The
Secontl
Book

0f
Machine
Language

Personal Computer Machine Language :
Programming for the Commaodore 64, VIC-20, Atari,
Apple, and PET/CBM Computers. o

By Richard Mansfield*

. The
Second

Book

of
Machine
Language

By Richard Mansfield

COMPUTE! Publico’rions,lnc.@

One of the ABC Publishing Companies

Greensboro, North Carolina

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America
ISBN 0-942386-53-1
10987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies, and is not associated with any
manufacturer of personal computers. PET, CBM, VIC-20, and Commodore 64 are all
trademarks of Commodore Electronics Limited and/or Commodore Business Ma-
chines, Inc. Apple is a trademark of Apple Computer Company. Atari is a trademark
of Atari, Inc.

Contents

PIElICE « cossusnspuspsosns susnasssssnsssssssasssss v
1: How to Use This Book BESE &S PETENE S0 1
2: Defs:

Equatos and Delinitionscoevsousssnanos ensan 13
3: Eval:

B8 MBI LBBE .osuvnsnnsosnacaniss ens sesemnnns 27
4: Equate and Array:

Data Dase Managementccossnvssnessnsanwssss 77
5: Openl, Findmn, Getsa, and Valdec:

I/O Management and Number Conversions 103
6: Indisk:

The Main Input ROutinevvcovonensossnnnwnss 137
7: Math and Printops:

Range Checking and Formatted Output 177
8: Pseudo:

[/O and Linked Files 197
9: Tables:

Data, Messages, Variables 219

10: 6502 Instruction Set 237

11: Modifying LADS

Adding Error Traps, RAM-Based Assembly, and a

LUSBSRERIBIOr . .oswsssssrmanensssnamma s e sanesq 275
SNPPCIIRIUNE np v o swn 3% b o 6 0 AR 5 5 R BB B AT 3 353
Ar How o Use LADS ... conwprusnsossmssssmnne sy 355
B: LADS Object Cade . .;:cvcsnssiisvnnsismannnvs 857
C: Machine Language Editor for Atari and Commodore 415
D: A Libraty of Subtoutines:.:svssnsss0nn0: 433
E: How to Type In Basic Programs 440

Index 443

Preface

This book shows how to put together a large machine lan-
guage program. All of the fundamentals were covered in my
first book, Machine Language for Beginners. What remains is to
put the rules to use by constructing a working program, to
take the theory into the field and show how machine language
is done.

Showing how to construct an assembler—written entirely
in machine language—would serve two useful purposes. It
would illustrate advanced programming technique and also
provide the reader with a powerful assembler to use in other
ML programming.

This book, then, offers the reader both a detailed descrip-
tion of a sophisticated machine language program (the LADS
assembler) and an efficient tool, a complete language with
which to write other machine language programs. Every line
in the LADS assembler program is described. All the sub-
routines are picked apart and explained. Each major routine is
examined in depth.

LADS, the Label Assembler Development System, is a
fast, feature-laden assembler—it compares favorably with the
best assemblers available commercially. And not the least of
its virtues is the fact that few programs you will ever use will
be as thoroughly documented and therefore as accessible to
your understanding, modification, and customization.

LADS is a learning device too. By exploring the assem-
bler, you will learn how to go about writing your own large
machine language (ML) programs. You will see how a data
base is created and maintained, how to communicate with
peripherals, and how to accomplish many other ML tasks.
Also, because you can study the creation of a computer lan-
guage, the LADS assembler, you will gain an in-depth knowl-
edge of the intimate details of direct communication with your
computer.

Most programming involves a tradeoff between three pos-
sible objectives: speed, brevity, or clarity. You can program
with the goal of creating the fastest running program possible.
Or you can try to write a program which uses up as little
memory as possible. Or you can try to make the program as
understandable as possible, maximizing the readability of the
program listing with REMarks.

LADS emphasizes clarity so that its source code will serve
as a learning tool and as the focus of this book. It's designed
so that important events in the program can be easily ex-
plained and understood. Virtually every ML instruction, every
tiny step, is commented within the source code listings follow-
ing each chapter.

This doesn’t mean that LADS is flabby or slow. Assem-
bling roughly 1000 bytes a minute and taking up 5K in mem-
ory, LADS is considerably faster and more compact than most
commercial assemblers. That’s because, in ML, you can have
the best of both worlds: You can comment as heavily as you
want, but the assembler will strip off the comments when it
creates the object code. In this way, clarity does not sacrifice
memory or speed.

The frequent comments contribute considerably to the
educational value of this assembler. Exploring LADS is a way
to learn how to achieve many common programming goals
and how to construct a large, significant program entirely in
ML. An additional advantage of this comprehensibility is that
you’ll be able to modify LADS to suit yourself: Add your own
pseudo-ops, define defaults, format output. All this is referred
to as a language’s extensibility. We'll get to this in a minute.

What BASIC is to BASIC programming, an assembler is to
ML programming. LADS is a complete language. You write
programs (source code) which LADS translates into the fin-
ished, executable ML (object code). Unlike less advanced
assemblers, however, symbolic assemblers such as LADS can
be as easy to use as higher level languages like BASIC. The
source code is very simple to modify. Variables and sub-
routines have names. The program can be internally com-
mented with REM-like explanations. Strings are automatic via
the .BYTE command. There are a variety of other built-in fea-
tures, the pseudo-ops, which make it easy to save object pro-
grams, control the screen and printer listings, choose hex or
decimal disassembly, and service other common programming
needs.

Perhaps the best feature of LADS, though, is its extensibil-
ity. Because you have the entire source code along with de-
tailed explanations of all the routines, you can customize

vi

LADS to suit yourself. Add as many pseudo-ops as you want.
Redesign your ML programming language anytime and for
any reason. Using an extensible programming language gives
you control not only over the programs you design, but also
over the way that they are created. You can adjust your tools
to fit your own work style.

Do you often need to subtract hex numbers during assem-
bly? It's easy to stick in a — command. Would you rather that
LADS read source programs from RAM memory instead of
disk files? (This makes it possible to assemble using a tape
drive. It can also be a bit faster.) In Chapter 11 we’ll go
through the steps necessary to make this and other modifica-
tions. You'll be surprised at how easy it is.

Finally, studying the language (the LADS assembler)
which produces machine language will significantly deepen
your understanding of ML programming.

I would like to thank Charles Brannon for his translation
and work with the Atari version of LADS, Kevin Martin for his
translation and work with the Apple version, and Todd
Heimarck for his many helpful discoveries about the assembler.

vii

Chapter 1

How to Use This
Book

EEEmEIS NN NN

How to Use This Book

The dual nature of this book—it’s both a text and a pro-
gram—offers you a choice. You can follow the ideas: reading
through the chapters, studying the program listings, and deep-
ening your understanding of machine language programming.

Alternatively, you can type in the LADS assembler and
experiment with it: learning its features, trying out modifica-
tions, and using it to write your own machine language pro-
grams. Appendix A describes how to use the assembler and
Appendix B provides instructions on typing it in. If you choose
this second approach, the rest of the book can serve as a ref-
erence and a map for modifying the assembler. The tutorials
can also help to clarify the structure and purpose of the vari-
ous subroutines and subprograms.

LADS is nearly 5K long, and for those who prefer not to
type it in, it can be purchased on a disk by calling COMPUTE!
Publications toll free at 1-800-334-0868. Be sure to state
whether you want the Commodore, Atari, or Apple disk. The
disk contains both the LADS source and object code (these
terms are defined below). To create customized versions of the
assembler, you will need the source code. It, too, can be typed
in (it is printed in sections at the end of Chapters 2-9). If you
don’t type in any of the comments, it is roughly 10K long. The
Commodore disk contains the various PET/CBM (Upgrade
and 4.0 BASIC), VIC, and Commodore 64 versions.

Definitions
There are several concepts and terms which will be important
to your understanding of the rest of the book.

ML programming, and programming in general for that
matter, is a new discipline, a new art. There are few rules yet
and few definitions. Words take on new meanings and are
sometimes used haphazardly. For example, the word monitor
means two entirely different things in current computerese: (1)
a debugging program for machine language work or (2) a spe-
cial TV designed to receive video signals from a direct video
source like a computer.

Since there is no established vocabulary, some program-
ming ideas are described by an imprecise cluster of words.
When applied to machine language programming, the terms
pointer, variable, register, vector, flag, and constant can all refer

How to Use This Book

to the same thing. There are shades of difference developing
which distinguish between these words, but as yet, nothing
has really solidified. All these terms refer, in ML parlance, to a
byte or two which the programmer sets aside in the source
code. In BASIC, all these terms would be covered by the

word variable.

Loose Lingo

Purists will argue that each of these words has a distinct, de-
finable meaning. But then purists will always argue. The fact
is that computing is still a young discipline and its lingo is still
loose.

Some professors of BASIC like to distinguish between vari-
ables and constants, the latter meaning unchanging definitions
like SCREEN = 1024. The address of the start of screen RAM
is not going to vary; it’s a constant.

In BASIC, something like SCORE = 10 would be a vari-
able. The score might change and become 20 or whatever. At
any rate, the word SCORE will probably vary during the execu-
tion of the program. In ML, such a variable would be set up as
a two-byte reserved space within the source code:

100 SCORE .BYTE 0 0

Then, anytime you ADC SCORE or ADC SCORE+1, you
will add to the SCORE. That’s a variable. The word pointer re-
fers to those two-byte spaces in zero page which are used by
Indirect Y addressing—Ilike LDA (155),Y—and which serve to
point to some other address in memory.

Register usually means the X or Y or Accumulator bytes
within the 6502 chip itself. As generally used, the word reg-
ister refers to something hard wired within the computer: a
circuit which, like memory, can hold information. It can also
refer to a programmer-defined, heavily used, single-byte vari-
able within an ML program:

100 TEMP .BYTE 0

A wvector is very much like a pointer. It stores a two-byte
address but can also include the JMP instruction, forming a
three-byte unit. If you have a series of vectors, it would be
called a “jump table,” and the Kernal in Commodore comput-
ers is such a table:

How to Use This Book

FFD2 JMP $F252
FFD5 JMP $A522
FFD8 JMP $B095

Thus, if you JSR $FFD2, you will bounce off the JMP into
$F252, which is a subroutine ending in RTS. The RTS will
send you back to your own ML code where you JSRed to the
JMP table. That’s because JMP leaves no return address, but
JSR does.

A flag is a very limited kind of variable: It generally has
only two states, on or off. In LADS, PRINTFLAG will send ob-
ject code (defined below) to the printer if the flag holds any
number other than zero. If the PRINTFLAG is down, or off,
and holds a zero, nothing is sent to the printer. The word flag
comes from the Status Register (a part of the internals of the
6502 chip). The Status Register is one byte, but most of the bits
in that byte represent different conditions (the current action in
an ML program resulted in a negative, a zero, a carry, an inter-
rupt, decimal mode, or an overflow). The bits in the Status Reg-
ister byte are, themselves, individual flags. ML programmers,
however, usually devote an entire byte to the flags they use in
their own programs. Whole bytes are easier to test.

Source code is what you type into the computer as ML
instructions and their arguments:

100 *= 864

110 LDA #$0F ; THIS WILL PUT A 15 ($0F) INTO THE
ACCUMULATOR

120 INY ; THIS RAISES THE Y REGISTER

After you type this in, you assemble it by turning control
over to the LADS assembler after naming this as the source
code. The result of the assembly is the object code. If you have
the .S pseudo-op on, causing the object code to print to the
screen, you will see:

100 0360 A9 OF LDA #$0F ; THIS WILL PUT A 15 ($0F)
INTO THE ACCUMULATOR

120 0362 C8 INY ; THIS RAISES THE Y
REGISTER

Properly speaking, the object code is the numbers which,
taken together, form a runnable ML program. These numbers
can be executed by the computer since they are a program. In
the example above, the object code is A9 OF C8. That's the
computer-understandable version of LDA #$0F: INY. It's gen-

How to Use This Book

erated by the assembler. An assembler translates source code
into object code.

A complex assembler like LADS allows the programmer to
use labels instead of numbers. This has several advantages. But
it does require that the assembler pass through the source code
twice. (When an assembler goes through source code, it is
called a pass.) The first time through, the assembler just gathers
all the label names and assigns a numeric value to each label.
Then, the second time through the source code, the assembler
can fill in all the labels with the appropriate numbers. It doesn't
always know, the first time through, what every label means.
Here’s why:

100 LDA 4222

110 BEQ NOSCORE

120 JMP SOMESCORE

130 NOSCORE INX:JMP CONTINUE
140 SOMESCORE INY

150 CONTINUE LDA 4223

As you can see, the first time the assembler goes through
this source code, it will come upon several labels that it doesn’t
yet recognize. When the assembler is making its first pass, the
labels NOSCORE, SOMESCORE, and CONTINUE have no
meaning. They haven't yet been defined. They are address-type
labels. That is, they stand for a location within the ML program
to which JMPs or branches are directed. Sometimes those
jumps and branches will be forward in the code, not yet
encountered.

The assembler is keeping track of all the addresses as it
works its way through the source code. But labels cannot be de-
fined (given their numeric value) until they appear. So on the
first pass through the source code, the assembler cannot fill in
values for things like NOSCORE in line 110. It will do this the
second time through the source code, on the second pass. The
first pass has a simple purpose: The assembler must build an
array of label names and their associated numeric values. Then,
on the second pass, the assembler can look up each label in the
array and replace label names (when they’re being used as
arguments like LDA NAME) with their numeric value. This
transforms the words in the source code into numbers in the
object code and we have a runnable ML program. Throughout
this book, we'll frequently have occasion to mention pass 1 or
pass 2.

6

How to Use This Book

The Two Kinds of Labels

There are two kinds of labels in ML source code: equate and ad-
dress labels. Equate labels are essentially indistinguishable from
the way that variables are defined in BASIC:

100 INCOME = 15000

This line could appear, unaltered, in LADS or in a BASIC
program. (Remember this rule about labels: Define your equate
labels at the start of the source code. The LADS source code
shows how this is done. The first part of LADS is called Defs
and it contains all the equate definitions. This is not only
convenient and good programming practice; it also helps the
assembler keep things straight.)

The other kind of label is not found in BASIC. It’s as if you
can give a name to a line. In BASIC, when you need to branch
to a subroutine, you must:

10 GOSUB 500

500 (the subroutine sits here)

that is, you must refer to a line number. But in LADS, you give
subroutines names:

10 JSR RAISEIT; GOSUB TO THE RAISE-THE-Y-REGISTER-
SUBROUTINE

;500 RAISEIT INY; THE SUBROUTINE WHICH RAISES Y
510 RTS

This type of label, which refers to an address within the ML
program (and is generally the target of JSR, JMP, or a branch
instruction), is called an address-type label, or sometimes a PC-
type label. (PC is short for Program Counter, the variable
within the 6502 chip which keeps track of where we are during
execution of an ML program. In LADS, we refer to the variable
SA as the Program Counter—SA keeps track, for LADS, of
where it is during the act of assembling a program.)

Subprogram is a useful word. LADS source code is written
like a BASIC program, with line numbers and multiple-statement
lines, and it’s written in a BASIC environment. The source
code is saved and loaded as if it were a BASIC program. But if
you are writing a large ML program, you might write several
of these source code “programs,” saving them to disk sepa-

How to Use This Book

rately, but linking them with the .FILE and .END pseudo-ops
into one big chain of source programs. This chain will be
assembled by LADS into a single, large, runnable ML object
program.

Each of the source programs, each link in this chain, is
called a subprogram. In the source code which makes up LADS
there are 13 such subprograms—from Defs to Tables—compris-
ing the whole of LADS when assembled together. This book is
largely a description of these subprograms, and some chapters
are devoted to the explication of a single subprogram. To distin-
guish subprograms from subroutines and label names, the sub-
program names (like Tables) have only their first letter
capitalized. Subroutines and labels are all-caps (like
PRINTFLAG).

The word integer means a number with no fraction at-
tached. In the number 10.557, the integer is the 10 since inte-
gers have no decimal point. They are whole numbers. ML
programs rarely work with anything other than integers. In fact,
the integers are usually between 0 and 65535 because that’s a
convenient range within which the 6502 chip can operate—two
bytes can represent this range of numbers. Of course, decimal
fractions are not allowed. But virtually anything can be accom-
plished with this limitation. And if you need to work with big
or fractional numbers, there are ways.

In any case, when we refer to integer in this book, we
mean a number that LADS can manipulate, in a form that
LADS can understand, a number which is a number and not,
for example, a graphics code. For example, when you write
LDA $15 as a part of your source code, the computer holds the
number 15 in ASCII code form. In this printable form, 15 is
held in the computer as the numbers $31 $35 which, when
printed on the screen, provide the characters 1 and 5 (but not
the true number 15). For the assembler to work with this 15 as
the number 15, it must be transformed into a two-byte integer,
an actual number. When translated, and put into two bytes, the
characters 1 5 become: $0F 00. We'll see what this means, and
how the translation is accomplished, in Chapter 5 where we
examine the subprogram Valdec. It's Valdec’s job to turn ASCII
characters into true numbers.

How to Use This Book

The Seventh Bit (Really the Eighth)

For most of human history, we had to get along without the 0.
It was a great leap forward for mankind when calculations
could include the concept of nothing, zero. But now there’s an-
other mental leap to be made, a private adjustment to the way
that computers use zero: They often start counting with a zero,
something humans never do.

Imagine you are driving along and you've been told that
your friend’s new house is the third house in the next block.
You don't say “house zero, house one, house two, house
three.” It makes no sense (to us) to say “house zero.” We al-
ways count up from 1.

But the computer often starts counting from zero. In
BASIC, when you DIM (15) to dimension an array, it’s easy to
overlook the fact that you've really DIMed 16 items—the com-
puter has created a zeroth item in this array.

It's sometimes important to be aware of this quirk. A num-
ber of programming errors result from forgetting that unnatural
(or at least, nonhuman) zeroth item.

This situation has resulted in an unfortunate way of count-
ing bits within bytes. It's unfortunate in two ways: Each bit is
off by 1 (to our way of thinking) because there is a zeroth bit.
And, to make things even tougher on us, the bits are counted
from right to left. Quite a perversity, given that we read from left
to right. Here’s a diagram of the Status Register in the 6502
chip, each bit representing a flag:

7 6 54 3 2 10 (bit number within the Status Register byte)
NV - BD1I ZC (flag name)

As a brief aside, let’s quickly review the meanings of these
flags. The flag names in the Status Register reflect various pos-
sible conditions following an ML event. For example, the LDA
command always affects the N and Z flags. If you LDA #0, the
Z flag will go up, showing that a zero resulted (but the N flag
will go, or stay, down since the seventh bit isnt set by a zero).
Here’s what the individual flags mean: N (negative result), V
(result overflowed), - (unused), B (BRK instruction used), D
(decimal mode), I (interrupt disable), Z (result zero), C (carry
occurred).

But in addition to the meanings of these flags in the Status
Register, notice how bytes are divided into bits: count right to
left, and start counting from the zeroth bit.

How to Use This Book

This is relevant to our discussion of LADS when we refer
to bit 7. This bit has a special importance because it can sig-
nify several things in ML.

If you are using signed arithmetic (where numbers can be
positive or negative), bit 7 tells you the sign of the number
you're dealing with. In many character codes, a set (up) sev-
enth bit will show that a character is shifted (that it's F instead
of f). In the Atari, it means that the character is in inverse
video. But a set seventh bit often signifies something.

One common trick is to use bit 7 to act as a delimiter,
showing when one data item has ended and another begins.
Since the entire alphabet can easily fit into numbers which
don'’t require the seventh bit up (any number below 128
leaves the seventh bit down), you can set up a data table by
“shifting” the first character of each data item to show where
it starts. The data can later be restored to normal by “lower-
ing”” the shifted character. Such a table would look like this:

FirstwordSecondword AnotherwordYetanother.

BASIC stores a table of all its keywords in a similar fash-
ion, except that it shifts the final character of each word
(enDstoPgotOgosuBinpuT...). Either way, shifted characters can
be easily tested during a search, making this an efficient way
to store data. Just be sure to remember that when we refer to
the seventh bit, we're talking about the leftmost bit.

Springboard

In the 6502 chip instruction set, there aren’t any instructions for
giant branches. Some chips allow you to branch thousands of
bytes away, but our chip limits us to 127 bytes in either direc-
tion from the location of the branch. Normally, this isn't much
of a problem. You JSR or JMP when you want to go far away.

But as you assemble, you'll be making tests with BNE and
BEQ and their cousins in the B group. Then, later, you'll add
some more pieces of programming between the branch instruc-
tion and its target. Without realizing it, you'll have moved the
target too far away from the branch instruction. It will be a
branch out of range.

This is pretty harmless. When you assemble it, LADS will
let you know. It will print a bold error message, print the
offending line so you can see where it happened, and even ring
a bell in case you're not paying attention. What can you do,

10

How to Use This Book

though, when you have branched out of range? Use a
springboard.
The easiest and best way to create a giant branch is this:

100 LDA 15
110 BEQ JTARGET

i70 JTARGET JMP TARGET; THIS IS THE SPRINGBOARD

‘930 TARGET INY ; HERE IS OUR REAL DESTINATION FROM
LINE 110

When you get a BRANCH OUT OF RANGE ERROR mes-
sage, just create a false target. In LADS, the letter] is added to
the real target name to identify these springboards (see line 170
above). All a springboard does is sit somewhere near enough to
the branch to be acceptable. All it does is JMP to the true tar-
get. It’s like a little trampoline whose only purpose is to bounce
the program to the true destination of the branch.

One final note: To make it easy to locate programming
explanations in the text of this book, all line numbers are in
boldface. Most of the chapters in the book cover a single major
subprogram. At the end of a chapter is the appropriate source
code listing. It is these listings to which the boldface line num-
bers refer.

Now, let’s plunge into the interior of the LADS assembler.
We'll start with the equate labels, the definitions of special ad-
dresses within the computer.

11

san
|v..

Chapter 2
Defs:

Equates and Definitions

HEERENMNE s EEREM.

Defs:

Equates and Definitions

Let’s get started. Recall that the boldface numbers within the
text refer to line numbers within the program listings at the
end of each chapter. The first section of LADS defines many
of the variables which are used throughout the program. It’s
called “Defs.”

Defs for Relocatability

One of the advantages of advanced assemblers, LADS in-
cluded, is that they create object code (runnable ML programs)
which are both relocatable anywhere within a computer’s RAM
memory as well as transportable between computer brands and
models.

If you want to put LADS at $5000 instead of $2AF8, you
can relocate it quite simply: Just change line 10 in the Defs
source code file, the first file in the chain of LADS source code
files. As written, line 10 reads *= 11000 (equivalent to *=
$2AF8) and that causes the entire object program to start at
that address. Changing line 10 to *= $5000 relocates LADS
when you next assemble it. If you include the pseudo-op .D,
the object program will be saved to disk under the filename
you specify.

In the source code of LADS itself, at the end of this
chapter, the “.D LADS64" in line 30 will create a version of
LADS on disk by the name of LADS64 and if you later LOAD
“LADS64",8,1 it will come into your computer ready to run
with a SYS 11000. If you change the start address in line 10,
however, to $5000, and then reassemble the source code, your
LADS will start with a SYS 20480 (decimal for $5000).

The numbers generated by the assembly (the object code)
will be sent to a disk file if you specify that with .D. They will
be sent into RAM memory if you use the .O pseudo-op. If you
do turn on storage of object code to memory, LADS will send
the results of the assembly right into memory during the
assembly process. This can cause mysterious difficulties unless
you are careful not to assemble over LADS itself. If you have
created a version of LADS which starts at $4C00 and you then
start assembly of some object program at $5000, you'll eat into
LADS itself. LADS is about 5K long. This, of course, would

15

Defs: Equates and Definitions

cause havoc. Using the .D pseudo-op is safe enough, since the
new ML program assembles to disk. But the .O pseudo-op will
send bytes right into RAM during assembly.

Be aware, too, that LADS builds its label array down from
the start of its own code. During assembly, the labels and their
values are stored in a growing list beneath the start address of
LADS (where you SYS to start the assembler). If you send ob-
ject code into an area of RAM which interferes with this array,
you'll get lots of UNDEFINED LABEL errors. So be sure you
know where you're putting object code if you store it in RAM
during assembly by using the .O pseudo-op.

Defs for Transportability

The only part of LADS which is intensely computer-specific is
this first file, this first subprogram, called Defs. Here we define
all the machine-specific equates. (An equate is the same thing
as a variable definition in BASIC. For example, RAMSTART =
$2B is a typical equate.) We’ll use the Commodore 64 Defs
(Program 2-1) as our example. The labels (variable names like
RAMSTART) for all other computers’ versions of LADS will
be the same—only the particular numbers assigned to these
labels will vary. The addresses of pointers and ROM routines
vary between computer models.

Defs contains the definitions of all zero page or ROM ad-
dresses that will be used in the rest of the source code. Once
again, remember that all zero page equates must be defined at
the start of the source code (Defs illustrates that rule: Defs is the
first part of the LADS source code). From lines 60 to 170 we
define the locations within zero page that we’ll be using. In
line 70 we define the top of the computer’'s RAM memory.
We're going to lower it from its usual spot to fall just below
where LADS itself starts.

ST is the location where errors in disk file manipulation
can be detected. Like all of these zero page equates, this loca-
tion varies from computer to computer. LOADFLAG (line 90)
signals the computer that we want to LOAD a program file
(rather than VERIFY a previously SAVEd program file). This
flag will be set in the version of LADS which assembles from
RAM memory (and LOADs in chained source code programs
from disk). This RAM-based version of LADS will be created
- later in Chapter 11, the chapter on modifying LADS.

16

Defs: Equates and Definitions

Disk 1/O Information

The next five definitions show where information is stored just
before a disk operation. They tell the operating system where
in memory a filename is located, how long the name is, the
file number, the file’s secondary address, and the device num-
ber (8 for disk, 4 for printer, in Commodore computers).

CURPOS always contains the position of the cursor on-
screen (as a number of spaces over from the left of the screen).
We'll use this to format the screen listings. And the final
machine-specific zero page definition is RAMSTART. It tells
LADS where BASIC RAM memory starts. It, too, is used in the
version of LADS which assembles from RAM.

Why do we need to define these locations if the operating
system uses them? Because we're going to use a few of the
built-in BASIC routines to handle the I/O (Input/Output) op-
erations for us when we need to communicate with a periph-
eral. To OPEN a file, for example, we need to set up several of
these pointers. To OPEN file #1, we have to put a 1 into ad-
dress $B8 (that’s where the file number is held on the Com-
modore 64). But why not just use LDA #1: STA $B8? Why do
we want to use these labels, these variable names?

Programming with pure numbers instead of labels pre-
vents transportability. It locks your program into your com-
puter, your model. It’s far easier to change this single equate
in line 120 to $D2 to make the program run on a PET/CBM
with BASIC 4.0 than it would be to go through the entire
source code, changing all B8's to D2’s. Also, if you buy a
newer model and they’ve moved things around in zero page
(they almost always do), making the adjustments will be
simple. You just use a map of the new zero page and make a
few changes in the Defs file.

LADS Zero
Because LADS needs to use the valuable Indirect Y addressing
mode—LDA (12),Y or STA (155),Y—it will want to usurp a
few of those scarce zero page locations itself. Line 170 defines
a two-byte temporary register called TEMP which will be used
in many ways. SA is going to function as a two-byte register
for the LADS Program Counter which will keep track of
where we are currently storing object bytes during the assem-
bly process.

MEMTOP is used in the construction of our label data

17

Defs: Equates and Definitions

base. It will always know where the last symbol in our label
table was stored. All through pass 1 it will be lowering itself,
making room for new symbols and labels. (This data base will
later be referenced as we fill in the blanks on pass 2.)
PARRAY makes that search through the symbol table on pass
2 easy and fast. It points us through the array. PMEM is used
as a pointer during assembly from RAM, if you decide to use
the RAM-based version of LADS described in Chapter 11. The
uses of all these variables will become clear when we exam-
ine, throughout the book, the techniques which utilize them.

Borrowing from BASIC

The next section, lines 190-320, defines the routines within
BASIC ROM memory that we're going to use. Naturally, these
are particular to each computer brand and model, so we want
them up front where they can be easily identified and
changed.

BASIC always has an entry point called the warm start ad-
dress, a place where you can jump into it “warmly.” But
there’s another entry that’s not as gentle. Many BASICs clear
out RAM memory and radically reset pointers, etc., when you
first turn on the computer. This is called the cold start entry
point, and it’s as much of a shock to the computer as walking
outdoors into a winter wind is to you. We don’t want this
shock when we return from LADS to BASIC. Instead, we want
the RAM memory left alone. After all, LADS is in there and
possibly an object or source program is in there too. So when
assembly is finished, we want to go into BASIC via the warm
start entry point.

KEYWDS is the address of the first BASIC keyword. We'll
see why we need this address in the chapter on the Indisk
subprogram. OUTNUM is a ROM routine which is used to
print line numbers for the BASIC LIST command. We'll use it
in a similar way to list the line numbers of our source code.

OPEN, CHKIN, CHKOUT, CLRCHN, and CLOSE allow
us to communicate with the disk drives and printers. CHARIN

18

Defs: Equates and Definitions

is like BASIC’s GET command, PRINT like PRINT. STOPKEY
sees if you've pressed the STOP or BREAK key on your key-
board. And, last, SCREEN tells LADS where in RAM your
video memory starts.

The use of these routines, and the ways that ML pro-
grams can borrow from BASIC, will be covered in detail as
they appear in the LADS source files. For now, we only need
to know that they are defined here, in Defs, and can be
quickly changed to suit different computers, different BASICs.

There you have it. We'll be explaining these pointers and
registers as we come upon them in the explication of LADS.
Now on to the heart of LADS, the section which evaluates all
the mnemonics (like LDA) and addressing modes and turns
them into opcodes (like A9) that are the machine’s language.
This next section, Eval, is—by itself—a complete assembler. It
would stand alone. The rest of the sections of LADS add
things to this core, things like disk management, arithmetic
and other pseudo-op routines, label interpretation, screen and
other output, and a host of other niceties. But Eval is the sun;
the rest of the routines are lesser bodies, planets in orbit
around it.

Note: Because the Defs subprogram is computer-specific,
there are five source code listings at the end of this chapter,
one for each computer. There are also multiple listings in
Chapter 5 since it deals with computer-specific peripheral
communication. However, the majority of chapters will
have only a single complete listing, followed by the few
modifications required by the different computers, because
the majority of LADS’ source code is identical and entirely
transportable between 6502-based computers.

19

Defs: Equates and Definitions

(DIA ¥OJ ZLTA/AAVYDAN ¥YOJ ZZE€dA) ¢ 18C

*WYd OLNI (d7TI4 dd0D dDdN0S) dTId WYYD0odd DISVE ¥ AV0oT GLT1d$ = dYOT1 @8C
JLA9d INO INO SANIS fzadd$ = LNI¥d QLT

ALAE INO NI STINd ‘vAAAS = NIVVYHO @9¢

(X NI #d7Id) ALIYM 304 TINNVHD SNAJO (6Ddd3 LAOMHD @S¢

(X NI #d7TId) AV¥Ey d0d TINNVHD V¥V SNAJO ¢9D04d$ = NIMHD @¥Z

*(WOd NI NEHJO TYWYON LSYd SALAY €) HTIId ¥ SNAJO ‘T1DTA$ = NIJO Q€2
JIIWAN (dST) X ‘(9SW) ¥ 1IN0 SINI¥d {ddodds$s = WANLNO @ZZ

OISVd NI dTdVL QYOMAEM J0 I¥VLIS ‘H6QVYS SAMAEM @T1¢

DISVE OL MOVd 09 *‘HLP¥YS = DISVEOL 90T

¥3J4nd LNdANI S,DISvVvd (@g@zZg$ = JAndvd g6l

uuuuuuuuuuu SALYNOE WO¥ DIAIDAAS EANIHOVW ——-—-———=—=—=———==! @87
LY$ = WIWd:ZHS = AVHNVA:QES = JOIWAW:Qd$ = VS:€d$ = dWAL OLT
||||||||||| SALYNOT AOVA O¥AZ TYNJELINI SAVT -—-—-—--——=——————————=! pQT

ENIT NIFYDS NHAID ¥ NO ¥0Sd¥ND 40 NOILISOd *TITIZ = SO0d¥Nd @ST
(MSIA FJYOAOWWOD ¥Od4 8) YILAWNN IDIAAA V€S = AIAL O%1T
NEdO ¥04 SSTYAAVY AYVANODIS LINIMIND <6€H$ = ANODISA @€
IOIAEA OL SYVHD ILNd R LIAD ‘NIJO ¥04 ¥IGWNAN FTIA INIAJIND ‘8d$s = WANJI 9CT
‘WYY NI NOILVYDOT HWYNITIA OL YHAINIOA <€g9$ = YIdIAWYNI QTT
d1I4 ¥ NIZdO ¥0d IWYNATIA 40 HLONIT ¢,9d$ = NITIAWYNI @G0T
(@v0T = @) AATYIA ¥O AVOT SIAAIDAA HOIHM SVTII <‘€6$ = DYTIIAVOT 06
0/I FAVYL/MSIA ¥0d QYOM SNIYLIS *‘$¥T = IS @8
YALNIOd AJOWHW WYY J40 dOL S,DISVH ‘L€$ = dOLWIWE @L
YHALNIOd AYOWIW WYY J0 LIV.LS S,DISVE ‘€9Z$ = IIAVLISWYE @9
1

||||||||||| SALYNOE FOVd O¥FZ DIAIDAJS ANIHOVW -—-——-—=———————————eeu! G
¥9 FWOUOWWOD ¥0d4 SNOILINIAIA ANV SALVNDE ,$9Sdad, ! ob

¥9Sav1 a* ¢

ON* @z

PPQTT =x QT
+9 diopowrwio)) :sj3(J ‘-7 weidoig

20

Defs: Equates and Definitions

ZLTES = AVYOT 9L

¥3IINd INANI S,0ISVd ‘@@gz@$s = JAndvd GLT

DISVE OL)OVd 09 ‘#.¥D$ = DISVAOL @LTI

||||||||||| SHIVNOE WOd DIJIDAAS ANIHOVHW —--—-————==——————==! (9T

LYS = WIWd:ZdS = AVYNVYd:@dS = dOLWIW:dJS ¥S:dd$ = dWIL @ST

||||||||||| STLVNOI IOVd O¥HZ TYNJALNI SAVI —-———————————————! gy

("WISSY QISVI-WVd ¥0d) XMOWIW WVY J0 IIVILIS OL YALNIOd ‘dZ¢$ = I¥VILISWYY GE€T
*ANIT NITIDS NIAID ¥ NO d0S¥ND A0 NOILISOd *1T1Z = SOd¥ND @E€T

JIGWAN IOIAId INIYAND (VLS = AFAI @21

NIdO ¥0d SSHIAAVY AMVANODIAS INIAJIND ‘{698 = ANODISA OTT

JDIAIA OL S¥VHD INd 3 I1ID ‘NIAJO ¥Od YIAGWAN dATId INIJIND 898 = WANI @01
‘WYY NI NOILVOOT IWYNATIIA OL ¥AINIOd {€gd$ = VLJIWYNA G6

IIId ¥ NIdO 904 AWYNIIIA JO HIONIT (.93 NATANYNI 06

€63 = SVIIAYOT S8

0/I AdVYL/MSIA JOod QIOM SNLVLS ‘¥#%T1 = IS @8

YALNIOd X¥OWIW JO dOL S,DISVd ‘LE€$S = dOIWIWE QL

||||||||||| SALVNOA d5Vd O¥dZ DIJIDAAS ANIHOWW —--——-—-—-——=—————=——=! g9

SNOILINIJAd dANVY SILVYNOd ,ASJIA, * @S
NOISYIA DIA P ey

ON* @€

ASAQYT d° @¢

P90TT =+ OT

0T-OIA :$J2("7-7 weadoiq

TYAT dTId* @Y€

s £ % o

WYY NIIYDS 40 FLAE LST 40 SSIYAAVY ‘@t@s = NIFTIDS 0C¢E

*@dssddd JAI DISVd OL SNINLIE ‘XIN dOLS SLSAL ¢TdAds = AIMJOLS QTE
(¥ NI #dTIJd) dTId dSOTD ‘€Ddd$ = ISOTD @0P€

0/I IIN¥4dd STAIOLSIY <DDJI$ = NHOYTO @67

21

Defs: Equates and Definitions

||||||||||| SALYNOT FOVd O¥HZ TYNIHINI SAVI ——————————m———mm—— !
*ANIT NIFIDS NIAID ¥ NO ¥0S¥ND J0 NOILISOd <861 = SOJdIND
(MSIA TIOAOWWOD ¥0A 8) HALIWNN IADIAIA ‘HAS = ATAL
NIdO ¥0d SSTIAAV AYYANODIS INIYIND ‘€d$ = ANODISA
HOIAIA OL S¥VHD ILNd % LIAD ‘NIJO ¥04 ¥YAGWNN HTIA INIIIND ‘gds = WANA
‘WYY NI NOILVDOT AWVNATIA OL ¥IAINIOd ‘VAS = YLAAWYNAI
dIId ¥ NAdO ¥04 AWYNATIA J0 HLONAT ‘1d$ = NATIWYNA
(A¥0T1 = @) AAIYIA d0 AVYOT SIAAIDIAA HOIHM 9DVIA ‘d6$ = 9HVTAAVOT
O/I FAVYL/MSIA ¥0d QIOM SALVYLS ‘@ST = IS
YALNIOd AYOWAW WV J0 dOL S,DISVd (€S = dOLWAWH
dHILNIOd AYOWIW WV J0 LIVLS S,DISvd ‘8¢$ = LIYVLSWYA
||||||||||| SALYNOd dAOYd 0ddZ DIAIDAJS ANIHOVW ——-—-—————mmmmmmmmm !
DISvVE @°'b WED/Ldd ¥04 SNOILINIAIA ANV SdI¥Yndd ,S4dd, -

220TT =%

OISVd 0’y WHD/14Ad s} "¢-7 weisoid

TVAd dTIAC

(XIOWIW AAANVAXI/M) WY NITIDS J0 HLALE LST A0 SSHAAAV ‘@P@RATS = NIIADS
*@assdId AI OISVE OL SNINLAY ‘ZXIM dOLS SISHL ¢ T13II$ = AIIAOLS
(¥ NI #d7TI4) FIId ISOTD *€Ddd$ = HSOID

0/I IINVAdd SHIOLSHY +DD4d$ = NHDYETD

ALAE INO ILNO SANIS ‘zadd$ = INIdd

LA INO NI STINd *pdAIIS = NIVVHO

(X NI #dTId) ALIYM Y04 TANNVHO SNIJO ¢6D44$ = LNOMHD

(X NI #J71Id) AVIY ¥0d4 TINNVHD ¥ SNEAJO ¢9044$ = NIMHD

(WO¥ NI NIJO TVYWION ISVd SHELAE €) dTII4 V¥V SNIJO ‘3dTIS = NIJO
YIGWNN (9gST) X ‘(9SW) ¥ INO SLNI¥dd :dddd$ = WANLNO

DISVE NI dTdVL QIOMAIM A0 IIVYIS ‘d6@Ds = SAMAEM

%9
98¢
aLe
992
@sc
ove
pET
@gze
p1T
vaT
26T
28T

22

Defs: Equates and Definitions

|||||||||||| S31YN03 3994 0437 31413345 INIHIGW ——— =

JiWgN I T4 40 HI9NIT 164% = NITIWYNAS
iX31L 40 3L1A9 1X3N 01 M3IINIOL 8% = HidiXl
HIINIOd AHOW3IW 40 401 S5.018vd 5v$ = JOLiW3IWA

SNOILINIH3A aNY S3IYND3 «543d. ¢
NOISH3IA F1dd9:
ON~

sav a-

Jd6L% =%

=8
08
QL
09
05
Ot
(65
oz

o1

oddy :sjo(‘-7 weadoig

TYAd HTIA®

WYY NIJdDS A0 dLAd ILST JO SSTIAAY -@@@8s = NITIDS

*@dssddd JAI DISVE OL SNINLIAY ‘AIM dOLS SLSAL +TdJIS = AAMNJOLS
(¥ NI $#37I4) JTIA dSOTD ‘gdzgds = dSOTID

0/I 11INYJdd STIOLSTY ‘DDAAS = NHODYTID

(9 Y04 GLTI/DIA ¥OA TLTA/IAVYDAN ¥OJ gTed)

‘WYY OLNI (dTIA 0D dDYNOS) dTId WYIdH0dd OISVd ¥ AYOT 9G6€d$ = AYOT
dLAd INO LNO SANAS -zddJds = INIdd

dLAd ANO NI STINd ‘$dAJdS = NIYVYHD

(X NI #37TId) JLI¥YM ¥0Od4 TIANNVHO SNHJO 60448 = LNOMHD

(X NI #d7TIJ4) AVdd ¥0Od4 TIANNVHD ¥V SNI4C -9D44$ = NIMHD

*(WOY NI NAJO TYWION ILSVd SHALAd €) d1I4 ¥ SNIJO -€9G4d$ = NIJO
JIGWAN (gST) X ‘(dSW) ¥ LNO SINIdd -‘€84AD0S = WNANLNO

DISVd NI dTdVYI QIOMAAM A0 JIIVYLS -‘Zd@ds = SAMAIM

DISVE OL MOvd 09 ‘4d€d$S = DISVLOL

ddJ40d ILNdINI S,DISVd :‘@@c@s = Jndvd

||||||||||| SHILVNOA WO¥ DIAIDAdS ANIHOVW ————=—=———————————l
d9d$ = WIWd:dds$ = AVYYVYd:9ds = dOLWAW:dJdS = VS:dJd$ = dWIAL

ovE
gEE
QcCeE
Q1€
20¢€
pec
8¢
28¢
aLe
99¢
2s¢
2ve
gET
gce
a1¢
29¢
261
28T
oLT

23

Defs: Equates and Definitions

A3 JI4° OF9

WYY NI3IHIS 40 JLAdA IST 40 S553HAAY 00v0$ = NIIYIS 08T

i¥31 0I5Yd DiINI 3INITT JISYH id3ISNI ¥2vd$ = SNINIT 052

WANNITT OENT MH1d1X1 WOHH H3FWNN INIT 139 (009ds = 139NIT ObZ
TYMOIS AOY3H HM3IAINIHdS (TOT13% = NAMINYA OS2

HM3IINIH4 HOH NOILYPID1 0/1 (04600% = MINMA 0OZZ

JiAd9 3INO 1N4in0 :04d4% = 1N03 012

ANILNOS LNdind H310YH9HI 40 SS3INAAY 1ESuvs = aMSI 002

H3IFWNN (IS X " {dSW) ¥ iN0 SINIMd (¢Zd3s = WNANLND 06T

JISyd NI IEYL OHMOMATH 40 iHY1S 1040ds = SAMA3IE 08T

H344nd INdNI 5.015v949 <0% = 4dNgvd S41

215949 01 H0vd 09 = JIS59H901 G471

IIIIIIIIIII S3i9N03 WOH JI4Id3d45 INIHIUW £ 091
3% = 4dOWd-Yas = WHYd 55

3% = AvAHP4:d3% = 4dDLW3IW-d4% = ¥5:94% = JdW3L 051

IIIIIIIIIII S3ivNo3 389%d 0437 EMH3INI 5Jv7 POvT
TANITT NI3IH3IS N3IAI9 Y NO HOS3MND 40 NDILISOd 9% = S044N3 O%1
H3IINIOL I1EYL FEVINYA 16F% = JYLHYA OTT

{(NLTE) ALITIILN H34SNUHI 40071 40 NOILIYNILIS3A HOIH ive6$ = SAHIIH 00T
WYHO0N4 40 ON3 01 H3IiNIOd 49$ = AONI9Hd 56

iX31 40 FiAdg L1X3N 1389 :1d% = 1394HI 046

24

Defs: Equates and Definitions

Program 2-5. Defs: Atari

146
1106
126
13@
144
158
169
170
180
19a
200
210
220
239
240
259
269
279
280
294

= 8096

.D D:LADS.0OBJ
ST = %61
FNAMELEN $80

FNAMEFTR = %81
FNUM = 483
FSECOND = %84
FDEV = %85
CURPOS = 85
TEMP = $86

5A = 488

MEMTOP = $8A
PARRAY = $8C
INFILE = 4%8E

OUTFILE = $8F
PMEM = $A@
RAMFLAG = $AZ
BABUF = @540
SAVMSC = 458
.FILE D:EVAL.SRC

25

Chapter 3
Eval:

The Main Loop

EEEAas EEEnE

Eval:
The Main Loop

Eval is the heart of LADS. It is the main loop. It starts assem-
bly at START (line 30) and ends assembly at FINI (line 4250).
Throughout Eval, JSRs take us away from the main loop to
perform various other tasks, but like mailmen, all the other
routines in the assembler start out from Eval, the post office,
and they all RTS back to it when their work is done.

For convenience, references to lines within the source
code listing at the end of the chapter are boldface inside
parentheses. Also, to distinguish label names like FINI from
the names of one of the 13 sections of LADS (a subprogram
like Eval), we'll put label names in all caps, but just capitalize
the first letter of the subprograms of the assemb]er.

Preliminaries, Preparations

Most programs have a brief initialization phase, a series of
steps which have to be taken to fix things up before the real
action of the program can commence. Variables have to be set
to zero, files sometimes have to be opened on a disk, defaults
have to be announced to the program. (Defaults are those
things a program will do unless you specifically tell it not to.
A game might default to single-player mode unless you do
something which tells it that there are two of you playing.
LADS defaults to hexadecimal numbers for printer or screen
listings and turns off all its other options.)

At its START, LADS loads the Accumulator with zero and
runs down through 48 bytes of registers, flags, and pointers,
stuffing a zero into each one. These flags are all needed by
LADS to keep track of such things as which pass it’s on,
whether or not you want a printer listing, or want the results
of an assembly to POKE into memory, or whatever. This
initialization fills them all with zero. The label OP is the high-
est of these registers in memory, so we LDY with 48 and DEY
down through them (see line 30).

Let’s take a minute to briefly review our terminology:

Register usually refers to the Accumulator (A), or the X or
Y Register in the 6502 chip. It can also mean a single byte set
aside to temporarily hold something. It’s like a tiny buffer.

A buffer is a group of continuous bytes used to hold infor-

29

Eval: The Main Loop

mation temporarily. An input buffer, for example, holds the
bytes you type in from the keyboard so they can be inter-
preted by BASIC. The bytes stay there until you type RE-
TURN, BASIC stores the information into your program, and
you type a new line into the input buffer.

A flag is a byte which is either on or off (contains either
zero or some number) and signifies a ““do it”” or “don’t do it,”
yes or no, condition. Of course, a single byte could hold a
number of flags because each bit could be on or off. In fact,
the Status Register in the 6502 chip does just that—it’s only a
single byte, but its bits are flags tested by CMP and the BNE,
BEQ-type instructions. When you need a flag, though, it’s eas-
ier to just use a whole byte and test it for zero or not-zero. An
example of a flag in LADS is the PRINTFLAG. If nonzero, the
assembler sends a printout of the assembly process to a
printer. If zero, the printer remains silent and still. You set
(turn on) the print flag with the pseudo-op .P; otherwise, the
default is no printing.

A pointer holds a two-byte address. Many times pointers
are put into zero page so they can be used by Indirect Y
addressing: LDA ($FB), Y gets the byte from the address held
in $FB and $FC (seen as a single, two-byte-long number). If

00FB 00
00FC 15

(remember that the 6502 expects these numbers to be back-
ward; this two-byte group means $1500) then LDA ($FB),Y
will load the A register (the Accumulator) with whatever byte
is currently in address $1500. We can set up our own pointers.
If they're not in zero page, they're likely holding some im-
portant address which a program needs to remember. In
LADS, ARRAYTOP is such a non-zero-page pointer; it tells
LADS where to start looking through the label table for a
match. We'll look into this when we get to the subprogram
Arrays.

Cleaning the Variables

At its start LADS must initialize its variables. If we didn't fill
them with zero, there could be some other number in these
bytes when we fire up LADS and that could cause unpredict-
able results. Then (80) we get the low byte of the start of
LADS (using the pseudo-op #<START) and put it in the low

30

Eval: The Main Loop

byte of MEMTOP (used by the Equate subprogram). We also
put it into the pointer BASIC uses to show how much RAM
memory it has available, BMEMTOP (line 70 in Defs). And, fi-
nally, put it in ARRAYTOP. ARRAYTOP will show where the
LADS’ data base of labels starts in memory (it builds down-
ward from the location of LADS).

Then we take the high byte of START and put it into the
high bytes of these three pointers.

Now for the defaults. There is only one. We want listings
to be in hexadecimal unless we specifically direct the assem-
bler otherwise with the .NH, no hex, pseudo-op. So we put #1
into the HXFLAG. The rest of the flags are left at zero. If you
want different defaults, put #1 into some of the other flags.
For example, if you usually want to watch the results on
screen during an assembly, just create a new line: 185 STA
SFLAG. This will cause a screen disassembly every time you
use LADS. Putting this default into LADS itself merely saves
you the time of adding the .S pseudo-op if you generally do
want to watch the assembly onscreen. That does slow up the
assembler, but with shorter programs, you might not notice
the difference.

Where’s the Source File?

LADS needs to know what you want to assemble. If you're
using the RAM-based version of LADS (see Chapter 11),
there’s no need to give a filename to LADS; just SYS, and
LADS will assemble what’s already in RAM. But if you're in
the normal LADS mode, assembling from a disk file, you'll
have to announce which file. LADS looks at the upper left-
hand corner of the screen to read the filename (190). If it finds
a space #32, it checks for another space (310) before giving up.
This way you can have continuous names like FILENAME as
well as two-word names like FILE NAME. Whatever it finds
onscreen, it stores in the buffer FILEN. It also takes care of
characters which are below the alphabet in the ASCII code by
adding 64 to them if they fall below 32 (240). The Atari ver-
sion asks for the filename from the keyboard in the manner of
a BASIC INPUT command.

When the filename is stored in the buffer, we JSR to
Openl, the subprogram which handles all 1/0O, all commu-
nication with peripherals. In this case, communication will be
with the disk drive.

31

Eval: The Main Loop

After the file is opened for reading, we JSR to another
subprogram, Getsa, the get-start-address routine. It just looks
for *= (the start address pseudo-op) and, finding it, returns to
Eval where the number following that symbol will be eval-
uated. If it doesn’t find a *=, that can only mean two things.
Either there is no program on the disk by the name you put
onscreen or LADS did find the program, but no starting ad-
dress was given as the first item in the source code. Both of
these situations are capable of driving LADS insane, so Getsa
aborts back to the safety of BASIC after leaving you a message
onscreen.

This SMORE routine (370) will be used again when we’ve
completed the first pass of the assembly process. The first pass
goes through the entire source file, storing all the names of the
labels and their numeric values into an array.

When we finish making this collection of labels, our label
array, we've got to make a second pass, filling in the opcodes
and replacing those labels with numbers. It’s here, at SMORE,
that we jump to start the second pass.

A zero is given to ENDFLAG to keep the assembler run-
ning. If the ENDFLAG is left up, is not zero, the assembler as-
sumes it has finished its job and stops.

The initialization is completed with a JSR to the sub-
program Indisk which pulls in the number you wrote as the
starting address following *=. This number is left in LADS’
main input buffer called LABEL. Before dealing with this num-
ber, though, we check to see if we're on the first pass (410)
and, if so, print the word LADS onscreen after a JSR PRNTCR
which prints a carriage return. Routines beginning with PRNT
like PRNTSPACE and PRNTLINE are all grouped together in
the subprogram Findmn. They’re used by most of the sub-
programs and print various things to the printer or screen.

Now we need to put the starting address into the pointer
SA which always holds the current target for any of our
assembled code during execution. If the HEXFLAG is up, that
means you wrote something like *= $5000 and hex numbers
are translated by the subprogram Indisk before it RTSs back to
Eval. Decimal numbers like *= 8000, however, are not trans-
lated into the two-byte integers that ML (machine language)
works with, so we need to send decimal numbers to Valdec
(another subprogram) to be turned into ML integers (610). The

32

Eval: The Main Loop

pointer called TEMP is made to point to LABEL so Valdec will
know where to look for the number.

It's important to realize that numbers coming in from the
disk or from RAM memory are in ASCII code, as characters,
not true integer numbers. That is, the characters in a number
like 5000 will come into the LABEL buffer as they appear in
RAM or on a disk file. 5000 would be (in hexadecimal nota-
tion) 35 30 30 30; these are the character codes for 5-0-0-0. It’s
Valdec’s job to transform this into 00 50, an ML integer. When
we get to Valdec, we'll see just how this is done. It’s a useful
technique to learn since any numbers input from a keyboard
will also be in this ASCII form and will need to be massaged a
bit before they’ll make sense to ML.

Remembering the Start Address

When, at STAR1, we finally have an ML integer in the little
two-byte variable called RESULT, we can transfer the integer
to SA. And we put the integer into the variable TA, too, so
that we’ll have a permanent record of the starting address. SA
will be dynamic; it will be changing throughout assembly to
keep track of the current assembly address. It will be LADS’
Program Counter. TA will always remember the original start-
ing address.

By this time you might be thinking that all this is hard
to follow. TA and RESULT and LABEL don’t mean much at
this point. We’ve plunged into Eval, the most condensed, the
most intensive, section of the entire program. As the main
loop, Eval will send tasks to be accomplished to many sub-
routines, in subprograms which we’ve not yet examined. It's
like landing in a strange city without a map. You see street
signs, but they mean nothing to you yet. But this is one of the
best ways to learn if you can be patient and ignore the tem-
porary gaps in your knowledge and the momentary sensations
of confusion.

We're gradually building a vocabulary and mapping out
some of the pathways which make up the language LADS and
the ways the ML works. The subprograms are, by and large,
easier to follow. They're more self-contained. But bear with
this tour through Eval. It makes what follows easier to grasp
and offers a foundation—however unconscious at this point—
for a deeper appreciation of the ways that ML does its magic.

33

Eval: The Main Loop

The Main Routine

Every line of source code which LADS examines begins with
STARTLINE (690). The ML between STARTLINE and P (5520)
is, in effect, an assembler. The rest of the routines and sub-
programs deal with the niceties, the auxiliary efforts of the
assembler—pseudo-ops, built-in arithmetic routines, 1/0,
printout formatting, and so forth.

In fact, this section of LADS is based on the BASIC
assembler, the Simple Assembler, from my previous book, Ma-
chine Language for Beginners. If you want to see how a large
BASIC program can be translated into ML, you might want to
compare the Simple Assembler to the rest of Eval. There are
some comments within the listing of LADS’ source code which
refer to the BASIC lines within the Simple Assembler (see
lines 3270 and 3410 for examples), and a number of the labels,
starting at 4670, also refer to their BASIC line number equiva-
lents in the Simple Assembler. L680 is a label to LADS, but is
also a reference to an equivalent line, 680, in the BASIC of the
Simple Assembler.

It's LADS’ job to take each line in the source code and
translate it into runnable ML object code. LADS would take
the source line 10 LDA #15 and change the LDA into 169 and
leave the 15 as 15. The value 169 is the ML opcode for the
Immediate addressing mode of LoaDing the Accumulator.
Then LADS would send these two bytes of object code, 169
15, to any of four places depending on what destinations you
had specified as pseudo-ops in the source code. The .D
pseudo-op would send 169 15 to a disk file, .P to the printer,
.S to the screen, and .O directly into RAM memory.

When LADS first looks at at each source code line,
STARTLINE checks the ENDFLAG to be sure it’s safe to con-
tinue. I[f ENDFLAG is zero, we BEQ to the JSR to Indisk.
(Otherwise, the program would go down to FINI and close up
shop, its work finished.)

Indisk is the second largest subprogram, and LADS will
be gone from Eval a long time by the computer’s sense of
time. For us, this detour happens in a flash, and a lot happens.
Indisk can even JSR into other subprograms, but we’ll see that
in a later chapter. All we need to realize now is that each
source line needs to be pulled onto our examination desk so
LADS can pick it apart and know what to assemble.

34

Eval: The Main Loop

Our examination desk is the buffer called LABEL. First a
line of source code is laid out on the desk. To prepare for the
exam, we put down the EXPRESSF(lag) and the BUFLAG, al-
though they might be raised again during the evaluation to
come. EXPRESSF tells LADS whether the expression following
a mnemonic like LDA is a label or a number. It signals the dif-
ference between LDA SPRITE and LDA 15. BUFLAG tells
whether or not there is a REM-like comment attached to the
line under examination. If there is a comment, we’ll want the
assembler to ignore the remarks, but the screen or printer
should nevertheless display them.

Now, as we often will, we check PASS (760) to see if it’s
the first or second time through the source code. On the first
pass, we're not going to print things to a printer or the screen,
so we’'d jump to MOE4 and ignore the next series of printouts.

But if it’s the second pass, we check the SFLAG, the
screen flag, to find out if we should print to the screen. If the
answer is yes, we print a line number, a space, the SA (current
address), and another space. Don’t worry about LOCFLAG
just yet.

Now we want to know if there’s any math to do.
PLUSFLAG is up when the line contains something like this:
LDA SCREEN+5. If it does, we briefly detour to the sub-
program Math to replace SCREEN +5 with the correct, cal-
culated number.

The Inner Core

Now we're at the true center, the hot core, of LADS: Line 900
is the pivot around which the entire structure revolves. This
JMP to Findmn accomplishes several important things and sets
up the correct pathways for the assembler to follow in the fu-
ture. Findmn finds a mnemonic. Say LADS is examining this
line:

10 LDA 15

After Findmn does its job and JMPs back to Eval, there would
be a 1 in the TP register (it's like a BASIC variable, called TP
for “type”). And there would be a 161 in the OP, for opcode,
register.

That 161 is not the number we'll want POKEd into mem-
ory. 161 is the right number for the LDA (something,X)
addressing mode, but it's wrong for the other modes, includ-

35

Eval: The Main Loop

ing LDA 15. Nevertheless, any LDA will first get a 161, the
base opcode. It's the lowest possible opcode for an LDA; the
other LDA addressing modes can be calculated by adding to
161. LDA 15 is Zero Page addressing and its opcode is 165.
Eval’s main job is to start off with the lowest, the base opcode
for a particular mnemonic like LDA, and then make adjust-
ments to it when the correct addressing mode is detected. Eval
establishes the addressing mode when it examines the line
and looks for things like the # symbol and so forth. As we’'ll
see, this examination will modify the OP number until the
correct opcode is calculated.

For now, though, it's enough that we return from Findmn
with a base opcode number, something reliable to work from,
stored in the variable OP. By the way, Findmn gets these
numbers, TP and OP, from a table in the subprogram Tables.
We'll look at it at the very end of our exploration of LADS in
Chapter 9. Tables is where all the constants are stored.

When No Match Is Found

Sometimes Findmn won't find a match when it looks through
the table of mnemonics in the subprogram Tables. This means
that the first word in the line under examination was not a
mnemonic. If this happens, Findmn returns (via a JMP) back
into Eval where labels are analyzed. Eval then knows that this
first word isn’t one of the 6502 commands. Instead, it must be
a label.

Labels in this first position in a line can be of two types:
address labels and equate labels. An address label identifies a
location within the program that will be the target for
branches, jumps, JSR, etc. It's like giving names to subroutines
so you could later JSR PRINTROUTINE. Here’s an example:

100 START LDA #0

After the assembler finishes assembling this, we’ll have:
100 3A00 A9 00 START LDA #0

The OP 161 has been changed to 169 (the hex number A9
in the example above), and we’ll see how that was arrived at
presently. But START has had no visible effect. Its just listed
there, but doesn’t affect the A9 or 00. START is a place
marker. It hasn’t been ignored. During the first pass, LADS

stored START in an array along with the 3A00 address. That’s
why START can be called an address label. This is very much

36

Eval: The Main Loop

the way that BASIC reads a variable name, sticks it in an ar-
ray, and puts the value of the variable up there with the
name.

On pass 2, when all these labels are needed, the correct
address will be there, waiting in the array. If LADS comes
across a JSR START or a BEQ START, it will be able to search
the array and replace the word START with the right number,
the address.

The other possible kind of label is the equate label. It
looks like this:

1100 SCREEN = $0400

It, too, is stored during the first pass and looked up dur-
ing the second pass. But the equals sign shows that we should
remember the value on the other side of the = symbol, not
the address of the location of the label. In this example, when-
ever we want to store something onscreen, we don’t need to
calculate the correct address. $0400 is the first byte in screen
memory (on the Commodore 64 in this example). So we can
just STA SCREEN to put whatever is in A into the upper left-
hand corner of the screen. Or STA SCREEN+200, or STA
SCREEN+400, or whatever. (Adding numbers to SCREEN
will, in this case, position our A lower on the screen.)

It’s here that we decide whether we're dealing with one of
the labels or with an ordinary mnemonic. If we JMP back from
Findmn to EVAR (920), the first thing on the source code line
was a mnemonic. If we JMP back from Findmn to EQLABEL,
it wasn’t a mnemonic (hence it’s a label). EVAR evaluates the
argument, the 15 in LDA 15. EQLABEL evaluates the other
kind of argument, the label SPRITE in LDA SPRITE.

Simple and Other Types

Some of the mnemonics are quite straightforward. They've
got no argument at all: INY, ROL, CLC, DEC, BRK, RTS, etc.
There’s no argument to figure out, and all of these self-
contained instructions have the same addressing mode, Im-
plied addressing. Fully 25 of the 56 mnemonics are of this type.
We've called them type 0 (see the chapter on the Tables sub-
program for an explanation of the types), and so Findmn puts
a 0 into the TP variable. Our first step in the evaluation of any
argument (920) is to check the TP, and if it’s 0, go to the type
1 (meaning only one byte, the opcode itself) area. There, the

37

Eval: The Main Loop

single byte will be POKEd and printed if you've requested that
with your pseudo-ops. And then we can go on to fetch a new
line.

If it's a more complicated addressing mode, though, we
continue evaluating, comparing it to type 3 (940). If you want,
you can look up the mnemonics and the parallel types and
ops tables in the Tables subprogram. Type 3’s are the bit-mov-
ing instructions ROL, LSR, ROR, and LSR. They have a pat-
tern of possible addressing modes in common. (It’s this
common pattern of addressing modes which underlies these
types. They share the same potential addressing modes and
can be evaluated and adjusted as a category rather than
individually.)

In any case, we turn them into type 1 and then look at
the fourth position in the storage buffer LABEL. If we could
peer into this buffer, we might see either:

ASL
or
ASL 1500

That bare ASL is not an implied address like INY and
CLC and the rest of those self-contained instructions we dis-
cussed above. These bit-moving instructions (ASL, ROR, etc.)
are just like type 1 (LDA, etc.) with this single exception: They
can have a special addressing mode all their own called Accu-
mulator addressing. It's a rare one. In this mode, ASL would
Arithmetic-Shift-Left the number in A, the Accumulator.

The point to grasp here is that, rare as a nude ASL is,
we’ve got to include it in the assembler. So we check to see if
there is a zero in the fourth position in our buffer, LDA LA-
BEL+3. A zero means end-of-line. So we can detect from a
zero that there is no argument and, hence, this is a case of
Accumulator addressing. If it is, we need to add 8 to the base
opcode for these bit-movers and then jump to the type 1 exit.
If it isn’t, we've already turned it into a type 1 (970) and from
here on, we'll treat it as a member of that family. In effect,
type 1’s can have several addressing modes, so we must eval-
uate the mode. We go to EVGO.

Fat Y Loops
Before entering most ML loops, you'll first LDY #0. Y often
functions as a counter, so it's set to zero, and then INY occurs

38

Eval: The Main Loop

at the end of the loop. But some loops require that we INY at
the start or at least early within the loop. In such cases, we
must LDY #255 before entering the loop. The first event
within the loop is an INY, so in effect, Y becomes 0 right off
the bat. When you increment 255, you get a zero.

EQLABEL is where we determine what kind of label
we're dealing with. On the first pass, we don’t care. All labels
must be stored in our label table array for later reference on
pass 2. On pass 2, though, we must go through the test in
EVX1 (1090). And it’s one of those fat Y loops that start off
with a bloated Y Register. We put 255 into Y at the start.

We load the first character in the LABEL buffer. If it's zero
(end of the line), there wasn’t any argument. There should
have been. This is a mistake. By this time, there has to be an
argument. We’ve already eliminated the only addressing types
that have no argument: Implied (type 0) and Accumulator (a
variant of type 3). If there’s no argument, the source code is
defective. There should be an argument. We've got to print an
error message.

NOAR is tucked away at line 520 of the Equate sub-
program. We’ll get to it later. It just prints a “‘no argument”
error message. But we should clear up the little mystery
surrounding the bounce we just took. We BEQ GONOAR
(1110) only to JSR NOAR (1320). Why? This is one of those
springboards we discussed in Chapter 1.

The B instructions, the branchers like BEQ, can move us
only 127 bytes in either direction, forward or backward, from
their location. This is sometimes not far enough. LADS will
alert you to this if you should try to branch further than you
can. It will print BRANCH OUT OF RANGE and ring the bell.
The easiest solution to this problem is to simply have the
branch go to a nearby JMP or JSR. They can fly off to any ad-
dress in the computer. Have them act as springboards, bounc-
ing you to your actual target.

The alternative is to move your target closer to the
branch. The target is probably a subroutine. But moving a sub-
routine is often a lot more trouble than simply creating a
springboard.

Back to the evaluation (1120). If there is an argument, we
move it up to another buffer called FILEN. Then we check for
the blank character, 32, before leaving this loop. The label

39

Eval: The Main Loop

name gets moved up to FILEN for further analysis. Then we
INY and look at the next character.

Which Kind of Label?
If the first thing after a blank character is =, we've got an
equate label like:

100 NAME = $500

If it is an equate label, we ignore it because we’re on the
second pass here. Line 330 sends us over this section if it’s the
first pass. There’s no need to pay any attention to equate la-
bels on the second pass, so we jump to INLINE, the prepara-
tions for getting a new line to evaluate.

But it might be the other type of label, an address label
like:

100 START LDA #15

On pass 2 we can also ignore START, the label part of this
line. Both types of labels have already been safely stored in
our array during pass 1. Nevertheless, following the address-
type label is some code we cannot ignore. On pass 2 LADS
must assemble that LDA #15.

NOTEQ (not equate type) moves the address label up to a
buffer called FILEN while at the same time moving the LDA
#15 over to the start of the LABEL buffer. It's doing two
things at once. This is how these buffers look before NOTEQ
(1180-1200):

LABEL START LDA #1500000000000
FILEN 000000000000000000000000

and after NOTEQ:

LABEL LDA #150A #1500000000000
FILEN START0000000000000000000

START is up at FILEN and can be printed out later for a
listing. But what good is that mess in the LABEL buffer? It will
work perfectly well because that 0 in the eighth position is the
delimiter. It tells LADS to ignore any random characters
following it. Remember that these numbers are stored in mem-
ory as ASCII code, not as literal numbers. 15 would be stored
as 49 53. 150 (the number 150) would be stored as 49 53 48.
But a different kind of 150, where that final 0 is a true zero, a
delimiter, would be stored as 49 53 0. So when we go to look
at and assemble the information in LABEL, LADS will only

40

Eval: The Main Loop

work with LDA #15 and ignore the 0A #150000, etc., the
remnants of the old line. All is now ready for the assembler to
take a look at a mnemonic and its argument, so we JMP to
MOE4 (1310). If this had been pass 1, we would have by-
passed all this and leapt from 1070 right down to 1330, where
we go to the subprogram Equate, which stores labels and their
values in the label table array. But both pass 1 and pass 2
must continue to work out the addressing modes by going to
MOE4. Why should we need to worry about addressing
modes on pass 1 since LADS doesn’t POKE anything into
memory or save anything to disk during pass 1?

LADS must keep an accurate PC (Program Counter) dur-
ing pass 1 to know what value to assign to address type la-
bels. Otherwise, the address labels would be inaccurate:

10 START INC 15
20 LDA 15

30 BEQ FINISH
40 JMP START
50 FINISH RTS

Notice that both INC 15 and LDA 15 are Zero Page
addressing. They occupy two bytes in memory. But they could
have been Absolute (LDA 1500) addressing, or other modes
which use up three bytes. LADS has no way of knowing, by
reading LDA or INC alone, whether to raise the program
counter by two or by three. All this wouldn’t matter much ex-
cept for that label FINISH in line 50. It has to be assigned its
proper address during pass 1 and stored in the array. That
means LADS needs to know exactly how many bytes it is
from START to FINISH.

Consequently, LADS has to check out the arguments of
INC and LDA to see whether they're addressing modes using
up two or three bytes. This Program Counter is kept in a vari-
able in LADS called SA. It’s constantly changing during both
passes of the assembly, but it is used during pass 1 to assign
numbers to address labels like START and FINISH.

We'll deal with the next routine, EVEXLAB (1360), shortly.
Let’s go first to MOE4 and see how LADS analyzes
arguments.

We’ve Been Here Before
Recognize MOE4 (900)? We already discussed it. It JSRs to
FINDMN and JMPs back to EVAR (920) having recognized a

41

Eval: The Main Loop

6502 mnemonic or JMPs to evaluate a label if it didn’t rec-
ognize a mnemonic. In our example, it will find LDA #15 this
time, JMP to EVAR, and end up going to EVGO (from 950).

Here at EVGO, LADS has to decide whether it’s dealing
with a normal numeric argument like #15 or an expression la-
bel, a word like SOUND. Imagine that we’d started off by de-
fining the label SOUND:

10 SOUND = 15

When we later wanted to indicate 15, we could substitute
the word (LDA #SOUND) for the number (LDA #15).

EVGO distinguishes labels from numbers by using the
ASCII code. In this code, letters of the alphabet have a nu-
meric value 65 (the letter A) and go up from there. Thus, if
the character in the fourth position (see line 1490) is less than
65, if it triggers a BCC, we don't raise the EXPRESSF(lag).
That flag indicates a nonnumeric expression. In other words,
the expression has a letter of the alphabet so it must be a la-
bel. Similarly, EVMO2A raises the Y offset and tests the fifth
character. If it’s a zero, we've got a single-letter label, like P
(1540). Meanwhile, we're moving the label up to a buffer
called BUFFER. And, again, we check for a character with a
value lower than 65.

EVMO?2 (1600) continues to move the label from one
buffer (LABEL) to another (BUFFER). It only stops when it
finds a zero indicating the end of the line. Note that both
number expressions (arguments) like #15 as well as label ex-
pressions like #STOOL are moved from the LABEL buffer up
to the BUFFER buffer. The only distinction between them is
signaled by the raising of the EXPRESSF(lag) when there’s a
label rather than a number. For numbers, EXPRESS stays
down, stays 0.

Hex Numbers Are Already Evaluated

EVMO3 (1660) puts the label’s size, the number of characters
in the label, into the variable ARGSIZE and checks to see if
the HEXFLAG is up. The HEXFLAG is sent up in the sub-
program Indisk if a $ symbol is noticed as a line is streaming
into LADS. So if HEXFLAG is BNE, not equal to zero, it's up
and we can jump right down to L340, which starts to figure
out the addressing mode. If the EXPRESSF is up, that means a
word label, not a number, so we have to go to EVEXLAB to

42

Eval: The Main Loop

get the number to substitute for the label. Otherwise, we’ve
got a decimal number to work with as our argument (1730).

The whole function of lines 1730-1840 is to have the
variable TEMP pointing to the first ASCII number in the label.
That’s why we keep INCrementing TEMP until we point to a
character that is not BCC, less than the 0 ASCII character (48)
in line 1830. Then we have to test for the (left parenthesis or
, comma character. If it is one of them, it can put in a true
zero as a delimiter.

When the number is properly set up, it is analyzed by the
Valdec subprogram, which turns this ASCII string of numbers
into an ordinary ML two-byte integer.

If, however, we were sent to EVEXFLAG (from 1710), it
checks for something less than an alphabetic character (such
as a (or a # symbol). When it locates the first alphabetic
character, it stores it into the variable WORK and JSRs off to
the subprogram Array where the stored labels will be looked
through. Then it joins up again with the numeric expressions
by going to L340 for addressing mode evaluation.

How Is It Addressed?

This is the final job the assembler must perform—distinguish-
ing between Immediate (LDA #15), Absolute (LDA 1500),
Zero Page (LDA 15), Indirect Y (LDA (15),Y), and the other
addressing modes. Recall that we've already eliminated nearly
half the possibilities by previously handling type 0, the self-
contained, implied ones like CLC and INY. What's left is to
check for # and (symbols and to see how big the argument is.
That tells us if our argument (the expression) calls for Zero
Page addressing or not.

First off, LADS checks for the # character (2130) and,
finding one, goes to the IMMED routine to handle Immediate
addressing. Next it looks for the (character. Finding one of
those, it goes off to the INDIR routine to deal with Indirect
addressing,.

Failing to find either of these symbols, it loads in the type
variable, TP, and looks to see if it's an 8. All the B instruc-
tions, the branches like BNE and BCC, are grouped together as
type 8. Finding a type 8, LADS goes to the REL subroutine to
handle Relative addressing.

From here (line 2220) to the end of Eval, there will, from
time to time, be adjustments made to the OP variable which

43

Eval: The Main Loop

are neither easy to explain nor easy to immediately under-
stand. They’re based on the logic of the interrelationships be-
tween the various addressing modes. For example, if we've
reached this point (2220) without branching to one of the
routines like IMMED, INDIR, or REL, we now need to add 8
to the opcode value. Why? It just works that way. If you're
truly interested, study the table of opcodes and you’ll begin to
notice certain similarities between the opcode for LDA ab-
solute and INC absolute, etc. It's not necessary to work all this
out. For a detailed discussion of the logic of these adjustments
to OP, see the explanation of the Tables subprogram in Chap-
ter 9.

At any rate, INDIR looks at the character of the argument
in BUFFER and sees if it's a) symbol. If not, and it’s type 1,
we add 16 to OP. If we have a type 6, we know we’ve got an
indirect JMP, so we go there. Otherwise, we go to TWOS,
where two-byte addressing modes, like LDA (15),Y, are
handled.

JIMMED (2420) is one of those springboards to handle a
BRANCH TOO FAR for an unassisted B instruction with its
127-byte reach.

The Hardest Part of LADS

REL handles the B group. This was the hardest part of LADS
for me to write. For some reason, I kept hoping for a simple
way to test and translate forward and backward branches. No
simple way presented itself. There may be a more clever solu-
tion than the one you'll see described below, but I couldn’t find
it and had to go on.

REL first checks PASS. On pass 1, we simply go directly to
TWOS. On pass 2, though, we look at RESULT. RESULT is a
two-byte variable which holds the integer form of all argu-
ments—Ilabels, hex, or straight decimal. They're all left in RE-
SULT by the various subprograms, Array, Indisk, and Valdec,
which translate labels, hex ASCII, and decimal ASCIIL. These
three possible original forms of the arguments are translated
into two-byte integers that can be POKEd into memory or
saved on disk as parts of an ML program.

If we're on pass 2, we look at RESULT and now calculate
the correct argument for a branch instruction. It requires that
LADS first determine whether we're branching backward or
forward in memory. It does this by subtracting SA (the Program

44

Eval: The Main Loop

Counter, the current address, the address of the B instruction to
which its argument will be relative). It subtracts SA from RE-
SULT, the argument of the B instruction:

100 1000 A0 00 START LDY #0
110 1002 C8 LOOP INY

120 1003 FO 03 BEQ END
130 1005 4C 02 10 JMP LOOP
140 1008 60 END RTS

The target, END, of the BEQ above is address 1008. The
location of the PC at the BEQ is 1003. MREL (2470) first sub-
tracts the PC in variable SA from the target’s address. Remem-
ber that RESULT holds the correct integer after the Array
subprogram looked through LADS” array and found the label
END. So 1008 minus 1003 gives 5.

BPL and BMI

BCS tests the result of the subtraction—the carry is still set if
the target is higher than SA and, consequently, we've got a
branch forward. We BCS FOR. Otherwise, it’s an attempt to
branch backward in memory, and we test the high-byte result
of the subtraction (the number in the accumulator) against
$FF. That high byte must equal $FF, or we’ve branched too far
and we go to the error-message printout routine (2570). Then
we check the low-byte result of the subtraction (which was
pushed on the stack temporarily in line 2500) to see if it's a
correct value. The PLA (2580) will set the N flag in the Status
Register if the number is greater than 127. We want it to be,
since this is a backward branch. If this flag is not set, we BPL
to the error message. Otherwise, we jump to the concluding
routine, setting up a correct branch.

The FOR routine handles forward branches in a similar
way, going to the error routine if the high byte is not zero
(2610) or if the low byte has the seventh bit set (proving it’s
greater than 127, an incorrect forward branch).

Let’s pause for a minute to see what BPL and BMI do for
us in this test. In binary, $80 looks like this: 10000000. We
don’t care about the bits in the positions where the zeros are.
We're only interested in the leftmost bit, the so-called seventh
bit. Note, too, that PLA affects the N and Z flags in the Status
Register.

After a PLA of 10000000, BPL would not branch any-
where, but BMI would. It would mean that the seventh bit is

45

Eval: The Main Loop

set, the “minus sign” in signed arithmetic was found. The sign
in signed arithmetic is held in the seventh bit. IXXXXXXX
would signify a negative number, 0XXXXXXX a positive num-
ber. (There’s a connection here with the fact that forward
branch arguments can range from $00 to $7F, and backward
branches from $FF down to $80.)

Now some people will point out that there are eight bits in
a byte, and we keep referring to the seventh bit when we're
talking about the eighth. Recall that, in computing, much
counting begins with the zeroth bit. A byte can hold only the
numbers 0-255. The lowest number it can hold is a zero. But
that still means that there are 256 possibilities, 256 possible
states for a byte: 1-255 plus 0.

Signed Arithmetic Branching
If all this seems an unnecessary detour into messy detail, con-
sider how Relative addressing uses signed arithmetic to cal-
culate where it should branch. When the 6502 chip comes
upon one of the B branch instructions like BNE, it looks at the
argument in a unique way. If the number is higher than 127, it
knows it must go backward. If lower or equal, it must go for-
ward. That’s why you cannot branch further than 128 back-
ward or 127 forward. The argument can’t use the entire byte
to hold a number—the seventh bit must be reserved to hold
the plus or minus sign. Remember, if the seventh bit is set, it
means minus. If clear, it means plus. BPL (Branch if PLus) is
triggered when the seventh bit is clear. BMI responds to a set
(1) seventh bit.

Take a look at the assembly in the example above. Line
120 shows that BEQ END became the opcode FO and the argu-
ment is 03. 03 will take us to END because all branches are cal-
culated from the address of the mnemonic following the branch
instruction. Count three from address 1005. You hit END.

A branch backward, too, counts backward from the address
of the mnemonic following the B instruction. All branches count
from their own PC location plus 2. Look at a branch backward:

40 1000 A0 00 START LDY #0

50 1002 C8 LOOP INY

60 1003 DO FD BNE LOOP
70 1005 60 END RTS

Here line 60 is branch backward, but the argument, $FD, is
pretty strange. $FD looks like this in binary: 11111101. So the

46

Eval: The Main Loop

seventh bit is set signifying minus, a backward branch. $FD is
253 decimal. $FF would be —1, $FE would be —2, and $FD is
—3. From address 1005, —3 lands us at 1002, LOOP, where
we want to land. Luckily, we needn’t perform these calcula-
tions. LADS will handle all branch arguments. But you might
want to use BPL/BMI branches as well as signed arithmetic in
your ML programming. It's sometimes worth knowing the de-
tails of how these things are handled by the microprocessor.

One final adjustment needs to be made before LADS can
POKE in the correct argument for branches. This adjustment
takes place at RELM, where both forward and backward
branches end up, unless they were found to be out of range.

After the low byte of SA was subtracted from the low
byte of RESULT (2500), we pushed it onto the stack with PHA.
That’s sometimes a convenient place to stuff something you
want to set aside for a minute while you perform other
calculations. You could STA A or STA TEMP or put it in other
temporary holding variables, but PHA is safe as long as you
remember to PLA to leave the stack clean. You don’t want to
keep PHAIing, or your program will soon fill up the stack,
resulting in an OVERFLOW error and a machine-wide col-
lapse. The 6502 chip won't ignite, the CRT screen won't melt,
but the program will grind to a halt.

When we have a BRANCH OUT OF RANGE error we
are going to go down to the DOBERR routine at line 5800, but
we do need to PLA in lines 2560 and 2620 to keep the stack
clean.

If there is no error, we've saved the result of the subtrac-
tion of the low bytes (it sits in the low byte of the RESULT
variable). That’s the number we really care about anyway. A
single byte is all that can be used as a branch argument.

To make it a correct branch argument, we've got to sub-
tract 2 from it. This, you recall, is because all branches are cal-
culated from the address of the mnemonic which comes just
after the branch instruction. Counting starts from the B instruc-
tion’s address, plus two. Subtracting two will fix this up for
branches in either direction.

Further Evaluation

We’ve seen how LADS calculates the branch addresses. At this
point in the source code, we come upon a continuation of
evaluations of other addressing modes. EVMO05 (2740) gets the

47

Eval: The Main Loop

size of the argument in order to enable us to look at the charac-
ter second from the end: LDA (ZERO),Y has a comma in this
second-from-the-end position. INX NAME does not. By now,
the variety of possible addressing modes has been somewhat
narrowed.

If we did find a comma in that second-from-last position,
that means the label ends in ,X or ,Y and we go to XYTYPE to
deal with it. Otherwise, we check to see if it's a JMP (opcode
76). MEV eliminates two other possible modes, both Zero Page,
sending LADS to the TWOS, two-byte, line-ending events.

We're headed for TWOS by now in any case, but we need
to once again adjust the value of the opcode in OP if the type
in TP isn't 6 or 4.

TWOS, like TP1 (for one-byte-long instructions) and
THREES, is where LADS goes after an addressing mode has
been determined. The opcode has been correctly adjusted and
waits in OP. The argument waits in RESULT. TP1, TWOS, and
THREES are quite similar. TP1 doesn’t have an argument, so it
just JSRs to a subroutine within the subprogram Printops.
There, the bytes are POKEd into memory or to disk and
PRINTed to screen or printer. Then LADS JMPs to INLINE to
prepare for the next line of code.

TWOS (2970) and THREES (3400) also JSR to that same
subroutine in Printops (which POKEs, SAVEs, or PRINTs an
opcode), and then TWOS and THREES JSR to PRINT2 or
PRINT3 as appropriate to store or print the byte or bytes of
the argument.

Immediate addressing (LDA #12) is a variation of TWOS,
but it first must make one of those adjustments to the value of
the opcode before JUMPing to TWOs (see line 950).

THREES also requires some opcode adjustments before
storing or printing its bytes; PREPTHREES (3240-3390) accom-
plishes that.

The JUMP subroutine (3010) handles the mnemonic JMP.
It's a special case because it can have a strange addressing
mode called Indirect Jump. JUMP tests for this and makes the
necessary adjustment to the opcode if it finds the ASCII code
for a parenthesis, indicating an Indirect Jump, for example JMP
($5000).

IMMED handles the # type, Immediate addressing. It first
looks to see if the #” pseudo-op is in effect (3100) and, if so,
stores the argument directly from the buffer. Then IMMED ad-

48

Eval: The Main Loop

justs the base opcode (in the OP variable) if necessary, and be-
haves like any other two-byte addressing mode, jumping to
TWOS.

Preparations for a New Line

We come now to the cleanup routine, INLINE (3440). Its pri-
mary job is to handle the correct formatting of the printout of
the source code. By the time LADS gets to INLINE, it’s already
printed a line’s number, the address of the PC (the location of
the code), and the object code bytes themselves:

line # /addr /bytes of object code
40 1000 A0 00

However, there are still three items to print: an address
label (if any), the source code, and remarks (if any). To make
listings easy to read, address labels should be set off by them-
selves, and source code should line up vertically on a printed
page or screen:

line # /addr /bytes / addr label /source / comments
40 1000 A000 START LDY #0 ; begin here (entry)

Since each column should line up correctly, we're going to
need to construct the ML equivalent of BASIC’s TAB function.
Those first three items—Iline number, address, and object code
bytes—can take care of themselves. But any address labels must
always be in the same position on a line. And since there can
be one, two, or three object code bytes, the address labels
wouldn't line up if we just printed a couple of spaces after the
final object byte.

TAB

The first thing INLINE does is to check if we're on the first
pass. Nothing gets printed out on pass 1, so we jump over the
entire INLINE routine. If it's pass 2, we look to see if the screen
flag, SFLAG, is up (3470). If it isn't, we again jump past
INLINE.

Then the LOCFLAG is checked. It is up when there is a PC
address label (like the label START in the example above). If it’s
up, we use something from BASIC: the cursor position byte.
We’ve been using BASIC’s PRINT routine all along. One of the
advantages of this is that PRINT keeps a record in zero page of
the current screen position; we could just LDA #20:STA
CURPOS, and the next printout would be at position 20.

49

Eval: The Main Loop

Tab to Printer

Things are more complicated, though, since LADS has an op-
tion to print listings to a printer as well as to the screen. We
cannot use the same technique with a printer.

To find out how many blanks to print to the printer, it’s
necessary to subtract the CURPOS value from 20. Assume that
we’ve printed 14 characters so far: 20 — 14 = 6. We use this
result in a loop to print blanks to the printer (3660) to cause a
simulated TAB.

Following the TAB, we're set to print an address label
which is still waiting for us up in the buffer FILEN. As usual,
we set TEMP to point to the message we want printed, and JSR
PRNTMESS, thereby printing whatever is in FILEN, delimited
by 0.

Source Code Printout

It’s time to move over to the thirtieth position (on screen or
printer) to the place where the source code is printed. This is
handled basically the same way as the TAB 20 above. The main
difference is the BEQ and BMI checks (3920) to take care of ex-
tra long labels. In most cases, your labels will be less than ten
characters long, but LADS allows labels to be any length. How
will we balance the need for neat, vertically aligned printouts
against the option of labels of any length? How can labels
which potentially range in length from 1 to 200 characters be
formatted?

Since address labels always start in the twentieth position,
and source code always begins in the thirtieth position, we've
allowed ten spaces for address labels during printout. Onscreen,
an address label 12 characters long would be truncated:
STARTLINEHERE would be printed as STARTLINEH. But on
the printer, the entire label would be printed and simply push
the source code printout over. You can adjust any of these
formatting options rather easily if they don’t suit your needs. If
you want to truncate address labels to five rather than ten
character lengths on screen, just change LDA #30 to LDA #25
(3830).

In INLINE, we've done some output switching between
screen and printer. We've called upon routines like CLRCHN,
CHKOUT, and CHKIN. The protocol for using these routines is
discussed in Chapter 5, the chapter on peripheral
communications.

50

Eval: The Main Loop

PRMMFIN (4000) prints the characters in the buffer LA-
BEL. That will be the source code. Then, LADS checks to see if
there was a < or > pseudo-op in this line. If so, it tags one of
these symbols onto the end of the source code label. If your
source code looks like this: LDA #>STARTLINE, the printout
will be LDA #STARTLINE>. This will help to call attention to
this special pseudo-op addressing mode. The < and > symbols
are not buried within the label.

The underlying reason for doing things this way, however,
is not its visual appeal. It's easier and faster for LADS to an-
alyze #STARTLINE than to analyze #>STARTLINE. During the
analysis phase, LADS pulls out the < or > and raises BYTLFAG
to show that the pseudo-op was originally a part of the label.
Then it can assemble the label the same way it would assemble
any other label.

The final job to be performed by INLINE is to check
BABFLAG to see if there is a REMark, a comment, to print out
(4100). The Indisk subprogam sends any comments to the
buffer called BABUF to keep them safely out of the way.
BABUF is the same buffer that BASIC uses for input. If there is
a comment, we print a semicolon (4130), point TEMP to BABUF
(4160), and PRNTMESS.

Then a carriage return is printed and we check to see if this
was the final line of the source code. If ENDFLAG is set, we go
to the assembly shutdown routine, FINI. If not, we pop back up
to where we first started this line, STARTLINE, and pull in the
next line of source code.

FINI: Which Pass?

As a two-pass assembler, LADS, of course, goes through the
entire source code twice. When we get to FINI, we need to
check which pass we're on. If it’s pass 1, we INC PASS (from
its zero condition, thereby setting it). After this INC, the next
time we reach the end of the source code and come to FINI,
we’ll be sent to FIN, the shutdown routine.

But assume we’'ve just finished pass 1 at this point. What
we must do is reset the PC, the Program Counter. Back at the
beginning, we saved the starting address in TA. SA has been
LADS’ PC variable, counting up and always keeping track of
the current address during each event. Now it’s time to reset
SA by putting TA in it. Then we close the source code file on
disk and promptly open it up again. This has the effect of reset-

51

Eval: The Main Loop

ting the disk’s PC to point to the first byte in the disk file. Now
we're ready to read in the source code all over again. We're
ready to start the second pass.

We jump back up, just below START, to SMORE and read
in, once again, the first line of the entire source code.

If we've already completed pass 2, however, we don’t want
to restart source code examination—everything’s already
accomplished, POKEd and PRINTed and SAVEd to disk as the
case may be. We want to gracefully exit the assembler. FIN
(4390) does this. It closes down any read or write files on disk,
closes down communication to a printer, and jumps to BASIC
mode. Now would be the time to try the object code program,
to make some adjustments to your source code if you want, and
then SYS back into LADS for another assembly.

Each computer has a ““side entrance,” a warm start into its
BASIC. This entrance doesn’t wipe out what’s in RAM memory,
doesn’t blank out the screen. It's here that the LADS goes to
move gently back into BASIC mode. The address of TOBASIC
for each computer is defined in the subprogam Defs.

Evaluating ,X and ,Y
Although FINI is the logical end of the evaluation process, it’s
not the physical end of the Eval subprogram. Just below FINI is
XYTYPE where such addressing modes as LDA $5000,Y are
analyzed.

They too require some opcode adjustments before going to
TWOS or THREES for printing and POKEing. We JMP to
XYTYPE after having found a comma in a source code line like:

LDA SCREEN,X

and so the Y Register is pointing to the character just beyond
the comma when we arrive at XYTYPE. All we need to do is
load BUFFER,Y to check if the character following the comma is
an X or a Y. If it's an X, we jump down to L720 which handles
X type modes.

Otherwise, we're dealing with something involving a Y
addressing mode. It might be this:

LDA (15),Y
so we have to check for the right parenthesis. We DEY DEY to
move over to just in front of the comma and see if there’s a)

symbol. If not, we've got a Zero Page Y addressing mode like
LDX 10,Y or STX 10,Y. LDX and STX are the only two

52

Eval: The Main Loop

mnemonics which can use Zero Page Y addressing. They're
rare. It’s quite likely you haven't ever used them; it's possible
that you haven'’t ever heard of them. But LADS must check for
them just in case. LADS goes to ZEROY if there was no)
symbol.

LADS is likely to find the), however, because Indirect Y
addressing is a mode which is both common and useful. En-
countering this mode, LADS goes to INDIR to process the In-
direct addressing mode.

ZEROY (4660) is a somewhat misleading name, for it also
handles the popular mode, Absolute Y: LDA SCREEN,Y. This
addressing mode is not Zero Page. To find out whether it’s
dealing with the Zero Page Y, LADS checks the high byte of
RESULT, the argument. If the high byte contains nothing, it
must be zero page, and we process the opcode as such. If the
high byte does contain something, the argument is thus larger
than 255 and the opcode cannot use a Zero Page addressing
mode. Again, the opcode is adjusted depending on the type (TP).

The routine at L700 (4950) prints out an error message be-
cause LADS was unable to calculate a correct addressing mode
and the source code must contain a syntax error.

The concluding adjustments to the opcode take place be-
tween L720 and L809 (5040-5450). You might notice several
JSRs to P in this section. P (5520) is a short subroutine which
was used in debugging LADS, but was left in because you
might want to use it when fixing up your own programs.

How P Works

P prints the current PC on screen, but doesn’t destroy what’s in
the A, Y, or X Registers. Saving A, Y, and X is straightforward
enough (5520), but where is the PC?

Whenever you JSR, the return address is pushed onto the
stack. We can pull it off the stack with PLA, transferring its two
bytes (one to the X Register and one to the Accumulator), and
then push it back on with PHA. That leaves the stack ready to
RTS correctly, but a copy of this RTS address is now in the reg-
isters as well, OUTNUM is a BASIC routine which normally
prints line numbers during BASIC’s LIST. But it will print any
integer number if the low byte is in X and the high byte is in A.
(See Atari notes for Atari’'s OUTNUM.)

Character $BA on Commodore machines is a check graph-
ics symbol (¢v”), and it's a convenient way to show that what

53

Eval: The Main Loop

follows is not part of a normal LADS printout. You could use
any other symbol to highlight the special nature of the number
being printed by P. What’s important is that you are alerted to
the fact that somewhere within your ML program, you did JSR
to P. And the number that P prints will be the address of that
JSR.

How is P useful? An ML program is like a rocket. It's so
fast that you need to send up balloons now and then just to
mark its passage from subroutine to subroutine. When you're
not getting what you expect (and that’s often in large, interact-
ing ML programs), you can put JSR P into various parts of the
program. Then, as the program zips along, you'll be able to see
what’s happening and in what order it’s happening.

P is like setting BRK into the code or putting STOP into a
BASIC program. The difference is that P just gives you a simple
location report and lets the program continue, uninterrupted. If
you wanted more information, you could expand P to print the
registers at the same time. With that, you'd be on your way to-
ward constructing the single-step debugging feature available in
some monitor programs.

CLEANLAB (5720) is janitorial. It wipes the main buffers
clean. It puts 80 zeros into LADS" main input buffer starting at
LABEL (see Chapter 9, where the Tables are described). We
don’t want any remnants of the previous line left over to con-
fuse things.

Finally, DOBERR is the error message printout routine for
branches out of range. It rings the bell (ERRING), prints the
offending line number, then points TEMPS to its message
(stored with the other messages in the Tables subprogram), and
jumps to TWOS so that the Program Counter will still be cor-
rectly increased by two.

Now we’ve seen the innards of Eval, the main evaluation
engine, the heart of the LADS assembler. It's time to turn our
attention to the data base managers Equate and Array. They
build and search the array of labels.

54

The Main Loop

Eval

*LI LOALOYd

ANI @6C

MNVTIE dNZ ¥0d MOAHD ‘A'NATIA YIS TWLS 98¢

YALOVIVHD ¥YHAHLONY LID ‘@GWLS dWL @LT

ANI @92

dIJA4Nd AWNYNATIA NI dALOVIVHD HIOLS *‘X’NATIJA YIS E€WLS @S¢
SYALOVIVHD IIDSVY MOT ¥0d ILSNLAV ‘H#94# OAV @9¥C

01D @E€T

EWLS SD9 @Zc

MNVTE YIHLONY d0d4 MDIAHD ‘TWLS 039 @912

ZE# dWD 99T

—-— HWYN dTIJd IDINOS I1dD —- {XNIFIOS YAT PWLS 961
OVTIA ONILSIT XdH NO NINL ‘OVTAXH YIS @8T

HSIM NOX SLINVAIA TYNOILIAAY ANV LIS NVD NOX TIFAH ¢ QLI
-— SIINVYJddAd LIS —-— ‘T# YAT 991

|||||||| {T+dOLAVIYY VIS QST

T+dOLWAWE VYIS @%T

T+dOLWIW VIS Q€T

ILIVIS<# ¥aT1 @21

dOLAVYYY YIS QTT

dOLWAWE YIS 90T

dOLWIW YIS 06

* RHOWIW/AVYYY A0 dOL OLNI SAYT A0 WOLLOE TJIOLS < LIVLS># VAT @8
|||||||| {dTIMLS AN QL

Xdd @9

—-— SOHVYTA ¥YVYITO OL dO0T -- {X'd0 YIS dTIdLS @S

8¥# AA1 @%

g# Y41 IIVYLS @€

(9ETEWISSY FTAWIS) ENILAOY NOILVATYAE NIVA ,TVAd, ¢ BT
[eaq ‘1-¢ weadoi]

55

—

The Main Loop

.

Eval

T+dWaL VIS

TAGVI<# VAT

dWEL QETIVO ¥ELNIOd FHL OINI ¥AJINE FHL 40 SSHTIAAV FHL INd {dWAL VLS
%98 =x :EMIT DONIHLAWOS SI ¥IJAdNd TAEVT FHL NI (TIGVI># VAT
TYVLS INE

QILYISNVIL AQVANTIY S,II ‘XHIH SI ¥AGWAN SSAUAAY I¥VLIS JI *OVIAXAH VAT XTHID
N¥NLTY FOVINIVO YIAHIONY {YOLNAd ¥SC

INI¥d ¥Se

s ‘g8 val

INI¥d ¥SC

a {89# Va1

INT¥d ¥SC

¥ 1G94 vaT

ILNT¥d ¥SC

1 ‘oL# YaAT

INI¥d ¥SC

TOESWAS SDIHAVMD MOOTE LNI¥d ‘@EZ# VAT

NINLAY FOVIYUVD INI¥d {¥OLNNA ¥SC

AWYN SAVT A0 DNILNI¥d ¥IAO dWNCL NIHL {ANTTINYIS dNg
SSVd Nz J4I {SSVd vaT

Q0D EDYNOS 40 ANIT FTONIS V LED MSIANI ¥SC

NMOQ OL 5VTd ¥AAO-SI-SAVT LIS ‘OVTIIANI VIS

g# va1

40D IDYNOS NI ¥ALOVIVHD LST OL ATIASIA INIOd {YSLED dSL HUOWS
||||||| Z SSVd ¥0d INIOd AMINT-TI ——-——=-————————————!

(MSIQ NO TII4 EQOD EDYNOS) HTIIA QVad N0 {INIJO ISC

HIONIT HWYNZTId FJOLS !NIATAWYNI XIS

(SQIOM T d9 LHODIW) IWYN HIOW ¥O4 MDOV¥d 0D NIHL {PWLS EINd
JOVdS MNVId ANZ ON JI <Z€# dWD
X'NIFIDS vaT

029
265
78S
BLS
29
2SS
%S
PES
@cs
P1S
20S
gev
28%
oLy
29v
gsv
vy
oEV
ka4
o1V
91514
g6t
28¢€
oLE
g9¢€
9SE
a3
gee
gce
o1¢€
20¢€

56

The Main Loop

Eval

INIWADYY TLVATYAT ———mm——m !

(139¥T ¥ S,LI ‘INO ONIANIJ LON ‘¥0) DINOWINW dN MOOT (NWANIA dWL PEOW
+HIVW, WY¥D0¥ddNS NI LI ITIANVH ‘OS AI {HLVW dSP

dIMS ION 4I ‘yHOW Odd

dO 0dnasd + ¥ IAVH @M 0d ‘OVIISNTId VAT XW

AOVdSIN¥d ¥SC

ITIVINVA FHL SI ,V¥S, (YZINNOD WYID0¥d) Od INI¥Nd {VSINId dSL

AOVdS INTdd ‘HOVASLNMA ¥SC

JEGWNN ANIT ININd ‘ENITINIA 4SO

I¥Vd SIHL dIMS ‘ILON JdI {XW Odd

NIFYOS HHI OL INI¥d dM QINOHS {9YTIIS YA

*MOTHE ANILNOYENS ANITINI HHL ¥0d SI SIHL ¢

(ANI TdEVT :EMIT) OVId TdaVT FdAL-SSHIAAY O¥AZ {OVIIO0T ALS ATTIOW

YEIOW dWL

AZTHOW ANE

dSTd HONIHLANY ¥0 *¥AAV ‘SYdgWNN ENIT INI¥d L,NOd @M ‘T SSVd NO!{SSVd AQT
*MOEHD AVHYY DNI¥NA) ¥0 # STYNDIS IVHL SVId HFHL NMOd LIS $9¥I1dnd VLS

d ¥aT1 INIT INIWADYV TAGYT ¥V STYNOIS IVHL OVId FHL NMOd IdS {JISSTIdXd VIS
g% YaT

4A0D FDWNOS WO¥d ANIT ¥V NI TINd OL 0D ASIMYIHIO *MSIANI ¥SL ANIAF

1

*dn SI SVIJ4ANE HHL JAI ¥0 dISSHYd SI A® (MVH¥d) dOLS HHL YIHLIF *

A1 XTAWISSY SAVT AN ‘INIJd dWL:ANIAE OFd:OVIJANT VAT:AEMAOLS ¥SL ANITINVLS
-——— HJ0D IO¥NOS 4O ANIT MAN HOVE ¥Od INIOd AMINH —=———————————mmme !
T+YL YIS

T+VYS YIS

T+LI0STd VAT

Yl YIS

¥S VIS

-- V1'V¥S NI SSI¥ad¥ OSNIIJVIS S,JA0D LOALH0 HHOLS —- {1INSEY VAT TIVLS
WLINSHY, NI YIOIINI FLAG-OML ¥V OLNI NIEWAN IIDSY NiNL ¢DIATYA dSL

216
0206
268
288
aL8
298
2S8
278
€8
9e8
218
0208
geL
28L
OLL
29L
BSL
ovL
gEL
aCL
PTL
20L
269
289
2L
299
2Ss9
2v9
PE9
9Z9
219

57

The Main Loop

Eval

(YELIWITIA ¥V SY) HWUN TIHEVT JHL JO0 ANT FHL IV NI O¥dZ VY INd {¥XL
(YILNIYd/NIFIDS NO THLEVYT J0 HJAL SIHL Od OL ILNOLNI¥d SMOHS) {9DVTID0T XIS
2# XdT OHLON

llllllllll (Z SS¥d NO) LI F¥ONDI OS IAdAL = SYM’0OS J4I ({ANITINI dWL
(9¥TID0T LIS OS) FJAL SSHIAAY Od V¥V S,LI ‘ION AI ‘OHALON INd

daes# dWO

*NOIS = NV ¥0d4 MOHHD ANV T A€ X IASIVY AM ‘X ‘THLEVYT VAT

"HNIT SIHL OL HONOYHL TIVd ANV MNVTIE <ANI

¥ ANIJd 3M ‘HSIMYFHLO® (ILVYNOE NI ‘¥YVYON ILV) HODVSSHW JO¥¥H LVHL INO:TXAd INH
ILNI¥d OL SN SIASNVD HOIHM (LI OL INIWNDIVY ON) TIHIVT QIMVYN ¥ ‘ZE# dWD
S,LI ‘@ V¥V ANIJ 3IM 4TI °~¥d4d4nd ,NATIL, FHL NI IWYN TIEVT ‘A'NITIL VIS

JHL OSNI¥OLS dTIHM MNVTIE ¥V d0d MOOT HM dOOT SIHL NI OS ‘¥YVONOD 03d

(ST = 7TdIVT) IJAL ILYNOI NV ¥0 (ANI TdIVT :EMIT) TIEVT ‘X 'TdIVT VA1
IdAL SSTYAAY Od ¥ S,LI J4I HAIDIA OL QIAIN IM ‘T SSVYd NO IN€ ‘ANI TXAHT
(TEVI0T VIA) AVYYV HHL NI LI HJOLS ANV NMOd 0D :GGZ# AdT

dM OS SI LI TAEgVYT J0 ANIX HOIHM HJVD L,NOd EM T SSVYd NO :‘T19V¥I0d O34

DINOWINW ¥ ION ‘TdEYI ¥V 39 OL LI dNNOd $IOW ¢SS¥d VAT TdgVI0d
(STJAL ALAE ITIONIS) T H4AL OL dWNL ANY ‘TdL dWL dWLTIdL

dO YIS

do Dav

01D

8 A9 (dJ0DdO) dO FSIVE ‘IASIMIHHIO ‘8# VAT
QIITAWI S,LI‘ILNIWNOYY ON S,dJFHL ‘LON dAI) LINIWNODIY = ODAH :‘O0DAHT INH
NOILISOd HLY NI (O¥HZ ¥ ILON) ONIHLIWOS HIHIHL SI ¢ €+THLVT VAT
dL ¥YLS
(4dAL) 4L NI T HLIM € dDVIddd ‘ISIMITHILIO ‘T# ¥YAT
ODAd dNd
NOILVNTYAHL ANNIINOD NAHL ‘€ IJAL ION AI ‘€4 dWO
LNIWNOYVY ON ‘@ dI ‘dEdAL MOIHO *‘dWLTdL O3
dL VYdT dVAd

geet
2121
P0¢CT
P6TT
2811
BLTT
99TT
PST1T
V1T
PETT
PCTT
PTTT
00TT
0601
2801
GLOT
2901
PSoT
Yot
PEDT
9201
o101
0001

266

286

BL6

296

256

ove

oE6

226

58

The Main Loop

.
.

Eval

CnC

(

(

YZOWAd DDd

YIIWAN ¥ S,LI NIHL (,¥, 904 IIDSVY) G9 NVHL SSIT JAI G9# dWD

w 90 N, dHL) (SZ V¥dT1 ¥0 IAWYN V¥YdT) °*¥YVHO HLS MDIAHD ‘X’'H+TddVT1 VAT DIAD
(do¥y¥d ddAL ,:DNI, ¥Od ISHL) ‘@@LT dWL:DIND OIL:ZE# dWD: €+TILYT VAT
(d0¥¥d SOINOWANW JINUYN JOJd dVdL) :

dVd.L ¥0¥¥d SIHL 40 NOILAI¥YDSHA ¥d0d 1T ¥YHLIVHD HIES —-——————=——————————— :
OV¥T14 ,THIYTI ¥ S,.LI, FHL 440 NINL *JASSTIAXI ALS

g% AdT ODAH

TIIYT ¥ 40 DI¥IWNN INIWNDIVY SI —===—=————————- :

wILINSHY,, NI SI dNTYA ¥YALAV) NOILVAITYAZ HLIM NO IAANILNOD NIHL ‘@GP€T dWL
*YYHD LST QILATIHS ‘TILVYT NOISSHIAXH °*TIVAL AVIYY ¥SC

SAYOM AVHYY HLIM HIYdWOD OL ATIYVIOdWHL HYHH LI HAVS <MYOM YIS

dOHLIW IOVIOLS AVYYVY HOLVW OL) °*¥VHD IST NI LId HL.L IdS ‘@8$# YOI TIAA
(WEHL JYONDI OL dNV¥) dNNOd SYM # ¥O) LVHL AVYdY TIEL OL :5YTJNd ONI
TOHWAS # ¥0) ¥V NIFd JAVH LSOAW LI ‘ION JAI :T1+d93d4Nd VYAT

*dNTYA SII ANIJ OL NMOd 09 ‘0OS d4I <TdAd SOd

79# dWO

(¥9<) DILILAVHATIV ¥HILOVIVHD IST SIHL SI ‘¥3AANd VAT dVIXIAH

SYIEWNN O.LNI STIIVYT LNIWNNDIVY JLVISNVIL —-————————————————— :

NOILVNTIVAE HANILNOD ‘HHOW dWL

(T SSV¥d) AVY¥YY dHL OLNI FNIYA S,LI ANV TIEYT ILNd ‘dLVNOF ¥SCL TdVI0H
llllllllll {(QUVYOIONIVAS ¥) IODYSSHW LNIWNOYY ON INI¥d :UVYON ¥ySL ¥YYONOD
NOILVNTIYAT HNNILNOD OL dWAL *HHOW dWCL

X'139YT VIS pXAT
||||||||||||||||||| {GXAT dWD
ANI

*TIEVT LYHL SNIMOTIOA ANIT FHL 40 LSEY HHL JLVATIVAE OL dIIN < XNI

M Ind ‘(T SSVYd SI SIHL) TIEVT Od HHIL HYONDI NVYD HM X‘'TILVT VIS
(F¥EH ¥YILIWITEA @) SISATUNY <§XAd 0dd

dIHLINA ¥od ¥ydA4And ,TIAYT, ITHL A0 I¥VYLS IHL OL ¥YIAO ‘X ‘TILIVT VAT SXAH
INIT SIHL A0 NOILYOd INIWNDOYY HHL FAOW OL IAVH M MON ‘X ’'NITIJA YIS

2081
gevT
28¥%1
VLV
ELVT
CLYT
PLYT
29%1
gsvT
OvvI
PEVT
PTYT
TV 1T
P07 T
P6ET
28ET
OLET
@9€ET
PSET
PVET
PEET
PZET
PTET
PPET
P6CT
28¢CT1
aLet
2921
PsCl
ovC1
PETT

59

The Main Loop

Eval

OL QIAN dM 0OS *°*°°°) ¥0 # dd ISAW YALOVIVHD ILST HHL ‘ION JAI <DTID

IdV¥d SIHL dIMS ‘0OS JdI *{7TVOW Sdd

8v# dWD

(O¥3Z ¥YIEGWNN FHL Y04 IIDSY) 8F NVHIL JIAHOIH VALOVIVHD IST SI ‘¥TIINd VAT
0% AQT

T+dW3L VYIS

yIIAnd<¢ val

dWAL YIS

Wd3440d,, OL ILNIOd d¥dILNIOd ,dWAL, ANV ‘dIIING># VAT

(YFEWAN TYVWIDEA ¥ S,LI JAI) dNTVA S,INIWADIV ALYINDIVD —---—-——-—- :
WHYIXIAL, ‘STIIVYI (LNIWNODOIY) NOISSTYAXH SHALVNTYAT HOIHM :‘€GVTIXHAT INd
INILNOY FHL OL 09D NIHL (¥AIWNN ¥ ION) TIEIYT V¥V S,LI JI *JISSTIAXT VAT
*ddOW SSHEYAAY dALVYNTIYAE OL NO 09 0S ‘@gpeT dNd

SN ¥0Jd LI QALVISNVIL AQVIAYTIV WYIOHONJENS MSIUNI ‘XdH S,LI AT ‘OVYTIXIH VAT
LNIWNOYY NI SHIALOVIVHD J0 JAdWNN JTWANHAI ‘HZISOIY ALS

A3Ad €OWAI

*SYHIOVIVHD INAWNOUY FHOW ¥O4 NINLIY <TOWAT dWCL

A'9344N9 VYIS

AIHOVHEY ST INIWNDIV J0 ANI ¥ILAV ¥YIAAO SHEIVYIL €OWAHT *EOWAT 0Od3d
dIAINg JHL OLNI INIAWNDYY HHL HAOW OL d0OT ‘A‘H+TILAVT vAT
¥adand ,¥3JIand, OL dN INIWNOYV JO LSTY HAOW MON <‘ANI ZOWAH

LI ISIVY O0d ‘¥IHODIH AI <JISSHAIXHT ONI

COWAHd DOd

OYTd LNAWNDIVY-TIALIYT ISIVY L,NOd ‘G9 NVHI ¥IMOT AT :G9# dWD
*YVYHO QNZ d¥0LS ‘dSIMYEHLO ‘X ‘¥FJAANE VIS

NO FAOW OS aNI FHL LV Id,IM ‘0O¥FZ AI ‘EOWAT Odd

INIWNOYY HHL NI *¥dVHD ANZ LV MOOT ‘X’p+T13AVT vdT

ANI

daJdng ,dagdand, NI INIWNOYVY JA0 °*¥YHD ILST HAOLS <A ‘YHAINE VIS VYZOWAF
OYTd SIHL FASIVY OS (7THEVYT) DIV DILHEVHATIVY = G9< ‘JASSHIIXH ONI

2181
2081
P6LT
28LT
OLLT
PoLT
PSLT
VLT
PELT
gCLT
OILT
PBLT
2691
9891
PLOT
2991
2S9T
2v91
P€9T
PCoT
2191
2091
26ST
928G T
QLST
99ST
9SST
ovST
PeST
@esT
PTIST

60

The Main Loop

Eval

(NOILUNVTIAXHd ¥O0d 6 ¥ILAVHO HIAS) HTTIVL TAODJO FHL NIHLIM SAIHSNOILVTHI
JHL NO @idsvd SI ,dO, NY OL #Z ¥O0 ‘91‘8‘%¥ ONIAAY °QALNIWWOD

dd LON TTIIM DIDOT ¥YIHHL °*NO J¥HH WO¥A ATILNINOIYA YIHIVY ¥VAJAY

wdO,, Hd0DdO0 HHL OL SINIWLSNLAY °*HAOW ONISSHIAAY IOFYY0D HHL ILOATIIN
OL dd0Dd0 TUNIODIYO HHL HDNIXAIAOW OL SLNNOWY ATIVIILNISST SIHL)

N en 0N e O en On

llllll JAOW ONISSHYAAVY ANIWIHLIA OL INIWNOIV HHL HZATINY -————=—=—=—-—

1
.

(SISATUYNY °¥AAY dHL ¥od) ¥IIINd IHL OL ,(, ¥O , ', TIOLSHI ‘X’ (dWAL) VIS
Y1d

AV

SYALSIODAY X ANV V JHL JIOLSTY <¥1d

ANIINOY , LTINSHY, ~NI-JIFGWAN-JIDIINI-OL-JTGWAN-IIDSY HTHL OL 09:DIATVA ¥SC
X’ (dW3L) YIS

“YIIWAN SNIMOTTIOA LSAL ¥IJJNd OLNI O¥ddZ HILIWITIA INd *‘@# V¥AT

(# JFHL YALJIVY LSNL TOV4S HHL IV HNIINIOd SI X ‘MON A€)YIALSIDAY X HAVS:VHd
YAL

YOLVTINWNOOV FAVS <VYHd TTVYOW

|||||||||||||||||||||||||||| ITTYOW dWr

ONIMOOT ANNILNOD ‘SONIHL % ISHHL A0 IANO ANNOA LIX ILON IA,dM dI <ANI
TTYOW Odg

(LNIWWOD+: GT# NI SY) HOVAS MNVId HLIM {Z€# dWD

TIYOW Odd

MO (A'GT :NI SY) VYWWOD ‘ ¥ HLIM ‘¥P# dWD

TTIYOW Odd

Y0 SISTIHLNIYVA IHOI¥ (¥ HLIM <Tv# dWO

¥0 (YILIWITIA) ¢ ¥ HLIM ANI dTN0D LI ‘TTIYOW Odd

||||||||||| SUIEWNAN JHL 40 ANZ FHL ¥04d MOOT MON ‘X’ (dWIL) ¥YAT TYOW

*d SONIHL SSHW dTINOM LVHL ---) ¥0 # V¥ HLIM SIJIVLIS ¥YIAWAN ‘T+dWIL ONI
JHL LVHL MNIHL INILNO¥ENS YIADALNI OL IIDSVY JHL ONIAVYH dIOAY ‘TYDW D09
OL ,¥344Nd, NI ¥IHOIH ¥ILOVIVHO T INIOd ,dWHL, IMVW <dWHL ONI

PRTC
ve@dc
280¢
oLoaC
990¢
5602
2s0¢C
Svyoc
oy 9T
9€BT
9zoc
p1@C
200T
g66T
P86T
oL6T
P96T
9s6T
PveT1
peE6T
ocet
AT6T
206T
2681
2881
PLBT
2981
Ps81
ov81
pEBT
9Z8T1

61

The Main Loop

.
.

Eval

*SHJAL HAOW HLVIAHWWI OL JIVOEONI¥dS ‘AIAWWI dWL dIAWWIL

||||||| {*L1 @M0d/INI¥d OS HdAL HLAE-Z ¥ d9 ISAW LI ‘ISIMITHIO {SOMI dWL

INILNOY ONITANVH-dWAL HHL OL 0D OS :dWnre 0dd

9# dWD

NOILONILSNI dWNL ¥ SI 9 IJAL <dl V¥YdT JYIANIW

dO VLS

dO Ddv

oID

9T# YATI

dIANIW 3Ng

dA00d0 OL INIOd SIHL IV¥ 9T ddV¥ ‘T ddAL AI ‘T# dWO

dlL vdT

*ddAL IVHL dTANVH ‘OS 4I ‘¥IANIW O3dg

SISEHLNAYYd IHDIY , (. ¥ LI SI ‘TI¥# dWD

*LNIWNOYY HHL NI ¥IIOVIVHD LSVT HHL IV MOOT :A‘¥dddNd VAT
IIIIIIIIIIIIIIIIIII DNISSHEYAAVY LDIYIANI HITIANVH <‘HZISODIVY AdT YIANI
(DNISSHIAAY AIITAWI) SHJAL HLAY ITONIS HHL OL dWAL ANV ‘T4l dWC
dO YLS

dO Ddav

olte}

8# VAT

SOWAH 3INd

€ ddAL ¥ S,LI 4AI INIOd SIHL IV dO OL 8 GAV ‘€# dWD

*JITANVYH FYV ATHL HYHHM OL 0D ‘0OS J4I <T3¥ 034

8# dWD

*(03d ‘dINd EMIT) HAOW °¥AAY IAIIVTIIY ¥ LI SI ‘4L YA1I
YIANI 034

*¥aay IOIYIANI OL 0D ‘0OS AI °“SISHHINIYVYd IJAIT), ¥ II SI *@v# dWD

JYVOdONIddS OL HONVYHE ° (HAOW HLYIAIWWI Omv aNNod "TOEWAS # ‘QIWWIC Od3d

SE# dWO
(ST# ¥4T NI ,#, dHL) INIWADIY THL JO °*¥VHO IST ‘¥IJIING VAT GYeT

geve
21ve
20V
26€C
28€TC
PLET
P9o€c
PSET
oveET
pEET
@TeT
g1ee
PoET
26¢C¢
P8CcC
gLee
99tc
2sce
ovee
gece
geee
g1Cc
2oz
P61C
@8T¢C
gLTC
P91z
BSTC
() AN
PETC
gTic
g11e

62

The Main Loop

.
.

Eval

SISATUYNY HJOW °*¥AAV HANILNOD ————==——=—————— = ——m— e .
(LNIWNOJY LDEWYOD HLIM) dAMOd/ILNI¥d HLAG-Z HHL OL OD MON ‘SOML dW[L
T+LINSTI VIS

ST VAT JHL 40 Od HHL WO¥d JIALVTINDTVO ‘p# YaT

49 QTNOM ST VAT:d00T ANE :WIHL ONIMOTIOZ NOILDNYLSNI ¢LTINSTI VIS
GHL WO¥d CILYTINDTVO HYV SHHONVME LVHL LOVJ HHL ¥0d LDEYJY0D ‘T# DdS
|||||||||||||||||||| ddAL *¥AdV °*TEY dn HSINIA ‘DdS WIX

IDVSSHW dO¥y¥d ,dONVY 40 LNO HONVYHE, LNI¥d ¥¥dd0d dWL ¥¥dd
lllllllllllllllllllllll HIONVY NIHLIM ‘WIZd 1d€9

Y1d TSXdKW

Jgad0d dWre

Y1d

IONVY 4O LNO HONVYE QIVMYO0d MOFTHD (TSXAW OFd dod

ANILNOY NOISNTONOD THd OL dWACL ANY ‘WTIZ¥ dWe

(,¥¥39, FOVSSHW Jouwd INI¥d) IONVY JO0 ILNO ‘¥ddd T1dg

LAWILIV HONVYE HONVY J0 LNO ¥Od MOHIHD ‘HSIMYEHIO ‘V¥Id SXdW

q4I4oa dWr

Vid

SXdW 0dd

dds# dWO

QIVYMIOd HONVNE V¥ S,II NIHL ‘Dd ININUND < ILNAWNOWVY JAI ¥0d SOd
14+¥S 0d€S

T+1I0STY VAT

JAMSNY FIXE MOT FAVS ¢VHA

¥S D€Ss

IINSEd VAT

HONVYE T3 13D OL INIWNOYV WOMd Od IOVMIENS ‘g SSVd NO $DdS THIW
SOML dW[

TIEW NG

Z X9 Od HISVYEMONI LSNC ‘¥MIHLOE L,NOd ‘T SSYd NO {SSVd VAT Tad
SHJAL (ENE) SSTYAAY FAILVTIIY HTANVH —————————— e e e e e !

pELT
gTLe
P1LT
poLT
969¢
989¢
@L9T
©#99¢
9s9¢
ov9C
pEST
9C9ot
9192
9@9¢
26SC
#8S¢
@LST
09S¢
9ssc
v Ssc
PEST
pcse
P1SC
90T
geve
P8%¢C
oLVT
g9v¢
psve
ovve
gEVC

63

The Main Loop

Eval

ownr N4

Iv# dWD

0S dWNL LOFAYIANI NV S,LI SIAOYA ANI HHL I¥ (:X'¥y3aand val

(@9ST) dWL ¥0 @@ST dWL LI SI <‘IZISDHAV AQT dWACL

dHWL dTANVH &-—=—=—=---—— o e s e :

(9@@T) EAODIADYNOS 40 INIT MIN HOLIA OL AJIVdIId ATIYNIJL ANY ‘EANITINI dWL
INAWNOIV FMOd/INIdd NAHL ‘ZINIdd ¥SL

FA0DdO EMOd/LNI¥d ¢LVWMOd ¥SL SOML

(TT ¥QT EMIT) SHIAL FLAG T =—=———————————m—m e :
do VIS
do Dav

010
#dAL FLXE-OML OLNI HONO¥HI TTVd ANV FA0Dd0 OL ¥ AV ‘ASIMMAHIO ‘v# VAT
SOMI Oasg

"HYEHL 0D OSTY ‘T HdAL 4I ‘Z# dWO

*HYHEHL 0D 0S ‘SOML SDd

HdAL FIXE-Z AYUYNIQIO NY S,LI ‘9 HJAL NVHL JFIHOIH AI 9% dWD

IQOW dOVd 0¥dZ S,LI ‘ISIMIYIHIO ‘dl VYAl

(20% dNIT) SNOILDONYLSNI HLAE-£ HHL OL 0D NHHL ¢SHIYHIIFTId INL
(¥aav¥ °9d 0O¥dZ) O¥YdZ IL,NSI IINSHEY JO HLAE HOIH JAI *T+IINSHY VAT AIW
IIIIIIIIII *ANILNOY OHNITANVH-dWNL JHL OL QYVOEDNI¥YdS MON ‘dWNL dWC
dSTd ONIHLIAWOS ¥O4A MOOT 0S :‘AHW INd

dWAL ¥V ION S,LI ‘9. &L,NSI IA0DdO HFHL AI ‘9L# dWO

DINOWINW dWCL HTANVH ¢dO ¥YAT dWacre

lllllllllllllll cddAL X’ ¥0 X’ ¥ d€ ISNW LI ‘ISIMYFHIO ‘HJALAX dWC
ANT

IANILNOY OHNITANVH-dWAL JHL OL 0D 0S :dWArr INd

NOILONILSNI dWNL V¥V 39 ILSAW SIHL NIHL ‘YWWOD ¥ ION S,LI dAI ‘H¥# dWO
INIWNDYY J0 YILOVIVHD LSYI LY MOOT :X‘¥dddnd vYdAT

Add

HZISDIV AdT SOWAY

1,742
gEDE
gTo¢e
g1o¢
290¢€
266¢
286¢
gLec
9967
ps6c
ovec
geec
2z6c
g16c
go6c
268¢
288¢
gL8C
298¢
298¢
av8¢
ge8T
@z8c
P18¢
298¢
geLe
28LC
gLLe
PoLT
gsLe
ovLT

64

The Main Loop

.
.

Eval

SHEIYHL SOd

9¢ dWD TIXd

SATIHL dWL

dOo YIS

8# Oav

. 1)

dO Ya1 &Lld

TLd INd

(g€y ANIT) L4 dWD

LLd Odd

Z# dWD

(3IdAL NO gdASVYE) SLNIWLSALAY AAODJO TVIHAAS dl VAT SATIHLITIG
SHAAL HIAH € ——=—————m— e e H

(P@@T ANIT) INITINI dWC

INIWNOIY ON S,qYIAHL ‘ISHHIL d0d FA0DdO IO LSNL {LVWIOd dSL T1dd
SHJAL HIAH T —————————— e :

SOMIL dWr

dO Y.IS:dO Dav¥:DTID

8# VAT

LI OL 8 HYNIAAVY A9 HAODHO ILSArLAV¥ ‘T AJAL S,LI JAI ‘{SOML AN

T# dWD

dlL Va1 XATAWWI

ITINSAI VYIS

(ILNIWNOYY) ,LINSHY, OLNI °*dVHD IIDSVY HHL LAd ‘0OS JdI ‘z+ddddnd val
XAIWWI INE

Y,.# ¥YaAT :3IMIT dO-0dNdSd dV¥YOT JFALOVIVYHD ¥V SIHL SI ¢, ,# dWD
T1+934409d VAT IWWI

(ZdAL #) DNISSTUAAY HAIVIQIWWI ————-=—=——=—=——m———m == mm— e e :
NOILONYLSNI HLAG-€ TYWNON ¥ SY LI IVANL ‘STIIHL dWL OWAL
do VIS

80T OL 9L WOYd dHAODdO HHIL HONVHD LSNW dM ‘8OT# VAT

@SEE
ovee
geEE
f AR
g1€E
9]/ 2R3
g6ceE
28Tt
gLee
99c¢e
@SCE
ovece
peETE
gcee
/AEA
20C¢
g6TE¢E
28T1¢€
OLTE
P9T1¢E
@STE
PV1E
PETE
PT1E
PTTE
POTE
1713
280¢
gLOE
290¢
PSPE

65

The Main Loop

.
.

Eval

JALNIYd OL SMNVIE INI¥d ————-m——————— ---!{INI¥d dSCL dOTWdd
ZE€4 VAT TWXHd

dOTWdd dWL

Z# Xa1

IWXdd 71d€

Y XaT

LNOMHD ¥SC

v# Xa1

SMNVTIE ININ¥d OL ¥AINI¥d FYVdTNd {NHOETO ¥SC

NZFYOS FTHIL NO NWNTOD HLPZ OL ¥OS¥ND FHL FAOW ‘¥ VIS
NOILISOd ¥OS¥ND INIJY¥ND LOVILENS *S0d¥nd DS

ods

@T# YAl

WWdd 03d

JAINI¥d OL INI¥Nd ‘OVIALNI¥Nd VAT

(agads ¥od ‘IOVSN OYTId SA¥M) INI¥d OL D01 ON ! TIXWWMd ENd
INI¥d OL TdgVI SSEIAAY Od ANV {DVTIID0T VAT XOTIN

LSC dWD

XOIN ENg

*TYONDI ‘NMOd SI OVIANITIOS JI ‘ESIMINIT :OVIAS ¥YAT TXOIN
ISP dWe

IXO'IN IN™

*ONIHL ILNOLNIdd FTOHM SIHL H¥ONDI ‘T SSVd NO {SSVd VAT ANITINI
ANITINVLS OL NEHL ‘SINIWAOD ANV LNANI NIVW INI¥d?

ANIT MAN ¥ LD OL HIVJHYd =———==—=—————mmm e ——————t
(@@@E) INAWNO¥Y FHL 40 SILAL ¢ &MOd/INI¥d {€INI¥d ¥SC
4Q0Dd0 EMOd/INI¥d *IVWIOd ¥SL SATIHL

do VLS

Z1# oav

i)

do vaT

099¢€
9S9€
/3 4°1%
PEIE
9Tot
P19¢€
2099¢
P6S€E
28S¢E
@LSE
29S¢t
@SS€E
73413
QESE
@TSE
PISE
20S€
geve
28VvE
BLVE
29v¢€
gsve
ovve
PEVE
oTVE
g1vE
20vE
g6EE
P8EE
QLEE
P9tE

66

The Main Loop

.
.

Eval

O/I TYWION HJOLSHY {NHOYTO dUSL XWXd

|||||||||| SMNVTIE FYOW INI¥d XdOTWdd INL
Xga

|||||||| ONILLVWIOd ¥Od ¥AILNI¥d OL SMNVId INI¥d {INI¥d dSC XdOTWdd
[4% 3 (e

(ZUONDI) (LZT<) SMNYTId ANVW OOL FTANVH *XWXd IWd

(IYONDI) SMNVTIHE ON HTIANVH {XWXd OFd

X AQd1

LOOMHD ¥SC

v# X1

SHMNVTIE FAIZDTE OL YHAININd L¥dTV {NHOWTD ¥S[

NIAWWSd Oad

JAININd FHL OL SMNVTId ININd OL QIEN EM 0Od (OVIJLNI¥d VAT

@€ OL NOILISOd ¥OSd¥ND NATYDS LIS {SOduND VIS

PE# ¥YAT

YIILNIYd ¥0d (NOILISOd-@€) NOILISOd ININ¥ND WOd¥d ILISAI0 HAVS ‘X VIS
sod¥nd ods

ods

NWNTI0D HI@E OL J0S¥ND HAOW (@g€# VAT TXWWIA

|||||||||| {79gYT NOILVYOOT INI¥d ‘SSIWINJId dSC

T+dWAL YIS

NITId<$ YaAT

dWAL YIS

LNOINI¥d d04 TALVYI SSIVAAY Od OL ,dWHL, INIOd (NIATII># VAT
soddnd VIS

NOILISOd ¥0S¥ND NIFYDS INIY¥ND OINI @z INd @Z# VAT WWiad
NIMHO ¥SC

T# Xa1

0/I TYWION TMOLSEY !NHDOWTID ¥SCL

———————————_!Y¥AINI¥d O& SMNVTIH FIOW INI¥d {dOTWdd HNd

Xad

gL6€E
996¢
2G56¢
gve6t
PEGE
gcet
g16¢€
006¢
g68¢
#88E
9L8BE
098¢
9S8¢
ov8¢e
ge8E
42
P18¢€
PP8E
geLE
P8LE
aLLE
P9LE
PSLE
ovLE
gELE
pTLE
QTILE
00LE
269¢€
289¢
QL9E

67

The Main Loop

Eval

(¥S) ¥ILNNOD WVID0¥d Od dHIL OINI *dddy¥ IdVIS TYNIDI¥YO HHIL Ind (VI ¥YAT
(5¥1d FHL NI) OML SSVYd OL T SSVYd HONVHD ‘HSIMYIHIO ¢{SSVd ONI

*NMOd SNIHLAYIAT IAHS ‘Z SSYd S,LI JAI ({NId INd

SS¥d vaT1 INIJA

(Z 90 1) SSVYd V J40 ANH JHI ========——mm— e e e e e e :
*ANIT dAD¥NO0S IXAN HHL IdD OL dN MOVE 0D IASIMIFTHIO ‘ANITIIVLS dWL ISC
INIA ANS

INILNOY NMOQLAHS HHL OL dWNCL ‘dn SI SVYTJANA AI ({OVIIAANT ¥AT

NINLIY TAOVIYIYD INI¥d ¥OLN¥d ¥SL XLLIA

dAJAANd SINAWWOD FHIL NI S,LVHM INI¥d {SSAWLNId dSC

T+dW3L YIS

JAngvd<# val

dWAL VYIS

#A0EVE, ¥FJING SINAWWOD HHL OL ,dWdL, INIOd *JAndvd># Va1

ILNIJdd ¥Ssr

NOTODIWAS ¥V INI¥d ‘6S# VA1

|||||||||| dTdId SLNIWWOD INI¥d --------HDVdS ¥ INI¥d {dADOVdSINdd dSr
*SIHL dIMS ‘ION J4I (XILIZTd 0dd

(¢ SNIMOTIOA OSNIHLIWOS) INI¥d OL INAWWOD ANV HIFHL SI $9VIJdYE VAT WXdd
|||||||||| MALNIYd OL SI Tdld °*> ¥0 < INI¥d ¢T1ddd dSr

INI¥dd ¥SC OWdd

< LNI¥d ‘Z9% VAT SOW

oWdd dWr

Q9% YA1

GOW INd

> SNVYIW OVTALAE NI T ‘1% dWD

< ONY > ITANVH ‘WX¥d Odd

|||||||||||||| INI¥d OL dO-0dNASd < ¥O0 > V HJYHHL SI ‘OVI4ALA9 VYAl
(INIT "IO¥NOS J0 MInd) ¥AJIJANE INANI NIVW INIdd ‘INANILNYA dSL NIAWWEd
|||||||||||||||||||||||||||||||||| ———————————————!NIMHD ¥SC

T# Xa1

28¢¥
LTV
29C%
gsey
ovey
oeETY
geey
AN A
20Ty
g61v
28T%
OLTY
@91V
PS1Y
ov1vy
RETY
PCTY
1TV
P01V
2607V
2807
oLOY
290%
0s0v
ovov
€0V
2cov
o10%
PooY
266¢€
286¢

68

The Main Loop

Eval

lllll OISvVd OL NINLId dNY SNOILYIddO SAVI NMOd INHS

ddAL SNISSAIAAY X’ ¥O X'

QTLT
X NY LI SI ‘88#

oad
dWD

INIWNOYVY NI °*¥YHO ISVT IV MOOT +‘X‘¥3IdNd V¥AT FJALAX

DISvVE OL NINLAd <¢DISVEOL dWL NIANIA

ASOTD

v#

NHOY'TO

INT¥d

NINLIY FOVIVIVO ¥V ONILNI¥d X9 ‘eT#
LNOMHD

v#

*ATINJIOVED ‘¥IAININd NMOd LAHS ASIMIAHLO {NHOYTD
DISVE OL NINLAY ISNC ‘ION JI !NIJNIJ

AAILOV YAINI¥d FHL SI {OVTIJLNINJ

(ANY JI) @714 ILNdINO FA0D LOILH0 ISOTD {dSOTO
#

714 LNANI Fd0D ED¥N0S ISOTID {ISOTD

T#

0/I TYWION FJOLST *NHOMWTID ¥USL

(C SS¥d Y04 INIOd AMINA) ¢ SSVd I¥VYLIS ‘dAHSINIA T SSYd ‘HIOWS
(371I4 FHIL NI ALAE IST FHL OL LI INIOd) dATIA LNANI NIJO ¢ TINIAO

J1I4 INANI dSOTO <dSOTD

T#

SNOILIANOD O/I AYVYNIQYO FJOLSHY ‘NHDITD
T+V¥S

T+YL

A £5)

gsre
Yart
asre
asre
Yatd
asre

26S¥
28s¥
oLSY
29SSV
PSSy
v Sy
PESY
gcsy
P1ISY
PoSY
oevvy
28vv
LYY
29v¥
2svvy
ovvvy
BEVY
oTvy
o1vY
200V
P6EY
P8tV
OLEY
P9tV
PSEY
ovEY
PEEY
QCEY
OTEY
P0EY
gecy

69

: The Main Loop

Eval

01 £9)
dO YdT 9W

P9LT dWL

d dsr

TESH# YA

oW 03d

G# dWD

dlL ¥Yd1 96971

SHIYHL dWCL

dOo YIS

vZ# OQ¥

olito)

do ¥a1

9697 ANd

T# dWD

dl Va1 @891

@9LT Odad

T# dWD

geLT OdFd

G# dWD

gELT OdId

Z# dWD

IdAL NO QISVd HAODAO ILSNLAv {4l YAl
ddAL X O¥dZ ‘@897 dANd

(LON ¥0 °5d 0¥dZz) ITINSHY J0 ALAE HOIH MDOHHO ‘T+IINSHY VAT XO¥IZ
JJOW ONISSTYAAY ILOFYIANI NV SI LI ‘0SS JAI ‘YIANI dWL

HAOW °*¥aay¥ IODIYIANI NV ION S,LI ‘ION AT <‘XO¥HZ INd
T¥# dWO

SISHHLNIYVYA IHODIY (V¥ LI SI ‘X‘¥3ddnd VAT

Add

LNIWNOYY J0 ANI WOdd °*JdVHO @I€ HHL IV MOOT ‘HISIMYIHIO ¢XIA

g6V
2687
2887
2L8Y
298Y¥
2S8Y
ov8Yy
ge8Y
2z8v
2187
008Y
g6LY
28LY
OLLY
9LV
OSLY
oYLV
PELY
pTLY
1LY
0LV
2697
2897
BLOY
299%
2597
2vov
gESY
2297
219V
209V

70

The Main Loop

.
.

Eval

a ¥se
Ze$# YaT @SLT

6SLT Oad

S# dWO

6SLT 03d

€4 dWD

6SLT 03d

T4 dWD @¥LT

SOML dWp

do VYIS

do davy

oD

9T# va1

PvLT FNd

Z# dwWo

dl v¥aT1 geLT

@oVd O¥dZ ION ‘@8LT dANd

dA0Dd0 OL SINAWLSNLAY ¥IHINAL EMVW ! T+II0STM VAT 9ZLT

FAOW *¥AAY 40 SISATYNY HANILNOD —=—===—==——m—mmmmm e :
ENILNOY ANIT-IXAN-FHL-IAD FHL OL 09 ‘ENITINI dWL

AOVSSAW HTHL INT¥d ‘¥OINYd ¥SC:SSAWLNIG ¥SC

T+dWAL VIS

JOUMAW<# VAT

dWAL YIS

ADVSSAW MO¥YYE XVINAS OL ,dWHL, LNIOd ‘JON¥IW># VAT

YAEWOAN ENIT ININd {ENITINId ¥SC

SYALOVEVHD HSYEATY NO NiNL ANV TIdd YO¥¥d ONI¥ ‘ONINNE ¥SC p@LT
uuuuuuuuuuuuuuuuuu OVSSAW YoM XVINAS ¥V INI¥d ——---—————o!
SHAVHL dWC

do VYIS

8T #

oav

p1CS
8oTs
P61S
28T1S
GLTS
29T1S
@STS
PvTS
PETS
@TTS
PTTS
POT1S
2605
9805
PLBS
2902S
PS@S
ov0s
PEDS
2C0s
2108S
000S
P667
286%
gLeY
2967
gsev
gvev
oc6v
pTev
o916V

71

The Main Loop

.
.

Eval

(LOTII0D

do Dav

01D

8Z# VYAT 60871
@@LT dWL

d ¥sr

€€$4 VAT @@8T
69871 OFd

G# dWD

6981 0ad

€% dWD

6981 OId

T# dWD @6LT
SHEAYHL dWL
do YIS

do oav

0 410)

vT# YAl
g6LT INA

Z# dWO

dlL vad1 98LT

SOML dWL @9LTW
X dI07T0SdVY (X’STI@@$ ¥YATI) LI IMIVW OL dWAr ‘ION AI ‘@897 dWL
SI AAOW ‘0S JdI) XAT DINOWINW HHL SI <‘@9LTW Omm.mwa* dWD:d0 ¥YdT

(X’ST) ¥YAT 904 dV¥L JO¥¥d —--- ‘@9LTW ANd:68#%# dWO:A’z+¥dIand VAT QONA

dVdL ¥d0¥¥d SIHL 40 NOILUYNVIAXH d04 1T ¥YdLdVYHD HdHS —-—-—===———-
do <Ew
dO DOav

o1
@T# YAT 6SGL1
PALT dWL

QLYS
P9V S
9svS
)44
PEVS
2Tvs
o1¥vS
207 S
P6€S
@8ES
OLES
@9€S
PSES
ovES
PEES
@CES
BTES
20€S
P62S
28¢CS
SLCS
vLCS
gLeS
¢LZS
TLZS
QLTS
99¢Cs
9SCs
oves
PETS
@Tes

72

The Main Loop

.
.

Eval

SLd

HIOWHTOD HINd

98# AdD

ANI

A'THEYT YIS HIOWITO

YAL

‘LI SNVHTO °*0¥dZ HLIM (,T3dVI,) dd44N9 LNANI NIVW STIIA ‘g# AdT 9YINVITO

*SYALSIODIY FHL FYOLSHE V¥ VAT
*SSEYAAY Od HHL INI¥d ‘WANLOO ¥SC

AYL

Y1d

XYL

(LOVYLNI MDVLS HHIL ddAM OL) SSAYAAY SI¥ THL IAVS <¥1Id

LNIdd ¥9sr

MOTTO4 OL SI DOd HHL LVHL TYNDIS OL TOHIWAS SDIHAVYD ¥ LNI¥dd :Vvds$# VAT
*¥dd¥ ¥SC dHL TYIATY TIIM SIHL ‘SId¥ NV ¥3LAV <X XIS

*d3,4SL NOA HOIHM WOYA Dd HHL INIdd TIIM ‘X ALS

IANILNOY SIHL ‘FA0D AD¥NOS YNOA OINI ,d ¥SCL, ¥ LIASNI NOX NIHM ‘Y YIS d
(Dd SLNI¥d) OSNIODONEHd ¥Od ONILIOdHAI YO¥YYd —-——————————————————o :

SLNAWLSNLAY ANV SNOILVATVAH HAOW “ddd¥ 40 dNI {SHHIYHL dWC
dO YIS

@8LS
OLLS
@9LS
BSLS
VLS
PELS
gTLS
2TLS
PBLS
9695
289G
BLOS
299S
BS9S
Bv9s
PE9S
9T9S
919S
2095
96SS
928G S
@LSS
29S8S
@SSS
oV SS
PESS
PTSS
@TSS
29SS
26V S
P8%S

73

The Main Loop

.
.

Eval

dodnasd d-° ‘I+V¥S Va1

dHL A9 ILVIYD dTIA ‘¥ILANAT VIS
AJYNIE HHI J0 SHLAE ‘YL DOdS
HLINOA ANY QIIHL HHL ¥0d ‘¥S VA1
dd0D dHL 40 HLONIT HHL JAVS <DdIS
HOVdS »MNVId dNODIS ON JdI :‘@VsS# dWD

on on en

gYS# dWO
PS# Xd
d90dM dHL L¥VLIS ‘NSLIdA dWL dNLA

98C¥
S8CY
v8cvy
€8¢V
c8CY
g1¢€
ove
PeET
gee
29T
T O%
8 S¢

:[-€ weido1g ur saur
Suimoroy ayy a8ueyd ‘[eag jo uoisiaa aiddy ay3 ajeamd of

suonedyIpojN 91ddy ‘[eay ‘7-¢ weadoiJ

JLYNOd dTIId*

(LOFYY0D Dd dadM OL) INIAT HALAE-Z AYYNIQYO NY SY ITONAE {SOML dWL

ANV NYNLIY FOVIYYVYD ¥ INI¥d <‘¥OIN¥d ¥SC
IOVYSSHW HFHL INI¥d ‘SSHWINI4 ¥dSC

T+dWAL YIS

JodW<# VYAdT

(Y09W ‘dONVY A0 ILNO HONVYA HAOVSSHW) *dWHL VYIS

WJOdW, dOVSSIW JOo¥dd IFHL OL ,dWHL, INIOd ‘JOdW># VAT

dIEGWNN JNIT HHL INI¥d ‘ANITINId dSC

ONI¥YH dSCr

AOYSSHW Joddd ,dAONVY J0 ILNO HONVYd, LNI¥d -¥DILN¥d ¥SL ¥9dd0d
|||||||||||||| IOVSSHW JOo¥d¥d IAONVE 40 ILNO HONVEHE INI¥dd---=-———== !

P16S
2065
268S
2885
@L8S
298§
58S
%8S
g€EBS
gc8s
P18S
2085
26LS

74

The Main Loop

Eval

S0494Y Xad
G# AQT
IHOWS 3INA

9y IdWYN Yal
NHOMT1D MSP

99 14XH Y1S

I# 9a’
T+40LAYHNY U115
T+40LWM3IW YIS
401<# vdadn
dD1AYMNY U1S
dO1W3aW Y18
HA01># v9adl
4714185 3INA

A3da

ASdD 915 411HI1S

Br# AdT

Z8 vl1sS

@# Yad1l 1MY1S

1103 4Wr 401

v TEAT W ——SNOIIYDISIAON IMULIY:

'1-¢€ wexdo1 ul
saul] Surmo[[oj 9y} a8ueyd ‘[eAT JO UOISIdA LB}y Y} 9J8aId O]

2 Y
81
530
B61
vB81
BLT
B3I
B51
BT
BT
Bzl
31T
331
35
B8
3L
B9
B35
(534
3L

@1

SUOEOYIPOJN IBlY ‘[eaq "¢-¢ weadoag

GGZ# AdD QLLS
T+ILANAT VLS 88CV¥
T+YL D4dS L8CY

75

The Main Loop

Eval

J4s"3ivnNo3d:sa 3id-

BTH# Yad

NH34710

HST 2INIHd HSC@g# 9Yad1-1N0AHD HSC2# XAl
JHOWS 4W[L N3I4JOM3IAOD
ITN3I4O0 HSC

NI4JO0H3IA0 3INA
QYIdWYy ©an

T+957171 ¥1S

1+985 ©an

Y5171 ¥1S

9s van
@2T# Yd

IN3I40 HSC

NITIWYNLS ALS TWLIS
BW1S dWr

XNI

ANI

ATNITI4 Y1iS TWiS

IWiS B34

SSTi# 4WD

X “4NAavd 9d1 @uWis

XNI

B165

B555

SItvy
[5Ar 3% 4
pagodag 4
c5cy
155

viay
£LeY
LY
142¢
BLY
BoE
L

L

(TN
(%3 B
BBL
B62
B82
BLE
B2z
852
15084

% p i

76

Chapter 4
Equate and Array:

Data Base Management

sl el

Equate and Array:

Data Base Management

The job of setting up an array in machine language is simpler
than you might imagine. The subprograms Equate and Array
build and access a data base.

There are two basic ways to go about storing information:
in fixed or in variable length fields. (A field in data base
management means a single item, such as a single label name
in LADS.) Fixed fields are easier to search, modify, and sort.
Variable length fields save memory space. LADS uses variable
length fields so the label table will take up as little space
as possible.

A fixed field label system of managing data assigns a
specified size in bytes for each item. If we had wanted to use
this method of data storage for LADS’ labels, we could have
made a rule that label names cannot be larger than ten letters
long. This would obviously make it simpler to manage the data.

However, then any label, even short labels, would always
take up ten bytes. That would use up memory rather in-
efficiently. Instead, LADS allows labels to be of any length. If
you are like me, the labels that you will think up naturally
(without any restrictions imposed on your imagination) will
normally average about five characters in length. Some will be
longer, some shorter, but the average label will take up five
bytes. Two bytes will be attached to each label to hold the inte-
ger number value which the label stands for. So, the average
LADS variable (label name plus two-byte integer) takes up
seven bytes. However, these variable length fields use up about
40 percent less memory when you consider that fields fixed at
ten bytes would always take up ten bytes plus the two-byte
number, never less.

Sons, Daughters, Clones

LADS itself is, of course, an ML program. You can have LADS
object code assemble the LADS source code to disk or some-
where in RAM memory. This would create a new version of
the assembler. If you’d made any changes to the source code, it
would be an offspring, a son or daughter of LADS. If you
didn’t change the source code, you'd have created a clone, but
the start address would differ.

79

Equate and Array: Data Base Management

LADS is about 5K long and uses 402 different labels. When
it assembles itself from its own source code, it builds a label ta-
ble which is 2851 bytes large. If it had fields fixed at ten bytes,
the label table would be 4824 bytes large.

Why worry? It’s true that the label table matters only dur-
ing the actual assembly process. As soon as object code has
been created and LADS returns to BASIC, the label table has
served its purpose and can be tossed out like an eggshell after
the egg is in the pan.

There are two good reasons for conserving memory: (1) the
environment and (2) interactive freedom. Picture this: While
assembling itself (or a comparably large program), LADS uses
up about 8K of memory—5K for itself, perhaps 3K for the label
table that builds down from the bottom of the assembler. And
if you've chosen the option of assembling object code to RAM
memory, add another 5K for the object code (the resulting ML
program). A total of 13K. In some computers, this represents a
significant bite out of the available memory.

What's more, LADS is supposed to be interactive. You are
to have the psychological freedom you have with BASIC, to
change things, to experiment, and then to quickly assemble and
test the result. This means that you need space to write your
source program (in RAM where a BASIC program is normally
written). Perhaps you'll want a monitor extension in RAM too,
like “Micromon” or “Supermon” or some other collection of
ML utilities which permit single-step analysis of ML object pro-
grams, and other tools which are useful when debugging object
code. And you might want “BASIC Aid” or “POWER" or some
BASIC auto numbering, and other BASIC aids to manipulate
the source code. You might want two different versions of your
object code in RAM simultaneously so you can compare them
in action.

The Programming Environment
All of these options require available RAM. If you can have
them all in memory at once, you've got a better environment for
developing an ML program. You won’t always need to wonder
if it’s worth loading in a certain routine or utility: They're all
there and ready to go. All your tools are at hand. This is a
more efficient way to program. Tools that are out of reach are
usually tools left unused.

Second, you want as few restrictions as possible when

80

Equate and Array: Data Base Management

working with ML. You don’t want to concern yourself about
the length of each label name. Is it short enough? Does it dupli-
cate a similar name? Eliminating these questions, too, is part of
the interactivity, the mental freedom that comes with a
smoothly running, efficient program development system. Vari-
able length labels promote both effective memory conservation
and an efficient programming environment.

Equate

The Equate subprogram starts off with one of those LDY #255
initializations. Remember that we don’t always want to LDY #0
before a loop. There are times when the first event is the zeroth
event. This is one of those times.

Line 40 sets Y to 255 so the INY in line 50 will make Y =
0. This allows us to LDA LABEL,Y and receive the first charac-
ter in the buffer called LABEL. If we had set Y=0, the INY
would have forced us to look at the second character in the
buffer. Why not put the INY lower in the loop somewhere?
That way, we would load in the first character the first time
through the loop.

Obviously we can’t INY just before the BNE in line 90.
That would branch depending on the condition of Y itself, not
on the item in A (which is our intention). For the same reason,
we can’t put it just before the BEQ in line 70. The only other
safe place for it would be in a line between 70 and 80. That
wouldn’t do any damage to the branches because the CMP will
reset the flags and the following BNE will act correctly.

This loop isn’t moving characters from one buffer to an-
other or anything. Its sole purpose is to count the number of
characters in a label name, to find the length of the label. Y is
the counter.

While locating Y in a line 75 would work correctly, it
would be less clear what the loop is accomplishing. In cases
like this, you have to decide where your personal priorities lie:
Do you want to emphasize the function of a routine in a way
that’s more easily understood, or do you want to emphasize a
uniform style of coding loops? If you prefer to always start such
loops with LDY #0, by all means, go ahead. But that LDY #255
serves to alert you that this loop is a special kind of loop. If you
come back later to modify a program, such signals can be
helpful.

81

Equate and Array: Data Base Management

Once the length of our label is discovered, we add 2 to it
by INY INY, to make room for the two-byte integer which will
be attached to the label in our array. Each label stands for a
number. And any legal number in ML can be stored within two
bytes as an integer between 0 and 65535 ($0000-$FFFF).

Equate is called upon only during pass 1. On pass 1, the
assembler puts each label into the array and attaches the two-
byte integer onto the end of the word. So Equate’s first job is to
find out how much room to make in the array for each new la-
bel it comes upon. It makes room by lowering the MEMTOP
variable by the length of the label name, plus two.

Building the Array Downward

SUBMEM moves our pointer down to make room for a new la-
bel. When SUBMEM is finished (200), the array is larger by the
size of the new word we're adding to it, plus two bytes for the
value of the word. The array is thus expanded, lowered.

Now we can store the label in the array. The first letter of
each label in the array is special. It's shifted. That is, we add
$80 (128 decimal) to the normal ASCII code value of the
character. This is the same as setting the seventh bit.

If the label is “addnum,” we want to store it as “Addnum”
so that when we later search through the array, we can locate
the start of each new label. The shifted letter will be our delim-
iter, separating the different labels. With fixed length fields, we
wouldn’t need a delimiter at all—each label would be exactly
the same size as every other label. But our labels can vary in
length, so we have to know where one begins and another
ends.

The array will look like this (the xx is the two-byte value
of each label):

AddnumxxSecondwordxxThirdwordxxFourthlabelxxFifhlabelxx

What exactly does it mean to say that a letter is shifted? In
the ASCII code for alphabetic, numeric, punctuation (! or . or ,), —
and symbolic (# or % or *) characters, everything is assigned a
code number which is lower than 128. Above 128 are the
uppercase versions of letters, etc. Hence, above 128, the charac- —
ters are shifted. For the purposes of ML, a shifted character is
something with an ASCII code value greater than 127. It has
the seventh bit set in its byte: 10000000. That leftmost bit —
would always be up in any shifted character. This phenomenon

82

Equate and Array: Data Base Management

makes it easy to distinguish between shifted and unshifted
characters. We can just LDA CHARACTER and then BMI
(branch if seventh bit up) or BPL (branch if seventh bit down).
The subprogram Array will make good use of this clue.

For now, all we want to do is shift the first character before
we store it into the array. We just set up the seventh bit. If
that’s the same as adding $80 to a character, why not simply
ADC $80 instead of EOR $80 (230)? With EOR we get a 1 if ei-
ther of the compared bits is set. We get a 0 if both bits are 1 or
if both bits are 0. The only way we get a 1 is if one of the bits
is 0 and the other bit is 1. Any other situation results in a 0.
Look at a bit comparison:

1EOR1 =0
0EORO0 =10
1EORO0 =1

Consequently, EOR $80, with the $80 (binary 10000000)
acting as a mask, will leave all the bits in the Accumulator un-
changed, but will set the seventh bit. The main reason to use
EOR is that we don’t have to bother with clearing the carry
(CLC) as we normally would prior to any addition.

After we store the shifted first letter in what is currently
the lowest position in the array, we INY. This serves two pur-
poses: It points us to the second character in the label word and
also points us to the second space from the bottom of the array
(where the second character of the label word belongs).

Address or Equate?
Now we load the second character and check if it’s a space
(260-280). We might be dealing with a one-character-long label,
like P. We've got to check for this eventuality. Finding such a
short label, we would jump down to see if there’s an = sign.
But if the label is more than one character long, we store the
second letter in the array (290) and jump back up to fetch and
store the third and any additional letters in the label name.

The essential thing to notice here is that a space is our
delimiter in the buffer—Iletting us know when we’ve reached
the end of the label word. And after finding a space, we are
then prepared to distinguish between the two types of labels:
PC and equate.

We compare the character following the space to $3D (this
is the = sign). If it is an = sign, we branch to the routine

83

Equate and Array: Data Base Management

which assesses the argument following the equals sign (is it
hex? is it decimal?). Otherwise, we go through this BEQ to the
routine which handles PC-type labels (Program Counter types
like: LABEL LDA 15, where the label indicates a location within
the assembled program).

Storing the value of this kind of label is pretty simple: We
just put the SA into the array. SA is the variable which always
holds the current address during an assembly. But one thing re-
mains to be done before we can return to the Eval subprogram
to evaluate the LDA 15 part of this line. We've got to wipe out
the word LABEL which precedes the LDA 15. Eval wouldn't
know how to evaluate it. It’s not a mnemonic.

After loading LABSIZE (the length of the label) into X, we
load Y with 0. Y will point to the first space in the buffer, while
X will count down until we’ve covered over the word LABEL
(430).

Removing an Address Label

We load the leftmost part of the mnemonic/argument pair (the
L of LDA is first), and we store it in the leftmost space in the
buffer. In other words, the L of LDA covers up the L of LABEL.
We continue with this process until we’ve loaded in a 0 and
have therefore replaced LABEL LDA 15 with LDA 15, where-
upon we store the final 0 as a delimiter and can return to Eval
(510).

This next subroutine, NOAR (520), isn’t in any sequential
relationship to the other routines. It just happens to be here. It
could be anywhere else in LADS just as easily. Its function is to
ring the error bell and point TEMP to the message NAKED LA-
BEL and then print that error message. It handles those cases
when a programmer forgot to put anything after a label:

00 LABEL:INY
or

100 LABEL
or

100 LABEL =

Equate Labels
If we're not dealing with a PC-type label, though, we come
here to store an equate label like LABEL = $22 (590) into the

84

T

Equate and Array: Data Base Management

label array. We need to store Y first (in the variable LABPTR)
so we can remember where in our array to put the value, the
number following the equals sign. Remember that we’ve al-
ready stored the label name. What we need to do now is to put
the value in the two bytes just following that name. When we
arrive at this subroutine, Y is holding the correct offset from
MEMTOP, the correct distance up in memory, from the bottom
of the array to store the value.

There are now two possibilities. We are dealing with either
a decimal number or a hex number. Hex numbers are translated
by Indisk, the input subprogram, as they flow in from a disk
file or RAM memory source code. So a hex number is already
in the RESULT variable, waiting to be stored in the array.

But decimal numbers aren’t translated as they come in.
What's more, they arrive in ASCII form and must be converted
into an integer by the subprogram Valdec.

We check the HEXFLAG to see if it’s a hex number (610).
If so, we can just put RESULT into the array and return to Eval
(750).

But if it’s a decimal number, we add the value of Y + 3 to
the start-of-buffer address and point TEMP to the first character
in the number we need to evaluate. We have to add this three
to Y because the expression “space-equals sign-space” takes up
three bytes. If we add this to the start of the buffer address,
we're pointing to the first character in the number, pointing to
the 1 in an example like: LABEL = 15.

Then we JSR to VALDEC, which looks at the number
pointed to by TEMP and translates it from ASCII to an integer
and puts the answer in the two-byte variable RESULT.

After this, we go through the same process as with hex
numbers described above. The RESULT is transferred to the ar-
ray, we pull off the two-byte RTS left on the stack (when we
JSRed here from the Eval subprogram), and then jump back
into Eval at INLINE, the place where a new line is pulled in
from disk.

Array

The Array subprogram is essentially a search routine. It looks

up a label’s name in the array that was built by the Equate sub-
program. When it finds a match, it puts the integer value of the
array word into the variable RESULT. In effect, Array replaces a

85

Equate and Array: Data Base Management

label with its number. Here’s an example fragment of source
code:

10 *= 864

100 NAME = 2

110 LABEL = 15

120 START LDA LABEL

On pass 1, Equate would store ““Start864Label15Name02”
into the array. The LADS label array builds down from the
location of the start of LADS object code in memory. That is,
the first part of LADS itself would be right above Name02. Line
120 contains two labels, START and LABEL. However, Equate
ignores any labels which are not the first word in a given line.
It only stores labels when it comes across the line in which
they are defined. Any label being defined will be the first item
in a given line. And if they are defined twice in the source
code, that’s an error.

(Note that, in the example of array storage above, Start864
is for illustration only. The number 864 is stored as a two-byte
integer, not as 864, the ASCII characters we can read.)

While Equate ignores any label which is not the first thing
on a line, Array ignores any label that is the first thing on a
line. In the example above, Array would pay no attention to
any of the labels except LABEL in line 120. It's Array’s job to
evaluate expression labels. An expression label is one that is
used in an expression, one that is used as the argument of a
mnemonic.

Array Works on Both Passes

Nevertheless, Array must operate on pass 1 as well as on pass
2. This is because pass 1 must keep an accurate PC, an accurate
Program Counter. For Equate to store the correct number for la-
bels, of the address (PC) type (like START in the example
above), it must be able to find out precisely where in memory a
given line is to be assembled. It must know that START is lo-
cated at 864.

This problem derives from Zero Page addressing. LDA 15
takes up only two bytes in memory when assembled. LDA
1500 takes up three bytes. If labels were used in place of 15
and 1500 in these instructions, we must know
whether to raise the PC by two or by three. So Array must look
up all arguments on pass 1 to decide how much to increment

86

—

Equate and Array: Data Base Management

the PC. (This PC, or Program Counter, is held in the LADS
variable SA.)

In line 30 where Array begins, it moves the “bottom-of-
LADS” (top of array) address from its permanent storage place,
the variable ARRAYTOP, to the dynamic, changing pointer
PARRAY. PARRAY will be lowered frequently as it points us
down through the entire array.

Then we JSR to DECPAR which is the subroutine that low-
ers the PARRAY pointer by 1. And we stuff a $FF into the flag
called FOUNDFLAG (90). This is a simple way to test if we've
found our match. If we do find a match, as we’ll soon see, we
INC FOUNDFLAG. This means that FOUNDFLAG can more
easily be tested in the way we want to test it. If it gets INCed
once, it will be 0. INCed twice, it will be 1. INCed twice (or
more) would mean that a label exists more than once in the ar-
ray. That’s an error, a redefined label, and we’ll want to alert the
programmer. Putting $FF into FOUNDFLAG thus allowed us to
use BEQ to test for this error.

Checking for the Bottom

But all that comes later. The primary routine in Array starts
with STARTLK (100), and oddly enough, the first thing we do is
check to see if we're at the bottom of the array. The Equate
subprogram always leaves the variable MEMTOP pointing to
the bottom of the array. So, by subtracting our current position
in the array (PARRAY) from the bottom of the array
(MEMTOP), we can tell if we’ve finished looking through the
array. If PARRAY is lower than MEMTOP, the carry will re-
main set, and we will then BCS down to the all-finished rou-
tine, ADONE.

Otherwise, we've got to keep on looking. Remember that
Array must look through the entire array each time; even after
it finds a match, it must continue looking for another match.
This is the only way we can detect duplicated labels.

Array has to accomplish several things at once. It’s got to
point to the current position in the array, keep track of how
large a given label is, and check each letter of each word. The
chip registers will all be busy: A holds characters for checking,
X keeps count of how large each label is, and Y (working with
PARRAY) keeps track of our current position. Here, in line 160,
we set X to zero.

Then we lower PARRAY by two to get past the number

87

Equate and Array: Data Base Management

part of a label stored in array (170-230). We want to get past
the 99 in /Label99/. Some of the stored numbers will have
their seventh bit set; they’ll be larger than 127. So we’ve got to
jump over every stored number since the set seventh bit is our
test to see if we’ve come upon the first character in a label
name. We don’t want numbers masquerading as label name
delimiters.

At last we look at a character (260), and if the seventh bit
is set, we BMI down to FOUNDONE. If it’s not the start of a
label name, we decrement PARRAY by 1 and jump up to
LPAR to look at the next letter lower in memory within the ar-
ray. Notice that we also raise the X (label length) counter (320).
By the time we’ve found a shifted seventh bit indicating the
start of a label name, X will hold the correct length of the
name.

Double Decrement

Let’s pause a minute to look at how a double decrement works
(280-310). If, upon loading the low byte of PARRAY, the zero
flag is set, we would be forced to lower the high byte of
PARRAY (PARRAY+1 in line 300). If the low byte isn't yet
lowered to zero, however, we can just lower the low byte and
ignore the high byte (310). Note that a zero in the low byte re-
quires lowering both the high and low bytes. Correctly
decrementing $8500 would result in $84FF, lowering both
bytes, while a correct decrement of $8501 would just lower the
low byte: $8500.

Once we have located a set seventh bit, thus locating the
start of a label name, we come to the FOUNDONE subroutine
(350). Here we must first store PARRAY into the temporary
holding variable PT so we can remember exactly where the la-
bel name begins. Then we reload A with the first character of
the label (390) and compare it against the first character of the
label we're looking for. That first character was previously in
the variable WORK just before we came to Array from Eval.

If these first characters match, we go to LKMORE to check
the rest of the word for a full match. If not, we go to
STARTOVER.

In LKMORE, we first raise X to be the correct length of the
current array label under examination. Then we save it in the
variable WORK+ 1. We've got to save it at this point because
now X will serve as the counter of the source label length. The

88

Equate and Array: Data Base Management

source label is the word we're looking for, the label from the
source code we're trying to find a match to.

The fact that some labels will be like (LABEL),Y or # LABEL
(having a (or # as their first character) is a potential source of
confusion to the Array search routine. To eliminate this confu-
sion, whenever a (or # is encountered during the Eval sub-
program, a special flag, BUFLAG, is raised. That makes it easy
for us to skip over them here by raising the Y offset (490) if
necessary.

Paradoxically, we simply INY again, right after this. That’s
because we want to point to the second character in the label
(we got this far because the first characters matched). Neverthe-
less, the combination of INY and DECPAR (490-500) effectively
takes care of the (or # situation and makes this INY point to
the second letter of the label proper.

The LKM1 loop compares the entire rest of the source label
against the array label (520-600). There are three ways, and
only three ways, for us to get out of this loop. We can come
upon a zero, which would surely be the end of the label in the
buffer (the source label). A zero always means the end of a line
of source code. Or we can come upon a character which is
lower than 48. That includes things like left parentheses and
commas in the ASCII code. Something like the comma in LDA
LABEL,X would signal the end of the source label. (Checking
for characters lower than 48, however, doesn’t exclude num-
bers. We can still check for such legal labels as: LDA LABEL12.)

The Third Exit

The third way to exit this loop is when we fail to find a charac-
ter match in the labels. Any point at which this happens, we
“fall through” line 600—these characters do not BEQ, they're
not equal. If they are equal, we go back up to check the next
pair of characters. Notice that X continues to count the length
of the words (580). In effect, it is counting the length of the
source label (we already know the length of the array label and
have it safely stashed away in the variable WORK+1).

If we leave this loop with a match, it will be a zero or a
comma or right parenthesis in the source label that causes us to
leave. X will then be holding the length of the source label. It's
possible that we’ll find an apparently “perfect match”” which
isn’t, in fact, a match at all. For example, LABEL (as the array
label) and LABE (as the source label) would appear to this

89

Equate and Array: Data Base Management

LKM1 loop as a perfect match. The only way we have of
knowing that they do not really match is to compare their
lengths.

If we fail to find a match, STARTOVER (620) just restores
the correct array location of PARRAY (pointing at the first
character in the label that just failed), and then we lower
PARRAY by 1 (660) and jump back up to the STARTLK rou-
tine. STARTLK will also lower PARRAY by 1. This double -
lowering of PARRAY moves it past the number stored in the
two bytes at the end of the next label down, thus preparing us
to start the comparison process all over again.

On the other hand, if we did find a match, we go to
FOUNDIT (950). Right off the bat, we check to see if the cur-
rent value of X (length of the source label) matches the pre-
viously stored value of X (length of the array label). If they
don’t match, we’ve got that LABEL LABE situation, and we
STARTOVER.

If everything checks out, though, we’ve got an authentic
match. We raise the FOUNDFLAG. If this is the first match,
FOUNDFLAG goes up from $FF to $00. That’s fine. There
should be one match. If, however, FOUNDFLAG is higher than
0, it means we’ve found more than one match, and we JSR to
DUPLAB where the “duplicated label” error message is printed
out (1360).

With or without this message, we next compensate for the
(or # symbols which might be at the start of a source label and
then load in the low byte of the number stored just above the
array label. We put this byte into RESULT and put the high
byte into RESULT+1. When we arrive here at FOUNDIT, the
Y Register is pointing just past the end of the label. In other
words, Y is pointing at the number stored with the label in the
array. This is because we left the LKM1 loop when we got to
the end of the label.

Pseudo-op Adjustments —
Here’s where we make the adjustments for two of our pseudo-

ops: > < and +. If BYTFLAG is set, it means that < or > was

used to request the low or high byte of a label. LDA #<LABEL sum
requests the low byte (and Eval will only deal with low bytes

in the # Immediate addressing mode). The label’s low byte is

already in the low byte of RESULT, so we need do nothing. But o
BYTFLAG is a special kind of flag. It has three states rather

90 -

Equate and Array: Data Base Management

than the normal two (set or clear, up or down) states. If it con-
tains a 2, this signals that the #>LABEL pseudo-op was used,
requesting the high byte of the label. To do this, we need to
put the high byte of RESULT into the low byte of RESULT
(1140-50). That's it.

PLUSFLAG signals a + pseudo-op like LDA LABEL+25.
The amount we're supposed to add to LABEL (the 25) is al-
ready stored in the variable ADDNUM (by a subroutine in the
Indisk subprogram). All we have to do here is add ADDNUM
to the value in RESULT (1180-1240).

When these two pseudo-ops have been taken care of, we
return to STARTOVER and keep looking for duplicated labels if
we’re on pass 1. On pass 1, we aren’t allowed to leave the Ar-
ray. On pass 2, however, it’s not necessary to repeat this check-
ing or to repeat the error messages, so we RTS, which sends us
back to the Eval subprogram.

We've successfully put the value of the source label into
RESULT. Now the Eval subprogram can go on to figure out the
addressing mode, finish up by POKEing in the opcode and the
argument, and then pull in the next line of source code.

But what if we didn’t find any match to the source label
and we’ve gone through the entire array? This can mean two
things, depending on which pass we're on. On pass 1, it’s
harmless enough. It could well mean that the label hasn't yet
been defined:

100 INY
110 BNE FORWARDLOOP

120 INX
130 FORWARDLOOP LDA 15

On the first pass, the label FORWARDLOOP will not be in
the array until line 130. Nevertheless, the Array subprogram
will search for it in line 110. And it won't find it. But so what?
On pass 1, we can just ignore this failure to find a match and
RTS back to Eval.

It would be a serious error, though, if the label could not
be found in the array on pass 2. It would be an “undefined la-
bel” error.

When a Label Was Never Defined
Both of these possibilities are dealt with in the subroutine
ADONE (690-940). If FOUNDFLAG has the seventh bit set,

91

Equate and Array: Data Base Management

that means that it’s still holding the $FF we put there at the
very start of Array. We never found the match. We check the
PASS, and if it's pass 2, we print the line number and the
NOLAB error message “undefined label.”

Then, no matter which pass it is, we still want to keep the
program counter straight, or all the rest of the assembly will be
off. The problem is that an undefined label doesn’t give us the
answer to the question: Is this a three-byte ordinary address or
a two-byte zero page address? Is it LDA 15 or LDA 1500?
Should we raise the PC by two or by three? If we raise it the
wrong amount, any future reference to address-type labels will
be skewed. Here’s why:

100 *= 800
110 LDA LABEL; this label is undefined
120 ADDRESS INY; what is the location of ADDRESS here?

If LABEL is in zero page, ADDRESS = 802. If LABEL is
not zero page, ADDRESS = 803. We should try to get this
right on pass 1. Pass 2 depends on pass 1 for correct label val-
ues, including address-type labels. Even if a label is not yet de-
fined, we should still try to raise the program counter by the
correct amount.

In Eval there are routines called TWOS and THREES.
TWOS raises the PC by two bytes for Zero Page and other two-
byte-long addressing modes like LDA #15. THREES handles
three-byte-long modes like Absolute addresses, etc. It’s here in
the Array subprogram, however, that we have to decide which
of these routines to jump back to in Eval.

Branches like BNE and BEQ will often be undefined during
pass 1 because the program is branching forward. We'll want to
go to TWOS if there’s an undefined label following a branch
instruction. All branches are type 8, and we can easily check for
them by LDA TP:CMP #8 (860). The other possible TWOS can-
didate is one of the > or < pseudo-ops. BYTFLAG signals one
of them.

92

Equate and Array: Data Base Management

The # Immediate addressing mode is not tested for, so this
adjustment isn’t foolproof. The assumption is that any un-
defined label is essentially a fatal error and that there will have
to be a reassembly. Most undefined labels are considered to be
three-byte instructions and we JMP THREES (920).

This clarifies why LADS cannot permit the definition of a
Zero Page address within the source code. All Zero Page ad-
dress labels must be defined at the start of the source code,
before any actual assembly takes place. Without this rule, our
“yet-undefined-label” routine (690-930) will treat them, in-
correctly, as three-byte address modes. It can recognize only
branches and > < pseudo-ops as two-byte modes. Any other
label that’s not defined will be seen as a three-byte type.

93

Equate and Array: Data Base Management

4%

*AVY¥Y NI EWYN TdEVT ONIYOLS dOLS ‘EOVdS dI ‘A ‘TIdEVT

ANI

YALLAT IST QILIATHS TUOLS (X’ (JOLWAW)

o8s#

X'138Y1

o#
AWYN S,Td9YT J0 I¥VIS AJINDIS OL °¥VHD IST 40 IId HIL IdI
|||||||||||||| ! T+dOLWAW

o#

T+dOLWAN

dOLWEW

dZISEVT

dOLWAW
TIEVT 904 WOOY HAMVW OL ¥AINIOd AVVNV WO¥d AZIS TAEYT IOVMLIENS {DAS WAW
(42IS TIEVT A€) AVHYV NIHLIM ¥AINIOd dOIWIW YEAMOT ——--———————————eem
dZISEV'T

*dOVdS ¥V ¥0d ONIMOOT dadM ‘dSIMYIHLO ‘103

(AZIS9VT) FZIS TILVI LIS ANV ¢ A9 X IASIVY OS ‘HDOVAS V ANNOJ Z€#
(LI SMOTIOA SNIHION ‘THEVT QIAMNYN ¥ S,TYIHL OS) ANIT 40 ANI *JVYON
THEYT JHL ‘dYOM HHL LV MOOT ‘X ‘TIIVI

dOOT HONO¥WHI IWIL IST O¥dZ OL SIOD X <¢ANI

**eDIF/INTYA FIAG-Z/AWYN/INTYA YEAOIILNI FLAE-Z/IWYN--LVWI

dWD
Ya1
€04
YIS
q0d
vat
AdT
HS!
YIS
ogs
Yart1
YIS
ods
a1
ans

ALS
ANI
ANI

ANE"
dWD
oad
Yat
04
dOOT 40 LY¥YLS LY Od4dZ OL X FYVdddd ‘SSC# AdT FLVNOI

od

*AVY¥Y NI J¥0LS *dJAL JLYNOd YO IAJAL (SSIYAAVY) Od ¥YHHLIA I dTIN0D
STddVYT ILVNIVAd ,JLVYNOd,,

o~

[ENEC TN

aLe
29¢
2S¢
v
g€
gce
p1C
s@c
29T

ayenby ‘1-4 weioig

94

Data Base Management

.
.

Equate and Array

¥OLNdd ¥SL:SSAWINIA dSC

T+dW3L YIS

DIVYON<# VYAT

dWIL VIS

*HOVYSSHW JO¥¥d TILIVT CAMUYN ILNI¥d ANY TI1d3d SNIY ‘ODJVON># VAl
ONIJYd ¥Sr

0S (LNIWNDIVY ON) ANNOA TAIVT CAMYN:INITINIG ¥dSL3IDOILNId dSL ¥VYON
||||||||||||||||||||||||| TYAH OL NINLTI ‘SLd

XTIV YIS $0dF

G0d dWr

ANI

XNI

X’'TddYT YIS

*TYAd X9 ATIVWION :$0d 03d

JEZATYNY 39 OL INIT HJHL J0 LSAY JHL dIVAIYd OL ¢X’TadV¥1 Va1 s0dF
YIAO AHIIAOD SI AWYN TAGVT FHL ° (ST YATI) SIWODALG ‘g% AQT1
MON (ST VAT TdIVYT) ‘TATANYXE d0d4 ¥dJJANd THL WOIJ 1Xdada
TIIVYT HFdAL-DOd HHL ASVIA ‘XIANI SY FZISTAIVI ONISN ‘MON ‘dIZISHVT XdT
X’ (dOLWANW) VLS

T+¥YS YAl

ANI

*AVY¥Y NIHLIM JWYN TILEYT JdLAV IHOTY LI JI0OLS ‘X’ (dOIWAW) VIS
TIEYT SIHL A0 dNIVA HHL SNIVINOD (VS) HATIVIMVYA Od HHL OS *V¥S VAT
(ST ¥dT Td9dvVI) ddAL Od S,LI ‘ISIMITHIO ‘Xdd

Tvnod 0ad

*dNTYA SLI ANIA OL 09 ‘ddAL dLYNDIT JAI *dES# dWD

X'1ddvYT ¥adT1

(ST = TdEVYI) (FdAL JIILVNOd ONIAJINDIS) = ¥Od MDIHD MON <{ANI zZO0H
*HANILNOD ‘€03 dWL

¥ AVYYY OLNI ¥ALLAT LXIN ILNd ‘ISIMIYFIHLO ‘X’ (dOLWAW) VYIS

¢0d dud

aLS
099
2SS
)41
g€S
SZs
22s
215
209
267
28¥
LY
297
oSy
vy
k%74
acy
1874
]34
P6€t
P8¢
QLE
P9t
2S€E
oveE
gEE
aTe
P1E
]2
g6t
98¢

95

Data Base Management

.
.

Equate and Array

DUSAVHAV:A TTLA" 0F8 03 078 aulf 28ueypd ‘ajenby jo uotsian ey ayy 104

AVddY dTIA* @g%8

ALVNTYAT OL ONIHLON A4 dIMOTIOA HYVY STALVI ‘ANITINI dWL Q€8

IdAL JLVNOIT IDNIS ANIT SIHL A0 NOILVATIVAT JHHIINA ANY ONIVONOI ‘¥'1d @9z8
INITINI OL XATILOIMIA dWNL ANV (TYAT WO¥JA) SI¥ FHL JA40 TINdVId LII0OI Q18

A’ (dOLWAW) YIS @98

ANI Q6L

T+1LINSHY ¥YAT @8L

X' (dOLWEW) YIS @LL

LINSHIY ¥YAT @9L

AVHYY NI AWYN THHVYT ¥dL4Y LSAL HNTVA YIDILNI HIOLS ‘¥IddVT AAT OANIL @SL
LINSHEI NI HYOLS ANV HNTYA ¥IEWAN IIDSVY HLVINDTIVO ¢DIATYA ¥SC @vL

T+dWdL VYIS Q€L

2% DAY @TL

TIAVI<# VAT QTL

dWHEL YIS @0L

T+XI0M DAY @69

010 989

YIEWNN IIDSY OL INIOd OL ¥ILNIOd dWAL dn LIS TIIVI># VAT 9L9

(434409 TAEVT NI) ¥IGWAN IIDSY J0 NOILVYDOT OL LNIOd ‘T+MM0M ALS @99

*EDIYHL ANI <‘ANI @S9

0S ‘LNIWNDYY ¥ TAAYT NHIMLIAL (=) °SYVHD HIYHL FJIV HYHHL ‘ANI @%9

(ST = TAEVT) INIWNDYV HHL INO FINDIJA OL CIIN IM ‘HSIMITHLIO <ANI Q€9

*MOTIE INILNOY IIXA ALYNOA OL 0D OS ‘dn 9HYIA XHH ‘OINIA INd 979

*d3A0 dIMS 0S ‘ENILNOY MSIANI A€ CQITANVH AQVIYTIV SYIGWNN XIH *OVTIXIH ¥YAT GT9
dNTYA ILNIWNDIVY HIOLS dTINOHS FIM dOLWAW WO¥A ¥¥A MOH SN STTIAL *ULJEVT ALS 099
A3A TYN0OF @6S

(ST = TIEVT) 3YHH SIAJAL ILVNOT ITANVH -—-———-————-——- ¢ 689

¢ 8¢

||||||||||||||||||||||| TYAT OL NINLIY *LIJOI dWL @8S

96

Data Base Management

.
.

Equate and Array

XOHAW dINd

AVYdY NI HLAE T NMOd 0D FSIMYFHLO <AVVYVd VAT

*HWYN ¥ 40 LY¥V¥LS JHL OL 10D IA,dIM ‘SHEX AT <‘INOANNOA IWd

(IWYN THEYT 40 L¥VLIS) 1dS 1LId HL/L ¥ 304 MOOT ‘X’ (AVI¥Y¥d) VAT ¥Yd1

’
.

2% AdT

T+AVIYVYd YIS

g# Dds

T+AVdYVd YA

AVYdVYd VYIS

Z# 0ds

AVddvd vaTtl

(Td9VYT ¥ JAC ANTYA YHDIAINI HHL LSVd) AYOWIW NI SHILA ¢ NMOA 09 DS

OddZ OL YHLNNOD HZIS IWVYN TIIVI LIS *‘@# XAT

(d0IML LI ANNOJA ¥O) THLEVT HHL ANNOA HM 41 MOIHD ‘0S JAI ‘IANOAY SDO4
T+AVddvYd DdS

T+dOLWINW ¥YdT

AVYddvYd DOdS

AYYYY JHL A0 WOLLOY HHL LV d¥,3M AT HIS OL MOIHD ‘dOLWIAW vAT

IWYN THdYT JO0d DNIMOOT IYVYLS +<DAS MITLIVLS

OVTAANNOA VY.LS

ANNOJA HOLVYW ON JAI 1SdL IWd ¥0d dn LIS ‘Jds# VAT

dvdodd dsr

T+AYYYVYd YIS

AVYYY THLIVT ¢ T+dOLAVYYY VYAT

AHL NI QYOM ISIHOIH HHL OL INIOd AV¥YVd VW ‘SCYOM ¥HHIO NI ‘AVIIVd VYIS

(AV¥¥Yd) ¥YALNIOd DIWYNAJ HHI OLNI dNTVA AVI¥V-J0-dOL ILNd:dOLAVINY VAT AV¥YY
(z SSVYd ONY T SSVd HLO"® NI dIsn)

*LINSHEY NI dNTYA SLOd ANV JTdVL TIEYT HONOYHL SMO00T ,AVddY,,

o~ s

gec
28¢
gLe
29¢
2S¢
ove
gec
gec
g1¢
29T
76T
28T
OLT
g9T1
PST
2v1
PET
2T
OTT
201
26
28
gL
29
2s
2%
Q€
gc
2T

Aeiry *7- weidoig

B~
(o)}

Equate and Array: Data Base Management

SUYOM dSHHIL I¥ ODNIMOOT HNANILNOD : TWMT OHd

NHHL ‘d¥OM ¥3JA4NE HLIM SHAYOV TTILS QIOM AVIYVY JAI ‘X’ (AV¥YYd) dWD

XNI

1adv1 d1dH ,¥ddddnd, FHL J0 NI FHL LIX ION ‘¢

LIANNOA DD

(+30’) @ IIDSY NVHIL ¥IMOT ¥ALOVYVHD V S,LI AI HOLVW V S,dJTHL ¥O0 ‘8¥# dWD
HOLVW Y dNNOA HA,HM NIHL ‘(@) QYOM FHL 40 dNA HHIL IV 3¥,dIM 4TI <LIANNOCA OdHd
TAEYT ATIH-¥d440d MDAHD ‘A ‘¥ddaAng val

ANI TWAT

ANI HHL ¥0d HILYSNAJWOD OL XIANI HHL YIMOT :¥dV¥dDAd dSC

ANI

WHHL JIONDI OL ¥dQ40 NI X dSIVY OL JdHN L,NOd 3M I,NOd AHHL JAI :TWMT Odd
¥d44Ng dHL NI FIWYN HHL d¥04dd FAW0OD) ¥0 # LVYHL SNVYIW SIHL:5VI14dNd vadT

T# XdT1

LI YIGWIWIY ¢ T+XMI0M XIS

1 A9 YdILNNOD HIONAT FSIVE *XNI HIOWMT

*d¥0M LXAN ONIJ % dTEYL FHL NI NMOd 09 ‘HOLVW &L,NAId LI 4TI ‘¥IAOLIVIS dWCL
AIHDOLVW ¥HALLAT LST AI ‘QIOM THIL IV ATISOTD TYOW MOOT *TJOWMT OFd

ayoM LADYVL HHL J0 ¥ALLAT IST HHIL HLIM ¥YALLAT LST HHL FIVAWOD <MIOM dWD
X' (Avddv¥d) ¥YdA1T

T+1Ld VYIS

T+AVYddEYd ¥dT

NOILVYDOT ONILIVLIS S,LI ¥YIIWIWIY ‘Id VLS

AVY¥Y FHL NI JWVYN TIEVI ¥ dEILVYOOT HA,dM ‘AVYdVd VAT INOANNOA

dvdT dWre

VALNNOD AZIS FAWYN TIEVYT ISVYIIDNI *XNI
AYddvVYd DdHd XOHAW

T+AYddvYd Ddd

209
065
285
QLS
295
9SS
ovs
9€S
@cs
91S
00S
gev
287v
QLY
297
2sv
ovvy
OEY
2Ty
o1V
207
26€
28¢€
OLE
99¢
PS€E
4743
gEE
9C¢E
21¢
20€

98

Data Base Management

.

Equate and Array

odnasd < ¥O > fzoav AN

OVIJ4LXg ¥dT

*LONYLSNI HONVHE JAI MDIEHD {ZOd¥ 0dd

OT# dWD

T€# ANV

do Ya1

iv¥1d

¥1d TINOAY

dOINJd dSr

dOVYSSAW ANNOA ILON LNI¥Yd ANV TT13d SNIY {SSHIWINJId ¥SCe
T+dWIL YIS

dYTION<# ¥YdT1

dWHL YIS

dVYTION> # ¥dT

HAOVASINYd dSr

ANITINIA dSC

(SS3¥UAVY ALALD-¢ ¥ SY LI LVAdL) -WT9YL NI LON TIgVT ‘ONI¥Yd ¥dSL XIAY
(S€ ¥O ST/VYSONI dSIVY) JANIAIAd d9 IIX LON IHOIW ‘SS¥Yd IST NO :TdNOAY 0Odd
dOVSSHW JOod¥d INTJdd ANV dYAHY 0D --SSVd dNZ *‘XTIAY INd
SSvd VYd1 1dv¥

*IYAE OL NINLId *I71dM ST TIV fSad

7ddY1 dHL ANIJA L,NAId *TdY IWd

OVTAANNOA VAT ANOAY

AVdYY HHL NI J3OM YIHLONY A¥L *MTIIVYLS dWL

(3NTYA MOTId ‘OSTIVY LI ¥IMOT TTIIM MILYVYLIS) T A€ YIAINIOd ¥AMOT ‘¥v¥dDId JSC
T+AYYdvYd VYIS

T+Ld VA1

AYddvYd YIS

YAINIOd OLNI *¥ddV¥ JI¥VIS S,Qd0M SOOIAHYd INd *Ld ¥YAT ¥YIAOLIVIS

||||| NMOQ J¥OM LXAN IV MOO0T CS ‘HDLYW ON —==————————m e

P16
206
268
288
aL8
298
2s8
278
7R S]
2c8
P18
208
26L
28L
aLL
29L
2sL
ovL
geL
gCL
P1L
PaL
269
289
aL9
299
259
2v9
PE9
PCo
219

99

Data Base Management

.
.

Equate and Array

T+WNANAAVY ¥adT

LTINSHY YILS

LTINSHE DAY

WANAAvy Va1

I1nSad OL ,WNNAQY, JIEWAN + FHL dd¥ $DTID

aNdI¥vy 0dd

dO 0andSd + NOILIAAV Od <¢95VYTJASNId VAT OWdWD

LTINSHY YIS

ILAE MOT OLNI HLXE HOIH HYOLS ‘T+LTINSHI VAT

ANHIY dNd

Z# dWO

INIId0dNIASd > ¥0 < II SI ‘OWdWO Odd

OVTALAE VAT

T+ILT1INSHE YIS

X' (Avy¥v¥d) val

ANI

LTINSHY YIS

LINSTM NI HOTYA S,TddVYT 27g¥YL LNd ‘A’ (AVddvYd) VAT 404
ANT

J04 03d

) UNY # ¥0d ALVYSNAJWOD :95V¥TANd vdT

T+MI0M AdT XA04d

gvyI1dnd dsr

HOVSSIW YOou¥d THLVT NOILYOITANA INI¥d ‘@ NVHL Y3HOIH 41 ‘XJ0d Odd
(HOLVW LS¥Id) O¥dZ Ol DYTA HASIVY <OVTIANNOA ONI JdANNOA
HOLVYW AdTIVd {dHAOLIYLS dWC

(TIVd A7TNOM NI¥d/INI¥d) °“HOLVW VYV XAJAINDIS O TYNdd ISNW AFHL ‘JAANNOA 0Fd

HLONAT q4OM LHOYVYL LSNIVOV HIONAT THLVYT MDHHO ! T+MIOM XdD LIANNOL

SOML dWrL Z0da¥
SHHYHL dWC

geet
P1CT
20CT
0611
28T1I1
OLTT
@9TT
OSTT
Y11
PETT
PCT1T
Q11T
2011
2601
2801
oLOT
090T
PSoT
Y01
PEDT
9201
9101
0001

P66

286

gL6

296

2s6

ove

2€6

9C6

100

Data Base Management

Equate and Array

IAS'INAJO:A ITId" 0FF1

101 0FFT dul] d3ueyd ‘AeLIy JO UOISIOA LB}y 3} 104

INIdO dTId* @GPPI
||||||||||||||||||||||||||||||||| ‘SLd PEVI
dDLNId dSC QCvT

SSHWLNId dSC GIvT

T+dWAL YIS @9%T

gYTdNAdW<# YdAT @g6€ET

dWHL YIS @8€T1

ayIdNdn># YAT @LET

HDVSSHW THHYT dNd LNI¥Yd ANY TTdd ONIY ‘ONI¥Id d¥SL d¥1dnd @9€T
||||||||||||||||| ¢ PSET

SILd @VET

AVddVYd Ddd DAAW @EET

T+AVYIYd Ddd @€l

DHAW ENd @TET

T A€ YHINIOA AVIYY ¥YHAMOT :AVYAVYd VAT ¥YdOIA QPRET
||||||||||||||||||||||||||||| ¢ @6TI

(A¥¥¥V NI FANILNOD OS) Sdnd ¥O0J MOOT ‘Z SSYd NO ‘dIAAOLIVIS dWL XNIMY @8ZT
TYAd OL MDvd 09 <Sid @LCT1

XNAIYY dNd @9CT

SdNd ¥od MDHHD ‘SS¥d ANZ NO ‘SSvd VAT ANIIVY @PSZT
T+1LINSHY VIS @¥%CT

T+IINSHET DAY @ECTT

101

. .’ .I . l.

4
1

Chapter 5

Openl, Findmn,

Getsa, and Valdec:

I/O Management and
Number Conversions

EEEERE reEPer

Openl, Findmn, Getsa,

and Valdec:
I/O Management and
Number Conversions

[/O (Input/Output), a computer’s method of communicating
with its peripherals, is one of the most machine-specific and
potentially complex aspects of machine language programming,.

Sending or receiving bytes to or from disk or tape drives
and sending bytes to a printer are the most common I/O activ-
ities. A large part of a computer’'s ROM memory is usually de-
voted to managing 1/0O.

/0 is machine-specific because each manufacturer invents
his own way of managing data, his own variations on the
ASCII code, and his own disk or tape operating systems.

And I/O is complex because printers and disk and tape
drives differ greatly in such things as how fast they can store
bytes, how many bytes they can accept, and esoteric matters
like timing, error checking, and special control signals.

ML programmers are frequently advised to perform I/O
operations in BASIC and then SYS, CALL, or USR into the ML
after the hard part has been accomplished by the computer’s
operating system. This works well enough with small ML
projects. But it can become awkward in a large ML program.
LADS itself must open and close disk files pretty often. It
would be inefficient to require LADS to fly down into an at-
tached BASIC program for this. Also, large ML programs are
easiest to save, load, and use if they are written entirely in ML.

Fortunately, we can access BASIC’s ROM routines from
within an ML program. Certain registers and pointers in zero
page need to be set up, then we can JSR to open a file to a
peripheral. After that, we can send or receive bytes from that
file.

Since these routines are so machine-specific, we’ll look at
the Commodore techniques in this chapter. See Appendix C for
an explanation of the Atari and Apple /O techniques.

105

Openl, Findmn, Getsa, and Valdec: /O Management

Commodore /0O

Some peripherals are intelligent and some are dumb. Com-
modore disk drives are highly intelligent—they’ve got large
amounts of RAM and ROM memory. One consequence of this is
that relatively little I/O computing needs to be done within the
computer proper. A Commodore disk drive is a little computer
itself. You can just send it a command, and it takes over from
there.

The tape drives, though, are dumb. ROM intelligence within
the computer must manage /O to tape. Some printers aren’t so
dumb, but since you can choose from so many different models
and brands, the computer just sends out a sequence of raw bytes
when you print to a printer. Your BASIC or operating system
makes no effort to control fonts, formatting, or any other special
printer functions. You are expected to send any necessary printer
control codes via your software. If the printer is equipped to TAB
or justify text, that’s up to the printer's ROM.

Openl

In the subprogram Openl, there are four Commodore-specific
subroutines. In many respects, they are identical subroutines.
Each opens a file to an external device in much the same way.
Only the specifics differ. The first subroutine, OPEN1, starts
communication with a disk file which will be read. That is, the
source code will come streaming in from this file so that LADS
can assemble it. This file will be referred to as file 1.

The second subroutine, OPEN2, opens file 2 as a write file.
If the user includes the .D NAME pseudo-op within his source
code, the results of a LADS assembly, the object code, will be
stored on disk in a file called NAME. OPEN2 makes the disk
create this file.

The third subroutine, OPEN4, creates a simple write file to
the printer. It, too, is similar to the others except that there is, of
course, no filename.

Looking at OPEN]1, the first event is a call to the CLRCHN
subroutine within BASIC. All I/O (including that to the screen
and from the keyboard) is governed by this opened-files concept
in Commodore computers. The normal [/O condition is output
to the screen and input from the keyboard. CLRCHN sets the
computer to this condition. It is a necessary preliminary before
any other opening or closing of files.

106

Openl, Findmn, Getsa, and Valdec: /O Management

Resetting the Disk Program Counter

Next we close file #1 (50-60). This resets the disk intelligence. As
we shift from pass 1 to pass 2, we've been reading through file
#1 to bring in our source code. On pass 2, we want to start all
over again with the first byte in the disk source file. It is nec-
essary to close, then reopen, file #1 to force the disk intelligence
to again point to that first byte in the file.

Next we must prepare some zero page file-manipulation
pointers. We store the file number to FNUM, the device number
(8 is the disk device number in Commodore computers) to
FDEYV, and the secondary address to FSECOND. All of this is
precisely what we do in opening a file from BASIC with OPEN
1,8.3.

Then we have to point to the location of the filename
within RAM. LADS holds filenames in a buffer called FILEN, so
we put the low and high bytes of FILEN’s address into the
FNAMEPTR. Then, at last, we go to OPEN, the BASIC sub-
routine which opens a disk file.

The four zero page locations and the OPEN routine in ROM
are all machine-specific. They are defined in the Defs sub-
program. OPEN2 is identical except for a different filename, a
different file number, and a different secondary address (which
makes it a write file).

OPEN4, too, is identical except that the secondary address is
ignored, the device number is 4 (for printers in Commodore
computers), and there is no filename.

Line 430 reveals a fifth zero page location which must be
POKEd before calling the OPEN subroutine in BASIC ROM. It
holds the length of a filename. (Opening to a printer uses no
filename, so a zero is put into FNAMELEN [430].)

Both of the other subroutines, OPEN1 and OPEN2, do not
need to POKE FNAMELEN. It is POKEd just before LADS JSRs
to either of them.

LOAD]I, the final I/O subroutine in this subprogram, is
used with the assemble-from-RAM-memory version of LADS. In
this case, the source code files are LOADed into RAM before
they are assembled. This means that we need to imitate a typical
BASIC LOAD of program files.

The LOAD subroutine within BASIC requires that the
LOAD/VERIFY flag be set to LOAD (rather than VERIFY), that
8 be declared the device (disk), and that the name of the pro-
gram to be loaded be pointed to. Then the machine-specific

107

Openl, Findmn, Getsa, and Valdec: I/O Management

LOAD routine within BASIC is called. After that, the program
(the source code) is loaded into the normal RAM address for
BASIC programs.

Findmn: Table Lookup

This subprogram is similar to the Array subprogram: Both look
through an array and find a match to a “source” word. Yet
Findmn is simpler than Array. It doesn’t need to check for
word lengths. Also, the numbers (the values) associated with
the words in the array are more simply retrieved. Findmn tries
to find a mnemonic like LDA or BCC in a table of all 56 of the
6502 machine language mnemonics.

This table (or array) of mnemonic names is in the sub-
program Tables at the very end of LADS source code. The
mnemonics table starts off like this:

50 MNEMONICS .BYTE “LDALDYJSRRTSBCSBEQBCCCMP
60 .BYTE “BNELDXJMPSTASTYSTXINYDEY

and continues, listing all of the mnemonics.

This array of mnemonics is simpler and faster to access than
our array of labels because it's what's called a lookup table. It has
four characteristics which make it both easy to access and very
efficient: It’s a fixed field array (all items are three bytes long),
it’s static, it's parallel, and it’s turbo-charged.

Charles Brannon, my colleague at COMPUTE! Publications,
is a proponent of what he calls “turbo-charged code.” He writes
an ML program, gets the logic right, and then takes a cold look
at things, especially at heavily used loops. Is the first CMP the
one most often true in a series of CMPs? Or would it be faster to
rearrange these CMPs in order of their probability of use?
Should an Indirect Y addressing mode be replaced by an even
faster structure such as self-modifying Absolute addressing?
Would a lookup table be a possible replacement for some com-
puted value? Sometimes, small changes can result in extraor-
dinary gains in speed. For example, after LADS was finished and
thoroughly tested, it took 5 minutes, 40 seconds to assemble it-
self (5K of object code).

A cold look, about five hours of work, and the resulting few
minor changes in the source code brought that time down to its
present speed for self-assembly: 3 minutes, 21 seconds. (This
speed test was conducted with only the .D name pseudo-op ac-
tivated, on a Commodore PET/CBM 8032, with a 4040 disk
drive, and involving far fewer comments than found with the

108

Openl, Findmn, Getsa, and Valdec: 1/O Management

source code as published in this book. The use of additional
pseudo-ops, additional comments, or other computer/disk
brands and models will result in different assembly speeds. The
Apple has a faster disk drive, for example, and the LADS Apple
version is even faster than the Commodore version.)

How does this mnemonics lookup table differ from the label
array? They’re both arrays, but the label array is a dynamic array.
It changes each time you reassemble different source code. A
lookup table, by contrast, is static: It never changes. It’s a place
where information is permanent and lends itself, therefore, to a
bit of fiddling, a bit of turbo-charging.

A Special Order

First of all, in what order did we put these mnemonics? They're
not in alphabetical order. In that case, ADC would be first.
They're not in the numeric order of their opcodes either. Using
that scheme, BRK would be first, having an opcode of 0. Instead,
they're in order of their frequency of use in ML programming,.
The order wasn’t derived from a scientific study—I just looked at
them and decided that I used LDA more often than anything
else. So I put it first.

The reason for putting them in order of popularity is that
every line of source code contains a mnemonic. Every time a
mnemonic is detected, it must be looked up. Since this lookup
starts with the first three-letter word in the table (all mnemonics
are three letters long) and works its way up the table, it makes
sense to have the most common ones lowest in the table. They'll
be found sooner, and LADS can continue with other things. It
turns out that rearranging the order of the mnemonics in the ta-
ble resulted in an increase in speed of considerably less than 1
percent, but everything helps. The principle is valid, even if it
doesn’t accomplish much in this case.

The second quality of a lookup table—parallelism—is rather
significant to the speed of LADS. Right below the MNEMONICS
table in the Tables subprogram are two parallel tables: TYPES
and OPS. (See the Tables subprogram at the end of Chapter 9.)
TYPES can be numbers from 0 to 9. It is handy to group
mnemonics into these ten categories according to the addressing
modes they are capable of using. Some mnemonics, like RTS,
INY, and DEY, have only one possible addressing mode (they
take no argument and have Implied addressing). They are all la-
beled type 0. The branching instructions, BNE, BEQ, etc., are ob-

109

Openl, Findmn, Getsa, and Valdec: I/O Management

viously related in their behavior as well: They are type 8. This
categorization helps the Eval subprogram calculate addressing
modes. This table of TYPES parallels the table of MNEMONICS.
That is, the first mnemonic (LDA) is type 1, so the number 1 is
the first number in the table of TYPES. The fifth mnemonic in
the MNEMONICS tables, BCS, is paralleled by the fifth number
in the TYPES table, 8.

The Efficiency of Parallel Tables

What's the value of putting them in parallel? It allows us to use
the Y or X Register as an index to quickly pull out the values in
any table which is parallel to the primary lookup table,
MNEMONICS. Once we've found a match within MNEMON-
ICS, we can simply LDA TYPES,X to get that mnemonic’s type.
And we can also LDA OPS,X to get the opcode for that mne-
monic. All this works because we INX after each failure to match
as we work our way up through the MNEMONICS table. X will
point to the right item in each of the parallel tables, after we find
a match.

But now on to the actual lookup techniques which are used
in the Findmn subprogram. As usual, we set our index counters,
X and Y, before entering a loop. X gets $FF (40), so it will zero at
the first INX at the start of the loop. Y gets 0. You can tell that
this was the first subprogram written in LADS. Nowhere else
can we achieve the elegant simplicity of calling a loop LOOP
and the end of the routine END (390). After using them once,
we’ll have to come up with other names for loops and exits.

Anyway, we enter LOOP and look at the first character in
the MNEMONICS table (60). If it matches the first character in
the buffer LABEL (holding something like: LDA 15), we jump
down to look for a match to the second, and then the final,
character in the mnemonic. Otherwise, if there is no match, we
INY INY INY to move up three characters in the MNEMONICS
table and prepare to compare the first letter of the second mne-
monic against our source mnemonic.

When looking something up, it saves time if you just test
first characters before going on to whole-word tests.

Assuming a first characters match, MORE (150) compares
the second characters. If they match, we go on to MOREL. This
time a failure to match results in two INYs because there was
one INY at the start of MORE. MOREI tests the third characters.
If it fails, we only need one INY. In each case, a failure returns

110

Openl, Findmn, Getsa, and Valdec: I/O Management

to LOOP. LOORP itself fails when it has exhausted all 56
mnemonics in the table and no match has been found. Since
each attempt causes X in INX, we can test for the end of the ta-
ble of 56 mnemonics by CPX #57 (120).

If we have exhausted the table, we jump back into the Eval
subprogram where label definitions are evaluated. Since we
didn’t find a mnemonic as the first thing on a source code line, it
must be a label like:

100 LABEL LDA 15

or
100 LABEL = 75
JMP for JMP

Note that we don’t need to PLA PLA the return address of an
RTS off the stack before JMPing back to Eval from this sub-
program. That’s because we JMPed here from Eval. Both possible
returns to Eval will be JMPs. That makes it possible for us to
JMP directly to Findmn from Eval. For speed, we can JMP back
to two different places within Eval, depending on whether we
did or did not find a mnemonics match.

Finding a match, however, sends us to the FOUND sub-
routine (300) where we check to see if there is a blank character
or a zero (end of line) following the supposed mnemonic. If
there isn’t, that means we’ve got a label which looks like a mne-
monic: INYROUTINE or BPLOT or something. We can't let that
fool us. If there’s a character in the fourth position, such words
reveal themselves to be labels. If so, we go back to Eval via
NOMATCH.

But let’s say that all was well. It’s not an address label, it's
not an equate label, it's not a label disguised as a mnemonic.
We've located a true mnemonic. All we have to do is pick its
TYPE and OPCODE out of their tables and store them in their
holding places, the variables TP and OP, and JMP back to EVAR
in Eval. EVAR is a subroutine in Eval which examines the argu-
ment of a mnemonic to determine its addressing mode.

Getsa: The Simplest Routine

This subprogram has only one mission: to point to the starting
address in the source code program. Here’s what it points to:

10 *= 864

111

Openl, Findmn, Getsa, and Valdec: I/O Management

Getsa pulls off the first six bytes (in a Commodore disk
program file) so that it can check to see if the seventh byte is
the * character (120). If so, Getsa returns to the calling routine
in Eval (200). If not, it prints the NO START ADDRESS error
message and goes to FIN (190), the shutdown (return to BASIC)
routine.

Conditional Assembly

There are two fundamentally different versions of LADS. The
version presented as object code (to be typed in) in this book
assembles from disk-based source code. You create BASIC-like
“programs” on disk, and then LADS reads them and assembles
them without bringing any source code into RAM memory.

An easy modification to LADS, however, will allow it to
assemble directly from source code within RAM memory. A
few trivial changes to LADS" own source code and you can as-
semble a new, memory-based LADS. These changes are de-
scribed between lines 430 and 640 of the Getsa source code
printed at the end of this chapter. The changes are described in
greater detail in Chapter 11, “Modifying LADS.”

But this Getsa source code illustrates one way that your
source code program can conditionally assemble. Notice line 210.
The MEMSA and CHARIN routines below it will never be
assembled. When LADS sees the .FILE pseudo-op, it will im-
mediately turn its attention to the Valdec source code. .FILE
shuts down the current file and switches to the named source
file, ignoring any additional source code in the current file.

Thus, to assemble the “conditional” part of this source
code, all you have to do is move .FILE below the new source
code. See the instruction in line 580 of this Getsa subprogram.
That’s how you do it to create a memory-based version of
LADS.

Another way to conditionally assemble is to insert the .NO
pseudo-op, thus turning off object-code-to-memory-storage until
the .O pseudo-op turns it back on. You could write your own
ND (no storage to disk) pseudo-op if you want to control
assembly which is sending its object program to a disk drive.
Another pseudo-op you could write would be something like
NA for No Assembly which would cause LADS to simply
search down through source code (taking no actions other than
building the label array) until it located a .A pseudo-op, turning
all assembly back on. These .ND, .NA, and .A pseudo-ops aren't

112

Openl, Findmn, Getsa, and Valdec: I/O Management

built into LADS, but would be easy to add if you felt you'd have
a use for them.

Valdec: Number Conversion

Numbers such as the 15 in LDA 15 are held in ASCII code for-
mat within source programs. In other words, when LADS pulls
in the 15, it doesn't get the number 15. It gets 1-5 instead. It gets
the ASCII for 1 and the ASCII for 5: 49 and 53 decimal. (As an
aside, 1 and 5 are $31 and $35 in hex. It's pretty easy to men-
tally convert ASCII hex to numeric form. Just drop the leading 3
from any hex ASCII number.)

What Valdec must do is turn 49 53 into the two-byte num-
ber OF 00 which the computer can recognize and work with.
This is just a bit more complicated than it might seem. The
complexity comes from the fact that the 1 in 15 is really 10 times
1. The Valdec subprogram which handles this ASCII-to-integer
translation will have to multiply by 10,000 or 1000 or 10 or 1—
depending on the position of the ASCII digit. We don’t need to
worry about numbers higher than 65535 since ML doesn’t often
need to calculate higher than that. All addresses that the 6502
chip can reach are within that range, and two bytes cannot hold
a larger number anyway. Therefore, multiplication by 10,000 will
take care of any case we might come across.

And since 10,000 is just 10 X 10 X 10 X 10, we'll really
only need a way of multiplying by 10 a maximum of four times.
So all that’s really needed is a multiply-by-10 routine that we
can loop through as often as necessary. Lines 400-550 perform
this operation.

But let’s start at the start. Anything in LADS which calls
upon Valdec for its services will have already set up the TEMP
pointer to point to the first ASCII character in the number to be
translated. Also, the number will end with a 0 delimiter. (This
isn’t the ASCII 0, which is $30. It's a true zero.)

Determining Length
After Valdec finishes, it leaves the results in the two-byte register
called RESULT.

First Valdec finds the length of the ASCII number (50-90).
Our example number, 15, would be two bytes long. Its length is
stored in the variable VREND, and we then clean out the RE-
SULT register by storing 0 into it (130-150). Then X (not the reg-

113

Openl, Findmn, Getsa, and Valdec: I/O Management

ister, the variable) is stuffed with a 1 (170) so it can tell us how
many times to loop through the times-ten routine for each digit. -
As we move from right to left, reading first the 5 then the 1 in
15, X will be raised. Coming upon the 5, X will be 1, and we'll
perform no multiplication. The first thing the loop for multiplica- -
tion does is DEX, so 1 becomes 0 and we exit the loop (250).

Coming upon the 1, X will tell us to go through the times-
ten routine once. In other words, we multiply 1 times 10 for a e
result of 10. This, added to 5, gives the 15 we're after.

But let’s back up to where we were, at VALLOOP (180). We
can take advantage of the fact that the ASCII code was designed
so that the lower four bits in each ASCII numeral byte hold the
actual number: $35 stands for 5. How do we extract the number
$05 from $35? We could subtract $30. Even simpler is AND
#$0F. AND turns bits off. Wherever a bit is off in the mask (the
#$0F in this example), the bit will be off in the result:

$35 (ASCII for 5)
AND OF (the four high bits are all off,
the four low bits are on—they
have no effect)
$05 (the answer we're after)

00110101 ($35, prepared to be stripped of its high bits by)
AND 00001111 ($0F, the mask, turning bits off where the 0’s
are)
00000101 ($05, leaving the number we want)

Here we load in the rightmost character, the 5 in 15, the
$35 in $31 $35. And strip off the 3, leaving the 5. Then that's
stored in two temporary variables: RADD and TSTORE. Next we
fill both of the high bytes of these variables with 0 (220-240).
That makes them officially correct. Nothing lingers in their high
bytes to confuse things later when we perform two-byte
addition.

Now that our digit 5 is safely tucked away, we need to mul-
tiply it by 10 as many time as necessary. DEX lowers X. With
this first character, X becomes 0, and we BEQ to the exit (330).
When we come through this loop next time, holding the 1 in 15,
X will become 1 and we’ll therefore JSR TEN (270) one time,
making 1 into 10.

Keeping Track of Position
After the subroutine TEN has multiplied the number in RADD -
(named for Result of ADDition) by 10, we transfer the result

114 -

Openl, Findmn, Getsa, and Valdec: I/O Management

from RADD over to TSTORE (280-310). Why the transfer? Be-
cause in the 100’s position, a digit would need to be multiplied
by 10, twice. The 2 in 215 would have to be 2 times 10 times
10. So TSTORE has to keep a running total of the results
achieved by the TEN subroutine. TEN uses RADD during mul-
tiplication. Obviously, a second two-byte variable will have to
keep track of the total as, more than once, we multiply the larger
digits by 10.

Another running total, the result of all Valdec’s efforts, is
kept in the variable RESULT. That will ultimately hold our final
answer. But each time we achieve an interim answer on a single
digit, we JSR VALADD (350) to add the results of that digit’s
multiplication to RESULT (570-640).

Meanwhile, back up at line 360, we DEY to point to the
next higher digit, the digit next to the left. And DEC VREND to
see if we’ve reached the end of our ASCII number and cannot
RTS. If not, we go back up and load in the next digit, continuing
to add to the running total in RESULT.

The multiply-by-ten routine called TEN (410) is worth a
brief examination. Let’s imagine that we have put a 1 into RADD
(200) and we're going through the TEN loop once, multiplying it
by 10. We clear the carry. ASL shifts each bit in RADD (the low
byte of this two-byte number) to the left by 1. The interesting
thing is that the seventh bit goes into the carry. Then we ROL
RADD+1, the high byte, which rotates each bit to the left. This
is the same as the ASL shift to the left. The seventh bit pops into
the carry. But with ROL, the carry moves into the zeroth bit. A
combination of ASL ROL shifts all the bits in a two-byte number
to the left by 1:

Carry bit high byte low byte
0 00000000 00000001 (our 1 before ASL low byte,
ROL high byte)
0 00000000 00000010 (after)

You can see that this, in effect, multiplies these bytes by 2. If
we ASL/ROL again, we get:

0 00000000 00000100 (the original number, mul-
tiplied by 4)

At this point, our answer is 4. We've multiplied the original
1 by 4 with an ASL/ROL combination, performed twice.

Now we CLC again and add the original number (1) to the
current result (4), giving us 5 (460-520). It's easy to see that all

115

Openl, Findmn, Getsa, and Valdec: /O Management

we need to do now is one more ASL/ROL, which multiplies the
running total by 2 one more time:
Carry bit high byte low byte

00000000 00000100 (4)
+ o 00000000 00000001 (added to the original 1,

gives)
0 00000000 00000101 5)

then, we just ASL the low byte:
0 00000000 00001010 (10)

ROL the high byte (which has no effect on this small a number):
0 00000000 00001010 (giving us 10)

That final ASL/ROL multiplies 5 times 2, and we’ve got the
right answer (530-540). This trick—multiply by 4, add the orig-
inal number, multiply by 2—will work whenever you need to
multiply a number by 10. Other combinations will multiply by
other numbers. And as Valdec illustrates, you can calculate pow-

ers of 10 by just running the result through this TEN subroutine
as often as necessary.

116

Openl, Findmn, Getsa, and Valdec: I/O Management

"4AAV EWYNITId OL YAINIOd {MIJAWYNI VIS 06

NITId># YAT @82

aNODESd YIS BLT

Z# YA 99T

AZQd VIS 9ST

8% Va1 @YC

WANI VYIS @EC

(dNLES FWVS) TAOEY SNOILINIJHQ HES {4 VAT ZNEAO @2C
|||||||||||||||||||||||| ! g1z

(3000 LOELEO ONILI¥M ¥Od ITId WYMDOdd MSIQ SNIdO) ,dWYN,’'Z’8°C NIAO ! 90T
|||||||||||||||||||||||| ! 6T

SId 98T

ITId MIN ¥ d0 SN0 IVHL DISVE NIHLIM ENILNO¥ ‘NIJO ¥SL BLT
T+ILdIWNYNA YIS @91

NITId<# ¥aT @ST

*¥AAV AWYNTTIA OL ¥HINIOA! ¥IJIWYNL YIS ¥

"SQVT NI (NETId) ¥EJINd GWUN FTId OL ¥AINIOA IdS (NATId># VAT AVAWYN Q€T
*4aav X¥VANODIS {aNoDESd VIS B8TT

€4 YaT @11

“MHEWAN FDIAIQ {AEQd YIS 00T

8% YAT 06

$a11d {NONI VIS 28

T# Va1 oL

(LS¥Id LI ISOTD IM INd ‘MON LI NIJOIY OL OSONIOD JY,dM) ‘ISOTID ¥SL 99
T# TANNVHD FTIA MSIA NMOd ISOTD *T# ¥AT @S
(Q¥VYOHAEY WO¥d ILNANI ‘NIIYDS OL ILNdLNO) O/I TYWION HJYOLSHY +NHOY¥TD ¥SL INHIO @F

(WO¥d av¥dy SI FTI4 40 HJAL SIHL) MSId NO HTI4 ¥ NIAO
WNITIOS WOdd IAWYN YIAFLVHM, ‘€‘8‘T NZdO ,INIJO,

: B¢

o~ en
(S
—~

siopowrwo)) ‘Tuad() *1-g wreidoig

117

Openl, Findmn, Getsa, and Valdec: I/O Management

WYYdO0¥d ¥ NI SAVYOT LVHL OISV NIHLIM INILNOY ‘dVOT ¥SC
T+ILdIWYNA VYIS

NATId<# VAT

*¥daV¥ IAWYNITIA OL ¥YHILNIOd: dLAAWYNA VIS

*SAVYT NI (NIIIL) ¥3J4Nd IWYNITIIA OL VHLNIOA IIS NATIA># VAT
"HdHIWNN dDIAHA {AEIdd YAS
8# VAT

LAY SNILVLS HHL +LS VYIS
OYTd AATYAA/AYOT ‘DVTAAYOT VIS
2# vYAT

0/I TYWION HJYOLSHA :NHDITO IS, 1AVOT

(WYd OLNI dTIA dAJOD HDUNOS ¥V ‘dTId WYIHOdd ¥ SAYOT) , IWYN, davoT ¢
SRS

NHDY¥TD ¥SC

NAIdO dSr

NITINVNL VYIS

*O¥dZ OL HIONIT FWUYNITIA LIS OS IWYN dTIA ON SI HIFHL ‘@# VAT
Addd YLS

v# vAT

WANA VIS

NITAWNYNS LJdIDXHT ‘ILVWIOA HWVS :¥# ¥YAT PNIJO

NHDYTO ¥sr
NIdOo dsr
T+3LdIWYNd VIS
NATIA<# VAT

209
265§
286§
gLS
29S
2SS
(2374
2€S
@Cs
Q1S
292s
oev
28¥
LY
29v
osv
ovv
eV
2Ty
21V
20V
P6€
98¢
QLE
g9¢€
gSE
ove
REE
gC¢e
gT€
20¢

e o]

—

Openl, Findmn, Getsa, and Valdec: 1/O Management

HI04<# 9d7 o1

d0Wd Y1S 002

GIGH>% Y071 JLAHOH 061

3Mid 1NdNI WOH4 3iA9 3INO av3d §f 581
H3ENIX- 0L G3033N 10N N340 £Sid PN3IL0 081
Sid 041

NIHT FTI4 IN4inN0 138 fZN3404 ONI 0971
OMAHOWS HSC OS5

T+d0Okd Y1S Oob1

LTHMNGOC# 9aT
d0Wd Y18
1I8MNDD=# ©d1 ZN3d0
3714 1N4iN0 N340 ¢
S14d
N340 CGL 3714 iNdNT 135S fIN3-H04 ONI
CHAEOWA HST
T+40W4 Y1S
AYINNSO<# ©vd
d0kld 918
A93IHNLS0># ©a1
350710 M50
N3-S0 AQY3IMNTIY 41 314 350710 (14 vaT
MHIHTD HMSC TN3dO0

o<t
(57t
OTt1
501
GOl

06
08
oL
09
05
(8374
oL
0oz

or

3714 iNdANI N3OS 5
9[ddy ‘qyuad(Q -7-g wreidoag

NWANIdA dTIId°
Sy

T+WINd VIS T+L¥VLSWYE VAT:WHWd VIS:JYVLSWYY ¥AT
NHOYTD ¥sr

5

2€9
P9
ST9

119

Openl, Findmn, Getsa, and Valdec: I/O Management

M3S010=# Yadl
iI%¥3 ion 41 f¥3S0TD 03d
N340 SI 3114 IN4in0 41 332 04 #03HD fgnad04 9d7 2350710

I1i4 1N4inD 3spo1g ¢

SiM

G3S0710 0L 314 iNdNI 135 fIN340H Yis
O# Bai

HAMGWA MSP

T+40ld Y1S
43507104 # vd
4004 918
H3ISO013># vd7

LIX3 10N 41 :+3S0O1D 934

NI4T SI FII4 iNgMI 41 323 01 A33HD FINS40d vdt 1350710
3714 1NdNI 350710 ¢

Std

HAMAWA MSC

T+d0W4d Y18

SidM<# ©an

40W4d 1S

HTiHM># ©d7

Higddam Y1S I1AdHM

3514 LN4iN0 0L 31AS 3INOD JLINM ¢
SiMH

Jisd 3HL 139 AT (WHY) ©9a
80# AdT

WHYd ALS

T+WHPd Y185

Jass 450

HAHOWA HST

I+d0Wd Y15

120

Openl, Findmn, Getsa, and Valdec: I/O Management

Olld
NITTWSNA

A (WHY)

135 119 HOIH 3IHNS JH4PW (08%#

WHYZ4 NT JWYNITIIS 1IN NIHL SA (dW31) 9ai
O0#

NHdYd

T<#

3nNg
Add
ANI
Y1is
YH0
OWd
AdT
andg
AdD
ANI

S3094S HLIM T1I4 1SMIS A" (WHYd) Y15 KN4Advd

O9%#

OOH
T+dW3L
NITId<#
dW3L
NITId>#
T+WHGA

A (4OWA)

WHY A
AT (HOKWD)

9a
AQT
915
van
v1s
van
vis
va
ANI
v1s
oa

314 Y313WENYd OINI JWUNITIH iNd 80# Ad OMAMAWA
HIINIMA HGd J3d33N 10N 350710 £S1M4 +3S010

d3s0670 91 3514 LNdinD 135S fZN3d04d
O#

HAHAWA

T+d0Wd

M3IS010<#

40k 4

S1H
v1Ss
va
85T
v1is
oat
vis

008
061
08L
0LL
09L
[s1=¥2
ovL
0sL
ozL
3 92
00L
069
089
049
099
059
ov9
09
6Z9
019
009
065
085
045
095
0S5
oS
0£5
0ZS
015
005

121

Openl, Findmn, Getsa, and Valdec: I/O Management

1IX3 10N 41 £1N013 3Nd

T# dW3

T3NNYHD INdNI 41 335 0L A33HD fINdO wai
938 A % X INYS EX XIS

TA ALS NIMYHI

TJ3INNYHD N30 ATTANIHMND WOH4 31A49 3NOD 139 &
Si1d 01N0XHJ

T+dMSD Y1S

OMINYd<# 90T

amsd Y1s

HIINIHS 01 iNdinN0 135S :0dINdd># 9071
0inNo=-HI 3N

M3HL H3ININA 41 fv# XdO

ONdO Y91iS

gX1 LNOAHD

TINNGHD 1Nding iN3YEHND 138 8
SiN

INDDG XiS WNIAHD

IEMNNGHD LNANT INIYNND 43S ¢
S1H
HIOUNUIW 314 01 MSC (20T d4SC
0O0# Xdn
NSkWNY4d 3INA
BI# AdD

ANI
AT (WNYd)Y BI1E
WdYd DINI SWHYd Ind PA " (dOWdy 907 NSkddd
00# Ad7]
WHTd ALS
T+WdYd Y15
J1314 H3i3W9dY4d 01 S83IHGEIY i8Y15 i35 *00L$ 450 dAHAWA

0]
]
(]
z
[

0801
0L0T
0907
0G0T1
[0 {e R}
(5500) §
0£0T
0201
01071
0007
0b6
086
Olb
026
056
Své
ovb
0L
oz

oZé
016
0045
068
088
0L8
098
058
ov8
0s8
OzZ8
o118

122

Openl, Findmn, Getsa, and Valdec: I/O Management

OMINMA MSP
HIINIMA Ol INIMA “S3A £19 A1l

ZLXN 3Nd

t# dwd

HMIINING GL 41 335 01 A03HD SONDO Ya1 TLXN
S1M

¥ van

INOTLON IWA

NOMiINYd Yd7 INOALON

HINM4 Y15 1N0Md

OT# vdl

1N0¥d 3NAF

ass# dwd

INILNOY LN4IN0 HILNIMA 1Y Y15 OHINMA
1N0LD dWe

J1AHM MSC

JiAd 3HL JLIHM “S3A L1¥ vdl

TLXN 3nd

TO# dWD

3314 LN41N0 0L 41 335 04 A03HD fONDD 9a
1Y YiS

934 3AYS :TA ALS 1INIMd

TJANNYHD N3HG ATTLNSHNMN3 0L 31AH 3INO LNdino ¢
SiM

TA AQ1 1NOL1D

SiM

d7d

X Xal

TA A0

dHd

JLAHOY HSC

08ET
0LET
09<T
08T
oreT
0EET
0 Tt §
OIE£T
00LT
06T
08l
oLZT
0921
05271
ovZ1
oLt
0Zct
(] A §
00Z1
0617
oatr
OLTT
G911
0911
OST1
OvTT
(S
0ZT11
OTITT
0011
0601

123

Openl, Findmn, Getsa, and Valdec: I/O Management

1N0 3Ng

HidiX1l dWd

S00Z% 1V HldiX1l SI f00%# vdl
1Y 915 39d3m

3903M JISvd ¢

MIINIMLS 39 1SNW “ON £v3S0T1D dWe +712
2350710 duWl

10 3INA

&3I4 INdIN0 3IS0T10 “ON fZ0# dWD Z710
1350710 dWrl

314 1NANI 35070 £2710 3Nd

T0# 4dW3J 350713

537114 N340 350710 ¢

S1H

£8%# dWD

000J% Yd1 ATALOLS

A3Ad d40LS HOd4 HI3IHIE

Sid

T+dMSI V1S

dd4s# vadl

amsd vi1s

INILNOY 1N41iN0 13539 f0d4%# v9dTl
INdD Y1S

ONdO Y18

OO# YdT NHIWTO

STINMPHD 1N41N0 aNg 1N4NI 1Y 380710 ¢

1No0L3d dWre

1NoJd dsr

08%# YHO

NIIMOS 0L 39 1SNk “ON fTY 9d1 ZLXN
1N01Dd dWf

oLt
0LLT
OZLT
OTLY
0O0LY
0191
0091
065T
08S1
0/ST
0951
0GST
SPoT
OvST
0£ST
0ZST
SISt
O1ST
00ST
o611
o8tY1
OLtb1
o2vT
123 At
orb1
oebT
(0394 §
oZvt
otvT
oov1
0651

124

Openl, Findmn, Getsa, and Valdec: I/O Management

N33HIS 40 401 01 3WYN HIASNUHL

A.M\ " zmc "

Af0ODbS$ YIS

08%# YHD

WSy a3d

O# dWD

EACPOZES YA WYUNHAL
S3A fo# Ad7

1IX3 “ON (71N0 3NA

ZE# dW3
£0Z2% ©an
T1NO 3INAG

LL# dWD
20Zs 9an
T1NO 3INg

<8# dWD
10Z2% vdn

T1NO 3INg

So# dWd

1I SI :002% Yd1 1NO

NITISNI 334
) UESH dWO
1IX3 "ON f1n0 329

SHIFWNN ¥ LT SI 4Z2%# dWID WNNTSI

HHOLXN dWr
HildiX1l INI
WNNTSI 3INA

ZEH# dWO

S30U4S 9NIAY3T] IHONOT fA° (Hid41X1) 9d1 HHILXN

O# Ad1
1IX3 “ON f1N0 3Ng
T+H1dIX1l dW3

Zo# val

_—
-

0002
04661
0B&T
OL6T
0961
0S6T
oreT
0261
0Z61
01461
0061
0681
08871
0481
0981
0S81
or8rt
0e81
0Zz81
o181
0081
O&6LT
¥8L1
€841
2841
1841
08L1
CLLT
OLLT
09LT
OCLT

125

Openl, Findmn, Getsa, and Valdec: I/O Management

S3SE340TY

NI IZINTH0L f00# AT ZINHOL

NI IMITT L3S3IM ANY INTIT LHISNT TWWHON OL dWNe SSNINITT SMWC
vd

Yid

ZINXOL HSC

HIAWAN 3INIT 139 :139NITT MSC

3713

I+9914YA X1S

T+aNIOH4 X3

A2 1HYA X1S

INI T LHISNT MON "H3FWON NI ANN0d EaN3SH4 X377 NITISNI
S1M 1IX3

Ods# 2dS

a3s

OS$# 0dS

23S 1XN

139MHD dWl

LXN 3N

OZs# dWD

1IX3 s34

UESH# 4D

1394H3 TYWHON $TY a1 1inN0

1MYIS dWr

Y4

1HYIS 0Ll 4WNe aNY SS3INAAY NHN13M TINd fvd
AZOv$ Y1S

ATIOVS YIS

ATOOVS$ YIS

530945 £ ONIMDTI04 1Nd :OUsH# ©9d1 WSy
WONMAL kil

ANI

o1es
(u]8)
062
0Bz
QLEE
09z
052s
(0 - Fatras
oz
02z
()
o0&
0612
0812
OLTE
(810 vt
0512
oviZ
(859 ¥t
oZ1c
o111
0012
0602
0802
0L0Z
0902
0802
ovoZ
oS0z
0202
o102

126

Openl, Findmn, Getsa, and Valdec: I/O Management

NWAINI4 JI1d4°
SiM

IT GLSI6.%# ©aET
TT GiSI04%# ©dn
vds ©1S5

wdlWCa I0FS# YA
J9% ©iS
3903IM<# vai
g% 9Y1S

39d3M IZITWILINI 3903M># a1 NS5LIA3
SiH

4+ HiganN3? IHITT SATI0H 934-A fANI

ANI

ANI

ANI

ANT

A*(8OH9IH) V1S

O#% ©di

ANI

vAL B934

cEH dWO

E3THAS INIMOTI04 3IHONIT A (SAHIIH)Y vd1l
A3d vAHL

S3IA fA3A

£H1 3INg

INITT 40 ANI f00# dWD

ANI

AT {SAHATIH) YIS

AT(HIdIX1) ©d1 €31

T+50H9IH Y15

Z0# vdn

SAHIIH ALS

u7 -0

W3WIH 135

ur

019
GG9Z
L6858
652
GH58
oBsZ
0458
05T
OS5z
orsZ
0} =it
(8 rag et
(] gt
O0O5E
o6t
08vZ
OLyE
o9y
(3123
ovve
030 -t
0ZvZ
(828 -t
oobZ
[aToSara
08ez
(YA
09
[B1o3ra
orss
oS e
L6 P A

127

Openl, Findmn, Getsa, and Valdec: /O Management

INIHd HSCD
UYST11 vadt
INIHd HSCP
T+91 ©vdi
INIXHd HSCP

g1 vani

INIXHd dHST
INIHA dHSC
SSZ# van
1N0XHD ¥SC
ZH# Xan

N340 dHST
HMH3INILO IWdg
1S5 van

350713 HSTr

c# van
T+H1d4d3WUNLD U1S
NITId<# Yad
Hid3WUNd 91S
NITId># 9d
aND03354 vlsS
s# vd

AN3dA4d v1iS

B# vd

WNNd 9185

Z# ©vd1l ZN3dO0

B19
51000
G6S
B85
BLS
BI5
B55
grs
15338
BIs
BIS
BaEg
6t
5355 4
BLY
Bt
(5329 4
15884
(338 4
(57 4
GBIty
(%308 4
B6HT
#8%
BLE
ac

—_—
r—
—_—

315vd01L dWr
INIHNdHH3I MHST HH3INILO
S1iH avOION
T+HiW3IWd V1S
SYHLIX31<# vai
W3Ikd v1iS
SYdiX3lLx># vdn
NIJOH3IL4Y HSC
avolonN o34
9y1d4WYd vat
HH3IN3IHO0 IWHg

1S van

N340 HST
T+HId4d3WUYNS UY1S
NITId<# 9dn
H1d3WUNd ©1S
NITId># 901 QUIWUN
dND33S54 V1S

s# vdn

A3dd4d v1S

r# vadil

WNNd Y15

T# ©9d

350713 HSr

T# vd

NH3IHT13 HSC IN3IdO

(5350
(588
£k
BIE
GTL
L
a6
B82
BLZ
oA g
B5Z
(%3
(53
Bz
B1Z
BET
B6T
Z81
GLT
B1I
851
o1
[0 1
(5 §
G171
51001

gy ‘quadQ "¢-g wreasolg

128

1/O Management

Openl, Findmn, Getsa, and Valdec

YALLAT ANZ FIYAWOD <ANI HIOW
(TYAd OL XMDv¥d 0D OS) HOLVW ¥ ANIA L,NAId <T1dg¥I0Z dWL HOLVYWON

HOLVW ¥ QNI& OL SNIXYL INNILINOD ‘ION AI :dOOT INH
*SDINOWANW 9S TIV daMDHHD HM HAVH ¢ LG# XdD

ANI

ANI

OINOWAENW LXIN HHIL ANIA OL JTEVL HHL NI HIJHL dN 0D HSIMJYFHLO ¢ANI

d344Ng *SA FTIVL 40 SYILLIT ANZ HYVAWOD ‘= 41 ‘JHOW O™

¥YIIANE TIEVT NI QUOM A0 °“¥VYHD LST OL LI HIVAWOD +THLYT dWD

SOINOWANW A0 FTIVL NI YOOT ‘X ‘SDINOWANW VAT

dOOT J40 ILIYLS IVY O¥HZ OL QASIVY X *XNI dOOT

dOOT 40 JI¥VLS IV O¥dZ OL 09 OL X HJYVdadd ¢GST# XaT

g# AdJT NWANIJA

(@3ads ¥0d dWL) SNOILYDOT T J0 T O&L MOVE dWL % “TYAT WOYdA SIHL OL dWL 3M
*THIYI OL HOLVW ¥04 SDINOWINW HDNOYHL SXO00T —-- ,NWANIJ,

o~ s

uwpuly ‘4-g wreidolq

JYS "NWANId4=ad 3INId" 698 2 va saL
8BS 68 3J1Ad" 3JWUND &S8B aND0O3354 vY1lS B1/L
S14 B¢¥8 g% vdl SBL

NH3YT1D dS5F 8<8 A3dd Y1S 869
HHIN3IdO IWd 628 8# vdl o89

15 vadl o118 350710 dHSIr 549

N3IdOD HSI[U868 WNNd 915 6/9
T+H1d3WUNS Y1LS G/L/ v# 9vad1 vN3IH0 899
JWUND{H# Yad1 89~ S1H @589
H1d4d3WUNLS ©Y1S 65/ NH3JYT1O MHSTC 6¢v9
JWUNG># ©9ad1 6vL INIHd HSIC 629
NITT3IWUNS ULS @5/ I+9YS7171 vad1l @9

129

Openl, Findmn, Getsa, and Valdec: /O Management

ASVSLAD:A 11" 00¥

10} 00F 2uI] 8ueYd “UWPUL] JO UOISIdA LIE}y dY} 10

V¥SLdD HdTIA*

TYAd NI INILNOY ¥YVAE OL dWAL OS ANNOA HOLVKW <‘YVAE dWL ANI

dO ALS

FAO0Dd0 HJOLS *X‘'SdO AQ1

dlL YIS

*ddAL *¥AdV¥ FYOLS ‘X’'SAJAL ¥YAT 104

*(OINOWINW ¥ ION S,LI) ANNOJA HOLVW ON ‘ASIMYTHIO ‘HOLVWON HNE
ANI EMIT DINOWANW °¥AAV QIAITAWI NV g dINOM LI ‘ENIT JO ANZ AT ¥O ‘@# dWO
*IYAZ OL NINLIY 3 DINOWINW SIHL LNOEV VI¥A JJOLS ‘0OS 4TI ‘104 Odd
¢E# dWO

OINOWENW VY dd OL SIHL ¥O0d MNVId V 39 ILSAW °“¥YVYHO HLy HHL ¢‘€+TIIVT VAT ANNOA
HOLVWON 03d

DINOWIANW IXIN A¥L ISIMYIHIO :dOOT HNH

ANT

HDLVW ¥dN0 AaNNOd dA,dM ‘= FIV SYIALLIT QIE€ 4TI <ANNOA OFd

C+TdEYT dWO

X 'SDINOWINKW VAT

YIALLAT QUE€ TIVAWOD *‘ANI TIJOW

(TYAE OL NINLIAY) ITIYL LSYd IANOD IA,EM ‘g = X 4TI ¢ HDLVWON O3d
(@ <> K) DINOWINW IXAN XdL ‘HOLVW I,NAId ¥YILLAT ANZ ¢d00T HANE
ANI

ANTI

YALLIT TYNIA ANV Q€ FIYdWOD OL NO 09 ‘= 41 ‘TIIOW O34

T+T139YT dWOD

X SOINOWIENW ¥dT

007
g6t
98¢
QLE
99¢€
@SE
ove
%143
F A
Q1€
20¢
P6¢
98¢
oLT
292
2S¢
v
Q€T
gze
p1cC
99T
26T
98T
OLT
29T

130

Openl, Findmn, Getsa, and Valdec: 1/O Management

T+HINd VYLS: T+ILIVYLSWVYY VAT:WIWd VIS:LIVISWYY VAT VSWIAW

*QATIWISSY JISVE-WYY dLVEYD OL dTIA JHA0D IDYNOS ,¥SLID, SHOVIdHI
KAJdOWHW 40 LYVILS OL WHWd SHZITVILINI 11

(SSHYAAVY LY¥VLS) HOVdS SIHL =«

=IL¥ ODNILNIOd XMSIAd SIHAVIT °*AHdOWIW WOdd SSHIAAVY ONIIIVLS LIID , YSWIW,,

o~

’
.
7!
-
1
-
7
-
I3
.

’
-

OddTYA HdTIA®

SLd

IIIIIII STYAZ NIHLIM INILNOY NMOQLNHS dHL VYIA DISYE OL MOVE 0D INIJ
(ZWYN dTId SNOYM HHL HAVYD NOX ¥O INO HALIYM OL ILODIO0L NOX ‘SSHWLNIA
YHHLIE :SAVM T S¥NDDO0 NOILIANOD SSHYAAVY-IYV.LS-ON SIHL :dLON) ‘T+dWHL
(SSIWLNYA) HODYSSHAW FHL INI¥d ANY ,, ‘dWAL, ‘FINIOd FHIL ‘LIVISONW<#
NI HJOVSSHW ¥O¥¥d SIHL OL ILNIOd *,SSHY4ddV JIIVILS ON, SAVS -<dWIL
HOIHM HOVSSHW JOJ¥Hd INI¥d ‘HSIMYIHLO ‘LAVLSONW>#

(YSLED STIVO WWIDOYdENS TYAT) YITIVO OL MOVd 0D ‘0SS JAI {VSK

TOIWAS s HHL II SI ‘CLT#

LAY LXAN NI T1I0d <NI¥VHD

llllllllllllllllll NHHL® * *SHLAE 9 LST :V¥ST

dHL 440 ddTINd dA,dM TILNN NMOQ LNNOD

* (QEANIJO AQVHYTIY Fd OL T# dTII4 SLOIJXH)
(SSTYAdVY LI¥VYLS) HDVAS SIHL =«

YSKH
dRWre
asre
YIS
vat
YIS
a1
ok s
diWD
asr
aINd

{Xaa
(o dLXd 13D, SI NIYVYHD) (SILAD T ANV ‘4 ANIT ‘NIYVHD ¥dSL VST

MNIT ENIT) dTI4 MSIAd ¥ NO SALAY 9 LST FHL AYMY MOYHL OL daN dAM <9# XdT
INILNOY S,DISVd ‘NIMHD ¥Sr

(S4LXd 139 OL) dDIAIA VY ¥OA4 TANNYHD ILNANI dn I1dS *T1# XAT ¥YSLIAD

-L¥ SNILNIOd YMSIA SIAVIT) MSIA WOdd SSTIAAY HNIIYVLIS 1dD ,V¥SLID,

’
.
]
.
?
4

aLe
09¢
PSscT
)44
g€
gce
LTC
ST¢C
g1¢
2ac
26T
281

BSJO0) *G-G ureidol

131

Openl, Findmn, Getsa, and Valdec: I/O Management

*OLd NI¥MVHD 40 SNOISYWEA MAN HHL MOTIY ‘SAIOM ¥IHLO NI)
“dTI4 SIHL NI @T1¢ dNIT NI ,D3dTVA ITIIA*, 40 ILNO¥A NI ¢ V Ind °€

*IYAd NI @S€y INIT
dN¥Y @G€ INIT NI ,INIdO ¥SrC, HHI JIAOWIY ANY ,YSWHW dSC,
HLIM dTId4 TVAd HHL 40 @L€ ENIT NI ,VSLIID ¥SC, HOVIATE °C

(*9TI4 3A0D FDYNOS SAAA FHL A0 @HPT ANY @ZZ SIANIT NI
YILOVIVHD LST HHL SVY NOITODIWIS ¥V IJISNI ILsSNr)
(37TI4 SJ3A FHL NI) NIMHO ANV NI¥YHD J0 SNOILINIJAA AAOWTI T

88 8. 0% Bn On 0n On 0n On an % oa

PATEWASSY HA0D IDYNO0S JIASYH-XIOWIAW-WYE OL qIASYE-ISIA:
WO¥d SAVT EONVHO HDOIHM SNOILVOIAIAOW FHL 40 LSTd HTHL T¥Y HAJIH:

° SNOILVDIJAIAOW AYVSSHDIAN ¥YHHIO HHL °° :

SJ4dd NI dNILNO¥ MSIA SADVIAHTI <SLd NIMHD

YALSIDAY SNLVYLS HAVS (SI¥:dT1d:A AQT:dHd:A'(WAWd) VAT:@# XAT*X ALS TdONI
MSIA/NI¥VHD TYNOILNIANOD SHOVIAHY ! T+WHWd ONI: TdONI HANE:WHWd ONI NI¥VHD
¥ NI ‘XJOWIW WO¥YA HALXE IXIN HLIM SNINLTI ¢

(MSIA ¥Od NI¥VHD SHLVLINWI) :

*MSIA NVYHL ¥HHLYY XJOWHW WOJdd HAODIDINOS dTIWIASSY ,NIYYHD MEN,,

SL¥ YSWW

TYAZ NIHLIM INILNOY VYIA OISVE OL MOvd 0D ‘NIA dWr

SSAWLNYd dSL:T+dWIL YIS:IIVILSONW<# VYAT:dWHIL VIS:LIVLSONW># VAT
VYSWW Odd:ZLT# dWD:NI¥YVYHD dSC

=y OL INIOd OL WIWd OL ¥ dAV¥ ‘TWIW ING:XHA:NIYVHD dSL TWIW: €# XAT

06S
288
QLS
29S
2SS
2vs
gES
gTs
21S
20Ss
gev
28V
oLV
29%
osv
ovy
k%4
YA 4
1%
51734
26¢€
28¢
gLE
99¢€
9S€E
ave
gee
Y4
21¢
5]
98¢

132

Openl, Findmn, Getsa, and Valdec: I/O Management

HIFWNANINIT HST

T# Xd

T+W3Wd Y15:8

YHLXA31<# YA W3IWd Yis5S:5SYdi 3L-% 9vd1 9S139 @5
YS13IO--SNOTIYDIJIGOW IHYIY: @1

R
o

:saur] Sumorjoy ay3 adueyd pue G- weid
-0I] Ul 099—GT 7 SIUIJ JIWO “S}35) JO UOISISA LB}y dY} 9}ead O],

SUOEDHIPOJN LIe)y ‘esIon) * /-G weidolJ

TOIWAS s HHL LI SI ‘¥Zs# dWD @9¢CT

X Xd1 S8

(.ILRE 139, SINIYWVYHD) (MNIT ANIT ANV ‘SSHIAAY JYVLS WYY {NIYVYHD dSC @8
X XIS ¥ST SL

:G-G werdo1] 0} suonrppe pue sagueyd
Buimoroy ay) axew ‘esyn) jo uorsaa aiddy ay3 aeam of

suogedyrpojy 9jddy ‘esjon ‘9-Gg ureigoiJ

OHATYA FTIA® @99

‘999

*(.INIZdO ¥SL, J40 AVALSNI) , TAYOT ¥SrL, avad ! %o

OL @S. HENIT IONVHD ‘0OSTIV °*WY¥H0dddnsS odndSd HHIL NI ! gg9
P98 3 ‘@8L'@LL°'@9L SANIT NI ¥ILOVIVHD IST SY SNOTODIWAS Ind ¥ ¢ @29
: 919

(*SAYT 40 NOISMIA QAHSINIA HHIL OLNI HTIWASSY OL ! 99

133

Openl, Findmn, Getsa, and Valdec: 1I/O Management

(SELAE HOIH ¥IAHL NI) SYMILSIOTY ASHHL HLOd NI @ Ind ‘@# YAT @22

JALSIDAY , LI JIAGWIWITE, NI TIOLS {FIOLSL VIS @TZ

VALSIOAY NOIILVOITAILINW NI HYOLS ‘aavd VIS 9@z

°G HHL ONIAVIT ‘€ HHL Jd0 dI¥IS O °*S€$ = G ‘IIDSY SY ‘{d@s# ANV @61

(wS. :XH) YALOVIVHD IIDSY LSOWILHOIY FHL NI AV¥OT (X’ (dWHL) VAT JdOOTIVA @81
X XIS @OLT

YALNNOD SHAWIL-ANYW-MOH-@TX-ATdILTINN ¥ SV ATIVIVNVA ,.X. SN ‘T# XdAT 99T
T+II0STI YIS @ST

IINSHY VIS @vI

(g OL 1LIS) FTIVIVVA ,LINSTE, NVATID {g# VAT @E€I

Add 92T

(z = NIT ‘FTAWYXT FHL NI) YIEWAN IIDSY J0 HIONAT HAVS ‘ANTIA ALS OJIZA @FTT
(wGT.w SI IIDSY IWNSSY ‘HTAWYXH VOL) ——=———————————o {O¥IZLIADA dWL @6

ANI 28

aANNOA ¥YIALIWITIA @ :0d¥dIZA Odd @L

A’ (dWEL) V¥YAT OYHZLIDA @9

(HLONIT ONIZ OL)-- X ONILNIWHIDONI--IHOIY OL ILJTT WOdA IIDSY AV ¢ G§
g4 XAT DHATYA @S

|||||||||||||||||||||||||| : oy

LINSHY dILAE-Z SATOH IINSHY /SIINSEA ¢ g€

*(0¥¥Z NI SANE HDIHM) ¥IEIWAN IIDSY OL LNIOd ILSOW dWAL/dNLIS ¢ @7

¢ 6T

IINSEY NI ¥YIOIINI ILAE-OML ¥V OL INANI IIDSV HLVISNVIL ,DdATYA, ¢ @1

29P[EA '8-g weiBold

J45°2301%A:d 314" @IC
Zt# 4dW3 @zd

EoEEm

t @a

<
(Sp!
—

Openl, Findmn, Getsa, and Valdec: I/O Management

PTxN SI (Tx(N+PxN)) *ZX ATdILTINAN ‘MON —-=—=——=——==—- :1+0avy VYIS

+advd Oodav

T+d490LSL VAT

aavy Vvis

agvd odav

(SX SNIAID) %X J0 ITNSTI OL LI AAV ANV ¥IGWAN TYNIDIN¥O LNO TI1INd‘FIOLSL ¥AT

lllllllllllllll {T+aava 104

aavy 1svy

T+aavya 10d

¥ X aavyd ATdILTINW :aavy ISy

01D NIL

PT X8 ATAILION ———————======—= !

“JATIVO OL NINLITY ISIMIFTHLO <SId

YHIWNAN IIOSY SIHL ODNISSHD0dd ANNILNOD <dOOTIVA HENH

NIHL ‘0¥dZ JIIX ION S,II JI *YHALNIOd HLONAT JIMOT <ANTIA DI

(LJdFT IHL OL °“¥YYHD IIDSY IXAN OL INIOd OL) T A9 ¥IAO XIANI HAOW <AIA
(NOILVDITAILTINW JHL JO SILTINSTI NI ady) I7INSdd OL advd ddvy -ddaviva dsr
X XdT

*(LHDSI¥ SLI OL INO JHIL X@T dd :

TIIM ¥ddGWAN HOVA ANV LAFAT ONIAOW I ,3IM HADNIS) T Ad X ISIVY ‘X ONI NOODA
IIIIIIII *O¥dZ OJ NMOd ST X TIINA @IX ONIXATAILINW FANNILNOD :¢dOOTA dWCL
NOILVDITAILINW LNIDII LSOW J0 SITINSHI HDNIAVS ¢ T+JJOLSL VIS

T+adva Yal

HYOLSL VIS

MALSIOTN AOYYOLS OINI NOILVDITAILINAW A0 ILINSHY FAOW <AV VAT
AUVSSADIN SV SHWIL ANVW SY @TIX JdIGWAN FHIL XTdILTIAW d,IM’ISIMYIHLO *NIL dSC
(ISYD SIHL NI INILNOYENS @TIX HHL OL dSrL L,NOd EM OS :NOODA O3d

(4¥HD IST 404 9 = MON X ‘dTdWYXT HHL NI) °“dAINNOD HHIL JIMOT :XIA dOOTA
|||||| X¥V¥SSEDAN SY HONW SV @IX ATdILIAW —-—-—-=—=--———---——-=:T+JJOLSL VYIS
T+ddVd YIS

acs
1S
P9S
o6y
287%
oLy
297
PSy
ovv
pEY
oTy
o1V
20%
g6€
g8¢€
gLE
09¢€
gSeE
143
GEE
gEE
Qaze
P1E
9113
26¢
98¢
9L
99t
2sc
v
geT

135

Openl, Findmn, Getsa, and Valdec: I/O Management

JHS "AMSIANI *d 314"
OH3ZA 534
BS# 4dWI
0Hd3ZA 304H
Br# d4dWI
J3AIYA——-SNDIIYIIHIAOW IMYLIYE

:8-G weido1] 0} suonippe pue sagdueyd
SuUIMO[[0] 3y} HeW DIP[EA JO UOISI9A LR}y dY} d1eamd O],

859

@BL
£9
9
19
31

SUOHEIHIPOJ LIE3Y ‘O3P[EA “6-G Wredsoid

MSIANI dIId®
S1d

I+1L1NSHEY VYIS
T+110SdEd DAY
1+aavy va1l
LINSTI VYIS
IINSdd DAV
agvd val

010 ddYIVvA
YIMSNY Y39FILNI HHL OL NOILVOITAILINW dHL 40 SIINSEY Q¥ -—————=—————=—-—
SId

T+aavda 104
aavya Isv

2S9
ov9
g€9
229
219
299
965
98¢
gLS
29§
2SS
2vs
pES

136

.

Chapter 6
Indisk:

The Main Input Routine

EaEEnEN mEEBEB

Indisk:
The Main Input Routine

It’s up to the Indisk subprogram to pull in a logical line of
source code and set it up so that Eval can evaluate it. What
does the word logical mean when used this way? You'll some-
times hear of a “logical” string or a “logical” line versus a
“physical” string or line. The logical thing is what the com-
puter will see and compute. The physical thing might well be
longer or shorter.

For example, on the Apple, Atari, and Commodore 64,
the screen permits a physical line of only 40 characters. And
though each screen line can hold only 40 characters, Com-
modore BASIC can interpret 80-character lines, Apple can
interpret 256-character lines, and the Atari can interpret 120-
character lines. The logical line length is 80, 256, or 120
characters, but the physical line is 40. To describe Indisk’s
routines, we’ll need to make a similar distinction.

Two physical lines of LADS source code might be:

100 LDA 15: INY:RTS
110 DEC 15

but there are four logical lines in these two physical lines:

LDA 15
INY
RTS
DEC 15

Put another way, the LADS logical line is sometimes
smaller than its physical line. The logical item is the piece that
a computer—or in this case, LADS—will work with. When-
ever you see a colon, you're at the end of a logical line.

In addition to setting up each logical line for examination
by Eval, Indisk also performs some other tasks. It sets flags up
in response to several pseudo-ops; it transforms single-byte
tokenized BASIC keywords into ASCII words (? becomes
PRINT); it transforms ASCII hex numbers like $1500 into two-
byte integers (the same thing the Valdec subprogram does for
ASCII decimal numbers); and it handles the important .BYTE
pseudo-op. Indisk is a busy place. It's the second longest
source file in LADS. Eval interprets logical lines of source
code; Indisk prepares them for that interpretation.

139

Indisk: The Main Input Routine

Total Buffer Cleaning

Indisk starts by cleaning out an entire group of buffers: LABEL,
BUFFER, BUFM, HEXBUF, FILEN, NUBUFF. That’s easy be-
cause they are all stuck together (see lines 290-340 in the
Tables subprogram). The CLEANLAB subroutine in Eval just
sticks 0 into the entire string of buffers.

Then 0 is put into the HEXFLAG (is it a $ type number?),
BYTFLAG (is it a < or > pseudo-op?), and PLUSFLAG (is it a
+ pseudo-op?). These three flags will later be set up, if nec-
essary, by Indisk. We want them down, however, at the start
of our analysis of each logical line.

At line 110 LADS sees if the previous logical line ended
in a colon. LADS tries to be forgiving. It knows that the pro-
grammer might accidentally write source code like:

100 LDA 15: LDX 12

leaving some spaces between a colon and the start of the next
logical line. Rather than crash trying to find a label called
blank-blank-L-D-X, it ignores leading blanks following colons.
Elsewhere, LADS ignores blanks preceding semicolons. This
gives the user complete freedom to ignore that potential
punctuation problem. Logical lines with extra blank spaces
will be correctly analyzed.

If a colon ended the previous logical line, we need to skip
over the fetch-and-store-line-number routine (130-160) since
there is a line number only at the start of a physical line. In
BASIC programs, and consequently in LADS source code, the
two bytes just preceding the start of the code proper in each
physical line are the line number. They need to be remem-
bered by LADS for printouts and also for error reporting.

The Suction Routine

Lines 170-190 are the suction routine for blanks which might
precede a colon. We just loop here until something other than
the blank character (#32) is encountered. Notice that this loop
is also performed at the start of a physical line, but will have
no effect since the computer removes any leading spaces when
you first type in a BASIC or LADS line.

Line 210 is the start of the main loop which pulls in each
character from the disk, one at a time. We skip over this (200)
if we’ve entered at Indisk and therefore are starting a line
rather than just looking at the next character within a line.

140

Indisk: The Main Input Routine

But let’s assume for now that we're trying to get the next
character in a line. If it's zero, that means the end of a phys-
ical line (230), so we go to the routine which checks to see if
we're at the end of the entire program, not just the end of a
single line.

If there was no zero, we check for a colon and jump to
the routine which handles that (260). Then we check for a
semicolon. The next section (290-750) handles semicolons.
There are two types of semicolon situations, requiring two dif-
ferent responses.

One type of semicolon defines an entire line as a com-
ment. The semicolon, announcing that a remark follows, ap-
pears in this case as the first character in a physical line:

100; THIS ENTIRE LINE IS A REMARK.

This type is relatively simple since there is no source code for
Eval to evaluate.

The other type of remark, though, appears at the end of a
logical line, and there is something for Eval to assemble on
such lines:

100 LDA 75; ONLY PART OF THIS LINE IS A REMARK.

When we first detect a semicolon (270), we store the Y
Register in variable A (290). The Y Register is very important
in Indisk. It is set to zero at the start of each physical line (60)
and will still be zero in line 290 if the semicolon is the first
character in a physical line. This is how we can tell which
type of comment we're dealing with (at the start of a line or
within a line).

If, however, the programmer has not requested a screen
printout, there is no point to storing a comment. Comments
have no meaning to the assembler; they’re just a convenience
to the programmer. Line 300 checks to see if PRINTFLAG is
set and, if not, skips over the store-the-comment routine.

BABFLAG for Comments
But if the PRINTFLAG was up (contained a 1), we transfer
that 1 to force the BABFLAG up as well. BABFLAG tells LADS
that there’s a comment to be printed after the source and ob-
ject codes have been printed to screen or printer.

Then that previously stored Y Register is pulled back out,
and we see which kind of comment we're dealing with. If Y
isn’t zero, we’ve got a within-the-line comment, and we can

141

Indisk: The Main Input Routine

JSR to the PULLREST subroutine which stores comments in
the comment buffer (350). Then we return to Eval to assemble
the first part of the line, the source code part (360).

When a semicolon appears at the start of a line, though,
we’ll just fill LABEL, the main buffer, with the comment and
then print out that kind of line right here within Indisk. (Print-
outs are normally controlled by Eval following the assembly of
source code. This type of line, however, contains no source
code.)

A little loop (370-440) stuffs the comment line into LABEL.
It exits when it finds the end of a physical line (380), and it JSRs
when it comes upon a tokenized keyword like PRINT or
STOPIT. (STOPIT would appear as three characters in the source
code: the token for BASIC’s STOP command, and the letters I
and T.) Tokenized words have to be stretched out to their ASCII
form, or the comment could contain strange nonprinting charac-
ters or graphics characters, etc., when printed out. Any character
larger than 127 is not a normal alphabetic character. It’s going to
be a token.

When we finally come upon the end of this physical com-
ment line, we land at PUX1 (450) and proceed to print the line
number, the comment, and a carriage return just as we do for
any other line. Then we put 0 into the A variable to let MPULL
(the return-to-Eval subroutine) know that there is no source code
to assemble in this line. It will send us back to two different
places in Eval, depending on whether we should or shouldn’t try
to assemble the line currently held in the LABEL buffer.

Storage to BABUF

The PULLREST routine (520-600) is similar to the PUX routine
above it, but it stores a comment into the BABUF bulffer.
PULLREST cannot use the LABEL buffer because this is one of
those lines where the comment comes after some legitimate
source code. And Eval assembles all legitimate source code from
the LABEL buffer. After Indisk turns the following line over to
Eval:

100 LDX 22; HERE IS A COMMENT.

the two buffers hold their respective pieces of this line:

LABEL LDX 22
BABUF HERE IS A COMMENT.

142

Indisk: The Main Input Routine

BABFLAG is set up to alert Eval to print a comment after
it has assembled and printed out the LDX 22 part of this line
(520). Then the semicolon in the Accumulator is saved in the
A Register. This is our end-of-line condition. Logical lines can
also end with colons and zeros. Different end-of-line con-
ditions require different kinds of exits from Indisk. For ex-
ample, if we hit a colon, we shouldn’t pull in the next two
characters and store them as a line number. A colon means
we’ve not yet reached the end of the physical line. Since
PULLREST is used as a subroutine in various ways—]JSRed to
from various places in Indisk—it must save the end-of-line
condition.

KEYWAD

Then PULLREST pulls the rest of the line into BABUF (560-650)
with a little detour to KEYWAD if the seventh bit is set on one
of the characters being pulled in. That signals a tokenized
keyword like ? for PRINT. KEYWAD is the same routine as
KEYWORD (called above when Indisk is pulling in source code
characters). The only difference between them is that KEYWORD
extends ? to the word PRINT in LABEL, the source code buffer.
KEYWAD extends tokens into BABUF, the comment buffer.

PULLRX (660-680) is quite similar to PULLREST. However,
PULLRX is a pure suction routine. It pulls in the rest of a com-
ment line, but doesn’t store any of the characters. It is called
upon when the PRINTFLAG is down and nothing needs to be
printed to screen or printer. All PULLRX does is get us past the
comment to the next physical line.

MPULL (690-750) is the exit from Indisk back to Eval after a
commented line has been handled. Recall that there are two
kinds of comments—those which take up an entire physical line
and those which take up only the latter part of a line, those
which come after some real source code. MPULL distinguishes
between them after first checking to see if we're at the end of
the entire program (ENDPRO). It loads in the A variable. If A is
holding a zero, that would mean that the semicolon was the first
character in the physical line, and consequently, the entire line
was a comment and can be ignored. There’s nothing to as-
semble. So we PLA PLA to get rid of the RTS address and JMP
directly to STARTLINE in Eval to get a new physical line.

143

Indisk: The Main Input Routine

Y Is the Pointer

Alternatively, if the semicolon was not at the start of the line,
the value in the A variable will be higher than zero. (The Y
Register was stored in A when a semicolon was first detected
[290].) Y keeps track of which position we are currently look-
ing at within each physical line. In cases where there is some
source code on a line for Eval to assemble, we just RTS (750)
back to Eval where the evaluation routine begins.

The end of the main Indisk loop is between lines 760 and
950. This section is an extension of the character-testing se-
quence found between lines 220 and 270. What's happening is
that a single character is being drawn in from the source code
(on a disk file or within RAM memory, depending on which ver-
sion of LADS you are using). Each character is tested for a vari-
ety of conditions: pseudo-ops, keyword tokenization, hex
numbers, end-of-line (220), colon (240), and semicolon (270). If it
was a semicolon, we dealt with it before making any further
tests. The semicolon (comments) handler is the large section of
code we just discussed (between lines 290 and 750). If the
character isn't a semicolon, however, there are several other spe-
cial cases which we should test for before storing the character
into LABEL, the source code buffer.

Special Cases
Is it a > pseudo-op? If so, we go to the routine which handles
that (770) called HI. Is it the < pseudo-op? Then go to the LO
routine. Is it the plus sign, signaling the + pseudo-op? If not,
jump over line 820. The + pseudo-op is handled elsewhere in
LADS; all we do for now is set up the PLUSFLAG (820). s it the
*=, the Program Counter changing pseudo-op? If so, go to the
subroutine which fixes that (850). Is it one of the pseudo-ops
which start with a period, like .BYTE or .FILE? If so, go to the
springboard to the subroutines which deal with these various
pseudo-ops (870). Is the character a $, meaning that the source
code number which follows the $ should be translated as a hex
number? If so, go to the hex number routine springboard (890).
The final test is for tokenized keywords (? for PRINT). To-
kens all have a value higher than 127, so their seventh bit will
be set. If the character is lower (BCC) than 127, we can finally
add the character to the source code line we're building in the
LABEL buffer (930). Then we raise the Y Register to point to the
next available space in the LABEL buffer, and return to fetch the

144

Indisk: The Main Input Routine

next available space in the LABEL bulffer, and return to fetch the
next character of source code from disk or RAM memory (950).

This ends the main loop of the Indisk routine. As you see,
there are many tests before a character can be placed into the
LABEL buffer. We only want to give Eval source code that it can
assemble. We can’t give it characters like . or + or $ which it
cannot evaluate properly. Those, and other special conditions,
are worked out and fixed up by Indisk before LADS turns con-
trol back to the Eval subprogram.

The Colon Logical End-Of-Line

One special condition is the colon. It is handled at the very start
of Indisk as a new physical line is analyzed (110). Not much
needs to be done with colons except to ignore them. But we do
need to prevent LADS from trying to locate the next physical
line number. Colons signify the end of a logical line, not the end
of a physical line. COLFLAG tells Indisk not to look for a line
number. COLFLAG is set whenever a colon is detected (260). We
jump down to COLON (970) and set the flag. We don’t need to
LDA #1:STA COLFLAG because we wouldn’t be here unless the
Accumulator was holding a colon character (it’s higher than 0).
We can just stuff that character into COLFLAG. As long as a flag
isn't holding a 0, it’s set. When setting flags, it doesn’t matter
that the number in the flag is higher than 1. Just so it’s not 0.

There are two springboards at 990-1020. Recall that branch
instructions like BNE cannot go further than 128 bytes in either
direction, so you'll get a BRANCH TOO FAR error message
from LADS from time to time when you exceed this limit. In
such cases, just BNE SPRINGBOARD; just branch to a line you
insert, like 990, which just has a JMP to your true target.

Like the . pseudo-op interpreter subroutine, the hex trans-
lator is also too far from the branch which tries to reach it. With
a hex number, though, we first put the $ into the LABEL buffer
so it will be printed when the source code line is sent to the
screen or printer. Then we bounce off to the hex translator sub-
routine (1020).

KEYWORD (1040-1210) translates one of BASIC’s tokens
into a proper English word. A BASIC word like PRINT is a word
to us programmers, but an action, a command, to the computer.
To save space, many versions of BASIC translate the words into
a kind of code called “tokens.” The token for PRINT might be

145

Indisk: The Main Input Routine

the number 153, which can fit into a single byte. The word
PRINT takes up five bytes.

But BASIC itself must detokenize when it lists a program. It
must turn that 153 back into the characters P-R-I-N-T. To do
that, it keeps a table of the keywords in ROM. We'll take advan-
tage of that table to do our own detokenization.

The specifics of the example we'll examine here are for
Commodore computers. The principle, however, applies to Ap-
ple and Atari as well. Only the particular numbers differ. We ar-
rive here at KEYWORD because we picked up a character with a
value higher than 127. The first thing we do is subtract 127.
That will give us the position of this keyword in the table of
keywords. To see how this works, look at how these words are
stored in ROM memory:

enDfoRnexTdatA

Notice that BASIC stores words in this table with their last
letter shifted, similar to the way LADS stores labels with their
first letter shifted. That’s how the start of each word can be de-
tected. The code for these words is set up so that END = 128,
FOR = 129, NEXT = 130, and so on.

Imagine that we picked up a 129 and came here to the
KEYWORD subroutine to get the ASCII form of the word, the
readable form. We would subtract: 129 — 127 = 2. Then we
would look for the second word in the table. We store the results
of our subtraction in the variable KEYNUM (1060) and keep
DECing KEYNUM until it’s zero and we’ve thus located the
word. We look at the first character in the table of keywords. It
will be an e. If it’s not a shifted character, we’ve not yet come to
the end of a word, and we keep looking (1120). Otherwise, we
go back and DEC KEYNUM. All of this is just a way of counting
through the keyword table until we get to the word we're after.

146

Indisk: The Main Input Routine

When we find it (1140), we store the ASCII characters from
the table into LABEL, our main input buffer. Again, a shifted
character in the table shows us that we’ve reached the end of the
word (1160), and we can return to the caller (the routine we
JSRed here from) after clearing out the seventh bit.

KEYWORD turns this line (in the source code):

100 START? LDA [IT (two embedded keyword tokens, ? and |)
into:

100 STARTPRINT LDA RUNIT (which we can read from screen or
printer)

The HI subroutine (1230) handles the > pseudo-op which
gets the high byte of a two-byte label as shown in Listing 6-1.

147

ine

.

The Main Input Rout

.
.

Indisk

(-SATAVYIYYA ¥Od INOZ IDVIOLS

“QST

d0 ¥344Nd SNOT-TLAE-0S YV ONIAVAT YT
‘Gg¢8 SSA¥AAY IV FTIWIASSY TTIIM SIHL) ¢ANI dNNILNOD 8D LSE OFT
(668 OL Dd HHIL SIISHA SIHL) 668 = GCE @TI
(@8 SSIWYAAY IV ¥ ,dIM INIOd SIHL IV) ‘IANILNOD dWL €0 85 D% TZE OTT
ST val AP SY @Z¢ 901
0P8 =x OCE QT
€-9 Supsry
(*SATAYINYA ¥Od ANOZ dOVIOLS :opsT
MO ¥dAANd SNOT-TLAE-@S V¥ ONIAVIT N A
‘G688 SSA¥AAVY IV ATIWASSY TIIM SIHL) {ANI IANIINOD Q€T
(SS8 OL Dd HHL SIdSdY SIHL) G6S8 =x 0OCT
(G@8 SSIYAAY IV JY¥,dIM INIOd SIHL IV¥) ‘{IANIILNOD dWL @TT
6T Ya1 99T
P08 =x 0T
7-9 Bunsr
YHINIOd NIZ¥DS J0 JALAE MOT NI LI HIOLS ‘YIALNIOINIHIDS YIS Q%1
SSTIAAY NIAAYDS JA0 ALAD MOT NI AYOT NITIDS># VAT Q€T
YALNIOd NAFYDS 40 HILAY HOIH NI LI HIOLS *T+IIINIOANIFAIDS VYIS @21
SSHIAAVY NIAAYDS JO HALAY HOIH NI AVOT (NAAMDS<# VAT Q1T
WYY NIZFZYDS J0 IAVIS ANIJIAd @@PP¥s = NAFZIDS 091
ONISSHIAAY X LOAMIANI ¥O04 ¥AINIOd HOVd O9dZ *dd$ = YALNIOANIIIDS @S
1-9 Bunsry

148

Indisk: The Main Input Routine

This sort of thing is fairly common during the initialization
phase of an ML program. It prepares for the useful Indirect Y
addressing mode (sometimes called Indirect Indexed addressing:
LDA (LABEL),Y). The > and < pseudo-ops make it easy to set
up the zero page pointers upon which Indirect Y addressing
depends.

The adjustments necessary to make these pseudo-ops work
are performed in the Equate subprogram. All we do here is set
up the BYTFLAG to show which of them was encountered.
BYTFLAG is 0 normally, set to 1 for a < low byte request and 2
for a > high byte request. Then we go back to fetch the next
character in the source code. The > and < symbols are not
stored in the LABEL buffer.

Don’t Drive with Your Legs Crossed

The STAR subroutine (1300) deals with the pseudo-op which
changes the Program Counter. This pseudo-op has one primary
use: It creates a stable place for tables. Some people like to use it
to make room for tables within source code (and consequently
within the resulting object code too). That seems both un-
necessary and dangerous, like driving with your legs crossed.
Most of the time it won't do any damage, but when it does
cause problems, it causes a crash.

If you like to live dangerously, go ahead and stick a table
or a buffer right in the middle of your code. The *= pseudo-
op allows coding as shown in Listing 6-2. When assembled,
that risky trick will look like the listing shown in Listing 6-3.
This example leaves—between $325 and $357—a 50-byte-
long zone to be used for data rather than instructions. You
must jump over the table. But what’s the point? Why not do
the sensible thing and put all your tables, register, buffer,
etc.—all your nonprogram stuff—in one place? At the end of
the entire program. Not only does that ease your program-
ming task by making it simple to understand what you're try-
ing to do, it also allows the *= pseudo-op to make its true
contribution to assembling: a stable table.

When you're assembling a long program, you will often go
through a two-step process. You'll assemble, then test. The test
fails. You change the source code and try it again. This assemble-
test rhythm takes place so often that you'll want to make it as
easy on yourself as possible. One of your best debugging tech-
niques will involve running your code and then looking in the

149

Indisk: The Main Input Routine

buffers, registers, variables, and other temporary storage places
to see just exactly what is there. That’s usually the best clue to
what went wrong. If you are trying to load in the word
TEXTFILE from disk and your buffer holds EXTFILEO, that tells
you exactly what you need to do to fix up the source code.

In other words, you want to be able to check buffers, vari-
ables, etc., often. Where are they located in the object code? Ob-
viously, each time you make a slight change to the source code,
everything in the object code above the change in memory
shifts. All the addresses beyond the changed source code will go
up or down depending on whether you added or subtracted
something.

Stabilizing Buffers
This makes for very unstable addresses. You would never know
where to PEEK at a particular buffer or variable.

There are two ways to solve this. You could put the data
buffers, etc., at the start of your program. That way, they
wouldn’t shift when you changed the source code beyond them.
But that’s somewhat clumsy. That means that your program
doesn'’t start with the first byte. The entry to your program is up
higher, and you can’t just SYS or CALL or USR to the first byte.

An alternative, and likely the best, idea is to put tables at
the very end. That way the SYS to the object code start address
is also the first byte of the ML program. But how does this solve
the shifting tables problem? That’s where the *= comes in.

When I first started to write LADS, I decided to start it at
$3A00. That left plenty of room below for BASIC-type source
files and plenty of room above for “Micromon,” an extended
debugging monitor program which sits in memory between
$5B00 and $7000. (I do all my programming on the venerable,
but serviceable, Commodore PET 8032.) LADS was expected to
end up using about 4K of memory, so I forced Tables, the final
source file, to detach itself from the rest of the program and to
assemble at $5000. The Tables subprogram started off like this:
10; TABLES

20 *= $5000
30 MNEMONICS etc.

This kept everything in the Tables unaffected by any
changes in the program code below it. The entire source code
could be massaged and manipulated without moving the data ta-

150

Indisk: The Main Input Routine

bles one byte up or down in memory. A detached table is a sta-
ble table.

So, during the weeks while LADS was taking shape, I
learned the addresses of important buffers like LABEL and im-
portant variables and flags. That makes debugging much faster.
Sometimes, I could tell what was wrong by simply PEEKing a
single flag after a trial run of the source code.

A program the size of LADS, a complex game, or any other
large ML program, will require perhaps hundreds of assemblies.
It becomes very useful to have learned the special addresses, like
buffers, where the results of a trial run of your object code are
revealed. And for this reason, these buffer and flag addresses
should stay the same from the day you start programming until
the day the entire program is composed.

How is the *= pseudo-op handled? Before anything else,
we pull in the rest of the source code line by a JSR to
STINDISK, the main loop in Indisk. After that, STAR checks to
see if anything should be printed out by looking at PASS. On
pass 1, we'll skip over the printout (1320). Otherwise, we print
the star and the input line held in the LABEL buffer. We won't
check to see if a printout is requested by looking at PRINTFLAG
or SFLAG (screen printout). *= is such a radical event that it
will be displayed on pass 2 whether or not any printouts were
requested.

Then we come to the familiar hex or decimal number ques-
tion. Hex numbers are translated and put into the RESULT vari-
able as they stream in. Indisk does hex. Decimal ASCII isn’t
automatically put into RESULT. If the argument following *=
was hex, we skip over the next few lines (1380). If not, we look
for the blank character (in *= 500, the character between the =
and the 5). Finding that (1420), we point the TEMP variable to
the ASCII decimal number and JSR VALDEC to give the correct
value to RESULT. We'll use RESULT to adjust the PC as
requested.

Padding the Disk File

If the programmer wants object code stored to disk, we cannot
just change the internal LADS program counter. The disk
drive won't notice that. We've got to pad the disk program:
We've got to physically send spacer bytes to the disk to move
its pointer the correct number of bytes forward. Object code is
stored only on pass 2.

151

Indisk: The Main Input Routine

Thus, two questions are asked here. Does the programmer
want object code stored? And is the disk drive a recipient of
that object code? If the answer to both questions is “yes,” we
JSR FILLDISK (1590), a padding routine we’ll come to later. If
not, the whole issue of disk padding doesn’t matter and we
can proceed to adjust the PC (SA is the variable name of the
LADS Program Counter) by transferring RESULT into it (1600-
1630). Then we PLA PLA the RTS off the stack and jump back
into Eval to get the next physical line.

ENDPRO is a short but essential routine. After each phys-
ical line we need to see if we've reached the end of the source
code program. Microsoft BASIC signals the end of a BASIC pro-
gram with three zeros.

But before checking for those telltale zeros, ENDPRO fills
the buffers with zeros to clean them (1680-1710).

Then it pulls in the next two characters. If the second one is
a zero, we know it’s the end of a source file (not necessarily the
end of a series of chained source files; that’s flagged by the .END
pseudo-op). However, if it is the end of a program file, we flip
the ENDFLAG up to warn Eval and RTS back to Eval (1790).
Even though Indisk has discovered that we're at the same last
line in a file, Eval still has that last line to evaluate and as-
semble. The ENDFLAG won't have any immediate effect when
we first return to Eval.

The other possibility is that we won't find the three zeros
and that this isn’t the last line of a file. If it isnt, we just set the
COLFLAG down because at least we're at the end of a physical
line. A zero always means that. Then we return to Eval. Indisk
just pulls in one line at a time.

Hex Conversions

HEX is an interesting routine. It is called when Indisk detects the
$ character. HEX looks at the ASCII form of a number like $0F
and turns it into the equivalent two-byte integer 00 OF in RE-
SULT. It’s similar to the subprogram Valdec which translates an
ASCII decimal number into an integer.

HEX operates like a little Indisk. It pulls in characters from
the source code, storing them in its own special buffer, HEXBUF,
until it finds either a zero, a colon, a blank, a semicolon, a
comma, or a close parenthesis character. Each of these symbols
means that we’ve reached the end of the hex number. Some of
them signal the end of a line, some of them don’t. Whichever

152

Indisk: The Main Input Routine

category they fall into, they go to the appropriate routine, DECI
or DECIT.

Busy X and Y

If we're not yet at the end of the hex number, however, the
character is stored in HEXBUF (1970) for later translation and
also stored in LABEL for printout. Notice that both the X and the
Y Registers are kept busy here, indexing their respective buffers.
Y cannot do double duty because it is farther into the LABEL
buffer than X; the LABEL buffer is holding the entire logical line,
HEXBUF is holding only the ASCII number. The two buffers will
look like this when the source line HERE LDA $45 is completely
stored:

LABEL HERE LDA $45
HEXBUF 45

LABEL will be analyzed and assembled by Eval. It needs to
store the entire logical line. HEXBUF will be analyzed only to ex-
tract the integer value of the hex number. Storing anything else
in HEXBUF would be confusing.

A hex number which is not at the end of a line goes to
DECIT (2020) and, the length of the hex number is stored into
the variable HEXLEN (2020) so we'll know how many ASCII
characters there are to translate into an integer. Then the final
character (a comma or whatever) is put into the LABEL buffer.
Then the JSR to STARTHEX (2050) translates the ASCII into an
integer in RESULT. A JMP (rather than a JSR) to STINDISK pulls
in the rest of the logical line and takes us away from this area of
the code. The assembler will not return to this area. It will treat
the rest of the line as if it were an ordinary line.

By contrast, a hex number which is at the end of a line goes
to DECI (2070), and we store the type of end-of-line condition
(colon, semicolon, 0) in the variable A. We put the length of the
hex number into the variable HEXLEN (2090), so we'll know
how many ASCII characters there are to translate into an integer.
And we put a 0 delimiter at the end of the information in the
LABEL buffer. Then the JSR to STARTHEX (2110) translates the
ASCII into an integer in RESULT. We restore the colon or semi-
colon or whatever (2120) and jump to the routine which pro-
vides a graceful exit (2130).

ASL/ROL Massage
STARTHEX turns a hex number from its ASCII form into a two-

153

Indisk: The Main Input Routine

byte integer. It does this by rolling the bits to the left, pulling the
number into RESULT’s two bytes, and adjusting for alphabetic
hex digits (A-F) as necessary.

The variable HEXLEN knows how many characters are in
the hex number. It will tell us how many times to go through
this loop. Before entering the loop, we clean the RESULT vari-
able by storing zeros into it (2140-2160) and set the X Register to
zero.

The loop proper is between lines 2180 and 2350, and is
largely an ASL/ROL massage. Each bit in a two-byte number is
marched to the left. ASL does the low byte, ROL the high byte.
ASL moves the seventh bit of RESULT into the carry. ROL puts
the carry into the zeroth bit of RESULT+1, the high byte.

As an example of how this ASCII-to-integer machinery
works, let’s assume that the number $2F is sitting in the
HEXBUF. As ASCII, it would be 2F. But recall that the ASCII
code simplifies our job somewhat since the number 2 is coded as
$32. To turn an ASCII hex digit into a correct integer, we can get
rid of the unneeded 3 by using AND #$0F.

Alphabetic Numbers

What complicates matters, however, is those alphabetic digits in
hex numbers: A through F. For them, we'll need to subtract 7 to
adjust them to the proper integer value. They, too, will have the
high four bits stripped off by AND #$0F.

Let’s now follow $2F as it rolls into RESULT. $2F, as two
ASCII digits in HEXBUF, is: $32 $46 or, in binary form,
00110010 01000110.

HXLOOQORP starts off by moving all the zeros in RESULT four
places to the left. There are four ASL/ROL pairs. The first time
through this loop, just zeros move and there’s no effect. Then
we load in the leftmost byte from the HEXBUF (2260) and see if
it’s an alphabetic digit. This time we're loading in the $32 (the
ASCII 2), so it isn’t alphabetic and we branch (to 2300) for the
AND which strips off the four high bits:

00110010 ($32, as ASCII code digit)
AND 00001111 ($OF)
00000010 (now a true integer 2)

The ORA command sets a bit in the result if either of the

tested bits is set. That's one way of stuffing a new value into
RESULT:

154

Indisk: The Main Input Routine

00000000 (RESULT is all zeros at this point)
ORA 00000010(we're stuffing the integer 2 into it)
00000010 (leaving an integer 2 in RESULT)

Next the X index is raised and compared to the length of the
ASCII hex number (in our example $2F, HEXLEN will hold a 2).
X goes from 0 to 1 at this point and doesn’t yet equal HEXLEN,
so we branch back up (2350) to the start of the loop and roll the
2 into RESULT, making room for the next ASCII digit:

Carry bit high byte low byte
0 00000000 00000010 (our 2 before first ASL/ROL)
0 00000000 00000100 (after)

0 00000000 00001000 (after the 2nd ASL/ROL)

0 00000000 00010000 (after the 3rd ASL/ROL)

0 00000000 00100000 (after the 4th and final ASL/
ROL)

What's happened here is that we’ve shoved the 2 from the
low four bits into the high four bits of RESULT. This makes 2
(decimal) into 32 (decimal), or $20. Why do that? Why make
room for the next digit in this way? Because the 2 in $2F is really
a hex $20. It's a digit 2, but not number 2. It's not a number 2
any more than the 5 in 50 is a 5. This ASL/ROL adjusts each
digit to reflect its position, and position determines the numeric
value of any digit.

Alphabetic Adjustment

Now it’s time to pick up the F from HEXBUF (2260), and since it
has a decimal value of 70, it is higher than 65, so we adjust it by
subtracting 7. That leaves us with 63 ($3F). We strip off the 3
with AND $0F:

00111111 ($3F, the adjusted ASCII code digit)
AND 00001111 ($0F)
00001111 (now a true integer F)

and then incorporate this F with the $20 we’ve already got in
RESULT from the earlier trip through the loop:
00100000 (RESULT is holding a $20)
ORA 00001111 (we stuff the F into it)
00101111 (leaving the integer 2F in RESULT)
Again, X is raised and tested to see if we're finished with
our ASCII hex number (2340). This time, we are finished. There’s
nothing more to roll into RESULT so we set up the HEXFLAG.

155

Indisk: The Main Input Routine

This alerts all interested parties in LADS that they do not need
to evaluate this argument. The value is already determined and
has been placed into RESULT, ready to be printed out or POKEd
as the need arises. Then we return to whatever routine called on
STARTHEX for its services.

Pseudo-op Preliminaries
The important pseudo-op .BYTE is also handled within the
Indisk subprogram. Any pseudo-op beginning with . comes here
to PSEUDO] (2410) first. All of these . type pseudo-ops require
certain preliminary actions, and the first section of PSEUDOJ
accomplishes those things. Then they split up and go to their
own specific subroutines. Most of them end up going to the sub-
program Pseudo.

PSEUDQ] first tests to see if there is a PC address-type label
such as the word OPCODES in:

100 OPCODES .BYTE 161 160 32 96.

The Y Register will still hold a zero if the . character is de-
tected at the very start of a logical line of source code. That
would mean that there is no PC-type label and we don’t need to
bother storing it into the label array for later reference. Likewise,
if this isn’t pass 1, we can also skip storing such a label in the la-
bel array.

But if it is pass 1 and there is one of those labels at the start
of the line, we need to save the A and Y Registers (2450-2470)
and JSR EQUATE to store the PC label (and its address) into
LADS’ label array. Then we restore the values of A and Y (2490-
2510) and store the . character in the main input buffer LABEL.

If It’s Not B

The character following the . will tell us which pseudo-op we're
dealing with, so CHARIN pulls it in and stores it into the buffer
(2550). If it's not a B, we branch to the springboard PSEUD1
which sends us to the Pseudo subprogram for further tests
(3010).

Now we know it’s a .BYTE type, but is it the ASCII alpha-
betic type or the ASCII numeric type? It is .BYTE “ABCDE or
BYTE 25 72 1 6?2

There is a flag which distinguishes between alphabetic and
numeric .BYTEs: the BNUMFLAG. It is first reset (2600), and we
check both the pass and the SFLAG to decide whether we

156

Indisk: The Main Input Routine

should print out this line or not. If it's pass 2 and SFLAG is set,
we print the line number and the PC address. Then we pull in
more of this source code line until we hit a space character. If
the character following the space isn’t a quote, we know that
we're dealing with the numeric type of .BYTE, so we branch
down to handle that at BNUMWERK (2810).

Otherwise, we take care of the alphabetic type. This type is
easy. We can just pull them in and POKE them. There’s nothing
to figure out or translate. These bytes are held in the source code
as ASCII characters and will be POKEd into the object code as
ASCII characters. The main use for this pseudo-op is to store
messages which will later be printed to the screen or printer.

End-of-Line Alternatives

The active parts of this loop are the CHARIN (2820) and the JSR
INCSA (2990) or JSR POKEIT (3050). The decision whether to
simply raise the PC with INCSA or actually POKE the object
code is based on the test of PASS (2970). The rest of the loop
(2830-2960) is similar to other tests for end-of-line conditions
found throughout LADS. We look for a 0 (2830), a colon (2850),
a semicolon (2880), and a concluding quote (2940). Any of these
characters signal the end of our alphabetic message. And each
condition exits in a way appropriate to it. Semicolons, for exam-
ple, require that the comment be stored in BABUF for possible
printout. To do this, we JSR PULLREST (2900).

PSLOQP stores each character into LABEL, the main input
buffer. It also JSRs to the POKEIT routine (in the Printops sub-
program) which both stores the character in any object code on
disk or memory and raises the PC by 1. Then it jumps back up
to the start of the loop to fetch another alphabetic character
(3080).

Numeric .BYTE

BNUMWERK is more complicated than BY1, the alphabetic
.BYTE pseudo-op we just examined. BNUMWERK must not only
check for all of those possible end-of-line conditions; it must also
translate the numbers following .BYTE from ASCII into one-byte
integers before they can be POKEd. It's that same problem we’ve
dealt with before: 253 is stored in the source code as three bytes:
$32 $35 $33. We need to turn it into a single value: $FD. (One
thing simplifies the numeric type .BYTE pseudo-op. The pro-
grammer can use only decimal numbers in the source code for

157

Indisk: The Main Input Routine

this pseudo-op. .BYTE $55 $FF is forbidden, although you could
certainly add the option if you wish.)

Like a small version of the Eval subprogram, BNUMWERK
has to have a flag which tells it when to close down. We set this
BFLAG down (3100) and then put the character in the Accu-
mulator into a buffer called NUBUF. In this buffer we’ll convert
these decimal ASCII numbers into integers. Then we raise X to 1
and enter the main BNUMWERK loop (3130).

The BFLAG is tested, and we shut down operations if it is
set (3140). Otherwise, we pull in the next character and go
through that familiar series of tests for end-of-line conditions: 0,
colon, or semicolon. If it is a regular character, we stick it into
the special BUFM bulffer (3250) and check to see what pass we're
on. On pass 1 we don’t do any POKEing or printing out, so we
can skip that. But on pass 2, we check to see if we've got a space
character, indicating that we’ve reached the end of a particular
number, if not yet the end of an entire line (3360). If the number
is completely in the buffer, we raise the PC and go back for the
next number (3320).

On the second pass, however, we may have to POKE object
code and also provide printouts. This means that we have to
both calculate each number for POKEing as well as store each
number in ASCII form for printouts. We pull the character from
the BUFM buffer and store it in the printout buffer, LABEL, the
main input buffer (3340). After that we check again for end-of-
number or end-of-line conditions (3360-3410) and, not finding
one, return for another character (3440) after storing the current
character in HEXBUF.

An end-of-line condition lands at BSFLAG (3450), which
alerts BNUMWERK that it should exit the loop after the current
number in HEXBUR has been analyzed.

A Huge, and Incorrect, Number

WERK?2 (3480) performs the analysis of a single number. It
points the TEMP variable to NUBUF where the number is stored
and JSRs to VALDEC, leaving the value of the number in RE-
SULT. Then the value is POKEd to the disk or RAM object code
(and the PC is raised by 1) (3550).

So that nothing will be left over to confuse VALDEC during
its analysis of the next number, NUBUF is now wiped clean with
zeros. VALDEC expects to find 0 at the end of an ASCII number
that it's turning into an integer. If that 0 isn’t there, VALDEC will

158

Indisk: The Main Input Routine

keep on looking for it, creating a huge, and incorrect, answer.
Then we return to the main loop and look for another
character, the start of another number (3620).

Graceful Exits

There are so many options in LADS that graceful exits from
routines like BNUMWERK are rather difficult. We cannot just
simply RTS somewhere. We've got to take into account several
sometimes conflicting conditions.

LADS can get its source code from two places: disk or RAM
memory. The source code can be entirely within a single pro-
gram file or spread across a chain of linked files. LADS can as-
semble hex or decimal numbers from source code (except within
the .BYTE pseudo-op). The assembler can send its object code to
four places: disk, screen, RAM memory, or printer. All or any of
these targets can be operative at any given time. And output can
be turned on or off at will. No wonder there have to be different
exits and some testing before we can leave a pseudo-op. We've
got to figure out what's expected, where the object code is going.
Finally, the fact that logical lines of source code can end in sev-
eral ways adds one additional complication to the exit.

BBEND is the start of exit testing for BNUMWERK. On pass
1 we have to raise the PC one final number (3650). If the line
ends with a colon, we cannot go to ENDPRO and look for a
new line number, since colons end logical, not physical, lines of
source code (3680). In either case, we set the COLFLAG up or
down, depending on whether or not we’ve got a colon-type end-
ing to this logical line (3700). We then raise the LOCFLAG to tell
Eval to print a PC-type address label and PLA PLA, pulling the
RTS off the stack in preparation for a JMP back to Eval. If it’s
pass 1 or if the printer printout flags are down, we don’t need to
print anything, and we JMP into Eval at STARTLINE to fetch a
new line of source code (3790).

Alternatively, if it's pass 2 or if the PRINTFLAG is up, we
go back into Eval at PRMMFIN where comments following
semicolons are printed (3780).

FILLDISK (3810) takes care of a problem created by using
the *= pseudo-op with disk object code files. Recall that if you
wrote source code like:

10 *= 900
100 START INY

159

Indisk: The Main Input Routine

110 *= 950; leave room here
120 INX; continue on

LADS would normally store the INY and follow it immediately
on a disk file with INX. The PC variable (SA) within LADS
would have changed. The INX object code being POKEd to
RAM would be stored correctly at address 950. But the INX
would go to disk at address 901. The disk is receiving its object
code bytes sequentially and doesn’t hear about any PC changes
within the computer during assembly.

FILLDISK subtracts the old PC value from the new adjusted
PC value and sends that number of filler bytes to a disk object
file. In the example above, 900 would be subtracted from 950,
and 50 bytes would be sent as spacers to the disk. This creates a
space between INY and INX, a physical space, which will cause
the object file to load into the computer with the correct, ex-
pected addresses for each opcode.

A secret is revealed here. There are two full passes, but
LADS starts to try for a third pass. It is quickly shut down be-
cause during this pass the ENDFLAG is up and STARTLINE will
detect it. Nevertheless, we cannot store more bytes during this
brief condition. Bytes must be stored only on pass 2, not on pass
1 or that temporary attempt at a pass 3 (3840).

Starting the Countdown

If FILLDISK is called upon to act, however, it acts. The disk ob-
ject file (file #2) is opened (3860), and the old PC is subtracted
from the new one (3880-3940). The Accumulator is loaded with a
0 and we start the countdown; the result of our subtraction, in
the variable WORK, is decremented for each 0 sent to the disk
object file (3960-4000). If WORK hasn't counted down to zero,
we continue with this loop (4010 and 4030). Finally, we restore
the normal I/O and then return to the caller.

The final subroutine on Indisk is functionally identical to
KEYWORD. It turns a token into an ASCII word (turns ? to
PRINT), but it sends its results to the BABUF buffer which stores
all comments. KEYWORD sends its results to the main buffer
LABEL for source code lines. To follow the logic of this sub-
routine, see the discussion of KEYWORD earlier in this chapter
(line 1040 on).

Now we can turn our attention from LADS input to LADS
output. The bulk of the next chapter explores the four destina-
tions of assembled code: screen, printer, disk, or memory.

160

The Main Input Routine

.
.

Indisk

NOTOD ¥ aNNOd {NOTOD dWr

NOTODIWES ¥Od MDEHD ‘ION JAI ‘TOWX AND

NOTOD ¥V LI SI !8S# dWD TIOW

(SO¥9dZ €) WY¥DOdd J0 ANZ JOJ MDOEHD °ENIT JO ANI ¢ ¥V ANNOd {OddANd dWr
NOTOD ¥Od MOOT ‘O¥HEZ ION dI {TIOW INd IANIOW

(INIT 40 IM¥VLS IV ION) ENIT NIHLIM INIOd XMINZ :NIYVHD ¥SL MSIANILS

(@ ENIT J40 NI NV OIL INITYAINOI S,LI) NOTOD ¥OJ MOIHD OL dIMS {TIOW dWL
|||||||||||||||||||||||||| !SHNVTHON OFd

(FEWAN ENIT ¥ ONIMOTIOL ¥0) {ZE€# dWD MOOTOOD

ANITIYVLS dWL:VId:Vld

ANIT 40 ONZ IV ATIVINIZAIOOV QADVTId SNOTOD SHTANVH SIHL (OddANd ¥SL
MO0TO0D INg

NOTOD ¥ ONIMOTIOA SMNVTIH HALUNIWITE OL INILNOY (NIYVHD ¥SL SMNVTIHION
JIEWAN ENIT 40 HLAY HOIH F¥OLS ! T+NANIT VIS

NI¥VHO ¥SC

YIGWAN ENIT J0 ILAE MOT FIOLS NANIT VIS

(WY 90 MSIA WOdd) ¥MALOVEVHD LST HHL NI T1I0d ‘ESIMIFHIO ‘NIMVHO dSr
(s9o¥¥d HJAL LT XA :GT VAT G:ANI :d0 HVYD SHEMVL SIHL) !SMNVILGON INL
SYNVTE ANV HAOWHN ‘SIHL OL ¥OIdd LSNL NOTOD V S¥YM HYEHL 4I ‘OVIITOD YA
NMOd 9V¥T1d (+) dO 0andsSd OILAWHLI¥Y INd ‘OVIISNTd ALS
NMOd < ¥O > OSNIMOHS 95YT1d INd ‘OVIILAL ALS
NMOd DVTd SINIAWWOD INd {OVIIdvd ALS
NMOd SVTAXAH LNd ‘OVIIXIH ALS
g# KA1

(TYAZ NI ENILNOY) SO¥EZ HLIM TAdvVT TIIA {gVINVATO dSCL MSIANI

dd0D JA0 ANIT HLIM +TdgVT STIId ¥0 °D0¥d 40 QNI SHYTA YHAHLIA/SLINSHY ¢
(NOTOD ANOXTE ¥O) HENIT MAN V NI ¥YVHD LST OL ILNIOd OL MSId SIDAIXH/dNLIAS:
INILNOY MSIA-WO¥dA-INANI-LIAD NIVW ,MSIANI, *

ov
g€
ac
o1

Jstpu] ‘-9 wreidoi

161

mne

.

The Main Input Rout

.

Indisk

INNIINOD ‘O¥HFZ ION dI ‘X¥d

aNd

YHLOVIVHD I1dD *NIYVHD ¥SL TXVd

SINIWWOD HLIM ONITIIJ ¥04 ¥IAJINd JNgvVd OL LISAJ0 LIS :@#
HILVNTVAH OL TYAT Y04 ONIHION ZXAINODIS OL HTIVIYVA ¥ L1IS ‘Y
SLNIWWOD (SHAVYS ANV) SHAOWHY HNILNOY SIHL

AdT
YIS

(SLNIWWOD ¥Od4 ¥dJIANE) ANEVd OLNI SMIVWHY INd ‘9DVIJIVE VIS LSIAITING

llllllllllllllllllllllllllllllll INILNOY LIXZ OL 09 <‘TINdW

Y

ALYNTVAE OL TYAE ¥0d ODNIHION AAINDIS OL OJHZ OL HTIVIYVYA ¥ LIS ‘g#
NINLIY FOVI¥YVD V¥ INI¥d d9DLNdd

(¥344n9d NIVW) ¥dJ4Nd TILIYT FHL NI SYHLOVIVHD HHL INI¥d <INdNILNId
dDY¥dS ¥ INI¥d <‘dDVdSLNdd

dWe
YIS
Yatl
asre
asre
gse

YHIWAN ENIT HHL INI¥d ‘INITINYd dSC 1Xnd

||||||||||||||||||||| SYHLOVIYHD HYOW ¥Od dOOT OL NINLAA :XNd

dWre
ANI

d3IANE NIVW FHL OLNI °“¥VHD HHIL INd +X’‘TILVT VYIS ZXNd

q9OM IIOSVY NV SY INO II ANILXd OS ‘QYOMAEM ¥ SI LI ‘QYOMAIM

¢Xnd

(OIS¥Yd NI QOMAEM ¥ ION S,LI OS) LIS ION LId HLL *LTT#

LIXd OS ‘ENIT 40 ANI ¢ 1X0d

¥aIAnd TIEVT OLNI VYIVA INIWWOD-NON INd <NI¥dYHD dSCr
lllllllllllllllllllllllllll TYAZE OL NJINLEY NIHL ANV ‘TINdW
NOTODIWHES HdHL HNIMOTTIOA SINIWWOD FAVS ISIMIHIHILO :ILSHITING

(LNIWWOD SIg ¥ LSNL ‘SDINOWANW ¥O STHEEYT ON) INIT FHL J0 LIVYILS -XNd
IL¥ NOTODIWHS ¥ SI ‘O¥HZ 4AI *(HAOEVY QIAVS) X MOHEHD ‘ESIMYIHIO ‘¥
(LNIOd SIHL IV @ < d€ LSAW ¥) OVYTd SINIWWOD INI¥d dn LIS <DHVYIIgvVd
Xd711INnd

SMYVWAY FHL HYOLS L,NOd NIHL ‘dqIALSINOII LON ILAOILNI¥d AI <HVYTALNIVG
(W3Y) NOTODIWHS ¥ dNNOd *¥

NO dNANIINOD ION AI ‘YOWOD

gsre
ood
dWD
oad
Xnd
dWre
asre
oad
YdaT
YIS
ozd
va1
ALS
aNd

NOTODIWES ¥ LI SI ‘6G# dWD TOWX

QLS
29¢S
Bss
ovs
gEeS
92s
218
205
267
287
LY
997
2s¥y
ovv
PEY
azy
o1V
207
g6¢t
98¢
gLE
g9¢
gs€
ove
gee
gce
21¢€
20¢€
g6¢
P8¢
gLe

162

Indisk: The Main Input Routine

9t# dWO

dO-0dNdsd dNnod :<oodndsd 0dd

9v# dWD TOWOD

¥ ANNOJA :YVYLS dWC

TOWOD ENd

CLT# dWD OWOD

+ dNNOA <DVYTASNTd ONI

OWOD dNd

GLT# dWO

> dNNOdA <071 0dd

6LT# dWD

< a@Nnod ‘IH 034

SYILOVIVYHD ddO ¥YHIHLO ¥Od MDHHD —————————————————— LLT# dAWD YOWOD
(J4TIVD OL NINLAY) INIT A0 IAVLS LV ION INE ‘NOTODIWHS ¢SI¥ TTINdW

lllllllll ANIT IXEN LID OL TVYAEZ OL NINLIY OS I¥YYLS P IWIS <IANITLIVYLIS dWCL

Y1d
IANIT IXIN LI3D OL dd¥dd3dd OL TYAT OL MDOVd dWNL OS @ = X *¥1d
TTINdW HINd

dNIT ¥V 40 J¥VLS dHL IV SYM NOTODIWES HHL ‘0OS dAI @ = X 4I IS ‘¥ VAT
NIHL ANV WYdD0dd 40 ANI d0d MDHHD <OdddaNE ¥dSrL TINdW

OdHZ HINIT J0 ANE HHL ¥Od OSNIMOOT <T11NdW 0dFd

WHHL ONTYONOI ‘SYHLOVIVHD MIVWHY NI TINd LSAL ‘NIYVHD ¥SC XdT11Ind
|||||||||||||| JHLOVYYHD ¥YHHIONY LID OL dOOT OL NINLAY ¢ IX¥d dWL
ANI

dIAJING MIVWIY NI °*¥YVHD HYOLS <A‘'JANEVE VIS VXVd

DNIVLS IIDSY NV OINI CQYOMAIN ANILXHT ‘HASIMIFTHLO ‘AYMAIAM dSC

(LIS ILON LIF HLL) QIOMAIM ¥ ILON :‘¥XVd Tdg9 Xvd

lllllllllllllllll (O¥ddNd) TII4 O¥dZ ¥0d LIASAIO CTIOH ISAW X ‘SLd
Y AdT

INIWWOD dHL 40 ANd HHL IV d¥,3IM ‘HESIMYIHIO ‘X'ANdVE VIS

288
aL8
298
258
278
2€8
28
218
028
g6L
28L
aLL
29L
2sL
ovL
2€L
2TL
2TL
00L
269
289
0L
299
259
2v9
P€9
@229
219
229
265
28§

163

The Main Input Routine

Indisk

||||||||||||||||||||| *YVHD IXHN ¥04 NIVDY dOOT AIMI dWL

ANI

¥aJAnd ,SAYT OINI °“¥VHD Ind ‘X‘TILEVT VLS

QIOMAAM LXIN J0 IIVLS ‘QYOMAEM 40 ANE SHLVDIANI “¥VHD JALIAIHS VY ‘I1ISM IWd
X‘'SAMAEN VYdT

(Ta9vT1) ¥3J4N9d NIVW ,SAVT OLNI JUOMAEM HHIL HYOLS <*XNI AdNd
||||||||||||| YILOVIVHD JHLIATIHS QIOMAHEM-JAO-IYVILS ANIA dIA XIS IWd
dLAY JILIATHS ¥ ANIA LON AId:XSM T1dd

*EI9dVYL S,DISVE NI °"¥VHD IV MOOT ‘X‘SAMAEM VATl

dOOT A0 JYVYLS LY O¥YHZ OL dN X HDNI¥d ‘XNI XSM

d4OM IIDSVY HHIL FIOLS ANV INILNOY HOYVAS SIHL LIXHT M ANV AdIMA Odd

(279¥L NI LI ANnOA IA,dIM ‘O¥HZ NHHM) T A9 YIAGWNAN dDNAHTA ‘WANAIM DIA AIMS
GGC# XAT

ATIYL QIOMAEM S,DISVE NI (NOILISOd) d¥ddWNN HIOLS (WANAIM VIS

dLs# O€S

(LYHM ¥0 ‘HLS ‘LST LI SI) QUOMAEM J0 ¥IIWNN ANIA <DdS Q&OSNMM
ONTYLS IIDSY OLNI NAMOL IOMAIAM HLAG-HTONIS V¥V HLVISNVIL —====——-—
XdH mZh
ANI
YOLVISNVYL ¥HEWNN XHH OL QYVYOEgOHNIVAS ‘A ‘TIHIVT VIS XXIH
SANIILNOY ONITANVH dO-0dNdASd OL J¥VOgDHNI¥dS <‘[Lodndsd dWrL 00oandsd

(YFEWAN ENIT ¥ ION INd) ¥YALOVIVHD ¥IHIONY LED OL NINLIAY *MSIANILS dWC
ANV ¥HLNIOd HHL HSIVY <ANI

ANY ¥3AANd NIVW FHL OILNI ¥ILOVYVHD HHIL INd +‘A‘'TILVT VIS dVIAAY
ONI¥LS IIDSY NV OLNI LI dNHIXZ OS ‘JIOMAIM dNNO4 <dIOMAHIM dSC

dv1ady >2dd

(dn ION IId HLL) CQYOMAEM ¥V ION ‘LZTT# dWO

YIGWNN XHH dNNOd <XXHH 0dd

2611
2811
QLTI
99T1T
PSTT
OVTT
PETT
PCT1I
OTTT
2011
2601
280T
2LOT
99091
2S0T1
2Vv01
PEDT
2CoT
10T
2001
266
286
gL6
296
036
o276
g€6
226
216
096
268

164

mne

.

The Main Input Rout

Indisk

2 Es)
THEVYI> 4 VAT

dIIWAN IIDSY OL INIOd {dWHL XALS

ANI TJAVLS

(GT =4 :MNVTId HHL ¥0d OHNIMOOT Ad) ¥HAIGWAN ANIA ¢AYLS dKWD

ANI

T4YLS 0dd

CE# dWD

A‘1ddYI VAT AYLS

g# XQaT

I¥VYd IXEN SIHL d3dA0 dWAL OS {¥YVYIS dINd

aI¥NOI4 NIId AQVAYTIY SYH INIWNOYVY dHL ‘XIH JAI {OVTIXEIH VAT NIVLS
NINLEY FOVINEVYD INI¥d ‘¥DLN¥d dSre

¥dd4dnd 139vI NI ONINLS INI¥d {ILNdNILNId dSC

INI¥d dSr

x LNIdd ‘Zv# va1

INIdd ¥SC:g1$# vaAT

NMVYLS O3d!

NIZ¥DS OL V¥I¥d INO INI¥d L,NOd ‘I SSv¥d NO $SSvd vdT1:
MSIANILS ¥SC ¥VYLS

(0d dHL d5NVHD) dO-0dNdSd =y HHL dTIANVH ——————————————— e H

*YVYHD IXIN HHI HOLIA dM O ° (WY¥DH0dddNsS HLYNOHA *MSIANILS dWr
HHL NIHLIM dO-0dNd&Sd SIHL NO NIMVI SI NOILOVY) ¢OVTALAY VYIS
HddAL (dHLAY HOIH) < = ¢ {T# ¥dT 01

HdAL (ILAE MOT) > =1 MSIANILS dWre

oanasd > ¥0 < ¥ NIVINOD IL,NSHOd ENIT = @ OYTALAL VIS
*SHLVYLS HTdISSOd € SVH ODVTALAY HHL {Z# YAT1 IH

Sdo-0dNASd > ANV < HTANYH ———————————————— :
ANILNOY SNITIVD OL NJINILAY ANV . II9 1IN0 ¥vdTID ¢SId
dL$4 ANV IdSM

2871
GLYVT
2971
PSvT
oYvT
PEVT
gevt
/AR AN
07T
g6tT
P8€T
gLET
P9ET
PSET
PVET
PEET
GCET
PCeET
o1€T
POET
g6cT
@8CT
QLTI
29CT1
9sCl
oveT
pect
geet
PTCT
gocCT

165

The Main Input Routine

.
.

Indisk

NOILIANOD dN OL 5VTI4 HTIA HAOD HDINOS A0 ANA IdS —-—-—-—----—:T# VAT ANINI
YATIVO OL NdNLAY dNY -SId

NOTOD ¥ ION ‘NOILIANOD HINIT 40 ANI NV ‘9HYTITIOD YIS

SI SIHIL dSNV¥DALE ‘NMOQ (NOTIOD) SHVYTJITIOD HHL INd IM FSIMIFHLO ‘@# VAT
ANANI OL Odd dM dNV <dNINI Odg

d71I4 JA0D IAD¥NOS ¥NO A0 AN FHL ANNOA ‘IDOV¥d NI ‘HAVH M <NIYVHD ¥SC
NEHL ‘SO¥dZ HIOY HYVY AHHL 4AI °*SHLAY ¢ LXIN HHL NI TInd ‘NIYVHO ¥SCO
X'TELVYT YIS

SP@Y HIIM ¥344Nd 40 LSHEY TIIA <OdddNd INd

g8# AdD

ANI

¥aA4Ng NIVW HHIL OINI (F¥dH SN INIS IVHL) O¥HAZ HHL INd ‘X’'TIdVT VIS 0OdddNd

d0D dID¥NO0S HYILNA HHL 40 NI HHIL SIHL SI —-—-——-————————————- :
HJOD 40 ENIT IXEN HHL ¥0d TYAH OL NINLIY INITLIVLS dWL

Y1d

dNY SI¥ HHL 440 T1INd ‘¥'1d

T+¥YS V1S

T+ILINSHY VAT

¥YS YIS

(¥S) DOd HHL OLNI =5 40 INIWNDIV HHL ILNd ‘ILTINSHEY VAT XIIYLS

SN ¥Od SIHL SHOA MSIATIIA MSIATITIIA ¥SC

(3T1I4 JdOD IDILEO NV ONILVEMD HIV dM) dN SI HVYTANSIA HHL AT ‘X¥IVLIS OId
FIT4 LDALE0 MSIA FHL A4ANLS OL LOD FA,dM ‘Z SSYd NO ‘ODVIIANSIA VAT
X¥¥YvYLsS 044

*ENOTIV HIIA LDHELEO MSIA JAVAT ‘T SSYd NO ¢{SSVd VAT ¥¥VLS

(LTINSTY NI) ¥IDALNI OLNI ¥HAIWAN IIDSV HLVISNVIL :DIATYA ¥SC
T+dWHL VLS

g+ DAY

THIVI<# VAT

dWHL Y.LS

dWHL Ddv

P6LT
28LT
QLLT
g9LT
OSLT
VLT
PELT
PTLT
OTLT
P0LT
69T
9891
gLoT
P99T
9991
%91
PEST
9291
PT9T
2991
26ST
298ST
OLST
P9ST
PSST
ovST
PEST
SF AR
PTST
99ST
gev1

166

ine

.

The Main Input Rout

.
.

Indisk

(ZSYD SIHL NI @) ¥3J4Nd NIVYW OLNI °*S¥VHD ONIYOLS HSINIA ‘X‘TILVT YIS
YIEWAN XHH-IIDSY J0 HIONAT HAVS NITXHIH XIS

2# YdT

YIIVT ¥04 °*YYHO NOTODIWIS ¥O ‘NOTOD ‘INIT A0 ANI HHIL HAVS ‘¥ VIS IDIA
lllllllllll {INIT FHL 40 LSHEY NI TINd OL NINLAY :MSIANILS dWC

ATIVINVYA ITINSHY NI ¥YIDAILNI OLNI JHIWAN XFH-IIDSV JLVISNVIL ‘XIHIYVYIS ¥SC
ANT

(2SYD SIHL NI (¥0 ‘) ¥3IINd NIVW OINI °SYVHD ONIYOLS HSINIA <A‘'THLEVT VIS
YIGWAN XHH-IIDSV 40 HIONIT FAVS *NIATXHH XIS LIDEA

lllllllllll YAIINGXHIH OLNI YHIWNAN XHH ONILLNd NO dTEM NIHL ‘TH dWC

OOL XIANI SIHL IASIVY <ANI

ANV LNOLNI¥d ¥O0d ¥FAINE NIVW OLNI LI HIOLS OSIV ‘X ‘'THIVT VYIS

ANV XAANI HHL ISIVY ‘XNI

ANY ¥d440d NI °*dVYHD XHIH-ITALS-IIDOSY HHL INd ‘FISIMYHHLO *‘X‘'dANdXHIH VYIS
(ONIMOOT dOLS 0S) (SISHHLNHIVd dSOTD ¢LIDIA Odd

*(NOILIONOD HINIT-J0-ANI-LON ¥V SHTANYH ,HOVId INIYIIAIA, SIHL) *Tv# dWD

(3DVTd INFIIAAIA ¥ OL 0D INd ‘HNIMO0T dOLS OS) YWWOD ‘LIDIA OFd
Yv# dWO

(ONIMOOT dOLS OS) NOTODIWHS :IDAA Odd

6G# dWD

INIT 40 dNE ¥Od ODNIMOOT ddAM OS YHILDOVYVHD MNNvVId *TH 0dd

Z€# dWD

(DNIMOOT dOLS OS) NOTI0D ¢IDIA 0Id

8S# dWD

(DNIMOOT dOLS 0S) dANIT J0 ANI :IDIAA OId

NIYYHD ¥S[TH

I7I0SAY OLNI XIH ONIWODNI A0 INATYAINDT ¥IADALNI SINd ‘@# XAT XIH
IINSTY NI ¥ADALNI NV OLNI WIHL SONININL ‘SILAE MIJ IXIN NI TInd ¢
YADALNT ALAG-Z ¥ OL ¥YAGWNN XHH ¥ HONVHD ——=————————m e 2
JATIVO OL NINLIAM ANV {SId

OVTAANT YIS

2912
V69T
280¢
0LaC
299¢
2s9¢
ovac
geBT
pTac
P10¢
5]5)04
0661
2861
gL6T
9961
2561
ovel
ge6T
oceTl
P16l
9061
268T
2881
2L8T
9981
2481
281
g€8T
9Z8I1
918T
998T

167

mne

.

The Main Input Rout

.
.

Indisk

(90 9 ELAE*® THLVT) HEMIT TIEVT Od ¥ LON S,LI NIHL @ = X dI ‘@# XdD L£0OdNISd
(STJAL HILAL") *soandsd JTANYH ¢

YITIVD OL NJINILIAY ANV ‘T1# V¥d4T

(¥IMSNY {HL SVYH ITNSHY MOHS OL) OVTAXHH dASIVE ‘0OS A1 <DVTIXAH ONI
AANTLNOD ‘ION JI ‘{dOOTIXH IANH

YHAWNAN XFH-IIDSVY ¥NO J0 ANI HHL LV HM H¥V <NATXIH XdD

XHANI HHL dSIVY <XNI

LTINSHEY OINI HIAE HHL LNd <LINSIE VYIS

(NIL) 21910000 = (QIBTTIIOE) 8S# ANV (TITIVGRE) GT# *ITINSTY VIO

(¥ 40 3ANTYA HHL) @T LID NOX ‘ST ANV 8G NOX NIHM :GT# ANV HIOWXH

‘85 = L-G9 °99 = *L— NIHL ‘69 < S,LI AI Lnd ‘L% DdS

LI WO¥d L ILDOVYLENS &L,NOd OS :‘HJOWXH DDd

dIIWNAN XdH (4-¥Y) DILIEVHATIV NY ION S,LI ‘G9 NVHL ¥IMOT S,LI JAI ‘G9# dWD
YIGWNN XHH-IIDSV HHIL WO¥d HLAE V LID ‘X ‘'ANIXITH VAT

T+LINSHY 10"

LTINSHY TSY

T+LINSHY T0d

W " LINSEY, ONITIVD ¢L1INSHEY ISV

H39,3M JTEVIYVA HLAG-Z SIHL NIHLIM ¥YdDILNI HALAE-Z ¥ OLNI :T+IINSHA T0d
LI ONIWYOASNVYL ANV ‘HEWIL ¥ IV FALAE T ‘¥IEWAN IIDSY HHL <ITINSHY ISV
NI ONIODNIY¥d 40 LDFJAH HHL SVYH SHWIL 8 SIHL ONIOd :T+ILTINSHY T0d

IIIII (LJFT HHL OL SLId FALAE-Z SHAOW) TIO¥ ANV LJATIHS ‘I7TINSHFY TSY dOOTXH
0ddZ OL X LIS ‘XYL

T+LINSHA YIS

Oo¥dZ O&L LINSEY LIS <LINSHI VYIS

|||||| YOLVTISNVYL ¥IDHLNI OL IIDSY-XHH —————==—————————=IQ# VAT XIHLIVLS
*SATOH Y TOdWAS HOIHM OL ONIJYOODV SHAVHHY —=-=-=————————=——-= {IANIOW dWr

HOIHM IANIOW OL dn MDOVd 09 dN¥ NOTODIWES ¥O NOTOD ¥0 ¢ IAIIILIY ‘Y VAT
ATEVI¥VA LTINSHY NI ¥YIDILNI OLNI ¥YHIWNAN XHH-IIDSVY HLVISNVIL *XIHLIVILIS dSC

P1IvC
207V
g6€C
28¢€C
@LET
P9€cC
PSET
ovET
pEET
9CET
g1ET
PRET
g62¢
282t
gLee
99¢c
gs2c
ovee
geee
geee
g1ce
PvTT
g61¢
P8T1¢
@LTC
g9o1c
gsT1e
gy1c
PETT
gTic
gT1T1C

168

ine

The Main Input Rout

.

Indisk

WYY /MSIA WO¥dd ¥ALOVIVHD NI TINd ‘NIYVHD ¥SCL €7D

XHAANI X ¥dA0DIY ‘A AQT

dO¥dS INI¥d <dDVdSINdd dsr

SSHYAAY Dd INI¥d ‘VSINdd ¥SrC

dDVdS LINI¥d ‘dDOVdSLNId ¥SC

dAAWAN INIT LNI¥d ‘SHX <INITILNGd ¥SC

ON :g7T1D O3d

NHEYDS OL LNI¥d 3M dTINOHS :9HVYT1AS VAT

(TYAZ NI) ENITINI A0 SNOILDV HHL ILVDITdAY IM MON :
(XIANI ¥N0) JYIALSIODIAY A HAVS <X ALS

g1D 0dd
T SSVd NO NEIYDS OL ONIHLON INI¥d :SSV¥d vdAT
(SHJAL FLAE® OML HHL) HdAL LT ST 89 9@ ¥0 ‘dAAL , *OVIIAWNNE VIS

Y, HLAY® ANV @ HLA9® NIIMIEE HSINONILSIA TIIM HDIHM DVTd LISHA :@# VAT
dLA€E" L,NSVYM ‘{1dN3Sd 3INd

ALAd* ¥0d4d ,d, LI SI ‘99# dWD

ANT

A'Td9VYT VYIS

(*) QOI¥3d FHL ODNIMOTTIOA °*¥VHD LAD <‘NIYVYHD dSC
ANT

*YVYHD ° dYOLS ‘A’'TILIVT YIS 7ASd

Y1d

AVYL

(WEZHL HF¥O0LSHY¥) SYHLSIDAY X ANV ¥ ILNO TInd ‘¥1ld
AVYYY NI dH¥O0LS °“¥9Addv¥ Dd ANV HWYN <HLVNOH dSC

YHd

VAL

SYHLSIDAY A ANV V HAVS <VYHA
¢dsd dINd

AVIdY NI *¥dd¥ Dd ANV IWYN THEVYT HY0OLS ‘SS¥d IST NO ‘JISIMYIHLO ‘SSvVd XdT
zdsd ozd

—

pTLe
g1LT
99LC
269¢
989¢
@L9C
999¢
959¢
2v9c
PESC
9Tt
919¢
209¢
96Sc
98G¢C
@LSCT
99s¢
P5S¢C
Pvsc
PEST
pcsc
@1s¢
29S¢
Pe¥c
28¥¢C
oLYC
99%¢
osve
ovve
PEYT
gTve

169

ne

.

The Main Input Rout

.
.

Indisk

XYL

llllllllllll {gEJANg NIVW NI ¥HIOVIVHD ¥ HY0LS ‘X‘TIEVT YIS d007ISd
(QUYOEgOHNI¥YdS ¥) dLAE® ILON ‘EdAL 0dNIASd ¥IHLO IWOS ‘0dNdASd dWL TANIsd
lllllllllllllllll {TXd dWC

¥SONI ¥sr

dOOISd dNd

*LI #MOd L,NOd ¢ (V¥SDONI) ¥ILNNOD Dd dASIVY ILSAL ‘T SS¥Yd NO ‘SS¥Yd XAT XE€Ad
LI HJYONDI OS , ¥ aANNOA ‘TAE dWL

XEAd HUNd

() FTILOND ONIANTIDONOD ¥ ANNOA IM HAVH ‘vE€# dWO €Xd

*A¥YM LVHL NI ENILNOY SIHL AN OS NOTODIWIES ¥ <0dddNdd dWL

SLNIWWOD INI¥d L,NOd :DYT14dVd XIS

NFHL ‘Q3LSINOIY LAOLNI¥d ON J4I ‘OYTILNIEdA XAT

(dngvd) ¥3JIANE INIWWOD NI SLINIWWOD HIOLS <ISHYTINA dSL

€Ad dINd

wANIT A0 dNH, NOTODIWHS V¥ ANNOA 6S# dWD XZAL

NOTOD ¥ dNNOA ¢ INId dWL

XCAd dNd

wINIT 40 dNH, NOTOD ¥ dNNOA :8S# dWD CAd

(WYdD0dd ¥0) INIT 40 ANE @ ¥ dNNOA ‘{OdddNIL dWCL
¢Ad HNd
SH4JAL HLA9® ONIY¥LS IIDSY HTANVH —-—-===—=—--- {NI¥YVHD ¥SI. T1Xd

ddAL ,, HFHL ION S,LI FSIMJYFHLO MIIMWNNE dINd

IdXL dodv, HALAE® ¥ S,LI ‘OS AI *(,) HIOND V¥V YALDOVIVHD HHL SI ‘¥p€# dWD
ANT

ONILNIYd ¥O04 HFYOLS <X ‘TILEVYT VYIS

(ZLAE* ¥YALAV HDVAS LST HHL ¥O4 HNIMOOT IY,IM) NIYVHD ¥SC

llllllllllll SYTLOVIVHD HYOW NI ONITINd ANNILNOD ‘LON AI ‘€710 HANd

dD¥dS V LI SI <ZE€# dWD

ANT

¥TAING NIVW NI FIOLS ‘X ‘TILVT VIS

PEDE
X472
210¢€
200¢€
2667
986¢C
gL6T
g96¢
gsec
gvec
ge6T
gcec
g16c
go6c
968¢C
288¢
9.8¢
098¢
258¢
2¥8¢
PEBT
928c
918¢
298¢
g6LcT
28LT
gLLT
PoLT
gsLe
ovLT
gELT

170

me

.

.
.

Indisk

The Main Input Rout

A'T139VYT YIS

¥ITAANd NIVW INOLNI¥d OLNI °*¥VHD INd ‘WANE VAT GMIIAM
YIEWNAN IXIAN LD ¢ TMYIM dWC

T A9 ¥YIINNOD Dd HFSIVY ‘VSONI ¥SC

(SSS SA @) ¥YIAIWAN JHL A0 FAYOW ¥OJ NINLIAY ‘LON 4T < TMYEIM INd
d0¥ds ¥ II SI ‘Z€# dWD

Wang va1

GMYHM INd

SEMOd ON ‘(¥SONI) XATINO Dd HHIL dSIVY ‘T SS¥d NO ¢SSvd VYA1
ydddand ,Wand, OINI °*¥VHD INd ‘WANd VYIS TMM

NOTODIWAS aNNO4 ¢DVYTASE dWL

SLNIWWOD INI¥d L,NOd ‘9HVYTIEVd XIS

NIHL ‘dIZrsanNddd LNOLNI¥d ON JAI :OYTJLNI¥d XdT

adTIId4 SI ¥FAANE INAWWOD HHI HIHHM S,dJYFH ‘LSIYTINd ¥SC

(INILNOY 9DVYTIASHE HHIL NI) SVTIJd FHL SNILLIS HI0AHTL $TMM ENd
d3J4Nd INIWWOD HHL TIIA LSYIA EIM LVHL SIIINOFY NOTODIWIS <6G# dWD
ov1dsd 034

NOTOD AI dSIMIMIT :8G# dWD

*dn 95¥14dd LIS (INIT 40 ANHI) OY¥3FZ J4I <DVTIASd 0dd

WY /MSIAd WO¥Yd ¥ALOVYVHD VY I1dD ‘ISIMIFHIO <NIVYHD ¥SC OMM
INILNOY ANd OL 09 OS :‘dNdIdd HENd

*ANOQ FY,dM ‘dn SI 9SOVYTIdE AI ‘OVTIE VAT TIIIAM

XNI

*ANIILNOY SIHL ¥Ood ANINN HHIL ODNIMOY¥O0od ¥ ,dM <X'JANdNN VYIS
(TYNDIS INIT 40 ANH) DHVYTId NMOd INd <‘OVYTIIL XIS

(ZIdAL DI¥YHWAN) € 7 T dLAE*® HTANYH --—------ ‘g# XAT MYIMWONG
YALOVYIVHD IXAN LIAD -TAL dWCL

ANV XJANI dISIVY ‘ANI

X d90LsdY ‘X AQT

(JELOVIVHD IIDSY HHL) AYOWHW OLNI LI dMOd OS ‘T SSvVd ¢‘LIAMOd ¥SC
XdANI X IAVS <X ALS

oveEE
geEEE
QCTEE
QIEE
29¢€€
@6CE
28C¢
gLTE
@9oce
gsce
ovee
ANAX
gcee
P1CE
PacCe
P6TE
@8T¢E
OLTE
@9T¢
@STE
ov1E
PETE
QT1E
g11¢E
P9TE
260¢€
280¢
OLOE
290¢€
PSPE
(4374723

171

mne

.

The Main Input Rout

.
.

Indisk

V¥SONI ¥Sr

*(¢ ssSv¥d NO :TaNIgd dENd

LI SESIVY LIAMOd) Od dSIVE ‘T SS¥Yd NO °ENIT HLAE°® JNI ‘SSVd VAT aNdadd
IIIIIIIIIIIIII {YEEWNAN IXEN HFHL HOLIA OL NINLEY NHHL ANV ¢ TMYIM dRWC
XdTO dNd

Xda

X‘dNgNN VYIS XdTIO

S# XdT

g# YaT1

JdNdXHH NI ¥3dWNN HHL ISYY¥d ‘X AdT

(dTI4 LDELdO MSIA ¥0) A¥OWHW OLNI [LTINSHY FHL HMOd ¢ LIAMOd dSC
LTINSHY XAT

LTINSHY NI ¥IDILNI NV OLNI IIDSY HHL NINL DIATYA dSL

X ALS

T+dWHL VYIS

ANGNN<# VAT

dWHL VYIS

ANEVYd NI qI¥0LS ¥dIEWNAN IIDSY HHL OL INIOd ‘dNdAN># VAT ZMYIM
lllllllll $(ENIT QNE TIIM LI dWIL SIHL IN9) HYOW d0d NINLIAY ¢ TMM dWC
SN YALYT Y04 VIAILVHM ¥O ‘NOTODIWES ‘NOTOD HAVS ¢ T+WINE VIS
OV¥Td INIT 40 ANI FHL dN ISIVY OVTIAd DONI HVTISH
|||||||||||||||| JAGWNAN HHL J0 HIOW ¥0d NINLIYd ANV * TXYEIM dWC
XNT

LI H¥OLS ‘ESIMYIHLO ‘X'dNENN VYIS

ZM¥EM 0Fd

NOTOD LI SI ‘8G# dWD

ZMYEM Odd

INIT 40 AN LI SI :‘@# dWD

ZM¥EAM OFd

dOVdS ¥ LI SI :ZE€# dWD

ANT

PS9€
(737423
PEIE
@9t
g19¢€
209¢€
26S¢E
28G¢€
@LSE
g9s¢E
PSSE
(37433
PESE
@CSE
g1SE
POSE
geve
98V €
PLYE
P9V €
gsbe
ovveE
PEVE
gCve
g1vE
PovE
g6EE
@8€E
gLEE
P9€e
PSEE

172

ine

The Main Input Rout

.
.

Indisk

MSIA OL ¥ADVYAS (INI¥d ‘LNI¥d ¥9SC

g% ¥YAT ¥d>dsind

T+X90M YIS

T+¥S DdS

T+1LINSHY VAT

HTIYI¥VYA ,M¥O0M, NI dTHEH ¥YHMSNY :XIOM VYIS

¥S D0dS

LINSHY VAT

¥S-ITNSTY :ONILOVILENS A€ MSIA OL ANAS OL S¥IDVAS ANYW MOH INO ANIA ‘DIS
=y Y04 HJTIAMSIA NI S¥dDVYdS .LNd *LNOMHD ¥SC

XaTd

NHDYTD d¥dSr XTTId

(NMOd LNHS 3Y0J43d LSNL SI SSVYd QY¥€) SSVYd Qd€ A0 LI¥VLS IV LON ¢SId
(Dd) ¥IINNOD WYYDH0dd HHL JO0 ONIDNVAAY HHL {XTIIA aNd

Jod dN HEMYW OL SHLAY A0 YHEWNN HLISINOHEY HHL HLIM ‘Z# dWO
d1I4 LOILFO MSIA ¥V ONITIIA SHYINOEY Dd J0 IODNVHD V¥ ¢SSVd VAT MSIATIII
Dd d0 HONVHD YOI ———omcrmmemresceme—————— :

(LNOLNI¥d DNISSVdAHd) TVYAd OL MOVE :‘EANITLIVLS dWL YdON

(AILNIYd JUY SINAWWOD HIHTHM) TYAT OL MOVE *NIJWWMA dWCL

YdON 03d

SLNIWWOD ANV INI¥d &,NOd ‘NMOd SI DVTANIHYIDS 4I <‘OHVYTIAS ¥AT
¥dON Odd

SINAWWOD ANV INI¥d L,NOd ‘T SS¥d NO :SSvd ¥AT

Y1d

MOVLS WOdd SId T1Ind <V¥1d

OYTd TIIVTI-Dd-¥Y-INI¥d HSIVE :‘DVTIDO0T ONI

(VY NI ¢ HLIM SNINLIY OJddNE) LON ¥O (NOTOD) LI LIS <¢OHVTATOD VLS TNId
Od4ddNd ¥dSL OdddNdd

(O¥ddNd) FTIA FIAOD IDINOS 40 AN ¥O YIAIWNAN HANIT ¥Od4 MOOT L,NOd ¢ INId O3d
8S# dWD

NEHL ‘NOTOD ¥V SVYM TYNDIS HENIT 40 ANI AT T+WANd VAT TANID

go6¢€
BS6¢€
V6t
geE6E
@Cete
@T6€
206¢€
268¢€
288¢€
gL8E
298¢
298¢
o¥8¢
gEBE
PT8E
@18¢E
298¢
g6LE
28LE
PLLE
@9LE
@SLE
ovLE
geELE
gTLE
g1LE
PBLE
269¢€
989¢€
gLt
999¢€

173

ine

.

The Main Input Rout

.
.

Indisk

S.J1d

dLS# ANV XISA

Xd¥Md dWre

ANT

X'andvd Y.LS

XHdSY IWd

X’'SamMAEy ¥dTl

XNI XdMA

XEMS IWd

XXS¥ 1dd

X'SaMAEd val

XNI XXSX

XaMa odd

WANAHY Ddd XIAMS

GGC# XdAT

*(¥344and TdIEVT 40 dVILSNI CWANAIM VYIS

ANgved NI LI SLNd)SINIWWOD ¥0d INE ‘dYOMAEM A0 NOISYIA ¥V SI SIHL ‘dL$# DdS
(ENILNOY ONIYLS IIDSY OL QYOMIAN HWVYS) HAOHY CIOMAEM dAS <DHES AVMAEM

SHR-|

NIMHD ¥Sr

0/1 TIYWYON HYOLSHY ‘T# XaT
NHOYETID ¥SrL TIIdSHA

*0¥dzZ OL JILNIWIIOAA SI ,M¥O0M, TIINN NI SYIDVdAS HIOW ILOd {¥DASLNd INE
T+X30M YAT

dOdSiLnd HANd

MY0OM DHAd XMYOMDHA

T+X90M Dad

XMIOMOHEA dANH

T A€ MJYOM ¥IMOT MYOM V¥AT

gLy
99TV
gsey
ovey
PeETY
@Tey
g1CY
0aTYy
26TV
28TV
PLTY
@91V
9STY
oY1V
PETY
@CTY
1TV
201V
2607V
2807
aLOY
9907
2S07v
ovov
PEDY
2Ccov
21OV
000V
g66¢
@86¢
gL6E

174

Indisk: The Main Input Routine

ZF# dWD OWOOD
“EH# 4SWD
@9H 4W3
Z2# 4WD YOW0D

40N X¥d

HISWNNINT T 4S50
IAMI--SMNDILYZIZIIA0W IHYiY:
:saur] ur

-MO[[0] a3 d3ueYd 10 ppe pue -9 weidoi] Jo 09ZF—060% Soul]
PUe 0TZI-0F0T SUI[JIWO ‘YSIPU] JO UOISIIA LIE}Y dY))LD O],

mn

A

@&
1% 58 =)
@ug
@B L
BeL
BI2?
B12
R
(5300 4
HoEE
ST

a1

SUONEIYIPON LIENy YSIpU] *¢-9 wreidol

GGZ# AdD

¥Z$# dWD OWOD

azs$# dwo

O€$# dWD

SYALOYIVHD ddO YAHLO ¥Od MDIHD —————————————————— {g9€$# dWD YOWOD

:1-9 weido1] ur saur|
Buimorqoy ayy a3ueyd ‘ysipyy jo uoisida aiddy ay3 ajeamd of,

2€8
218
28L
29L
ovL

suogesyIpojN Iddy “ystpu] *7-9 weidoi]

HIVW HTIIA® @8CV

175

ine

The Main Input Rout

Indisk

JHS "HIVW:=ad 3ITId"

GrIANT
SET#
TG HE

TETEE

n349
4W3
4WD
9an

.
H
-

BeIYy
Z5L1
1541
By LT
BoLY

SRl i, g
= &2

b &
B16

176

Chapter 7
Math and

Printops:
Range Checking and
Formatted Output

EaEnE eEErEERE®

—

Math and Printops:
Range Checking and

Formatted Output

Math, a short subprogram, has a rather limited job. It is de-
signed to turn the ASCII number following the + pseudo-op
into a two-byte integer and to save it in the variable
ADDNUM. Later, when the final RESULT is calculated by the
Valdec subprogram, anything in ADDNUM will be added to
RESULT. Math responds to a source code line like:

100 SCREEN = $0400
120 LDA SCREEN +256; this would assemble as $0500

As with the .BYTE pseudo-op, the + pseudo-op allows
only decimal numbers as an argument following the +.

The first loop in the Math subprogram simply looks along
the LABEL buffer to locate the +. Thus, it doesn’t matter if
the + is right next to its label. You could write
SCREEN +256 as well as SCREEN +256. However, find-
ing the +, the subroutine expects to find no spaces between
the + and the number to be added. +256 is correct. + 256
would be incorrect. This allows us to test for a variety of end-
of-number conditions. That means that you can use the +
pseudo-op within such addressing modes as LDA
(SCREEN+256),Y or LDA 1500+25,Y.

Each character following the + is stored in HEXBUF for
later translation by Valdec. Each is also tested to see if it is a
nonnumber—if it is outside the range from 47 to 58, the
ASCII code for the digits 0-9. Anything outside that range
ends our storage of the number to be added, and we go down
to put the number into ADDNUM.

Range checking is simple enough. Just remember to test
against a number which is one lower than the low end and
one higher than the high end of the range. For example, to see
if a number is lower than $30, you must test against $2F.
That'’s because BCC tests for lower than. $30 wouldn’t be
lower than $30. The same thing works on the high end. To
test for numbers higher than $39, you CMP #$3A.

After the number is set up in HEXBUF, we point TEMP to
it, JSR to Valdec, and move the result from RESULT into the

179

Math and Printops: Range Checking and Formatted Output

variable ADDNUM. It will wait there until, on pass 2, the Ar-
ray subprogram makes the addition adjustment in line 1160.

Printops: The Output Routine

One important function performed by the Printops sub-
program is raising the PC (Program Counter). A subroutine
called INCSA (650) increases the PC by one for each object
code byte, whether this byte is an opcode or the argument of
an opcode. Printops” other main job is to send each byte of
object code to one of four places: RAM memory, disk, screen,
or printer.

Because each object code byte can go to any one, or all, of
these four different destinations, there are a series of tests and
parallel routines within Printops. For one thing, Printops has
little to do on pass 1—it does raise the PC, but nothing is
POKEd anywhere or printed to screen or printer until the sec-
ond pass.

Also, Printops has three entry points, depending on
whether the Eval subprogram has assembled a one-, two-, or
three-byte logical line. An INY would only JSR from Eval to
FORMAT, right at the start of Printops. FORMAT loads the
OP (opcode) and stores it and prints it as required. It's a
single-byte event. LDA 15 first JSRs to FORMAT to output the
opcode, the numeric equivalent of LDA, then enters at
PRINT2. LDA 1500 would JSR FORMAT to send the opcode,
then enter at PRINT3. These entry decisions are made by Eval
after it has determined whether it’s dealing with a one-, two-,
or three-byte addressing mode.

FORMAT (20) simply raises the PC by one. It does this
with a JSR to INCSA (40) on pass 1. On pass 2, however, it
also checks to see if screen printout was requested (60). If so, it
restores normal I/O and prints the number (120). As we will
see, PRINTNUM also prints to the printer, if that was re-
quested. Then the opcode is POKEd to disk or RAM, if that
was requested. The POKEIT subroutine performs POKEs to
RAM. POKEIT also leads right into INCSA to raise the PC
automatically following each POKE. Finally we RTS back to
Eval (160). So much for a single-byte addressing mode.

Two-Byte Addressing Modes
PRINT2 (180) handles LDA 15 and other two-byte addressing
modes. Like FORMAT, pass 1 only results in a JSR INCSA (to

180

Math and Printops: Range Checking and Formatted Output

raise the PC). Pass 2 follows the same pattern as FORMAT,
explained above. The major difference is that the number
fetched before the JSR to PRINTNUM comes from the low
byte of the RESULT variable (240) rather than OP. This is a
single-byte argument addressing mode.

PRINT3 (290) parallels the two previous routines, except
that it handles a two-byte argument. On pass 1 it JSRs to
INCSA twice to raise the PC by two.

On pass 2, it prints (370) and POKEs (390) the low byte of
RESULT if requested and then prints (460) and POKEs (480)
the high byte of the argument, RESULT+1. A formatting
problem is handled in line 420. HXFLAG shows whether or
not output to screen and printer is supposed to be in hex. If
this flag is set, we don’t need to print a space between the low
and high bytes of the argument. The hex printing routine will
do that for us. If printout is in decimal, though, we need to
print a space (440).

Creating an Object Program

POKEIT (490) stores the byte in the X Register at the current
PC address if the POKEFLAG is up. This flag indicates that
the programmer used the .O pseudo-op, requesting that object
code be stored in RAM memory during assembly. For both
PRINTNUM and POKEIT, the X Register is holding the
opcode or argument. X is saved in the variable WORK+1;
some of the disk management routines below will change the
value of X, so we must preserve it for later use.

Then the DISKFLAG is checked (550). It indicates that the
programmer used the .D pseudo-op, asking that an object code
program file be created on disk during assembly. If not, we
just go down to raise the PC at INCSA (560).

But if an object program is being created on disk, LADS
opens communication to file #2 (the write-to-disk file) and
recovers the byte from WORK++1 (600). The PRINT in 610
will not go to screen or printer. Rather, the current channel is
open to the disk object file and PRINT therefore sends the
byte in the Accumulator to the disk. Then normal 1/O is re-
stored, and file #1 is accessed again. File #1 is the normal in-
put source for LADS, the read-from-disk channel. Finally, we
fall through to INCSA (650).

Although it is one of the simplest events in LADS, INCSA
is also one of the most important. On both passes, INCSA

181

Math and Printops: Range Checking and Formatted Output

raises the PC by 1 for each opcode byte and for each argu-
ment byte. Much depends on the fact that INCSA keeps the
Program Counter accurate during assembly. A single ignored
byte would throw off all address-type labels which followed.
(The HERE in 100 HERE LDA 15 is an address-type label.) In
consequence, the entire assembled object program would be
useless. INCSA just adds 1 to SA (the variable which holds
the LADS internal Program Counter). Notice lines 690-710.
They add 0 to the high byte of SA. What'’s the point of that?

The 256th Increment

For every 255 increments, INCSA will have nothing to add to
the high byte of SA. But on the 256th increment, it must add
1 to the high byte. How does adding 0 to the high byte add 1
to it? The carry flag. ADC means ADd with Carry. If the carry
flag is set, the high byte is incremented. If the low byte is
holding 255 when we add 1 to it (670), that will set the carry
flag.

The rest of the routines in this Printops subprogram handle
the printout of a variety of things: messages, spaces, numbers,
the PC address, a carriage return, a source code line number, a
source code line, or an error message. And each of these print-
to-screen routines has a sister routine. There is a parallel series of
routines which print the same thing to the printer.

PRNTMESS (740) will print any ASCII message. There are
two special requisite preconditions: The message must be pointed
to by the variable TEMP, and the message must end with a 0.
PRNTMESS is a simple loop, but it can print any message you
want. First the Y Register is set to 0 to act as an index to the
message within LADS’ source code. Then the loop begins (750)
by loading in a character from the message (750). If the character
is 0, we exit the loop. Otherwise, the character is printed to the
screen. Then we JSR to the sister routine, PTP, which will send
the same character to the printer, if requested (780). The Y Reg-
ister is raised, and we go back for the next character (800).

PRINTSPACE (820) simply prints a space character to the
screen and then checks with its sister routine, PTP, to see if the
space should also be printed on the printer.

Before printing a number, we first put it into the X variable
for safekeeping. Then LADS has to make four tests: Is it printout
to screen or to printer, and is it in decimal or in hex numbers?
PRNTNUM (860) takes advantage of a routine in BASIC ROM if

182

Math and Printops: Range Checking and Formatted Output

LADS’ printout is in decimal (requested with the .NH, no hex,
pseudo-op). When you ask BASIC to list a program, it turns inte-
ger bytes into printable ASCII numbers to provide line numbers
on the screen. On Commodore computers, the high byte of the
integer is put into the Accumulator, the low byte into the X Reg-
ister, and you JSR to within BASIC ROM where this routine re-
sides (950). In LADS, the address of this ROM routine is called
OUTNUM. It’s defined for each different computer model in the
Defs subprogram.

Hex Default

LADS’ default, and probably the most common way to print out
numbers during an assembly, is hex. LADS itself handles hex
printing. If the HXFLAG is up (870), we JSR to HEXPRINT, a
subroutine at the end of the Printops subprogram. We'll get to it
in a minute. It's the opposite of the HEX subroutine within the
Indisk subprogram which changes hex numbers in ASCII format
into integers. The HEXPRINT routine will take an integer and
turn it into hex ASCII characters for printout.

After the number has been printed to the screen, we JSR to
the sister routine PTPNU (910) to also print it to the printer if
necessary. Then the number is restored to the X Register from
the X variable (920) before returning to the caller.

PRNTSA (990) is similar to PRNTNUM. The main dif-
ference is that PRNTNUM always prints the single byte sent to it
in the X Register. By contrast, PRNTSA prints the two bytes in
SA, the Program Counter variable. The same four possibilities
are tested: printer, screen, hex, or decimal. PRNTSA's sister rou-
tine, PTPSA, is called upon from both the hex (1050) and the
decimal (1100) versions of this routine.

PRNTCR (1120) prints a carriage return; the 13 is the ASCII
code for carriage return on both the screen and a printer.
PRNTLINE (1160) prints out a line number from the source code.
As each physical line is drawn into view by LADS, its line num-
ber is stored in the LINEN variable. This routine also uses that
OUTNUM routine from BASIC ROM which prints BASIC's line
numbers during a LIST. Line numbers, in BASIC or LADS, are
always decimal. PTPLI (1190) is the sister routine for printer
printouts.

PRNTINPUT (1210) prints the contents of the main buffer.
Those contents will be the most recent logical line of source code
as it appeared in the source code. It uses the PRNTMESS routine

183

Math and Printops: Range Checking and Formatted Output

which sends to the screen any ASCII message which is pointed
to by the TEMP variable. The line must end in 0. PRNTMESS
(740) handles the printer with the PTP, single-character, test.
There is no need for a sister routine within PRNTINPUT.

Error Alert

ERRING (1280) performs the preliminaries to an error message
printout. Such messages as SYNTAX ERROR or NAKED LABEL
are triggered at various places within LADS. But most of them
JSR to ERRING before printing out their particular messages.
ERRING rings the bell first. The number 7 is the ASCII code
which rings any bells attached to computers or printers. (This
works on Apple and PET/CBM computers; the 7 is changed to
253 in the Atari version to produce the same result. The VIC
and Commodore 64 have no “bell,” so the character 7 will
have no effect on those computers.) The purpose of the bell is
to alert the programmer that an error has been detected. True,
the error message will appear onscreen, but during an assem-
bly of a large program, the programmer might well miss silent
error messages sliding up the screen.

On Commodore computers, the character 18 reverses the
field of all subsequent characters on a line. This, too, highlights
errors. Next (1320), the logical line of source code where the er-
ror appears is printed, followed by a carriage return.

It would be simple to make error reports more dramatic.
You could stop assembly at that point with a key-testing loop
that required the programmer to hit any key to continue. You
could JSR FIN and exit to BASIC mode, aborting all further
assembly. You could JSR PRNTLINE to emphasize the line num-
ber in the source code where the error happened. You could ring
the bell ten times. As with all other aspects of LADS, you can
make it do what's efficient for you, what’s responsive to your
own style of programming. Add some special effects here if you
wish. Then reassemble your customized version of LADS.

Sister Print Routines

The next few routines are the printer routines: Each is a parallel,
sister routine to one of the screen routines discussed above. Each
tests the PRINTFLAG and returns if the flag is down, indicating
that the user did not request a printout on paper. If the
PRINTFLAG is up, output is redirected to the printer (1450-1470)
by opening a file channel to the printer. On Commodore

184

Math and Printops: Range Checking and Formatted Output

computers, the printer is device #4. Then OUTNUM or PRINT
or HEXPRINT sends the characters or numbers to the printer
(1490, 1680, 1720, 1900, 1960, 2130). After that, normal I/O is re-
stored (1500) and a channel is reopened to file #1, the input-
source-code-from-disk mode.

To follow the logic of PTP (1380), PTPNU (1560), PTPSA
(1780), or PTPLI (2020), just look at the parallel routines which
JSR to them. The purpose, the tests, and the logic are the same.
The only difference is that the sister routines described above
route their characters to the screen. These routines send charac-
ters to a printer.

Printing Hex Numbers
The subprogram Printops concludes with HEXPRINT, an in-
teresting routine which converts a one-byte integer into an
ASCII hex string that can be printed to screen or printer.
HEXPRINT operates on a single byte at a time. The byte is
first stored temporarily on the stack with PHA (2200). Let’s use
$4A as an example. The four high bits are stripped off with
AND #$0F, leaving $0A. That's one of the characters we need to
print. Then we can use a short, simple lookup table to extract the
character by its position in the table. In the Tables subprogram is
a minitable called HEXA (270). It looks like this:

270 HEXA .BYTE “0123456789ABCDEF

Since the number $0A (10 decimal) is also the tenth
character in this table, we can just move the ANDed $0A over
to the Y Register (2220) and load HEXA,Y to fetch the ASCII
character for $0A, which would be 65 (the letter A). We can
stick this character into the X Register; X isn’t being used else-
where in this routine, so it can save the character for us while
we look at the high bits.
this time we move the four high bits right over on top of the
four low bits. This takes four logical shifts right (2270-2300).
After LSRing $4A we get $04. Again, we TAY and load the
character 4 from the table (it’s 52 decimal). We print this. In
$4A, the 4 comes first. Then we recover the A character from
the X Register and print it right after the 4 (2350).

185

Math and Printops: Range Checking and Formatted Output

ANIXHdH<# vdT1

dW3L VYIS

d344N8 NI ¥dIGWAN IIDSY OL ¥AINIOd ,dWHAL, ILNIOd {JANdXdIH># VAT
(YEILIWITIA SVY) ¥YFAAWAN IIDSY J0 ANA LV O¥dZ INd ‘X‘JdNdXdH VIS
YADALNI HLAG-Z ¥ OLNI IIDSY WOdd LI NIAL —=-=—=———-— ‘g# YAT LITYA
SLd €HLIVW

8G > ® L¥ < LI SI ‘8pZ# DdS

Dds

8%v# 0dS

0ds

CHLVYW SDd

8G> ANY L¥< SIHL SI —————————————- 18G# dWD MOIODHNVY
||||||||||||||||||| {ZHILYW dWr

¥A44Ng ANIXHIH NI SYIEWNN IIDSV dITVA SNIYOLS ddJdaM ‘XNI

(dFGWNN IIDSVY NV NVHL ¥JHLO SNIHLIWOS dALYD0T *‘X‘JANdXHIH VYIS

IAYH ANV JIdWNN JHL dIJ0OLS HA,dM) HNILNOY SIHL LIXA ‘ILON AI LITYA SOd
(6—@ 904 IIDSY) 85 - 8% NIIMIIALG SI SIHL JAI FIS OIL MDIAHD MDIAONVE ¥SC
X'T3gvyT val

ANI CZHLYW

+ ONIMOTTIOA VIAIWNN ILST OL ILNIOd MON —--——————————- {THLVW dWO

ANI

ZHLVYW Odd

€EV# dWD

|||||||| TOEWAS .+, J0 NOILVDOT ¥04A MOO0T ‘X‘THIVT VAT THLYW

g# XaT

O¥dZ OL SAXIAANI IdS ‘@# AdT HLYW

(WY¥50dddNS DAATYA HHL NI , LINSd¥, OL dIdd¥ SI WANAAVY)

JANNAAVY, JTdVINVA JHL NI NOILIAAY JAANILNI HHIL SIAAVIT LI

MSIANI ¥ALAV TYAT WOdA SHWOD LI + SHTANVYH HINILNOY SIHL ,HLYNW,

o en on

v6¢C
28¢
gL
99t
9sc
ave
PET
ace
o1c
[9]14
26T
28T
OLT
291
2ST
ovT
2€T
2CT
g1t
PoT
26
28
gL
29
2s
v
g€
[7)4
o1

e “1-L weidoid

186

Math and Printops: Range Checking and Formatted Output

||||||||||||||||||||||||||||||||||||||| ‘s1yg
LIEMOd ¥SC
A¥OWIW MSIQ/WY¥ OLNI #J0Dd0 HHL EMOd MON ———=====-—— 1d0 XQAT XWdd

dOVdS ¥ INI¥d ‘dDVYdSINJdd ¥Sr

LI LNI¥d ‘WANINJd ¥Sr

Jd0DdO HHL dvoT1 <d0 XaT

NIMHD ¥Sr

(LNALNO ¥OA NIFIDS ‘INANI ¥O4 T# ITIIA) ‘T4 XAT
NOILIANOD O/I "TVWION LISHY ‘dSIMIFHIO ‘NHDYTD ¥SCL

(NZZJYDS OL LNI¥d) J¥Vd IXAN SIHL dIMS ‘ION AI ‘XWdd 0OFd

NIFIDOS OL INI¥d IM dTINOHS ¢DHVIIS VAT Wid

|||||||||||||| NINLIY dNY Dd HHL dSIVE -« SId
LSAL #M ‘ONIHLANV IMOd ¥0 INI¥d L,NOd IM ‘T SS¥d NO INd ‘¥SONI ¥dSr
(¥SONI OL SdIOD II) ILIAMOd OL ¥SL dM ‘Z SSVd NO ‘Wdd INd
JONIS (Od SASIVY) VSONI HIONDI ‘Z SSVd NO ‘SS¥d VAT LVWIOI
(SLNIWNDIVY R SHAODdO HIOH) SINTYA SIAMNOd 3 SINIdd «SdOLNT¥d,, *

291
9ST
oY1
o€T
YA
211
20T
26
28
oL
29
2s
oy
g€
ac
2T

sdojuiij *7-, wreidoaj

DS ‘SAOLNINJ:d AT
10} 0€ dur d3ueyd ‘Yjey JO UOISIdA 11}y 3} 10

SJdOLNIdd dTIdA*

JATIYO OL NINLIAA <SId

T+WNNAAY VYLS

T+ILINSHY VYAT

WNANAJY VYIS

+WANQAV, ‘FTIVINVA NOILIAAV AXIVYO4dWIL OL LINSIH HAOW < LTINSHY VAT
WwLTINSHY,, NI ¥IDIAINI OINI ¥YIEWNN IIDSVY SNINL HOIHM INILNOY <DAJTIVA ¥SC
T+dWEL VYIS

04€

gLE
@9¢€
9s¢E
PvE
gee
/YA
g1¢€
20€

187

Range Checking and Formatted Output

.
.

Math and Printops

IIIIIIIIIIIIIIIII (LNIWNOYV FLAE—-Z ¥ ANV JJODdO HHL) SHLAY HIJHL INIdd *
llllllllllll YETIVO HHL OL MOVd SN SI¥ TIIM IIEMOd OL dWL ¥ *LIAMOd dWC

WANINId dsr

INIWNOYY FHL 40 HLAE HOIH IHL IMIOd ANV INI¥d ‘T+LINSTA XAT TXWEd
dOVdS ¥ INI¥d ‘ISIMIFHILIO ¢IDV4SINI4 dSC

IYIH dO¥dS V¥ INI¥d L,NOd ‘OS AI <‘ZXWEd Odd

XdH NI SINIWNDIY ANV SEAO0DJO ONILNI¥d dM HJV ‘OVIIXH ¥YdT
XXWed 034

NIIYDS OL INI¥d IM JTINOHS ¢OVTIS VAT

LIFMO04d ¥sr

LINSHY XdT XWEd

WNANINdd dsr

INIWNDYVY J0 HLAE MOT dM0d ANV INI¥d <LINSEI XAT

XWed 0dd

NIIYDS O INI¥d IM HTINOHS <OVTIS ¥AT WEd

¥SONI ¥sr

¢ A€ Dd dASIVY ‘V¥SDNI dSC

Wed dNd

(ZIA09VY @T ANIT JIS) ¥YSONI dIMS ‘Z SSVd NO ¢SSVd VAT €LNI¥d

’

XYOWAW MSIA/WV¥ OL HLAEG-MOT HHL INO4 OSTIV ANV <LINSTY XAT XWzd
WANILNJdd dSr

(LNIWNOY¥Y FHL) ,LTINSTE, J0 HLAG-MOT HHL LNI¥d ISIMIHHIO < LTINSHY XAT
XWzd 0dd
NEFEDS OL ONILNI¥d dIMS ‘NMOQ SI OVIA INI¥d NHIYDS J4I <ODVTIAS VAT Wzd

¥SONI ¥Sr
WZd dNd
(ZIA0GY @z HGNIT FIAS) VSONI JIMS dM ‘Z SS¥Yd NO {SS¥d VAT ZINIdd

1

||||||||||||||||| (LNIWNDIV HLAE-T V¥ ANY HJAO0ODdO HHL) SILAY OML INI¥d °

297
2sY
vy
REV
oTy
o1v
917474
26€
08¢
QLE
99¢€
0SE
743
geE
gce
g1€E
PoE
g6c
98¢
2LT
29¢
2st
ovc
gecT
gce
g1c
20T
g6l
28T
OLT

188

Range Checking and Formatted Output

Math and Printops

ILNI¥d dSr

WwdWIL, ATIVIYVA FHL A9 OL ‘INOASSIW OFd

JIILNIOd FVVY ANY @ A9 QALIWITAd TIV SHAOVSSHW HSHHL ‘A’ (dWAL) VAT dOOTSSIW
NIZIOS FHL OL (ATIVASN SYOWYH) HOVSSAW V INI¥d ‘@# AQT SSIWLNIA
|||||||||| (NZZIDS OL) SINILNOY LAOLNIVYd -————-—————————————— e
sid

1+V¥S VIS

T+¥S 2a¥

g% YATI

VS VIS

¥S Oav¥

T# ¥aT1

|||||||| T A€ (¥S) ¥YIINNOD Od HHL IASIVY —-=--—-—--——————————=!DTD V¥SDNI
NIMHD ¥SC

T# T1I4 WOJdd aAVdd ‘T4 XaT

ANY NAIIDS OL LNI¥dd) O/I TYWION TJOLSHY *NHOWTO ¥SC

C# TT1Id YSIA OL SINI¥d (JAOHEY @LS-@SS SANIT ¥ALAY) INI¥d ‘INIdd ¥SC
YALSIDIY V¥ FHL NI YMSIA OL INJS dd OL ALAE dHL INd ‘T+MY0M YA
LNOMHD ¥SC

Z# XAt

(MSIA NO FTIA ALI¥M) Z# TTIA I¥IATV ‘OS AI ¢NHOMTID ¥SC

o

LI dIMS ‘ILON JAI {¥SONI Oad

dTI4 LOALE0 MSIA ¥ OL IM0d OL dIS0ddns HM F¥Y ‘OHVIANSIA YaT dSId
|||||||||||||||| {X'(¥S) VIS

XL

(¥S) SsHYAAv dd INIWAND IV AYOWIW WY OL HLAY HHIL ANIS ‘HASIMYAHLIO *@# AQT
LI dIMS ‘LON JI ¢{dSId 0dd

WYY OL dY0d OL ddsS0ddNS dHM HYV <HYTIIN0d VAT

lllllllllllllll MSIQ/WYY OL FLALE V¥V NI TIMOd--=-=====—=——=!{T+MYOM XIS ILIHAMOd
YITIVD OL MOVE SN SLd TIIM LIFMOd OL dWNAL ¥ ANV ¢ LIAMNOd dWL

T+LINSHY XAT XXWEd

oLL
2oL
2SL
ovL
geL
acL
oTL
2oL
269
289
2L
099
299
279
2€9
Y A°)
219
229
265
2865
oLS
e
9SS
ovs
gES
2Cs
g1s
20S
1574
287
oLV

189

Range Checking and Formatted Output

Math and Printops

(NOIS¥HA TVYWIDAA) VS INI¥d ‘VS XdT AVSINId

OLAT

|||||||||||||||| 1SI¥ 99T
¥AININd OL VS INI¥d OSTV M QINOHS ‘V¥Sdld ¥SCL PSoT
INTNAXTH ¥SC Ov@T

¥S YdTI

PEDT

LST HLAY HOIH <‘LNI¥AXHH dSC 9201

(XdH SVY) ¥S 40 SHLAE HOIH ANV MOT ILNI¥d ‘dSIMIHHILIO *TI+VS ¥AT

P10T1

MOTEE ANILNOY TYWIDIA ISN NIAHL ‘INOLNI¥d XHH LON AI ‘AVSLINIA O3F€ @001

(YILNNOD WY¥O0¥d ‘Dd) VS FHL ININd {OVTIXH VAT VSINid
|||||||||||||||||||||||||||||||||| JATIVO FHL OL ONINJALIAM {SId
FY0oJdFd X NI ANTYA TJOLSEA ‘X XA'T

JALNI¥d OL LI INI¥d OSTV IM QTINOHS {NNdLd ¥SC

ANILNOY LNOLNI¥d ¥AGWAN ANIT S,DISVE (WANLNO ¥SC

JAGWON TYWIDAA ¥V INI¥d ‘@# VAT AWNNINJJ
||||||||||||||||||||||||| JETIVO OL ONINJNLIY ‘SId

FHOJTd X NI ¥AGWNN FIOLSHTY X XAT

TTIM SY YEINI¥d OL QAININd dd QTNOHS ¥AGWAN JII MOFHD !NNAILd ¥SL
LNI¥dXdH 4SC

VXL

AWNNINYd OL 09 ‘ASIMYIHIO ‘ANILNOYENS ININAXIH FHL IS ‘AWANIN¥d OFd
NIFHL ‘TIVWIDEA LON ‘XEH NI ONIININd #¥,3M JI (OVIIXH VAT

(¢ NI ELAE HOIH ‘X NI HLAS MOT) ¥IEWAN V INI¥d X XIS WANINIA
||| !s1¥

YAINTYd FHL OL 09 OSTY AINOHS II AI FAS *dld ¥Sr

ILNI¥d ¥S[

JILOVEVHD HOVAS V INI¥Nd {Z€# VAT FOVASLNAA
uuuuuuuuuuuuuuuuuuuuuuuuuuuu !{SI¥ ENOJSSAW

dOOTSSAW dWL

JIINI¥Nd FHL OL QIINI¥d € OSTIV {ANI
@TNOHS II 4I HAS OL MOAHD ‘NITWOS OL WALOVIVHD ¥V ONIININd ¥IALAY ‘dld dSC

266
286
QL6
296
256
276
2E6
YA
P16
206
268
088
aL8
298
0S8
ov8
2€8
gz8
218
008
geL
28L

190

Math and Printops: Range Checking and Formatted Output

(dEZINI¥A HHL OL ¥YAIOVIVYHD HTIONIS ¥V SINI¥Yd did)

(YELNI¥d OL) LNOLNI¥Yd =——=———=—-———————— - ————— e — :
SId

LNI¥dd ¥sr

NINLIF FOVI¥YVYD ¥ ILNI¥d ‘€T1# VAT

¥ZA4N9 LNANI NIVW 0 SINALNOD LNI¥d ‘INANILINId dSC

INI¥d dSrC
do¥y¥d IHOITHOIH OL OSNILNI¥Nd FSYIATN NO NdAL ‘8T# VAT

INIYd ¥SrC

TIAE ONIW L4 VAT ONI¥¥A

SNOILVIVAdIYd LNOINIYd HOYNE =—==—=——m——m— e e :

Sy

ANILNOY ONIININd HAOVSSHAW TVHINID HASN !{SSIWINIA ¥SL

T+dWAL YIS

NAHI ANV ¥344nd FHL OL ,dWdL, INIOd (TddvVI<$ VAT

(,.139vI,) dadand {dWHL YIS

INANI NIVW J0 SINALNOD INI¥d ITAEYI> # ¥AT LNANILNIA
||| !SI

YAILNIYd OL ¥EIWNAN ANIT INI¥dd OSTIVY dM dTNOHS :ITddd dSC
(¢ NI HDIH ‘X NI HLAY MOT) INILNOY DOISVE ‘WANLNO ¥SC
T+NINIT VAT

JAGWAN ENIT FA0D FDWNOS ¥ INI¥d INANIT XQT ENITINIG
|| ‘s1d

00l ¥HAINI¥A FHL NO II OQ M QTNOHS {dld ¥SL

INI¥d ¥SC

NENLFY AOVIYEVD ¥V ININd ‘€14 VAT ¥OIN¥A
||| ‘s1y

OOL ‘¥JILNI¥d OL INI¥d ‘¥Sdld ¥SC
WANLNO ¥Sr
T+V¥S Va1

OLET
P9¢€T
BSET
PVET
PEET
PCET
PIET
20€T
g6CT
98¢ T
QLTI
99CTl
2521
A
PETT
peel
/ARAN
90T
P6TT
28T1I1
PLTT
g9T1T
PSTT
V1T
PETT
PTIT
PTTT
2011
0601
9801

191

Math and Printops: Range Checking and Formatted Output

INT¥dXJH ¥SL

X ¥aT

aNdLdW Odd

QoW TYWIDEQ ¥O XHEH !OVIIXH VAT

LOOMHD ¥SC

v# Xa1

NHOYTD ¥SC NAIJW

sId

NdIdW FNg

OVTAILNINA XAT TINdLd

SId

INd1d ENg

AAOEY +@SET SANIT SV OIDOT AWVS ‘SSVd XAT NNALA
YAILNINd OL SMTAAWAN —————=————————— e !
YATIVO OL NMALEN ¢SId

¥ YEAODHM ¥V VAT IITY

NIMHD ¥Sr

T# X1

0/I TYWMON HJOLSHY {NHDYTO dSC

ALNINd OL INI¥d ‘INI¥d ¥Sr

¥ ¥IAODE ¥V VAT

LNOMHD ¥SP

v# Xa1

JAININd IdFTV {NHOWTIO ¥SC

JOLVTINWNDOV J0 SINIAINOD HAVS ¥V VIS dIdW

dLdW dNdg

JATIYO OL NINLIY ‘ONIHION Od ‘NMOd SI HVTALNINd AT ‘9HVYIAILNINA XAT TdlLd
. SId

TdlLd dNd

YALNIYd OL ONIINI¥d ON Od ‘T SS¥d NO :SS¥d Xd1 dild

9891
GLOT
999T
PS9T
V9T
P€9T
9291
2191
2091
P6ST
28ST
BLST
99eT
gsST
oYST
PEST
92ST
PIST
P0ST
P67 T
28¥T
OLYVT
29%T
PSvI
vyl
PEVT
2ZvT
o1¥1
20vT
P6€ET
28¢€T1

192

Range Checking and Formatted Output

.
.

Math and Printops

NIMHD ¥Sr

I# XAl

NHDY¥TD ¥Sr VYSdLANIA
WANLNO ¥Sr

¥S Xa1

T+¥YS VYAT1 A¥SdLdW
¥SALANIA dWCL
INIIdXAH dSC

¥S va1

INTIdXAH dSC

1+V¥S vdaT1

av¥sSdiLdW Odd
LOOLNIYd TYWIDId ¥O XHAH <OVTAXH XAT
LNOMHD ¥Sr

Xa1

NHDYTD ¥SL YSdLdW
SId

YSdLdW dNd
OYTALNI¥d XAT TSdLd
S&Ld

1Sdid 3ANd

dAO09Y +@SET SANIT SY DIDOT HWYS {SSVd XAT ¥Sddd
JAINIYd OL ¥S —=—==——-——mm— o :
SId

NIMHD ¥SCr

T# XdT1

NHDYTD dSC dLANIJA
WANLNO dSC

X Xa1

Q# VAT ANdLAW
dLANIA dWe

g66T
2861
oL6T
2961
9561
ov61
geel
YA AN
oT6T
2061
9681
288T
PLB8T
998T
@S8T
ov81
PE8T
2781
9181
2081
P6LT
28LT
OLLT
P9LT
2SLT
PYLT
PELT
PCLT
OTLT
P90LT
2691

193

Math and Printops: Range Checking and Formatted Output

dsT

dsT

(ITdWYXE ¥0d ‘@gTQT1090@ SIWODIE TITTIQIQT) ¥ST

(VZ¥V SLIE MOT ¥ FHL OILNI SII9 HOIH ¥ HHL SNIAOW) SHWIL ¥ ILHOIY LJIIHS:¥ST
HWIL SIHL INg ‘¥IIWAN TYNIDI¥O HHL INO TINd ‘¥'1d

X OLNI INTYA SLIFG-MOT FAVS ‘XVL

(,dIADIVY68L9SYETTP, *SIHL IMIT SMOOT VXHH) !

JALOVIVHD IIDSY NY SY ILNO LI TINd OS °SI ¥YHEWNN SIHL ‘X‘¥YXIH VAT
(w¥X3H,) SYIIWAN XdIH 40 HSNI¥YLS HHIL NI NOILISOd HDIHM MONM HM MON ‘XYL
(3TAWYXE 904 ‘TITTQP0QPP SIWODIE TITIQIQT) SLIE HOIH ¥VATD ‘JA@S# ANY
YIEIWNAN JIO0LS ‘VHd LNI¥dXHH

(°SYV¥HD IIDSVY SV) LIDIA XHH ¥V SY YOLVINWNDDV HHL NI ¥YIGWAN IFHIL INI¥d *
LAOLNIdd YILIWNN XHH —=====—e—mmm e e e e e .
S&Ld

NIMHD ¥sr

T# XdT

NHDYTID d¥sr

WANLAO ¥SC

NENIT XdT

T+NENIT VAT

LNOXMHD d¥Sr

T# Xd1

NHDITO dSC TdLdW

SILd

TdLdW dNd

OVTALNI¥Yd XdT T17IdlLd

Sy

T11dLd dINd

HAOHY +@GSET SHANIT SY DIDOT HWVS ¢SSVd XdAT ITdld
JALNI¥d OL dIIWAN INIT ——===—=————————=——=—= :

P0ET
g6ct
28¢¢
gLee
goce
psce
ovee
peETT
gcece
g1ec
voce
g61¢
28T1¢
GLTT
@9T1¢
9s1¢
gv1c
PETC
gTi1c
@TTIC
2912
v60¢C
280¢C
gL@cC
99@¢
2s0¢C
oveac
2€@T
gcoc
2109¢
200¢

194

Range Checking and Formatted Output

Math and Printops

195

S4+0 3ITI4d" @LEE
L5I# Y3 9MIMsS3I @827
iNIH40d0 450 @19

'~/ weido1] ur saur
Buimorjoy ay a8ueyd ‘sdojurr] Jo UOISIOA LR}y dY) 9jeaDd O]

SuoOReROYIPON Weyy ‘sdojun *¢-) wreidoa]

oandsd dTId* @LET

YATIVO OL NINLAY ‘SId P9€T

ANTYA MOT INI¥d ‘LNI¥d ¥SL @SET

(@T2C INIT ¥IALAV INTVA MOT ATIH X) *¥XL @VET

(p8Cz ENIT ¥IALAY ANTVA HODIH SATOH V) (LSIIL) IANTYA HOIH LNI¥d ¢ILNI¥d dSCL PEET
ONIALS ,¥XdH, WOYd YALOYYVHD IIDSY IHODIY¥ HHI INO TINd ‘X‘VXHIH VAT @TET

XIQNI A HHIL OLNI dNTYA SIHL 40 NOILISOd INd ‘NIVOV ‘AVL @I€C

Chapter 8

Pseudo:
1/O and Linked Files

EEEE e EERERREMm

Pseudo:
I/0O and Linked Files

All pseudo-ops except .BYTE (and in-line ones like #< or +)
are handled by the Pseudo subprogram. Eight pseudo-ops are
tested for at the start of Pseudo (50-300). They are: .FILE,
.END, .D, .P, .N, .0, .S, and .H. These tests and the asso-
ciated JMPs are identical to an ON-GOTO multiple branch
structure in a BASIC program. The rest of the Pseudo sub-
program is a collection of subroutines which service these
various pseudo-ops.

If an unrecognized pseudo-op appears within the source
code, an error message is printed out (340-460). If something
like .X or .MAP appears, the line number, the start address,
and the source code line are printed (350-390). The variable
TEMP is set to point to the SYNTAX ERROR message in the
Tables subprogram, and that message is sent to screen, and
possibly printer, via the PRNTMESS subroutine (440). A car-
riage return is printed (450), and we return to the Eval sub-
program after pulling all the characters of the current source
code line. The subroutine PULLINE does this (460).

Assuming, however, that LADS came upon the legitimate
pseudo-op .FILE during an assembly, lines 480-830 take the
necessary action. .FILE appears at the end of a subprogram. It
tells LADS that another subprogram is linked to the one just
assembled and that the source code within this next sub-
program is to be assembled next, as an extension of the cur-
rent subnrogram. The current source code file will need to be
shut down, and the next linked file will need to be opened for
business. The next linked file is the one called NAME, for
example, in .FILE NAME.

Linking with .FILE

The FILE subroutine starts off by looking for a blank character
following the .FILE pseudo-op word (480-510). Locating a
blank, it can now store the name of the next file of source
code. It pulls in the name, one character at a time, looking for
an end-of-line 0 (540) or a byte with the seventh bit set (a
tokenized keyword which needs to be stretched out into a full
ASCII word). Then each character in NAME is stored in the
main buffer (590) as it comes in from the source code.

199

Pseudo: I/O and Linked Files

When an end-of-line 0 is encountered, the whole filename
has been stored in LABEL, the input buffer. And—since Y was
counting the number of characters and helping store them in
the right place in the buffer—Y now holds the number of
characters in the filename, its length. We store Y in the
FNAMELEN variable which will be needed by the DOS (Disk
Operating System) when the OPEN1 subroutine tries to open
or load a program file on the disk.

Now the filename is moved from the LABEL buffer to the
FILEN buffer (630-680). Why not just store the name in the
FILEN buffer in the first place? First, because the printout
routines get their characters and words from LABEL, the main
buffer. Second, because there might be a keyword, a
tokenized, abbreviated BASIC command within a filename.
The filename might be END or [FNOT. And KEYWORD, our
detokenization subroutine, acts upon words in LABEL, the
main buffer. So, rather than make a separate KEYWORD
detokenization subroutine for each buffer, it’s easier to bring
words into the main buffer first, detokenizing them on the fly.
Then move them.

But why, then, not have the OPEN1 subroutine look to
the main buffer for its filenames? That way, the names
wouldn’t need to be moved to FILEN, a separate buffer. True
enough, but it helps me and, I suspect, many other pro-
grammers to keep things separated by function.

It takes only 14 bytes in LADS to move the filename from
the main buffer to the filename buffer. It adds only a few
microseconds during assembly time since .FILE is a relatively
rare event. It won’t happen more than a few times during an
entire assembly. It's nowhere near the heavy action of the
innermost loops of LADS where every event counts, where
every improvement in logic results in a noticeable improve-
ment in speed. So memory use or speed efficiency is not really
worth bothering with here. If it's easier for you to visualize the
actions of a program (and make sure there are no unwanted
interactions), use as many buffers and variables as you want.

Printing Addresses

The next section of this FILE subroutine prints out to screen or
printer (690-740). Pass 2 doesn’t print the starting address of
each linked file. That’s one way to tell which pass is currently
being assembled. Change the LDA PASS in line 690 to LDA

200

Pseudo: I/O and Linked Files

#0 if you want the address printed on both passes. The
PRNTSA subroutine (from Printops) prints the address in
RAM memory where the first byte in the new file will be
assembled. PRNTINPUT prints the filename from the main
buffer. Then a carriage return prepares for the next screen (or
printer) line (740). The whole thing looks like this on the
screen:

470A NAME
49FF NEXTNAME

If the .S and .P pseudo-ops are turned off, nothing will be
printed to the screen during an assembly except for this list of
linked files and their object code addresses. That’s the fastest
way to assemble any source code. Printing during assembly
takes up a considerable amount of time.

The OPENT1 closes the old source code file and opens the
new one. OPEN1 is found in the subprogram of the same
name. Next, the computer’s input channel is switched to file
#1, the input-from-disk channel, and two bytes are pulled off
the newly opened source code program file. (These first two
bytes are, in the Commodore DOS system, ignorable.) Then
ENDPRO gets us in position to analyze the first line in this
new source code file (800). Finally, the ENDFLAG is set down
because there’s obviously more code to assemble. We return to
line 80 where the RTS (back to the Indisk subprogram) is
pulled off the stack, and we JMP directly back into the Eval
subprogram to pull in the first source code line of the newly
opened file.

The .END Link

The .END pseudo-op is quite like the .FILE pseudo-op. It serves
to link the Iast file in a chain to the first file:

PROG1 (ends with .FILE PROG2)

PROG2 (ends with .FILE PROG3)

PROG3 (ends with .END PROGI1, pointing back to the original
file)

This way, the assembler can go through two passes.

.END starts off by printing the word .END (850-940). Then
it borrows a good section of the FILE subroutine above the
JSRing to line 520. Most of the events in FILE now take place:
The name of the new program file is stored in the two buffers,
the file is opened, ENDPRO puts us in the right spot to look for

201

Pseudo: 1/0 and Linked Files

a new line, and so on. When we return to the END subroutine
(970), .END’s most important work is now performed: On pass
1, the ENDFLAG is left down (980). But on pass 2, the
ENDFLAG is sent up, and that will quickly cause the Eval sub-
program to shut the entire LADS engine down.

But if this is pass 1, another very important thing happens:
Pass 1 is changed into pass 2. The PASS flag itself is set up
(1000). -

The original starting address is now retrieved from the TA
variable and restored into SA, the main Program Counter vari-
able. This starts us off on the second pass with the correct, orig-
inal starting address for assembling the object code. The JSR to
INDISK gets us pointed to the first true line of source code in
that first program file (past the *= symbol), and we RTS back
up to line 140 which exits us from this subprogram the same
way that the .FILE pseudo-op exits.

Assembly to Disk Object File
The .DISK pseudo-op is an important one: It makes it possible
to store the object code, the results of an assembly, as a pro-
gram on disk. In a way, it’s the opposite of .FILE. .FILE pulls in
source code from a program file already on the disk; .DISK
sends out object code to a new program file being actively cre-
ated during the assembly process.
On pass 1, nothing is stored to a disk object file, so we
branch to PULLJ which is a springboard to PULLINE.
PULLINE pulls in the rest of a logical line and prepares us to
look at the next logical line.
On pass 2, however, all object code is stored to a disk ob-
ject file if the .D NAME pseudo-op has been invoked. This
storage happens character by character, just the way that object
code is sent to the screen or printer. But before these bytes can Py
go into a disk object code file, the file must be opened for writ-
ing on disk.
One character is pulled off the source code, moving us past v
the space character in .D NAME and pointing to the N in
NAME. A little loop (1130-1210) stores the NAME of the object
file into the main buffer (for printouts) and into the filename —
buffer, FILEN, simultaneously. Meanwhile, if any tokenized
keywords are detected (seventh bit set), we're directed to trans-
late them to ASCII characters via a JSR KEYWORD (1170). This —
accomplished, we add “,P,W” onto the end of the filename.

202

Pseudo: 1/O and Linked Files

That’s Commodore-specific; it tells the DOS that this file is to
be a Program/Write file.

At this point, Y holds the length of the filename, and it’s
then stored in the proper zero page location (1350) for use by
the DOS in opening this write file. Now the main input line,
the filename, is printed out, and the DISKFLAG is set up
(1380). That tells LADS to always send object code bytes to this
object file on pass 2 when it has finished assembling each logi-
cal line.

An Abnormal Program

The routine OPEN2 in the Openl subprogram will now open
the write file on disk (1390), and the channel to that file is made
the main output channel at this point (1400-1410). Whatever is
PRINTed will now go to the disk write file. And the first two
bytes of a program file tell the computer where in RAM mem-
ory to load a program file. Normally, for a BASIC program, this
load address would be the start of RAM, the start of BASIC’s
storage area for programs. But this is an abnormal program. It’s
machine language; it could go anywhere in RAM. We therefore
need to tell the computer what the starting address of this
particular program is.

At the very beginning of LADS, the start address is pulled
from just beyond the source code’s *= symbol. That symbol
must be the first item in any source code. The start address is
then put into several variables. SA, the Program Counter, gets
it, but will keep raising it as each logical line is assembled. SA
is a dynamic, changing variable. TA also gets the start address.
TA is a “variable,” but never changes. Its job is to remember
the starting address all through the assembly process. Perhaps
TA should be called a constant rather than a variable, but the
term variable is generally used in computing to refer to both
types of “remember this”" storage places.

TA Remembers

In any event, TA will always know where we started assem-
bling. So TA is sent to the disk object file as the first two bytes
(1420-1450) and then normal I/O (input from disk source file,
output to screen) is restored (1460-1470). Now a disk error is
checked for, and we prepare to look at the next logical line via
JSR ENDPRO (1500). The RTS is pulled off the stack (it would
want to send us back to INDISK), we set the ENDFLAG down

203

Pseudo: I/O and Linked Files

and JMP back to Eval to analyze the next line of source code
(1550).

The PRINTER subroutine responds to a .P pseudo-op. It is
ignored on pass 1, but on pass 2 the file to the printer is
opened (1590), and the PRINTFLAG is raised. Normal I/O is
restored, and we “fall through” to PULLINE, the subroutine
which keeps sucking bytes off the current logical line until the
end of that line is reached. These bytes are ignored. That’s why
pseudo-ops should be the only thing on any physical line. Any-
thing following a pseudo-op is sucked in and ignored.

The PULLINE routine finishes when a colon or a 0 is de-
tected. The exit back to STARTLINE in Eval is prepared for by
the PLA PLA which throws away the RTS (caused by JSRing to
Pseudo from within Indisk). The only difference between a 0
(end-of-physical-line) and a colon (end-of-logical-line) condition
is that a 0 requires that we skip over some link bytes in the
source code. 0 requires that we first clean off these link bytes
by a JSR to ENDPRO (1700). ENDPRO is also necessary in the
event that the end of a physical line is also the end of the
source code file itself. ENDPRO would detect that.

The .O pseudo-op notifies LADS that you want object code
stored into RAM memory during assembly beginning at the
start address *=. This is relatively simple: We just print out the
.0 (1770-1800) and set up the POKEFLAG. (Elsewhere in
LADS, the POKEFLAG is queried to determine if object code
should be sent to RAM.) Then we exit via PULLINE.

Turning Things Off

The .N pseudo-op turns things off. It can turn four things off:
printer printout, RAM object code storage, screen printout, and
hexadecimal printout. If .N is detected in the ON-GOTO sec-
tion of Pseudo above (110-320), we are sent here for another
ON-GOTO series of tests (1880-1960). Of course, none of these
forms of output are triggered on pass 1, so they don’t need to
be turned off on pass 1 either. But on pass 2, we are sent to
one of the four turn-it-off routines below.

204

Pseudo: 1/O and Linked Files

NIXPRINT (1980) first notifies us that the .NP pseudo-op
has been detected in the source code by printing the .NP. Then
the PRINTFLAG is lowered (2050), and a carriage return is sent
to the printer. This is in case you should want the printer
turned on again further along in the source code. (You would
turn it on with the .P pseudo-op.) The first line of a reactivated
printout must appear on a new line, not as an extension of the
previous printout.

Then the printer is turned off with JSR CLOSE (this close-
down-a-file routine is in the Open1 subprogram), and we exit
via PULLINE (2160).

The next three turn-it-off pseudo-ops are simple, and virtu-
ally identical. NIXOP prints .NO and sets down the
POKEFLAG. NIXHEX prints .NH and sets down the HXFLAG
(causing decimal to become the number base for opcode print-
outs to printer and screen). NIXSCREEN prints .NS and sets
down the SFLAG. Each routine exits via PULLINE described
above.

Disk Error Trapping

DISERR (2510) checks for an error in disk operation. It could be
JSRed to from any place in LADS where you suspect that
things aren’t likely to go well with the disk. Disk drives differ
considerably in their reliability: An unabused Commodore 4040
drive is usually good for years of error-free performance; many
of the Commodore 1541 single-drive units, especially the earlier
ones, are perhaps best described as sensitive. In any case, how
often you feel the need to JSR DISERR for a report on the
disk’s success in completing an operation will depend on how
often your drive is the cause of problems during your other
programming experience.

For Commodore computers, a simple check of the ST (sta-
tus) byte in zero page will reveal many kinds of disk errors. If
one is detected, an error message is printed and LADS is shut
down (2650) by jumping to FIN within Eval.

205

Pseudo: I/O and Linked Files

The .S (screen printout on) and .H (hexadecimal number
printout) pseudo-ops are the final items to assemble as part of
the LADS source code program. The subprogram Table follows,
but it’s data, not programming.

There’s no particular reason why these two pseudo-ops
should be the last thing in LADS. They just are.

Also, they're very simple. They each print their names to
announce themselves, .S or .H; set up their flags, SFLAG or
HXFLAG; and exit through PULLINE. The only notable thing
about .S is that it must not set its flag until pass 2.

The .H is a default condition of this assembler. LADS as-
sumes that you want hex output unless you use the .NH to
turn off hex and turn decimal on. Of course, you can set up
other default conditions which are more harmonic with your
own programming needs.

206

Pseudo: I/O and Linked Files

GHdSd dNd

NIIYDS OL INI¥d ¥04 ,S,, LI SI ‘€8# dWD ¥v3AISd

(LINVd4dd) FA0D IDIALE0 HDNIMOd JI¥VLS <NOdO dWr

PHdSd dNd

(WYY OINI 3QOD IDILdO IMO4) ILNdLno ¥od ,0, LI SI ‘6L# dWO €dISd
J440 ONIHLIWOS NINL <XIN dWC

€ddsd HUNd

«d40 II N¥NL, ¥YFHLO IWOS ¥O SN°* ¥0 HN® ¥04 N, LI SI ‘8L# dWD ZHISd
ONILSIT ¥YIINI¥Yd NO NINL <¥YIAINI¥dd dJWC

¢ddSsd dNd

(LNdLNO ¥YIAINI¥Yd) 4° ¥Od ,d, LI SI :@8% dWD THISd

IOYYOLS HAOD IDALdO ¥dOA MSIA NO HTIIA NIJO <MSIAd dWL

THdSd HNdg

(MSIQ NO d1I4 ddO0D IDIdLd0 ALVYHA¥D) MSIA* ¥od ,d, LI SI ‘89# dWD HISd
TYAZ OL NINLAY <MDVE0D dWL

(0QNdSd NIVHD 40 ANI) dNHE ¥0d4 NIMOL SI 87T <dNAJ d¥SC

JdSd dNd

dNI*® LI SI ¢8CT# dWD TISd

llllllllllllllllllllllll SANITIYVYLS dRWCD

Y1d

INIT IXAN 139 OL TYAd OL NINLIAY ‘V¥VTId MOVYH0D

||||||||||||||||| d1I4 QEMNIT ILXIN OL OD SNVAW 4 <dTIA dSC

Td4Sd dNd

d1Id4° ¥04 .4, LI SI ‘gL# dWO odndsd

THEYT OL ¥YAINIOd SATIOH X / * ("IYAZ WO¥A OL d¥,dSL S¥YM MSIANI)
MSIANI WO¥Yd HIHH dWL

L

dLAE*® LdIDXHd Sd0dnNidsd TIV dTANVYH ,,0dNdsd,

28¢
pLT
99¢
95t
ave
PET
geTe
g1¢
99T
26Tl
28T
OLT
291
9ST
v 1
PET
gCT
PTT
20T
26
28
aL
29
2s
v
g€
x4
ST
o1

opnas{ *[-g weidoi]

207

Pseudo: I/O and Linked Files

AWNYNATIA A0 °*¥VHD J90LS (X ‘THdVT YIS TIIdA

QIOMAIN ¥SC

1114 20d

INO LI HOLAYLS OS ‘CYOMAIM {.LZT# dWD

z14 o3d

ANIT 40 NI ‘@# dWD

NI¥VHD ¥Sr T1Id

g% AQ1 @14

MNVTIE 404 HNIMOOT ANNILNOD {ITIA dWL

9Id Odd

(AWYNATIA HAILYD0T OL) ATIIA® QY¥OM HHL A0 ANI Y04 MOOT *Ze€# dWD
NIYYHO ¥SCL dATIA

|||||||||||||||| dOo-0anNdSd FIIA° FAIANYVH -—-—————————mmmmmmmmmm ol
TYAZ OL MOVd NHHL ‘INIT 40 LSH¥ (FYONDI %) NI TInd ‘IANITING dWC
JdOLNdd d¥SC

SSAWLNIA ¥SC

T+dWAL YIS

Jouddn<# YaT

dWAL VIS

JOY¥ANW> ¢ YAl

ILNANILINYd dSr

ONI¥Y¥H dSC

¥SINJdd d¥Sr

HIOVYdSINId dSr

ANITILNIG dSC

LNOILNI¥Yd ¥Od °*¥YVHD HYOLS ‘X‘TdLIVT YIS 6dSd

(dOo-0dNdSd HONS ON) HHOVSSHW JOd¥H INI¥Yd —--—-=—-—=—---——m———————————e
ONILNIYd XHH NO N¥NL {LIXIH dWL

{edSd INd

SLNOLNTI¥d SNI¥NA SYIIWNN XdIH ¥0d ,H, LI SI {ZL# dWD GHASd
ONIINIdd NIAIYDS NO NINL {NIFIDS dWL

(1Y

265
285
gLS
299
PSS
ovs
g€S
gCs
PTS
295S
g6v
287%
aLY
297
2svy
ovv
eV
gcy
o1V
o9
g6¢€
298¢
OLE
P9t
@s€E
oveE
g€e
gce
21¢€
20¢€
g6c

208

Pseudo: I/O and Linked Files

ILNI¥d ¥SC

8L# YAT

ILNI¥d ¥4SC

69% YA

INI¥d dSr

aNEZ* LNO INI¥d ‘9v# ¥AT ANAd

||||||||| dO-0dNdSd ANE* FTANVH =—=—==—=—=——=————mm e e

O¥dZ OL HVTId WY¥H0dd A0 ANI 1IS ‘OHYIIANIT XIS
g# Xa1

WYd50¥d J0 ANI ¥O0d MDIHD ‘O0¥dANF dSr

NI¥VYHO ¥Sr

ANV SHLAE OML LXIN NI TInd *NI¥VHD ¥SrC

NIXHO ¥sr

T# XAt

(ID¥NOS 40 ONIAVIE AIANNILNOD ¥OdA) MSIA NO ITIIA QHEMNIT IXIN NIJO ¢ INIJO dSC

NINLIY dOVIYEVD “¥DLN¥d ¥SC

LNNILNdd dSC 9Id

dDVYdSLNJdd ¥dsr

HWUYNITIA FHL LNI¥d ‘V¥SINdd ¥dSr

GId UNd

Od LNO INI¥d L,NOQ ‘Z SS¥d NO ¢SSvd vdT1 107114

OT1Id dWr

ANI

A'NITII VYIS

TOT1Id O03d

(NITId) ¥344Nd ¥dd0dd OLNI IWUNITIA ILNd —------- ‘A'THEVT YA 0114
2% RAT

HIONIT AWYNITIL FIOLS ‘NIATIWYNL XIS ZTId

(139VYT) ¥dIAINg NIVW NI HWUYNITIA ONI¥YOLS FNNILNOD ¢ T1Id dWL
ANI

206
268
288
2.8
298
9S8
278
2€8
228
218
208
o6L
28L
QLL
29L
BSL
ovL
geL
gcL
2TL
0oL
269
289
2L9
299
2s9
279
92€9
229
219
209

209

Pseudo: I/O and Linked Files

|||||||||||||||||| SHWYNATIA DONIY¥OLS dddM $d0071dd dWr
ANI

(NZTIIJ) ¥3aand INIdO SV TTIM SY ‘{X’'NITIL VLS

(TIEVT) ¥3IAING LNOLNI¥d OINI HWYNITIL ONIVOLS JIINM {X‘TIEYT VIS XIAd
IOMAIY dSr

XIdd 20d

LTT< A1 (HIWUYNITIS FHL NIHLIM) QIOMAEIM ¥ S,LI ‘LZT# dWD
INIT 40 ANZ +1dd O3d

NI¥VHD ¥SrL d40071ad

g% RAd71

A ‘TIEYT VYIS

HWYNITIA OL INIOd *‘NIYVHD ¥SrC

(INITINd OL SdAWNL) JIVOEONI¥dS ¥V SI £11nd < r011Ind OFd

MSIA OL SNIHLANV HJOLS IL,NOd ‘T SSVd NO ‘SS¥d vdT XMSIdd

(47I4 IAOD LOIALE0) dO-0dNESd AWYNITIA d° HTIANYH ——==—-————————————e :
SLd

INIT IXIN dN LIS <MSIANI ¥Sr

T+¥YS YIS

T+V¥.L YAl

*Z SS¥Yd NO ATHWHSSY VS YIS
J0 L¥VLSHY ¥0d (¥S) Od OLNI MDOVE SSHEYAAY LI¥VLS TUYNIDI¥O INd VY.L V¥dT
C SSYd OL T SSVYd WOYdd SSVd dSIVM ¢SSVd ONI TANId
OVTAANHE ONI
(WRID0¥d F¥ILNZ HHI ANI OL) AMVYSSHDAN S,II ‘Z SS¥d NO Ind ‘TAN3d O3d
*dn OYTI4ANd JHL LIS L,NOd ‘T SSvd NO ¢SSvVd vYd1l
S30d dO-0dNASd ATIIL* SV LSAL °*Oid ‘HAWYNATIA 1IdD ‘@Id ¥SC
NI¥YVYHO ¥dSr
LNTdd ¥dsr
CE# YA'I
LNI¥dd ¥Sr
89# Va1

p1ZT
209C1
26T1T
2811
OLTT
P9TT
PSTT
ovTT
PETT
PCTT
PT1TT
P0TT
260T
9801
2LOT
2901
Ps0T
PvaT
PEDT
2201
2101
2001

266

286

gL6

296

256

ove

PE6

2C6

216

210

Pseudo: 1/O and Linked Files

v'1d
SId TINd ‘V1d

YEGWOAN ANIT IXEAN IED ‘O¥dANd dSC

(ATLOFWIO0D NAAO OL FANTIVA) ¥O¥NE MSIA dOJ MOFHD {¥MYASIA ¥SC
NIMHO ¥SC

0/I TYWION FMOLSIM ‘T4 XAT

NHOYID dSC MSIAd

INT¥d dSe

T+V¥1 ¥aT

INT¥d ¥SC

dTId4 MSIA OL SSIYAAY ONIIMVLS S,HA0D LOAL€0 INI¥Nd ¢V VAT
LOOMHD ¥SL

Z# XAl

(OL ONILI¥M ¥0d HANO SIHL) ITId4 MSIA ANODIS ¥ NIAJO !ZNAJO ¥SC
MSIA OL 09 ATNOHS SEANOd F¥NLAJ LVHL MOHS OL OVIINSIA ISIVY {OVIANSIA ONI
N¥NLTY AOVIYEVD ‘MOINMA ¥SL

GNIT JHL INO INI¥d {ILNdANILN¥d 4SO

HILONET HWYNATIA HIOLS :NATIAWYNI ALS

ANT

X'NATII YIS

L8#% ¥A'T

ANT

X'NATII VIS

vy Va1

M'd‘--aav !ANI

A'NATII VIS

g8# Va1

ANI

X'NITIA VIS

AWYNITIIA OLNO STYNDIS (ALI¥YM ‘WY¥DONd) M‘d’ Ind ‘¥v# vAT 1ad
AWYNZTIA TYONDT OL (YVOEONINAS ---—-—-—- !ANITINd dWL £TTI0d

92ST1
PTIST
P0ST
gevl
P8VI1
OLYVT
P9%1
OSvT
vVl
PEVT
22y 1
PTIVI
P0v1
g6€T
P8€T
OLET
POET
OSET
YET
PEET
QCET
PIET
POET
g6cCT
98C1
BLTT
99CT1
9sC1
yveT
P€ETT
gTet

211

Pseudo: 1/0O and Linked Files

OVTd WYY-OL-HMOd ASIVY {OVTIJIANOd VIS

T# Ya71

NINITY FOVIYNYD {¥DINId dSC

INI¥d dSr

wOu ‘6L# YQAT

INI¥d dSr

O° INI¥d ‘9v# YA NOdO

dOo-0andaSd (WYY OL SHIAA AMOd) O° HTIANVH —————=—m——mm e e !
(2d0D FDYNOS J0 ANIT ILXEN IFD OL) TYAT OL NYNLAY {ANITIMVLS dWL
NMOd DVYTIJAANE I1IS {OVTIIANT XIS

g# XaT

Y¥1d

MOVIS J40 SId TINd *V¥1Id ¥INdaNd

OddaNd ¥SL TINdANZ

(SYEIOVIVHD HYOW NI TInd OS) O¥EZ ¥ON NOTOD ¥IHLIAN {ENITINd dWC
(NOTOD) 4¥TIndaNd Ozd

dELS IVHL SJdIMS ENIT 40 dNE NOTIOD ¥V SYHIHIHM {8S# dWD

ENIT IXIN ¥od O¥dANT OL 09 dTAOHS INIT JO ANZ O¥HZ *TINdANI Odd
INIT IXEN FI¥DOT ISAL ‘SHLAY TIV HYONDI (NIMVHD ¥SL ANITINd

INIT ¥ A0 ISHFY A0 AI¥ LD °*ANILNOY NOIIONS =————mm—————mmm e !
NIMHO ¥dSr

0/I TIYWYON FMOLSHY {T# XAT

* (NEIE¥DS HFHI SY TTIM SY ¥HININd HHL {NHO¥WTD ¥SC

OL SALXL ANHS TIIM INIYd OS) 9VId INdILNO ¥HINIMd HASIVY ¢OVIJINI¥Nd ONI
VALNAWOD WOMd ¥VEH OL ¥AILNI¥d NZdO OS ‘¢ SSVd {PNHdO ¥Sr

*NO 09 dNVY INIT J0 ISTd J0 dI¥ LED {aNITInd Odd

INdLNO ¥ALINI¥d ON Od ‘T SSVd NO {SSVd vdT JdILNI¥dd

||||||| dO-0dndSd (¥HINIYA) d° FIANVH ——————————m e e e
ANIT IXEN IED Ol TVAT OL NMALTY ANV {ENITINYLS dWl

9YI1d WYYO0dd J0 aNd LASHY {DVTIANT XIS

g% XaT

2€8T1
2281
2181
9981
26LT
P8LT
GLLT
29LT1
PSLT
VLT
PELT
PTLT
PILT
POLT
269T
2891
GLOT
9991
@S9t
PY9T
PEOT
9291
gT19T
9991
26ST
28ST
gLST
@9ST
PaST
PSS T
PEST

212

Pseudo: I/O and Linked Files

0/1 TYWION T¥OLSITY ‘T#
NHOYTO

450710

v#

LNT¥d

ET#

LNOXHD

v#

YILNIYd 440 NINL ¢ NHDYTIO
O¥TJd NITYDS-OL-LNI¥d ¥IMOT :‘OVTILNIAG
NINLIY dDVIYYVYD <¥DILNAJ
LNIdd

-m- Mgw#

LNIdd

-Z- Mmh#

LNI¥d

XaT
asre
asre
Yartl
gsr
vat1
asre
XdT
asre
odd
gsre
gsre
¥Ya1
asr
Yartl
gsre

NIFZIOS OL ,dN*, INI¥d {9v# ¥AT INI¥AXIN
LOdINO YAININd Jd0 NUNL =—====m=m=mm—m—mmmm e e e !

XIHXIN

(TYWIDAA OL HOLIMS SNHL) ,XdIH LNOLNI¥d ION, OL ,HN®, LI SI ‘Z.L#
NIHFIOSXIN

#NAIYDS OL INI¥d ION, OL ,SN°,, LI SI ‘€8%

dOXIN

WWYY OL SHLAY I1D0ILdO dAMOd ION, OL ,ON°, LI SI ‘6L#
LNITYdXIN

wJIINI¥d OL INI¥dd ION, OL ,dN°, LI SI ‘@8#

J440 QININL ONIZE SI ONIHL HDIHM FAS ‘Z SSVd NO *NI¥VHD
ANITINd

SIHL 40 ANY HLIM ¥FHLO"E L,NOd ‘T SS¥d NO :SSvVd vdT

Sd0-0dN3Sd JAJ0-II-NINL’(ONIHLIWOS)N® HTIANVH =——=—=—————————————————— .

ANIT J0 LSHEY HYONOI <IANITIN

V1
PETC
9TIC
PTTC
P2T1C
peac
280¢
2L0C
990¢
0s@¢
2vec
PeEBT
vcec
2102
200¢
ge6Tl
#2861
gLeT
2961
gsel
ovel
gE6T
AZ6T
PT6T
2061
ge8T
288T
oL8T
9981
0s8T
2¥8T1

213

Pseudo: I/O and Linked Files

SLNOLNI¥d NHIIDS
(T¥AZ OL NINLIY ANVY)

(TYWIDIA I¥V.IS) SLNOLNI¥d XJH
(TYAZ OL NINLIY ANY)

WYY OL SHLAY LOILdO ONIHFNO4
(T¢Ad OL NINIIY ANY)

INI¥d
-.m- umm#
LNI¥d
:z: Mmh*
INI¥d

asre
vYa1
asre
YaT
asr

#SN*, INI¥d ‘9v# VAT NATIDOSXIN
dOLS —===——=——m—mm—mm e :

ANIT 40 LSHY HYONODI <ANITING
NMOQ OVTAXHH LNd :DVIIAXH

o#

NINLIY HOVIYYVYD ¥DINdd
LNTI¥dd

-m- MNF#

LNI¥d

-Z- “mh#

LNI¥d

asre
Ya1
asr

WHN®, INI¥d ‘9%# VAT XIHXIN

dOLS =—==—=—=—mmmmmmm e

INIT J0 ILSTY HYONOI ‘ENITIN
OYTd dMOd 440 NINL ¢OVTIINOd
o#

NINLEY FOVIVIVD¥YO.LNAd

LNTdd

.-O: umh*

LNT¥d

-.z- hmh#

LNIdd

asr

wON°, INI¥dd ‘9%# VAT dOXIN

dOLS ——==—====mmmm—mm e

INIT 40 ISEY HYONDI <INITING
NIMHD

dWr
asr

pave
ovve
gEVC
geve
21vC
pove
26€T
@P8ET
@LET
P9EC
PSET
ovEee
PEET
pTeT
PTIET
PIET
g6t
@8¢c
gLee
992t
@sce
gvee
geTT
pcee
pTCe
ooz
g61C
P81¢
@LTT
P91¢
PSTC

214

Pseudo: I/O and Linked Files

(TYAZ OL NINLIF ANV) INIT A0 LSHTY HJONDI ¢‘ANITIN WL XIIDS
OVY'IdS VYIS

OVId (ONILSIT) LNOLNI¥d NIFAYDS HSIVY ‘ISIMYIHLO ‘T# VAT
Xd4Ds 03d

INOLNI¥d NAZNDS ON ‘I SSvd NO ¢{SSvd val
NINLIY IOVINIVO $¥DINAd dSC

INI¥d ¥SCr

1S ‘E8# VYAl

INI¥d ¥SC

wS°,. INI¥d ‘9%# VAT NIAADS

(LAOILNI¥d NHI¥DS NO MINL) dO-0aNdSd S° HIANVH =——=——=————————em :
NOILVIZdO SAVTI FMILNI NMOd INHS (NI dWC
¥1d

MOVLS JAd0 SI¥ TINd {¥Id

AOVSSHW dO¥Yd INIYd !{SSHWINYd ¥SC

1139 ONIY (ONI¥YH dSre

T+dWdL YIS

HASTAW<# ¥aAT

dOVSSHW JO¥¥d MSIA OL LNIOd ‘dWHL VY.IS
MASIAW> # ¥A'T

JOVASLNId ¥Sr

WANINId ¥SO

AOVSSHW dO¥¥d LNO INI¥Yd ‘@g# VAT JIIAOW

0/I MSIQ HHL NI IINVd JWOS SI I¥IHL ‘Od¥dZ ION AT ‘YATIAOW AN
(DIJAIDEAS ¥YALNAWOD) HIIVI¥VA SALVLS MSIA MDIHD ‘LS XAT ¥IYHSIA

|||||||| ANIINOY NOILDILAA HYOWUH MSIA ————=-=-———=—=————m—— e

(TYAd OL N¥NLAY ANV) INIT A0 LSEY HIONDI ¢EANITINA dWL
OVId LNOLNI¥d NIAFIDS NMOd ILNd <‘OVIIS YIS

g# VAT

NINLEY FOYIVEVYD +¥OLNId ¥SCe

99L2
@SLe
avLe
geLT
gcLe
g1LC
PoLT
269¢
9892
@L9C
999¢
999¢
) 4°%4
PEST
©vToc
9192
209¢
965¢C
98S¢C
gLSC
09S¢
9562
ovSc
PEST
gcsce
21S¢
0@s2C
gevc
28v¢C
oLV
Povc

215

Pseudo: 1/O and Linked Files

T+ALANHET VAT LSPT

ITId AYUYNId $INI¥d ¥9SC 9G¥T

Jd0 HLONHT HIIYM ‘¥IANAT VAT SSPI
NATANVYNA ALS Tdd @SET

T+4LdNHT VIS 899T

T+¥d 049dS L@OT

dO-0dNdSd *T+¥S ¥YdT1 9901

d- Ad JEALVIYD <‘YIANIT VYIS S@9T
dT1I4 AYVUNIE 40 SHLAE <YL D€S ¥@00T
HI¥NOd ANV QIIHL ¥0d *¥S VYAT €09T
dT1I4 A0 HIONIAT IAVS :DIS TEAT
SH0d dO-0dnASd HTIILA® SY LSAL DIE ‘HWUNITIA IID ‘dTIIA dSL B96
aNd* LI SI ‘69# dWD THSd OTT

:saur] 3uImor|oJ
oy a8ueyd pue [-g werdoi] wol ()G97-00SZ Soul] pue
0FET-0ETT SaUI[WO ‘Opnas] Jo uoisiaa a[ddy ayj ajead o]

suogedyIpoyy 3[ddy ‘opnas{ ‘7-8 weidoi]

SEATIVYL AIIA° @98T
(TYAZ OL NMNLIY ANY) HANIT A0 LSTY MIONDI *INITINd dWL ©9S8C

dn SYTJAXAH LIS ¢OYTIXH VIS @¥8¢

T# YA'T @9€8¢

NINLIY IOVIVYVYD {YDINdd dSL 9287

INI¥d ¥SC @182

wHa {ZL# YAT 9098T

INIdd ¥SC 96LT

WH®, INI¥d ‘9%# VAT LIX3H @8LT

(LOAOLNI¥d SNI¥YNd SYIIWNAN XdH) d0-0dNASd H® dTANVH —-——=————=—————- S QLLT

216

Pseudo: I/O and Linked Files

3.4:@ 37147 @S5

<d7 23514 GISZ

T+9STT BLIS v@EET

[+YS YO S@AT
9517 Y15
95 FaT

3515 HST

t GEe

P o@es

i @BL

2712 3INAG @3B8T

MITTIRYNG AdDD SL9

@B

454 AWD 13Sd BT

d4- ~SMOI1YDISI00KW 1NYL9E @1
:saul] uIMO[[0]
ayy a8ueyd pue [-g weidor] WOy (SHI-00F[Sul pue
0PET—0EZT SOUI[JIWO ‘OpNas JO UOISIdA LIe}y 3y} 3}eal O]

"

ri

Gz

[

SUOLEOYIPOJA LIe)y ‘Opnasd “¢-g weidol

© pevt
ILNI¥d ¥SrC 8S¥1

217

Chapter 9
Tables:

Data, Messages, Variables

BEEEaBEAE EEERE R

Tables:

Data, Messages, Variables

Computers are information processors. Data is another word
for information. This points up the difference between the two
distinct sections of any computer program: code and data. The
code, or program proper, is a list of actions for the computer
to take. The data is the information upon which those actions
are based.

Data is usually separated from the code; it might even be
outside the computer. Sometimes data is on a disk file, some-
times on tape, sometimes in the user’s brain, as when a pro-
gram halts and asks for input from a keyboard. In all of these
cases, though, the code is segregated from the data which it
processes.

An Odd Duck

LADS processes source code, turning it into runnable object
code. It takes a list of actions like LDA #75:STA SCREEN and
turns them into computer-understandable machine language
object programs.

LADS gets its data from two sources, a disk source code
file (or source code in RAM) and also from the Tables sub-
program. Tables isn’t really a subprogram, of course. We're
forced to call it that because there isn’t a better word. It’s
really an odd duck. There are no commands to the computer
within Tables. It's pure information. Essential information,
true, but there are no ML instructions in Tables. Just defi-
nitions, messages, pointers, buffers, flags, and registers. LADS
couldn’t operate without them, but they’re not active program-
ming instructions—they’re for reference.

Three Parallel Tables

Tables starts out, appropriately enough, with three parallel ta-
bles: MNEMONICS, TYPES, and OPS. Each table contains 56
pieces of information. MNEMONICS holds the names of all
the 6502 mnemonics like LDA and INY. TYPES identifies the
category of each mnemonic (we’ll get to this in a minute). And
OPS provides an opcode for each category. To see how these
three tables work together, let’s look at the first item in the
first table, the mnemonic LDA.

221

Tables: Data, Messages, Variables

In your machine language programming, you might want
to load the Accumulator with the number 1. You would write:

100 LDA #1

The computer wouldn’t grasp the meaning of the ASCII
characters L-D-A-#-1 at all. They're for our convenience, not
its.

We think alphabetically or alphanumerically. It thinks
binarily. It wants pure numbers. The CPU, the “thinking” part
of the 6502 chip, takes action according to a code of its own,
but this code isn’t the ASCII code. It’s an opcode, an opera-
tions code. The CPU will place a number into the Accu-
mulator, the A Register, if it comes across any of the following
numbers: 161, 165, 169, 173, 177, 181, 185, or 189. Each of
these numbers is an opcode for LDA. But each one loads from
a different place. The different numbers represent the opcodes
for the eight different addressing modes available to LDA. They
are:

Addressing

Mode’s Name Example Opcode
Immediate LDA #15 169
Zero Page LDA 15 165
Zero Page, X LDA 15X 181

Zero Page,X (indirect) LDA (15,X) 161
Zero Page,Y (indirect) LDA (15),Y 177

Absolute LDA 1500 173
Absolute,Y LDA 1500,Y 185
Absolute, X LDA 1500,X 189

Most of the mnemonics can use a variety of addressing
modes. LDA can be addressed these eight ways, LDY can be
addressed five ways, and so on. That’s where TYPES comes
in. There are ten TYPES, and each opcode falls into one of the
ten categories. Mnemonics are grouped according to their
addressing mode’s similarities. The mnemonics cluster into
TYPES according to the way that they can be addressed:
Type 0:

RTS, INY, DEY, DEX, INX, SEC,
CLC, TAX, TAY, TXA, TYA, PHA,
PLA, BRK, CLD, CLI, PHP, PLP,

RTI, SED, SEI, TSX, TXS, CLV

NOP

222

Tables: Data, Messages, Variables

(Each of these mnemonics takes up only one byte in memory;
each is only capable of Implied addressing—they have no
argument, no address.)

Type 1:

LDA, CMP, STA, SBC, ADC, AND,

ORA, EOR

(Type 1 mnemonics have the largest number of possible
addressing modes, eight. See the list for LDA above.)

Type 2:

STY, STX, DEC, INC

(These are fairly restricted in their addressing options. STY has
only three possibilities: Absolute, Zero Page, and Zero Page,X.
STX can perform only Absolute, Zero Page, and Zero Page,Y
[it's the only one which can use this Zero Y mode]. DEC and
INC can do Absolute; Zero Page; Zero Page,X; and
Absolute, X.)

Type 3:

ROL, ROR, LSR, ASL

(These are the bit-shifting, ““logical” instructions. They can be
addressed in the following modes: Absolute; Zero Page; Zero
Page,X; Absolute,X; and one which is reserved for them alone,
Accumulator mode. In that mode, the number held in the
Accumulator is acted upon.)

Type 4:

CPY, CPX

(The compare X or Y can use Immediate, Absolute, or Zero
Page modes.)

Type 5:

LDY, LDX

(These loads are more restricted in their addressing possibil-
ities than LDA. LDX can use Immediate; Absolute; Zero Page;
Absolute,Y; and Zero Page,Y. LDY can use Immediate; Ab-
solute; Zero Page; Zero Page,X; and Absolute,X. Notice that
they cannot index themselves; ,X modes are possible only with
LDY and vice versa.)

Type 6:

JMP

(This is a special case; it stands alone. It has two ways of
addressing: the extremely common Absolute mode and the ex-

223

Tables: Data, Messages, Variables

tremely rare Indirect mode, JMP (via this). Because most
programming contains many JMPs, it should have its own
category. Also, the only other mnemonic which is essentially
limited to Absolute addressing is JSR, and it gets a category all
to itself as well.)

Type 7:

BIT

(This one is also an oddity. It too needs a category all its own.
BIT can use only Absolute or Zero Page addressing.)

Type 8:

BCS, BEQ, BCC, BNE, BMI, BPL,

BVC, BVS

(All the branch instructions collect together as type 8. They
have only one addressing mode, Relative, and they are the
only instructions which can use this mode.)

Type 9:

JSR

(It can only Absolute address.)

Each of these groups derives from the arrangement of the
opcodes. The patterns are more easily visualized if you look at
the opcodes laid out in a table according to their numeric
values.

224

Data, Messages, Variables

Tables

d X'S8Vv DNI X'sgv 09S A'Sgv DES ais x‘a8eq Z DNI | x‘@8ed Z D9S A'AaNi D8s odg| 4
g Sav ONI Sav OdS sS4V Xdo JON WII D4S XNI a8ed 7 DNI a3eg 7 Dgs| 28ed z xdD X'ANI O8S [WWI XdO | 3
a X'saV DIa| X'sav dWD LSV JWD amn x'2ded 7 D3a |x*38%ed Z JWD A'ANI dJWD NG| a
) sS4V Did SEV dJWD SaV AdD X3a WII dWND ANI adeg 7 Daa| a%ed Z dWD| 9ded Z AdD X'ANI dJWD [WIWIT AdD| D
4 A'sgv xai X'sgv vai X'sav AQ'l XSL A'sav val AL Aoded z xat| x'e8ed Z var [xoded Z Ad'l A'ANI vai Sod q
v Sav XA sav val SV Ad1 XV1 WIWI val AVL adeg 7 XAl adeg 7 varl| 98ed 7 AQ1 WIWI XAT| X'aNI VAT|WWIAQT| V
6 X'SgV VIS SX1 A'SgV VIS VAL Adeg 7 x1S| x'a8ey 7 vis[x0deq z ALS A'AdNI V1S pel 6
8 SAVXLS S4V VIS SHV ALS VXL Add adey Z X1S ade z vis| o¥eg 7 ALS X ANI'VLS 8
L X'sgv 30y X'sav Dav A'SHV Dav 195 X “afeg 7 you | x'adey 7 dDav A'ANI Dav SAg L
9 SEV 40U sS4V Oav ANI JWI Va0 WWI Dav Vid ade 7 you| 9deg 7 dav X‘aNI dav SLY 9
S X'sgv AS1 X'sgav 40 A SHV H0a xdeg 7 4s1| x0deg 7 4o1 A'ANI 01 JA8 §
3 SAV AST| SAV A0 sav Jdwl Vsl WIWI IO VHJ adeg 7 NS adey 7 ¥O1 X'aNI 303 (AR} ¥
€ X'SV 10¥| X'SgV ANV A'S9V ANV s x0deg 7 10¥ | X"9%ed Z ANV A'ANI ANV Ing €
T S4Vv 10 Sav ANV Ssdv L1g V10 WIWI ANV Jd adeg 7 10¥| 98y 7z ANV adeg 7 ng X'aNI ANV s/ [
I X'SgV 1ISV| X'SgV VIO A'sgV VIO RIS X “adeg 7 1SV X @9deg 7 VIO A'ANI VYO 1449 l
0 sav sy SV VA0 VISV WIWI VIO JdHdJ adeg 7 °1sv| a8ed Z VIO X'aNI VIO p ko] 0

asw asw

E q a 3 v 6 8 9 S b € T 1 0
ast asi
sopo2d() jo d1qe], 1-6 2I9EL
i r [[f i [

225

Tables: Data, Messages, Variables

Notice the relationship between LDA (15,X) and LDA
#15. The former has an opcode of 161; the latter, 169. As the
Eval subprogram goes through the source code line, it is look-
ing for clues to the addressing mode: Is there a #, a comma, a
parenthesis, an X, or a Y?

Each of these things, combined with the TYPE, tells Eval
when to raise the value of the original opcode (let’s call it the
base opcode) assigned to the mnemonic from the OPS table. If
Eval finds a # symbol, it adds 8 to the base opcode and goes
right to the TWOS exit. It knows then that this opcode should
be 169 (161 + 8) and that there will be two bytes to assemble:
Immediate mode addressing uses two bytes. (All the other
mnemonics grouped with LDA as type 1 will also add 8 to
their base opcodes to signify their Immediate addressing
modes.)

The base opcodes are in that third table called OPS (190).
The Eval subprogram looks up each mnemonic in the
MNEMONICS table, and then the numbers extracted from the
TYPES and OPS tables are stored in the variables TYPE and
OP for future reference. Finally, Eval starts looking for those #
and) clues within the source code line. These clues cause Eval
to add 4 or 8 or 16 or sometimes even 24 to the base opcode.
This adjusts the base opcode upward so it will eventually be-
come the correct opcode for the addressing mode being used.

CMP is grouped with LDA as a type 1 mnemonic. That's
because a # will add 8 to either of their base opcodes and result
in the correct, final opcode for Immediate addressing. The base
opcode for CMP is 193, which, unadjusted, would stand for
CMP (15,X). If we come upon a # following the CMP, how-
ever, 8 is added to the 193, giving 201, the correct opcode for
CMP #15. Then Eval would JMP to TWOS and conclude
assembly of that line of source code.

In each case, the base opcode in the OPS table is the low-
est possible opcode number from among the addressing mode
options available to each mnemonic. As the evaluation process
proceeds throughout the Eval subprogram, the discovery of the
various addressing modes triggers additions to the base opcode.
In the end, when Eval finally releases a source code line, the
right opcode has been achieved.

Returning to the data within the Tables subprogram, we
next come upon the little HEXA table (270). It lists all the digits
found in hexadecimal numbers. It's used as a lookup table

226

Tables: Data, Messages, Variables

when LADS translates an internal two-byte integer into a print-
able, readable ASCII hexadecimal number like F-F-D-2.

The Six Bufferettes

Here are the buffers (290-340). They are constantly being filled
with a source code line, evaluated, and then cleaned off by be-
ing filled with zeros. They are separated into six different
bufferettes primarily for the programmer’s benefit. It’s easier to
visualize different actions if the buffers have different names.

LABEL is the main buffer—every source code line comes
into it. BUFFER is where arguments are sent for further study.
The rest of them are used for special-purpose analysis. Things
like hex numbers are moved up to HEXBUF, for example, so
they will be isolated from other characters and can be
translated.

One other buffer, distant from the rest, is needed. LADS
stores comments (remarks following semicolons in the source
code) into a buffer normally used by BASIC to hold program
lines. The location of this buffer depends on each computer’s
memory organization and so it is defined in the Defs
subprogram.

The computer’s Accumulator and Y and X are called reg-
isters. They’re like hypervariables inside the 6502 chip—they
are constantly changing. Calling them registers serves to distin-
guish them from program-created variables or other special
locations within the computer. The three variables RADD,
VREND, and TSTORE are called registers in LADS. That's
largely the result of whimsy. There are as yet no established
conventions concerning how to describe storage areas in ML
programming. In this book we’re variously referring to these
set-aside bytes as flags, variables, registers, pointers, vectors,
etc. (See Chapter 1).

In reality, they’re all pretty much the same thing: Just some
RAM memory space we’'ve allocated with the .BYTE pseudo-op
(or identified in zero page by definition using the = pseudo-op
like STATUS = $FD). But it’s nice to use various terms. It
helps to remember things and, sometimes, it even helps to de-
scribe the purpose or function of a particular variable. Pointers,
for example, are always associated with the Indirect Y address-
ing mode—LDA (POINTER),Y. They point to some address in
RAM.

227

Tables: Data, Messages, Variables

Registers Used by Valdec

Anyway, these three variables are described (350) as registers.
RADD holds numbers being added to other numbers. VREND
holds the length of the ASCII version of a number while it’s
being turned into an integer. TSTORE holds the interim results
of multiplication. All three “registers” are used by the Valdec
subprogram.

Lines 400-460 contain the various error messages. Note
that each one ends with .BYTE 0 to stick a delimiting 0 in after
the message itself. This 0 tells PRNTMESS (the subroutine in
the Printops subprogram which prints messages) where to stop.

The rest of Tables contains variables, pointers, and reg-
isters. Notice that there are no zero page variables here. Zero
page variables, pointers especially, are most useful for Indirect
Y addressing, but you won’t need too many of them. In fact,
you won't be allowed to use much of zero page because it is so
popular with your computer’s operating systems and languages.
But the most important thing to remember about any zero page
space that you do use is: Zero page variables must be defined at
the start of your assembler source code. They are unique in this.
Any other equates can be defined anywhere in the source code.
And, of course, the address-type PC variables or labels can be
defined anywhere.

OP and TYPE are variables which hold information about
the mnemonic currently under investigation during assembly.
After a mnemonic is located in the MNEMONIC table, the
matching TYPE and base opcode are pulled out of their tables
and stored into the variables OP and TP for later reference
(480-490). TA is the permanent storage area for the start ad-
dress of assembly, the original *=.

Source Code Line Numbers

LINEN holds the source code line number of whatever physical
line is currently being assembled. ENDFLAG tells Eval when to
shut down assembly. It is incremented by the .END pseudo-op.
WORK is used by several routines within LADS as a conve-
nient place to temporarily leave two-byte values.

RESULT is an important variable. It holds the argument of
each opcode. When an argument (expression-type) label like
STA HERE is encountered, the label HERE is looked up by the
subprogram Array and the integer value of the word HERE is
placed into RESULT. When a hex argument like STA $1500

228

Tables: Data, Messages, Variables

comes in from the source code, the subprogram Indisk trans-
lates the characters $1500 into an integer value and stores that
value in RESULT. Likewise, a decimal argument like STA 5376
is sent to RESULT after it’s evaluated in the Eval subprogram.
For every addressing mode which has an argument, the argu-
ment is stored in RESULT after it's been evaluated.

ARGSIZE holds the length of each argument, how many
characters long it is. For example, ARGSIZE would hold a 7 for
the argument in LDA (155),Y since (155),Y is seven characters
long. It is used in the Eval subprogram in lines 1670, 2250,
2750, and 3020.

EXPRESSF is a flag which shows whether or not there is a
label being used as an argument. LDA 15 would leave
EXPRESSF down. LDA NAME would set it up. It is used in the
Eval subprogram at lines 740, 1470, 1510, 1590, and 1700.

HEXFLAG tells the Eval subprogram whether or not it
must calculate a decimal argument. Hex arguments are cal-
culated (and left in RESULT) by the Indisk subprogram. Deci-
mal arguments, however, need to be worked out by Eval.
HEXFLAG is used in lines 550 and 1680 in Eval.

HEXLEN holds the length of a hex number. It is used in
Indisk in lines 2170, 2240, and 2490.

KEYNUM holds the position of a keyword (a BASIC com-
mand) in the table of keywords in ROM BASIC. It is used in
Indisk in 1060, 1080, 4260, and 4280.

LABSIZE is used in the Equate subprogram to hold the
number of characters in an equate-type label (such as NAME =
22). It is used in lines 120, 160, and 410.

LABPTR is also used by Equate. It points to the position in
the label array where the integer value of a label should be
stored. It is found in lines 600 and 750.

ARRAYTOP points to the highest byte in the label array. It
is where we start any search through the labels. Identical to TA,
ARRAYTOP also represents the start of the LADS assembler in
memory, minus one. It is used in Equate in lines 110 and 150
and in Array in lines 30 and 50.

A List of Flags and Variables

BUFLAG goes up when a line of source code contains # or (.
These symbols are important when determining addressing
mode, but must be ignored in evaluating arguments (the nu-
meric value of the expression). This flag is used in lines 470

229

Tables: Data, Messages, Variables

and 1020 in Array and in lines 750 and 1400 in Eval.

PASS is used frequently throughout the entire LADS pro-
gram—it shows which pass we're currently on during assem-
bly. A 0 in PASS signifies pass 1; a 1 represents pass 2.

The three variables A, X, and Y are often called upon to
temporarily hold the values in the 6502 registers after which
they were named. They are temporary storage areas.

PT is a temporary storage area to hold the PARRAY dy-
namic pointer in the Array subprogram.

BNUMFLAG and BFLAG are used in the evaluation of the
.BYTE pseudo-op in the Indisk subprogram.

ADDNUM holds the value of the number following the
+ pseudo-op. For example, it would hold 78 if this were the
source code: LDA LABEL+78.

The PLUSFLAG shows that there is something in the
ADDNUM variable which must be added to the label in an
argument. It shows that the + pseudo-op appears in the cur-
rent source code line.

BYTEFLAG shows that the < or > pseudo-op appears in
the current source code line. It is an odd flag in that it has
more than two states. It can be 0 indicating no < or >. And it
can be 1 or 2 to distinguish between < and >.

DISKFLAG means the .D NAME pseudo-op was activated
and so object code should be sent to a disk object file to create
a runnable ML program.

PRINTFLAG means the .P pseudo-op was activated and a
listing should go to the printer for a hard copy record of
assembly.

POKEFLAG means the .O pseudo-op was activated and
all object code generated by assembly should be POKEd into
RAM memory.

COLFLAG is used in the Indisk subprogram to show that
the previously assembled line of source code ended with a co-
lon rather than a 0 (end of physical line). It tells Indisk not to
look for a new source code line number.

FOUNDEFLAG goes up when the same word is found
more than once within the label array, proving that a label has
been redefined. That'’s illegal and results in an error message.
This flag is used in the Array subprogram.

230

Tables: Data, Messages, Variables

SFLAG means the .S pseudo-op is being used and a vis-
ible listing of source and object code should appear on the
screen during assembly.

HXFLAG responds to the .H pseudo-op. If set (that’s the
default, the normal start-up condition in LADS), all opcodes
and arguments are printed (to screen or printer) in hexadeci-
mal. HXFLAG is turned off by the .NH (no hex) pseudo-op
and causes opcodes and arguments to be printed as decimal
numbers.

LOCFLAG, when set, tells the printout routines within
the Eval subprogram that they need to print a PC address-type
label. For example, a line like:

100 START LDA #GREEN

requires special handling so that the address-type label START
will be printed on screen or printer in the correct format (or
that it will be printed at all). LOCFLAG is used in Eval in lines
790, 1210, and 3510.

BABFLAG shows that there is a semicolon on a line of
source code. It signifies that a REMark, a comment, appears on
this line. It tells the printout routines that there is a comment
which must also be printed on the screen or the printer
following the printout of the business part of a line.

231

Tables: Data, Messages, Variables

SIAODdO FAOW SSHTYAAY ‘SH
SYdLSIDAYA

||||||||| SYAIANE ————==——m——m———

wdJADEV68LOGVECTH, HLA"®

AT9VI ANILOOY XAH —————————————————

€T ¥8T ¥ST 981 ©CT1 8¥C ¥9 OV
8 T 88 9TIC 99 86 ¥E€ CIIT

P8 9¢€ G9 T €€ 9T v @

¥OT 2L TST 8ET 89T BLT ¥C L6
96 GCC ¥cCtT CTel ©PEC CTEC 86T T@C
9€T BT PET CET 6CT 9L TOT 86T

VXHdH

dLAE"

€6T VT O%C 9LT 96 C€ @91 19T HLA"E® SdO

00000000
g €0 0BEEES
8 L ITTT®S8 82D
9 000000T
9TV VvZoO<TO
@ @CcCcT1T9s8
18880 6 S I dLAYE"

dONATOSXIXSLIASAISILAL T,
dHdISYITOATIDYSTIOITOISAYL,,
DA LIGY0IVIOANYIddINGMYY,,
YIdVHdYVALVXLAVY.IXY.LOTDOOAY,,
DISDESXdDAdDONIXNIOIAXHA,,
AHAANIX.LSALSVYILSdWLXATINY,,

dLA""®
JLAg "
JLAd"
dLA"
dJLAG"
dLA9*
SHdAL
dJLAd "
dLAg"®
dJLAY "
dLAg "
JLAL "
CAMS: o

dWDDDE0dLdSDESLIdSLrAQTIVAT, HLAD® SDINOWINW

dAL ‘SOINOWANW =-——=——=—=——=————————u
‘SYEINIOd ‘SOVTd ‘SIDVSSIW ANV SIYAJING
¥YIVQ FdAL SSTIAAV/IA0DA0 J0 ATEVI TATIVIVA ANV SDINOWANW IO HTEVL

w SHTEVYL,,

s on on e

98¢
oLT
99¢
@sc
ove
pET
@ace
o1C
09T
261

S9Iqel, "1-6 wreadoa

232

Data, Messages, Variables

.
.

Tables

JHEWNN XHIH J0 HIONAT {g HLAL°® NITIXIH

OYTd JHAIWNN XIH !9 ALX9° OVIAXIH

TIAVYT SSHIAXA NV LI SI {g ALAL® JASSHIAXH

INIWNOIY A0 HILONAT ‘g ALAG® dZISOYUY

INIWNOIV J0 HNTYA ‘g @ HLA® NOUY

YIYY JIMSNV dWHL ‘g @ ALRE*® LINSTI

YHEIVY MIOM dWIL {9 @ FILXG*® MIOM

VT4 H0dd-J0-ANA {p dLAE® OVIIANA

ANIT INIIAND ‘g 9 ALXE® NANIT

SSHYAAY JIIYLS ‘g @ dLAL°® VYL

JddAL ‘g ALXG°® 4L

JA0Ddo {p FALAL*® dO

||||||||||||||||||||| SYALSIDAY ‘SYAILNIOd ‘SOVTIL ——————————=!
@ HALAL®:, -— JO¥dHd XVINAS -- o HLAE® JO¥dAW

@ dALXd°":, -- TIVI dILVOITdNd -- W HALAE* gYIdNAW

g FAIALD" 3, <<<<<<<< JOY¥T MSIA >>>>>>>> . LAY ¥ISIAW

@ ALAd":,TILAVT TINUYN . ALAE® DIVYON

@ ALAG*:,TIEYT dINIJIANND, HLALG® dYION

9 ALAL®:,dONVY JO0 INO HONVHYE ——————————————m w ALAE* HOdW

@ dLA9® :,SSHIAAY LIVLS ON, HLALE® LIY.LSONW
||||||||||||||||||||||||||| NHHEYDS OL ILNI¥dd OL SHDYSSHW —----:
ATdILTINW J04 ¥IALSIODAY AYVIOdWIL ‘@ @ HLALE® HIOLSL

YILNNOD WY¥YHOUd A0 ANT dTOH OL DIY dWIAL <@ HLAL®™ ANIIA
NOILIAAV dTdN0d ¥d0d YIALSIOHY AIVIOdWHL:@ @ dLALE® ddVd

IIIIIII DIATIYA A€ ESN SYILSIDIAY -——-—-—1¢

990000 @ dLAE® ANENN

9 0000090000000 0000 O G ALAE NITIA
000 000000000000 00000 0 ALAE ANEIXHIH
9000000000000 00 0000 QY ALAE WINd

9 000000000000 00000 OO0 dLAE JdJ4Nd

9 000000000000 0000000 O dLAE THEVT

265
285
gLS
29§
2SS
ovs
PES
Q¢S
P1S
20S
17
287
oLY
297%
osv
ovv
Q€Y
ocTy
o1y
20v
26€
28¢€
aLE
@9¢
29€
gve
pEE
XA
g1€
20€
26¢C

233

Tables: Data, Messages, Variables

*SS¥Yd dNZ LIW¥3d OL (,SJddd,) dTIA LST

TYAd NI LNdANILNdd ¥3LdY WHY ¥ LNI¥dd OL SMOHS
THEVYT SSHYAAY Dd ¥V .INI¥dd OL SMOHS
XdH NI S3J0DdO dNV ¥S INIdd OL SMOHS
NIHFIDS OL HJODIDINOS dNAS OL SMOHS
(AY¥¥Y A€ QdSnN) IAWYN TIEYT dILVOITdNd
(MSIANI ZXd ddsn) NOTOD ¥ AIYILNNODNI
(300D IDIL€0) AYOWHW OL SHLALE ANIS OL SMOHS
YHLNIYdd OL SULAY ANAS OL SMOHS
dTI4 LOALr40 ASId OL SHLAE dNIS OL SMOHS
‘dINdddV¥H < ¥0 > LVHL SMOHS
*dINdddV¥H 0OdNdSd + LVYHL SMOHS OVTd
0dnNdsd + ¥0od aAdV¥ OL dIIWNAN
wISIANTI, NI MIEMWNN d04
WwJASIANI,, NI dILAE*® ¥O0d
HLAE-CZ (,AYYYY, NI) AVIYVYd SATIOH ATIYVIOdWHL

SAdd dNH*

{p dILXE° 5Y1JdVd
!g ALXL°® 5YTID0T
‘g HALAL*® OVTIXH

g ALAD*® DVTIJS

‘g ALAE® OVIAANNOA
!g ALXE°® 9HYTIIOD
‘@ FLALE® OSYTIIIMNOL
‘g HIAD® SVTJILNING
{g ALAL® OVIANSIA
{p dLAL°® OYTJLAL
{p ALAL* 95VYTASNId
‘g @ ALXE*® WANAAVY
!g @ ALAd°® H5Y1Jd
‘g HLAE® OSYTIWNNG
‘g ¢ ALAE" 1d

YJEMOHEHD *¥dNS d ONI¥NA SYHLSIDIY QIOH OL ‘@ HLAE® A:@ HLAE" X:@g HLAE" ¥

*NO ¥¥,dM SSVd HDIHM
SISATUNY SAVIYY ONI¥NA) IO # dIOAVY
*STHIVYT Y0439 dOILWHW SY HWVYS--SAVIdV 40 dOL
HOVIOLS DIV ¥O0d NOILISOd AVI¥Y OL SLNIOd
(3dAL FILVNOH) TILEYT A0 HZIS
dTdVYL S,DISVd NI QIOMAHEM A0 NOILISOd
(DFATVYA ¥OJ) ¥FAANG NI VIEWAN IIDSVY J0 HILONIT

!{p ILAL*® SSvd

!g dLXL* 9YTIINd

!g ¢ HILXAL® dJOLAYVIYVY
g @ ALAL°® YIJEVT
g HLAE°® dZISdVT

g ALAL® WANXIM

!g FALALE*® AZISWNAN

298
9S8
2v8
g€8
a8
218
208
06L
28L
oLL
2oL
PSL
avL
gEL
aTL
oTL
29L
269
289
2L
299
259
ov9
2€9
1 A°]
219
029

234

Tables: Data, Messages, Variables

SJddd ANd* @GT9T

uuuuuuuuuuuuuuuuuuuuu ! pooT

DEY-X JO FOVHOLS dWIL ‘g AIXE" TX 066

OOV J0 HDVHOLS dWdl ‘g ALAE* TV 086

IOIAEA I0JINO INTIYND FHL JO # FTIIJ HHL SATOH ‘g ELXE* ONdO L6
DIAEA INANI INFNNND FHL JO # FIIJ HHI SATOH ‘g 1X€* INJO 096

LYT €8 8%T €8 6V1 €8 U 0 0 0 0 0 @ O 0 0 @ C
SYT 0 91T 0 LVI O O O 0 0 0 @ 0 0 8 @ @ ¢

LYT €8 8YT €8 6¥1 €8 0 0 @ @ HLAE® VIVAYM @€6

900009 01 v LA dTIM @T6

SYT @ O9%T @ LPT @ HLAL" Q16

9990900000001 € dLAE 9104 206

g 0 8YT €8 6%V1 €8 O @ 6¥T 8CT HLAHE" @68

Y9 T1T00TY T dLAE" LIYMNJO @88

9 9 9%T @ LVYT © @ @ LVT SP HLAL" 0.8

291990 TY I dLAG" dAYIINIO @98

dLAd® MISOTO @S6
dLAG " ¥ISOTO O@¥6

||||||||||||||||||| SHLAE TOMINOD YADVNYW-SOd ------------! GG8
714 1NdINO INIJYYND HHL SATOH ‘g ILAE" ¢NIJOd 9S8

714 LNANI INZWEND FHIL SATOH ‘g ALAE" TNIAOJ OV8

WY¥OONd A¥VNIE J40 HIONAT SATOH ‘@ @ AIAE® ¥IANIT @€8

009000 009
9 0000000000000 0000000000000000000009
0 0000000000000 00 000000000 00000 MO O ILAE STE
9990000000000 00000000
00000000000 0000000000000000000 00 dLAE" SO
9 0000000000000 0000
0000000000000 00000000000000000 0 0 dLAE §6C

'1-6 weido1J 03 suonippe pue sadueyd
Suimer[oy ays aew ‘sa[qe] jo uoisiaa 3[ddy ayy ajeamd of

suonedyIpojN d1ddy ‘ssjqey, *7-6 weadoig

235

Tables: Data, Messages, Variables

OHS-543d:d aN3° 898
@ @ J1AdT ¥E571T7 528
SITEYL—-SNOILEDI4IaNKW THYiv: @1

:1-6 weido1] 03 suonippe pue sadueyd
SuImor0y 3y} SYew ‘S3[qeL JO UOISISA LB}y Y} 9)eald O

SUOREBOYIPOJA WelY ‘s9[qe], "¢-6 weidoi]

236

)

- .
B Chapter 10
® 6502 Instruction

B Set

EEEeERnr

=

|

6502 Instruction Set

Here are the 56 mnemonics, the 56 instructions you can give
the 6502 (or 6510) chip. Each of them is described in several
ways: what it does, what major uses it has in ML program-

ming, what addressing modes it can use, what flags it affects,
its opcode (hex/decimal), and the number of bytes it uses up.

ADC

What it does: Adds byte in memory to the byte in the
Accumulator, plus the carry flag if set. Sets the carry flag if re-
sult exceeds 255. The result is left in the Accumulator.

Major uses: Adds two numbers together. If the carry flag
is set prior to an ADC, the resulting number will be one
greater than the total of the two numbers being added (the
carry is added to the result). Thus, one always clears the carry
(CLC) before beginning any addition operation. Following an
ADC, a set (up) carry flag indicates that the result exceeded
one byte’s capacity (was greater than 255), so you can chain-
add bytes by subsequent ADCs without any further CLCs (see
“Multi-Byte Addition” in Appendix D).

Other flags affected by addition include the V (overflow)
flag. This flag is rarely of any interest to the programmer. It
merely indicates that a result became larger than could be held
within bits 0-6. In other words, the result “overflowed” into
bit 7, the highest bit in a byte. Of greater importance is the
fact that the Z is set if the result of an addition is zero. Also
the N flag is set if bit 7 is set. This N flag is called the “neg-
ative” flag because you can manipulate bytes thinking of the
seventh bit as a sign (+ or —) to accomplish “signed
arithmetic” if you want to. In this mode, each byte can hold a
maximum value of 127 (since the seventh bit is used to reveal
the number’s sign). The B branching instruction’s Relative
addressing mode uses this kina of arithmetic.

ADC can be used following an SED which puts the 6502
into “decimal mode.”” Here’s an example. Note that the num-
ber 75 is decimal after you SED:

239

6502 Instruction Set

SED

CLC

LDA #75

ADC #$05 (this will result in 80)

CLD (always get rid of decimal mode as soon as you've

finished)

Attractive as it sounds, the decimal mode isn’t of much real
value to the programmer. LADS will let you work in decimal
if you want to without requiring that you enter the 6502's
mode. Just leave off the $ and LADS will handle the decimal
numbers for you.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate ADC #15 $69/105 2
Zero Page ADC 15 $65/101 2
Zero Page, X ADC 15X $75/117 2
Absolute ADC 1500 $6D/109 3
Absolute, X ADC 1500,X $7D/125 3
Absolute,Y ADC 1500,Y $79/121 3
Indirect,X ADC (15,X) $61/97 2
Indirect,Y ADC (15),Y $71/113 2

Affected flags: N ZC V

AND

What it does: Logical ANDs the byte in memory with the
byte in the Accumulator. The result is left in the Accumulator.
All bits in both bytes are compared, and if both bits are 1, the
result is 1. If either or both bits are 0, the result is 0.

Major uses: Most of the time, AND is used to turn bits
off. Let’s say that you are pulling in numbers higher than 128
(10000000 and higher) and you want to “unshift”” them and
print them as lowercase letters. You can then put a zero into
the seventh bit of your “mask’ and then AND the mask with
the number being unshifted:

LDA? (test number)
AND #$7F (01111111)

240

6502 Instruction Set

(If either bit is 0, the result will be 0. So the seventh bit of the
test number is turned off here and all the other bits in the test
number are unaffected.)

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate AND #15 $29/41 2
Zero Page AND 15 $25/37 2
Zero Page X AND 15/X $35/53 2
Absolute AND 1500 $2D /45 3
Absolute, X AND 1500,X $3D/61 3
Absolute,Y AND 1500,Y $39/57 8
Indirect,X AND (15,X) $21/33 2
Indirect,Y AND (15),Y $31/49 2

Affected flags: N Z

ASL

What it does: Shifts the bits in a byte to the left by 1.
This byte can be in the Accumulator or in memory, depending
on the addressing mode. The shift moves the seventh bit into
the carry flag and shoves a 0 into the zeroth bit.

N aValalaWaVala T

C N

arry

Flag Bit Bit Bit Bit Bit Bit Bit Bit
7 6 5 4 3 2 1 0

Major uses: Allows you to multiply a number by 2. Num-
bers bigger than 255 can be manipulated using ASL with ROL
(see “Multiplication” in Appendix D).

A secondary use is to move the lower four bits in a byte
(a four-bit unit is often called a nybble) into the higher four
bits. The lower bits are replaced by zeros, since ASL stuffs ze-
ros into the zeroth bit of a byte. You move the lower to the
higher nybble of a byte by: ASL ASL ASL ASL.

241

6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Accumulator ASL $0A /10 1
Zero Page ASL 15 $06/6 2
Zero Page, X ASL 15,X $16/22 2
Absolute ASL 1500 $0E/14 3
Absolute, X ASL 1500,X $1E/30 3

Affected flags: N Z C

BCC

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the carry flag is clear.
In effect, it branches if the second item is lower than the first,
as in: LDA #150: CMP #149 or LDA #22: SBC #15. These ac-
tions would clear the carry and, triggering BCC, a branch
would take place.

Major uses: For testing the results of CMP or ADC or
other operations which affect the carry flag. IF-THEN or ON-
GOTO type structures in ML can involve the BCC test. It is
similar to BASIC’s > instruction.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BCC addr. $90/144 2

Affected flags: none of them.

BCS

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the carry flag is set. In
effect, it branches if the second item is higher than the first, as
in: LDA #150: CMP #249 or LDA #22: SBC #85. These ac-
tions would set the carry and, triggering BCS, a branch would
take place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag. IF-THEN or ON-

242

6502 Instruction Set

GOTO type structures in ML can involve the BCC test. It is
similar to BASIC’s < instruction.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BCS addr. $B0/176 2

Affected flags: none of them.

BE

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the zero flag (Z) is set.
In other words, it branches if an action on two bytes results in
a 0, as in: LDA #150: CMP #150 or LDA #22: SBC #22.
These actions would set the zero flag, so the branch would
take place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag. [IF-THEN or ON-
GOTO type structures in ML can involve the BEQ test. It is
similar to BASIC’s = instruction.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BEQ addr. $F0/240 2

Affected flags: none of them.

BIT

What it does: Tests the bits in the byte in memory against
the bits in the byte held in the Accumulator. The bytes (mem-
ory and Accumulator) are unaffected. BIT merely sets flags.
The Z flag is set as if an Accumulator AND memory had been
performed. The V flag and the N flag receive copies of the
sixth and seventh bits of the tested number.

Major uses: Although BIT has the advantage of not hav-
ing any effect on the tested numbers, it is infrequently used
because you cannot employ the Immediate addressing mode
with it. Other tests (CMP and AND, for example) can be used
instead.

243

6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Zero Page BIT 15 $24/36 2
Absolute BIT 1500 $2C/44 3

Affected flags: N Z V

BMI

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the negative (N) flag is
set. In effect, it branches if the seventh bit has been set by the
most recent event: LDA #150 or LDA #128 would set the sev-
enth bit. These actions would set the N flag, signifying that a
minus number is present if you are using signed arithmetic or
that there is a shifted character (or a BASIC keyword) if you
are thinking of a byte in terms of the ASCII code.

Major uses: Testing for BASIC keywords, shifted ASCII,
or graphics symbols. Testing for + or — in signed arithmetic.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BMI addr. $30/48 2

Affected flags: none of them.

BNE

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the zero flag is clear.
In other words, it branches if the result of the most recent
event is not zero, as in: LDA #150: SBC #120 or LDA #128:
CMP #125. These actions would clear the Z flag, signifying
that a result was not 0.

Major uses: The reverse of BEQ. BNE means Branch if
Not Equal. Since a CMP subtracts one number from another
to perform its comparison, a 0 result means that they are
equal. Any other result will trigger a BNE (not equal). Like the
other B branch instructions, it has uses in IF-THEN, ON-
GOTO type structures and is used as a way to exit loops (for

244

6502 Instruction Set

example, BNE will branch back to the start of a loop until a 0
delimiter is encountered at the end of a text message). BNE is
like BASIC’s <> instruction.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BNE addr. $D0/208 2

Affected flags: none of them.

BPL

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the N flag is clear. In
effect, it branches if the seventh bit is clear in the most recent
event, as in: LDA #12 or LDA #127. These actions would
clear the N flag, signifying that a plus number (or zero) is
present in signed arithmetic mode.

Major uses: For testing the results of LDA or ADC or
other operations which affect the negative (N) flag. [IF-THEN
or ON-GOTO type structures in ML can involve the BCC test.
It is the opposite of the BMI instruction. BPL can be used for
tests of “unshifted” ASCII characters and other bytes which
have the seventh bit off and so are lower than 128
(OXXXXXXX).

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BPL addr. $10/16 2

Affected flags: none of them.

BRK

What it does: Causes a forced interrupt. This interrupt
cannot be masked (prevented) by setting the I (interrupt) flag
within the Status Register. If there is a Break Interrupt Vector
(a vector is like a pointer) in the computer, it may point to a
resident monitor if the computer has one. The PC and the Sta-

245

6502 Instruction Set

tus Register are saved on the stack. The PC points to the loca-
tion of the BRK + 2.

Major uses: Debugging an ML program can often start
with a sprinkling of BRKSs into suspicious locations within the
code. The ML is executed, a BRK stops execution and drops
you into the monitor, you examine registers or tables or vari-
ables to see if they are as they should be at this point in the
execution, and then you restart execution from the breakpoint.
This instruction is essentially identical to the actions and uses
of the STOP command in BASIC.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied BRK $00/0 1

Affected flags: Break (B) flag is set.

BVC

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the V (overflow) flag
is clear.

Major uses: None. In practice, few programmers use
“signed” arithmetic where the seventh bit is devoted to in-
dicating a positive or negative number (a set seventh bit
means a negative number). The V flag has the job of notifying
you when you've added, say 120 + 30, and have therefore set
the seventh bit via an “overflow” (a result greater than 127).
The result of your addition of two positive numbers should
not be seen as a negative number, but the seventh bit is set.
The V flag can be tested and will then reveal that your answer
is still positive, but an overflow took place.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BVC addr. $50/80 2

Affected flags: none of them.

246

6502 Instruction Set

BVS

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the V (overflow) flag
is set).

Major uses: None. See BVC above.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BVS addr. $70/112 2

Affected flags: none of them.

CLC

What it does: Clears the carry flag. (Puts a 0 into it.)

Major uses: Always used before any addition (ADC). If
there are to be a series of additions (multiple-byte addition),
only the first ADC is preceded by CLC since the carry feature
is necessary. There might be a carry, and the result will be in-
correct if it is not taken into account.

The 6502 does not offer an addition instruction without
the carry feature. Thus, you must always clear it before the
first ADC so a carry won't be accidentally added.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied CLC $18/24 1

Affected flags: Carry (C) flag is set to zero.

CLD

What it does: Clears the decimal mode flag. (Puts a 0 into
it.)

Major uses: Commodore computers execute a CLD when
first turned on as well as upon entry to monitor modes
(PET/CBM models) and when the SYS command occurs. Ap-
ple and Atari, however, can arrive in an ML environment with
the D flag in an indeterminant state. An attempt to execute

247 —

6502 Instruction Set

ML with this flag set would cause disaster—all mathematics
would be performed in “decimal mode.” It is therefore sug-
gested that owners of Apple and Atari computers CLD during
the early phase, the initialization phase, of their programs.
Though this is an unlikely bug, it would be a difficult one to
recognize should it occur.

For further detail about the 6502’s decimal mode, see SED
below.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied CLD $D8/216 1

Affected flags: Decimal (D) flag is set to zero.

CLI

What it does: Clears the interrupt-disable flag. All inter-
rupts will therefore be serviced (including maskable ones).

Major uses: To restore normal interrupt routine process-
ing following a temporary suspension of interrupts for the

purpose of redirecting the interrupt vector. For more detail, see
SEI below.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied CLI $58/88 1

Affected flags: Interrupt (I) flag is set to zero.

CLV

What it does: Clears the overflow flag. (Puts a 0 into it.)
Major uses: None. (See BVC above.)

248

6502 Instruction Set

Addressing Modes:
Number of
Name Format Opcode Bytes Used

Implied CLV $B8/184 1
Affected flags: Overflow (V) flag is set to zero.

CMP

What it does: Compares the byte in memory to the byte
in the Accumulator. Three flags are affected, but the bytes in
memory and in the Accumulator are undisturbed. A CMP is
actually a subtraction of the byte in memory from the byte in
the Accumulator. Therefore, if you LDA #15:CMP #15—the
result (of the subtraction) will be zero, and BEQ would be trig-
gered since the CMP would have set the Z flag.

Major uses: This is an important instruction in ML. It is
central to IF-THEN and ON-GOTO type structures. In
combination with the B branching instructions like BEQ, CMP
allows the 6502 chip to make decisions, to take alternative
pathways depending on comparisons. CMP throws the N, Z,
or C flags up or down. Then a B instruction can branch,
depending on the condition of a flag.

Often, an action will affect flags by itself, and a CMP will
not be necessary. For example, LDA #15 will put a 0 into the
N flag (seventh bit not set) and will put a 0 into the Z flag
(the result was not 0). LDA does not affect the C flag. In any
event, you could LDA #15: BPL TARGET, and the branch
would take effect. However, if you LDA $20 and need to
know if the byte loaded is precisely $0D, you must CMP
#$0D:BEQ TARGET. So, while CMP is sometimes not ab-
solutely necessary, it will never hurt to include it prior to
branching.

Another important branch decision is based on > or <
situations. In this case, you use BCC and BCS to test the C
(carry) flag. And you've got to keep in mind the order of the
numbers being compared. The memory byte is compared to
the byte sitting in the Accumulator. The structure is: memory
is less than or equal to the Accumulator (BCC is triggered be-
cause the carry flag was cleared). Or memory is more than
Accumulator (BCS is triggered because the carry flag was set).
Here’s an example. If you want to find out if the number in
the Accumulator is less than $40, just CMP #$41:BCC

249

6502 Instruction Set

LESSTHAN (be sure to remember that the carry flag is cleared
if a number is less than or equal; that’s why we test for less
than $40 by comparing with a $41):

LDA #75

CMP #$41; IS IT LESS THAN $40?

BCC LESSTHAN

One final comment about the useful BCC/BCS tests
following CMP: It's easy to remember that BCC means less
than or equal and BCS means more than if you notice that C is
less than S in the alphabet.

The other flag affected by CMPs is the N flag. Its uses are
limited since it merely reports the status of the seventh bit;
BPL triggers if that bit is clear, BMI triggers if it's set. How-
ever, that seventh bit does show whether the number is
greater than (or equal to) or less than 128, and you can apply
this information to the ASCII code or to look for BASIC
keywords or to search data bases (BPL and BMI are used by
LADS’ data base search routines in the Array subprogram).
Nevertheless, since LDA and many other instructions affect
the N flag, you can often directly BPL or BMI without any
need to CMP first.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate CMP #15 $C9/201 2
Zero Page CMP 15 $C5/197 2
Zero Page, X CMP 15,X $D5/213 2
Absolute CMP 1500 $CD/205 3
Absolute, X CMP 1500,X $DD/221 3
Absolute,Y CMP 1500,Y $D9/217 3
Indirect,X CMP (15,X) $C1/193 2
Indirect,Y CMP (15),Y $D1/209 '2

Affected flags: N Z C

CPX

What it does: Compares the byte in memory to the byte
in the X Register. Three flags are affected, but the bytes in
memory and in the X Register are undisturbed. A CPX is ac-
tually a subtraction of the byte in memory from the byte in

250

6502 Instruction Set

the X Register. Therefore, if you LDA #15:CPX #15—the re-
sult (of the subtraction) will be zero and BEQ would be trig-
gered since the CPX would have set the Z flag.

Major uses: X is generally used as an index, a counter
within loops. Though the Y Register is often preferred as an
index since it can serve for the very useful Indirect Y address-
ing mode (LDA (15),Y)—the X Register is nevertheless pressed
into service when more than one index is necessary or when Y
is busy with other tasks.

In any case, the flags, conditions, and purposes of CPX
are quite similar to CMP (the equivalent comparison instruc-
tion for the Accumulator). For further information on the vari-
ous possible comparisons (greater than, equal, less than, not
equal), see CMP above.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate CPX #15 $E0/224 2
Zero Page CPX 15 $E4 /228 2
Absolute CPX 1500 $EC/236 3

Affected flags: N Z C

CPY

What it does: Compares the byte in memory to the byte
in the Y Register. Three flags are affected, but the bytes in
memory and in the Y Register are undisturbed. A CPX is ac-
tually a subtraction of the byte in memory from the byte in
the Y Register. Therefore, if you LDA #15: CPY #15—the re-
sult (of the subtraction) will be zero, and BEQ would be trig-
gered since the CPY would have set the Z flag.

Major uses: Y is the most popular index, the most heavily
used counter within loops since it can serve two purposes: It
permits the very useful Indirect Y addressing mode (LDA
(15),Y) and can simultaneously maintain a count of loop
events.

See CMP above for a detailed discussion of the various
branch comparisons which CPY can implement.

251

6502 Instruction Set

to reverse the current state of the sixth bit in a given byte:
LDA BYTE:EOR #$40:STA BYTE. This will set bit 6 in BYTE if
it was 0 (and clear it if it was 1). This selective bit toggling
could be used to “‘shift” an unshifted ASCII character via EOR
#$80 (1000000). Or if the character were shifted, EOR #$80
would make it lowercase. EOR toggles.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate EOR #15 $49/73 2
Zero Page EOR 15 $45/69 2
Zero Page, X EOR 15,X $55/85 2
Absolute EOR 1500 $4D/77 3
Absolute, X EOR 1500,X $5D /93 3
Absolute,Y EOR 1500,Y $59/89 3
Indirect,X EOR (15,X) $41/65 2
Indirect,Y EOR (15),Y $51/81 2

Affected flags: N Z

INC

What it does: Increases the value of a byte in memory by
1.

Major uses: Used exactly as DEC (see DEC above), except
it counts up instead of down. For raising address pointers or
supplementing the X and Y Registers as loop indexes.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Zero Page INC 15 $E6,/230 2
Zero Page, X INC 15,X $F6/246 2
Absolute INC 1500 $EE /238 3
Absolute, X INC 1500,X $FE /254 3

Affected flags: N Z

INX

What it does: Increases the X Register by 1.

254

6502 Instruction Set

the X Register. Therefore, if you LDA #15:CPX #15—the re-
sult (of the subtraction) will be zero and BEQ would be trig-
gered since the CPX would have set the Z flag.

Major uses: X is generally used as an index, a counter
within loops. Though the Y Register is often preferred as an
index since it can serve for the very useful Indirect Y address-
ing mode (LDA (15),Y)—the X Register is nevertheless pressed
into service when more than one index is necessary or when Y
is busy with other tasks.

In any case, the flags, conditions, and purposes of CPX
are quite similar to CMP (the equivalent comparison instruc-
tion for the Accumulator). For further information on the vari-
ous possible comparisons (greater than, equal, less than, not
equal), see CMP above.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate CPX #15 $E0/224 2
Zero Page CPX 15 $E4/228 2
Absolute CPX 1500 $EC/236 3

Affected flags: N Z C

CPY

What it does: Compares the byte in memory to the byte
in the Y Register. Three flags are affected, but the bytes in
memory and in the Y Register are undisturbed. A CPX is ac-
tually a subtraction of the byte in memory from the byte in
the Y Register. Therefore, if you LDA #15: CPY #15—the re-
sult (of the subtraction) will be zero, and BEQ would be trig-
gered since the CPY would have set the Z flag.

Major uses: Y is the most popular index, the most heavily
used counter within loops since it can serve two purposes: It
permits the very useful Indirect Y addressing mode (LDA
(15),Y) and can simultaneously maintain a count of loop
events.

See CMP above for a detailed discussion of the various
branch comparisons which CPY can implement.

251

6502 Instruction Set

to reverse the current state of the sixth bit in a given byte:
LDA BYTE:EOR #$40:STA BYTE. This will set bit 6 in BYTE if
it was 0 (and clear it if it was 1). This selective bit toggling
could be used to “shift” an unshifted ASCII character via EOR
#$80 (1000000). Or if the character were shifted, EOR #$80
would make it lowercase. EOR toggles.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate EOR #15 $49/73 2
Zero Page EOR 15 $45/69 2
Zero Page X EOR 15,X $55/85 2
Absolute EOR 1500 $4D /77 3
Absolute, X EOR 1500,X $5D /93 3
Absolute,Y EOR 1500,Y $59/89 3
Indirect,X EOR (15,X) $41/65 2
Indirect,Y EOR (15),Y $51/81 2

Affected flags: N Z

INC

What it does: Increases the value of a byte in memory by
1.

Major uses: Used exactly as DEC (see DEC above), except
it counts up instead of down. For raising address pointers or
supplementing the X and Y Registers as loop indexes.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Zero Page INC 15 $E6/230 2
Zero Page, X INC 15,X $F6/246 2
Absolute INC 1500 $EE /238 3
Absolute, X INC 1500,X $FE/254 3

Affected flags: N Z

INX

What it does: Increases the X Register by 1.

254

6502 Instruction Set

Major uses: Used exactly as DEX (see DEX above), except
it counts up instead of down. For loop indexing.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied INX $E8/232 1

Affected flags: N Z

INY

What it does: Increases the Y Register by 1.

Major uses: Used exactly as DEY (see DEY above), except
it counts up instead of down. For loop indexing and working
with the Indirect Y addressing mode (LDA (15),Y).

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied INY $C8/200 i |

Affected flags: N Z

What it does: Jumps to any location in memory.

Major uses: Branching long range. It is the equivalent of
BASIC’s GOTO instruction. The bytes in the Program Counter
are replaced with the address (the argument) following the
JMP instruction and, therefore, program execution continues
from this new address.

Indirect jumping—JMP (1500)—is not recommended, al-
though some programmers find it useful. It allows you to set
up a table of jump targets and bounce off them indirectly. For
example, if you had placed the numbers $00 $04 in addresses
$88 and $89, a JMP ($0088) instruction would send the pro-
gram to whatever ML routine was located in address $0400.
Unfortunately, if you should locate one of your pointers on
the edge of a page (for example, $00FF or $17FF), this Indirect
JMP addressing mode reveals its great weakness. There is a
bug which causes the jump to travel to the wrong place—]MP

255

6502 Instruction Set

($00FF) picks up the first byte of the pointer from $00FF, but
the second byte of the pointer will be incorrectly taken from
$0000. With JMP ($17FF), the second byte of the pointer
would come from what’s in address $1700.

Since there is this bug, and since there are no compelling
reasons to set up JMP tables, you might want to forget you
ever heard of Indirect jumping.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Absolute JMP 1500 $4C/76 3
Indirect JMP (1500) $6C/108 3

Affected flags: none of them.

JSR

What it does: Jumps to a subroutine anywhere in mem-
ory. Saves the PC (Program Counter) address, plus three, of
the JSR instruction by pushing it onto the stack. The next RTS
in the program will then pull that address off the stack and re-
turn to the instruction following the JSR.

Major uses: As the direct equivalent of BASIC's GOSUB
command, JSR is heavily used in ML programming to send
control to a subroutine and then (via RTS) to return and pick
up where you left off. The larger and more sophisticated a
program becomes, the more often JSR will be invoked. In
LADS, whenever something is printed to screen or printer,
you'll often see a chain of JSRs performing necessary tasks:
JSR PRNTCR: JSR PRNTSA:JSR PRNTSPACE:JSR
PRNTNUM:JSR PRNTSPACE. This JSR chain prints a carriage
return, the current assembly address, a space, a number, and
another space.

Another thing you might notice in LADS and other ML
programs is a PLA:PLA pair. Since JSR stuffs the correct return
address onto the stack before leaving for a subroutine, you
need to do something about that return address if you later
decide not to RTS back to the position of the JSR in the pro-
gram. This might be the case if you usually want to RTS, but
in some particular cases, you don't. For those cases, you can
take control of program flow by removing the return address

256

——

6502 Instruction Set

from the stack (PLA:PLA will clean off the two-byte address)
and then performing a direct JMP to wherever you want to go.

If you JMP out of a subroutine without PLA:PLA, you
could easily overflow the stack and crash the program.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Absolute JSR 1500 $20/32 3

Affected flags: none of them.

LDA

What it does: Loads the Accumulator with a byte from
memory. Copy might be a better word than load, since the byte
in memory is unaffected by the transfer.

Major uses: The busiest place in the computer. Bytes
coming in from disk, tape, or keyboard all flow through the
Accumulator, as do bytes on their way to screen or
peripherals. Also, because the Accumulator differs in some im-
portant ways from the X and Y Registers, the Accumulator is
used by ML programmers in a different way from the other
registers.

Since INY/DEY and INX/DEX make those registers useful
as counters for loops (the Accumulator couldn’t be conve-
niently employed as an index; there is no INA instruction), the
Accumulator is the main temporary storage register for bytes
during their manipulation in an ML program. ML program-
ming, in fact, can be defined as essentially the rapid, or-
ganized maneuvering of single bytes in memory. And it is the
Accumulator where these bytes often briefly rest before being
sent elsewhere.

257

6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate LDA #15 $A9/169 2
Zero Page LDA 15 $A5/165 2
Zero Page, X LDA 15X $B5/181 2
Absolute LDA 1500 $AD/173 3
Absolute, X LDA 1500,X $BD /189 3
Absolute,Y LDA 1500,Y $B9/185 3
Indirect,X LDA (15,X) $A1/161 2
Indirect,Y LDA (15),Y $B1/177 2

Affected flags: N Z

LDX

What it does: Loads the X Register with a byte from
memory.

Major uses: The X Register can perform many of the tasks
that the Accumulator performs, but it is generally used as an
index for loops. In preparation for its role as an index, LDX
puts a value into the register.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate LDX #15 $A2/162 2
Zero Page LDX 15 $A6/166 2
Zero Page,Y LDX 15)Y $B6,/182 2
Absolute LDX 1500 $AE/174 3
Absolute,Y LDX 1500,Y $BE/190 3

Affected flags: N Z

LDY

What it does: Loads the Y Register with a byte from
memory.

Major uses: The Y Register can perform many of the
tasks that the Accumulator performs, but it is generally used
as an index for loops. In preparation for its role as an index,
LDY puts a value into the register.

258

6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate LDY #15 $A0/160 2
Zero Page LDY 15 $A4/164 2
Zero Page, X LDY 15,X $B4/180 2
Absolute LDY 1500 $AC/172 3
Absolute, X LDY 1500,X $BC/188 3

Affected flags: N Z

LSR

What it does: Shifts the bits in the Accumulator or in a
byte in memory to the right, by one bit. A zero is stuffed into
bit 7, and bit 0 is put into the carry flag.

O/\/\/\/‘\ LN\ N\
|"gf§'i'v\' ALK
Carry

Bit Bit Bit Bit Bit Bit Bit Bit Flag
7 6 5 4 3 2 1 0

Major uses: To divide a byte by 2. In combination with
the ROR instruction, LSR can divide a two-byte or larger num-
ber (see Appendix D).

LSR:LSR:LSR:LSR will put the high four bits (the high
nybble) into the low nybble (with the high nybble replaced by
the zeros being stuffed into the seventh bit and then shifted to
the right).

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Accumulator LSR $4A /74 2
Zero Page LSR 15 $46/70 2
Zero Page, X LSR 15,X $56/86 2
Absolute LSR 1500 $4E/78 3
Absolute, X LSR 1500,X $5E/94 3

Affected flags: N Z C

259

6502 Instruction Set

NOP

What it does: Nothing. No operation.

Major uses: Debugging. When setting breakpoints with
BRK, you will often discover that a breakpoint, when exam-
ined, passes the test. That is, there is nothing wrong at that
place in the program. So, to allow the program to execute to
the next breakpoint, you cover the BRK with a NOP. Then,
when you run the program, the computer will slide over the
NOP with no effect on the program. Three NOPs could cover
a JSR XXXX, and you could see the effect on the program
when that particular JSR is eliminated.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied NOP $EA /234 1

Affected flags: none of them.

ORA

What it does: Logically ORs a byte in memory with the
byte in the Accumulator. The result is in the Accumulator. An
OR results in a 1 if either the bit in memory or the bit in the
Accumulator is 1.

Major uses: Like an AND mask which turns bits off, ORA
masks can be used to turn bits on. For example, if you wanted
to “shift” an ASCII character by setting the seventh bit, you
could LDA CHARACTER:ORA #$80. The number $80 in bi-
nary is 10000000, so all the bits in CHARACTER which are
ORed with zeros here will be left unchanged. (If a bit in
CHARACTER is a 1, it stays a 1. If it is a zero, it stays 0.) But
the 1 in the seventh bit of $80 will cause a 0 in the CHARAC-
TER to turn into a 1. (If CHARACTER already has a 1 in its
seventh bit, it will remain a 1.)

260

6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate ORA #15 $09/9 2
Zero Page ORA 15 $05/5 2
Zero Page,X ORA 15,X $15/21 2
Absolute ORA 1500 $0D/13 3
Absolute, X ORA 1500,X $1D/29 3
Absolute,Y ORA 1500,Y $19/25 3
Indirect,X ORA (15,X) $01/1 2
Indirect,Y ORA (15),Y $11/17 2

Affected flags: N Z

PHA

What it does: Pushes the Accumulator onto the stack.

Major uses: To temporarily (very temporarily) save the
byte in the Accumulator. If you are within a particular sub-
routine and you need to save a value for a brief time, you can
PHA it. But beware that you must PLA it back into the Accu-
mulator before any RTS so that it won’t misdirect the computer
to the wrong RTS address. All RTS addresses are saved on the
stack. Probably a safer way to temporarily save a value (a
number) would be to STA TEMP or put it in some other tem-
porary variable that you've set aside to hold things. Also, the
values of A, X, and Y need to be temporarily saved, and the
programmer will combine TYA and TXA with several PHAs to
stuff all three registers onto the stack. But, again, matching
PLAs must restore the stack as soon as possible and certainly
prior to any RTS.

Addressing Modes:

Number of
Name Format Opcode Bytes Used

Implied PHA $48/72 1
Affected flags: none of them .

261

6502 Instruction Set

PHP

What it does: Pushes the “processor status” onto the top
of the stack. This byte is the Status Register, the byte which
holds all the flags: N ZCID V.

Major uses: To temporarily (very temporarily) save the
state of the flags. If you need to preserve the all current con-
ditions for a minute (see description of PHA above), you may
also want to preserve the Status Register as well. You must,
however, restore the Status Register byte and clean up the
stack by using a PLP before the next RTS.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied PHP $08/8 1

Affected flags: none of them.

PLA

What it does: Pulls the top byte off the stack and puts it
into the Accumulator.

Major uses: To restore a number which was temporarily
stored on top of the stack (with the PHA instruction). It is the
opposite action of PHA (see above). Note that PLA does affect
the N and Z flags. Each PHA must be matched by a
corresponding PLA if the stack is to correctly maintain RTS
addresses, which is the main purpose of the stack.

Addressing Modes:

Number of
Name Format Opcode Bytes Used

Implied PLA $68,/104 1
Affected flags: N Z

PLP

What it does: Pulls the top byte off the stack and puts it
into the Status Register (where the flags are). PLP is a mne-
monic for Pull Processor status.

262

6502 Instruction Set

Major uses: To restore the condition of the flags after the
Status Register has been temporarily stored on top of the stack
(with the PHP instruction). It is the opposite action of PHP
(see above). PLP, of course, affects all the flags. Any PHP
must be matched by a corresponding PLP if the stack is to cor-
rectly maintain RTS addresses, which is the main purpose of
the stack.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied PLP $28/40 1

Affected flags: all of them.

ROL

What it does: Rotates the bits in the Accumulator or in a
byte in memory to the left, by one bit. A rotate left (as op-
posed to an ASL, Arithmetic Shift Left) moves bit 7 to the
carry, moves the carry into bit 0, and every other bit moves one
position to its left. (ASL operates quite similarly, except it al-
ways puts a 0 into bit 0.)

LN SN N N N N N
ﬁ v \’ \’ \' \‘ \f \' X
Carry

Flag Bit Bit Bit Bit Bit Bit Bit Bit
7 6 9 4 3 2 1 0

Major uses: To multiply a byte by 2. ROL can be used
with ASL to multiply multiple-byte numbers since ROL pulls
any carry into bit 0. If an ASL resulted in a carry, it would be
thus taken into account in the next higher byte in a multiple-
byte number. (See Appendix D.)

Notice how the act of moving columns of binary numbers
to the left has the effect of multiplying by 2:

0010 (the number 2 in binary)
0100 (the number 4)

263

6502 Instruction Set

This same effect can be observed with decimal numbers,
except the columns represent powers of 10:

0010 (the number 10 in decimal)
0100 (the number 100)

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Accumulator ROL $2A /42 1
Zero Page ROL 15 $26/38 2
Zero Page, X ROL 15,X $36/54 2
Absolute ROL 1500 $2E/46 3
Absolute, X ROL 1500,X $3E/62 3

Affected flags: N Z C

ROR

What it does: Rotates the bits in the Accumulator or in a
byte in memory to the right, by one bit. A rotate right (as op-
posed to a LSR, Logical Shift Right) moves bit 0 into the carry,
moves the carry into bit 7, and every other bit moves one po-
sition to its right. (LSR operates quite similarly, except it al-
ways puts a 0 into bit 7.)

N N, N N AN N N
aF A AR EAEEAE ESEEEL]

, Carry
Bit Bit Bit Bit Bit Bit Bit Bit Flag
7 6 5 4 3 2 1 0

Major uses: To divide a byte by 2. ROR can be used with
LSR to divide multiple-byte numbers since ROR puts any
carry into bit 7. If an LSR resulted in a carry, it would be thus
taken into account in the next lower byte in a multiple-byte
number. (See Appendix D.)

Notice how the act of moving columns of binary numbers
to the right has the effect of dividing by 2:

1000 (the number 8 in binary)
0100 (the number 4)

264

-

6502 Instruction Set

This same effect can be observed with decimal numbers,
except the columns represent powers of 10:

1000 (the number 1000 in decimal)
0100 (the number 100)

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Accumulator ROR $6A /106 i
Zero Page ROR 15 $66,/102 2
Zero Page, X ROR 15,X $76/118 2
Absolute ROR 1500 $6E/110 3
Absolute, X ROR 1500,X $7E/126 3

Affected flags: N Z C

RTI

What it does: Returns from an interrupt.

Major uses: None. You might want to add your own
routines to your machine’s normal interrupt routines (see SEI
below), but you won’t be generating actual interrupts of your
own. Consequently, you cannot ReTurn from Interrupts you
never create.

Addressing Modes:

Number of
Name Format Opcode Bytes Used

Implied RTI $40/64 1

Affected flags: all of them (Status Register is retrieved from the
stack).

RTS

What it does: Returns from a subroutine jump (caused by
JSR).

Major uses: Automatically picks off the two top bytes on
the stack and places them into the Program Counter. This re-
verses the actions taken by JSR (which put the Program
Counter bytes onto the stack just before leaving for a sub-
routine). When RTS puts the return bytes into the Program

265

6502 Instruction Set

Counter, the next event in the computer’s world will be the
instruction following the JSR which stuffed the return address
onto the stack in the first place.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied RTS $60/96 1

Affected flags: none of them.

SBC

What it does: Subtracts a byte in memory from the byte
in the Accumulator, and “borrows” if necessary. If a “borrow”’
takes place, the carry flag is cleared (set to 0). Thus, you al-
ways SEC (set the carry flag) before an SBC operation so you
can tell if you need a “borrow.” In other words, when an SBC
operation clears the carry flag, it means that the byte in mem-
ory was larger than the byte in the Accumulator. And since
memory is subtracted from the Accumulator in an SBC opera-
tion, if memory is the larger number, we must “borrow.”

Major uses: Subtracts one number from another.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate SBC #15 $E9/233 2
Zero Page SBC 15 $E5/229 2
Zero Page, X SBC 15,X $F5/245 2
Absolute SBC 1500 $ED/237 3
Absolute, X SBC 1500,X $FD /253 3
Absolute,Y SBC 1500,Y $F9/249 3
Indirect,X SBC (15,X) $E1/225 2
Indirect,Y SBC (15),Y $F1/241 2

Affected flags: N Z C V

SEC

What it does: Sets the carry (C) flag (in the processor Sta-
tus Register byte).

266

6502 Instruction Set

Major uses: This instruction is always used before any
SBC operation to show if the result of the subtraction was
negative (if the Accumulator contained a smaller number than
the byte in memory being subtracted from it). See SBC above.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied SEC $38/56 1

Affected flags: C

SED

What it does: Sets the decimal (D) flag (in the processor
Status Register byte).

Major uses: Setting this flag puts the 6502 into decimal
arithmetic mode. This mode can be easier to use when you are
inputting or outputting decimal numbers (from the user of a
program or to the screen). Simple addition and subtraction can
be performed in decimal mode, but most programmers ignore
this feature since more complicated math requires that you re-
main in the normal binary state of the 6502.

Note: Commodore computers automatically clear this mode
when entering ML via SYS. However, Apple and Atari computers
can enter ML in an indeterminant state. Since there is a possibil-
ity that the D flag might be set (causing havoc) on entry to an ML
routine, it is sometimes suggested that owners of these two
computers use the CLD instruction at the start of any ML program
they write. Any ML programmer must CLD following any delib-
erate use of the decimal mode.

Addressing Modes:

Number of
Name Format Opcode Bytes Used

Implied SED $F8/248 1
Affected flags: D

267

6502 Instruction Set

SEI

What it does: Sets the interrupt disable flag (the I flag) in
the processor status byte. When this flag is up, the 6502 will
not acknowledge or act upon interrupt attempts (except a few
nonmaskable interrupts which can take control in spite of this
flag, like a reset of the entire computer). The operating sys-
tems of most computers will regularly interrupt the activities
of the chip for necessary, high-priority tasks such as updating
an internal clock, displaying things on the TV, receiving sig-
nals from the keyboard, etc. These interruptions of whatever
the chip is doing normally occur 60 times every second. To
find out what housekeeping routines your computer interrupts
the chip to accomplish, look at the pointer in $FFFE /FFFF. It
gives the starting address of the maskable interrupt routines.

Major uses: You can alter a RAM pointer so that it sends
these interrupts to your own ML routine, and your routine then
would conclude by pointing to the normal interrupt routines.
In this way, you can add something you want (a click sound
for each keystroke? the time of day on the screen?) to the nor-
mal actions of your operating system. The advantage of this
method over normal SYSing is that your interrupt-driven rou-
tine is essentially transparent to whatever else you are doing
(in whatever language). Your customization appears to have
become part of the computer’s ordinary habits.

However, if you try to alter the RAM pointer while the
other interrupts are active, you will point away from the nor-
mal housekeeping routines in ROM, crashing the computer.
This is where SEI comes in. You disable the interrupts while
you LDA STA LDA STA the new pointer. Then CLI turns the
interrupt back on and nothing is disturbed.

Interrupt processing is a whole subcategory of ML
programming and has been widely discussed in magazine arti-
cles. Look there if you need more detail.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied SEI $78/120 1

Affected flags: I

268

6502 Instruction Set

STA

What it does: Stores the byte in the Accumulator into
memory.

Major uses: Can serve many purposes and is among the
most used instructions. Many other instructions leave their re-
sults in the Accumulator (ADC/SBC and logical operations
like ORA), after which they are stored in memory with STA.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Zero Page STA 15 $85/133 2
Zero Page, X STA 15,X $95/149 2
Absolute STA 1500 $8D/141 3
Absolute, X STA 1500,X $9D /157 3
Absolute,Y STA 1500, $99/153 3
Indirect, X STA (15,X) $81/129 2
Indirect,Y STA (15),Y $91/145 2

Affected flags: none of them.

What it does: Stores the byte in the X Register into
memory.
Major uses: Copies the byte in X into a byte in memory.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Zero Page STX 15 $86,/134 2
Zero Page,Y STX 15,Y $96,/150 2
Absolute STX 1500 $8E/142 3

Affected flags: none of them.

What it does: Stores the byte in the Y Register into
memory.
Major uses: Copies the byte in Y into a byte in memory.

269

6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Zero Page 8TY 15 $84/132 2
Zero Page, X STY 15X $94/148 2
Absolute STY 1500 $8C/140 3

Affected flags: none of them.

TAX

What it does: Transfers the byte in the Accumulator to
the X Register.

Major uses: Sometimes you can copy the byte in the
Accumulator into the X Register as a way of briefly storing the
byte until it's needed again by the Accumulator. If X is cur-
rently unused, TAX is a convenient alternative to PHA (an-
other temporary storage method).

However, since X is often employed as a loop counter,
TAX is a relatively rarely used instruction.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied TAX $AA/170 d

Affected flags: N Z

TAY

What it does: Transfers the byte in the Accumulator to
the Y Register.

Major uses: Sometimes you can copy the byte in the
Accumulator into the Y Register as a way of briefly storing the
byte until it's needed again by the Accumulator. If Y is cur-
rently unused, TAY is a convenient alternative to PHA (an-
other temporary storage method).

However, since Y is quite often employed as a loop
counter, TAY is a relatively rarely used instruction.

270

6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied TAY $A8/168 1

Affected flags: N Z

TSX

What it does: Transfers the Stack Pointer to the X
Register.

Major uses: The Stack Pointer is a byte in the 6502 chip
which points to where a new value (number) can be added to
the stack. The Stack Pointer would be “raised” by two, for
example, when you JSR and the two bytes of the Program
Counter are pushed onto the stack. The next available space
on the stack thus becomes two higher than it was previously.
By contrast, an RTS will pull a two-byte return address off the
stack, freeing up some space, and the Stack Pointer would
then be “lowered” by two.

The Stack Pointer is always added to $0100 since the
stack is located between addresses $0100 and $01FF.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied TSX $BA /186 1

Affected flags: N Z

TXA

What it does: Transfers the byte in the X Register to the
Accumulator.

Major uses: There are times, after X has been used as a
counter, when you’ll want to compute something using the
value of the counter. And you'll therefore need to transfer the
byte in X to the Accumulator. For example, if you search the
screen for character $75:

271

6502 Instruction Set

CHARACTER = $75:SCREEN =

$0400

LDX #0

LOOP LDA SCREEN,X:CMP

#CHARACTER:BEQ MORE:INX

BEQ NOTFOUND ; (this prevents an endless loop

MORE TXA ; (you now know the charac-
ter’s location)

NOTFOUND BRK

In this example, we want to perform some action based
on the location of the character. Perhaps we want to remem-
ber the location in a variable for later reference. This will re-
quire that we transfer the value of X to the Accumulator so it
can be added to the SCREEN start address.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied TXA $8A /138 1

Affected flags: N Z

TXS

What it does: Transfers the byte in X Register into the
Stack Pointer.

Major uses: Alters where, in the stack, the current “here’s
storage space” is pointed to. There are no common uses for
this instruction.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied TXS $9A /154 1

Affected flags: none of them.

272

6502 Instruction Set

TYA
What it does: Transfers the byte in the Y Register to the
Accumulator.

Major uses: See TXA.
Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied TYA $98/152 1

Affected flags: N Z

273

Chapter 11

Moditying LADS:
Adding Error Traps, RAM-
Based Assembly, and a

Disassembler

- -

Modifying LADS:
Adding Error Traps,
RAM-Based Assembly, and

a Disassembler

Special Notes on the Construction of
Atari and Apple LADS

Imagine how nice it would be if you could add any additional
commands to BASIC that you desired. You wouldn’t just tem-
porarily wedge the new commands into a frozen ROM BASIC.
Instead, you would simply define the new commands, and
they would then become a permanent part of your program-
ming language.

This freedom to change a language is called extensibility.
It’s one of the best features of Forth and a few other lan-
guages. Extensibility opens up a language. It gives the pro-
grammer easy access to all aspects of his programming tool.
LADS, too, is extensible since the internals of the assembler
are thoroughly mapped, documented, and explained in this
book. You can customize it at will, building in any features
that you would find useful.

After exploring the details of the LADS assembler and us-
ing LADS to write your own machine language, you may have
thought of some features or pseudo-ops that you would like to
add. In this chapter, we'll show how to make several different
kinds of modifications. These examples, even if they're not
features of use to you, will demonstrate how to extend and
customize the language. We'll add some new error traps, cre-
ate a disassembler, and make a fundamental change to the
Commodore and Apple LADS—the capability of assembling
directly from RAM. (The Atari version has this feature built-in
already.)

At the end of this chapter we'll cover the details of the
Atari and Apple LADS source code where they differ from the

277

Modifying LADS: Special Notes on Atari and Apple LADS

general LADS source listings (printed at the end of each chap-
ter). The three versions—Commodore, Atari, and Apple—are

functionally identical, so the descriptions throughout the book
apply to each version. However, a few adjustments had to be

made: input/output variations, a special source code editor for
the Atari, etc. All these will be discussed below. But first, let’s
see some examples of how to customize LADS.

A Naked Mnemonic Error Trap

The original version of LADS notifies you of most serious er-
rors: branch out of range, duplicated or undefined labels, na-
ked labels (labels without arguments), invalid pseudo-ops, no
starting address, file not found on disk, and various syntax er-
rors. Other kinds of errors are forgiven by LADS since it can
interpret what you meant to type in your source code. For
example, LADS can interpret what you meant when you type
errors like these:

100 INY #77; (adding an argument to a one-byte opcode)
100 INY : LDA #15INY:INX;(extra spaces before or after
colons)

The source code in these examples will be correctly
assembled. Also, if you forget to leave a space between a mne-
monic and its argument (like: LDA#15), that sort of error will
be trapped and announced.

But the original LADS didn’t have a built-in trap for na-
ked mnemonics. If you wrote:

100 INC:INY:LDA #15 ; (that “INC” requires an argument)

the assembler would have crashed. No error message, no
warning, just a crash.

Programmers who tested the early versions of LADS
asked that this error be trapped. That is, if this mistake was
made during the typing of an ML program’s source code, it
shouldn’t cause the assembler to go insane. The following two
error-trap modifications have been made a permanent part of
LADS (and are already in the object code version you typed in
from this book or received on disk).

To expose naked mnemonic errors, a special trap was in-
serted into the Eval subprogram (see Listing 11.1)

278

Modifying LADS: Special Notes on Atari and Apple LADS

After Eval has determined (line 930 of Program 3-1) that
the mnemonic under evaluation does require an argument (it’s
not like INY, which uses Implied addressing and never has an
argument), Eval then goes down to check to see if the argu-
ment is a label or a number (1460).

Here’s where we can check to see if the programmer for-
got to give an argument. If the mnemonic is followed by a co-
lon or a 0 (end of logical line), that’s a sure signal that the
argument has been left out. We can load in the character just
after the mnemonic (see line 1474, Listing 11.1). If there is a
space character (#32), all is well and we can continue (1480)
with our assembly. If not, we jump to L700, the error-report-
ing routine which will print the error and ring the bell.

A Trap for Impossible Instructions

Another programmer who tested LADS was just starting to
learn machine language. Unfamiliar with some of the
mnemonics and addressing modes, he once tried to assemble a
line like this:

100 LDA 15,Y

not knowing that Zero Page,Y addressing is a rare addressing
mode, exclusively reserved for only two mnemonics: LDX and
STX. But LADS didn’t crash on this. Instead, it assembled an
LDA 15,X (the correct addressing mode, but fatal to his
particular program since he was trying to use the Y Register as
an index).

The trap was inserted into LADS (Listing 11.2) to make a
harmless substitution, to assemble an Absolute,Y (at a zero
page address). Thus, the programmer’s intent is preserved, but
the illegal addressing mode is replaced.

By the time Eval reaches this point, it has already filtered
out many other possible addressing modes. Eval knows that
the addressing mode is some form of ,X or ,Y and that it’s
Zero Page. Eval first checks to see if we are dealing with an
attempted ,Y addressing mode (CMP #89, the Y character). If
not, we continue with the assembly (5271) by a BNE to line
5274.

279

Modifying LADS: Special Notes on Atari and Apple LADS

But if it is a ,Y, we check the opcode to see if it is LDX,
the only correct opcode for this addressing mode. If so, we
continue.

However, if it is some other mnemonic like LDA or STY,
this ,Y addressing mode is illegal and we make the adjustment
to Absolute,Y by a JMP to the area of Eval where that
addressing mode is accomplished.

Most illegal addressing will be reported by LADS. Never-
theless, if there’s a peculiar error that you often make when
programming and LADS doesn't alert you, just add an error-
reporting trap or have the assembler automatically correct the
problem.

A final minor modification to the PDISK routine in the
Pseudo subprogram will permit embedded keywords in
filenames when using the .D pseudo-op to save object code to
disk. (The Atari version will not need this modification.) As
printed in this book, LADS will correctly extend and print a
filename following the .D pseudo-op which contains a
keyword. For example, .D OLDSTOP will look correct
onscreen. However, LADS will send the tokenized keyword to
the disk as the filename. This will result in unpredictable
filenames when you use BASIC commands as part of a
filename. To correct this, remove line 1190 of Program 8-1 and
adjust the following lines in the Pseudo subprogram. Then re-
assemble a new version of LADS:

1230 PD1 LDY #0

1231 PDLO LDA LABEL,Y:BEQ PDEN:STA FILEN,Y:INY:JMP
PDLO; MOVE NAME

1239 PDEN LDA #44; PUT ,P,W (PROGRAM, WRITE) SIGNAL
S ONTO FILENAME

280

Modifying LADS: Special Notes on Atari and Apple LADS

SOML dWL @9LTW ¥.2G
X dLNTOSIY (A’‘ST@@S ¥YAT) LI IMYW OL dWAL ‘LON AI ‘@897T dWL €LTG
(LOFYY0D SI HAAOW ‘0OS JTI) XAT DINOWIANW FHL SI ‘@9LTW omm.um:, dWD:d0O ¥YdT Z.LZS

(X'GT) YA 904 dVdL dOod¥d -—- (@9LTW AND:68# dWD:X‘'z+¥dddnd VAT Qohd TLeS
llllll dVdL d0¥¥d SIHL 40 NOILVYNYTIAXd ¥dO0A TT dILAYHD dIS --—-——————-— ALZS
T'T1 Bunsr]

(doddd A4AL , *ONI, ¥0d ISHAL) ‘@@LT dWC:*DIAD OId:Zc# dWD:g+TIEVYT VAT ¥LVT
(d0o¥¥d SOINOWINW JIMYN dO0d dvdd) & ELYPT

dVdL ¥0¥¥d SIHL A0 NOIL4I¥YODSHA ¥d04A TT ¥YHdLVHD HIdS —-——=—==————————————-— fTLvt

111 Sunsr]

281

Modifying LADS: Special Notes on Atari and Apple LADS

A Remarkably Simple, Yet Radical, Change

Since LADS uses symbols instead of numbers, it’s fairly easy
to change, to make it what you want it to be. What’s more, all
the programs you write with LADS will also be symbolic and
easily changed. Let’s make a radical change to LADS and see
how easy it is to profoundly alter the nature of the assembler.

As designed, LADS reads source code off a disk program
file. Let’s make it read its source code from within the comput-
er's RAM memory, instead of from disk. This makes two
things possible: 1. You can change source code, then test it by
a simple SYS to LADS. 2. Tape drive users can use LADS.
This version of LADS isn’t functionally different from the nor-
mal version since long, linked assembly will still be coming
from disk files. However, it can be a more convenient way to
write and debug smaller ML programs or subroutines. Every-
thing works the same when you assemble, except that the first
(or only) source code program resides in RAM instead of on
disk. Commodore and Atari RAM-LADS versions can use
linked files, but the Apple RAM-based version cannot link
files as it can in the normal Apple LADS.

You make a radical change whenever you change *= 864
to *= 5000. You are making a small change at the beginning,
the root, of your source code. After making this change, the
entire program is assembled at address 5000 instead of address
864. The effect—in the usual sense of the term—is quite rad-
ical. The effort on your part, however, is rather minor. Like-
wise, we can drastically alter the way that LADS works by
making a few minor changes to the symbols in LADS.

Our goal is to make LADS read source code from memory
instead of from disk files. First, we need to add two new
pointers to the LADS zero page equates (in the Defs file). We
create PMEM. It will serve as a dynamic pointer. It will always
keep track of our current position in memory as we assemble
source code.

The intelligence in the disk drive keeps track of where we
are in a file; whenever we call CHARIN, it increments a
pointer so that the next CHARIN call will pull a new byte into
A, the Accumulator. But we're going to be reading from mem-
ory so we’ll need to update our own dynamic pointer. To cre-
ate this pointer, just type in a new line in Defs: PMEM = $xx
(whatever zero page, two-byte space is safe in your computer).

282

Modifying LADS: Special Notes on Atari and Apple LADS

The other new pointer we need to define in zero page will
tell LADS where your BASIC RAM memory starts, where a
program in BASIC starts. To create this register, just look at a
map of the zero page of your particular computer and define:
RAMSTART = $xx (whatever it is).

Note: These definitions have already been added to the
Commodore versions of the Defs subprogram in this book. If
you are creating a RAM-based version of LADS for the Apple,
add the following two lines to the Apple Defs file:

135 RAMSTART = $67; POINTER TO START OF RAM
MEMORY
157 PMEM = $E2

The Apple version of the RAM-based LADS requires the same
changes to the Eval subprogram as Commodore machines re-
quire. However, no changes are needed in the Pseudo or
Openl subprograms. The one difference between Commodore
and Apple versions in the Getsa subprogram is that Apple re-
quires #$2A in line 300 instead of the #172.

A New CHARIN

Next, we need to change the CHARIN subroutine itself. As
LADS normally runs, it goes to BASIC's get-a-byte subroutine
whenever CHARIN is invoked. This won’t work for memory-
based source code. BASIC RAM cannot, alas, be OPENed as if
it were a file. So, since LADS is peppered with references to
CHARIN, we can just undefine CHARIN in the Defs sub-
program by putting a semicolon in front of it (Listing 11.3).

Similarly, CHKIN is scattered throughout LADS to reopen
file #1, the read-code-from-disk file. We're not using file #1 in
this version of LADS, so we add a semicolon to its definition
too (Listing 11.4).

But throughout LADS there are references to these two
subroutines. We need to write a new CHARIN and CHKIN to
replace the ones we just obliterated. LADS will then have
somewhere to go, something to do, as it comes upon
CHARINSs or CHKINSs throughout the code. We do this by
adding to the Getsa subprogram (Listing 11.5).

283

Special Notes on Atari and Apple LADS

.
.

Moditying LADS

S4da NI INILNOY MSIA SIADVTIAIY :SLd NIMHD
MALSIDIY SALYLS FAVS {SI¥:dTId:X XAT:dHd:X’'(WIWd) VYAT:@# AQTI*X ALS TdONI
MSIQ/NI¥VYHO TYNOTINIANOD SHDVIAHAY ! T+WHWd ONI:TIONI INH:WIWd ONI NIY¥VHD

¥ NI ‘AYOWIW WO¥J LAY IXIN HLIM SNINLIY ¢
(MSIQ ¥04 NIYVHO SHLVLIWI) :
*MSIA NYHL dAHIYVY AYOWIW WOdd HAODIDINOS HTIWISSY ,NI¥VHD MIN, ¢

1Y
200v
26¢€
28¢€
aLE
Po€
2S €
ave

G 11 Sunsry

(X NI #37Id) avI¥d 304 TINNYHO ¥ SNAJO ‘9Ddd$ = NIMHD!

ove

+'11 Sunsry

ILA9 INO NI STINd ‘HAJAS = NIYVYHO:

€11 Sunsry

@9¢

<
e o]
o

]

Modifying LADS: Special Notes on Atari and Apple LADS

Line 410 is just an RTS. It's a placebo. We never want to
reopen file #1 (CHKIN'’s normal job), so whenever LADS tries
to do that, we JSR/RTS and nothing happens. Something does
have to happen with CHARIN, however. CHARIN's job is to
fetch the next byte in the source code and give it to the Accu-
mulator. So this new version of CHARIN (390-400) increments
PMEM, our new RAM memory pointer, saves Y, loads the
byte, saves the Status Register, restores Y, restores the Status
Register, and returns. This effectively imitates the actions of
the normal disk CHARIN, except it draws upon RAM for
source code.

Here you can see one of those rare uses for PHP and PLP.
There are times when it’s not enough to save the A, Y, and X
Registers. This is one of those times. INDISK returns to Eval
only when it finds a colon (end of source instruction), a semi-
colon (end of instruction, start of comment), or a zero (end of
BASIC program line, hence end of source instruction). When
we get a zero when we LDA, the zero flag will be set. But the
LDY instruction will reset the zero flag. So, to preserve the ef-
fect of LDA on the zero flag, we PHP to store the flags on the
stack. Then, after the LDY, we restore the status of the flags,
using PLP before we return to the Indisk file. This way, what-
ever effect the LDA had on the flags will be intact. Indisk can
thus expect to find the zero flag properly set if a particular
LDA is pulling in the final 0 which signifies the end of a line
in the BASIC RAM source code.

After making these substitutions to LADS, we need to re-
move the two references to Openl (the routine which opens a
disk file for source code reading) in the Eval subprogram.
These references are at lines 350 and 4350. We can simply re-
move them from assembly by putting a semicolon in front of
them (Listing 11.6).

Early in Eval, we have a JSR GETSA. This is the GET-
Start-Address-from-disk routine. We want to change this to:
JSR MEMSA. GETSA isn’t needed. MEMSA will perform the
same job, but for memory-based source code instead of disk-
based source code. MEMSA is found in the Getsa subprogram
(Listing 11.7).

The first thing that MEMSA does is to put the start-of-
BASIC-RAM pointer into PMEM (our dynamic pointer). This
positions us to the first byte in the source code. Then it pulls

285

Moditying LADS: Special Notes on Atari and Apple LADS

off enough bytes to point to the * in the start address defi-
nition in the source code. This is just what Getsa does for a
disk file. The rest of MEMSA is identical to Getsa.

Second Generation LADS

That’s it. These few substitutions and LADS will read a source
file from RAM memory. You can still use .D NAME to create a
disk object code file. You can still send the object code dis-
assembly to a printer with .P. All the other pseudo-ops still
work fine. A radical change in ten minutes.

The Getsa subprogram contains a complete, step-by-step
description of this disk-to-RAM modification of LADS. After
you've made the changes to the source code (and saved them
to disk), just load in the normal disk version of LADS, enter
Defs as the starting file for assembly, and SYS to LADS. It will
grind out a brand new, RAM-based assembler for you.

As always, when making a new version of your LADS
assembler, be sure to direct object code to the disk (use the .D
pseudo-op) so that you won’t overwrite the working LADS in
the computer. Also be sure you've given the new version a
filename that doesn’t already exist on the disk.

286

Special Notes on Atari and Apple LADS

Modifying LADS

SId YSWW

TYAd NIHLIM INILNOY VIA DISVE OL MOvd 09 (NIA dWrL

SSANWLNYG dSC: T+dWHL YIS:LYVISONW<# YAdT:dWHL YLS:LIVLSONW># VAT
VYSWW Odd:*Z/.T# dWD:NIYVHO dSL

=x OL INIOd OL WIWd OL ¥ ddV¥ ‘TWIW IANI:XTA:NIIVYHD dSL TWIW:€# XdT
T+WNINd YIS: T+LVLISWYY YAT:WIWd VYIS:LIVLSWYI VAT YSWIW

’
.

"YITIWASSY qISVA-WYY HLVYIYD OL ITIA JIAOD dDINOS ,,¥SLID, SHDVYTdIY
AdOWHW 40 LIVLS OL WIHWd SHZITYILINI 11

(SSTYAAY L¥VLS) dOVdS SIHL =«
—-ILY ONIILNIOAd MSIA SHAVIAT *AYOWIW WO¥YA SSIIAAY ONILIVLS IIdD , YSWINW,

’
.
’
.
’
.
’
.

QeeE
gce
Q1€
age
28¢
gLz
292
2S¢
v
Q€T
gece

L'17T Bunsry

(47I4 FHL NI JLAY IST FIHL OL LI INIOd) dTId LNANI HIJO ‘INIJO dSC: @SEV

(MSIQ NO d7TIJ JQOD HDYNOS) dTIA QVdd NIJO ¢ INIJO dSrC!

ASE

9’11 Sunsry

287

Modifying LADS: Special Notes on Atari and Apple LADS

A Disassembler
In a perfectly symmetrical universe, with a right hand for ev-

ery left, and a north pole for every south, you could transform
an assembler into a disassembler by just making it run
backwards.

Unfortunately, ours is not such a universe. Since LADS
turns source code into object code, it would seem possible to
tinker with it and adjust it a bit and make it turn object code
back into source code, to disassemble. Not so. We have to link
two new files onto LADS to add a disassembler function: Dis
and Dtables.

Personal Programming Style

Dis is an example of how a fairly complex ML program can be
constructed using LADS. The relatively few comments reflect
my personal style of programming. I find many of the variable
names are meaningful enough to make the code under-
standable, especially since the purpose of the lookup tables in
Dtables is fairly easy to see.

The relatively few comments in the compressed code in
Dis also allow you to look at more instructions at the same
time on the screen. This can help during debugging since you
might be able to more quickly locate a fault in the overall logic
of a program. Nevertheless, many programmers find such
dense code hard to read, hard to debug, and generally
inefficient.

Obviously, you should write the kind of source code that
works for you. The degree of compression is a matter of
programming style and personal preference. Some program-
ming teachers insist on heavy commenting and airy, de-
compressed coding. Perhaps this emphasis is appropriate for
students who are just starting out with computing for the
same reasons that penmanship is stressed when students are
just starting to learn how to write. But you needn’t feel that
there is only one programming style. There are many paths,
many styles.

How to Use the Disassembler

For convenience, Dis is set to start at 17000. That’s an easy
number to remember when you want to SYS, CALL, or USR
to see a disassembly. The version at the end of this chapter is
fully functional, but you might want to make modifications. As

288

Modifying LADS: Special Notes on Atari and Apple LADS

printed, it will ask for the start address location in RAM of the
object code you want to see listed. Notice that the object code
must be residing in RAM to be disassembled. (It would be
simple, though, to make a disassembler which operated on
disk or tape code.) Then it will disassemble until you hit the
STOP or BREAK key. You might want to adjust it— you could
have it assemble 20 instructions and then halt until a key was
pressed. Or you might want to make it print disassemblies to
the printer. Or it could ask for both starting and ending ad-
dresses before it begins. To have the disassembler you prefer,
just modify the code.

The disassembler is included in this book because it dem-
onstrates compressed LADS source code and it also shows
how LADS itself can be expanded while borrowing from exist-
ing LADS subroutines like STOPKEY and PRNTNUM.

The source code in other parts of the book is somewhat
artificial: Each line contains only one mnemonic followed by a
description, a comment about the purpose of that line. Nor-
mally, such extensive commentary will not be necessary, and
many lines can contain multiple statements separated by co-
lons. Dis is an example of LADS source code as many pro-
grammers will probably write it.

To add the disassembler to LADS, change the .END DEFS
at the end of the Tables subprogram in LADS to .FILE DIS.
This will cause the file for Dis to be assembled along with
LADS. Dis will link to Dtables, which ends with .END DEFS
to permit the second pass through the combined LADS/Dis
code.

Keyboard Input

Let’s briefly outline the structure and functions of the
disassembler. It starts off by printing its prompt message
called DISMESS (30). The actual message is located in line
710. PRNTMESS is a subroutine within LADS which prints
any message pointed to by the variable TEMP.

Then $3F, the ? symbol, is printed and STARTDIS (50)
sets the hexflag up so that number printouts will be in hexa-
decimal. If you prefer decimal, LDA #0 and store it in
HXFLAG.

Now there’s an input loop to let the user input a decimal
start address, character by character. If a carriage return is de-
tected (90), we leave the loop to process the number. The

289

Modifying LADS: Special Notes on Atari and Apple LADS

number’s characters are stored in the LABEL buffer and are
also printed to the screen as they are entered (100).

When we finish getting the input, the LADS Valdec rou-
tine changes the ASCII numbers into a two-byte integer in the
variable RESULT. We pick up the two-byte number and store
it in the variable SA which will be printed to the screen as the
address of each disassembled mnemonic.

Line 150 is a bit obscure. It wasn’t originally written this
way, but testing revealed that the JSR GB in line 190 would
increment the start address right off the bat (before anything
was disassembled or printed). At the same time, putting that
increment lower in the main loop was inconvenient. So the
easiest thing was to simply accept a start address from the
user, then decrement it. The disassembler will start off with a
start address that is one lower than the user intends, but that
early increment will fix things up. Thus, the variable PMEM
will hold a number which is one lower than the variable SA.
Both these variables are keeping track of where in memory we
are currently disassembling. But we’ve got to distinguish in
this way between SA which prints to the screen and PMEM
which tells the computer the current location.

Battling Insects

This is a good place to observe that programming is never a
smooth trip from the original concept to the final product. No
programmer is so well-prepared or knowledgeable that he or
she simply sits down and calmly creates a workable program.
If you find yourself scratching your head, circling around a
bug and not trapping it, spending hours or days trying to see
what could possibly be wrong—you're in good company. I've
worked with some very experienced, very talented people and
have yet to see someone fashion a program without snags.
And the more significant and sophisticated the program, the
more snags it has.

All that can be done, when you hit a snag, is to single-
step through the offending area of your program, or set BRK
traps, or puzzle over the source code, or try making some ten-
tative reassemblies (not knowing for sure if your changes will
have any salutary effect), or sometimes even toss out an entire
subroutine and start over. For example, I wrote the rough
draft, the first draft of this disassembler, in about two hours. I
didn’t have the final version working until I'd spent two full

290

Modifying LADS: Special Notes on Atari and Apple LADS

days battling bugs. Some were easy to fix, some were mon-
sters. It took about ten minutes to cure that problem with the
start address being one too high. But it took hours to locate an
error in the disassembler tables, Dtables.

After the user has input the start address, TEMP is made
to point to the LABEL buffer and VALDEC is invoked.
VALDEC leaves the result of an ASCII-to-integer conversion in
the RESULT variable. That number is stored in PMEM and SA
(140-150). One final adjustment restores SA to the original
number input by the user. SA will only print addresses
onscreen; PMEM is the real pointer to the current address dur-
ing disassembly. The decrementing of PMEM, made necessary
by that JSR GB early in the main loop, is not necessary for SA.
(SA is not incremented by the GB subroutine.)

GETBYTE: The Main Loop

Now we arrive at the main loop. GETBYTE (190) first tests to
see if the user wants to stop disassembly via the STOPKEY
subroutine (in the Eval subprogram within LADS). Then the
GB subroutine (690) raises the memory pointer PMEM and
fetches a byte from memory. This byte is saved in the FILEN
buffer and will act as an index, a pointer to the various tables
in the Dtables subprogram. For purposes of illustration, let’s
assume that the byte we picked up held the number 1. One is
the opcode for ORA (Indirect,X). We can trace through the
main loop of Dis and see what happens when Dis picks up a
1.

The 1 is transferred to the Y Register (200), and we then
load whatever value is in MTABLE+1 since we LDA
MTABLE,Y and Y holds a 1. This turns out to be the number
2, signifying that we’ve come upon the second opcode (if the
opcodes are arranged in ascending order). Notice that BNE
will make us skip over the next couple of lines. Anytime we
pull a 0 out of MTABLE it means that there is no valid opcode
for that number, and we just print the address, the number,
and a question mark ($3F). Then we raise the printout address
pointer with INCSA and return to fetch the next byte
(210-220).

291

Modifying LADS: Special Notes on Atari and Apple LADS

However, in our example, we did find something other —
than a 0 in MTABLE. We've got a valid opcode. Now we have
to find out its addressing mode and print a one- or two-byte
argument, depending on that addressing mode. Is it Immediate
addressing like LDA #15 (one-byte argument) or Absolute
addressing like LDA 1500 (two-byte argument)?

Having found a valid opcode, we now extract the mne-
monic from WORDTABLE and print it out (240-330). First we
multiply our number from MTABLE by 3 since each mne-
monic has three letters. The number we found in MTABLE
was a 2, so we have a 6 after the multiplication. That means
that our mnemonic will start in the sixth position within
WORDTABLE. We add 6 to the address of WORDTABLE
(280-290) and leave the variable PARRAY pointing at the first
letter O in WORDTABLE.

Now the SA (current disassembly address) is printed
onscreen with PRNTSA and a space is printed (300). We then
print ORA onscreen, one letter at a time (310-330), and print
another space. Now we're ready to figure out the addressing
mode.

Addressing Type
We had previously saved our original byte (the number 1 in
our example) in FILEN (190). We now retrieve it, pull out the
position value from MTABLE (getting the number 2), and load
in the addressing mode type from TYPETABLE (see lines
360-410 in the Dtables subroutine listing at the end of this
chapter). It turns out that the number 2 we're using in our
example will pull out a number 4 from TYPETABLE. The
number 4 identifies this as an Indirect X addressing mode.
Between lines 380 and 410 we have a simple decision
structure, much like BASIC’s ON-GOTO structure. In our
example, the CMP #4 in line 390 will now send us to a rou-
tine called DINDX which handles Indirect X addressing.
DINDX (460) takes advantage of several routines which
print symbols to the screen for us: LEPAR prints a left paren-
thesis; DOONE fetches and prints the next number in RAM
memory (the argument for the current mnemonic); COMX
prints a comma and an X; and RIPAR finishes things off with
a right parenthesis. Now we have something like this
onscreen:

292

Modifying LADS: Special Notes on Atari and Apple LADS

0360 ORA (12,X)

so our disassembly of this particular instruction is complete.
We JMP to ALLDONE (600) and print a carriage return and
start the main loop over again to disassemble the next
mnemonic.

Other mnemonics and other addressing modes follow a
similar path through Dis as they are looked up in Dtables and
then printed out.

By the way, if you look at lines 650-680 on page 296,
you’'ll see a peculiar #” pseudo-op. It allows you to specify a
character instead of a number for immediate addressing. In
line 650 we need to print a comma to the screen. You could
LDA #44 (the ASCII code for a comma) and JSR PRINT.

But if you don’t want to look up the ASCII code, LADS
will do it for you. Just use a quote after the # symbol: LDA
#", (followed by the character you're after; in this case, the
comma). The correct value for the character will be inserted
into your object code. You can see that we used this pseudo-
op to load the value for X, Y,), and (symbols as well, in lines
650-680.

293

Special Notes on Atari and Apple LADS

.
.

Modifying LADS

T+AVINVYA VIS:T+AVI¥Vd OQV:FTIVIAQUOM<# ¥dT
AVYNVYd VIS:AVINVd DAV:dTIVIAION> # YAT:DTID
HATIYIAIOM OL SIHL aav !
T+AVEEIVYd VIS: T+AVNYYd OAV:@g# YAT:AVINYd YIS:AVIIYd DAV :DTD:MI0OM moq
JI¥HL A9 X ATdILTINW
T+AVYEYA 7109 : AVYNVYd VIS:TISY: [+AVI¥VYd ALS:g# AQT: xmoz Y1S mmozo
nnnnn dAA0Dd0 AITYA ¥ ANNOA ‘NO dANNILNOD ¢
dd0DA0 AITYA ¥ LON {INOATIV dWL:YSONI ¥SOL:LNI¥d ¥SC,:dcs# YAl
AOVASILNYd ¥SO:WNNINIA dSC:g# VATINITIA XAT
AOVASINIG USC:YSINId dSC:ddOWd AN : X ‘dTIVIN YAT:AYL
(XAANI SY JAVS) !NITIA YIS:€gD dSL:XAMNAOLS ¥SL ALXGLAD
qA0Dd0 dITVYA ¥ ST IT AT dIS ANV HALXd ¥ NI TINd ——=—==————————— !
T+WINd YLS: T+ITNSTI VATWIWNd YIS:IINSTI VAT
ANO A€ ¥HIMOT ({IINSAY DFAd JA9: T+LTINSTA DAJ:dd ANL:LTINSAd YAT
T+¥YS VYILS:T+1TNSTY VYAT:VS YIS:ITNSHAY VAT
DHAATYA ¥SCL:T+dWAL VYIS:TAIYTI<# VAT:dWAL VIS:TddVTI># VAT
dOILN¥d ¥S,:X’/THdYT YIS:g# YAT OWd
OWLd dWL:*X ALS:ANI
INI¥dd ¥Sp:x‘TddVyT YIS:X AAT
OWda 0dd
NMNLAY ADVINIYD {dgs# dWD
gWLad odd
—— (7IVYWIDAA) SSA¥AAY I¥VYLS 13D —-— INIYVHD dSr gWLd

X ALS:Q# XQT:OVTAXH VIS*T# VAT SIALIVY.LS

ILNIdd dSe:des# VAT:¥YOLINId dSC

SSHWLNYd ¥SCL:T+dWHL VIS:SSIAWSIA<# VAT:dWIL VIS:*SSAWSIA># YAT
POALT =x

JIATIWEASSYSIA -- SIA «

g6c
n8c
aLe
a9¢
2sc
ave
aec
@ze
212
20C
261
281
oLT
291
2s1
v 1
g€l
gCT
21T
291
26
28
aL
29
as
v
g€
(x4
g1

IS[quuassesi(] Y L—SIi “T-1] weadoig

294

Special Notes on Atari and Apple LADS

.
.

Modifying LADS

NIJd dWC:YTd:VTId: TATIV 009 T# XdD:9OVT4dIVd XAT:¥DINI4 dSL ANOATIY

(T AdAL) dWAL °“dANI ‘INOQTIVY dWL:¥VYAIY ¥SL:OMIOd ¥SC:YVYddT dSL aNIdWaced
ANOQTIV dWL:VYSONI ¥SL:VYSDONI dSL:WANLNId dSL:MI0M XAT

WANLNYd dS[0:XVYL

T+YS DAVY:@g# YAT:MIOM YIS:z# DAV:YS JQV:DTID Td7Td¥

ANOQTIV dWL:VYSONI ¥SL:VSONI ¥SL:WANLNId dSL:M¥0OM XAT

WNNINYd dSC:XVYL:g@s# O9S:T1+¥YS VAT

MIOM YIS:T+MIOM DES:VS VYAT1:DdS

T+MY0OM YIS MIOM DdS:DFS:HASH VAT:MIOM VIS

(8 AJAL) FAILVYTIAY :T1d47Td¥ T1d49:9dD dSL TAdA

(8 AdAL) X ALNTOSAY {INOATIV dWL:AWOD ¥SL:*OMIOd ¥dSL XT0SHYd

(L d4XL) X ALNTOSEY {ANOQTIIV dWCL:XWOD ¥S[L:OMILOd ¥SL XTI0SHYd

(9 ddXL) X 0O¥dAZ ({ANOQTIV dWL:XWOD ¥S[L:ANOOd ¥S[XO¥HAZA

(g FdXL) X *ANI {INOQTIV dWCL:ZAWOD dSL:¥VATIY ¥SCL:ANOOd ¥SL:¥VYdAT dSL AANIA
(¥ TdAL) X ANI {ANOATIV dWCL3EVAIY dSL:XWOD ¥S[L:ANOOJ dSL:¥vVddT dSre XANIA
(€ ddXL) 9Sd 0¥dZ ‘{ANOQTIVY JdWCL:dNOOd dSL OddZd

(z TdAL) FILNTOSAVY:!ANIAWNLA dWCL ANIJAWNLACL:INOJTIV dWL:OMLOd ¥Sr T0SEYd
(T ddAL) FIVIAIWWI (ANOATIY dWL:ANOOd dS[L:INI¥d ¥SCO:#,4# YAT QIAWWIA
(X'0¥3Z) 1T ddAL OL HONOYHL-TIVA (ANOJTIIVY dWL:XWOD ¥S[L:AINOOd ¥Se
ANIdWNLar 03g:gT4 dWD

TIIA Odd:6# dWO:XTOSAVYA DALD:8# dWD:XTOSEVA OAI:/L# dWD:XOddZAd OdAL:9# dWD
AQNIQ OId:G# JdWO:XANIAQ DId:p# dAWD:0dHAZA OAI:¢# dWD:TOSAYA 0FI:Z# dWD
AAWWIA Odd:T4 dWD

X'd79VILA4XL YAT STAHONVIL

ANOdTIV dWL:¥SONI dSre

SHHONYYLI ANG:X'dATIdYIAJAL YAT:XAA:AYL

(SAAOW YOLYTAWNDDY YO LOTIIANTI)INIWNDIV ON SNVIW ¢ ‘X'JITIVIWN YAT:NITIA XdT
IOVASINIA ¥SL:INIdd dSL:X’'(AVIIVd) VYAl

ANTI:INI¥d ¥SCL:X‘(AV9¥YYd) VAT

ANTI:INI¥d ¥SC:X'(AVYIVd) YAT:ig# AAT

AOVASILNId ¥dSC:VSINIA ¥Sp

229
265
28S
aLS
2995
2SS
oy s
P€S
2Cs
g1s
28s
og6v
a8¥y
aLY
297
asv
vy
2€v
aecy
o1V
20v
06¢€
98¢
oLE
29¢€
gs€
v e
gee
gce
21¢€
20¢€

295

Special Notes on Atari and Apple LADS

.
.

Modifying LADS

P 20T 19T @91 @ 66 86 L6 @ 96 S6 76 @ €6 C6 TI6 HLAL®
9 @ 96 0 @ 68 88 L8 @ 98 S8 ¥8 @ @9 €8 T8 HLAL®

@ 18 98 6L @ 8L @ LL @ 9L SL YL @ @ €L @ HLAG"

@ 2L TL 2 @ » BL 69 @ 89 L9 @ @ 9 99 G9 HLALE®

2 %9 €9 T9 9 19 99 6S @ 8S LS @ @ @ 9§ G99 HLAE®

0 S €S 0 9 9 ¢S 1S 0 9S 6% 0 @ @ 8V LY ALAL®

@ 9% S¥ ¥V 0 €V ¢V TP 9 OF 6€ 0 O @ 8E LE HLAE®

D 9€ GE @ 9 O ¥E €€ O CE 1€ 0 0 B Q€ 6C ALAL®

@ 8C LT 9T @ ST ¥ €2 O 2Z 1C 0 0 @ 61 8T ALAE"

0 LT 9T 9 0 0 GT VT @ €T CT 90 @ 90 11 QT ALAY"

926 80adL9SOVYEQPONCT IALAI" HTIVIN

(SEJOW DNISSHEIAAVY AITYA IV IWOS) SHNTYA FATHISSOd 96¢ 40 dTLVL

’
.
’
-
1
.
’
.

YHTIWEISSYSIA d04 SHTIVL W SATIVYLA,

so|qeIq ‘Z-11 Emuwv.sm

SHT1dVYLId ATIA®

g ALXD" ®, (TYWIDAA) SSTYIAAY IFVYLS ATAWISSVYSIA, IALAXE® SSAWSIA
YALSIOAY SNLVLS FAVS {SI¥:dT1d:X AQTI:dHAX'(WANd) Vai:g# AdTI:A ALS TdONIA
MSIQ/NI¥VHD TYNOILNIANOD SHADVTIAAM ! T+WAWd ONI:TONIA IANE:WHW4 ONI €D
SI¥:LNIdd ¥SC,:(.# ¥YAT ¥Yd4Id

SI¥:LNI¥d ¥SL:),# YAT d¥ddl

SI¥:INTYd ¥SC:X,# VAT:INI¥Nd ¥Sp:’',# VAT XWOD

SI¥:LNTYd dSC:X,# VYAT:LNI¥d dSr0:',.# YAT XWOD

SIM:YSONT ¥MSP:VSONI ¥S[L:VYSONI ¥SL:WANILNIg dSL:XVYL:VYTId:WANINIG ¥Se
g# VAT XYL:dD dSL:ivVHA:dD dSL OMLOd

SIM:VSONT ¥SL:VSONI ¥SO:WNNILNYg dSrig# VYAT:XVL:dD dSL dNOOd

ALXGLID AWL TATIVY

2TL
OTL
2aL
269
289
aL9
299
259
%9
g€e9
A29
219

296

Special Notes on Atari and Apple LADS

.

Modifying LADS

S 62CC7@TI0OE € ALXE®

€V L LSO 99§ TALAE®

622010 € € v 0 ILXE® HATIYLIJAL

4

(X 0837 = TT) (LDIYIANI dWr = @T dAJAL) ¢

(FATIVTIEY = 6) (X AILNTOSEY = 8 JdAL) ¢

(X 4LNTOSIY = £) (X O¥dZ = 9) (X IDIYIANI = G) (X LOIYIANI = ¥ AJAL) *
(*5da 093Z = ¢) (FLNTOSHY =) (FIVIAQIWWI = T) (QIITAWI = @ ddAL) *
(ZIA0EY JTAVIW NI SYIIWAN FHL OL QdIL) SIJAL HAOW JO dTdVL :
ONIDISDdSAASONIDESOISOIIONIDISXdDJONDISXNT, HLAY®
ONIDISXdO2dSXdDDAAAWOAWDATODAAAWIAWDANY,, HLAL"

DAAAWDAIDOXAAAWD ANIDAAANOAdOANWIAIOXATYATAATXSILYATATO, HLXL®
XATYATAQIVATSOIXATVATAATIXYIVATAYILXATYATAQT, JALAL®
XATVATAAIVILSSXLYILSVALKLSYLSALSYLSODEX LS, HLAL®
VISALSYXLAAAXLSYLSALSYLSIOIDAYOAVIASIOIDAY,, HALXL"®
DAYSAGIOIDAYAN IO DAYV TAI0IDAVOAVS LI STIOH, dALAD "
MOIITOISTIOTIOADATISTIOAIW L ISTIOAVHAESTIOHT,, ALAL "

YOI T LI TOIANYANYIISTOIANVYANY INGTOIANY,, HALXL"
LIFT0dANYdTdTOIANYLIGANYIS ISYYIOYd0DTD, dLAL®

TSYYIOVIOTAITSYYIOTSYVIOdHATSYVIOVIONIIXXK,, HLAY ™ HATHVYLAIOA

(dA09Y JTEYL NI SHIIWAN FHL OL QIIL) SOINOWINW A0 dTdVYL

@ 1IST 9ST @ 0 @ 6%1 8%YT O LV 9%T @ @ @ S¥VT ¥¥1
@ €EPT CPT TPT O OPT 6€T 8ET @ LET 9€T SE€ET @ @ PET EE€T
0 ZET TET @ @ @ Q€T 62T @ 8CT LZT @ @ @ 9CT STI
@ 2T €21 221 @ TICT AT 611 @ 8TIT LTIT O9TT @ @ STIT PTIT
M ETT CTIT TITIT @ OTT 60T 89T @ LAT 90T SOT O 2 V0T €0T

LI TN

dLXd"
dLX9"
JLXd "
dLA9 "
ALAd"

o5y
ovy
ocY
oty
o1V
ooy
o6 €
08¢
oLE
g9€
oS €
ove
oce
oze
oTE
123
962
08¢
oLz
092
0S¢
(%
k4
(44
012
002
061
081
oLT
091

Special Notes on Atari and Apple LADS

.
.

Modifying LADS

€

Q

€ ¥
9

SAdd dNA*®

9
€
9
€
Yy 1T8LLO28OITIT
966 CCCOTO
EETVYTLOBB8OT

o M
N SO
N~ N
NI~
Qr~A~
—0Qr~
SRS ee)
Mmoo

VaQINMAHMOMINM O

™M \O >
MmO Q0
WL mMmOWn
QoMo
~ AN ON
~ANRON
QO AN~ AN
ISESEaRORS]
OO N

dLAE "
dLXd "
dLA9 "
dLAHE"
JLXd*
dLXd "
HLAd*
dLAE "
dLAd "
HLAdL*
JLXd*
JLAd*

289
aLS
29§
2SS
v S
A€S
PTs
21s
29S
267
8%
ALY
29%

298

Modifying LADS: Special Notes on Atari and Apple LADS

Notes on the Structure of Atari LADS

The Atari and Commodore machines have one thing in com-
mon—a 6502 microprocessor. The Atari 6502 runs at 1.79
megahertz, making it somewhat faster than the Commodore
machines. However, the non-6502 hardware—input/output,
graphics, and sound—is entirely different. Although many
Atari enthusiasts argue that it is the most powerful available
on any 6502-based microcomputer, the operating system of
the Atari does not perform basic tasks like input/output in the
same manner as Commodore machines. An understanding of
these differences is essential to fully understand the Atari
LADS source code.

The common tasks machine language programs need to
perform with input/output are: open a file, read a character or
block of characters from the file, write a character or block of
characters to a file, and close the file. With the Commodore
operating system (often called the Kernal), there are separate
routines for each task. You approach each task by adjusting
the Accumulator, X, and Y Registers as necessary, as well as
storing any required information into special memory locations
(usually in zero page). See the discussion of OPEN1 in Chap-
ter 5 for details. For example, the Commodore OPEN must
know where to find the filename, the length of the filename,
parameters like read or write, and the device number.

On the Atari, there is just one entry point—$E456, called
CIO, for all these tasks. Instead of separate entry points, CIO
checks a memory location for the command, a number
representing the action to take, such as OPEN, CLOSE, PUT,
or GET. Other memory locations hold the starting address of a
filename or buffer, and the length of the filename or buffer.
Extra locations hold specialized information. Each block of 1/0O
information is called an IOCB, for Input/Output Control
Block. There are eight of these IOCBs, numbered 0 to 7. IOCB
0 is reserved for the screen editor, and 7 is usually reserved
for language 1/0O, such as LPRINT in BASIC, or SAVE in the
LADS editor.

Although much of LADS is concerned with internal data
base-type manipulations, such as looking up a label or convert-
ing a mnemonic, there is also a good amount of Commodore-
style input/output. Routines like OPEN, CLRCHN, CHKIN,
and PRINT are actual ROM entry points on Commodore
computers. To avoid complex changes in the source code,

299

Modifying LADS: Special Notes on Atari and Apple LADS

Atari LADS has a special file called Kernal (see program list-
ings below), which transparently supports all these routines,
making the conversion between the Atari’s I/O system and
the Commodore’s transparent. Explanations of Commodore
I/O given in Chapter 5, then, are valid as well for the Atari
LADS system. In other words, when the original Commodore
version of LADS was translated to the Atari, the Kernal sub-
program was added to mimic the operations of the Com-
modore operating system [/O. This emulation allows the
descriptions of LADS to remain essentially identical for non-
Commodore machines.

Atari Memory Layout

Memory maps for Commodore computers are relatively sim-
ple. Zero page is used by the system, page 1 for the stack,
page 2 for operating system storage, and page 3 for the cas-
sette buffer(s). On the Commodore PET, page 4 (starting at ad-
dress 1024) on up to location 32768 is free RAM. 32768 is the
start of screen memory on the PET, and never moves. On the
64, the screen occupies page 4 up to 2047 ($07FF). Free RAM
starts at 2048 ($0800) all the way up to 40959 ($9FFF). BASIC
in ROM and the operating system start at 40960 ($A000). Al-
though there is hidden memory beneath the ROMs on both
the Atari XL series and the Commodore 64, LADS does not
use it.

The Atari memory layout is less fixed. Zero page from
locations 0 to 127 completely used by the operating system.
An applications program like BASIC can use almost all the
memory from 128 to 255. Since Atari LADS operates outside
the BASIC environment, it is free to use this zero page mem-
ory upwards from location $80.

Unlike the PET and 64, Atari machines have no set
amount of memory. Atari 400/800 owners have the option of
expanding to 48K, without using bank selection or other tricks.
Without DOS, free memory starts at $0700 (page 6 is re-
served). With DOS, free RAM starts at about $2000. The
screen memory, a little over 1K in length, is stored at the top
of memory, and is not fixed, due to memory expansion. Many
Atari machine language programs store themselves at the bot-
tom of memory, then use memory above themselves to store
text or other information. But because LADS stores its labels
below itself, the Atari version must be located at the top of

300

Modifying LADS: Special Notes on Atari and Apple LADS

memory. Since the top of memory with a cartridge (or with
40K of RAM) is $9FFF, and since Atari LADS is about 7K long,
$8000 seems to be a good place. If you have a 48K Atari, you
may want to reassemble LADS at $A000. The choice of $8000
does exclude Atari owners with less than 40K, but if you have
access to a 40K machine, you could reassemble LADS at 8K
below the top of memory.

Let’s look at the major differences between the Atari
LADS and Commodore LADS source code. We won't get into
specifics; for that you can refer to the source code itself. The
translation of Atari LADS involved two goals: the creation of a
powerful assembly development system without making major
changes to most of the Commodore LADS source code. Some
subprograms needed no changes, others did. Three new sub-
programs are required by the Atari version: Kernal, System,
and Edit.

Here’s how all the subprograms in the Atari LADS are
linked:

Defs - Eval - Equate » Array » Openl - Findmn - Getsa -
Valdec - Indisk » Math - Printops - Pseudo - Kernal - System
- Edit » Tables

Defs. Here we set the origin to $8000. Since we are
simulating Commodore 1/O, we have to create some label
variables such as FNAMELEN (filename length). These are
used by the Kernal routines. Other LADS variables like
MEMTOP and PMEM are also given zero page definitions for
the sake of speed and for indirect addressing. The BABUF,
used for holding comments and holding a line in the editor, is
defined as $0500. On Commodore machines it is $0200, the
address of the BASIC input buffer.

Eval. The first difference between the Commodore and
Atari versions of Eval is that instead of reading the filename
off the screen, Atari LADS gets the filename from the com-
mand line, passed by the editor. The editor has previously set
RAMFLAG to 1 if there is no filename. This is a default to
RAM-based assembly (your source code is already in memory
and need not be read from disk). If RAMFLAG is 0, LADS
must assemble from disk. If the RAMFLAG is nonzero, we
skip over putting the filename into FILEN, and jump past the
JSR OPENTI in Eval (since there is nothing to open). At the top
of Eval, the left margin is set to zero.

Since LADS has complete control of the Atari, no memory

301

Moditying LADS: Special Notes on Atari and Apple LADS

needs to be protected from anything, so the top-of-memory
pointer need not be lowered.

In FINI, the RAMFLAG is also checked so that JSR
OPENT1 is skipped. In FIN, which FINI falls to after the end of
the second pass, we send an extra byte out to the object file, if
.D was used.

Equate, Array, and Findmn. There was no need to
change any of these modules, since they contain no system-
specific coding.

Openl. Many changes have also been made to Openl, al-
though a lot of the source code is similar. FDEV and
FSECOND hold the device number and secondary address in
Commodore LADS. Here they are used to hold the access type
(4 for read, 8 for write) and the auxiliary byte (which is zero
here). Openl checks the RAMFLAG to see whether it should
load the file after it’s been opened, in case memory assembly
has been elected. The actual load is done by using part of the
editor’s load routine. Because of RAMFLAG, we don’t need a
separate LOAD1 routine.

If the file can’t be opened, we call the editor’s error mes-
sage routine, and then return to the editor. The same error
handling is performed for all the OPENSs.

OPEN2 writes out the binary file header, made up of two
255’s, followed by the starting and ending addresses in low
byte/high byte format. The origin (the starting address for the
object code) is saved in the variable TA. The object code’s
ending address is known, and stored in LLSA. LLSA is ac-
tually one higher than the ending address, which is why we
write an extra zero to the end of the file in Eval. This prevents
an ERROR 136 when loading the file from DOS.

OPEN4 just opens a file for write to the printer. The
printer’s filename is P:, which is given in the .BYTE statement
as 80 58.

Getsa. Getsa is very similar to the Commodore version.
There is no MEMSA—Getsa initializes PMEM to point to the
start of the editor’s text buffer (TEXTBAS), even if PMEM is
not used. Since CHARIN is smart, checking RAMFLAG to de-
cide whether to assemble from memory or from disk, no more
changes need to be made.

Valdec. Valdec would have been unchanged from the
Commodore version, since there is no machine-specific code.
However, the editor makes use of Valdec to convert ASCII line

302

Modifying LADS: Special Notes on Atari and Apple LADS

numbers into integers. The ASCII line number does not end
with a zero, though. The first part of Valdec finds the length
of the number by checking for a zero. It has been changed in
the Atari version to exit on any nonnumeric digit (one with an
ASCII value less than 48 or greater than/equal to 58). The
change does not affect any other use of Valdec.

Indisk. It is in Indisk where we see many modifications to
the Commodore version. Since the editor does not tokenize
anything, KEYWORD and KEYWAD are not needed, and ref-
erences to them in this source code, as well as the KEYWORD
and KEYWAD routines themselves, have been deleted. Again,
since nothing is tokenized, checks for +, *, <, >, etc., look for
the ASCII values instead of the tokenized ones. Since line
numbers are stored as a string of digits instead of a two-byte
integer, we must call LINENUMBER in the SYSTEM module
in order to set LINEN. ENDPRO, instead of looking for three
zeros to signify the end of a program, must check the disk sta-
tus variable for end of file. End of file returns 136 after the last
character has been read, and $03 if you try to read past the
end of file, so we check for both to be safe. We check the sta-
tus for file #1 (the input file) directly ($0353), instead of ST,
since ST may have been changed by another I/O operation.
Nonetheless, large parts of Indisk are unchanged from the
Commodore version.

Printops. Because of the Kernal simulator, even though
Printops has plenty of Commodore I/O calls, few changes
were needed to make Printops work on the Atari.

Pseudo. There are some minor changes here. KEYWORD
does not need to be used by .END or .FILE. FILE finds the end
of the pseudo-op by looking for a space delimiter. The
filename is then copied into FILEN, and the file opened. If the
current operation is a RAM-based assembly, Openl takes care
of loading in the next file. PEND, which supports .END, first
calls FILE to open the file, then copies SA, which holds the
current address, into LLSA for use with OPEN2.

Speaking of OPEN2, some code was deleted from PDISK
and instead implemented in OPEN2. There were no more
changes after PDISK to the Pseudo module. In Commodore
LADS, Pseudo links to Tables, the last module. Here we link
to Kernal, inserting Kernal, System, and Edit into the chain.

Kernal. This is the most important module in the Atari
translation. It implements all the Commodore I/O functions

303

Modifying LADS: Special Notes on Atari and Apple LADS

by simulating CHKIN and CHKOUT, and referencing the
appropriate IOCB according to FNUM. The CIO equates are
first defined: ICCOM, the command byte; ICBADR, which
holds the address of the filename or buffer; ICBLEN, which
holds the length of the filename or buffer; ICAUX1 and
ICAUX2, which need to be set to zero; and CIO itself, that sin-
gle entry point for all input/output.

A simple routine is X16, which multiplies the Accu-
mulator times 16 and stores it in the X Register. X will be an
offset from the first IOCB. Since each IOCB is 16 bytes long,
we can use Indexed addressing to change the appropriate
IOCB with a statement like STA ICCOM,X.

OPEN is the basic open-file routine. It uses X16 to get the
IOCB offset, then stores the filename pointer and filename
length into ICBADR and ICBLEN. The command byte for
open ($03) is stored in ICCOM, then CIO is called. CIO’s error
status, which is returned in the Y Register, is saved in ST.

CHKIN changes the default input IOCB, which is used in
CHARIN. CHKOUT changes the default output IOCB, which
is checked for in PRINT. CLOSE just stores the close com-
mand (12) into ICCOM and jumps to CALLCIO, part of
OPEN. CLRCHN sets the default INFILE and OUTFILE, as
well as FNUM and ST to zero, which makes CHARIN and
PRINT use IOCB #0, opened to the screen editor.

PRINT is expected to print the character currently in the
Accumulator. It first changes any 13’s it sees, which are Com-
modore carriage returns, into 155’s (Atari carriage returns).
Another entry point, OBJPRINT, does not transform 13’s. This
is called when object bytes need to be sent to disk, where you
don’t want 13’s changing into 155’s. Depending on OUTFILE,
PRINT will automatically use the appropriate IOCB (0 for
screen, 2 for object output, 4 for printer output). We then set
the buffer length to zero, which tells CIO to expect to find the
character to print in the Accumulator. The print text command
is used, then we call CIO and restore the X and Y Registers,
which were saved when PRINT was entered. This prevents
any interference with LADS.

CHRIN is also a busy routine. It first checks RAMFLAG
to see whether it should get a byte from an I/O device or
from the editor’s text memory. If it gets a byte from memory, it
must check to see if it has gone past the last byte. If so, we
jump straight to FINI in Eval. Otherwise, CHRIN gets a byte

304

Modifying LADS: Special Notes on Atari and Apple LADS

from disk or the keyboard. It uses INFILE to decide which
IOCB to use, then sets the buffer length to zero. This way it
requests a single byte from CIO. If a 155 is returned, it is
changed into a zero, which is what LADS looks for as end of
line.

There is no “check for BREAK key” routine in Atari ROM,
so STOPKEY checks the BREAK key flag, which is set to zero
if the BREAK key is pressed. If BREAK was pressed, we exe-
cute TOBASIC, which jumps back to the editor.

CLALL is not used by LADS, but is used by the editor to
close all files in case of an error. It works like the Commodore
CLALL routine, and restores the default I/O (input from key-
board, output to screen) by jumping to CLRCHN.

System. A few more routines are provided here which are
not directly supported by the operating system. OUTNUM
prints the ASCII number given to it in the X Register, which
holds the low byte of the number to print, and the Accu-
mulator holding the high byte. We then call $D9AA, which
converts the integer number in locations $D4 and $D5 into
floating point, and then call $D8E6, which converts the float-
ing point into a printable ASCII sequence of digits starting at
$0580. The routine at $D8E6 sets bit 7 in the last digit of the
ASCII numeral string. We print the string, checking and mask-
ing off bit 7. LINENUMBER reads the ASCII line number from
source code and converts it to an integer, using VALDEC. The
result is saved in LINEN.

Tables. The major changes here are that the error mes-
sages must be typed in inverse video. One extra variable is de-
fined: LLSA to hold the ending address.

Program 11-3. Kernal

1 ICCOM = $@4342
114 ICERADR 4344

120 ICBLEN = 44348
13¢ ICAUX1 = $834A4
14 ICAUX2 = $734R

156 CCLOSE 12
1688 CI0 = $E456
178 X16 ASL

184 ASL

1948 ASL

204 ASL

2149 TAX

229 RTS

305

Moditying LADS: Special Notes on Atari and Apple LADS

|
L
]

;0pens a file OPEN #FNUM,FDEV.FSECOND, (F
NAMEFPTR)

244 OPEN LDA FMNUM
258 ISR X168

269 LDA FNAMEFTR
278 STA ICBADR. X
28 LDA FNAMEFTR+1
298 STA ICEADR+1.X
Z@g LDA FNAMELERN
314 STA ICEBLEN,X
324d LDA #4

338 STA ICEBLEN+1,X
344 LDA FDEV

358 STA ICAUX1,X
364 LDA FSECOND

378 STA ICAUX2,X
3848 LDA #4933

399 STA ICCOM, X

4¢@ CALLCIO JSR CIO
414 STY ST

424 RTS

4533 CHEIN STX INFILE
444 RTS

45 CHEQUT STX QOUTFILE
443 RTS

47@ CLRCHN LDX #g
48@ STX INFILE
49k STX OUTFILE
S STX FNUM

S#1 S5TX ST

514 RTS

528 CLOSE JS5R X16
S3@ LDA #12

S4¢ STRA ICCOM. X
5549 JMF CALLCIO
S68 FRINT CMFP #13
578 ENE ORBJPRINT
58¢ LDA #15S

5949 OBJIJFRINT STA EASAVE
6@ STY EYSAVE .
618 STX KXSAVE
629 LDA OUTFILE
638 JS5R X16

&40 LDA #4

658 STA ICBRLEM, X
668 STA ICEBLENM+1,X
676 LDA #11

688 STA ICCOM. X
694 LDA KASAVE

306

Modifying LADS: Special Notes on Atari and Apple LADS

T
714
729
739
744
759
7648
7Y
784
790

84
81d
29
834
844
859
86
884
894
i
19
P24
I
P49
e}
o
78
8@
A4
1@
1@14a
120
1434
1140
1959
1860
1376
1483
14190
1100
1144
1154
1164
1174
1184
11949
1204
1214

JSR CALLCIO
LDY KYSAVE
LDX KXSAVE
LDbA KASAVE
RTS

a

CHARIN STY EYSAVE

STX KXSAVE

LDA RAMFLAG

ERE@ CHRIM; If RAMFLAG=#E (False) then get
byte from device

:Else get byte from memory

LDY #@é:LDA (FMEM).Y:FPHA

INC FMEM:EBENE NINCF1:INC FMEM+1
MINCF1 CLC:LDA FPMEM:5ERC TEXEND:STA KTEMP
LDA FMEM+1
SERC TEXEND+1

ORA ETEMF:BCC NOTEOF:REGQ NOTEOF
JMF FINI

NOTEOF LDA ##@:S5TA ST:5TA $9353
FLA: IMP CHRXIT

CHRIN LDA INFILE

JER X16

LDA #d

STA ICELEN,X

STA ICEHLEN+1,X
LDA #7
S5TA ICCOM. X
JSR CALLCIO
CHRXIT LDY KYSAVE

LDX KEXSAVE

CMF #1555

ENE ZICK

LDA #4

ZICR RTS

STOFKEY PHA

LDA %11

REG TOHASIC

FLA

RTS

TOBASIC JMP EDIT

CLALL LDX #7

CLLOOF STX KTEMP:TXA:JSR CLOSE
LDX KTEMP:DEX: EBNE CLLOOF ~
JMFP CLRCHN

KASAVE .RBYTE ¢

KYSAVE .BYTE o

KXSAVE .BYTE @

307

Modifying LADS: Special Notes on Atari and Apple LADS

1220 KTEMFP .RBYTE @
123¢0 _FILE D:SYSTEM.SRC

Program 11-4. System

178 OUTNUM STX $D4
184 STA $DS

199 JSR $DFAA

266 JSR $DBES&

239 LDY #9

244 ONUMLOOP STY OYSAVE
258 LDA ($F3).Y

268 FPHA

27% AND #$7F

28¢ JSR PRINT

298 PLA

I@® BMI ONUMEXIT

319 LDY OYSAVE

326 INY

338 ENE ONUMLOOP

340 ONUMEXIT RTS

364 OYSAVE .RYTE @
39% LINENUMEBER LDY ##
4% LINELOOP JSR CHARIN
4198 CMP #3372

42¢ RE@ OUTLINE

433 STA BARUF,Y

446 INY

45@ JMP LINELOOP

460 OUTLINE LDA #&
47@¢ STA BARUF,Y

480 LDA #<BARUF

49¢ STA TEMP

SG@ LDA #>RARUF

519 STA TEMP+1

524 J5R VALDEC

53¢ LDA RESULT

5S4 STA LINEN

55@ LDA RESULT+1

S60 STA LINEN+1

570 LDY #@

580 RTS

S9@ .FILE D:EDIT.SRC

The Atari LADS Editor

The Atari editor is a whole minilanguage system itself. The
source code for this subprogram is well commented and
should be understandable as it stands. Since it is not a part of

308

Modifying LADS: Special Notes on Atari and Apple LADS

LADS proper, we’ll limit ourselves here to an overview of the
major routines.

UMOVE and DMOVE are high-speed memory move
routines used to adjust the source code when lines are deleted,
added, and so forth. UMOVE can move one range of memory
to another, provided that the block to be moved is higher in
memory. The range of bytes can overlap so UMOVE can be
used as a delete routine. DMOVE moves memory downward,
and is used for inserting. If the memory ranges do not overlap,
either one can be used. FROML and FROMH hold the start of
the block to be moved. DESTL and DESTH are where the
block is moved to. LLEN and HLEN are set to hold the length
of the block to be moved. These routines use self-modifying
code for speed.

EDIT is the entry point for LADS when it is first run, as
well as the return point from the LADS assembler. It cleans up
the stack, resets the left margin to 2, then stores the addresses
of all the editor commands into COMVECT, which is a lookup
table used by COMMAND. The BRK interrupt is initialized to
point to a special breakpoint entry to the editor. We then
check to see if this is the first time EDIT has been entered. If
so, we need to NEW out any garbage in memory. The NEW
routine sets the end-of-text pointer to point to the beginning
of text. No memory is actually cleared.

PROMPT is the entry point for a new line. It prints
“LADS Ready”, then falls through to ENTER, which is the en-
try point for a new line without printing a prompt. CHARIN
from Kernal gets a byte, which is then processed to remove
lowercase, etc. The line is stored in the BABUF, starting at
$0500. When a carriage return is detected, an Atari carriage re-
turn is added to the end of the line in BABUF, and the length
of the line is saved in INLEN. If the length is zero, we go back
for another line. The first character of the line is checked. If it
is a numeric digit, there must be a line number. If there is no
line number, then the line must be a command.

If it is a line number, we call GETLNUM to get the inte-
ger value of the line number. GETLNUM also calls FINDLINE
to see if that line already exists. If it does, the line is deleted.
Then we check to see if there is anything else besides just a
line number. If not, we don't insert the line into the source
code. Since the line was already deleted, this has the desired
effect. We then go back for another line.

309

Modifying LADS: Special Notes on Atari and Apple LADS

COMMAND searches through a table of commands,
matching the line the user typed in against the table. If the
command is not found, a syntax error message is displayed,
and we return to PROMPT. If the command is found, we save
the position of whatever’s after the command (the argument)
in ARGPOS. The command number (COMNUM) is used as an
index into COMVECT, which holds the addresses of all com-
mands. We get the address, subtract one from it, then put it on
the stack. A RTS then ends up pulling this address off and
jumping to it. It’s like ON-GOTO in BASIC.

MLIST lists the entire text buffer, from TEXTBAS to
TEXEND. A second entry point in MLIST, INLIST, is called by
the LIST routine to list a part of a program. We also check
here for the BREAK key. MLIST is used by SAVE to list the
program to disk, cassette, or the printer.

DOS is spectacularly simple. It just jumps through the
DOS vector, location $0A.

FINDLINE is crucial to the editor. It searches through the
source code, trying to match the line number given to it
(LNUM) against all the ASCII line numbers in the program. It
uses Valdec to convert the ASCII line number into an integer.
Because of all the ASCII to integer conversions, FINDLINE
can be slow on long programs. It returns with BEGPTR point-
ing to the beginning of the line found, and ENDPTR pointing
to the end of the line. If there is no program in memory, it re-
turns with BEGPTR and ENDPTR pointing to the start of text.
If the line is not found, BEGPTR and ENDPTR point to the
next line greater than the line number searched for. If there is
no such line, they point to the end of text. The size of the line
found is also calculated for the benefit of the delete routine.

DELETE calls FINDLINE, then calls UMOVE to move
memory from the end of the line on top of the beginning of
the line. TEXEND is then changed to reflect a shorter pro-
gram. Many checks have to be made to prevent a crash under
conditions such as no program in memory. INSERT is similar
to DELETE. It calls DMOVE to insert a gap at the position the
line was found.

ERRPRINT is used to display an error message. To be
safe, it also closes all files. GETNUM gets and converts an
ASCII line number to an integer, using the system ASCII-to-
floating-point and floating-point-to-integer routines. The
routines return a pointer to the end of the number. This

310

Modifying LADS: Special Notes on Atari and Apple LADS

pointer is always kept track of so we can check for new com-
mand arguments. GETLNUM uses this routine, then calls
FINDLINE.

LIST calls GLIST, which is also used by SAVE. GLIST
finds out the line number range you want to list. If there is no
line number range given, it goes to MLIST to list the entire
program. Otherwise, it has to check for just one line given, or
a range of lines. It's complicated, but it works.

OPENFILE is used by SAVE, LOAD, and MERGE. It looks
at the argument of the command to get the filename, then
calls OPEN within Kernal. If there is an error, we jump to
PROMPT. SAVE calls OPENFILE with an 8 for output. It then
sets the output file and calls GLIST, which sends the listing
out to the current output file. After GLIST returns, the file is
closed.

MERGE just sets the input file to the device and jumps to
PROMPT. PROMPT keeps requesting input and storing lines
until it gets an error. It then closes the file and restores default
1/0.

Adding Your Own Editor Commands

The LADS command checks to see if there is a filename, then
sets the RAMFLAG accordingly and jumps into EVAL. The
SYS command calls GETNUM to get the decimal argument,
then stores the address right after a JSR, to which it then falls
through, creating a self-modifying indirect JSR. If the routine
being called ends in a RTS, control will be returned to
PROMPT. You can use SYS to add new editor commands. Just
check location $D0, which will point to a position with
BABUF ($0500) after the SYS number. You can use $DO0 to
check for extra arguments within BABUEF.

LOAD calls OPENFILE to open the load file for read. It
has a second entry point (AFTEROPEN) if the file has already
opened. For maximum speed, the program is loaded by calling
the CIO get-record routine, which loads in the entire file di-
rectly at TEXTBAS, the start of text. Beware, though, that no
conversions are done on any of the text, and no checks are
made for a legal source file. You could even load and list word
processing files. AFTEROPEN is called by Openl if RAM
needs to be reloaded during a memory assembly.

The last routine in the editor handles a BRK instruction
entry encountered. It prints a message, uses OUTNUM to dis-

311

Modifying LADS: Special Notes on Atari and Apple LADS

play the address where the BRK was found, clears the inter-
rupt flag, cleans the stack, then jumps to the Edit entry point.
Edit then links to Tables.

Program 11-5. Editor

1#%® :Line Editor for LADS
114 :Charles Brannon 1984
@129 3

@134 FTR = $CH

@140 TEXTEAS = 20400
@#15¢ :Move routines
@168

G179 JIJMP EDIT

@188 FROML .RYTE @
gi19g FROMH .BYTE #
#2@@ DESTL .RYTE @
@21@ DESTH .RYTE o
#2298 LLEN .BYTE 4

@239 HLEN .RYTE #

@240 ENDFOS .BYTE @
#2598 INLEM .RYTE @
@260 LNUM .RBYTE @ @
@278 TEXTPFTR .RYTE ¢
#2848 COMNUM .RBYTE @
#2988 TEXEND .RBYTE @ &
aZzag LEN JBYTE @

d31e YSAVE .BYTE @
A329 BREGPTR .BYTE @ @
#3230 ENDFTR .BYTE @ @
@EZ45 FOUNDFLAG .BYTE @
#3598 LINMESIZE .BYTE @ #
@#i6e SAVENMD JRBYTE @ @
@AZ7¢ SAVEREG ..RBYTE @ &
#3848 ARGFOS .BYTE o
B399 ZFLAG .RBRYTE
g4 LCFLAG ..RBYTE @
@419 FIRSTRUN .BYTE &

#9429 IMDEX = 4D#
#4330 TMP _RYTE @
aq4a ;3

#4559 UMOVE LDA FROML
#4460 STA MOVLOOFP+1
@479 LDAa FROMH

a48¢ STA MOVLOOR+2
@499 LDA DESTL

#@Ses STA MOVLOOFRP+4
@519 LDA DESTH

#5328 STA MOVLOOFRP+S

312

Modifying LADS: Special Notes on Atari and Apple LADS

ASEE
D544
A5S

BS6G
BS7 8
#5884
ASY
Ao
Aol
AE20
BEEH
DO
ABESH
HasE
BT
A680
AL
@7 aa
A714
@72
A7340
A744
A75H
A7 60
B77H
a784
A79%
A8 e
2814
ag2a
@8I
#8444
A8S o
[2RSE-%7)
ag7a
ag8 g
A8
A @G
@14
A2
AIIG
A4
A5H
A6H
A7
hAq8a
@I
1A6a0

LDX HLEN

EE@ SKIFMOV
MOV1 LDA #@
MOV2 STA ENDFOS
LDY #g&

MOVLOOP LDA $FFFF.,Y
STA $FFFF.,Y

INY

CFPY ENDFOS

ENE MOVLOOF

INC MOVLOOF+2
INC MOVLOOF+S
CPX #@

EE@ OUT

DEX

ENE MOV1
SKIFMOV LDA LLEN
ENE MOV2

OUT RTS

DMOVE LDA HLEN
TAX

ORA LLEN

ENE NOTNULL

RTS

NOTNULL CLC

TXA

ADC FROMH

STA DMOVLOOF+2
LDA FROML

STA DMOVLOOF+1
cLC

TXA

ADC DESTH

STA DMOVLOOF+5S
LDA DESTL

STA DMOVLOOF+4
INX

LDY LLEN

ENE DMOVLOOF
BE@ SKIFDMOV
DMOV1 LDY #255
DMOVLOOF LDA $FFFF,Y
STA &FFFF,Y

DEY

CPY #255

ENE DMOVLOOF
SKIPDMOV DEC DMOVLOOF+2

313

Modifying LADS: Special Notes on Atari and Apple LADS

1@19 DEC DMOVLOOF+S

1828 DEX

193¢ BENE DMOV1

1949 RTS

1659 3

16y EDIT LDX #255;Reset stack

1a7¢ TXS

1@71 JSR CLALL

1980 LDA #e:Clear RAMFLAG

1894 STA RAMFLAG

1i1a6 LDA #2:Left maragin

11198 S5TA 82

1129 JSR PRNTCR

1134 :S5tore addresses of commands

1144 LDA #H<LIST

1154 STA COMVECT

1168 LDA #HHLIST

1178 STA COMVECT+1

1189 LDA #<{DOS

1199 STA COMVECT+2

1206 LDA #>DOS

1219 STA COMVECT+3

1229 LDA #H<CINIT

1239 STA COMVECT+4

1249 LDA #>INIT

1258 STA COMVECT+S

1260 LDA #<SAVE

1274 STA COMVECT+6

12849 LDA #:>SAVE

1299 S5TA COMVECT+7

13¢d LDA #H<LOAD

1314 5TA COMVECT+8

1329 LDA #:>LOAD

338 STA COMVECT+9

1344 LDA #<MERGE

359 5TA COMVECT+14

1369 LDA #>MERGE

1379 STA COMVECT+11

13849 LDA #<LADS

1399 STA COMVECT+12

14618 LDA #:>LADS

1419 STA COMVECT+13

1429 LDA #<5YS

1430 STA COMVECT+14

1444 LDA #:>5YS

1459 STA COMVECT+15

14600 :5et BRK instr. interrupt to breakpoint
entry

147 LDA #H<EBREAK:5TA S518:LDA #>BREAK:5TA S19

314

Modifying LADS: Special Notes on Atari and Apple LADS

1480
1493
1500
1519
1520
1530
1540

1559
1564
1574@
1584
1594
16406
1614
1620
1630
1649
1650
1660
1673
1684
16940
17aa
1714
1720
1730
1740
1754
1760
1770
1784

17949
18aad
1814
1829
1834
1844
1859
1864
187@

1884
1894

1963
191¢

LDA FIRSTRUN
EEQ DONEW

JMP PROMFT
DONEW LDA #%$CR
STA FIRSTRUN
JMP INIT

NEW LDA #<TEXTEAS;Store beginning locat

ion at ending pointer

STA TEXEND

LDA #>TEXTEAS

STA TEXEND+1

JSR CLRCHN:Keyboard/Screen
RTS

INIT JSR NEW

PROMPT LDA #<{PMSG:;Print prompt
LDY #>FMSG

JSR PRMSG

ENTER LDY ##:;Get a line

STY ZFLAG

STY LCFLAG

GETIT JSR CHARIN:a character
LBX ST:ErFrrer?

BEFL NOERR

CFX #136:End of file?

ERER EOF:don’t print error

CFPX #128:came for break key abort

BHE@ EQOF
JSKR ERRFRINT:print other error

EOF JSR CLOSEIT:close down active file

JMF PROMPT:get new line

NOERR CMF #34:A guote toggles the lower

case f1aag

BNE NOTQUOTE

FPHA:=save guote

LDA LCFLAG:flip lowercase

EOR #1

STA LCFLAG

FPLA:restore qguote

NOTQUOTE CMFP #48:an ASCII "a"?

BNE NOTZ

LDX ZFLAG:if so. check to see
leading zero

BRE® GETIT:;if it is, ignore it

NOTZ INC ZFLAG:1f we get here,

ading zero flag

CMP #S5%2:now check for comment

ENE NOTREM

if 1t s a

reset 1le

315

‘Modifying LADS: Special Notes on Atari and Apple LADS

21449

2154

21649
2176
2184
21949
22040

2214
2220
22348
22449

2254

2260
2270
22849
2294
2360

316

INC LCFLAG:;disable lowercase conversion
for rest of line

NOTREM LDX LCFLAG

BNE NOTLOWER:1f remflag has been set, d

on®t convert lowercase

AND #127:ki111 inverse

CMF #97:;lowercase "a"

BCC NOTLOWER:if less than,

e

CMP

not lowercas
#123:1owercase "z"+1

BECS NOTLOWER:if >=, not lowercase
AND #95:kill bit S (127-32=95)
NOTLOWER STA BARUF,Y:store it

INY
CMP
BENE
DEY
LDA
STA
STY
CPY #@

BER2 ENTER:i1if length=#,
o back

LDA BABUF;first character:
er?
CMF
BCS
e a

#
GETIT

#155
BHABUF.,Y
INLEN;save length

of line

blank line, so g

is it a numb
#58

COMMAND; greater than
command

CMP #48;"a@a"

BCS LINE:greater than
than/= "a"?

JMFP COMMAND:no. so command

;:Must be a line, so get line number
LINE LDA #255:no offset

JSR GETLNUM

LDA INDEX:; INDEX points to first non—-num
eric digit

STA TEXTPTR:so save it

LDA FOUNDFLAG:1+f it exists

ENE NODELETE:;it not. don"t delete
JSR DELETE

NODELETE LDY TEXTPTR:is there any text
on the line?

"g", so must b

"9", but greater

it

CPY INLEN:compare to
HE® OVERINS:no text,
JSR INSERT:otherwicse

line length
just delete
insert line

OVERINS JOJMP ENTERj3;and get another line

Modifying LADS: Special Notes on Atari and Apple LADS

2314

b
A
rJ

7
25330
2344
2354
2360
2378
2384

2394

2444
2419
24249

2434

2444
2459
2469
2474
2480
2494

25ad
2519
2526

25349

2544
2559

2560
257a
25844
2599
26ae
26149
2620
2630

2644
2659
2664
267@
26849
2699
2794

COMMAND LDA #<COMTARLE:;point to start o
f command table

STA FTR

LDA #:>COMTAERLE

STA FTR+1

LDY #¢:for loop

STY COMNUMizclear command number

LDX #@:for loop

SRCH LDA (FTR).Y:get a character of com
mand table

BEG COMFOUND:;if we get zero here, comma
nd is found

CMF #255S:o0or syntax error

REQ SYNERR

CMFP EBABUF ,X:match with parallel charact
er in line buffer?

BNE NOTFND:;if comparison fails, try nex
t command

INX:next character

BACKIN INY

ENE SKCH:bump high byte?

INC PTR+1:vyes

JMFP SRCH:continue

NOTFND LDA (FTR).,Y:if not found, skip p
ast ending zero

BREQ NXTONE

INY

BME NOTFND

INC PTR+1

JMF NOTFND

NXTONE INC COMNUM:bump up command numbe
-

LDX #&:continue search

JMF HBACEIN

SYNERK LDA #<S5YNMSG:print syntaxx error
LDY #:>S5SYNMSG

JSR PRMSG

JMF FROMFT

COMFOUND STX ARGFOS

LDA COMNUM:indirect jump to address of
command

ASL

TAX

LDA COMVECT, X

SEC

SEC #1

STA TMF

LDA COMVECT+1,X

317

Modifying LADS: Special Notes on Atari and Apple LADS

2714
2720
2739
2744
2759
2769
27749

2784
27949
28a4a
2814
2829
2838
28440
28549
2864
2874
2884
2894
2940
2919
2920
2930
2940

2954
2969

2974
2984

29949
Iaaa
Ig1e
Ia20
IBIH
@49
IESa
IBeH
@70
I@8a
Ia90
J14a
I114
3124
3139
3131

31440

318

SBRC #4

FPHA

LDA THMP

FPHA

RTS

:Command table. Format:

:-BYTE "command" #,"command” @#,255 (255
to end table)

COMTARLE .BYTE "LIST"

.BYTE @

.BYTE "DOS"

.BRYTE @ '

.BYTE "NEW"

.BYTE @

.BYTE "SAVE "

.BYTE @

.BYTE "LOAD "

.BYTE @

.BYTE "MERGE "

.BYTE @

.BYTE "LADS"

.BYTE @

« BYTE *8ys"

.BYTE @

.BYTE 255

s;table will hold address of each comman
d routine in low,high format
COMVECT .BYTE @ @ 0 @ & @ @ @ @ @ @ @ @
g a @

MLIST LDA #<TEXTBAS:;Point to beginning

of program

STA PTR

SEC;get length of program to list

LDA TEXEND

SEC PTR

STA LLEN3;into LLEN

LDA #:TEXTEAS

STA PTR+1

LDA TEXEND+1

SEC PTR+1

STA HLEN:and HLEN

INLIST LDA HLEN

TAX

ORA LLEN3;both zero?

BNE DOLIST

RTS:if so, exit LIST

DOLIST LDA #1:STA 766

CPX ##:high byte zero?

Modifying LADS: Special Notes on Atari and Apple LADS

BE
31640
Z174d
1849
194
32489
214

228
I238
244
2254
32649
3274
32849
32943

I3g

IZ6d
IET7H

33849
33949
I4@a
Z414
3429

434
I444
45
46
47
484
249
ISaa
3514
3529
3534
3544
3559
35649
357@
Iceas

BEQ
LDA
STA
RELI
FRLI
J5R
LDA
BMI
INY
CPY
BENE
INC
DEX:
BEMI
ENE
LOLS
ndar
S5TA
JMP
ouTL
eady
DOos
FIND
proag
STA
LDA
S5TA
LDA
STA
ive
TAY
LEQG
TYA:
CLC
ADC
STA
5TA
STA
LDA
aDC
S5TA
STA
STA
sche
SEE

LOLST:;if so. skip primary pass
#¢i; for primary pass., list fully
LEN

ST LDY #&

ST LDA (PTR).Y

FPRINT:;print & character

=8 3

QUTLIST:;exit on error

LEN

FRLIST

FTR+1

primary pass completed?

OUTLIST:;if so, do secondary pass
FRLIST:;if not., comtinue

T LDA LLEN:now list remainder {(seco
y pass)

LEN

RELIST:continue

IST LDA #¢:8TA 7466:KRTSs35go back to R

JMP (1#) :D0OS Vector

LINE LDA #<TEXTRAS:start at top of
ram

PTR:;initialize pointer
#:>TEXTEBAS:=s=ame for high bytes

FTR+1

#o

FOUNDFLAG:set foundfl=sg to affirmat

STY YSAVE;:preserve Y
point to first byte in line

FTR

TEMF:so we can convert line #
BEGFTR:save start of line
ENDFTR

FTR+1:;=same for high bvte

Ho

TEMF+1

BEGFTR+1

ENDFTR+1

ck to see if at end

319

Modifying LADS: Special Notes on Atari and Apple LADS

590
YY1 30
I61@
I620
RE-N31]
3644
3659
EY-R-%$7]
3679
6840
3699
I7a0
3714
3729
37340
3743
3759
3760
3779
37840
3794
849
3814
38249

38349

3840
38549
38649
387a
38840
3898
Iad
3914
3924

339
3949
39549
360
3974
3984
3I994@
{BE G
4010
4@a20
4830
4040
4850

320

LDA
SEC
STA
LDA
SEC
ORA
ERCC
JMP

BEGFTR
TEXEND
TMF
BEGFTR+1
TEXEND+1
TMF
NOTEND
NOTFOUNDZ2

NOTEND JS5KR VALDEC

SEC3
LDA
SRC
STA
LDA
SEC
ORA
REQ
BCS
:no

see if line number matches
RESULT

LNUM

TMP

RESULT+1

LNUM+1

TMP

FOUNDLINE:1f match, line found
NOTFOUND

match at all, so continue search

NEXTLINE J5R EOL:;skip to end of line

INY;
BNE
INC

skip over eol
NOADJZ2
PTR+1

NOADJ2 JMF LE@i3;continue search
FOUNDLINE DEC FOUNDFLAG:set to found

fter

INC in NOTFOUND2)

{a

NOTFOUND JSR EOLj3;skip past end of line

CLC:
TYA
ADC
STA
LDA
ADC
5TA

NOTFOUNDZ2 INC FOUNDFLAG:;i+f 255,

store at ending address

PTR
ENDPTK
#9

PTR+1
ENDFTR+1

{(found), else 1 {(not found)

SEC;
LDA
SEC
STA
LDA
SEC
STA
INC
BNE
INC

get size of line

ENDFTR

BEGPTR

LINESIZE;put it in LINESIZE
ENDFPTR+1

BEGPTR+1

LINESIZE+1

LINESIZE

NOINC3

LINESIZE+1

NOINC3E RTS

:ski

EOL

p past end of line
LDY YSAVE:restore Y

then @

Modifying LADS: Special Notes on Atari and Apple LADS

4@60
4873
4018@
439a
4100
4110
4120
413@
414
4150
4160
417G
41840
4193
4200
4210
422

4230
4244
4250
4260

/4270

4284
42943
4B
431
4320

I
4340
4350
43640
4373
4=80
4393
4.4
4416
44240
4430
4443
4454
4460
447
4484
4494
4500
4514
452%

SRCHEND LDA (FTR).Y:get character

CMF
BEQ
INY;:
BNE
INC

#1555

ENDLINE;if zero (EOL)
bump up pointer
SRCHEND:;zero?
PTR+1:next block

NOADJ JMP SRCHEND:end of line?
ENDLINE RTS

gPri

nt message

FRMSG STA PTR:prepare pointer

STY
LDY

PTR+1
#a

FPRLOOF LDA (PTR).Ys:iget msg char

BE@
JSK
INY;
ENE

OUTMSGs;zero (end of message)
FRINT;else print char
continue loop

FPRLOOF

OUTMSG6 RTS

-
H

;FINDLINE has initialized BEGFTR. ENDFT
R. anmd LINESIZE
DELETE LDA ENDPTR:move FROM [end of 1in

e+1]

GLE
ADC
STA
LDA
ADC
STA
LDA
STA
LDA
STA
SEC:
LDA
SEC
STA
LDA
SEC
ECS
LDA
EEQ
DEC

#1

FROML

ENDFTR+1

o

FROMH

BHEGPTR:to beginning of line
DESTL

BEGFTR+1

DESTH

length of move is TEXEND-ENDFTR
TEXEND

ENDFTR

LLEN

TEXEND+1

ENDFTR+1

ZLAST

TEXEND

NODEC2

TEXEND+1

NODEC2 DEC TEXEND

JMP

NOMOV

ZLAST STA HLEN

ORA
BREQ

LLEN
SKEIFDEL:;nothing to move!

321

Modifying LADS: Special Notes on Atari and Apple LADS

B8 p
e
[]

bS]

R
=

4569
4574
4589
4590
4680
46519
{620
4630

465440
465
4660
4670
4680
4699
{47 a9
4714
4724
4730
4743
4759
4760
4770
4784
4790
488
4814
4826
4834
484%
4850
486G
487¢
4889
4890
4900
4910
4920
4921
494G
4950
4963
497a
49840
49943

322

JS5R UMOVE

NOMOV SEC

LDA TEXEND:;subtract size of deleted lin
e from program end

SR LINESIZE —
STA TEXEND

LDA TEXEND-+1

SBE LINESIZE+1

STA TEXEND+1

SKIFDEL RTS:delete done!

INSERT LDA EREGFPTR:insert gap at found 1
ine position

S5TA PTR;also set pointer

STA FROML:move From BEGFTR

SEC

ADC INLEN:to BEGFPTR+INLEN+1

STA DESTL

LDA BEGFTR+1

STA PTR+1:same for high

STA FROMH

ADC #9

STA DESTH

SEC:# of bytes to move is

LDA TEXEND: (TEXEND-EREGFPTR) +1

SHRC BEGFTR

STA LLEN

LDA TEXEND+1

SEC BHEGPTR+1

STA HLEN

BRCS NOTLAST

LDA TEXEND

ENE NODEC

DEC TEXEND+1

NODEC DEC TEXEND

JMP INSEXIT

NOTLAST ORA LLEN

HE® INSEXIT:nothing to insert!

NOINCZ2 JSR DMOVE:;do insert

INSEXIT SEC;add length of line added —
LDA TEXEND:to end of text pointer

ADC INLEN

STA TEXEND

LDA TEXEND+1

ADC #49

STA TEXEND+1

LDY #@:gap ready. put in line —
INSLOOP LDA RABRUF.,Y

STA (PTR) .Y

Modifying LADS: Special Notes on Atari and Apple LADS

S909G INY

S@919 CPY INLEN

S926 BCC INSLOOP

Se3@ BER INSLOOP

S48 RTS:;insert done!

SEaSy CLOSEIT LDA FNUM

S#6@ BEGE NOCLOSE

S@79 JSR CLOSE

S#8% NOCLOSE JSR CLRCHN

SH9d RTS

S1g¢ ERRPRINT LDA ST

51148 STA THMP

5124 JSR CLALL

S13¢ LDA #<ERRMSG

S148 LDY #:>ERRMSG

S158 ISR PRMSG

S168 LDX THMF

S174 LDA #o

5184 JS5R OUTNUM

51949 JSR PRNTCR

S200 RTS

5214 FPMSG .BYTE 1S5S

59229 .BYTE "LADS Ready."

S23¢ .BYTE 155 @

S2448 SYNMSG .RYTE S

5259 .BYTE "Syntax E

5260 .BYTE 155 @&

5279 ERRMSG .BYTE

5288 .BYTE "Error

5294 .RBYTE @

S3g¢ BREMSG ..BYTE "BRK from "

S31¢9 .BYTE @

S329 3

S350 GETNUM S5TA $F2

S349 INC $F2

S35# LDA #<BARUF;:;point to line buffer

S369 STA HFZ=

S379 LDA #>BARUF

5389 STA $F4:offset should be in $§2

53949 JSRKR $D8¢@@;convert ASCII to floating poi
nt

S48 BCS NUMEREK

5419 JSR $D9D2; floating point to integer

S429 LDA $F2:3store pointer to first non—-nume
ral

S4=4 STA INDEX

S449 RTS

459 NUMERR LDA #@:;clear result

S469 STA D4

bJ

R

ror "

2}

(N
wm

323

Modifying LADS: Special Notes on Atari and Apple LADS

5478
54846
5490

SSEs
5514
S5249
55349
SS4a
52558
S5568
SS570
55849
5594

SoEd
S61¢
S620

S63E

5640
5659
S66
S670
56849
56906
S7E0
5714
5729
S730
5740

5760
S77E
5784
5790
S8aa
5814

5829
58349
58440
5859
58649
5879
5884

324

STA 4D5S

RTS

GETLNUM JSKR GETNUM:Get number from ERARU

F+{accumulator+1)

LDA $D4:put 1t in LNUM

STA LNUM

LDA %DS

5TA LMNUM+1

JSR FINDLINE:find the line

RTS

LIST JSR GLIST

JMF PROMPT

GLIST LDA ARGPOS:Any arguments?

CHMF INLEN:not if argpos i= at end of 1i

ne

BENE YESARG

JMF MLIST:so list =11

YESARG JSR GETLNUM:get first numeric ar

gument

LDA BEGFPTR:list from beginning of first
line

5TA SAVYEBEG:save beginning pointer

LDA RBEGFTR+1

STA SAVEREG+1

LDA ENDPTR:save end of first line

STA SAVEND

LDA EMDFPTR+1

5TA SAVEND+1

LDA INMDEX:point to second argument

CMF INLEN:;if egual, no second argument

BNE YESARGZ2

LDA FOUNDFLAG:no second arg. so check f

or legal line

BENE NOLIST:1ine wasn™t found. so don’t

list it

L DA SAVEND:restore end of line

STA ENDPTR

LDA SAVEND+1

S5TA ENDFTR+1

JMP OVERZ:and skip

YESARG2 JSR GETLNUM:get second line num

ber

OVERZ2 LDA SAVREG

STA FTR

LDA SAVEREG+1

STA PTR+1

SEC;calculate length

LDA ENDFTE

SEC PTR

Modifying LADS: Special Notes on Atari and Apple LADS

58940
Soaas
59214
2929
S9348

59446
5941
S9509
S969
S9740
784
5994
LHHGH
6B1d
6H20
=% Rg 1)
L@ 46
LB5H
busd
&B7E
608
&9 G
&1a¢
61149
6129
51349
6144
6154
6160

617
6184
5194
L2848
L2149
L2240
62350
L2448

259
626
L2748
L2840
6290
SWg g]
6313
620

STA LLEN

LDA ENDFPTR+1

SBC PTR+1

STA HLEN

BCS GOLIST:;if second # < first#, don™t
list

NOLIST RTS

GOLIST LDA FOUNDFLAG: ENE NOINCH
INC LLEN

BNE NOINCH

INC HLEN

NOINCH JMFP INLIST

OFPENFILE CLC

LDA ARGFPOS

ADC #<BARUF

STA FNAMEPTR:point to filename
LDA #a

ADC #>BABRUF

STA FNAMEFTR+1

LDY ARGPOS:;find end of filename
GETFNAME LDA BARUF.Y

CHMF #155:end of line?

BECQ ENDFNAME:1f =so. exit loop
CMP #44:end of filename?

BEG ENDFNAME:also legal

INY

BENE GETFNAME:i1if no delimiter found...
JMF SYNERR:;it s a syntax error
ENDFNAME TYA;convert Y pointer to lengt
b

SECE

SHC ARGFOS;Y-argpos

STY ARGFOS:3;reset argpos for list
STA FNAMELEN:filename length

LDA #7:CLOSE #7

STA FNUM

JSR CLQOSE

LDA ##;0PEN #7.n.d.filename

STA FSECOND

JSR OFEN:do open

LDX ST:chechk for error

EMI ERRARBRORT:ves., error

RTS

ERRABORT FPLA:disk error. so abort
FLA

JSKR ERRFRINT

JMFP FPROMPT

SAVE LDA #B8:8 means output

325

Modifying LADS: Special Notes on Atari and Apple LADS

6Z58
=323 7]
&EZT7 @
&38a
690
648G
6416
64246
64350
64440
6450
6469
6470

54840
&49
&S0

6519
&5Z29
&S50
5540
6559
L5649
&EST7 8
£580
6590

¥R 2§
66140
620
[=X-37]
6640
6650
L6560

678
6683
6690
L7840
6714
6720
&7 34
67440
&7SH
6760
6774
&78H
6799

326

STA
JSR
LDX
JSR
JSKR
JSR
JMF
MERG
5TA
JSR
LDX
JSR
JMF
ally
LADS
CMP
BENE
is.
IMC
NOTHM
5Y8
JSR
LDA
5TA
LDA
S5TA
JUMF
chan
JMF
LOAD
JMF
FLOA
STA
JSR
AFTE
thi
JSR
LDA
STA
LDA
S5TA
LDA
STA
LDA
STA
LDA
STA
JSRKR
LDA

FDEV

OFENFILE; open the file

FNUM:;all FRINT= go

CHEOUT:;to file

GLIST:;send out listing
CLOSEIT:close file

PROMFT

E LDA #4:;4 for input

FDEV

OFENFILE:; open 1t

FNUM:;all input comes from this file
CHEIN

ENTER:file will be closed automatic

LDA ARGFOS:Any argument?
INLEN

NOTMEM: if argpos< *inlen. then there
=o don’t change RAMFLAG
RAMFLAG

EM JIJMF START

LDA ARGPOS;locate number
GETNUM:iget it

$D4:put addrecscs directly
JUMFVEC+1:;into code
$DS:iself-modifying!
JUMPVEC+2

VEC J5R $FFFF:this address will be
ged by above

FROMPT

JSR FLOAD:;do load
FPROMFPT:done
D LDA #4:4 for read

FDEWV

OFENFILE:;open file

FOFEN LDA FNUM:;all input comes from
s file

X116

#<TEXTERAS

ICEBADR, X

#>TEXTERAS

ICEADR+1 . X

#0

ICBLEN, X

HESH

ICBLEN+1,X

#7

ICCOM, X

CALLCIO

FNUM

o

Modifying LADS: Special Notes on Atari and Apple LADS

68@H ISR X16

6819 CLC:add buffer length to get ending add
s

682d LDA ICEBLEN, X

&£8%8 ADC #<TEXTHAS

6848 STA TEXENDz;update end

6858 LDA ICEBLEN+1,X

6869 ADC #:>TEXTERAS

6878 STA TEXEND+1

4884 LDA ST

6899 CMFP #1Z6:end of file?

L@y BREE NOPRERKR:;if so, don”t print an error
message

69149 ISR ERRPRINT

69229 JMP PROMPT

6239 NOPRERR JSR CLOSEIT:close down file

6949 RTS5:end of load

6958 BREAK CLI:LDA #<BRKMS5G:LDY #>BRKMSG:JISR
FRMSG

6968 PLA:PLA:FLA:S5EC:SEC #2: TAX:FLA:SBC #d:J
SR OUTNUM

6965 LDX 255: TX5: J5R PRNTCR:JdMF EDIT

6979 .FILE D:TAELES.SRC

Atari Machine Language Programming
There is a lot to be learned from the Atari LADS source code.
Both the assembler and the editor are complex, powerful pro-
grams. You might find uses in your own programming for
such general-purpose routines as Valdec, UMOVE, and
DMOVE. You can add functions to the editor such as search
and replace. Or you could simply bypass the editor altogether,
creating LADS-compatible source files using an ordinary word
processor (and thus have access to the search and replace and
other features of the word processor program).

Since maps are invaluable in sophisticated ML program-
ming, you might want to purchase Mapping the Atari (COM-
PUTE! Books, 1983).

Special Apple Notes

The Apple version of LADS works the same as the Com-
modore 64 version with only slight modifications. The Apple
doesn’t have the convenience of Kernal routines to access
DOS, so routines had to be written which could directly access
the DOS file manager routines. This required extensive
changes to the Openl subprogram, which are discussed below.

327

Modifying LADS: Special Notes on Atari and Apple LADS

Also, because the Applesoft tokenize routine takes the
spaces out of the text, it was necessary to put a wedge into
Apple’s CHRGET routine to intercept the BASIC tokenize rou-
tine. And the wedge includes a routine that puts the filename
of the program you want to assemble to the top of the screen
where LADS expects to find it.

Apple Disk Access

The Apple DOS file manager is the part of DOS that handles
all file input and output to the disk. It calls RWTS
(Read/Write to Track/Sector) and is called from the command
interpreter. The command interpreter sends control bytes to
the file manager through the file manager parameter list. You
can access the file manager directly by sending it the param-
eters it requires.

To get the address of the parameter field you JSR to
$03DC. This loads the Accumulator with the high byte and
the Y Register with the low byte of the parameter field. You
can then store these to a zero page location for easy transfer of
the parameters.

Table 11-1. Apple File Manager Parameter List

Parameter
1 2 3/4 5 6 7 8 ,9/10 11 13/1415/1617/18
OPEN 1 * * * * % * * * %
CLOSE 2 i »
DELETE 5 * 4 * * * * "
CATALOG| 6 % * * ¥
LOCK 7 * * * * * *
UNLOCK 8 ¥ * ¥ & * a
RENAME 9 * * * * * % *
INIT 11157 * * > * .
VERIFY 12 * % * * % * * * *

328

Modifying LADS: Special Notes on Atari and Apple LADS

Parameter
1 2 3/4 | 5/6 | 7/8 | 9/10 | 11 |12/14 |15/16 |17/18

READ 1 Byte 3 (1 i * * * &
READ Range 352 X ot T o e
POSITION and 3 3 * * * * * * *
READ 1 Byte
POSITION and 3 4 * * * * * * * *
READ Range
WRITE 1 Byte 4 1 * ¥ * *
WRITE Range | 4 2 % x
POSITION and 4 3 * * * * * * *
WRITE 1 Byte
POSITION and 4 4 * * * * * * * *
WRITE Range
POSITION 10 ¥ " " *

Note: The numbers in the leftmost column represent the
opcode; the numbers across the top of this chart represent
byte positions relative to the start of the parameter list. As-
terisks signify that a byte is required for the operation listed.
A blank space means that this parameter can be ignored.
Nevertheless, the byte positions must be maintained. For
example, to DELETE, you do not need to worry about the
second, third, or fourth bytes—anything can be in them—
but they must exist. The first byte must contain a five, and
the fifth through the eighteenth bytes must be set up as de-
scribed below.

The parameters are expained in sections. The first section
tells you about all the opcodes except for the read, write, and
positions opcodes, because they are slightly different from the
rest. The second section tells you about the read, write, and
position opcodes; the third, about the last set of parameters
that is common to all opcodes.

The first byte of the parameter field is the opcode type.
This parameter can be in the range of 1 to 12.

The second parameter is used only with the INIT
opcodes. If you are using a 48K Apple, the correct value for
this parameter is 157.

The third and fourth parameters are used with the OPEN
and RENAME opcodes. Together they hold the record length
of a random access file. If you are not using a random access
file, you should have a zero in both of these locations. With
the RENAME opcode, these bytes hold the address of the new
name.

329

Modifying LADS: Special Notes on Atari and Apple LADS

The fifth byte holds the volume number. The sixth byte
holds the drive number. The seventh byte holds the slot num-
ber. The eighth byte holds the file type.

The ninth and tenth bytes hold the address of the
filename. The filename must be stored in the address pointed
to by these bytes. It must be padded with spaces.

This section explains the read, write, and position
opcodes.

The first byte holds the opcode. The second byte holds
the subcode.

The next four bytes are used only when you require a po-
sition command. The third and fourth bytes hold the record
number. The fifth and sixth bytes hold the byte offset. To re-
position the pointer in an open file, you can use these bytes to
calculate a new position. The new position is equal to the
length of the file specified in the open opcode times the record
number plus the byte offset.

The seventh and eighth bytes hold the length of the range
of bytes. This is used only when reading or writing a range.

When reading or writing a range of bytes, the ninth and
tenth bytes hold the start address of the range. If you are read-
ing or writing only one byte, then the ninth byte holds the
byte you read or the byte you are going to write.

The following are parameters for all the opcodes.

The eleventh byte is the error byte. It should be checked
each time after you access the file manager. The errors are as
follows:

0: NO ERROR

2: INVALID OPCODE

3: INVALID SUBCODE
4: WRITE PROTECTED
5: END OF DATA

6: FILE NOT FOUND

7: VOLUME MISMATCH
8: 1/0 ERROR

9: DISK FULL

10: FILE LOCKED

The twelfth byte is unused. The thirteenth and fourteenth
bytes are used for the address of the work area buffer. This is
a 45-byte buffer in one of the DOS buffers.

330

y—

Modifying LADS: Special Notes on Atari and Apple LADS

The fifteenth and sixteenth bytes hold the address of the
track /sector list sector buffer. This is a 256-byte buffer in one
of the DOS buffers.

The seventeenth and eighteenth bytes hold the address of
the data sector buffer. This is another 256-byte buffer in one
of the DOS buffers.

Once you have sent the correct parameters, you can call
the file manager by a JSR to $03D6. You must specify if you
want to create new file on disk if the one you are accessing
doesn’t exist. This is done by loading the X Register with a 0.
If you don’t want to create a new file, you can load the X Reg-
ister with a 1. If you don’t want to create a new file and you
try to access a file that doesn’t exist, you will receive an error
number 6 in byte 11 of the parameter field.

Apple LADS uses the routines in the file manager that
read or write one byte from or to the disk at a time. The gen-
eral routine to transfer the parameters from Tables to the file
manager can be found between lines 810 and 920 in the
Openl listing. This is called from the individual subroutines
for opening, closing, reading, and writing. The OPEN routines
require a filename. Lines 580-800 handle the transfer of the
filename from the filename buffer to the specific buffer.

There is also a check to see whether a file about to be
opened has been opened previously. This was needed because
you cannot close a file unless it was previously opened. This is
handled in the close routine (370-570).

The PRINT routine handles all output, and the CHARIN
routine handles all input. There is one input and one output
channel, and all input and output must be handled through a
channel. The bytes which govern this event are set in the
CHKIN and CHKOUT routine. The CHKIN routine (930-940)
sets all input to come from that file. The CHKOUT routine
(950-1030) sets all output to go to that file. The PRINT routine
(1170-1430) and the CHARIN routine (1040-1160) check to see
what channel is currently open, then go to that routine.

The BASIC wedge (1700-2530) handles the tokenizing of
the BASIC text. It checks to see if the text pointer is at $200
(the input buffer). If not, it goes to the normal GETCHR rou-
tine. Otherwise, it checks to see if the first character is a num-
ber. If so, it goes to the insert line routine, and if not, it checks
for the characters ASM. If that is found, the wedge concludes

331

Modifying LADS: Special Notes on Atari and Apple LADS

its work by putting the filename at the top of the screen and
jumping to the start of LADS.

The insert line routine gets the line number, then jumps
to the Apple tokenize routine, which loads the Y Register with
the length of the line plus six and then jumps to the normal
line insert and tokenize routine.

The last subroutine in Openl is the first thing that is
called when you BRUN LADS. It initializes the wedge and sets
HIMEM to the start of LADS.

332

l Appendices

- _. .q.

T aEnm aEEeEnn

How to Use LADS

Here is a step-by-step explanation of how to assemble ma-
chine language programs using the LADS assembler. As you
familiarize yourself with its features and practice using it, you
will likely discover things about the assembler which you'll
want to change or features you’ll want to add. For example, if
you find yourself frequently using an impossible addressing
mode like LDY (15,Y), you might want to insert an error trap
for that into LADS source code. Chapter 11, “Modifying
LADS,” shows you how these customizations can be accom-
plished. But here is a description of the features which are
built into LADS.

Apple and Atari Versions

For the most part, the commands and features of LADS are
the same for all versions: Apple, Atari, and Commodore. A
few differences are discussed at the end of the general instruc-
tions for all versions of LADS. No matter which computer you
use, you should read the body of this chapter to understand
how to get the most out of LADS. Then, if you use an Atari or
an Apple, you can read the special notes at the end of this
appendix which explain some minor variations applicable to
those computers.

General Instructions for Using LADS

LADS assembles from source files. They are particularly easy
and convenient to create; just turn on your computer and pre-
tend you're writing a BASIC program. (To create source files
for the Atari, see “Special Atari Notes”” below.) Commodore
and Apple LADS work with source files created exactly the
way you would write a BASIC program. Here’s an example:
10 *= $0360

15 .S

20 LDA #22:LDY #0

30 STA $1500,Y

40 .END TEST

Use line numbers, colons, and whatever programmer’s
aids (Toolkit, BASIC Aid, POWER, automatic line numbering,
etc.) you ordinarily use to write BASIC itself.

335

Appendix A: How to Use LADS

After you've typed in a program, save to disk in the nor-
mal way. (Tape drive users: See special “Note to Tape Users”
at the end of this appendix.) Notice line 10 in the example
above. The first line of any LADS source file must provide the
starting address, the address where you want the ML program
to begin in the computer’s memory. You signify this with the
*= symbol, which means “program counter equals.” When
LADS sees *=, it sets the Program Counter to the number
following the equals sign. Remember that there must be a space
between the = and the starting address.

The last line of each LADS source file must contain either
the .END pseudo-op or the .FILE pseudo-op. Both of them
link source files together in case you want to chain several
files into one large ML program. However, .FILE names the
next linked source file in the chain whereas .END always
specifies the first source file of the chain. If there is only one
file (as in our example above), you still must end it with .END
and give its name as the first file. More about this shortly.

Also notice that you can use either decimal or hexadeci-
mal numbers interchangeably in LADS. Lines 10 and 30 con-
tain hex; line 20 has decimal numbers.

After you've saved the source code to disk, you can as-
semble it by loading LADS and then typing the name of the
source file in the upper left-hand corner of the screen. (The
Atari version differs here as well.) Let’s go through the process
step by step. Type in the little source program above as if you
were writing a BASIC program. SAVE it by typing:

SAVE “TEST”,8
Then LOAD “LADS”8,1
Type NEW

Clear the screen and type in the source file’s name in the
upper left-hand corner:

TEST

Then cursor down a line or two and type SYS 11000 and
hit the RETURN key. That will activate LADS on the Com-
modore 64, VIC-20, and 8032 PET/CBM. See the special notes
below for using the Atari and Apple versions of LADS.

You will see the assembler create the object code, the bytes
which go into memory and comprise the ML program.

Note: Be sure to remember that every source code program
must end with the END NAME pseudo-op. In our example, we

336

Appendix A: How to Use LADS

concluded with .END TEST because TEST is the name of the
only file in this source code. Also notice that you do not use
quotes with these filenames.

To review: Every source code program must contain the
starting address in the first line (for example, 10 *= $0800)
and must list the filename on the last line (for example, 500
.END SCREENPROG). If you chain several source code pro-
grams together using the .FILE pseudo-op, you end only the fi-
nal program in the chain with the .END pseudo-op. These two
rules will become clearer in a minute when we discuss the
.END and .FILE pseudo-ops.

Features

There are a number of pseudo-ops (direct instructions to the
assembler) available in LADS. The .S in line 15 is such an
instruction. It tells LADS to print the results of an assembly to
the screen. If you add the following lines to our test program,
you will cause the listing to be in decimal instead of hex and
cause LADS to save the object code (the runnable ML pro-
gram) to a disk file called T.OB]J.

10 *= $0360
11 .NH

12 .D T.OBJ

20 LDA #22:LDY #0
30 STA $1500,Y

40 .END TEST

The pseudo-op .NH means no hex (causing the listing to
change from hex to decimal), and .D means create a disk file
containing the ML program which results from the assembly
process.

You can add REM-like comments by using a semicolon.
And you can turn the screen listing off with .NS, anytime.
Turn it on or off as much as you want:

10 *= $0360

11 .NH

12 .D T.OBJECTPROGRAM

15 .NS

20 LDA #22:LDY #0; load A with 22, load Y with zero
30 STA $1500,Y

40 .END TEST

You turn on printer listings with .P and turn them off
with .NP. However, for the .P pseudo-op to work, the .S

337

Appendix A: How to Use LADS

screen listings pseudo-op must also be turned on. In other
words, you cannot have listings sent to the printer without
also having them listed on the screen at the same time. To
have the ML stored into memory during assembly, use .O and
turn off these POKEs to memory with .NO.

The pseudo-ops which turn the printer on and off; direct
object code to disk, screen, and RAM; or switch between hex
or decimal printout can be switched on and off within your
source code wherever convenient. For example, you can turn
on your printer anywhere within the program by inserting .P
and turn it off anywhere with .NP. Among other things, this
would allow you to specify that only a particular section of a
large program be printed out. This can come in very handy if
you're working on a 5000-byte program: you would have a
long wait if you had to print out the whole thing.

Always put pseudo-ops on a line by themselves. Any
other programming code can be put on a line in any fashion
(divided by colons: LDA 15:STA 27:INY), but pseudo-ops
should be the only thing on their lines. (The .BYTE pseudo-op
is an exception—it can be on a multiple-statement line.)

100 .P .S (wrong)

100 .P (right)

110 .S (right)

Here’s a summary of the commands you can give LADS:

P Turn on printer listing of object code (.S must
be activated).

.NP Turn off printer listing of object code.

.0 Turn on POKEs to memory. Object code is
stored into RAM during assembly.

.NO Turn off POKEs to memory.

.D filename Open a file and store object code to disk during
assembly (use no quotes around filename).

FILE filename Link one source file to the next in a chain so

that they will all assemble together as a single
large source program (end the chain with .END
pseudo-op).

.END filename Link the last source file to first source file in a
chain. If you are assembling from a single file,
give its filename as the .END so the assembler
knows where to go for the second pass. Any
source code must have .END as the last line in
the program, whether the source code is con-

338

Appendix A: How to Use LADS

tained within a single disk file or spread across
a multiple-file chain.

.S Turn on screen listing during assembly (re-
quired if you desire a hardcopy listing from a
printer using the .P pseudo-op).

NS Turn off screen listing during assembly.

H Turn on hexadecimal output for screen or
printer listing.

.NH Turn off hexadecimal output for screen or
printer listing. (As a result, the listings are in
decimal.)

*= Set program counter to new address.

A Stable Buffer

The pseudo-op *= is mainly useful when you want to
create data tables. The subprogram Tables in LADS source
code is an example. (A subprogram is one of the source code
files which, when linked together, form an entire ML pro-
gram.) You might want to create an ML program and locate its
tables, equates, buffers, and messages at the high end of the
ML program the way LADS does with its Tables subprogram.
Since you don’t know what the highest RAM address will be
while you're writing the program, you can set *= to some ad-
dress perhaps 4K above the starting address. This gives you
space to write the program below the tables. The advantage of
stable tables is that you can easily PEEK them and this greatly
assists debugging. You'll always know exactly where buffers
and variables are going to end up in memory after an assem-
bly—regardless of the changes you make in the program.

Here’s an example. Suppose you write:

10 *= $5000
20 STA BUFFER
30 *= $6000

40 BUFFER .BYTE00000000000000
50 .END BUFFEREXAMPLE

This creates an ML instruction (STA buffer) at address $5000
(the starting address of this particular ML program), but places
the buffer itself at $6000. When you add additional instruc-
tions after STA buffer, the location of the buffer itself will re-
main at address $6000. This means that you can write an
entire program without having to worry that the location of
the buffer is changing each time you add new instructions,

339

Appendix A: How to Use LADS

new code. It’s high enough so that it remains stable at $6000,
and you can debug the program more easily. You can always
check if something is being correctly sent into the buffer by
just looking at $6000.

This fragment of code illustrates two other features of
LADS. You can use the pseudo-op .BYTE to set aside some
space in memory (the zeros above just make space to hold
other things in a “buffer” during the execution of an ML pro-
gram). You can also use .BYTE to define specific numbers in
memory:

.BYTE 65 66 67 68

This would put these numbers (you must always use deci-
mal numbers with this pseudo-op) into memory at the location
of the .BYTE instruction. An easy way to create messages that
you want to print to the screen is to use the .BYTE pseudo-op
with quotes:

500 FIRSTLETTERS .BYTE “ABCD"”:.BYTE 0

Then, if you wanted to print this message, you could
write:

2 *= $0360

5 LDY #0

10 LOOP LDA FIRSTLETTERS,Y

20 BEQ ENDMESSAGE

30 STA $0400,Y; location of screen RAM on Commodore 64
40 INY

50 JMP LOOP

60 ENDMESSAGE RTS; finished printout

500 FIRSTLETTERS .BYTE “ABCD:.BYTE 0

900 .END MESSAGETEST

Note that using the second set of quotes is optional
with the .BYTE pseudo-op: You can use either .BYTE
“ABCD:BYTE 0 or .BYTE “ABCD”:.BYTE 0. To POKE num-
bers instead of characters, just leave out the quotes: .BYTE 10
15 75. And since these numeric values are being POKEd di-
rectly into bytes in memory, they cannot be larger than 255.

Labels
With LADS, or with other assemblers that permit labels, you
need not refer to locations in memory or numeric values by
using numbers. You can use labels.

In the example above, line 10 starts off with the word

340

Appendix A: How to Use LADS

LOOP. This means that you can use the word LOOP later on
to refer to that location (see line 50). That’s quite a conve-
nience: The assembler remembers where the word LOOP is
used and you need not refer to an actual memory address; you
can refer to the label instead. Throughout this book, this kind
of label is called a PC-type (for Program Counter) or address-
type label.

The other type of label is defined is with an assembly
convention called an equate (an equals sign). This is quite simi-
lar to the way that BASIC allows you to assign value to
words—it’s called “assigning variables” when you do it in
BASIC. In ML, the = pseudo-op works pretty much the way
the = sign does in BASIC. Here’s an example:

5 *= $0360

10 SCREEN = $0400; the location of the 1st byte in RAM of the
64 screen

20 HEARTSYMBOL = 83; the heart figure

30;

40 START LDA HEARTSYMBOL; notice “START” (an address-
type label)

50 STA SCREEN

60 RTS

Line 10 assigns the number $0400 (1024 decimal) to the
word SCREEN. Anytime thereafter that you use the word
SCREEN, LADS will substitute $0400 when it assembles your
ML program. Line 20 “equates” the word HEARTSYMBOL to
the number 83. So, when you LDA HEARTSYMBOL in line
40, the assembler will put an 83 into your program. (Notice
that, like BASIC, LADS requires that equate labels be a single
word. You couldn’t use HEART SYMBOL, since that’s two
words.)

Line 30 is just a REMark. The semicolon tells the assem-
bler that what follows on that line is to be ignored. Neverthe-
less, blank lines or graphic dividers like line 30 can help to
visually separate subroutines, tables, and equates from your
actual ML program. In this case, we've used line 30 to sepa-
rate the section of the program which defines labels (lines 10-
20) from the program proper (lines 40-60). All this makes it
easier to read and understand your source code later.

341

Appendix A: How to Use LADS

Automatic Math

There are times when you will want to have LADS do addi-
tion for you. That’s where the + pseudo-op comes in. If you
write “label+1” you will add 1 to the value of the label.
Here’s how it works:

10 *= 864
20 MEMTOP = $34; top-of-memory pointer for 8032 PET.
30;

40 LDA #0:STA MEMTOP:LDA #$50:STA MEMTOP +1

Here we are putting a new location into the top-of-
memory pointer which the computer uses to decide where it
can store things. (Doing that could protect an ML program
which resides above the address stored in this pointer.) Like
all pointers, it uses two bytes. If we want to store $5000 into
this pointer, we store the lower half (the least significant byte)
into MEMTOP. We'll want to put the number $50 into the
most significant byte of the pointer—but we don’t want to
waste time making a new label. Its just one higher in memory
than MEMTOP. Hence, MEMTOP +1.

You'll also want to use the + pseudo-op command in
constructions like this:

10 *= 864

15 SCREEN = $0400

17;

20 LDA #32; the blank character
30 LDA #0

40 START STA SCREEN,Y
50 STA SCREEN +256,Y
60 STA SCREEN+512,Y
70 STA SCREEN+768,Y
80 INY
90 BNE START

This is the fastest way to fill memory with a given byte.
In this case we're clearing out the screen RAM by filling it
with blanks. But it’s easy to indicate multiples of 256 by just
adding them to the label SCREEN.

A similar pseudo-op command is the #<. This refers to
the least significant byte of a label. For example:

10 *= $0360

20 SCREEN = $8011

25 SCREENPOINTER = $FB
30 ; -

342

Appendix A: How to Use LADS

40 LDA #<SCREEN; LSB (least significant byte of the label
SCREEN, $11)
50 STA SCREENPOINTER

You'll find this technique used several times in the LADS
source code. It puts the LSB (least signficant byte) or the MSB
(most signficant byte) of a label into the LSB or MSB of a
pointer. In the example above, we want to set up a pointer
that will hold the address of the screen RAM. The pointer is
called SCREENPOINTER and we want to put $11 (the LSB of
SCREEN) into SCREENPOINTER. So, we extract the LSB of
SCREEN in line 40 by using # combined with the less-than
symbol. We would complete the job with the greater-than
symbol to fetch the MSB: 60 LDA #>SCREEN. Notice that
these symbols must be attached to the label; no space is al-
lowed. For example, LDA #> SCREEN would create problems.
This LSB or MSB extraction from a label is something you'll
need to do from time to time. The #< and #> pseudo-ops do
it for you.

Chained Files

It is sometimes convenient to create several source code sub-
programs, to break the ML program source code into several
pieces. LADS source code is divided into a number of program
files: Array, Equate, Math, Pseudo, etc. This way, you don't
need to load the entire source code in the computer’s memory
when you just want to work on a particular part of it. It also
allows you to assemble source code far larger than could fit
into available RAM.

In the last line of each subprogram you want to link, you
put the linking pseudo-op .FILE NAME (use no quotes) to tell
the assembler which subprogram to assemble next. Sub-
programs, chained together in this fashion, will be treated as if
they were one large program. The final subprogram in the
chain ends with the special pseudo-op .END NAME, and this
time the name is the filename of the first of the subprograms,
the subprogram which begins the chain. It’s like stringing
pearls and then, at the end, tying thread so that the last pearl
is next to the first, to form a necklace.

Remember that you always need to include the .END
pseudo-op, even if you are assembling from a single, unlinked
source code file. In such a case (where you're working with a
solo file), you don’t need the linking .FILE pseudo-op. Instead,

343

Appendix A: How to Use LADS

refer the file to itself with .END NAME where you list the solo
file’s name. Here’s an illustration of how three subprograms
would be linked to form a complete program:

5 *= 864
10; “FIRST”——first program in chain
20;its first line must contain the start address

40 LDA #20
50 STA $0400
60 .FILE SECOND

Then you save this subprogram to disk (it’s handy to let
the first remark line in each subprogram identify the sub-
program’s filename):

SAVE “FIRST”,8

Next you create SECOND, the next link in the chain. But
here, you use no starting address; you enter no *= since only
one start address is needed for any program:

10 ; “SECOND”

20 INY:INX:DEY:DEX
30 .FILE THIRD
SAVE“SECOND",8

Now write the final subprogram, ending it with the clasp
pseudo-op .END NAME which links this last subprogram to
the first:

10 ; “THIRD”
20 LDA #65:STA $0400
30 .END FIRST

SAVE “THIRD”,8

When you want to assemble this chain, just type FIRST in
the upper left-hand corner of the screen, SYS to LADS, and it
will assemble the entire chain.

If you want the object code (the finished ML program)
stored in the computer’s memory during the LADS assembly,
add this line to FIRST above:

35.0

If you want to save the object code as an ML program on
disk that can be later loaded into the computer and run, add
this line to FIRST:

344

Appendix A: How to Use LADS

36 .D PROGRAMNAME

When LADS is finished assembling, there will be an ML
program on disk called PROGRAMNAME. You can load it
and SYS 864 (that was the start address we gave this pro-
gram), and the newly assembled ML program will execute.

One additional pseudo-op is the #”. It is sometimes useful
when you want to load the Accumulator with a particular
ASCII character and don't offhand recall the numerical value.
The letter A is 65 in the ASCII code. If you LDA #65:STA
SCREEN, you would store the letter A to the screen. But, for
convenience, you can LDA #”A:STA SCREEN. You can, in
other words, use the #” followed by the character itself rather
than by its ASCII code number.

Rules for LADS
Here are the rules you need to follow when writing ML for
LADS to assemble:

1. In general, all equate labels (labels using an equals sign)
should be defined at the start of your program. While this isn’t
absolutely necessary for labels with numbers above 255 (see
SCREEN in the example below), it is the best programming
practice. It makes it easier for you to modify your programs
and simplifies debugging. LADS itself locates all its equate la-
bels in the subprogram Defs, the first subprogram in its chain
of source code files.

What's more, it is necessary that any equate label with a
value lower than 256 be defined before any ML mnemonics
reference that label. So, to be on the safe side, just get into the
habit of putting all equate labels at the very start of your
programs:

10 *= 864

20 ARRAYPOINTER = $FB; (251 decimal), a zero page address

30 OTHERPOINTER = $FD; (253 decimal), another zero page
address

50 LDY #0:LDA $41
60 STA ARRAYPOINTER,Y
70 SCREEN = $8000

Notice that it’s permissible to define the label SCREEN
anywhere in your program. It’s not a zero page address. You
do have to be careful, however, with zero page addresses (ad-
dresses lower than 255). So most ML programmers make it a

345

Appendix A: How to Use LADS

habit to define all their equates at the start of their source
code.

2. Put only one pseudo-op on a line. Don’t use a colon to
put two pseudo-ops on a single line:

10 *= 864
20 .O:NH (wrong)
30.0 (right)

40 .NH (right)

The main exception to this is the .BYTE pseudo-op. Sometimes
it’s useful to set up messages with a zero at their end to de-
limit them, to show that the message is complete. When you
delimit messages with a zero, you don’t need to know the
length of the message; you just branch when you come upon
a zero:

10 *= 864
20 SCREEN = $0364
30 ;
40 LDY #0
50 LOOP LDA MESSAGE,Y:BEQ END; loading a zero signals
end of message.
60 STA SCREEN,Y:INY: JMP LOOP; LADS ignores spaces after a
colon.
70 ; s===emmea= message area here ----------
80 MESSAGE .BYTE “PRINT THIS ON SCREEN":.BYTE 0

Any embedded pseudo-ops like + or = or #> can be
used on multiple-statement lines. The only pseudo-ops which
should be on a line by themselves are the I/O (input/output)
instructions which direct communication to disk, screen, or
printer, like .P, .S, .D, .END, etc,

Generally, it’s important that you space things correctly. If
you wrote:

SCREEN= 864
LADS would think that your label was screen= instead of
screen. So you need that space between the label and the

equals sign. Likewise, you need to put a single space between
labels, mnemonics, and arguments:

LOOP LDA MESSAGE
Running them together will confuse LADS:

346

Appendix A: How to Use LADS

LOOPLDA MESSAGE
and
LOOP LDAMESSAGE

are wrong.

It’s fine to have leading spaces following a colon, how-
ever. LADS will ignore those (see line 60 above). Also, spaces
within remarks are ignored. In fact, LADS ignores anything
following a semicolon (see line 70). However, the semicolon
should come after anything you want assembled. You couldn’t
rearrange line 50 above by putting the BEQ END after the re-
mark message. It would be ignored because it followed the
semicolon.

When using the text form of .BYTE, it’s up to you
whether you use a close quote:

50 MESSAGE .BYTE “PRINT THIS"” (right)
60 MESSAGE .BYTE “PRINT THIS (also right)

3. The first character of any label must be a letter, not a
number. LADS knows when it comes upon a label because a
number starts with a number; a label starts with a letter of the
alphabet:

10 *= 864

20 LABEL = 255
30 LDA LABEL
40 LDA 255

Lines 30 and 40 accomplish the same thing and are cor-
rectly written. It would confuse LADS, however, if you wrote:

20 5SLABEL = 255 (wrong)

since the number 5 at the start of the word label would signal
the assembler that it had come upon a number, not a label.
You can use numbers anywhere else in a label name—just
don’t put a number at the start of the name. Also avoid using
symbols like # < > * and other punctuation, shifted letters, or
graphics symbols within labels. Stick with ordinary
alphanumerics:
10 5SLABEL (wrong)
20 LABEL15 (right)
30 *LABEL* (wrong)

4. Move the Program Counter forward, never backward. The
*= pseudo-op should be used to make space in memory. If

347

Appendix A: How to Use LADS

you set the PC below its current address, you would be writ-
ing over previously assembled code:

10 *= 864

20 LDA #15

30 *= 900 (right)

10 *= 864

20 LDA #15

30 *= 864 (wrong, you'll assemble right over the LDA #15)

Special Note to Tape Drive Users

LADS will assemble source code from disk or RAM memory.
It is possible to use the assembler with a tape drive, using the
RAM memory-based version (see Chapter 11). Of course, disk
users can also assemble from RAM if they choose. But tape
users must.

There is a restriction when using a tape drive as the out-
board memory device. You cannot link files together, forming
a large, chained source code listing. The reason for this is that
LADS, like all sophisticated assemblers, makes two passes
through the source code. This means that tape containing the
source code would have to be rewound at the end of the first

ass.
P It would be possible, of course, to have LADS pause at
the end of pass 1, announce that it’s time to rewind the tape
(see Atari notes below), and then, when you press a key, start
reading the source code from the start of the tape. But this
causes a second problem: The object code cannot then be
stored to tape. A tape drive cannot simultaneously read and
write.

The best way to use LADS with a tape drive is to as-
semble from source code in RAM memory and to use the .O
(store object code to RAM pseudo-op). Then, when the fin-
ished object code is in RAM, use a monitor program like
“Tinymon”’ or “Micromon” to save it to tape. If you have ac-
cess to a disk drive, you could construct a version of LADS
which automatically directs object code to tape during assem-
bly using the .D pseudo-op.

Special Atari Notes

The Atari version of LADs is a complete programming
environment. Unlike the Commodore and Apple versions of
LADS, where you use the BASIC program editor to write and

348

Appendix A: How to Use LADS

edit your source code, the Atari version has a special editor
integrated into LADS itself. This is necessary because with
Atari BASIC, you can only enter BASIC instructions. The line

10 *= $0600
is just as illegal as
10 PRIMT “NAME":INPPUT A#

Both are coolly received with an error message. This syntax
checking is fine when working with BASIC, but prevents the
standard BASIC editor from accepting and storing LADS
source code. Once the decision was made to create an entirely
new source code editor, LADS became a self-contained pack-
age. The BASIC cartridge is neither needed nor especially de-
sired. Since LADS takes over the Atari, DOS is the only other
program in memory, freeing up all the RAM ordinarily used
by BASIC.

One note: If you'd rather use a word processor or other
text editor to enter and edit your source code, you can, as long
as your editor will send out numbered statements, in ASCII,
ending with 155’s (ATASCII carriage returns). Most Atari
word processors conform to this; it you're not sure, experiment
with a short source code program. Be sure to end each source
line with a carriage return. You can then load the file into the
LADS editor or assemble directly from disk with the LADS
D:filename command.

Entering LADS

The object code for Atari LADS is typed in with the Atari ver-
sion of MLX, a machine language entry editor. See Appendix
C for details. After you've typed it in, you can save LADS to
disk under the filename AUTORUN.SYS. This will cause
LADS to load and automatically run when you turn on (boot)
your computer and disk drive. LADS as assembled requires at
least 40K of memory. If you have access to a 40K Atari, you
can reassemble the source code to almost any memory loca-
tion you want (see “Programming Atari LADS” in Chapter
11).

If you didn’t save LADS as AUTORUN.SYS, you need to
load it from the DOS menu, then use menu selection M and
run it at address 8000. If you bought the LADS source/object
code disk, LADS will automatically load and run when you in-
sert the disk and turn on your system. LADS will then print

349

Appendix A: How to Use LADS

its prompt, “LADS Ready.” This indicates that LADS is ready
to receive commands or source code.

Using the Editor
You enter your ML source code just as you do in BASIC. To
start a new line, type a line number, then the text, followed by
the RETURN key. To delete a line, type the line number by it-
self, then press RETURN. To insert a line between two exist-
ing lines, just give it a line number that falls between the two.
For example, line 105 will end up between line 100 and 110.
The editor assumes that a line beginning with a line num-
ber should be stored as part of your source code. If your line
starts with leading zeros, these leading zeros will be erased.
As the editor reads the line you've entered, it converts lower-
case to uppercase, and inverse video characters to normal
ones. It will not convert characters within double quotes
(SHIFT-2) or after a semicolon, which marks the start of a
comment. This line:

0100 1da #”a":;jmp ($fffc); FFFC is the reset vector
would become:
100 LDA #”a”:JMP ($FFFC); FFFC is the reset vector

If there is no line number, the editor assumes you've entered
an editor command. Note that if a command has any param-
eters after it, the command must be followed by a space.

Atari Editor Commands

LIST

LIST all by itself displays the entire source program. LIST 150
lists just line 150. LIST 110-160 shows all the lines between
and including lines 110 through 160. If you want to list from a
certain line number to the end of your program, just make the
second line number very large, as in LIST 2000,9999. If you
want to send a listing to the printer, use the SAVE command.

SAVE device:filename

SAVE works just like LIST, but sends the listing to the speci-

fied device with the given filename. To list the entire source w—
code to the printer, use SAVE P:. Be sure to put a space be-

tween the command and the device. To LIST to cassette, use

SAVE C:. When using disk, remember to use D:, for example, e
SAVE D:DEFS.SRC. We recommend that you do use an ex-

tender, such as .SRC (see .FILE below). Check the DOS man-

350

Appendix A: How to Use LADS

ual for examples of legal filenames. You can also save a
portion of the program. SAVE P:,100,150 would list lines 100
to 150 to the printer.

LOAD device:filename

Load will replace any source code in memory with that read
from the specified device. LOAD C: reads from tape, LOAD
D:DEFS.SRC or LOAD D2:INDISK.SRC from disk.

MERGE device:filename

Merge is used to combine two programs. MERGE works just
like ENTER does in BASIC. Instead of the keyboard being
used to accept text, the editor looks to the file for input. After
all the lines have been entered, the editor restores keyboard
control. MERGE does not just append one program to the
other. If there is a line 150 in the program to be merged, it
will replace line 150 in memory. Therefore, MERGE can re-
place selected lines, or add lines to the top or bottom of a pro-
gram in memory. You can use SAVE to list to disk a part of a
program, then use MERGE to add it to another program. You
can have a whole disk full of commonly used routines, then
use MERGE to combine the routines you need, speeding up
the development of large ML programs.

DOS

If used with standard Atari DOS 2.0S, this command will load
and run DUP.SYS, the DOS menu. Remember that DUP.SYS
will erase any program in memory if MEM.SAV is not used.
Now you can manipulate files and display the disk directory.
The DOS command makes an indirect jump through the DOS
vector, location $0A.

SYS address

Transfers control with a JSR to the decimal address following
the SYS. Always put a space between SYS and the address. If
the routine ends with a RTS, control will return to the LADS
editor. If a BRK ($00) is encountered, the editor will also be re-
entered through the breakpoint, and the address where the
BRK was found will be displayed.

LADS (optional device:filename)

Transfers control to the assembler. Although the editor merely
manipulates text source code, it’s as if all of LADS was just
another editor command. When LADS takes control, the left
margin is set to 0, to give a full 40-column width for printout.

351

Appendix A: How to Use LADS

The left margin reverts to 2 when the editor is reentered. If
you give the filename, as in LADS D:DEFS.SRC, then LADS
will assemble the given source code from disk. This is like
Commodore LADS’ default—assembling from disk. If you
leave off the filename, LADS will behave as a RAM-based
assembler, reading the current source code in memory and
assembling it. Unlike Commodore or Apple LADS, where you
change the source code and reassemble a separate version of
LADS dedicated to RAM-based assembly, Atari LADS features
both disk assembly and memory assembly in the same pro-
gram, executing the appropriate code by checking RAMFLAG.
For more information on this, see “Notes on the Structure of
Atari LADS” in Chapter 11.

After an assembly is complete, or if you halt assembly by
hitting the BREAK key, control will return to the editor.

Error Handling

Within the editor, any error will be displayed with Error - and
the error number. This may be Error - 170 for file not found
when you try to load a nonexistent file from the editor, or it
may be an error returned from the assembler. Use your DOS
or BASIC manual for a list of error numbers and error mes-
sages. Any illegal command or a command the editor can't
understand will result in a Syntax Error.

Special Notes for Cassette Users

The filename for the cassette is C:. It is possible to assemble
from cassette. When you see the .END, and hear the single
tone, rewind the tape, press play, and then press any key to
start the second pass. If you're using linked files, each file
must link to the next with .FILE C:. The last source file should
end with .END C:. Assembling from tape is a cumbersome af-
fair in any case. It might be preferable for tape drive users to
keep all source code in memory, then assemble to memory,
using the cassette only to store and retrieve source code.

Pseudo-ops

All the pseudo-ops described above for the Commodore and
Apple versions are fully operative in Atari LADS. A few usage
notes follow:

.O This causes the assembler to POKE the object code into
memory. Its converse is .NO. You must not overwrite the

352

Appendix A: How to Use LADS

assembler, which uses memory from $8000 to approximately
$9FFF. During assembly, the labels are stored below $8000,
descending towards $7000. Only a very long program will
need memory between $7000 and $8000 when it is assembled.
Also avoid overwriting your source code, which starts at
$2000 and works its way up.

A good location for very small routines is in page 6,
$0600-$06FF. During assembly, all of page 5 will be cor-
rupted. You can store your object code fairly safely at $5000
or $6000, assuming your source code in memory is not too
long. You can break your source code into modules, which
will link together with .FILE and .END (see below). If you re-
move all cartridges (or hold down OPTION when you turn on
your machine, which removes BASIC on a 600XL or 800XL),
there will be unused memory from $A000 to about $AFFF,
less screen memory usage.

An alternative to .O is the .D pseudo-op, which stores the
object code to disk. This entirely avoids any memory con-
straints. You can go to DOS and load the object code, then use
the M. RUN AT ADDRESS option to execute and test it.

.D If storing object code to disk, be sure to use the D:, as in .D
D:LADS.OB]J. Storing object code to tape is risky, since an
excessively long leader may be written. Besides, there is no
facility for loading cassette object files without a BASIC loader
program. After the assembly is complete, you can go to the
DOS menu and use menu selection L to load your program,
then selection M to run it. Menu selection M. RUN AT AD-
DRESS requires a hexadecimal number without the dollar
sign.

.P This assumes an 80-column printer. Remember to use it
with .S if you want the assembly listing to also go to the
printer. If the printer is not turned on, assembly will abort and
you will be returned to the editor with an Error - 138.

.FILE Be sure to follow .FILE (or simply .F) with a space, then
D:, followed by the filename. You may get occasional errors if
you don't use an extender. It is recommended that you add
the extender .SRC, as in VALDEC.SRC (SRC for SouRCe). For
example, .FILE D:EVAL.SRC

.END Use this only at the end of the last file in a linked chain
of source code. You can abbreviate it to .E. An example of
proper usage is .END D:DEFS.SRC

353

Appendix A: How to Use LADS

Programming Aids

Following are two utility programs, written in BASIC. Program
A-1 will renumber an Atari LADS source program. Just run it
and follow the prompts. Program A-2 partially converts a file
from the Assembler Editor, EASMD, or MAC/65 assembler to
the LADS syntax. It removes leading spaces after a line num-
ber, trailing spaces at the end of a line, and tucks comments
right next to the operand fields. Into the DATA statements
starting at 500, insert the filenames of the files you want con-
verted. Be sure to make END the last item in the DATA state-
ments. To use LADS to assemble code written for one of these
other assemblers, you must complete the conversion yourself
by adjusting the pseudo-ops. See the descriptions of the LADS
pseudo-ops at the start of this appendix.

Program A-1. Atari LADS Renumber Utility
1% GRAFHICS #:7 ,"Renumber LADS":? ,"-—————-

29 DIM THAAZa) . FEA(26) . F2%{(28) , A% {126)

Z@ 7?7 "Enter filename. Do not use D:":INPUT T
$:F%="D:":F${(Z)=T%

46 FZE="D: TEMF.":FZ2F (LEMIF2%)+1)=T%

S TRAF Z@@: 0FEN #1.4,98.F%: TRAF 4dgad

7 :7 "We will renumber the entire file."

7E 7 27 "What line number do vou want the fi
le”":=7 "to start with?1éd {4 LEFT3";: INFPUT
TH: LNUM=VAL (T$) ’

g 7 7 "What step do vou want between":? "e
ach 1line71@E{3 LEFTX":;: INFPUT T4$: INCR=VALIL(T
£

% OFPEN #2,8.4,"D: TEMP®

133 TRAFP 156: INFUT #1,A%:2=1

113 IF A$(Z.Z)<:" " THEN IF Z<LEN{A%) THEN Z
=Z+1:G07T0 113

138 FRINT #2:LNUM:;A$(Z): LNUM=LNUM+INCF

149 GOTO 14@

158 IF PEEK(195):<>1356 THEN 208

146% CLOSE #1:CLOSE #2:XI0 33,#1,d,8,F$:%XI0 3

Z.HL,. B, 0. F2%

174 7 272 "Finpnished!":END

29t 2 "{BELLYErvror - ":PEEK {(195):;" during re
number " : END

Sag 7 "J{RELL>Cannot ocpen "3;F$:7 "Error - ":iP

EEEK {125) : END

354

Appendix A: How to Use LADS

Program A-2. Atari LADS File Converter Utility

T GRAPHICS #

4 DIM As129) . TH41@a) FSO28) ,F2% (5H)
13 READ T$:7 TH:F="D:":F${Z)=T%:IF T&="EpND"
THER END

2 FZ2$="D:TEMP,.":F2%(LEN{F2$)+1)=T%

5 OOFEN #1.4,8.F%

i OFEN #2.8,.%,"D: TEMRE"

I@ TRAF 173: INPUT #1.A8%:1IF A%{1,1)="3" THEN
AS=A% (2)

135 Z=LEN(AF)

144 IF A%$(Z.

=" " THEN Z=Z-1:60T7T0 144

L}
142 As=A%{l.7):12=
144 TF A% iZ.7Z¥<x" " THEN 7=Z+1:G0T0 144
145 S§Z=7Z:72=7+1
145 IF a%{Z.7y=" " THKEN =Z+1:G0T2 148
147 T3=A%{Z):0%=AF(1.87Z):A%(57Z+1)=TH:Z=LEM(A
$):IF THE{I.1)=":" THEN 189
128 IF AFLZ.Z3="2" THEN Z=7Z-1:1IF Z THEN 1549
122 SI=2:2Z=2Z -1:1IF Z7# THEM 1&9
154 IF A% {Z.ZIy=" " THEN Z=Z-1:60T0 154
1546 T$4=A43(57):8%=A% 1 ,72:A%(Z+1)}=T%
152 FRINT #2Z2:6%:G070 134
78 CLOSE #1:CLOSE #$#2:%X70 Z3.#1,.48,8,.F6:X10 =

2.8H1,8,.60, F2%5:60T7T0 149
188 REW FUT YOUR FILERNAMES HERE
19# REM E.G. DATA DEFS.SRC.EVAL.S5RC.END

Special Apple Notes

Once you have typed in Apple LADS, you must BSAVE it to
disk. The start address is $79FD and the length is $1674. To
execute LADS you BRUN the binary file. After it loads and
sets up its special wedge (see Chapter 11 for details on this
wedge), you will be prompted with the BASIC prompt and a
cursor. You can now type in your files and save them just as
you would an Applesoft file. After saving the program to disk,
you assemble it by typing:

ASM filename

Make sure you have a space between ASM and your filename.
If you do not have the space, you will get a syntax error. With
the wedge in, the BASIC tokenize routine does not execute, so
you cannot type in BASIC programs after you BRUN LADS.
Otherwise, all the features of Apple LADS operate as de-
scribed under the general instructions at the start of this
chapter.

355

LADS Object Code

LADS will run on the Commodore 64, VIC-20, PET/CBM,
Atari, and Apple computers. If you have a Commodore or
Atari you should use the “MLX" machine language editor to
enter the object code for LADS. Complete instructions on how
to enter the object code using MLX, as well as the MLX pro-
grams, can be found in Appendix C. PET/CBM owners may
find it convenient to use their built-in machine language mon-
itor to make the changes shown in Programs B-3a and B-3b.
Apple users should use the Apple built-in monitor and enter
the hex data found in Program B-5. Additional instructions for
the use of LADS can be found in Appendix A, “How to Use
LADS.”

LADS is nearly 5K long, and for those who prefer not to
type it in, it can be purchased on a disk by calling COMPUTE!
Publications toll free at 1-800-334-0868. Be sure to state
whether you want the Commodore, Atari, or Apple disk.

Program B-1. Commodore 64 LADS: MLX Format

110090 :169,000,160,048,153,113,123
11996 :062,136,208,250,169,248,047
11912 :133,176,133,955,141,135,009
11918 :062,169,042,133,177,133,214
11924 :056,141,136,062,169,001,069
11939 :141,157,062,185,009,004,059
11936 :201,032,240,012,176,003,180
11042 :024,105,064,153,150,061,079
11048 :200,976,025,043,153,150,175
11054 :061,200,185,000,094,201,185
11060 :032,208,226,136,132,183,201
11066 :032,248,049,032,184,050,141
11872 :169,000,141,119,062,332,375
11878 :104,051,173,138,062,208,038
11984 :063,032,133,056,169,230,247
11099 :032,210,255,169,076,032,088
11996 :210,255,169,065,032,210,005
11192 :255,169,068,032,210,255,059
11198 :169,083,032,210,255,032,113
11114 :133,9056,173,128,062,208,098
11120 :011,169,068,133,251,169,145
11126 :061,133,252,032,219,050,097
11132 :173,122,062,133,253,141, 240
11138 :115,062,173,123,062,133,030

357

Appendix B: LADS Object Code

11144 :254,141,116,962,032,225,198
11150 :255,173,119,962,240,003,226
11156 :076,168,046,032,104,051,113
11162 :169,000,141,127,062,141,026
11168 :137,062,172,138,062,208,171
11174 :003,076,198,043,140,158,016
11180 :062,173,156,062,240,012,109
11186 :032,142,056,032,063,056,047
11192 :032,103,056,032,063,056,014
11198 :173,149,062,240,003,032,081
11204 :059,055,076,106,850,173,203
11219 :114,062,240,023,201,003,077
11216 :208,114,169,001,141,114,187
11222 :062,173,071,061,208,104,125
11228 :169,008,024,109,113,062,193
11234 :141,113,062,876,185,045,380
11240 :173,138,862,240,057,160,038
11246 :255,200,185,068,061,240,223
11252 :046,153,150,061,201,032,119
11258 :208,243,200,185,068,061,191
11264 :201,061,208,003,076,233,014
11270 :045,162,000,142,158,062,063
11276 :138,153,150,061,185,068,255
11282 :061,240,008,157,068,061,101
11288 :232,290,076,9016,044,157,237
11294 :068,061,076,198,043,032,252
11309 :130,048,032,036,048,076,150
11306 :198,043,173,089,061,201,039
11312 :064,176,006,173,090,061,106

18 :238,137,9062,073,128,141,065
11324 :120,062,032,207,048,076,093
11330 :197,044,160,0090,140,127,222
11336 :062,173,071,061,201,032,160
11342 :240,903,076,071,0347,185,188
11348 :072,061,201,065,144,003,118
11354 :238,127,062,153,089,061,052
11360 :200,185,072,061,240,022,108
11366 :153,089,061,201,065,144,047
11372 :003,238,127,062,200,185,155
11378 :072,061,240,006,153,089,223
11384 :061,076,112,044,136,140,177
11390 :126,062,173,128,062,208,117
11396 :064,173,127,062,208,162,160
11402 :169,089,133,251,169,061,242
11408 :133,252,160,000,173,089,183
11414 :061,201,048,176,007,824,155
11420 :230,251,144,002,230,252,241
11426 :177,251,240,916,201,041,064
11432 :2490,012,201,044,240,908,145

358

Appendix B: LADS Object Code

11438
11444
11459
11456
11462
11468
11474
11489
11486
11492
11498
11504
115108
11516
11522
11528
11534
11549
11546
11552
11558
11564
115709
11576
11582
11588
11594
11600
11606
11612
11618
11624
11630
11636
11642
11648
11654
11660
11666
11672
11678
11684
11690
11696
11702
11708
11714
11720
11726

:201,032,240,004,200,976,159
:162,044,072,152,872,169,083
:000,145,251,832,219.05@-115
:104,168,104,145,251,173,113
:989,061,201,035,240,063,119
:201,0490,249,023,173,114,227
: 062,201 ,008,240,055,201,209
:003,208,113,169,008,024,229
:109,113,062,141,113,062,054
:076,185,045,172,126,062,126
:185,089,061,201,041,240,0827
:016,173,114,062,201,001,039
:208,009,169,016,024,109,013
:113,062,141,113,062,173,148
:114,062,201,006,240,083,196
:076,126,045,076,153,045,017
:173,138,062,208,003,076,162
:126,045,0856,173,122,062,092
£229,253,072,173,123,062,170@
:229,254,176,014,201,255,137
:240,004,104,076,010,048,008
:104,016,012,0876,062,045,103
:240,004,104,076,010,048,320
:104,016,003,076,010,048,057
:0956,233,002,141,122,062,166
:169,000,141,123,062,076,127
:126,045,172,126,062,136,229
:185,989,061,201,044,208,100
: 004,200,076 ,242,046,173,059
:113,062,201,076,208,003,243
:076,135,045,173,123,062,200
:208,085,173,114,062,201,179
:0906,176,013,201,002,240,236
:009,169,004,024,109,113,032
:062,141,113,062,032,130,159
+9055,9832,168,955,076,233,235
:945,172,126,062,185,089,045
:961,201,041,2908,005,169,057
:108,141,113,962,876,227,1@5
:@45,173,090,061,201,034,244
:208,006,173,091,061,141,073
:122,062,173,114,062,201,130
:001,208,209,169,008,024,021
:109,113,062,141,113,062,008
:076,126,945,032,130,055,134
:076,233,045,173,114,062,123
:201,002,240,004,201,007 ,081
:208,012,173,113,062,024,324
:105,008,141,113,062,076,199

359

Appendix B: LADS Object Code

11732
11738
11744
11758
11756
11762
11768
11774
11780
11786
11792
11798
11804
11810
11816
11822
11828
11834
11840
11846
11852
11858
11864
11879
11876
11882
11888
11894
11900
11906
11912
11918
11924
11930
11936
11942
11948
11954
11960
11966
11972
11978
11984
11990
11996
12092
12008
12014
12020

360

:227,045,201,906,176,009,108
£173,113,062,024,105,0812,195
:141,113,062,032,130,055,245
:@32,194,055,173,138,062,116
:208,003,076,165,046,173,139
:156,062,208,003,076,165,144
:046,173,158,062,208,062,189
:173,152,062,240,042,169,068
:020,056,229,211,141,139,032
:062,032,204,255,162,004,217
:032,201,255,172,139,062,109
:016,005,160,002,876,031,056
:046,169,032,032,213,255,004
:136,208,250,032,204,255,895
:162,001,032,198,255,169,089
:020,133,211,169,150,133,094
:251,169,061,133,252,032,182
:046,056,169,030,056,229,132
:211,141,140,062,169,030,049
£133,211,173,152,0862,240,017
:031,032,204,255,162,004,252
:032,201,255,172,140,062,176
:240,010,048,008,169,032,083
:032,210,255,136,208,250,161
:@32,204,255,162,001,032,018
:198,255,832,155,056,173,207
:150,062,240,017,201,001,015
:208,005,169,060,076,127,251
:046,169,062,032,210,255,130
:032,192,056,173,159,062,036
:240,019,032,063,056,169,203
:059,032,210,255,169,000,099
£133,251,169,002,133,252,064
:032,046,056,032,133,856,253
:173,119,062,208,003,876,233
:140,043,173,138,062,208,162
:027,238,138,062,173,115,157
:062,133,253,173,116,062,209
:133,254,032,204,255,169,207
:091,832,195,255,0832,248,185
:049,076,061,043,032,204,149
:255,169,001,832,195,255,085
:169,002,032,195,255,173,010
:152,062,240,021,032,204,157
:255,162,004,932,201,255,105
:169,9013,832,219,255,832,169
:204,255,169,004,032,195,067
:255,076,116,164,185,889,099
:061,201,088,240,101,136,047

Appendix B: LADS Object Code

12026
12032
12038
12044
12050
12056
12062
12068
12074
12080
12086
12092
12098
12104
12110
12116
12122
12128
12134
12140
12146
12152
12158
12164
12179
12176
12182
12188
12194
12200
12206
12212
12218
12224
12230
12236
12242
12248
12254
12260
12266
12272
12278
12284
12290
12296
12302
12308
12314

:136,185,089,061,201,041,195
:208,003,976,231,044,173,223
:123,062,208,015,173,114,189
:062,201,002,240,082,201,032
:005,249,978,201 ,001,240,015
:122,173,114,062, 201,001,185
:208,012,173,113,062,024,110
:105,024,141,113,062,076,045
:227,045,173,114,062,201,096
: 005,240 ,008,169,049,032,039
:218,047,076,071,047,173,174
:113,062,024,105,028,141,021
:113,062,076,227,045,032,10°9
:167,056,032,142,056,169,182
:987,133,251,169,962,133,145
:252,032,046,056,932,133,123
:056,076,233,045,173,123,028
:062,208,068,173,114,062,015
:201,002,208,012,169,016,198
:024,109,113,062,141,113,158
:962,076,126,045,201,001,113
:240,016,201 ,003,240,012,064
: 201,005,240 ,008,169,050,831
:032,218,047,0876,071,047,111
:169,020,024,109,113,062,123
:141,113,062,185,091,061,0829
:201,089,208,010,173,113,176
:062,201,182,240,003,076,152
:025,047,076,126,045,173,142
:114,062,201,002,208,012,255
:169,024,024,109,113,062,163
:141,113,062,076,227,045,076
:201,001,240,016,201,003,080
:240,012,201,005,240,008,130
:169,051,032,218,047,376,823
:071,047,169,028,024,109,140
:113,062,141,113,062,076,909
:227,045,141,139,062,149,202
:141,062,142,140,062,169,179
:186,032,210,255,104,179,161
:104,168,152,072,138,0872,172
:152,032,205,189,173,139,106
:062,172,141,062,174,1408,229
:062,096,160,000,152,153,187
:068,061,200,192,080,208,043
:248,096,032,133,056,032,093
:167,056,032,142,056,169,124
:198,133,251,169,061,133,197
:252,032,046,056,032,133,065

361

Appendix B: LADS Object Code

12320
12326
12332
12338
12344
12350
12356
12362
12368
12374
12388
12386
12392
12398
12404
124109
12416
12422
12428
12434
12440
12446
12452
12458
12464
12470
12476
12482
12488
12494
12500
12506
12512
12518
12524
12530
12536
12542
12548
12554
12560
12566
12572
12578
12584
12590
12596
12602
12608

362

: 056,076,126 ,045,1648,255,238
:200,185,068,061,240,086,110
:201,032,208,246,200,200,107
:1406,132,062,056,165,176,013
$237,132,062,133,176,165,193
£177,233,000,133,177,160,174
:000,185,068,061,873,128,071
145,176 ,200,185,068,061,141
:201,032,240,005,145,176,111
:076,076,048,200,185,068,227
t@61,201,061,240,059,136,082
:165,253,145,176,2008,165,178
:254,145,176,174,132,062,023
:202,160,000,189,068,061,022
:240,008,153,068,061,232,110
:200,076,113,048,153,068,012
:061,096,032,133,056,032,026
:142,056,032,167,9056,169,244
:255,133,251,169,061,133,118
:252,032,046,056,032,133,185
:056,076,202,048,136,140,042
:133,062,173,128,062,208,156
:023,200,200,200,140,121,024
:062,169,068,024,109,121,211
:062,133,251,169,061,105,189
:000,133,252,032,219,050,100
¢172,133,062,173,122,062,144
£145,176,173,123,062,200,049
:145,176,104,104,076,233,014
:045,173,135,062,133,178,164
£173,136,062,133,179,032,159
:221,049,169,255,141,155,184
:062,056,165,176,229,178,066
165;177,229,179,176,099,231
:162,000,056,165,178,233,006
:0062,133,178,165,179,233,148
:009,133,179,169,000,177,129
:178,048,012,165,178,208,019
:002,198,179,198,178,232,223
:076,253,048,165,178,141,103
:142,062,165,179,141,143,089
:062,177,178,205,120,062,058
:240,003,076,063,049,232,179
:142,121,062,162,001,173,183
:137,062,240,004,200,032,203
£221,049,200,185,089,061,083
:240,083,201,048,144,079,079
£232,209,178,240,241,173,051
:142,062,133,178,173,143,127

Appendix B: LADS Object Code

12614
12620
12626
12632
12638
12644
12650
12656
12662
12668
12674
12680
12686
12692
12698
12704
12710
12716
12722
12728
12734
12749
12746
12752
12758
12764
12770
12776
12782
12788
12794
12800
12806
12812
12818
12824
12830
12836
12842
12848
12854
12860
12866
12872
12878
12884

12899
12896
12902

:962,133,179,032,221,049,234
:976,225,048,173,155,062,047
:048,001,096,173,138,062,088
:208,002,240,023,032,167,248
:056,032,142,056,032,063,219
:956,169,239,133,251,169,093
:061,133,252,032,046,056,174
:032,133,056,104,104,173,202
:113,062,041,0631,201,016,070
:240,008,173,150,062,208,197
:003,076,227,045,076,126,171
:945,236,121,062,240,0803,075
:076,063,049,238,155,062,017
:240,0903,032,230,0849,172,106
:121,062,173,137,062,240,181
:001,200,177,178,141,122,211
:062,200,177,178,141,123,323
:062,173,150,062,240,010,101
:201,902,208,039,173,123,147
:062,141,122,062,173,149,125
:062,240,019,024,173,147,087
:062,109,122,062,141,122,046
:062,173,148,062,109,123,111
:062,141,123,062,173,138,139
:062,208,001,096,076,063,208
:949,165,178,208,002,198,252
£179,198,178,096,032,167,852
:056,169,057,133,251,169,043
:062,133,252,032,046,056,051
:932,133,056,096,032,204,029
:255,169,001,832,195,255,133
:169,001,133,184,169,008,152
:133,186,169,003,133,185,047
:169,150,133,187,169,061,113
:133,188,032,193,225,096,117
:169,002,133,184,169,008,177
:133,186,169,002,133,185,070
:169,150,133,187,169,061,137
:133,188,832,193,225,832,877
:204,255,096,169,004,133,141
:184,169,004,133,186,169,131
:009,133,183,032,193,225,058
:932,204,255,096,032,204,121
:255,169,000,133,147,133,141
:144,169,008,133,186,169,119
:150,133,187,169,061,133,149
:188,032,117,225,032,204,120
:255,165,043,133,167,165,000
:044,133,168,096,160,000,191

363

Appendix B: LADS Object Code

12998
12914
12920
12926
12932
12938
12944
12959
12956
12962
12968
12974
12980
12986
12992
12998
13004
13010
13016
13022
13028
13034
13040
13046
13852
13058
13064
13870
13076
13082
13088
13094
131029
13106
13112
13118
13124
13130
13136
13142
13148
13154
13164
13166
13172
13178
13184
13190
13196

364

:162,255,232,185,028,060,006
:205,068,061,240,010,200,139
:200,200,224,057,208,240,225
:076,232,043,200,185,028,122
:060,205,069,061, 240,006,035
:200,200,208,224,240,238,168
:200,185,028,060,205,070,124
:@61,240,005,200,208,210,050
:240,224,173,071,061,201,102
:032,240,004,201,000,208,079
£213,189,196,060,141,114,0857
:062,188,252,060,140,113,221
:062,076,201,043,162,001,213
:@32,198,255,162,006,032,103
:228,255,202,208,250,032,087
£228,255,201,172,240,014,028
:169,181,133,251,169,061,144
:133,252,032,046,056,076,0837
:200,046,096,160,000,177,127
:251,240,004,200,076,221,190
:050,140,178,061,136,169,194
:000,141,122,062,141,123,055
:062,162,001,142,140,062,041
£177,251,041,015,141,176,023
:061,141,179,061,169,003,095
:141,177,961,141,1808,061,251
:202,240,018,032,045,051 ,084
£173,176,061,141,179,061,837
¢173,177,061,141,180,061,945
:076,008,051,238,140,062,089
174,140,062 ,032,084,051,063
:136,206,178,061,208,202,005
:096,024,014,176,061,046, 205
t177,961,014,176,061,046,073
:177,061,024,173,179,061,219
:109,176,061,141,176,061,018
:173,180,061,109,177,061,061
141,177,061,014,176,061,192
:046,177,061,096,024,173,145
t176,061,109,122,062,141,245
:122,062,173,177,061,109,028
:123,062,141,123,062,096,193
:@32,254,047,160,000,149,225
:128,062,140,159,062,140,033
:150,062,140,149,062,173,084
:154,062,208,012,032,228,050
:255,141,117,062,032,228,195
£255,141,118,062,032,228,202
:255,208,008,0832,231,852,158

Appendix B: LADS Object Code

13202
13208
13214
13220
13226
13232
13238
13244
13250
13256
13262
13268
13274
13280
13286
13292
13298
13304
13310
13316
13322
13328
13334
13340
13346
13352
13358
13364
13370
13376
13382
13388
13394
13400
13406
13412
13418
13424
13430
13436
13442
13448
13454
13460
13466
13472
13478
13484
13490

:104,104,076,140,043,201,046
:032,240,239,076,166,051,188
:032,228,255,208,003,076,192
:231,052,201,058,208,003,149
:076,080,052,201,059,208,078
:115,140,139,062,173,152,189
:@062,240,085,141,159,062,163
:173,139,062,240,006,032,072
:238,051,076,022,052,032,153
:228,255,240,014,201,127,241
:144,003,032,094,052,153,172
:068,061,200,876,199,051,099
:032,142,056,032,063,056,087
:032,155,056,832,133,056,176
:169,000,141,139,062,076,049
:022,052,141,159,062,141,045
:t139,062,160,000,032,228,395
:255,208,007,153,000,002,105
:£172,139,062,096,016,003,230
:032,022,055,153,000,002,012
:200,9076,246,051,032,228,075
:255,240,003,076,014,0852,144
+@32,231,052,173,139,062,199
:208,005,104,104,076,140,153
:043,096,201,177,240,991,114
:201,179,240,095,201,179,102
:208,003,238,149,062,201,139
:172,208,003,076,147,952,198
:201,046,2409,022,201 ,936,336
:240,021,201,127,144,093,032
:@32,094,052,153,068,061,018
:209,076,158,051,141,154,088
:062,096,076,139,053,153,149
: 068,061 ,200,076,006,053,040
:956,233,127,141,131,062,076
:162,255,206,131,062,240,132
:008,232,189,158,160,016,101
:250,048,243,232,189,158, 208
:160,048,007,153,068,061,103
:200,076,115,052,041,127,223
:@96,169,002,141,150,062,238
:076,158,051,169,001,141,220
:150,062,076,158,051,8032,159
£158,051,173,138,062,240,202
:@11,169,042,032,218,255,105
032,155,056 ,8032,133,056,112
£173,128,062,208,032,160,161
:000,185,068,061,201,032,207
:240,004,200,076,173,352,155

365

Appendix B: LADS Object Code

13496
13502
13508
13514
13520
13526
13532
13538
13544
13550
13556
13562
13568
13574
13589
13586
13592
13598
13604
13610
13616
13622
13628
13634
13640
13646
13652
13658
13664
13670
13676
13682
13688
13694
13709
13706
13712
13718
13724
13730
13736
13742
13748
13754
13760
13766
13772
13778
13784

366

:200,132,251,169,068,024,004
£161,251,133,251,169,061,132
:105,000,133,252,032,219,169
:@#50,173,138,062,240,008,105
£173,151,062,240,003,032,101
£213,054,173,122,062,133,203
£253,173,123,062,133,254,194
:104,104,076,140,043,153,078
:068,061,200,192,080,208,017
:248,153,068,061,032,228,004
:255,032,228,255,240,006,236
:169,000,141,154,062,096,104
:169,001,141,119,062,096,876
:162,000,032,228,255,240,155
:044,201,058,240,040,201,928
:032,240,243,201,059, 240,309
:032,201,044,240,015,201,245
:041,240,011,157,129,061,157
$232,153,068,061,200,076,0358
:008,053,142,129,062,153,0877
:068,061,200,0832,0877,053,027
:076,158,051,141,139,062,169
:169,000,142,129,062,153,203
:068,061,032,077,053,173,018
:139,062,076,161,051,169,218
:000,141,122,062,141,123,155
:062,170,014,122,062,046,048
:123,062,014,122,062,046,007
:123,062,014,122,062,046,013
:123,062,014,122,062,046,019
:123,062,189,129,061,201,105
:065,144,002,233,007,041,894
:015,013,122,062,141,122,083
:@62,232,236,129,062,208,031
:209,238,128,062,169,001,171
:096,192,000,240,014,174,086
:138,062,208,009,072,152,017
:@72,032,036,048,104,168,098
:104,153,068,061,200,032,906
:228,255,153,068,061,200,103
:201,066,208,104,169,000,148
:141,144,062,173,138,062,126
:240,023,140,141,062,173,191
:156,062,240,015,032,142,065
:056,032,063,056,032,103,022
:056,032,063,056,172,141,206
:062,032,228,255,153,068,234
:061,200,201,032,208,245,133
:032,228,255,153,068,061,245

Appendix B: LADS Object Code

13790
13796
138022
13808
13814
13820
13826
13832
13838
13844
13850
13856
13862
13868
13874
13880
13886
13892
13898
13904
13910
13916
13922
13928
13934
13940
13946
13952
13958
13964
13970
13976
13982
13988
13994
14000
14006
14012
14018
14024
14030
14036
14042
14048
14054
14060
14066
14072
14078

:200,201,034,208,069,032,198
:228,255,208,003,076,186,160
:@54,201,058,208,003,076,066
:189,054,201,059,208,012,195
:@932,238,051,174,152,062,187
:142,159,062,076,186,054,163
:201,034,208,003,076,227,239
:053,174,138,062,208,009,140
:032,0832,056,076,227,053,234
:976,139,057,153,068,061,062
170,140,141 ,062,032,248,051
:055,172,141,062,200,076,226
:227,053,162,000,142,145,255
:062,157,169,061,232,173,130
:145,062,208,117,032,228,074
:255,240,067,201,058,240,093
:063,201,059,208,012,032,125
:238,051,174,152,062,142,119
:159,062,076,126,054,141,180
:109,061,173,138,062,208,063
:9%13,173,109,061,201,032,163
:208,211,032,032,856,876,195
:049,054,173,109,061,153,185
:068,061,200,201,032,240,138
:924,201,000,240,020,201,028
:058,240,016,157,169,061,049
:232,076,049,054,238,145,148
:062,141,110,061,076,079,145
:054,169,169,133,251,169,055
:061,133,252,140,141,062,161
:@32,219,0590,174,122,062,337
:032,248,055,172,141,062,094
:169,000,162,005,157,169,052
:061,202,208,250,076,049,242
:954,173,138,062,208,003,040
:932,032,056,173,110,061,128
:201,058,240,003,032,231,179
:052,141,154,062,238,158,225
:062,104,104,173,138,062,069
:240,008,173,156,062,240,055
:003,076,108,046,076,140,143
:043,173,138,062,201,002,063
:208,001,096,832,204,255,246
:162,002,032,201,255,056,164
£173,122,062,229,253,141,186
:120,062,173,123,062,229,237
:254,141,121,062,169,000,221
:032,210,255,173,120,062,076
:208,003,206,121,062,206,836

367

Appendix B: LADS Object Code

14084
14090
14096
14102
14198
14114
14120
14126
14132
14138
14144
14150
14156
14162
14168
14174
14180
14186
14192
14198
14204
14210
14216
14222
14228
14234
14249
14246
14252
14258
14264
14270
14276
14282
14288
14294
14300
14306
14312
14318
14324
14330
14336
14342
14348
14354
14360
14366
14372

368

:120,062,208,238,173,121,158
:062,208,233,0832,204,255,236
:162,001,032,198,255,396,248
:056,233,127,141,131,062,004
:162,255,206,131,062,240,060
:008,232,189,158,160,016,029
:250,048,243,232,189,158,136
:160,048,007,153,000,992,160
:200,076,943,955,041,127,082
:096,160,000,162,000,185,149
068,061 ,201,043,240,004,169
: 200,076 ,063,055,200,185,881
:068,061,032,090,055,176,046
:018,157,129,061,232,0876,243
:@74,055,201,0858,176,006,146
:056,233,048,056,233,208,160
:096,169,000,157,129,061, 209
:169,129,133,251,169,061,250
£133,252,032,219,050,173,203
:122,062,141,147,062,173,857
:123,062,141,148,062,096,244
£173,138,062,208,004,032,235
:@32,056,096,173,156,062,199
:240,017,032,204,255,162,028
$001,032,198,255,174,113,153
:062,032,072,056,832,063,215
:956,174,113,062,032,248,077
:055,096,173,138,062,208,130
2004 ,032,032,056,096,173,853
:156,062,240,006,174,122,170
:062,032,072,056,174,122,190
:062,076,248,055,173,138,174
:062,208,007,032,0832,056,981
:032,032,056,096,173,156,235
:062,240,006,174,122,062,106
:032,072,056,174,122,062,220
:@32,248,055,173,156,062,178
:249,014,173,157,062,240,088
:003,032,063,056,174,123,171
:962,032,072,056,174,123,245
:062,076,248,055,142,121,180
:@62,173,153,062,240,005,177
:160,000,138,145,253,173,101
:151,062,240,022,032,204,205
:255,162,002,032, 201,255,151
¢173,121,062,932,2190,255,143
:@032,204,255,162,001,032,198
:198,255,024,169,001,101,010
:253,133,253,169,000,101,177

Appendix B: LADS Object Code

14378
14384
14390
14396
14402
14408
14414
14420
14426
14432
14438
14444
14450
14456
14462
14468
14474
14480
14486
14492
14498
14504
14510
14516
14522
14528
14534
14540
14546
14552
14558
14564
14570
14576
14582
14588
14594
14600
14606
14612
14618
14624
14630
14636
14642
14648
14654
14660
14666

:254,133,254,096,160,000,171
:177,251,240,010,032,210,200
:255,032,186,056,200,076,091
:048,056,096,169,032,032,237
:210,255,032,186,056,096,133
:142,140,062,173,157,062,040
:240,011,138,032,114,057,158
:@32,227,056,174,140,062,007
:@96,169,000,032,205,189,013
:032,227,056,174,140,062,019
:@96,173,157,062,240,014,076
:165,254,032,114,057,165,127
:253,032,114,057,032,022,112
:@57,096,166,253,165,254,087
:932,205,189,032,022,857,151
:096,169,013,032,210,255,139
:032,186,056,096,174,117,031
:062,173,118,062,032,205,028
:189,032,076,057,996,169,001
:0968,133,251,169,061,133,203
:252,032,046,056,096,169,045
:007,032,210,255,169,018,091
:932,210,255,832,155,0856,146
:169,013,032,210,255,096,187
:174,138,062,208,001,096,097
:174,152,062,208,001,096,117
:141,139,062,032,204,255,007
:162,004,032,201,255,173,087
:139,062,032,210,255,0832,172
:204,255,162,001,032,198,044
£255,173,139,062,096,174,097
:138,062,208,001,096,174,139
:152,062,208,001,096,032,017
:204,255,162,004,032,201,074
£255,173,157,062,240,009,118
:173,140,062,032,114,057,062
:076,013,057,169,000,174,235
:140,062,032,205,189,032,156
:204,255,162,001,032,198,098
:255,096,174,138,062, 208,185
:001,096,174,152,062,208,207
:001,096,032,204,255,162,014
:004,032,201,255,174,157,093
:062,240,013,165,254,032,042
:114,057,165,253,032,114,017
:@57,076,067,0857,165,254,220
:166,253,032,205,189,032,171
:204,255,162,001,832,198,152
:255,096,174,138,062,208,239

369

Appendix B: LADS Object Code

14672
14678
14684
14690
14696
14702
14708
14714
14720
14726
14732
14738
14744
14750
14756
14762
14768
14774
14780
14786
14792
14798
14804
14810
14816
14822
14828
14834
14840
14846
14852
14858
14864
14879
14876
14882
14888
14894
14900
14906
14912
14918
14924
14930
14936
14942
14948
14954
14960

370

:001,096,174,152,062,208,005
:001,096,032,204,255,162,068
:004,032,201,255,173,118,1087
:062,174,117,062,032,205,238
:189,032,204,255,162,001,179
:032,198,255,096,072,041,336
:015,168,185,852,061,174, 255
:104,074,0874,074,074,168,178
:185,052,061,032,210,255,155
£138,032,210,255,096,201,042
:070,208,008,832,238,857,241
:104,104,076,140,043,201,046
:128,208,006,032,071,058,143
:076,146,057,201,068,208,146
:003,076,127,958,201,089,197
:208,003,076,244,058,201,192
:@78,208,003,0876,053,859,141
:201,079,208,003,076,032,013
:059,201,083,208,003,076,350
£237,059,201,072,208,003,206
:076,007,060,153,068,061,113
:@032,142,056,032,063,056,075
:032,103,056,032,167,056,146
:@32,155,056,169,087,133,082
£251,169,062,133,252,832,099
:046,056,032,133,056,076,117
:@07,059,032,228,255,201,250
:@32,2490,003,076,238,0857,120
:160,000,032,228,255,201,100
:000,240,014,201,127,144,212
:003,032,094,852,153,068,15@
:061,200,076,250,057,132,018
:183,1690,000,185,068,061,161
:240,007,153,150,061,200,065
:@076,019,058,173,138,062,042
:208,006,0832,103,056,0832,215
:063,056,0832,155,056,032,178
:133,056,032,248,049,162,214
:001,032,198,255,832,228,030
£255,032,228,255,032,231,067
:@052,162,000,142,119,062,089
:096,169,046,032,210,255,110
:169,069,032,210,255,169,212
:@78,032,210,255,169,068,126
:@32,210,255,169,032,032,050
:210,255,032,228,255,032,082
:248,057,173,138,062,248,250
:@03,238,119,062,238,138,136
:062,173,115,062,133,253,142

Appendix B: LADS Object Code

14966
14972
14978
14984
14990
14996
15002
150088
15014
15020
15026
15832
15038
15044
15050
15056
15862
15068
15074
15080
15086
15092
15098
15104
15110
15116
15122
15128
15134
15140
15146
15152
15158
15164
15170
15176
15182
15188
15194
15200
15206
15212
15218
15224
15230
15236
15242
15248
15254

:173,116,062,133,254,032,120
:104,951,096,173,138,062,236
:240,939,832,228,255,153,044
: 068,061,160 ,000,032,228,173
:255,240,020,201,127,144,105
:003,032,994,852,153,068,038
:@¢61,153,1590,061,200,076,087
:1409,058,876 ,007 ,959,169,157
:044,153,150,061,200,169,175
:080,153,150,061,200,169,217
:044,153,150,061,200,169,187
:087,153,159,061,200,132,199
:183,032,155,056,932,133,013
:056,238,151,062,032,024,247
:050,162,002,032,201,255,136
:173,115,062,032,210@,255,031
:173,116,062,032,210,255,038
:@032,204,255,162,001,032,138
£198,255,032,205,059,032,239
:231,052,104,104,162,000,117
:142,119,062,076,140,043,052
:173,138,062,240,014,032,135
:951,059,238,152,062,032,067
204,255,162 ,9001,032,198,084
:255,032,228,255,240,0807,255
:201,058,240,006 ,076,007 ,088
:9059,032,231,052,104,104,088
:162,000,142,119,062,076,073
:140,043,169,046,032,210,158
:255,169,079,032,210,255,012
:@32,133,056,169,001,141,062
:153,062,076,007,959,173,066
:138,062,240,205,032,228,191
:255,201,080,240,012,201,025
:@79,240,058,201,083,240,199
:106,201,072,2490,976,169,168
:046,032,210,255,169,078,100
:032,219,255,169,080,032,094
:210,255,0632,133,056,206,214
:152,062,032,204,255,162,195
:0994,032,201,255,169,013,008
:932,2190,255,169,004,832,042
:195,255,032,204,255,162,193
:0901,032,198,255,076,007,177
:959,169,046,032,210,255,129
:169,078,032,210,255,169,021
:@79,032,210,255,832,133,111
:9056,169,000,141,153,062,213
:076,907,859,169,046,032,027

371

Appendix B: LADS Object Code

15260
15266
15272
15278
15284
15290
15296
15302
15308
15314
15320
15326
15332
15338
15344
15350
15356
15362
15368
15374
15389
15386
15392
15398
15494
15410
15416
15422
15428
15434
15449
15446
15452
15458
15464
15470
15476
15482
15488
15494
15500
15506
15512
15518
15524
15530
15536
15542
15548

372

:210,255,169,078,032,210,086
£255,169,072,032,219,255,131
:@32,133,056,169,000,141,187
:157,062,076,007,859,169,192
:046,032,219,255,169,078,202
:932,210,255,169,083,032,199
:210,255,032,133,056,169,023
:000,141,156,062,076,007,128
:059,166,144,208,001,096,110
:169,000,032,072,056,832,859
:063,056,169,021,133,251,141
:169,062,133,252,032,167,013
:056,032,046,056,104,104,114
:076,200,046,169,046,032,835
:210,255,169,083,032,210,175
:255,032,133,056,173,138,009
:062,240,005,169,001,141,102
:156,062,076,007,059,169,019
:046,032,210,255,169,072,024
:@32,210,255,032,133,056,220
:169,001,141,157,062,076,114
:007,059,076,068,065,076,121
:068,089,074,083,082,082,254
:084,083,066,067,083,066,231
: 069,081,066 ,067,967 ,067 ,205
:077,080,066,078,069,076,240
:068,088,074,077,080,083,014
:084,065,083,084,089,083,038
:084 ,088,073,078,089,068,036
:@69,089,068,069,088,068,013
:069,067,073,078,088,073,016
:@78,067,067,080,089,0867,022
: 080,088,083 ,066,067,083,047
:@69,067,065,068,067,067,245
:076,067,084,065,088,084,056
: 065,089 ,084,088,065,084,073
:089,065,080,072,065,080,055
:@076,065,066,082,075,066,040
277,073,066 ,080,076,065,053
:078,068,079,082,065,0869,063
:@079,082,066,073,084,066,078
: 086,067,066 ,086,083,082,104
:@79,076,082,079,082,076,114
:@83,082,067,076,068,067,089
:076,073,065,083,076,080,105
:072,080,080,076,080,082,128
:084,073,083,069,068,083,124
:069,073,084,083,088,084,151
:088,083,067,076,086,0878,154

Appendix B: LADS Object Code

15554 :079,080,001,005,009,000,112
15560 :008,0908,008,001,008,9085,238
15566 :006,001,002,002,000,000,217
15572 :000,002,000,002,004,004,224
15578 :001,000,001,000,000,000,220
15584 :000,9000,000,000,000,008,232
15590 :008,001,001,001,007,008,030390
15596 :008,003,003,003,900,000,253
15602 :003,000,000,000,000,000,245
15608 :000,0990,000,000,161,160,357
15614 :032,096,176,240,144,193,111
15620 :208,162,076,129,132,134,0877
15626 :200,136,202,198,232,230,184
15632 :192,224,225,056,097 ,024,066
15638 :170,168,138,152,072,104,058
15644 :000,048,016,833,001,065,191
15650 :036,080,112,034,098,066,204
15656 :216,088,002,008,040,064,202
15662 :248,120,186,154,184,234,148
15668 :048,049,050,051,052,053,899
15674 :054,055,056,057,065,066,155
15689 :067,068,069,070,000,000,082
15686 :000,000,000,000,000,000,370
15692 :000,000,000,000,000,000,876
15698 :0090,000,000,000,000,000,382
15704 :000,000,000,000,000,000,088
15710 :000,000,000,000,000,000,094
15716 :000,000,000,000,000,000,100
15722 :000,90900,000,000,000,000,106
15728 :000,000,000,000,000,000,112
15734 :0090,009,990,000,000,000,118
157490 :000,000,000,000,000,000,124
15746 :000,000,000,000,000,000,130
15752 :000,099,9000,000,000,000,136
15758 :000,000,000,000,000,000,142
15764 :000,000,000,000,000,000,148
15779 :0090,000,990,000,000,000,154
15776 :000,000,909,000,000,00d,160
15782 :000,000,000,000,000,003,166
15788 :000,0900,000,000,000,000,172
15794 :000,9909,000,0878,079,032,111
15800 :083,084,065,082,084,032,102
15806 :065,068,068,082,069,083,113
15812 :083,000,045,045,045,045,203
15818 :045,045,045,045,045,045,216
15824 :045,045,045,045,045,045,222
15830 :045,045,045,045,032,066,236
15836 :082,065,078,067,072,032,104
15842 :079,085,084,032,879,073,143

373

Appendix B: LADS Object Code

15848 :032,082,065,078,0871,069,117
15854 :000,085,078,068,369,070,096
15860 :073,078,069,068,032,076,128
15866 :065,066,069,076,000,929,043
15872 :029,029,029,029,929,029,174
15878 :029,029,032,078,965,975,058
15884 :069,068,032,076,065,066,132
15890 :069,076,000,829,029,029,250
15896 :029,029,032,060,060,9060,038
15902 :060,069,060,060,060,032,106
15908 :068,073,083,075,032,069,180
15914 :082,082,879,082,032,062,205
15920 :062,062,062,062,062,062,164
15926 :062,032,000,029,829,029,235
15932 :029,029,032,045,945,832,016
15938 :068,085,080,076,073,067,933
15944 :065,084,069,068,032,076,210
15950 :065,066,069,0876,032,845,175
15956 :045,032,000,0829,029,029,248
15962 :029,029,032,0845,045,0832,046
15968 :083,089,078,084,065,088,071
15974 :032,069,082,082,079,082,016
15980 :032,045,045,032,000,000,006

Program B-2. VIC Adjustments to Prog. B-1

To create the VIC-20 version of LADS, change the following lines in
Program B-1:

11930 :141,157,9062,185,000,016,071
11954 :061,200,185,000,316,201,197
12014 :255,076,116,196,185,089,131
12272 :152,032,205,221,173,139,138
12818 :133,188,032,190,225,096,114
12842 :133,188,032,190,225,032,074
12860 :000,133,183,032,190,225,055
12890 :188,032,114,225,032,204,117
13418 :008,232,189,158,192,016,133
13430 :192,048,007,153,068,061,135
14114 :008,232,189,158,192,016,061
14126 :192,048,007,153,000,0802,192
14426 :096,169,000,032,205,221,045
14462 :032,205,221,032,022,057,183
14486 :221,032,876,857,096,169,033
14600 :140,062,832,205,221,0832,188
14654 :166,253,032,205,221,0832,203
14696 :221,032,204,255,162,001,211

374

Appendix B: LADS Object Code

Program B-3a. PET/CBM 4.0 BASIC Adjustments
to Prog. B-1

To create the 4.0 BASIC version of LADS, type in Program B-1 then
change the following bytes:

Address Byte Address Byte Address Byte
2B05 BB 30F4 BD 324E 96
2B07 34 30F6 BE 3252 D4
2BOE BC 30FA BE 3256 DA
2B10 35 30FE BD 325A DB
2B1B 80 3012 BD 325C 56
2B32 80 3106 BE 325D F3
2B39 D1 3108 BD 3262 28
2E07 Ceé 310E BD 3264 BF
2E30 Cé 3113 BE 3266 29
2E40 Cé 3118 BD 3268 Co
2E47 Cé 313C BD 346D B2
2ECO E2 3143 BD 346E BO
2EC1 F2 3148 BE 3475 B2
2ECE B2 31A3 BD 3476 BO
2ECF F2 31A9 BD 3496 A9
2ED3 E2 31DE BD 3497 18
2ED4 F2 31E2 BE 3498 20
2EED E2 31E4 BD 3499 D2
2EEE F2 31FE E2 349A FF
2EF0 EF 31FF B2 3725 B2
2EF1 B3 3203 D2 3726 BO
2FF2 83 3207 D4 372D B2
2FF3 CF 320B D3 372E BO
3037 BB 320F DA 385E 83
303C BB 3213 DB 385F CF
303E BC 3215 63 387F 83
3042 BC 3216 F5 3800 CF
304B BB 321B D2 3895 83
3055 BB 321F D4 3896 CF
3065 BB 3223 D3 390B 83
306A BB 3227 DA 390C CF
30C3 BB 322B DB 3941 83
30C9 BB 322D 63 3942 CF
30D3 BD 322E F5 3967 83
30D8 BE 3236 D2 3968 CF
30E3 BB 323A D4 3A10 D1
30E5 BD 323E D1 3ABE D1
30E7 BC 3240 63 3B72 E2
30E9 BE 3241 F5 3B73 F2
30F0 BD 324C 9D 3BCE 96

Appendix B: LADS Object Code

Program B-3b. PET/CBM Upgrade BASIC Adjust-

ments to Prog. B-1

To create the Upgrade BASIC version of LADS, type in Program B-1
then change the following bytes in addition to the changes shown in

B-3a above:

Address Byte Address Byte
2ECO AE 325C 22
2BCE AE 346D 92
2ED3 AE 346E Co
2EED AE 3475 92
2EF0 89 3476 Co
2EF1 C3 3725 92
2FF2 D9 3726 Co
2FF3 DC 372D 92
31FE AE 372E Co
3215 24 385E D9
322D 24 385F DC
3240 24

Program B-4. Atari LADS: MLX Format

32768:076,203, 146,
32774:9682, 160,648,
3I2786: 136,208, 2548,
32786:138,141,285,
32792:133,139,141,
32798: 601,141,227,
I2804: 145,165,162,
32810:008,174,062,
3I2816: 000, BH5, 261,
32822: 153,226, 153,
32828:047,128, 132,
32834: 135,632, 605,
3284%:141,189,154,
32846:173,268, 154,
32852:121,141,169,
32858:145,169.876,
32864: 169,065,832,
32870: 068,832,836,
32876: 032,836,145,
32882:173,198,154,
32888:144, 133,134,
32894: 135,632,643,
I2986: 154,133, 136,
32966:173,193,154,
32912:186,154, 632,

376

169, 860,133,215
153,183,154,018
169,806,133, 1448
154,169,128, 185
206,.154,169,198
154,832,014, 087
208,026,168, 134
146,232,.189,877
155,240,088, 145
200,232, 076,078
128,632, 013,d28
136,169,806, 831
$32,190,136,146
208,063,832, 148
160,832, 836,231
@32, 836,145, 181
G36,145,169, 208
145,169,883, 123
@32,121,141,183
208,811,169, 883
169,153,133,218
136,173,192,869
141,185,154, 411
133,137.141,845
175,145,173, 241

Address
387F
3880
3895
3896
390B
390C
3941
3942
3967
3968
3B72

Byte
D9
DC
D9
DC
D9
DC
D9
DC
D9
DC
AE

Appendix B:

LADS Object Code

32918:
32924:
32939:
32936:
32942:
32948:
32954:
I2960:
32966:
32972:
32978:
32984:
3299@:
32996:
3ZO02:
33068:
33014:
33024:
33026
33832:
33038:
33044:
33050:
33056:
33G62:
33068:
33074:
33080:
33686:
33H92:
33698:
33104:
33110:
33116:
33122:
33128:
33134:
33144:
33146:
33152:
33158:
33164:
33170:
33176
33182:
33188:
33194:
33200:
33206:

189,154,
131,832,
141,197,
172,248,
264,128,
226,154,
141,032,
141,632,
154,249,
#76,183,
240,923,
169,601,
147,153,
624,109,
154,876,
154,249,
185,144,
226,153,
269,185,
208, 8073,
aag, 142,
226,153,
G@8, 157,
676,822,
676,204,
@32, 066,
173, 165,
oR6, 173,
154,673,
@32,22

Lo "

160,064,
147,153,
676,104,
201,865,
154,153,
148,153,
153,201,
197.154,
244, G506,
118,129,
173.198,
197,154,
133, 134,
160, 000,
@48,176,
144,002,
246,616,
201,044,
240,004,

2405, 003,
199, 136,
154,141,
154,268,
14¢,228,
240,012,
951,141,
#51,141,
O3, BI2,
135,173,
201,803,
141,184,
268,164,
183,154,
191,138,
@57 ., 160,
153,249,
261,032,
144,153,
876,239,
228,154,
185,144,
144,153,
129,157,
128,832,
133,676,
153,261,
166,153,
128,141,
133,876,
149,197,
261,832,
132,185,
144, G3G3,
165,153,
240,022,
065,144,
266, 185,
153,165,
136,149,
154,208,
288,162,
169,153,
173,165,
Ga7 . B24,
23¢9, 135,
201,641,
240, 008,
200,076,

G76.174,
169, 604,
267, 154,
GOAR, BT 6,
154,173,
32,1348,
32,0891,
173,219,
G947, 144,
184,154,
268,114,
154,173,
169,668,
141,183,
173,208,
255,204,
F46,153,
268,243,
201,661,
136,162,
138,153,
153,240,
232,200,
144,153,
160,133,
204,128,
G64,176,
238,267,
194,154,
263,129,
154,173,
240, BB,
148,153,
238,197,
204,185,
153, 1465,
863, 238,
148,153,
153,876,
196,154,
@64 ,173,
169,165,
133, 135,
153,241,
23¢9, 134,
177,134,
240,612,
201,932,

168,129,

218
@46

-
32

221

177
206
162
181
@46
@985
231
@14
243
254
142
w26
143
@35S
178
@58
@61
@97
152
291
1aF1Ies
171
214

2% 1

134
141
1349
@88
116
172
@984
217
146
129
147
2337
@8
171

235

236
e
218
152
134

231

377

Appendix B: LADS Object Code

33212:0872,152,672,169, 000,145, 8349
3I3218: 134,032,643, 136,104,168, 843
33224:104,145,134,173,165, 153,650
33236: 201,035, 240,063,201,040,218
33236:240,0623,173,184,154,261,153
IZ242: 608,240, 955,201,603, 208, 165
33248:113,169,4088,024,169, 183,862
33254:154,141,183,154,876,191,1485
33260:136,172,.196,154,185,165,214
33266:153,201,041,248, 616,173,642
33272:184,154,201 , 681,208, 609,23

33278:169,0616,924,1069,183,154,141
33284:141,18%, 154, 173,184,154, 225
33290: 201, 066, 240, 983,076, 132,236

¢1496'13@,ﬂ76,159,13@,173,2@8,124
3I3IC2: 154,208, 003,076,132,134,213
323@8.@56 173,192,154,229, 136, 200
33318072, 173,193, 154,329, 187,22

313°@-176,@14,2ﬂ1 255,240,064 ,162
3IZI26: 164, 876,040,133, 104,616,807
3332:012,076,068,130,240, 004,070

!

[
b
.

2|

33338:104,6876,040,133,104,016,9019
33344: 003,076,040, 133,056,233,0893
33350:002,141,192,154,169, 066,216
33356:141,193,154,076,132,136,134
33362:172,196,154,136,185, 165,066
33F68: 153,201,044 ,268, 404,200, 138

33374:0676,919,132,173,183, 154,863
IZIBG: 261,076,208, 003,876,141 ,837
33386:136,173,193,154, 268, 485, 825
33392:173,184,154,281, 066,176,238
33398: 013,201,002, 240, 809,169, 240
G@4,@24,1609,183,154,141,22
183,154,032,118,140, 832,821
156,146 ,076,239,136,172,825
196,154,185,165,153,261,172
¢41,208,005,169,168,141,052
183,154,876,233,136,173,679
166,153,201 ,034, 208, 906, 160
173,167,153,141,192,154,122
173,184,154 ,261,001,208, 869
:269,169,088,.624,169,183,112
154,141,183,154, 076,132, 000
139,932,118,140,076,239,157
130,173, 184,154,201, 002,916
240,064,201, 607,208,812, 186
173,183,154,624, 105, 008, @887
141,183,154, 676,233, 138,147
IZSEE: 201,006, 176,009,173, 183, 240

378

Appendix B: LADS Object Code

i

A el LK

Here
154,
154,
140,
G76.
2@8,
228,
154,
229,

G914,
145,
168,

@dL,

QS

=72
DL a

@985,
153.
169,
214,
173,
@14,
145,

: 948,
1145,

145,
@32,
244,
169,

9562.
141,

@632,
B#36,
169.
141,

154,

B:173.

: 208,

154,
173,
186,
145,
165,
135,
145,
162
Gae,
145,
173
@14,
145,

H24,105
@32,118,
173,268,
171,131,
BRI, B7 b,
154,2a8,
240,042
@85.141,
145,162
172,299,
aaZ, 676,
ﬂ\L.@za,
@32,014,
@E8, 145,
169,226,

133,435,

GEE, B356,22

154,169,
Z2R . 158,
145,162,
172.214,
I8, 169,
136,208,
162,661,
143,141,
@17,.201,
BB, BT,
@32, B36,
173,229,
#51,141,
145,169,
G@5, 133,
#32,121,
208, 663,
268,154,
154,165,
165,137,
185,154,
154,133,
169,801,
162,268,
G76,867,
169, G611,

LEBB2, BI2 .,

BI2, B36,
169, 0072,
222,154,

145,162,

LH12,141,

169,

L BD8,

183,
140,032,182,
154,208, 00
173,226,154,
171,131,173,
662,173,222,
az2a, 856,
154,032,
@I, @11,
154,016,805,
G37.131,169,
145,136,208,
145,162,881,
169,923,
133,134,169,
G32,834,141,
9.985,141,
@3%, 133, 885,
244,931,832,
aB4, @32, 811,
154,246,818,
§32,032.036,
256,932,014,
@32, 868,145,
173,224,154,
ao1,208, 885,
133,131 169
145,832,175,
154,240,619,
169,059,832,
@EH, 133,134,
135,832, 6834,
141,173,189,
@76,146,128,
268,541,238,
136,141,238,
141,231,154,
1335, 156, 172,
137,032,814,
LBE2, P25, 145,
BHT, BI2 L, B13,
128,832,814,
@32
@11,145,169,
145, (132,014,
BI2, 025,145,
244,321,832

BH4, B2, B11,

289,

b a4
1 e

@77
122

3,100

151
244
@23
175
@94
134
213
B3
113
134
@43
202
176
aa8
@85S
162
196
253
165
119
@089
299
@24

B9

142
@7
116

’255

15
191
115
172
1940
144
122
@86
2619
@2
156

e

..Q,A_\Jq 145,22

237
237
246
864
148

169,813, 40 u..!d 36,145,039

379

Appendix B: LADS Object Code

2
@2
1
1
28

ZEZ8ad:
ZEZBob:
AR LS &
33818:
33824:
33830: 1
Z3836: 1
2
8 2
= @
1
HE 7]
-2
Z3878:
3=884:
ZER99:
33896
IZ9E2: 1
239d8: 1
33914: 2
I3920: 9@
IBFRE 2
3S5232:1
33?38
339244
E3954
A5P5h:
IZFL2:
Z239268:
Z3974:
33984¢:
33986
IJFPR2:
33998:
Z4G04
F401¢:
I4¢16:
344822
Z4428:
I4¢34
Z48 40
F4446:
3BT 2e
I4458:
340164 =
4@ 7@
49176
Z44182:

1
1

=
2
1
7]
1
2
1
2]
2
@
3§

2.

-

¢ |
1
1
1

-
-

1

I4488: B#32

380

2]
1!:"!

-
DLy

J_\J-

&5,
36,
41,
73,
84,
@1,
44,
@1,
Pl

@14,
145,
183,
136,
208,
193,
154
aEs,
119,
2018,
105

76,233

: 201,

S22

TH,
41,

#I2

DL m

69,

o a2
— x

Gas,
248,
183,
183,
155,

1575

33,135,

39,
68,
@8,
83,

152

Qe praay

261,

a4,
e
24,
s34,

268,
249,

a2
b
@1,
24,
54,

240,
L@l.
B2

69,
41,
41,
BB
6,

oL

287,
211,

b,

29,
121,

134,
1T,
@12
154,
134,
dHT,
Gea .,
G776,
189,
185,
g1d,

132,
@@z
199,
876,
G16,
Ges,
248,
628,
183,
269,
214,
145,
@7
145,
154,
BED
192,

L2681,

024,

« 169,

. 248,

2,1

145,169,
#76,182
241,888,
185,165,
GAR, BT b,
154,208
aa2,
@75,
184,
173,
141,
173,
F08,
B76,
@24,
G76.,

@32

244,
173,
@12,

1340,
244,
1 B2,
154,
154,
141,632,
133,134,
@32.034,
173,193,
184,154,
G116,
183,
aa1,
G912
aEaH,
130,
154,
153,
183,
A76,
173,

@12
183, 154,
233, 139,
261,883,
240,068,
132,876,
G24,189,
154,876,
154,14%,
154,169,
104,173,
38,0672,
173,289,
174,214,
152,153,
@R, 208,
141,632,

LY.
281,
244,
169,
164,
183,
167,
{73,
GA,
134,

LO15,

L2081,

169,

o@4, 332,148

.145,185, 664

240,898,197
2@1,234
129,214
173,186
879,136
201,861,605
154,201,163
183,154,425
183,154,187
184,154, 000
169,649,240
164,132,042
1 @5, 628, 247
233,136,247
136,141,223
169,154 . 662
141,876,155
154,208,195
2001 , 892,142
P24,189, 160
154,876,607
244,016,698
A5, B4 46
A3x2,248,137
169,826,029
141,183,196
261,689, 1061
154,201,687
164,132,157
184,154,619
@24 ,9¢48
183,232
291 . 991,239
DAG,B12,162
169,851, 136
164,132,186
183,154,135
233,130, 135
213, 154,233
16¢,w¢L.w97
194,168,219
152,832 116
lq4 172 ﬂ
154, @96.&4
144,153,822
248,696, B34
155,141,158

153,

2ET

244,

141,

X

Appendix B:

LADS Object Code

34894: G332,
Z416@: 134,
I41p6: B34,
BZRL1PE 152,
34118:

144,
T4124: 208,
\41 ;"

34136:
34142:
34148:
34154:
34160
341661
34172:061.
34178:145,
34184:138,
T4190: 3EH,
34196: 153,
34202: 143,
T4208: @332,
34214:134,
3422@-@ 34,

26:140,
"4::2:L@8,
Z4238:191,
a4°44-191,
34250 195,
34256: 136,
154,
209,
239,
1460,
@32,

2SS

154,
@,
144,
289,
244,

33

-_\44'_b.{; H
Z4268:
34274:
342803 :
4286
2472972: .
34298: 144,
Z4344: 499,
343192273
243516

T e
- R A

Z43=28:
I43EX3Z4: 23
Z4=549:
T43456: 2
I43E52:
Z4358:
34364
3437 @
343762

Z4382: 4

2464,
154, ¢

G54,

B3OS,
2@,
243,

- v

g23,

@D,

247
L1458,

LBH2
T, A0, 13
.14,
L BED
N
2
3,154,
L2440,
.142
L 2WT .
242,

T, 2440,

s £L g

130,141,
169,154,
141,932,
139,160,
153,244,
206,
165,
133, 138,
33,139,
BT,
144,
145,
185,
@5,
20,
2972,
144,

lq_.

tS3.

185,

138,
174,
189,
144,

123,
155,
169,
141,

153,
148
154,

#76,

154,
2@8,
169,

153

154,
154,
13
72.283,
145,138,
145,138,
139,173,
173,206,
. 134,
G565,
139,
SO,
13

S,

i o

165,
162,

wqa
.198,

o918,
2.154,
177
BB,
191,
154,
134
BB,
289,

Sz

23, 134

L14ad,

L2088,

169,418,
123, 135,
121, 181,
255,268, 185,
@86, 261,632,
26@,143, 282
138,237,262,
165,139,
160, 360,
128,145,
153,201,
138,676,
144,153,
136,165,
165,137,145,
154,282,168,
153,280, 608,
232,200,076,
144,153,896,
169,878, 133,
133, 135,832,
223,133,135,
173,198,154,
200, 2086, 1448,
144,424,
169,
135,832,
154,173,
173,193,154,
164,184,876,
265,154,133,
154,133,141,
169,255,141,
165,138,229,
229,141,176,
#56,165, 1448,
165,141,
141,160, 088,
#12,165, 148,
141,198,144,
34,165,149,
165,141,141,
1405, 265, 194,
#76,884,134,
154,162,801,
244G, BH4, 260,
185, 165,
F48, 144,
240,241,

153,
@32,
D76,

_
P

185,

8.
@32,
166,
2a1

36,

153,
#43,
192,

33

2@1 .,
1445,

189 ,2

o < d
@41
@1
132
158

.248

a1
@26
199
113
253

@54

118

144
H3b
142
148
@82
248
@HF2
155
147
176
151
213
186
138
214
147
2149
23

155
187
weg
216
114
@52
167
188
143
@27
222
@7
22

1468
gi14
@ i
1.7
195

381

Appendix B: LADS Object Code

34388:173,212,154,133, 146,173,045
34394:213,154,133,141,0832,242,23

TA40G: 134,876,246, 133,173, 655,145
T440b: 146,048, 801,096,173, 208, 806
34412:154,2(8, 062,246,023, 0832, 255
34418:155,141,0632,136,141,632,233
34424:951,141.169,854,133,134,034
344304:169,154,133,135,0832.634,015
34436:141,932,121,141,184,104, 087
34442:173,183,154,041,031,2081,153
34448:016, 240,868,173, 228,154,187
34454: 208,003, 076,233,136,076, 108
344569:132,136,236,191,154,246,215
344466: 003,676, 884,134,238,055, 244
34472:146,246,003,032,251,134, 206
34478:172,191,154,173,267,154,2@1
34484: 240, 001,200,177 ,14%, 141,955
344903:192,154,200,177,14%,141,166
34496:193,154,173,226,154,243,046
T4S@E2: 918,201, 882,208, 630,173, 054
34598:193,154,141,192,154,173,187
34514:219,154,240, 619,824,173, 615
34S520:217,154,169,192,154,141,159
34526:192,154,173,218,154,189,198
34532:193,154,141,193,154,173,212
34538: 208,154,240, 001,096,076, 241
34544:084,134,165,140, 208, 662, 245
I4550:198,141,198, 140, 896,832,827
34556:155,141,169,127,133,134,687
34562:169,154,133,135,032,9034,147
34568:141,632,121,141,096,0832, 059
3I4574:014,145,169,001, 032,625,144
I4586:145,169, 801,133,131, 169, 4640
34586: 004,133,133, 169,000, 133,086
34592:132,169,226,133,129,169,222
34598:15%,133,130,632,218, 144, 480
I4604: 165,001,848, 816, 165,162,089
34610:2408, 911 ,0632,063,152,169,145
X4616: 008,133, 168,169,032, 133,171
34622:161,096,632,.115,150,676, 188
34628:182,145,169,662,133,131,0862
344634:169, 888, 133,133,169, 006,174
34640:133,132,169,226,133,129,234
34646:169,153,133,136,169,002,874
34652:032,025,145,165, 001,648, 252
34658:221,.632.218,144,162, 0602, 1469
344664: 032,611, 145,169, 255,832,236
34670:036,145,032,036,145,173, 165
344676:185,154,0832,036,145,173,873

382

Appendix B: LADS Object Code

34682

34688: 2

34694
I470¢:
34706
34712:
34718:
34724:
34730z
34736
34742:
34748:
Z4754:
34760
347866
34772
Z4778:
24784 :
Z4798:
24796
348¢2:
Z48¢8:
Z4814:
348249 :
24826
34832
348%8:
Z4844:
34859 :

34856: 22

34862:
34868:
4874:
Z488#4:
34886
34892:

Z4898:
Z4904:
I491@:
Z24916:
34922:
34928:
34934:
34944
34946
34952:
34958:
34964
349746

186,
3,
234,
#14,
% &
133,
169,
133,
@2,
143,
@58,
185,
244,
G957,
2O,
153,

2 o)
o 4 -

152,2

204,
147,
201,
183,
153,
128,
@32,
#eg .,
w85,
169,
133-
g,
34,
@58,
136,
#E e,
154,
177,
lq:-
141,
202,
173.
173,
a76.
174,
136,
B6
2534
253,
189,
173,

154,
154,
154,
14q.
ﬁf \.«_ =
1358+
o2
129,
218
@TL,
166,
1414,
@i,
248,
185,
244,
249,
205
2018,
1535,
@i,
141,
148,
169
133,
145,
145,
[230 0
1_u.
31.
261 .,
176,

149, 2

141,
162
134,
141,

aE <
e R

240,

252.

253,

#94,
214,

206,25

@24,
153,
153,

2524

B

a32,
F@32,
@\L.
G996,

@25,
169,

« 133,

169,
144,
@14,
aa@,
152,
209,
244,
164,
dHE,
238,

« 108,

216,
291 .
208,
184,
183,
g,
1&1 .
QQL,
1_/.’1 -
133,
B3 2
@99s,
@48,
@ g,
sS4,
192,

LBE,

@41,
255,
s e
@18,
14;.
153,
1356
154,
4,
@14,
¢14.
@824,
lqg.

154,

BTE,
BI6,
@34,
169,

145

S

BED
128,

138

165,

145,
162,
205,
2@,

G76,23

1&2

L

209,
209,

153

L]

244,

@I2
21X

154,

154,
133,
162,
241,

@aq2

134,
a34,
164,
144,
20,

153

154,

142
@15

153,

141
g2

145,173,989
145,173,139
145, . 852, 2592
@94, 133,189
169,888,144
133,132,484
169,181,172
133, 1309, 225
el ., 9848, @14
HesL,B88, 174
EJS-QSQqQLJ
144,153,147
209,224,244
8_128,12:
2685,145, 173
209,248,195
185,164, 129
246, @835, 181
228,173,205
246, 0994, 245

%,189,816, 845

188,672,116
B76,267.143
160,169,251
BB, BI2, H19
l45,@xL.1ﬂ7

240,814,237

=

n

141,
141,

. 210,154,252

S
s

w32
183,
252
252
17=
141,
1919,

x

-

a

x

169,154, 820
141, B76,673
OB, 177 . B56
@B, 2@l , 914
B76,.B45, 599
136,169,822
141,193,117
214,154,125
141,252, @68
169, @383, 185
L OB, 154,162
31,136,085
255,153, 203

gan, 154,212

170,136,226
, 208,282, @33
153,046,203
153, 046,23

255,153,129
252,153,184

> oo
. e

Ll

=

Lk

<
-
s

o

=

383

Appendix B: LADS Object Code

34976:141,2
34982: 846, 2
34988: 252,153,
34994:192,154,
ISEEH: 197

IEEH6: BT
IS612: 198, 154,
3IS$18: 220,154,
IS@24:224, 154,
ISESH: 145, 332,
ISE36: 832, 253,
3S842:146, 128,
IS648: 076, 247,
ISGS54: 208, 9B,
ISH6d: 958, 208,
ISEL6: 2001, 59,
3S5@72:154,173,
35678:141,229,
IS5084: 2440, 06,
ISE9@: #88, 137,
I5@96: 887,153,
35102: 628, 137,
35108: 051,141,
35114:121,141,
35126: 154,876,
35126:154,141,
3I5132: 0932, 6985,
3I5138: 408, 305,
35144:234, 153,
35156: 060,137,
35156: 003, 876,
35162: 137,173,
35168: 164,154,
35174: 201,862,
3I5186: 249,651,
35186: 238,219,
3S5192: 003,876,
35198: 248,615,
352@4: 153, 144,
35210:136,141,
35216: 164,138,
35222: 376, 831,

JL L L.
3I5228:228,154,
35234001 ,141,
3S2406: 136,032,

6

154,244,
35252: 036, 145,
35258:121,141,
3IS264: 032,166,

384

153,

3.153,

189,
173,
141,
133,
144,
144,
2018,
@85,
LB7,
201,
136,
@76,
Gaz,
2648,

i
Ettit-d

154,
#32,

@32,

144,
@32,
@32,
169,
@88,
289,
145,
172,
@E,
@32,
GBI .
209,
@76,
244,
261,
154,
169,
231 .,
153,
so8.,
153,
138,
B76 .
2249,
235,
@11,
@32,
178,
aaa,

@14,
#9646,
192,

253,
193,
1648,
229,
219,
FH3,
145,
164,
@32,
a@32,
253,
B76.
144,
154,
173,
@52,
@385,
153,
1343,
143,
aad .,
875
154,
208,
209,
@H5,
@85,
37,
154,
146,
@47,
G473,
281,
137,
B36,
280,
154,
144,
169,
235,
154,
36,
169,
143,
198,
185,

252,
@24,
154,
153,
154,
GG,
154,
154,
@E2,
208,
194,
249,
@85,
157,
139,
140,
244,
209,
157«
145,
2619,
141,
141,
141,
141,
168,
G607,
154,
206,
145,
@32,
208,
128,
201,
208,
@472,
201,
244,
D76,
G96 .
153,
BH2,
136,
B76.
175,
@472,
141,
154,
144,

153,
1 7R
141,
189,
B96,
144,
144,
173,
241,
FHB,
B76,
239,
145,
2@1,
37,
289,
@74,
154,
G776,
244,
G876,
@I2,
#@I2,
209,
229,
BHG
15%,
8996,
B76,
244,
253,
ags,
B96,
god,
aEs,
248,
G346,
@14,

- e
239 «

BT 6,
200,
141,
169,
235,
2018,
BI2,
@32,
268,

153,

162
143=
149
188
@91
171
187
258
AR Y
Baeq
158
188
181
02
a7
147
249
@42
@43

P
233

245
g1
@64
@55
145
184
178
194
228
aang
15=
248
238
145
@8sé6
192
244
144
B69
197
@72
195

22
221
Ba4
@54
197
157
@98

=y

Appendix B: LADS Object Code

35306 :
35306
SS31.2
353180
\-J\-\.‘.4-
3533¢0:
35356
35342:
35348:
35354:
35360
35366

35448:
35414:4
25420
35426
3IS5432:
3547Z8:
35444 ;
25459
25455

&2
Z5468:
35474
35480
25486
3IS5492:
35498:
IS5Sd4:
Z551d:
355146

35522:

291,
195,
144,

1169,

@32
244,
aaz,
154, 1
133,
128.
@8,
1T
a1,
aae,
Gt
GO,

281, 8
: 240,
: 201,

244,
lq_.
8.
lq;.
LT .
G,
163,
154,
141,
179,
154,
154,
154,
154,
144,
o1,
22,
238,
192,
154,

@2

G32,
157
@824,

153,

LG43,

aang .,
G\z..

17.
§
258,
#3873,
2pt,

141,2

141,
G322,
58,
243,
344,
@11,
144,
14
299,
136,
142,
G2,
B76.
192,
@14,
@14,
@14,
@14,
189,
BH2 .
192,
236,
198,
SHD,
248,

BI2,HB5b,

153,
145,
Gab.
214,
G223,
154,
FI2,
B2,
W".”

{44,
153,
268,
154,
144,
244,
#51 .
F51 .
@85,

244,
200,
191,
185

36,

173,22

238,
136,
194,
144,
248,
BHT,
136,
224
189,
@85,
244,
2a1,
244,
157,

==
1538,

2.199,

@32,
15%
199,
12
238,
154,
192,
192.
192,
192,
245,

154,
199,
154
244,
L
133,
153,
144,
144,
173,
41,
12515.
141,
141,
145,

LBDD

.154,

. 138,

. 169,

AL, 2

132,13

134,1
1

173,208,
1,154,
139,173,
173,193,
194,
153, 26048,
153,144,
201,683,
240, 006,
@96,
154,396,
145,244,
@4, 201,
B59, 2440,
P15, 281,
285,
2H0, 876,
154,153,
132,138,
269,154,
154,153,
173,
136,169,
141,193,
154, 346,
154,346,
154,445,
154,046,
153, 201,
GH7 .41,
141,192,
154,268,
@E1
L 314,174,
B72, 152,
164,168,
2@, BI2,
153,200,
169,066,
248,154,
154, 175,
BE2, 136,
BEI2,B91,
L7221,
153,144,

15X,

B76,
169,
134,
135,
154,
243,
192
154,

.146,

192,

155, 2

244,
169,
169,
1568,
@44,
BI2,
gE2,
@41,
232,
@I,
144
@76,
169,
144,
269,
BEHG
154,
193,
193,
193,
193,
Be5S,
@15,
154,
209,
@&,

268, 2
2,869

@7
194,
aas,
241,
141,
244,

22b.

141,
141,
154,

153,

183
147
12
143X
200
244

s 243

159
178
198
220
199
@58
#36
@1
Bob
#5472
B35
@24
@3

@S5I

L2348

ana7
1
11
51
163
@55
: i 1 |
141
147
11X
@77
@7
224
114
246

224

@#1S
181
168
114
BEex
149
156
124
217
174

385

Appendix B: LADS Object Code

X¥IS5464: 2,
IS5S579: 985,
25576281,
Z5582: 145
Z5588: 241,
35594: 139,
IS60H A2,
IS6E6: 229,
35612: 6354,
I5618:174,
I5624: 829,
563 M'IZQ‘
25636 140,
25642 17L,
35648:138.
25654:157,
Io6b6E: 1548
ZSbH66: 248,
FE<2:2281 .,
35678: 1357,
25684:154,
”Sé?E-IJJ,
256962173
":7Q 5211,

S7¢8: 139,
35714.153,
I5T728: 281,
25726:244,
ISTI2: 876,
I5738:141.,
IS744: 1469,
35759 133,
2575601473,
I5762: 256,
35768 ddad,
I5774: 282,

578@: 173,
35786929,
25792:458,
35798:141
35864 1414,
Z581d: 688,
25816:876,
35822:1735.
35828081,

S834: @02,
3584@:192,
35846: 154,
25852:141,

386

Y, 208,258

2e1 #3332,
145. : BTG
@En4, 298,

L 2H8, 983,

#58, 268,
281,659
137,174,
154,076,
208, #93,
238,154,
141,676,
142,153,
211,154,
211,154,
162, B33,

245,153
2@8,117,
BET . 281,
#@59, @a,

.
J

{78,
G776,
173,
185,
B2

17:,

._11,
@a .,
53.
24,

85,

2@, 281,
gl . 244,
@165, 157,
@74, 1379,
186. 1535,

245,133,
35,144,

Ll ol ol ol o ol M"“'JHF-JHFJ e B 9o (e
n ;

136,174,
149,172,
162, 8685,

2318, 154.
141,173,
Z48, 3H5,

« 228, 154,

198, 173,
178,226,
ti4, 131,

L. 208,154,

LB9L, BE2,
BE2, B,
154,229,
173,193,
191,154,

28,

.144,

He9,
B76,
HHT,

L2688,

e e |
SL L

i e B
B75,
248,

As
232

144,

#Tn2.

2@@,
4'_)

;:) A z,

)

@58,
_wiz

. 1354,
159,
154,
21
141,
153,
#EZ.

A2,

. 245,

. 238,

H76,
154,
941,
19
211

157

LB76,

248,
185.
@3
238,
248,
154,
a7b,
281,
@14,
145,
136,
154,
159,

LH32,208

2, 154,
,154,159,
%, 138
L1115

245, @32,
5%, 2648,
#32,685,
211,139,
H75,.214,
@12, B3,
154,142,
139,201,
252,138,
7

BHF, B2, @

IB,0756,
LT
5,144,
L 2 —fw |
P

215, 154,

1354¢
@498
149
712

=
252

149
127
@ag
227

S1

231

L1482

197
B9
1@7

]

173, 245,27

#85,145,
248, B67,
BI2,HB52,
142,229,
141,185,
2H8,. 813,

B75,. 874,
153,144,

248,324, 2

Z@1, #58,
153, 232,
215,154,
164,139,
169, 1JJ.
154,

245,
@74,
BHI, BRI

155: 2081,

2,253,137,

228,154,
154,244,
2AG, BB,
146,128,
Ao, 248,
145,162
B56,173,
141,194,
229,137,

GG, BI2,

@49
18%=
144
128
178

247

Y

160
@47
212
@88
161
@2
185
139

1=

-
2

F

286
9052
1673
@7
179
@b

]

164

. 182

i s
@18
@2z

187

Appendix B: LADS Object Code

X¥35858:936,145,173,198,154,

25864:
I587d:
35876
35882:
35888:
35894:
IS99d:
35906
ISF12:
Z5918:
35924:
3I5930:
35936
35942:
F5948:
35954
35969
35966
IS972:
35978:
25984:
Z599d:
35996
ToPE2:
36888
36914
Sh@2i:
I6E26:
I6AE2:
LA E8:
5944
LS
T6ASE:
T6H62:
I6ulsE8:
T6HT 4
I5618¢:
I6H86:
T6H92:
26093
I61614
3611 ¢
36116
36122
26128:
265134
6148
36146

BHT,
154,
208,
@,
BHG
291,
951,
@32,
205,
201,
G948,
GHG
133,
@32,
141,
141,
154,
BI6b,
@32,
#a8 .,
Do,
183,
1 7E,
B2,
249,
dad,
i T
HEH7
141,
BHE .
149
140,
173,
B51 .
BEd .
236,
975,
138,
249,
@B,
154,
145,
@24,
1 Bk,
137,
240,
169.
GG .

206,
258,
233,
#32,
142,
@Az,
140,
#78,
153,
o958,
G56,
157,
134,
G4,
247,
218,
238,
173X,
@14,
145,
141,
154,
238,
141,
BHE,
141,
144,
GI2,
BIG .
174,
174,
172,
297 .
141,
141,
144,
154,
145,
@22

@32,
@32,
162,
169,
169,
#95,
B1e,
141,
169,

191,154,
PRE. £ 73,
GE2, 014,
o838, 145,
g@@, 185,
244, 334,
20,185,
140,176,
232,976,
176,886,
233,208,
265,153,
169,153,
136,173,
154,173,
154,896,
g@4,B32,
226,154,
145,162,
174,183,
BI2,B51,
@32, 236,
154,208,
696,173,
174,192,
174,192,
173,268,
@29, 141,
173,226,
192,154,
192,154,
226,154,
154,244,
174,193,
174,193,
142,191,
240, HHS,
136,173,
BI2. 014,
#11,145,
H42,145,
FEH1,@I2,
dE1 101,
GHE, 161,
160, BHd.
BI2, 036,
208,876,

#I2,0832,

286,
191,
145,
B96,
144,
208,
144,
#18,
@62,
G556,
G396,
169,
133,
192,
193,
173,
@23,
244,
@al,
154,
141,
140,
@a4 .,
226,
154,
154,
154,
@32,
154,
@32,
@2,
244,
BHT
154,
154,
154,
1640,
- s
145,
17,
BI2,
G968,
136,
137,
177,
145,
B36,
BI6 .,

288,156
199, 286
154,124
162,862
160,22
153. 189
B76, D53
153,145
157,155
1499, 172
233,040
169,126
285,211
135,185
154,064
154,116
268, 080
141,167
@17, 008
BI2, BDHb
GI2, BEE
174,231
396,223
B@I2,167
154,204
#32.198
B76, 2073
208,819
@28, 182
244,198
doE, 548
236,189
#14,133
A32, 821
#32,199
G768, 0672
173,246
Ba@, 254
154,189
162,899
191,044
@14,171
145,251
33,872
133,194
134,22
@I2,821
141,339
145,348

387

Appendix B: LADS Object Code

35152:932,169.141,4096,142,216,878
36158: 154,173 .154, 240 811,253
T&154: 138, 142,832,218, 287
T5178: 141, 3,154, 896,169,254
6176 L145, 832,219,194
36182: : 154,896,173, 314
Z46188: L2400, 814,165,137, 845
T6194:4 142,165,136, 832, 194
T62HE: ¢ > HE2.H65,142, 8396, 146
TO2H6: 165,137,632, 287,185
36212: @E5,142, 696,169,193
T46218: 4 #356,145, 832,169,837
36224 174,187,154,173,929
T423G: 188,154, 632,267,145, 832,124
I6236:959,142,0896,169,144,133,115
36242:134,1469,153,133, 135,632, 134
36248: 034,141 ,896,169,253, 6832, 149
T6254: 4 L143,141,169, 856
THR6B:H1T, P52, 056,.145,896,174,148
S62h6: 208,154, 208,801,896, 174, 243
TL272: .2E8,801,896,141, 2348
I6278: P32, 814,145,162, 1308
2, 511,145,173. 269,258
L BT36,145, 332,814,595
2. @31, 832, 888,145,181

154,896,174, 288,196
BB, B96,174,222, 843
LEH1, 896, 832,814,211

B34, 032,611,145, 211

. 154,240, 669,173, 182
LBE2,397,142, 876,179
L1069, 886,174,216, 164
267,145,832, 814,864
T6E58: 145,162, 861,832, 008, 145, 235
I6E546: 696,174, 208,154, 208, 401,877
I4T62:696.174,222, 154,208, 881,897
T6368: 096,832,814, 145,162, 934,213
I6T74:832,811,145,174,227,154,253
T6EI8H: 248, 513,165,137, 832,897, 208
142,165,136,832,0897,142,23

G76.6858,142,.165,137, 1656, 668
363 136.832,287,145, 832,014, 163
Z6404: 145,162,601 ,6832, 668,145,033
T6418: 696, L2B8,154, 208, 881,131
36416: 896, L222,154, 288, 861,151
36422: 896,032, 814,145,162, 804,311
I6428:832,611,145,173,188,154,611
36434:174,187,.154,632,2087,.145,213
6446 H32,014,145,162, 001,632,218

36284 9
I6299:

388

Appendix B:

LADS Object Code

64445
36452
36458:
2644564
547 @
35476
36482:
46488:
26494
365
36596
26512
36518:
36524
I6SEH:
36536
36542
36548:
26554
26568
26566
3I&ETT2:
36578:
36584:
26590
36596
IhL6B2:
I66E8:
3Ib614:
I6620:
36626
L6332
366E8: d
364644
3665
36656
36662
366468:
26674
34568E:
26686
I68692:
365698:
26784
367190
346716
IHTREE
2&6&728:
25734

=
1468,
@74,
128,
MZZ.
248,
184,
248.
129,
G475,
GHT,
208,
@79,
291,
144,
191,
34,
@91,
143,
169,
141.

1434

244,
@,
244,
a@76,
(2305 I8
lq_.
2918,
aBs,
141,
141,
iTQ.
189,
A6,
145,
159 .,
ﬂ\L.
142,
238,
1465,
VYEZ «
154,
1 =3,
R . G
@85,

BHG ¢

153,
288,

145,
185,
@874,
153,
A3,
F@8,
G76,

FAE

142,39
14

B76,
@B,
238,
#B3.
201,
144,
141,

mw7
1BJ,
TRE,
243,
@32,
LH32,
G832,
a8 .
154,
145,
169,
@63,

@I

F996 .,
128,
@74,
BI2,
145,

#32,22

146,
m_g.
21,

25143,

171,
@876,
B,
208,

9’7:_-.
153,

@2,

@32,
. 169,

133,

s LB,
. 145,

@72
153,
374,
B36,
696,
1.
128,
CECH
368,
291,
143,
2356,
d@d76,
GBI,
2918,
144,
@51,
1595,
) G
135,

141,

e e |

B L}

. 145,

53,144,

2,132,

#9991,
143,
#13,
145,
G994,
169,
@478,

W32 x

. B34,

73,288,

2318,
145,

B76,

154,
141,

£y

LR -

136,

B3,

154,

153,

2,885,
«+ 153,

115,

« 153,

208,

1,2@8;

141,
141,

135,
162
169,

HBL9 . G

HI2 .,
#@3ib,
145,
154,
238.

LE81,
178,

1568,
145,
281,
142,
281,
143,
298,
GBI,
261,
143,
215,

B76,

G15,
134,
185,
138,

@7,
194,
369,
@76,
BAs,
288,

@78, 0

261,
143,
165,

x,B75,

215
2449
2473

-
e \2

186
@71
386
1.28

25
194
=8
o=
122
143
114

e e 4

P)

2y 205

LBE2,

34,

2,834,

A7 6.
241,
142
291,
153,
128,
24@,
196,
154,
LA32,
[0 IRS \._.
162,

BAG

@46,

199,
0’ \J_.

Llad,

GEg,
2ED,
164,

#e8, 2

128,
28,
#51,
£21,
@1,
{42,
FE

5,167,

(IR \L,‘
240,
208,
3,154,

B

x

. L8,

_A135

B2
lq;.
24,

22@.

~_w7b,

T,

GET,

@20
455
H97
147
B
o544
183
111
#91
212
GBER2
176
199
116

Qe
S

@7
21

LBE6, 817
L 145,

141
161
@4 b
218

154,22

165,
185,
154,
@96,

G

P S

'1sm.

@1=
T
194,

@45
381
a2
@S2
164
1849
217
#78
158

389

Appendix B: LADS Object Code

26749
36746
36752:
36758:
Z6764:
IET7 7B
Z6776:
I4LT8Z2:
346788:
26794
Z6BEG s
6886
36812
=6818:
6824
Z68EH:
256836
Z6842:
34&848:
Z6854:
Z6860:
6866
65872
z46878:
z6884:
368946
26896
2L
6908
26914
ILF2H:

143,
@I,
@32,

1&2,
132,
194,
G776,
244,
222,
a@ .
145,
BHE
189.
Has,
B
169,
194,
265,
244,
201,
244,
145,
169,
hg
@14,
145,
169,
@14,
145,

I6F26: 973

BE&FI2E
ZHF38:

36H944:

26950 4

S6956:
36962
36968:
IL974:
2698@:
36986
369722
S6998:
I7EM4
I7@10:
ST7HLE:

Z7428:

390

132,
-
BT,
G,
144,
162.
146,
14,
154,
@32,
244,
@76,
1914,
154,

BE2,

LTS,

dH1 .,
143,
#3I2,
@12,
@83,
B7E .,
169,
@8d,
141,
145,
169,

SEa ¢

145,
G76.

.36,

145,

5,837

7. H45, ¢

LBE2

L Lo
s

DL

O e

L BB,
. 143,

S5.169,

-

i ¢
7 IR

169,

B8B83,

141.

L B76,

@48,
Ao,
B892,

e
IS S

141,

169.

3
.

R

‘\8!
#32,
SHe,
253,
142,
173,
143,
@14,
145,
201,
143,
162,
146,
145,
F3=2,

223
2234

128,
141 4
135,
H@EI2,
BI2,
Ao,
128,
HI2,
G52
@EHa,
a7,
124,
1a4,
B75,
AE6,
145,
141,
173,208,
#85,145,
21,879,
244,106,
169,886,
@78, @32,
GB32,

BIE,
206,222,
142,

@Ha,
@13,

7]
2

BI2
> B25,
L @E,
3.147,
. 169,
.B79,
NET |
B76,
>, BE6,
145,
5. @32

]
22
.‘LL. L]

@78,
@32,
169,
194,
@o1,
141,

133

.
DG,
143,
4996,
BI2,
o 34.'
155,

194,

F@I2,
194,
B4s,

5, @32,

2, 836,

143,
v s A
w14,
145,
137,
189,
268,

141,
154,
145,
#@3x2,
164,
154,
154,

135,238,

145,
@2,
958,
a32,
G,
128,
169,
: 5 1
154,
154,
261,
244,
261,
@32,
BTG,
145,
154,
BI2.H11,
145,
145,
#@32,
169. :
#78, 6832
HBI2, 836,
169, g,
194,143,
145,169,
169,672,
121,141,
154,876,
#@36,
145,
#@E2,
226,
#3999,
BEE,
141,
154,

g32,

162,
@85,
244,
253,
142,
169,
@79,
141,
#3786,
244,
agg,
#58,
5772,
G436,
145,
#32,

@32,

@I
BE8,
@46

145,
141,
174,
169,
@51,
169,
1514,
BT,

228,

@8 =
@21
283 4]
9183
194
145
#H29
248
141

2335
@59
1309
@85
@348
2311
624 ¥4
22
HeE2
229
@52
31
B89
1001
252
128
138
@&

« 189

159
#51
#@b
Ha7
164

o
233

165
146
@87
@07
248
2083
111
152
196
195
@85
229
@12
s

B32,036,145,211

Appendix B: LADS Object Code

734
7840
I7846:
IT7H52:
I7858¢:
27664
I787@:
2787 6:
I7682:
27#88:
I7694:
7146
37186
37112
37118:
37124:
371350
37136:
27142:
37148:
37154:
I7160@:
AT7166:
37172
37178:
37184:
3719:
37196
I7282:
372¢8:
37214:
37220
37226
IT2E2%
27238:
37244:
3I7250:
SL2T6T
IT7262:
27268:
372743
z2728¢0:
27286:
S7292:
L2983
I7 384
37318
I7=516z:

375223

169,
121,
IS,
B76,
GBI,
145,
141,
G1g.
165,
129,
157,
672,
GHI,
165,
BB,
228,
B9,
134,
134,
169,
dH2,
169,
204,
143,
157.
169,
203,
204,
283,
142,
G465,
234,
@24,
141,
@48,
HBHS .
169,
gE3,
142,
157,
169,
a@2,
285,
169,
244,
146,
138.
145,
145,

#Rx,
141.
169 .
194,
145,
BZ2
227
gy,
131,
1574
BDET .,
HBEHE .
165,
1 &2,
157.

32
hed X

134,
142,
a1,
@12,
145,
155,
145,
#32,
@72,
@11,
145,
145,
145,
295,
164,
168,
1565.
206,
1456,
244,
@,
194,
HE2,
BT 2,
BHT .,
145,
145,
g .
a@Ez,
162,
B2

GI2,
173,
@,
143,
169,
121,
154,
@18,
#3I2,
B68 .,
BEHT,
169,

i
S

157
BEE,
B,
143,
134,
#96,
157,
21,
141,
142,
212,
GEE,
157 5
BE2,
174,
#96,
145,
BHG ,
298,
164,
145,
$13,
B
133,
376,
BHT,
157,

172

£y S

2@,

#BP6, 4

134,
BB .,

025,

« ¥

BIEE,
a8,
141,
169,
@72,
141,
D76,
@1,
21R,
BET,
165,
BHG
157,

«FT S,

BOHT,
@96,
#3964,
143,

G2,

263,
285,

144,

157 .6

Bob,
BEH2
205,
149,
165,
177 5
@2,
165,
206,

Bob,

145,
154,
226,
B4S,
GI2,
169,
193,
17,
144,
165,
128,
157,
@74,
BB,

#32,155
24¢, 189
154,119
BI2,B76
@36,172
@Bl , 841
143,113
G946, BHE
165,843
g, 138
157,141
F73,198
BB, BHP
169,181

2,886,389

142,225

L BEE, 129

31,866

144,129
33, 876,255
LBB2, B9
146,225
165,828
LBEHG, 248
L BB, @11

i3, 173, 131

5,172,081

204,
L EP,
169,

234,

@47,
161,
145,
174,

<L .

2,145,

LT
142,
145,

169,

A73,

BB,
, 145,
. 268,

165,
D75,
206,

174,

288,243,876,
LEHDE ., BHE, BEE,

173,698
145,247
244,123
#@72,197
161,867
146,117
BT, 143
144,357
131,241
g#83,145
165, @323
gag, @873
BET, 161
g32,876
174,234
BE?, B58
F17,.179
26803, 131
145,224
2H6,142
F14, BEH

134,225

391

Appendix B: LADS Object Code

¥=Z7=28:
I7TE4:
373440
37346
E73I52:
Z7358:
37364
Z7370:
E7E7 6
IZ7382:
X7388:
Z7394:
IT74G6:
Z7406:
37412:
Z7413:
I7424:
Z7430:
T7436:
Z7442:
Z7448:
37454
374460
374866
37472:
I7478:
7484:
374940
T7496:
I75H2:
I7S98:
X7514:
I7S52

S7826:

td ¢

w
[
b

aom b
oS

NN SN NN N

U
o~
b3

Led L Gl L

{
~
nananonoon o

U
o~
w

212,
#32,
244,
B
BHE
236,
@85,
153,
145,
169,
133,
192,
193,
SH,
BEd,
BHG
FEo,
aag,
@
@@,
146,
146,
146,
146,
169,
dHD

c
255 .

244,
146,
258,
in g
#1173,
@24,
184,
183,
144,
144,
B3I,
164,
255,
245,

146,

255,

g,

: 532,

141,
125,
148,
169,

133,
234,
145,
B32,
172,
B,
145,
AHD
169,
BHD
135,
154,
154,
#B96,
B,
DD,
GO,
@@,
B .
173,
£ 75
173,
173,
174,
g,
185,
a9,
238,
224,
224,
B96,
A3,
138,
146,
146,
44,
83,
146,
255,
255,
206,
2HD
154,
133,
a2,
124,
148,
169,
@84 .

213,
216,
B W
BI6,
244,
@ H B,
241,
HES,
@,
133,
@32,
141,
141,
B76,
BHG
GG,
@@,
G,
D@D .
#3S,
BIb,
@37,
@38,
B4,
141,
255,
204,
195,
BHED
L7,
1 7%,
146,
1619,
173,
@24,
187,
186,
208,
185,
136,
184,
238,
B32,
162,
121,
148,
169,
148,
141,

BIZ,
166,
243,
145,
145,
166,
632,
2o,
153,
134,
B4,
187,
188,
263,
@,
@,
D,
B,
@@,
146,
146,
146,
146,
136,
@41,
255,
@41,
146,
244,
@39,
DAL,
248,
GTb,
@35,
138,
146,
146,
@@a

255,

192,
146,
234,
185,
169,
141,
169,
228,
141,
128,

174,
DHE
@72,
194,
2H3,
oG,
244,
B76,
DO,
169,
136,
154,
154,
146,
SHE
GHE,
a@a,
B,
DG,
141,
141,
141,
141,
244,
146,
153,
146,

238,

GH8,

146,
146,
g,
1464,
145,
189,
1735,

o, B

244,

Ll 4 —
gy o Y

i
286,
#96,
145,
B2,
169,
154,
141,
197,
148,

FUZ

161

148,22

o941,
g4,
248,
BI2,
aa7,
P43,
Sas,
BES,
£ 75,
173,
168,
PE
@@,
@Ed,
aHg,
aBd,
BEG
144,
1655,
197,

@96,

141,2

141,
@38,
@37,
172,
@13,
153,
248,
187,
162,
169,
133,
249,
141,
126,
148,
169,

224
114
206
179
2549
186
159
216
184
152
251
2446
Bi9
#3ib
@42
@48
0S4
R3]
153
#51
2837

L B68
YT
. 241

181

. 138

169

.« 172
1 Ea

214
129
226
287
@26

T |
L L

167
#56
163
287
@846
222

129
@41

233

@71
141
@391

@55

—

Appendix B: LADS Object Code

SR]
N
N

376
376
376

L

8
=4
376440
27646
Sl OTH2E
37658:
278664
37678
37675
Z75882:
z7688:
2746894
IT77Ed:
37706
S7712:
57718:
27724
37730
37734
377472:
37748:
37754
27768
27766
ETTT2¢s
37778:
37784:
37798
I7FL96:
I7802:
Z78¢8:
37814
3I7824:%
37826:
37832:
278=8:
37844:
37858 :
37856
37862:
Z7868:
37874
37880:
37886:
I7BI2:
37898:
37944
I791@:

147,141,
141,136,
131,148,
148,149,
169,196,
151,141,
141,136,
137.148,
148,169,
169,874,
152,141,
146,244,
169,263,
@84.147,
146,169,
@I, 014,
147.169.
146,149,
146,146,
145,166,
136,249,
GEH3, B2,
1S@. 876,
208, 0146,
B73, D@1,
201, %48,
146,244,
231,959,
146,174,
@41,127,
201, 123,
153, #@d,
208,174,
aEE, a5,
FEHD, 248,
261,658,
176. 083,
255,632,
141,045,
208, 903,
#945,146,
GET, BI2,
147,169,
148,133,
G445, 146,
246,548,
221,866,
206,208,
G@2. 148,

129,
148,
169,
151,
141,
135,
148,
169,
151,
154,
aE7 .,
DHT,
141,
169,
@32,
145,
142,
169,
Boa .
aa1,
BH7 .
115,
@87,

v A
7 Zoa

141,
268,
289,
268,
Bo4 ,
291,
176,
oE5,
136,
140,
153,
176,
B76 .,

i
LD

146,
a32,
284,
255,
#82,
284,
1562,
291,
aas,

L B
e | =

177,

148,169,
169,151,
244,141,
£44 . 153,
134,148,
148,169,
169,151,
224,141,
141,139,
BAb, BH2,
@H2 173,
B76,087.,
BES5, 146,
@aE, 141,
141,948,
BPL L, BE2,
166, 1548,
BAD, 145,
146,632,
@1&, 017,
224,128,
159,832,
147,261,
173,864,
#654,146,
Be5, 174,
238.963,
BPE, 238,
144,238,
#97,144,
AR, H41,
206, 2001,
169,155,
@42,146,
173,809,
@R, 281,
243,147,
158,165,
173,855,
163,149,
@42, 146,
149, @76,
135, 2403,
1@, @800,
ane . 177,
255,244,
208,989,
230,204,
203,240,

175, 131
141,108
132,281
148, 139
169,28
211,287
141,144
138,22

148,166
169,839
#65,878
184%,283
B76,.894
@47,144
146,244
B7E, 213
#32,118
G635, 23

#85,199
224,161
244, 361
164, 348
G34, 549
146,833
194,151
B6Z,B71
146,164
B4, 157
#12,1449
BHb, D12
B95 ., B4D
GoE, 223

153, 153
192,281

GeS, 253
F48,155
169,252
268,22

146,156
172,183
240,529
394,677
169,121
140, B9
293,228
#34,254
PR2, 173
#76,149
B8, BI2

393

Appendix B: LADS Object Code

37916: 200, 208,249, 2348, 204,876,171
3I7922:924,148,238, 046,186, 1462, 850
37928: 000, 876,916,148,169,1556, 393
37934:160,150, 832,146,149, 8746,247
37940:987,147.142,962,1456,173,841
37946: 046,146, 816,176,189,124,23

37952:148,. 056,233,001 ,141, 066,197
37958:146,189.125,148, 233, 680, 143
37964: 072,173, 066,146,872, 896, 189
37970: 076,073,083, 384, 000, 368, 213
37976:079,483, 000,878, 069,687,22

I7982: 000,083, 965, 086,069,832, 173
37988:000.076,879.,065, 868, 832,164
I7994: 006,677,069 ,882,871,069,218
I8GH0: 832, OG0, 076,065, 368, 383, 1840
IBHG6: BEE, 98T, ¥89, B8, #OE, 255,116
IBHI12: OG0, OO0, GO, D00, 3HG, GEH, 124
I8H18: 000, BHG. SO, BOH, GO, BFHH, 139
IBGZ4: 000, 000, 00, BOH, 169, BAH, 349
IBE3H: 133, 203, 856,173,847 ,146, 132
IB#36: 229,263,141 ,839,146,169,851
IBE42: 032,133, 204,173,048,146,122
I8848: 229,264,141, 840,146,173, 869
IRES4: 048,146,178, 813,839,1446, 208
IBH6H: 268, #01.896. 169,051,141 ,828
IBBLL: 254, GBH2, 224, HGH, 240,329,159
IBET72: 169, 666,141,849, 146, 163, 581
38078: 006,177,203, 032,036,145, 015
I8G84: 165, 601,848,022, 208, 204, 368
IBH9G: P49 ,146,208,241 . 230, 204, A0
3I8696: 202,048, 811,268, 234,173, 068
I8182: 039,146,141 ,349, 146,876,847
581¢8: 189,148,169, 00%, 141,254,397
I8114: 082,096,108, 3146, 30§, 169,399
I81208: 009, 133, 203,169, 032,133, 134
IB126:204, 169,008,141 ,0855, 146,185
IB132:168,.148,658,146,152, 824,158
38138:141,263, 133,134, 141,051,245
38144:146,.141,053,146, 165,204,387
38158165, 880, 133,135,141 ,052, 060
38156:146,141,054,146,856,173,216
38162:951.,146,.237.847,146,141,%18
38168:066,146.173,052,186,237,876
38174:948,146.013.066,1456,144, 581
I818@: @RS, #76,097.149, @32, 843, 186
38186:1346,056,173,192,154,237,222
38192: 943,146,141 .0866,146,173, 251
I8198: 193,154, 237,844, 146,613,373
3R2M4: 0656, 146,240,013, 176,314, 283

394

Appendix B: LADS Object Code

I8218:33=2.128,149,

38216: 234,
38222: 855,
38228:152,
38234: 1469,
38724@: 146,
IB246: 453,
38252: 856,
38258: 452,
IBZ264: 956,
I8278: 146,
38276: 283,
38282: 248,
38288:149,
38294: 164,
IBIBG: B32,
IBI@L: 396,
I8312: 061,
146,
173
175,
#B56.
146,
146,
175
B paa,

-
2Ty

@39,
146,
T
@48,
548,
38442: 133,
IB4418: 1019,
38414:173,
IB42@: BIb,
3B426:146,
38432: 451,
38438:548,
3B444: 0343,
38456: 146,
3B4S6: 206,
38462: 9173,
38468: 134,
38474:149,
38486:173,
IB486:#48,
I8492: 005,
38498: 146,

2@4,
146,
161,
E
238,
146,
146,
146,
146,
B96,
231 .

247 .23

H9b,
B,
BT6,
173,
141.
185,
#51,
a852,
173,
141,
oy
347,
145,
149,
146,
56,
146,
146,
146,
283,
B47,
A5z,
146,
A56,
146,
146,
146,
208,
P47,
B3I,
146,
8472,
948,
146,
145,
144,

FTS,
BE2,
293,
191,
#55,
287,
175,
141,
248,
172y

155,

197
145,
o953,
@35,
A
146,
146,
H47
B39,
o554,
146,
206,
141,
244,
175
141,
PET .
HBIb,
141,
146,
146,
105,
173,
141,
2E7 .
176,
GBS,
146,
146,
B56 .,
146,
146,
160,
2B,

245,

208, 268,
245,148,
128,149,
141,453,
234,141,
1446, 356,
#51,146,
B54,146,
B57.1486.,
@a3, 238,
D50, 146,
240, BH8,
204,876,
263,132,
28%, 249,
200, 208,
146,324,
146,173,
141,836,
141,837,
141,938,
146,237,
146,173,
146,176,
243, BH3,
@47 .1486,
B4G, 1486,
G622, 632,
G47.146,
@47 ,146,
P57 .146,
173,651,
#35,146,
141,837,
133,264,
@pe, 141,
$47,146,
#39,.146,
F52,146,
#14,173,
206,348,
P76, D7D,
240, BB,
173,047,
141,447,
105, 860,
ggg, 185,
20, 204,

240,243,

FH2,B17
286,157
@24, 103
146,112
P54, 247
173,142
141,148
237,152
238,126
B57 ., DD
177 . 145
200,115
31,219
204, 3F7
Og6,168
246,255
105,247
B354, 206
145,23
146,186
146,114
P53, 136
@48,123
G14,209
206, B
B76,117
$13,178
B67 , BHE
237.615
173,181
141,253
146,144
G556, 204
146,117
141,895
#38, 230
237 .86
173,216
141, 5440
@47,128
146, B39
159,239
F@I2, B2
1846, BH2
146,193
141,181
GEH, 113
F42,123
#946,188

395

Appendix B: LADS Object Code

38584: 165,
38514: 145,
IBS16: @61,
38522: 145,
38528: 146,
I8S5T4: 009,
38546:141,
38546: 687,
38552: 121,
38558:121.,
38564: 869,
IBS570: BAD,
38576:114,
38582:482,
38588: 149,
3I8594:242,
I86G8: GAS,
386@6:176,
38612:242,
38618: 133,
38624:191,
I863G: 146,
38636: 832,
38642: 154,
38648:146,
3B654: 076,
38660: 173,
38666:173,
38672:173.
38678:173,
38684: 165,
3869d: 324,
38696: 173,
387@2: 173,
I87688: 876,
38714:173,
I8728: 861 .
38726: 053,
38732: 146,
38738:141,
38744:173,
I8758: 839,
38756: 146,
38762: 862,
38768:169.
38774:172,
38786: 201,
38786: 244,
38792: 644,

396

<
#I2,
141,
169,
149,
#832,
F396 .,
F@E2,
#4656,
113,
114
253,
G322,
B75.
HBI2,
169,
133,
Gma,
133,
2i2,
15@ .,
165,
B76,
285,
144,
a5l .,
P@E2,
853,
@54,
28,
173,
@58,
G559,
@58,
Bod,
146,
146.
173,
G4,
P55,
146,
G786,
146,
G,
HE2,
iss,
BOb,
148,

240, 003,032,625,
145,896, 165,
146,632,185,
160,150, 832,
174,066,146,169,
145,832,121,

@14,
GE6 .
17

207,
155,
@8z,
155,
116,
114,
B69
@45,
G2,
aEad,
BEHG .,
244,
a32,
268,
153,
165,
213,
148,
#87.
H472,
148,
146,
145,
146,
146,
285,
@ss,
145,
146,
151 o
146,
133,
229,
@54,
146,
146,
238,
165,
15,
1685,
146,
244,
203,

1824

B76,
1a1,
GG,
B97 .
111,
114,
@32,
162,
133,
133,
B2,
214,
@96,
213,
212,
141,
G996,
147,
144,
g3,
141,
141,
141,
141,
@4z,
146,
141,
141,
@2,
LBy
204,
283,
146,
176,
208,
BB,
148,
G,
=
185,
@10,
268,
@56,

@65,
@97 .
253,
1260,
114,
114,
BEHG ,
114,
2472,
243,
BH G
217,
169,
B96,
141,
@44,
@32,
173,
208,

o

BE
@b,
758,
B59,
146,
238,
B53,
B54,

223X

.-'—l.*—.‘n’
203,
B56,
141,
229,
g,
GoH8 .,
238,
@24,
133,
135,
BHD
201,
282,

237 x

@68,
1,
G983,
BI2,
155,
111,
BEE,
44,
2340,
169,
216,
165,
SaHD
G932,
B4,
146,
244,
BE2,
AE,
154,
146,
146,
146,
185,
298,
@847,
146,
145,
154,
173,
173,
B3I,
204,
B9b .

o
PR = I

D4,
173,
129,
139,
DD,
@44,
G676,
H62,

188
195
175
181
214
1S9
22

129
@42
242
@7=
o=
249
186
166
126
@62
244
(RS
@1=
182
B61
233
169
23
25%
289
217
22

22

3
LD

171
245
253
238
178
HE&F
113
25 4
173
148
19480
"o 4
169
142
176
2H7
#78
D67

Appendix B: LADS Object Code

¥

X
Z8798: 146,
Z88d14: 1469,
T881#: 145,
=881&:218.,
— 8822: 4745,
8828:876,
x8834:
I884@: B2,
18846932,
28852:1679.
%8858:151.
Z8864:87 6,
I887@: 205,

28876:162,

8882:146.1

%8888:141,
ZB8894: 2472,
IB9@E: HR7.
IB8936: B87,
I8912: 032,
I8918:212,
38924: 883,
2893d: 167,
8936: 884,
3I8942:157,
38948: 165,
38954: 189,
I896@: G447,
IB8966: B2,
z8972: 241,
I8978: 158,
I8984: 1543,
3I8999: 154,
38996: 134,
I9@@HT: 233,
IZ9@#8: 255,
I9814: 283,
3I9020: 068,
I9E26: 084,
I9GTE2: 669,
I9GEB: 877 .
I9@44: 068,
I9@S56: 984,
— I9@56: B384,

I9H62: 069,

I9E68: 869,

I9@74:873,

I9@8d: BB,

I9886: H69,

144,
HHT
169,
144,
194,
@87,
B2,
@11,
194,
@ag
1 &k ,
694,
B4z,
BT b
B32,
741,
151,
147,
147,
134,
144,
169.
o,
157,
BEo,
131,
@72,
1464,
141,
1354,
G76,
B6 .
G2,
B56,
GHD .
154,
146,
$#89,
g8,
@81,
G8g,
788,

BES, ¢

083,
@89,
BET
G667,

@62,14565, 133,

15X,

BaE,

166, @8
164, ¢

147,

131,
13

@32

-

=2
Do

. 548,
2,115,

L Ba8e,

166,

L2865,
.87,

T, 632,

1@4, 151,
145,832,
156,876
155, 133,
1,857

147,

146,72

BEHT,
191,
151,
BID,
BI2,
169,
151,
169,
@32,
157,
BT,
i
g2,
gE,
189,
#5483,
244,
@87,
@88,
146,

2R3 -

g32,
gz,
B7 6,
@74,
O,
BoE ,
Bob,
@74,

P68,
F773,
BT,
$88, #83, 666,
L7, 065, 068, 867,

154,
145,

n e
Eiraty

252,
a4,
165,
aEa,
157,
D72 .
BEHT,
#E2,
Z12,
195,
@73,
1464,
BHE
147,
169,
149,
FH2,
287,
121,
#368,
#8873,
BET .
HBET7 .
@78,
@77 .

I, @84,

578,
B9,
@378,
HaH,

aE8,
HED,

LBE2, 2
173

165,
213,
255,
151,
133,
131,
157,
369,
SHE,
169,
GE2,
144,
AP,
G,
145,
G2,
@32,
181,
104,
178,
145,
141,
GES,
#87,
@873,
&7,
He9,
@84,
789,
@89,
#88,
#88,
@89,
BT .

GEl, 2

154,

123, 8

131,

156, ¢
147 .8

1@4a,
145,
146,
234,
BE2 .,
Zi2,
141,
A7 4,

B76,2

133,
HE2,
B68.
G,
169,
Ha7,
145,
“n24 .,
141,
165,
Hid i,
1i5,
1414,
164,
1@4,
164,
1672,
B76.
H76.
H8z2,
Hhb,
BET .
B7 6,
H8=.,
#83 .
H68 .,
H6H8,
B7E,
HEHT .
HRE,
BET .,

2
He7
138
a4Sb
@378
g4
225
S5
7 e
244
189
@75
LR
179

&4 G
@Heg
@375
@22
15%
148
25t
241
1411
147
22

@74
@51
H25
2l & i
@9
114
112
289
@92
@98
1L.2%

fHeS

397

Appendix B: LADS Object Code

I9E92: 876,
I9@98: #65,
I9144: 689,
3911d:676,
I9116:077,
I9122:478,
39128:879,
I9134: 686,
X914¢:6G79,
I91446: 083,
I9152:876,
39158: 472,
39164: 384,
I9170: 069,
39176:488,
39182:479,
39188: 648,
39194: 0068,
TQ2ag: B,
9@ G0,
I9212: 804,
%9218: 468,
3I9224: 058,
T923E@: ¢
T92TE: ¢
I9242:8732,
39248: 248,
I9254: 204,
I9268:192,
I9266: 178,
39272009,
I9278: 036,
I9284:214,
I929¢:248,
3I9296: 048,
I9EA2: G54,
E9EH8: HLT .,
I9T14: 059,
9320 009,
s G,
S,
sag,

BE7 .,
#89,
ga5,
HeS,
@7,
@68,
@82,
a7,
@76,
@82,
G773,
a8,
@73
B73,
@83,
BRE,
#HHs,
ghip 1,
HH2,
FED
DD,
B,

BAT, ¢
@D, ¢
L BEE,

B,
1632,
LB,
298,
168.
#43,
B8,
#88.
124,
B4G,
B55,
#68.,
Fa,
BAF
A,

g,

B, GBHD,
GENER R

39306 4

IPTH2:

I93468:
IRET74: 000,
938 HEd,

398

B, BB,
LG,

GG,

FHH ., ¢
G, ¢

784,065,088,
984,488, 98965,
H8P, 072,865,
o6, 982,875,
Hob, d88, 876,
@79 .8082, 865,
dob6 . B75,884,
Heb, 886, 83,
@8z, 879,882,
A&7 .. 876,868,
H6S.0B83,.076,
a8, a476, 984,
#8E, 069 . 868,
@84, 48%, 4188,
BE7 .76, 986,
@l Has, 69,

@pg, @al, #Ea, ¢

GHE2, BE2, BED,
BEG . AAD, BHL
GO, BHEH, DHG,
@EE, BHD, B,
@1, 891, 887,
AHT, BEE,

agg, 809, 161,
176,245,144,
G76,129,132,
282,198,

225,056,097, 4

38,152,872,
B1E, BT
112,834,493,
BH2, AHQ, BAP,
184,154,184,
B5E, 351, 452,
H56, 057,865,
BEF, B7H, BHD,
BHB, BB, BOD
BOH, BOH, FHD
BHE, BBD, BHB
BEE

BOD, DHD, DB, ¢

BH

A 171

@84,132
#84,149
@85, 131
G6b,116
G65,129
$69,139
Gbb, 154
@82, 190
B76,1940
B67.165
@#8@, 1381
aaz, 244
GBI, 2HEH
684,22
@78, 230
@@g, 188
55, 358

B, GE7
GB4, 544
SEE, B4
G52
BT 6
LB
B, BLS
L 133
%, 187

. 153

dbb, B24
Bes, @522
234,22

#53, 175
G666, 231
BEHE, 158
aEE, 146
gEE, 152
g@m, 158
BEHG, 144

DG, BEE, BAG, GG

@b, g, @ee,

GSEE, BEE, BHE, o

L @EE, e,
o 4
2

aHD,

"

@, g

B, HEE, GO0, o

Appendix B: LADS Object Code

39386
I93972:
39398:
39464 :
39413
39416
39422:
39428:
39434
394440

I9444: 6

39452:¢

39459:
9454 :

123087

FEHD
BHG
FEE P

@i,
BHE
211,

195,

IR47E: 2

39476z 2
39482: 234, =
204, ;
#3103
HIL,

; 2R s 22 164,

39488:
39494:
I9SHE:

395861
395122

@I, B

39518:
39524
3PS5 3elE
39536
39542
Z9548:
39554:
I9o6H:
FFoLbE
PG L2
IFSF8:
39584:
39599 :
39596

2tz
3y
25 2

188,
16,

197.2

194,
190,
G531,
195,

L R B —
Ll T o-

225,
173,
#E1 .,
211,
168,

4
BHB L BB, DD,
BAD, BOG, DO,
B, SO, BOE,
L BHE, BOE
BEHE, BBD, BHB
BHH, BHD, 206,
244,225,242,
228,228,242,
BOGH, BAS, BE5,

S.645, 545,
A,
. 238,
D44,
s 225,
1,238,

229,

BAG , BOD

D
b4 x

LHB31,

B3,

L EEE,
LEBI2,
188.
244,
2B,

. w0, 194,
196, 308, 331,
#31,168,173,
245,280,236,
244,229,160,
296,229,236,
W, BEE. B3,
BI1. 160,173,
249,238,244,

197,242,242,

I6H2: 168, 173,173,160,

e,
i3
B,
o,
BHG

25
244,
229,
g945,
@45,
B45,
227 »
140,
238,
228,
e]

228,
236,

B3,
206,
236,
#I1,
188,
188,
263,
214,
194,
@,
173,
s e
1643,
166,
#I1,
173,
225,
239,

@,

aEe,
g,
BB,
Haa,
g,
G,
168,
164,
2473,
H45,
G945,
@32,

exway
£,

s e
239

BE .
b a4
0¥ -

169,
gag,
@31,
225,

=
Ea Ty

BIL,
188,
188,
160,
164,
199,
@31,
160,
g
294,
1773,
@31,
166,
243,
242,

G,

218
224
2349
226
242
248
#P1
HSu
@a=
18=
GBR&
@29
112
@15
&
165
#He s
164
71 21 iz

28
115
@7 =
#8=
204
213
B2E
234
gas
B
@84
117
#s8
123
AR S
214
B7b6

Program B-5. Apple LADS: Hex DATA

79FD- 4C FS
7A00— A9 00
7A08— DO FA
7410- 8D E4
7A18- 4D 8D
7A20— 8F B9
7A28—- 99 F3
7A30— F3 BE
7A38—- DO E7
7A40—- 20 58

82

AO 32

99 CE 8F 88

A% 00 85 EE 85 4C
8F A2 7A 85 EC B85S
ES BF A% 01 8D FA
00 04 C9 AO FO 07
8E C8B 4C 21 7A 99
C8 B9 00 04 C? AO
88 84 F? 20 ES 80
83 A7 00 8D D4 8BF

399

Appendix B: LADS Object Code

7048—
7AS0—
7AS8—
7ALO—
7A68-
TA70-
7A78-
7AB0O—
7A8B8-
7AP0—
7498
7AA0—
7AA8—
7ARO—
7AB8—
7aCco-
7AC8-
7ADO—
7ADB-
7AEO—
7AEB-
7EF0—
7AF8-
7BO0O—
7R0O8—
7B10—
7B18-
7BZ20—
7BRZ8-
7BE0O—
7B38-
7B40—
7B48-
7BS0-
7BS8-
7B&0O—
7BL68-
7BR70—
7B78-
7B80—
7B88-
7RFO—
7B98-
7BAO—
7BAB—
7BRO—
7BEB8-
7RBCO—
7BC8B—

400

20
20
A9
D&
53
DD
A
D7
D8
2F
Al
DC
DO
AD
20
89
88
17
CF
08
4c
AO
99
BY

=

99
9D
9D
7F

i
S

8E
8F
Qo0
41
8E

-
N

8F
8
8F
8F
8E
£9
02
29
Z0

o8

8E
17

OE
50
4c
81
20
8F
8D
8F
8F
82
7D
8F
O3
Fo
[8TaY
AD
4c
co
8F
18
B2
FF

-

F1
7C
F3
F1
F1
20
8E
EE
20
8Cc
0
c8
8E
c8
8E
AD
Do
85
30
E&6
FO
FO
48
&8
co
AD

84
89
20
AT
D6
DO
85
85

=
4

AD
20
8D
ac
8F
89
F2
Of
03
AD
6D
7C
c8
8E
8D
AZ
8E
8D
8D
1A
c9
Eé
EC
DC
O3
B9
Co
BY
ac
DD
AC
FC
BO
FC
oC
a4
A9
Ag
o3

CF

AD
A9
D&
44
81
OB
EE
FD
FE
D4
OE
E&
co
FoO
20
8F

-
53

DD
F4
CE
AD
B9
ce
ce
00
B9
E8
4C
7F
40
aF
7F
8F
EE
FS
41

=
-t

&9
8F
A9
A
Q7
E1l
ce
c8
00
&8
FO
8F

E7
E&6
81
20
20
A9
20
8D
8D
8F
84
8F
764
oCc

2

vl

FO
AD

P
P

8D
8F
E7
F1
20
3D
8E
Fi
c8
ce
4C
BO
49
4C
B
DC
8D
QO
8D
7B
DO
38
00
18
FE
2C
4C
21
21
=F
ce

8F
20
A
D&
S0
F1
81
DO
D1
FO
AT
AC
8CcC
20
=4
03
CF

A2 O

DO
8D
8F
8D
DO
DO
FE
8D
4C
7A
co
06
g0
EBE
FS
8F
Fo
03
FO
88
40
85
AD
E&
FO
FO
GH
FE
FB
ceo
08

DO

41
81
89
85
83
8F
8F
O3
00
E7
FE
59
20
20

8F

&8
CE
FoO
FO

03
8F
FO

20
7A
AD
80
7B
8D
29
146
EE
Qb
8CcC
AD
FE
=8
FE
10
08
7R
20
AD
28
FO

3F
81
20
AT
AD
FE
AD
AD
20
4C
8D
8F
8F
89
OA
06
Fo
8D
A9
8F
547
2E

. C8

4C
8A
08

3 7B

78
AD
39
DS
AO
Co
38
99
DC
99
DE
DC
AT
8E
90
Co
co
48
81
38
FO

—-
-

Appendix B: LADS Object Code

7BDO—
7RDB8-
7BEO—
7BEB—
7BFO—
7BF8-
7C00—
7C08—
7C10—
7C18-
7C20—
7C28-
7C30-
7C38-
7C40-
7C48-
7CS0-
7C58-
7C60—-
7C68-
7C70—
7C78-
7C80—
7C88-
7C90—
7C98-
7CAO0—
7CA8B—
7CBO—
7CB8—-
7CCO-
7CC8-
7CDO—
7CD8-
7CEOQ—
7CE8-
7CFO—
7CF8-
7D0O0-
7D08-
7D10—
7D18-
7D20—
7D28-
7D30—
7D38-
7D40—
7D48-
7D50—-

C9
CE
AC
F
09
CE

==
o

E7
AD
8F
04
4C
7F
EZ
D8
88
c8
4C
8F
BO
18
4D
AC
DO
DC
06
CF
18
77
AD
o7

06
oc
8D
9E
9E
FS
24
04
05
20
82
85
as
ES
24
82
8F

O3
8F
DB
10
A9
8F
4C
8F
D7
ES
68
37
68
0z
8F
B9
4C
DO
DO
0D
&D
88
DB
05
7C
AD
8F
6D
7C
CF
DO
8D
BO
8D
a8
7D
7D

8D
20
AQ
D6
A2
24
FC
24
AD
AZ
FO

Do
8D
8F
AD
10
AD
77
DO
8F
FE
4Cc
7€
10
8D

38
FC
03

{ — —3
tJ

ce
CE
20
8F
AT
AD
3A
ES
CE
20
8F
oc
CE
o9
CE
AD
AD
AD
FO
E8
Ab
02
81
01
A9
20
8D
FS
04
0A

71
CE
B9
N 2
18
CF
7 e
O3

=
~J

BO
Q0
FO
o3
D7
77
8E
7D
4C
AD
02
8F
73

A9

02
CE
4C
CE
20
8F
8F
8F
A9
20

AC

DO
A2
85
88
8F
FO
Ab
08

08
4C
8E
CT
CE
(B
92
7T
48
co
68
68
00
A9
AC
2C
CE
7C
8F
09

4C
8E
CE
ce
D7
D1
CE
4C
FO
8F
DC
8F
4D
DO
DO
DO
14
1iC
E8

FA
81
FB
A9
A9
iF
81
A9

i8

03
03
3E
38
82
8F
A9
20
A9
A
1E
1E
20
AC
20

6D

V76

29
Do
8D
FO
AD
28
D8
Fio
OC
Q0
38
8D
BF
04
ED
D8
06
04
20
7E
29
4C
DO
AD
08

- 4C

7C
Co
69
ce
69
20
4CcC
4C
AD
ES
A2
10
20
1C
14
8E
38
85
iC
E9
20

401

Appendix B: LADS Object Code

7D58- D& 81 88 DO FA 20 1C 82
7D60—- AZ 01 20 AZ 81 20 &6 89
7D68- AD F3 8F FO 11 C? 01 DO
7D70- 05 A9 3C 4C 78 7D A9 3E
7D78- 20 D& 81 20 8B 89 AD FC
7D80- BF FO 13 20 0A 89 A? 3B
7D88- 20 D6 81 A9 00 85 FB A9
7D90—- 02 85 FC 20 F9 88 20 50
7D98- 89 AD D4 8F DO 03 4C 8F
7DA0—- 7A AD E7 BF DO 2C EE E7
7DAB— B8F 3B AS FD ED DO 8F 8D
7DBO—- FD BF AS FE ED D1 8F 8D
7DBB- FE BF AD DO 8F 85 FD AD
7DCO— D1 BF 85 FE 20 1C 82 A9
7DC8- 01 20 35 82 20 ES BO 4C
7DDO- 40 74 20 1C 82 A9 01 20
7DD8- 35 82 A% 02 20 35 82 AD
7DEO- FS 8BF FO 15 20 1C 82 AZ
7DEB- 04 20 A& B1 AT OD 20 D6
7DF0O— 81 20 1C 82 A? 04 20 35
7DF3— 82 4C Do O3 B? 38 BE C?
7EO0O0— 58 FO 62 88 88 B? 38 8E
7E08—- C? 29 DO O3 4C EO 7B AD
7E10- DB 8F DO OF AD CF 8F C9
7E18- 02 FO 4F C? 05 FO 4B C9
7EZO0—- 01 FO 77 AD CF 8F C9 01
7E28- DO OC AD CE BF 18 4% 18
7E30—- 8D CE 8F 4C DC 7C AD CF
7E38- 8F C? 05 FO 08 A? 31 20
7E40— DO 7E 4C S1 7E AD CE 8F
7E48- 18 69 1C 8D CE 8F 4C DC
7ES0- 7C 20 72 89 20 59 89 A9
7ES8- B4 85 FE AY 8F 85 FC 20
7EL0— F9 88 4C EZ 7C AD D8 8F
7E68- DO 33 AD CF 8F C9 02 DO
7E70- OC A? 10 18 &D CE 8F 8D
7E78— CE 8F 4C 77 7C C9 01 FO
7EB0- 10 C9? 03 FO OC C? 05 FO
7E88- 08 A% 32 20 DO 7E 4C 51
7E90- 7E A? 14 18 6D CE BF 8D
7E98—- CE 8F 4C 77 7C AD CF 8F
7EARO— C9 02 DO OC A9 18 18 6D
7EAB— CE 8F 8D CE 8F 4C DC 7C
7EBO— C9 01 FO 10 C? 03 FO OC
7EE8- C9 0S5 FO 08 A9 33 20 DO
7ECO- 7E 4C S1 7E A9 1C 18 6D
7EC8- CE 8F 8D CE BF 4C DC 7C
7EDO— 8D E8 8F BC EA 8F BE E9
7ED8- 8F A9 BA 20 D& 81 68 AA

402

Appendix B: LADS Object Code

7EEO-
7EEB-
7EFO-
7EF8—
7FO0O—
7F0O8—
JF10—
7F18—
TF20—
7F28—
7F30-
7F38—
7F40—
7F48—
7FS50-
7F58-
7F&0-
7F&8—
TF70—
7F78-
7F80—
7F88—
7FQ0—
7F98—
7FA0—
7FA8-
7FBO—
7FB8—
7FCO—
7FC8-
7FDO—-
7FD8—
7FEO—
7FEB—
7FFQ—
7FF8—
8000—
8008-
8010—
8018—
8020—
8028—
8030—
8038-
8040—
8048-
8050—
8058—
8060—

&8
24
AE
F1
20
89
FG
77
FO
8C
8F
EC
91
FO
B9
AS
EER
F1
c8
20
8F
7
DO
A9
A9

=

EE
&8
ED
80
ER
63
85
Ao
DO
EA
EE
aF
D&
04
8E
D1
ED
80
01
17
0A

=
b=

&8

A8
ED
EQ
8D
S0
A9
20
7€
Sb6
E1l

=
J

A
EE
05
F1
FD
AE
8D
4C

-

=
ot

88
17
1
8D
AC
AD
4C
AD
A9

=
p.

o
-“

ED
00
02
7F
8D
FO
8F
c8
FO
ED
AD
4C
60
20
89
FC
68

98
AD
8F
c8
a9

3

F9
AD
ce
8F
ER
00
c8
F1
8D
91
El
FO
&7
89
FC
acCc
c8
18
&9
EZ
D8
EZ2
ES
FF
ED
Q0

{ —3
)

Bl
Cé6

=
p

EC
03
a2
20
S3
FO
EC
CE
AD
72
A9
20

AD

48
ES
6D
co
20

=
J

88
FF
20
38
AS
BY
E9
ER
c9
EE
8F
08
7F
Ag
20

-

c8
&D
00
8F
8F
7C
8F

AS
38
EE
ED
EE
ED
8F
ac
01
cA
co
Fi
8F
7F
E7
89
ac
Fo
CE

8A
8F
AO
FF
72
FB
20
c8
DO

=
J

EC
F1
F1
4c
3D
c8
cA
99
99
SC
F9
8F
c8
D&
85
AD
cs
AD
85
F8
EC
AS
E9
30
C6
8D

B1
2,
AD
80
30
AD
85
AD
8F
20

=
F

88
8F

48
AC
Q0
DO
89
A9

=
.

B?
Fé
EE
E?

8D
4z
FO

=
.

AQ
F1
F1
85
88
AD
8C
8F
FEC
D7
71
E4
EE
8F
ES
ED
Q0
oC
ED
ER
ED
80
E&
c8
90
EE
EE
F8
DO

=
ot

FE
20
29

98
EA
8
F8
20
8F
89
=il

ED
00
49
G2
7F
32
FE
00
8D
8D
FB
4C
DD
D&
85
20
8F
ER
8F
20
38
EE
EQ
85
AS
E8
8F
CD
ER
8F

B9 :

4F
8F
20
8F
02
89
AT
50

iF

20
8F
99
60
59
8s
4C
8D

E1l
85
80
20

30
20
20
8F
89
€9

403

Appendix B: LADS Object Code

8068
8070—
8078—
8080
8088
8090
8098
80A0—
80A8—
80R0O-
80R8—
80C0O—
80C8—
80D~
80D8—
80OEO—
80EB-
8OF0—
80F8—
8100—
8108-
8110-—
8118-
8120
8128—
8130
8138-
8140—
8148-
8150-
8158—
8160
8168-
8170
8178-
8180-
8188-
81920
8198—
81A0—
81A8-
81B0—
81R8-
81C0—
81C8-
81D0—
81D8—
1E0—
81E8-

404

10
4Cc
8F
8F
8F
ED
D8
Q2
8F
FO
AD
8F
2C
Cé
85
88
A9
2C
EE
A7
(s]8]
A9
DC
EBi

=
~J

81
49
8A
AD

-
<

A9
08
85

=
s

c8
FEB
DO
2A
Co
O3
&E
8D
&HO
&D
g1
28
F0
02
g1

FO
DC
FO
FO
AD
8D
8F
DO
AD
8F
F1
AD
80
ED
FE
20
01
A9
FF
90
90
90
03
z

60

=
P

81
a0
A9
Q0
Bl
2B
FE
Co
09

=
.

AOC

&0
0
o3
8C
0
08
&0
8D
DO
4C

08
7C
03
03
E&
D7
AD
1E
F2
6D
8F
E7
AS
&0
A9
S0
20
90
8F
85
&0

.

=
7

&0
AT
AD
2C
AT
90
QO
8D
2C
AT
A
1F
g0
20
Q0
DO
8E
EOQ
AR
70
co
AC
AC
&F
1E
Dz

AD
4C
4C
20
8F
8F
F3
AD
8F
D7
&D
8F
ED
20
8F
89
35
85
60
2D
&0

-
!

8D
QO
FF
A9
(a]e]
FO

S
Q0

=
)

F3
00
DO
71
nc
B1
F7
&D
04
A9
0
01
70
70
0
ab
81

F3
77
2C

—
-

FO
c8
8F
D8
FO
8F
D8
FO
DO
72

=
J

&0
82
A9
20
AT
20
84
Ak

=
J

aF
Q0
8D
11
2D
Q0
2A

=
b

A9
F9

-
¥

Q3
2C

]
=

Q0
DO
81
8E
DO
Qo0
0
D
6F
=18]

8F
76
80
80
01
B1
FO
8F

-
S

8D
8F
01
02
89
FC
20
A9
20

3
Sk
e
L)

8A

0
2D
FoO

S

FF
A
20
&
cg
FR
AO
AQ
c8
8%
91
O
HO
(871
=30]
EY
ac
AE
&0
6E
0
6F

DO
EC
EE
AC
c8
ED
OA
8D
18
D7
8D
60
Cé
A
20
iC
01

=
)

85
81

=
)

a1
Ao
ae
20
27

=

8F
b} =
8A
&
Bl
A9
21
Q0
C4
2B
24
20
8a
A%

=
~

gF
20
EQ
8CcC
Q0
20

Q0

O3
D6
F8
D&
Bl
8D
Co
D7
AD
8F
D8
4C
EE
96
Fo
82

=
Tt

81

EE

o
Y

20
08
37
8A
AT
20
60
85
81
AO
e
8E
2
B1
F9
84
c8
D6
8D
EC
AR
AD
QC
BF
70
CY
23

ce

Appendix B: LADS Object Code

B1FO-—
81F8-
8200—
8208-

I00—
8308-
8310
8318-
8320
8328-
8330—

538~
8340—
8348-

350-
8358-

360—
8368-
8370-

8D
AD
60
AD
81
|58 B
20
AA
Q0
LIRS
4Cc
QO
Q2
B8

=
p }

Q0
37
AD
O3
B9
80
Ag
99
AD
20
30
69
DA
D4

(=
t

Do
FoO
c8
BE
EBA
74
ce
c8
764
FO
c8
03]
8D

=
J

A9
A2
ES
CA
FO

DO
C1
AD
&F
AD
4c
8D
A9
Co
4C
48
A9
cS
co
82
AD
02
02
04
99
A
02
&F
DO
38
AL
20
Ao
Bl
F7
Fo
cs
A9
A
&0
8C
ce
c8
06
B9
c8
co
BD
8D
01
8F
DO
OE

02
Cc1
6E
QO
&F

=
® i

&D
FD
cY

o

81
00
B9
20
£
AD
o1
0z
co
Q=
00
92
a4
QD)
Q3
E?
BO
D1
00
B8
88
c8
c8
82
FC
AD
CD
EO
B9
c8
ce
DO
20
71
8cCc
20
20
F4
A9

A7
30
O
20
IO
g1
Q0
8D

S

81
4C

=
.

DO
DO
2F
Q0
0z
co
20
co
04
[578)
&8
ce
4C
DO
86
82
84
21
88
A9
c8
8%

5
Q0
F1
39
ce
cB8
ac
D2
FO
8D
CE
AZ
B9
20

-
<

QA
FB
ce
EC
09
A%
A%

=
t

&
cCe
SE
E8
15
05
0
02
ce
40
Do
00
c8
04
&8
3A
B1
&0
6A
68
94
4
E1
Q0
&0
BC

AZ
8D
DO
8C
DO
CD
FO
04
8D
8F
81
81
B9
85

8D
AD
04
81
80
00
FO
AA
co
02
81
DO
AC
E6
04
ce
53
DO
22
FO
ac
99
4c
BO
Q0
Ab
18
68
A9
c8
94
21
A9
A%
A9
FF
FO
FO
CD
EQ
F3
EO
co
CF
4C
Az
AE
81
FE

Q0D
&F
DO
4C
20
8D
8D
&0
o1
Do
8D
iR
00
E8
C9

DO
29
AD
09
88
01
00
0D
38
AF
20
4C
02
ce
ce
4
44
4C
79
E8S
OA
4C

—
Fa

Fa
8D
AD
Q0
8F
cc
06
ES
EY
A9

cCoO
0
09

=

Fo
&E
53
AD
DO
03
&F
A
B1
4C
3A
DO
30
AD
Q0
09
82
04
7A
ce
EQ
86
ocC
6A
85
00
20
c8
85

=
J

85
B9
cs8
EB

EE
FO
F4
DO
BC
7A
8E
8F

="t
<L

8F

405

Appendix B: LADS Object Code

8378-
8380-
8388-
8390—
8398
83A0—
83A8B-
83B0-
83B8—
83C0—

aC8-
83D0—
8ZD8-
83E0-
83E8-
83F0—
83F8—
8400-
8408-
8410—
8418-
8420—
8428-
8430—
8438—
8440—
8448-
8450—
8458—
8460—
8448—
8470—
8478-
8480—
8488—
8490—
8498-
84A/0—
84A8—
84R0—
84B8—
84C0—
84C8—
84D0C—
§4D8-
84E0-
84E8-
84FO0—
84F8-

406

85
&0
4C
Q0
01
8D
8D
12
10
4C
8F
DO
OE
18
oD
8D
8F
8F
D8
7E
8F
F7
D2
20
Bz
20
03
4C
E8
FC
4
FO
85
20
89
8F
EB
a7
i0
ca
03
ES
74
Fo
8F
ce
ce
1

FC
AO
8=
8D
8E
QD
OE
20
8F
AE
20
CA
8F
AD
8F
OE
60
8D
8F
A
8c
8F
8F
B2

=
J

4c
4c
Fé
8F
8F
84
OE
99
S

20
ac
8F
99
O3
4C
4c
8F
&0

=
P}

&9

7
<

7F
8D
&0

20
0Q
83
D7
E?
8F
8F
D3
AD
83
FA
&0
OE
10
AD
8F
18
D7
8D
00
FZ
Do
20
81
68
4C
B2
84
AD
AD
4C
ce
F1
89
S0
BC
AC
00
20
9C
E4
DG
ce
Cce
26
FO
90
c8
4C

F9
Bl

8F
8F
(=10)
8D
83
OE
EE

-
=

18
oD
8F
11
OE
AD
8F
D8
8c
8F
oC
Be
ce
&8
84

=
ot

Cce

c,
P

E8B
BC
7F
8D
20
89
84
Q0
0z
E1l
84
84
05
3E
2B
DO
16

O3

4c

88
FB
OF
8D
E1l
10
11
AD
8F
ES
88
OE
8F
6D
8F
0D
0D
AD
8F
DD
8c
20
a1
20
4C
20
E9
3B
8F
8F
84
Q0
cg
00
A9
8D
20
AC
87
20
20
68
Fo
DO
03
ce
20
44
846

4C
FO
8F
D8
FB
8F
8F
0D
8D
8F
CE
oD
2E
oD
6D
8F
8F
OE
LH0
8F
Fz
B9
2D
DO
8F
B9
3A
DO
Fo
FO
Z0
03
4C
89
00
FC
B9
E8
9
B9
B2
&8

=T
p

03
ac
24
04
84
99

D2
04
88
8F
29
A9
CA
8F
i
AE
OF
8F
OE
8F
OE
2E
6D
8F
20
8C
8F
81
b3
08
7A

DO
73

55

06
B9
20
6D
20
8D
8F
81
8F
Q0
81
85
4C
co
EE
39
FO
85
8D
Fi

7D
c8
A9

OF
00
FoO
8D
8F
E9
8F
ZE
8F
8D
BF
OE
D7
&D
F4
FC
AD
8D
BF
20
c9
DO
03
8C
8D
20
81
04
84
66
ES
8D
Do
&O
0z
FO
AD
8F
3C
F2
85

=
~F

99
F7
8D

Appendix B: LADS Object Code

8500—
8508-
8510—
8518-
8SZ0—
§528-
8o930—
3538-
89540—
8548—
8550—
8558—
8560—
8568
8570—
8578-
g580—
8o883—
85%0—
8558-
8560—
85A8—
85R0O—
8=hR8-—
85C0—
8oC&-
8500—
85D8-
8SEO—
85E8-
85F0—
85F8-
8600—
8608-
8610-
8618-
8&Z0—
8628-
8630—
8638-
8640—
8648—
8650—
3658-
8660—
8668—
8670—
8678—
8680—

c8
EO
g
F3
Fi
&)
84
g4
Q9
E3
8D
8D
84
20
87
B9
4C
iB8
00
8F
20
[218]
8F
Do
20
E7
b}
ce
ce?
co
9
DE
86
(18]
18
“9
[ST2)
D7
2E
8F
E?
D7
EE
Fi
28
99
F1
OO
17

4C
8F
E8
ES8
8D
A
AD
F1
8F

¥ 3
!

D7
AD
Dé&
AD
=1
78
65

~J
FO
AQ
D8
7A
F8
B2
8F
a2
ZA
3B
29
=i
8F
4aCc
8E
86
00
OFE
8F
D8
EBD
a7
8F
DD
OE
48
F1
8D
8D
8c

D1
Az
ED
ED
c8
a2
01
F3
8D
(04
8F
SF
E7
81
DD
8D
85
FE
FC
08
a7
8F
99
99
81
5
[ale}
FO
Fo
F
8D
39
44
DE
AD
8D
D7
2E
8F
DE
29
ES
BF
AE
Z0
8D
cs
ED
EA

20
8F
By
cs8

=
-t

20
AD
AD

-
p

F1
Fl
FoO
A
20
=g
20
OR
C3
F1
84
8F
E8

=
7

8F
D8
OE
BE
OF
EC
A9
E7
1A
c8
c9
8F
8F

=8
CE
Do
Do
19
F3
F3
FO
EE
FoO
44
44
FG
&b
DO
20
8
FEB
31
F4
D7
FE
8D
8D
04
a1
R
ce
=9
D
4C
8D
8D
9
8F
3F
ZE
8F
D7
ce
0D
DE
a1
8F
7F
20
42
AD
Ab

iy

ES
EO
10
30

=
e)

8F
8F
20
DD
08
84
84
OF

20
FO
FE
A9
83
8F
8F
68
c8
20
A9
8D
81
20
2C
DE
D=
c8
ES
F1
4C
8D
D8
OE
8F
41
D/
8F
&
DO
68
B9
DO
E7
Fo

ZF
8F
FA
07
=29
4C
4C
A%
8F

=
P

=
J

20
A9
20
AD
04
A9
8D
AD
FO
85
&8
(316,
B9
00
D4
FO
FO
FO
8E
85
20
8F
8D
47
D8
8F
D7
2E
Q0
8F
Do
Co
09
A8
81
&8
8F
8F

8D
Fo
30
g3
7F
44
44
2A
AD
FE
FD
44
2A
S0
Q0
c3
Fi
=34
E7
03
FD
4C
FF
81
8D
8F
2C
F3
OF
E8
8E
18
A9
20
84
8F
OE
8F
D&
02
=18}
D1
a0
48
&8
99
(234
Fi
FO

407

Appendix B: LADS Object Code

8688—
8690~
8698-
B86A0O—
86A8—
846BO—
86B8—
86C0—
86C8-
86D0—
86D8-
B86EO—
86E8-
86F0—
86F8—
8700-
8708-
8710-
8718-
8720-
8728-
87 30—
8738
8740—
8748
8750—
8758-
8760—
8768-
8770
8778—
8780
8788—
8790—
8798-
87A0—
87A8—
87B0O—
87B8—
87C0-
87C8-
8700—
87D8-
87E0—
87E8-
87F0O—
87F8-
8800~
8808

408

OF
32
20
20
8D
81
DO
oc
FC
Q3
09
S6
8F
4C
?D

=
e}

FO
84
49
DO
D3
80
FoO
FO

20
&0
FF
DG
DO
4C
Az

20
89
B?
DO
cg
DO
03
20
8F
4C
20
8A
20
AE
06
20
3F
AE
87
oD
20
8E
18
10
EE
87
FC

= D7

A9
DO
DO
ce
F7
E7
03
EZ
1C
(21
AD
A9
Do
DO
1C
38

-

DO
Do
F&
Q0

59
20
g1

c,
pe J

c9
0%
4c
94
4c
AE
EE
99
C3
86
aF
B9
Co
FS
8D
AD
EE
99
co
9D
EE
A9
8C

Q0
FA
QO3
3A
8F
8F
4C
aF

D7
D8
ad
03
EE
82
E9
ED
10
30
87
B9

89
(8741
257
20

|

4C
88
84
85
86
88
F1
88
A2
ES
81
3B
8F
80
80
88
Fl
00
06
8F
06
EA
20

¥
o

4C
20
FO
EE
FO
65
g

]
<

8F
8F
20
CE
AD
Az
7F
8r
FA
07
29
F1

20
89
F1
B9
DO

| <=3
ot

87
AE
87
AE
4C
8D
AC
00
AD
FO
DO
8E
8E
8E
4C
8D
FO
8F
8D

(=%
)

8F

3
05
FC
ER
03
FE
08
7D
0z
G2

=

g

=
.}

D6
Dé
D6
01
8D
FO
30
99
7F
8D

(874
AC
8D
81
45
87
ce
FoS
Cce
E7
AE
AA
EA
8E
EE
43
oC
FC
AD
C2
FC
ca8
14
EB
g1
FB
=20
88
SD
86
88
20
8F
AD
4C
D
20
FD
FE
81
8F
8F
20
EQ
08
[a]5)
A1)
co

g9
EA
c8
99
20
co
3K
8F
%
8F
86
8c
8F
EE
8F
Co
20
8F
E7
20
86
Co
co
4C
8E
A9
81
AC
06
AD
AD

68
F9
8F
01
Ab
8D
8D
AD
CE
DO
Az
aF
E8
ES
02
AO
2B

=

8F
c?
F1
B?
A
Do
8E
DO
DO
4C
EA
c8
8F
DO
3A
24
4C
8F
DO
AD
20
3A
FC
4C
8F

-
23

EA
8F
E.7
g1
85
&8
8F
74
&0
81

=
p=}

D6
DS
DS
EY
81
Az
BD
BD
Cc3a
00
FO

Appendix B: LADS Object Code

8810-
8818-
8820—
8828-
8830~
8838-
88410—
8848—
8850—
8858—
8860—
8868-
8870—
3878—
8880—
8888-
8890—
8898—
88A0—
88A8—
88B0—
SBER8—
88C0—
38CE8-
88D0-
880p8-
g88k0—
88EB—
88F0—
88F8-
8900—
8708-
8910-
239218-
8920-
8278—
89
8938—
8940—
8948—
8950—
8958-
89460—
87468—
89270
8978-
8980-
8588
8990 —

04
=30]
8E
046
A9
FE
&b
et
jale}
gF
20
29
C=
20
06
D7
DO
50
8F
C3
Fa
Dg
4C
8F
AD
290
20
85
&0
D&
88
85
8F
AE
20
8F
FE
84
FE
A9
=18}
24
85
88
12
0D
Do
LG

ce
20
EB
a8
Q0
A9
D7
an
04
Fi
AZ
20
88
EE
AE
8F
07
AD
Z0
88
8F
8F
C3
Fi
F4
02
D&
az
FD
A
81
=18
89
FoO
89
24
&HO
20
20
20
aD
AE
ED
FE
&0
20
20
01
8D

4c
75
4C
EY
9D
8E
8F
F1
Z0
11
81
[§74)
&0
88
D7
4C
20
Fo

AD
FO
20
88
05
8F
20
g1
81
A9
818
20
AY
6O
OR
AE
ED
AD
3D
E1l
24
20
Dz
20
A9
A9
D&
D&
&0
EB

0OA
38

=
e}

30
DE

=
~t

8D
arF
EE
20
AE
8%
AD
&0
8F
EE
aF
89
F3

Q3

8E
A
Fia
Ab
20
i3
00
E1

=
.

20
8E
8A
E?

20

Féa

g8A
89
ED
D6

8F

8D
o7
g1
81
AE
8F

88
BO
88
38
8E
FC
FO
&0
38
1€
CE
AE
E7
AD
20
88
88
FO
AE
8F

20

. 89

D&
00
146
81
iC
A
65
FE
g9
20
EZ
20
8F
AE
8F

S
&
20
81
Aan
ga
85
=20
20
&0
FS

20

c8
iz
ce
E?
A7
20
8F
ah
60
82
8F
CE
8F
Fe
13
AD
20
06
D7
FO
0OA
AE
8F
3A
20
~D
82
01
FE
EO
c8
D6
8F
3D
LHO
82
FoO
FD
AL
E1l
20

o

&0
FC
D&
&6
AE
8F
1C

B9
9D
34
DO
DE
a1
AD
E7
AD
Az
20
8F
DO
8F
89
E7
ER
AE
8F
QE
89
D8
AD
91
ic
D&
Az

=

oo

S
08
4C
81
AD
8A
A9
AE
QE
20
FD
82

=
.

8F
A9
Z0
81
89
E7
DO

<

Fi
DE
BO
&0
a5

D8
8F
F3
01
13
Z20
04
FoO
AE
8F
88
D7
20
AD
AE
8F
Fb&
FD
8z
8F
01
FD
FE
20
FE
20
FA
F0
Q0
E®?
AD
3D

=
ot

60
89
20
Fi
Fo
A9
A9
8F
01
AZ

409

Appendix B: LADS Object Code

8998- 04 20 A4 B1 AD EB 8F 20
8940- D& 81 20 1C 82 AZ 01 20
89A8- AZ 81 AD EB BF &0 AE E7
89B0— BF DO 01 &0 AE FS 8F DO
89B8- 01 &0 20 1C 82 AZ 04 20
89C0—- A6 81 AD FA BF FO 09 AD
8%C8- E9 B8F 20 3D BA 4C DB 89
8900— A9 00 AE E? BF 20 24 ED
89D8- 20 1C 82 AZ o1 Z0O AZ Bl
8%E0- &0 AE E7 8F DO 01 &0 AE
89EB- FZ 8F DO 01 &0 20 1C 82
89F0- AZ 04 20 A6 81 AE FA 8F
89F8- FO OD AS FE 20 3D BA AS
8A0OD- FD 20 3D 8A 4C OE 8A AS
8BAOB- FE A6 FD 20 24 ED 20 1C
8A10- B2 AZ 01 20 A2 B1 &0 AE
8A18- E7 BF DO 01 60 AE FS 8F
8AZ20- DO 01 &0 20 1C 82 A2 04
8AZ8- 20 A& 81 AD D3 8F AE D2
8A30—- BF 20 24 ED Z0 1C B2 A2
8A38- 01 20 AZ 81 &0 48 29 OF
8A40— AB BT E1 8D AA 68 4A 44
8A48- 4A 44 AB EB? E1 8D 20 D&
8ASO— B1 B8A 20 D6 B1 60 C9 46
8ASB- DO 08 20 BY? 8A 48 48 4C
BAGO—- BF 7A C? 45 DO 06 20 12
8A&B— BB 4C SD 8A C9 44 DO 03
8A70- 4C 5SB 8B C9 S0 DO 03 4C
8A78— C1 8B C? 4E DO 03 4C 02
8AB0— BC C9 4F DO 03 4C ED 8B
8A8B8- C? 53 DO O3 4C 9A 8BC C9
8A%0— 48 DO 03 4C B4 8C 99 Fi1
8A%8- BD 20 59 89 20 0A 89 20
8AA0O— 32 89 20 72 89 20 &6 89
BAAB- AY B4 85 FB A9 8F 85 FC
8ABO—- 20 F9 88 20 50 89 4C D4
8AB8B— BB 20 R? 81 C9 20 FO 03
8ACO- 4C B? BA A0 00 20 B9 81
8ACB— C? 00 FO OE C9 7F Q0 O3
8ADO- 20 04 8BS 29 F1 8D CB 4C
8ADB- CS BA B4 F9 A0 00 B9 F1
8AEO— BD FO 07 99 F3 BE CB 4C
8AEB- DE 8A AD E7 8F DO 0& 20
8AFO0— 32 89 20 0A 89 20 &6 89
8AFB- 20 S50 B89 20 ES BO AZ 01
8ROO— 20 A2 81 20 BY 81 20 B9
8B0O8- 81 20 B2 85 AZ 00 8E D4
8B10—- 8F &0 A? ZE 20 D6 81 A9
8E18- 45 20 D6 8B1 A9 4E Z0 D6

410

Appendix B: LADS Object Code

8B20- 81 AY 44 20 D6 81 AT 20
8B28- 20 D6 81 20 B? 81 20 B9
8B30—- BA AD E7 BF FO 03 EE D4
8B38- 8F EE E7 8F 38 AS FD ED
8B40- DO 8F 8D FD BF AS FE ED
8k48- D! 8F 8D FE 8F AD Do 8F
8ES0- 85 FD AD D1 8F 85 FE 20
8ES8- OE 84 460 AD E7 8F FO 1E
8B60—- 20 EB? 81 99 F1 8D A0 00
8B68- 20 BY 81 FO 14 C? 7F 90
8B70—- 03 20 04 85 99 F1 8D 99
8B78- F3 BE C8 4C 68 8B 4C D4
8B80— BB 84 F? 20 66 89 20 50
8B88- 89 EE F4 8F 20 FC BO AZ
8B0— 02 20 A4 81 AD DO 8F 29
8B%98- D6 81 AD D1 8F 20 D& 81
8BAO— AD FD 8F 20 D6 81 AD FE
8BAB— BF 20 D6 81 20 1€ BZ A2
8BEBO- 01 20 A2 81 20 BZ 85 68
8BEB- 68 A2 00 8E D4 8F 4C 8F
8BCO- 7A AD E7 8F FO OE 20 OB
8BC8B-— 81 EE FS 8F 20 1C 82 A2
8BDO- 01 Z0 A2 B1 20 B? 81 FO
8BD8— 07 C9 3A FO 046 4C D4 8E
8REOQ—- 20 B2 85 68 68 AZ 00 BE
8BESB— D4 8F 4C 8F 7A AY ZE 20
B8EFO-— D& 81 AP 4F 20 D6 81 20
8BF8- 50 8% A7 01 8D F6 8F 4C
8C00- D4 BB AD E7 8BF FO CD 20
8C08—- BY? 81 C? 50 FO OC C9 4F
8C10— FO 3A C? S3 FO &6A C9? 48
8C18- FO 4C A9 2E 20 D6 81 A9
8C20— 4E 20 D6 81 A? S50 20 D&
8cz28— 81 20 50 89 CE Fo 8F 20
8C30— 1C 82 AZ 04 20 A6 81 A9
8C38— 0D 20 D6 81 A 04 =0 35
8C40— 82 20 1C 82 A2 01 20 A2
8C48—- 81 4C D4 8B A9 2E 20 D6
8CS0— 81 A% 4E 20 D6 81 A? 4F
8C58- 20 D6 81 20 50 89 A9 OO0
8C60— BD F6 BF 4C D4 8B A? 2
8C68- 20 D& 81 A% 4E 20 D6 81
8C70— A9 48 20 D6 81 20 50 89
8C78- A9 00 8D FA 8F 4C D4 ER
8C80- A7 2E 20 D6 81 AT 4E 20
8CB8—- D& B1 AP S3 20 D6 81 20
8C?0— S0 89 A? 00 8D F? 8F 4C
8C98— D4 8B A% ZE 20 D6 81 A9
8CAO— 53 20 D6 81 20 50 892 AD

411

Appendix B: LADS Object Code

8CA8- E7 8F FOC 05 A9 01 BD F9
8CrO— 8BF 4C D4 BE A9 2E 20 D6
8CE8- 81 A9 48 Z0O Dé& 81 20 SO
8CCoO— 89 A? 01 8D FA 8F 4C D4
8CC8- BE 4C 44 41 4C 44 59 4A
8CDO- 53 52 52 34 53 42 43 53
8CD8B- 42 45 S1 42 43 43 43 4D
8CEO— 50 42 4E 45 4C 44 358 4A
8CE8- 4D 50 53 54 41 53 54 59
8CFO— 53 54 58 49 4E 59 44 45
8CFB8- 59 44 45 58 44 45 43 49
8D00— 4E 58 49 4E 43 43 50 39
8D08B- 43 50 S8 53 42 43 53 45
8D10— 43 41 44 43 43 4C 43 54
8D18- 41 58 5S4 41 59 5S4 58 41
8D20- 54 59 41 50 48 41 S0 4C
8D28- 41 42 SZ 4B 42 4D 49 42
8D30— 50 4C 41 4E 44 4F S22 41
8D38- 45 4F 52 42 49 5S4 42 56
8D40— 43 42 56 53 52 4F 4C 352
8D48- 4F 52 4C 5Z 52 43 4C 44
8D50— 43 4C 49 41 53 4C S0 48
8D58- S0 50 4C S0 52 54 49 53
8D60O— 45 44 53 45 49 54 53 S8
8D68B- 54 58 S3 43 4C Sé& 4E 4F
8D70- 50 01 05 09 00 08 08 08
8D78- 01 08 05 06 01 0Z 02 00
8D80— 00 00 02 00 02 04 04 01

8D88— 00 01 00 00 00 00 00 QO
8D?0— 00 00 08 08 01 01 01 07
8D98- 08 08 03I 03 03 00 00 03

8DA0O— 00 00 00 00 00 00 00 00
8DAB- 00 A1 A0 20 60 BO FO 0
8DBO— C1 DO A2 4C 81 84 86 C8B
8DB8- 88 CA C6 E8 E&6 CO EO Et
8DCO—- 38 &1 18 AA AB BA 98 48
8DC8- 68 00 30 10 21 01 41 24
8DD0O— S0 70 22 62 42 DB 58 02
8DD8- 08 28 40 F8 78 BA 9A BB
8DEO— EA 30 31 32 33 34 35 36
8DE8- 37 38 39 41 42 43 44 45
8DFO0— 446 00 00 00 00 00 00 00
8DF8— 00 00 00 00 00 00 00 00
8E0O— 00 00 00 00 00 00 00 00
8EO8— 00 00 00 00 00 00 00 00
8E10— 00 00 00 00 00 00 00 00
8E18- 00 00 00 00 00 00 00 00
8E20- 00 00 00 00 00 00 00 00
8E28- 00 00 00 00 00 00 00 00

412

Appendix B: LADS Object Code

8E30— 00 00 00 00 00 00 00 00
8E38— OO Q0O OO Q00O Q0 00O OO 00
8E40— 00 Q0 00 00 00 00 00 00
8E48- Q0 00 00 00 00 00 00 00
8ESO— 00 Q0O 00 00O 00 00 00O 00
8ES8— 00 00 00 OO 00 00 Q0 00
8BE&LO— 00 Q0O 00 00 00 00 00 00
SEL8— OO0 Q0O OO0 OO OO0 OO0 00O 00
8E70— 00O 00O 00 00 00 00 00 00
8E78— 00O 00O 00 QO 00 00 00O 00
8E80— OO0 00 00 00 00 00 00 00
8EB88— 00O 00 00 00 90 00 00 00
8E0— 00 00 00 00 00 00 00 Q0
S8E98— 00O QO OO OO OQ 00 OO0 00
SEAO— OO Q0O 00 00 00 00 OO0 00
8EAB— 0O 00O 00 00 00 00 00 00
S8ERO— 00 OO0 00 00 00O 00 00 00
S8ER8— 0O 00 00O 00 00 00 00 00
8ECO— 00 00 00 00O 00 00 00 00
8EC8— 00O 00 00 Q0 00 00 00 Q0
8EDO— QOO0 Q0O 00 00 00 00 00 00
8ED8— 00 00 00 00 00 00 00 00
8EEOQ— 00O Q0O 00 00O 00 00 00 00
B8EES— 00 00 00 Q0 00 00 00 00
8EFO— 00 00 00 00 00 00 00 00
8EF8— 00 Q0O 00 00 00 00 00 00
8FO0O— 00 Q0 00 00 00 00 00 00
8F08— 00 00 00 OO0 00 00 00 00
8F10— 00 00 4E 4F 20 53 54 41
8F18— S2 54 20 41 44 44 52 45
8F20- 53 53 00 2D 2D 2D 2D 2D
8F28- 2D 2D 2D 2D 2D 2D 2D 2D
8F30— 2D 2D ZD 2D 2D 2D 2D 20
8F38— 42 52 41 4E 43 48 20 4F
8F40— 55 54 20 4F 446 20 52 41
8F48— 4E 47 45 00 35 4E 44 45
8FS0— 446 49 4E 45 44 20 4C 41
8F58- 42 45 4C 00 1D 1D 1D 1D
8F&0— 1D 1D 1D 1D 1D 20 4E 41
8F&68— 4B 45 44 20 4C 41 42 45
8F70— 4C 00O 1D 1D 1D 1D 1D 20
8F78—- 3C 3C 3C 3C 3C 3C 3C 3C
8F80— 20 44 49 53 4B 20 45 352
8F88— 52 4F S5S2 20 3E 3E 3E 3E
8F90— 3E 3E 3E 3E 20 00 1D 1D
8F98— 1D 1D 1D 20 2D 2D 20 44
8FAO— 55 S50 4C 49 43 41 54 45
8FAB— 44 20 4C 41 42 45 4C 20
8FBO—- 2D 2D 20 00O 1D 1D 1D 1D

413

Appendix B: LADS Object Code

8FB8-
8FCO-
8FC8-
8FDO—
8FD8-
8FEO-
8FE8-
8FFO0-
8FF8-
FO0O0—
2008-
010-
?018-
P020-
F028-
F030-
F038-
040—-
2048-
F050-
F7058-
2060-
F068-
?070—

414

1D

S2
Q0
00
00
00
00
00
00
02
92
01

00
Q0
01
00
93
00
92
00
95
00

20

20
00
00
a0
00
Q0
Q0
01
2D
00
06
33
00

00
00
(0)4
Q0
00
00
53
01

2D
58

00
00
00
00
00
00
00
93
00
04
94
00
93
00
00
00
00
91
00
94

a3
S2
(e]0)
00
Q0
00
Q0
00
00
QO
00
00
03
(e]0)
o0
00
53
00
00
00
00
00

Machine Language
Editor for Atari and
Commodore

Charles Brannon

Have you ever typed in a long machine language program?
Chances are you typed in hundreds of DATA statements,
numbers, and commas. You're never sure if you've typed
them in right. So you go back, proofread, try to run the pro-
gram, crash, go back and proofread again, correct a few typing
errors, run again, crash, recheck your typing—frustrating, isn’t
it?

Until now, though, that has been the best way to enter
machine language into your computer. Unless you happen to
own an assembler and are willing to wrangle with machine
language on the assembly level, it is much easier to enter a
BASIC program that reads the DATA statements and POKEs
the numbers into memory.

Some of these BASIC loaders, as they are known, use a
checksum to see if you've typed the numbers correctly. The
simplest checksum is just the sum of all the numbers in the
DATA statements. If you make an error, your checksum will
not match up. Some programmers make the task easier by
calculating checksums every ten lines or so, and you can
thereby locate your errors more easily.

Almost Foolproof
“MLX" lets you type in long machine language (ML) listings
with almost foolproof results. Using MLX, you enter the num-
bers from a special list that looks similar to BASIC DATA
statements. MLX checks your typing on a line-by-line basis. It
won't let you enter illegal characters when you should be
typing numbers, such as a lowercase L for a 1 or an O for a 0.
It won't let you enter numbers greater than 255, which are not
permitted in ML DATA statements. It will prevent you from
entering the wrong numbers on the wrong line. In short, MLX
should make proofreading obsolete!

In addition, MLX will generate a ready-to-use tape or disk
file. For the Commodore, you can then use the LOAD com-

415

Appendix C: Commodore and Atari Machine Language Editor

mand to read the program into the computer, just as you
would with any program. Specifically, you enter:

LOAD “filename”,1,1 (for tape)
or
LOAD “filename”,8,1 (for disk)

To start LADS you need to type SYS 11000 (Com-
modore). For complete instructions for the use of LADS,
please read Appendix A.

For the Atari, MLX will create a binary file for use with
DOS. Atari MLX can create a boot disk or tape version of
LADS, but this is not recommended.

Getting Started

To get started, type in and save MLX (VIC owners must have
at least 8K of extra memory attached). When you are ready to
enter LADS using MLX, Commodore 64 and VIC owners
should enter the line below before loading MLX:

POKE 55,0: POKE 56,42: CLR
Commodore PET/CBM owners should use:
POKE 52,0: POKE 53,42: CLR

When you're ready to type in LADS, the program will ask you
for several numbers: the starting address and the ending ad-
dress. In addition, the Atari MLX will request a “Run/Init
Address”.

Below are the numbers you'll need.

PET/CBM, VIC and Commodore 64:
Starting address 11000
Ending address 15985

Atari:

Starting address 32768
Ending address 39607
Run/Init address 32768

The Atari version will then ask you to press either T for a
boot tape, or D for disk; press D. Next, you'll be asked if you
want to generate a boot disk or a binary file; press F.

Next you'll see a prompt. The prompt is the current line
you are entering from the listing. Each line is six numbers plus
a checksum. If you enter any of the six numbers wrong, or en-

416

Appendix C: Commodore and Atari Machine Language Editor

ter the checksum wrong, MLX will ring a buzzer and prompt
you to reenter the line. If you enter it correctly, a pleasant bell
tone will sound and you proceed to the next line.

A Special Editor

You are not using the normal screen editor with MLX. For
example, it will accept only numbers as input. If you need to
make a correction, press the DEL/BACKS key (Atari) or the
INST/DEL key (Commodore). The entire number is deleted.
You can press it as many times as necessary back to the start
of the line. If you enter three-digit numbers as listed, the com-
puter will automatically print the comma and prepare to ac-
cept the next number. If you enter less than three digits (by
omitting leading zeros), you can press either the comma, space
bar, or RETURN key to advance to the next number. When
you get to the checksum value, the Atari MLX will emit a low
drone to remind you to be careful. The checksum will auto-
matically appear in inverse video; don’t worry, it’s highlighted
for emphasis.

When testing MLX, we've found that it makes entering
long listings extremely easy. We have tested MLX with people
lacking any computer background whatsoever. No one here
has managed to enter a listing wrong with it.

Done at Last!

When you finish typing (assuming you type the entire listing
in one session), you can then save the completed program on
tape or disk. Follow the screen instructions. (For Atari we sug-
gest that you use the filename AUTORUN.SYS when saving a
copy of LADS. This way LADS will automatically load and
run when you boot up your computer.) If you get any errors
while saving, you probably have a bad disk, or the disk is full,
or you made a typo when entering the actual MLX program.
(Remember, it can’t check itself!)

Command Control
What if you don’t want to enter the whole program in one sit-
ting? MLX lets you enter as much as you want, save that por-
tion, and then reload the file from tape or disk when you
want to continue. MLX recognizes these few commands:

S: Save

L: Load

417

Appendix C: Commodore and Atari Machine Language Editor

N: New Address
D: Display
For the Atari, hold down the CTRL key while you type

the appropriate key. Hold down SHIFT on Commodore ma-
chines to enter a command key. You will jump out of the line
you've been typing, so it’s best to perform these commands at
a new prompt. Use the Save command to save what you've
been working on. It will write the tape or disk file as if you've
finished, but the tape or disk won’t work, of course, until you
finish the typing. Remember what address you stop on. The next
time you run MLX, answer all the prompts as you did before,
then insert the disk or tape. When you get to the entry
prompt, press CTRL-L (Atari) or SHIFT-L (Commodore) to re-
load the file into memory. You'll then use the New Address
command to resume typing.

New Address and Display

Here’s how the New Address command works. After you
press SHIFT-N or CTRL-N, enter the address where you pre-
viously stopped. The prompt will change, and you can then
continue typing. Always enter a New Address that matches up
with one of the line numbers in the special listing, or else the
checksum won’t match up.

You can use the Display command to display a section of
your typing. After you press CTRL-D or SHIFT-D, enter two
addresses within the line number range of the listing. You can
abort the listing by pressing any key.

Tricky Business

The special commands may seem a little confusing at first, but
as you work with MLX, they will become easy and valuable.
What if you forgot where you stopped typing, for instance?
Use the Display command to scan memory from the beginning
to the end of the program. You can stop a listing by hitting
any key.

Making Copies

You can use the MLX Save and Load commands to make
copies of the completed ML program. Use Load to reload the
tape or disk, then insert a new tape or disk and use the Save
command to make a new copy.

418

Appendix C: Commodore and Atari Machine Language Editor

PET and VIC Users

The Commodore 64, PET, and VIC data are almost exactly the
same. There are some lines, though, that are different. Com-
modore 64, PET, and VIC owners should use the Commodore
64 data (Program B-1) with MLX. VIC owners should sub-
stitute the lines found in Program B-2 (VIC) for the same lines
in Program B-1. PET owners should type in and save the 64
data, then make the necessary changes shown in Program B-3a
and B-3b using the built-in PET monitor. Commodore 64 users
should use the data in Program B-1 as is.

We hope you will find MLX to be a true labor-saving util-
ity. Since it has been thoroughly tested by entering actual pro-
grams, you can count on it as an aid for generating bug-free
machine language. And be sure to save MLX; it will be used
for future all machine language programs in COMPUTE!,
COMPUTE!'s Gazette, and COMPUTE! Books.

Program C-1. Commodore 64 MLX

Refer to Appendix E “How to Type In BASIC Programs” before entering this program.

19@ PRINT"{CLR}E63";CHRS$(142);CHRS$(8);:POKE53281,1
:POKE53280, 1

101 POKE 788,52:REM DISABLE RUN/STOP

119 PRINT"{RvVS}{39 SPACES}";

120 PRINT"{RVS}{14 SPACES}{RIGHT}{OFF}E*J£{RVS}
{RIGHT} {RIGHT} {2 SPACES}E*3{OFF}E*I£{RVS}E
{rRvs}{14 SPACES}"; I .

13¢ PRINT"{RVS}{14 SPACES}{RIGHT} EKGJI{RIGHT}
{2 RIGHT} {OFF}£{RVS}£E*3{OFF}E*3{RVS]
{14 SPACES}";

140 PRINT"{RVS}{41 SPACES}"

209 PRINT"{2 DOWN}{PUR}{BLK}{9 SPACES}MACHINE LANG
UAGE EDITOR{5 DOWN}"

210 PRINT"E53{2 UP}STARTING ADDRESS?{8 SPACES}

{9 LEFT}";

215 INPUTS:F=1-F:CS$=CHRS$(31+119*F)

220 IFS<2560R(S>40960ANDS<49152)0RS>53247 THENGOSUB
3000 :GOTO210

225 PRINT:PRINT:PRINT

230 PRINT"E53{2 UP}ENDING ADDRESS?{8 SPACES}

{9 LEFT}"; :INPUTE:F=1-F:C$=CHRS$ (31+119*F)

240 IFE<2560R(E>40960ANDE<49152)0ORE> 53247 THENGOSUB
3009 : GOTO2 30

25@ IFE<STHENPRINTCS;" {RVS}ENDING < START
{2 SPACES}":GOSUB10@0:GOTO 230

260 PRINT:PRINT:PRINT

300 PRINT"{CLR}";CHRS$(14):AD=S:POKEV+21,0

419

Appendix C: Commodore and Atari Machine Language Editor

310

315
320
390
400
410

415

417
420
430
440

450
451

460
470
480
490
500

510
511
515
520

530
540

550
560
570
580
581
585

590
600
610

620
630
640
650
669

420

A=1:PRINTRIGHTS ("0003"+MIDS$ (STRS (AD),2),5);:":"
FORJ=ATO6

GOSUB570@ : IFN=-1THENJ=J+N:GOTO 320

IFN=-211THEN 710

IFN=-204THEN 790

IFN=-2@6 THENPRINT: INPUT" { DOWN }ENTER NEW ADDRES
S"; 27

IFN=-206THENIFZZ <SORZZ>ETHENPRINT" {RVS }OUT OF
{ SPACE }RANGE" : GOSUB1@00 : GOT0410

IFN=-206 THENAD=ZZ: PRINT : GOTO310

IF N<>-196 THEN 480

PRINT?: INPUT"DISPLAY:FROM" ; F: PRINT, "TO"; :
IFF <SORF >EORT <SORT>ETHENPRINT"AT LEAST";S
{LEFT}, NOT MORE THAN";E:GOTO0430
FORI=FTOTSTEP6 : PRINT : PRINTRIGHTS (" 20303 " +MIDS (S,
TRS(I)Iz)lS)intllf

FORK=@TO5 :N=PEEK (I+K) : PRINTRIGHTS ("@@" +MIDS (ST
R$(N),2),3):",";

GETAS : IFA$>""THENPRINT:PRINT:GOTOBl@
NEXTK:PRINTCHRS (2@) ; :NEXTI :PRINT:PRINT :GOTO310
IFN<@ THEN PRINT:GOTO310

A(J)=N:NEXTJ

CKSUM=AD-INT (AD/256)*256 : FORI=1TO6 : CKSUM= (CKSU
M+A(I))AND255 :NEXT

PRINTCHRS (18); :GOSUB57@ : PRINTCHRS (146) ;
IFN=-1THENA=6 : GOT0O315

PRINTCHRS (20) : IFN=CKSUMTHEN53@
PRINT:PRINT"LINE ENTERED WRONG : RE-ENTER":PRI
NT : GOSUB1@@d: GOTO31@

GOSUB200@

FORI=1T06 : POKEAD+I-1,A(I) :NEXT:POKE54272,0:POK
E54273,0

AD=AD+6 :IF AD<E THEN 310

GOTO 71@

N=0 : Z=0

PRINT"E£3";

GETAS$: IFAS$S=""THEN581

PRINTCHRS (20); :A=ASC(AS$) : IFA=130RA=440RA=32THE
N670

IFA>128THENN=-A:RETURN

IFA<>20 THEN 630

GOSUB69@ : IFI=1ANDT=44THENN=-1 : PRINT" { OFF }
{LEFT} {LEFT}";:G0T0690

GOTO57@

IFA<480RA>57THEN580

PRINTAS; : N=N*10+A-48

IFN>255 THEN A=20:GOSUB10@0:G0OT0609
Z=7+1 : IFZ<3THEN580

INPUTT

Appendix C: Commodore and Atari Machine Language Editor

670
680
690
691
695
700
710
715

720

730

7490
750

760
762

763
765

766
770
775
780
781

799
795

800
810
820
830
840
841
845
850

860
865

IFZ=0THENGOSUB1000 : GOTO570

PRINT","; : RETURN
S%=PEEK(209)+256*PEEK (210)+PEEK(211)
FORI=1TO3:T=PEEK(S%-I)

IFT<>44ANDT<>58 THENPOKES%-1I, 32 :NEXT
PRINTLEFTS (" {3 LEFT}",I-1);:RETURN

PRINT" {CLR}{RVS}*** SAVE ***{3 DOWN}"

PRINT" {2 DOWN}(PRESS {RVS}RETURN{OFF} ALONE TO
CANCEL SAVE) {DOWN}"

F$="":INPUT" {DOWN} FILENAME";F$:IFF$=""THENPRI

NT: PRINT : GOTO310

PRINT:PRINT" {2 DOWN}{RVS}T{OFF}APE OR {RVS}D
{oFF}1sk: (T/D)"

GETAS$: IFA$ <> "T"ANDAS <> "D"THEN740
DV=1-7*(A$="D") : IFDV=8THENF$="@:"+F§ :OPEN15, 8,
15,"S"+F$:CLOSEL5

T$=F$:ZK=PEEK(53)+256*PEEK (54)~LEN(T$) : POKE782
12K/ 256
POKE781,ZK-PEEK(782)*256 : POKE78@, LEN (T$) : SYS65
469

POKE780,1:POKE781,DV:POKE782,1:SYS65466

K=S:POKE254,K/256 : POKE253,K-PEEK(254)*256 : POKE
780,253

K=E+1:POKE782,K/256 : POKE781,K-PEEK(782)*256 : SY

S65496

IF (PEEK(783)AND1)OR(191ANDST) THEN780

PRINT" { DOWN } DONE . { DOWN }" : GOTO310

PRINT" {DOWN}ERROR ON SAVE.{2 SPACES}TRY AGAIN.
": IFDV=1THEN720

OPEN15,8,15: INPUT#15,E1$,E2$: PRINTELS; E2§ : CLOS
E15:GOTO720

PRINT" {CLR}{RVS}*** LOAD ***{2 DOWN}"

PRINT" {2 DOWN}(PRESS {RVS}RETURN{OFF} ALONE TO
CANCEL LOAD)"

F$="":INPUT" {2 DOWN} FILENAME";F$:IFF$=""THENP
RINT:GOTO310 -

PRINT:PRINT" {2 DOWN}{RVS}T{OFF}APE OR {RVS}D
{oFF}ISK: (T/D)"

GETAS$: IFAS$<>"T"ANDAS <> "D"THEN820
DV=1-7*(A$="D") : IFDV=8THENF$="0: "+F$

T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$) : POKE782
,ZK/256
POKE781,ZK-PEEK(782)*256 : POKE780, LEN (T$) : SYS65
469

POKE780,1:POKE781,DV:POKE782,1:SYS65466
POKE780,0:5YS65493

IF (PEEK(783)AND1)OR(191ANDST) THEN870

PRINT" { DOWN }DONE. " : GOTO310

421

Appendix C: Commodore and Atari Machine Language Editor

870

880

1000
1001
1832
1003

2000
2001
2002
2003
3000

PRINT" { DOWN}ERROR ON LOAD.{2 SPACES}TRY AGAIN.
{DOWN}" : IFDV=1THENBGJ
OPEN15,8,15:INPUT#15,E1$,E2$: PRINTELS ; E2$: CLOS

E15:GOTO809

REM BUZZER

POKE54296,15: POKE54277,45 : POKE54278,165
POKE54276,33:POKE 54273,6:POKE54272,5
FORT=1TO20@ : NEXT: POKE54276, 32 : POKE54273, 9 : POK
E54272,@ : RETURN

REM BELL SOUND
POKES54296,15:POKE54277,9: POKE54278, 247

POKE 54276,17 :POKE54273,40 : POKE54272,0
FORT=1TO1@d :NEXT: POKE54276, 16 : RETURN
PRINTCS; " {RVS]INOT ZERO PAGE OR ROM" :GOTOl0%@

Program C-2. VIC MLX

Refer to Appendix E “How to Type In BASIC Programs” before entering this program.

100
191
110
120

130

140
200

210

220
225
230

240
250

260
309
319

329
390
409
410

415

422

PRINT" {CLR} {PUR}";CHRS (142);CHRS$(8);

POKE 788,194:REM DISABLE RUN/STOP
PRINT"{RVS} {14 SPACES}"

PRINT" {RVS} {RIGHT}{OFF}E*3£{RVS}{RIGHT}
{RIGHT} (2 sPACES}E*J{oFF}E*T£{RVS}£{RVS]} "
PRINT" {RVS} {RIGHT} EGI{RIGHT} {2 RIGHT} {OFF}
£{RVS}£k*3{OFF}E*I{RVS]} "

PRINT"{RVS}{14 SPACES}"

PRINT" {2 DOWN}{PUR}{BLK}A FAILSAFE MACHINE":PR
INT"LANGUAGE EDITOR{5 DOWN}"

PRINT"{BLK}{3 UP}STARTING ADDRESS":INPUTS:F=1-
F:CS=CHRS$ (31+119*F)

IFS<2560RS>32767 THENGOSUB30@% : GOTO210

PRINT :PRINT : PRINT : PRINT

PRINT" {BLK} {3 UP}ENDING ADDRESS":INPUTE:F=1-F:
C$=CHR$ (31+119*F)
IFE<2560RE>32767THENGOSUB300d : GOTO23@
IFE<STHENPRINTCS; " {RVS}ENDING < START

{2 SPACES}":GOSUBl@@0d:GOTO 230

PRINT :PRINT : PRINT

PRINT" {CLR}" ;CHRS (14) :AD=S

PRINTRIGHTS ("0000"+MIDS$ (STR$ (AD),2),5);":";: :FO
RJI=1TO6

GOSUB578 : IFN=—1THENJ=J+N: GOTO32J

IFN=-211THEN 718

IFN=-2@4THEN 790

IFN=-2@6 THENPRINT : INPUT" { DOWN }ENTER NEW ADDRES
s":722

IFN=-206 THENIFZZ <SORZZ >ETHENPRINT" {RVS }OUT OF
{ SPACE }RANGE" : GOSUB1090 : GOTO410

Appendix C: Commodore and Atari Machine Language Editor

417
420
430
440

450

455
457
460
470
480
490
500

51@
515
520

530
540
550
560
570
580
581
585

590
609
610

620
630
640
650
660
670
680
690
692
695
700
710
720
730

IFN=-2@6 THENAD=Z7: PRINT : GOTO31d

IF N<>-196 THEN 480

PRINT: INPUT"DISPLAY:FROM"; F: PRINT, "TO"; : INPUTT
IFF<SORF>EORT <SORT>ETHENPRINT"AT LEAST";S;"
{LEFT}, NOT MORE THAN";E3:GOT043@
FORI=FTOTSTEP6 : PRINT : PRINTRIGHTS (" @000 "+MIDS (S
TRS(I)s2)+5):"s";

FORK=@TO5 :N=PEEK (I+K) : IFK=3THENPRINTSPC(10);
PRINTRIGHTS ("@@"+MIDS (STRS(N),2),3):",":

GETAS : IFAS>""THENPRINT : PRINT : GOTO319

NEXTK: PRINTCHRS (20) ; :NEXTI:PRINT:PRINT:GOTO310
IFN<@ THEN PRINT:GOTO310

A(J)=N:NEXTJ
CKSUM=AD-INT (AD/256)*256 : FORI=1TO6 : CKSUM=(CKSU
M+A(I))AND255:NEXT

PRINTCHRS (18); :GOSUB57@ : PRINTCHRS (20)
IFN=CKSUMTHENS5 30

PRINT: PRINT"LINE ENTERED WRONG":PRINT"RE-ENTER
" :PRINT :GOSUB10@3 : GOTO31d

GOSUB200@

FORI=1TO6 : POKEAD+I-1,A(I) :NEXT

AD=AD+6 : IF AD<E THEN 310

GOTO 710

N=0@ :72=0

PRINT"E+3":

GETAS$: IFAS=""THEN581

PRINTCHRS (20) ; :A=ASC(AS$) : IFA=130RA=440RA=32THE
N679

IFA>128THENN=-A: RETURN

IFA<>20 THEN 630

GOSUB69@ : IFI=1ANDT=44 THENN=-1 : PRINT" { LEFT }
{LEFT}"; :GOT0690

GOTO578

IFA<480RA>57 THEN580

PRINTAS; :N=N*10+A-48

IFN>255 THEN A=20:GOSUB1@00 :GOT0630J

7Z=7+1: IFZ<3THEN58@

IFZ=0THENGOSUB1®@@d : GOTO57@

PRINT","; : RETURN

S$=PEEK (299)+256*PEEK (210)+PEEK(211)
FORI=1TO3:T=PEEK(S%-1I)
IFT<>44ANDT<>58THENPOKESS-1I, 32 : NEXT
PRINTLEFTS("{3 LEFT}",I-1); :RETURN

PRINT" {CLR}{RVS}*** SAVE ***{3 DOWN}"

INPUT" {DOWN} FILENAME";F$

PRINT:PRINT" {2 DOWN}{RVS}T{OFF}APE OR {RVS}D
{oFF}1sK: (T/D)" B

423

Appendix C: Commodore and Atari Machine Language Editor

740 GETAS$:IFAS$<>"T"ANDAS<>"D"THEN740

75@ DV=1-7*(AS$="D") :IFDV=8THENFS$="0:"+F$

760 TS$=F$:ZK=PEEK(53)+256*PEEK(54)~-LEN(TS) : POKE782
,ZK/256

762 POKFE781,ZK-PEEK(782)%256:POKE780,LEN(TS$) :SYS65
469

763 POKE780,1:POKE781,DV:POKE782,1:SYS65466

765 POKE254,S/256:POKE253,S-PEEK(254)*256:POKE784d,
253

766 POKE782,E/256:POKE781,E-PEEK(782)*256:5YS65496

770 IF(PEEK(783)AND1)OR(ST AND191)THEN780

775 PRINT" {DOWN]}DONE." :END

780 PRINT" {DOWN}ERROR ON SAVE.{2 SPACES}TRY AGAIN.
" s IFDV=1THEN720 - -

781 OPEN15,8,15:INPUT#15,E1$,E2$:PRINTEL1S; E2$:CLOS
E15:GOT0720

782 GOTO720

798 PRINT"{CLR}{RvVS}*** LOAD ***{2 DOwWN}"

80@ INPUT"{2 DOWN} FILENAME";F$

810 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS]}D
{oFF}1sk: (T/D)"

820 GETAS$:IFAS<>"T"ANDAS<>"D"THEN820

83@ DV=1-7*(AS$="D") :IFDV=8THENFS$="0:"+F$

840 TS$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(TS) : POKE782
,ZK/256

841 POKE781,ZK-PEEK(782)*256 :POKE780,LEN(TS) :SYS65
469

845 POKE78@,1:POKE781,DV:POKE782,1:5YS65466

850 POKE788,@:5YS65493

860 IF(PEEK(783)AND1)OR(ST AND191)THEN870

865 PRINT" {DOWN}DONE.":GOT0O310

87@ PRINT" {DOWN}ERROR ON LOAD.{2 SPACES}TRY AGAIN.
{DOWN}" : IFDV=1THEN8GZ -

880 OPEN15,8,15:INPUT#15,E1$,E2$:PRINTELS; E2$:CLOS
E15:GOTO809

199% REM BUZZER

1001 POKE36878,15:POKE36874,190

1992 FORW=1TO300 :NEXTW

1033 POKE36878,:POKE36874,d :RETURN

2009 REM BELL SOUND

2091 FORW=15TO@STEP-1:POKE36878,W: POKE36876,240 :NE
XTW

2092 POKE36876,% :RETURN

309% PRINTCS;" {RVS}NOT ZERO PAGE OR ROM":GOTO1000

424

Appendix C: Commodore and Atari Machine Language Editor

Program C-3. PET MLX

Refer to Appendix E “How to Type In BASIC Programs” before entering this program.

108 PRINT" {CLR}";CHRS$(142):POKE53,43:CLR

110 PRINT"{RvVS}{38 SPACES}"

120 PRINT"{RVS} (18 SPACES}MLX{17 SPACES}"

140 PRINT"{RvVS}{38 SPACES}"

200 PRINT"{2 DOWN} MACHINE LANGUAGE EDITOR PET VER
SION{5 DOWN}"

213 PRINT"{2 UP}STARTING ADDRESS?{8 SPACES}
{9 LEFT}":;

215 INPUTS

220 IFS<2560RS>32767 THENGOSUB3@@GJ :GOTO210

225 PRINT:PRINT:PRINT

23@ PRINT"{2 UP}ENDING ADDRESS?{8 SPACES}{9 LEFT}"
; : INPUTE

240 IFE<2560RE>32767 THENGOSUB30@d :GOT0O23d

25@ IFE<STHENPRINTCS;"{RVS}ENDING < START
{2 SPACES}":GOSUB1@@d:GOTO 230

260 PRINT:PRINT:PRINT

30@ PRINT"{CLR}";CHRS$(14):AD=S

310 A=1:PRINTRIGHTS("QQ00"+MIDS(STRS(AD),2),5);":"

315 FORJ=ATO6

320 GOSUBS57@ :IFN=-1THENJ=J+N:GOTO320

399 IFN=-211THEN 710

40@ IFN=-2@4THEN 790

419 IFN=-2@Q6THENPRINT:INPUT" {DOWN}ENTER NEW ADDRES
S" ;7%

415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT" {RVS}OUT OF
{SPACE } RANGE" : GOSUB100@ : GOT041@

417 IFN=-206THENAD=ZZ:PRINT:GOTO310

42¢ IF N<>-196 THEN 480

43¢ PRINT:INPUT"DISPLAY:FROM";F:PRINT,"TO"; :INPUTT

44@ IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAST";S;"
{LEFT}, NOT MORE THAN";E:GOT0430

45@ FORI=FTOTSTEP6 :PRINT:PRINTRIGHTS ("0@@3"+MIDS (S
TR$(I),2),5):":";

451 FORK=@TOS5 :N=PEEK(I+K) :PRINTRIGHTS ("@@"+MIDS$ (ST
R$(N)l2)l3)7"l“7

46@ GETAS$:IFAS$>""THENPRINT:PRINT:GOTO31@

47@ NEXTK:PRINTCHRS (20); :NEXTI:PRINT:PRINT:GOTO310

48@ IFN<@ THEN PRINT:GOTO31@

499 A(J)=N:NEXTJ

50@ CKSUM=AD-INT(AD/256)*256 :FORI=1TO6 :CKSUM=(CKSU
M+A(I))AND255 :NEXT

510 PRINTCHRS$ (18); :GOSUB57@ :PRINTCHRS (146);

511 IFN=-1THENA=6:GOTO315

515 PRINTCHRS (20) :IFN=CKSUMTHENS53%

425

Appendix C: Commodore and Atari Machine Language Editor

520

530
540
55@
560
5780
5840
581
585

590
60a
610

620
630
640
650
660
670
680
690
691
695
700
710
715

720
739

740
750

760
762
763
765
766
779
775
780

781

426

PRINT : PRINT"LINE ENTERED WRONG : RE-ENTER":PRI
NT : GOSUB1@03 : GOTO31d -

GOSUB20@0 0

FORI=1T06 : POKEAD+I-1,A(I):NEXT

AD=AD+6 :IF AD<E THEN 310

GOTO 719

N=0:7=0

PRINTCHRS (168) ;

GETAS : IFA$S=""THEN581

PRINTCHRS (20@) ; :A=ASC(AS$) : IFA=130RA=440RA=32THE
N67@

IFA>128THENN=-A:RETURN

IFA<>2@ THEN 630

GOSUB690 : IFI=1ANDT=44 THENN=-1 : PRINT" { OFF }
{LEFT} {LEFT}"; :GOT0690

GOTO579
IFA<480RA>57THEN580
PRINTAS; :N=N*10+A-48

IFN>255 THEN A=20:GOSUBl@00d :GOTO60d
7=7+12IFZ<3THEN580

IFZ=0 THENGOSUB1@0d : GOTO570

PRINT","; : RETURN

SS=PEEK (196)+256*PEEK (197)+PEEK(198)
FORI=1TO3:T=PEEK(SS-1)
IFT<>44ANDT<>58THENPOKESS~-1I, 32 : NEXT
PRINTLEFTS$("{3 LEFT}",I-1); :RETURN

PRINT" {CLR}{RVS}*** SAVE ***{3 DOWN}"

PRINT" {2 DOWN} (PRESS {RVS}RETURN{OFF} ALONE TO
CANCEL SAVE) {DOWN}"

F$="":INPUT" {DOWN} FILENAME? *{3 LEFT}";FS$:IFF
$="*"THENPRINT : PRINT :GOTO310

PRINT: PRINT" {2 DOWN}{RVS}T{OFF}APE OR {RVS}D
{oFF}ISK: (T/D)"

GETAS : IFAS<> "T"ANDAS<> "D"THEN740
DV=1-7*(A$="D") :IFDV=8THENFS$="@:"+F$:0PEN15,8,
15,"S"+F$:CLOSE15

T$=F$:ZK=PEEK (50)+256 *PEEK (51) -LEN (T$) : POKE219
,ZK/256

POKE218, ZK-PEEK(219)*256 : POKE209, LEN (T$)

POKE21@,1:POKE211,d:POKE212, DV

K=S:POKE252,K/256 : POKE251 , K-PEEK (252) *256

K=E+1 : POKE202,K/256 : POKE2@1 , K-PEEK(202)*256:SY
S63203:REM 63140 FOR 3.0

IF(191ANDST)THEN780

PRINT" { DOWN } DONE. { DOWN }" : GOTO310

PRINT" {DOWN}ERROR ON SAVE. {2 SPACES}TRY AGAIN.
": IFDV=1THEN72@ = r

OPEN15,8,15:INPUT#15,E1$,E2$:PRINTE1S$; E2$:CLOS

E15:G0TO728

Appendix C: Commodore and Atari Machine Language Editor

790
795

800

810

820
830
840

841
845
850

860
865
870

880

1009
1001
1093

2000
2001
2003
3000

PRINT" {CLR}{RVS}*** LOAD ***{2 DOWN}"
PRINT" {2 DOWN} (PRESS {RVS}RETURN{OFF} ALONE TO
CANCEL LOAD)"
F$="":INPUT"{2 DOWN} FILENAME? *{3 LEFT}";F$:I
FF$="*"THENPRINT : PRINT :GOTO31d
PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS}D
{oFF}1sKk: (T/D)"
GETAS : IFAS<> "T"ANDAS<>"D"THEN820
DV=1-7*(AS$="D") :IFDV=8THENFS$="@g:"+F$
T$=FS$: ZK=PEEK(50)+256*PEEK(51)-LEN(TS$) : POKE219
,2K/256
POKE218,ZK-PEEK(219)*256 : POKE209,LEN(TS)
POKE210,1 :POKE211,0:POKE212,DV
POKE157,@:SYS62294:REM USE 62242 FOR UPGRADE P
ET 3.0
IF(191ANDST) THEN870
PRINT" { DOWN}DONE. " :GOTO310
PRINT" { DOWN}ERROR ON LOAD. {2 SPACES}TRY AGAIN.
{DOWN}" : IFDV=1THENBGQO
OPEN15,8,15:INPUT#15,E1$,E2S :PRINTELS; E2S :CLOS
E15:GOTO820
REM BUZZER
POKE59467,16 : POKE59466,129 : POKE59464, 255
FORT=20@T025@ : POKE59466, T : NEXT : POKE59467,3 : RE
TURN
REM BELL SOUND
POKE59467,16 :POKE59466,51 : POKE59464 , 100
FORT=1TO50 :NEXT : POKE59467 ,d : RETURN
PRINT" {RVS}NOT ZERO PAGE, SCREEN OR ROM":GOTO
1000

Program C-4. Atari MLX

Refer to Appendix E “How to Type In BASIC Programs” before entering this program.

108

116

120

138

140
159

164

179

GRAFPHICS @:DL=PEEK(568) +256%XPEEK{(561) +4:
POKE DL-1,71:POKE DL+2,6

POSITION 8,.,6:7 "MLX":POSITION 23,8:7 "EE
EEETEE AN : POKE 710, 6: 7

? "Starting Address":;: INPUT BEG:7? " End
ing Address”;: INPUT FIN:? "Run/Init Addr
ess"3;: INPUT STARTADR

DIM A(6) ,BUFFER$(FIN-BEG+127) ., T$(20) ,F%(
2@) ., CIU$(7) SECTOR$% (128), DSKINVS$ (&)

OFEN #1A4_Q_"F-“:? : ? "Ehpe or Misk:";
BUFFER$=CHR$(@):BUFFER$(FIN BEG+3E)—BUFF
ER$%: BUFFER$% (2) =BUFFER%$: SECTOR$=BUFFERS%
ADDR=BEG:CIO%="hhh":CI0%{(4)=CHR%$<¢(174):CI
0% (S)="LV":CI0%(7)=CHR$(228)

GET #1,MEDIA:IF MEDIA<>84 AND MEDIAL>68
THEN 17@

427

Appendix C: Commodore and Atari Machine Language Editor

18a

199

243
2549
269
270

289
294a

428

? CHR${(MEDIA):7? :IF MEDIAC>ASCA{"T") THEN
BUFFER%="":60T0 259

BEG=REG-24: BUFFER%=CHR$% (@) : BUFFER®% (2)=CH
RE((FIN-REG+127) /128)
H=INT(BREG/256) : L=BEG-HXx256: BUFFER% {(3)=CH

R& (L) : RUFFER% (4) =CHR% (H)

PINIT=REG+8:H=INT(PINIT/256):L=PINIT-HXx2

S56: BUFFER$ (5)=CHR% (L) : BUFFER% (&) =CHR% (H)

FOR I=7 TO 2Z4:READ A:BUFFER$(I1)=CHR%(A):
NEXT I:DATA 24,96,169,69,141,2,211,1469,9
133,100,169, 80, 133,11,76,0,0
H=INT{(STARTADR/2546):L=STARTADR-HX2546: BUF
FER$(15)=CHR$ (L) : BUFFER$(19)=CHR% (H)
BUFFER% (23)=CHR%$ (L) : BUFFER$ (24) =CHR% {(H)
IF MEDIA<>ASC("D") THEN 3460

? 2? "RBoot Eisk or Binary [Eile:";

GET #1,DTYPE: IF DTYPE<>68 AND DTYPE<>78

THEN 27@

? CHR$ (DTYPE):IF DTYPE=78 THEN 360

REG=REG-3¢@: BUFFER$=CHR% (@) : BUFFER% (2)=CH

RE((FIN-BEG+127)/128)

H=INT(BEG/256) : L=BEG-H¥256: RUFFER% (3)=CH

R% (L) : BUFFER% (4)=CHR% (H)

PINIT=STARTADR:H=INT(PINIT/256):L=PINIT-

H¥256: RUFFER$% (S5)=CHR% (L) : BUFFER% (&) =CHR¥
{H)

RESTORE 3I3@:FOR I=7 TO 3@:READ A: BUFFERS%
(I)=CHR$% (A) : NEXT I

DATA 169,6,141,231,2,133,14,169,8,141,23

2:2:133:15,169,8,133,18,169:;0,133,11,;24,

96

H=INT(REG/256) : L=BEG-H¥256: BUFFER% (8) =CH

R& (L) : BUFFER$(15)=CHR%$ (H)

H=INT (STARTADR/256) : L=STARTADR-HX2546: BUF

FER$% (22)=CHR%$ (L) : BUFFER$ (26)=CHR% (H)

GRAPHICS @:POKE 712,16:POKE 716,16: POKE

7892

? ADDR:;":":;:FOR J=1 TO &

GOSUB S57@: IF N=-1 THEN J=J-1:G0T0 38¢

IF N=—19 THEN 72¢

IF N=—12 THEN LET READ=1:G60T0 729

TRAP 416:1IF N=—-14 THEN 7?7 :7?7 "New Address
";: INPUT ADDR:? :60T7T0 374

TRAP 32767:1F N<>—-4 THEN 4849

TRAFP 43¢:7? :7? "Display:From";: INPUT F:?
«"To":: INPUT T:TRAP 32767

IF F<BEG OR F>FIN OR T<BEG OR T>FIN OR T
<F THEN ? CHR%{(253);"At least ";BEG:", N
ot More Than ":;FIN:GOTO 439

Appendix C: Commodore and Atari Machine Language Editor

460

470

480
494
Saa

S149

S20

S3a

S49

S50
S60
S70
580

S99
(=¥
616

620
&30
644
&S50

b6@
679
&80
690

700
710

720
738
744
759
764

FOR I=F TO T STEP 6:7? =27 I3;":"3;:FOR K=0

TO S:N=PEEK (ADR(BUFFER%)+I+K-BEG):T%="0¢
A ": TS (4-LEN(STR$(N)))=STRE (N)

IF PEEK(764)<255 THEN GET #1,A:POP :FOFP

:? :60TO 374

? Ths " "3eNEXT K:? CHR®(126) 3 :NEXT I:7? :
? :60T7T0 379

IF N<@ THEN ? :60T0 374

A(J)=N:NEXT J

CKSUM=ADDR-INT (ADDR/256) x256:FOR I=1 TO

6: CKSUM=CKSUM+A(I) : CKSUM=CKSUM-256% (CKSU
M>255) : NEXT I

RF=128: SOUND @,206,12,8: 6G05UR S57@: SOUND

@,0,8, 0:RF=0:7 CHR%$%(126)

IF N<>CKSUM THEN ? :? "Incorrect";CHR$(2
S53)3:7? =:60T0O 3790

FOR W=135 TO @ STEP —-1:S50UND @,56,16,W: NE
XT W

FOR I=1 TO 6:POKE ADR{(RUFFER%) +ADDR—-BEG+
I-1,A(I):=:NEXT I

ADDR=ADDR+&6: IF ADDR<=FIN THEN 374

GOTO 714

N=@:7Z=@

GET #1.,A:1IF A=155 OR A=44 0OR A=32 THEN &
70

IF A<32 THEN N=-A:RETURN

IF A<>126 THEN 639

GOSUR 69@: IF I=1 AND T=44 THEN N=-1:7 CH
R$(126)3;:60T0 699

GOTO 579

IF A<48 OR A>57 THEN 58¢

? CHR$(A+RF) ; :N=NXx16+A—-48

IF N>255 THEN ? CHR$(253)::A=126:G0T0 &9
@

Z=Z+1:IF Z<3 THEN 5849

IF Z=@ THEN ? CHR$%(253);:607T0 S7¢4

? "."3:RETURN

POKE 752,1:FOR I=1 70 3:7? CHR%(38);:;:GET

#$6,T:IF T<>44 AND T<>58 THEN ? CHR%{(A);::
NEXT I

FPOKE 752,8:7? " ";CHR$(126);:RETURN
GRAPHICS @:POKE 716,26:POKE 712,26: POKE
799,2

IF MEDIA=ASC("T") THEN 89g

REM R4

IF READ THEN ? :7? "Load File":7?

IF DTYPE<>ASC("F") THEN 1449

? :? "Enter AUTORUN.SYS for automatic us
e":? ::? "Enter filename”:INPUT T%

429

Appendix C: Commodore and Atari Machine Language Editor

774
780
798
8adq

814

824
834
846

864
87

88a@
89a
Faa

P14
P20

At
40

954
P60

7@

8@
294

1@
114
1a2a
16838
1a44

185a
160

430

F&=T$:=:1IF LEN{(T%)>2 THEN IF T$<(1,2)<{>"D:z"
THEN F4$="D:":F${(3)=T%
TRAF 87@:CLOSE #2:0PEN #2,8-4¥READ, O ,.F%:
? 2? "Working..."

IF READ THEN FOR I=1 TO 6:6GET #2,A:NEXT
I1:607T0 824
PUT #2,255:PUT #2,255
H=INT(REG/256) : L=BEG-H¥256: PUT #2,L:PUT
#2,.,H: H= INT(FIN/ S56):L=FIN-Hx256:PUT #2,.L
:PUT #2 .
GOSUR 97Q:IF PEEK (195) >1 THEN 878

IF STARTADR=¢ OR READ THEN 859
PUT #2,224:PUT #2,2:PUT #2,225:PUT #2,2:
H=INT(STARTADR/254) : L=STARTADR-HX256: PUT
#2,L:PUT #2
TRAFP 32767: CLDSE #2:7? "Finished.":IF REA
D THEN 2 ::7? :LET READ—E:GDTD 3649
END
? "Error ":;PEEK(193):;" trying to access"
:? F$:CLOSE #2:7 :60T0 769
M= BOOT THPE |

IF READ THEN ? :7? "Read Tape"”

? 2? 2?2 "Insert, Rewind Tape.":? "Press
FLAY "3:=1IF NOT READ THEN ? "& RECORD"

? 2? "Press [E=EGT when ready:";

TRAP 96@:CLOSE #2:0PEN #2,8-4%xREAD.128,"
Ce®e?2 27?7 "Working..."

GOSUB 97@:1F FPEEK(195) >1 THEN 969

CLOSE #2:TRAP 32767:7 "Finished.":? :7? :
IF READ THEN LET READ=¢:G0T0 3464

END

? z? "Error ";PEEK{(1935);3" when reading/w
riting boot tape":? :CLOSE #2:6G0T7T0 89d¢
MLEICTO LoadsSave File#tZ opened READ-O |
for write, READ=1 for read

X=32:REM File#2,$2d9

ICCOM=834: ICEADR=8B3Z46: ICELEN=84¢: ICSTAT=8
35

H=INT {ADR(BUFFER%) /256) : L=ADR{(BUFFER%) —
H¥x2546: POKE ICBADR+X,L:POKE ICBADR+X+1.H
L=FIN-BEG+1:H=INT(L/256):L=L-HX256: POKE

ICBLEN+X,L:POKE ICBLEN+X+1_,H

FPOKE ICCOM+X,11-4%READ: A=USR{(ADR(CIO%) .,
X)

POKE 195,FEEK(ICSTAT):RETURN

M= SECTOR I 0 |

IF READ THEN 114@

P 2P "Format Disk In Drive 172 (Y/N):

Appendix C: Commodore and Atari Machine Language Editor

1976
148a
199a

1108

1114
11249
1134

1140
1150
1164
11748
1184
1194
1206

121@
1226
1234
1244
12549
1264
1274
1280
1290

136a
1314
1329
1338
1343
1354

1369
1378
1384
13946

140@
1414

GET #1,A:1IF A<>78 AND A<>89 THEN 1879

? CHR$(A):IF A=78 THEN 114@

? 7?7 "Formatting...":XI0 254,#2.,.6,8,"D:
":? "Format Complete”:?
NR=INT((FIN-BEG+127) /7128) : BUFFER${(FIN-R
EG+2)=CHR% (@) : IF READ THEN ? "Reading..
.": G070 1124

? "Writing..."

FOR I=1 TO NR:5=1I

IF READ THEN GOSUER 1220: BUFFER$(IXx128-1
27)=SECTOR%:60T0 11466
SECTOR$=BUFFER%(IXx128-127)

GOSUB 1224

IF PEEK(DSTATS) <> THEN 1286

NEXT I

I'F NOT READ THEN END

? 7 :LET READ=¢:G0T0O 3469

? "Error on disk access.":? "May need f
ormatting.”":607T0 14649
REM

NSV SECTOR RACCESS SUBROUTIME]

REM Drive ONE

REM Pass buffer in SECTOR%

REM sector # in variable S

REM READ=1 for read.

REM READ=¢ for write

BASE=3%256

DUNIT=EASE+1: DCOMND=BASE+2: DSTATS=BASE+
3

DRUFLO=BASE+4: DEUFHI=BASE+S
DERYTLO=RASE+B: DBYTHI=RASE+9
DAUX1=BASE+10: DAUX2=BASE+11

REM DIM DSKINV$(4)
DSKINVE="hLS":DSKINV% (4)=CHR%(228)

POKE DUNIT,1:A=ADR(SECTOR%$) :H=INT{(A/256
):L=A—-256%H

POKE DBUFHI.H

POKE DRUFLO.L

FOKE DCOMND,B7-SxREAD

FPOKE DAUX2, INT(S5/256) :POKE DAUX1,S-PEEK
{DAUX2) X256

A=USR{(ADR{(DSKINV$))

RETURN

431

A Library of
Subroutines

Here is a collection of techniques you’ll need to use in many
of your ML programs. Those techniques which are not inher-
ently easy to understand are followed by an explanation.

Increment and Decrement Double-
Byte Numbers

You'll often want to raise or lower a number by 1. To in-
crement a number, you add 1 to it: Incrementing 5 results in 6.
Decrement lowers a number by 1. Single-byte numbers are
easy; you just use INC or DEC. But you'll often want to in-
crement two-byte numbers which hold addresses, game
scores, pointers, or some other number which requires two
bytes. Two bytes, ganged together and seen as a single num-
ber, can hold values from 0 ($0000) up to 65535 ($FFEFF).
Here’s how to raise a two-byte number by 1, to increment it:

(Let’s assume that the number you want to increment or dec-
rement is located in addresses $0605 and $0606, and the ML
program segment performing the action is located at $5000.)

5000 INCREMENT INC $0605; raise the low byte

5003 BNE GOFORTH,; if not zero, leave high byte alone
5005 INC $0606; raise high byte

5008 GOFORTH ... continue with program

The trick in this routine is the BNE. If the low byte isn’t
raised to zero (from 255), we don’t need to add a “carry” to
the high byte, so we jump over it. However, if the low byte
does turn into a zero, the high byte must then be raised. This
is similar to the way an ordinary decimal increment creates a
carry when you add 1 to 9 (or 99 or 999). The lower number
turns to zero, and the next column over is raised by one.

To double decrement, you need an extra step. The reason
it’s more complicated is that the 6502 chip has no way to test
if you've crossed over to $FF, down from $00. BNE and BEQ
will test if something is zero, but nothing tests for $FF. (The N
flag is turned on when you go from $00 to $FF, and BPL or
BMI could test it.) The problem with it, though, is that the N

433

Appendix D: A Library of Subroutines

flag isn’t limited to sensing $FF. It is sensitive to any number
higher than 127 decimal ($7F).
So, here’s the way to handle double-deckers:

5000 LDA $0605; load in the low byte (affecting the zero flag)

5003 BNE FIXLOWBYTE; if it's not zero, lower it, skipping high
byte

5005 DEC $0606; zero in low byte forces this.

5008 FIXLOWBYTE DEC $0605; always dec the low byte.

Here we always lower the low byte, but lower the high
byte only when the low byte is found to be zero. If you think
about it, that’s the way any subtraction would work.

Comparison
Comparing a single-byte against another single-byte is easily
achieved with CMP. Double-byte comparison can be handled
this way:

(Assume that the numbers you want to compare are located

in addresses $0605,0606 and $0700,0701. The ML program
segment performing the comparison is located at $5000.)

5000 SEC

5001 LDA $0605; low byte of first number

5004 SBC $0700; low byte of second number

5007 STA $0800; temporary holding place for this result

500A LDA $0606; high byte of first number

500D SBC $0701; high byte of second number, leave result in A
5010 ORA $0800; results in zero if A and $0800 were both zero.

The flags in the Status Register are left in various states
after this routine—you can test them with the B instructions
and branch according to the results. The ORA sets the Z (zero)
flag if the results of the first subtraction (left in $0800) and the
second subtraction (in A, the Accumulator) were both zero.
This would only happen if the two numbers tested were
identical, and BEQ would test for this (Branch if EQual).

If the first number is lower than the second, the carry flag
would have been cleared, so BCC (Branch if Carry Clear) will
test for that possibility. If the first number is higher than the
second, BCS (Branch if Carry Set) will be true. You can there-
fore branch with BEQ for =, BCC for <, and BCS for >. Just
keep in mind which number you are considering the first and
which the second in this test.

434

Appendix D: A Library of Subroutines

Double-Byte Addition
CLC ADC and SEC SBC will add and subtract one-byte num-
bers. To add two-byte numbers, use:

(Assume that the numbers you want to add are located in ad-
dresses $0605,0606 and $0700,0701. The ML program seg-
ment performing the addition is located at $5000.)

5000 CLC; always do this before any addition

5001 LDA $0605

5004 ADC $0700

5007 STA $0605; the result will be left in $0605,0606
500A LDA $0606

500D ADC $0701

5010 STA $0606

It’s not necessary to put the result on top of the number
in $0605,0606—you can put it anywhere. But you'll often be
adding a particular value to another and not needing the orig-
inal any longer—adding ten points to a score for every blasted
alien is an example. If this were the case, following the logic of
the routine above, you would have a 10 in $0701, 0702:

0701 0A; the 10 points you get for hitting an alien
0702 00

You'd want that 10 to remain undisturbed throughout the
game. The score, however, keeps changing during the game
and, held in $0605,0606, it can be covered over, replaced with
each addition.

Double-Byte Subtraction

This is quite similar to double-byte addition. Since subtracting
one number from another is also a comparison of those two
numbers, you could combine subtraction with the double-byte
comparison routine above (using ORA). In any event, this is
the way to subtract double-byte numbers. Be sure to keep
straight which number is being subtracted from the other.
We'll call the number being subtracted the second number.

(Assume that the number you want to subtract [the “second
number”’] is located in addresses $0700,0701, and the num-
ber it is being subtracted from [the “first number”] is held in
$0605,0606. The result will be left in $0605,0606. The ML
program segment performing the subtraction is located at

$5000.)

435

Appendix D: A Library of Subroutines

5000 SEC; always do this before any subtraction
5001 LDA $0605; low byte of first number

5004 SBC $0700; low byte of second number

5007 STA $0605; the result will be left in $0605,0606
500A LDA $0606; high byte of first number .
500D SBC $0701; high byte of second number

5010 STA $0606; high byte of final result

Multi-Byte Addition and

Subtraction

Using the methods for adding and subtracting illustrated
above, you can manipulate larger numbers than can be held
within two bytes (65535 is the largest possible two-byte inte-
ger). Here’s how to subtract one four-byte-long number from
another. The locations and conditions are the same as for the
two-byte subtraction example above, except the “first number”
(the minuend) is held in the four-byte chain,
$0605,0606,0607,0608, and the “second number” (the sub-
trahend, the number being subtracted from the first number) is
in $0700,0701,0702,0703.

Also observe that the most significant byte is held in
$0703 and $0608. We'll use the Y Register for Indirect Y
addressing, use four bytes in zero page as pointers to the two
numbers, and use the X Register as a counter to make sure
that all four bytes are dealt with. This means that X must be
loaded with the length of the chains we're subtracting—in this
case, 4.

5000 LDX #4; length of the byte chains

5002 LDY #0, set Y

5004 SEC; always before subtraction

5005 LOOP LDA (FIRST),Y -
5007 SBC (SECOND),Y

5009 STA (FIRST),Y; the answer will be left in $0605-0608.

500B INY; raise index to chains —
500C DEX; lower counter

5010 BNE LOOP; haven’t yet done all four bytes

Before this will work, the pointers in zero page must have
been set up to allow the Indirect Y addressing. This is one way
to do it:

436

Appendix D: A Library of Subroutines

2000 FIRST = $FB; define zero page pointers at $FB and $FD
2000 SECOND = $FD

2000 SETUP LDA #b5; set up pointer to $0605

2002 STA FIRST

2004 LDA #6

2006 STA FIRST+1

2008 LDA #0; set up pointer to $0700

200A STA SECOND

200C LDA #7

200E STA SECOND+1

Multiplication

X 2
ASL (no argument used, ““Accumulator addressing mode”) will
multiply the number in the Accumulator by 2.

X 3

(To multiply by 3, use a temporary variable byte we’'ll call
TEMP.)

5000 STA TEMP; put the number into the variable
5003 ASL; multiply it by 2
5004 ADC TEMP; (X *2 + X = X * 3) the answer is in A.

X 4

(To multiply by 4, just ASL twice.)

5000 ASL; * 2
5001 ASL; * 2 again

X 4 (two byte)

(To multiply a two-byte integer by 4, use a two-byte variable
we’ll call TEMP and TEMP+1.)

5000 ASL TEMP; multiply the low byte by 2

5003 ROL TEMP +1; moving any carry into the high byte
5006 ASL TEMP; multiply the low byte by 2 again

5009 ROL TEMP +1; again acknowledge any carry.

437

Appendix D: A Library of Subroutines

X 10

(To multiply a two-byte integer by 10, use an additional two-
byte variable we'll call STORE.)

5000; first put the number into STORE for safekeeping
5000 LDA TEMP:STA STORE:LDA TEMP+1:STA STORE+1
500C; then multiply it by 4

500C ASL TEMP; multiply the low byte by 2

500F ROL TEMP+1; moving any carry into the high byte
5012 ASL TEMP; multiply the low byte by 2 again

5015 ROL TEMP +1; again acknowledge any carry.

5018; then add the original, resulting in X * 5

5018 LDA STORE

501B ADC TEMP

501E STA TEMP

5021 LDA STORE+1

501D ADC TEMP+1

5024 STA TEMP+1

5027; then just multiply by 2 since (5 * 2 = 10)

5027 ASL TEMP

502A ROL TEMP +1

X1
(To multiply a two-byte integer by other odd values, just use
a similar combination of addition and multiplication which
results in the correct amount of multiplication.)

X 100
(To multiply a two-byte integer by 100, just go through the
above subroutine twice.)

X 256

(To multiply a one-byte integer by 256, just transform it into
a two-byte integer.)

5000 LDA TEMP
5003 STA TEMP+1
5006 LDA #0

5008 STA TEMP

438

Appendix D: A Library of Subroutines

Division
= 3

LSR (no argument used, “Accumulator addressing mode”) will
divide the number in the Accumulator by 2.

+ 4
(To divide by 4, just LSR twice.)

5000 LSR; / 2

5001 LSR; / 2 again

+ 4 (two byte)
(To divide a two-byte integer, called TEMP, by 2)

5000 LSR TEMP +1; shift high byte right
5001 ROR TEMP; pulling any carry into the low byte

439

How to Type In
BASIC Programs

Some of the programs listed in this book are written in BASIC
and contain special control characters (cursor control, color
keys, inverse video, etc.). To make it easy to tell exactly what
to type when entering one of these programs into your com-
puter, we have established the following listing conventions.
There is a separate key for each computer. Refer to the appro-
priate tables when you come across an unusual symbol in a
program listing. If you are unsure how to actually enter a con-
trol character, consult your computer’s manuals.

Atari
Characters in inverse video will appear like: B E =Y {7T.
Enter these characters with the Atari logo key, (A}

When you see Type See
{CLEAR> ESC SHIFT < ~ Clear Screen
{UP3 ESC ETRL = + Cursor Up
{DOWN?Z ESC CTRL = + Cursor Down
{LEFTZ> ESC ETRL =* “ Cursor Left
{RIGHT3> ESE CTRL ¥ > Cursor Right
{BACK S3 ESC DELETE <4 Backspace
{DELETE?} ESC CTRL DELETE 4 Delete Character
{INSERT? ESC CTRL INSERT k2 Insert Character
{DEL LINE3J ESC SHIFT DELETE 1] Delete Line
{INS LINEZ} ESC SHIFT INSERT 0 Insert Line
{TAB} ESC TABR > TAB key
{CLR TAB} ESC CTRL TAB €] Clear TAR
{SET TARB3J ESC SHIFT TAB > Set TAB stop
{BELLZY ESC ETRL 2 (7S] Ring Buzzer
CESC? ESC ESC 5 ESCape key

Graphics characters, such as CTRL-T, the ball character ® will
appear as the “'normal” letter enclosed in braces, e.g., {T}.

A series of identical control characters, such as 10 spaces,
3 cursor-lefts, or 20 CTRL-Rs, will appear as {10 SPACES},
{3 LEFT}, {20 R}, etc. If the character in braces is in inverse
video, that character or characters should be entered with the
Atari logo key. For example, {5} means to enter five inverse-
video CTRL-Us.

440

Appendix E: How to Type In BASIC Programs

Commodore 64, VIC, and PET

Program listings will contain words within braces which spell
out any special characters: {DOWN} would mean to press the
cursor down key. {5 SPACES} would mean to press the space
bar five times.

To indicate that a key should be shifted (hold down the
SHIFT key while pressing the other key), the key would be
underlined in our listings. For example, S would mean to
type the S key while holding the SHIFT key. If you find an
underlined key enclosed in braces (e.g., {10 N}), you should
type the key as many times as indicated (in our example, you
would enter ten shifted Ns).

If a key is enclosed in special brackets, K >], you should
hold down the Commodore key while pressing the key inside
the special brackets. (The Commodore key is the key in the
lower left corner of the keyboard.) Again, if the key is pre-
ceded by a number, you should press the key as many times
as indicated.

Rarely, you'll see a solitary letter of the alphabet enclosed
in braces. These characters can be entered by holding down
the CTRL key while typing the letter in the braces. For ex-
ample, {A} would indicate that you should press CTRL-A.

About the guote mode: You should know that you can
move the cursor around the screen with the CRSR keys.
Sometimes a programmer will want to move the cursor under
program control. That’s why you see all the {LEFT}’s,
{HOME}’s, and {BLU}'s in our programs. The only way the
computer can tell the difference between direct and pro-
grammed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2),
you are in the quote mode. If you type something and then try
to change it by moving the cursor left, you'll only get a bunch
of reverse-video lines. These are the symbols for cursor left.
The only editing key that isn’t programmable is the DEL key;
you can still use DEL to back up and edit the line. Once you
type another quote, you are out of quote mode.

You also go into quote mode when you INserT spaces into
a line. In any case, the easiest way to get out of quote mode is
to just press RETURN. You'll then be out of quote mode and
you can cursor up to the mistyped line and fix it.

Use the following tables when entering special characters:

441

Appendix E: How to Type In BASIC Programs

When You When You
Read: Press: See: Read: Press: See
{CLR} SHIFT | [CLR HOME | E {GRN] CTRL [I]
{HOME } CLR HOME {BLU}

upP} SHIFT LRSR! D {YEL} CTRL

DOWN } i(RSRi m {F1} f1

LEFT} [SHIFI'J i‘-cksrzq II (F2)

RVS}

£

{

{

{
{RIGHT)
{

{OFF

{

BLK

e EEEENEDD:

] g [T
=)

F}
) []
{wHT} CTRL
{RED) {F8
{CYN) < =
(PUR) crru | [T 4] ¥

442

Index

*= (Program Counter =) pseudo-op 32,
111-12, 149-51, 203, 336, 339
#> pseudo-op 342-43
#< pseudo-op 342-43
+ pseudo-op 179, 342-43
Accumulator. See 6502, Accumulator
Register
Accumulator addressing 38
ADC 239-40
address (Program Counter) labels 7,
36-37
addressing modes. See 6502, instruction
types
AND 240-41
with ASCII numbers 114, 154
Apple LADS 327-32,
BASIC wedge 331-32
Disk Operating System file manager
327-32
error byte 330
Openl1 327-32
Array (subprogram) 43, 85-93
program listings 97-101
ASCII
alphabetic numbers 154-55
characters 33, 82-83
messages 182
number conversion 113-16
ASL 241-42
with ROL 115-16, 153-54
assembly 5-6, 34
Atari
CIO 299
I0CB 299
memory 300
Atari LADS 299-327, 348-55
Defs 301
Editor 301, 308-12, 350-55
program listing 312-27
Eval 301, 304-5
Getsa 302
Indisk 303
Kernal 300, 303-4
program listing 305-8
modifying the Editor 311
Openl 302
Printops 303
Pseudo 303
System 305
program listing 308
Valdec 302
.B (.BYTE) pseudo-op 156-58
base opcodes 36, 226

BASIC
borrowing from 18-19, 105-7, 182-83
end of program mark 152
keyword table 10, 18
See also tokenized keywords
BCC 242
BCS 242-43
BEQ 243
B group instructions. See Relative
addressing
BIT 243-44
bit-moving instructions 38
BMI 244
and BPL 45-47, 83
BNE 244-45
borrow 266
BPL 245
and BMI. See BMI and BPL
BRANCH OUT OF RANGE 11, 39
Brannon, Charles 108, 415
BRK 245-46
buffer 29-30, 140
BVC 246
BVS 247
carry 239, 242, 247, 266-67
chained files. See pseudo-ops, .E; pseudo-
ops, .F
character 8
CLC 247
CLD 247-48
CLI 248
CLV 248-49
CMP 249-50
and turbo-charged programming 108
cold start 18
comments 141-44
Commodore
Kernal 4
ST (status byte) 205
constant 4
CPX 250-51
CPY 251-52
.D (.DISK) pseudo-op 181, 202-5, 345
data base management. See Array (sub-
program); Equate (subprogram)
debugging 53-55, 149-51, 260, 339
DEC 252
decimal mode 239-40, 247-48, 261
defaults 29
changing 31
Defs (subprogram) 15-25
program listings 20-25
relocatability 15-16
transportability 16

443

delimiters 82-84
DEX 252-53
DEY 253
Dis (optional subprogram) 288-96
program listings 294-96
disk 16
assembly to disk. See pseudo-ops, .D
errors 205
padding with spacer bytes 151, 159-60
Program Counter 107
division 259, 439
documentation. See comments
double-byte ML routines
addition 435
comparison 434
decrement 433
increment 433
subtraction 435
Dtables (optional subprogram) 288-96
program listings 296-98
DUPLICATED LABEL 86-88, 90
.E (.(END) pseudo-op 201, 202, 343
EOR 253-54
to shift an ASCII character 83
equate labels 7, 16, 36-37
zero page 16
Equate (subprogram) 81-84
program listings 94-96
error signals 184
error traps (additional)
impossible instruction 279-80
keywords in filenames
naked mnemonic 278-79
Eval (subprogram) 29-76
calculating an opcode 226
determining addressing mode (instruc-
tion type) 43-53
program listings 55-76
expression labels 86
extensibility 277
.F (.FILE) pseudo-op 112, 199-200, 343
false target 11
fields
fixed length 79-81, 108
variable length 79-83
Findmn (subprogram) 32, 35-37, 109-11
program listings 129-30
flags 5, 9, 30
Getsa (subprogram) 32, 111-13
program listings 131-34
.H (.HEX) pseudo-op 206
hexadecimal (hex) numbers 42-43,
152-56, 183-85
Implied addressing 37-38
INC 254

444

Indisk (subprogram) 32, 34, 42, 139-76
program listings 161-76
initialization 29
Input/Output (I/0)
Commodore 105-8
See also Pseudo (subprogram)
instruction types. See 6502, instruction
types
integer 8
interrupt
customizing 268
disabling 268
forced 245
INX 254-55
INY 255
JMP 255-56
JSR 256-57
covering with NOP 260
self-modifying indirect 311
Kernal. See Atari LADS, Kernal; Com-
modore, Kernal
labels 40-42
storing in data base 83-85
See also address (Program Counter) la-
bels; DUPLICATED LABEL; equate la-
bels; expression labels; source labels;
UNDEFINED LABEL
LADS
Apple. See Apple LADS
assembly 34
Atari. See Atari LADS
buffers 227-28
command summary 338-39
development and philosophy 79-81,
108-11, 150-51
disassembler. See Dis (optional
subprogram)
flags 228-31
how to use 335-55
modifying 184, 200-201, 277-98
object code listings 357-414
Program Counter 33, 86, 149-51
RAM-based assembly 282-86
registers 227-28
relocating 15
rules for use 345
tape use 348
zero page usage 17-18
LDA 257-58
LDX 258
LDY 258-59
looping 81-82
linked files
See pseudo-ops, .F; pseudo-ops, .E
lookup tables 108-11
loop counter 252-53

LSR 259
Machine Language Editor (MLX) 415
Machine Language for Beginners 34
Machine Language (ML) routines. See
double-byte ML routines; multi-byte
ML routines
Mapping the Atari 327
Math (subprogram) 179-80
program listings 186-87
“Micromon” 150
MLX. See Machine Language Editor
program listings 419-31
mnemonic instructions. See 6502, instruc-
tion set
modifying LADS 184, 200-201, 277-98
monitor 3
multi-byte ML routines
addition 436
subtraction 436
multiplication 115-16, 437-38
.N (.NO) pseudo-op 204-5
NAKED LABEL 84
NOP 260
NO START ADDRESS 112
numbers 8
.O (.OBJECT code to RAM) pseudo-op
181, 204, 344
object code 5, 181
opcodes. See 6502, opcodes
Open1 (subprogram) 106-8
program listings 117-29
ORA 260-61
with alphabetic numbers 154-55
output. See Input/Output; Printops
(subprogram)
OVERFLOW 47
.P ((PRINTER) pseudo-op 204
parallel tables 108-11, 221-27
PHA 261
and PLA 45-47, 53
PHP 262
PLA 262
and JSR 256
and PHA. See PHA and PLA
PLP 262-63
pointer 4, 30
printing
addresses 200
hex numbers 185
routines 184-85
source code 49-51
Printops (subprogram) 180-85
program listings 187-95
Program Counter. See LADS, Program
Counter

Pseudo (subprogram) 199-217
program listings 207-17
pseudo-ops
*= (Program Counter =) 32, 111-12,
149-51, 203, 336, 339
#> 342-43
#< 342-43
+ 179, 342-43
.B (.BYTE) 156-58
.D (.DISK) 181, 202-5, 345
.E (.END) 201, 202, 343
.F ((FILE) 112, 199-200, 343
.H (.HEX) 206
N (.NO) 204-5
.O (.OBJECT code to RAM) 181, 204,
344
.P (PRINTER) 204
.S (.SCREEN) 206
RAM-based assembly 282-86
range checking 179
redefined label 87
register 4, 29
Relative addressing 44-47
remarks. See comments
ROL 263-64
with ASL. See ASL, with ROL
ROR 264-65
with LSR 259
RTI 265
RTS 265-66
.5 (.SCREEN) pseudo-op 206
SBC 266
SEC 266-67
SED 267
SEI 268
semicolon 341
seventh bit (bit 7) 9-10
shifted characters 82, 147, 244-45
signed arithmetic 10, 239, 244-45
branching 46-47
Simple Assembler 34
6502
Accumulator Register 257
addressing modes. See 6502, instruction
types
bug 255-56
instruction types 37-38, 43-45, 222-24
opcodes 221-22, 225
Status Register 5, 9, 30, 246
X Register 258
Y Register 258
source code 5
printout. See printing, source code
source files 335
source labels 88

445

springboards 10, 39, 145

stack 261, 262, 265, 272

start address 32-33. See also pseudo-ops,
* —

STA 269

Status Register. See 6502, Status Register

STX 269

STY 269-70

subprogram 7-8

suction routine 140

SYNTAX ERROR 199

tables. See lookup tables

Tables (subprogram) 36, 108, 221-36
program listings 232-36

TAX 270

TAY 270-71

toggle 253

446

tokenized keywords 139, 142, 144-46,
160, 199-200

TSX 271

turbo-charged programming 108

TXA 271-72

TXS 272

TYA 273

types. See 6502, instruction types

UNDEFINED LABEL 91-92

Valdec (subprogram) 32-33, 43, 113-16
program listings 134-36
registers 228

variable 4

vector 4

warm start 18

zero page address labels 93

Zero Page Y addressing 53

To order your copy of the LADS Disk call our toll-free US
order line: 1-800-334-0868 (in NC call 219-275-9809) or send
your prepaid order to:

LADS Disk

COMPUTE! Publications
P.O. Box 5406
Greensboro, NC 27403

Please specify whether you want the Apple, Atari or Com-
modore LADS. All orders must be prepaid (check, charge, or
money order). NC residents add 4.5% sales tax.

Send copies of the LADS Disk at $12.95 per copy for
(check one) oOApple OAtari oCommodore

Subtotal $
Shipping & Handling: $1.00/disk* $
Sales tax (if applicable) $

Total payment enclosed $

*Outside US and Canada, add $3.00 per disk for shipping and handling. Al
payments must be in US funds.

o Payment enclosed
Charge 0O Visa o MasterCard o American Express

Acct. No. Exp. Date
Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

ERRATA

A Note To VIC-20 Users:

To insure reliable assembly with the LADS assembler on the
VIC, leave the .S (print to screen) pseudo-op active at all
times.

E_.l-._lL.- - B .‘Y L T

This is the companion volume to the best seller, Machine Language for
Beginners, about which the critics have said:

“Understandable’”—The New York Times

“Presents the machine language novice with a very good tutorial in
simple, understandable terms.”—Antic

“I highly recommend Machine Language for Beginners as your first
introduction to the world of machine language.”—Commodore

Power /Play

“This 1s an excellent book for anyone considering learning machine lan-
guage programming. It is well written and easy to follow, and everything
is presented in a logical and orderly fashion.”—RUN

“Highly recommended . . . usable, understandable . . . abounds in
illustrations, standards and examples.”

—The Midnight Gazette

“It lives up to its title. I have about six books on this subject, and this is
by far the most readable of the group.”—VICtims Newsletter

“The best book on introducing 6502 code available.”—Ian Chadwick,
author of Mapping the Atari

The Second Book of Machine Language picks up where Machine Language
for Beginners left off. This new book contains one of the most powerful
machine language assemblers currently available. The LADS assembler
is a full-featured, label-based, programming language which can greatly
assist you in writing machine language programs quickly and easily.

You work in an environment with which you're already familiar:
BASIC. You can use line numbers, multiple statements on a line, named
variables and subroutines, remarks, error messages, and various pro-
grammers’ aids like automatic line numbering, search and replace, etc.

But the book is more than a sophisticated program. It’s also a clear,
detailed tutorial on how large, complex machine language programs can
be constructed out of manageable subprograms. Using LADS as the
example, each instruction is explained, each subroutine is examined.
Many sophisticated machine language techniques are illustrated and
thoroughly explained—everything from data base management to
communication with printers and disk drives.

There are powerful computer languages and there is good docu-
mentation, but rarely has a sophisticated language been so completely
documented as it is in this book. When you finish with this book, you'll
not only have a deeper understanding of machine language—you’ll also
have one of the most powerful machine language assemblers available.

ISBN 0-942386-5301

mwddre 64, Apple (II, I+, Tle, and Iic, DOS 3.3), VIC-20 (8K RAM :expansion required), Atari
(in

g XL, 40K minimum), and PET/CBM (Upgrade and 4.0 BASIC).

	Cover

	Contents

	Preface

	1: how to Use this Book

	2: Defs: Equates and Definitions

	3: Eval: the Main Loop

	4: Equate and Array

	5: Open1, FindMn, Getsa, and Valdec

	6: Indisk

	7: Math and Printops

	8: Pseudo

	9: Tables

	10: 6502 Instructino Set

	11: Modifying LADS

	Appendices
	How to Use LADS

	LADS Object Code

	Machine Language Editor for Atari and Commodore
	A Library of Subroutines

	How to Type in BASIC Programs

	Index

