(1 to 12 to 1) for an airplane motor, 
and SOUND 0,12,4,10 for a machine 
gun, but I am sure you will have your 
own choices. 



Basketball 

One of the first Atari games is still one 
of the best. In Atari Basketball, you use the 
joystock controller to move around the 
court, dribble, shoot, pass, block shots, 
and steallhe ball. The exceptional gra phics 
and animat ion of this game make it a 
favorite demonstrator at computer stores, 
so many of you have already seen it. 

How well does it play? The answer is 
that it is relatively easy to beat, but not easy 
to trounce. The computer is set up to play 
better when it is behind than it does when it 
is ahe:ld, so it offers a good challenge until 

you get really good. However, once you 
can consistently trounce the computer, 
you've only begun the real fun! 

The best feature of Basketball is that it 
allows one to four people to play at the 
same time. There are five options: 

I. One player against the computer 
2. Two players against the computer 
3. Two players against one player and 

the computer 
4. Two players against two players 

(no computer player) 

Warlock's Revenge and Kayos 

Dungeons and Asteroids 

Warlock's Revenge 
Warlock s Revenge is an Atari transla

tion of an Apple game, Oldorfs Revenge. 
It is another graphics adventure and 
seems well done. I didn't encounter any 
bugs in my playing of it, and I had a good 
time, although I have to admit I'm begin
ning to burn out on generic adventure 
games. 

After a certain point, you see, I get 
tired of trying to figure out which imple
ment I must use to get past a certain 
point. The game becomes boring, and 
settles into mere combination testing. 
While Warlock s Revenge suffers from 
this malady to some extent, it isn 't nearly 
as bad as some I have seen. It wins points 
for this; there's nothing worse than an 
unplayable, un-figure-outable adventure. 

In this game, you are leading a party 
into a dungeon. You can be any of several 
different types of character (cleric, magi-

SOFTWARE PROFILE 
Name: Warlock's Revenge 

Type: Adventure with Hi-Res screens 

System: Atari 400/ 800 

Format: Cassette or disk 

Language: Basic and machine 

Summary: A good adventure game 

Price: $34.95 

Manufacturer: 
Synergistic Software 
5221 120th Ave. SE 
Bellevue, W A 98006 

cian, and so on), each of which has special 
skills. These skills are needed to get past 
a certain point in the dungeon and to 
continue the adventure. Be prepared for 
a great deal of testing of combinations, or 
perhaps a short session of dumping the 
game database to the printer. Hint: the 
game is all hardcoded, with all pictures, 
etc., coded into the program. 

The pictures are all done in graphics 8, 
the highest resolution mode the Atari has. 
They seem to have had a good amount of 
work put into them, and the only detrac
tion is that in graphics 8 the Atari doesn.'t 
put out a solid line , it tends to candy
stripe and change colors. This is called 
artifacting and can be of use to a pro
grammer who understands it; the folks 
who did Warlock didn't, I'm afraid, so 
you would do well to turn off the color on 
your TV. 

The game itself is a fairly standard 
adventure , with pictures at each stop and 
two-word commands. It runs fast enough 
and is fun to play. I recommend it and 
had a good time playing it, even if (I must 
confess) I have yet to completely finish it. 
This one will take you more than a couple 
hours to do. 

In summary , while it may be "just 
another adventure," the game is a lot of 
fun and good to play. Don't let the fact 
that there is good competition for it worry 
you; just because there are several good 
games like it available, doesn't mean this 
one isn't worth getting. There aren't yet 
enough adventures on the market to 
swamp it completely, so if you're into 
such things, or if you would just like to 
give one a try , this is a good choice. 

171 

5. One player against one player (no 
computer player). 

After all, if you let your best friend 
play Star Raiders, it may be weeks before 
you get a chance at the computer again! 
With Basketball, you can both play at the 
same time. Teams of two are even more 
fun. This is one of the best computer games 
available for more than one player. 

Basketball requires one joystick 
controller for each person playing and is 
available for $39.95. 

Every reviewer has to fight a tendency 
to be sarcastic when he discovers a game 
that just doesn't make it. The urge to 
make cutting comments can be over
powering. In this case I was going to 
award the Cray-l Speed In Arcade Games 
Trophy for this game. But that isn't how I 
view the purpose of a review. I prefer to 
try to make constructive comments on 
games that aren't quite right in the hope 
that the author(s) will consider my opin
ions and suggestions and , perhaps, 
improve the game. 

Kayos 
So we come to Kayos. You've guessed 

it-it doesn't make it. It is very well done 
technically. It runs faster than most, and 
obviously a great deal of work went into 
it. I have no complaint with it technically. 
However, its human interface isn't very 
good . It is simply too fast for people. 

SOFTW ARE PROFILE 

Name: Kayos 

Type: Arcade 

System: Atari 400/ 800 

Format: Cassette or disk 

Language: Machine 

Summary: Good if you have 
superhuman reflexes 

Price: $34.95 

Manufacturer: 
Computer Magic Ltd. 
P.O . Box 2634 
Huntington Station, NY 11746 



Kayos 

Robots with emitter-coupled-logic reflex
es might enjoy it, however. 

When you boot it up, you see a field of 
asteroids crossing space from left to 
right-a complex animation task for sure ; 
someone worked very hard on it. 

At blinding speed a series of blurry 
objects comes out of the top of the screen 
and dives upon your emplacement; I 
could never identify what they were, they 
went so fast. My average playing time 
was around a minute or two , and I just 
couldn't see spending too much time on 
the game. 

Gamma Hockey 

Getting Iced 

SOFTW ARE PROFILE 

Name: Hockey 

Type: Two player sports 
action game 

System: Atari 400/ 800 16K 

Format: Disk 

Language: Machine 

Summary: Achieves its goal 

Price: $29.95 

Manufacturer: 

Gamma Software 
P.O. Box 25625 
Los Angeles, CA 90025 

Hockey, by Gamma Software, is almost 
fast , never furious, and generally fun. 
That's what we- Witold , Norman, Roman 
and Jason-discovered one Stanley Cup 
weekend. 

We loaded the game (which, by the 
way, requires 16K), powered up, and the 
screen beckoned with a menu of 
options-nine in all. (Game durations are 
three, five or eight minutes and two, three 
or four people can funnel their hostile 
energy into knocking a puck across the 
ice.) 

Norman Schreiber and Witold Urbanowitz, 
135 Eastern Parkway, Brooklyn, NY 11238. 

-- d ... 0 "P 

<? 

~ 
d"O-

<:} 
0 

A 

AAA.t...t.. 

Kayos. 

~ 

~ 
-<! 

d 

Galaxians, and arcade games like it , 
are a challenge because they are not too 
fast. Much fiendish design effort went 
into making them just fast enough to be 
an agonizing challenge and not simply 
impossible. Kayos lacks this human engi
neering quality. It is a game sadly in need 
of a few strategically placed delay loops. 

Look for a reissue soon , I hope. This 
could be a fun game if it were slowed to a 
playable speed. 0 

Norman Schreiber and Witold Urbanowitz 

Each game begins with the last tones of 
the "Star Spangled Banner," followed 
immediately by the roar of the crowd. It's 
four on four as one goalie and three free
skating forwards go against each other. 

Using joysticks the human opponents 
manage the teams. With the three-player 
option two (one controlling the goalie) 
g<:lng up on the third. Four-player play 
brings both goalies under joystick control. 
A scoreboard and clock sit at the top of 
the screen. 

We first selected a two-player, three
minute game. The puck was dropped and 
the two center forwards, under joystick 
control, went into action . Each goalie's 
movement in front of the net correspond
ed with up and down movements of the 
joystick. The other four forwards moved 
as "smart" players. 

The action was intense. The hockey 
puck slid and caromed across the hori
zontal ice , and the players scrambled to 
dominate the puck. Joystick control 
remained with the original two until the 
puck struck another player'S stick. And 
voila, the joystick managed that player. 
When the puck was free, the joysticks 
controlled the original center forwards. 
This created opportunities for some fancy 
passing, a neat way to outsmart the 
opponent or even oneself. 

Inevitably, the action brought the play
ers, in one Gamma glut, directly in front 
of a net. A shot was taken. The goalie 
edged sidewards and successfully 
blocked. Another head-on shot brought 

172 

another block. The next try started from 
the corner and homed in at a sharp angle. 
It whizzed past the goalie and the crowd 
roared. Players reassembled at center-ice 
for a new face-off. And so on . 

At game's end , the score was tied , so 
we were thrown into sudden death over-

time and given an additional three min
utes. Unfortunately neither glorious team 
could score. There was no additional 
overtime, so we settled for a tie and 
celebrated with a rematch. 

Gamma Hockey arouses competition. 
The four of us scarcely kept our tails 
upon our seats as we played the game at 
various angles of leanforwardness. The 
value of the three- and four-player options 
was that we adults could also get into the 
game, rather than just hover. Actually , 
the four-hand participation did make the 
game that much more exciting. It is 
unfortunate, however, that no solitaire 



option exists. One would like to get one's 
chops together in the quiet of one's own 
fantasies. 

The two teams are blue and green; 
except on a black-and-white monitor in 
which case they are grey and grey. You 
can tell who is on first by the direction in 
which the hockey stick points. The 
thoughtful designer(s) made joystick
controlled players flash when the puck 
was free. However, the "smart" players 
tend to flicker as they move. Consequent
ly , there was a certain amount of con
fusion at certain points. 

Perhaps the most intriguing, at least to 
reviewers, aspect of Gamma Hockey is 
the slow rate at which the players move 
speedily. Said nine-year-old Roman , 
"Can't you make them go faster?" 

Said 35-year-old Witold , "It might have 
something to do with the horizontal 
movement of the game in what is basically 

a vertically-structured medium." 
Norman, -41-years-old, observed that 

there was no way [or players on one team 
to maim, destroy or righteously punish 
players on the other team. (This happens 
to be his favorite feature in the Activision 
VCS cartridge.) And 14-year-old Jason 
kept on scoring goals. 

Something should be said for and 
against the sound. It keeps the game going 
and provides some pleasant texture for 
the ongoing battle. However, after playing 
12 games, one gets to feel a bit unpatriotic 
at wishing the familiar notes of the 
national anthem would speed up radically 
(pardon the expression). Perhaps if there 
were a Kate Smith voice chip things 
would be different. Perhaps not. 

The crowd noise , though useful, sounds 
suspiciously like our television sets at four 
in the morning when there's nothing to 
pick up but noise, and made us wish for a 

Dolby override. 
We also should note that during one of 

our many games, four players suddenly 
disappeared. They could not be found. 
They certainly weren't in the penalty box. 
They just as mysteriously reappeared in a 
few seconds. We tried to render the 
hockey players invisible again; and failed. 
We haven't the foggiest notion why this 
happened. Not even Witold has a theory. 
Final note : The documentation is clear, 
concise, easy-to-read, and offers some 
useful tips. 

Postscript: We had to go through aU 
the options. After aU, we decided, we 
really had to explore the game. We owed 
that much to our readers. We would have 
ended the tests sooner, but regardless of 
which time option we played, the final 
buzzer always went off too soon. 0 

The Wizard, the Princess, and the Atari 

A copy of The Wizard and the Princess 
[or the Atari recently appeared in my 
mailbox. This happened around Christmas 
time, and the family was visiting. So I 
decided to show them the game, and soon 
the whole Small clan became involved in 
playing and trying to beat it. 

It took us roughly four solid days to do 
so. 

The Wizard and the Princess comes 
attractively packaged with the disk ade
quately protected against any but the worst 
of Post Office Bend-a-Disk equipment. 
The directions are on the printed folder 
surrounding the disk and are clear enough. 
So, you boot the disk without a cartridge, 
for the game is written entirely in 6502 
machine code. 

This is its first plus mark. One of the 

SOF TW ARE PROF ILE 
Name: The Wizard and the Princess 

Type: Adventure game with pictures 

System: Atari 800 version 
Requires 40K RAM memory 

Format: Disk , double sided 

Summary: Very good adventure game 
with graphics 

Price: 529.95 

Manufacturer: 
On-Line Systems 
36575 Mudge Rd. 
Coarsegold , CA 93614 

173 

least endearing features of some programs 
is Atari Basic, one of the slowest executing 
languages ever developed. The Wizard 
and the Princess runs very quickly and 
with minimal delay. 

Next, you boot the system, and wait for 
the driver routine to load and for the disk 
protection scheme to determine that you 
haven't copied the disk from someone 
else. Then, you are told to flip the disk 
and insert the reverse side. 

Backup 
The data tables, hi-res screens, and all 

are on the flip side of the disk. The flip 
side isn 't copy protected, and given the 
amount of time the disk head spends 
beating on it, it has a good chance of 
failing , so it should be backed up. 



The Wizard and the Princess 

The folks at On-Line have thought of 
this, and they provide a backup routine. 
If you boot up off of the back side , you 
are automatically taken to a backup 
routine , which will format a new disk and 
copy itself-very nicely done, very con
venient, and very thoughtful. 

The disk spends most of its time on the 
flip side, and is in almost constant use 
while the game is being played . This is 
the only slow feature of the game. Atari 
disks are 1120th as fast as Apple disks 
(serial vs. parallel) and it shows, even 
though attempts have obviously been made 
to minimize the problem. For example , 
the W&P disk is fast-formatted to allow 
faster disk access. 

Snakes Alive 
As we began the game, we wandered 

out of Selenia northwards in pursuit of 
the wizard, and immediately ran into a 
rattlesnake which wouldn't let us by. 

Being an old adventurer, I knew I needed 
something to get by him , but nothing I 
had on me worked , so I set off south in 
search of the proper object. Aha , a rock. 

I picked up the rock , and died , for the 
first of many times, after being bitten by 
the sco rpion hiding behind it. 

Many hours later the family figured out 
how to get by the rattlesnake ; it is one of 
the most difficult parts of the game. 
Fortunately, the authors had included a 
hint card, labeled "How To Get By The 
Rattlesnake," which helped considerably. 
(Naturally, we didn't read it until we were 
so frustrated we were ready to burn the 
disk .) 

With the aid of a good deal of mapping , 
we proceeded on our way , picking up 
everything imaginable. 

A hint to players of this game is to 
LOOK at everything you pick up ; some 
of the most subtle hints are there. We 
hate to give away any of them, but do be 
sure to LOOK at everything ; we wouldn 't 

have gotten stuck in a few places if we 
had done so. 

On the way north, we had to cross a 
bridge, fend off another snake, outsneak 
a gnome, figure out several magic words, 
learn how to operate a rowboat (and how 
to plug the hole in it), find an island , and 
do many other wonderful things. 

In terms of difficulty I would rate The 
Wizard and the Princess right up there 
with some of Scott Adams's efforts, and 
the high-res screens add a new dimension 
that is a great deal of fun (even when 
everything is green and blue). As I said , it 
took our family four days, and that's only 
because there were many people adding 
new ideas all the time; one person might 
need weeks to finish this adventure. 

Finally, after much mapmaking, meeting 
of old peasant women, buying peddlers' 
wares, and dying , we made it to the castle, 
confronted the wizard , and rescued the 
princess, bringing her safely back to 
Selenia. 

Chameleon Chips: CllA and GllA 
I was very surprised when the hi-res 

screens of The Wizard and The Princess 
turned out to consist of shades of four
hours-of-turbulence-in-a-DC-lO Green , 
Mental Hospital Blue , and you 've-just
crashed-the-Atari black. Those were the 
only colors, although some of them were 
shaded by interspersing dots with other 
colors. This was very disappointing. How 
could it be? 

This color business annoyed me a great 
deal. I have put 128 colors of all sorts of 
neat red, green, blue, and orange shades 
onscreen, making full use of the abilities 
of the Atari, and the authors appeared 
not even to have tried to take advantage 
of these same abilities. 

The reasons behind the displayed colors 
are rather complex and worth pursuing, 
for other games will suffer from the same 
malady : it is the effect of a new graphics 
chip on what is known as "artifacting." 

In graphics 8, a single dot by itself will 
appear to be either blue , red , or white , 
depending on where it is written and its 
proximity to other dots. (And here you 
thought graphics 8 was a single color mode, 
like the book said). 

This happens because of "artifacting," 
which I understand to be the Atari running 
the TV out of resolution and ending up 
with a color other than what is normally 
output. With careful use of graphics 8, 
one can get four colors in this hi-res 
mode. 

The authors of The Wizard and the 
Princess originally wrote it for the Apple , 
which has a 280 x 192 screen. So the 
tables for the hi-res drawings were scaled 
appropriately . The two highest-resolution 
modes of the Atari are graphics 7 plus, 
with [60 x 192, and graphics 8, with 320 x 
192. In graphics 7 plus, various colors can 
be plugged into the color registers; in 
graphics 8 the colors result from artifacting. 

The person who translated this program 
from the Apple to the Atari had the choice 
of scaling down all the tables to 160 x 192 
and using graphics 7 plus, or using graphics 
8 with artifacting and the table data un
changed. He chose the second approach , 
so the colors are the result of artifacting. 

Other manufacturers use this approach, 
as well. For example, Jawbreakers uses 
artifacting to color the playing field. The 
problem comes when artifacting is used 
with the GTIA chip, a new graphics chip 
recently released by Atari. The GTIA 
chip replaces the CTIA chip ; both are 
the essential color television driver circuits 
for the Atari. 

The GTIA has more graphics modes, 
and in my experience, gives a sharper 
display, than the CTIA. As of January 
[981, Atari has shipped all Atari 800s 
with the GTIA chip. 

There is just one drawback: the GTIA 
artifacts differently from the CTIA chip , 
and The Wizard and the Princess was 
written for the CTlA chip. Sandy and I 

174 

had a GTIA chip in our Atari , so instead 
of the colors the author used , we got the 
particularly grim shades of green and 
blue. 

I called On-Line and mentioned the 
problem. A fix was already in the works 
for GTIA machines. In the new version 
(which I haven't seen) a box is drawn 
on screen and the player is asked if it is 
green or orange. Depending on which 
chip is installed, it will be one of those 
colors. The program then generates the 
correct colors from the color tables based 
on that information. 

I mention all this about the GTIA chip 
because there may still be some of the 
older Wizard and the Princess disks being 
sold. If you have a new Atari, you will get 
a GTIA chip and the same terrible colors 
with an old version of the game. However, 
the people at On-Line are friendly and 
willing to swap disks if you have a GTIA 
chip , and don't want to see green. 

Atari is making the GTIA chip available 
to CTIA machine owners. The upgrade 
will be performed at Atari service centers, 
or you may choose to buy the chip outright 
to do the installation yourself. Atari owners 
choosing this option should be aware that 
removing the bottom cover may void all 
warranties. To obtain the address and 
phone number of your nearest Atari service 
center, you can call Atari at (800)538-
8547 (outside California) or (800)672-1430 
(in California) . - DS 



We are still waiting for our half of the 
King's land , though. 

Features 
The hi-res pictures are good, often with 

good detail on them; the ideas are original, 
and require some thinking , which is also 
good; and the implementation is generally 
good, even if it is bit disk-dependent. There 
is something to be said for the idea that 
text-only games force you to use your 
imagination more than the versions with 
pictures; we enjoy them both. 

There is a very nice "save game" feature 
which allows you to save the game at any 
point. You put in a blank disk, and type a 
letter, A-L, which labels the saved version. 
At any point thereafter, you can RESTORE 
GAME to any of the saved versions. 

The ability to save multiple versions on 
one disk is very nice (Scott Adams take 
note) and we used it a great deal. You 
can even initialize a new disk from inside 
the game-a very professional touch. 

One Big Complaint 
Now for the complaints. I have one 

major complaint about the game, and it is 
a very subtle annoyance. Like most minor 
irritants, however, it builds up over time 
until it gets to the point where you can't 
stand it anymore. 

Unlike a really gross deficiency in the 
game, such as an execution error or 
problem of that sort, this one takes a 
while to get on your nerves , but its effect 
is devastating . 

The game has a four-line window at the 
bottom of the screen, in which all displayed 
text is shown. Often the text won't fit into 
four lines, so the authors have the machine 
pause in the middle and wait for a Return 

keypress. After that keypress, the output 
continues. If you press any other key but 
Return, you get a beep. This is a particularly 
awful sound, which makes you suspect 
that the POKEY sound chip is being 
flogged . 

The beep is to let you know that what 
you are typing- typically the next com
mand-isn't being accepted by the ma-

chine. It lets you know that the machine 
wants a Return before you can go on. No 
other key will satisfy it. 

It is particularly irritating when the ouput 
from the machine finishes midway through 
the four-line text window. You assume it 
has said whatever it had to say ("The 
peasant woman warns you of a giant in 
the mountains"). So you would begin to 
enter a new line , and are rewarded with 
this awful beeee-eee-eeep. 

You must then patiently hit Return and 
start all over. 

"Frustrating" isn't the word. "Annoying" 
isn't, either. After the eightieth time it 
happened , I gave up and stomped off. My 
sister Diane, who is the epitome of patience 
and calmness, took over. She lasted until 

the hundredth beep at which point we 
had to restrain her from throwing the 
Atari into the TV. 

Our nerves grew jangled. Our parents 
left for a nice, long , soothing walk away 
from the noise. Sandy and I started snarling 
unprintable things at each other. The dog 
began to howl after each beep. 

Finally, I couldn't handle it anymore. 
So I went to my tool kit, almost picked up 
a hammer, but decided that there was a 
better way. I got a screwdriver, removed 
the bottom cover, and disconnected the 
speaker. 

Once the speaker was disconnected 
(Remove the five lower screws on the 
Atari, pull the speaker plug off the jack, 
and reassemble) , things improved. The 
whole mood of the family changed. Our 
parents returned. I gradually regained my 
sanity. Diane became calm, cool and 
collected once again. The dog even shut 
up. And we realized just how much the 
sound had annoyed us. 

After this change, we settled down and 
really got to work. We enjoyed it im
mensely. The family's computer experience 
rated from very high to none , and all 
enjoyed the game equally. (In fact, those 
with the least experience often supplied 
the ideas to get around obstacles.) And 
after four days, we finally won. 

We recommend it to Atari owners who 
want to try their hands at a little classic 
adventuring. We also recommend a phillips 
head screwdriver, to disconnect the speak
er, if the beep feature hasn't been 
changed. 

But all in all, it was a lot of fun to play, 
and well worth the price. Of the adventures 
available today, it is unique and very 
interesting-a real challenge. D 

Graphics Adventures on the Atari 

Adventure games, an established and 
popular ge nre among mic roco mputer 
enthusiasts, are generally divided into two 
categories: text adventures and graphics 
adve ntures. This dichotomy seems clear 
enough: a text adventure uses words alone, 
similar to books or radio plays, to create 
a picture in the mind. A graphic adventure. 
in contrast , draws these pictures for the 

.John Anderson is an associate editor for 
Creali,·e CUIIII'lI/illg magazine. 

eye. Each category claims its own adher
ents. 

Text adventure aficionados assert that 
only verbal descriptions can provide a 
satisfactorily rich leve l of story telling , as 
they leave most of the visualization to 
imagination. For these people, a good 
advent ure is like a good book -a reading 
experIence. 

Graphic adventure chauvinists point out 
correctly that tex t adventures employ a 
very static screen display. This is wasteful , 

175 

John Anderson 

they argue, in light of the capabilities of 
microcomputers. Graphics potential (and 
sound potential, for that matter) , should 
not be left unexploited by the adventure 
program. Each faction has a well-taken 
point. 

The fact is, however, that the division 
between text adventures and graphic 
adventures is not nearly as sharp as this, 
and some of the most interesting develop
ments in microgames are taking place 
between the two poles. All graphics 



Graphics Adventures 

adventures employ text to one degree or 
another-either to augment the graphic 
display or as the basis for graphic aug
mentation. Let's examine these approaches 
more closely. 

One method of const ructing graphic 
adventures might be called the illustrated 
texi adventure. This employs aU the nornlal 
conventions of a text adventure, including 
text command input , though the text may 
be less descriptive and more to the point. 
In addition to this , the player is provided 
with an illustration of his or her current 
position via a high resolution picture. These 
are stored on disk and are called out as 
necessary by the main , text-oriented pro
gram. 

The simile is close to the idea of a 
comic book. Each piece of the story has 
its own "frame" of picture and text. The 
point of view is that of the centra l charac
ter-the player sees the locations as if he 
were there. 

Another approach results in the mapped 
adventure , wherein the player or players 
appear as symbols on a map. This map 
depicts the details of the location, indicati[lg 
the type and placement of terrain. walls, 
objects, and enemies, among othe r things. 
Player movement is input through keyboard 
or joystick. As a character reaches the 
border of a screen map in any direction , 
either the screen begins to scroll in that 
direction , or a new location map is drawn. 
This creates a more omniscient perspective, 
with the player looking down on hi s 
character's movement from above. 

Typically this type of adventure does 
not allow text input, but limits the player 
to a certain number of possible contin
gencies in a menu or command format. 
The comparison between text adventures 
and mapped adventures is close to that of 
a fill-in -the-blank vs. a multiple-choice 
test. 

Text adventure enthusiasts feel the menu 
format is restrictive-one can only choose 
to move or stand still, flee or fight, take 
or drop, and so on. The mapped adventure 
began as an outgrowth of a certain fantasy 
role-playing game whose name we are 
not permitted to print. One obvious 
advantage of this format is the capability 
for multicharacter play. 

Unti l quite recently , the preference 
boiled down to a choice between the 
classic-sty le text adventure game and the 
fantasy role-playing adven ture. However, 
hybrids are now being developed that now 
provide both types of enjoyment. 

Truly hybrid adventure games of the 
future will offer the best aspects of all 
approaches to computer gaming. Textual 
description will provide detailed back
ground and help set the mood. Maps will 

be ava ilable to indicate position (except 
in areas still unexplored). Computer graph
ics and sound will be called on where 
appropriate to animate action sequences. 
Arcade-sty le cha llenges wi ll become part 
of the stories, calling for feats of cOOl'd i
nation before the plot advances. And it 
won 't be too long before the videodisc 
becomes a necessary peripheral for state
of-the-a rt adventuring. 

This is sti ll a ways off in the future. 
That is quite enough background , however. 
to examine the spectrum of graphic ad
venture software currently avai lable for 
the Atari. 

Mission: Asteroid 
In the arcade game Asteroids, you use 

hand-eye coord ination to zap as many 
asteroids as possible in the few minutes 
you are all otted. In Mission : Asteroid, 
your job is to destroy just one asteroid, 
and yo u have several hours in which to 
do it. The game a llows you to input two
word commands, and displays a high 
resolution picture for every location , with 
a four- line text window at the bottom of 
the screen. Pressing return without entering 
text will kiU the picture momentarily. giving 
yo u a chance to recall the last 24 lines of 
the text that have scrolled by. Tap return 
again and the picture will reappear. 

The plot line of Mission: Asteroid is 
pretty easy to follow; it was designed as 
an introduction to a series of "Hi-Res 
Adventures" of much greater complexity. 
That is not to say that the game is easy to 
solve- it's not. 

Briefly described , you are an astronaut, 
who is sent into deep space to destroy an 
asteroid headed toward earth. You have 
on ly a limited amount of time before the 

SOFTW ARE PROFILE 

Name: Mission: Asteroid (Hi-Res 
Adventure #0) 

Type: Space Adventure 

System: 40K Atari 400/800 

Format: Disk 

Language: Machine 

Summary: Introduction to a series 
of graphic adventures 

Price: $24.95 

Manufacturer: 
On-Line Systems 
36574 Mudge Ranch Road 
Coarsegold, CA 93614 

176 

asteroid coll ides with earth and the game 
IS over. 

It is interesting to gauge the reactions 
of text adventure buffs to the over 100 
pictures on the disk. Some enjoy them 
thoroughly, others use them as mnemonic 
devices, which eliminate the necessity to 
map the adventure on paper. Still others 
find the pictures a questionable , if not 
downright distracting , addition. The pic
tures are well-done-obviously a lot of 
time was spent executing them. They are 
pretty, but they do not achieve even the 
quality of a well-drawn comic book. This 
leaves me a little dissatisfied. I think it is 
fair to ask of any graphic adventure game: 
How well would the adventure stand on 
its own, if we were to delete all the pic
tures? 

Mission: Asteroid. 

In the case of Mission: Asteroid. the 
plot line is kept intentionally simple , as it 
is intended to be an introduction to a 
series of graphic adventures, and it is an 
enjoyable program. As such , it would not 
be really entertaining without the pictures. 
The graphics serve to enhance the overa ll 
effect, but are unable to enri ch the story 
significantly. In the intricate and involving 
stories of other adventures in the series, 
they stand a better chance of achievi ng 
this goal. I am certainly among those who 
feel illustrations can improve text adven
tures. 

Apparently so is Scott Adams , who is 
in the process of re-releasing all twelve of 
his now-classic adventures as illustrated 
text adventures. 

Ali Baba 
Ali Baba and the Forty Thieves attempts 

to move beyond the illustrated text ad
ven ture. It was designed for the Atari, in 
contrast to Mission: Asteroid, which is an 
Apple translation. The game makes use 
of some of the special features of the 
Atari, such as multi-channel sound. It is 
an example of a mapped adventure . 
wherein players are depicted on a multi
colored map. As the players move to new 



SOFTWARE PROFILE 

Name: Ali Baba and th e Forty Thieves 

Type: Mapped-style g raphic 
adventure 

System: 32K Atari 400/ 800 

Format: Disk 

Language: Machine 

Summary: A fan tasy role-playing 
adventure with some 
new ideas 

Price: 532.95 

Manufacturer: 
Quality Software 
6660 Reseda. Suite 105 
Reseda . CA 91335 

locations , new areas of the map are dis
played. 

When yo u first sit down with Ali Baba, 
you may not get up for several hours. The 
ga me shows strong po tential when you 
see it for the first time. It allows fo r a 
total of J 7 characters to participate si
multa neously in a search to resc ue a 
kidnapped princess. 

This adve nture leans heavily in the 
direction of a fantasy role-playing game, 
assigning weights to th e attributes of each 
cha rac ter. 

From my experience, this makes for a 
much more lively game when friends are 
sitting in . Instead of everyone in the room 
discussing what the sole character in a 
text adventure should do, everyone can 
be hi s own character. interacting within 
the adventure as well as with each o the r. 
The discussion takes on new depth as 
indi vid uals decide what course to take 
for themselves. 

In A li Baba you can choose to become 
one of the se t o f humans, elves. halflings 
or dwarves that are profiled in the extensive 
documentation that accompanies the game. 
Each of these sets of be ings is represented 
by a d ifferent symbol on th e screen. Using 
th e keyboard o r joyst icks to input move
ment , players can ex plore the caverns. 
palaces. passages. and treasure rooms of 
the game-and happen upon the dangerous 
inhabitants the rein . 

T he game is immediately addictive. and 
is really to ugh. The first thing the novice 
should do is turn the "monster recurrence" 
leve l down to zero. This will keep him 
from becoming utterly. bogged down in 
fending off a ttacke rs . 

You 'll spend hours wandering around. 
acq uiring treasures, buying weapons and 
armor, fighting enemi es and thi eves, and 

searching for the princess. Characte rs can 
be re inca rnated if th ey are snuffed out, 
and reinforcements can be called in when 
the going gets really heavy . 

As in o ther role-play ing games , each 
character has unique attributes. Elves are 
fast and hard to hit; dwarves are slow and 
clumsy but when they connect they pack 
a heavy blow. This richness of character 
is th e strong point of the game. 

The adventure has some other inte resting 
features . It can be configured to play 
th ro ugh nested menus, controlled com
ple tely by one o r more joysticks, eliminating 
keyboard entry comple te ly. Characte rs 
can be re tired as well as re inca rnated . 
and in fact Ali himself can be retired if no 
o ne wishes to take his ro le. Characters 
o the r than playe rs wander through the 
ga me, and will sometimes a ttack eac h 
other, allowing players to make a fast 
ge taway. The map graphics , Arabic-style 
typeface. music. and sound effects are 
quite good. 

The problem with A li Baba is th e way 
it e nds . After mu c h ex plo rati o n and 
fighting, you will discove r the princess, 
and fight va liantly to return he r to the 
king. When you manage to do so , th e 
king thanks yo u. gives you some gold , 
and invites yo u to go back to amass more 
treasure. And th at's it. It's a rath e r sudden 
le t down. and it leaves pl aye rs without 
th e fee ling th ey have maste red a difficult 
puzzle. 

A li Baba. 

The documentation states that Ali Baba, 
himself a relati vely wea k. slow. and un
skilled cha rac te r in the adve nture, can 
reach and rescue th e princess unaid ed , 
and witho ut once ra ising his sword to 
fi ght. As it still seems impossible to me 
a ft er severa l ho urs of trying, this poses 
th e cha llenge of a real puzzle. Realizing 
how much more fun it is to play this type 
o f ga me with othe r people. I think it's a 
shame th a t th e challenge evapo rates so 
quickly in th e multiplayer ga me. 

Still. fans o f role-playing ga mes may 
rea lly enj oy A li Baba. It employs some 
ni ce concepts in its exec ution. For those 

177 

pro tracted sessions , multiple games can 
be saved to disk . 

Action Quest 
Purist adventurers who feel arcade games 

are beneath them may wince at the 
inclusion of Action Quest in an article on 
adventure games. It is, in fact , a rather 
radical departure from the format of 
traditional adventure games. Action Quest, 
despite the uninspired title , deftly exhibits 
some o f th e qualities of th e mapped 
adventure: it draws a map of current 
location , provides a running status report. 
and aHows character movement to be input 
by joystick. Pull on the stick, and your 
c haracter scrolls smoothly across the 
screen. Head for a portal , and a map of 
your new room loca tion a ppears on the 
screen. But the game transcends the ty pical 
adventure from here on in. 

SOFTW ARE PROFILE 

Name: Action Quest 

Type: Arcade / Adve nture 

System: 16K Atari 400/ 800 
Format: Cassette/ disk 

Language: Machine 

Summary: Unique attempt to merge 
two types of ga mes 

Price: $29.95 

Manufacturer: 
JV Software 
3090 Ma rk Avenue 
Santa Clara , CA 95051 

Action Quest is a one player arcade
style ga me within an adventure format
and it is addictive, well-paced, and fun. 

The game is divided into five leve ls of 
six rooms each. If you complete a ll the 
required actions of each room, including 
ga the ring treasures , completing obstacle 
courses and traversing mazes. yo u may 
advance to the next , more advanced leve l 
o f play. 

You e nco unter num ero us monste rs. 
dodge bulle ts, run through rooms with 
walls closing in on two sides, and happen 
upon mys tifyin g puzzl es tha t must be 
solved . You carry a gun which you aim 
with the stick (this takes time to master), 
a nd while without it you wouldn 't last too 
long, I still would no t call this a "shoo t
'em-up" type ga me. You have ten li ves. 
which is no t as generous as it sounds , 
considering the rate a t which you expend 
them. 



Graphics Adventures 

Each room has a name , which gives a 
clue concerning what yo u need to do to 
get through it. The only problem is that 
by the time you have read the name for 
the first time , you may already have been 
skewered by some bizarre creature. 

You play against the clock as well as 
attempting to get through as many levels 
of the game as yo u can. This ensures you 
may still enjoy the game even after you 
have completed the adventure . I do not 
wish to instill the idea, however, that you 
wi ll get all the way through Action Quest 
in any short amount of time. Mastery 
requires the acquisition of some formidable 
skills. At the e nd of the game your score 
is tallied , and you are assigned a rating on 
the basis of time used , lives expended , 

and treasures amassed. 
Perhaps it is a stretch to label Action 

Quest as an adventure game, but it is an 
exciting move in the right direction. The 

game is strong in one of the fundamental 
aspects of computer ga ming: building 
toward a goal. 

Though the sound is somewhat unso
phisticated , the graphic animation is well
executed. Your character is an undulating 
ghost , and as remaining in one room for 
too long can be fatal , it begins to fade 
slowly when you enter a room. If the 
ghost disappears completely, it costs you 
a life. Sometimes you must shuttle between 
rooms quickly to avoid "suffoca ting" in 
this manner. 

The author of Action Quest has indica ted 
that a sequel with g rea ter challenges, as 
well as more soph isticated graphics is in 
the works. I , for one , am looking forward 
to it. 0 

Cypher Bowl and Krazy Antics 

Gridiron Action and Antics Wayne Hixson and Sheldon Leemon 

Cypher Bowl 

"OK, Hixson. Zorn's hurt and out for 
the rest of the game. You're our man
now go out there and get 7!" 

"Coach, you can count on me ... 
Guys, its a 32 Up and Out. Largent, I'll 
be looking for you at the five. Break!" 

A wild fantasy from the deranged 
mind of a short, slow, and (slightly) 
overweight sports nut? Not entirely
not with my Atari 800 and Cypher 
Bowl, an excellent two-player football 
game program by Bill Depew. Now we 
would-be jocks can step into the elec
tronic shoes of a Jim Zorn, a Walter 
Payton, or a Jack Lambert to live our 
fondest fantasies in perfect safety. No 
injuries, unless you count acute "con
troller thumb," a malady now surpassing 
tennis elbow in popularity. 

Cypher Bowl is attractively packaged 
in a sturdy, colorfully illustrated box. 
Both cassette and diskette versions are 
included (they are the same). The docu
mentation is very good. The user manual 
explains the game clearly and gives good 
tips on playing techniques. Two play
cards are included, laminated in plastic 
to withstand a lot of handling. Each 
playcard includes the offensive and 

Wayne E. Hixson, 115 NW 39th Street, Seattle, 
WA 98107. 
Sheldon Leemon, 14400 Elm St., Oak Park, 
MI48237. 

defensive formations and plays. Sketches 
of each play show the patterns that the 
receivers, blockers, and defenders will 
run. 

Once you have read the instructions 
and studied the plays, the game can 
begin. The program is self-booting and 
no cartridge is needed. The opening dis
play is of the title, manufacturer 
copyright notice, and a portion of th~ 
field. The crowd roars , and you're ready 
to go! Pressing any key turns on the 
standard display. 

In the center of the screen are the field 
and the two five-man teams. You have 
a blimp's-eye view of the field, which 
runs vertically on the screen. The view 

SOFTWARE PROFILE 
Name: Cypher Bowl 

Type: Football Simulation 

System: Atari 400 or 800, 16K 

Format: Disk or Cassette 

Language: Machine language 

Summary: Excellent combination 
of strategy and action 

Price: $49.95 

Manufacturer: 

Artsci, Inc. 
10432 Burbank Blvd. 
N. Hollywood , CA 91601 

178 

is always centered on the ball. About 
30 yards of the field are visible. The 
score, quarter, and time remaining are 
displayed on the top of the screen. On 
the bottom are the down, yards to go, 
and the time-outs remaining. 

The game is played in four simulated 
8-minute quarters. There is no kick-off. 
The blue team starts with the ball on 
their 20-yard line, with the white team 
defending the top of the screen. Each 
player begins by selecting one of four 
formations from the playcards. On 
offense, you can spread your receivers, 
or play them in tight. The defense can 
put everyone up front, or drop up to 
three players back to play pass defense. 
After both have chosen, the teams move 
into position. 

The players scrutinize each other 's 
calls, then pick one of four possible 
plays allowed for the particular forma
tion. Offensive possibilities range from 
quick openers to the bomb. The defense 
can opt for a strong pass, strong run, or 
balanced defense. What you choose 
depends on the formation your opponent 
unveils. For example, if you call a 
defense strong against the run and the 
offense deploys in a spread formation, 
you can still make the best of it by call
ing a zone defense to protect against the 
probable pass . However, your chances 
are poorer than if you had elected a 
strong pass defense formation to begin 
with. 



This method of play calling is well 
thought out and superior to the other 
games I have played . Both players have 
options after they see the other's call, 
instead of the defense only. 

Another nice touch is the way Cypher 
Bowl handles the 30-second clock. 
There is no delay of game penalty , but 
the clock is automatically stopped after 
30 seconds until the play commences . 
The Cypher Bowl clock also stops 
between quarters, for the two-minute 
warning, for time-outs called by the 
players , and on incomplete passes and 
out of bounds plays. 

After selection is complete, play is 
initiated as the offensive player moves 
the joystick. Instantly, the scoreboard 
information disappears and your view of 
the field increases to fifty yards. This is 
especially nice on pass plays, as the 
receivers would soon run out of view 
otherwise . During play, the offensive 
player controls the quarterback or the 
receiver, whichever has the ball. 

As the manual points out, it is easier 
if you visualize yourself as controlling 
the ball, with the player coming along 
for the ride. On defense, you control the 
middle linebacker. The remaining eight 
players are controlled by the computer, 
following the patterns shown on the 
playcard . 

Think about that for a moment. A 
total of ten players, moving in individual 
patterns. How? Aren't there only four 
players in Atari Player/Missile graphics? 
Yes, but Cypher Bowl shows just what 
a good programmer can do with this 
system. In order to get more than four 
players, single players are moved to dif
ferent screen locations between TV 
frames , every 1/60 second. The images 
alternate so fast that the eye can't dis
cern the change, except for some minor 
flickering. 

As a result of the individual control 
of each player, blocking, passing, and 
pass coverage patterns are exceptionally 
realistic. If you make the right call, 
your left end will take the right line
backer out of the play and leave a hole 
a truck could drive through . However, 
if your opponent outguesses you and 
fills that area , you will be lucky to get 
back to the line bf scrimmage. 

Cypher Bowl excels in its simulation 
of the passing game. This was also the 
hardest part of the game to learn . Not 
only do you have control of passing 
direction, you must also control distance. 
In the other games I have played, a 
thrown ball will travel indefinitely, until 
it hits a receiver or defender, or goes 
out of bounds. Any eligible receiver 

(offense or defense) in the path of the 
ball will catch it, whether 6 or 60 yards 
from the quarterback. 

Cypher Bowl adds a third dimension 
-height of the ball above the ground. 
Now you can throw the ball over the 
head of the defender. Of course, this 
also enables you to overthrow your 
own man , which I have been able to do 
very consistently. A pass is launched by 
pressing the joystick button and pushing 
the stick toward the target. The distance 
is determined by how long you hold the 
button down. 

The height ofthe ball cannot be shown 
on the screen, so sound is used. A rising 
tone indicates a rising ball, and vice
versa. Once thrown, you can control the 
direction of flight with the joystick to 
" fine tune" it to the receiver. I think that 
this is one weak point of the program. 
The ball is too controllable. You can 
start it toward one sideline and then 
steer it clear across the field, or even 
reverse it back toward the quarterback. 
The magnitude of control should be 
reduced to a little nudging. 

Another superior feature of Cypher 
Bowl is the option to throw to either of 
two receivers on most plays . You also 
have some control of the receivers on 
pass plays. Once the ball starts its 
downward flight , pressing the joystick 
button causes the receivers to break off 
their patterns and move back toward the 
ball . 

As you can imagine, orchestrating all 
this activity in the period of about two 
seconds requires a lot of practice, but 
what a feeling when you float the ball 
over an onrushing linebacker to the tight 
end cutting back in front of the safety. 
A caution-there is only a five to seven 
yard window in which the receiver can 
catch the ball. If you overthrow, the 
defender is likely to get it. 

You might think all this control would 
make an accomplished player unstop
pable. Not so! This game provides a 
few tricks for the defense as well . If your 
defensive linemen get within a few yards 
of the quarterback before he throws, the 
ball will be batted down. Once the ball is 
in the air, you can make your defensive 
backs cut toward it by pressing the joy
stick button . All in all, the offensive/ 
defensive balance is good. 

The kicking game is good. The ball is 
kicked by pressing the button. Instead of 
going a random distance, the longer you 
wait before you press the button , the 
farther the ball will go. A split second 
too long, though, and it will be blocked. 
There is no difference between a field 
goal and a punt. If the ball goes between 

179 

the uprights, it's worth 3 points. 
I have played Cypher Bowl for over 

30 hours now, and the more I play, the 
more I like it. The realism is a step above 
the other games I have played . The 
graphics , in spite of the lack of detail, are 
quite good. Player/ Missile graphics , 
fine scrolling, and mixed modes are used 
very effectively. The animation is both 
smooth and fast. 

The playability is good, and it's not 
an easy game to master. I'm still below 
50% in the passing game, but I'm getting 
better. I think it is this continuing chal
lenge in any game that keeps you playing 
it, along with the fun . 

In summary, this is a worthwhile 
game. If you 're a " stats junkie," it 
probably won 't be your cup of tea , but 
if you like a sports game that makes you 
think and participate, I believe you 'll 
love this one . 

Now, guys , how about a solitaire 
version? I have a hard time finding 
opponents during my normal game
playing -hours. - WH 

Krazy Antiks 
Don't be confused by the pun. The 

Antic that everyone associates with 
Atari computers is the support chip that 
makes possible the superb graphics 
needed for all of those neat arcade-type 
games. The Antiks in the title of this 
product refers to the insect you need in 
order to have a picnic. When the two get 
together, you wind up with a neat 
arcade-type game with great graphics, 
and everyone has a picnic. 

Krazy Antiks is the fourth game car
tridge released for the Atari 400/ 800 
computers, and it bucks the trend of 
"me-too" arcade-style games . Lately it 
seems that everyone is trying to cash in 
on the arcade craze by serving the 
warmed-over remains to computer 
owners. Even K-Byte's earlier ventures 
into game programming tended to follow 
the heavily beaten path. But Antiks has 
just enough of a twist to be considered a 
new idea in a market saturated with 
retreads. 



Krazy Antiks 

I must concede that the locale of the 
action is nothing novel- the ant hill in 
question strongly resembles the type of 
maze used in any number of games 
spawned by that prolific procreator, 
Pac-Man. But the scenario is a fresh one. 

You play the role of the White Ant, 
and your purpose is one familiar to 
students of biology - to perpetuate the 
species. You start the game with about 
30 eggs, which represent your capacity 
to reproduce, at the bottom of the screen. 

Arrayed against you are several 
adversaries. First, one ant each of the 
four basic ant types - yellow, blue, green, 
and red-circulate around the maze, 
trying to devour you. Another natural 
enemy is the dreaded anteater, who 
strolls into the picture every so often 
and sticks his tongue into the anthill, 
sucking up friend and foe, ant and egg 
alike. F inall y, periodically a rain shower 
turns the lower part of the anthill into a 
disaster area, minus the federal aid. 

With the odds against her, the lone 
ant has little chance for survival. For
tunately, if she can find a safe place in 

Not Just Fun in 

Of all microcompute r inamo rati , Atari 
owners probably take game programs most 
se ri o usly. They a re jaded ; it 's to ugh 
im pressi ng the crowd fo r who m Sta r 
Raiders is in va ria bly a mo ng th e first 
programs ever booted . They expect more. 
T heir mac hines, a fte r a ll , were designed 
by ga mes experts and ex hibit advanced 
gaming capabilities. These capabilities are 
only now be ing fully ex plored , and a re 
evolving, by leaps and bo unds , into an a rt 
form. 

Games offer an interac tive and involving 
means by which to demonstra te strides in 
color graphics and so und sy nthesis. In 
the process , they a ffo rd a great deal of 
c reative fre edo m to the progra mmer, not 
to mention hours of fun for the player. 
Sti ll , a majo rity of Ata ri ow ne rs do not 
conside r ga mes mere frivolity. A swiftly 
growing ma rke t a ttests to this. 

T his has led to a t least two identifiable 
results: an explosion of third-party software, 
some showing real promise , and translations 
of first-ra te Apple programs fo r the Ata ri . 
We shall examine several of these here. 

.John Anderson is an associa te edit or fo r 
Cr l'lIfi l 'l' CUIII/Jllting ma gazine. 

the maze in which to lay an egg where it 
will not be eaten by another ant, after 
she is gone, the egg will hatch, and 
another white ant will take her place. 
Moreover, she has a weapon she can use. 

The other ants are busy laying eggs 
also, and when she eats one of theirs , 
she begins to glow, letting you know 
that the next egg she lays will be deadly 
to the other ants , if laid directly in their 
path. At each level, play continues until 
the white ant is killed, without leaving 
any eggs in the maze, or until all four of 
the other ants have been killed without 
surviving offspring. 

If the latter occurs , the game proceeds 
to the next level, and four new enemy 
ants come marching in to the tune of 
"When Johnny comes Marching Home" 
(which some like to think of as "The 
Ants Go Marching Two by Two"). 

Each maze has 99 levels of difficulty. 
!fthat fails to provide enough variation, 
there are six different maze configur
ations to try out. 

Krazy Antiks rates a high score for 
playability. Even an experienced player 

Games 

Protector 
I sho uld provide a little backgro und 

concerning this program, as it has a n 
interest ing pas t. T oward the end of last 
yea r, J reviewed a ve rsion of Protector 
written by Mi ke Pot te r and re leased by 
C rysta l So ftware. T he rev iew , whic h 
a ppea red in ano ther magazine. took the 

SOFTWARE PROF ILE 

Name: Pro tecto r 

Type : Arcade G ame 

System: Atari 400/ 800 32K 

Format: Casse tt e o r Disk 

Language : Mac hine 

Summary : Compelling and Add ic ti ve 

Price: 529.95 

Manufac turer : 
Synapse Software 
H20 Covent ry Rd. 
Kensingto n. CA 94707 

180 

SOFTW ARE PROFILE 
Name : K·razy Antiks 

Type: Arcade 

System: Atari 400/ 800. 16K 

Format: ROM ca rtridge 

Language: Machine 

Summary: Puts ants in yo ur pants 

Price: $39.95 

Manufacturer: 

CBS Software 
Columbia G roup , C BS Inc . 
Hage rstown , MD 21740 

can get caught early on by a freak acci
dent, which inevitably leads to "just one 
more" game. There is a pause option, 
for those disturbed by the inconsiderate 
intrusions of friends and family . Unfor
tunately, there is no mUlti-player option. 
But if you don't mind going it alone, 
you'll bless the day when ant met Antic. 

- SL 

John Anderson 

program to task fo r a number o f flaws , 
"quirky bugs," and disappointing fea tures. 
This was unfortuna te ly true of the Crystal
wa re ve rsion, and ruin ed an o the rwise 
promising ga me . It was myste rio us to me 
why an inspired program employ ing so
phistica ted techniques should be re leased 
in such a sta te . 

T he reason surfaced ea rly thi s year, 
with the release of Protector from Synapse 
Softwa re , Mr. Po tte r's new employe r. It 
seems tha t when Mr. Po tte r left. his old 
company decided to marke t his as-ye t
unfinished program. The Synapse ve rsion, 
I'm happy to re po rt , no t only correc ts a ll 
the faults of the earlier version, but includes 
seve ral new features , and to top it off. 
costs less than its predecessor. Need less 
to say, stee r for Synapse Protector and 
away from any o th e r. 

T he game is one of the most po lished 
e fforts I have seen fro m a third party 
so urce. It is except iona lly d ramatic in its 
graphics and sound effec ts. and the ani
mation is mi rror smooth. 

A great dea l goes on in Protector, and 
maste ry of the game req uires a substantial 
amo unt of time. T he game is ro ughly 



modeled a fter the a rcade game Defender. 
As the pilot of your rocket fighter, you 
encounter pulse-trackers, meteoroids, laser 
traps , a volcano , an evil alien ship, and 18 
peop le in desperate need of your he lp. 
You must maneuver your ship so as to 
airlift these people from their beleaguered 
c ity to the City of New Hope , and from 
the re to safety in an underground for
tress . 

You must act before they are heartlessly 
dropped into the volcano by the tractor 
beam of the a lien ship, and before the 
volcano e rupts and destroys the City of 
New Hope . You must a lso watch the fue l 
tank-and some times face the decision 
to refuel o r to save some lives a t the cost 
of yo ur own. You can not a lways do bo th. 

By far the best thing about the ga me is 
the horizonta lly scrolling terrain graphics . 
T he ove ra ll goa l is to create a "micro
world"-a fantasyland one screen high by 
four o r five screens long. Fine scrolling 
and player/ missi le techniques are employed 
to very pleasing e ffect. For demonstration 
purposes alone. this program is worthwhile. 

Protector. 

Sound e ffects add much to the illusion , 
and the tit le music is quite good. 

The feeling of flight is accentuated as 
you d ive to the resc ue . Time ticks off as 
the indestructible a lien saucer beams th e 
victims up . Pu lse trackers nudge danger
o usly close . Ca reful when you re turn fire: 
the ir favorite trick is to get yo u to hit 
innocent bystanders. 

If you ge t a ll the remaining people to 
the City of New Hope , you can then move 
them through the laser field toward your 
goal. You must then watch for laser bases 
and meteoroids. When fuel runs low you 
must return to base to refuel. Docking 
can be a tricky and sometimes fatal task. 

The game is paced into six leve ls o f 
diffi c ul ty. g raduated to prese nt mo re 
agg ressive aliens a nd more complex ar
chitecture through which to navigate . T he 
merest graze of scenery , pulse-tracker, 
meteoroid , laser fire , or trac tor beam , 
and you go down in a dizzying spin. An 
ambulance shoots out immediate ly to drag 
you away-what's left of you , that is. Better 

luck wi th yo ur next ship . 
I have very few reservations conce rning 

Protec tor. As soon as a leve l loses its 
challenge. you may adva nce to the cha l
lenge of a new level. The highest leve l is 
very tough indeed . You may get a little 
tired of hitting things after a while , but 
afte r a ll , that's yo ur own fau lt. right? Next 
time. be more careful. 

Chicken 
Mr. Potte r has also c rea ted a ch ildren 's 

ga me which will keep many ad ults busy 
after the kids have been tucked in . Chicken 
may be played with a joystick , but the 
responsiveness of a padd le is recommended 
to really rack up a score. Conceptually 
close to the arcade game Avalanche, the 
object is as fo llows: yo u. as c hi cken, must 
catch in you r ca rt a ll the eggs drop ped by 
a fox scampering across the to p o f the 
screen. 

If yo u miss an egg, it hits the gro und 
and cracks , and a peeping chick appears. 
As a chic ken , you must fight back the 
instinctua l urge to si t on th e eggs you 
drop-an und erstandable but annoying 
habit. The trigger allows you a flutte ring 
leap over the chicks in yo ur quest to 
catch more eggs. 

This may sound somewhat bizarre , and 
in fact it is. But it is a lso guara nteed to 

SOFTWARE PROFILE 

Name: Chicken 

Type: Arcade Game 

System: Atari 400/800 16K 

Format: Cassette or Disk 

Language: Machine 

Summary: Si lly, but fun-kids will 
love it 

Price: 529.95 
Manufacturer: 

Syna pse Software 
820 Coventry Rd . 
Kensington , CA 94707 

bring a sm ile to your face as we ll as to the 
kids' fac es. As rounds progress, the action 
becomes more and mo re frenetic , with 
laug hter as result. A recent competition 
a mong ad ults play testing ca used a bout 
of hysteria. It felt very good. 

If you do plop down on a chick, a huffy 
farmer strides across the screen and gives 
you the boo t. The add ic tion level is high, 
and the game is refreshingly vio lence-free . 

181 

By the time yo u have caught 40 or 50 
eggs, your reason ing powers are on the 
wane . Ever hea r the term " twitch game?" 
This game may be its namesake. 

There is a dumb problem with Chicken, 
but it is worth mentioning . In an effort to 
make th e game playable with stick or 
paddle, only one contro ller port is used. 

Chicken. 
This means you must pass one paddle 
between players. This is by no means a 
major complaint , it just makes the game a 
bit less than it might be. The graphics and 
sound in Chicken, like those of Protector, 
are superlative, comple te with barnyard 
music, the plo p of dropped eggs , th e 
peeping of chicks, and the flutterin g of 
wings in a futile stab a t flight. I've had an 
o pportunity to lea rn about Mr. Po tter's 
latest work , now in progress. I've promised 
not to spi ll a word, but I will tell yo u it 
sounds incredible. 

Threshold 
If I can get my wife to stop playing 

Chicken , I'm likely to take another shot 
a t Threshold , which probably stacks up 
as the best "Galaxian-style" invaders game 
to date for the Atari. Atari owners will 
hap pily no te that Thresho ld has been 
translated from the Apple , and that On
Line Systems is in the process of translating 
many of its popular Apple programs fo r 
the Atari . Also , new translations of best
se lling Apple games are now avai lable: 
Apple Panic, Raster Blaster, and CrossFre, 
to name a few. The translations of these 
ga mes a re at least as good , if not better, 
than their original versions. Threshold uses 
player/ missile graphics, and Raster Blaster 
ma kes use of multi-channel sound. 

Threshold is in the venerable tradi tion 
of laser-fire space wars (kill , kill , kill! ) 
and it is superb. The alien waves in this 
game are eve r-changing and wonderfully 
despicable. Your ships are armed wi th 
lasers a nd hyperwarp drivers that can 
temporarily slow down time, giving yo u a 
better chance to ta rget the enemy. Your 
arsenal has limitations, however. The lasers 



Not Just Fun in Games 

can overheat and will shut themselves 
down until sufficiently cooled. You may 
invoke hyperwarp only once per ship , and 
each ship has a limited fuel supply. As for 
maneuverability, have you ever had the 
misfortune to be driving a power-steered 
vehicle that stalls while you're driving? 
That's the way the stick feels in 
Thresho ld . 

Threshold. 

The line between utter frustration and 
total addiction is a thin one , and this 
game rides it well. The game is hard to 
play but you can improve a little with 
every game. Al iens swoop down at your 
ship from the top of the screen, and each 
wave has its own character, its own "look." 
Some fly in jittery formation, others billow 
like a flag in the breeze. Your natural 
inclination to gape at them will prove 
fatal unless curbed. Discipline is ca lled 
for in order to concentrate not on their 
grotesque beauty, but rather on their ability 
to destroy. 

SOFTWARE PROFILE 

Name: Threshold 

Type: Arcade Game 

System: Atari 400/ 800 40K 

Format: Disk 

Language: Machine 

Summary: Best alien shoot-out 
to date 

Price: $39.95 

Manufacturer: 
On-Line Systems 
36575 Mudge Ranch Road 
Coarsegold, CA 93614 

If you manage to survive a number of 
successive waves, you dock with the mother 
ship , which is rendered with the humor of 
a Saul Steinberg cartoon. Here you are 
refueled while a new set of nefarious alien 
waves are read from the disk. I have 
managed to live through two sets so far, 

and have yet to reach " the last wave. 
The documentation promises that when 
you get there , you' ll know it. 

You can choose to play with or without 
a moving star background (which makes 
it much harder to see enemy fire). You 
can also choose a horrific advanced lev
el. 

Threshold wi ll obsess you for some time. 
Because the aliens change throughout the 
game , you're primed to withstand at least 
"one more wave this time ." Though my 
wife abhors "shoot-'em-ups ," even she spent 
a while with this one. After quite some 
time , I sti ll have no reservations about 
Threshold. 

Mouskattack 
Mouskallack is a maze game that has a 

personality a ll its own. It moves beyond 
John Harris's earlier creation,law Breaker, 
which set a standard for quality in Atari 
game animation. If maze games appeal to 
you, so will Mouskallack . 

Mouskallack. 

The game has several unique facets. 
Rather than "eating" as you traverse the 
maze , you are a plumber, laying pipe as 
you go . You are zealously pursued by a 
group of multi-colored rodents whose goal 
is to snuff you out. They have you on the 
run , so even after you have traversed the 
entire maze, some of the pipes may need 
to be reworked. Your on ly assistance in 
the completion of this task consists of a 
couple of traps, which don't hold rats for 
too long, and a couple of cats, who are 
too scared to do much more than dis
courage them a bit. 

Mouskallack is tough . I don't care how 
experienced you are at any other kind of 
maze game-this one will pose a challenge. 
In fact, familiarity with other maze games 
may actua lly be a handicap! MOllskallack 
requires an entirely fresh approach. 

The ultimately disappointing thing about 
many maze games is that the player can 
master rote winning patterns. Because the 
"enemy" follows the same patterns every 
game, routes can be learned which will 

182 

work each and every time to avoid con
frontation. In Jaw Breaker, Harris foiled 
the possibility of rote patterns by making 
the "enemy" much less predictable. In 
Mouskallack. he provides a new element
strategic opportunity. 

SOFTW ARE PROFILE 

Name: Mouskattack 

Type: Arcade 

System: Ata ri 400/ 800 32K 

Format: Disk 

Language: Machine 

Summary: Another maze game. but 
can make your nose twitch 

Price: 539.95 

Manufacturer: 
On-Line Systems 
36575 Mudge Ranch Road 
Coarsegold, CA 936 14 

Traps and cats can be picked up and 
moved in the course of your travels through 
the maze. This capability allows experi
mentation leading to strategic configura
tions. This is much more engaging than 
beating Pac Man with maps. The option 
makes you feel that more is involved than 
just conditioning and reflex action (though 
those qualities will certainly help your 
score). 

The animation is very well executed , 
though lacking the inspiration and spark le 
of Jaw Breaker. There are some flourishes. 
however. When you are "tagged" by a rat 
yo u drop down the sc reen like a leaf in a 
fall breeze. Every so often a "super rat" 
appears (easy to spot-watch for the "S"on 
its chest). Super rats will eat your cats 
right out from under you, so you must act 
fast when you spot one. The music in 
MOLlskallack is quite well done, but begins 
to seem a little long after 10 or 20 airings. 
It is compulsory, and so loses its appeal in 
short order. 

Sti ll , Mouskallack has a lot of staying 
power as a maze game. In addition to 
offering strategic potential , it offers a 
simultaneous two player game, wherein 
you play against rodent and opponent at 
the same time. Squeaking good fun! 0 



Deluxe Invaders and K-razy Shootout 

Blast From the Past 
Deluxe Invaders 

Your story may well be the same. Space 
Invaders, the first "cult" arcade game, 
hooked you-you , who vehemently swore 
your quarters would never be in short 
supply. It was the drum beat that did it : 
the quickening pulse that glazed over your 
eyes and tightened every muscle in your 
arms as you furiously raced to kill the last 
row of flapping insects. 

Those were the days. I remember when 
Invaders first became available on cas
sette for the Atari computer. Finally, 
something had arrived to knock Star 
Raiders off the tube for a while . Invaders 
was well-animated , colorful , addicting, 
hilarious. But it was disappointing in its 
distance from the coin-op arcade game. 
Gone were the barriers that afforded 
temporary shelter from the falling "worm 
rays"; missing was the pace and feel of 
the game that was its inspiration. 

Well it's been a while in coming-quite 
a while, actually-but the real thing is 
finally here. The nostalgia warms my 
heart. Deluxe Invaders faithfully captures 
the look, spirit , and play of arcade Space 
Invaders. And it doesn't stop there. 

SOFTWARE PROFILE 
Name: Deluxe Invaders 

Type: Arcade game 

System: Atari 400/ 800 16K 

Format: Disk, ROM cartridge 

Language: Machine 

Summary: Finally a "genuine" 
Invaders implementation 

Price: $34.95 disk , 540.95 ROM 

Manufacturer: 
Roklan Corporation 
10600 Higgins Rd. 
Rosemont , IL 60018 

Deluxe Invaders retains the color, 
sound, and polish of the earlier Atari 
computer game, while remaining true to 
many of the features of the deluxe arcade 
game version. The barriers are back, as 
are the spinning "worm rays." Back also 
is the hypertensive pacing, and if you 
were into the game "back when," this 
game will go "click" when you start with 
it. Set aside some time. 

There are nine levels of difficulty, 
including some where an insect results 
merely in its splitting into two baby 

John Anderson is an associate editor for 
Creal;, ·£, COlllplll;ng magazine. 

insects. Other levels include mother ships 
that deposit new aliens on the board in 
play. Even the alien shapes are truer to 
the original game, as is the difficulty. 

The difficulty levels are not too well 
documented , and only experimentation 
will flesh them out completely. The pro
gram does allow for a two player game , 
along the same lines as the coin-op. 

Deluxe Invaders. 
"What," you say? "Another Invaders 

game?" You're tired of Invaders games? I 
said the same thing when I first saw this 
package. I was wrong. 

Roklan has some exciting plans for the 
Atari computer , including GOlf and 
Wizard of Wor. They are also planning a 
track-ball peripheral. If these products 
are up to the standard of Deluxe Invaders, 
we're in for a real treat. 

K-razy Shootout 
It's sometimes fun to trace the lineage 

of a game like K -razy Shootout. First 
there was Star Wars , with its stirring laser 
battles in the corridors of the Death Star. 
Audiences bobbed , weaved , and ducked 
in their seats as Luke , Han , and the 
Princess blasted their way through count
less evil storm troopers. 

Next there was the coin-op game 
Berzerk , pitting the arcader against evil 
'droids closing in for the kill. The exciting 
"laser shoot'em-up" mood was evoked 
pretty accurately , constituting the appeal 
of the game . What's more, the game 
spoke, goading you, mocking you , teasing 
more quarters out of you . 

Among a bevy of "laser motif" games 
for many systems, K-razy Shootout brings 
nearly all the excitement of the arcade 
game to the Atari computer. The only 
element that's missing is the speech. This 
is not to say that the Atari couldn't do it; 
it's simply not implemented here. 

K-razy Shootout also bears the distinc
tion of being the first ROM cartridge
based game from a third-party source. 
This necessarily adds to the cost of the 
package; but if you saw, enjoyed, and 

183 

John Anderson 

fondly recall the film Star Wars, you won't 
want to do without this program for long. 

Your character runs through maze-like 
chambers, as 'droids close in from all 
directions. Using the joystick, you aim 
your laser, drawing a bead on them before 
they do the same to you . If you manage 
to clear a sector, you advance to the 
next. The action becomes increasingly 
furious, and you soon find yourself shoot
ing from the hip , moving from sheer 
instinct , and totally addicted . 

Scoring is dependent on several factors , 
including time, ammunition used , and 
'droids' manner of demise: through hostile 
fire , collision, or shooting each other. In 
addition , you collect an extra player for 
every 10,000 points. 

The only way you'll see sector four or 
beyond is through strategy . You'll dis
cover that it's possible to get 'droids to 
collide or shoot each other-finding good 

SOFTWARE PROFILE 

Name: K-razy Shootout 

Type: Arcade game 

System: Atari 400/800 8K 

Format: ROM cartridge 

Language: Machine 

Summary: Addictive "shoot-em-up" 
game with classic roots 

Price: $49.95 

Manufacturer: 
K-Byte 
1705 Austin 
Troy, MI 48099 

cover is also imperative. Don't collide 
with a wall, though. That's as fatal as 
being hit by enemy fire. 

The graphics, sound, and smooth ani
mation in K-razy Shootout far outweigh 
its few negative points. The ranking 
system is screwy: you can progress from 
"Goon Class 1" to a higher score, which 
then is ranked back at "Goon Class 4." 

K-razy Shootout. 



Deluxe Invaders and K-razy Shootout 

This frustrated our play testers. The game 
can be paused , but only by pressing 
Control-I , as if you were in Atari Basic. A 

much more friendly option is using the 
space bar to pause, a function now stand
ard on many games. 

Dog Daze and Caverns of Mars 

Dog Daze 

We had just finished a picnic lunch of 
barbecued spareribs. I was walking the 
dog and as usual, when we passed a fire 
hydrant , he insisted upon investigating it, 
dragging me along on the end of the leash. 
David quickly grabbed a chewed bone, 
threw it, and hit the fire hydrant. "It's 
mine," he shouted gleefully. 

David and I are not insane, just cur
rently addicted to an APEX (Atari Pro
gram Exchange) game called Dog Daze. 

SOFTWARE PROFILE 

Name: Dog Daze 

Type: Game 

System: 32K Atari, disk drive, 
2 joysticks or 8K Atari, 
cassette drive, 2 joysticks 

Format: Disk or cassette tape 

Language: 6502 Assembly 

Summary: Excellent game, lots of 
fun; highly recommended. 

Price: 517.95 

Manufacturer: 
The Atari Program Exchange 
P.O. Box 427 
155 Moffatt Park Dr. , B-1 
Sunnyvale, CA 94086 

Now, I readily agree that the game con
cept which uses two dogs, fire hydrants, 
bones , and an occasional automobile 
doesn't sound as thrilling as being invaded 
by aliens. Furthermore, I will concede 
that the graphics are not as fancy as the 
ones in Centipede or PacMan. Then, you 
ask, just what is so good about Dog Daze? 
Why should I buy it? That's very simple 
to answer. The game is fun to play. 

Dog Daze opens with the melody of 
"How Much Is That Doggy in the 
Window," then plots a play area and two 
dogs, each a different color. Along the 
top of the play area is a row of sixteen fire 
hydrants, eight of one color, and eight of 
the other. These fire hydrants keep 
score. 

The object of Dog Daze is to get all the 
fire hydrants at the top of the play area 
your dog's color. 

You maneuver your dog with the joy
stick, causing him to run vertically, hori
zontally, or diagonally across the play
field. Neutral fire hydrants (colored blue) 
appear on the playfield in random loca
tions, and your dog must run to "claim" 
it. When the hydrant is claimed, it turns 
to the color of the dog that claims it. 

You can claim a neutral hydrant one of 
two ways. One way is to run and touch 
each of the hydrants as they appear, 
thereby changing them to your color. The 
other strategy is to throw your bone at it 
by pressing the joystick button. If you hit 
it, you claim the hydrant, and get your 
bone back automatically. If you miss, you 
must retrieve your bone before you can 
throw it again . 

184 

Still, K-razy Shootout is lots of fun , and 
has a great deal of staying power. If only 
it could talk. 0 

In the meantime , your opponent is 
trying to do the exact same thing, making 
for a furious competition to be the first to 
claim the neutral hydrant. 

There are several hazards to be avoid
ed . If you pass too close to your oppo
nent's hydrant, like all dogs , you must 
stop to sniff for a few seconds. While you 
are sniffing, your oponent's dog may be 
claiming all the neutral hydrants in sight. 

An even more serious hazard is the car 
that periodically swerves across the play
field. It sounds a warning honk , but if you 
are in the path or stuck to a hydrant in its 
path, you may be hit and lose the game. 

Scores are calculated based on two 
events: each time you claim a hydrant, 
one-half of one of the hydrants on top of 
the play area changes to your color and 
each time you run into the other dog's 
hydrant, one-half of one of your hydrants 
changes to his color. 

The only options allowed in Dog Daze 
are to limit the length of the game , which 
is default sixteen minutes, and to handicap 
yourself by starting with fewer than eight 



fire hydrants of your color. This allows a 
skilled player to play with someone who 
is less skilled. 

Sound is used quite imaginatively. A 
variety of bleeps, bonks, and various 
degrading noises (when you make mis
takes) are generated. The dogs are ani
mated quite nicely; the running motions 
are done very well. The author obviously 
took great care in designing his player 
tables. 

Dog Daze is also one of the few two 
player games which allows both competi
tors to play at the same time. Most games 
use an "I go first , you go second" 
approach. 

In summary, Dog Daze is an excellent 
game. It combines the capabilities of the 
Atari and an unusual game concept to 
achieve a truly enjoyable game. 

Caverns of Mars 
The Caverns of Mars arrived recently. 

I had heard rumors about this new Atari 
game, so I immediately sat down to play 
it and see what all the fuss was about. 

Four minutes later, I was hooked. 
Four hours later, my wife dragged me 

away. 
The plot is as follows (some of it is 

somewhat cliche, as it follows the lead of 
many, many other games.): First, there's 
the Sole Defender syndrome common to 
many games, where you alone are respon
sible for saving the Moon Base (Invaders) 
or six cities (Missile Command) or eight
een little people (Defender) or whatever. 
In this case, you are responsible for 
destroying a Martian base. In order to do 
so , you must penetrate a series of caverns 
to the lowest level, where an explodable 
device sits; arm it and start the countdown 
(by touching it); then escape before it 
goes off. 

Should you succeed the first time, you 
must go through the same thing a second 
time, but with added obstacles, twistier 
corridors , and the like. 

The game starts with you at the top of 

the cavern. It begins slowly scrolling up, 
so you move downward. By moving the 
joystick right-left you can maneuver from 
side to side (from a central position), and 
by moving it back and forth, you can 
increase or decrease your rate of 
descent. 

SOFTWARE PROFILE 

Name: Caverns of Mars 

Type: Game 

System: 24K Atari w/ Disk Drive 
or 16K w/ tape, 1 joystick 

Format: Disk or Tape 

Language: 6502 Assembly 

Summary: Excellently done game. 

Price: $24.95 

Manufacturer: 
Atari , Inc. 
1265 Borregas Ave. 
Sunnyvale, CA 94086 

If you pull the stick so that your ship 
moves upward on the screen, your ship 
matches the vertical speed of the caverns 
scrolling up past you. So your position 
relative to those caverns doesn't change; 
you have no vertical speed. But this can 
only last until your ship hits the top of the 
screen, at which point your relative veloc
ity returns to normal. Similarly, if you 
move your ship downward, your velocity 
relative to the cavern walls is double that 
of no-motion. 

This concept is what makes tl. 
Caverns so interesting, and difficult. If 
you don't move vertically , your rate of 
descent is constant and there are many 
places you must stop moving vertically to 
avoid running into the cavern walls (such 
as horizontal passages). 

While you are descending through 
scenic Mars, you must destroy various 
installations. By pressing the joystick 
button, you launch two missiles down
ward from each side of your ship. If you 
hit a fuel canister (imaginatively labelled 
"FUEL") your fuel supply increases by 5 
(of 100). If you hit other installations, you 
just plain destroy them. The idea is to 
wreak as much havoc as possible on the 
way down. 

You can see only a limited section of 
the caverns. So you never know what's 
going to come next. You maneuver 
through a passageway twisting back and 
forth, and suddenly the screen is filled 

185 

with Martian ships you must avoid, and 
try to blow up. But you must not collide 
with the ships or the wall. 

If your first descent is successful you 
begin again. This time there are floating 
space mines, and force doors that open 
and close, and things begin to shoot back 
at you. Completely horizontal passages 
appear, requiring you to be ready for 
them and use nearly the full vertical 
screen's worth of maneuvering to get 
through. It gets harder and harder until 
you are destroyed, or somehow succeed 
in navigating all five caverns. 

Technically, the game is excellently 
implemented. It's apparently done with 
remapped character graphics, letting the 
characters serve as the walls, ships, and 
so forth. Vertical scrolling is done 
smoothly and without flicker. The player 
tables for the ship are well laid out, and 
the missiles operate correctly. Sound is 
used well, with the usual explosions, 
rumbles, firing noises, and whatnot. 

The Caverns of Mars has that indefin
able "something" that makes it arcade
quality. Here's my best definition: When 
you lose in an arcade-quality game, you 
know why, and know how you could have 
done better, if you were just a little faster 

Programming Precocity 
Greg Christensen, author of 

Caverns of Mars, can't understand 
what all of the fuss is about. It certain
ly can't be the fact that he wrote an 
arcade action game for the Atari, or 
even the fact that it was good enough 
to win an "Atari Star" award. Perhaps 
it has more to do with the fact that he 
did so in less than two months, and 
despite the limitations of the Atari 
Assembler/Editor cartridge. 

More likely it has something to do 
with the fact that he was 17 years old 
when he wrote it, after having a com

I puter in the house for less than a year. 
In addition, Caverns of Mars is the 

first program to make the transition 
from a package in APX, the Atari Pro
gram Exchange, to a part of Atari's 
main product line. Atari liked the 
game a lot, and invided Christensen to 
collaborate on the creation of a ROM 
cartridge version. 

Young Mr. Christensen declined 
the offer. He has wisely decided to 
pursue an uninterrupted college edu
cation. Doubtless he has felt some 
pressure to surpass his feat, but has 
not succumbed. One cannot help but 
feel, however, that we may hear from 
him again .-JJA 



Caverns of Mars 

or if you hadn 't have made that one 
mistake. Instead of the machine causing 
your destruction, it's your mistake that 
causes it. So, of course, you want to go 

Canyon Climber 
Datasoft was among the first com

mercial third-party sources of Atari soft
ware, and the quality of their product line 
has remained consistently high. Canyon 
Climber, by Tim Ferris, sets a new stan
dard for Datasoft, as well as one that 
challenges comparison. 

Beginning with strains of Bach, Canyon 
Climber sets its own tense, yet humor
filled pace. The musical opening is 
superb; it is hard to tell whether you are 
listening to your computer or a cut from 
the album "Switched-On Bach." How 
Ferris manages the tone sustain is a 
mystery to me. 

Suddenly the music vanishes, and your 
lone figure is left, clinging to a narrow 
canyon trail while dozens of surly, half
crazed billy goats seek to topple him from 
the precipice. 

You are without weapons in your 
attempt to scale the many paths and 
ladders. Your only edge is a near ballet
like ability to leap into the air. If you time 
your leaps just right, you can hurdle goats 
on the fly. Your timing is crucial, of 
course; beginners will almost certainly 
earn a lot of horns in the keester. 

The first task is to place explosive 
charges across a set of bridges spanning 
the canyon. Dodging oncoming goats 
from all sides, your fearless climber scales 
the sheer cliffs. And, upon reaching the 
detonator, you blow the bridges. This will 
hold the billy goats for a while. 

However your problems are just begin
ning. The screen changes, and you find 

back and try it again, and again, and get it 
right, until your fingers get cramps from 
holding the joystick, or until you're totally 
frustrated. 

yourself at the foot of another set of 
cliffs. 

Billygoats were child's play. Here you 
meet a very sedate group of Indians: they 
neither move nor make a sound. They 
simply and continuously shoot arrows at 
your face. Hope you've been practicing 
your pirouettes. 

At a couple of these cliffs you will find 
a shield, which may help fend off a few 
arrows. Be careful though, because your 
shield may disappear at any time. Carry
ing it also makes ladder climbing tougher, 
as you cannot climb a ladder while carry
ing a shield. 

If you are lucky enough to make it past 
the Indians, you are greeted by a final set 
of cliffs. You can see the top now. In the 
sky above, great birds hinder your prog-

SOFfW ARE PROFILE 

Name: Canyon Climber 
Type: Arcade game 
System: Atari 400/ 800 16K 
Format: Cassette/ disk 
Language: Machine 
Summary: You'll want to gorge 

yourself 
Price: $29.95 

Manufacturer: 
Datasoft Inc. 
19519 Business Center Dr. 
Northridge, CA 91324 

Clowns and Balloons 

Several epochs ago, when I was a lowly 
undergraduate, arcade games were just 
beginning to use video screens. I remem
ber an early one called Circus, and that it 
sat between Tank and Pong in the student 
union. Ah, those were the days. 

"Oh, no," was my first thought when I 
loaded Clowns and Balloons, also from 
Datasoft. An exhumation of Circus: 

where is author Frank Cohen's respect 
for the moribund? 

This report was exaggerated; I was 
dead wrong. This may very well be the 
most addictive game I have seen since 
Threshold. 

In Clowns and Balloons, you manipu
late a trampoline, shooting your player 
ever higher, as you try to break as many 

186 

I recommend this game to anyone who 
likes fast-paced arcade games in the style 
of Asteroids or Missile Command and 
who is looking for a new challenge. 0 

ress by dropping, well, bricks in your 
path. The trail itself becomes quite tricky, 
as the way is broken by deep fissures. 
One misstep and you'll be goat feed by 
the time you hit bottom. 

Finally you reach the top, just long 
enough for a breath of blue sky and a bit 
of Bach before the head billy goat butts 
you right back down to where you started. 
This time the going will be even tougher. 

Canyon Climber achieves a cartoon
like atmosphere in the rendering of its 
various screens, to very pleasing effect. 
Your figure has blond hair, and wears a 
blue shirt with jeans. It actually seems to 
throw a shadow on the canyon wall, as 
well. The animation is smooth and the 
colors superlative. 

You will spend a while with Canyon 
Climber. It took me a couple of days just 
to reach the top on a regular basis. Now I 
have begun to work on my score. 



balloons as you can in your trajectory 
across the screen. The concept is simple, 
but play is not. You must anticipate where 
to move that trampoline at all times. 
Otherwise, in the flick of an eye, your 
player will land in a headfirst heap on the 
floor. 

Stone Age devotees of the black and 
white coin-op Circus will especially ap
preciate the sophistication of Clowns and 
Balloons. The trampoline is carried by 
two silver-haired clowns, whose outsized 
shoes scamper wildly as they run from 
side to side. The balloons spin and shim
mer as they glide across the screen, and 
they do so in vibrant colors. 

The music, as in Canyon Climber, is 

Pool 1.5 
My initial reaction to the idea of pool 

on a computer was that it would be 
awfully hard to do well. Pool, I thought , 
would be too much of a physical game to 
run on a micro . IDSI has proven me 
wrong with the release of Pool 1.5 for the 
Atari . 

The first nice feature that Pool 1.5 
provides was revealed to me when I left 
my Basic cartridge in the computer and 
tried to load the program. A message 
appeared on the screen saying REMOVE 
CARTRIDGE. That was a refreshing 
change from BOOT ERROR. After 
removing Basic , the program loaded 
quickly. 

The first screen shows the pool table 
and a prompt for the number of players 
(1-4). There is also a Demo mode which 
demonstrates the action of the balls 
during play. The computer does not play 
pool with people, but all of the four games 
can be played alone. 

The players then enter their names, 
and decide which game is to be played. 
The game keeps track of whose turn it is 
by name and, in 8-Ball, will tell you who 
has solids and who has stripes . You can 
choose from Straight Pool, 8-Ball, Rota
tion or 9-Ball. The rules of each game are 
kept simple to allow for individual varia
tions in play. 

The only difference I found in the rules 
was in 9-Ball. The program returns the 9 
ball to the table when it is sunk out of 
turn. When I play Uncle John in southern 
Maryland, the rule is that sinking the 9 
ball using a proper combination is the 
end of the game. I have lost many quarters 
to Uncle John because of that rule, so I 

SOFTWARE PROFILE 

Name: Clowns and Balloons 

Type: Arcade game 

System: Atari 400/ 800 16K 

Format: Cassette/ disk 

Language: Machine 

Summary: Balloonatic adventure 

Price: $29.95 

Manufacturer: 
Datasoft Inc. 
19529 Business Center Dr. 
Northridge, CA 91324 

remember it well. The play of the other 
three games is pretty much the way I was 
taught. 

The game is played with either the 
keyboard or the paddle controllers . The 
cue ball appears as a white ball on a red 
surface with a dotted line extending from 
it to a '.'ghost" ball which represents the 
point of impact for the cue. Rotating the 
paddle moves the ghost ball and provides 
coarse aiming at 128 different locations 
around the cue . Pressing the A key at this 
point allows fine aiming at a resolution of 
32 positions to either side of the selected 
coarse position. 

Aiming is only one of three parameters 
to be chosen, however. Pressing the space 
bar will bring you to the speed selection , 
where a 1 is a light tap and an 8 is an 
extremely hard shot. Pressing the space 
bar again switches down to the english 
selection. Using the paddle, you choose 

SOFTWARE PROFILE 
Name: Pool 1.5 

Type: Billiard simulation 
System: Atari 48K 
Format: Disk 

Language: Machine 

Summary: Excellent high resolution, 
real time simulation 

Price: $34.95 

Manufacturer: 

IDSI 
P.O. Box 1658 
Las Cruces, NM 88004 

187 

superb. Even after I landed on my head, I 
found myself humming along with it. 
Again , all factors work together to form 
an "atmosphere" about the game. It is as 
if it were a cartoon rather than a com
puter representation. It works very 
nicely. 

It was easy enough for me to predict 
that my bevy of kid playsters would go 
nuts for Clowns and Balloons. They liked 
it nearly as much as I do. Fortunately, 
they belong to someone else, so I can 
play to my heart's content after they have 
gone home to eat dinner. Three levels of 
difficulty keep the action at a "breakneck" 
pace. D 

from top, bottom, cen ter, left or righ t and 
combinations thereof. Pressing the paddle 
fire button shoots the ball. This can be 
done at any time, with the speed and 
english defaulting to your last selections. 

When the shot is off, the realism begins. 
The balls make a pleasant clicking sound 
as they hit each other, and a sunk ball 
makes kind of a gulping noise, as if it had 
been eaten. The physics of collision have 
been reproduced very well, and shots 
must be aimed and hit properly. In the 
case of a scratch, the cue is returned for 
positioning. The program questions the 
user if any balls sunk during the scratch 
are to be returned, allowing for individual 
tailoring of the rules. 

There are several key-selected features 
in Pool 1.5. A favorite of mine is the 
Repeat Shot. Pressing the R key will 
restore the table to its last condition and 
allow you to change the angle or speed or 
english and try again. In several games 
with one of my cats, I've found this 
feature great for cheating. He doesn't 
know the difference. 

The balls appear either as stripes and 



Pool 1.5 

solids, or with their numbers showing. 
The C (color) key allows the user to 
choose between these two options. The 
ESC key toggles between the game table 
and the menu/scoreboard. The scores for 
all players are kept here, and is updated 
each game so that a tournament of many 
games is possible. Other user-{:ontrolled 
functions include setting the table friction 

Nautilus 

Mike Potter has done it again -this 
time in the guise of Captain Nemo. So 
much goes on in Nautilus it's hard to 
know just where to begin . 

If you are familiar with Protector you 
will be reminded of it when playing 
Nautilus . Many facets of game play are 
similar, including a scrolling "rnicroworld" 
several screens wide, and cities of steel 
and glass. Potter has developed an imag
inative, storytelling style, and it is gaining 
in scope. 

There are two independently scrolling 
screens in Nautilus . The top screen maps 
the progress of Colossus , the destroyer 
that constantly ferries repair teams across 
the microworld sea. It is armed with depth 
charges and heat seeking missiles, and 
can move at high speed. Among other 
dangers, the captain of the Colossus must 
remain wary of helicopter air attack. 

The bottom screen maps the position 
of Nautilus, the malicious, energy-starved 
submarine. The Nautilus is armed with 
unlimited torpedoes, which are very 
handy -for the sea is filled with dangers. 
Besides the depth charges and smart 
missiles dispatched from Colossus, the 
deep is populated by limpet lurkers , 
dastardly and unrelenting smart mines. 
They lock on the course of the Nautilus , 
and maintain pursuit. It takes up to five 
direct torpedo hits to put one out of com
mision. 

The goal of play for the commander of 
the Nautilus is to destroy underwater 
cities. In the cores of these cities reside 
the proto-pods which must be captured 
to replenish the voracious batteries of the 
sub . 

Meanwhile, upstairs, the Colossus trans
ports underwater repair crews to the 
rescue. On its way, it positions itself over 
the Nautilus, and unleashes a deadly mi x 
of missiles and depth charges. It continues 
then to the western shore to drop off its 
crew. The crew will work its way east
ward, repairing destroyed cities as it does. 

and the motion or speed at which the 
balls interact. 

The keyboard commands are a little 
tough to master, and setting up a shot can 
require quite a few keystrokes. It takes 
several trips between the paddles and the 
keyboard before you can shoot. Although 
the high resolution part of the hi-res 

SOFTWARE PROFILE 
Name: Nautilus 

Type: Arcade/strategy wargame 

System: Atari 400/ 800 32K 

Format: Cassette/disk 

Language: Machine 

Summary: Unique and engrossing 
action game 

Price: $29.95 

Manufacturer: 
Synapse Software 
820 Coventry Rd. 
Kensington, CA 94707 

If the Nautilus remains in proximity to a 
city under repair, it will be destroyed. It 
therefore becomes a priority to keep the 
Colossus from ever reaching the western 
shore. 

The captain orders Nautilus to the 
surface, and steers it into shallows where 
there are no smart mines. Here it lies in 
ambush, in hopes of damaging Colossus 
enough to force it back to the eastern 
port. 

The dual screen approach is unique , 
and allows the positions of both ships to 
be depicted simultaneously, even though 
they may be as many as five screens 
removed from one another. Sonar aboard 
each ship indicates the relative position 
of the other. When their sc reen locations 
coincide, the command console flashes 
red. 

The ships can repair themselves as 
many times as necessary, but repairs cost 
precious time. The Nautilus must be 
careful not to so much as graze any solid 
surface -she goes down if she does. This 
makes navigation of the many underwater 
caverns a tricky business. 

Nautilus can be played by two players, 
one at the helm of the Colossus, the other 
of Nautilus, or as a solitaire game, with 
the computer controlling the destroyer. 

188 

graphics is excellent, I find the uniform 
background and table color of red to be 
unattractive . Perhaps a later release of 
Pool 1.5 will include a set-up feature to 
permit trick shots . But overall, the repro
duction of the game of pool is accurate 
and fun . It is a relaxing and enj oyable 
game. 

Length of the game is selectable from 
three to nine minutes. There are nine 
skill leve ls , as well as the option to 
energize energy core transformers, gates 
throughout the sea, making the game 
extremely hazardous. This mode is not 
for beginners .There is a handicapping 
option as well. 

Nautilus is a tour de force. The opening 
music is excellent, and hints at a context 
for the game-the tune is "Volga 
Boatmen." 

The really appealing thing about the 
game, as in its predecessor Protector, is 
the creation of a microworld ; in this case 
an undersea world, full of secret grottos 
and hidden dangers. The fine-scrolling 
graphics capabilities of the Atari are used 
to their fullest potential. Nautilus is 
another must from Synapse Software. 

I do have a complaint, and though it is 
a small one, it is persistent. Allow me to 
appeal not only to Mr. Potter, but to all 
game designers with this plea: please 
include a pause feature in your games! 
Do it with the space bar, the escape key, 
CONTROL-i , SELECT; I don 't care how, 
but please do it. It should be noted that 
the lack of such a feature becomes evi
dent not only when the phone rings, but 
when it comes time for us to take pictures 
of a program for inclusion in a review 
such as this one. 

Pause or no pause , Nautilus is addictive 
and a lot of fun. I recommend it very 
highly. -



Shamus 

In the August 1982 issue , I wrote about 
the burgeoning "arcade adventure" for
mat for Atari games. I spoke specifically 
about Action Quest, a brutally tough but 
very compelling hybrid adventure , calling 
for hand -eye dexterity as well as adven
ture skills. 

Shamus, also from Synapse Software , 
takes another stride in the development 
of the arcade adventure. Make sure you 
have no pressing appointments before 
becoming involved in a round of Shamus. 
Once you get going, you won't want to 
stop for a while . 

The humorous feeling surrounding the 
game provides much of its appeal. Author 
William Mataga first sets the mood, with 
a grand rendition of the theme from the 
old Alfred Hitchcock show. The player is 
then thrust into a complex maze of 32 

SOFTWARE PROFILE 
Name: Shamus 

Type: Arcade adventure 

System: Atari 400/ 800 16K 

Format: Cassette /disk 

Language: Machine 

Summary: Another stride in "arcade 
adventuring" 

Price: 529.95 

Manufacturer: 
Synapse Software 
820 Coventry Rd. 
Kensington, CA 94707 

Miner 2049'er 

rooms , contaInIng some very diabolical 
nemeses. As Shamus, the player must 
penetrate four levels of 32 rooms each, to 
finally destroy the Shadow in the heart of 
his lair. 

Don't hold your breath waiting for the 
completion of this goal. It is bound to 
take you a t least a mon th . You see , 
populating each room are the Shadow's 
henchmen: Whirling Drones, Robo
Droids , and Snap Jumpers. The sole 
pleasure in their lives is to keep you from 
getting near their leader. And they do a 
job of it. You are armed with Ion Shivs, 
and as your opponents are always pre
pared to fight to the death, the action is 
necessarily violent. 

For those of you who have always 
wanted to wear a fedora as a character in 
an Atari game , this is your chance . The 
rakish lid is your most dashing feature. 
I'm not sure, but I think my hat has been 
shot through by more than one Robo
Droid blast. Take that, sweetheart... 

Once in a while during your search you 
will encounter a pulsating question mark, 
the function of which is similar to 
"Chance" in Monopoly. By touching the 
punctuation mark you invite extra points 
and extra lives or ill fortune. I have found 
it hard to resist them in the long run. 

To advance to a higher level, you must 
obtain the correct keys and unlock the 
correct portals. This calls not only for 
keen aim of your weapon , but knowledge 
of the labyrinthian layout of each maze. 
Secret passages abound, and it is quite 
easy to get lost. The bottom of the screen 

Atari Strikes Gold 

Big Five, one of the leading software 
producers for the TRS-80, has in
troduced its first Atari 400/800 arcade 
game, Miner 2049'er. When I heard that 
the folks at Big Five were attempting to 
write an Atari program, I was a bit skep
tical. After all, these guys know the 
TRS-80, not the Atari. After playing 
Miner 2049'er, I realized that my worry 

Owen Linl.ma)'cr is a frequent contributor to 
CreaFi\'e COlJlpuling magazine. 

was for naught-Miner 2049'er promises 
to be one of the most popular Atari pro
grams in any software library. 

Miner 2049'er is written entirely in 
machine language by the pr~sident of 
Big Five, Bill Hogue. The whole pro
gram is crammed into a huge 16K ROM 
cartridge. 

When you first see Miner, you can't 
help making comparisons between it and 
Donkey Kong. Miner 2049'er is similar 
to Nintendo's coin-op game in that they 

189 

reads out a corresponding number for 
each room, and this is the only hint you 
get. I always seem to disorient myself 
right after unlocking a portal. 

Your natural tendency is to shower 
attackers with ion fire. After a few games, 
however, you discover that fewer but 
better aimed shots will nearly always be a 
superior strategy. Keep cool, and if you 
find any bubbling flasks lying around, 
drain them: they will give you new life. 

You will notice a couple of familiar 
tunes recurring throughout the game: one 
is from the old "Dragnet" series, and the 
other , if I remember correctly, is from 
"Get Smart." 

Shamus is a very addictive detective 
game. It will remain in the front of your 
game software collection for some time, I 
guarantee it. Arcade adventuring is an 
emergent and promising gaming category, 
and this program underscores that fact. 

Owen Linzmayer 



Miner 2049'er 

are both multi-level games in which the 
player jumps and scuttles about on a 
building framework. From there on, 
Miner proves to be much more than a 
variation of Donkey Kong. 

Whether you are playing a one- or 
two-player game, your character, 
Bounty Bob, is controlled using one 
standard Atari joystick plugged into jack 
I. To move Bob left, right, up, or down, 
simply point the joystick in the appro
priate direction. To jump straight up, 
press the red fire button. If you want to 
jump from one place to another, you 
must be moving in the direction you 
want to jump when you press the button. 

Whereas Donkey Kong has only four 
screens, Miner has a stupefying ten sepa
rate boards, each with a different sce
nario. In general, the object is to control 
Bounty Bob and "claim" all of the mine 
stations. Whenever you walk along sec
tions of framework in the mine, the 
pieces under your feet will turn solid in 
color. To claim a station and advance to 
the next one, you must fill in every sec
tion of framework. 

Bounty Bob can die in a number of 
ways, the most common of which is to 
run into a mutant organism. These crea
tures roam the mines in hopes of making 
your visit a short one. Falling too great a 
distance will also prove lethal, as will 
miscalculating a jump. 

In addition to the deadly mutant crea
tures, every mine station has specific 
hazards that you must avoid (such as 
pulverizers, explosives, and slides). Scat
tered throughout the mine are various 
articles that have been lost by previous 
expeditions. To grab these objects, sim
ply touch them. Points are awarded, and 

for a short time the mutants will turn 
green. While green, a mutant dies if you 
touch it. 

As if dealing with all of these dangers 
is not enough, poor Bounty Bob must 
also race against time. Located at the 
top center of the screen is the "Miner 
Timer." If this timer reaches zero, Bob 
dies. Should you complete the station be
fore time runs out, you are awarded the 
number of points remaining on the 
timer. 

The limited sound effects are probably 
the weakest part of Miner. That is not to 
say that the audio is poor; it is just not 
up to the current standards for the 
Atari . Let's give a novice Atari pro
grammer a little time to learn some of 
the better tricks for producing exhilarat
ing sound effects. . 

The graphics in the game of Miner are 
detailed and very colorful. To guard 
against repetition, the color of the 
framework changes from station to sta
tion as well as from game to game. One 

SOFTW ARE PROFILE 

Name: Miner 2049'er 
Type: Arcade 
System: Atari 400/800 16K 
Format: ROM cartridge 
Language: Assembly 
Summary: Excellent multi-level game 
Price: $49.95 
Manufacturer: 

Big Five Software 
P.O. Box 9078-185 
Van Nuys: CA 91409 

190 

of the most dazzling visual effects I have 
seen on the Atari is the animation of 
Bounty Bob dematerializing as he 
teleports from platform to platform us
ing the elevators. Miner does not push 
the Atari to its full graphics potential, 
but it more than makes up for that in its 
limitless playability. 

As mentioned earlier, Miner 2049'er 
has ten independent mining stations 
(game boards). The first three sections 
are fairly easy to complete with practice, 
but the game gets much more difficult 
after that. Luckily, Bill sent me a copy 
of Miner that allowed me to "skip" to 
any station I wanted. If I hadn 't received 
this special version of the program, I 
doubt that I would ever have seen what 
lies beyond the fifth station. 

If you are skillful enough to accu
mulate a high score, you can add your 
name to the high score table. Unfortu
nately, the scores disappear when you 
pull the cartridge from the slot. 

A multitude of stations and ever
increasing difficulty make Miner a game 
that is virtually impossible to master. 
Miner 2049'er is a great game-no doubt 
about it. After reviewing Bill Hogue's 
first Atari program, I can't wait to see 
what he comes up with next. 

In late October, plans were being 
finalized with a variety of other manu
facturers to produce versions of Miller 
2049'er for all of the most popular home 
computers and video game systems. 
Look for adaptations of Miner for the 
following: Apple II, TI 99/4, IBM-PC, 
TRS-80, VIC-20, ColecoVision, Atari 
VCS and Atari 5200. 0 



/ 

Part IV 
Disk Drive Tutorial 





Atari DOS 

A disk is a very complex piece of 
hardware. It is a mass storage device; one 
disk contains about twice the data that fit 
into the Atari's read-write-memory at one 
time. In addition , various functions must 
be supported; these include storage of 
disk files, random access of data, formatting 
and copying. All of these are controlled 
by the Disk Operating System; they are 
the "support" routines specific to the disk 
drive and are needed only to run it. 

The Atari has a very sophisticated 
operating system , easily the best in the 
microcomputer market for the price. It is 
called the OS (not DOS - that is for the 
disk alone) and is physically located in 
the OS 10K ROM cartridge of the 800 
and internal to the 400. 

The Atari OS is very flexible and can 
do many unique things because it is "device 
independent." This means that any input/
output device-to-device communications 
are done not to a specific device , but to a 
"unit number." Whatever device is assigned 
to that unit number receives the instructions 
from the operating system. 

For example , let's say that we have 
output going to unit number 2. An example 
might be a checkbook balance. Now if 
that unit number is assigned to device 
"TV screen," the output goes to the screen. 
If the unit number is assigned to the printer, 
the output goes to the printer. The output 
goes to the device to which the unit number 
is assigned. 

This concept of device independent 
input/ output is very consistent with the 
rest of the design philosophy of the Atari. 
For example, colors are not assigned 
directly; rather, a given screen image is 
drawn in a color register number. Whatever 
color is in that color register is then output 
to the screen. 

The ability to reassign devices is ex
tremely useful. Unfortunately, the workings 
of CIO (the Central Input/Output system) 
are a bit beyond the scope of this article. 

Short detour (I warned you): Here's 
one bit of information for advanced users 
that is worth its weight in gold. In order 
to direct all output going to the TV screen 
to the printer, use: 

C346 < A6,EE from the assembler/ editor 
cartridge debugger. 

Screen output can be restored with: 
C346 < A3,F6. 

Let me cite an example. I was debugging 
a game that filled the screen with a graphics 
display . If output appeared on the screen, 
it would disturb that display -a rather 
common problem. By using the above 
modification, I got the debugging/ trace 
output to appear on the printer instead , 
leaving the TV image "intact." 

Back to Atari DOS. The DOS is a set of 
assembly language routines dedicated to 
running the disk drive. They load from 
disk any time the Atari is turned on with 
a disk turned on and connected. They 
are physically located in a file named 
DOS.SYS on the diskette. 

Loading DOS 
These routines are absolutely necessary 

to run the disk drive. If the file named 
DOS.SYS does not exist , is fouled up , or 
otherwise cannot be used, then the disk 
drive can't be used either. The Atari 
discovers on power-up whether a disk is 
present and attempts to load DOS.SYS 
from the plugged-in drive. 

If the disk is blank, or anything else is 
wrong, the message BOOT ERROR ap
pears, and the drive makes an awful 
"s-nn-aaa-rrr-kk" sound. Don't worry; the 
snark is the sound of the disk completely 
resetting its internal functions, the equiv
alent of "if at first you don't succeed ... " 

Okay, what happens after the DOS file 
loads? The Atari takes the disk routines 
and integrates them into its regular oper
ating system. The routines to handle 
specific devices (such as the screen editor, 
cassette, or printer) now have the ability 
to handle the disk. (The DOS will go 
away whenever the Atari is turned off or 
crashed, incidentally.) 

Regrettably, these routines occupy 
roughly 9000 bytes of memory, so you 
lose 9K for other uses. You need DOS to 
access the disk , so if you plan to use the 
disk at any time during the current power
on session , you must load DOS .SYS. This 
is something every Atari disk user has 
done-just turned the machine on , without 
disk, then tried to access the disk. When I 
did this last I typed a program in for half 
an hour, and typed SAVE-nope, couldn't 
do it. 

(If you should get stuck this way , save 
the program to the cassette recorder, power 
up with DOS, and reload it from the 
cassette. The cassette handler is always 
in memory.) 

Now for a little more relevant history. 
Atari has had several DOSes. The "first" 
DOS was dated 9124179, the date that 
shows up when DOS is typed. In this 
version , called DOS 1, the utility functions 
were integrated along with the regular 
operating system functions. When a user 
typed DOS , the utility functions were 
immediately run from memory , and the 
DOS men u popped up onscreen. 

Well, this wasn't a winner, because these 
menu functions occupied about 3000 bytes 
of memory and were only needed when a 
specific disk utility function was required. 
DOS 1 also had other problems and bugs, 

193 

so Atari came out with DOS 2. 
In DOS 2 the utility functions occupied 

a separate file called DUP.SYS. When 
the user typed DOS, the utility routines 
were loaded from DUP.SYS off of the 
disk. They weren't in memory all the 
time. 

There are some minor compatibility 
problems between DOS 1 and 2. Binary 
files won't work between them, as DOS 2 
has a different "header" format , and 
copying is a problem. 

Fortunately, most of the DOS 1 disks 
have disappeared, leaving users with an 
improved operating system which has 
eliminated many of the bugs. Alas, while 
Atari was working on the bugs, they 
"released" several preliminary DOS 2 
versions, called DOS 2.4, 2.5, 2.8, and 
2.S, all of which have bugs in them. Don't 
use them. 

DOS 2.0S is the most bug-free version. 
(Should you find an older version of DOS , 
just re-write the DOS files after powering 
up from a 2.0S disk.) 

One minor problem with the new DOS 
concerned where to load the DUP.SYS 
menu package in memory. The way it 
was set up, a user who went to DOS 
wiped out the lower 6K of memory, 
including any programs (such as Basic) 
stored there. The result? If you had a 
Basic program, went to DOS , and returned 
to the cartridge, your Basic program would 
be gone. 

The solution Atari provided was MEM.
SA V. MEM.SA V is a special file created 
from the DOS menu. When you type DOS 
and a file named MEM.SA V exists , then 
the lower 6K of memory is moved to this 
file before the utility package (DUP.SYS) 
is read in. Hence, a copy of the lower 
6000 bytes exists on disk. When DOS is 
left, the MEM.SA V file is read in, restoring 
memory to what it was. The process can 
be summed up as follows: 

1. User enters a program into memory. 
including the 3000 bytes "shared" with 
DOS. 

2. User types DOS. 
3. Lower 6000 bytes of memory are 

copied to MEM.SA Von the disk. 
4. The utility package (DUP.SYS) is 

read into the lower 6000 bytes, destroying 
the program data there. 

5. User exits DOS. 
6. MEM.SA V is read back in, restoring 

the lower 6000 bytes, and the user can 
pick up where he left off. 

The process of reading and writing to 
disk is quite slow, as are all operations 
with the Atari drives. For this reason I 
rarely use MEM.SA V; I just save whatever 



Atari DOS 

I'm doing to disk first , go to DOS , then 
recover it from disk later. 

Another Sidetrack 
Speaking of disk speed, new drives from 

other manufacturers are becoming avail
able for the Atari. As a general rule, if the 
drive uses the serial I/O cable to attach 
to the Atari , it will run as slowly as the 
Atari disk ; this cable is the bottleneck. 

When the Atari writes something to 
disk, it normally re-reads the data written 
to disk immediately and compares what it 
finds there with what should have been 
written. This is a safety feature in case 
the disk doesn't write correctly. Alas, this 
slows down the disk drive to one write 
operation every 115 second , a very, very, 
slow speed. If you wish to cancel this 
read-after-write process, do this: 

1. Power up with DOS 2 into Basic. 
2. Type POKE 1913,80 
3. Go to DOS and select H: Write DOS 

files. 
The data at location 1913 determines 

what sort of write the disk drive does: 
read-after-write (87), or write alone (80). 
Next time you write to disk, you will notice 
an immediate increase in the write speed. 

In all fairness, I have never once gotten 
the error message that means the read
after-write failed. Some of my associates 
have , but only on defective disk drives 
that gave numerous other errors. In my 
opinion, the write with no verify is the 
way to go, as disk operations are quite 
reliable. The time spent waiting for the 
Atari to verify data just isn't worth it. 

The DOS Menu 
Okay, so we have gone to DOS and are 

now in the DOS menu. Let's look it over. 
The top line identifies the DOS and 

DOS 2.0S. The S means "single density" 
and refers to the amount of data written 
on a particular disk. Atari was going to 
offer a disk drive called the 815, which 
was a "double-density dual disk drive." 
For various depressing reasons the 815 
was cancelled, so the double-density 
operating system, called DOS 2.00 , was 
never released. 

Next , there's the copyright line. Then, 
the menu options begin. Let's take them 
in order. 

A. Disk Directory: Data on Atari DOS 
disks is organized into individual files. 
These files have names of eight characters 
with an optional three-character extender; 
e.g. FILE.ABC, PROGRAM.BAS , and so 
on. Note that I said Atari DOS; there are 
other disk operating systems avai lable 
which do not use Atari DOS. For instance, 
Forth doesn't generally use the Atari DOS 
at a ll , and an attempt to read the directory 

on a Forth disk is usually futile . 
The directory is a list of the files , by 

name , which exist on the disk. Option 
"A" is used to read this list. 

When you press A, the Atari asks, 
SEARCH SPEC, LIST FILE? 

This means you can enter one of two 
items. The first is a "search specification." 
You can search for all files, in which case 
a list of everything on disk is produced. 
or for a specific group of files. This specific 
search is accomplished with "wild cards." 
A wild card is a special character which 
Atari DOS accepts as "any character." 
The character "?" is used for a wild card 
for an individual character , and "*,, is 
used to indicate any characters from that 
position on. For instance, a search spec 
of *.* will find all files on the disk . 
*.BAS will find all files with the extension 
.BAS. JONES *.* will find any files whose 
first five characters are JONES . ??XYZ? 
will find AAXYZJ, ZZXYZD, and 
AIXYZR. 

The second spec tells where to write 
the directory listing. Leaving it blank means 
write it to the TV screen, also known as 
"Device E:" (where the E stands for Editor). 
Here we get into the I/O system, which 
we have discussed previously. Devices on 
the Atari are identified by a letter and a 
colon. Here is a list of some of them: 

K: Keyboard. Input only . 
E: Screen Editor(TV). Input-Output. 
S: Screen output. Output on ly. 
C: Cassette unit. I/O. 
P: Printer. Output only. 
Dn:name.ext Disk drive #n , file name 

"name.ext." 
The directory option asks where you 

want to write the listing. You can select 
any of these devices for output but the 
keyboard (K:). 

You could use P: (printer) , D:filename 
(some disk file), and so on. Note the power 
of the I/O system: you can write the listing 
anywhere, including devices or file names. 
For example, writing a listing to a printer 
is handy for a reference. Writing it to disk 
might be nice for a directory program. 
Writing it to the TV is good for quick 
lookups. This is a powerful unit. 

The directory will then proceed. Physi
cally the directory is located in the middle 
of the disk . This is because the Atari 
spends so much time looking at the 
directory that it was felt that the middle 
would be a good place; it is equidistant 
from everywhere else , saving lookup 
time. 

B. Run Cartridge. This option transfers 
control to the plugged-in cartridge. If you 
don 't have one , the Atari will figure it out 
and let you know it knows. This is how 
you get back to Basic, the ASM/EDIT 

194 

cartridge, and others from DOS. Languages 
which are "disk based" (such as Microsoft 
Basic) do not use this option. There are 
different ways of getting to and from DOS 
using non-cartridge-based languages . 

C. Copy file. This option allows you to 
copy from any device or disk file to any 
other device or disk file . It is extremely 
powerful. 

For instance, if we copy from E: ,D:TEST 
whatever we then type on the screen will 
be sent to the disk file TEST. (Exit using 
the Break key.) Bang, an instant crude 
word processor! We can copy directly 
from the screen to the printer (E:,P:), 
from the keyboard to the screen, etc. We 
can display a file on disk by using D:file
name.ext,E:. (This includes Basic files. 
although they are stored in a crunched 
format and will look strange when listed .) 

Finally, we can copy from disk to disk 
using this option: D:FROM,D:TO will copy 
all data in the disk file FROM to the file 
TO . Also, we can copy from disk to disk : 
Dl:FROM,D2:TO will copy from FROM 
on disk #1 to TO on disk #2. The Atari 
can support up to four disk drives , 01-
D4. The drive is identified by the two 
switches in the back of the disk unit; they 
can be set in four positions, and the position 
in which they are set determines the drive 
number of the disk. 

Another short detour: If you can't get 
your system to "wake up ," check these 
switches. The Atari wi ll be looking for 
the disk #1 to get DOS.SYS from, and if 
no disk currently online has its switches 
set to 1, the Atari won't find it. This leads 
to all sorts of strange things. So especially 
if you have a multi-disk system , check 
this if you get weird errors . 

You cannot use the Copy option on a 
single disk system to transfer files between 
separate diskettes. Use the 0 option to do 
this. 0 reads the entire file into memory 
then prompts you to change diskettes. 
Then, it writes the file out to disk. 

COpy uses as much memory as possible 
as an intermediate storage place. If you 
copy a disk file to the screen , you will 
note that the entire file is read off disk 
before it begins copying to the screen. 
This is the nature of Atari I/O. You will 
also see that when copying to the printer. 
you must terminate the input operation 
before the output begins. 

This causes a problem when MEM.SA V 
is used. When MEM.SA V is act ive , the 
Atari assumes that all memory o utside 
the 6K bytes copied on disk is inviolate. 
On a copy, it will ask you whether to use 
the rest of memory to speed things up. 

If you don't you will have a very slow 
copy, as only a small in termedia te area in 
memory can be used. This also keeps 



memory intact for you to re turn to after 
you're done with DOS. Should you elec t 
to allow Copy to use the rest of memory, 
MEM.SA V is invalidated and you lose 
whateve r is on disk. The choice is yo urs. 
(The Atari will warn you that a "Yes" to 
its prompt will invalidate MEM.SA V.) 

Warning: Files wi th ".SYS" as the 
ex tension will not copy using the wildcard 
options . While this doesn't really matter 
with DOS or DUP.SYS , as they may be 
written with the H option , it is c ritical 
with AUTORUN.SYS files . Be sure to 
force a copy of the AUTORUN.SYS fi le 
if yo u copy a disk this way. 

D. Delete File. Th is is an option to 
allow yo u to delete a fil e from d isk. [f you 
use a wildcard. yo u can get rid of a whole 
group of files. For example . to delete every 
fil e with an extension .ASM. use: *.ASM 
at the prompt. 

Delete will ask you if you wish to delete 
each individual fil e by printing the file 
name. then asking DELETE? Y IN. If you 
don'( want it to verify that you want the 
fil e deleted. add a I N at the end of the file 
specifi cat ion . For instance. to dele te all 
files with SAM as the first three characters 
and not get a prompt. use SAM*.* / N . 
The DOS will then de lete every thing it 
finds with those spec ifications without 
ask ing again if you rea lly wa nt to do it. 

Dele te *.* / N will erase an entire disk. 
E. Rename file . This option allows you 

to rename a disk fil e. Yo u enter the first 
fil e name, then the second. HERMAN , 
FRED will rename HERMAN to FRED 
on disk . Wild ca rds can also be used, but 
be ca reful. 

This option also allows you to create 
two files with the same name -a significant 
pro blem. If yo u try to access the fil e by 
its name. the first occ urrence wi ll get 
prio rity . and yo u will have lost the second 
fil e for all practical purposes. But delete 
or rename will ge t both occ urrences of 
the fil e . alas. What to do'! 

Try this. Turn up the TV sound. Rename 
the fil e some thing else. and listen. Imme
dia tely after hea ring the first c lunk o f a 
disk write (not a beep. that's a disk read) . 
pop the drive door open . This will prevent 
the Atari from renaming the second file, 
whic h would be the second clunk. Do this 
at yo ur own risk -you could also trash 
the direc tory and lose the disk if yo ur 
timing is wrong. 

An alternative is to use a Disk Fixer 
program , such as the one available fro m 
APX, to alter the direc tory. 

F. Lock file. A file that is locked may 
not be altered or deleted. This is a safe ty 
fea ture; I lock the editor and assembler 
files on my disks that have them. This 
prevents something like a wildcard dele te 

from destroy ing them or something in 
DOS from accidentally modifying or 
destroying them. 

G. Unlock file . The reverse of F. 
H. Write DOS files . This option writes 

DOS .SYS and DUP.SYS on the c urrent 
disk. (You are asked which drive number 
to write the files to.) Remember, you must 
have the DOS files on a disk to be able to 
power up using that disk, for the disk 
operating system must load at that time . 

I generally use this option after modify
ing DOS (let's say with the "fast write" 
POKE) or after form atting a disk. By the 
way, old DOS files on the disk will be 
deleted. And in answer to a question I 
received, the DOS files do not need to be 
any place in particular on the disk. They 
can be put in any time. 

I. Format disk. This option takes a new 
or used disk and completely blanks it out , 
putting "formatting information" onto the 
disk. It also sets up a blank directory and 
other information needed by the Atari to 
access the disk. And here we go o n a 
short detour: 

Fast Format Chips 
A disk is laid out with the sectors in 

which data is saved in a particular o rder. 
As the disk spins at 290 rpm these sec tors 
are accessed one by one. Now, depending 
on how the sectors are laid out, the Ata ri 
can access them more quickly. Atari has 
two popular sector layouts - the Band C 
layouts. The B layout is the original and 
is quite slow; there is a discernible pause 
between disk reads (beep - pause - beep 
pause-beep, where each beep is one 
read.) 

The C format is about 20% quicker 
than the B format , because the disk is laid 
out more efficiently. Disks that come from 
Atari use the C layout. 

When you format a disk, the way your 
disk was set up a t the factory de termines 
whether it uses the B or C layout. Most 
drives today have the B layout, but all 
new drives shipped from Atari have the C 
layout. Thus , disks formatted on new 
drives (using the C layout ) will do every
thing 20% more quickly than disks for
matted on B drives. 

By the way, if you reformat a disk , the 
new format will be the one laid o ut by 
your disk drive , so don't reformat Atari
formatted disks. Instead , if you want to 
dele te old infoma tion from them, use 
Delete *.*. 

A group of users in Chicago modified 
the B layout to what is called the Chicago 
layout. This layout is 30% quicker than 
the B format and indeed is 10% quicker 
than Atari's own C layout. However, a 
price is paid : the disks become rather 
sensitive. 

195 

Atari disk drives have difficulty main
taining a given rpm , which causes several 
problems, including lots of read-write 
errors. If you install the Chicago format, 
and your disk spins at more than 288 rpm , 
it will skip sectors, doing a complete spin 
between reads. This is quite slow and has 
a distinctive "Beepbeepbeep (pause) beep
beepbeep (pause)" sound. If you get this, 
check your disk. 

One other thing about the Chicago 
chips is that they may be illegal. Atari 
copyrighted the B format in the ROMs 
used in the drive. It would annoy them 
considerably if users didn't buy the new C 
chips , complete with installation charge, 
but used the Chicago chips instead. 

The legal question about copying the 
chips, then modifying them, is not one I 
would care to test. Yet many users have 
installed Chicago chips in their drives, 
and some groups even hold swap parties 
where hardware experts install Chicago 
chips into other people's drives. Someone 
with pretty good hardware knowledge and 
an EPROM copier is needed even to 
make the Chicago chips from the avail
able instructions (which have shown up 
in many newsletters), so this choice may 
not even be available to you. 

Yet another consideration is that the 
difference between the Band C chips 
available from Atari does not consist 
solely of the formatting change. The chips 
are much different , and supposedly other 
improvements have been incorporated 
into the C revision. You may be missing 
out on these improvements if you install a 
Chicago chip. 

Another goodie installed by Atari on 
later drives is a piece of hardware called 
a "data separator." The story is this: Atari 
uses a floppy disk controller chip from 
Western Digital called the 1771. The 177 1 
is a fine chip , but has a weakness in 
clarifying data read from the disk , a 
process called data separation. Even the 
ma nufacturer's own literature tells the 
user no t to rely on the interna l data 
separation of the chip. 

So what did Atari do? They didn 't use 
an external separator. Result: bad disk 
reliability and lots of errors. Soon the 
more sophisticated users of Atari drives 
figured out the problem and began instal
ling TRS-80 data separators in their Atari 
drives. 

It seems that the makers of the TRS-80 
had done the same thing (not used an 
external separator) and that TRS-80 disks 
had very poor reliability as a result. So 
o utside companies began supplying data 
separators for the TRS-80. Since this 
machine also used the 1771 con troller, 



Atari DOS 

the data separators for the TRS-80 fit the 
Atari. 

I installed one some time ago and have 
been very pleased with the increase in 
reliability. The cost is $29.95 from one 
source, Percom, which now supplies kits 
for the Atari. 

You need a soldering iron for two very 
minor solder touch ups and a phillips head 
screwdriver to remove the cover of the 
machine. While the modification will 
violate the Atari warranty, it is worth it. 

I recommend it to anyone who doesn't 
have the Atari data separator, which is 
everyone with a drive made before 
January 1, 1982. Percom can be reached 
at (214) 340-7081. You should call for 
new pricing and availability information. 

Depending on your local dealer, parts 
availability, and other factors, you may 
be eligible for a deal whereby you send 
your drive in for installation of a C 
formatting chip and an Atari data separa
tor and a general check-up. The Atari 
separator seems to be pretty good, so you 
may want to look into this option to 
upgrade your drive. 

A late breaking rumor is that Atari has 
released yet another add-on board to help 
control the drive. 1 don 't know whether 
this is true , but it sounds likely; drive rpm 
has caused many headaches. 

DOS Menu Again 
1. Duplicate Disk. (I know, you thought 

I'd never get back to the DOS menu. 
Right?) This option allows you to dupli
cate an Atari disk completely. What it 
does is read each sector from 1 to 720. 

The user can either duplicate from 
drive to drive or with one drive by swap
ping disks. Use "1,1" at the prompt to 
duplicate a disk with one drive, and 

differing numbers to duplicate between 
drives. 

Duplicate Disk is more or less identical 
to a copy using *.*. However, the disk 
duplication is complete, so errors in the 
disk will also be duplicated. Should you 
get an ERROR 14 or 164 on the disk, 
Duplicate Disk may not work , and you 
should copy individual files from disk to 
disk to recover what can be recovered . A 
discussion of sector chaining and what 
causes an Error 164 is beyond the scope 
of this article, but can be found in the 
April and May 1982 issues. 

K. Binary Save. This is an option for 
the advanced user which saves a given 
area of memory to disk as a binary file. It 
is an assembly language entity used by 
the machine. Since this is a beginner's 
guide, and hexadecimal input is required, 
I'll leave it at that. See the DOS 2 manual 
for a lengthy, painful disussion of what 
happens. 

L. Binary Load. This is an option to 
load a binary file from disk into memory 
and to execute it directly. Beginners may 
use it, although they may not understand 
what is going on. The Macro-Assembler/ 
Editor is only accessible by loading it 
from a binary file, for instance . And 
Microsoft Basic is just another binary load 
file . (Think of a cartridge as a binary load 
frozen into the cartridge which appears 
in memory when you plug the cartridge 
in, and a disk load as data that appears in 
memory loaded from disk. This will give 
you an idea as to how the two relate.) 
And no , you can 't copy a cartridge using 
the Binary Save option-Atari DOS 
checks for this to prevent people pirating 
the cartridges. 

M. Run at address. Again, this is an 
advanced-user-only option. It enables 

Atari Diskfile Tutorial - Part I 

Many new computer owners are anx
ious to learn how to write their own useful 
programs. After reading the literature 
packed with the machine, the new owner 

Jerry White, 18 Hickory Lane, Levittown, NY 
11756. 

is often overwhelmed. Realizing that one 
does not learn any programming language 
overnight, a seemingly endless period of 
trial and error usually follows . The 
"hacker" is often seen burning the mid
night oil and argui ng with a defenseless 
TV or monitor. 

196 

DOS to jump directly into a program 
loaded in memory. It is handy for ad
vanced users who want to run programs 
without a cartridge, but not so helpful for 
beginners. Again, knowledge of hexadeci
mal is required. 

N. Create MEM.SAV. This is used to 
create the initial MEM.SA V file. To 
eliminate it, use the Delete option. You 
cannot create MEM.SAV any other way, 
although a disk that is Duplicated will 
have the MEM.SAV on the new copy if 
the FROM disk had it. 

O. Duplicate file. This is used to copy a 
file from one disk to another without using 
two drives. Wildcards can be used to copy 
an entire disk . 

Disk drives are relatively high-speed 
mass storage devices. Alas, the 5 1/4" 
mechanisms represent a tradeoff between 
reliability and cost. The 8" drives, which 
are more reliable , also cost much , much 
more. Atari probably couldn't market an 
8" drive for less than 5900; so they went 
with the 5 1/4" mechanism and enabled 
many more to have disk drives. It was a 
good tradeoff. 

Unfortunately, the way in which Atari 
designed their drives is developing into a 
controversy. The number one topic of 
conversation in many user's groups seems 
to be peeves about Atari disk drives. The 
drives are neither reliable nor fast-even 
compared to the rest of the industry. 
Apple disk drives, for example, run up to 
20 times faster. 

Something will undoubtedly be done; 
Atari has not been deaf to the complaints. 
For the moment, they have issued several 
patches to the drives-data separators, 
rpm fixes- but they may not be able to 
correct what might be simply a bad 
design. 

See you next time! D 

Jerry White 

If he perseveres long enough, reason
ably simple programs are written. The 
new programmer is now ready for bigger 
and better things. 

Assuming he has a disk drive , our 
"hacker" gains experience with DOS and 
the loading and saving of programs. Now 



he is ready to write a database program. 
The datafile may consist of a simple list 

of record albums for a start, to be fol
lowed by the inevitable Personal Finance 
System. If you are at this point in your 
programming career, or think you might 
be in the near future, read on. 

Start with something very simple. Don't 
try to write that financial package yet. 
There is much to learn first about file 
structure and I/O. I/O stands for Input/ 
Output. Input is data being read by a 
program. Output is data being created by 
a program. A file consists of one or more 
records, and a record is an item within a 
file. Records may be broken down further 
into fields. We will be using simple rec
ords containing a single 20-character field 
as our record, and create a sample 10-
record datafile. 

To understand data processing tech
niques, it is often easier to grasp reality 
than it is to learn by reading. I have found 
that doing is the best way to learn, and 
that Atari Basic can be easy to understand 
if it is explained in English. 

Atari Basic allows variable names of 
any length , plus REM or remark state
ments. Remarks or comments within a 
program help identify routines and 
explain exactly what the program is 
doing. 

Meaningful variable names also make 
program reading much easier. For exam
ple, the sample Diskfile program uses the 
variable RECNUM to store the current 
total of records. RECNUM is an abbrevi
ation I used to mean record number. So 
why didn't I use the variable RECORD
NUMBER you ask? RECNUM is a com
promise between that 12-letter name and 
the other extreme which could have been 
R. 

The RECNUM variable is used often. 
The tradeoff is readability against the 
programmer's keystrokes and sometimes 
program efficiency . If R is used instead of 
RECORDNUMBER, and that variable is 
used ten times , using R saves 110 key
strokes. In a tutorial program such as this 
one, RECNUM IS the acceptable 
compromise. 

The Diskfile tutorial program demon
strates many of the common functions 
required in a simple database type pro
gram. By using the program and studying 
the program code, you will learn how 
datafiles may be handled in Atari Basic. 
Once you have entered the program and 
corrected any typing errors, run through 
each of the options beginning with num
ber one. 

It is important to understand the termi
nology used here . CREATE means just 
that. In this case it means create from 

o REM FILES (c) 1981 by Jerry White 
1 REM ATARI DISKFILE TUTORIAL DEMO 
2 REM 
100 DIM DRIVE.(3) ,FILE'(12) ,DRIVEFILE'(15) ,RECORD' (10) ,ANSWER' (1) 
110 DIM SECTOR(20),BYTE(20),DIRECTORY'(20).REM DIMENSION STRINGS AND ARRAYS 
111 REM 
120 GRAPHICS OlPO~:E 82,2.POKE 83,39.REM CLEAR SCREEN AND SET MARGINS 
130 POKE 201,5.REM SET PRINT TAB WIDTH TO 5 SPACES 
140 7 .7 "TYPE OPTION NUMBER THEN PRESS RETURN" 
150 7 .7 ,"(1) CREATE A DISK FILE".REM GOTO 1000 
lbO 7 .7 ,"(2) READ A DISK FILE".REM GOTO 2000 
170 7 .7 ,"(3) ADD TO A DISK FILE".REM GOTO 3000 
1807 .7 ,"(4) UPDATE A DIS~: FILE".REM GOTO 4000 
190 7 .7 ,"(5) DISPLAY DISK DIRECTORY".REM GOTO 5000 
200 7 .7 ,"(b) END PROGRAM".REM GOTO 9140 
210 7 .7 ,"YOUR CHOICE",.GOSUB 7000 
220 TRAP 8000. LINE-120.HIGHNUMBERa b. NUMBER-VAL (ANSWER') 
230 IF NUMBER<l OR NUMBER>b THEN GOTO 8000 
240 ON NUMBER GOTO 1000,2000,3000,4000,5000,9140 
250 REM 
1000 LINE-bl00.GOSU£< 7100,TRAP 9100.GRAPHICS 0 
1010 CLOSE *1.0PEN *1,8,0,DRIVEFILE' 
1020 7 .? "CREATING "IDRIVEFILE •• 7 .RECORD.-"12345b7890" 
1030 FOR DEMO-l TO 10 
1040 7 *l,RECORD' 
1050 7 "WR IT I NG RECORD NUMBER ", DEMO 
lObO NEXT DEMO 
1070 7 .7 "10 RECORD DEMO FILE CREATED" 
1080 7 .7 "CLOSING ",DRIVEFILE. 
1090 CLQSE *1 
1100 GOTO bl00 
111() REM 
2000 LINE-bl00.GOSUB 7100.TRAP 9100.GRAPHICS 0 
2010 CLOSE *1.0PEN *2,4,0,DRIVEFILE •• RECNUM-0.LINE-bl00 
2020 INPUT *2,RECORD' 
2030 RECNUM-RECNUM+1 
2040 7 "RECORD NUMBER ",RECNUM. 
2050 7 ,RECORD' 
20bO GOTO 2020 
2070 REM 
3000 LINE-3000.GOSUB 7100.TRAP 9100.GRAPHICS 0 
3010 CLOSE *3.0PEN *3,9,O,DRIVEFILE' 
3020 GRAPHICS 0.7 .7 ,"ADO RECORD(S) ROUTINE." 
3030 7 .7 ,"ENTER 10 CHARACER RECORD" 
3040 7 .7 ,"OR JUST PRESS RETURN TO EXIT".7 .GOSUB bOOO 
3050 RECLEN-LEN(RECORD.).IF RECLEN-O THEN 3200 
30bO IF RECLEN-l0 THEN 3090 
3070 FOR BLAN~:-RECLEN+1 TO 10. RECORD. (LEN (RECORD') +1) _" ". NEXT BLANK 
3090 PRINT *3,RECORD' 
3100 7 .7 "PRESS START TO ENTER ANOTHER RECORD" 
3110 7 .7 "PRESS OPTION FOR OTHER OPTIONS ••• ", 
3120 IF PEEK(53279)-b THEN 3020 
3130 IF PEEK(53279)-3 THEN 3200 
3140 GOTO 3120 
3200 7 .7 .7 ,"ADDING RECORD(Sl TO DISK".CLOSE *3.GOTO 120 
3210 REM 
4000 LINE-4100.GOSUB 7100.TRAP 9100,GRAPHICS 0 
4010 CLOSE *4.0PEN *4,12,0,DRIVEFILE •• LINE-4100 
4020 7 .7 ,,"CREATING INDEX".RECNUM-O 
4030 NOTE *4,SECTOR,BYTE 
4040 RECNUM-RECNUM+l 
4050 SECTOR(RECNUM)-SECTOR.BYTE(RECNUMl-BYTE 
4(lbO INPUT *4, RECORD •• 7 ," RECORD "I RECNUM, RECORD. 
4070 7 ,"SECTOR-",SECTOR,"BYTE-",BYTE 
4080 7 .GOTO 4030 
4100 RECNUM=RECNUM-l 
4110 7 .7 "PRESS START TO UPDATE A RECORD" 
4120 7 .7 "PRESS OPTION FOR OTHER OPTIONS". 
4130 IF PEEK(53279)-b THEN 4200 
4140 IF PEE~:(53279)-3 THEN CLOSE *4.GOTO 120 
4150 GOTO 4130 
4200 GRAPHICS O.REM RANDOM ACCESS RECORD UPDATE ROUTINE 
4210 7 ,7 ,"DIS~:FILE CONTAINS ",RECNUM," RECORDS" 
4220 7 .7 "ENTER RECORD NUMBER TO BE UPDATED", 
4230 TRAP 4220. INPUT UPDATE. TRAP 40000 
4240 UPDATE-INT(UPDATEl.IF UPDATE<l OR UPDATE>RECNUM THEN 4230 
4250 POINT *4,SECTOR(UPDATE),BYTE(UPDATE) 
42bO INPUT *4,RECORD •• 7 17 RECORD. 
4270 7 .7 "ENTER NEW RECORD *",UPDATE,.INPUT RECORD. 
4280 RECLEN-LEN(RECORD.l.IF RECLEN=10 THEN 4300 
4290 FOR BLANK=RECLEN+l TO 10. RECORD. (LEN (RECORD.l +1) z" ". NEXT BLANK 
4300 POINT *4,SECTOR(UPDATE) ,BYTE (UPDATE) 
4310 PRINT *4, RECORD •• 7 .7 ,"RECORD HAS BEEN UPDATED" 
4320 GOTO 4110 

197 



Diskfile Tutorial - Part I 

scratch. Note that the create routine 
actually begins at line 1000 and that line 
1010 contains an OPEN command. The 
number 8 in that command means write 
only. If a file is opened using this variable , 
and a file with the exact same name is 
found on your diskette, the old file will be 
deleted automatically. 

Using option two , a file is read from 
disk and displayed on the screen. This 
does not in any way alter the disk file. 

Option three is used to ADD data to an 
existing disk file only. The term APPEND 
is often used in this case. In plain English, 
the term APPEND means, "add to the 
end of this file. " 

Option four is used to UPDATE the 
records of an existing file. This means 
you will alter, correct, or change a record . 
This procedure is a bit more complicated 
than the others since we do not know in 
advance which record the user may 
choose to update . The technique used in 
this demo program is known as Random 
Access Updating. An index consisting of 
SECTOR and BYTE locations is created 
and stored in an array . This gives us the 
exact spot at which each record begins . 

Since we are using fixed length records 
of 20 characters each , we can read a 
specific record into a string, change it in 
the string, then rewrite the string onto the 
disk . This becomes a real time saver when 
many records must be updated in a large 
disk file. 

Option five is used to READ and dis
play a specific file called the 
DIRECTORY FILE. This DOS-generated 
file contains the table of contents of your 
diskette. This file is also known as the 
VTOC or Volume Table Of Contents. 

4330 REM 
5000 GRAPHICS O.POKE 201,10.7 .7, DISK DIRECTORy".7 .TRAP 9100 
5010 CLOSE 115.0PEN 115,6,0,"D.*.*" .• REM OPEN DISK DIRECTORY FOR ALL ENTRIES 
5020 LINE-6100 
5030 INPUT 115,DIRECTORYS 
5040 7 ,DIRECTORY. 
5050 GOTO 5030 
5060 REM 
6000 RECORDS-"".POKE 764,255.REM RECORD STRING AND LAST KEY PRESSED-NULL 
6010 INPUT RECORDS. RETURN 
6020 REM 
6100 FOR FILE-I TO 5.CLOSE IIFILE.NEXT FILE. REM CLOSE ALL FILES 
6110 POKE 201,5.7.7 ,"PRESS RETURN FOR OPTIONS", 
6120 GOSUB 7000,GOTO 120.REM PAUSE TO READ SCREEN THEN GO TO OPTIONS 
6130 REM 
7000 ANSWERS·''''. POKE 764,255. INPUT ANSWERS. RETURN • REM 1 CHARACTER INPUT 
7010 REM 
7100 GRAPHICS O.REM DRIVE NUMBER AND FILENAME INPUT ROUTINE 
7110 7 .7 "TYPE DISK DRIVE NUMBER (1-4)",.HIGHNUMBER-4.GOSUB 7000 
7120 LINE=7110.TRAP 8000.NUMBER-VAL(ANSWERS).TRAP 9100 
7130 IF NUMBER<1 OR NUMBER>4 THEN 8000 
7140 DR IVES-"D". DRIVES (LEN <DRIVES) +1) =ANSWERS 
7150 DRIVES(LEN<DRIVES)+1)-"." 
7200 7 17 "TYPE FILE NAME",. INPUT FILES.IF LEN(FILES)-O THEN 7200 
7210 DRIVEFILES~DRIVES 
7220 DRIVEFILES(LEN(DRIVEFILE.)+I)=FILE •• RETURN 
7230 REM 
8000 7 .7 "PLEASE TYPE A NUMBER FROM 1 THRU ",HIGHNUMBER.REM ERROR ROUTINE 
8010 GOSUB 9000. GOTO LI NE, REM GO BACK TO LI NE NUMBER (LI NE) 
9000 7 CHR.(253).REM RING ERROR BELL 
9010 FOR COUNT=1 TO 300.NEXT COUNT,RETURN 
9020 REM 
9100 IF PEE~:(195)~136 THEN GO TO LINE. REM ERROR WAS END OF FILE 
9110 REM DISPLAY ERROR NUMBER AND LINE AT WHICH ERROR OCCURRED THEN END 
91207.7" ERROR "!PEE~:(195)," AT LINE ",PEE~:(186)+PEEK(187)*256 

9130 LIST PEEK(186)+PEEK(187) *256. GOSUB 9000 
9140 TRAP 40000.END .REM ELIMINATE ANY PREVIOUSLY SET TRAP AND END PROGRAM 

For display only, this routine does the 
same thing as DOS option A. 

Although some error trapping has been 
built in, many possible error conditions 
are not corrected or fully explained by 
this program. Error trapping and human 
engineering account for a great deal of 
planning and program code. This is not a 
cop out on my part. I plan to cover this 
subject in a future article. The point here 

is to provide an example of diskfile 
handling . Accounting for all possible 
errors could easily double the size of the 
program. 

That 's about it for now. I suggest you 
use my program as is, then experiment by 
making minor changes and noting the 
results. When you 're ready to write your 
own diskfile handling program. feel free 
to use these routines. 0 

Atari Diskfile Tutorial - Part II 

For those of you who have read and 
been entertained by the discussion of the 
Atari disk in the Basic Reference Manual, 
this article will let you in on what is really 
going on. It is a ground level look at how 
the disk works and what the Atari does 
with it. 

The information is quite useful and lets 
you access the disk more efficiently in 
many applications, as well as understand 
how Basic and DOS work with the disk at 
the lowest leve l. 

This article, believe it o r not, presented 
its authors with a real moral dilemma. 

198 

Why? The information presented here can 
be used to copy disks that without this 
information are uncopyable. (Mind you , 
this information is also freely available in 
the Atari O.S. manual , if you can understand 
it.) 

There is a horrendous software piracy 



problem in this coun try. Consider the effect 
on the record industry if every time a 
person bought a cassette tape , he made 
ten cassette copies of it and gave them to 
his friends. This is exactly what is happening 
in the computer industry. (Indeed , the 
record companies have come out strongly 
against the sales of blank tapes recently 
and will no longer support ads for those 
products, for just this reason). 

Immediately after a new program appears 
on the market, it is copied . The copier 
then distributes copies to friends, trades 
them for copies of other programs, and so 
on. And the writer of the software receives 
no royalties from the copies of his program. 

There are ways of making disks uncopy
able . This seems like an ideal solution 
until you realize that a diskette can be 
destroyed . A phone can ring near it and 
erase it; a cat can use it for a scratching 
post (our cat, Atari , tried this trick once), 
and so on. 

If a user is depending on the disk , and it 
quits working, then he is in trouble. For 
this reason the practice of "backing up," 
or making multiple copies of a disk , was 
started . Too many users had lost their 
only copies of badly needed material. 

It's a good idea ; I keep a minimum of 
two copies of everything on disk, so if I 
lose one, I still have what I need. And it 
has paid off; many times I have had to go 
to the backup copy when the original died 
for some reason. I don't know why , but I 
seem to lose an amazing number of disk 
files-error 144, error 164, and so on. 

And if a manufacturer has made his disk 
uncopyable , you can't back it up. If the 
disk becomes unusable , you're out of luck. 

The software industry has been debating 
this problem for ages. The Apple, in 
particular, has been the subject of con
troversy, with some manufacturers selling 
programs written for the express purpose 
of copying "copy-protected" disks. In their 
literature they describe how backup copies 
are necessary, and thereby justify the 
purchase and use of their programs. But 
they know, and everyone else knows, that 
these programs are used to rip off an 
enormous amount of copy-protected soft
ware . 

Copy Programs 
One program in particular, Locksmith , 

gave me a good laugh. Locksmith is an 
Apple program written specifically to copy 
disks that are copy-protected, and has 
sections to handle all of the latest protection 
techniques. It has caused a great deal of 
con troversy. 

In the Locksmith manual, the writers 
explain the need for backup copies, how 
disks can be erased, and so on, and condemn 

manufacturers for copy-protecting disks 
for this reason. Then , after going to great 
lengths to point out that Locksmith is for 
users to make backup copies of programs, 
the manual points out that Locksmith cannot 
make copies of itself. 

In other words , they know what's going 
on-who's kidding whom'? They even 
maintain a database on The Source which 
tells how to copy many of the copy
protected Apple programs using Locksmith. 

Justice has been served , and there are 
now many , many bootleg copies of Lock
smith floating around . As Scott Adams 
might say , "Yoho, and Jolly Roger. " 

Well, Atari users are in the same boat; 
things just haven't escalated quite that 
far. .. yet. The Atari disk is a different animal 
from the Apple disk . An Apple copy 
program , for instance , is an incredibly 
complex machine language construction , 
as the Apple CPU controls the disk directly. 

The Atari is different; a copy program 
is very simple. And some companies are 
using the fact that most people don't know 
how easy it is to copy an Atari disk to sell 
copy programs for fairly outrageous 
amounts. After all , to a user experienced 
with Apples , the price seems fair. 

Frankly , they are a complete ripoff for 
the price. I do not feel that forty-odd dol
lars-the cost of a typical Atari disk-cloner 
program - is a fair price for twen ty-odd 
lines of Basic code. 

So much for the copy program makers. 
Now how about the poor software manu
facturer? What do they do , now that I've 
revealed How To Rip Off Atari Disks? 
Send me letter bombs'? 

For the manufacturer's sake, I'll present 
a few of the latest techniques in copy 
protection-which the information pre
sented here will now allow someone to 
copy. And there is no escalation possible; 
i.e. , you won't be able to figure out a way 
to copy disks protected with this scheme. 
There is no way, using Atari hardware, to 
write a program to copy these disks-period. 
In this way, the word on how to make 
uncopyable disks will be spread, as will 
the word on how overpriced (for what 
they are) the Atari disk copy programs 
are . 

Yes, there are some old copy protection 
schemes, which we'll discuss, that this 
information will allow someone to get 
around. These schemes don't work against 
the average pirate'S copy programs and 
have not for some time ; the disk information 
discussed here is old news to your average 
copy enthusiast. 

I seriously doubt that anyone will be 
hurt by this information ; if you are going 
to copy protect a disk, then you might as 
well use the techniques I will present which 

199 

make it truly uncopyable, rather than the 
older ones which the copy programs can 
duplicate with no difficulty. 

Enough philosophy. Let's learn about 
the disk. 

The Disk 
Take a disk and look at it. Inside that 

envelope (sleeve) there is a circular piece 
of very thin plastic. On that plastic is the 
same material of which cassette tapes are 
made: various magnetic substances. 

There are 40 "tracks" on the disk. Think 
of the circular grooves in a record and 
you'll get the idea of what a track is. There 
are 40 concentric circles on the disk and 
each of these tracks is divided into 18 
"sectors." The division is done by pie-slicing 
the track into 18 contiguous segments. So 
we have 40 tracks with 18 sectors per 
track, or 720 sectors. 

Atari disks are set up to hold 128 bytes 
of data (a byte , for you beginners , is one 
character) per sector. In other words, there 
are 720 x 128 bytes of data on an Atari 
disk, or 92,160 bytes. 

To access a given sector of 128 bytes, 
that sector must be in the visible portion 
of the disk (the window cut into the disk 
sleeve), and the read-write head must move 
in or out until it's on the right track number. 
It then reads the sector by examining 
magnetic fields written to the disk surface . 

Please Note that the actual recording 
surface is the back, not the front, side of 
the disk. Most people set disks down with 
the label up, which means the surface that 
the data is recorded on is being rubbed in 
the dust and dirt below. Also be very careful 
not to touch the backside of the disk in the 
exposed portion. 

The Atari talks to the disk over the 
"serial I/O bus cable." This is the cable 
you daisy chain from device to device. 
Now here's the secret of the Atari disk: 
The disk drive is intelligent. It contains a 
6507 microprocessor, a little brother to 
the 6502 in the Atari itself, that is still 
capable of quite a lot. It also contains 256 
bytes of RAM (read-write memory), and 
2048 bytes of ROM (read-only-memory). 
In short, the disk drive has a complete 
computer of its own. (For you hardware 
buffs, there are 128 on the PIA-like chip). 
How is this different, and why is this good? 

On the Apple, the disk drive is "dumb." 
The main computer must tell the disk head 
to move to here , the disk to spin to there, 
and tell the head what information to write. 
This neatly ties the computer up while the 
disk is running. 

Apple has a standard scheme for storing 
data , a "standard format," and if you use 
the Apple routines to read/ write data , you'll 
stay in that format. Alas, that format allows 



Diskfile Tutorial - Part II 

your disk to be copyable , so people have 
modified the Apple disk routines to make 
custom weird formats, that cannot be read 
by copy programs. (And then other folks 
have written programs, such as Locksmith , 
to read "uncopyable disks" and then other 
weirder formats were developed , etc. It's 
a little like the arms race .) 

On the Atari , the two computers work 
with each other. There are a net total of 
five, count them, five commands that pass 
between them. Since the 6507 in the disk 
drive is helping do the work , the Atari's 
main processor doesn't have to fiddle around 
with controlling the disk, and thus can be 
doing something else at the same time the 
disk is running . There are no other com
mands and the disk drive 6507 will ignore 
any but the five we'll discuss. 

Best of all, since the Atari disk controller 
is "off limits" and may not be programmed, 
as its program is in read-only memory inside 
the disk and is not modifiable, you cannot 
develop strange disk formats. There is one, 
and only one, Atari disk format. Hence 
we'll never get into one of these Apple 
disk escalations, for we cannot control the 
disk that exactly. Believe me, after viewing 
the present Apple disk copy mess, we're 
not missing much. 

An ordinary Atari user accesses the disk 
through what is known as the File Manage
ment System or FMS. The user never sees 
the lowest level of disk commands (the 
five mentioned) because FMS handles all 
that for him. Included in FMS is the ability 
to split the disk sectors, each 128 bytes 
long, into files, access the files through the 

operating system, get disk directories of 
file names, NOTE, POINT, and so on. 
FMS works in turn through the Five 
Commands (perhaps a movie should be 
made by that title?) with the disk drive 
6507 to get your disk processing done. 

FMS on disk is called DOS.SYS. 
What are the Five Commands? 
1. Get Status. This returns the status of 

the disk and in particular of the IN 1771 
floppy disk controller chip inside the disk. 
"What?," you say . Me too. I don 't use , and 
have never used, Get Status. One day I 
may find out what it's for. 

2. Format Disk. This command instructs 
the disk drive 6507 to layout the tracks 
and sectors on the disk, and to "clean off" 
old data. Think of it as the 6507 laying 
down record grooves that it can follow 
later. What actually occurs is that the 6507 
writes data across the disk, reads it and 
makes sure it has stayed the same (this 
verifies that the disk surface is good) , and 
then writes the sector numbers onto the 
various sectors of the disk. This information 
it used later to find a given sector. 

3. Get Sector. This command instructs 
the 6507 to get the entire 128 bytes of a 
sector and ship them to the Atari through 
the serial I/O bus cable. The Atari issues 
the Get Sector command and tells the 
6507 what sector number, from 1-720, to 
fetch . The 6507 then gets busy , spins the 
disk and positions the read/ write head , 
reads the data, and returns it to the Atari . 

4. Put Sector. This command instructs 
the 6507 to take the 128 bytes about to be 
shipped down from the Atari and put them 

Atari Diskfile Tutorial - Part III 

Disk I/O is a very slow process for the 
Atari. The disk must be physically spun, 
which takes a while, and data must be 
shipped back and forth, which is even 
slower. The idea behind Atari's DOS is to 
minimize disk I/O. So we come to the 
concept of a "buffer." 

In Atari's DOS , whenever you read or 
write to a file , you are reading/ writing into 
a 128-byte reserved area in memory called 
a buffer. You are not writing to the disk at 
all . The Atari keeps the contents of one of 
the sectors of the disk in that buffer. So if 
you read/write to that buffer, the operation 

200 

onto the sector number specified . The 128 
bytes are then sent, and the 6507 positions 
the disk , etc. , and writes the data onto it. 
You probably do not use this command , 
you use its relative , which is: 

5. Put Sector With Verify . Remember, 
disks are not all that reliable. So when we 
put a sector onto the disk with this com
mand, it is first written , then immediately 
re-read and compared with the original 
128 bytes. If they match , fine ; all is well. If 
not, then they didn't record correctly , and 
an ERROR message results . (In truth , I 
have never seen this particular ERROR 
message.) 

The Atari 's designers decided to add a 
little audio to this whole process, so 
whenever a Get Sector occurs (like during 
a program LOAD) , a pleasant "beep" is 
heard on the TV's audio channel. Whenever 
a Put sector occurs (during a SAVE, for 
instance), a not-so-pleasant "clunk" is heard. 
You'll note that the Put commands always 
seem to take twice as long as the Get 
commands; this is because the disk is 
physically putting, then reading, the infor
mation onto the disk for a verify . Hence , it 
takes twice as long. 

In the net time I've worked with the 
Atari , I've used Put Sector with no verify 
once, when I was running OSS's operating 
system. They apparently use this command, 
and it sounds a great deal different than 
the standard slow "clunk .. clunk .. " of the 
Atari save. 

Now everything that happens to the Atari 
disk occurs through these commands. 

occurs at very high speed , which is what 
we want. For instance : 

10 OPEN #1,4 ,0, "Dl:FlLE" 
20 FOR A= 1 TO 10000 
30 GET #1 ,A 
40 NEXT A 

merely reads , byte by byte , 10000 bytes 



from disk. But if you run this program, you 
will note that the disk isn't being accessed 
continually; only every once in a while 
will you hear a beep to indicate another 
read. What happens is that the Atari opens 
the file and pulls the first sector full of 
data into the memory buffer. When you 
do the first 125 GETs, the bytes are pulled 
out of that memory buffer. Then you try 
to read another byte, but the Atari doesn 't 
have that one in memory yet. So it requests 
the disk to send it the next 128 bytes, fills 
the buffer with those 128 bytes, and starts 
reading at the beginning of the buffer again. 

(If you are wondering why I said the 
125th byte, it is because the Atari DOS 
reserves three bytes per sector for its own 
uses, which we will talk about later.) 

Similarly, when you PUT # to a disk 
file , the Atari lets you PUT 125 bytes to 
the buffer, then dumps it to the disk, moves 
in another 125, and so on. 

The result of all this confusion is that 
the Atari doesn't have to go to disk for 
every individual byte; rather, it stays in 
memory for a large number of "disk" 
accesses, and things run much faster. 

When the Atari is LOADing or SA VEing 
a program, again it uses these buffers. The 
process is invisible to you, but you can 
hear the beep as each individual sector in 
the program is LOADed, or a clunk as ;I 
sector is SAVEd. Remember, the Atari 
can only talk to the disk in terms of complete 
128-byte sectors . 

Understanding the buffer is important 
in solving some of the mysterious problems 
that can occur while using the disk. For 
instance; let's say you write something out 
to the buffer, and then your program bombs. 
You examine the disk file, and find the 
data never reached the disk . This is because 
the buffer was never written to disk . If you 
didn't know about the buffer, you'd be 
wondering why the disk didn't record what 
you wrote to it. 

The CLOSE Statement 
The CLOSE statement is provided for 

this case. It makes sure that everything in 
the buffer gets to the disk. It also updates 
the directory, where all file names are 
listed. 

The DOS program handling all this keeps 
a table of free sectors on the disk, by the 
way , and when the buffer fills up and a 
place is needed to store the 128 bytes, a 
sector number is taken from that table . 
When a file is deleted, its sectors are 
returned to that table. (The XXX FREE 
SECTORS message at the end of the DOS 
directory is determined by this) . 

So much for Basic I/O. Everything done 
with Basic I/O is a version of the above; 
everything goes through the 128-byte buffer. 

0300 DDEVIC 
0301 DUNIT 
0302 DCOMND 

0303 DSTATS 

0304,0305 

0306 
0308,0309 
030A,030B 

How about DOS? 

Table 1. 

-Serial Bus ID. Not used by user. 
- Disk number. 1-4. 
-Command Byte. This is: 
$21 Format Disk 
$50 Put Sector, without verify 
$52 Get Sector 
$53 Get Status 
$57 Put Sector, with verify 
- Disk Status. This is returned to you after the operation is 
done. 
DBUFLO,HI. Buffer Address. This is a 16-bit address in 
memory that is the starting address of where to get or put 128 
bytes. 
DTlMLO Disk Timeout Value. Leave it alone. 
DBYTLO,HI Set by handler. Leave it alone. 
DAUXl,DAUX2 Sector Number. Which disk sector, 1-720, 
to read/write. 

Program 1. 

5 REM SAMPLE PROGRAM TO DO DIRECT 
S REM DISK 1/0 . DAVID SMALL.12/21/81 
7 RE~1 

10 DCB=7S8:REM START OF DISK DC3 
20 POKE DCB+I,I :R EM DISK 1 
30 POKE DCB+2.82:REM $52 = GET SECTOR 
35 REM ~.* GET 128 BYTE OPEN BUFFER 
40 D j tl 3 UFFER ·1H lZg ) 
45 DIM ':A LL1f1 10 ) 
50 FOR X=I TO 128 : BUFFER1f(X)=" ":NEXT X 
60 ADDR=ADRCBUFFER$) 
70 ADDRHI=INT(AJDR!Z5S) 
gO ADDRLO=ADDR-(ADDRHI*25S) 
30 POKE DCE+4.AJDRLO:REM BUFFER ADR LOW 
100 POKE DCB+ 5.ADDRHI:REM BUFFER ADR HI 
110 REM ••• SE CT OR NUMBER ••• 
120 PRINT "INPUT SECTOR NUMBER" 
130 INPUT S ECTOR 
1 40SECTORHI=INT(SECTOR!Z5S) 
150 S ECTORLO= S ECTOR-(SECTORH!.Z56) 
IS0 POKE DCB+10.SECTORLO 
170 POKE DCB+II.SECTORHI 
Z00 REM ••• BUILD SHORT ASSY PROGRAM 
2 10 REM *~* OF PLA, JMP DSKINV. 
230 CALL1f( 1 )=CHRf( 104): REM PLA 
240 CALL1f(2)=CHR1f(3Z):REM JSR 
250 CALLS(3)=CHR1f(83):REM $53 
260 CALLI(4)=CHR$(228) : REM IE4 
27e CA LL$ (S)=CHR$(SS):REM RTS 
300 X=USPCADRICALLI)) 
310 DS TATS=PEEKIDCB+3) 
'3::': ',' F'P i ~IT • D i 'OK :3 T(~TIJ::;=·; DSTATS;" (1 =OK )" 
330 PP il~T "DATA:" 
3 L 0 PR! I~T BUFFER $ 
3~i ~E M *** CLEAN OUT BUFFER$ 
3'~2 ~0R X= 1 TO 12 8:BUFFER$(X)=" -:NEXT X 
::::~('I G( ' Tr) 110 

'~ I='(~' ;:: i' ID 

When you issue the COpy disk command 
from DOS, each sector of the file is sent to 
memory. In other words , DOS copies the 
contents of that file into memory, 128 bytes 
at a time. It then takes the file in memory 

and writes it out to disk, from memory , 
again in 128 byte chunks. 

When you issue a Duplicate Disk com
mand, DOS reads in every sector on the 
disk that is marked as "used" and stores it 
in memory. The unused sectors are ignored 

201 



Diskfile Tutorial - Part III 

Table 2. 

Byte 1: Flag byte . 

Bit 7 = 1 if this file has been deleted 
Bit 6 = 1 if this file is in use 
Bit 5 = 1 if this file is locked 
Bit 0 = 1 if this file is OPEN. 

Bytes 2,3. Sector Count ; the number of 
sectors in the file, stored low, then high 
bytes. 
Bytes 4,5. Starting Sector. Whe~e the file 
begins (what sector number). 
Bytes 6-16. File name,' Last three bytes are 
the extension if yOti add one, otherwise 
they are blanks. 

Table J. 

Byte 1 .. Data 
Byte 125 .. 

Byte 126 File Number (6 bits) and high two bits of 
"forward pointer" 

Byte 127 Forward Pointer 

Byte 128 Short Sector count .. indicates this sector 
not completely full. 

to save time. DOS then writes those used 
sectors out to the new disk , in the same 
position it found them on the old one, and 
doesn't worry about the empty sectors. 
Since there are 92,000 bytes on a disk , and 
only 48K maximum of memory, it may 
have to do this in smaller pieces-let's say 
32K at a time. You then must physically 
change the disk several times on a single
drive system. If you are using a multiple 
disk system ,. you will see it do the copy in 
multiple stages. 

Note: If you are copying disks for 
backups , remove any cartridge; each 
cartridge selects 8K of RAM and makes 
for more disk swaps. 

In order to know what sectors are used , 
and what files are on the disk , some tables 
must be kept on that disk. The DOS reserves 
certain sectors on the disk for these tables. 
One is known as the VTOC (Volume Table 
of Contents) and is sector number 360. In 
it is a table of all 720 sectors on disk , 
stored as bit-map; i.e ., one bit per sector. 

The disk directory is stored in sectors 361-
368; this is the actual list of the file names 
and the sectors they occupy. To find a file , 
DOS must use this directory. 

By the way , these reserved sectors explain 
why only 707 sectors are available on a 
"clean" disk; the rest are used for the 
directory tables , etc. You will also hear, 
during the disk formatting process , right 
near the end, the clunks as DOS writes out 
a fresh directory to the disk , afte r the disk 
6507 has finished formatting it. 

Remember, DOS at the lowest level, 
past all of the directory opens , XIO's, and 
so forth , is only doing get sectors/ put sectors. 
Let's learn about those calls . 

Get Sector/Put Sector Calls 
All get sector/ put sector calls rely on a 

table called the Device Control Block. 
Data is put into this table , and a jump is 
made into the o perating system, which in 
turn uses that table. Table I is the disk 
table , starting at $300 (or 768 decimal). 

202 

One POKEs values into this table , and 
then does a JSR to DSKINV ($E453). 
DSKINV then does the requested operation 
and returns to you. Program 1 is a sample 
program that does the needed POKEs and 
requests from you a sector number (1-720) 
to read . 

This program POKEs the DCB para
meters, reserves 128 bytes in memory as a 
string for the buffer area , requests the 
sector number, then runs a very short 
assembly program which does a PLA , 
needed by Basic, then jumps off to DSKINV. 
DSKINV then does the operation , and 
returns to Basic. 

There the status code placed in the table 
by DSKINV is printed, and the buffer area , 
as a string, is also printed. Sure , it will be, 
strange, but you can examine individual 
bytes easily . If you read one of the directory 
sectors (try 361) you will see the directory 
entries. 

If an 87 instead of an 82 were POKEd 
into DCOMND , then a Put Sector would 
occur ($57=Put Sector, $52=Get Sector). 
Then the contents of that buffer would be 
written to disk. 

The status code will be a 1 if all goes 
well. If there is a problem, you may find a 
144 as the error code. This Device Not 
Done Error occurs if the disk is bad, the 
disk is write protected, etc. 

We have just done disk access the same 
way DOS does it, at the sector level. Note 
we have not done an OPEN or an XIO ; we 
have directly accessed the disk . This can 
be handy if you have a need for a disk 
allocation scheme free of DOS; I use it to 
store directly fixed-length records. It is 
fast and efficient, and removes the DOS 
overhead. 

Also, it enables you to access the directory 
and modify it as necessary; this allows 
you , for instance, to un-delete files. 

Because we are not using DOS, but are 
still accessing the disk, we are not dependent 
on the DOS directory or "In-Use-Table ." 
We can read or write any sector on the 
disk, regardless of what DOS thinks that 
sector is for. You may want to take note: 
This is how to write a "boot record," a 
special disk record that enables your disk 
to boot by itself, as so many games do. 
The boot record is record 1; see the 
hardware manual for further details. 

Now that you can access the directory 
data directly, you can see all the data 
stored rather than just what OPENing "*. *" 
returns. A directory entry is 16 bytes long 
for each file. There are eight entries per 
sector in the directory , and eight directory 
sectors, hence 64 files maximum. See Table 
2. 

As an example of how the directory is 
used, if a file is LOCKed from DOS , all 



that occurs is that its flag byte has bit 5 set 
to 1. 

When you delete a file, all that occurs is 
that the delete flag on the file is set. Then, 
next time DOS needs a place to put a new 
file entry , it knows it can overwrite the 
current entry. 

Reading the Data into a File 
In order to read the data in this file , one 

goes to the Starting Sector number found 
in the directory . Each sector con tains 
information as shown in Table 3. 

The "forward pointer" is where the next 
sector of the file can be found. It is a 
sector number from 1 to 720. When that 
next sector is read in , it in turn tells where 
the next sector can be found , and so on . 
This is called a "linked list" or chained 
sector scheme. This way , files don't have 
to be in any particular order on the disk 
(e.g. , running continuously from sector 30 
to 40). The sectors can jump around all 
over the disk , yet to DOS they are still 
linked together. 

The file number is the file number in the 
directory. It is set to the same number as 
the entry number in the directory for all 
sectors. This is a safety measure. Let's say 
we are reading directory entry 6, and are 
going along, sector by sector. In the file 
number position in a given sector , we 
suddenly find a 13 (or whatever) instead of 
the 6 that should be there. 

We know that the data for this sector 
has gotten scrambled, and the sector chain 
terminates there. This is an ERROR 164, 
which I am sure you have seen before ; it is 
a warning that the data in this sector are 
likely to be bad. The sector link is also 
likely to be bad , so DOS normally stops an 
ERROR 164. 

Reading in sectors one at a time , by 
gett ing the next sector number, reading , 
and so on , is called "sector tracing ." Atari 
DOS does it every time it reads in a file. 
Atari also sells a "disk fix" program through 
their program exchange which uses the 
above information ; you now know enough 
to use it. For instance, the forward "link" 
of a given section may be modified if desired . 

We can do the same sector tracing out 
of Basic . We will find a given directory 
entry, read it in starting at the sector number 
given by the directory and proceed through 
each sector, with each new sector number 
obtained from the data in the previous 
one , until we have read in the number of 
sectors specified in the directory . Should 
anything be wrong (file number, etc.) we 
will know the file has gone bad. 

Program 2 illustrates first how to read in 
the directory and interpret it , and second 
how to follow a sector chain for a given 
file. It reads in the directory , lists it to the 

screen, and asks which file to trace; if A is 
entered, all files will be traced (this takes a 
while). It will then trace the file through, 
stopping at any "broken links" or bad file 
numbers. It is an excellent way to check a 
disk which has some files going bad, and 
find out which ones are still readable and 
which aren't. After each check the program 
produces a directory listing showing which 
files are good , bad, or still unknown. 

The techniques used within the program 
will probably prove more useful than the 
program; however, remember that this is 
an example. It can serve as the basis for 

custom disk inspect/ modify routines if you 
wish to write them. Also, the program is 
written in MicroSoft Basic but translating 
it to the old Basic should be no problem at 
all. I highly recommend MicroSoft Basic 
in terms of speed and features as compared 
to the old Basic; an in-depth review of the 
Atari version of MicroSoft Basic will appear 
in an upcoming issue . 

Sadly, the software pirate community 
also found out about direct disk 110, literally 
years ago. Back then manufacturers were 
copy protecting disks by fouling up the 
directory and sector maps so that DOS 

Program 2. 

10 REM JI SK CHECK ER - DAVE SMALL 

'31~' GOT 0 290 
4~ R E~' S UBR OUTINES PLACE D IN FRONT 
S0 ~ ~ t1 FOR SPE E) . ~IO CO~1r1E NT) NG. 

(': R:::i: 
;'." RE;; J j '3K REAJ SU8R OIJT I ~·IE -- -----
.~(~ P0 ~ E DCB+l,DI~R0t1 

~::: PO~~ E DCE+2,B2 
1 ':'0 Bn I ,= I nT ( r. UF F /256): E"_C'= BUFF - ': B4 I !!!256) 
.10 POKE DCB+4, .3LO 
i20 P01( E ~CE+5 J 3H I 

: ~ 0 S~ I~!I'IT (RS EI~TO R /2 S6): S LO=RSECTOR-(SHI*256) 

:40 P O I< I~ DCB~10 J SL O:POKE DCB+l 1 ,SHI 

lG0 D ST I~T3=PEEK(DCB+3) 

1.'.·(' RE II D i SI( I·W I H: SIJER'JUT j NE- ( SAMPLE) 
:30 P 0 :~ E ~Ce+ i, )TO 

2:::0 P~V I~ DCB+2,~7 

220 2')1( E DCB+S , 3 ~i 

2~0 3Hi~1:~T(RS E':T0R/2S 6) : S LO=RSECTOR-(SHI *256) 

250 POKE DCE+10 , SLO : POKE DCB+I I, S ~I 

2 1;0 pr INT HERROR H:GRAPHIC S 0 
2:" 0 D ~ T ;IT S =PEE K ':D CE+3) 

.::"._, 'c.' I-\r': TURI ,j 
2')0 RE tl DISK CHE Ck ER, 
3 1~( RE t1 DO ES 5 E': T ( IR 1RACE OF ALL 
5 !0 R~ M F ILES IN THE DI RE CT ORY. 
,:::~(~ r":;[I '1 F' P'O[l I)(' E ':: L I '3 T i NG I-I I TH OIC' 

:~:.:: I~I REj'j A':;SU t1E S 4 ·:-- 1< , t1 i ': RO SO FT . 

" -' r' 

, ( el l 

REM GE T DISK NUMBER,WELC OtlE . ---
G~'A PH I ('3 I) 

CLEAR 
PRINT "~ELCOME TO SMAL L'S DISK CHECKER . " 
PRINT " INPUT DRIVE NUMEER" ; 
I I'IPIJT DF f · 
I F J FI= "" THEN DFROM=l :G OTO 440 
DF R .. :o tl= \IAL< DF'! ) 
DTO):.DFROM 
CA LL =~ E45 3 'DSKINV ADDRESS 
Rf.tl NOTE : M I Cf':O'3'WT 0:':11 '1 CALL 
ReM D'3K1 NV, DIRECTLY, NO PLA 
RE tl NEEDEij . 

O;-'T I (q: HESE R\/E 2 '~;,; 12·:-· 
S = VA~PTr ~ RES E RVE) 

o ~~ ,~- ~R ST , RE :::ai:' I; ': ::' :RE C T '='R Y----
S4 0 P iNT "GET TING D i ~ ECT0R Y . " 

:,,~.:, ,:, CR:::I) 

~r 0 F R P SECTOR =3 80 TO 88 
!:. :'(: p. fF=z": +(1 2.3:+: It,:CP.) ! i,lP U T AREA 
S e 0 G SUE 70 IG~T EC TOR 
5~0 1 J3TATS=1 THEr~ 83 0 

203 



Diskfile Tutorial - Part III 

couldn't perfonn the copy. With the advent 
of direct disk I/ O, all these schemes were 
bypassed with what is known as a "sector 
copier." 

As a side note, a sector copier is some
times advertised as a "nibble copier" or 
"byte copier." This is an Apple term, and 
refers to individual bytes being read off 
the disk. It is completely inaccurate when 
applied to the Atari; all Atari disk I/O is in 
128-byte blocks. 

A sector copier, as you have guessed, 
just issues a read of all the possible sectors, 
then writes them. 

Sector Copying 
The program is simple to write now that 

you understand about sector I/O and how 
to call up DSKINV. It is just a matter of 
reading in 720 sectors and writing out 720 
sectors. As I said, about 20 lines of Basic 
code are required . And now you understand 
why , as I mentioned last month , selling 
such a program, at the prices currently 
being charged, is such a ripoff. 

But...how can a disk be protected against 
this sort of thing? Fortunately, there is a 
good way. Several software manufacturers 
hit on the same idea at the same time: bad 
sectoring. Let's assume we have a special 
disk , with some sectors on it that have 
never been fonnatted, as with the FORMAT 
DISK command. Most of them are OK; 
just a few are bad, as if there were holes in 
the disk. Now when the disk is told to read 
these sectors , it can't find them, for they 

were never formatted. So it returns an 
ERROR 144, instead of a normal return 
(1). Then, in the software on the disk , that 
sector is called, and if an ERROR 144 
doesn't result, the program quits. 

Let's say the program is then copied to 
another disk by an average sector copier. 
The "bad" spots on the disks will not copy ; 
they will return ERROR 144, but on the 
destination disk, there will still be fonnatting 
infonnation on those sectors. This is because 
the average Atari user cannot create a 
disk with bad spots in it; the FORMAT 
command is handled completely inside the 
disk by the disk 6507 microprocessor. The 
program will find that where it expected a 
bad sector, it now finds a good sector. 
Hence the program knows it is not residing 
on the original disk, and can quit. 

The only way to defeat this scheme is to 
disassemble code and remove the sector 
check , and even if the author is slightly 
clever, it will take so long to find the sector 
checking routine that the program will be 
outdated by the time it is finally made 
copyable. Besides, consider what a person's 
time is worth compared to the cost of a 
program; if it takes two weeks to break a 
copy protection scheme, isn't it a better 
idea just to buy the program? 

This bad-sectoring scheme works quite 
well in preventing a sector copier from 
being useful. Sure, a copy of the disk may 
be made , but without the bad spots on the 
disk, it will never run. And your average 
user cannot create these bad spots, for 

only access to the disk controller program 
allows that. and only very advanced users 
can accomplish this. 

Atari currently uses this bad sector 
scheme in several of their disk-based 
programs. lawbreakers uses the same 
scheme (hence the disk retry , or "snaaark ," 
sound when you first boot it up) . The 
Wizard and The Princess use it also. In 
other words, the move is toward this sort 
of protection. 

Software manufacturers can probably 
figure out a way to write some bad sectors 
onto a disk . For instance , what popular 
personal computer gives you complete 
control over the disk read/ write process? 
There are other ways , too. 

Another manufacturer doesn 't bother 
copy protecting his disks at all. However, 
a small module must be plugged into the 
front joystick port before the program will 
run. The module probably contains some 
sort of ROM-type circuit which is then 
read by the program through the PIA chip 
Uoystick ports). 

Well, we have covered a great deal , 
from piracy philosophy to sector chaining 
in these two columns. I hope you have 
enjoyed it and have learned something 
about the Atari disk, and how it really 
works. I also hope I have described some 
effective protection schemes for software 
manufacturers. 

Direct disk I/O is a very powerful tool 
for Atari users; use it to make your 
programs faster and more efficient. 0 

Using Disks With Atari Basic 

This article will help you write programs 
that use data files that are saved on disk. 
We hope you will use this information as a 
beginning point for experimentation. We 
believe that the only way to really learn 
programming is to try things and make 

David Johnson and Embee Humphrey, Atari, 
Inc., 1272 Borregas Ave., Sunnyvale, CA 94086. 

Dave Johnson and Embee Humphrey 

mistakes in the process. We have included 
answers to what we have found to be the 
most common questions. 

These are the Atari disk input/output 
commands : 

OPEN #reference number, open code, 
0, filespec: The first parameter, #reference 
number, is a number between I and 7 that 
is used to refer to that file throughout a 

204 

program. It must be preceded by the "# " 
symbol. The second parameter, open code , 
is a number that tells the computer if you 
want to read , write , etc. See Table 1. 

The third parameter is reserved for special 
control codes that will not affect you in 
disk operations. Always use a 0 for this 
third parameter. The last parameter , 
filespec, is the device and file name. Filespec 



can be a string variable, or the device and 
filename enclosed in quotes. Example : You 
may declare A$= "D:FILENAME" and 
use A$ in the OPEN statement, or you 
may just use "D:FILENAME" itself. 

CLOSE #reference number: This tells 
the computer that #reference number is 
no longer being used . (Note-if you are 
writing data , and fail to close a file, any 
data in the buffer will not be saved on 
disk.) 

PRINT #reference number;[What you 
want printed] : This is used the same way 
as a regular Basic PRINT statement. The 
#reference number tells the computer to 
PRINT to the file you have opened using 
that reference number. 

INPUT #reference number; [Input list]: 
This works like a regular Basic INPUT 
statement. The #reference number tells 
the computer to look for input from the 
file opened using that reference number. 

NOTE #reference number, variable for 
SECTOR location, variable for BYTE 
location . 

POINT #reference number, SECTOR 
variable, BYTE variable: NOTE and POINT 
are explained later. 

OPENing a file tells the computer that 
you are going to use a particular file in a 
particular way, and that you will refer to 
that file in your program using a particular 
reference number. (Atari Basic manuals 
call this reference number an 10C] number, 
for Input/Output Control Block.) 

Table 1. 

Function 

INPUT and PRINT 
INPUTing and PRINTing with the disk 

is the same as inputting from the keyboard 
and printing to the screen. The #reference 
number tells the computer that you are 
using the disk instead. (You must have 
OPENed a disk file with that number) . 

The easiest way to experiment with this 
is in DIRECT mode , typing in statements 
without line numbers. Now try a few 
things: 

OPEN #1 ,8,0,"0 l:TEST.DAT": This 
opens a ·file, TEST.DAT, for write only. It 
will be referred to later as # 1. 

Figure 1. 

DIM S$(20) 

12345.6, you put the CHARACTERS 
"12345.6" on the disk, not a binary repre
sentation. 

Now type: 
INPUT #2,S$ 
PRINT S$ 

and the screen displays: 12345.6 
Reading the number into a string gets 

the string representation of the number 
that was on the disk. Reading the number 
into a number variable would also have 
worked. If the binary representation of 
the number was put on the disk, you would 
not have been able to read it into a string 

OPEN #1,4,0,"D:TEST.DAT" 
INPUT # 1 ,S$ Read the first line . 
INPUT #l,S$ The second. 
INPUT #l,S$ The third. 
INPUT #1,S$ And the APPENDED line to verify this. 
PRINT S$ 

PRINT #l;"THIS IS A STRING": This 
writes this message to the file. 

PRINT #1; 12345.6: This writes the 
number 12345.6 into the file. 

PRINT #1; "THIS IS ANOTHER 
STRING";12345.6: This writes both the 
string and the number to the file with the 
same statement. 

and see it. This is important to remember, 
because putting the number 10 on the disk 
takes two bytes of disk space, while putting 
the number 123 on the disk takes three 
bytes. This will be important in the dis
cussion of random access. 

Remember: the number of digits is equal 
to the number of bytes the number will 
take up on the disk. 

Open Code 
4 Input. (Read from the file only). 

The next example shows another way 
that similarity between screen and disk 
output may surprise you. From the above 
example the file is still open: 
Type: 

8 Output. (Write to the file only) . NOTE - this erases any data in this 
file. To OPEN a file to add data, use 9 for APPEND. 

12 
9 

Both input and output. (Read and write). 
Append - add to end of file. (Write, beginning at end of file). 

For example, if you want to read from 
file TEST.DAT, and you decide to refer 
to that file as number 4, you would llse the 
following open statement exampl<!. (The 
number doesn't matter as long as whenever 
you want a certain file, you refer to it with 
the same number.) 

An example of OPEN : OPEN #4,4,0, 
"D :TEST.DAT". This means OPEN a file , 
read data from the file , the file will be on 
device "D; " (disk), whose name is TEST. 
DA T, and remember that this file will be 
referred to as #4 for future 110 opera
tions. 

To read from the file you would say: 
INPUT #4; expressions .... 

And finally , when you are done with the 
file : CLOSE #4. 

CLOSE # 1: This closes the file. 
To see what is on the disk: OPEN #2,4,0, 

"D:TEST.DAT". 
We used #2 here to demonstrate again 

that the number itself does not matter. 
What matters is that the same number be 
used for all references to that file after the 
OPEN. 

Since you will be reading strings, you 
need to DIM a string to read into : DIM 
S$(30) 

Now, to read it , type: INPUT #2,S$. 
Then type: PRINT S$ , and the screen 
displays: THIS IS A STRING, which is 
what you put on the disk. 

Now, a surprise! We told you that 
PRINTing to disk was the same as printing 
to the screen. When you type PRINT #4; 

205 

INPUT #2;S$ 
PRINT S$ 

and the screen displays: THIS IS A STRING 
12345.6 

It read into the one string both the string 
and the number that you had put on the 
disk. When you put this data into your file 
using PRINT#l ;"THIS IS A STRING";12 
345.6, it went onto the disk exactly as it 
would have appeared on the screen. When 
reading it, the computer had no way of 
knowing where the string stopped and the 
number started on the disk. 

You could not have said INPUT #2;S$, 
NUM because inputting S$ would have 
taken you past the number so, if you are 
going to read data back as different lines, 
put it on the disk as different lines. 

APPEND 
Now you can experiment with APPEND. 

You already have a file, TEST.DAT, on 
the disk. If you want to add data to this file 
you must use APPEND, because opening 



Using Disks With Atari Basic 

the file to write again (with an 8) will erase 
what you have already put into it. 

In OPEN #5,9,0,"D :TEST.DAT", the 9 
means APPEND. 

Now, try this. Type: 
PRINT #5;"THIS IS ADDED" 
CLOSE #5 

To see what happened, type the lines in 
Figure 1. The screen displays: THIS IS 
ADDED 

Trying to type INPUT #l,S$ one more 
time would cause an ERROR 136, which 
means END OF FILE. 

CLOSE #1 

NOTE and POINT 
NOTE #reference number, sector vari

able, byte variable : This takes NOTE of 
where the disk read/write head is physically 
positioned. The #reference number is the 
IOCB number. If you want to mark where 
you are in a file opened as # 1, you say 

Figure 2. 

DIM S$(20) 

the second item in the file , which IS: 

12345.67. 
To point back to the beginning: 
POINT #!,X,Y 
INPUT #l,S$ 
PRINT S$ 

and the screen will again display: THIS IS 
A STRING, which is the first record in the 
file! 

Random Access 
NOTE and POINT are useful for random 

access. If you keep trac!). of where you put 
data, using NOTEs, you can later get at 
the data , using a POINT, without reading 
everything in front of it. 

Briefly, suppose you have a mailing list. 
Each time you save a record , you NOTE 
where it is physically written , and save 
those sector and byte numbers in arrays
SECTOR(record number),BYTE(record 
number) . Then you save those arrays in 

OPEN #l,4,O,"D:TEST.DAT" 
NOTE #l,X,Y take note of where file starts. 
INPUT #l,S$ 
PRINTS$ 
The screen displays: THIS IS A STRING 

Figure 3. 

X=SECTOR (indexed by record num
ber). (To read the 23rd record you would 
use X=SECTOR(23).) 

Y=BYTE (indexed by record number) 
POINT #reference number,X,Y 

and you are ready to read that record. 
Be careful. If you want to modify a 

record and write it back into the file in the 
same place, you must not change the length 
of that record. If it is changed, it could 
overlap into the next record , overwriting 
the data there . Remember that numbers 
use as many bytes as there are digits. 

Before you modify records , you must 
format numbers into strings with lead ing 
blanks or zeroes that are always the same 
length. The subroutine in Figure 3 accom
plishes this. Before calling, put the number 
you want formatted into the variable 
DSKNUM. The number will be formatted 
into a string of length 10 with leading zeroes 
and placed in string variable DSKS. 

Traps 
Atari Basic has a TRAP command. The 

format for the TRAP command is: TRAP 
line number. 

To TRAP to a line number means to go 
to that line number if an error occurs. This 
can be useful for disk operations. For 
example, if you want to go to a certain line 
number when you reach an END OF FILE, 

NOTE #!,variablel,variabIe2. Variable! 
saves the sector and variable2 saves the 
byte. 1000 L = LEN (STRS (DSKNUM )) : REM GET THE LENGTH 

POINT #reference number, sector vari
able, byte variable: This physically POINTs 
the disk head to the sector and byte . If 
that sector and byte are not located within 
the file opened with that #reference 
number, you get an error message. 

1010 DSKS (l ,IO-L) = "0000000000" :REM PUT ZEROES IN FRONT OF 
STRING 

1020 DSKS (l!-L) = STRS (DSKNUM) : REM PUT NUMBER RIG HT JUSTIFIED 
INTO STRING 

1030 RETURN 

Figure 4. 

10 DIM S$(20) 
20 OPEN #1,4,O,"D:TEST.DAT#:REM OPEN THE FILE 
30 TRAP 70:REM ON END OF FILE ERROR, GOTO 70 
40 INPUT #l ,S$:REM READ FROM THE FILE 
50 PRINT S$:REM PRINT TO THE SCREEN 
60 GOTO 40:REM KEEP DOING THIS 
70 CLOSE #!:REM END OF FILE REACHED , CLOSE FILE 

NOTE and POINT are useful for reposi
tioning the read/write head to the beginning 
of a file. For example, if you want to read 
the first string in your TEST.DA T file 
twice before proceeding, you would type 
the lines in Figure 2. 
The screen displays: THIS IS A STRING 

If you read again, you will be reading 

another file on the disk. 
To look up reco rds , you would first 

read the array data file to put the information 
back into the arrays. You would then look 
up the individual records by POINTing 
directly at them. (SECTOR and BYTE 
are the variable names we have assigned 
to our arrays.) 

206 

you can take advantage of the ERROR 
136 that happens when you try to read 
past the end. See Figure 4. 



Part V 
User Programs 





Mazemaster: Maze Making and Running 

Shortly after buying an Atari 800 computer, I 
bought Basic Computer Games by David H. Ahl 
(published by Creative Computing Press). After 
taking care of a few essentials like Life and 
Hammurabi, I decided to adapt the Amazin' program 
so that I could use the joysticks to run the maze. 

My first study of the program failed to provide any 
clear idea of the program's logic. The li sting lacks 
eve n the most rudimentar y documentation. 
Frustrated, I entered the program line for line, chang
ing on ly the graphics characters. It really did work. 
Even working, however, the "why" of the program's 
compli ca ted tree structure a nd repeated code re
mained obscure. The project went to the back burner. 

In sp iration a rrived while I was trying to fa ll as leep 
one night. Start with a maze with no paths , a ll s ingle 
cel ls. From the selected starting cell, perform a 
random walk through the cells, marking each cell you 
move into and removing the intervening wall. Do not 
move into a marked cell or off the edge . If you cannot 
move, se lec t any marked cell and resume the random 
walk. Cont inue until a ll ce lls are marked. Select any 
ce ll as the finish point, and you are done. 

As I began layi ng out my own maze building pro
gram, two features of Atari Basic helped the whole 
routine fall into place. First, Atari Basic arrays have 
a zero row and a zero column. By adding an extra row 
and co lumn and setting the elements of all four non
zero, a ll of the explicit boundary checking disappears, 
without having to remember any co-ordinate mod
ifiers . Second, Atari Basic allows variable names to 
be the object of GOSUB statements. The starting line 
numbers of the move subroutines for a ll lega l moves 
can be stored in an array. Then, with N a random 
number, ON N GOSUB JUMP(I),JUMP(2), 
J U M P(3) , makes a classic random walk. 

The printing routine works the same as the book 
version. With the top and left boundaries ass umed, it 
needs info rmat ion on only two of the four sides: 
neither, right on ly, bottom only, or both sides open. 
These new sides then become the top or left sides of 
other cells. 

The maze running routine used another Atari 
feature. Neither of the arrays is used to check for legal 
moves . With the LOCATE statement, the maze dis
pla yed on the scree n (or, more accurately, the display 
li st o f the screen) can be examined directly to detect 
walls a nd openings. 

Now fo r the gory details. The main program (lines 
1-999) begin s with a ll the things that need to be done 
only once: 01 Mensioning arrays , se tting the 
bounda ri es non-zero, adjusting the margins , se tting 
constants and subroutine names . Three subroutine 
calls do a ll the real work. Finally , print the res ult s 
and repeat on request. Noth ing fancy so far. 

Fred Bruny:tte, 6076 Mursh Rd., Apt. E-2, 
Haslett, MI 48840. 

209 

Fred Brunyate 

The MAZEPRINTER routine (lines 1000-1999) 
uses the SETCOLOR statement to display the maze at 
the same color and intensity as the background. It is 
all there, you just cannot see it until the second SET
CO LO R statement causes the completed maze to 
appear suddenly. In earlier versions of this program, 
you could so lve most of the maze before the last line 
was printed and the timer started . Each cell of the 
maze is two print positions o n a side. The routine 
prints spaces or graphics characters according to the 
information stored in array V by the MAZE
BUILDER routine. Refer to the program comments 
for a step-by-step description. 

T he MAZEBUILDER routine (lines 2000-2999) 
uses the array W to si mulate the cells of the maze. It 
marks a cell by setting the corresponding element of 
W non-zero, and removes a wall by changing the 
corresponding element of array V. After selecting a 
start ing cell in the first row and initializing the cell 
counter, it checks for a ze ro neighbor cell in a ll four 
directions . For each zero cell found, the appropriate 
subroutine line number is added to the list kept in the 
array J U M P . There will be a maximum of three 
entries; the fourth direction leads to the previous cell. 
A subroutine is randomly selected from the list if it 
contains more than one cell. That subroutine is 
executed to move into the new cell, mark it non-zero, 
and change V to remove the intervening wall. This 
continues until no zero neighbors are found. 

When the random walk is blocked (no zero 
neighbors), the routine exami nes cells a t random 
until a non-zero cell is found and resumes the random 
walk from this point. This ass ures us that the new 
path segment will be connected to the original path . 
Since the routine will not move into a non-zero cell , 
each path segment is connected at only one end, and 
There is exact ly one path between any two cells. 

The routine halts when 95 percent of the total cells 
have been added to the path. This leaves some cells 
uncon nected, but saves time by not trying to find 
those last few cells. The maze exit is a randomly 
se lected non-zero cell in the last row. Actually , any 
two non-zero cells could be se lected as the sta rt and 
finish. 

The MAZERUNNER routine (lines 3000-3999) 
handles the joystick input , checks for lega l moves, 
displays the trial, and times the run . When decoding 
the joystick input, I find it easier to work with the 
comp lement of the value returned, i.e. "0= 15-
ST ICK(O)". The x direction is + I if GT 7, 0 if 0 L T 3, 
otherwise - I. The y direction is + I if 0 MOD 2=0, 0 if 
o MOD 4=0, otherwise - I. The routine uses an in
ve rse video asterisk as a CU RSOR with the joystick, 
and a S POT, a normal asterisk, is left behind. 

If the characte r, determined by the LOCATE state
ment , at the ne w position plus the joystick input, is 
not a BLANK o r a SPOT, the routine ignores thejoy
stick input. You can not move through walls. Other
wise, it plots the CU RSOR at the new position and a 



Mazemaster 

SPOT at the old posItIOn. It continues monitoring 
the joystick until the CURSOR co-ordinates match 
the finish conditions . The real-time clock is read im
mediately befo re and immediately after running the 
maze a nd the total time is computed. The three bytes 
are read as quickly as possible to minimize the chance 
of a n error caused by one of the bytes rolling over to 
ze ro. 

The subroutines at lines 4000-4999 do the moving 
from cell to cell and take out the walls during the 
random walk. To move right (XPLUSI) or down 

Variables 

HIGH, WIDE 

V(WIDE, HIGH) 

W(WIDE+l,HIGH+l) 

C 

JUMP(3) 

Y$(l) 

CURSOR, SPOT, BLANK 

FIRSTTIME, LASTTJME 

TIME 

TRIES, TOTALTIME 

X,Y 

STARTX, STARTY 

BOTTOM 

(YPLUSI), first change V to open the wall , then 
c hange the co-ordinates. To move up (YMINUSI) or 
left (XMINUSI), fir st change the co-ordinates, then 
change v. 

While this program is an enjoyable game as it is, it is 
a lso a starting point for other programs. The random 
walk tec hnique is easily expandable to three dimen
sio ns (or four, if yo u can name them). A li g ht pen 
would be id ea l for running the maze. The sta rt a nd 
finish points ca n be moved. And a little imagina tion 
will turn th e cells into rooms in a dungeon or cas tle. 

Description 

The maze size, in ce lls . 17 X 10 fills the screen nicely. 

Th is a rra y indicates which walls have been removed. The 
top and left s ide of eac h cell is assumed . The bottom a nd 
right sides a re indicated as follows: 

O- neither side open 
I- bottom only open 
2- right sid e o nl y open 
3- both sides open 

This array is used to build the maze . Zero elements are 
a vailable. The outside rows a nd columns a re set non-zero. 

The number of cells attached to the path. 

This ar ray co ntain s th e list of subroutine line numbe rs 
(XMINUSI , YMINUSI, XPLUSI, YPLUSI) from 

which to se lect the next move of the random walk. 

The user respo nse, 'Y' or 'N'. 

Characters used by MAZERUNNER to check for and 
plot the tri a l. 

The clock readings before and after the run. 

The time of the run, in seconds. 

The number of mazes run and the total time used. Used 
to figure the average time . 

The current cell during MAZEBUILDER and MAZ E
PRINTER. The current screen position during MAZE
RU NNER. 

The sc ree n co-ordinates of the beginning of the maze. 

The screen row of the last line of the ma ze. 

210 



10 REM MAZE MASTER 
1 ~.:j r~[M 

7 0 REM FRED BRUNYATE 
3 0 REM HASLETT, MICHIGAN 
'to REM 19D:L 
~::j 0 F~ E t-i 
:LOO REM POKE NEW MARGINS, SET SUBROUTINE LOCATIONS, 

TOTALS, AND CONSTANTS 
1 O ~.:j WI DE :"::1.7 
1. 0 «) HIGH ~-;: :I. 0 
110 DI M V(WIDE,HIGH) , W(WIDE+1,HIGH+1) 
1. 2 0 DIM Y$(:L),JUMP(3) 
1 ::l 0 F' D~([ D~~, :I. 

1 it 0 PDI-(E D~l , :3B 

1.50 MAZEPRINTER=1000 
16 0 MA ZERUNNER=3000 
17 0 MAZEBUILDER=7000 
190 XMI NUS1=4200 
:2 00 YMINU!:; 1. :::: 43 00 
Z10 XPLU!:;1 ::"'t400 
720 YPLU!:;1 ".:: 4 ~:jOO 

?::l O Tr~IE~) ":: O 

~'~ 4 0 TDTALTIME="O 

? f.> 0 C U F~ f:; 0 I:~ :::: (~ !:; C ( "lK" ) : r~ E H T H I !3 J f:; J N ~) E F~ B E V 1 D E Cl 
Z 7 0 D L.. f~ m( ::: Abe (" ") 
? BO DOTTOH =?lKH1GH+:L 
3 00 REM SET BOUNDARIES NON - ZERO 
3:1.0 FOR l =:L TO WIDE 
37 0 W(I,O) =-:L:W(l,HIGH+:L) =- :L 
~l3 0 NEXT I 
340 FOR 1=1 TO HIGH 
350 W(O,I) =- l:W(WIDE+:L,J)= - l 
~l6 0 NEXT I 
' t9 0 F~EM 

500 REH CLEAR THE ARRAYS AND BET BClUNDAR1EB 
~) 0 ~:j Gf~APHIC!:; 0 
~:.:j 1. 0 PF~INT : F'F~INT "1' H THINI<ING UP A GOOD ONE." 
~.:j 1 ~~j PRINT : PF~INT " 
57 0 FOR 1=1 TO WIDE 
53 0 FOR J =l TO HIGH 
535 W(I,J) =O:V(I,J) =O 
540 NE XT J : NEXT I 
~.;j 9 0 r~EM 

l on REM 
1 10 GOSUB MAZEBUILDER 
7? 0 GObUB HAZEF'RINTER 
73 0 GOSUB MAZERUNNER 
7 ' t 0 r~EM 

DOD REM DISPLAY REBULT B 
8 10 TRIES =TRIES+l 

DON'T GO AWAY." 

82 0 TOTALT1ME=TOTALT1ME+TIME 
83 0 AVTIME =INTCTOTALTIME/TRIES* 1(0) / :LOO 
lViO PO SITION t. [:OTTDM+:I. 

211 



Mazemaster 

B ~) () P FU N T II TF~ Y ~I: II ; T R I E S ; II TIM E W A~) : II t TIM E t II G E CON D t) • II 

060 PFUNT II AVEF~('~GE TIME: II UWTIME 
El7 0 F~EM 

900 REM ASK USER VITAL QUEST lONG 
910 PFUNT II F~EPEAT nn:~:) MAlE (Y DF~ N)"; 
9;? 0 INPUT Y$ 
9:] () IF Y$::: II Y" THEN 7;? 0 
9't 0 PFUNT " ANDTHEr~ MAlE (Y em N)"; 
9~jO INPUT Y$ 
9t)O IF Y$:::"Y" THEN GO TO ~)OO 

970 END 
99 0 r~EM 

1000 REM MAZEPRINTER 
:1.010 HEM 
:I. O:lO F~Et1 

1030 F~EM 

10'tO F~EM 
:l.O~jO F~EM 

1. 0 ~.:.i:l. F~EM 

:I. 0 ~j~l F~Et1 

1 0 ~j't F~EM 

:I. 0 ~j~.:j F~Et1 

VALUEB IN 'V' DETERMINE THE 
RIGHT AND BOTTOM WALLS OF 
E{~CH CELL..: 
V(lt,.J)".:O; 
V(lt,J):::::1. ; 
vn: t ,J)::::2 ; 
~)(ItJ):<l; 

NO DPENING~) 

BOTTOM OPEN 
F~IGHT OPEN 
BOTH OPEN 

:1.060 HEM POKE TUHNS OFF THE CUHSOH 
:1.06:1. HEM GETCOLOR HIDEG MAlE UNTIL 
:1.062 REM PRINTING IS DONE. 
:I. OBO GF~{~PHICS 0 
10(tO PCH(E 7~.:j~'? t:l. 
109:1. SETCOLOH i,9 t 4 
1095 REM PHINT THE TOP LINE 
1100 FOH X=i TO WIDE 
:I. L?O PFUNT 1111 t : I:~EM CTF~L-'!:; t CTFU .. -' F~ 

U~)O NEXT X 
:1.11.)0 Pf~INT "" n~EM CTF~L''''~:) 
1165 REM PRINT THE LEFTMOGT WALL t THEN 
:1.166 REM A CELL AND WALL OH OPENING. 
1170 FOH Y=l TO HIGH 
1180 PFUNT "I"; n\:EM ~:a'IIFT .... ::: 
1190 FOR X=l TD WIDE 
1200 IF V(X t Y»1 THEN 1230 
:I. 2:1. 0 PF~INT " I";: F~EM ~3PACE, GHIFT .... ::: 
:I.~?20 GOTD :1.240 
:I. ~?'3 0 F'F~INT" " ; n~EM !3PtICE t BPACE 
1?'tO NEXT X 
12~) 0 PF~INT 

125 5 REM PRINT THE LEFTMOST INTEHSECTION 
1256 REM THEN A WALL OH OPENING AND ANOTHEH INTEHSECTION. 
:I. ~~~)7 PF~nH "";: r~EM eTm ...... !3 
1260 FOR X=1 TD WIDE 
1270 IF V(X,Y)=O THEN 13:1.0 
:1.200 IF V(X t Y)=2 THEN 1310 
:I. Z<t 0 PHINT " ";: HEM GPACE t CTFU .. .. .. S 
:1. ::1 00 GOTD :1.320 
:I. :3 1. 0 P F~ I N T II II ; ! F~ E M C T F~ L .... F~ t C T F~ L .... f:) 
1320 NEXT X 

212 



1330 PRINT 
1340 NEXT Y 
1344 REM DISPLAY THE COMPLETED MAZE 
1345 SET COLOR 1,12,10 
1350 RETURN 
1360 REM 
2000 REM SUBRT NAME: MAKEBUILDER 
2010 REM 
2020 REM PERFORMS A RANDOM WALK THROUGH 
2030 REM UNMARKED CELLS, KNOCKING DOWN 
2040 REM WALLS AS IT GOES. PRINTING 
2050 REM INFORMATION IS STORED FOR LATER. 
2060 REM 
2070 REM PICK A STARTING POINT 
2080 X=INT(RND(O)*WIDE)+l 
2090 STARTX=2*X 
2100 STARTY=l 
2110 C=1 
2120 W(X,1)=C 
2130 Y=l 
2140 REM LIST DIRECTIONS AVAILABLE 
2150 J=O 
2160 IF W(X-1,Y)<>0 THEN 2190 
2170 J=J+l 
2180 JUMP(J)=XMINUSl 
2 190 IF W(X+l,Y)<>O THEN 2220 
2200 J=J+1 
2210 JUMP(J)=XPLUSl 
2220 IF W(X,Y-1)<>0 THEN 2250 
2230 J =J+1 
2240 JUMP(J)=YMINUS1 
2250 IF W(X,Y+1)<>0 THEN 2280 
2260 J=J+1 
2270 JUMP(J)=YPLUS1 
2280 REM IF BOXED IN 
2290 IF J=O THEN 2420 
2300 REM SELECT ONE DIRECTION 
2310 IF J=l THEN GOSUB JUMP(1):GOTO 2350 
2330 ON INT(RND(O)*J)+l GOSUB JUMP(1),JUMP(2),JUMP(3) 
2340 REM MARK NEW CELL USED 
2350 C=C+1 
2360 W(X,Y) =C 
2370 GOTO 2150 
2380 REM IF BOXED IN, START A NEW PATH 
2390 REM FROM ANY EXISTING PATH. STOP 
2 400 REM IF 95% COMPLETE 
2420 IF C>0.95*(HIGH*WIDE+l) THEN 2540 
2440 X=INT(RNO(O)*WIOE)+l 
2450 Y=INT(RNO(O)*HIGH)+l 
2460 IF W(X,Y)<>O THEN 2150 
2470 GO TO 2440 
2500 REM OPEN THE BOTTOM OF A MARKEO 
2510 REM CELL IN THE LAST ROW. 
2540 X=INT(RNO(O)*HIOE)+l 

213 



~azernaster 

2550 IF W(X,HIGH)=O THEN 2540 
2560 V(X,HIGH)=V(X,HIGH)+1 
2570 RETURN 
3000 REM MAZERUNNER 
3005 REM 
3010 REM MOVES THE CURSOR ACCORDING 
3020 REM TO THE JOYSTICK, CHECKS FOR 
3030 REM DONE AND TIMES THE RUN. 
3040 REM 
3050 REM PUT THE CURSOR AT THE START 
3060 X=STARTX:Y=STARTY 
3070 COLOR CURSOR:PLOT STARTX,STARTY 
3075 REM READ THE CLOCK 
3080 A=PEEK(18) 
3090 B=PEEK(19) 
3100 C=PEEK(20) 
3120 FIRSTTIME=(A*256*256+B*256+C)/60 
3125 REM READ THE JOYSTICK 
3130 D=15-STICK(0) 
3140 IF D=O THEN 3130 
3150 X1= - 1 
3160 IF D<3 THEN Xl=O 
3170 IF D>7 THEN Xl=l 
3180 Y1=-1 
3190 IF D=INTCD/2)*2 THEN Yl=1 
3200 IF D=INT(D/4)*4 THEN Yl=O 
3230 REM CHECK FOR WALLS THERE 
3240 REM IGNORE JOYSTICK INPUT IF SO 
3250 LOCATE X+Xl,Y+Y1,CHAR 
3260 IF CHAR< >BLANK AND CHAR<>SPOT THEN 3130 
3295 REM LEAVE A SPOT, MOVE THE CURSOR 
3300 COLOR SPOT:PLOT X,Y 
3305 X=X+X1:Y=Y+Y1 
3310 COLOR CURSOR:PLOT X,Y 
3315 REM REPEAT IF STILL INSIDE 
3320 IF Y<BOTTOM THEN 3130 
3325 REM READ THE CLOCK AGAIN 
3330 A=PEEK(18) 
3340 B=PEEK(19) 
3350 C=PEEK(20) 
3360 LASTTIME=(A*256*256+8*256+C)/60 
3370 TIME =INT«LASTTIME - FIRSTTIME)*100)/100 
3430 RETURN 
4200 REM SUBRT NAME: XMINUSl 
4205 REM MOVE LEFT, OPEN NEW CELL'S 
4206 REM RIGHT WALL 
4 2 10 X=X-1 
4220 V(X,Y)=V(X,Y)+2 
4230 RETURN 
4240 REM 
4300 REM SUBRT NAME: YMINUS l 
4305 REM MOVE UP, OPEN NEW CELL'S 
4306 REM BOTTOM WALL 
4310 1=Y-l 

214 



~320 V(X,Y)=V(X,Y)+l 
~3~l 0 F~ETUF~N 
it ~l it 0 F~ E M 
~400 REM SUBRT XPLUSl 
~410 REM OPEN THIS CELL'S RIGHT WALL, 
4420 REM MOVE RIGHT 
4430 V(X,Y)=V(X,Y)+2 
it.<HO X::::X+l 
it't~5 0 RETUF~N 
'H60 F~EM 

4500 REM SUBRT NAME: YPLUSl 
4510 REM OPEN THIS CELL'S BOTTOM WALL, 
4520 REM MOVE DOWN 
~530 V(X,Y)=V(X,Y)+l 
4~7j4() Y::::Y+:I. 
it ~.:j~:j 0 R E TLJ F~N 

Monster Combat Lee Chapel 

Translated for the Atari by Shelia Spencer 

This monstrous program a/fer.\' 
hours (~l fun. Think care/idly 
be/ore accepting ifS oiler. 

Monster Combat is a game in which 
you go wandering through a forest trying 
to win as much treasure as you can from 
various monsters without getting yourself 
killed in the process. It was written in Basic 
for a KIM microprocessor and for display 
on a high speed video board, but can easily 
be converted to almost any other Basic or 
video board. It requires at least 16K of 
RAM to be run, which is the main reason 
there are no spaces between commands on 
the program listing. 

Lee Chapel, 2349 Wigging, Springfield, III . 
62704. 

Shelia Spencer, Rt. 8, Orchard Hills, 4225 
Beulah Cove, Claremore, OK 74017. 

Play 

When you play the game you will be 
randomly placed in a forest ten by ten 
squares in size. Only one of these squares, 
the one you are in, is displayed, thus 
allowing yo u to see only a small part of the 
forest at a time. The sector you are in is 
again divided into ten by ten squares. Each 
of these, too, is divided up to ten by ten; but 
these hundred smallest squares you see. 
Each of these little squares is shown by a 
single cJaracter. It covers an area of forest 
ten by ten yards, making the fuller square 
that is displayed a hundred by a hundred 
yards and the entire forest a thousand by a 
thousand yards. Ts are trees, '-'s are paths, 
1's are walls, 's are inns, and M's are 
enchanted castles. The '0' is you. 

Also displayed with the portion of 
forest you are in is your combat strength, 
treasure total, and the various magic spells 
you have. Your combat strength is used to 
fight the various monsters you meet, each 
monster having a combat strength of his 
own; these range from five (for a goblin) to 

215 

a hundred (for a basilisk). Your combat 
strength is also used in movement, the 
amount used depending upon how far you 
go, how much treasure you're lugging 
around, and the type of terrain you end up 
on after you move. 

At the inns you are allowed to regain 
the strength you began with and all the 
magic you had at the start. Don't worry 
when you find yourself displayed in the 
square below the inn when you stop there; 
that is the way the program is set up. Of 
course, the innkeeper takes some of your 
treasure for providing you with his 
services. However, sometimes he has 
information which he passes on to you at 
no additional cost -- like where the forest 
edge is, or where an enchanted castle might 
be found. 

There may be up to fifteen enchanted 
castles in the forest. These usually contain 
items of great value to treasure hunters, as 
you will see. (However, they tend to vanish 
if you make the wrong move, such as 
falling into a pit when you land on the 
castle square.) 



Monster Combat 

Cast of Characters 
The following is a description of 

each monster, giving its combat 
strength and telling something about 
the tales and myths surrounding it. 

Goblin (5) - A mischievous little sprite 
only about a yard in height. Rather 
ugly, uses coarse and uncouth lan
guage, is generally evil and malicious; 
all in all, a rather unpleasant little 
fellow. Even though they're little they 
can be very vicious, and more than one 
warrior has been killed underestimating 
them. 

Minotaur (10) - From Greek mythol
ogy, a monster with the head of a bull 
and the body of a man. Minos, king of 
Crete, received a bull from Poseidon, 
god of the sea, which he refused to 
sacrifice to the god. Poseidon inspired 
an unnatural love for the bull in 
Pasiphae, Minos' wife, and the mino
taur resulted from the union . Minos 
enclosed the creature in a labyrinth 
constructed in the city of Knossos, and 
fed it seven young men and women 
(whom Athens had to pay as tribute to 
Crete) every few years. The original 
minotaur was eventually slain by the 
Athenian hero Theseus. 

Cyclops (20) - Also from Greek 
mythology, a member of a race of one
eyed giants. According to Homer, the 
cyclopses were shepherds living on an 
island in the western area. The best 
known of these was Polyphemus who 
had his eye poked out by the hero, 
Odysseus. According to Hesiod, the 
cyclopses were three of the children of 
Uranus and Gaea. They forged the 
thunderbolt for Zeus, king of the gods, 
and became the assistants of Hephaes
tus, god of the forge. 

Zombie (30) - From legends in the 
West Indies, a corpse which has been 

Most of the time you will not be 
visiting inns and castles. You will be 
hacking your way through thick under
brush or trotting along forest paths in 
search of treasure. And you will find it, 
usually guarded by some sort of monster. 
Upon encountering one or more of these 
creatures you are given a choice offighting 
them, running away , bribing them, or 
casting a spell on them. 

To fight you must hit a '1'; then, when 
it asks you to, you enter however much of 
your combat strength you wish to use 

reanimated. A rather unpleasant 
person to meet, he generally smells of 
rot and decay. He often has rotting 
pieces of himselffalling off his body, yet 
never seems to fall apart completely. He 
is difficult to kill, since he is already 
dead. A person has to chop him into 
tiny pieces and then get away before the 
monster can pull himself back together. 

Giant (40) - Appears in the mythology 
of almost 'all nations, huge beings of 
terrible aspect. In the Greek myths the 
giants are said to live in volcanic regions 
where they were banished after an 
unsuccessful war against the gods. 
Some giants are peaceful, but others, 
like the ones in the forest, would think 
nothing of having you or anyone else 
for a snack. 

Harpy (50) - From Greek mythology, 
disgusting women with the wings and 
lower body of a bird, generally a bird of 
prey. They stole and befouled the food 
of blind Phineus as punishment from 
the gods. Phineus nearly died before 
Jason and the Argonauts arrived while 
sailing in search of the Golden Fleece. 
Two of the Argonauts, Zetes and 
Calais, drove the harpies away and were 
then told by one of the gods that the 
harpies would bother Phineus no more. 
The harpies continued their disgusting 
practices elsewhere. 

Griffin (60) - From Eastern mythol
ogy, a creature usually represented as 
having the head, beak, and wings of an 
eagle, and the body and legs of a lion. It 
builds its nest of gold, making it very 
tempting to hunters and forcing the 
griffin to keep vigilant guard . It 
instinctively knows where buried 
treasure is hidden and does its best to 
keep any plunderers at a distance. 

against the monster. If you choose to use 
strength equal to the monster's strength 
you then have a fifty-fifty chance of 
winning. The more strength you use the 
greater the odds are of winning, the less 
you use the smaller your odds of winning. 
Also affecting what you use to fight the 
monster is your treasure total. The more 
treasure you have the more strength you 
must use. 

, The first and third parts of the sample 
run give examples of fighting a monster or 
monsters. In the first case there are three 

216 

Chimera (70) - From Greek mythol
ogy, a monster with the foreparts of a 
lion , the rearparts of a goat with a goat's 
head in the middle of its back, and with 
a serpent for a tail. The original chimera 
was slain by Bellerophon, who was 
riding on Pegasus, the winged horse. 
Ironically, Pegasus was a distant 
relative of the chimera. 

Dragon (80) - Found in many of the 
world's mythologies, a reptilic monster 
resembling a giant lizard and usually 
represented as having wings, huge 
claws, and a fiery breath. In some places 
the dragon is considered to be a 
peaceful creature, notably in Japan and 
China, where it is regarded as a symbol 
of good fortune. However, the dragons 
in the forest are of the other sort; they 
will kill and eat you if you let them, and 
they take very unkindly to anyone 
trying to steal their treasure. 

Wyvern (90) - A distant relative of the 
dragon, this is a fabulous two-legged 
creature, with wings and the head of a 
dragon on a basilisk's body. Although 
he cannot kill you with one glance like 
the basilisk, he is still a very unpleasant 
creature to meet. 

Basilisk (100) - The worst of all eleven 
monsters, his deadly glare kills anyone 
who gazes upon his face. From Greek 
mythology, the basilisk was called the 
king of serpents, being endowed with a 
scaly crest upon his head like a crown. 
This monster was supposedly produced 
from the egg of a cock hatched under 
toads or serpents. The weasel, the only 
animal which can withstand the basi
lisk's glare, often fought it to the death. 
Humans must use a mirror if they wish 
to be assured of victory over a basilisk, 
for the mirror will reflect the creature's 
gaze back upon it and kill it. This 
monster is not to be confused with the 
basilisk of South America, a harmless 
lizard with the ability to run across 
water. 

cyclopses. Cyclopses have a combat 
strength of 20 which means that three of 
them have a total strength of 60. I used 121 
of my combat strength to fight them, over 
twice the cyc1opses' strength, which gave 
me over a 95% chance of winning. And, as 
can be seen in the example, I did beat him. 

In the third part of the sample run I 
am fighting 19 goblins. Since goblins have 
a combat strength of 5, 19 have a combined 
strength of 95 . I used only 60 combat 
points that time, giving me around a 30% 
chance of winning. And, as can be seen in 



the example, I did get myself killed. 
If you do not wish to fight the monster 

you can always run. However, the higher 
the strength of the monster the less likely 
you will get away and the more likely that 
you will be forced to fight. Whether or not 
you do get away is based upon a random 
number and the strength of the monster. If 
you do get away you are randomly placed 
in an adjacent square and get to find out 
what is there. Once in a while, when you 
attempt to run, the monster catches you 
and kills you. 

If you don't care to run or fight you 
can try to bribe the monster. Few people 
like to do this since it means handing over 
some of your hard-earned treasure. 
Whether your bribe is accepted or not 
depends upon how much treasure the 
monster is guarding, his strength, and a 
random number. The greater the value of 
the treasure the monster has, the more 
you'll have to pay him if you don't care to 
fight. Usually if the monster doesn't care 
for your bribe you have to fight him. 
Sometimes, though, he just kills you 
anyway. 

Finally, if you don't care for any of the 
previous choices, you may cast a spell. 
There are three types of spells: sleep, 
charms, and invisibility. Sleep spells tend 

to be the least effective and invisibility the 
most effective, with charms somewhere in 
the middle . Spells, no matter what kind 
they are, don't always work too well, 
sometimes not working at all , thus causing 
you to have to fight the monster. 

In addition to the various monsters, 
there are other things you will occasionally 
run into; some are good and some bad, as 
you will see when you run the program. 
Everything is determined randomly and 
thus you can go back to a spot you were 
previously at and find something different 
there. 

You have thirty days to hunt for 
treasure in the forest. Each little square 
you move through takes a tenth of a day to 
cross, meaning it takes an entire day to 
cross the entire displayed square. To move 
you enter the direction you wish to go (N 
meaning North, which is upwards, S 
meaning South, E meaning East, which is 
to the right, and W meaning West). Then 
you enter the distance, each little square 
being one. For example, in the first part of 
the sample run I enter S (south) for the 
direction and then 3 for the distance. This 
places me on top of the arrow, which is an 
inn, and thus I am shown in the square 
below the inn when the next map of the 
area is drawn. In moving from the inn I 
again go south , this time a distance of 7, 

Menu from Monster Disk 

o GF<APH!CS 0 

which causes me to end up in the next large 
square. 

When you leave the forest, intention
ally or accidentally, you can obtain a 
listing of the number of monsters you've 
killed , bribed and run from, plus the 
amount of treasure you have won so far. If 
you decide not to return to the forest or 
your thirty days are up, you are offered 
several choices: you may go to a new forest 
with the same strength and magic (the 
treasure total going back to zero); you may 
go to a new forest with new strength and 
magic; or you can stop playing the game. If 
you should wish to use the strength and 
magic left over from the game you just 
played, you can obtain a listing of these at 
the very end of the game and then write 
them down or store them however you 
wish. Then, the next time you play the 
game, you just answer the initial question 
asking if you wish to use an old combat 
strength and magic with a 'Y' and then 
enter the various things you are asked for. 

This game was very popular at my 
dorm at the University of Wisconsin in 
Madison. The record treasure total so far , 
as of this writing, is 7562, set by me. Most 
of the time the scores run between a 
thousand and two thousand, with many 
lower and a few higher. If you get above 
two thousand you're doing well. 

1 SET COLOR 2,0,10:SETCOLOR 1,0,2:SETCOLOR 4,0,10:POKE 82,2:POKE 83, 
39: pm(E 752 t1 

2 '? .. ::. lloKlKD!RECTORYlloKlK": ? 
6 GClTO 9 
8 FOR I=l TO 1000:NEXT I:RETURN 
9 DIM X$(40),L$(20),A$(40),P$(500),N$(2),80$(10) 
10 REM "01: MENU" 
11 OPEN i1,6,O,"D:lK.lK" 
L~ 80$::" ": GO TO 30 
20 N==N+1 tX!~:=A$(3, 10) :X$(9,9)="." tX$( 10, 12)==A$( 11,13) 
22 L $=" ": L $ (LEN (L $) +:L ) =:X$: P$ (LEN (P$) + 1) =X$ 
21 L..$(11,14)="("tFOF< I=2 TO LEN(L$):IF L$(I,!)=" " THEN L$CI,!) :="." 
25 NEXT ItN$::STR$(N):IF N<10 THEN N$(2,2)=N$(1,1):N$(1,1)="0" 
27 RETURN 
30 INPUT :l:l,A$ 
40 IF A$(2,2)<>" " THEN GOTO 90 
45 GOSU8 20 
50 ? L$;N$;") "; 
60 INPUT :1:1, A$ 
70 IF A$(2,2)<>" " THEN GOTO 90 

217 



Monster Combat 

75 GOSUE: 20 
ElO '? L$(2 t :L4);NS;") " 
05 GO TO ::l0 
<YO'? :'?" ";AS 
12 () PCHa:: 7~j2 t () 

1.:30 POSITION 1 t 22 I '?" SELECTION" ; I TF<AP :L:3 () : INPUT X: '? ""; I Hi:AF' 4 () 000 
' 131 IF X<>INT(X) THEN 130 
135 IF X=l THEN X$=P$(l t 12)IGOTO 145 
140 X$=PS«X-1)~12+1t(X-l)*lZ+12)ITRAP 40000 
1 4:1, I F X $ ( :L :L tl 1) ::: " " THE N X S ::: X $ <:I. t 8 ) 
14~5 IF XS ( :L t:3) =:" DOS" THEN DOS 
1 ~'5 0 A $ ::: " [) 1 I " : A $ ( L. E N ( A $ ) "':L ) ::: X S 
1 ~7j ~) P CHa:: 7 5 Z t 3 I P Cl SIT ION :L t 22 I F' R I NT" LOA DIN G "; X S ; 
160 TRAP ZOO:RUN ASITRAF' 40000 
2 0 0 PO SIT I () N 1. t Z 2 : F' FU NT" CAN N or FW N "; X $ ; I G () SUE: El: T RAP 4 0 0 0 0 : GOT 0 1 3 0 

Monster 
o G F~ A PHI C S 2: P CHa~ 752 t 1 : P () SIT HI N f) t if :? :I: 6 ; "M 0 N S T E H" : PO SI T ION 6 t 6 :? :I: 6 ; "C D M B {~ T " : ? 

" B':J Lee Chapel" 
1 ';I "TY'al"lslat(~d fClT' {~TAFn: b~~ Shf~ila SppI"ICF~r" :GDSUB 27000 :GHAPHICS 0 :GOSUD 26000 
3 POKE 559,O:QO=0:al=1:Q2=2:Q3=3:Qif=if:05=5:Q6=6:Q7=7:Q8=8:Q9=9:Ql0=10:011=11:Q12 
=12 :Ql00=100:Ql0000=10000:N=QO 
4 POKE 752,Ql:DIM A(Ql0,Ql0),8(Ql0,Ql0),M(Ql1),MS(Q8),N(Qll),T$(50),Z(Ql1),MA$C2 
0) ,XS(Q3) ,C( 15) ,D( 1~) ,PCOli) 
5 FDH E=Ql TO Ql0:FOH F=Ql TO Ql0:A(E,F) =0:8(E,F) =0:NEXT F:NEXT E 
:I GOSllB 26000 
9 HESTDRE :FOR I=Ql TO Ql1:REAO a:M(l) =Q:NEXT I:FOR l=Ql TO Qll:REAO Z:P(I)=Z:NE 
XT I:V=lNT(RND(Ql)*Q3) 
1 ~'5 C = IN T ( I:;: ND ( Q 1 ) * 1 ~j 0 1 +5 0 0 ) : S:::: I N T ( R NO <01 ) *Q 6) !f, <I: N T ( RN D ( eH ) * Q 4 ) : MAS ( Q 1 ) =" Sl e e p 
~;pf:!ll": MAS (Q2) =" CharM" 
17 MA$«(~3)="Invisibil:it~1 Spell":POHE 559,34:? "Want thf~ strength and Magic froM 

another gaMe";:INPUT XS 
18 IF XS(Ql,(U):::"Y" THEN 1630 
20 D=C:Vl =V:S1:::S:Rl=R:? "Just a MOMent ••• ":FOF~ Q=l TO n :jO:NEXT O:F'CH(E 559,(~0 

25 FOR 1=Ql TO Ql0:FOR J=Ql TO Q10:T=INT(RNO(Ql)*Ql0):IF T<)Ql OR CS=15 THEN T=Q 
o 
26 H=INTCRND(Ql)*Q2):W=INTCRND(Ql)*Ql0) 
30 P=INTCRNDCQ1)*51):ACI,J)=Ql0000*T+Ql00*P+Ql0*W+H 
37 IF T=Ql THEN CS=CS+Ql:C(CS) =I:DCCS) =J 
40 NEXT J:NEXT I:T=QO:SETCOLOR Q2,13,Q6:SETCOLOR Q4,13 t Q6:SETCOLOR Ql,13,13 
15 Xl =INT(RND(Ql)*Q8)+Q2:Y1=INT(RNDCQ1)*Q8)+Q2:X =INT(RNO(Ql)*Ql0)+Ql:Y=INT(RND(0 
l)*(HO)+Ol 
55 IF Xl{Ql OR Xl)Ql0 OR Yl{Ql OR Yl ) Ql0 THEN 1000 
56 FOR I=Ql TO Ql0:FOH J =Ql TO Ql0:8(I,J)=QO:NEXT J:NEXT I:CA=INT(A(Xl,Yl)/Ql000 
0) 

57 P=INTCCA(X1,Yl) - (Ql0000*CA»/Ql00) 
60 W=INTCCA(Xl,Yl)-(Ql0000*CA)-CQ100*P»/Ql0):H=ACX1,Yl)-Ql0000*CA-Ql00*F' - Ql0*W: 
1=Q 0: ,J ::: Q 0 
67 IF CA=Ql THEN I=INT(RND(Ql)*Ql0+Ql):J=INT(RND(Ql)*Q10+Ql):8(I,J)=Q7 
70 IF CA=Ql AND I=X AND Y=J THEN BCI,J)=QO:GOTO 67 

218 



75 IF H=Ql THEN I=INTCRNO(01)~Ql0+Ql):J=INTCRNOC01)*Q9+Ql) 
85 IF H=Ql AND BCI,J)<>QO THEN 75 
87 IF H=Ql THEN B(I,J)=Q3 
90 BCX,Y)=Q5:IF W=QO THEN 115 
95 FOR I :::: (~ 1 TO W 
100 J=INTCRNDCQ1)~Ql0)+Ql:K=INTCRNDCQ1)*Ql0+Ql) 
105 IF BCJ,K)<>QO THEN 100 
110 BCJ,K)=Q2:NEXT I 
115 IF P=QO THEN 110 
120 FOR I=Ql TO P 
125 J=INTCRNDCQ1)~Q10)+Ql:K=INTCRNDCQ1)*Ql0)+01 
130 IF BCJ,K)<>QO THEN 125 
135 BCJ,K)=Ql:NEXT I 
110 casus 26000:POKE 559,31:FOR 1=01 TO Ql0:FOR J =Ql TO Ql0:POSITION I,J 
115 IF B<'J,I) ::: QO THEN? "{"; 
150 IF BCJ,I)=Q1 THEN? " "; 
1 ~:;5 IF B C.J, I ) :::: Q2 THEN ? ""; 
160 IF BCJ,I)::::Q3 THEN? ""; 
165 IF BCJ,I):::Q5 THEN? "0"; 
167 IF BCJ,I)::Q7 THEN? "M"; 
170 NEXT ~J: POSITION Q 12, Q 0: IF 1::02 THEN ? "CoMbat St, r en(3th::" ; C 
180 POSITION (H2,QUIF I=Q3 THEN? "Treasul'e total=" tTL 
18~j POSITION (H2,Q~?nF 1::01 THEN? "Magic:" 
190 POSITIDN Q12,Q3!lF ]> Q5 THEN? "Sl€'~E~p-";S 

195 POSITION Q 1 2, (H:IF I=Q6 THEN ? "Char MS-'" ; R 
200 POSITION CU2,Q5:IF 1=07 THEN? "Invisibilit';:l-";V 
203 POSITION 012,06:IF 1=09 THEN? "DAY ";DA 
205 POSITION 012,Q7:IF 1=01 OR 1=08 OR I=Ql0 THEN? 
210 NEXT I:? :IF T=OI THEN 604 
213 IF T=02 THEN 515 
215 I =I NTCRNDCQ1)~Q5):IF I :Q2 THEN GOSUB 32000:POSI'fION QO,Q12 
2 2 0 I F I = (H AND T < > Q 9 THE N F' () SIT TON (W t 1 'I :? " N () t h i n q t h pre • " ~ C Cll () ~) 1. :, 
223 IF l=Ql AND T=Q9 THEN 513 
225 I=INTCRNDCQ1)*16+Ql):IF 1=01 2 THEN 8'10 
235 IF 1=13 THEN 870 
237 IF 1=1.4 THEN 900 
240 IF 1>1.4 THEN J=01.00:COTO 27 0 
245 J=INTCRNDCQ1.)*Q100/MCI»:Nl=J:lF J =Q O THEN J=Ql:N1=J 
?:::!4 GOSUB 10000 
2~.:j5 IF ~J::CH THEN pmllTION 02,1~=:i :'? "A ";M$;" is quard:i.nc.l" 
2 b 0 I F ~J < > (11 THE N P 0 SIT HI N Q 2 t 1 ~) :? ,.J;" "; M~; ; "s a l'f:~ qua l' 1.'.1 i n ~.l " 
2b5 M=M(I)*J:I=INTCRNOC01)*14+01) 
270 IF I>Ql1 AND J=Ql00 THEN 215 
271 IF 1<012 AND J=Ql00 THEN 215 
272 IF 1>011 THEN 975 
?7~1 IF 1>(112 THEN? "n()thin~l.":P:::OO~GClTCl 277 
275 GOSUB 10025:? TS:P=F'CI) 
27 7 IF M $ C :L , :3 ) ::: " Bas " (~N [) M 1 ::: 0 7 THE N 03 :':j 
2 7 9 If: ~J :: CH 0 0 THE N ';> " Y CJI..I q e t UH~ t I' e a s u l' (') f r (') C~ I " : G (ll 0 :j 0 0 
2ElO n;:AP 2ElO:? "Do ~!Ol..l wish to C:L)fi<:'lht, ( Z)r un,":? "C3)bribe, or (4)cast a spel 
1 " ; ::r N P lJ T ~(: 'm A P it 0 0 0 0 
2El5 IF K{1 OR K>4 THEN 200 
290 ON K GOTO 295,350,'135,670 
29:, TF\AP 29~j:? "How Man~:! cOMbat poi nt s " ; : INPUT ~(: TRAP 40000 
3 0 0 1 F ~C> C THE N ? " Y () 1..1 0 n 1 :I h a v e "; C ;" C Cl Mba t poi n t s • " : GOT () 29 5 
304 GOSUB 14000:I=INTCRN[)CQ1)*1001 ): L=Q2:C=C- K:K =K- 0.01*TL:FOR H=1000 TO 00 STEP 

.. ··~5 0 
315 IF L*M<=K AND H> =I THEN 190 
320 L=L-0.1:NEXT H 
3?~j GClSlJB 30000:COSLJB l~l()OO:? "The ";M$;"s ~.il10~d :Iou." 

219 



Monster Combat 

? "You lose ever:jthing.":'~ :~30 

:145 
346 
350 
3bO 
:170 
37~j 

380 
38~j 

390 
39~j 

:Wb 
397 
400 
405 
410 
41:'5 
42~j 

? "Want to pla~l again";:INPUT X$:IF X$(CH,CH):="Y" THEN HUN 
END 
I=INT(RNO(Q1)~Q12):IF I=Ql1 THEN 325 
FOH H=QO TO Ql0:IF H~Q10} = H AND H< =I THEN 375 
NEXT H: GClTO 480 
A=X:B=Y:K=QO:T=QO:C=C-INT«RND(Q1)~21)+1.0E - 03~TL)-Q5 

X=A+INT(RND(Ql)~Q3):Y=8+INT(RND(Q1)~Q3) 

IF X=A AND Y=B THEN 380 
DA=DA+O.l:IF X}Ql0 THEN X=Ql:Xl=Xl+Q1:K =Ql 
IF Y}Ql0 THEN Y=Ql:Yl=Yl+Ql:K =Ql 
IF A}Ql0 THEN A=Ql 
IF 8}Ql0 THEN B=Ql 
IF X<Ql THEN X=Ql0:Xl=Xl-Ql:K=Ql 
IF Y<Ql THEN Y=Ql0:Yl=Y1-Ql:K=Ql 
IF B(X,Y)}Ql AND K=QO THEN 380 
B(A,B)=INT(RND(Ql)~Q3)+Ql:8(X,Y)=Q5:IF I<} Ql1 THEN Z=Z+Ql 
IF ~( = CH THEN ~j5 

430 GOTO 21:'5 
4:3 :'5 TI:;:AF' 435:? "How Much will :lOU pa:J";:INPUT ~(:·fI:;:AP 40000 
4 4 0 I F ~C> T L THE N ? " You C) n 1 ~~ h a v (~ "; T L. : GOT 0 435 
445 I=INT(RNO(Q1)~22):L.=QO:IF 1=21 OR (I}15 AND K«2) THEN 325 
455 J = (P+(M~O.l»~Nl:IF K<Q2 THEN 475 
460 FOH H=QO TO 20:IF K<=J*L. AND I}=H THEN 475 
470 L.=L+0.1!NEXT H:GOTO 485 
47:::j ? "Your br ibf.~ was not acc(~pted." 
480 ? "You Must fight.":GDTO ?9~) 

485 P::::(W: TI...:::TL·-~( : B::BHH ! T::: O O:? "Your br it.l(~ was accep ted. " : GOTO 505 
490 N::N+Nl 
495 FOF: 0=1:'5 TO 00 STEP --O.2!SDUND nO;O,!n,O!NEXT O:? "You beat the ";M$ 
500 IF N<Q12 THEN I=INT(RND(Ql)*Q7):IF I=Q3 THEN 940 
501 IF J=Ql00 THEN I=INT(RNO(Ql).Q5):IF I=Q3 THEN 9b5 
~jO? TL.=TL.+P 
503 IF T~~<:L,:'5)::"a swo" THEN 770 
504 IF T}Q5 AND T<} 09 THEN TL. =TL - P:GOTO 985 
505? "You now have ";TL.;" trea~)urf:~ points . " 
510 IF T~~Wl,(~~j):="a tT'f:~" THEN BOO 
513 IF T=Q9 THEN GOSUB 30100 
~j 1 :'5 T I:;: A F' 5 1 ::j : P CJ SIT ION C~ 2 , 22 : F'ma:. 7 ~j? , 1:? " 101 hie h d i l' e c t ion (P I' e s s 1 for Map)";::r N 
PUT X$:TRAP 40000 
517 IF X't,=" 1" THEN T=e~2: GDSUE: 2b 000: GOTO 140 
520 THAP 520:T:::(10:? "What distance";!INPUT ~(:·mAP 40000 
521 CelTO 11 0 0 
523 A1=X1:81=Yl:A=X:B=Y:C=C-INT(7.5*K*RND«(11» 
5 2 5 I F X $ (Q 1 , (1 1 ) ::: " \01" THE NY::: Y _ .. ~( 
~j 3 0 I F X $ (Q 1 , (11 ) ::: " E " THE NY :::: Y ·H( 
~j 3 5 I F X $ (Q 1 , n 1 ) ::: " !3 " THE N X::: X He 
540 IF X$(Ql,(}1):::"N" THEN X:::X--~( 

545 IF X}Ql0 THEN X=X-Ol0:Xl=Xl+Q1:IF X}010 THEN 545 
550 IF X<Ol THEN X=X+010:Xl =X l-Ql:IF X<Ql THEN 550 
555 IF Y}010 THEN Y=Y - Ql0:Yl =Yl+ Q1:IF Y}Ql0 THEN 555 
5bO IF Y<Q1 THEN Y=Y+010:Y1 =Yl-0 1:IF Y<Ql THEN 5bO 
5b1 IF B(X,Y)=Q1 THEN C=C-05 
563 IF B(X,Y)=(10 THEN C=C -O l0 
~j65 IF C(:::(W THEN GClSUB 30000:? "You died frOM lack of strength.":GOTO ~130 

570 IF Xl<}Al DR Yl<}Bl THEN 55 
573 IF B(X,Y)=07 THEN T=09 
575 IF B(X,Y)=Q2 THEN 590 
580 IF B(X,Y)=Q3 THEN bOO 
584 IF A<QO THEN A=A BS(A) 

220 



585 BCA,B)=INTCRNDCQ1)lKQ3):B(X,Y)=QS:GOTO 140 
590 GOSUB 29000:? "You tried to go through a wall." 
595 C=C-INTCRNDC(1)lKTLlK5.0E-03)-25:X=A:Y=B:GOTO 515 
600 Y=Y+Q1:C=D:B(A,B)=INTCRNDCQ1)lKQ3):BCX,Y)=Q5:T=Ql:V=V1 
603 R=Rl:S=Sl:GOTO 140 
604 GOSUB 31000:POSITION Q2,Q12:? "You stopped at an inn and regained 
rength." 
610 I=INTCRNDC(1)lKTLlKO.25):IF I(Q5 AND TL}Q5 THEN I=Q5 
615 IF I(Q5 AND TL(=Q5 THEN I=QO 

';jClUr st 

620 ? "You paid ";1;" treasure points to sta~ there.":TL=TL-I:? "You now have 
";TL.;" treasure points." 

630 I=INTCRNDC(1)lKQ3):IF I=Q2 THEN 515 
633 IF I=Ql THEN GOSUB 1300:GOTO 515 
635 I=INTCRNDC(1)lKQ4+Ql):? "The innkeeper told ~ou that the forestedge is less t 
han 
645 
650 
655 

" . , 
ON I GOTO 650,655,660,665 
? YllKQ100;" ~ards to":? "the west":GOTO :7i15 
? C Q 1 l .-X 1) )K Q 1 0 0 ;" ~ a r d s to":? " the e a s t" : GOT 0 

660 ? XllKQ100;" ~ards to":? "the north":GOTO 515 
515 

665 ? <G1:L·-Xl )lK(HOO;" ~ards to" P "the south" :GOTO :7il:') 
670 IF T}Q5 THEN? "You can't use Magic to get Magic.":GOTO 280 
671 IF S+V+R=QO THEN? "You have no Magic":GOTO 280 
673? "What t~pe of spell-":? "(1)Sleep,C2)CharM, or (3)Invisibil:it~"~ 

675 TRAP 673:INPUT K:IF K(l OR K}3 THEN 670:TRAP 40000 
680 ON K GOTO 685,720,745 
685 IF S=(W THEN? "You have no Sleep Spell!5.":GOTO 480 
690 IF M$::::"ZoMbie" THEN? "You can't put the ";M$;" to sleep.":S=S-Q1:GOTO 480 
695 GOSUB 12000:I=INTCRNDC(1)lKQ10):S=S-Ql 
700 IF I(Q3 THEN? "Your spell was I..Insuccessfull.":GOTO 4E10 
705 IF 1(08 THEN? "You got the treasure.":N2=N2+N1:GOTO 500 
710 ? "The ";M$;" woke too soon." 
713 P=INTCRNDCQ1)lKP):TL=TL+P 
715 ? "You got awa~ with" ;P;" treasure points" :N2:=N2+N1 :GOTO 51:') 
720 IF H=QO THEN? "You have no charMs.":GOTO 480 
725 GOSUB 12000:I=INTCRNDC(1)lKQ10):R=R-Ql 
730 IF M<60 AND D ·Qil THEN? lilt didn't work.":GOTO 480 
733 IF M>50 AND I<Q2 THEN? "It didn't work . • ":GOTO .q80 
735 IF I=Q3 THEN? "It wore off too soon":GOTO 713 
740 I=Q3:GOTO 705 
745 IF V=QO THEN? "You have none.":GOTO 480 
750 GOSUB 12000:I=INTCRNDC(1)lKQ10):V=V-Q1 
755 IF M>50 AND I}Q8 THEN? liThe ":M$;" SMelled ~ou.":GOTO 713 
760 IF M<60 AND I=QO THEN? "It wore off too soon.":GOTO 713 
765 GOTO 7.q0 
770 I=INTCRNDC(1)lKQ2)+Q1:0N I GOTO 780,790 
780 C=Q2*C:POSITION Q2,Q4:? "You won an enchanted sword." 
781 ? "Your COMbat strength is doubled and is now ";C;".":GOTO 505 
790 POSITION QZ,Q4:? "You won an ordinar~ sword. Your cOMbatstrength reMains at 
"tC:GOTO 505 
800 J=INTCRND(01)lK010)tI=INTCRND(Ql)lKQ10) 
805 IF J=Q7 AND Ml<}Q7 THEN Ml=Q7:GOTO 820 
810 IF I=Q1 THEN 830 
81 ~:i COTO ~:i 1:3 
820 ? "TherE> was a Mirr'oT' in the chest. It will 
sk~;~ou Meet.":Ml::::(U:GCllCl :7i:l.:5 
8 3 0 GO S U 8 1 l 0 0 0 : ';i " T ~H? t T' P a ~.; 1..1 T' f.~ C h est was a t T' a p • 
(;!ned it.":GOTO ~1~10 

protect ~ou against an~ Basili 

You wpre killed when ~ou op 

B 3 ~.; ? " Y 0 '-' r MiT' r 0 r Id 1 1 E' d tile [: a s i 1 :i " 1<. I " : ~~ :'" N + ~J : M:::: Q 0 : G ell 0 5 0 0 
El40 GOSUE: l:')OOO:?"A (]iant bat <:'IT'abl:.lf.~ d ~()I..I and carr:i(~d :IOU to a npw spot." 
845 A=X:8=Y:T=QO:DA=DA+0.l 

221 



Monster Combat 

850 X=INT(RND(Ql)~Q10+Ql):Y=INT(RNDeQ1)~Q10+Ql):IF BeX,Y»Ql THEN 850 
859 IF A<QO THEN A=ABS(A) 
860 BeA,B)=INTeRND(Ql)~Q3)+Q1:B(X,Y)=Q5:GOTO 215 
870 eOSUE: 16000:? "You f~~ll into a p:Lt.":I=INTeFWD(1)~21+1.0E--0:3~TL):C:::C-I 
H75 IF C<>OO THEN? "You died tr7.d.n~.1 to ~.lf:~t out."!GOTo 330 
8BO? "You used ";1;" cOMbat point~:; to cliMb Clut.":I:::(Hl:GOTo ~~7::'i 
900 J=QO:FoR I=Q1 TO Ql1:J=J+N(I):NEXT I:IF J<011 THEN 215 
910 GOSLJB 1/000:? "A qiant E~aqlp carri~?d ~ou to safet~.":GOSUE: 27000:T:::QO:GOTO 1 
003 
940 I::::INTeF~ND(Q1)~Ql.1)+QUM::M(l):N::I:? "A ";M$;" heard the noi~;e of battle a 
nd caMe wandering b:l." 
947 IF I=Qll AND Ml=Q7 THEN B35 
9::'iO TFMP 9~)0:,? "Do '.:IOU wish to":'? "(1)f:i<3ht,(2)run,or(3)cast a spell":INPLJT I·UTR 
AP LtOOOO 
955 IF K<l OR K>3 THEN 950 
960 ON K GOTo 295,350,670 
96~i I:::INT(f~ND(Ql)~(Hl)+(H:M=M(I):'? "A ";M$;" caMe wandf.~rinq b:l.":GOTD 947 
975 IF 1<>14 THEN 273 
9B 0 I:::JNT OWO (Q 1) ~Q3+(H ) :T:::I +(l~:i:? " a "; MA$ ( 1) : F':::INT (RND (Q 1) >KQ l:L ) : GOTD 277 
985 I=INT(RND(Ql)~Ql0) 
9B6 IF J::Q!:i THEN ? "You were unable t,o Mast(~T' the spell." 
987 IF I=Q5 THEN GOTD 515 
988 IF T=Q6 THEN S=S+Q1:S1=Sl+Q1 
989 IF T=Q7 THEN R=R+Q1:R1=Rl+Q1 
990 IF T=QB THEN V=V+Q1:V1=Vl+Ql 
995? "You won the spf.dl.":T=(W:IF ~;1/Q!:i+FO/Q3+V1/Q2>Q6 THEN GOSUE: 1665 
997 GOTO 51!5 
1000 F~EM 

1003 GOSUE: 26000:GOmm 28000:? "You surviv~~d the forest,''':GOSUE: 27000 
1004 GOTD 1030 
1030'? :? "TI:;:EASURE TOTAL--";TI. .. :? "MClNSTEF~S ~aLLED-";N:? "MONSTEF~S ENCHANTED-";N2 
1035 IF TL1<>QO THEN GClSLJB 1650 
1040 '? "Congratulations ";:IF TI. .. :I.<>QO AND TI. .. 1 >Tl .. THEN'? "an:lwa'.:!!":'? 
1043 ? :X$::::"" 
104!:i IF OA<30 THEN'? "Do :lOU wish to return te) the for~~st"; :INPUT X$ 
1050 S=S1:V:::V1:I:;:=R1:C::[):IF X$<>"Y" THEN 1600 
1055 GOSUE: 26000:GOTCl 45 
1100 OA=[)A+K/Q10:IF DA<30 THEN 523 
1:L10 ';> "Your tiM€~ is up. 30 da:ls have passed":GOSUB 27000:GOTO 910 
1300 IF CS=QO THEN RETURN 
1301 1:::INT(RND(Q1)~CB+CH):'? "nw innket~per told of a leg£md of a castle "; 
1:303 IF CCI)::=X1 AND [)(l)="Yl THEN? "'.leT"::! clQse b·::!.":F~ETURN 
1304 J=X1-C(I)!I=Y1-[)(I) 
1:305 IF ABB(I):::ABSCJ) THEN? "direct:L7.l to the"; !GClTD 1:301 
1:306'? "soMewhere to t~w " 
1307 IF J>O THEN? "nor'th"; 
1:31 0 IF ~J< 0 THEN '? II sout,h" ; 
1:315 IF 1<0 THEN'? "east,." 
1:320 IF 1>0 THEN ? "W€~st. II 

1 :325 ? : RETURN 
1600 GDSUB 27000:,? "Want to go to a n£~w forest with the 
e"; !INPUT X$ 
1605 IF X$(Q1,Q1)::::"Y" THEN 1.6?5 

saMe strength and Magi 

1615? "[)o '.:IOU Wi~5h to qD to a m~w forest withnew strength and Magic";:INPUT X$: 
IF X$(CH ,Ql )::::"Y" THEN FWN 
1618 ? "Do '.:IOU plan to use t,h:i~5 saME~ stren~lth and Magic a<:'lain SOMe other tiMe";: 
INPUT X$ 
1619 IF X$(Q1,Q1)="Y" THEN GClSUB :L700 
1621? :? "Once again, ~Iour treasuT'~~ total was ":'? TI...;".":IF TI...>T1 THEN T1:::TL 
1623 IF T:L<>QO THEN ? "The largest treasure total ~ou got with this strength 

222 



and Magic was":? Tl;"." 
16Z4 '? "You killed ";Ni" 
Monster s. ":END 

Monsters. II:? "You slJccessfull~:J wc)rked Magic on":? 

1625 B=QO:Z=QO:DA=QO:FOR I=Q1 TO Ql1:N(I) =QO:NEXT I:IF Ql<TL THEN Tl=T' 
1627 TL = QO:COTO ZO 

1630 ? "COMBAT STRENGTH";:INPUT C:IF C<500 OR C>2000 THEN 1630 

N'?·" L. , 

16Ll O ? "SLEEF' SPELLS"t',INPUT SO? "CHARMS""I .. " . " NPUT R:? "INVISIBILITY"; :INPUT V :? " 
PREVIOUS LARGEST TOTAL"; 
161~ INPUT 11:COTO 2 0 
:l(~~.:jO IF Tl<TL. THEN? "You WDn MOT'P trE·~a~'; I..IT'€~ thi~:; tiM€~ than bpfoT' ('?'" 
1 6 ~5 3 1FT 1 :::- T 1._ THE N ? " Y Cl '-' d :i. d n 't 9 1-:-' t a S M 1..1 C h t r (? a ~:; 1..1 ret h i <; t, i l"l E;~ , " 

1660 F~ ETUf~N 

16.~)~:j ';) "Your Magic total i ~:; T'a ther l argp, ": ';> "Do ~~ou wi <:; h to convert it ·to cClMba 
t " : ';> " poi n t s " ; : IN PUT X $ 
1 .:S 7 0 I F X $ CO 1 , D 1 ) :::: " N " THE N R E TLJF~ N 
1675 Sl=Sl-Q5:Rl=Rl-Q3:V1=V1-Q2:IF S1<=QO THEN Sl~Ql 
1680 IF Rl<=QO THEN R1=Q1 
1685 IF Vl< = QO THEN Vl =Q l 
1690 S=Sl:R=Rl:V=Vl:C=C+Q100:D=D+Ql00:? "YOUT' cOMbat strength is perManentl~ i 
ncr E!ased b~ 100,": RETLJF~N 
1700? "COMBAT STI:;:ENGTH--";D:? "SLEEP SPELLS-";~H:? "CHAF~MS-";F\1:? "INVISIB1LITY-
" ; V 1 : ' ;> : RET U F, N 
2000 DATA 5,10,10,25,20,50,30,100,40,50,50,200.60,50,70,30,80,75,90,100,100,50 
9000 END 
10000 I=INT(RND(Ql)~Ql1)+Ql 
1 0 0 0 2 I F I:::: CH THE N M $ == " C Cl b 1 i rl " 
1000"l IF I=Q2 THEN M$:::: 'thnotal..lr" 
1000(S IF 1:=03 THEN M$::: C';:lclops" 
1000El IF 1::C~4 THEN M$ == ZOMbie" 
10010 IF 1::05 THEN M$ ::: Ciant" 
1 0 0 12 IF 1=06 THEN M$= Harp:!" 
100:L4 IF I:=CU THEN M$= GT'iffin" 
10016 IF I=C~El THEN M$:::: ChiMera" 
100 :L 8 IF 1::09 THEN M$= DT' a<.3on II 
10020 IF I=C~10 THEN M$::: IW~veT' n" 

10022 IF I::::CHl THEN M$::::IIBasili!;;k" 
1 0 02'+ F~ETLJRN 
10025 I=INT(RND(QO)*011)+01 
100:30 IF I::::CH THEN T$::::"l0 silver !!;pOons (10 pts)" 
1 0 0 32 IF 1=02 THEN T$= II a swor d wh i ch Might b(~ E!nchanted (2:::; pts) II 
10034 IF I=C~~1 THEN T$:::1I50 silvE!T' coins (50 pts)" 
100:36 IF I=CH THEN T$::::"100 <;.told pieces (100 pts)" 
1003B IF I=C~~j THEN T$ ::: lI an eMerald bracelet (50 pts)" 
10040 IF 1::::06 THEN T$::="a treasl.lre chest (200 ptS)" 
1004;~ IF 1=07 THEN T$:::: lIa pearl n<-::cklace (50 ptS)" 
1 0 0 4"l I F I = CHI THE N T $ :::: " a ,j ewe led s war d (:30 p t s ) " 
1 0 0 "l6 I F I :::: C~ 9 THE N T $ :::: II a jar 0 f T' 1..1 b i e S (75 p t s ) II 
1 0 0 48 I F I :: CH 0 THE N T $ :;:: II abo:-: Cl f ,j f.~ W e 1 s (1 0 0 p t s ) " 
10050 IF I=Ol:L THEN T~~:::lIa gold goblet (~jO ptS)" 
1005:::; F~ETURN 
11000 V=15:FOR 0=Ql0 TO 0100:S0UND 01,O,QO,V:SETCOLOR Q2,O,V:V= O,99~V:NEXT O:FOR 

Z::::OO TO 010:NEXT Z 
11005 SOUND 01,OOtOO,00:SETCOLOR 02,09,Ol:GOSUB 26000:RETURN 
12000 GOSLJB 26000: POSITION :L 2,12: SETCOUJF, CH, 05 , Q 1:? II MAGIC BEING USED •• ,": SOUND 
Ql,00,00,03:S0UND 00,"l9,010,Q5 

12001 SET COLOR 02,Ql,14:SETCOLOR O"l,Ol,l"l:FOR 0=1 TO 75:NEXT O:SOUND 00,00,00,00 
:SOUND 00,25,Ql0,Q5 
12005 SETCOLOR 02,04,14:SETCOLOR 04,Q4,14:FOR 0::01 TO 50:NEXT 0 
12006 SOUND OO,QO,OO,OO 
12010 SOUNO QO,26,010,05:SETCOLOR Q2,Q5,Q10:SETCOLOR 04,05,Ql0:FOR O=Ql TO 50:NE 

223 



Monster Combat 

XT O:SOUND 00,00,00,00 
12011 SOUND 01,00,00,00 
12015 GOSUB 26000:RETURN 
13000 SETCOLOR 02,00,00:SETCOLOR 04,00,00:RESTORE 13015:FOR Z=01 TO 15:READ NTE: 
F~EAD DUf.: 
13005 SOUND 00,NTE,010,05:FOR 0=01 TO DUR:NEXT O:SOUND 00,00,00,00 
13010 IF NTE=OO AND DUR=OO THEN SOUND OO,OO,QO,OO 
1301:1. NEXT Z 
13015 DATA 136,8,136,3,102,40,136,9,102,3,85,36,136,8,102,3,85,20,136,8,102,3,85 
,20,136,8,102,3,85,56,0,0 
13020 GOSUB 26000:SETCOLOR Q2,Q9,Ql:RETURN 
11000 FOR 0=155 TO QO STEP -2:S0UND QO,Ql0,QO,0:NEXT O:SOUND 00,00,00,00 
14005 GOSUB 26000:RETURN 
15000 FOR 0=255 TO 00 STEP -3 :S0UND OO,O,O,O:NEXT O:GOSUB 26000:RETURN 
16000 FOR O=QO TO 255 STEP 07:S0UNO 00,0,02,0:NEXT O:GOSUB 26000:RETURN 
17000 FOR 0=15 TO 00 STEP -0.25:S0UND 00,50,Q10,O:NEXT O:GOSUB 26000:RETURN 
19000 FOR O=QO TO 15 STEP 0.5:S0UND OO,O,O,O:NEXT 0 
19010 FOR 0=15 TO 0 STEP -O.S:SOUND O,O,O,O:NEXT O:GOSUB 26000:RETURN 
21000 FOR O=QO TO Q8:FOR T=Ql TO Q8:S0UND QO,Q10,O,0:SOUND Ql,T,T,T:NEXT T:NEXT 
O:SOUND QO,QO,QO,QO 
21005 SOUND Ql,QO,QO,QO:GOSUB 26000:RETURN 
22000 FOR 0=15 TO QO STEP -2:S0UND QO,Q10,Q8,0:NEXT O:SOUND QO,QO,QO,QO:GOSUB 26 
000 n:;:ETURN 
23000 FOR O=QO TO 15:S0UND QO,Q10,0,0:NEXT O:COSUB 26000:RETURN 
21000 FOR 0=00 TO 255 STEP Q8:S0UND 00,0,Q2,0:NEXT O:GOSUB 26000:RETURN 
25000 SETCOLOR 2,5,8:SETCOLOR 4,5,8:FOR 0=89 TO 21 STEP -10:S0UND O,O,10,8:S0UND 

1,0+10,10,B 
25001 SOUND 2,0+20,10,8:S0UND 3,O+30,10,B:NEXT O:FOR VOL=15 TO 0 STEP -1:S0UND 0 
,O,10,VOL:SOUND 1,0+10,10,VOL 
25002 SOUND 2,0+20,10,VOL:SOUND 3,0+30,10,VOL:NEXT VOL:GOSUB 27100:RETURN 
26000 ? "}": SETCOLOF~ (~2, 13, Q6: SET COLOR 04,13, Q6: SETCOLOF, (H, 1.:3,1:3: pm(E 752,1: I:;:ET 
URN 
27000 FOR Z=OI TO 200:NEXT Z:RETURN 
27100 GRAPHICS 3+16:COLOR S:PLOT 010,Ql:DRAWTO Q12,Q1:DRAWTO Q12,02:DRAWTO 13,Q2 
:DRAHTO 11,Q2:DRAWTO 11,Q1:DRAWTO 16,Ql:DRAWTO 16,QS:DRAWTo 18,05:0RAWTO 18,03 
27110 DRAHTO 23,Q3:DRAWTO 23,Q5:DRAWTo 25,QS:DRAHTO 25,01:DRAWTO 27,Q1:DRAWTO 27 
,Q2:DRAWTO 29,Q2:DRAHTO 29,01:0RAWTO 31,Ql:DRAHTO 31,20:DRAWTO 010,20 
27120 ORAWTO 010,Ql:PLOT lB,19:DRAWTO 18,15:DRAHTO 19,11:0RAWTO 20,13:DRAHTO 21, 
13:DRAWTO 22,11:DRAWTO 23,15:DRAWTO 23,19 
27130 GOSUB 27000:RETURN 
28000 SET COLOR 02,09,01:SETCOLOR 01,Q9,01 
28010 SOUND 00,Bl,Ql0,Q10:GOSUB 28100:S0UND Q1,61,010,010:GOSUB 28100:S0UND 02,5 
3,Q10,010:GOSUB 28100:S0UND Q3,10,Q10,Ql0 
28020 FOR TIME=OI TO 100:NEXT TIME:FOR ZZ=OO TO 03:S0UND ZZ,OO,OO,OO:NEXT ZZ:RET 
UF,N 
28100 FOR TIME=Q1 TO 010:NEXT TlME:RETURN 
29000 FOR 0=15 TO 00 STEP - 1:S0UND OO,010,Q8,O:NEXT O:SOUND OO,OO,OO,OO:GOSUB 26 
000 n:;:ETlJRN 
30000 FOR 0=15 TO 00 STEP -O.2:S0UND QO,0,Q8,0:NEXT o:GOSUB 26000:RETURN 
30100 COSUB 27000:COSUB 26000:T=00 
30103? "You Made it to the enchanted ca~,tle":I:::INT(F,ND(Q1»)I(21»)I((HOO:,J=INT(RND((~ 
1)')I(09):ACX1,Yl)=ACX1,Yl)-010000 
301:LO GOSUB 25000:? "You found ";1;" tT' eaSUT'e points there":TL=TL+I:IF J <> 07 OF~ 

Ml :=07 THEN 30125 
30120? "You also found a MirrDT' which will kill an~ Basil:ii5ks ~:lOU Me~!t":M1.::Q 

7 
30125 J=INTCRNDC(1»)I(20):IF J=02 THEN C =02~C 

30130 IF J=02 THEN? "You also found an enchanted sword which doubles ~our stren 
9th." 
30110 FOR I=Ql TO CS-Ql:IF CCI)<>Xl THEN NEXT I:GOTO 30115 

224 



30111 FOR J=01 TO CS-Q1:C(J)=C(J+01):D(J)=D(J+01):NEXT J 
30111 NEXT I 
30115 CS:::CS-(~ 1 : IF CS=Q 0 THEN ? "You found th€~ I (3~; t cast Ie! " 
30 150 F~ETURN 

31000 FOR 0=Q1 TO 05:FOR P=15 TO 00 STEP -3:S0UND 00,15,02,P:SOUND QO,20,02,P:NE 
XT P:NEXT O:SOUND QO,OO,QO,QO 
:H 0 0 1 RETUFm 
32000 I=INT(RND(Q1)*Q11+Q1) 
32001 ON I GOTO 32010,32020,32015,32030,32010,32050,32060,32070,32080,32090,3209 
t:" 
~j 

:~2010 POSITION 0,12:? "You stepped into a tiMe warp and lost":? "7 da~s":DA=DA+Q 
7:RETURN 
32015 I=INT(RND(Q1)*Q10+Q1):J=OA:DA=DA-I:IF DA{0.1 THEN DA=0.1:I=J-DA 
32017 POSITION 0,12:? "You stepped into a tiMe warp and gained":? 1;" da~s":RETU 
F~N 

32020 IF C}=O THEN RETURN 
32023 GOSUB 19000:? "You Met an elf who gave ~ou a Magic drink that gave ~our 
str€mgth back": C=O: RETUF~N 
32030 IF V+R+S=V1+R1+S1 THEN RETURN 
32033 GOSUB 19000:? "You ran into a wizard who gave ~ou a potion that restored 
all ~our Magic.":V=V1:R=R1:S=S1 
32035 RETURN 
32040 IF TL{02 THEN RETURN 
32043 GOSUB 21000:? "You fell into SOMe quicksand. You lost half of ~our treasur 
e":TL=INT(TL/Q2):RETURN 
32050 GOSUB 22000:? "You ran into SOMe thick underbrush and used up half ~our st 
rength": C=INT (C/Q2): RETUF~N 
32060 I=INT(RN[)(QU*5()+Q1):POSITION 01,Q12:? "Y()U found ";!;" coins l~ing on the 

ground":TL=TL+I:RETURN 
32070 IF Ml{>Q7 THEN RETURN 
32073 GOSUB 23000:? "You tripped over SOMe roots and tnoke ~our Mirror":M1=QO:RE 
TURN 
32080 POSITION Q2,Q12:? "A herMit told ~ou that there are oo;CS;" 
":RETURN 

castles left 

32090 IF V+S+R=O THEN RETURN 
32091 GOSUB 21000:? "You wandered into an area where Magic doesn't work.":V=QO:S 
=00 :R=QO :F.:ETURN 
32095 IF CS=QO THEN RETURN 
32096 POSITION Q2,Q12:? "You Met a hunter who told ~ou of the legend of a castl 
e "; :I::::INT <ri:ND(QU*CS)+QU GClSUE: 1303 
32097 RETURN 

Scurry David Bohlke 

In Scurry you are presented with a 
series of tasks to be accomplished 
within a limited amount of time, with 
obstacles to be a voided. The tasks con
sist of X shaped targets that appear on 
the screen for a brief period of time. 
You must use the joystick to move the 

David Bohlke, Lynn Drive, Coggon, IA 52218. 

cursor over the target before it dis
appears. The obstables are blocks on 
the screen. 

You receive 10 points for each target 
you reach, and lose 2 points for each 
obstable you hit. Your cursor is con
tinuously moving , so the game is not 

225 

easy. As your score increases, the 
cursor moves faster and more 
obstacles appear. 

Scurry was written to demonstrate 
several of the special abilities of the 
Atari computer, including the use of 
joysticks" no Player-Missile graphics. 



Scurry 

The main feature of this demon
stration game is the machine language 
routine stored in Y$ in line numbers 90 
to 97 . Objects in PI M graphics can be 
moved horizontally on the screen 
with animation speed by using the 
appropriate POKE addresses. How
ever, there is no such provision for the 
up and down movement of the graphic 
images to any vertical location . It is 
necessary to reposition the entire 
image, one byte at a time, in the PI M 
graphics list. If you do this using Basic 
POKEs the speed of the graphics will 
be unacceptably slow. 

One way to speed up this vertical 
movement is to reposition the image 
using a machine language routine. 
The following code will accomplish 
this task: 

162,20 

LOOP 
189,0,0 

157,0,0 

202 

LDX,20 
20 is the number of bytes to 
be moved . 

LDA, Source address 
This will be the location of 
your PI M image. In this 
case, the cursor image is 
permanently stored at the 
top of the Player 0 display 
list. Since the first twenty 
bytes of the list aren't shown 
on the screen, this seemed 
like a convenient location. 

STA, DESTINATION 
address 
This will be the verticalloca
tion in the Player 0 list (and 
the screen) that the image 
will be displayed . 

DEX 
decrement counter 

208,247 BNE, LOOP 

104 

96 

Move another byte, for a 
count of twenty in this 
example. 

PLA 

RTS 
Line number 95 of the listing sets 

UY as the machine language addresses 
for the USR function. In line number 
97, the source address for the image 
(POKE m+5, MB+I) is set at the be
ginning of the Player 0 list. The 
decimal 250 effectively moves this 
address six bytes below the Player 0 
image. Since a total of 20 bytes are 
moved, these extra blank bytes before 
and after the image will erase the 
previously set image if the vertical 
change is restricted to plus or minus 
five bytes. Hence, it is not necessary at 

each move to clear the entire Player 0 
list. 

The POKE M+8, MB+2 instruction 
in line 97 will place the MSB destina
tion byte in the routine. Since PY = 
M+7, the LSB byte can be set each time 
you want to move the image. Now, the 
only commands needed for vertical 
movement are POKE PY,SV: Z=USR 
(UY) where SV is the vertical 
placement in the Player 0 list. 

If you have several images to move , 
it will be necessary to POKE changes 
for both the source and destination 
addresses in the routine . Or, perhaps it 
would be better to set up a different 
machine language routine for each 
image. Although this machine code 
may not be appropriate every time you 
need to use Player I Missile graphics; 
hopefully you will find some benefit 
from the description. 

Scurry was not designed as a game 
to give you 'endless' pleasure until 
4 a.m. each morning - even though it 
is fun for a change of pace from time to 
time. But it will be worthwhile if it 
helps you to piece together some of the 
concepts in Player I Missile graphics . 

Line description 

5-97 

10 

11-13 

20 

25 

30-40 

50-52 

Scurry 

initialization 

Y$( 15) holds the machine 
language routine 
D( 15) holds directions for 
STICK commands 

colors 

MB is 12 pages down from 
the top of memory 
PB is the beginning of 
Player I Missile graphics list 

reset color attract mode, 
turn off cursor 

initialize P I M graphics 

put cursor image at bottom 
of Player 0 area in PI M 
graphics list 

54-56 

90-97 

100-270 

100 

size and color of Player 0 

put machine language rou
tine into Y$ 

pre-game initialization 

P stores points accumulated 
PK is the increment of 100 
counter 

110 SH,SV are the cursor hori
zontal and vertical positions 

120-122 prints 

150 position target 

160-162 directions for STICK func
tion 

200-270 T is time, D is direction 
X, Yare speed increments 
for the cursor 

300-500 main game loop 

300 check for collision of cursor 
and graphics blocs 

310 if collision, then decrement 
points, pick new RN D direc
tion, print score 

320 decrease time 

330-390 check STICK for cursor 
direction 

400 adjust PI M cursor's vertical 
position 

410 plot PI M cursor's hori-
zontal position 

420-430 check for hit on target 

440 increment points for hit 

460 plot new target 

480 check if point increment is 
over 100 multiple 

490 

492 

increase speed 

reset time, increment multi
ple of 100 counter 

700-790 set new target 

800-820 prompt for next game 

5 REM SCURRY b~ David Bohlke 
10 DIM Y'(15),D(15) 
11 GF~APHICS ~l 

12 SETCOLOR 2,14,2:SETCOlOR 4,14,2 
13 SETCOlOR O,8,6:SETCOLOR 1,11,8 
20 MB=PEEK(106)-12:POKE 54 279,MB:PB=256~MB 
25 POKE 77,0:POKE 752,1 
2 6 P () 1< E 6 ~) f.) , 1 : F' () ~( E f) ~5 7 t :1. 6 : F' F~ I N T II t') C lJ F.: F~ Y II 

226 



30 POkE 559,46:REM DOUBLE LINE GR. 
32 POKE 53277,3:REM ENABLE GRAPHICS 
34 POKE 623,8:REM PLYR PRIORITY 
40 FOR I=PB+500 TO PB+800:POKE I,O:NEXT I:REM ZERO GR. AREA 
50 RESTORE 52:FOR I=PB+512 TO PB+516:READ A:POKE I,A:NEXT I 
51 REM PUT PLO AT 80TTOM OF PLO AREA 

54 POKE 53256,O:REM SIZE OF PLO 
56 POKE 704,0:REM COLOR OF PLO 
90 M=ADR(YS):RESTORE 92:FOR 1=1 TO 13:READ A:PoKE M+I~A:NEXT I 
91 REM MACHINE LANG. ROUTINE 
92 DATA 162,20,189,250,0,157,0,0,202,208,247,104,96 
95 UY=M+1:REM POKE PY,SV:Z=USR(UY) 
96 REM SOURCE, DESTINATION OF ROUTINE 
97 POKE M+5,M8+1:POKE M+8,MB+2:PY=M+7 
1 0 0 F' =" 0 : P ~( "= 0 
110 ~3H::::12!:i:~3V=60 

1 :? 0 F:' CHa:: 6 ~i 6 , 3 : P CH( E 6 5 7 , :1. : P Fa N T II ~; C ClF~ E"; 
1 2 2 P (H( E 6 !:'i 6 , 3 : P (H( E 6 ~) 7 , :3 0 : P Fa N TilT 1M E"; 
1!:;0 GOSU8 700 
160 RESTORE 162:FOR 1=5 TO 15:READ A:D(I)=A:NEXT I 
162 DATA 2,1,2,0,3,4,4,0,3,1,0 
;?OO T:=~)OO 

210 D=INT(RND(0)*4)+1 
27 0 X=~l: Y<l 
299 REM MAIN PLAY LOOP 
300 C=PEEK(53252):POKE 53278,0 
310 IF C=2 OR C=1 THEN P=P-2:S0UND O,50*C,10,14:D=INT(RND(0)*4)+1:POKE 

6!:'i7 , 7: PFUNT P; II "; 

3 2 0 T :=: T .. -1 : P (H( E 6 ~i 6 , :3 : P CH( E 6 !':j 7 , 35 : P FU N TIN T ( T ) ; II ";::IT T·<1 T 1-1 E N 8 0 0 
330 S=STICK(O):IF S=15 THEN 350 
3 1tO D::::D(S) 
350 GOTO D*10+350 
360 SV=SV-Y:IF SV<10 THEN SV=10:D=3 
362 GOTD 400 
370 SH=SH+X:IF SH>200 THEN SH=200:D=4 
372 GOTO 400 
380 SV=SV+Y:IF SV>90 THEN SV=90:D=1 
382 GOTe) 400 
390 SH=SH-X:IF SI-I<50 THEN SH=50:D=2 
400 POKE PY,SV:Z=USR(UY) 
405 SOUND 0,0,0,0 
410 POKE 53248,SI-I 
420 C=PEEK(53260) 
430 IF C<>2 THEN 300 
4 itll P = P + :L 0 : P CH( E 6 5~) , 3 : F' CH( E 6 5 7 t 7 : F' FU NT P; II "; 

450 SOUND 1,222,6,12:S0UND 2,100,2,14 
4 6 0 G Cl ~; U [: :7 0 0 
462 F'Ci~(E :~i3Z7U to 
46q SOUND 1,O,O,O:SClUND 2, 0,0,0 
480 IF INT(P/100)<F'K THEN 300 
490 X=X+0.5:Y=Y+O.S:IF Y>5 THEN Y=5:X=5 
492 T=500:PK=PK+l 
!:i 00 COlD ~l 00 

227 



Scurry 

700 TH=RND(O)*1~0+55:REM TARGET HoRlZ 
704 REM MOVE OLD TGT. OFF OF SCREEN 
705 POKE 53249,10 
110 FOR I=TV+6~O+PB TO TV+PB+646:PoKE I,O:NEXT I:REM CLEAR OLD PLl TARGET 
120 CL=INTCRND(0)*15)*16+8:PoKE 105,CL:REM COLOR OF PLl 
730 POKE 53257,O:REM SIZE OF PLl 
750 TV=RND(O)*70+20:REM TARGET VERT. 
160 RESTORE 762:FOR I=TV+640+PB TO TV+PB+646:READ A:POKE I,A:NEXT I 
761 REM PUT TARGET INTO PLl AREA 
762 DATA 65,3~,28,28,28,34 , 65 

770 POKE 53249,TH:REM PLOT NEW TGT. 
781 C=INT(RND(0)*2)+1:IF P)200 AND RND(O)<O.8 THEN 790 
182 COLOR C:PLoT RND(O)*39,RND(O)*19 
/9 0 F~ETUF~N 

U 0 D P F;: I NT: F' F~ It··) T I I P r €.~ ':; <;; ::) T (.:1 f~ T f D r' r'l f.-~ ~< t. q a M E~ '? I I ; 

810 IF PEEK(532/9)=6 THEN 11 
820 SOUND 0,RND(O)*200,10,2:GoTO BiD 

Collision 

Now is the time for iron nerves and 
instant reflexes. Your nimble sports 
car will soon by flying down the dread
ful ribbon pavement known as the 
"Serpent of Oblivion." There's no 
chance of turning around or slowing 
down - you must forge ahead until 
the inevitable collision. But you will 
succeed if you can survive longer and 
score more points than any of your 
opponents. 

To begin your challenge of the 
Serpent , plug a joystick into Slot #1. 
One to four players can compete in 
each game. Every player will have 
three turns to navigate the swooning 
roadway. Before play starts, you must 
also select a skill sevel (1-5). This will 
determine the width of the track. 

During play, yom car will be at the 
top of the screen. The curving road will 
move from the bottom of the screen to 
the top. To avoid a collision, you must 
maneuver your car to remain on the 
roadway while also avoiding any 
obstructions on the road. Steering 
your car is a matter of pushing thejoy
stick to the left or right. The 'wheel' 

David Bohlke, Lynn Drive, Coggon, IA 52218. 

is very sensitive, so it may take some 
practice to get the feel of the car. The 
longer you push the stick (left or right) 
the faster your car will veer in that 
direction. 

Scoring is determined by the skill 
level selected and the length of time 
you survive before the certain col
lision. At the end of each player's turn, 
a score card showing each drivers' 
score for every turn will be displayed. 
The higher your score, the better your 
driving ability on the Serpent. At this 
time, the player who is to drive next 
will be prompted to press the fire 
button which will initiate your turn. 

The program listing for collision 
should be fairly easy to decipher. Lines 
5-30 are the initialization. N$ will hold 
the players' names, S(4,3) contains 

Collision 

David Bohlke 

each player's score for each round , and 
R$(20) holds the graphics string for 
the roadway. Lines 50-172 are the 
prompts for the beginning of the game 
options. 

The main game loop is in lines 180-
410. Your car is displayed using 
Player/ Missile graphics . The car 
position is printed in line 370; and a 
collision is checked for in line 380. Line 
320 prints the road obstacles and 
adjusts a counter to increase their 
frequency as your turn progresses. 

In the subroutine at 500-550, the 
sounds and colors are changed after a 
collision. The subroutine at 600-699 
displays the score card. Lines 900-960 
set up the Player / Missile graphics and 
the routine at 970 formats the string 
to print the roadway. 

5 REM COLLISION b~ David BDhlke 
10 GRAPHICS O:PoKE 752,1 
15 DIM B$(6),N$(32),N(4),S(4,3),R$(20) 
18 FOR 1=0 TO 4:FoR J=O TO 3:S(I,J)=O:NEXT J: 

NEXT I 
20 SETCoLoR 2,13,4:SETCoLoR 4,4,2 

228 



30 H=120:COSUB 900:LO=1 
i~ D r' H I NT" :::- " : F' 0 !H T :r: 0 N 1 :3 , 3 : F' Fa NT" COLI ... I r:; Hl N 11 
~.=; () P 0 SIT I () N :3, (.) : F' f~ I N T 11 How Man '.;j p 1 a ~~ E) T' S C 1 ... -4) ";: 

INPUT NP: IF NP{ 1 em NP>4 THEN -4 0 
~::j::'=; FCm 1 ::"1 TO NP:PFUNT :PfaNT I1ENTEF~ naMe of pla'.;jf.·)T' =I: 11;1;" "; 
60 INPUT B$:NCI)=LENCBS)+NCI-l):N$(NCI- 1)+1,NC1»=B$:NEXT I 
1 0 0 PFaNT 11::- 11 : POSITION 1:3,3: PRINT 11 COLLISION 11 

1 :I. 0 F' 0 SIT ION ?, :1. 0 : P F~ I N T II P U!3 H ~; TIC ~( toe n t E) r !3 ~(I L L LEV E L.. , II : F' R I N T 
"then pr€~SS the FIF~E button • • . " 

120 POSITION 2, 16: F'F~INT 11 1 i ~; e a ~; :i. es t, 5 is har des t '?" 
150 POSITION 35,16:PRINT LD; 
152 FOH 1=1 TO 50:NEXT I 
155 IF STRICCO)=O THEN 172 
160 IF STICKCO)=1S THEN 1S0 
165 LO=LO+1:IF LO=6 THEN LO =1 
170 GO TO 1::50 
172 L=13-LO:GOSUB 970 
174 PFaNT :PFUNT :F'f([NT N$( 1 ,N( 1»; 11 _._ •••• press Fn~E fClT' '.;jc)ur turn '?"; 
175 FOR 1=1 TO 333:NEXT I 
176 IF STRICCO)=1 THEN 176 
180 FOH RD=l TO 3:FOR PL=l TO NP 
:1.90 Cl::::1S:PFnNT "}11 
?OO A=:l.2:B=0.5:C=0:F'=0:K=0 
210 POKE 77,O:S=0 
2 2 0 P CH( E ~.'j :~ 2 7 f.l , 0 
250 FOH 1=0 TO 23:POSITION 12,I:F'RINT R$:NEXT I 
300 POSITION A,23:PRINT R$ 
305 SOUNO O,100-ABS(S)~:l.O,-4,ABS(S)~2+2 

310 A=A+B:IF A>22 OR A{1 OH RND(O){O.01 THEN B=-B 
120 C=C+l:IF C=C1 THEN POSITION A+RNO(0)~(L.. -3)+3,22:PRINT 

"; : C = 0 : P :: P + L 0 :4( 2 : I FIN T C F' / 1. 0 0 ) :> ~( THE N ~( = ~(-+. 1 : C :I. ::: C 1 ... 1 
340 P=P+1:POSITION 1.,O:PRINT P; 
350 IF STICK(O){f.l THEN S=S+1:COTO 370 
360 IF STICK(0){1.2 THEN S=S-1 
37 0 H=H+S:POKE 53248,H 
38D IF PEEK(53252){:>0 THEN GOSUB 500:GOTO 400 
390 GOTD ::JOO 
400 SCPL,RD)=P:COSUB 600 
it 0 ~.:j NEXT PI... 
410 NEXT FW 
ifZO END 
500 SOUND 0,0,0,0 
510 FOH 1=1 TO 5:SETCOL..OR 4,HNOCO)*16, 

RND(0)*16:SETCOLOR 2,RND(0)~16,HND(0)~16 
52 0 FOR J=l TO 5:S0UNO O,RND(0)~::J0,-4,8:S0UNO 1.tRND(0)*I~10,8t8:NEXT J 
522 NEXT I:SOUND O,O,O,O:SOUND :1.,0,0,0 
540 H=120:POKE 53248,H 
~.:j ~:j () F~ F T LJ F~ N 
(~'d) 0 P FU NT" } 11 : P () ~)J TID N :3, 1 : F' FU N Tile 0 L L H3J 0 N 11 

605 SFTCOLOR 2,l,2:SETCOLOH 4,11,4 
610 POSITION ::l,4:PFUNT "f~ol..ln(l: OnE) TwCl ThT'f:)f.~ TOTAL 11 

620 FOR 1 =1 TO NP:POSITION l,I~4+3:F'RINT N$(N(I - l)+l,N(I»; 
622 FClF~ J::O TO :39: POSITIClN ,.J, 1)l(4+:"j: F'FUNT 11 ";: NEXT ,.J: NEXT I 

229 



Collision 

630 FOR 1=1 TO NP:T=O 
635 FOR J=l TO RD:T=T+SCItJ) 
6QO POSITION J*7+5 t I*4+3:PRINT SCItJ);:POSITION 34 t I*4+3:PRINT 

T; : NEXT ,J: NEXT I 
680 P=PL+1:IF P)NP THEN P=1:IF RD=3 THEN 697 
690 POSITION l t 23tPRINT N$CNCP-··1?+l t NCP»;" 

Pr ess FIRE for ~jour tur n ?"; 
692 IF STRIGCO)=1 THEN 690 
693 SETCOLOR 2 t 13 t 4:SETCOLOR 4 t 4 t 2 
695 F~ETlJFm 

697 POSITION 1 t 23: PfaNT "p" €~Ss FIF~E foT' ne)-:t gaMe ??????"; 
698 IF STRIG(0)=1 THEN 697 
699 RUN 
900 MB=PEEK(106)-8:POKE 54279 t MB:PB=256*MB 
910 POKE 559 t 46:POKE 53277 t 3 
920 FOR I=PB+512 TO PB+640:POKE ItO:NEXT I 
930 POKE 5j248 t H:POKE 704 t 122:POKE 53256 t O 
9QO FOR I=PB+530 TO PB+536:READ A:POKE ItA:NEXT I 
950 DATA 51t63t30t12t12t63t51 
9~) 0 f\ETLJF~N 
970 R$:::'III 

97~~ nm 1=1 TO L..:R$(L..ENCF~$)+1)::::" ":NEXT I 
97 it F~$ (LEN C R$) +:L ) :::"" : F~ETlJF~N 

Air Defense David Bohlke 

There's a spy in the sky! How long 
are you going to allow this super
snooper to fly in your airspace? Sure, 
they can hide behind the clouds or 
swoop below your mountain range , 
but yo u should be able to stop them 
with your deadly sonic cannon. Be 
warned - these sleuths are infinitely 
persistant and you can't possibly get 
them all. But, with an accurate eye, 
yo u should be able to maintain your 
gunners rank. 

To begin play, plug a joystick into 
Slot # I. At the start, you'll also be able 
to select the speed of the spy craft. This 
is on a scale of one to five , with one 
being the slowest. It will take a little 
practice before you can advance to 
the faster games. 

David Bohlke, Lynn Drive, Coggon, IA 52218. 

During the game, the spy planes will 
move horizontally across the screen. 
Use your joystick to position your 
cannon and fire at the snooper. Besides 
leading the plane accord ing to its 
speed, you'll a lso have to adjust the 
height of burst for your son ic cannon. 
The current altitude setti ng (1-9) will 
be displayed on the screen. To move 
the cannon horizonta lly , push the stick 
to the left or right. Adjusting the 
altitude is accomplished by pushing 
the stick up or down . When yo u're set 
to shoot, press the fire button. 

It will take a few practice rounds 
for you to get a feel for the various 
altitudes and speeds . You ca n use the 
clouds and mounta in landscape as a 
gauge for altitude. Usually, only one 
specific altitude se tting will ac
complish a hit on the plane. Faster 

230 

and / or higher planes will require a 
little more lead horizontally and the 
aircrafts are most vulnerable on their 
lower tail sections. 

Scoring is done in a progressive 
manner. You begin with fifteen rounds 
for the sonic blaster and for every in
crement of 500 points that you ac
cumulate your ammunition supply will 
be replenished to 15. The game will 
continue as long as you have ammuni
tion remaining. For each hit , you can 
score from 40 to 80 points, depending 
on the altitude of the plane. This score 
and your total score will be displayed 
on the lower left of the screen. Points 
will be ded ucted from your score 
every time you miss (minus 20) and 
when a plane escapes off the edge of 
the screen (minus 50). If you can con
sistantly score over 2000 points , then 



you should select a faster speed for a 
higher skill level. 

A ir Defense illustrates an extensive 
use of Player I Missile graphics . The 
planes (left and right) are PLO and are 
formatted in lines 700 to 750. The PL \ 
mode is used both for the cannon 
smo ke (800-808) and for the sonic blast 
(860-870). Your cannon is PL2 and is 
set in lines 820-828 . PL3 represents the 
fireball when yo u score a hit. This 
routine at 830-850 increases in size as 

Air Defense 
3 REM AIR DEFENSE 

the fireball expands. The terrain a nd 
clouds are set und er Graphics 5 in lines 
880-899. 

The basic game initialization is in 
lines 3-140. Line 92 has DATA state
ments used in reading the STICK com
ma nd s for the hori zo ntal and altitude 
increments. The main game loop is in 
lines 150 to 490. Lines 150-\95 set the 
plane a nd adjust the prints; and lines 
200-220 check for the plane being off 
the scree n. All of the 300's read a nd 

~ REM b~ David Bohlke, Coggon, IA 
5 GRAPHICS 5!POKE 752,1 
10 SETCOLOR ~,9,~!REM SKY 
11 SETCOLOR 2,12,4!REM EARTH 
12 SETCOLOR O,O,10!REM CLOUDS 
20 A=PEEK(106)-12!POKE 54279,A!PMBASE=256*A 
22 DIM A(15),H(15) 
30 POKE 559,46!REM DBL LINE GR 
32 POKE 53277,3!REM ENABLE GR. 
34 POKE 623,8!REM FIELD PRIORITY 
40 POKE 53256,0!REM SIZE PLO 
42 POKE 53257,1!REM SIZE PL1 
QS POKE 53258,0!REM SIZE PL2 
46 POKE 706,2!REM COLOR PL2 

interpret the STICK commands. The 
400's control the gun firing and check 
for a hit on the plane. Line 460 checks 
the proximity blast and may be 
adjusted for easier accuracy. When 
there is a hit , the program branches to 
line 500 and then returns to the main 
game loop. Finally, lines 900-970 print 
the sco re and test for the end of the 
game. 

90 RESTORE 92:FOR 1=1 TO 15:READ A,H:A(I)=A!H(I)=H:NEXT I 
92 DATA 0,0,0,0,0,0,0,0,-1,1,1,1,0,1,0,0,-1,-1,1, 

-1,0,-1,0,0,-1,0,1,0,0,0 
94 PS=1:HF=PS+3!PLN=0!RD=15!RC=0!PP=20 
100 GOSUS 880!GOSUB 890 
105 PfUNT , II AIR DEFENSE "! PRINT 
1 0 6 PF~INT II SELECT SPEED, then press STAFn" H'S= 1 
107 POKE 656,2!POKE 657,37!PRINT PS; 
108 IF PEEK(53Z79)=6 THEN 113 
110 IF PEEK(53279)=5 THEN PS=PS+l!IF PS)5 THEN PS=l 
111 FOR J=l TO 50!NEXT J 
112 SOUND 0,200*RND(0),10,2!GOTO 107 
113 G=PS!PS=PS*0.5+0.5!HF=PS+3!? :? !? !? 
114 SOUND 0,0,0,0 
115 GOSUS 800!GOSUB 820 
120 GH=lZ5!POKE 53250,GH!GA =5 
130 POKE 656,2!POKE 657,2!PFUNT "GaMe ";G; 
150 GOSUS 700!AK=10-INT«PA-12)/5) 
170 FOR I=PMBASE+640 TO PMSASE+768!POKE I,O:NEXT I 
175 POKE 77,0:POKE 53259,0 
180 I=INT(PT/500)!IF I)RC THEN RC=I!RD=15:PP=PP+5 
185 pm{E 656,Z:pm{E 657,30:PRINT "Rnds ";RD;" "; 
190 IF RD(l THEN 950 
195 PLN=PLN+1:GOSUB 900 
200 PH=PH+Df.:*PS 
210 IF Df.:=l AND PH)PE THEN PT=PT-50:RD=RD-l!GOTO 150 
212 IF Df.:=-l AND PH(PE THEN PT=PT - SO:RD=RD-1:GOTO 150 

231 



Air Defense 

220 POKE 53248,PH 
250 IF PEEK(53279)=6 THEN RUN 
300 S=STICI-{ ( 0 ) 
302 SOUND 3,30,8,INT(PA/20)+1 
305 GH=GH+H(S)*HF:IF GH(50 THEN GH=50 
306 IF GH>200 THEN GH=200 
310 GA=GA+A(S):IF GA>9 THEN GA=9 
312 IF GA(1 THEN GA=1 
320 POKE 53250,GH 
349 I=INT«GH-50)/42.5) 
:i~5 0 PCH(E t.>56, 3: F'CH(E 6~j7, 17: F'FUNT "AL T "; GA; 
360 SOUND 3,30,4,INT(PA/20)+2 
400 IF STRIG(O)(>O THEN 200 
405 GOSUB 801:RD=RD-1 
406 P(H(E 656,2: P(H(E 657,30: PFUNT "F~nds " HW;" "; 
420 FOR 1=1 TO AK:F'H=PH+DR*PS 
421 POKE 53249,GH-8+RND(0)*9 
422 FOR J=l TO 15:NEXT J 
q24 SOUND 2,60,4,15 
426 POKE 53248,PH:NEXT I 
q27 SOUND 2,0,0,0 
429 P(H(E 705, :34 
430 FOR I=PMBASE+640+CH TO PMBASE+645+CH:POKE I,O:NEXT I 
450 GOSUB 860:POKE 53249,GH-4 
455 FOR 1=1 TO 30:S0UND 2,I+20,4,14:S0UND 

3,60,8,14:NEXT I:SOUND 2,0,0,0:SOUND 3,0,0,0 
460 IF ABS(AB-PA){3 AND ABS(GH-PH){5 THEN PT=PT+100-PA:GOTO 500 
470 PT=PT-PP:GOSUB 900 
480 FOR I=PMBASE+640+AB TO PMBASE+647+AB:POKE I,O:NEXT I 
482 POKE 53249,20 
485 IF RD{l THEN 950 
490 GOTO 200 
500 POKE 53249,20:GOSUB 900 
505 SOUND 3,0,0,0 
510 GOSUB 831:POKE 53248,20 
540 FOR I=PMBASE+896 TO PMBASE+l024:POKE I,O:NEXT I 
550 POKE 53251,20 
560 GOTO 150 
700 FOR I=PM8ASE+512 TO PM8ASE+640:POKE I,O:NEXT I 
702 PA=INT(RND(0)*40)+20:CL=INT(RND(0)*16)*16+2 
710 IF RND(O){0.5 THEN 720 
712 PH=35:PE=213:DR=1:RESTORE 718 
717 GOrLl 730 
718 DATA 56,156,206,255,14,28,56 
720 PH=213:PE=35:DR=-1:RESTORE 728 
728 DATA 28,57,115,255,112,56,28 
730 FOR I=PM8ASE+512+PA TO PMBASE+518+PA:READ A:POKE I,A:NEXT I 
732 POKE 53256,0:REM SIZE PLO 
734 POKE 701,CL:REM COLOR PLO 
750 m::TURN 
800 FOR I=PM8ASE+640 TO PM8ASE+768:POKE I,O:NEXT I 
801 RESTORE 808:CH=91:POKE 705,12 
802 FOR I=PMBASE+640+CH TO PM8ASE+645+CH:READ A:POKE I,A:NEXT I 
805 F~ETURN 

232 



808 DATA 24,36,90,165,195,60 
820 FOR I=PMBASE+768 TO PMBASE+896:POKE I,O:NEXT I 
821 RESTORE 828:Pl=100 
822 FOR I=PMBASE+768+Pl TO PMBASE+779+Pl:READ AtPOKE I,AtNEXT I 
825 F~ETURN 
828 DATA 24,24,24,24,24,24,60,60,90,90,219,255 
830 FOR I=PMBASE+896 TO PMBASE+l024:POKE I,O:NEXT I 
831 F~E~lTORE B40 
832 FOR I=PMBASE+896+PA TO PMBASE+906+PA:READ AtPOKE I, 

AtNEXT I:POKE 707,66 
834 POKE 53259,0:POKE 53251,PH 
840 DATA 74,149,72,34,145,40,66,169,68,146 
845 FOR 1=1 TO 10:S0UND 0,RND(0)~30+30,4,4: 

SOUND 1,RND(0)~50+150,4,4:NEXT I 
846 POKE 53259,1tPOKE 707,6B 
847 FOR 1=1 TO 10:S0UND 0,RND(0)~30+30,4,8:S0UND 

1,RND(0)~50+150,4,8:NEXT I 
848 POKE 53251,PH-9:POKE 53259,3tPOKE 707,72 
849 FOR 1=1 TO 10:S0UND 0,RND(0)~30+30,4,14:S0UND 

I,RND(O)~50+150,4,14:NEXT I 
850 SOUND O,O,O,O:SOUND 1,0,0,0:RETURN 
860 FOR 1=PMBASE+640+AB TO PMBASE+647+AB:POKE I,OtNEXT I 
861 RESTORE 866:AB~(10-GA)~5+15 
862 FOR I=PMBASE+640+AB TO PMBASE+647+ABtREAD A:POKE 1,A:NEXT I 
866 DATA 129,66,20,43,212,40,66,129 
87 0 F~ETURN 
880 COLOR 3:D=35:E=1 
882 FOR 1=0 TO 79:PlOT l,D:DRAWTO 1,40 
884 IF RND(0)(0.2 THEN E=-E 
886 D=D+E:IF D}40 THEN D=40 
887 IF D(20 THEN D=20 
888 NEXT l:RETURN 
890 COLOR 1:X=10+RNO(0)~20:Xl=X:V=RND(0)~20:Z=V:GOSUB 893 
891 X=45+RND(0)~20:V=RNO(0)~20:Xl=X:IF ABS(V - Z)(8 THEN 891 
892 GOSU8 893:RETURN 
893 [):;;8+RND(0)~8 
894 nm 1= 1 TO 0 
895 l=RND(0)~4~-I:R=RNO(0)~4:1F I}O/2 THEN l=-l/2:R=-R/2 
896 X=X+L:X1=Xl+R:IF X(O THEN X=O 
897 IF Xl}79 THEN Xl=79 
898 PLOT X,V:DRAWTO Xl,V:V=V+l:NEXT I 
899 F~ETURN 

900 IF PT(O THEN PT=O 
905 pm{E 656,3:POKE 657,2:PRINT "Score ";PT;" "; 
910 pm{E 656,3: pm{E 657,:30: PRINT "P 1 ane "; PlN; 
920 RETURN 
n:; 0 PCH{E:' 656,0: PCH{E 657,2: PFUNT "PRESS START FOR NEXT GAME ??"; 
955 POKE 53248,20 
960 IF PEEK(53279)=6 THEN RUN 
970 SOUND 0,RND(0)~250,10,2:GOTO 960 

233 





Appendix 





Atari Memory Addresses 

Decimal 

2,3 
6 
8 
111',11 
12,13 
14,15 
16 
17 
18-20 
49-52 
64 
65 
74 
75 
80 
82 
83 
84 
85-86 
90 
91-92 
93 
96 
97-98 
106 

Decimal 

128-9 
128-9 
130-1 
132-3 
134-5 
136-7 
138-9 
140-1 
142-3 
144-5 
186-7 
195 
201 
212-3 
212-8 
224-9 
242 
243-4 
251 
252-3 

Hexadecimal 

0002 - 0003 
0006 
0008 
000A - 0008 
000C - 0000 
000E - 000F 
0010 
0011 
0012 - 0014 
0031 - 0034 
0040 
0041 
004A 
0048 
0050 
0052 
0053 
0054 
0055 - 0056 
Ql05A 
0058 - 005C 
0050 
0060 
0061 - 0062 
006A 

Hexadecimal 

0080 - 0081 
0080 - 0081 
0082 - 0083 
0084 - 0085 
0086 - 0087 
0088 - 0089 
008A - 0088 
008C - 0080 
008E - 008F 
0090 - 0091 
008A - 008B 
00C3 
00C9 
00D4 - 00D5 
00D4 - 000A 
00E0 - 00E5 
00F2 
00F3 - 00F4 
00FB 
00FC - 00FD 

Label Comment 

CASINI cassette boot completed vector 
TRAMSZ End of RAM test temporary storage 
WARMST Warm start flag (-1 = true) 
DOSVEC no cartridge control vector (start) 
DOSINI disk boot completed vector 
APPMHI Highest location used by Basic 
POKMSK ANTIC interrupt register storage 
BRKKEY Break key flag (-1 = false) 
RTCLOK TV Frame counter 
Floppy disk serial bus device addresses 
printer serial bus device address 
SOUNOR Sound I/O flag (0=quiet) 
CKEY Cassette boot request flag 
ATRACT Attract mode flag (>128 = attract) 
modem serial bus device address 
LMARGN Left screen margin (default = 2) 
RMARGN Right screen margin (default = 37) 
ROWCRS Current cursor row (0-39) 
COLCRS Current cursor column (0-23) 
OLDROW Previous cursor row (0-39) 
OLDCOL Previous cursor column (0-23) 
OLDCHR Data under cursor 
NEWROW Cursor row to which DRAWTO goes 
NEWCOL Cursor column to which DRAWTO goes 
RAMTOP Top of memory (Page number) 

Label Comment 

BASIC area 
LOMEM Basic low memory pointer 
OUTBUFF Syntax output buffer 
VNTP Variable name table address 
VNTO End of variable name table 
VNTP Variable values table 
STMTAB Statement table 
STMCUR Immediate statement 
STARO String array table 
RUNSTK Run time stack 
MEMTOP Basic top of memory pointer 
STOPLN Line number for TRAP or STOP 
ERRSAV Error number 
PTABW Print tab width (default = 10) 
FReJ Value returned to Basic from USR 
FR0 6 byte floating point handler 
FRl 6 byte floating point handler 
CIX index offset used with INBUFF (00F3) 
INBUFF pointer to ASCII text buffer 
RAOFLG Radian/degree flag (0 RAD - 6 OEG) 
FLPTR pointer to a floating point number 

237 



Decimal Hexadecimal Label Comment 
(Mostly Vectors and Shadow Re g isters) 

25()-5ll 
512-3 
514-5 
516-7 
5Hl-9 
520-1 
522-3 
524-5 
526-7 
528-9 
530-1 
532-3 
534-5 
536-7 
538-9 
540-1 
542-3 
544-5 
546-7 
548-9 
550-1 
552-3 
554 
556 
558 
559 
5 G~I 
561 
564 
565 
576 
580 

Decimal 

623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
644 
645 
646 

0100 - 0lFF 
0200 - 0201 
0202 - 02133 
02134 - 0205 
0206 - 0207 
0208 - 0209 
020A - C2rJB 
020C - 020D 
020E - 020F 
0210 - 0211 
0212 - 0213 
13214 - 0215 
0216 - 0217 
0218 - 13219 
021A - 132lB 
02lC - 021D 
Vl21E - 021F 
02213 - 0221 
13222 - 0223 
0224 - 0225 
0226 - 0227 
0228 - 0229 
'122A 
'lJ22C 
022E 
022F 
023(~ 

0231 
0234 
13235 
0240 
0244 

Hexadecimal 

026F 
0270 
0271 
0272 
0273 
0274 
13275 
0276 
0277 
0278 
0279 
027A 
027B 
0284 
0285 
0286 

STACK 
VDSLST 
VPRCED 
VINTER 
VBREAK 
VKEYBD 
VSERIN 
VSEROR 
VSEROC 
VTIMR1 
VTIMR2 
VTIMR4 
VIMIRQ 
CD'l't;! Vl 
CDTr<1V2 
CDTMV3 
CDTMV4 
CDTMV5 
VVRLKI 
VVBLKD 
CDTMAI 
CDTMA2 
CDTMF3 
COTMF4 
CDTMF5 
SOr.-]CTL 
SDLSTL 
SDLSTH 
LPENH 
LPENV 
DFLAGS 
COLDS'r 

Label 

6502 stack area 
RTI vector (E7B3 = ignore interrupt) 
Serial I/O interrupt proceed vector 
Serial I/O interrupt vector 
6502 Break instruction vector 
Key pressed interrupt vector 
Serial bus input ready vector 
Serial bus output ready vector 
Serial bus output complete vector 
POKEY timer #1 vector 
POKEY timer #2 vector 
timer vector 
immediate IRQ global RAM vector 
SIO timeout timer 
timer #2 
timer #3 
timer #4 
timer #5 
vertical blank RAM vector 
vertical blank deferred vector 
vector for CDTMVI at 13218 
vector for CDTMV2 at 02lA 
flag for CDTMV3 at 02lC 
flag for CDTMV4 at 0218 
flag for CDTMV5 at 0220 
data from ANTIC DMACTL (D403) 
data from ANTIC DLISTL (D402) 
data from ANTIC DLISTH (D403) 
light pen data from PENH (D40C) 
light pen data from PENV (D40D) 
disk boot file flag 
cold start flag 

Comment 

GPRIOR data from CTIA PRIOR (D01B) 
PADDL0 Pot 0 data from POT0 (D200) 
PADDLI Pot 1 data from POTI (D20l) 
PADDL2 Pot 2 data from POT2 (D2132) 
PADDL3 Pot 3 data from POT3 (D203) 
PADDL4 Pot 4 data from POT4 (D2134) 
PADDL5 Pot 5 data from POTS (D205) 
PADDL6 Pot 6 data from POTo (D2136) 
PADOL7 Pot 7 data from POT7 (D207) 
STICK0 joystick 0 data (PORTA D300) 
STICK1 joystick 1 data (PORTA D300) 
STICK2 joystick 2 data (PORTB 0301) 
STICK3 joystick 3 data (PORTB 0301) 
STRIG0 joystick trigger data (TRIG0 D001) 
STRIG1 joystick trigger data (TRIG1 D00 2) 
STRIG2 joystick trigger data (TRIG2 D0,03) 

238 



647 
656 
657-8 
704 
705 
706 
707 
708 
709 
710 
712 
713 
736-7 
741 
743 
752 
755 
756 
763 
764 
765 
766 
767 

Decimal 

768 
7 69 
770 
771 
772 
773 
774 
7 76 
777 
778 
779 
794 
8 32 
8 33 
8 34 
8 35 
8 36 
837 
8 38 
8 39 
840 
841 
842 
843 

0287 
0290 
0291 
02C0 
02Cl 
02C2 
02C3 
02C4 
02C5 
02C6 
02C7 
02C8 
02E0 
02E5 
02E7 
02F0 
02F3 
02F4 
02FB 
02FC 
02FD 
02FE 
02FF 

STRIG3 joy::;tick trigger data (TRIG 3 D0(4) 
TXT ROW text window cursor row 

- 0292 TXTCOL text window cursor column 
PCOLR0 data from CTIA COLPM0 (D012) 
PCOLRI data from CTIA COLPMl (0013) 
PCOLR2 data from CTIA COLPt'l2 (0014) 
PCOLR3 data from CTIA COLPM3 (0015) 
COLOR0 data from CTIA COLPF0 (0016) 
COLORI data from CTIA COLPFI (D017) 
COLOR2 data from CTIA COLPF2 (0018) 
COLOR3 data from CTIA COLPP3 (D0l9) 
COLOR4 data from CTIA COLBK (D0lA) 

- 02El RUNAD execution address after LOAD 
~1EI\1TOP Top of free RAM (before screen) 
MEMLO Start of free RAM (after BOOT area) 
CRSINH Cursor inhibit flag 
CHACT Character data (from CHACTL 0401) 
CHBAS Character base address (CHBASE D4(9) 
ATACHR Atari Character and color for line 
CH Character read from POKEY 
FILDAT Color for XIO 111 f.ill 
DSPFLG Display flag 
SSFLAG Start/stop flag (Break) 

0300 - 0308 Device Control Block for Disk I/O 
(set up and JMP to DSKINV (E453» 

Hexadecimal Label Comment 

0300 
0301 
0302 
0303 
0304 
0305 
0306 
0308 
0309 
030A 
0308 
031A 
0340 
0341 
0342 
0343 
0344 
0345 
0346 
0347 
0348 
0349 
034A 
0348 

DDEVIC 
DUNIT 
DCOMD 
DSTATS 
DBUFLO 
DBUFHI 
DTIMLO 
DBYTLO 
DBYTHI 
DAUX1 
DAUX2 
HATABS 
ICHIO 
ICONe 
ICCOM 
ICSTA 
ICHAL 
ICBAH 
ICPTL 
ICPTH 
ICRLL 
ICBLH 
ICAXI 
ICAXI 

Serial bus 10 for disk drive 
Disk drive number (1-4) 
Disk command 
Disk status byte 
Disk buffer address (low byte) 
Disk buffer address (high byte) 
Disk timeout value (seconds) 
Disk I/O Byte counter (low byte) 
Disk I/O Byte counter (high byte) 
Disk sector number (low byte) 
Disk sector number (high byte) 
Device handler table 
Input control handler identification 
Input control device number 
Input control command byte 
Input control status byte 
Input control buffer address (low) 
Input control buffer address (high) 
Input control pointer (low) 
Input control pointer (high) 
Input control buffer length (low) 
Input control buffer length high 
Input control auxiliary 1 
Input control auxiliary 2 

239 



1408-
1536-1791 

0711'0 
1792 
1799 
1800 
1802-3 

4889 

40956 
40958 
49148 
49150 

53248 
53249 
53250 
53251 
53252 
53253 
53254 
53255 
53256 
53257 
53258 
53259 
53260 
53261 
53262 
53263 
53264 
53265 
53266 
53267 
53268 
53269 
53270 
53271 
53272 
53273 
53274 
53275 
53276 
53277 
53278 
53279 

53248 
53249 
53250 

1300 

2680 

0580 - 05xx 
0600 - 06FF 

- 12FF File 
0700 
0707 
0708 
070A - 070B 

- 267F Disk 
1319 

- 2A7F Disk 
9FFC 
9FFE 
BFFC 
BFFE 

0000 
0001 
D002 
D003 
0004 
D005 
0006 
0007 
0008 
0009 
000A 
D00B 
D00C 
0000 
D00E 
D00F 
D010 
D{111 
D012 
D013 
0014 
0015 
D0111 
0017 
Dlinfl 
0019 
D01A 
0018 
DOIC 
0010 
DOlE 
D01F 

LBUFF floating point result buffer 
reserved for cartridge when cartridge used 

Management System RAM 
BOOT flag (DOS only) 
FILES number of files to be open at once 
DRIVES each bit represents an active drive 
SASA disk buffer address 

Operating System RAM 
LOAD DOS load file routine 

Input/Output buffers 
Cartridge B test (0 = cartridge) 
Cartridge B initialization vector 
Cartridge A test (0 = cartridge) 
Cartridge A initialization vector 

CTIA Chip (0000 - D00lF) 
WRITE CTIA addresses 

HPOSP0 Horizontal position of player 0 
HPOSPI Horizontal position of player 1 
HPOSP2 Horizontal position of player 2 
HPOSP3 Horizontal position of player 3 
HPOSM0 Horizontal position of missile 0 
HPOSMI Horizontal position of missile 1 
HPOSM2 Horizontal position of missile 2 
HPOSM3 Horizontal position of missile 3 
SIZEP0 Size of player 0 
SIZEPl Size of player 1 
SIZEP2 Size of player 2 
SIZEP3 Size of player 3 
SIZEM Size of all missiles 
GRAFP0 Graphics for player 0 
GRAFPl Graphics for player 1 
GRAFP2 Graphics for player 2 
GRAFP3 Graphics for player 3 
GRAFM Graphics for missiles 
COLPM0 Color of player and missile 0 
COLPMI Color of player and missile 1 
COLPM2 Color of player and missile 2 
COLPM3 Color of player and missile 3 
COLPF0 Color of playfield 0 
COLPF1 Color of playfield 1 
COLPF2 Color of playfield 2 
COLPF3 Color of playfield 3 
COLBK Color or luminance of background 
PRIOR Priority select 
VDELAY Vertical delay 
GRACTL Graphics control 
HITCLR Clear collision flag 
CONSOL Clear console switches 

READ CTIA addresses 
0000 
D001 
D002 

M0PF Missile" to playfield collision 
MIPF Missile I to playfield collision 
M2PF Missile 2 to playfield collision 

240 



53251 
53252 
53253 
53254 
53255 
53256 
53257 
53258 
53259 
53260 
53261 
53262 
53263 
53264 
53265 
53266 
53267 

53760 
53761 
53762 
53763 
53764 
53765 
53766 
53767 
53768 
53769 
53770 
53771 
53772 
53773 
53774 

53760 
53761 
53762 
53763 
53764 
53765 
53766 
53767 
53768 
53769 
53772 
53773 
53774 

54[HIS 
54017 
54018 

D003 
D0Cl4 
D005 
0006 
0007 
0008 
0009 
000A 
000B 
000C 
D00D 
D00E 
000F 
0010 
0011 
0012 
0013 

M3PF 
P0PF 
P1PF 
P2PF 
P3PF 
M0PL 
MIPL 
M2Pl 
M3PL 
P0PL 
PIPL 
P2Pl 
P3Pl 
TRIG~ 

TRIGI 
TRIG2 
TRIG3 

Missile 3 to p1ayfield collision 
Player" to playfield collision 
Player 1 to playfield collision 
Player 2 to playfield collision 
Player 3 to playfield collision 
Missile'" to player collision 
Missile 1 to player collision 
Missile 2 to player collision 
Missile 3 to player collision 
Player 0 to player collision 
Player 1 to player collision 
Player 2 to player collision 
Player 3 to player collision 
Read trigger button '" 
Read trigger button 1 
Read trigger button 2 
Read trigger button 3 

POKEY Chip (0200 - 020F) 

0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
020A 
D208 
0200 
020E 
D20F 

WRITE POKEY addresses 
AUOF1 Audio channel 1 frequency 
AUOCl Audio channel 1 control 
AUDF2 Audio channel 2 frequency 
AUOC2 Audio channel 2 control 
AUOF3 Audio channel 3 frequency 
AUOC3 Audio channel 3 control 
AUOF4 Audio channel 4 frequency 
AUOC4 Audio channel 4 control 
AUOCTL Audio control 
STIMER Start timers 
SKRES Reset status (SKSTAT) 
POTGO Start potentiometer scan sequence 
SEROUT Serial port output register 
IRQEN IRQ interrupt enable 
SKCTL Serial port 4 key control 

REAO POKEY addresses 
0200 
D201 
0202 
0203 
0204 
0205 
0206 
D207 
D208 
D209 
D20D 
D20E 
020F 

PIA Chip 
0300 
0301 
D302 

POT0 Read potentiometer 0 
POTl Read potentiometer 1 
POT2 Read potentiometer 2 
POT3 Read potentiometer 3 
POT4 Read potentiometer 4 
POTS Read potentiometer 5 
POT6 Read potentiometer 6 
POT7 Read potentiometer 7 
ALLPOT Read 8 line pot. port state 
RANDOM Random number generator 
SERIN Serial port input register 
IRQST IRQ interrupt status register 
SKSTAT Serial port 4 key status register 

(0300 - 030F) 
PORTA Jack 0 & 1 
PORTB Jack 2 & 3 
PACTL Port A control 

241 



54019 

54272 
54273 
54274 
54275 
54276 
54277 
54279 
54281 
54282 
54286 
54287 

54283 
54284 
54285 
54287 

55526 
55722 
55762 
5A876 
5887A 
55904 
55910 
56027 
5{'104 
56640 
56713 
56717 
5(;77.8 
56732 
56743 
56747 
56758 
56768 
56776 
56781 
567F35 

69184 
69186 
69188 
69190 
69192 
69194 

D303 PBCTL Port B control 

ANTIC Chip (0400 - D40F) 
WRITE ANTIC addresses 

D400 DMACTL Direct memory acess control register 
D401 CHACTL Character control register 
D402 DLISTL Display list pointer (low byte) 
D403 OLISTH Display list pointer (high byte) 
D404 HSCROLL Horizontal scroll register 
D405 VSCROLL Vertical scroll register 
D407 PMBASE Player-missile base address register 
D409 CHBASE Character base address register 
D40A WSYNC Wait for horizontal blank sync. 
D40E NMIEN Non maskable interupt enable 
D40F NMIRES Reset NMI status 

0408 
D40C 
040D 
D40F 

READ ANTIC Addresses 
VCOUNT Vertical line counter 
PENH Horizontal light pen register 
PENV Vertical light pen register 
NMIST Non maskable interupt status register 

Floating point routines 
(use FR0 (0004) FRI (00E0) 
and 00D4 

E400 

D8E6 -
D9AA 
D9D2 
OA44 
DA46 
DA6Q1 
DA66 
DADB 
DB28 
0040 
DD89 
D08D 
D098 
D09C 
ODA7 
DOAB 
DOB6 
ODC0 
DDC8 
DECO 
DEDI 

Screen 
E400 
E402 
E404 
E406 
E408 
E40A 

00FF, 057E - 05FF) 
FASC 
IFP 
FPI 
ZFR0 
ZFIU 
FSUB 
FADO 
Fl'1ULT 
FDIV 
PLYEVL 
FLD0R 
FLD0P 
FLDlR 
FLDlP 
FST0R 
FST0P 
FMOVE 
EXP 
EXP10 
LOG 
LOG10 

floating point to ASCII conversion 
integer to flo~ting point conversion 
floating point to integer conversion 
zero FR0 (0004) 
zero FRI (00E0) 
floating point subtraction 
floating point addition 
floating point multiplication 
floating point division 
floating point polynomial evaluation 
load floating point number to FR0 
pointer to floating point number 
load floating point number to FRI 
pointer to floating point number 
store floating point number from FR0 
pointer to floating point number 
move number from FR0 to FRI 
floating point exponentiation (e) 
floating point exponentiation (10) 
floating point natural logarithm 
floating point logarithm to base 10 

editor handler base address 
OPEN 
CLOSE 
GET 
PUT 
STATUS 
JMP Power on 

242 



£410 Display handler base address 
69200 E410 OPEN 
69202 E412 CLOSE 
69204 E4l4 GET 
69206 E416 PUT 
69208 E418 STATUS 
69210 E41A JMP Power on 

E420 Keyboard handler hase address 
69216 E410 OPEN 
69218 E412 CLOSE 
69220 E414 GET 
69222 E416 PUT 
69224 E418 STATUS 
69226 E41A JMP Power on 

E430 Printer handler base address 
69248 E430 OPEN 
69250 E432 CLOSE 
69252 E434 GET 
69254 E43f) PUT 
69256 E438 STATUS 
69258 E43A JMP Power on 

E440 Cassette handler base address 
69264 E440 OPEN 
69266 E442 CLOSE 
69268 E444 GET 
69270 E446 PUT 
69272 E448 STATUS 
69274 E44A JMP Power on 

E450 Disk hClnd1er vector addresses 
69280 E450 Jr-1P Disk initialization 
69283 E453 DSKINV JMP Disk interface 
69286 E456 JMP CrO 
69289 E459 JMP SIO 
69292 E45C JMP SETV8L 
69295 E45F JMP SYSVBL 
69298 E462 JMP XITCBL 
693'11 E465 JMP SIOINT 
69304 E468 JMP SENDER 
69307 E468 INTINT 
69310 E46E CIOINT 
69313 F,471 BlackhoClrd vector 
69316 E474 Warm start vector (RESET) 
69319 E477 Cold start vector (Power on) 
69322 E47A Read cassette block 

243 








	Cover
	Preface
	Contents
	The Atari Machine 
	Part I: Atari Graphics Tutorial
	How a TV Works
	Character Generation
	Dot Graphics Lines
	Dark Secrets of ANTIC and CTIA
	More Memory Secrets
	Examining the Display List
	Modifying Display Memory 
	Display List Opcodes
	Notes and Discussion
	BASIC and Color
	Display List Interrupts
	Player Missle Graphics
	Beginners Guide to Character Sets 

	Part II: Graphics Tips 
	Design Philosophy and GTIA Demos
	Graphic Seven Plus
	Player-Missle Design Aid
	Animath
	Greater Graphics Control
	Atari Graphics Composer 
	Artifacting with Graphics 7-Plus

	Part II: Hardware and Software
	Bits and Bytes
	Physical Types of Memory
	Atari Music Composer
	Hooking up with CompuServe
	Build your own Light Pen
	Atari Silencer
	A New BASIC for Atari - BASIC A+
	Monkey Wrench Prehensile Programming
	String Arrays in Atari BASIC
	Talk is Getting Cheaper
	Axlon RAMDisk - 128K Memory System for Atari
	Joytricks
	New RAMS for Old
	K-DOS - An Alternative to Atari DOS
	Standard Keyboard for the Atari 400
	The Mosaix 64K RAM Card Atari Supercharge
	Atari 1200
	A Letter Quality Alternative for Atari Users
	The Atari Word Processors
	Atari Text Editor Program
	VisiCalc
	Atari Resources
	Questions and Answers
	Atari Languages
	Getting along without TAB - AN Atari Translation
	Telecomunications and Memory Locations
	The Upstart Atari
	Self-Modifying Programs
	Super Text Mode
	Neater Numerical Tables
	Interfacing Your Atari
	Atari Strings and Text Handling
	An Atari Library of Sound
	RAM Cram Techniques for Atari
	From Burn-Out to Born Again
	Speadread+
	Eastern Front
	Missle Command and Asteroids 
	Star Raiders and the SOUND Command 
	Basketball
	Warlock's Revenge and Kayos
	Gamma Hockey
	The Wizard, the Princess, and the Atari
	Chameleon CHips: CTIA and GTIA
	Graphics Adventures on the Atari
	Mission: Asteroid
	Ali Baba
	Action Quest
	Cypher Bowl and Krazy Antics
	Protector
	Chicken
	Threshold 
	Mouskattack
	Deluxe Invaders
	K-razy Shootout
	Dog Daze and Caverns of Mars
	Canyon CLimber
	Clowns and Balloons
	Pool 1.5
	Nautilus
	Shamus
	Miner 2049'er

	Part IV: Disk Drive Tutorial
	Atari DOS
	Atari Diskfile Tutorial - Part I
	Atari Diskfile Tutorial - Part II
	Atari Diskfile Tutorial - Part III
	Using Disks with Atari BASIC

	User Programs
	Mazemaster: Maze Making and Runing
	Moster Combat
	Scurry
	Collision
	Air Defense

	Appendix
	Atari Memory Addresses


