
Basics of
Animation

--- - _. -- ---- --- --: "'" : .-:=- .- ~.rf.;:.:~~.;:::-::- - -;-- ---- -~ --:~;:-- .. _ .. -- --

YOUR FRIENce
AT I!CUc::ATIONA~

SOF1'WARE ..

THE FIRST SIX

TRICKY TUTORIALS(TM)
There are many things thai ,Me AT ARt computers can do either beller or easfer than o lhersmall compu ters The folloWing series

01 programs Is designed lor anyone who Is at teasllamlliar with BAS IC programming. What each tutorial offers Is similar to an
extensive magazine article with all dlsousslon In as simple language as IS possible. plus you gel MANY eKsmples already typed In
and running Theta Is IItlle overlap In what Is taught, so each lutorial wililurther convince you Ihal buying an AT AR t was Ihe rlghl
ChOice! •

• 1 DISPLAY LISTS
This program teaches you how to alter the program in Ihe

ATARI that controls the lormat of the screen. For 8)(ample.
when you say graphics 8 the machine responds with a large
graphics 8 area at the lop 01 the screen and a small text area
at the bottom. Now, you Will be able to mix various modes on
the screen at the same time Just think how nice your pro-­
grams could look With a mix of large and smaillexi. and both
high and fow resolution graphIcs The program has received
rave revlews tor the way II does all the calculations of the dIf­
ficult things (like counting scan lines). You will guiCkly be able
to use the subroutines Included in your own programs. 16k
memory requtred lor tape - 24k for disk.

1/2 HORIZONTAL & VERTICAL SCROLLING
The information you put on the screen, either graphiCS or

text, can be moved up, down or sideways. This can make for
some OIce eHects. You could move only the lext on the bot­
tom half 01 the Screen or perhaps create a map and then move
smoothly over it by USIng the joystick Includes 18 examples
With severaJ using a small machine language subroutine lor
smoothness. As always, our examples can easily be used in
your own programs. 16k tape.24k disk.

#3 PAGE FLIPPING
Normally you have to redraw the screen every lime you

change the picture or text. Now you can learn how to have the
computer draw the next page you want to see while you are
slill looking at the prevIous page, then flip to it instantly. You
won', see it being drawn so a complicated picture can seem 10
just appear. Depending on your memory size and how compli­
cated the picture, you could flip between many pages, thus
aJlowing ammatlon o r other special effects. We have found
that many people skip this tutorial either because il sounds
hard, or they think they will never use It. The basic method
takes only 12 lines and the usefulness is infinite. 16k tape - 24k
disk.

@1961 & 1962 BY

#4 BASICS OF ANIMATION
ThiS program shows you how 10 anlmale simple shapes

(wilh sound using the PRINT and PLOT commands, and also
has a " Ice 1I111e PLAYER/MISSILE GRAPHICS game you can
play WIUl The P/ M example Is well commented and will get
you s'tarted on this complica ted sublect (more lully explained
In TTIfS). Th is would be an excellent way to start making your
programs come alive with movemenll Recommended tor be­
g Inning users. 16k lape - 24k disk .

#5 PLAYER MISSILE GRAPHICS
This Is the big onel We start by showing how tocrealeaslm­

pie shape called a player. lhen take you th rough over 25 exam­
ples until you have created a complete business appl ication
and a small game. AlSO, we Include a utility to c reate the
shapes and choose the colors, then store the players and mis­
slas In data statements. Later YOUR programs bring these
shapes back in when needed. Plus much more! 32k tape o r
disk.

#6 ·SOUNDS & MUSIC
One 0' the famous programmers for our great machine of­

fers this one through us. Unless you have spent many hours
experimenting with the four voice channels, you w ill learn alot
from this onel The nicest part is the MANY examples of special
sound effects that you can refer to w hen you need them for a
program or to impress a friend. 16k tape - 24k disk.

Educational
Software Inc.
4565 Cherryvale Avenue
Soquel, Ca. 95073
(408) 476·4901

EDUCATIONAL SOFTWARE

Atari 400/600 are reQistered trademarks of Warner Communications

I~tr~d~cti~~ T~
S~~t~ Cr~z

S~~t~~r~

Hi~ First let us thank you for purchasing our programs. We want to
start out by telling you a little about ourselves and our company.
Santa Cruz Educational Software is the result of .ev.r~l local
programmers who initially purchased the ATARI computer as a home
machine around the time the 800 was first sold. At that time, and even
today~ we found a lack of information about how to u.e the power of
the machine. As you have seen in a few of the better programs being
sold, the ATARI can do more than any other computer in it's price
range, but how could we learn the many "tricks" that were contained
withen the machine??

Well, our local club, although it had several HUNDRED members,
ignored most of our questions. Fortunately other clubs across the
country have some excellant newsletters full of programs and facts.
Also~ ATARI(tm) has given we owners the Operating System and Hardware
manuals. Finally, many magazine articles and several books have be.n
published.

All this is great for programmers, but what about the average
owner who doesn't understand much of what is said in the magazines?
Even as a programmer~ I have to spend many hours studying all of the
information that is now available inor der to understand some of unique
things about our machine.

The story ends when I asked some local club members to submit
their best programs for us to offer to others at the lowest possible
price, ie. a price WE WOULD be glad to pay to buy these programs. I
myself wrote most of the TRICKY TUTORIALS(tm) ~nd the MASTER MEMORY
MAP. Now, others across the country have offered programs for us to
sell, all meeting the goal of: minimal on fancy artwork and a few
spelling errors, but worth ever y penny .

Write us with new ideas or memory locat i ons to share, and if it's
something we can use, a reward will be sent back to you as soon as we
can. Also, please remember that this is only a part time business. We
are usually late in getting new programs out due to last minute
debugging at midnite<no kidding, I d o all this after my regular job).
This doesn"t mean we don't care!

My thanks to all of you who have raved about the Tutori~15. I will
try to keep a new one comming out every three months or less, and also
to get out those bugs that remain.

ROBIN ALAN SHERER (owner, programmer, and janitor)

- ii -

••••••••••••••
HOW TO LOAD

••••••••••••••
TAPE ••••••

First, if you haven't cleaned your tape recorder heads lately,
please do so now. SEE ANY STEREO SHOP FOR THE RIGHT TOOLS. Place th~
tape with the label side up in your recorder. Make sure it is r~wound
and also reset the counter to O. Push PLAY on the recorder. TYPE
RUN"C:/I AND PRESS RETURN. If this doesn't work you might try CLOAD. We
also include a backup program on the shorter programs we sell (not the
TUTORIALS), and these sometimes require CLOAD. If the program won't
start to load, try positioning the tape forward or backward a little
bit at a time. The easiest way would be to LISTEN to the "noise" on
the tape with a regular tape recorder. When you find the steady tone
that lasts for about 8 seconds, you have the beginning of each
program. We recommend you write down the number on your recorders
counter as each program starts. This will make it easier to find each
part later on if needed. W. occa.ionally get a bad tape from our
supplier, so if yours won't load on both your own 410 and a friends
(or your DEALERS), call (408) 476-4901 for a replacement.

Once the program starts, it will load in the remaining parts. The
multiple parts are needed so that machines with only 16k can enjoy the
TRICKY TUTORIALS. With more memory you can go beyond these simple
tutorials. After each part, the computer will beep. This is your
signal to press return to load in the next part. SOMe newer programs
will start the next part without pressing return. Most programs will
run themselves when done loading.

The reason for several methods of running tape. is that as we
improve the programs, we change the masters; however, the manuals are
printed in large amounts, so changes are VERY hard to get into your
manuals!

••••••••••••••••••••••••••••••••••••••
DISK •••.•

To load & run the disk you first have to turn on the drive. When
the busy light goes out place the disk in the drive. Now turn on the
computer with the basic cartridge in place and the program will load
each part and run by itself (aren't disk drives nice!).

- ii -

DISPLAY LISTS

Display Lists consists of a set of
programs that are simple to use, but
deal WiTh a compl icated subject. Until
now, only a few programmers have
understood enough about modifying the
ATARI's Display Lists. Using the
examples and manual inside, you have
only to follow a few simple directions
to create your own custom screens.These
scr~ens can consist of any of the
ATARI'S regular Text and Graphics modes
plus 5 new ones. Imagine up to 20 modes
on the screen at once~ ••• real special
effects in all your programsl

This program requires very little
actual programming experience. It is
especially designed to allow you to use
iT now, and go back and learn the actual
method within the program at any time in
the future.

REQUIRES 16K TAPE OR 24K IF YOU HAVE
DISK.

Educational SoftlNare

presents

TRICKY TUTORIAL ##1

DISPLAY LISTS

o

TRICKY TUTORIAL #1

DISPLAV LISTS

by
Robin Sherer

INTRODUCTION

Display List modification is a large and complex
subject. If you have seen any of the articles recently
publ ished in the hobby magazines on the subject, you know
you could never learn to modify your own custom Display
Lists ••••• or could you? What if we let the computer do most
of the work?

He:,.,,,,,, t ~ L~a.c::1

TAPE ••••

Place the tape in your recorder, label side up. Make
sure the tape Is rewound, and reset the counter to zero.
Push PLAY on the recorder, type CLOAD and press RETURN.
When the READY prompt appears, type RUN and press RETURN.
If the program won't start to load, try positioning the tape
forward or backwards a I ittle. A little trick to find the
beginning is to first, turn your volume UP. Then POKE
54018,52 to start the cassette motor. Listen to the "noise"
on the tape. When you find the high-pitched, steady tone,
you have the beginning of the program. We recommend you
write down the number on your recorder's counter as each
program starts, this will make it easier to find each part
later on. POKE 54018,60 to turn the cassette motor off.

DiSK ••••

To load and run the disk, first turn on your disk drive.
When the busy light goes out, place the disk In the drive.
Now turn on the computer, with the BASIC Cartridge In place
and the program wi I I load each part and run by Itself.

Any defective tapes or disks should be returned to:

Educa~lonal Sof~ware

4565 Cherryvale Ave.
Soquel, CA. 95073

© 1981 EDUCATIONAL SOFTWARE

-1-

so YOU WANT TO LEARN ABOUT
o I SPLAY LI STS!

To use this program you actually don't need to
understand most of the information we wi I I talk about. Feel
free to just run the examples and play with creating your
own special screens. Later, when you want to understand more
about what you are doing , come back and read the booklet and
practice modiflng the examples. You can't hurt the machine
by changing the numbers in the Display List. At the worst,
the machine might "go to sleep" (the keyboard wi II not
respond) if a wrong number I s POKEd I nto memory. Then
you'll have to press RESET or turn off the mach I ne and
reload In the program. This Is one reason tape users should
always keep track of the number on their recorder's counter
for each program so that they can easi Iy reload a program.

This Tutorial doesn't go to the other extreme of
dificulty either. MANY detal Is about DL's are not mentioned.
The lesson is designed to explain al I the basic's of the
subject as wei I as offer examples already typed In for you!
(I've got to keep those two recycled beer cans,Prototype &
Mototype busy doing something!) If you don't practice
modiflng the examples with your own ideas, DL'S probably
won't make sense to you.

NOTE - From this point on we are going to refer to
Display Lists as DL so please don't get confused.

What" Is a DL?

Why did you buy this program? A surprising number of
people buy my tutorials because they want to know how to use
the special tricks that the ATARI can do, not really
understanding what these tricks are. With this in mind,
we'll start out this lesson by explaining some basics of
what a Display List Is. EXAMPLE 9 shows one suggested use,
but you can come up with you own unique Ideas!

The ATARI has a special chip inside It to take the
Information from within its memory and put it on the screen.
This chip Is called the ANTIC. This chip Is actually a
microprocessor by itself and thus has a set of Instructions
to program It •••• just like the main microprocessor ;In the
ATARI, the 6502. The difference Is we don't use BASIC or
Assembly language to program It. Now stop and think a
moment, I said TWO microprocessors. This gives the machine
much more capab I I I ty than an App I e or Pet (go b rag to you r
friends for a moment then come back ••••••••)

The Display List Is what the ANTIC looks at to tel I the
machine how to treat the screen (plus other things not
mentioned In this lesson):

-2-

The Display List Is what the ANTIC looks at to tel I the
machine how to treat the screen (plus other things not
mentioned In this lesson):

1)What Graphics and text modes to put on the screen.

2)Where to get the data to put Into these mode
areas.

Now don't worry that the subject is too complex. There
are only four types of Instructions, and these are POKEd
Into memory using a few basic statements. Let's review - The
DL says something to the computer that means: "Put on the
screen some Graphic Mode 0, now some Mode 7, then some Mode
a again, and finally some Mode 2. Oh, by the way, get the
data from this location In memory".

We have to discuss the meaning of a few words before we
can go on. You already have used Graphics Modes a to 8 as
described in the BASIC Manual that came with the computer.
If you look at Figure 1 you wi I I see a chart showing
something called O.S. Modes. The Display List instructions
al low the use of these Operating Systems Graphics Modes from
2 to 15. Notice that Graphics Mode a is O.S. Mode 2 and
Graphics Mode 8 is O.S. Mode 15. In the middle are some new
modes you can use from BASIC that ATARI didn't mention in
their BASIC book. Uses for these new modes wi I I be mentioned
later. So just remember when we say Graphic Mode we mean the
one you normally use from BASIC and the O.S.(Operatlng
System) Mode is the one you place In the Display List(
through the use of our examples).

O.S Basic I of Pixel # of Bytes of Text
MODE GR. I I nes per Colors Memory or Additional
[0 for mode mode I I ne Used Plot

DLJ Per Line Mode

0 blank I I ne In the DL :
1 jump 16=2 blank I I nes
2 0 8 2 40 text 32=3 " "
3 new 10 2 40 text 48=4 " "
4 new 8 4 40 text 68=5 " "
5 new 16 4 40 text 80=6 " "
6 1 8 5 20 text 96=7 " "
7 2 16 5 20 text 112=8 " "
8 3 8 4 10 plot 65=jump & walt
9 4 4 2 10 plot
i 0 5 4 4 20 plot
11 6 2 2 20 plot
12 new 1 2 20 plot
13 7 2 4 40 plot
14 new 1 4 40 plot
15 8 1 2 40 plot

FIGURE

-3-

Here I s another idea to I earn about. We are go i ng to
talk about both Mode Lines and Pixel Lines. To see a Pixel
Line, simply look closely at the screen of your TV set.
Those tiny dots you see are pixels, so a row of them across
the screen Is called a Pixel Line. The Mode Lines are harder
to understand. If you look at some regular Mode 0 text(small
white letters with blue background) you can see that the
letters are made up of eight rows of pixels (Including the
space at the top and bottom). Now look at the chart for GR.
mode O. Under the value called "Pixel Lines per mode line",
It says "8", meaning a character In GR.O takes 8 rows of
pixels. You'll use this value later to help yourself In
setting up the DL. To review (see Flg.l), a mode line of GR.
8 takes only 1 row of pixels, and O.S. mode 5 (no equivalent
GR. mode) takes 16 rows of Pixel Lines, thus, adding GR.5 to
your DL fi lis up the screen 16 times faster than a GR. mode
8 line (O.S. mode 15 •••• look at the chart!). When you Input
a mode into the Display List In the examples, you must
remember If you take out a mode I ine that is made up of many
Pixel Lines, you should replace it with several Mode Lines
that use less pixels per line. Th is w II I keep the tota I
number of Pixel Lines drawn on the screen the same. The
standard number of Pixel Lines drawn on the screen is 192.
If you pUT too few Pi xe I Lines on the screen, then the
picture will "shrink" with just black on the bottom.
Likewise, too many will place part of the picture off the
screen and may cause the picture to "roll ", which can NOT be
stopped with the Vertical Hold controls on your TV. If you
practice It will all make sense!

NO PRoTo,
"~ATICAL ROL L.
I\IOT ROCK & ROLL !

-4-

EXAMPLE 1

If you haven't already, please RUN Example 1. This
I iitle program al lows you to look at any of the standard GR.
mode DL's, Including the new (to the United States) GTIA
modes 9, 10, & 11. Let's try Inputting a O. The numbers that
result from the example are those of a standard smal I text
screen. You read the numbers a row at a time.

EXAMPLE OF
GRAPHICS MODE 0

112 <---8 blank lines
112 <---8 blank lines
112 <---8 blank lines

66 <---LMS (includes first I ine of screen;
ie. 64(LMS) + 2(0.S. Mode)

64 <---Low Byte~
combine to get location of Data
for upper left corner of screen

156 <---High Byte/

2 <---O.S. mode line (same as GR.O)
2 <---O.S. mode line
2 <---O.S. mode line
2 <---(and al I of the other 2's) O.S. mode line

65 <---Says end of Display List, go to the
Display List at next location

32 <---~

Combine=Low Byte + High Byte * 256
156 <---I

FIGURE 2

The first three numbers are 112. Look at Figure 2. You'l I
see that "112" tel Is the computer to place 8 blank I ines on
the screen, starting at the top of your set. Three of these
commands causes 24 blank I ines at the top of the screen.
This number of blank I ines is standard . They al low for the
difference in individual TV sets, cal led overscan, so that
your whole picture can be seen.

-5-

The next number , "66 ", is th e LMS instruction. LMS means
Load Memory Scan . LMS te I I s th e c omputer to "Go find the
data for the fo I low i ng mod e s start i ng at the address in
memory in the next two number s". We will a I ways use for th i s
number(LMS) the value of 64 +the O. S . Mode number ••••• this
means for our GR.O DL we nee d 64+2 , or 66 . Remember that the
chart gives GR . O = O.S . Mo de 2 . The ne x t two numbers wi I I be
the location of the start of the data that is to be put on
the screen. To find the value for your machine (if your
interested) take the second number of the address(high
byte), multiply it by 256 and add the first number (low
byte). For example, if the high part of the number was 132
and the low part was 192 then the start of the screen data
would be at 256*132+192 which equals 33984. If you POKEd a
number into this location that was the value of a letter,
number, or Graphics character , you would see it appear at
the upper left corner of your TV screen. In this example,
POKE 33984,33, an "A" wi I I appear. Th i sis because a 33 in
the screen data means " put an A on the screen at this
location."

NOTE!

I want to explain an important point about the "Screen
Data". The in format i on (d ata) that is put on the screen is
normally stored all in one place in memory , and in the same
form. It is the type of mode I ine you write the data on that
determines if it wi II be large or small text, or graphics
pixels. Later some of our examples LIST the program to get
data to "flow" through the area where the screen data is
stored . Please look closely at the way the same information
is INTERPRETED differently as it crosses through the
different modes . This concept is IMPORTANT!

Next in the DL come severa I # 2 ' s. These numbers, we
already mentioned , are the O. S . modes that you want. Since
we are in GR.O, the DL needs 2's. For each of the 2's(
including the one "hidden" In the LMS number before), the
computer will put a GR . 0 mode line (8 pixels high!!) across
the screen. Don't forget the mode I ine in the LMS
instruction!

F I na II y comes the number 65. Every DL we wi I I do has
one. The chart gives the meaning of the number 65 as "go
b a c k to the D I sp I a y Lis t at the f 0 I I ow i n g ad dress and w a I t
for the next time the screen Is drawn" . Don't worry about
this except to Include the 65 at the end of your DL. Leave
whatever numbers come after this alone. You could actually
flip to a completely new DL and It ' s data by just changing
these numbers.

- 6 -

WOW ___ THAT WAS A LOT!

Sure it was, but that's about it for the technical talk.
Now we can have some fun! Input other numbers (0 to 11) intc
Examp I e 1 . Not i ce that the DL gets longer as you use modes
with less Pixel Lines per Mode Line ; ie. for a mode like 7
where a mode I ine is only 2 pixels high, the DL must have a
lot of number 13's in it to fill up the screen. Input 8,
then look in the middle of the DL. See the 79. There is
already a 79 in the top of the DL for the LMS number. Recal I
that 79 =64+15(the O.S.mode for GR. 8), but why a second LMS
number and a second set of addresses for the screen data?
The reason is that the DL can only locate up to 4k (4096
bytes) of data. Then it gets lost! The second LMS comes at
the point where It ran out of data and says "Here's where to
go find some more data to fl I I the remainder of screen". The
second LMS is due to a hardware I imit. You wi I I have to make
careful calculations to work with It, but only If you use a
DL that requires more than 4k on screen data!

.:s .. 1[11 iEi' :[11 I[~ It;;. I ~ij IP' ~'-g 1:: iG ':::~ J" ';7' :: ":;to :it.:it.IC.;: "" H:::: }{ l(iI U'''ii iP' IL, it::: lli,:~" "
1010 FOR W=1 TO 230:POKE 710~W
1020 FOR ZR=1 TO 10:NEHT ZR

.:II.. 1[1: :;:.t;: 0 INlIL :H "Ir' ij.<.lj

.:If.. ,:iI" 1[11 (11 I[~ U:4: il~:11 IP' U"K][IG '~J. 1[11

1110 DIM NUM(121 :DIM ~5(1~ :DIM HC212~
1112 FOR 1=1 TO 12:RE~D H:NUM(I~=H:~EHT I
1114 DATA 32.34~24.34~54.54J34y~4~176~202.202

J ' :,;.:: l[jJ:2:

,:Ii" .:II.. 2: 0 ']" If:!: Jt:k IP' .t, if]: 1[jI q~p li]J : if' /f;1: n:~ II:;' .:it. .:It. :Z 0 ~ '?' " " U'~~ "" :: fl' II) '5 T "If ::1[: :[~ INl .:It. .,. ~::~ :
'::, " II j~'.jj It'll T C Hi IG IH Jt~ /P' n"n][:c:::. 1M 11]1 Ii) [:~ u...jj 0 ILlIIL. II)' "II" :iJ! iU L T li("::::11' ij:J ':'J. IE:: IE:

IL ::U::S'lI" 1I:::' I[jlIR " ";:

,:H" ,1, ~2: ~'j; IP' I[]! Ife 1l:7: ';;;0' .:Ii.. if). lUI

,:H.. jL :~:I:: I~)][Ipqj IP' lUI T 11'11 0 U~~ IE

1149 IF MODE>11 OR MODE{O THE~ 11,
,:II., ,:Il '5: l[~ G 0 "R" 1[]1 JI.. ::2: 2 ~]I

1165 GRAPHICS 17:POKE 708.52
,:II" .:11. ';;;0' 0 U3' 1/]1 's ::r: T ::1:: 10> iI'~ .J.,. ~.:~ : ''? :jj::j!: 6;: "A Ii"~ 1[/1 D iI:::~], CiiJ 'W' 1[./1 WJlI~] til II'4IIL "s" "" ~ '~'j.

OU~D B.12B~ay8:FOR W=1 TO 500:~EHl W:SOUND O.
OJ' 0 ". 0

-7-

11 8 0 FOR H= 1 TO 500:~EKT H:GOTO 1120
1220 USE =~UM(MODE+1}

1232 GRAPHICS MODE
1234 N O ~ = PEEK~5 5 3) :POKE 55~.0
.:lI .. :2: 4 · 0 .• J := .1.
1 2 45 DL =PE EK(5 6 0)+25 6 *PEEKC561)
1250 MCJ]= P E EK ' D L+J - 1 ~ : J = J+1

12 5 2 IF J(U 5E +1 T H E~ 12~O

1254 G R APHICS O:K=1 : POKE 559 ~ NO~
U iJ " .. .:11. . :2: 16, 1[1: IP' 0 .~:~ ::[T T 101 IN!

jj"'i!1[j1 jD' !E Z PO '5 ::n: T T O !!14
;[I; .p :[jl :: ?

.:11.. .• jj" :: ? iI U _.~ _.~ _._ •• _ •• _ ••• _ __ ,_ •• __ • , __ •.••••••• _ •••••• _ •••• _ _ , __ , __ • __ •••• _ • • __ • __ __ ".w. _. _ •• __ •

••• • • • • ••• _ • • _ ._ ._ ______ .w ••• _ • • • • • , o w, __ _ •• _ ._ • __ U (1

1270 FOR J =2 TO 22
1280 FO R I = 1 TO 40 S TEP 4
1290 POSITI O N IyJ: ? MCK1 :K =· K + 1:IF K)USE THEN
.:II.. :;:~: .:IL I[jl

1300 N EKT X :NE KT J
.:li.. :;:i j: .:Ii.. ;j:]i IP' (/I 5. :1: .. W' ::r: 1[11 1J1.jj ::l p :z :;5 ::? " " I~"U (II ILl IL .. U) V' 1[]I ILJ It.... ::I[II< n::: 'u' :iJl 'j. IE II::: i~ :k

j;'U ID "If U'ii II:::: u::t • " ;: ::::n: IN! IP' ILU .. U' ~: :~ :~:i:
.:IL :;:;~ :;~.:: (II :1.: II":' itll :!;;.: ::::.: " " V " " "If' "-II Ie: W<lI .:!I. .. :u .. ::l lfj'

.:iL :~I: : :;:;;: 0 ::[If" {II :!;~ ::::: " " 1~<lI 1i !! '1 iHIIL": iNI IP' t[~ i!{ It:: ';iI' I!:i • • ,~ . " .:lL : : ;~ ;: IN: ILl! Jl!tU " "If), :: IE: :H: :2 /I "

.:ii .. ~:!j: .~. 0 ij~ 0 If' (/I JI.. :2: Ijj . I[!:

EXAMPLE 2 (at last)

If you are still in example type In "n" and press
RETURN. Example 2 is for you to practice changing a Display
List. The numbers that come up in a data statement on the
screen are there for you to edit using the cursor controls.
Numbers can be added, changed, or deleted. When ready to see
what the screen wi II look I ike with your new numbers, press
RETURN. In case you don't understand what to do we have
already changed some 2's to 4's, so just pressing RETURN
will get a custom screen . Now you can see why ATARI didn't
tell you about some of the special modes. Mode 4 is a
multicolored text mode designed for use with character
graphics, but It sure looks funny! It also Is difficult to
use, so these new modes w II I not be exp I a I ned here. Try them
on your own, or see ATAR I pub I i cat ions.

Play with this example awhile . Try different numbers in
the I ist. Remember (I keep repeating myself), the numbers in
the DL are the O. S . Mode numbers from 2 to 15. Th i sis
designed as a simple example, so don't get frustrated that
you have to keep starting over with the same I ist. Later
examples will remember your changes and have more room in
the DATA statements for numbers. ANYTIME YOU WANT TO CHECK
THE MODES YOU HAVE PLACED ON THE SCREEN, THE EASIEST WAY TO
DO IT IS TO BREAK THE PROGRAM AND TYPE LIST. THE LISTING
WILL FLOW ACROSS THE MODES SHOWING YOU WHERE TEXT AND
GRAPHICS ARE.

- 8 -

:2: G R tll /P' H][' :e '15,

:;z;: F-- if.Jt Iff. fj.o.if::~;:.:JL

,ej!. FOR Z~IR~-:::.:lL

If.:;; NI E H "If" 110"

jl .. ")' ~? :Jt.#6 .:: 11 K

T I[]I ~,;;~ ::s: II} ~ IP' I[]I 110(I:::

'11"" I[jI :IL {11 :: INl It:: :M: T

IE: :H: It~k II"'. IPO IL jE~

';7 .:lL 1[11 .• !f.,.jj

ZIR

7 GR APH I C S O : DIM ZH${~35~
10 DL=PEEK(560~+256*PEEK(561'
15 A=PIE:EKCDL+4) :B=PEEK~DL+5~
::.!:: (II Ii; n ~~ IP' IHI][IC: ':;j, I[p ~ .':!'. " II 1]"" II"U]['15, IE :Fe !t~ II"H !P' N IE:': It;k IL. IL .. l[il u .. .jj '5, "11" 0 11..11 "If I[p Il~:

U-iI IrillWl iG u::: It " Ii';'g I[~ if) IE l[jl l::t, :r "J. P IL (:k "t(' IL. J[':;j. "If' fi "it
:~-t;: 0 ? \I • iF" R E '~J' 50 t.;t"!i:ii!r~ :r::i] 'f 0 IE); IE tG j[1i'41 H II

55 DATA ~ 1 2~112~~~2~66~64y156~2 ~ ~ fl 2~2 fl 2 fl 2~2fl2

fl2y4~4~4 ~ 4~4,2fl2fl2~2~2~2~2.2~2.65~32fl156~O~Op

6 :~?: P I(]: IK IE::: .~:~ :;:!): :z ';?"3' • ;[1;

65 Z=PIE:IE:K(53273~

70 IF Z=6 THEINl 100
;[j; I[fI tG I(]: "r I[]!
.:it IFII 0
.:IL (II ~:;;;

T IR Jt~k IP' 'I:J ij]1 1j]1 0 0 ~ "? II /I 1I'1i; /I 1\ :: IP' I[]! 5][' If' ::r Ijji U'til :~?: ." !:~;

II) It:k "If It~k .:Il. .:11 .. :2: I' .:II.. .:M .. 2 ." .11...:iL.Z ., I[j. 6 .1 ' ;,;; .:: Inl .:: ,,;; .I' "/I .:: 113;:: 1\" J' :~i~ ." :;t::
~2y2yL~:Zy2~2,2~4.4~4.4.4.2,2~2y2~2~2 fl 2.2.2y65

." :S2 .• JI..!f;I[j..p 0 _" :f.Jl .l' tEl< .1' In /III

.:U .. . :11 .. GI IP' I[it;;:;. J[-If" T IjJI !Nl 2, .:1- ~~j. :: .,;;. 1111 C H'II tf.~llf>ili II:;; E "11" 11"11 II::: 1l.,11 {:jj L ILlIIi::: S "II" ijJt IL~ IHII':I!
INlT BY UST~G l " HE CU~SOR CI(]:~TROLS-T H EN P R ESS
L~::H:i~i:ii!l]J::~~::J TO':], IE IE iYijllE fj..,ji

.:11" .:Ii. 5 .,:;>. \I ;I S (;: U:;r. 11.:;:: IE: 11>41 H ,

. J. ::;!;: (11 IP' :[11 .::;. ::["If'][1[11 11141 11:]1..:lL

.:Il. ::l ~:J;][il'<!i IP' U .. U . If' ;2:: :H :~~

IP 1[11 '::i, J["U" T iii IMl i~Jlp ':::;;

!P' I[~ IK IE::: ;tj; 4 ::;;': " .:11..;:1;:

II II "

."

.:!i .. :;:~: Ij]l

.:R ... ~I. 4Ji

.:II.. .~II· 2:

.:if.. .:fl . • ~.

.:11 .. ';j; 1[11

IF Ijj 5 T 'r ::Ie 11]1 IMl 2:. :K.. ::;~: ~ .,:~. \I u :e: fll 1~4! '11" ,; H

POSITION O ~3:S TOP

IPO I[ll IK Ie: ;[j; 4 :Z .P .:11" 2:

2: JI. n ::I[:~:: Iflt

::l .:It. !::i; '11" Ir:t II~il IP' .:il. I[jl lUI

220 READ G:POKE DL+I,G:I=I+1:IF G=O THEN 235
::;i:: :;:r.: q]1 II.:;; (l1'1f' lUI 2: ::;;:: 1[11

235 FOR W=~ TO 300:NEHT W:LIST
::?: 4 q]1 ":;> " , IF" ~l: [-;:~::.;. s m::h:!!ii:.-~·ii!lII;:J T ti~ 1[;; 0 I[~ iI'<ll • II :: .r,;;. ;I H IP' IH iE:: ':J. S ~;;;~iiiLi~~:r~.:uii]
11' 10 II) rUt il:'lt 11>411[} '1f' U-U II ::: If? SIC' if.1: II::: IE: IFrii • ;I

:.;:: .~II · ~'J; "iI" Ij:;j: I~~II IP' .:IL 1[/1 1[11

::l ':;J; of]1 P.=i' 0 IK L: !:.:~ ::r; 2: '7:;1' " ;:::~

260 Z=PEEK(S32791
270 IF Z=6 THEN 57
:;;;: ;[j; 1[11 ::I[IF ;;!::: .::~ : :;:r,: "Ii' ilU IE lI'til U:~: IU ip,jj " ;; Ii) :: if:: J'~ :;:i; " /I

:;~; : 01 .':11 Ie:;; lCiI 'Ir tLll :z 6 lUI

EXAMPLE 3:

This is a small subroutine fo r you to use in your own
programs. The numbers for the DATA statement (the DL) can
come from EX . 2 (or better yet EX. 10) . Some of the lines in
this example we added t o make th i s Tutorial flow smoothly,
so after you copy the e xample , delete al I but the cal I to
the subroutine in l i ne 700 plus the subroutine Itself , lines
10000 - 10040 Here ' s how the rout i ne works :

- 9 -

10010 DL=PEEK(560)+256*PEEK(561)

Line 10010 - puts together the two parts of the address
stored In 560 & 561. These two locations combine to give you
the start of the Display List. Since this varies, you have
to look at these locations each time you do a Graphics call,
I ike GR. 0 or GR. 7. The Graphics call will automatically
set up a DL and screen data area within memory.

I'm confusedl

Right! We need another chart (next page, Figure 3). On
this chart are every standard 0 i sp I ay List. Look at the
first one, for Graphics O. The Display List starts about 1k
from the top of memory with the DL itself. Then, moving up
in memory comes the 960 bytes of data that the screen needs.
Example 2 calls GR. 0, then looks at 560 & 561 and changes
the DL. The 960 bytes of screen data I s enough for the
modifications you can make with the small DATA statement we
have given you so far . Later, when we give you four DATA
statements you may want t o start with a Graphics Mode that
gives you more room I Ike 5 , 7 , even 8 . The key Is to use only
as much of memory as you need . The real way to calculate
what mode to start with I s to add up how many I ines of each
mode you are using, multiply each of these by the number of
bytes per mode line from FIG . 1 and get a total for them
al I. For example :

13 lines of GR . 8 * 40 bytes per line
+ 8 lines of GR . 2 * 20 bytes per line
+ 25 GR . 7 l i nes * 40 bytes per line

--- - -- - - - --- -------- - -- - - - - - - - - - - ----
equals : 1680 bytes needed for DATA

and:191 pixel lines used(close enough to 192!)

-10-

If you ,:11 low another 70 or so bytes for the DL itsel f, you
get a minimum of 1750 bytes needed for your custom DL. By
ca III ng a standard GR. 6 C see chart), 2048 bytes wou I d be
set up which Is enough. At this point Cafter the call), you
would look at 560 & 561 to get the address of the start of
the DL. By the way, the estimate of 70 additional bytes for
the DL comes from adding up the number of mode lines you are
going to call C46 In above example), plus some extras for
the blank II nes, the LMS bytes, and the 65 & address at the
end of every DL.

Let's finish this example and then explain the chart.

10011 Z1 ==PEEKCDL+4) :Z2==PEEKCDL+5)

Line 10011 - saves the location where the screen's data
starts, which always comes at the 5th and 6th value Into the
DLCrlght after the LMS).
10012 1=1
10013 READ A:IF A=O THEN 10040
10014 POKE CDL+I-1),A
10015 IF 1=5 THEN POKE DL+4,Z1
10016 IF 1=6 THEN POKE DL+5,Z2
10020 1==1+1 :GOTO 10013
10030 DATA 112,112,112,66,64,156,2,2,2,5 , 5,5,5,2,2,

4,4,4,4,4,65,32,124,0,0,0

Lin e s 1 00 1 2 to 1 0030 - Wen 0 w set a co u i1 t e r , and rea d a
value; if it = 0 we're a" done; if not, we POKE it into the
first location in the DLCthus changing the DL if the number
is different). We then test for the 5th and 6th value, and
if we just POKEd in these values from the DATA statement, we
POKE in another value from line 10011. This is because these
two numbers depend on your memory size, so the numbers in
the data statement are dummys waiting for these correct
numbers to be PEEKed from the DL and then POKEd right back
in againCsure it could be done other ways •••• this Is my
way). This simple loop continues until the program reads in
a 0 from the DATA statement then stops. Notice whenever you
change a DL this way it changes down the screen just I Ike a
curtalnfa"ing. Neat!

GRAPHICS
MODES

I
~

N
I

DZSPLAV LJ:ST

TOP OF MEMORY FOR GRAPHICS 0 t.CJ 4 16

16 x 1024 OP.

3l X 102.4- OP.

4-8 X 1 024 - 256 BYTES - 512 BYTES - 76B 13YTEe, - 1024 BYTES
I I 1 1

'----------- 672------

L--____ 434------'

BOTTOM OF
MEMORY

o

) 2'---_

) ~~

) ~-

3~"~'~~==============~),---~
)~-

'----------432---~

4EL .. .a .. .mc========= L-------b94-----

L-------G%------~

D UNUSED I))))) TEXT DATA

GRAPHICS DATA IIIi DISPLAY LIST

FIGURE 3A (~T TO SCALE)

GRAPHICS
MODES

I
~

DISPLAV LIST

FOR GRAPHICS 5 t~ B~16

TOP OF MEMORY
16 X 1024 OR
31X 1024 OR.
4B'f... \024

5 !?~ll ~2J1!:2:2QJi!i!!ii!iE4
'---1 174 ----l

- Z04B ByrES -409b (4K) - 6144 (bl<) - 8192 (6K)

b~~~============== '------ 21 74- --------.J

7 640

'---------4\90------~

'--------- 4Z00-----~

6~1~2%~1I1I1I1I1I~1I1I1I1

D UNUSED D:ttH TEXT DATA

WM~M GRAPHICS DATA l1li DISPLAY LIST

FIGURE 3B (NOT TO SCALE)

BOTTOM OF
MEMORY

o

>
>
>
)

>
>

p I.-IS-n;
K1uv l'dV.'p"'Ir.~ 5 IP ~ ... I ~

BACK T O T H AT BZG CHART AGAZN

It isn't necessary for you to understand Figure 3, so
feel free to skip this section . Just pick one of the
Graph i cs Modes you are used to using and look at it on the
chart . Lets pick GR . 4 (O . S . mode 9) . Starting down from the
top of memory about 600 bytes , we see the DL uses 54 bytes
of memory. Next comes the screen data of 400 bytes, then
some empty (unused) memory locations . Finally , 160 bytes of
data for the text window . The other Graphics Modes work the
same way.

The text window is a sl ight complication to the DL
after the sequence of 112's , the LMS bytes, and the various
O. S . Mode numbers, as discussed above, YOU WOULD FIND
ANOTHER LMSI And following that wi II come more mode line
instructions (text of course) , and now finally comes the 65
address to end the DL . The extra LMS just says to: "Go get
some data from another location in memory than the one the
computer is at , and then place that data in some text mode
l i nes(usually 4 lines of GR . O) , all at the bottom of the
screen.

,:ll" 1[11 G IH: ,t:k IP' R"U][(;: 5 . jL 'i' ~ '? :11::li: lij, ;: "" II:::: :H: il'i, H"'H IP' t .. it: f:i;:# II n

20 FOR W=1 TO 230:POKE 710.W
30 FOR ZR=1 TO 10:HEXT ZR
4 Inl INI L :iol: 'W' U·'.JI

500 REM THIS IS ~ SUBROUTINE FOR YOU TO USE I

N YOU R OWN PROGRAMS. SEE M~NUAL FOR DIRECTION

':t" 1[:11 I[IJ (~; 1[11 ':5- tH If.j; :It. 1(11 l[li IH t[Il

710 REM PUT THE REST OF~OUR PROGRAM ST~RTING
In, w'll "Ii" IHi Je '~J' IL. ::u:: I~ It::

715 FOR W=1 TO 2000:NEKT W
';;" 2 0 1[;; !f;I: ~::k IP' U"1I]:: 1[;: ':::~ H:: '?' " " "Ii" 11"11 T ::1' iE:: :I-C I r~! U"'M IP' II..., Ie:: J[':::j. iF" I[JlIF;f ''II'' lUI lUI 'U" 0

ILlI '~'j. It: ::0:: 1i'<II "If' 1[)lIIJ If;t IP' R 1[11 1[;; ~:;I: ;n, U''II 50 • II R : '? II II IF" R IL "::j. S IH IF:t U:::: g~ U{ I~:b 1P4i i/) "::j. n:ii 1(':1

IE ::u:: '1i"]1.: II '" "K;< ILiI ILU i~',1i n'~ INi "II" ~:JI u:;r II U , ::

- 14 -

:[]t It,ii " n" :: iP' tUI II(IE.

7 40 Z=PEEKC5327~}
'?' ~J; tj:j l ::H:: iF' Z: ::::: :;:;: "W' lj·u ,r;: iNi IP' fil lK il::: ./ If}. ,;y. " .:U .. ::?: ~ IF:t ILU i~41 " n II} :: il:::: :H: ,,:U· " ;;

:;;" ti:J' G::!: tf:. :[It '11" I[il ,," ,,:Q. lijt

.:II.. t[lt 0 1 ij:jl :f:.~; "Ii" !F:I: ~ ::k IP' .11.. i[~ In .,:H ijj:

10010 DL=PEEK(560~+ 2 56*PEEK(561}

10011 Z1=PEEK(D L +4~ :Z2 = PEEK(DL+5~

.11.. tfJI I[lt .:II.. 2 ::U.~ :::: ~n..

1 0013 RE~D ~ : IF ~ = O THEN 1 0 040
100~4 POK E CD L+I - 1}.A
1 00 1 5 IF I=5 T H E N POKE DL+4.Z1
10016 I F I=6 THE~ POKE DL+5 y Z2
10020 I=I+1 : GOTO 10013
10030 DATA 112 y 112.1~2y66y64~156y2~2~2.S . 5.5y

NOW FOR AN ADVERTISEMENT

All these PEEK and POKE locations are summerlzed In my
MASTER MEMORY MAP. FORK OVER THE $6.95 and order one today!

I hate ads too, but •• • . News flash! I I The ATARI Isn't as
slow as some reviewers have stated In bench tests. The ATARI
ANTIC chip that we have been programming steals time from
the main 6502 processor. The bigger the DL and the more data
It has to pu+ on the screen, the more time It steals. This
means that I f a rev I ewer tested the mach I ne In GR. 0 It w I I I
run calculations slower than If In GR.2 or 3 which have
smaller DL's. In fact, if you want you can customize a DL to
have only blank lines with one small message In the middle
of the screen that says "Walt a Moment", this wi II allow the
machine to run almost as fast as It can go. In case you want
to know the difference; In GR.8 the machine Is up to 40%
slower than GR.2!

-15-

EXAMPLE 4 8c 5

Ok students, time for fun. Run example 4. AI I of this DL
stuff may not seem too practical, so the next two examples
are to give you some ideas. By simply setting up a GR.1
(large letters) DL, but in the middle doing a second LMS
(70,96,127 In the data but the last two numbers are rePOKEd
in lines 10023-10024 depending on your memory), we tel I the
DL that once it gets about halfway down the screen, It
should get Its data from the same place as the top of the
screen did! There are few restrictions on what you can do
with the LMS byte. It doesn't have to walt to be used only
at the beginning of the DL and at 4K boundaries.

Example 5 is the same thing, but with only one copy of
what you type in. Both of these could be used for games, but
a more useful Idea might be to allow programming In big
letters for the hard of seeing or kids to use.

HAVE LOST YOU?

You should sti I I be in example 4. The program says READY
in doub I e I etters. Since the program has stopped, you can do
what you like. Try a simple line like "Hello, I use BIG
letters". The computer will now work I ike It was in GR.O.
Why? Look at line 720 In EX.4--720 POKE 87,0:END. The POKE
to location 87 fools the computer. We just (in the
subrouti ne) set up the DL I ike a GR.1 screen, but the
computer looks to location 87 to see what mode it is In, so
by POKEing in 0 (the Graphics Mode goes here, not the O.S.
mode used in the DL), it th inks it can wr I te list i ngs as
though it were in GR.O •

.:i1..1j]: ~:;;:q {li iP' iH!:iC C: 5. .:Ii .. ';? ~ ... ,. ii::li: l[j. ;:"" iL: ;H: ii':ii n"'aIP' U L i:~J""

20 FOR W=1 TO 230:POKE 710.W
:;:::: fll F (il i/;I: ;;:::: iI:;I: :::::: .:Ii.. "Ii" 1[11 .:11 .. lUI :: /i,U if:::: :H:r ;;;< If;r
.<~I fil :!,<il IE J1: "ii ' g.·.U

-16-

500 REM HERE IS A PRACTICAL EXAMPLE OFWHAT YO
U CA~ DO WITH A DISPLAY LIST THAT IS MODIFIED
5~0 REM JUST S~Y GOTO 700 WHE~ YOU WA~T T
o SEE YOUR PROGRAM X~ BIG LETTERS AND I~ DUP
1L][J[!:A"IrIf::: '! ~

'!:i: 2: {It R IE 11'''11 -:\III:":J«t"~Rl~·**.;{BE-*-:loI:-*·W.·"IH€-"jlHIIf~-:tnf·:~Jf.-"jAf.-:to€";jul'"INf.·;I'Il~·'jIt(:":1><!:":IN["*~I""··:f»f.-Jut:··:~Ii.~"/IIt' .. ;jI!j:·
;;;"00 GO·~j.lJB .:l.I0IO!£ilO

7~0 REM YOUR BASIC PROGRAM GOES HERE
729 POKE 87~O=END
~OOOO REM TRAP ~0040:GWAPHICS ~

.1 .. 0 0 0 '!';,'i: 1[; IR A Ii=!' !HI X C '='j. .JI..

.:II. if'll 0.:1. 11]1

.1,,1['110.:1.5

.:Il..ifjl0.:IL6

.:If.. {lIO.:ll.. 7'

.1. 1I]I021}]1

.:1 .. (1102.:" ..

.1. 1['11 0 :~l :;;;:

.1. 1[11 {'It 2: :.J

.:1/..0024

.:lI.. 002:'!:5:

DL=PEEKC560)+2:56*PEEK(561)
Z1=PEEK~DL+4~ :Z2=PEEK(DL+5)
][::::~ .. iI. .

READ A:IF A=O THE~ .:IL0040
IP 11]1 II< u::: It:: Ii} IL .. u-. Ji: ":IL ,~ " H~

IF 1=5 THEH POKE DIL+4~Z1-32
::u:: IF' J[:=:: I\.':i. T 1/-1\ ~:: 11'41 P I[) 114:: u::
IF I=.:IL6 THEN POKE
IF I=~7 THEN POKE
X=I+.:IL ~ IG~JITI[}! .:lI..if.jll[ItJ .. ·;?

1(;1' IL ·iI .. 5 ., Z :~~ ·il" ::~::

II) it". ·iI· .:Ii.. ~51' Z .:11 ... '" .. :;:1;: 2:
II> Il... 'it" .:Il. I[j, .1' ;;i'~:2: + ::;i~

10030 DATA 112~.:IL.:IL2~.:IL12~70.36~.:IL27~6.6p6~6.6~6~

6y6y70y96J.:IL27y6p6.6.6~6.6.6y6.6y65y~4~125.0.0
.:11..1[11040 IRETIUlIf;f:N

Example 5 is almost the same, except instead of the POKE
87, we start with a GR.O mode. This internally changes 87 to
o (try a PEEK(87) if you don't believe me). Sometimes one
method is more desirable than the other. You pick one. The
other difference Is that there is no second LMS In the
mJddle of the OL. The writing in these two examples is
large, but the computer sti II thinks it Is in mode 0 so It
trys to fit In the normal 40x24 letters. For this reason,
you won't see the text in the way that you expect. Try a
LIST command. STRANGE!

NOTE - To get to example 5 & 6 you have to either type In
RUN"O:EX5" OR RUN"C:", whichever is appropiate. The same for
EX.6. This is because we stopped EX.4 & EX.5 for you to try
out.

20 FOR W=1 TO 2:30:POKE 710 ~ W

30 FOR ZR=1 TO 10:NEMT ZR
,I'J!. I~II 11'41 E :H: 'J!" u",~

500 REM THIS IS A SUBROIUITINE TO ALL.OW YOU TO
PROGRAM WITH BIG LETTERS.SEE MANUAL FOR DIRE
IC ' irT(lI!i'4iS"

700 GRAPHICS 0:G05UB 10000
710 REM PUT THE REST OF YOUR PROGRAM
I/::;; ;[]! 1\J~i:r H'~ ::1[: "j. Ii.."][INllt::

;;" ::?: 11]1 L ::11:: '5 T :: Ii:~: li~i ID'

.:U" 11]1 I!.]; IBl tj;:It ":r II~I: K~1i P' .:11" I[jl 0 ,1:11. IlJt

10010 DL=PEEK(560)+256*PEEK(561)
10011 Z1=PEEK(DL+.~ :Z2=PEEK(DL+5)

-17-

.:lI .. :[;11 :j.JI :ii. ::it][:::::: Jt.

10013 RE~D A:IF A=O THE~ 10040
1 0 014 POKE ~DL+I-1~.A

1 0 015 IF I=5 THE~ POKE DL+4.Z1+7 0
100 1 6 IF 1=6 T H E ~ POKE DL+5~Z2+::it

10 0 20 I=I+1:GOTO 10013
10030 DATA 112.112.112.70.74.158.6.6.6.6.6.6 .
,I:; It''';. ,0::;. ,o::~ :13, :I ::~ If.l.. Ib, , ifj, I' f;j, I' If]. • ~'j. I ' (i, 'S .I' :;:!;: :2: .• .:IL ::;;~ ,ell· .1' I[~. :[JI .r tl]1 ,'.!' .r .1' "l..t" .j' q..r .I' .I' - ,f' ·.r .1·· · ·· · .

.:II.. ~]I if]1 -1 tf31 K:;t E -r IU! In: 11<<11

E XAM PLE 6

This example is I ike EX . 2 , except that it remembers your
current DL. This way you can slowly change the DL unti I you
I ike it. Then copy the numbers and use them in EX.3 in your
own programs . After you create a screen , If you want to
BREAK the program just type LIST. This wi I I flow the
programs data over the DL you just created to better see
each region. To restart the program, just type RUN. Other
commands are: press OPTION to go to EX.7 ; press START to do
another screen using the current DL numbers; press SELECT to
get back to the original numbers In case your custom screen
goes crazy, or you get lost In what you're doing.

GRAPHICS MODE LINES AND PIXEL LINES

1- -> 111111111111111111111111111111111111111 1 111111 1111111 PIXEL LINE

2--> 11111111111111 111111111111111111111111111111111111111 GR . 7(0.S. MODE 13)

4--> 11111111111111111111111111111111 I11111111111111111111 GR . 4(0.S . MODE 9)

(Up to 16 Pixels per Mode Line In O. S . Modes 5 & 7 (=GR . 2»

FIGURE 4

- 1 8-

GOING CRAZY?

Yes, remember we sa i d before that if you put in enough
modes in the DL so tha t too many pi x el I i nes are used up,
the TV wi I I start to ro I I . Th lsi s simp I y because you are
saying in the DL to " Dra w on the screen mo r e than you have
room for" . Conversely, i f you put too few lines on the
screen , the picture wi I I shrin k. Simply change the amount of
modes or the type of mode(le ., change several modes like 2
which use 8 lines of pi xels pe r mode line of 2(GR . O), to
ones I ike mode 9 which use only 4 pi xel rows per mode
9(GR . 4) line). No w,l f t h i s mode lin e vs . pixel line stu f f
has got you lost , we a r e goi ng to have one more figure
(figure 4).This one sho ws clea r l y (we hope) t he difference
between the two.

:~i~ FI[]I jf;t

,<!II· IF'OR

1J..,j! ::::.: ~u.. "r lUI ::;~: :;:;: I[JI :: iP if.) IJ.(IE

;?:: IR = .:11.. "r 0 .:11.. {ji :: iNi IE:: :H 'f

!S INl IE: X T H"';
';;;0' I)' ::r r'H ;;;:: :H: : !~i: 1t: .1I.. :;:~: '~) ::JI

IE :H: I(~ IJ','UIP L IE I::;L~""

.;;;" .:II.. 0" u,.,1

zn:;r

z 1[11 l[;; If.I: I~ IP' 1111 J[C: 5 1\:.11 ~ ":;' " • '1f' II-'U][~j, IE :H: 11:'_ iI'11P iL IE ~::;, 11.._ •.... I .• 3' . " []I W c· '\1" 0 U "r 0 Ir"
lIiI ;t:g IN! IG IE i('Ii 1M I[JI H) it:: ;fjJ W)' T 5 1f·1' IL ~b Y IL :Jf: "5'If' H • /I

:;:;: {]I ":;> Ii II IP' R IE: .~':i, "5 k;~~Iii::f.:~:'E:lfiLij "If It:~ iiJ; IE I[~; X 1/><11 1/" ~? " II I~'.JI u::r][T IE: H)' I[]I U ... U IJ4jI T U'1 U::::
JI 'LJ' ri'" Il." II ']1" ",... .']:: ']- '. 1. "1/ H<4IllJ 1I'1I1H U::: I~: '5,][JjItjj -If' M"U If::: Ci;:~:~ !WI II'U If"':: IJI,. 11 .. "" ••• • •• !Y', ::. .

55 DATA 112.112y112.66 .~ 5J'144.2~2.2.2.2.2.2.2
~ 4,4,4.4.4.2.2.2,,2fl2~2p2p2p2.65.32p156.0

.L·~~"I"~ ~ II~ I~ ~ ~II ~ O.O,o.o.o.o.o.oJ'OyO.O.O~O H::j; 6 jJ:·H lHI 'f: :~ .[' :')1 .1' t.f' ,f' tt:.l .1" 1;. .1' .• .1' .r·

-~ ~ q 0 0.0,0,0,0.0,,0 . 0.65,,32.156.1'0 .f' '1:.1' ,i' -r..P .1' '1- .11 JI ••. • • . .

57 DATA O.O.O y O.O.O ~ O .OyO~ o.o~o.o.o"OpO y O~O.O

.O.O.O.O.O.O . OyO~0.OyOyOy65y32.156yO . ..
~= ')~~~ ~ ~ ~ ~ ~ 0 O.A"O.O,O~OyO~o.Oyo.o.o~o .a.:i< "::t' "tJ.·iJ" IHt 'f.J I .ff t.)' .I' r..l' JI IC.}I JI ILr.l' _ '/' '. .

.O.O.0.O.O.O.O.O.O.OyO~OJ65,,32p156.0
ifj, Z P' 0 II<. IE ~:j; :;:;: ::;~ 7' .~;; ." ;[J;

55 Z=PEIE:K(5327~'
70 IF Z=6 THE~ ~oo
;fJ; I[tt G 0 '11" Ill! 6, !f.;;

100 GRAP H ICS O~PI[JISITIO~ 2.3
.:Il.. 0 !S IL.][S T '5; 'f.j; .1' 'f.J; ;r:j;

" " e t'J 1t4 N G IE "iI" iHI IE: ij.~ ,~ L /lJl If':: ',,:~ 110 POSJ[TIOM 2.~a:?
IHI "f IS; ''''' "..II S][!I'. ~:;; 'If 1t-1I E: C "..II IR '~j. I[~ fi:;j: 1[::: ON T IF~: I[JI L 5, II "

120 POSJ[TJ[O~ 10.0
.:11.. 2: S :x: IN! /P' U 'J' Z :H: :$
.:1 .. ::~~ 0 P 0 S :I: T J[i[~ !HI 1/]1., 2

- 19 -

"~nO 0 ILU

.:1 .. ,,!II. (}t IP' 1[]lK If::. ;[1; ,, ~I.:2: .I' Jl :;3:

.:It ,41. ~2: IP 0 . ~:J. J["I/" :u:: I[J1 iPl/! :2: ." _1. ~? :: "? " " {;: 11.".11 IN! "If " "

.:lI"oi!lI. 4

.:II. '5;0
POSITIO~ O.2:STOP
IPO!Jo(1E H4::;!: -" .:JL2

::t,: I[il ('II IR 11.::: S "II" 0 If';/: IE !!::~ !S

::t': .j " 01][::::: It)

:;;': ..1" !Ej; T I/::t tt~ IP' ,,~. 01/]1

2~7 I=1:GRAPH][{;:S 7+16
218 D L = P EIEIK(S60]+2SS*PEEK(56 1]
21' ~=IP'EEK(DL+4] :B=PEEKCDL+S]
220 READ G~IF G=O THE~ 233
221 POKE D L +][-1.G
222 IF][=5 T"E~ POKE DL+4.A
223 IF I=6 THEIN! POKE DL+SpS
230 I=I+1: G OTO 220
233 F~R H=1 TO ~OO:NEKT W~POIKE 87.0
:2: ,4/. 01 P 1[/1:10 J["U"][0 1i41 :2:, ~t : .? " « IP' If~~ Il::: 5 'S I:U~:ii::i[jil';~] '11' q'j'l G 0 1[)lI/\Il " . : ?

" " P If:t IE: . ~'j. s ~j[i.Jilre:~HIl::ii '1/ (]I [,1, 0 H~~h 1/'41iCp 'lf' HI [:: ~~ '"j. Ie: 1f;J: 11-:::: If::: ~ " "
::i;~ ,i!/j ~3: ',1' " "IP jF;j~ IE '5 .~j. u~;:i~~~::~:}~:iF.lliC~ IF' 0 If;)! ' U" /I-Y It:: 0 If~: ::[1[;; x H;// tl~41 L Il) :U: ";3, p L I~~ "i!"
LJLS 'l, . "

2: 4/. "'j~ T iI~~ A P :5

: ~i': !z:i; (II IP' 1[/1 II{ IE :::5; :;I~ ::~~: .;?~:;t" , ~:I;

260 Z=PEEK~53279)

::i~: '7fjl

:;';': ;1:1; If]!

JLIF

::11:: IF

][iF

;t~~

;2~:
"'(1' .t_

... M. !b~ . If' IHI ,,-

~::: It:;j, 1l"11-I1
...... :::!i: 'K"lf'U

:~I: : IFJI 11:11 1[:;; I[) T :[]I :2: tf.'j. 11:11

H:;: /I><!I 40 l[jl

L!f<<l1 IC 'W
,. J' ';;il'

Ie: JPI/! IP' 1[/1 Ip(IL

400 TRAP 400~GR~PHICS O:POSITION 2.4
,'~II . (II ':3; ":1' " , !~:i ; ".OJ; if) I~:II "II" Il:li ~u.. .:IL ::i!~: ." .:Ii. .. :1. :~?" .:R".:lL ::2:" II'), tf:~ ." "" .:: fl::tJ .i: u" J ' iI II .i: IIj; .:: "" ." :,i:: ." :;r

;~ ~;!~::~~ ~?:ji: ~:lt;::\:;1 ,::~: J ' 2 " : :i~ ." '<!/~ .1' .~ " .cI ., ,,!/I. J' 4 I' ~f.':I' Z .. ::ii':, 2" ::;;~ ." ::2: ." 2 .,' ::i?: " 2: I' 6!5~

E X AMPLE "7

This one is for you to figure out. Some clues: When the
"HEllO'S" stop, look at all the modes on the screen. Notice
towards the bottom , the mode eight area (obvious by the red
and blue pixels) . Since the computer displays the data
according to whatever da t a Is ne xt "in I ine", the statements
about press OPTION , START , o r SELECT end up In this mode 8
area (even though you can't see the statements, you can
sti I I use them) . Then we hit a 4k boundary , so alMS
instruction was used but to ma ke I t interesting , we used the
same address as the top of the data . look at the Display
l i st for GR . 8 using EX. l . See t he 79 (lMS) instruction i n
the middle .

-2 0 -

r.:;;; If? ,(.:h IP' /I··ff J[Ie: '~::i,

F" (JJ R IJ...II::::: .:1 ..

F'OR ;;~lf;r=:.:II..

1'41 E: :InC 'lr I""

.:11..7' ;;? :It:Jt.Ifi. .~ ""
TO :2~!O:: IP'I[) IKE:

'J' I[]I .:11.. 10 ~ 11'<11 IE :l-~ '1'

10 TRAP 40000:TRAP 10

IE }t: 1f.4i IMIP' L IE: ~. •
';;> .1.0.p W

z: Iff.

::i~: 0 G IR d':l! IP' 11'11 T C -s. 1[11:; "1' n II '11" U'1I ::n:: 5, IE: :1-1: w.~ 11"1 n~1> L IL I~~ L IL. I[]l 11-'4 '5, ''n'' I[]I NJ '/r I[) e

Hi (II H I[; If: ~:~ 11'" 0 I[) IE ;[\I Iy:r -s. IF~ IL IAi 1(' H_,. ::H:: ':'j.lf" ~ ""

~.:!;: 0 ? II "IP ~:t IE: "5 . ~:j. iE~(:iI:;;:rIUi] '11" ~::JI :1]; E: Ie;;][n'<ll "" ~ '? "" 1~"m:::J[T IE: I[) I[lI /I.;l1NI T Ui [::
1I'411LJj 11'1 f:J; r::: IR ~:j.][INI "If" til IE [~::J(!I! /Ir.J!HI IE: 1M "II" I[]llUI n .. _ J[no(.: IE ::u.~ "If' !! ".

,!!II· {iI IP' I[~ I!o(IE 7' ..1L 1[11 .I' 1[/1

55 DATA 112p112J11:2p66.l'36J144.2y2 ... 2~2p6p6y7y7
.l'14~14 ... 14~14y14~14,14.2~2p15.15

56 DATA 15J15y15y15y15y79.96y144.15 ... 6~7y2.l'2y6

5y32y156ye.O.l'OyOyO.O~O ... O.l'O.l'OyO.O~O.O.O.l'O.O.65
." :~!;: ~2: .!' JL ~:i; 6 ." 0

57 DATA O.OPO.O.OyO.O~O.l'O.l'O.O~O.l'O.O~O~O.O~O.l'O

.l'o ... O.O.l'O.l'O.l'O.O. O.l'O.l'O.0.B~65.l'32.l'156.l'O
58 DATA OPO ... O.l'O.l'O.l'O.O.O.O.O.O~OyO.l'O.O.O.O.l'O.l'O
yO.O.OyO.l'O.l'OyOyO.l'O.O.l'O,Oy65 ... 32 ... 156.0

IC, ::i~ IP' 0 IK IE: ~:J; :;:~ :2: 'i' .~)" ;EI'

ti, ~j; Z :::.~: IP' IE IE: 11<: It:!!;J; :;:!i: 2 '~;t' ·SIt :;/1

70 IF Z=6 THE~ 100
'E~ f:11 IGi l[lI T 0 ~j '!:j

.:11 .. I[il 11-31 ? " • II'Iii \I" ~ IP' If.)l '~"j. ::11: T][I[Ii /HI 2:., :;J

.:11 .. if.'~ !;,-:i; "-.]["5 "If' !::> !:']; ." ' ::~;fj •

. l . . :D,. ('II IP' 0 5 ::n: ":r][0 I~<II ::~~: ." .1. tl' ;; .':;> \I \I C: H-ft II:~ 1M :e;; n::: "If' IHI IE: q,)l u~./t II.... IIJ IE:: ·''.i, "It' (JI u_~ I~;I tl~h

THE CURSOR CONTROLS
.:II.. .1 .. !!'.i;

J/., 2: 1!:'l1

..iL2:S

? "'~::i,:G~;/:IEll:::II'tII" ""

n:J' I[~ "5 ::I["r][1f.]1 wt/! .:II.. In,. t'l1

][iN! IP' U '"D"' ;;;~:: :H: :!i:i:

.:11., ~'4!: 0 IP' 0 5]: 'If ::R": 0 /Ittl: 1[", 2:

,1. ,!!jl. 11:11 IP' 0 If{ If::: 'Ij; 4. 2: ., .:Il. :~~:

.:11 .. ,Ijl· 2: U:J> (/I '~j ::I["Ir][1[11 11'41 ::i;.,.P .:11..':,;0' ;; .';<'" " \I II::;: I(]I Wtll "r " "
144 POS][TIOM O.l'2~STl[lIP

.:II.. 5; (II U:J' I[~ If(IE: ;[j; .!jj. 2: ." ::1.. :~~:

::f.!: (il I[lI ~r? It::: "5 "Ii" 0 R D::: !:~j; !!:j

2 .:U,. 1j.]1][::::: 0

::ii~: .t. '5;'1f' II::!: I~ P 4 1[11 Inl

217 I=1:GRAPHIC"5 7+16:POKE 710 y O
218 D"-.=PEEK'560~+256*PEEK(561}
213 A=PEEKCDL+4~ :B=PEEKCDL+5~
22:0 READ G:IF G=O THE~ 233
221 POKE DL+I-1 p G
22:2 IF I=5 THEM POKIE DL+4.l'A
223 IF I=6 THEM POKE DL+5 p B
230 I=I+1~GOTO 220
233 FOR W=1 TO ~OO:NEMT W:POKE 87pO~LIST ~GOS

~;~ ,~» 0':;> " II IP' n IE:~:J.I:J, n!lf};,iljt:ijll:f~[iiI;:J 'r lUI :t:;;; II] I[]I u't/! H. ;;? " " IP' 1/;1: IE~''j. ·~;;i· ~:;~m~:I~::HB:ill
"Ir" (/1 lei, :D 11:1; /HI 101 "Ir U"" II':': If;r ' ~j, It:::: ;:;1: IE: H:': IMI" "

2 .eM ~~.\? " R H" H:;j: U::: 5, 5 jg;:~IGiliJ~L~:i!!::~j] IF (]I U;I:U" i/il ii '~ lUI iH I Ib; ::If: iNI tli it... if> J[~j, IP' IL. I!::U "II'

!I. __ JL -~:i\ ""r!l \i

-21-

::?: ,,~I. S 'lr I!~: ;~~ u::' :Ii.. I/JI

250 POKE 5327~y8:J=0
260 Z=PEEK(5327~)
265 IF Z=5 THEN 400
270 IF Z=6 THEN 57
::;;~ ""J; 0 ::!l:: iI" ;;;:.: ::::: :;X "If" IHI IE: II>tiI iP' lUI iI< /t:: ;/I/j, , '~~ ." .:11. ::i:: :: iF;j: lUI ip;/i iI "ii)· :: H:::: :!'ot ;[t. II II

:;~~ I\:jI fit 1[;; l[jl ll" I/j ~;~ Ib, 1[11

400 TR~P 40000:GR~PHI~S O:P05ITION 2.4
,~tI . I[:r. ~:~i; .'? II 11 ~:::~ ~:i; it): t.k "f If~ .:ll.. JI .. :2: .f' JL .1. ::;~~: J' Jt JI.. :;Z: .I' I[J. tt:~ .1 ' 1\ II .,! ttb .~! II il .f! II H .;: U~I; ,1: :: ~ .1' :~~ .1' :: ;i~:
.I' ~ii~: .I' :d?: .f' lb. .I' qj. J' ';? l' ';;(1: .• ' jl.. .tE. I' JI.. "i. .F .:It .4· .1 ' .:JL 'I~U. .1' .:t \i~~ • . f' .:U .. .r.U. .f' jL ,eli. JI ~;~~ .1' ::z: .I' .:11.. !~j; .It .JL ~~ il /I

. ,~II. ItJl 6 ":,. iI " '~-j (i· H)' 11'-11 .. U" II~I! .:tI.. ':::j; .i' .:U .. !::~ .i' .:iI .. '::1; " .:II.. !::i; .i' Jl. !~:j.i' .;? ':';1'" '::;(i i[j • . F .:it ,,~ . 'i~. .i' .1.!5 .i' IG .f'

;l r :~~: J' ::¢~ .II tEl. ~j; .1' .• ::r· ::i~: .1' .:IL !~ :J; lei. .1' I[it .1' II]! .1 ' IE~ .i' ~j: .II IHI .1' :Ial .1' lUI .11 ~~:~ .I' IF.:1i il II

~~7 ? ""57 D~T~ g " 0ye,O " 8.0 . 0.g,O.O.0~o~o~e~B"
1[11 J' I[j! .:' ijjl ." (II .I' Il:]\ .I' ijj .,' 1[11 .i' IfJI .. .I' I['H_.I' 11]1.... 1[1: .. :' :n .. ;" II]li. ' In:

i
.,:" :[p ;" I[\.i' :f<~J. .I ' .;:;:5: 2;,"', j l.: ::;'j; l[j~";,. 11,j: .:', "

,~.:[:I I ~"I; .? " "~::;; B II) I~:"'lr ~~ll I I,:~.I' IU: .,' Ijj " :L~ .I' 1[:,1 .I' .,j ., .:.P .i' ILiI " .. lUI .i' .. iI.;:I , ~:~I, ,.,ilJI .i' .. j ij.,;~" .. ~" _.P "::::plf.!/,
',~.·.'II.I,II~ ~ 0 ~ A B 0 II~ o,,~.O.O,ByOy".bJy~_.l~~~-.) :.1 .I' 1:.l' .1' ~ .• PI JI I:J' .1' .. .11 ~ .I' -. I' .. .I' ". " . . .

,1.\1 . . :H .. 1[11 1[:;; (p'II" 0 .:U .. .Jl. I/-J:
':':j; (11 0 Ij]: .~p :::: .• .il .-li" .:IL ~ .'?' " " Hil iE: it.. IL. I[p "" : :I[11"' . ..11 .{ ~::J; ILl: "U' n .. g IE: il'tll !::J: I[!IIjJ: I[~

i;::~ IH .:il. l[jI II~I: IE '11" UJllFl: H'4i

EXAMPLE a

Get your wife , husband , kids , or friends. You are about
to prove what home computers are good for. Remember that the
LMS numbers (two numbers after the LMS value) tel I the
computer where to get the screen data. Well, this example
just uses the joystick to change this address so you can see
most of the memory in your machine in hoth graphics and
text, some of it changing before your eyes . Moving the
joystick forward wi I I move up to the top of memory(remember
you were almost at the top to start) . Moving down wi I I go
almost to the beginning of memory . If we were to look at the
very bottom we would crash(stop) the computer because we
w 0 u I din t e r fer e wit h t h.e 0 . S . 0 K •• • • • I twa s n ' t t hat
great .• • • send them al I back . Press OPTION to go on.

- 22 -

.:II.. 0 Ij:;; IFl: til iP' U'il ::8,: G "So .:IL ';;,~ ~ ,'?' :Ir.:ji:ljj, ,f iI iI

:.?: l[il II:::' (/IIR

:~~:: Ifjl ~= :(]1 IR:

11,'./1 :::::: .:Il. '11"' IB ::? :;;1:: qJi :: IP IL~ I~(It::

Z IF!: ::::: .:Il. """ :n ,:IL ijj: :: Ii'<u il'::: H ' U'

'I~, In: iN! ~:::: H 'Jr' J!,,&

It:: :H: I~~ U"U IP' L II':: G3" II

;?' .:11..11]1,1' 1I .. .jJ

;;;:: If;J:

500 REM THIS IS A SUBROUTINE FOR YOU TO USE T
I[]I LOOK AT MEMORY BOTH FROM A GRAPHICS AND TEH
]f" HJ II:~! L !I,,!!][iE 1~;jj!P IU: JL IJ!41 T !!

I;:'i; :2: {jl If~: II~; 11'11 ILl! ':;;;' H::: ViLli U"II i~~: ~~:EJIii"~~:~!iUj(i{ii;:r:~ u~ 11'<11 II> II'''U I[]I v Ii:::: lUI IP' 1[11 U:~: Ii> 0 11,,0/1 ii'.jJ

I JII<II II"U:: 11''10: IR "If ~!! '! /P' f:t IE: 'So S [#:J[];di[~·i~(ii::r.;Jir (II q;; I[]I I[~ INI •
700 GRAPHICS O:GOSUB 10000
705 I=Z1:LIST :POKE 53273 y B
';;;<' 1[\1 -;' IF 0 u::t II:::' ::::: .:i.·W ID :5; 0 ::? " II iiJl S iE: .,ji :(JI 'I,t S "H" ::I[IG I!{ • H :: ll><tliE:H: '11" iF
710 ST=STICK'O~ :Z=PEEK(5327~) :IF Z=3 THEM POK
It:: 'i' I[j. .I~.:lL:2' : If:!: lUI 11'<11 II II II)' : IE::H: '']I II U

715 IF ST=15 THEN 710
720 IF ST=14 THE~ Z2=72+1

'7 ,<!jj. 0

;r' .t.jj '!oj

IF ST=13 THiEN Z2=Z2-1
IF Z2(10 THE~ Z2=10
IF Z2>PEEK(106~ lHEN Z2=PEEK(106~
IP' i[~ IK [:: I!} L .jj-. '::]: .p ;;;<~ 2

.;;;<. if'i. 0 ~:;; 0 T 1[11 .;;;" jl.. 1[11

.:II.. :[it 0 0 0 T jr.;t II~ p. .11.. II]! '1]1 'I!II. 0

.:R" f:11 ~JI .1. :I:}

.:11.. (]I 0 .. t. ~u..

.it 1[11 (]I :l ::2:

.:B .. I~_'jl 0 .:Jt :3:

,:fl.. 1[1t (11 -'II.. .:t,

.:lI..O tj.]: .:iL !;:j;

I!}L=PEEKC560~+256*PEEK(56~~

Z1=PEEKCDL+4) :Z2=PEEK(DL+51
]C ::::.:Jt

REAl!} A:IF A=O THE~ 10040
IP I[]t go(IE ~:: II) IL .. 11-][...... 1.:Jt J' i~

IF I=5 THE~ POKE DL+4~Z1
10016 IF I=6 THE~ POKE DL+5~Z2
10020 I=I+~:GOTO 10013
10(]l30 DATA 11::2:~~12fl112y66~64~156fl2fl2fl2~2y2fl2fl

6y6y6fl6fl6fl6y6fl6p1(]1 ~ 10.10fl10fl10p10y2.2fl2.2.2'p6

!;:j; .1' :;~: 2 ,I' .:lL:2: 4 1, I[p ,I' Ii) J' ;[II

10040 TRAP 40000:RETURH

-23-

.~~~~ ~~ ~~~ ~~~~~~~

.: !'[::n!~ u!!u:!nn -,omr" 1!U"nr:!!!! i!I[::!!g ~!!...... :: ::H![~ lmnl!~!! ml::::::: · ·~~~::ii .. :

JLN
""Jlff'''' I!.~ 1111 11It''''n nib""" lilt""""

1ft! 1M!"" I. l rri"I1»~ mC::.. Hff:::::"

EXAMPLE 9
A PRACTICAL EXAMPLE

Finally an actual example where we PLOT and PRINT stuff.
Now the problem with custom DL's is not choosing the numbers
as you have already seen. That was easy. But now we have got
to get the PLOT or PRINT statements to work with the new
screen we have setup. When we start out a custom DL with a
POKE 87,GR.mode # or a Graphics statement I Ike GR.O, the
O.S. thinks that it Is in that mode, not the one on the
screen. If the areas we are plotting or writing to are
within the normal limits, then we can just experiment to
find what mode line we want to PLOT/PRINT to. That Is what
this example does. It's hit or miss, but it works. Plot
something and if it's not where you want change the PLOT
statement. Same with text, using the POSITION statement.
There is nothing wrong with the "hit and miss" method, but
our next example wi I I give you the precise numbers to
a c cur ate I y P I ace y o.u r i n for mat ion 0 nth esc r e en •

. :li.. iI]1 ~:;; ,~;r I':h IP' H-jj J[~:::: 5, .iL ';;;" :~ . ~;'. :it.ii: i[j. .• "" IL H i~".li iI"~ IP' It... It: K;~:J 1\ "

20 FOR W=1 ro 230:POKE 710~W
30 FOR ZR = 1 TO 10:NEKT ZR
,,:~ . :UI 11'<11 if.: :H: T 11",0

500 REM THIS I S ~ SUBROUT~HE FOR YOU TU USE I
N YOUR OWN PROGRAMS " SEE MANU~L FO~ DIRECT I ON

'S if:11 !!'';; 1[:;; u:;r ;(.'Ii IP U'lI ::I[Ie: S ~~il

!'.':j; :It. (1: G 0 .~:j. li..i/n .Jl. IEil :[jl 1[1: Ifj:

'~:i; .:11 .. ~3 W" 1[11 Il{ IE: ;n '~;" .f' .:ii.. :: Ir:~ :[1: "::i, ::I[·1r ::It: II]: iI'.41 IUI .F lUI : .,? it.:lt.ll'j,;:" " "II"" a"11 ::r 5.]['::i, 11:1; :K IG
It... 1[: "W' '1l ' E Ii:;t .:::~ " II

!:::j; 2: (jl .r;,. :1~:1f: Ib,;: "" l(jl INI ··U·· IJ.;U 0, it... ::11:: Ii'4l M::: S " u :: "? :11:11: ~':i.;: "" :[) if:t ;; WR If;): IE It:: " "

550 POKE B7~4:COLOR ~:PLOT 1~5:DRAWTO 1~15:DR
~WTO 60~15:PLOT 15.15:DR~WTO 15.10:PLOT 3~15:
ii). jq i;:"iJ jj..,Jl ''W ' IU: :::!~ . , ;n

555 PLOr 5. 1 5:D~AWTO 5 . 6 :PL OT 7.15 :DRAWTO 7~1
2:PLOT ~~15:DRAWTO ~~a:PLOT 11~15:DRAHTO 11.~
:PLOT 13;15:DRAWTO 13 y 11

!::~ \f:j, ()I W:I' 0 Iy(If':: ;f,);;?',,:;;:::: If/' I[]: 5· :K:f" j[ij) Ip,n II:J:,.~;~ ::';' irlt 6;: "" [;~J::u~J[:~::V:]~ilI![~ :J~~r,;;~IIi[Y.Iljr..;:ijjjjji

-24-

..... ~!. 11:31 IP' 0 I~(IE: !5 :;~ Z ·7 .~.i'" a
740 Z=PEEKC5327~)
-';;" 5 : 0 T IF· Z ::::-: ;:!;: ·1,.. IHIIE IMi U::J' I[) K Ie ~?' 6 •• 4· ." .:11.. ~~': :: If~: ILU 11'41 II • I[) :: IE::H: .1. 10 II II

.;tI' ifj. f:!1 1[;; t[JI "1r t[JI .;? .~I · t(J:

jl.. 1£:1: :[~ IE::: Inl ··H·· ":;1: "".~ IP' Jl. :E} lUI 4 · ~j:

.:11 .. ill! 01 .:11.. I[jI

.:11.. 1[11 0 .:l. :I ..

. iI .. :[11 Ot -"ll. ::2:

.JI.. 1[11 0 -"II.. ~:!::

_to IElI 0 .1. 4-

~" .. Ill: 0 .:1.. '5

.:JI.. to 0 _1. 6

.1. If:II Int 2 0

.:II. I[~ fit ;! 0

D L =P EEK (5GO) + 256*PEE K ~5 6 1)

Z1=IP'EEK(DL+4) :Z2=PEEK(D L ·.5)
][:::: .:11 ..

READ A :IF A=O T HE~ 10040
IP t()t II< IE ~: II> It... ·1~· J[.. _ .. .:JL :It,. i1:~

IF I=5 THEIMi POKE DL+4 y Z1
I F I=6 THE~ POKE DL+5 y Z2
j[:::: I -11-.:11. :: It; t[JI T 4]1 .:11 .. 0 to .:11. :;:!;:

D ATA 1 1 2.112 y 112.70.64F156.6.6.9.9~'.9y

EXAMPLE 10

This example Is the big time! We have placed al I of the
prev i ous abilities In this one , but added the Information we
promised in a chart on the screen . RUN the example and
follow IT through with us .

The program sti II uses DATA statements to experiment
with breaking up the screen Into mi x ed graphic and text
modes . Use the cursor controls as before to edit the list,
press RETuRN to see what you have created . If you used PLOT
modes at the top of t he screen , you won't see that the
controls are different , so pay attention. When the spilt
screen appears , you can :

1) Press START (as before) to go change the
current DL .

2) Press SELECT (as before) to go back to the
original DL .

3) Press OPTION and START at exactly the same time.
This wi I I get you to the last example.

4) Press OPTION for a chart of the custom DL
you created .

-2 5-

Now get to the new chart by pressing RETURN and then
OPTION as explained above. The first column is the position
of each graphics mode you choose:1 ,2,3 .•• last<maximum of
201). The second column tells you what number to POKE into
location 87. This Is simply the regular graphic mode
number<0-11). Column three is the O.S.mode # which was the
number you used in the OL itself. Yes, It Is confusing to
use both numbers In the same program when they mean the same
thing to us, but remember that when you use a regular GR.
mode # you are talking to the BASIC Interpeter which then
changes the number you give into the O.S. mode number. We
are just bypassing the interpeter to get the special screens
that it doesn't allow!

The next column Is the number of I ines of this mode you
asKed for, ie. how many times you included it in the OL.
This is useful because if you have say six lines of a
graphic region and you try to plot to 7,7 you wi I I go out of
that mode and Into the next, causing garbage to appear on
the screen. The same goes for text regions. This column wi I I
provide a quick reference. Then comes the two columns of
POKE numbers f e r locations 88 & 89. These two values
combined with 87 will fool the computer into acting as if
each region starts with 0,0 at it's upper left corner. This
makes your PRINT and PLOT statements work I Ike normal. The
difference is you PRINT/PLOT to EACH region as if it started
with 0,0 at It's upper left corner.

Wr I te down a I I th is I nformat I on or use I n your custom
routine, or to modify one of our examples.

The chart also I ists the number of lines of pixels you
filled on the screen. If it doesn't come out close to 192,
or if you want to make some other change, you can go back to
re-edit the OL by pressing START. If you have too many
I ines, then remove modes I ines, or add some if you're short.

IF VOU~RE STILL LOST

Use the parts of this program that you understand
and come back to study and experiment with the rest
later. Basically, you should eventually understand

now,
of it

the
following to use this program. All the rest i s
"additional information":

1) Use EX.10 to get;
a)the OL to look about right.
b)the numbers to POKE into 87, 88, and 89.

-26-

2) Take EX.ll and change the POKE values
to what EX.l0 wi I I give you when you
tranfer the numbers from EX.9 into
the DL data of EX.l0.

3) Try to change the graphics and text we
used to your own.

4) If you have more regions than the example
has, add more. Likewise if you have less.

5) Remember to treat each area on the screen
like it was a small screen by itself. ••
don't PLOT or PRINT too far.

.:lL b R (.~ ":!' IH][f:: 5, .:11. .:? :: .'? :Jj::jJ: 6,;: /I R

2 FOR W= 1 TO 230:POKE
3 FOR ZR=1 TO 10:~EMT
,;il /l'til IE: :i4:1f Jl",fI

II::: H ~':;; t/'-u IP' II Fe ~: :!I[~:J II /I

.;? .:11 .. If} .1' Ii ~

Z: n:4:

5 DIM P(220) :DIM NUM(20) :DIM MODE(20~ :DIM RAM

I(.:1L !5::Ji ~ 0) ::;:: h II 'j. T a"ll u::r ··n·· 11:: 2: I[~:~ :: U):J[1~-1I IP' ~::J; ;f.j; tI:: 2 I[Jt ::II ~ II) J[1M! IF!' ;f:J; .'3' It: 2 If) :;P : Ii:::, :1:

1~''fI Ii][1'41 I(.:lL !:j :;P

';?I

.:11.. 1[:11

2fjl

I}][1M! n3 t~ /1"'1/ II:: JI.. ~.:i;]1

T IF,/: st.:u iF" d:jj ~;Ii if]!

II) ::r. J1'''Il Z: :H: ~~~ Ie: .1. :;.<;: 5 ::~

:~I: : 1[11 G IF:t ~:'l! P B··n :I: (;: .::~ if'JI:: .':;" • « ·If II·JJ ::I[.~], E ;p~ II:~ II"; IP' II... If:: il=k iL iL. l[lI Jj..jj S v 0 U·n- 0 f"

Itil ,~ ~ if; U:: ~:4I 1l"'11 I[} U) IE: 1[11 DJ' ::r. 5> IP' L d:~ ''II'' It.. :I: 5. '.n- ~ /I II

.L'iJ. I(JI -,:,. II n IF!' J!:4: IE: .''j. 5

IE 1~41 »"U Ihi 1[10 It: n '~J. ::Ie lNI

jg~IIii::il.~lI:jlj[iil1i 0

·11 · IHI IE: !}:r~

U]; IE: 1[;; J[IJI4l n ,,« :: .'? I; iI U'.U~: I ·If II::: H::I' if) HI>'"

iiT.IJ g.g iE IN! ''u'' 0 iLl! L ::U:: 11-1:: IE ··f U··D IE: ""U II /I II

'11' U·Y

50 DATA 112.112.112~66.64.156.2.2.2.2.2.2.2.2
.2.4.4.4.4.4.2. 2.2.2~2.2.2.2.2.65.32.156.0
60 DATA O.O.O~O.O.O.O . O.O.O.O.O.O.O.O.O~O~O.O
.0.0.0.0.0.0,0.0.0.0 . 0.0 . 65.32.156.0
70 DAT~ 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
.O.0.0.O.OflO y O.0.O.O . O.0.65.32.156.0
80 DATA 0.0.0.0.0 . 0.0.0.0.0.0.0 . 0.0.0.0.0.0.0
.0.0.e.0.0.0.0.0.0 . 0.0.0.65.32.156.0

·SII 1[11 P 1[]1 Il< IE: !l'j; :::.~ 2 ·7 ·Si J' ;[j;

100 Z=PEEIl«53279)
.l .. :I..O

.:lI .. ::2: 0

.:lI..3: q.]1

.:11 !II· 1[11

.:!L 'f:'i; 0

.:D.. lEi. 1j.31

J;4iT

.:11. ·7' 0

::r. If·· Z ::: lh '11" 11'-1 IE INI .:It 4· llj!

':;;0··8"0 .:11..00

·If U::t ~~ IP ,;;p 101

GRAPHICS O=P05>ITIO~ 2.3
IL.::B:ST I~]:O. ;ft.O

IP' 0 S ::1[T ::I[6I1l'tII 2: .F ~I.. if. :: "? /I II 1(::: I/"il II'~ INII!::. E ·,f 1/-·0 IE 11,)1 II~b L.. IlIIIE S "n" ~JI iLa JI. ... II':k

['Ii V IJ.j 5][iNllGr IH IE: c: l.IIlR 5. 0 J;J: 1[:: 1[]1 ~41 T If':': 1[]: It... 5 .. "D
-';;> " • p n If:::: 5 5> [~li:iiLi[l!J[;:::(:;:] TO S If::. I!:::·r BilE: i"41 E W 50 1C: If:t Il:: IE: IN! • n II

~80 POS][T][O~ 10 . 0
.:11.. '5\1 0

:2:00

~Z.:ll. O

:2::2:0

][INIIP' H..I T Z :H: :!;.

p. 0 5 J[T .Y 0 IN! itjlr ::t::
IP' Oil< IE: 8 4.:2: .r .:11.. ;~:

p 1[j1 .~J.][T J[1(]1 JNj 2 .1' .:Il, 7 :: '? • II e ()11N! ··r • •
POSIT.YOINI O.:2::STOP
IP' 0 If.(E a 4 2: ., ,:I. ~.2:

-27-

250 RESTORE 50:MAK=O
260 TRAP 4~O~READ S:IF 5>15 THE~ 260
265 IF S>MAK THEN MAM=S
270 IF 5=0 THE~ 281
::t.': 8 0 f. to T I[Jt :2: t5, if'JI
281 O~ MAM GOTO 285~2a5.285~285.2a5p285~285p2
85~2a5.285.286.287.287.288.2aa

285 USE=O:GOTO 2~O
286 USE=22:GOTO 2~0
287 USE=23~GOTO 2~O
:2:88 i..BSIE=2

::i::"5il O RIE·~.TOnIE !!:;~O

:~!i: ell 0 T IR If.~ po 4. .~) 11::11

310 I=1:GRAPHICS USE
320 DL=PEEK'560~+256*PEEK(561)
330 A=PEEK(DL+4~ :B=PEEK(DL+51
~40 READ G:IF G=O THEN 390
350 POKE DL+I-1.G
360 IF 1=5 THE~ POKE DL+4.A
:;~:'~;o'O

:;;r,:a 1['11

,4!.00

IP'ILOT
,'* .:11. 4:]1

IF][=6 THE~ POKE DL+5.B
J[:::::J[·1I-.1. ~ q:;;;O"JrI[~ S40

FOR 0 :::::1 TO 100:~EKT Q:POKE 87.0
po 0 S][T :[q]t 11'011 ::ii!:. .:1. :: ,?' • • IP' R E '5 . ~J. r~:Jr..fJiji{~f}inJC:] If" 0 R

Ilh~~ IL. IlJ IE '5 W II-N IE INI If) if.]lJjt4l1E " • II

? II • IP' IH 11'2:. "5 ":], jg;'![i~[IUijf'iiiij[jj;iC~ If (}I Rl' Ui E 0 R ::[II:; I IN A IL II) :I: S IP IL. A ''II'

"t. 2 if} ? " " IFf' R IE 5 50 ~;;'~lfiill'';lIijllr IIJI IG U'1/ j(.~ I'" 1[;; E C III R u:;r. IE IN! "... n:::I[~
iWlIiJIIMIIBER'~;j, ... 11

,''iI. :Z 5 ,,:, " • IF" D~: A:: S 50 1~_;;]iUjlf.:~i.:~i::iiI ,&, mJiJiii(!()iJ::::] If' I[jI i~;J: iLU jjtojj iL !I'.~ ·::. ·U ·
IE: H IAi IMIP' IL. E n U.

,01. :!i: {:11 iP' 0 II{ IE: I:'J. :~~ 2: '7 .~;to .I' ;13
440 Z=PIE:EK'5327~~
450 IF Z =5 THEN 4'0
460 IF Z=6 THEN 70
4l[j, or5;

,,~. 7':1:)
,011. ;L't00

J[if" ;z~ ::::.: ::;;~ T IHII[:~ INI

J[F Z : -::.::: :;~;: "U" I~'a IE: K"A

1[" 01/" ~:~ 4 . .<I. 1['11

U "II} :: iE::1<4: .1 .. 1. iI "

490 TR~IP' 40000:GRAPHIC'5 O:POSITION 2,4
~'J; /[il 0 ? " • 'f.:~ 0 I!) IAJ "II" II:!!; .:t .:lL:2: .P .:I1 .. .:It ::2: ., .:Il .:IL:2: ... q5 I[j, j' " " .;: ~:iI .• "" ., "" .;: 1\.:1' . ~ " " .1' :: I.~ .1' ~i::

p2,2 ... 2,2,2 .2,2'4,4 ... 4 ... 4,4.2.2,2.1'2, 2,2,2 .2,2 ,65
.r' ::!;: :;;!~: .1' .:d .. 5· Ifj. .1' I!:;}: /1/1

510 ? ""60 DATA O .O' O.l'~ . o.o,o~o,o.o'O.l'O~O.O,B.
lUI j ' :jJI .1' 11]1 .f' if} j' 1t:J1 .J' Iljl j' In If]! ,1"11 . I''''' 1[\1 IJ:'~ 11:'It Inl i[:~ q:;jl If.]. '5 "~ .. ,.,.. ·if K::' ,I" 11'.'''1 iI "

.... .f' 'T.. _,I t.J' .f' ." ".I' ·.r·.!".f·.tt -, "L.. .f<' .,> .,,_ .. !' . . 11_ 1
'

I1..Jl.f' J

~:j; ::2: ~:;II '? " • .~;. It]I U} It:h '11" 1~4t II~~" I[p j' (il ., Il) j' I[P f, li::lJ
"

IE:~ ... I[~ ., I[~ .1' IB .1' ij]1 j' I[l! "' lL'jJ j' 1[:]: j' 1[; .,

O.0.0,O.O,O,OPO .O.O.~ A 0 A II~ ~II ~I = ~~ jl~f:'
. . .'-./'., .f' -, ./' t.1 JI _~ ,I' I •. J' '1_' · ••. 1' .f' -,::1- :,,:..: .1' : . .. ::J. I ':;.. .1' IElIli II

~;:;; :;:~: q]1 ? " • ~J; IH iI} ;I:~ .. U" ;I~II Inl .1' Ifjl j' :[jl ., IEp ." lUI f' 11]1 , 1[11 j' :1]1 I' ('it I' In I' ~ : li tj:'~ ":'" 11:'1 'I'::;'
•'. "J1 .. ,f' '1:.t* " .J "Jf

lijl .• 1/]1 .1' 0 .I' I[p .f' IEil .1' I[p .1' Ifjl j' I[~ .f' :£II. 0 I' Ifj I' I[~ I' lUI f' :[i: • IH :j::p. Q'j. ""j; "W' .'.,. 'i' ":5' .:['Ij'jl " "
~::i; ,til. ~::Jl f~ In T In .j)" Ih :[',1" .1 "... " ., ' . .,- .I' .,.,. •• f._• L . . , ".' .1' :

550 RESTORE 50:POKE 559,0
560 J=1:K = 1:L =2:P{1~=PEEKCDL+3) - 64

57'0 READ PR:P'L~=PR:IF PCL]>15 THE~ 570
580 IF PCL) = O THEN 6 2 0

-28-

530 IF P(L~<>P(L-1~ THEN MODE~K~=P(L-1) ~~UM'K

)=J~J=1:L=L+1:K=K+1:GOTO 570

J=J+1:L=L+1:GOTO 570 6 {'JI 0

620
63:0

MODE(K~=P'L-1) :~UM'K~=J

RAMC2~=40:R~M~3)=40=R~M(4]=40:R~M'5)=40:R

~M(13~=40:RAMC14)=40:RAM(15~=40

633 LIN(2)=a:LI~'3)=10:LI~(4)=a:LIN(5)=16:LIH
(13)=2=LI~(14]=1:LIH(15}=1

634 LIN'6}=8:LI~(7]=16:LI~[a)=a:LIH[9)=4:LIWC

10)=4:LINC11)=2:LIN(12)=1

635 RdM'6}=20:R~M(7)=20:RAM[8)=10:R~MC~]=10:R
AM(10]=20:RAM(111=20:RAM(12)=20

6 oI!jj. 0 F 0 1Ft Hil ::.~: jL ··W 0 U{

644 BAM(2)=O:BAMC3)=40:BAM(4]=40:DAH(5]=40:BA

M(13)=7:BAMC14)=40:BAMC15]=8

645 BAM(6~=1:BAM(7)=2:DAM(a]=3:BAM'3)=4:BAMC1

O)=5:B~M'11]=6:BAM(12'=40

660 IF MODECH) (MODECH-1] THE~ 660
tfj,-;;"'O 5~1l,)I::::MI[JIII.}IE t:U-il::II

lEi, ij; 1[]1 Ii'4I E :I-t T 11·11

6~0 IF SAU>6 THE~ 720
700 IF SAU>O THEN SAU=6:GOTO 720
.;' .:!t. (II J[iF .~:j. ~~l! ~".q 1(> I[it ··U·· jli! it:: ii'41 .':;. H " IE: u:;I: IR I[]I IF~: Inl ··il"" .;?' :U_ r[lt " n 5 I~:!I lU' 5 IHlI!:) flV IL

iI} 1i:J;1l.::: 0"" ~ S··lrO IP

11'1 i~ H IR lI-iJ a"1 ::::: If,l: I~~ 11',1 (: .'j. u~h !{,)I :~I

FOR M=1 TO K:M2=O:M3=0
IF" 0 &l: S :::: .. :11.. T 0 ","j - :Il ..

·,,"4·0

·;;;"50

.""!f.j;5

·;"'60

IF RAMCMODECS))=29
J[F RAM{MODE(S)~=19

G I[) ·1f" IUt .;'" fJ; IEjI

M2=~UM(S~+M2=GOTO

.;;<" 7' 0 "'1 :;:!;: ::= IMlIlIl M I(·=i, ::11 ·11- u','u :~s:

.;;" ;f]; 0 IN! II:-: X T .~:].

.;;;-;n:;:-r,: !H:::::::IEit

u·n-u IE il'4I

·U· IHI IE IN!

i' 1/:1, qjl

·;"'10

785 FOR W=1 TO M- ~=R=R+NUM'W' :NEH~ H
7~O CHRPOS=A+B*256+(R*MnHRAM-M2*(MAHRnM·-20~-M

;;;: .:t>J€. I(11'11 ~~ X u::t D'. 1M ... - .:11 .. 1i:J: ::it ~p

7~5 IF M=1 THE~ CHRPOS=A+S*256
800 START(M)=CHRPOS
:[1; JI.. (JI Il>,jj IE: ;H: T ii"1i

820 FOR Z=1 TO K:P8~(Z'=J[MT(5T~IRT(Z}/256~:P83
[Z'=START(Z)-pa~(Z)*256:NEMT Z

;[~ 2 '5 5 IUlII"iI: : tLf.

830 FOIR 0=1 TO K:5UM=NUM(01*LIN(MODE(O')+SUM:

iJ"H U::: :H: ·r q~J!

;r:1; -11 (j: 11::-;; iH: I}::h IP' iHI J[:e: .",j, Ii::~ ~ iF" 1[11 .'j,][··if T IjJl W;jj Ifl: J ' ~]: ~ .'? 1\ " If""""='.~~'="w'=""'."""'."' •• 'ww"'w'.~"' .. ".""'wm""

IIl:l:m.-.u'.'lI .. ,,,,:u.::r:":':"'U:>IUI':'''::ll'I<U:,,,,=,,,u.,u.nll'":''ltlm~''1I "UUlJUJl":J""lIou:uu'm.w' ... :m . ..,.,.u'.D'lfIm'n'm:n'u.''''H II ',i

650 POSITION B~~:? ""6poslpOKERO.5"
po tLlt!l4:: II::: iP'1i]li/(II::: R'"
:f.j; 6, ~3: K:J' lUI 5 Jel·][Ij]1 j!l;jj :[jl., ::i:: : .'?

::U: N .. jj Ii) " JI: ~.U1r II]: II ",

-29-

Ii Ii Y:JUIJ.-:':JI.-U:::;!:''':':U:II:I::lI:.-r::':JI:I1::: IlIU,:.u:III1:UI.,:U/:Ju:wll:mn IIIU:A:lI:I,":.w.:t:I,:nIl ' ::::c.u:I;"::n~"U:JtzIWI:I"UI::":I::.u/~I:JINW.U"<:.Uj"

=-':lIlI"'UlIIU:!IIWII;t:II.':I~IIUUA<lIIll"IUU"UI""",:,: :",,'m.w:u. .• Ji 1\ I{

;f.'1: "51' 1[11 IF' f JI iF,/: ~" .u :::.: .:It. "0-' lUI U{

895 SD=BAM(MODE(W]}
IP' ID S ::11:: ' 11" J[~]I i~<I!

J[IF' S I[~' ~::: ,,~D · I[jt

u::. IfjlS][T ::u:: II]! W4!

.:iI .. . n 4 . -Ii' iI,',lI :: .':;'" i~',II .::

T n"1! IE lI'41 .~;v lijl :;:~:

lEi. ., .jI '11·· 1\.-,11 :: "? ' ~::i. iI} .~ :: IC~ IIJI "Jr II)

l[j, .n .'M· ··Ii·· i~'U :: "? il " il"11 I[)I li.:i IE:': " " . ~ ~~1' IIJI 3: IP' ID ':1.]["r :J1:: I[~ lI'>li

S' if]1 4- iP' 0 5 :8: '-f J[II]I 1M! 12~4+W:? MODECW):POSIIION

'~:;I' (]I S P' I[r. 5 ::Ie 'r ::I[I[JI iJI<ij :;:Ir. :;~:: ... d~H .. \I .. 1~'4i :? IP- :fl: .~) II~ 1i.'.11 ::p

"::1' . :~ .. 1[11 iNi IE: Hl' U" .jj : '~i" II " "ir Hil iF.:: II''; \l.U Ii''i! it::: IE 1i;1: 1[11 U:::' IP' J[:H: IE.: Ii Il... J[II»lI iE: . ~:J.

.:IL8 .n ,f:;'''II-ji.',ji

Il.tl5, iE: U):::::

"" 1: .~ j. Il.i Ir,·u. "" " "n : ":r " " 5 U,,1I 1i:,;; 1[;; 1::: 5 T "fl' :n IU Ie:: iHI »:~ i\';IIIE. II::: U~:[I!JI! \l.1I iN! "If'][11 .. _ .1 .. '5~ :2

iP Je :l9: II:::~ II... il... ::i[D'<Ii II::: 5- IF::: IE: ''':i. u..v L 'U" ~:. !I ". .i:

. ~'.I' ~«.. ~3; .,}. " , Ie: 0 IP' "It 11>41 t il iI"1I iH IE:: IR .~::~ i[p IF~: IF:· U;r IE S .~:;.

:G IL~ IH: iFl: If.:: IPtll T IT~::!lIII,,"" ~ .,;? " " c; jf,-:/: (~ UJ' ll-li][G · ~::i· Ii"" 1[11 U} It::: "r I[JI iLiI ~:i. If:: :]:: 11>41 E :H: • JI...ii..

::U:: <j, " , ;. IU .~::~ II:::~

'51' Z ;;]1 iF" I[Ji II{ U:': '!:j; If.], ·s~ .e :;:!~.~

D' :;~: ~JI IP' I[Ji ljo(IE:: !~-j; :~5. :z 'i' .~)t .1' :n
~40 Z=PEEK'53273~

350 IF Z=6 THEN 140
"~I' 16· 0 1[:;; I\) '1i" ICP "~I' 4- In l

'::1' <3' ~:~, IE iN! II)

EXAMPLE 11
LAST EXAMPLE

This PLOT Is just I Ike EX.9, but now we add POKEs to 88
and 89 to fool the computer I nto act I ng as I f the upper
corner of each mode was position 0,0. The POKE to 87 then
says "act as If you're In a regular graphics mode #" (your
Inpu~) . Now we just PLOT or PRINT as If each section was a
small screen with 0 , 0 at the top like normal. If you PLOT
too far, the next region down will look funny. We Include
the code for this example (minus a few lines you don't need)
since this example Is all you really need to understand. Our
other examples wi I I do al I the calculating for you. Make
sure you change the 5th and 6th numbers In the data list to
the correct values for your computer, as explained above •

.:It 1j:.11 1[;; g:;r. I~I! IP M .. n ::u:: c. S j L '11' ~ .'!. :1I::jj:6;:" " 1i:::::M: d~ it'II IP' t .. lE: 1[]fJ!I " "
2 0 F O R W=1 TO 230:POKE 710~W
30 FOR ZR=1 TO 10:~EKT ZR
.t.!! .• .31 1M! E : :K T "" u
'S 0 ? ~I:jj: 6 .i: u" lL.a ~;:I::~ IE x [~~[~~ IP']l [3 !J ""

60 F O R H =1 TO 230~POKE 703.W~POKE 709.W~POKE

71 0 . W : P OKE 7 1 1.H

- 30 -

65 FOR ZR=~ TO 5:NEHT ZR
.;;" I(jl iI'oil iE :F-l: T ft"oM

;[1; f:~

·:;;P Il:}

.J. :[1: ~]I

.:U . . :11.. 181

I[;; U:~: II~ IP' fj-·fl][Ie: 5 .:11 ... ;? ~ .':;'" ~1: 4i: I:::~ .;: "II ··f qJ:

.':.,. :1l:ij:6 .;: "" fI,..u~]1 If;l: 1f(.I' .'u" I[]I ILH iWl:I: IL H

.':~. :Il::jf: (i, .;: II Ii .. ~ •. (~ IG IHI I¢~I H'M :f:;; 1i:::·U·· U·jl IE:

':,. lrt 6 . ~ "" Ii.~:: ~:o IG I/-·U .. ~. :J[1I"ff it: p l[jJ H< It=::

1!"III~il II(u:::: r 1!1i J['j

1l··U Y::k 11,)1 if::: II "

11,,1111::klt.... IUI IE .~J, 1111

;[J; ;[J; (jll~~: Ii'

.:11 .. ::t~: (II .':;> :I~:ij: 6 .;: "" ;[1; D' ::[: . ~'j, lUI 5 IE II),. ."fr. If··ft :::c s ::U:: .~j II "

.:8 :3 (II J:,> ~I::jj: IG .;; "" fl.} (:II I~'~ Ie IIj; '\1" ~~[;:::nri[IIK~:!i[LI(r:~ ··If"" R·jj If:: II "

.:1I..4·:[jl ? i~tl[j. .;: K"II"JIIt~H-tH LS]~il'oi! · .. ·IHIII::: [>L OF liN

.:II. '::J; (II .,;> :fj::jj:Ci;" • lr Ii-Ii :II: S IE H u][il'4l:r lUI c:~~:~:nJ~::D." "
J. . 16, 0

.:11. "7 f:II
.:IL ;[:1; 0

.:u .. . ~;!, (II

::?: :1]1 0

Z.:l!..fll
,,!jj. :UI (II

!~:~ {II I[ll

·SI· :jj:f Ir::~ .~ n" ·il:: !h. ,~:!, 1[:: "" <:II If~ ·it 'w:ii Jl II ~:p i q ,,~ q::' II "

." . ~~:jj::6 .:: " " ~~JI i[J' ILiI ··It: Ih. 'E!' 'V a :Ii. q . .R <1::' :s: 11" ijJI \f.'.

':? :jj::jt. I[j, ;: "" Ij?'i,ll 1[: h If'I'Hjl d <E?' ·iC'll lr'· 'E:'.j3j • LW:[iI::~::!f]1:Y""

? 4t:fl: (:;.;: II ill:Ji:'re:.~:~:I:I:;.~:rL~~~::a!ll!fffllH;E:n:]:~~::"'~Jlit::§III!IIlILEli"'il1lllj!l" "
IP' If]I ij.(U::7 6.tH l' :;;;~: ~j; !::i;

IF PEEK("764~<>~2 THEN 210
a:,l: Il::: n''fj ·:I>if:·"i>It·· '!Ij :··:I>l '·: poE··:iHt :··:IH{: ··:iof.-· ~~:·'ilff·'PoE··:i»t:-·l'E·*- ·:I,q:··*·:~q:·'I"E-:IH{:-:J,q"'I'~ :·"IH{:·'jl~:··:I>'f.-",'i:··:I>'I:· · '\II(-"q:· 'l!~:··:p'i:·

REM THIS IS A SUB ROUT INE FOR YOU TO IIJ 5 IE:

S A PRACTICE EH~MPLE IN PLOTT:I:NG AND WRITING

TO THE AREA S OF THE
503 REM SCREEN THAT Y OU SET UP I~ THE PREUIOu

~ EMAMPLE. JUST PLUI[;; IN THE POKE VALUES F OR L
OCAlrIONS 87~88~&a~

504 REM A~D CHANGE THE NUMBERS IM THE DATA ST

ATEMENT TO THOSE YOU WROTE DOWN FROM THE LAST

505 REM SHOULD CHA~GE THE PLOT AND PRINr SrAT
EMENTS TO THE ONES YOU WANT. HAVE FU~.

OU IN THE NEHT TUTORIAL"
':::.; (11 f.j. Ifl: IE 1M! '/f!\"·:J!(-:I>l:··*":~oE·'iHt:· ·:iBI.~·:Ini,·:tnI:":i>I:··*'Iwf-'tuI:..:rJt~·~'Ii'·:i"f.·"IHj: ··:i nt:· · :inl:·'Jut:-'JIif-:r.q:·"l>oE·"~'I'·~II\."ii(' ·:iI~"·~"·:i111'·*

·50 E: IE: 'it'

:f:j; (jI ·l ' 1[:;; it;:: Itk IP B·iI J[C .::j. if]1 = IR: if::: Ir"il [J:;;[H]iL_:~~:lC:~::~:.::~)[~}:l:i.~" IH: IE: IMlIE ii''ti »::/; U::: u.;i: ·11· ~]I

USE THE GRAPHICS MODE THAT THE CHART GAVE VO
Kli •
'::;j; .:!l.. (li G I[]I .::~ :u »:t. JL l[jJ 0 I[~ :[jI

5~5 POKE 87~1=POKE 88~64:POKE a~~~56:POSITIO~
l[jJ l' I[i! ::.? :1/:# I[j. .;: "" -If" U·jj]f: .':3, ::u:: 5 NJ:][G IL. Ie ··n·· T IE::: In . '::~ II "

:S ~.2: {) ? ~~t.f:j. . r. "" q]1 IN! ··If"" HI[]I iL][iNllt.': 5 ,"' :.? ff.f.j..r"" I[) R .. ~ .. U·jj IH: IE E" II

540 POKE 86~124:POKE 89 . ~56

550 POKE 87.4:COLOR 1:PLOlr 1~0 :D RAWTO 1.18:DR
AWTO 60 p 10:PLOT 15 ~1 0~DRAWTO 15~5:PLOT 3~~0:D

y:;r I~li i\..,j! ··r fit :;:5. l' :;'5:
555 PH-OT 5~10=DRAWTO 5~~:PH-OT 7~10~DRAHTO 7~7
~PLOT 3.18:DRAHTO ~~3:PLOT ~1 . ~O:DRAHTO 11 ~ 4

~PLOT 13.1B:DRAWTO ~3p6

557 POKE 88.234~POKE 89 ~156
!f.j: ii, 0 P I(~ I~·r.: If: ;1]; • ::~ : iP' l[jJ :;'i- J[·11 ::U:: 101 II.. l~jI" 10 :? :t~it: II:> .;; "" [~:[Ii::U:~li~~ii_~il-t_~;jC~

ii:j[~_:U::~7lId :ii. III 11' a IC .. tt: a n '0< -It h if.:!' 1-'· ·it: h If'· e 'E!' Y-- '[If W:S: 0< ·11" IE!' W"II II "

~:J;;?, 0

IDI i"~!E

.j' :~~ I\::lI

P 1[11 IK IE:

POKE
·n·· Iii'. V

IP' 0 yo(IE

as.58:POKE 89.15"7
;1]; ;7' l' 0 : P05,]C ·"!f· ::U::OINI 10 • I[\! : .':i" " II I¢:k fIoil !D'

TK::XT" " u • PRiESS lR If:: T UJt IR Nl ·If :[11

"7 40 Z=PIEEKC53279~
750 IF Z=6 THE~ 20000

-31-

';("60 1[;;O"lrO ·;?'4·1[lI

:II.. &!]I 0 {~ I[!t lr If,/: 1I-4i1P' .jt. It]! Ifjl 4· I['!I

~0010 DL=PEEK'560'+256*PEEKC561~

10011 Z1=PEEK(DL+4':Z2=PEEK(DL+5)
.:11.. {:It 0 .:11.. 2 J[::-.:: .1

10013 READ A:IF A=O THE~ 10040
10014 POKE (DL+I-1)flA
10015 IF 1=5 THE~ POKE DL+4~Z1
10016 IF 1=6 THE~ POKE DL+5 fl Z2
10020 I=I+1:GOTO 10013
10030 DATA 112.112p112p70~64p156p6R6fl9p~.9p9p

J' ~:Jt ." 1[11 .1' ~jl

j. ![It 1[11 0 If:t if:: T iIJ! ll:~: IMj

20000 GRAPHICS 9:POKE 710~0
::i!~: 0 I[J: 0 .:ll. "? • U 'if" MooR l~illNI ~e.:: "5· If I[p IH: 1[1; II..U '\I"][IIl!/Il[:;; F IR I(]I il"'U ·!5. t-lllNi "If ll'iI e u::t fLU Z: U:::
D!UlClfIlT:I:ij]iIJl<llAfL 50IF·-U-·!Ir.U(-Ilnlf: ~ g ~ lIu .r : IGO'1JO ::;i!:I[jIOif:JtjL

Sometimes when you do your custom screens you probably
wi I I have your text or plot suddenly shift over I Ike this

to the other side of the
screen. This Is because your Display List Is going along
at, say, modes using 40 bytes per line when you shift and use
three lines of a mode using 20 bytes per mode. The system is
stili trying to place the data where It used to go, so If
you use 40's then switch to 20's or 10's, keep It In
Increments of the largest value. For example, if you use 40
byte modes then I f you have 10 byte modes either use 4, 8,
12 , etc., so that the computer can find 40 at a time. DON'T
FOOL MOTHtR ATARI'

We also want to warn you that EX.10 occasionally can be
fooled by unusual Inputs, so If the chart seems Incorrect it
may be. This is not a serious problem because you are going
to learn to do all the calculations yourself, AREN'T YOU???

The other modes In the chart (FIG.1) that aren't
explained are for things like lowercase descenders and
multi-colored letters. See, I told you not to ask. These
would be good topics for another Tricky TutorlalCtm). Well,
maybe SOMEDAy •••••

Well that's It. If even a new programmer will experiment
WiTh these examples, he or she will at least be able to make
some nice custom screens without having to understand It
a I I •

-32-

MOVEABLE TEXT
AND ~

GRAPHICS ..".

TRICKY TUTORIAL #2
HORIZONTAL AND

VERTICAL SCROLLING

HORIZONTAL AND
VERTICAL SCROLLING

Th I s program wi I I teach you the
basic principles of moving text or
graphics on the screen. Movement can be
in any direction that you choose. A
total of eighteen examples are provided
plus a 15 pdge manual to explain them.

Each example, including those with
some assembly language subroutines, are
designed to be easily placed in your own
programs. Anyone with some knowledge of
the BASIC programming language can use
the examples now, and later study the
manua lin more deta i I. Th i s program is
part of a continuing series and goes
particularly well with #1 Display
Lists.

REQUIRES 16K OR 24K IF YOU HAVE
DISK.

Educat I ona I Software Inc.
4565 Cherryvale
Soque I, CA 95073

(408) 476-4901

Educational SoftlNare

presents

TRICKY TUTORIAL #2

Horizontal &
Vertical Scrolling

TRICKY TUTORIAL #2

HORl:ZONTAL 8c
VERTICAL SCROLLl:NG

by
Robin Sherer

(c)1981 by Educational Software inc.

INTRODUCTION - HI. I'm going to start out this tutorial with
a sales pitch for one of the other tutorials I teach. As
phony as this sounds, I can't help It. To fully understand
how to scrol I you need to also study Display Lists, Tricky
Tutorlal(tm) # 1. However, if you just want to be able to do
the different types of scrol ling in your own programs, THIS
WILL DO IT FOR YOU. I'll tell you what to modify without
great explalnation. AI I of the examples have different
features. Some are faster, some smoother in their scrolling.
It's up to you to take parts of our examples and make them a
part of your programs.

HOW TO LOAD

TAPE •.••

Place the tape in your recorder, label side up. Make
sure the tape is rewound, and the BASIC Cartridge is in
place, and always reset the counter to zero. Push PLAY on
the recorder and type RUN"C: and press RETURN. I f the
program won't start to load, try positioning forward or
backwards a I ittle. The easiest way to find the beginning is
to listen to the "noise" on the tape with a regular
recorder. When you find the steady tone, you have the
beginning of the program. We recommend you write down the
number on your recorder's counter as each program example
starts, this wi II make it easier to find each part later on.

DIS K ••••

To load and run the disk, first turn on your disk drive.
When the busy I ight goes out, place the disk in the drive.
Now turn on the computer, with the BASIC Cartridge in place
and the program wi I I load each part and run by itself.

Any defective tapes or disks should be returned to:

Educat I ona I Software Inc.
4565 Cherryvale
Soquel, CA 95073

(408) 476-4901

-1-

ALL RIGHT STUDENTS! LET'S BEGIN WITH (SURPRISE!)

EXAMPLE 1

Basic Ideas

If you haven't already, run the first example. To get to
the next example each time, you only have to press START.
Note - cassette examples should run themselves when loading
is done. If not, type RUN and press RETURN. You may have to
rewind some examples to the end of the last example and try
several reloads. Remember that this tape has many examples,
so it is hnrder to LOAD them a I I than some sma I I games.

Plug in a Joystick into Port on the front of your
console. You are now looking at a I istlng of the example
that I s run n i ng. listed it as an easy way to get text on
the screen to scrol I. This example, and al I others where we
use LIST to get text on the screen, wi I I work exactly the
same if you take out the LIST statement and substitute your
own PRINTing or PLOTing. Do this as soon as you feel you are
beginning to understand the method.

If you move your Joystick to the left or right, the text
wi I I move in that direction. Look closely at the text as it
moves. Notice that it moves one character at a time in
either direction. This is called COARSE SCROLLING. Later, we
will learn how to move one pixel at a time which Is called
FINE scro I ling. Eventua I I Y we w II I comb i ne both methods for
(guess what?) COMBINED SCROLLING.

Take a Break

OK! Back to Work:

Warning!

In most of our examples we wanted to keep the amount of
BASIC code short, so if you move too far in any direction,
the POKEs we are doing may cause the program to error and
stop. To avoid this problem in actual examples, you will
have to make sure you don't try to POKE a number larger than
255 into memory. Some of examples wi II automatically do this
for you. To restart a stopped example, just press RESET and
type RUN.

-2-

Here is the code for Example 1, a simple coarse
horizontal scroll:

10 DL=PEEK(560)+256*PEEK(561)
20 DL4=DL+4:DL5=DL+5
30 PDL4=PEEK(DL4)
40 ST=STICK(O)
50 IF ST=11 THEN PDL4=PDL4+1
60 IF ST=7 THEN PDL4=PDL4-1
70 POKE DL4,PDL4
80 FOR W=1 TO 50 :NEXT W
90 GOTO 40

THAT'S IT!

Another note - Yes we know that if you list Example 1 It
has more lines than this. The missing lines above were put
in Example 1 to make it have a title and call Example 2 when
you are ready. The same differences wi I I occur with my other
examples.

To better understand this method, first a few basics from
the Display List Tutorial. The Display List is a set of
instructions in memory that the computer uses to find out
what to put on the screen. By changing it, we can do many
programming tricks that are not only interesting to look at,
but usefu I. Scro I ling is one of those tr i cks.

Line 10 above looks at I ocat ions 560 & 561 by use of the
PEEK command. The values in these two memory locations
combine to give you the location (called the address) of the
first byte of the Display List. They are combined into the
address as line 10 shows. ANYTIME you have a 2 byte address,
the method in line 10 is used. Whenever you use the
"GRAPHICS H" command, the computer creates a standard
Display List somewhere in memory and puts the location where
the DL starts I n memory locations 560/561.

Now that we know where the DL (Display List) is, line 20
stores the address of the low part (DL4) and high part (DL5)
of a number that is always the 5th and 6th numbers in the
DL. Note that we ca II the 5th number into the DL, DL4,
because it is equal to the value at DL plus 4 more, or the
5th number from the start. Confused? Then just remember that
these two numbers tell the computer where to go get the data
for the screen.

-3-

IMPORTANTI

You must understand what these two numbers do. Scrol ling is
based on changing these values. Let's look at a sample GR. 0
Display List:

112 112 112 66 95 34 2 2 2 222 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 65 89 56

The first three numbers are 112's that tel I the computer
to display 8 blank lines each. The next number is called the
Load Memory Scan byte (LMS for short). This is the number we
are about to change. The LMS says to the computer "Go get
data start I ng at the I ocat i on in memory that fo I lows in the
next two numbers .•• and by the way, start the screen with
some of this kind of text (or graphics)".

Wow. I can't learn thlsl

After reading my explainatlons, you may think I'm as
confused as you are, but it's not that hard, and my lessons
not that bad! You must practice on your own beyond these
examples. Try making modifications to what I have given you.
Later 1'1 I give you a chart that shows what number goes into
the LMS byte (4th # in DL). In this case the chart would say
that for a Graphics 0 LMS, we use 66. The next two numbers
(5th and 6th bytes) are the low and high parts of the
location where the screen data starts in memory. The example
above was made up, so your numbers wi I I be different
depending on your memory size. That's why we store the value
of the 5th #(DL+4 means the 5th number) in lines 20 & 30. We
need to know where the data is being stored in YOUR
computer.

The next numbers with~n the DL, the 2's tel I the computer
to put a I ine of Graphics 0 on the screen for each 2. Again
the chart wi I I give you these numbers later for other modes
and types of scroll ing. There are 23 2's plus the I ine of
mode 0 that the LMS created gives 24 I ines of mode O. If you
want, look ahead at the chart to see al I of this. Under
Graphics mode 0 it says to put 2 in the DL, Ie. 2 Is the
instruction that MEANS put some GR.O on the screen. Finally
comes a 65 that means a II done, go start a II over aga in
using the DL at the location in the next two numbers
(usua I I Y the same DL).

Ok! So far we have found where the data to put on the
screen is located (I i nes 20-30). Now, in line 40 we read the
Joystick. If it is held left, then we take the value in
DL+4, called here PDL4, and add 1. If it is held right, we
subtract 1 in line 60. Now line 70 POKEs this changed value
back into the DL at DL+4. This says to the computer "start

-4-

displaying the data on the screen one byte more (or less)
than where you did before." SIMPLE •• ??.Sure, why not!

Line 80 Is a delay loop to slow the action down so we
can see what Is happening. Line 90 then goes back to read
the Joystick to see if you want to move the display some
more.

Notes :

1) You can speed up this method by changing or leaving
out the delay loop.

2) So far we haven't changed the high part of the data
address CDL+5). If you try to move continually In
one direction the value of PDL4 wi I I reach 0 or 255.
Recal I that the ATARI uses 8 bits per word in
memory, ••• and 8 bits In binary only counts
to 255. When this happens, the number you POKE
into DL+4 will no longer have any effect. Actually
It is causing errors that the example Is TRAPing
to keep the program going. It's sort of like
bottoming out. The simple solution is to do some
mathamatics to change the high byte CDL+5) when
needed. We do this in Example 2.

EXAMPLE :2

This time we scrol I vertically:

10 GRAPHICS 0
20 DL=PEEK(560)+256*PEEKC561)
30 DL4=DL+4:DL5=DL+5
40 NUML=PEEK(DL4)
50 NUMH=PEEKCDL5)
60 ST=STICKCO)
70 IF ST=14 THEN NUML=NUML+40
80 IF ST=13 THEN NUML=NUML-40
90 IF NUML <0 THEN 140
100 IF NUML<256 THEN 160
110 NUML=NUML-256
120 NUMH=NUMH+l
130 GOTO 160
140 NUML=NUML+256
150 NUMH=NUMH-l
160 IF NUMH<O THEN 60
170 IF NUMH>255 THEN 60
180 POKE DL4,NUML : POKE DL5 , NUMH
190 GOTO 60

-5-

The only real difference In COARSE vertical scrolling
over that of horizontal is that to move vertically we want
to add or subtract 40 instead of 1. Do you know why? Of
course! It's because we are using the ATARI 's standard 40
characters per Ii ne for mode 0. · Thus, to move the LMS
address up one line, add 40. This is done in line 70. For
other modes you may need to use 20 or 10 instead of 40. Look
ahead at the chart under the row "Bytes of memory per line".
Also this time we Include the mathamatlcs to change both
numbers of the address of the data to display. The math
won't be explained .••.• just use It as Is. It Is standard
computer math explained in most references. Finally, note
that no delay loop was used. The extra math delays the
computer enough!

EXAMPLE 2A

This is a new example added by suggestion from one of
our customers. Some people didn't see how to combine
horizontal and vertical scrolling, so here it Is. You can
later do the same thing for FINE scrol I ing. See Micheal, I
told you I I isten to my students!

1 GRAPHICS 17:? 16;"
2 FOR W=l TO 230:POKE
3 FOR ZR=l TO 10:NEXT
10 GRAPHICS 0
20 LISI

EXAMPLE 2A"
710, W
ZR:NEXT W

30 DL=PEEK(560)+256*PEEK(561)
40 DL4=DL+4:DL5=DL+5
50 NUML=PEEK(DL+4)
60 NUMH=PEEK(DL+5)
65 POKE 53279,8
70 ST=STICK(O)
80 IF ST=14 OR ST=10 OR ST=6 THEN NUML=NUML+40
90 IF ST=13 OR ST=9 OR ST=5 THEN NUML=NUML-40
92 IF ST=6 OR ST=7 OR ST=5 THEN NUML=NUML-l
94 IF ST=10 OR ST=ll OR ST=9 THEN NUML=NUML+l
95 CON=PEEK(53279):IF CON=6 THEN 1234
100 IF NUML<O THEN 160
110 ! F NUML <256 THEN 175
120 NUML=NUML-256
130 NUMH=NUMH+l
150 GOTO 175
160 NUML=NUML+256
170 NUMH=NUMH-1
175 IF NUMH<O THEN 70
177 IF NUMH>255 THEN 70
180 POKE DL4,NUML:POKE DL5,NUMH
190 GOTO 70
1000 POKE 53279,8
1010 CON=PEEK(53279):IF CON=6 THEN 1234
1234 POKE 764,12:RUN "D:EX3"

-6-

EXAMPLE 3

Lets sketch out an abbreviated screen of data:

Is stored In memory as •••

<-----40----->
Characters

I AM ••••••• BEC
AUSE ••••••• ALS

24 lines
total

GR.O

Figure 1

33 *
27
41

1 9
1 4
32

17

First 40
#'s that go
as 1st line

2nd 40 #'s
= 2nd I I ne
on screen

etc.

1

is st i I I stored i n memory

<------------256----------->
Characters

I AM •• BECAUSE •••• AL O •• IN A

24 I I nes
total

<-----40----->

like

Figure 2

t his •••

47
9
0

21

1 4
1 9
87

2

62

*

1 st 256
#'s used
for 1 st
I I ne

2nd 256
#'s used
for 2nd

line

etc.

* This number is stored in your memory at (DL+4)+(DL+5)*256

-7-

Look at the top of Figure 1. The box drawn represents a
screen area which is 40 characters wide by 24 down. You can
see that if we attempt to scroll horizontally over this
area, we have nowhere to go, so the data on the last line
just moves up to the next line one character at a time. What
can we do? Figure 2 shows some data that is now wider. How
wide is optional with you. Since memory is always stored 1
value at a time, you can set up I ines of any width. It is
the use of more than one LMS byte that sets up different
I ine widths. The box that represents the screen now has room
to move to either side when horizontally scrolled.

The idea in the above paragraph is not easy to grasp.
Let's start with some basics. Memory is organized I ike a
very long strip of numbered locations. When we say to PEEK
at (look at) a certain memory location, what we are really
doing is to go down this strip of locations unti I we get to
the number In question. Then we read what is written there.
Got that? Good! When the computer starts to draw the
screen.. • 60 times a second •••• it goes out to the I ocat i on
we discussed earlier (OL+4and OL+5). There it gets the
location for the start of the screen data. In a 48k machine
in GR. 0, this would be at 40000. If an "A" Is currently
being displayed in the upper left corner, a PEEK at this
location wi II show "33".

To draw the rest of the screen, the computer looks at
the next 39 locations (for a total of 40) and draws them
across the screen. Now it says to itself: "Since I'm In
GR.O, must place the next value back at the start of the
screen, but one row down. This means the 41st value goes
right under the 1st. This goes on until the screen is fi lied
(after 40*24 values have been placed on the screen). What we
do to make memory seem I Ike Figure 2 is to fool the computer
into taking every 256th value as the start of a new line.
This al lows us to move sideways over the data. The sideways
comment Is from the perspective of the screen ••. memory is
sti II just that long strip of locations, and we are sti II
taking 40 memory values at a time for each row of the screen
in GR.O. But after 40 values are used, we skip 256-40 values
before the next line Is drawn. The other 216 values are
being saved for when we scrol I. In Figure 2, imagine that
the initial screen shows us values from 8 to 47. To scrol I
left, just have the screen show values from 7 to 46, 6 to
45, etc. When we get to showing 0 to 39 we must stop or the
values will jump up a line as we would now be showing 255 of
the last row through 38 of the current row. This is what we
saw in Example 2.

-8-

1 GRAPHICS 17:? #6;"
2 FOR W=l TO 230:POKE
3 FOR ZR=l TO 10:NEXT
5 Pl06=PEEK(106)

EXAMPLE 3"
710,W
ZR:NEXT W

10 POKE 106,PEEK(106)-24
15 GRAPHICS O:LIST
20 DL=PEEK(560)+256*PEEK(561)
30 P560=PEEK(560) :P561=PEEK(561)
40 DL4=PEEK(DL+4):DL5=PEEK(DL+5)
50 START=DL4+256*DL5
60 FOR 1=1 TO 24
70 POKE DL+3*1,66
80 POKE DL+l+3*I,DL4
90 POKE DL+2+3*I,DL5+1
100 NtXT I
110 POKE DL+78,65
120 POKE DL+79,P560:POKE DL+80,P561
130 K=O
135 POKE 53279,8
140 ST=STICK(O)
145 CON=PEEK(53279): IF CON=6 THEN 1234
150 IF ST=ll THEN K=K+l
160 IF ST=7 THEN K=K-l
170 FOR L=O TO 23
180 POKE DL+4+3*L,DL4+K
190 NEXT L
200 GOTO 140
1234 POKE 106,Pl06:RUN "D:EX4"

WE'LL TAKE IT SLOW: Location 106 holds the number of pages
that your memory size allows. In my 48k machine it is 106.
In line 10 we store the original value to restore in line
230 when the program is done. Now, in line 20, we foo I the
computer by subtracting 24 pages from 106 (a page is 256
bytes of memory). Then, in line 30 when we say Graph i cs 0,
the computer looks at I ocat i on 106, th inks memory is 24*256
bytes less than it is, and places the Display List down by
this much in memory. What we have so easily accomplished is
to save that many extra bytes of memory for a lot of data
for the screen. Lines 40 to 60 store the location of the DL
and the start 6f screen data as before.

The next lines, 70 to 110, do a nice trick. Now that we
have such a large area to use, we POKE the DL with a whole
bunch of LMS, low, high instructions, with each address
pointing to data 256 bytes further down in memory. So what?
We I I, now there are lines on the screen (run Examp I e 3) that
are 256 bytes long. With the Joyst i ck you can scro I I and see
NEW information appear •••• not from the row below, as before.
Remember that there has to be enough of these LMS POKEs to
fi I I the screen, which for GR.O equals 24, thus the loop 1
to 24 on line 70.

-9-

The data we are scrolling over is again
screen by the LIST command. Now you can see
of each 40 bytes is, because that I s where
the program listing starts.

placed on the
where the ending
each new line of

To better visualize this, look at Figure 2 again. The
LMS addresses should point to the data for the left corner
of each line. It sounds complicated, but by using 256 long
I ines we can just add 1 to the original DL5 value for each
new LMS we set up. The new value will point down by one line
of data ••• 256 bytes!! Remember that values In the high byte
of a number equal 256 times those in the low byte (just use
the example If this Is too hard ••• come back to It later)
Look at line 100 to see the above.

You could, with simplemathamatlcs, set up lines of any
length you want, but lines of 256 characters were easier and
clearer for a demonstration I Ike this. Lines 160 to 220
Increase or decrease the DL4 number by one, as In Example 1.
But now the lines are 256 w I de, so we can scro II without
having characters jump up to the next I ine. Also note in
line 200 that we only POKE every third I ine. This Is because
the DL must now use three lines of Instructions for each
I ine generated on the screen.

What if I'm lost

That is what Is nice about the Tricky Tutorials--you
don't have to understand al I this . Just use the examples by
copying them to your tape/disk and modify them with
different PRINT and PLOT commands. The technical stuff Is
included to make a complete package for your use when ready.

EXAMPLE 4

Please run Example 4. Notice that we used Graphics 2 for
this example. This was to show you that any mode wi I I
scrol I. Also, we relocated the entire Display List to page
six of memory (a reserved area for us to use) so that it
could be modified while leaving the original intact.

Different Graphics modes!

What happens when you change Graphics modes?
at that famous chart we keep promissing and
discussions later.

-10-

Well look
read the

LOOK AT GRAPHICS MODE (0-8) THEN GO DOWN UNTIL DESIRED
OPTION IS FOUND

GRAPHICS
Desired MODE
Option 0 1 2 3 4 5 6 7 8

DL # 2 6 7 8 9 1 0 1 1 1 3 15

HScro I I 1 8 22 23 24 25 26 27 29 31

VScro II 34 38 39 40 41 42 43 45 47

HS&VS 50 54 55 56 57 58 59 61 63

LMS 66 70 71 72 73 74 75 77 79

HS & LMS 82 86 87 88 89 90 91 93 95

VS & LMS 98 102 103 104 105 106 107 109 1 1 1

HS,VS,LMS 1 1 4 118 1 1 9 120 121 122 123 125 127

Pixel
lines per 8 8 1 6 8 4 4 2 2 1
mode line

Rows
to f i I I 24 24 1 2 24 48 48 96 96 192
screen

Bytes of
memory 40 20 20 1 0 1 0 20 30 40 40
per line

65 = Start again at top of Display list
112= 8 Blank I I nes

-11 -

10 GRAPHICS 17:1 #6;"
20 FOR W=l TO 230:POKE
30 FOR ZR=l TO 10:NEXT
40 POKE 1536,112
50 POKE 1537,112
60 POKE 1538,112
70 FOR I = 1 TO 12
80 POKE 1536+3*1,71
90 POKE 1536+3*1+1,0
100 POKE 1536+3*1+2, I
110 Nt.XT I
120 POKE 1575,65
130 POKE 1576,0
140 POKE 1577,6
150 POKE 5bO,0
160 POKE 561,6
170 K=130
180 POKE 53279,8
19U ST=STICK(O)
200 IF ST=7 THEN K=K-l
210 IF ST=ll THEN K=K+l
220 FOR J=l TO 12
230 CON=PEEK(53279):iF
240 POKE 1536+3*J+l,K
250 Nt.XT J
260 GOTO 190
27U RUN "D:EX5"

EXAMPLE 4"
710,W
ZR:NEXT W

CON=6 THEN 270

EXAMPLE S

This example generates some random characters and POKEs
them right into the screen data area. To some of you, this
will look like a useless example, but please think a moment.
In order to get the text YOU want onto the screen, just
replace the RANDOM statements in lines 120 to 170 with PRINT
statements. If your text is not 256 characters wide, then
fill in with blanks. The text could be stored in DATA
statements and then read in as needed. Think what a nice
business spread sheet could be done!

Did you notice that this example scrolls faster. The
reason for th i sis that in ATAR I BAS I C, FOR-NEXT loops
(which we use) go back to the first I ine and count forward
on every loop. This means that they run faster if near the
front. Also, if several lines are placed on one line speed
increases. Finally, any math calculation should be done only
once if possible. This example has these changes for you to
study:

50 X=DL+4:FOR L=O TO 69 STEP 3:POKE X+L,Y:NEXT L:RETURN

-12-

270 ST=STICK(O) :K=K+(ST=11)-(ST=7) :Y=DL4+K

310 GOSUB 50

LINE 50 does the exact same thing as lines 190 to 220
in Example 3. It is a subroutine to allow It to be moved
to the top. Line 270 Is much faster than the two IF
statements. better exp I a I nit. If ST = 11 then the ST= 11
part wi II be TRUE, so (1) will be added to K. Likewise with
ST=7. Since both can't be true at once, K wi I I either go up
or down by one each pass if the stick is moved. ATARI BASIC
has it's nice points tool

1 0 GRAPH I CS 17:? #6;"
20 FOR W=l TO 230:POKE
30 FOR ZR=1 TO 10:NEXT
40 GOTO 55

EXAMPLE 5"
710, W
ZR:NEXT W

50 X=DL+4:FOR L=O TO 69 STEP 3:POKE X+L,Y:NEXT L:RETURN
55 P106=PEEK(106)
60 POKE 106,PEEK(106)-24
70 GRAPHICS 0
80 DL=PEEK(560)+256*PEEK(561)
90 P560=PEEK(560) :P561=PEEK(561)
100 DL4=PEEK(DL+4) :DL5=PEEK(DL+5)
110 DL5=DL5+1 :POKE DL+5,DL5:POKE 89,DL5
120 SIARI=DL4+256*DL5
130 FOR G=O TO 4
140 FOR H=O TO 255
150 POKE START+G*256+H,G+1*RND(9)*100
160 NEXT H
170 NEXT G
1 90 FOR 1=1 TO 24
200 POKE DL+3*1,66
210 POKE DL+3*1+1,DL4
220 POKE DL+3*1+2,DL5+I-l
230 NEXT I
240 POKE DL+78,65
250 POKE DL+79,P560:POKE DL+80,P561
260 POKE 53279,8
270 ST=STICK(O}:K=K+(ST=ll)-(ST=7) :Y=DL4+K
300 CON=PEEK(53279): IF CON=6 THEN 330
310 GOSUIj 50
320 GOTO 270
330 POKE 106,Pl06:RUN "D:EX6"

-13-

EXAMPLE 6

What about a practical use? Well, how about a word
processor that wou I d a I low you to input the width and then
not wrap around, but rather scrol I right or left as you
want. To use Example 6, just type In a bunch of lines of
text (a I most f I I I I ng the page is best). When ready, press
RETURN. Now use the good old Joystick to scroll. If you look
at the code, we added only a few lines. The POKE 559 at line
140 turns off the screen unti I we want It on at line 220.
This speeds up the ATARI and looks more professional.

10 G~ApHICS 17:? #6;"
20 FOR W=1 TO 230:POKE
30 FOR ZR=1 TO 10:NEXT
35 P106=PEEK(106)

EXAMPLE 6"
710,W
ZR:NEXT W

40 POKE 106,PEEK(106)-24
50 GRAPHICS 0
60 DIM A$(255)
70 DL=PEEK(560)+256*PEEK(561)
80 P560=PEEK(560):P561=PEEK(561)
90 DL4=PEEK(DL+4):DL5=PEEK(DL+5)
100 DL5=DL5+1 :POKE DL+5 , DL5:POKE 89,DL5
110 NON=PEEK(559)
120 START=DL4+256*DL5
130 INPUT A$
140 POKE 559,0
150 FOR 1=1 TO 24
160 POKE DL+3*1,66
170 POKE DL+1+3*I,Dl4
180 POKE DL+2+3*I,DL5+1-1
19u NEXT I
200 POKE DL+78,65
210 POKE DL+79,P560:POKE DL+80,P561
220 POKE 559,NON
230 K=O
240 POKE 53279,8
250 ST=STICK(O)
260 IF ST=11 THEN K=K+1
270 IF ST=7 THEN K=K-1
28U CON=PEEK(53279): IF CON=6 THEN 330
290 FOR L=O TO 23
300 POKE DL+4+3*L , DL4+K
310 NEXT L
320 GOTO 250
330 POKE 106,P106:RUN "D:EX7"

-14-

EXAMPLE "7

This looks just like the last example, doesen't It?
We II, when you press RETURN and try to scro I I someth I ng
funny wi I I happen. The screen wll I go "crazy" because we
POKE the wrong numbers Into the DL. Look at the code and
find the error. This error is typical of the type that
occurs when modlfing displays.

Now, just I ike the contests that a certain computer
company holds, we wi I I give $50. to the LAST person to send
us the correct answer (Can you believe some people actually
wrote us hoping they would be the last one and thus win a
prize!). It's a joke, folks ... don't write in.

10 GRAPHICS 17:? 16;"
20 FOR W=l TO 230:POKE
30 FOR ZR=l TO 10:NEXT
35 Pl06=PEEK(106)

EXAMPLE 7"
710,W
ZR:NEXT W

40 POKE 106 , PEEK(106)-24
50 GRAPHICS 0
60 DIM A$(255)
70 DL=PEEK(560)+256*PEEK(561)
80 P560=PEEK(560) : P561 =PEEK(561)
90 DL4=PEEK(DL+4) : DL5=PEEK(DL+5)
100 DL5=DL5+1 :POKE DL+5 , DL5 : POKE 89,DL5
110 NON=PEEK(559)
120 START=DL4+256*DL5
130 INPUT A$
140 POKE 559,0
150 FOR 1=1 TO 24 STEP 3
160 POKE DL+3* 1,66
170 POKE DL+l+3*I,DL4
180 POKE DL+2+3*1,(DL5+I-l)
190 Nt:.XT I
200 POKE DL+78,65
210 POKE DL+79,P560:POKE DL+80,P561
220 POKE 559,NON
230 K=O
240 POKE 53279,8
250 ST=STICK(O)
26u IF ST=ll THEN K=K+l
270 IF ST=7 THEN K=K-l
2tW CON=PEEK(53279):IF CON=6 THEN 350
290 FOR L=O TO 23
300 POKE DL+4+3 * L, DL4+K
310 NEXT L
320 GOTO 250
330 POKE 53279,8
340 CON=PEEK(53279):IF CON=6 THEN 350
350 POKE 106,Pl06 : RUN "D : EX8"

- 15-

EXAMPLE e

This time we point out that you don't have to scrol I al I
the I ines on the screen . You can enable scrol I ing for only
the lines you want. Look at lines 170 to 190 in this
example. We POKE only the 3rd to 5th I ines on the screen.
You can scro II from one I I ne to a screen fu I I. Any mode line
in the DL can be set from regular (DL #'s 2 to 15) to
scrolling (see the chart; for example ••• GR.6) horizontally
(27), vertically (43), or BOTH directions for diagonal
scrol ling (59). This effect can , for example, be used to
make a nice scrolling "marque" of text across the screen.

The other poss i b i I I tes for a mode line are LMS (LOAD
MEMORY SCAN) mentioned above; HS & LMS, which is when you
want tel I the computer where to get its screen data and also
have that I ine (remember LMS sets up a I ine on the screen
also) be able to scroll. The same applies to vertical
scroll ing & LMS, and HS , VS , & LMS .

Yes, I am using a lot of terms and abbreviations. You
may feel better knowing that even I, as a programmer, was
confused at first. The concepts we are teaching here are NOT
BASIC programming, but rather Graphics programming, which Is
a new and complex area . After this lesson, some of you
non-programmers wi I I be way ahead of many professionals
unfami liar with graphics.

1 GRAPHICS 17:7 #6;"
2 FOR W=l TO 230:POKE
3 FOR ZR=l TO 10 : NEXT
5 Pl06=PEEK(106)

EXAMPLE 8"
710 , W
ZR : NEXT W

10 POKE 106,PEEK(106) - 24
15 GRAPHICS O:LIST
20 DL=PEEK(560)+256*PEEK(561)
30 P560=PEEK(560) :P561=PEEK(561)
40DL4=PEEKCDL+4):DL5=PEEK(DL+5)
50 START=DL4+256*DL5
60 FOR 1=1 TO 24
70 POKE DL+3*1,66
80 POKE DL+l+3*I , DL4
90 POKE DL+2+3*I , DL5+1
100 NEXT I
110 POKE DL+78,65
120 POKE DL+79,P560:POKE DL+80 , P561
130 K=O
135 POKE 55279,8
140 ST=STICK(O)
150 IF ST=ll THEN K=K+l
160 IF ST=7 THEN K=K-l

- 16-

165 CON=PEEK(53279): IF CON=6 THEN 1234
170 FOR L=2 TO 4
18u POKE DL+4+3*L,DL4+K
190 NEXT L
200 GOTO 140
1234 POKE 106,P106:RUN "D:EX9"

EXAMPLE 9

This example is coarse scrolling, but In the
direction with GRAPHICS. Just substitute your
commands If you I Ike. The method Is the same,
numbers have been changed using the chart .

1 GRAPHICS 17:? #6;"
2 FOR W=1 TO 230:POKE
3 FOR ZR=1 TO 10:NEXT
10 GRAPHICS 5+16

EXAMPLE 9"
710,W
ZR:NEXT W

20 COLOR 1: PLOT 1,1: DRAWTO 79,39
30 DL=PEEK(560)+256*PEEK(561)
40 DL4=DL+4:DL5=DL+5
50 NUML=PEEK(DL+4)
60 NUMH=PEEK(DL+5)
65 POKE 53279,8
70 SI=STICK(O)
80 IF ST=14 THEN NUML=NUML+40
90 IF ST=13 THEN NUML=NUML-40
95 CON=PEEK(53279): IF CON=6 THEN 1234
100 IF NUML <O THEN 150
110 IF NUML<256 THEN 170
120 NUML=NUML-256
130 NUMH=NUMH+1
130 NUMH=NUMH+1
140 GOTO 170
150 NUML=NUML+256
160 NUMH=NUMH-1
170 IF NUMH<O THEN 70
180 IF NUMH>255 THEN 70
190 POKE DL4,NUML:POKE DL5,NUMH
200 GOTO 70
1234 RUN "D:EX10"

-17 -

vertical
own PLOT

only the

EXAMPLE 10

I f you look on the chart, you' I I see that for GR. 0 the
regular number for the DL is 2, but to scrol I (fine)
vertically use 34. In the code for this example we POKE 34
into the DL in lines 25 to 40. This tells these lines to
fine scroll, but how much? Fine scrolling means instead of
moving a row (column) of letters or graphics one character
or graphics pixel (these come in different sizes - see your
BASIC manual) at a time, we move these characters one TV
pixel at a time. TV pixels are the tiny dots you see when
you look CLOSELY at your TV, or Monitor.

To fine scroll, we change the value in a new location:
54277. This location may contain 0 (normal) to 15. These
numbers are the number of TV pixels that the I ine wi I I be
moved. This example is in a loop to scroll up 7 then reset
to 0, then loop again. If we were in another Graphics mode,
we would look at the chart to see how many pixels per mode
I ine are being used. You then can scrol I from 0 to 1 less
thah this number (for example, 0 to 7 is 8, the number of
pixels In a mode 0 line). For GR.2, we scroll 0 to 15; for
GR.8 you can't fine scroll (a coarse scroll here is the same
as fine, one pixel line up).

The chart doesn't give values for every mode that the
ATARI has. If you look at the row marked DL#, you wi I I
notice missing #'s 3,4,5,12,& 14. Untl I we do a special
t utorial on these modes, you can use the Operating System
in a n u a 1st hat A TAR I s e I 1st 0 ex p lor e the m. A Iso m iss i n gar e
Graphics modes 9,10 & 11 which were not in U.S. machines
when this was written. These modes use #15 (GR. 8) with a
few POKEs into the Operating System to change the way the
data is interpreted.

1 GRAPHICS 17:? #6;" EXAMPLE 10"
2 FOR W=1 TO 230:POKE 710,W
3 FOR ZR=1 TO 10:NEXT ZR:NEXT W
10 GRAPHICS O:LIST
20 DL=PEEK(560)+256*PEEK(561)
25 FOR S=9 TO 13
30 POKE DL+S,34
40 NEXT S
45 POKE 55279,8
50 FOR Y=O TO 7
60 POKE 54277,Y:POSITION 2,20:? "THE NUMBER OF PIXELS

SCROLLED IS ";Y:FOR W=1 TO 50:NEXT W
70 NEXT Y
100 CON=PEEK(53279):IF CON=6 THEN 1234
110 GOTO 50
'1 23 4 RUN "D: EX 1 1 "

-18-

EXAMPLE 11

Same thing as Example 10, but using the Joystick so you
can practice moving up or down a pixel at a time. This wi I I
make sure everyone understands the dlferen~ e between fine
and coarse scro I I I ng.

10 GRAPHICS 17:? #6;" EXAMPLE 11"
20 FOR W=l TO 230:POKE 710,W
30 FOR ZR=l TO 10:NEXT ZR:NEXT W
40 GRAPHICS "3
50 COLOR l:PLOT 1,1:DRAWTO 1,10:DRAWTO 10,10:DRAWTO 10,1:

DRAWTO 1,1
60 DL=PEEK(560)+256*PEEK(561)
70 FOR 5=6 TO 15
80 POKE DL+S,40
90 NtXT S
100 POKE 53279,8
110 1=0
120 SI=5TICK(0)
130 IF 5T=14 THEN 1=1+1
140 IF 5T=13 THEN 1=1-1
150 IF 1<0 THEN 1=0
160 IF 1>7 THEN 1=7
170 POKE 54277, I:? I
180 CON=PEEK(53279):IF CON=6 THEN 200
190 GOTO 120
200 RUN "D:EX12"

EXAMPLE 12

There is also a horizontal fine scroll register similar
to the one for vertical fine scrolling. It is at 54276,
right next to the other. To use it, look again at the chart.
POKE the va I ue into each line we want to scro I lin the DL.
For example, the correct value for a GR. 0 line that allows
a horizontal scroll is 18. Now POKE the amount of clock
cycles to scroll, 0 to 15 into 54276. No, I am not going to
explain "clock cycles". It's exact meaning Isn't Important
here and besides, I ike so many of the numbers we have been
discussing, you will learn more if you try it yourself. It
would be the exceptional person who could write a program to
scroll without first trying it. Paper descriptions are not
easy to read. Practice ••••••

-19-

1 GRAPHICS 17:1 #6;"
2 FOR W=l TO 230:POKE
3 FOR ZR=l TO 10:NEXT
10 GRAPHICS O:LIST

EXAMPLE 12"
710,W
ZR:NEXT W

20 DL=PEEK(560)+256*PEEK(561)
30 POKE DL+9,18
40 POKE DL+ll,18
50 POKE 53279,8
80 FOR X=O TO 15
85 CON=PEEK(53279): IF CON=6 THEN 1234
90 POKE 54276,X:POSITION 2,20:1" ":POSITION 2,20:1 X
95 FOR W=l TO 100:NEXT W
100 NEXT X
110 GOTO 40
1000 POKE 53279,8
1010 CON=PEEK(53279): IF CON=6 THEN 1234
1234 RUN "D:EX13"

EXAMPLE 13

We left a few goofs In this example. The LMS byte was
not changed per the chart from 66 to 98. Also, a jump occurs
on the screen. The method is just a combination of the two
prey i ous vert i ca I scro I I examp I es. After the great
instruction you have been getting, you can figure this one
out in a few minutes .•. CAN'T YOU 111

10 GRAPHICS 17:1 #6;"
20 FOR W=l TO 230:POKE
30 FOR ZR=l TO 10:NEXT
40 GRAPHICS O:LIST

EXAMPLE 13"
710,W
ZR:NEXT W

50 DL=PEEK(560)+256*PEEK(561)
60 DL4=DL+4:DL5=DL+5
70 NUML=PEEK(DL+4)
80 NUMH=PEEK(DL+5)
90 FOR S=6 TO 27
100 POKE DL+S,34
110 NEXT S
120 POKE 53279,8
130 1=0
130 1=0
14U POSITION 35,15:1 I :ST=STICK(O)
150 IF ST=13 THEN 1=1-1
160 IF ST=14 THEN 1=1+1
170 IF 1>7 THEN POKE 54277,0:1=0:GOTO 220
180 I F I <0 THEN POKE 54277,7: 1=7 :GOTO 220
190 POKE 54277,I:POSITION 2,20:FOR W=l TO 10:NEXT W
195 CON=PEEK(53279): IF CON=6 THEN 350

-20-

200 GOTO 140
220 IF ST=14 THEN NUML=NUML+40
230 IF ST=13 THEN NUML=NUML-40
240 IF NUML<O THEN 290
250 IF NUML<256 THEN 310
26U NUML=NUML-256
270 NUMH=NUMH+1
28u GOTO 310
290 NUML=NUML+256
300 NUMH=NUMH-1
310 IF NUMH<O THEN 140
320 IF NUMH>255 THEN 140
330 POKE DL4,NUML:POKE DL5,NUMH
34U GOTO 140
350 RUN "D:EX14"

EXAMPLE 14

This is the best you can do to combine fine and coarse
vertical scroll : ... ;. There are no new tricks to learn, just
look at the sequence of how we put two previous examples
together. Especially notice lines 190 and 300. This is
pretty nice for BASIC! This example could be renumbered Into
a subroutine for you to use in programs or Since
there are so many possible combinations of scrol I ing, we
don't show you each combination. It Is easy to combine
whichever types of scroll ing you need. Really!

10 GRAPHICS 17:? #6;" EXAMPLE 14"
20 FOR W=1 TO 230:POKE 710,W
30 FOR ZR=1 TO 10:NEXT ZR:NEXT W
40 GRAPHICS O:LIST
50 DL=PEEK(560)+256*PEEK(561)
60 DL4=DL+4:DL5=DL+5
70 NUML=PEEK(DL+4)
80 NON=PEEK(559)
90 NUMH=PEEK(DL+5)
100 POKE DL+3,98
110 FOR S=6 TO 27
120 POKE DL+S,34
130 NEXT S
140 POKE 53279,8
150 I=O:POKE 752,1
160 REM **** MAIN LOOP *************
170 POSITION 35,14:? I :ST=STICK(O)
18U CON=PEEK(53279):IF CON=6 THEN 340
190 1=1-(ST=13)+(ST=14)
200 IF 1>7 THEN I=O:GOTO 230
210 IF 1<0 THEN 1=7:GOTO 230

-21 -

220 POKE 54277, I :GOTO 170
230 NUML=NUML+(ST=14)*40-(ST=13)*40
240 IF NUML<O THEN 270
250 IF NUML<256 THEN 280
260 NUML=NUML-256:NUMH=NUMH+l :GOTO 280
270 NUML=NUML+256:NUMH=NUMH-l
280 IF NUMH<O THEN 170
290 IF NUMH>255 THEN 170
300 POKE 559,0:POKE DL4 , NUML:POKE DL5,NUMH:POKE 54277,1 :POKE

559,34
310 GOTO 170
320 POKE 55279,8
330 CON=PEEK(53279): IF CON=6 THEN 340
340 RUN "D:EX15"

EXAMPLE 15

When vertical scrolling, as in the example above (BASIC
Language on I y), the screen seems to b II nk as it scro I Is.
This Is because we are moving a line LIp 1,2, ••. 7 pixels.
Then we move It back to 0 and, as quickly as possible,
coarse scrol I It up 8 pixels. This gets the text to move up
or down, but the "jump" shows on the screen. To hide the
jump, the screen Is POKEd off (559,0) before the jump and
POKEd on (559,34) after. Thus, the blink.

NOW WE GIVE YOU ••• ASSEMBLY LANGUAGE~

Geoff Caras, of our little group, wrote a smal I Assembly
subroutine to do the POKEs and you can see how quick and
smooth It works. I won't feel bad if you use this example
Instead of my # 14 in your programs. Just change the
Graphics to use this example as a subroutine in your
programs!

10 GRAPHICS 17:1 #6;" EXAMPLE 15"
20 FOR W=l TO 230:POKE 710,W
30 FOR ZR=l TO 10:NEXT ZR:NEXT W
40 DIM A$(38):TRAP 60:1=1
50 READ X:A$(I)=CHR$(X): 1=1+1 :GOTO 50
60 GRAPHICS O:LIST :POKE 752,1
70 POKE 712,148
80 DL=PEEK(560)+256*PEEK(561)
90 DL4=DL+4:DL5=DL+5
100 NUML=PEEK(DL+4)
110 NON=PEEK(559)
120 NUMH=PEEKCDL+5)
130 POKE DL+3,98

-22 -

140 FOR S=6 TO 27
150 POKE DL+S,34
160 NEXT S
170 POKE 55279,8
180 1=0
19u POSITION 35,20:? I :ST=STICK(O)
200 CON=PEEK(53279): IF CON=6 THEN 410
210 1=1-(ST=13)+(ST=14)
220 IF 1>7 THEN I=O:GOTO 250
230 I F I <0 THEN 1=7: GOTO 250
240 POKE 54277, I :GOTO 190
250 NUML=NUML+«ST=14)*40)-«ST=13)*40)
260 IF NUML<O THEN 300
27U IF NUML<256 THEN 310
280 NUML=NUML-256:NUMH=NUMH+1
29U GOTO 310
300 NUML=NUML+256:NUMH=NUMH-1
310 IF NUMH<O THEN 190
320 IF NUMH>255 THEN 190
330 X=USR(ADR(A$), I,DL4,NUML,DL5,NUMH)
340 GOTO 19U
3~0 DATA 160,0,140,47,2,104,104,104
360 DATA 141,5,212,104,133,225,104,133
370 DATA 224,104,104,145,224,104,133,225
380 DATA 104,133,224,104,104,145,224,169
390 DATA 34,141,47,2,96,0
400 CON=PEEK(53279):IF CON=6 THEN 410
410 RUN "D:EX16"

EXAMPLE 16

This Is an example of changing Graphics modes by the use
of the chart. The titles could be brought In from DATA
statements or disk if you wanted. These examples are now
POKE i ng the border co I or to match the page (you rea I I Y
should have one of our Master Memory Maps to learn these
POKEs). The examples are really starting to be professional
looking.

10 GRAPHICS 17:? #6;" EXAMPLE 16"
20 FOR W=l TO 230:POKE 710,W
30 FOR ZR=l TO 10:NEXT ZR:NEXT W
40 GRAPHICS 17:POSITION 2,10 : ? #6;"TITLE GOES HERE"
45 POKE 712,152:POKE 708 , 1
50 DL=PEEK(560)+256*PEEK(561)
60 DL4=DL+4:DL5=DL+5
70 NUML=PEEK(DL+4)
80 NON=PEEK(559)
90 NUMH=PEEK(DL+5)

-23-

100 POKE DL+3,102
110 FOR S=6 TO 27
120 POKE DL+S,38
130 NEXT S
140 POKE 53279,8
150 I=O:POKE 752,1
160 REM **** MAIN LOOP *************
170 POSITION 35,14:ST=STICK(0)

EXAMPLE 17

Another examp I e of scro I ling a Graph i cs line up and
down, but this time with the Assembly subroutine. Think of
the games you can write, or great educational programs!
Don't fall into the trap of thinking that this is just a
simple example, and a "real" example will be harder. All you
have to change is the GRAPHICS statements!

1 GRAPHICS 17:1 #6;" EXAMPLE 17"
2 FOR W=l TO 230:POKE 710,W
3 FOR ZR=l TO 10:NEXT ZR:NEXT W
10 DIM A$(38):TRAP 30:1=1
20 READ X:A$(I)=CHR$(X): 1=1+1 :GOTO 20
30 GRAPHICS 3:COLOR l:PLOT 1,1:DRAWTO 19,19
40 DL=PEEK(560)+256*PEEK(561)
50 DL4=DL+4:DL5=DL+5
60 NUML=PEEK(DL+4)
70 NON=PEEK(559)
80 NUMH=PEEK(DL+5)
90 POKE DL+3,104
100 FOR S=6 TO 30
110 POKE DL+S,40
120 NEXT S
130 1=0
135 POKE 55279,8
140 ST=STICK(O)
145 CON=PEEK(53279): IF CON=6 THEN 1234
150 1=1-(ST=13)+(ST=14)
160 IF 1>7 THEN I=O:GOTO 190
170 IF 1<0 THEN 1=7:GOTO 190
180 POKE 54277,1 :GOTO 140
190 NUML=NUML+«ST=14)*10)-«ST=13)*10)
200 IF NUML<O THEN 240
210 IF NUML<256 THEN 250
220 NUML=NUML-256:NUMH=NUMH+l
230 GOTO 250
240 NUML=NUML+256:NUMH=NUMH-l
250 IF NUMH<O THEN 140

-24-

260 IF NUMH>255 THEN 140
270 X=USR(ADR(A$), I,DL4,NUML,DL5,NUMH)
28u GOTO 140
400 DATA 160,0,140,47,2,104,104,104
410 DATA 141,5,212,104,133,225,104,133
420 DATA 224,104,104,145,224,104,133,225
430 DATA 104,133,224,104,104,145,224,169
440 DATA 34,141,47,2,96,0
1234 RUN "D:EXI8"

EXAMPLE 1B

No, we aren't going to offer an Assembly program for
horizontal scrolling. This is a tutorial to learn the
principals of scrol ling.

This example, our last, is again combining two previous
examples to allow continuous scrolling horizontally. The
POKE to turn off the screen is st i I I needed, so that is the
b link you see. However, the junk on the screen is because of
a point we didn't mention yet. Whenever you POKE a Display
List, you should wait for the time when the TV is blank and
waiting to do the next screen. Well, this happens 30 times a
secondl BASIC can't go that fast, but if you program In
Assembly use WSYNC to prevent the flashing junk that this
BASIC example shows. For the rest of us, we'l I walt for some
more subroutines I ike example 15.

There are many deta i I s I eft out of th I s discuss i on. For
example try Poking 559,33 and 559,35. This gives you wide or
small playfields of 48 or 32 characters width automatically,
without the trouble we went through earl ier for the 256
width.

1 GRAPHICS 17:? #6;" EXAMPLE 18"
2 FOR W=1 TO 230:POKE 710,W
3 FOR ZR=1 TO 10:NEXT ZR:NEXT W
4 ? #6;" LAST EXAMPLE":FOR W=1 TO 200:POKE 710,W:NEXT W
10 TRAP 40000:TRAP 300
15 Pl06=PEEK(106)
20 NON=PEEK(559):GRAPHICS O:GOTO 50
40 M=M+(ST=II)*5-(ST=7)*5:Y=DL4+M:POKE 559,0:FOR L=O TO 72

STEP 3:POKE X+L,Y:NEXT L:POKE 54276,K:POKE 559,NON
45 GOTO 130
50 POKE 106,PEEK(106)-24:POKE 766,1
60 GRAPHICS O:LIST
70 DL=PEEK(560)+256*PEEK(561)
80 P560=PEEK(560) :P561=PEEK(561)

-25-

90 DL4=PEEKCDL+4):DL5=PEEKCDL+5)
100 FOR 1=1 TO 25: 13=3*1 :POKE DL+13,82:POKE DL+l+13,DL4:POKE

DL+2+13,DL5+1 :NEXT I
110 POKE DL+78,65:POKE DL+79,P560:POKE DL+80,P561
120 K=0:X=DL+4:M=0
125 POKE 53279,8
130 POKE 54276,K:ST=STICKCO):K=K-C5T=11)+(5T=7)
135 CON=PEEK(53279):IF CON=6 THEN 1234
14U IF K>15 THEN K=O:GOTO 40
150 IF K<O THEN K=15:GOTO 40
160 GOTO 130
300 GRA~HICS O:? "t":? "YOU WENT TO FAR ••• PRESS RESET AND

TYPE RUN •..• PRESS RETURN."
)10 END
1234 POKE 106,P106:GRAPHICS O:POKE 709,0
1235 ? " THANK FOR BUYING OUR TRICKY TUTORIALS •••• ";:GOTO

1235

I appreciate that al I of you students have stayed awake
so long. 1'1 I see you in my next Tricky Tutorial. BYE!

-26-

HUP TWO THREE FOUR

TRICKY TUTORIAL #3
PAGE FLIPPING

PAGE FLIPPING

Page Flipping is a set of simple
programs designed to teach those new to
the ATARI how to store information in
memory and then bring it back on the
screen instantly! With the two methods
taught here, even a new programmer can
learn to do simple animation, or present
nice slide-like displays. The simplest
of these examples has only 12 short
I ines of basic code!

The person using this lesson should
be fami I iar with BASIC programming so
that he or she can read the code that is
included. Since the program is not
protected, the user is encouraged to try
their own modifications inorder to gain
a greater perspective of the art of
flipping pages of memory.

The program is split up into smaller
pieces that will load and run on
ATARI (tm) 400/800 computers with 16k RAM
for cassette users and 24k RAM for those
using disk.

Educational Software inc.
4565 Cherryvale
Soquel, CA 95073

(408) 476-4901

Educational Soft\Nare

presents

TRICKY TUTORIAL #3

PAGE
FLIPPING

TRICKY TUTORIAL #3

PAGE FLIPPING

by
Robin Sherer

No doubt some of you hesitated before ordering a program
to "flip pages". For this reason I want to start by assuring
you that once you learn either of the two simple methods
taught here, your programs wi I I look and run much nicer.

Not very long ago, had to learn the method of
flipping screens. Since stili remember how confusing it
was at first, only the material you need Is presented here.
A few deta i I s have been I eft out because on I y those try I ng
to become experts wi I I care, and they w II I have to read the
technical manuals anyway . The style of the manual is
Informal mostly because I have never heard a good
explaination for instructions that are written in a cold
manner. We bought our computers to learn and have fun!.

HOW TO L OAD

TAPE

Place the tape in your recorder , label side/ up, and
insert your BASIC Cartridge . Make sure the tape is rewound,
and reset the counter to zero . Push PLAY on the recorder,
type RUN"C:" , and press RETURN . If the program won't start
to load, try positioning the tape forwards or backwards a
I ittle . The easiest way to find the beginning Is to listen
to the "noise" on the tape with a regular recorder. When you
find the steady tone, you have the beginning of the program .
We recommend you write down the number on your recorder's
counter as each program starts , this wi I I make it easier to
find each part later on .

DIS K ••• •

To load and run the disk, first
When the busy I ight goes out , place
with the BASIC Cartridge in place .
each part and run by itself .

turn on your disk drive.
the disk into the drive,
The program wi I I load

Any defective tapes or disks should be returned to:
Educat i ona I Software inc.

4565 Cherryvale
Soquel , CA 95073

(408) 476-4901

©1981 by Santa Cruz Educational Software

-1-

Wh~t i~ P~g~ F~ipping

The idea of flipping pages is somewhat unique in small
home computers. You're lucky, the ATARI just happens to be
able to do page fl ipping. The reason for this is that the
ATARI al lows both Its DISPLAY LIST and DISPLAY DATA to be
stored in any free area of memory. A Display List is the
smal I set of instructions every computer needs to tel I
itself how to put the display data on the screen. This Is
especially important for us to learn since the ATARI
computers offer so many types of graphics modes. This
special capabi I ity means that you can store the information
for numerous pages (TV screens) of graphics and/or text and
then later, in your program, go to any of these pages
instantly. This makes things look much more professional.

-BASl:CS-

First, we are going to cover some basics. Memory is
stored in something called RAM, which stands for random
access memory. This is because you can either read or write
to any place within it. Usually discussion of memory is in
terms of bytes. For example, your memory(RAM) may consist of
16k,24k,32k,40k, or 48k bytes. Remember that 1k is actually
1024 bytes. Confused? GOOD! Then you may appreciate the fact
that to f lip screens of data we are go i ng to just move down
in memory by increments of 256 bytes at a time. These
increments are called "pages" (ain't life simple???). So 4
pages is 4*256 = 1024 bytes = 1 k • The I ast sentence is a I I
you have to remember. Four pages of memory =lk bytes of
memory. Oh yes, I shou I d te I I you that "k" is the symbo I for
1000.

The term fl ipping pages would now become confusing - we
are NOT flipping 256 bytes at a time. For this reason we
will refer to the process as flipping screens or
displays,ie., the stuff you see on the TV screen at anyone
time.

There wi I I be two methods shown in our examples. DON'T
JUST VIEW THEM. COPY THEM TO ANOTHER DISK OR TAPE AND MODIFY
THEM FOR YOUR OWN USE. WE WANT YOU TO COPY OUR SOFTWARE FOR
USE IN YOUR OWN PROGRAMS. EACH EXAMPLE IS SET UP FOR GENERAL
PURPOSES, SO JUST SUBSTITUTE YOUR OWN TEXT OR GRAPHICS. IF
YOU HAVE 32K OR MORE OF MEMORY, CHANGE TO HIGH RES, GRAPHICS
MODE 8 AND ADD TEXT AS WELL AS GRAPHICS. The method and
examples all work, but could be much b~tter .••• especially if
written for more memory than the smal I amount this lesson
runs on (don't brag about your 48k machine. My ATARI has
160 k !)

-2-

METHODS 1

Norma I I Y when you say Grap hi cs 0 to 8 (11 for newer
units) to the computer, it sets up both a Display List and a
data area just below the top of your memory. Method one
simply tells the computer after a first screen Is drawn,
"memory ain't where it used to be, but It's now lower, so
set up a new (additional) Display List and data area lower
in memory". By do i ng th i s as often as you requ i re (and
memory space allows), you allow a number of screens full of
data to be seen by just redirecting the one location that
points to the start of each Display List. EASY! Figure one
wi II show you this graphically:

TOP OF MEMORY

SCREEN DATA 1 (261 to 7900 bytes)

DISPLAY LIST (20 to 202 bytes)

SCREEN DATA 2

DISPLAY LIST 2

SCREEN DATA 3

DISPLAY LIST 3

AS MANY MORE SCREENS AS YOU HAVE ROOM FOR.

YOUR BASIC PROGRAM and OTHER STUFF.

BOTTOM OF MEMORY

Fig. 1

-3-

EXAMPLE 1

Run Example 1. Notice that you can see it draw out some
random lines, then they disappear and a new set of lines is
drawn out. Then ••. these two screens seem to appear and
disappear, first one then another.
Here's how it works:

10 GRAPHICS 6
12 GOSUB 4000
15 TRAP 20
20 COLOR 1 :FOR 1=1 TO 20:COLOR 2*RND(4):DRAWTO 140*RND(4),70

*RND(9):NEXT I
25 ? "THIS IS FLIPPING BETWEEN TWO AREAS OF MEMORY. PRESS

RETURN TO CONTINUE."
30 A=PEEK(106)
40 DLISTL1=PEEK(560):DLISTH1=PEEK(561)
50 POKE 106,A-32
60 GRAPHICS 6
61 GOSUB 4000
70 DLISTL2=PEEK(560):DLISTH2=PEEK(561)
75 TRAP 80
80 COLOR 1 :FOR 1=1 TO 20:COLOR 2*RND(4):DRAWTO 140*RND(4),70

*RND(9):NEXT I
85 ? "THIS IS FLIPPING BETWEEN TWO AREAS OF MEMORY. PRESS

RETURN TO CONTINUE."
86 POKE 764,255
90 POKE 561 ,DLISTHl :FOR W=l TO 2:NEXT W:POKE 561 ,DLISTH2: IF

PEEK(764)=12 THEN 110
100 GOTO 90
110 POKE 106, A: RUN "0: NEXT1 "
4000 X=PEEK (16) : IF X= 128 THEN 4020
4010 POKE 16,X-128:POKE 53774,X-128
4020 RETURN

Lines 10 to 25 draw a screen just I Ike normal using COLOR,
PLOT, and PRINT commands (See your BASIC referance manual
for these commands).

Line 30 stores the original top of memory (in number of 256
byte pages) read from location 106 using the PEEK command.

Line 40 stores the two numbers that locate the Display List.
Remember that it takes two eight bit numbers to address al I
of the computers memory. The LOW part can hold from 0 to 255
and the HIGH part holds from 0 to 255 (times 256) ..• again
see your manual or our MASTER MEMORY MAP. We wi I I only use
the part of the address in I ocat I on 561. Th i sis because we
are moving memory down in whole page increments and 561
ho I ds the number of who I e pages. We I eft I n the low part, in
case you want to experiment with your own ideas.

-4-

NOTE

Often I leave out pieces of code that you may not see
mentioned in the manual. You should assume that it either is
someth i ng you wi I I see the need for later, or someth i ng
needed just to make al I the examples run together smoothly.

Line 50 says "the top of memory is located down in RAM
by 32 pages (8k bytes) from the previous value. This is more
than is needed for this example. The extra amount will allow
you room to add more screens later when you come back to
this example to experiment with your own changes •••• and you
wi I I come back, won't you?

Line 60 to 85 again draw some graphics just I ike normal.
The computer looks at location 106 and sees the value we put
there. It is thus "fooled" into placing the new Display List
and data starting 32 pages lower than it otherwise would
have. Actually,the amount of pages you go down should
correspond to the amount of memory the graphics modes you
are using requires. Look in the first page of the BASIC
Manual's Graphics section to see how much you need. We used
mode 6, so 2k or 8 pages would have been enough. This way,
though, we left room for you to easily copy this program and
substitute your own graphics!

Line 70 stores the location or address of this second
Display List. You can do this before (I ike here, line 70) or
after the graphics statements. The location wi I I be used to
flip the screens later.

Line 90 then does the flipping by just POKEing 561
the address (high part only!) of the first Display
then the second, then the first, etc. This says "use
Display List •• no this one ••• no use the first •• etc.".

with
List,
this

ANOTHER NOTE .••

You can see in the program code in Example 1 it is line
110 that POKEs 106 back to the original value. If you are
going to go on and use your computer after confusing it I ike
this, you had better tell it what the real top of memory is.
If, on the other hand, you are going to turn it off after
our program is finished, don't bother. Any time you power up
or press RESET, the computer wi I I store the correct value in
1 06 •

Also, while running our program, don't
BREAK unless It crashes (it shouldn't,
example stops then press RESET and type
RETURN. Of course, you should press
experiment with each example after you have
program at I east once. Th i sis how you wi I I

-5-

press RESET or
but •••). I f an y
RUN and press

RESET and then
seen the entire
learn!

EXAMPLE :.2

This example is made out of Example 1 to show you how to
expand the basi6 idea of changing screens. Here we set up
FOUR Display Lists and print four simple messages on the
screen. As you press a button the message appears Instantlyl
If you think about it, you will realize that there Is no
dlference In flipping between four one line messages on a
page, or four completely filled pages of text. Each time you
press a button, another area of memory is displayed on the
screen. The one I ine messages were just to keep the program
simple for you to study. Please add many more lines of text
to this example and see what we mean. You just put more
words between the quotes In lines 20,70,110, & 150.

Lines 10 to 40 write text and store the needed values
for Display List one (DL1).

Lines 50 to 80 POKEs 106 down 8 pages (2k, more than
enough for GR.O), writes more text, and stores these new
values.

Lines 90 to 120 same thing another 8 pages down in
memory, but different text.

Lines 130 to 160 same thing again for a fourth screen!

Lines 168 to 185 look for you to press keys 1 to 4 (or
whatever!) so that II nes 190 to 220 can te I I the computer
which of the four Display List you previously created to now
use. The test for CH=12 is to see if you decided to go on to
something else by pressing return. The POKE of 255 to 764
clears the location that holds the Internal code for the
last key pressed . The variable CH on line 170 will tell the
system which key you just pressed (If any).

NOTE

You can put In your own text or have the computer read
In the text from the keyboard or disk and place the first
960 bytes (the size of GR . O) In page one , the next 960 In
page 2, etc. The way to read in data from keyboard or disk
is explained In your reference manuals.

5 TRAP 10
10 GRAPHICS 0
20 POSITION 4,10:1 "THIS IS PAGE 1 .":POSITION 2,20:1 "PRESS

1,2,3 OR 4 FOR THAT PAGE."
25 1 "PRESS RETURN TO CONTINUE."
30 A=PEEK(106)

-6 -

40DLL1=PEEK(560):DLH1=PEEK(561)
45 REM ******************************
50 POKE 106,A-8
60 GRAPHICS 0
70 POSITION 10,10:? "THIS IS PAGE 2.":POSITION 2,20:? "PRESS

1,2,3 OR 4 FOR THAT PAGE."
75 ? "PRESS RETURN TO CONTINUE."
80 DLL2=PEEK (560) : DLH2=PEEK (561)
85 REM ******************************
90 POKE 106,A-16
100 GRAPHICS 0
110 POSITION 15,10:? "THIS IS PAGE 3.":POSITION 2,20:? "PRESS

1,2,3 OR 4 FOR THAT PAGE."
115 ? "PRESS RETURN TO CONTINUE."
120 DLL3=PEEK(560) :DLH3=PEEK(561)
125 REM *****************************
130 POKE 106,A-24
140 GRAPHICS 0
150 POSITION 20,10:? "THIS IS PAGE 4.":POSITION 2,20:? "PRESS

1,2,3 OR 4 FOR THAT PAGE."
155 ? "PRESS RETURN TO CONTINUE."
160 DLL4=PEEK(560) :DLH4=PEEK(561)
165 REM *****************************
168 POKE 764,255:GOSUB 4000
170 CH=PEEK(764)
180 IF CH=31 THEN 190
181 IF CH=30 THEN 200
182 IF CH=26 THEN 210
183 IF CH=24 THEN 220
184 IF CH=12 THEN 230
185 GOTO 170
190 POKE 560,DLLl :POKE 561 ,DLHl :GOTO 170
200 POKE 560,DLL2:POKE 561,DLH2:GOTO 170
210 POKE 560,DLL3:POKE 561,DLH3:GOTO 170
220 POKE 560,DLL4:POKE 561,DLH4:GOTO 170
230 POKE 106,A:RUN "D:NEXT2"
4000 X=PEEK(16):IF X=128 THEN 4020
4010 POKE 16,X-128:POKE 53774,X-128
4020 RETURN

EXAMPLE :3

Example 3 is the same as Example 2, but with graphics
instead of text. Although it wi I I seem obvious to some of
you, al I you need to do is substitute graphics type commands
for the text commands of Example 2. We used four simple bar
graphs, but you could draw very complicated pictures if you
wanted. Remember that the material that you place on a
screen doesn't effect the basic method we are using. Even if

-7-

you fl I I up the screen, the computer just keeps looking at
the Display List to see where to get it's screen data. No
more watching compl icated pictures drawn out every time you
need them. Now you can store them ahead of time in memory.

5 TRAP 10
10 GRAPHICS 5
15 COLOR 1 :PLOT 5,5:DRAWTO 5,35:DRAWTO 75,35
20 COLOR 2:PLOT 10,34:DRAWTO 10,25:DRAWTO 5,25:POSITION 5,34

:POKE 765,2:XI0 18,#6,0,0,"S:"
25 ? "PRESS 1,2,3, OR 4 FOR BAR GRAPHS OF":? "THE YEARS 1981,

1982,1983 OR 1984.":? "PRESS RETURN TO GO ON."
30 A=PEEK(106)
40 DLL1=PEEK(560) :DLH1=PEEK(561)
45 REM ******************************
50 POKE 106,A-8
60 GRAPHICS 5
65 COLOR 1 :PLOT 5,5:DRAWTO 5,35:DRAWTO 75,35
70 COLOR 3:PLOT 15,34:DRAWTO 15,20:DRAWTO 10,20:POSITION 10,

34:POKE 765,3:XI0 18,#6,0,0,"S:"
75 ? "PRESS 1,2,3, OR 4 FOR BAR GRAPHS OF":? "THE YEARS 1981,

1982,1983 OR 1984.":? "PRESS RETURN TO GO ON."
80 DLL2=PEEK(560):DLH2=PEEK(561)
85 REM ******************************
90 POKE 106,A-16
100 GRAPHICS 5
105 COLOR 1 :PLOT 5,5:DRAWTO 5,35:DRAWTO 75,35
110 COLOR 1 :PLOT 20,34:DRAWTO 20,15:DRAWTO 15,15:POSITION 15,

34:POKE 765,1:XI0 18,#6,0,0,"S:"
115? "PRESS 1,2,3, OR 4 FOR BAR GRAPHS OF":? "THE YEARS 1981,

1982,1983 OR 1984.":? "PRESS RETURN TO GO ON."
120 DLL3=PEEK(560):DLH3=PEEK(561)
125 REM *****************************
130 POKE 106,A-24
140 GRAPHICS 5
145 COLOR 1 :PLOT 5,5:DRAWTO 5,35:DRAWTO 75,35
150 COLOR 2:PLOT 25,34:DRAWTO 25,10:DRAWTO 20,10:POSITION 20,

34:POKE 765,2:XI0 18,#6,0,0,"S:"
155? "PRESS 1,2,3, OR 4 FOR BAR GRAPHS OF":? "THE YEARS 1981,

1982,1983 OR 1984.":? "PRESS RETURN TO GO ON."
160 DLL4=PEEK(560) :DLH4=PEEK(561)
165 REM *****************************
168 POKE 764,255:GOSUB 4000
170 CH=PEEK(764)
180 IF CH=31 THEN 190
181 IF CH=30 THEN 200
182 IF CH=26 THEN 210
183 IF CH=24 THEN 220
184 IF CH=12 THEN 230
185 GOTO 170

-8-

190 POKE 5bO,DLL1:POKE 561,DLH1:GOTO 170
200 POKE 560,DLL2:POKE 561,DLH2:GOTO 170
210 POKE 560,DLL3:POKE 561,DLH3:GOTO 170
220 POKE 560,DLL4:POKE 561,DLH4:GOTO 170
230 POKE 106,A:RUN "D:NEXT3"
4000 X=PEEK(16):IF X=128 THEN 4020
4010 POKE 16,X-128:POKE 53774,X-128
4020 RETURN

EXAMPLE 4-

This example draws a shape on each page. Then, by
f Ii pp i ng screens you can an imate the shape I Remember that
any set of data can be used for the shape so why not copy
this program to your disk/cassette and try your own shapes.
Another idea would be to draw a business logo and move it
across a chart of profits. Use your imagination, or just
play if you like. The posibilities are endlessl

3 GRAPHICS 0
5 TRAP 10
10 GRAPHICS 5
15 COLOR 1
20 READ X,Y: IF X=O THEN 30
25 PLOT X,Y:GOTO 20
27 DATA 9,23,10,23,11,23,9,24,10,24,11,24,10,25,8,26,9,26,

10,26,11,26,12,26,7,27,9,27,10,27,11,27,13,27
28 DATA 6,28,9,28,10,28,11,28,14,28,9,29,10,29,11,29,9,30,

10,30,11,30,9,31,11,31,8,32,12,32,7,33,13,33,7,34,13,34
29 DATA 7,35,8,35,9,35,13,35,14,35,15,35,0,0,0
30 A=PEEK(106)
35 ?" HUPI"
40 DLL1=PEEK(560):DLH1=PEEK(561)
45 REM ******************************
50 POKE 106,A-8
60 GRAPHICS 5
63 COLOR 1 :RESTORE 77
65 ?" TWOI"
70 READ X,Y:IF X=O THEN 80
75 PLOT X,Y:GOTO 70
77 DATA 19,23,20,23,21,23,19,24,20,24,21,24,20,25,18,26,19,

26,20,26,21 ,26,22,26, 17,27, 19,27,20,27,21 ,27,23,27
78 DATA 17,28,19,28,20,28,21,28,23,28,19,29,20,29,21,29,19,

30,20,30,21,30,19,31,21,31,19,32,21,32,18,33,22,33
79 DATA 18,34,22,34,18,35,19,35,20,35,22,35,23,35,24,35,0,0
80 DLL2=PEEK(560) :DLH2=PEEK(561)
85 REM ******************************

-9-

90 POKE 106,A-16
100 GRAPHICS 5
103 ? " THREE!"
105 COLOR 1: RESTORE 117
110 READ X,Y:IF X=O THEN 120
115 PLOT X+20,Y:GOTO 110
117 DATA 9,23,10,23,11,23,9,24,10,24,11,24,10,25,8,26,9,26,

10,26,11,26,12,26,7,27,9,27,10,27,11,27,13,27
118 DATA 6,28,9,28,10,28,11,28,14,28,9,29,10,29,11,29,9,30,

10,30,11,30,9,31,11,31,8,32,12,32,7,33,13,33,7,34,13,34
119 DATA 7,35,8,35,9,35,13,35,14,35,15,35,0,0,0
120 DLL3=PEEK(560) :DLH3=PEEK(561)
125
130
140
143
145
150
155
157

158

159
160
165
168
170
180
181
182
183
184
185
19U
200
210
220
230

REM *****************************
POKE 106,A-24
GRAPHICS 5
? " FOUR!"
COLOR 1 :RESTORE 157
READ X,Y:IF X=O THEN 160
PLOT X+20,Y:GOTO 150
DATA 19,23,20,23,21,23,19,24,20,24,21,24,20,25,18,26,19,
26,20,26,21,26,22,26,17,27,19,27,20,27,21,27,23,27
DATA 17,28,19,28,20,28,21,28,23,28,19,29,20,29,21,29,19,
30,20,30,21,30,19,31,21,31,19,32,21,32,18,33,22,33
DATA 18,34,22,34,18,35,19,35,20,35,22,35,23,35,24,35,0,0
DLL4=PEEK(560) :DLH4=PEEK(561)
REM *****************************
POKE 764,255
CH=PEEK(764)
IF CH=31 THEN 190
IF CH=30 THEN 200
IF CH=26 THEN 210
IF CH=24 THEN 220
IF CH=12 THEN 230
GOTO 170
POKE 560,DLL 1 :POKE 561 ,DLH1 :GOTO
POKE 560,DLL2:POKE 561,DLH2:GOTO
POKE 560,DLL3:POKE 561,DLH3:GOTO
POKE 560,DLL4:POKE 561,DLH4:GOTO
POKE 106,A:RUN "D:NEXT4"

170
170
170
170

EXAMPLE 5

Notice line 7 which stores the value held in memory
location 559. Then line 13 POKEs 559 with a O. Well, this
neat trick turns off the screen so that the pictures are
drawn without your seeing them. It also speeds up the
computer by about 30% depending on graphics mode. Want to
know why? Send us $40. and we ... , oh well, I'll tell you.
Location 559 controls the ANTIC Chip which puts the video on

-10-

the screen. Use the original value, stored In "NON" to turn
it on. Use 0 to turn it oft. Line 169 is where we turn the
display back on.

THIS WORKS FOR ANY PROGRAM!

5 TRAP 10
7 NON=PEEK(559)
10 GRAPHICS 5
13 POKE 559,0
15 COLOR 1
20 READ X,Y:IF X=O THEN 30
25 PLOT X,Y:GOTO 20
27 DATA 9,23,10,23,11,23,9,24,10,24,11,24,10,25,8,26,9,26,

10,26,11,26,12,26,7,27,9,27,10,27,11,27,13,27
28 DATA 6,28,9,28,10,28,11,28,14,28,9,29,10,29,11,29,9,30,

10,30,11,30,9,31,11,31,8,32,12,32,7,33,13,33,7,34,13,34
29 DATA 7,35,8,35,9,35,13,35,14,35,15,35,0,0,0
30 A=PEEK(106)
35 ? " HUP!"
40 DLL1=PEEK(560):DLH1=PEEK(561)
45 REM ******************************
50 POKE 106,A-8
60 GRAPHICS 5
62 POKE 559,0
63 COLOR 1 :RESTORE 77
65 ? " TWO!"
70 READ X,Y: IF X=O THEN 80
75 PLOT X,Y:GOTO 70
77 DATA 19,23,20,23,21,23,19,24,20,24,21,24,20,25,18,26,19,

26,20,26,21,26,22,26,17,27,19,27,20,27,21,27,23,27
78 DATA 17,28,19,28,20,28,21,28,23,28,19,29,20,29,21,29,19,

30,20,30,21,30,19,31,21,31,19,32,21,32,18,33,22,33
79 DATA 18,34,22,34,18,35,19,35,20,35,22,35,23,35,24,35,0,0
80 DLL2=PEEK(560) :DLH2=PEEK(561)
85 REM ******************************
90 POKE 106,A-16
100 GRAPHICS 5
102 POKE 559,0
103 ? " THREE!"
105 COLOR 1:RESTORE 117
110 READ X,Y:IF X=O THEN 120
115 PLOT X+20,Y:GOTO 110
117 DATA 9,23,10,23,11,23,9,24,10,24,11,24,10,25,8,26,9,26,

10,26,11,26,12,26,7,27,9,27,10,27,11,27,13,27
118 DATA 6,28,9,28,10,28,11,28,14,28,9,29,10,29,11,29,9,30,

10,30,11,30,9,31,11,31,8,32,12,32,7,33,13,33,7,34,13,34
119 DATA 7,3?,8,35,9,35,13,35,14,35,15,35,0,0,0
120 DLL3=PEEK(560):DLH3=PEEK(561)
125 REM *****************************

-11 -

130 POKE 106,A-24
140 GRAPHICS 5
142 POKE 559,0
143 ? " FOUR!"
145 COLOR 1 :RESTORE 157
150 READ X,Y:IF X=O THEN 160
155 PLOT X+20,Y:GOTO 150
157 DATA 19,23,20,23,21,23,19,24,20,24,21,24,20,25,18,26,19,

26,20,26,21,26,22,26,17,27,19,27,20,27,21,27,23,27
158 DATA 17,28,19,28,20,28,21,28,23,28,19,29,20,29,21,29,19,

30,20,30,21,30,19,31,21,31,19,32,21,32,18,33,22,33
159 DATA 18,34,22,34,18,35,19,35,20,35,22,35,23,35,24,35,0,0
160 DLL4=PEEK(560) :DLH4=PEEK(561)
165 REM *****************************
168 POKE 764,255
169 POKE 559,NON
170 CH=PEEK(764)
180 IF CH=31 THEN 190
181 IF CH=30 THEN 200
182 IF CH=26 THEN 210
183 IF CH=24 THEN 220
184 IF CH=12 THEN 230
185 GOTO 170
190 POKE 560,DLL1 :POKE 561 ,DLHl :GOTO 170
200 POKE 560,DLL2:POKE 561,DLH2:GOTO 170
210 POKE 5bO,DLL3:POKE 561,DLH3:GOTO 170
220 POKE 560,DLL4:POKE 561,DLH4:GOTO 170
230 POKE 106,A:RUN "D:NEXT5"

METHOD :2

This method differs only slightly from the first, but
al lows you more control of what goes on. The examples wi I I
explain the differences.

Instead of using
store the original #
more meaningful to
into location 106.

4 Pl06=PEEK(106)

EXAMPLE 6

a variable called "A", we use "Pl06" to
of pages In your memory. This will be

us. P106 stands for the value to POKE

5 ? "t":? "AT PAGE ONE!":? "PRESS 1 OR 2 FOR THAT PAGE."
7 ? "PRESS RETURN TO GO ON."

-12-

10 DP=PEEK(560)+PEEK(561)*256
12 POKE 16,64
15 SAV=PEEK(DP+5)
16 POKE 106,Pl06-4:POKE 89,SAV-4
17 ? "AT PAGE TWOI":? "PRESS 1 OR 2 FOR THAT PAGE.":? "PRESS

RETURN TO GO ON."
30 POKE 764,255:TRAP 80
33 CH=PEEK(764)
35 IF CH=31 THEN 45
36 IF CH=12 THEN 60
37 IF CH=30 THEN 40
38 GOTO 33
40 POKE DP+5,SAV-4
43 GOTO 33
45 POKE DP+5,SAV
55 GOTO 33
60 POKE 106,Pl06:RUN "D:NEXT6"

Line 10 stores the location of the start of the DL as
one decimal number. Line 15 store the number we are after.
It comes 5 bytes after the start of the DL, so we PEEK at
DL+5, ie. It is the sixth number in the DL.

Line 16 POKEs memory location 106 down by a number of
pages (4 In this case). This I ine also stores a new value we
need: location 89. This one is a copy of the value in DP+5
wh I ch te I I s the system where the start of the d i sp I ay data
Is. The computer looks at the DL whenever a GRAPHICS command
is used, and stores that va I ue here so that it w II I know
where the start of your data Is. After a Graphics call, we
are free to change this number (In 89) to "fool" the
computer into doing what we want. After POKEing both of
these locations down far enough, we now write some text to
the new area of memory on line 17. This could be done many
times if you have enough RAM.

Now when lines 30 to 38 choose which screen you want, lines
40 or 45 just change the value In the first Display List
that controls where the first DL gets it's data from. We
don't care about a second (or 3rd or 4th •••) Display List as
in Example I'.

SO WHAT?

We II, now by just chang I ng one va I ue at the start of the
first Display Llst+5 (DP+5), you can tel I the system to go
display different data from al lover memory. This change
could be easi Iy controlled with a joystick as we do In our
Scrolling Program, Tricky Tutorial #2.

Also, you might want to look at one screen whl Ie you are
drawing several others; for example while a decision was
being made about options on the first.

-13-

EXAMPLE 7

This does what we just suggested. You can not only look
at two screens (press 0 for screen 1 and 4 for screen two),
but by inputing other positive numbers you can look down in
memory. By Inputlng negative numbers, you look up In memory
unti I you reach the top. The stuff you see on the screen
wi I I be the alpha-numeric equivalent of the BASIC program,
your screen data, the Operating System or whatever you are
looking at. The only changes to this program are:

Lines 20 & 33 input a number.

Line 35 tests that number to see If It Is too big.

Line 40 redirects the DL as before, but with your value
Instead of the previous fixed value of 4.

4 P106=PEEK(106)
5 ? "t":? "AT PAGE ONEI":? "PRESS START AND RETURN AT THE

SAME TIME TO GO ON.":? "PRESS BETWEEN 0 AND ";P106-5;
7 ? " TO LOOK AT MEMORY IN 1/4 PAGE SCREEN INCREMENTS.":?

"THEN PRESS RETURN. REPEAT AS DESIRED."
10 DP=PEEK(560)+PEEK(561)*256
12 POKE 16,64
15 SAV=PEEK(DP+5)
16 POKE 106,P106-4:POKE 89,SAV-4
17 ? "AT PAGE TWOI":?" PRESS START AND RETURN AT THE SAME

TIME TO GO ON"
20 DIM A(2)
25 POKE 53279,8
30 TRAP 30: Z=PEEK (53279) : IF Z=6 THEN 80
33 INPUT A
35 IF A>(P106) THEN 60
40 POKE DP+5,SAV-A
55 GOTO 30
60 ? "NUMBER TOO LARGE, MUST BE LESS THAN";P106-5:? "WE ARE

NOW AT 4 PAGES DOWN IN MEMORY"
65 POKE DP+5,SAV-4:POKE 89,SAV-4
70 GOTO 30
80 TRAP 40000:POKE 106,P106:POKE 89,SAV:POKE DP+5,SAV:RUN

"D:NEXT7"

-14-

EXAMPLE B

The last example Is exactly the same as Example 7,
except it looks at memory using a colorful graphics
viewpoint of the data there. Be sure to try negltlve numbers
on the last two examples also. Since the program Is designed
to look up or down In memory, the negltlve numbers look down
while the positives look higher in RAM. You can look most
anywhere from within the BASIC Cartridge to the data flowing
in and out of the Operating System Ctry large negative
numbers for thls) .•. See if you can find an area that is
changing for real special effects.

4 P106=PEEK(106)
5 GRAPHICS 5:COLOR 1 :PLOT 10,10:DRAWTO 10,20:DRAWTO 40,20:

DRAWTO 40,10:DRAWTO 10,10
10 DP1=PEEK(560)+PEEKC561)*256
12 POKE 16,64
15 SAV1=PEEKCDP1+5)
16 POKE 106,Pl06-8
17 GRAPHICS 5:COLOR 2:PLOT 20,20:DRAWTO 20,30:DRAWTO 30,30:

DRAWTO 30,20:DRAWTO 20,20
20 DIM A(2)
21 DP2=PEEK(560)+PEEKC561)*256
22 SAV2=PEEKCDP2+5)
25 POKE 53279,8
27 ? "PRESS START AND RETURN TOGETHER TO GO ON."
30 TRAP 30:Z=PEEK(53279): IF Z=6 THEN 80
33 I NPUT A
35 IF A>CP106) THEN 60
40 REM POKE DP1+5,SAV-A
41 POKE DP2+5,SAV1-A
55 GOTO 30
60 ? "NUMBER TOO LARGE, MUST BE LESS THAN";Pl06-5:? "WE ARE

NOW AT 4 PAGES DOWN IN MEMORY."
65 POKE DP+5,SAV-4:POKE 89,SAV-4
70 GOTO 30
80 TRAP 40000:POKE 106,P106:POKE 89,SAV:POKE DP+5,SAV:RUN

"D:NEXT8"

THATPS ZT

Just take any of our examples and try to modify them so
that you can both understand the methods and make your
programs look and run much cleaner. I hope you find many new
uses for PAGE FLIPPING. Please write and tel I me about your
accomplishments using techniques in TRICKY TUTORIALS. BYE!!

-15-

TRICKY TUTORIAL #4
BASICS OF
ANIMATION

BASICS OF ANIMATION

Basics of Animation is a set of
simple programs designed to teach those
new to computers how to make shapes
appear to move around on the screen. The
three methods demonstrated are animation
using the PRINT COMMAND, PLOT COMMAND,
and ATARI'S great PLAYER/MISSILE
GRAPHICS.

The person using this lesson should
be fami I iar with BASIC programming so
that he or she can read the code that is
included. Since the program is not
protected, the user is encouraged to try
their own modifications inorder to gain
a greater perspective of the art of
animation.

This program requires 16k of memory
for TAPE users and 24k for those using
DISK .

Educat i ona I Software inc.
4565 Cherryvale
Soque I, CA 95073

(408)476-4901

EDUCATIONAL

SOFTWARE

presents

BASICS

of

ANIMATION

TRICKY TUTORIAL tm
**4

(e] 1981 by S.C.E.S.

TAPE •••

TRICKY TUTORIAL #4

BASICS OF ANIMATION

by
Robin Sherer

HOW TO LOAD

Place the tape in your recorder, label side up. Make
sure the tape Is rewound, and the BAS IC Cartr I dge I sin
place. Also, reset the counter to zero. Push PLAY on the
recorder and type RUN"C: and press RETURN. If the program
won't start to load, try positioning forward or backward a
little.- The easiest way to find the beginning Is to listen
to the "noise" on the tape with a regular recorder. When you
find the steady tone, you have the beginning of the program.
We recommend you write down the number on your recorder's
counter as each program examp I e starts. Th I s wi I I make it
easier to find each part later on.

DISK •••

To load and run the disk, first turn on your disk drive.
W hen the bus Y I i g h t g oe sou t, P I ace the dis kin the d r i ve •
Now turn on the computer, with the BASIC Cartridge in place.
The program wi" load each part and run by itself.

Any defective tapes or disks should be returned to:

Educational Software inc.
4565 Cherryvale
Soquel, CA 95073

(408) 476-4901

- 1 -

LET TliE ANIMATION BEGINl

What does animation mean to you? Were you hoping that by
purchasing this program you would then be able to do
cartoons on the screen in Intricate detall •••

or
did you

perhaps just hope to learn some basics to move a lew shapes
around the screen lor a game or business application you are
programming? Well, we're going to start out this lesson by
discussing what can and also cannot be done on your ATARI.

Animation requires two main qualities to appear nicely
on your screen. First, you must control enough points so
that something seems to be happening. Then you must move
these poinTs around last enough so that they appear life-like.

- 2 -

Rule number one:
IT CAN'T BE DONE FROM BASIC

Walt! Don't panic and return this program to us before
you read on. We know you are not a Assemb I y language
programmer. Neither are we, except when necessary.

BASIC In the ATARI Is slow because It Is an Interpreter,
mean I ng that every time you te I lit to go move some po i nt
around on the screen, It has to first go and figure out
exactly how to do what you've asked. This takes so much time
that even with the machine doing hundreds of thousands of
steps per SECOND, It can only move a single point around as
fast as our first two examples. The way around this Is to do
one of four things:

1) You can program in the machine's language, where It
doesn't have to interpret. This, however, would be
too difficult for the average ATARI user.

2) You can use machine language routines built Into the
machine. A simple example of this Is what we are
doing in Part 2 using the PRINT command to draw
some what complicated shapes very quickly . In fact
if you look at the code for the space bug, you wi I I
see a delay loop was put In to slow It down! Also,
although too complicated to explain in a
introductory program I ike this, you can redefine
the characters you are printing to draw almost
anything you can imagine. The monsters In SPACE
INVADERS are redefined letters of the alphabet,
and are moved about by PRINT commands.

3) You could also go buy a larger BASIC that includes
some machine language movement routines to move your
shapes around. (Basic A+ or Microsoft Basic).

4) You can use PLAYER/MISSILE GRAPHICS I ike the tie
fighter program we include as an example.

ANIMATION USING THE PLOT COMMAND

If you haven't already done so, now is the time to load
in the program. Follow the instructions In the program and
use your Joystick to move a simple square around the screen.
This is slmiliar to the movement in games of the SURROUND
type. As you can see whi Ie you follow the program, it is
really quite simple to move a square! We show you the code
here so you can see the necessary steps to move the square.
Don't worry about learning it all now.

- 3 -

TH I SIS THE CODE FOR MOV I NG A SQUARE:

10100 GRAPHICS 4~POKE 764~255:H=20~Y=12
.:lI .. CI.1..03 "'? ··t-Il:::1R1f:: IS OUR SnUAIRE u ,:? ··USIE " .. OUR .JOVS

·lI··:I:CIK ··U··(J MCitij.)lH: J:T """" WUEN 1}{lllttiE PRIESS ti-".!IIIt4I'lf IKEYo.

10105 U=STXCK~O~
10110 Y=Y+(U=13~+'U=9~+{ U =5~-(U=10~-(U=14~-CU

::-.:: 6)1

10120 H=M-'U=10~-'U=11'-'U=9~+(U=6~+(U=7'+(U=
S>
10145 IF X(1 THEN H=1
1~146 IF X>79 THEN H=79

10147 IF V(1 THEN V=1
10148 IF Y>3~ THEN V=39
10150 COLOR 1~PLOT H.Y~IF PEEKC764~=255 THEN
JI..O.J..O"S

The better games of this type add another player to
compete with and leave a controlled trai I behind them. The
trai I Is kept track of by the computer. Then, when you touch
a location where the computer's "records" show a trai I is,
it scores for the other player

After you have run the program through to the po I nt
where we show you how to erase the tral I, we suggest you
stop the program (press BREAK and remove your tape or disk).
You can always come back and finish it later. To continue
with disk, type RUN "D:PLOT2.DSK". For tape, use RUN"C:".
The reason for stopping now is for you to write a small
program that makes use of a square being moved using the
PLOT statement. The easiest way would be for you to look at
the listing.

HERE'S THE CODE FOR MOVING A SQUARE, BUT WITHOUT A TRAIL:
.:R.. If]I 5 ::l 1[:11 IV :.::: .~'~ T][I[~ Ii« C 1[1t ::p
10525 SETCOLOR 2 p O.O:COLOR 2
10530 IF V=14 THEN Y=Y-1:PLOT H.Y+1
10540 IF U=13 THE~ Y=Y+1:PLOT H.Y-1
10550 IF U=11 THE~ H=H-1:PLOT H+1.Y
10560 IF U=7 THE~ H=X+1~PLOT X-1.Y
.:u. ~]I 5 ·7 5][IF'·

.:t05~:J;I[j. TF

.:Y.. tOt 5; ",-:;It 0 ::[IF

H <.1_ TB-1IEl'tI! :H;::.::1

:PC > ·7"5\1 ··r IJ-oj E !Nt :H ::::;?' .9'

''If < .:B.. ·1f It·" IE: N "II" :~;: : .:iL

10600 IF V>3~ THE~ V=39
10610 COLOR 1:PLOT M,Y:IF PEEK(7641=255 THEN
:lLI[\15::;;:0

Lines numbered from 10520 to 10610 are the ones that
move the square around. Add to our program using your own
ideas. Also, since the code exists in the program we sent
you, please feel free to delete the I ines you don't need,
and start with them already in the computer to save time
(the Assembler cartridge could do this quickly!). Please be
sure if you save your work, it is on a separate tape or
disk.

- 4 -

NOTE: Even If you intend to do only non-game appl ications,
the learning you gain from writing a simple game will help
other attempts at animation.

Before going on, we want to point out that when using
PLOT and erasing your "trail", you have to actually PLOT the
position you are erasing with the color of the background.
This makes that position seem to disappear as you PLOT the
next position in the color of your choice.

The next thing I do to show you the BASICS OF ANIMATION
is to draw out the famous "Tie Fighter" shape and move it
using the PLOT command.

PLEASE NOTE THAT THIS IS ONLY AN EXAMPLE AND THE SHAPE
COULD BE ANYTHING FROM A BUSINESS TO A HOME APPLICATION. IT
ALSO COULD BE MUCH LARGER THAN WE DREW. I keep our programs
simple to allow everyone to understand the PRINCIPLES
INVOLVED, but with more memory and time you can do great
things like this:

- 5 -

Here Is how to Input points to plot:

}}ifj 2, 1 3, 1 4, 1)5.}:t 6, 1 7, 1 8 , 1
-: :-:.:-. -:.".

:r~:2:; 2, 2 : ~/g~ 4, 2)t(? 6, 2 7, 2 8, 2

J:it 2 , 4 :~:nf 4 , 4 : :~}$ 6 , 4 7 , 4 8 , 4

y}?~: 2 , 5 3 , 5 4, 5 :5.:}$'; 6, 5 7 , 5 8 , 5
..... , ..

1 , 6 2 , 6 3 , 6 4 , 6 5 , 6 6 , 6 7 , 6 8 , 6

1 , 7 2 , 7 3 , 7 4 , 7 5 , 7 6 , 7 7 , 7 8 , 7

1 , 8 2 , 8 3 , 8 4, 8 5 , 8 6 , 8 7 , 8 8, 8

F i gure 1 .

Look at Figure 1. drew out a shape at the upper I eft
corner of what is ca II ed an X-Y coord I nate system. The
upper left most point that Is fl lied in is at x=l and y=l.
Moving down the figure the next point is at x=1,y=2, then
x=1,y=3, etc. with the last point of OUR shape at x=5,y=5.
The computer doesn't care what order you input points into
PLOT statements, just Input them all. This means you don't
have to use the points In the same order as we did, or even
use the same points. Now, to put these into a BASIC program
we use the DATA statement (read your BASIC manual!). It
looks as follows:

DATA 1,1,1,2,1,3,1,4,1,5,2,3,3,2,
3,3,3,4,4,3,5,1,5,2,5,3,5,4,5,5

Every two numbers represent one point to plot.

- 6 -

Here is The compleTe TIE FIGHTER code:

11820 GRAPHICS 4:X=40:Y=20:COLOR 1:GOSUB ~133
o .. "7' u « U -S E ~J 0 V "5 T :Ie K TO 11'10 V IE IF T II:; Hi T E IR R. ~? R • IP IR IE 5 S ;(:11
JNj ''I!' KEV TO GO ON"
11825 POKE 764.255:5PEIED=5:5ETCOLOR 2~O.O:TRA
IP .1 . .:II..a20: "5::=5 PIEEK>

11830 U=STICK'O~:IF U = 15 THEN .:11..1832
.1_1..83.:1.. C';OTO .1..1.8 :3:5
11832 IF PEEK'764~=255 THEN .:11..1830
11833 IF CNTR=2 THEN ~2600
~l._t.834 IGOTO .:ll:2:000

11835 COLOR 2:GO-SUB .:11..1'30
J..184.1. Y=Y +(U=13~*S+~U=9]-S+~U = 5~*S - CU=~O~*S -C
11,)! :::: 14.:) *'~j'--' ~~ U=;f:].:) *s
1184:2: H=M -(U=10'*5 - 'U=.:II..~]*5-~U=9]*5+[U=6>*5+(

I) =:: -,7:) *5 .. il- 11:: ijJ ::= IS:,) ''*S
1.1920 COLOR 1:G05U8 11'30:XF PEEK'764~=255 TH
~.:: IN! .1. .:II.. H 3 0
.1.1930 RESTORE 11960 :P OKE 752.1
11940 READ A~B:IF A=O THEN .:11...:11..'70
11950 PLOT A+M.B+Y:GOTO 11340
11960 DATA 1~1.1.2p.:IL.3~.:II..p4.1.5.2p3.3~2.3p3.3p

4p4p2.4p3.4.4.5 ~ 3.6fl1.6.2 .6.3.6.4p6~5.0 pO.O
.:0 .. _1. <]1 7 {3: IR IF T JlJ r.;j~ IJ><II

The last part of this lesson allows you to move the
cursor up to the data I ine we used for the tie fighter
shape. The program Is now stopped, waiting for you to enter
new numbers into the DATA statements. If a mistake occurs,
you can try pressing RESET and typi ng RUN, but if the DATA
Statements get too messed up it may be easier to reload in
the program. You probal Iy won't have to go through this
since it Is easy to change the required lines in the
program.

All you need to do Is type In new numbers that you have
chosen, based on a drawing of YOUR shape made on standard
grid paper. Once the DATA statement looks correct, press
RETURN to enter It and then type CaNT and press RETURN again
to restart the program. Also, you may use numbers bigger
than the 8,8 for your shape, but when you move it, If it
goes off screen It will bomb the program since we only
allowed In our code for the smaller shape. The more points
you use, the slower It goes. Again, feel free to copy and
modify our program or, If you like, just slowly change a
small part of It to see how your own changes can add to it
or make it better!!!

- 7 -

ANIMATION USING TIlE PRINT CO~ND

We included the "Bird at the Ocean" from the ATARI
BASIC manual as a convenience for those who never typed it
in. It demonstrates the simple use of alternating between
two shapes in a PRINT command in order to obtain a feel ing
of motion. We will use this method now. Again, after
finishing this part please modify the shapes or the
background to get a feel for your own ideas. Backgrounds are
simply created with PLOT & DRAWTO commands and the special
Graphics Characters. We next show you animation of a single
character in the horizontal and vertical direction. They
both have simple sounds to demonstrate how easy sound Is to
add.

HERE • S TIlE CODE FOR TIlE SPACE BUG:

:2:.:1.. 3..1. 0 I!:i IR tl po iii I C '5 .:lL;fJ;:: .'?' :jj:jj:6 .i: 1111 iI'<H tj) HILIE::'1f '5 "U" u:;t ".,;' i~':Ji -s. p I~:h (;: IE':

UJ;lJIlG"W = FOR W=.1. TO 6010: HIEXT 11--1
2.:1..320 TRAP 23512
2:_t.3:~O "? Rnflii··: :1-(=.:1. : "H":=:.:iLO: IPOIKIl::: 7'!!:J;2 ... :IL:: ICINIT=:O

2.1.340 PO'5ITION K .. Y
~;'.:.:L~:!r.45 ?. IIR ~ POSITION :~1:.f' 'I!'·1I··.:I..

2..:1.3. 50 '? I 'Vrl
W ~ P 10 '5 Ji.: '1f':X: 10 IN! :H: .. "i' .1/":2:

2: .:I.. 3: 6 0 .. ? « U hi.. n I : IP 0 S J[11"" T tIJt NI H p "st' -If· :::.~

2 J_ 3'701 ? • "i H""
2139.:1.. SOUND .:I..fl2.:1..0R~ORCHT+2

21392 FOR W =1 TO 20:NEHT W:POSXTION H~Y
:Z.1.3:93

2.:1.3:94

2:_1..3:95

2.:1.3.'36
2J .. :~·3·7

2.:1.400
:2:.:1 .. 4.1. I(]I
2.1.420

2:.:1..4·30

2:.1. 4· 3.:1.

2.1.4.32

.'?o. W /I . POSITION :1<1: ., y -if . . 1.

'? • • II •
n IP'OSITION :H: ''I'' · .. ·2 .P

? R, /I • : POSI"r:ION :H: .r ' .iI-':3:

? • U
• n

K=H+2:POSITIOINI K .. Y
? 1/1 UR: POSITION X ... V+.1

? •• ,/ •• = P05 ::U: "U":ION :H: J' ',,'-11-2

? ~ POSIT:I:ON)of..r "1+3

? •• ".1
FOR W=.:I.. TO 20:NEMT W:P05ITION

• « UW ~ IPOS:r"II-ION H.r Y-if·.1.

2.:1..433 .?

2.1.434 '?

• •
• W

.R: IP'05J1:TIOINI H +2
Ii.: PO'5J['1I":I:ON H ... "1+3:

:2:J..4:;!:S? I.
2.1.446 SOUND
2.:1..460

U.

2.:1..4.50 IGOTO 2.:1..340

21466 H=.:I..:CNT=CNT+.:I..:IF CNT=5 THEN 2.:1..480
2.:1..470 GOTO :2:.1.340

21480 SOUND .1.~e,O ... O:IF COUNT=1 THEN 22566

- 8 -

"[,HIEN

The program wi II stop and a! low you to move the cursor
up to the six lines that hold the shape for the "SPACE BUG".
Change (using the special graphic characters) the shapes
ONLY BETWEEN the quotes. When done, move the cursor to the
top II ne and press RETURN unt I I a I lsi x II nes are re-entered
into memory. I f you goof up, c I ear the page and type GOTO
23500 and press RETURN. If you enter the new shape correctly
move to a eLANK area on the screen and type "CONT", then
press RETURN to see your shape move across the screen. When
you have played enough with our code, try adding backgrounds
first before your shape Is printed or perhaps try several
shapes. You wi I I quickly notice a main drawback to animation
using the PRINT command (and PLOT too); everything you move
over is rewritten and thus disappears

-Note-

To do full animation many additional tricks are taught in
our other Tutorials. This is not intended just to sel I more
programs, but you deserve to know how to use th~ ful I power
of your ATARI. Some of these other Tutorials Include PAGE
FLIPPING, MODIFICATIONS TO THE DISPLAY LIST AND SCROLLING.

- 9 -

PLAYER MISSILE GRAPHICS

You probally already have heard of the ATARI 's unique
feature called PLAYER MISSILE GRAPHICS (PMG). What PMG does
Is allow you to animate simple shapes around on the screen
without havl ng to redraw them as we did I n the ear I I er
lessons using PRINT and PLOT . This capability Is built Into
the hardware, so a II we have to do I s program the hardware
with simple POKE commands.

NOW COMES THE PROBLEM!

What makes PMG hard to explain Is that there are so many
built In features, and so many POKEs to do. We wanted to
reach a compromise with an Introductory lesson like this, so
we Include an example using PMG with some explalnatlon. Like
before, If you wi I I just take the time to modify our program
you w I I I see the effects of each change. It wou I d be even
better If you had a specific goal In mind, say to change the
shapes of the Players, or a different background. Please
note that the way this example was written Is not the best
It could have been done. It was wrlttrn long ago, but It
works and that was the goa I. The var I ous POKEs are I I sted In
more detail In our MASTER MEMORY MAP, and PMG Is more fu II y
explained In a seperate Tutorlal(#5).

- 10 -

HERE'S THE PGM CODE:

20 K=15:REH INITIAL POS OF P/M 1
30 TRAP :20

40 SOUND 3.13.8~2
f:"~6 PR::I:NT ·'flji··
60 GOSUB S80:REM BACKGROUND SUBROUTINE
70 SETCOLOIR 2.0~O~H=120:Y=90:REM SET BACKGRuU
HD COLOR AND PLAYER POSITION
86 POKE 704y~33:REM SETCOLOR PLAYERO TO BLUE
90 POKE 705~198:REM SETCOLOR PLAYER1 TO GREEN
100 A=PEEKC106~-6:POKE 54273 p A:PMBASE=256*A:R
EM SET PLAYER-MISSLE STARTING ADDRESS
110 POKE 559 p 46:POKE 53277,3:REM ENABLE PM GR
~PHIC5 HITH 2-LINE RESOLUTION
120 POKE 752.1:REM HAKE CURSOR IWUISABLE
130 FOR I=PHBASE+512 TO PMBASE+640:POKE I.O~N
EXT X:REM CLEAR OUT PLAYERO FIRST
140 FOR I=PMB~SE+640 TO PMBASE+768:POKE I.O:N
EXT I:REM CLEAR OUT PLAYER1 FIRST.THIS IS TO
PREUE~T RANDOM JUNK.
150 FOR I=PHB~5E+640+K TO PMB~SE+644+K:READ B
~POKE I~B~HEHT I:REM DRAW PLAVER1

160 DATA 153fl16~~255fl183~153
170 REM DATA FOR TIE SH~PE
160 FOR I=PHBASE+512+Y TO PMBASE+5~6+Y:READ A
:POKE I.A:HEKT I:REM DRAW PLAYERO
190 POKE 53256 y O:POKE 53260.18:REM SIZE OF PL
AYERO AND ALL MISSLES

200 POKE 53257.0:REM SIZE OF PL~YER1
210 DATA 153fl1a9~255.16~p153
~2:::t': 0 IP (ilK E C;' ~5 6 ~ :~~ :.,? •• P If,/: I::: S .~:J. .1. 'If" I[)I 5 T 0 jp' b til 1I''i1E:"·

230 REM S~ME SHAPE FOR OTHER PLAYER
240 REM NOW COMES THE MOTXOH/COLLISIO~ ROUTXH
ES
250 IF PEEKC7~4)=31 THEN 1650
260 F=PTRIG(O):REM READ TRIGGERS
:2:70 G=IPTRIG (.1.)

280 IF F=O OR MIS=1THE~ GOSUB 3~O:REM SLOW M
J['~j SILt:: IH: 0 U 'J']: WI u:::
2~0 IF G=O THEN GOSUB 520:REH FAST MISSILE MOV
If" 1I-~rj]lU"rXNE

3:00 POKE 6':..;;6, II:): TF 1f'"5 ::~::.:Ii.. OR II::;;S::::.jl "fii"MEH .,;;> ·"GREIE::H5

ij,COIt~:E::::··.j: S:GIBIRIE:G: ••

310 FS=O:GS=O~REM THESE
COlRlE

lE'J;lLlUlf:S SCOIf:eE:::"".~ 5IC:OU::t:EB

TELL ATARI TO PRI~T

320 POKE 53276~O:REM CLEAR
STERS TO USE AGAXN
330 1Ai:=PADDLIf:: ~~o :)

34.0 a=PAIL;'I!)LIE: (.1.::11

I(]I u.J "If COLLTS][OIi'f

350 POKE 53248.A:IF MIS=O AND A<>O THE~
53252~A-~:REM MOUE PLAYERO(~~D MISSILEO)

E~ LOCATIO~ INSTANTLV!

- 11

IP'OIKE
TO 1It«

360 POKE 53249.B:POKE 53253~B-~~REM SAME FOR
113> L stl "{ E n ,:l
370 GOTO 250~REM GO READ PADDLES AGAI~
380 REM SOUBROUTI~E FOR BLUE MISSILE
390 SOUND O.227-U*26a.I~T(~6-U/10~ ~REM M~KE 5
OU~D DECRE~SE AS MISSILE MOUES
400 U=U+1:POKE PMBASE+384+Y-UpO~POKE PMBASE+3
a :;g: "it- "If ".- 11.,11 .• .:II..

416 E=PEEK(53256~ ~IF E>O THEN HIT=1:REM TEST
U":' 0 IR U't :1: 'If ~

420 IF U>95 THEN 500:REM MISSILE MOVED FAR E~
o u ~::;; u-t

4. ~$. 0 .'''IX S ~::: .:t ~ u:;t, IE T IU R iN

440 HIT=O:FS=1:REM SAYS TO PRI~T NEW SCORE~MI
S & HIT ARE COUNTERS
450 SOUND 1.22~~10~12:POKE 53249 fl 2S0:FOR W=1
TO 200: HEX'lf W
460 SOUND 1~O~O.O
470 POKE 53243.120:POKE 53278.0:hcM REPOSITIO
~ PLAYER1 AND CLEAR COLLISION REGISTER
480 SCOREB=SCOREB+1
4'0 U=O~HIS=O:SOUND O~OpO~O:RETURN

530 IF HIT=1 THEN 440
510 U=O:MIS=O:SOUH& O.O.O.O~RETURW
520 SOUND O.200.ap8~p=o
530 FOR I=15 TO 130:POKE PMBASE+383+X~O:POKE
PMBASE+384+I.4: P=PEEK(53257~

540 IF P=3 THE~ 530
SSO INIEHT T
560
570

souno.u> l[jl.l' 0. 0. 0
IR IE: T IU IR N

580 REM P=PEEK'53257~=XF P=2 THEN RETURN
590 SOUND OpO.O.O:GS=1:REM SAYS TO PRINT ~EH
SCORE
60e RESTORE 630:S0UND 1 .1' 121.1'8.1'12
610 FOR I=PMDA5E+512 TO PMBASE+640:POKE I.O:N
EXT I:REM CLEAR OUT PLAYER FIRST

620 Y=75:FOR I=PHBASE+512+K+Y TO PHBA5E+516+K
+Y:IREAD B:POKE I.B:NEHT I:REM DRAW PLAYER
630 DATA 153.1'189.1'255.18'.1'153
64,0

650
666
670

FOR 1=384 TO 512:POKE PMBA5E+I.O:NEXT
SOUNI:> .:IL .. O~O .• O
S COIR EG::= SI[;: o J;j: IE: G ,ii-, ,:Il

IRETIlH~H

680 GRAPHICS 8:CHT=O
6~O COLOR 1:X=RHD(O~-319:Y=RNDCO~*153:CNT=CNT
+1:PLOT H.I'Y:IF CNT>150 THEN RETURN
."' 00 GO TO 690

- 12 -

LINE 50

LINE 70

LINES 80-90

LINE 100 :

LINES 130-140

LINES 150-160

LINES 250-370

Player Missile Graphics ExplanaTion

Clear the screen

The X and Y position of player one
is established here.

Player colors are stored in 704 to 707.

Memory location 106 holds the value
(in # of PAGES) of your top of memory.
We simply subtract 8 pages to make
room for the shapes of the Player to
be stored.

To create or erase a player, you POKE the
shape into memory where we reserved it in
line 100. We first erase the player by
Poking in all O's. Player 0 starts at the
value of PMBASE plus 512 and goes for 128
locations in memory. Player 1 starts at
640.

Read the shape into memory.

Ma in loop of program. Loc~ on 764 ho Ids
the last key pressed . When you run the
program, you will note that the missiles
don't move the same. One moves in a loop
that is fast because it doesn't go back
and allow any players to move. The
other is slow because it does. The
collision registers mentioned in the
comments to line 320 "record" when
certain things touch eachotheron the
screen. You determine what this location
looks for by the value you put into
623 (if desired). Lines 350 & 360
POKE the location that controls where
ACROSS the screen the P I ayers w il I
appear. If you don't plug in Paddles
the values transfered here wi I I be 0,
so the players wi I I be off screen.
Values of about 40 to 200 wi I I be on the
screen.

/

- 13 -

LINES 390-finlsh the rest I s rea I I Y just two subrout I nes
to move the mlssi les up and down the
screen. This Is done by erasing the
shape at it's current location, and
drawing It at a new place in memory
placing O's at the old memory locations,
and placing 1's In memory). If you
draw It close to the last location, the
motion wi I I be slower, but smooth. We
also add to the scores here when the
col I ision registers at 53256/7 don't
hold a O. Finally, the routine at line
690 just creates stars by random PLOTs
on the screen.

The only way that al I of these POKEs wi I I become
familiar to you is to get a hold of one of the publications
that gives detailed descriptions of each memory location
needed for PMG. Our Master Memory Map is good, and ATARI 's
Operating System manual is better (but very hard to read).
We hope you feel that this lesson was worth the cost.

Thanks •••.. bye!

- 14 -

EDUCATIONAL SOFTWARE

presents

TRICKY TUTORIAL #5

PLAYER MISSILE GRAPHICS

by

ROBIN ALAN SHERER

~o" Clilp
SIiHOal. GF
BASIC

PRDIiRAMMING

I: Ie I~-t
(n:::J

W~L.COf'llE
STUDEN15

(c)1982 by Educational Software
ATARI is a registered trade mark of Warner Communications

:t WISH :t.
COUL.D LeARN ,0 ANJMA1"e
SHAP(:S '-, K:_fE: j~g~

-rH05e:~

YOU CAN ANIMATE YOUR OWN CHARAC TER S ..•••
WITH PLAYER MISSILE GRAPHICS (PMG)!

Ok! You spent your hard earned money on this program
because everyone says that Player Miss i I e Graph i cs I s the
way to go, but you k now I tis too hard to ever rea I I Y
understand. Besides, you bought $2 5 worth of magazines for
the two page articles on the subjec t, and they al I said the
same thing (which made I ittle sens e to you). After al I that,
you got ATAR I' s book , DE RE ATAR I , wh i ch was great read i ng,
but Chris Crawford only explains the basic capabi I Ities of
PMG. How do you put It all to practic al use? Well

Were Going to
Write a GAME!

Most of us I Ike to play arc ade games, and since most
arcade games use cute littl e figures and a maze, we wi I I
design our game that way . One of my favorite games is called
PACMAN (tm). We can 't actua I I Y us e the same game as the
arcades due to I ega I prob I ems, but we can take the cute
I litle character and put him int o our our own hair raising
situation!

~P')fGSPEFtSOM l

AI I games take imagination. Let's put ours to work
making up al I kinds of shapes to animate and "play" with on
the screen. Some of these characters wi I I be used in
demonstrations within the 14 main programs. You can take
over where these lessons leave off and create any kind of
application you wish. Player/Missiles is not just for games.
Any time you need color or movement in your programs PMG is
the best way to get the job done. For examp Ie, ATAR I' s
SCRAM program, a Nuclear Plant Simulator uses Players and
Missi les for the various tanks and mechanisms on the screen.

WHAT IS A PLAYER/MISSILE?

The names Players and Missi les come from the original
use of these objects as guns (for the Player to use) and
bullets or Missiles for the "shot" that was fired. Now, of
course, many other uses exist, but the names are sti I I used.
Let's begin by looking at the original use of PMG, a space
game demonstrat i on. Run the first program now and fo I low
along in the discussion •••••••

MAK~ YOUR FANi,AG1 ES
COME AI-IVE L-EARN\NG~---~~

ATAJ</ GRAPH ICS ~

LOADING INSTRUCTIONS

Before I begin, some special notes are needed
tape users and those with only 16K of memory. When
about Player Missi Ie Graphics, I can't help but get

Orbie, Pi x el, and I were having so much fun, away.
2

t o help
teaching
carried
that we

wrote too many examples for this TUTORIAL. Once you finish
this lesson, you ' wi I I find yourself creating al I kinds of
animated creatures! Fortunately, my Robot helper, Prototype,
ate a few of the programs, leaving us with just enough
examples to fit a very ful I tape.

Because of the I ength of the I esson, some of you may
have trouble reading in the programs on your 410 tape
player. You wi I I have to get 14 successful LOADS; so, as you
LOAD each program, SAVE it on your own backup tape. Before
you start, wind the tape forward and backward once. To load,
reset your recorder's counter to zero. Now type RUN "C:"
and press return twice. The tape should begin to load into
memory. There is a backup copy of al I examples on the back
of your tape, but If loading sti I I produces an error
message, you have two options:

1) Rew i nd the tape to zero, tak e it out, and listen to it
in a regular cassette player. Li s ten for the beginning of
the steady tone that preceeds the digital signal. This tone
wi I I continue for about 20 seconds, then the program begins
to load. If you are not sure the tape is at the beginning,
just rewind or advance it a I ittle bit unti I you find a
place where there is no steady tone, then move back to the
start of the tone. Now piece it back into the 410 recorder
and reset the, counter to zero since you now know this is the
right place. If the tape loads from here .•• great. Remember,
SAVE each program as you get a successful LOAD on another
backup cassette. Prototype sys to remind you to write down
the number your Tape player shows where each of these 14 (12
for 16K users) examples start. This would be a good ~abit to
develop when using anycnds cassette based program.

2) You can "guess" at the corr-ect spot by go i ng back and
forth until you get lucky, but that is very frustrating!

Don't forget, if any program doesn't load properly, you wi I I
find backup copies on the reverse side of the cassette. If
the program STILL doesn't seem to load properly, try another
recorder (perhaps at a store or a friend~ house). If you are
so upset at the darn thing you want to buy a disk drive,
send it back for a p,-ompt (I hope!) replacement to:

Educational Software
4565 Cherryvale Ave

So quel, Ca. 95073
(408) 476-4901

3

- 16k Users -

I haven't forgotten yo u . All programs on this tape
excepi the two uti I ities wi I I run on your machines. The
uti I ities are very nice , but not necessary, so just save
them untl I you increase your memory size to 32K. Example
5.4, the Playfield editor, Is out of order on your tape. It
wi I I be found after example 5.13 (Two players together),
which is the last example that runs In 16K. Finally comes
example 5.14, the last editor, which also requires 32K.

- HOW TO USE THIS MANUAL -

Without the Information In this manual, these programs
are rather boring . Only when you understand what Is being
shown In the examples wi I I Player/Missle Graphics (PMG)
begin to make sense to you. In fact, after you have written
your first real ga me or business application you'll feel a
wonderful sense of acompllshmentl

As you progress you may find yourself lost on a certain
subject. IMMEDIATELY refer to the FOLLOWING CHART to see
which examples demonstrate the feature In question. Note
that I refer to Example 5.1 as 1 since we all know this is
Tutorial #5. When the chart says "others" this means that
the other examples listed demonstrate the topic also, but
not as we I I as those I I sted . Here then Is

4

THE FOLLOWING CHART

TOPIC SEE EXAMPLES

General Features of PMG ••••••••••••• 1,2,14
Playflelds (backgrounds) •••••••••••• 2,4,8
Color Selection & Pokes ••••••••••••• 5
Memory Area for PMG ••••••••••••••••• 7 + others
How to Draw a Player •••••••••••••••• 6,7,14, others
Missiles used as a Player ••••••••••• 5,14
Joystick or Paddle? ••••••••••••••••• 7
Use of Sound with PMG ••••••••••••••• 1,2,8
Moving Players and Missiles ••••••••• 1,2,6,7,9
Size of Players and Missiles •••••••• 6,14
Single/Double line Resolution ••••••• 10
How to Animate a Player ••••••••••••• 2,11,12
PriorIty •••••••••••••••••••••••••••• 2,12
CollIsions •••.•.••.••••.•••..••.•.•• 2,12
Two Players as one •••••••••••••••••• 13
Comp I ete Game ••••••••••••••••• ,. • • • •• 2
PMG using Strings ••••••••••••••••••• 4,14
Poke and Peek Table ••••••••••••••••• Appendix

EXAMPLE 5_1

If you are new to the ATARI computer, watch this example
many times and look at It later as each subject Is
mentioned. Here Is what you are seeing. First, the screen on
your TV goes black, because I turned off the display
processor, called ANTIC, accomplishing two things:

1) Speeding up the machine by 30%, and
2) Making the background of stars suddenly appear,

rather than seeing them slowly drawn out.

You can compare this to watching the background drawn out In
the next program and choose which method to use. If you
decide to turn off the screen display whl Ie YOUR backgrounds
are drawn, here t show:

5

At the point you want the screen to "turn off"

100 ON=PEEK(559) : POKE 559,0

•...• (PROGRAM CODE TO DRAW YOUR BACKGROUND)

500 POKE 559,ON

Later 1'1 I teach you what the correct number
but you can always just save the old value
The number in memory location 559 wi II have
I ate r to a I I 0 \v PM G tow 0 r k .

2 PROCESSORS?

for "ON" is,
as I did above.
to be cha nged

Yes, the ATARI does have two micropr o c ess ors . The ANTIC
is a special one that is used to draw the screen on your TV
or Monitor. It does both graphics and text . Whene ver it is
in use, it "steals cycles" from the main microprocessor, the
6502. This is why the computer is faster when the screen is
blank(559=0) .••• the main processor runs at full speed if it
doesn't have to stop all the time to allow the ANTIC time to
draw the screen.

Are you sti I I in Program 5.1? Good, don' t rush ahead.
This is going to take time to explain properly .

The computer has a ni c e bunch of "stars" on the screen.
Some are red and some blue. This is because when we plot
single points in Graphic s 8 , the TV can only light up either
a blue or a red pixel on the screen . If you look real close
at your tube you wi I I see these tiny pixels of red and blue .
These background stars are called a PLAYFIELD when
discussing PMG. If you look at the graphics chart on page 53
In your BASIC manual, you'l I see that most graphics modes
a I low from one to four co I ors. Modes 9 to 11 have more, but
still only four of the colors pertain to t he following
discussion.

When you enter color 1, and then draw out some shapes on
the screen, you /are draw i ng what is ca I led PLAYF I ELD 1.
Likewise, if color 2 or 3 is allowed in the graphics mode
you are using, these would be PLAYFIELD 2 or 3. The fourth
playfleld is actually color 0, the background color that you
get when you start out in a graphics mode. AI I of these
co I ors can be contro I led.

6

usually set the border to the background playfleld
color so the whole screen appears the same. Notice how the
stars don't actually go to the edge of the screen, but since
the Players can move anywhere, having the border the same
color makes the playfleld seem larger.

At I ast we have two P I ayers on the screen. I t has been a
long winded discussion , but there they are. And, oh my! They
move! Oh, you knew they cou I d? We I I, I guess there I s no
suprising you. Notice how easily BASIC can move them
HORIZONTALLY across the screen . Now look at the I istlng for
this program. Notice 5 lines (400 to 440) contrqJ the sound
and movement (You ARE going to study the code, aren't you?).
Next, the Players grow In size. This capabi I ity also Is a
simple POKE of a number , and wi I I be explained later.

Finally our space battle concludes
miss i I es at another unt I I they both
example is over . Run the example again
what the following mean:

A PLAYER
A MISSILE

THE BACKGROUND
PLAYFIELDS 0 TO 3

A BORDER
SIZE CHANGES

7

with one ship firing
are destroyed and the
unti I you are sure

'" -

OUR COMPLETE GAME

EXAMPLE 5.2

Rather than talk about so me strange ideas like collision
registers now, I thought you would I ike to see and play with
t he goal of this Tricky Tutorial , an actual gam e using all
o f the feature of PMG. No w bef o r e you be g in, pl e ase real iz e
that our goal did no t incl ud e pr o du c ing a g ame just I ike th e
a rc ades. Those ar e writt e n in machi ne language with special
(j i:::p lay tubes to all o w ve r y fin e g r ap hics. We just want t o
uemonstrate all o f th e t o pi cs you will be l e arning later in
on e program. For th e ho t pr og r amme rs in t he audience, the
g ame can be e x panded to be q uit e a l o t of fun. As it is now,
it just fits in 16 k wh ich was r e quir e d f o r our fri e nds with
ATAR I 400' s (and ther e ar e a l o t of you o ut th e r e).

The "rules" of th e game are e a s ily changed. In fact,
th e first thing yo u mi g ht do wh e n yo u finish the complete
l e sson is to change the game t o yo ur own specifications.
Most changes wi I I be surpri s ingly s impl e . 1'1 I offer some
hints when the game is e x pl a in e d a t th e e nd of the Tutorial.
Unt i I then, here ar e my ru I es :

HOW TO PLAY T H E GAME

Plug i n joy s tick s int o po rt s a nd 2 . Each Player moves
', i s c haracter and tr i e s t o score po i nts. On e po i nt is score c
r· ac h time you " gob b l e " o ne o f th e tw o "Energizer Pellets"
t h~t wi I I appear fr o m tim e t o tim e . Fi ve points are scored
if you gobble your o pponent . This i s do ne by first touchi na
the blue re c har ge zo ne in th e ce nter o f the maze. You ;
c ha ract e r wi I I c ha nge co l o r a nd may scor e by touching th e
other Player. If th e o ther Pl aye r touches the recharge zone,
then he c an get yo u and yo ur co l o r chang e s back to normal.

I started the s co r es ou t at three each just to point
OUT that everything does n't ha ve t o be g in at zero. The logic
t o the game is to bal a nce yo ur mo ve s between going for easy
single pointers and the bi g s co r e o f five points!

-THI$ GAM AIN'T
$DHQT

8

That's true, but think of this exciting fact. AI I of the
basics techniques of real arcade games are Included In this
liTtle game. The only Improvements needed are your own Ideas
and SPEED. Arcade games are written In machine language
which accounts for the speed. The Ideas are up to youl

Notice the way the characters move. They are slow, yet I
am moving them with machine language routines (these will be
explained later). What slows them down Is the Basic language
needed to call them . Also , notice what happens when the
characters touch the wa II s of the maze. After you have a
rea I I dea of what features are I n the game, run examp I e 5.3
and we'll begin the lesson .

EXAMPLE 3.3
PLAVF l:ELDS

This example Is so simple to understand that my daughter
even helped me write It . The basic Idea I already mentioned
above, but 1'1 I repeat myself just this once (or twice). The
stuff you see on the screen that Is not a Player or Missile
Is called PLAYFIELD . Playflelds are created by plotting
points using the PLOT and DRAWTO commands, or by direct
POKElng of data Into the memory area that Is displayed on
the screen. You should already be familiar with PLOT and
DRAWTO from your BASIC manual. If not, read about them In
the manual and then come back.

PRESS 1 on your keyboard and plug In a Joystick Into port
#1. Move the joystick around to draw color 1 on the screen.

Now PRESS 2 and draw with color 2. PRESS 3 and do the same.
Finally PRESS 0 and draw with color O. Notice that color 0
seems to erase rather than draw, but I assure you It Is
drawing. Think about It. Color 0 draws with the background
color so when It Is plotted any other color, of course, It's
changed (I know this was obvious to some of you).

I wanted to show you the playflelds. Playfleld 0 Is the
background color ; Playfleld 1 Is whatever Is drawn with
color 1, etc. Page 53 of your Basic manual shows which
Graphics modes al low which playflelds. Although very simple,
this example Is Important for you since you must know which
playfleld you are testing for when you use the collision
registers discussed later.

9

A NOTE ON COLORS -
Throughout a I I of these examp I es, I f you don't I I ke the

colors being used, please change them to match your TV.
have several sets that al I show the colors differently, so
some of these examples may look strange to you. Here Is how
to change the colors:

The correct value to POKE Is:

COLOR * 16 + L UM I NANCE

where color Is a 0 to 15 and luminance Is from 0 to 14, In
even numbers.

Look within any example you want to change untl I you find
the correct number being POKEd and place your color choice
In the POKE statement.

EXAMPLE

11 pJt\VF,ELD
EDITOR

You probably know that any program,
a business application, will need
excepTion Is a text-only program which
use of PMG.

whether for a game or
a background. The
would seldom need the

Let's say you want a space game with mountains, enemy
bases, a few ships on the ground to shoot at, and maybe even
some trees. These need to be plotted on the screen before
the game can begin. The normal method Is to use graph paper
and hand calculate each point to be plotted. WOWI That Is
the hard way! Feeling Inspired, I thought I would whip up a
liTtle editor to help you. Here's how to use It.

Because this program requires 32K to run, It Is the next
to last program on the cassettes. For disk users, It Is In
the same order we have been discussing.

1 0

When the program has been loaded, disk users may press
"L" and then "0" to bring In a previously saved drawing as a
test. You will notice a flashing dot , or cursor, on the
screen. This Is the point that Is being drawn as you move
It. You can choose between playflelds 0 , 1, 2 or 3. First,
find out how many Playflelds you are allowed In the Graphics
mode you want to use. For example, if your program uses
Graphics 5, you have all four colors to work with; In
Graphics 6 you only have two. Press the number of the
Playfleld color and use the cursor keysCdon't press CTRL)
to move the cursor. Remember, to erase, you plot In the
background, color O. Draw out a building or spaceship.

When done , the ed I tor a I lows you save the sha pe two ways;

To save the shapes for future use and modifications you
may press "s" and then "T" or "0" for tape or disk.
When done , the editor allows you s a vet h e s hap et wow a y s ;

To save the shapes for future use and modifications
may press "s" and then "T" or "0" for tape or disk .

Tape users be sure and record the location on the
where the program starts so that you may find the
again . Disk users wi I I always find the data saved under
same name on the disk, PFDATA, so if you want to keep
shapes use the rename command, "E", FROM DOS, to name
data someth i ng more mean i ngfu I.

you

tape
data
the
the
the

To use the shapes in your program, you wll I need a
simple subroutine. Look in the program code for this example
to see a very sophisticated way to handle the data using
strings . Go ahead and copy parts of it for your own use.

Before presenting the code, let me remind you what we are
dOing. Each color of your shape needs to be plotted
separately . Also, you wi I I probably want to plot the shape,
for example, a tree with some ground around it, at several
points in the background. Finally, many other shapes like
men, spaceships , and planets, must also be plotted.

To get the data for your shape, just press SELECT and
wait for 10 seconds . The text area of the screen wi I I start
presenting DATA statements that are the points to plot. The
upper left corner of the square that I imits your shape, if
colored , would be 1,1. These numbers represent first an X
value, and then a Y value of a standard grid system the
ATAR I norma I I Y uses for Graph I cs. To see a I I of the data for
each color, press START each time the data stops. If you
have more than 199 points In your shape of anyone color,
the program will say "TOO MUCH DATA" • I could only fit in
that many points , so go back and change a few to a different
color. It won't ha ppen for most shapes.

The numbers of the DATA statements should be changed to
fit wiihin your program. You may want trees to always start
at 5000; buildings at 6000, etc.

11

Here Is a sample program to use with the Playfleld Editor.

400
410
420
430
440
500
510
600
610
700
710
800

1000
1010
1020
1030
5000
5010

5020

6000
6010
7000
7010
7020

7030
7040

GRAPHICS 5
SETCOLOR 0,12,4
SETCOLUR 1,3,2
SETCOLOR 2,13,12
SETCOLOR 3,8,6
REM***DRAW THE TREE
COLOR 1: X=50: Y=24: GOSUB 1000
REM***DRAW THE TRUNK
COLOR 2: X=50: Y=24:GOSUB 1000
REM***DRAW THE SUN AND RAYS
COLOR 3: X=30: Y=15: GOSUB 1000
END
REM***PLOT ROUTINE
FOR I = 1 TO 80
READ A,B: IF A =999 THEN RETURN
PLOT A+X,B+Y: NEXT I
REM***DATA FOR TREE
DATA 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,8,9,7,9,6,

9 , 5,9,4,9,3,9,2 ,9,1, 9,0,9
DATA -1,9, -2,9, -3,9, -4, 9, -5,9, -4,8, -3, 7, -2, 6, -1,

5,0,4,1,3,999,999
REM***DATA FOR TREE TRUNK
DATA 2,10,3,10,2,11,3,11,2,12,3,12,999,999
REM***DATA FOR SUN AND RAYS
DATA 0,0 , 1, -1,2, -2, 3, -3, 4, -4, 4, -5, 4, -6, 3, -7,2, -8,1,-9
DATA 0,-10, - 1,-10, -2,- 10,-3,-9,-4,-8,-5,-7,-6,-6,

-5, -6, -4, -5, - 3, -4, -2, -3, -1, -2,0, -1,0
DATA 3,1,4,2,5,3 ,6,4, 7,5 , 8,6,9,7,10,8,5, -1,6,0,7,1,8,2
DATA 6,-3,7,-2,8,-1 , 9,0,10,1,11,2,12,3,13,4,6,-6,7,-5,

8, -4, 9, - 3, 0, 2,1,3,2,4,3,5,999,999

1 2

EXAMPLE ~_~
COLORS

N C) --1- E :

Tape users may have this program cone on the screen
looking very strange. Just press reset and type RUN to
correct the screen

"'HIS IS ~ow
CHOOSE 'YOU
CHARAC't: L i:('j;l7

COL-Ol<.

We talked about how to change the colors of the
playfleld (708 to 712) a few pages ago. The following
uti I ity will allow you to pick the colors directly without
calculating the number to POKE. The POKEs listed, however,
are for the Player colors which live In different locations
(704 to 707 + 711). The color value to place Into any of the
locations stl I I uses the formula COLOR * 16 + LUMINANCE.
Beyond this, the real purpose of this example Is to
Introduce you to the Players and Missiles.

Look at the stripes of color on the screen. Each one Is
half a Player. The bottom half Is "turned off" so that you
can see the color Information.

WHAT GOOD ARE STRIPES OF COLOR?

13

Good question! The stripes are only being used to best show
the colors of the Players as you change them (1'1 I tel I you
how in a moment). You can pick which of the eight pixels
(liTtle squares of color) across each stripe will be
colored. In the next example we will select certain pixels
and create a useful shape. For now the top half of each
Player ana Missile Is turned on (all 8 pixels colored) and
the bottom half Is turned off(al I eight pixels POKEd with
o ' s) •

Are you wondering which Player Is which? Player 0 Is on
the far left and Player 3 Is on the right. On the far right
Is the correspond ing Missiles 0 to 3 that work with each
Player. I know that cal ling the first Player by "10" Is
confusing, bUT It is required by the ATARI hardware and
software. Soon you'l I see how to place these shapes
anywhere on the screen you wish .

How To Use This Example

Plug a joystick Into po r t 1. As soon as you move your
Joystick an "*" wi I I appear. Place the asterlck over any of
the Players. Hold the trigger button down and move the
joystick up to Increase the color value, or down to decrease
It. Notice that the numbers you POKE are the same for any
given color. This means If you find a red that you I Ike with
a value of 45, you can POKE 45 Into any of the color
registers from 704 to 712 and get red for that Player,
Missile, or Playfleld.

When you have one Player color Just I Ike you want It,
move the asterlck to another Player and change It's color,
too. After al I four Playe rs are done, you can set the
background color by moving the asterlck to the far right
side and pressing the trigger. Notice how the background
color changes the appea rance of the player's colors. Now
use these colo r values In POKE statements within your own
programs.

A few of you by now have tried to change the colors of
the Missiles. We have not yet mentioned any color registers
for the Missiles . That's because there aren't any! Each
Missl Ie takes on the color of the Player with the same
number. Here Is a review of the colors and registers:

REGISTER USED FOR
*********** ***********

704 Player 0 and Missile 0
705 Player 1 and Missile 1
706 Player 2 and Missile 2
707 Player 3 and Missile 3
71 1 Playe r 4 (a I I Missiles together)

1 4

What? Player 4? Yes, you must know by now that the ATARI
Is ful I of suprlses. It turns out that the Missiles can be
combined together Into a 5th Player (#4). We wi I I come back
to how this Is done later. For now, press SELECT. The
Missiles will now come together and take on the color POKEd
Into 711. To use the Color Editor on Player 4, just move
the asterlck to It and use the trigger. Pressing SELECT
again would toggle the 5th Player back to Missiles. This
would be a good uti I Ity to use whenever you need to choose a
color.

'lH~ DIFFEJ2SNCE I3~IWEE:N A
p/....o-r-rE:D SHAPE AND A P/...AYEF2
MISSlt-E 15 A'3TON'SHING--

WHICH IS THE PLAVER?

Run the next example , (5.6), and look two of my Robot
Prototype's cousins on your screen. Your mission, If you
choose to accept It, Is to figure out which Is a Player and
which Is plotted, Ie., drawn on a Playfleld. Really try hard
to see the difference

EXAMPLE 3.6

-
1 5

To solve this "Great Mystery" use a joystick In Port 1
to move each shape. The Player moves WITHOUT PRESSING the
TRIGGER. The playfleld shape moves by PRESSING the TRIGGER.

I have to admit that I
Player Is being moved with
However, you w II I soon see
pretty fast vertically and

cheated In this example. The
a small machine language utility.
that even BASIC can move a Player
Immediately horizontally.

An Interesting experiment to do with this example Is to
change the color In the program of the Player (find a POKE
704,wlth a number after It) and then move the Player exactly
on top of the plotted shape. If you move two plotted shapes
over each other, and then move them away, you will have to
redraw them both to remove the holes left In their shapes I
The effect Is even better If you break the program and
change the color of one of the Robots. Aren't Players
great?

E X AMPL E :5.7"

CREA TING P L A VERS

Press OPTION to get to the next example, 5.7. This wll I
begin the technical part of this Tutorial.

First of al I, notice that the last picture Is stll I on
the screen. Do you know how this happened? It's very simple.
With playflelds , when you plot a background on the screen
they stay on untl I erased with either new plotted data, or
usually just another Graphics call. You loaded In the next
program while a playfleld - -the Robot - - was stl I I on the
screen, so I tis st I I I there when th I s examp I e starts to
run. This process Is similar to adding 32 to a graphics call
as explained In the BASIC manual.

You can create your backgrounds with one program and
then have the main loop of your program load In separately.
This allows large programs to fit Into smaller memory sizes.
Players wi II stay on the screen, too.

Again, plug In
Joyst I ck 111. You can
move the shape on the
screen In all directions,
including diagonally.
This routine . Is very
Important to you since It
wi I I teach a I I of the
following basics:

1 6

IMPORTANT STUFF TO LEARN
FROM THIS EXAMPLE

1) How to create a Player shape

2) How to move that shape up and down (vertically)

3) How to move It sideways (horizontally)

This example can be copied Into ANY program you want and
just modifi ed In a few places to get a Player moving around
on your ow n design of a game or other application. It should
be saved to a separate Tape or Disk and even renamed as a
uti I Ity for Disk users .

10 GOTO 140
20 REM
30 REM ****** MAIN LOOP **********
40 REM
50 ST=STICK(O)
6U X=X+(ST=6)+(ST=7)+(ST=5)-(ST=9)-(ST=10)-(ST=11)
70 Y=Y+(ST=13)+(ST=9)+(ST=5)-(ST=6)-(ST=10)-(ST=14)
80 GOSU~ 330
85 IF PEEK(532/9)=3 THEN POKE 764,12:RUN "D:EX5.8"
90 IF PADDLE(0)=228 THEN 110
100 X=PADDLE(O)
110 POKE 53248,X
120 GOTO 50
130 REM
140 REM PMB=PLAYER MISSILE BASE ADDRESS IN PAGES
150 REM (256 BYTES PER PAGE)
160 POKE 704 , 40

The example starts out skipping to line 140 to do some
standard setups that wll I always be ~equlred. Line 160 you
should recognize as setting the color of Player 0, which we
will use for the shape (Spaceship?). Line 170 to 190 look
lIke this:

170 PMB=PEEK(106) -16
180 POKE 54279,PMB
190 PMBASE =PMB*256

These lines reserve space In memory for Player and Missile
shapes to be stored. This topic alone could take pages to
explain, but I wi I I give you only enough Information to make
IT work. ~ - ?-~

~oO~~b~
17

Players & Missiles are created on the ATARI by something
cal led DMA. DMA means Direct Memory Access. AI I the big
computers have It. Apples don'tI This process simply means
that I f you have "turned on" the DMA, the computer w II I take
whatever shapes It finds at a place In memory starting with
PMBASE and put them on the screen. They w II I be located
horizontally (X direction) by the values stored In their
horizontal registers (53248 to 53255). Their size In the X
direction Is control led by values stored In size regIsters
(53256 to 53260). TheIr size In the Y direction Is
control led by two factors. First Is how many pIxels you have
turned on for their shape. Second, Players may be created
where each number In memory Is put on the screen as eIther
one pixel (single lIne resolution) or two (double lIne
resolution). Their location on the screen In the Y direction
Is simply control led by where In the stripe you turn on
pixels.

wow ••• I'M Tired

That was a lotI There's even more to come, so take a
break If you need to ••••••

Back to lines 170 to 190. Line 170 takes the value In
location 106, which Is the location of the top of user
memory (given In number of 256 bytes pages), and subtracts a
certain amount of pages. This number Is then POKEd Into
54279. That will tell the computer where the Player data
starts. Finally, line 190 takes PMB In number of pages and
converts the value to a regular memory locatIon, PMBASE. W~
w II I use th I s number a lot. The number I subtracted, 16-,
wi I I change depending on the Graphics mode you are using.
Choosing the amount to subtract Is explained In EX5.9.

1 8

210 X=125:Y=100:YSAVE=100
220 POKE 53256,0

Next, In line 200, we POKE 53277 with a 3. This memory
I ocat Ion Is ca I led GRACTL . Poke It wit h a 1 for Miss I I es
only. Poke with a 3 for Players and Missiles.

In line 210 are the Initial X and Y positions where you
want the Playe r on the screen.ln 220, the size of Player 0
I s set to norma I , wh I ch IsO. I f you had just turned on the
machine, 53256 would have contained 0 anyway, but since we
are running many programs one after another, t his made sure
the value was correct. The choices yo u have for the size
are:

Poke With

o

3

For

Norma l size

Double size

Quadruple size

Here are the registers available for controlling
Player/Missile size.
the previous table .

POKE wth the appro priate values from

RESISTER PA.RAM ETER
******** *********

53256 size, Player 0
53257 size, Player 1
53258 size, Player 2
53259 size, Player 3
53260 size of a I I mlssles

To de t er mi n e Mis s I I e s I z e , yo u ' I I h a v e to do a I Itt I e
calculating , bu t nothing too complicated. Just pick the
desired size for each Missile from the chart below, then add
up the numbers for al I four (or however many you're using)
and POKE the total Into memory location 53260.

For example , If you want a normal Missile 0, a double
Missile 1, a quadruple Missile 2, and a double Missile 3,
you would POKE 0+4+48+64=116.

MISSILE # NORMAL DOUBLE QUAD
**** **** ****** ****** ****

0 0 1 3
1 0 4 12
2 0 16 48
3 0 64 192

1 9

230 FOR I=PMBASE+1024 TO PMBASE+1280:POKE I,O:NEXT

Line 230 POKEs O's Into the area where the data for the
Player must go. This wi I I act to clear out the Players
stripe first. This may not seem necessary to you. For this
reason, some of the later examp I es w II I actua I I Y erase the I r
Player areas whi Ie you are watching. You will see the junk
being erased. This statement takes a few seconds to do, and
thus delays the beginning of any program that uses it. The
best way to speed It up is to put it at the very front of
your programs. This is demonstrated in later examples. For
this example we only had to clear out memory between
Pmbase+1024 and Pmbase+1280. Why? To explain we need a chart
of what memory looks I Ike:

PEEK (1 06)-., _~>

Pmbase+2048~

Pmbase+1792-+

Pmbase+1536-+

Pmbase+1280-----+

Pmbase+1 024 ~

Pmbase+768 -+

Pmbase
(POKE Into
54279)

SINGLE LINE RESOLUTION

Top of Memory

Screen Data Area
Depends on Graphics Mode

UNUSED

Player 3

Player 2

Player 1

Player 0

M3 I M2 I M1 I MO

768 Unused
Memory Locations

The Rest of Memory
and Your Program

, --)

1

694 to 8112 Memory
Locations

8 bits wide -
Each bit lights up

one TV pixel .

2 bits wide each
Missile or use
all 4 as a Player

Look at the chart above marked Single Line Resolution.
Starting at the place marked top of memory, we move down by
a certain number of pages subtracted from the value in 106.
This places us at the BOTTOM of the chart. This calculation
was done in lines 170 to 190. Again, the amount to subtract
wi I I be explained in EX5.9.

20

Now that we have placed Pmbase, go back up in memory to
Pmbase+1024. The next 256 bytes of memory are the stripe
that holds Player O. If any of these bytes of memory are n6t
0, and If the setup POKEs have been made to turn on DMA,
then those non 0 bytes wi I I light up on the screen with the
color values stored in 704.

To move the shape up or down the screen, you just POKE
non 0 bytes up or down the stripe of memory. Let's say that
you place Pmbase at 30000 In your memory. Any non 0 bytes
at Pmbase+1030(30000+1030 , or 31 030) wi I I appear near the
top of the screen and If those same numbers are POKEd Int~
Pmbase+ 1200, they wi I I appear near the bottom of the
screen.

Continuing with this logic should make It clear what
happens if you POKE number s into Pmbase+ 1400. You would now
be turning on a shape in Player 1 that would appear on the
screen if the "setup POKEs" were done. Let's fin -ish
discussing the setup procedure .

Lines 240 to 300 POKE the shape into memory, just as we
were talking about above . Understanding lines 250 to 300
w I I I be a rea I key for you. Here is what they look like :

240 RESTORE 210:CNT=0
250 FOR I=PMBASE+1024 +Y TO PMBASE+1280
260 ,READ B: IF B=O THEN 310
27U CNT=CNT+1
280 POKE I, B
290 NEXT I
300 DATA 8,60,126,195 .126,60,24 , 126,165,0,0

The shape is poked into mem ory with an offset of "Y". This
says to place the shape Y units down the screen. If Y=O then
the shape wi I I be at the top of the screen. A value of Y=252
puts the shape at the very bottom since the shape has eight
numbers that must fit Into the 256 byte long stripe of
memory. In a few I ines we wi I I simply calculate where we
want the shape on the screen and use this routine to POKE it
into the right place.

21

The last major hurdle Is the way the data Is calculated.
Here Is another figure to help you visualize the shape:

256
NLlmber
Stripe

Pmbase+1024

Pmbase+l024+Y

PLAYER (I

Top of TV Screen
4+8+16=28

2+4+8+16+32=62
1+2+4+16+32+64=119
1+2+4+8+16+32+64=127
2+4+8+16+32+64=126
4+8+16+32+64=124
8+16+32+64=120
4+8+16+32+64=124
2+4+8+16+32+64=126
1+2+4+8+16+32+64=127
2+4+8+16+32+64=126

~=~ ____ --------2+4+8+16+32=62
--------------4+8+16=28

Add
Add 2
Add 4
Add 8

Add 16
Add "':!',., This Shape

~,
Add 64 Has 13 NLlmbers

Bottom o·f TV screen --- Add 128

To create your own shape, you just fill In the boxes
you want for the shape. Then to get the "TOTAL", you just go
across each row and add up the value for any box that is
f I I I ed In. When you poke these numbers I nto memory, your
shape appears on the screen!

Back to the program code . Line 310 Is what fi'lally turns
on the player. The correct value here is obtained by adding
up the options you want from the following:

FOR ADD

DMACTL (559)

W I de play fie I d ••• • •••••••••••••••••
Sta nd ar d Play fie I d ••••••••••• • •••••
Narrow Playfleld • • ••••••••••••• • •••
Turn on Missile DMA ••••••••••••••••
Turn on Player DMA •••••••••••••••••
Double Line Resolution •••••••••••••
Single Line Resolution •••••••••••••
Turn on Main DMA • ••• • ••••••••••••••

22

3
2Choose 1 Only
1
4
8
o
16Choose 1 Only
32

In this case we wa nt Stan da r d playfleld (2) + Missile
(4) and Play er (8) DMA plus the Main DMA (32) and Single
line Resolu tion (16) f or a t otal of 2+4+8+32+16=62. This Is
why we poke 559,62 .

ha t e nds t he Setup

You should be able t o us e this same setup code for most
PMG programs you do. Ju s t make the few changes required by
things I Ike resolution and playfle ld size. Note - single and
double line resolution will be discussed In example 5.10
coming up soon .

The prog r am no w b anc hes t o the . main program loop at
line 50, which re ad s joys t i c k O. Lines 60 and 70 Increment X
& Y from their Ini t i al po s itions set In lin e 210. The on ly
thing left for the pr og r am to do Is move In the X and Y
directIons. The X directi o n Is easy. The ATARI has built In
position registers for the X direction . In line 11 0 we just
poke the ne w X va I ue I nto t ha t memory I ocat Ion, 53248 .

Here are the X di rect ion regis t ers

REGIST ER # MISSILE/PLAYER
********* *

53248
532 49
53250
53251
53252
53253
53254
53255

PO
Pl
P2
P3
MO
Ml
M2
M3

To move In the Y di r ecti o n we have to do something simi lar
to the way the playfleld Robot was moved In EX5.6.
Fortunately , we don't have to move as many bytes of memory
around. That robot had almost 200 data polntsl Moving our
player Is as simple as poking In eight numbers Into memory.

310 POKE 559,62
320 GOTO 50
330 REM
340 REM ***** UP/DOWN MOVE *******
350 IF YSAVE= Y THEN RETURN
360 IF YSAVE<Y THEN 430
370 RESTORE 210
380 FOR 1=1 TO CNT
390 READ B
400 POKE PMBASE +l 024 +Y+I,B
410 NEXT I
420 YSAVE=Y:POKE PMBASE+l024+Y+CNT+l,0:RETURN
430 RESTORE 210

23

440 FOR 1=1 TO CNT
450 READ B
460 POKE PMBASE+1024 +Y+I - 1,B
470 NEXT I
480 YSAVE=Y:POKE PMBASE+1024+Y-1,0:RETURN

Look at lines 340 to 480. First, In 350, I compare the
current value of Y to the last . If [t Is the same, we don't
waste our time and just return . L[ne 360 says, "If Y Is now
bigger than last time, go to t he move up [n memory routine
at 430, otherwise move down" . Remember, as Y Increases In
memory, the shape appears to go down the screen. Th[s comes
from the way the ATARI does It's coordinate system and [s
explained on page 47 of your Basic manual.

Both t .he routine to move up, and the one to mpve down,
are simi lar to the original one we used to POKE the shape
Into memory. All we are doing [s POKElng the same shape down
or up by one byte In memory.

PL-A'Ie.R MISSILE
CAN REALL'i MoVEo

FAST. ~~

NOW WE ARE BETTZNG HOT!

24

IMPORTANT POINT' .
When you move the shape you repoke 7 of the 8 numbers

that are currently in memory and poke In one number In a new
location. That last number Is not changed because you have
moved by one byte. That is why the 0 Is poked into that
remaining location In line 4 2 0 or 480. Were the 0 omitted, a
tra II of unchanged bytes w.ou I d be I eft on the screen,
leaving someth ing I Ike this :

MOVINS
DDWN

MaVlf\JG­
UP

If you are lost by all this there is only one way to figure
it OUT. Stop the lesson no w, break the program, and start/
making smal I changes to where and what numbers are poked
into memory. Soon you will say to yourself, "That's what The
(old/not so old) PROFESSOR wa s trying to say!

• i ~ THAT'S IT?

You now have mos t ot the basics to place a player on the
screen and move It around. The earlier playfleld editor
discussed how to create the background for your program. Now
all we need are the small details that tie all of this
together.

HEY! WHAT ABOUT THE PADDLES?

Oh yes, I forgot to te I I you why the move I n the X
direction was so slow. The joysticks we are using, combined
wiTh the program code, on I y a I low X to change by one va I ue
at a time. Paddles, on the other hand, can Instantly change
the value they return from 0 to 228. Plug In a paddle
controller, If you have one, and now try moving the shape
across the screen. - It w I I I be Instantaneo us!

25

EXAMPLE 5.8

This simple example takes the same basic routine as in 5.7,
but starts to make it look like a game. Finish It If you'd
I ike, It's good practice. There are three things you should
learn from this example.

First, notice the stripe of randomly flickering "junk"
on the screen when the program first starts. This Is caused
by only partly turning on the DMA as discussed above. As
soon as al I the setup is complete, the exact shape appears.

Second, look at the program I ist and see the way
is structured. When you write your own codes,
do something I ike this. The program just goes
subroutines that

1) Draw the mountains
2) Draw the stars

the program
suggest you
to several

3) Set up Player 0 as shown in the uti I ity above
4) Main l o op routine for the movement and/or

scoring

Notice that I use sound in the loop. It's easy to do if
you spend a I ittle time in practice. This simple
structuring is used in many arcade-style games.

Third, 1'1 I show you one of the two machine language
utilities within the program. Both are short and can easily
be transferred to you own programs. This one is used to
move only Player O. It wi I I read Joystick 0 and move the
data in the Player 0 stripe accordingly. You must use
single I ine resolution Players, as we have been doing so
far. (That means the shape is at PMBASE +1024 to PMBASE
+1279) Copy the needed lines to a separate f i I e us i ng the
LIST command. Then you could enter it as needed. Don't
forget to delete the other I ines of the program first. The
I ines you need to keep are just 40,90, and 130.

Heres the routine:

,41 tD U)]i: 11'·11 II:::: :';;, tC: 6 1[11 Ji

.~;l> (it IE: :'::> 1/::.:lL .I' ~:i, il]I::lt :::: II n h Ih, h .JI IHII:;:) nw. 1I11L!lIC:~·· M":~l;'~U;:nn;;r~; ll ••.. Y

~-Jl m ·w:;;.'f.:~H:r::~::J'r,,' [~h,JI Vi r.!:J"",."l:il~;Ba:;;~_ 'lIf'[fJ Ih.JI rrtJ""".I:iII~}~;41:~1IIi!!I 'IIII'{;;;;! <!~. ';1;" ''l!II''' "

160 ~=USR(ADR(E$) .5TICK(O))

26

EXAMPLE 5_9

A BOOF-UP!

IF 'fou LOCATS YOUR DATA POOf<L-Y,
ALL KINDS OF -tHINGS CAN GO WRONG.

o

When you run this example notice our old friend the
Robot. He's back! However, as you move him around (using
the same machine language routine as the last example),
there's some 'junk' on the screen.

The time has come, my friend, to explain how to position
thePlayer/Mlsslledata area within memory. Look at the
program listing for example 5.9. Do you remember how we
obtained the value for PMBASE? It worked I Ike this:

100 PMBASE = (PEEK(106)-16)*256

On page 45 of the BASIC manual, you'l I see a chart
showing the amount of RAM (memory) needed for each graphics
mode. As the next figure shows, you don't want the data for
the Players and Missi les overlapping the data placed on the
screen. Even worse would be to write over the DISPLAY LIST.
That Is what happened to tape users with example 5.5.

When they reran the program by pressing RESET, the
Operating System fixed the display list. In this
example, look at the Player data being moved by the machine
language program within the Player stripe. See if you can
understand the term 'wraparound' by moving the Player up
untl I it comes back from the bottom. This wi I I also work
sideways. The data that Is being written to the screen area
will also 'wraparound'.

27

In example 5.5, when I explained the method, I said that
the number 16 changes depending on your program. Let's
discuss why. The listing you are looking at will only use
16 as the memory amount to subtract because the Graphics
mode being used requires lK or less of memory. As another
example, 5.8 POKEs memory back 40 pages because Graphics 8
requires more memory.

Here's a drawing to help our discussion:

OOP'S WRONG DRAWING • • •••••••••••

CONFLICTS
Between

PLAYER MISSILE DATA AREA
and

SCREEN DATA AREA??

SCREEN DATA AREA ~
256 to 8112)<Y 1------+

bytes
CONFLICT!

PLAYER DATA AREA "-..
1k or 2k '"

1-------;

Remainder
of Memory

28

==== > Junk on Screen!

The easy way to avoid putting Player data where it doesn't belong is to
use the following chart. Single line resolution players always must start on
a "1K boundary. II Thi s simply means subtract from the value in" 106 either 8
pages, or 16,24,32, etc. Remember, a PAGE is 256 bytes (l/4K). When we
discuss double line resolution players (soon, soon), you must start -the data
on a 1K boundary, so subtract 4, 8, 12, 16, etc . .

GRAPHICS MODE APPROX. # MEMORY LOCATIONS USED SUBTRACT THIS #
FROM LOCATION 106

0 992 16 (8)

1 674 16 (8)

2 424 16 (8)
3 434 16 (8)
4 694 16 (8)
5 1174 .' 16 (8)
6 2174 16 (12)

7 4190 24 (20)

8 8112 40 (36)

9 8112 40 (36)

10 811 2 40 (36)

11 8112 40 (36)

l:TPS A BXRD

l:T P S A PLANE

l:TPS ••• DOUBLE LXNE
RESOLUTl:ON

EXAMPLE :5.10

This simple example Introduces you to the SQUIGILY
MONSTER. It will show Itself In two sizes. The smaller size
Is called single line resolution. This Is the way we have
previously set up our Players. Simply put, each number in
the data area for the Player Is placed on the screen as one
line also. The data area has 256 bytes . avallabl.e, which as
you saw In the Color Changing example, more than cdvers the
screen. If you look closely at the screen you · can see the
individual pixels.

The other way you can set up your Players
Is called double line resolution. This uses
per Player; meaning, to fill the screen, the
p I ace TWO I I nes on the screen for each number
area. This makes the shape . appear thicker.

, and Missiles
only 128 bytes
computer will

in Its data

Press the SELECT button for the single line Player and
the START button for double line.

29

Double line Players are set up simi lar to single line,
but with these differences:

1) Instead of adding 16 to the total value to POKE .Into
559, add 0 (see prev I ous chart). Th Is te II s the CO!l1PlJ'ter
where to look for the data for each Player and · MI~'slle~· ,This
example switches between the two resolutlonswlt·h·· just·. thls
one POKE.

. ''',' ", ,',;

2) Instead of POKElng the shape of .· the . Pla'yer 's · . lnto
PMBASE+768 to PMBASE +2048 as the above figure , ~ho~ed; . ~ou
place the data Into PMBASE+384 to PMBASE+1024." This. means
that we have to look at •••• ANOTHER FIGURE:

Peel: (1(16) .-

Pmbase+ 1024 •
Pmbase+

Pmbase+

Pmbase+

Pmbase+

Pmbase+

Pmbase
(Poke i

896

768

640

512

384

nto

•
..
•
•
,

•
54279)

DOUBLE LINE RESOLUTION

Top of Memory

Screen Data Area

Depends on Graphics Mode

Unused

Player 3

Player 2

Player 1

Player 0

M3 I M2 J Ml 1 MO

384 UnLlsed
Memory Locations

The Rest of Memory
and Your Program .

.',

694 to 8112 Memor.y
Locations

I)
L

8 bits wide -
Each bit 1 ights
tp two TV pi>:els.'

I)
)- 2 bits wide each

Missile~ or use
all 4 as a Player.

The decision on which resolution to use depends on how
smal I you want the pixels to be In your figure and how much
memory you can afford to use for the shape data. I have
given you several of each type In these examples, so It's up
to you. Have funl

30

~N'MA-r'ON CAN BE AS SIMPLE
AS AL-rERNA-rlNG- SHAPES ..

EXAMPLE 5 . 11

There isn't too much more to learn before we can discuss the
game. Next, we'll animate the little Pacman(tm) type shape
(note: we refer to a general type of shape -arrd are not trying to
infringe on others rights, end of legal talk) . Run example 5.11.
You'l I see the memory area for the shape cleared ou~) then the
shape appears. It doesn't look much I ike a Pacman(tm)? No mouth?
Push the joystick! .

The shape looks better now that it is moving . could have
used three Qr four shapes to open and close - the mouth, but two
shapes · l~ simple to explain. If you add another shape with the
mouth just s II ght I Y open , you' I I see smoother act i on. To see the
two shapes as they change, just give a series of quick pushes on
the stick. What you are seeing is two Players , but only one at a
time. Let's see how this is done .

10 FOR 1=1 TO 8:POKE 53247+1,0 : NE XT I : GOTO 240
20 FOR I=PMBASE+l024 TO PMBASE+1792 : POKE I , O: NEXT I :RETURN
30 REM *****PLAYER SETUP *** **
40 GRAPHICS 7:D=20:E=50 : POKE 710 , 0 : POKE 712,0 : POKE 704 , 41:

POKE 706,41 :POKE 559,62
45 COLOR 2:PLOT 1,57 : DRAWTO 159,57 : PLOT 1, 65 : DRAWTO 159 , 65
50 A=PEEK(106)-32 : POKE 54279 , A: POKE 204 , A+4 : POKE 203 , 0 :

PMBASE=A*256 '
60' POKE 53277,3:X=150 : POKE205 , 120 : POKE 53256 , 0 : POKE 53250,150:

POKE 53258,0
70 GOSUB 20
80 RESTORE 110:Y=150
90 FOR I=PMBASE+1024+Y TO PMBASE+1209 : READ B: IF B< >O THEN

POKE I,B:NEXT I 31

100 REM ***** DATA FOR PACMANl *****
110 DATA 28,62,119,127,254,252,248,252 254 127 126 62 28 0 0
120 RESTORE 150 ' , , , , "
130 FOR I=PMBASE+1536+Y TO PMBASE+1792:READ B: IF B<>O ;THEN

POKE I,B:NEXT 1 : 1
140 REM ***** DATA FOR PACMAN2 ****** ,
150 DATA 28,62,118,255,255,255,255,255,126,126,62,28,0,0,0,0
160 POKE 559,62
17U REM
ltlu REM ******MAIN LOOP ******
1 90 REM
210 ST=STICK(0):S=PEEK(53279)
220 IF S=3 THEN POKE 764,12:RUN "D:EX5.12"
222 IF ST=15 THEN 210
225 X=X+(ST=7)-(ST=11) :POKE 53248,X:POKE 53250,0:FOR J=l TO 50:

NEXT J
226 POKE 53250,X:POKE 53248,0
230 GOTO 210
240 GRAPHICS 17:POKE 712,69:POKE 710,19
250 ? #6;"ANIMATION OF SHAPES"
260 ? #6;" IS AS SIMPLE AS "
270 ? #6;"SWITCHING BETWEEN "
280 ? #6;" TWO PLAYERS AS YOU"
290 ? #6;"MOVE AROUND .•••• use "
300 ? #6;"YOUR JOYSTICK TO SEE"
310 ? #6;"THE pacman(TM) MOVEI"
320 FOR 1=1 TO 3000:NEXT I :GOTO 40
330 POKE 764,255

Look at the program code for example 5.11. Notice In line
50 the memory setback Is 32, not 16. This Is the amount required
when us I ng Graph I cs mode 7. I n I I ne 60 POKEs, are made to both
the horizontal location and size of Player 2. Yes, Player 21 You
don't have to use the Players In any particular order. Lines 120
to 150 just POKE In the data for a second shape Into the correct
area for Player 2. In line 225, POKEs are made to place Player 0
at X and Player 2 at 0, which Is off screen. Finally, at line
226 Player 0 Is moved off screen and Player 2 Is placed at X.
There Is a delay on line 225 to allow you to see the "switching"
of shapes.

Does that seem hard? AI I you have to do to create additional
Players Is:

1) Poke Into the correct memory area the data for their
shape

2) Poke the size you want Into the size location In memory
(optional, since 0 Is a default If you forget)

3) Poke the horizontal location (X) Into the horizontal
memory location.

4) Have fun 1

32

To animate a shape, just alternate two or more shapes at the
same spot on the screen. The different shapes wll I seem to
blend Into a single, animated shape!

A note on animation Is In order. Remember the Robot
exa m pie w her e I ask e d " W h I chi s the P I aye r ? ". I hop e you can
now see the power of using Players for your shapes. To plot
and erase this shape from BASIC would be very, very slow!

PRXORXTV AND COLLXBXONS
EXAMPLE 5.12

These two topics were saved for last. They're not
difficult subjects, I just wanted you to get a lot of
experience first with the basics. Example 5.12 takes the
beginnings of a game that we did In example 5.11, and adds
collision with some energy pellets I n order to allow the
creature to "eat" the pel lets. When It crosse~ over the
"wa II s" I n the tunne I, the shape w II I seem to be I n front of
the walls. At the end of the tunnel, the shape will be
Inside, or behind the wal I because I set the priorities so
some colors act differently than others. Here's how I did
It!

Most of this program Is the same as the other examples.
One of the nicest things about using Players ana Missiles Is
writing a program, and then making only slight changes to
use It for a completely different purpose.

Line 10 POKEs al I of the horizontal location registers
to o. Th I sis not used In th I s program, but makes su re that
all previous Players are off screen. Remember, just
we loaded In a new program, doesn't mean that old
wi I I disappear. They stay there untl I removed! This
useful In programs that have multiple parts to them.

33

because
Players
can be

10 FOR 1=1 TO 8:POKE 53247+1,0:NEXT I :GOTO 270
20 FOR I=PMBASE+l024 TO PMBASE+1536:POKE I,O:NEXT I :RETURN
30 REM *****PLAYER SETUP *****
40 GRAPHICS 7:POKE 710,0:POKE 712,69:POKE 704,41 :POKE 706,41r

POKE 559,62
45 POKE 708,103:POKE 752,1:POKE 709,139:POKE 710,100
47 COLOR 1 :FOR X=20 TO 150 STEP 30:PLOT X,61 :PLOT X+l,61 :NEXT X
50 COLOR 2:PLOT 1,57:DRAWTO 159,57:DRAWTO 159,66:DRAWTO 1,66:

DRAWTO 1,57
52 PLOT 157,57:DRAWTO 157,66:PLOT 158,57:DRAWTO 158,66
55 COLOR 3:FOR J=l TO 4:FOR K=l TO 5
56 T=K+J*30
57 PLOT T,57:DRAWTO T,66:NEXT K:NEXT J

Lines 47 to 57 plot three different parts to the
background. The first part Is the "energy pellets", Ie. small
dots, that the Pacman(tm) will "eat". These are plotted In
Color 1 (location 708). Next, Ilnes50& 52 draw out the
rectangular lines that our Imagination will call walls of a
Pacman(tm) tunnel. The walls are drawn In Color 2. Lines 55
to 57 draw the wa II s that I mpede the character's progress.
These walls are plotted In .•• You guessed It. ••• Color 3.
The fact that different things are drawn In different colors
Is critical to the game. These locations, called COLLISION
REG I ST E R S , are c h e eke d b Y the A TAR Ito see I f so met h I n g
(I Ike a Player) has touched something else (I Ike a Color 1
wall). Notice that Colors 1 to 3 may all be the same, I.e.,
red, bUT the different walls must be drawn with different
COLOR statements for col I Islons to work.

60 A=PEEK(106)-32:POKE 54279,A:POKE 204,A+4:POKE 203,0:PMBASE=A*256
70 POKE 53277,3:X=50:POKE 205,120:POKE 53256,0:POKE 53250,150
80 GOSUB 20
90 RESToRE 120:Y=150:ERAX=-10
100 FOR I=PMBASE+l024+Y TO PMBASE+1280:READ B: IF B=999 THEN 110
105 POKE I,B:NEXT I
110 REM ***** DATA FOR PACMANI *****
120 DATA 28,62,119,127,254,252,248,252,254,127, 126,62,28,999
130 RESTORE 160
140 FOR I=PMBASt+1536+Y TO PMBASE+1792:READ B: IF B=999 THEN 150
145 POKE I,B:NEXT I
150 REM ***** DATA FOR PACMAN2 ******
160 DATA 28,62,118,255,255,255,255,255,126, 126,62,28,999
17u POKE 559,62
1 80 REM
lYu REM ******MAIN LOOP ******
200 REM
205 POKE 532/8,1 :REM CLEAR ALL COLLISION LOCATIONS(SO THEY HOLD O'S)
220 ST=STICK(O) :S=PEEK(53279)
230 IF S=3 THEN POKE 764,12:RUN "D:EX5.13"
240 X=X+(ST=7)-(ST=II):POKE 53248,X:POKE 53250,0:FOR J=1 TO 50:

NEXT J
242 IF PEEK(53252)<>0 THEN GOSUB 1000:GOTO 220
245 IF X>220 THEN X=40
250 POKE 53250,X:POKE 53248,0
260 GOTO 220

34

In line 205, we learn a new trick. To go with those
Col I Islon Registers, there Is this location, cal led HITCLR,
at 53278. It does just what It's name Implies ••• When you
POKE It with a 1, It wi I I clear the other Col I Islon
locations so that they read O. If this Isn't done, then
after a col I Islon occurred, the approplate col Iision
reg I ster wou I d be set and stay that way. You' I I see a I I
this In action In a moment. Here's a list of all the
co I I I s Ion reg I ster s:

Memory Location Type of co I I I s Ion
******************* *************

53248 Missile 0 to Playfleld
53249 Miss I Ie 1 to Playfleld
53250 Miss I Ie 2 to Playfleld
53251 Miss II e 3 to Playfleld

53252 Player 0 to Playfleld
53253 Player 1 to Playfleld
53254 Player 2 to Playfleld
53255 Player 3 to Playfleld

53256 Miss I Ie 0 to Player
53257 Miss I Ie 1 to Player
53258 Miss I Ie 2 to Player
53259 Miss II e 3 to Player

53260 Player 0 to Player
53261 Player 1 to Player
53262 Player 2 to Player
53263 Player 3 to Player
53278 Clear a I I co I I I s Ion registers

That's a lot I They are rea I I Y easy to use, however, so
stay WiTh me. You simply PEEK at the location that starts
wlTn the object you are concerned with. In this example, we
want to know If the shape, Player 0, has collided with the
Playfleld. That means we wi I I look at the value In 53252.
This Is done In line 242. If It Isn't 0 then some kind of a
col I Islon has occurred and we branch to the subroutine at
line 1000.

270 GRAPHICS 17:POKE 712,245
280 ? #6;"NOW WE ADD CHECKING"
2YO ? #6;"FOR COLLISIONS WITH"
300 ? #6;" THE WALLS AND ALSO"
310 ? #6;" PRluRITY WITH THE "
320 ? #6;"OTHER SHAPES •••• use "
330 ? #6;"YOUR JOYSTICK TO SEE"
340 ? #6;"THE pacman(TM) MOVE"
3,0 ? #6;" IN AND OUT OF THE"
360 ? #6;" TUNNEL SHAPES "
365 FOR 1=1 TO 2000:NEXT I
370 GOTO 30

35

1000 REM **** COLLISION SOUND ****
1002 COL=P EEK(53252)
1004 IF CO L=2 THEN 1015
1005 IF CO L<>l THEN 1030
1006? " YU MMYII":?:?
1007 FOR 1= 200 TO 0 STEt-' -1 :SOUND 0, 1,1 0 , 8: NEX T I: ? : ? : ?
1008 CO L OR 0 :ERAX=ERAX+30:PLOT ERAX,61:PLOT ERAX+l , 61
1009 X= X+8:POKE 53248,X:POKE 53250,X
1010 GO TO 1030
1015 SOUND 0 ,50,8,8
1020 FOR 1=1 TO 30:NEXT I:SOUND 0,0,0,0
1030 PO KE 53278,1:RETURN

Fro m 100 0 to 1005, we test to see wha t is In the
Coll i s ion register. We already know It Isn ' t a z ero --
that ' s how we got this f.ar. If It's a 2 t h en we know the
Playe r "hit" (overlapped) Playfleld 2, which i s t he walls of
the t unne l . We then make a collision s o un d and go to line
1030 which Is ALWAYS REQUIRED to reset a ll collisions
reg isters to hold O's . I f It is a 1, we ran I nt o Playfleld
1, w h I c h i n 0 u r pro g ram 1st he" e n erg y pe l let s " , so the
message "Y ummy" Is printed and an appropla t e sound Is made.
These l i nes a l so POKE HITCLR (53278) and r e t urn .

Does al I that make sense to y o u ?

Let me repeat the basic way to use co l I Is lons : Find the
Col I I s l o n r egister that deals with the tw o I tems you are
concern e d with, either a Missl Ie #_ or a Player #_ on the
l eft sid e and a Player, Missile, or Playfle ld number on the
right . Read the value in that register b y using the PEEK
command . The n umber that results will be eit her 0,1 , 2 , or
3 . I f It is 0, It means you collided with y o u rself which is
mean in gl ess. If It is a 1 , you collided wit h Playfleld 1,
Playe r 1 , or Missl Ie 1 depending on the r eg i ster you are
us i ng . If a 2, It means you collided with PF 2 , PLAYER 2 , or
Mi ss ile 2. A 3 means a collision with PF3, Player 3 , or
Miss i le 3. You can then branch to do whatever kind of noise
or g r aph ics you want.

I ha ve one last trick in this example. Line 245 allows
th'e c ha ract e r to wraparound In the X d irec tion . It just
tests f o r a value of X greater t h an 200, which Is off the
right si de of the screen . By sett I ng X equa I to 40, the
character wi I I suddenly appear on the leftl

One p art of this exampie doesn't show up In the program
listing . That's priority, meaning "What wil l a ppear in front
of what ". In othet words , wi I I a chara cter appear to go
Ins i de a Ho use d rawn on the screen, or pas s i n front ? This
example d i dn't POKE anything Into the Pri ori ty register, so
the defaul t s w~te 'used. Here are t h e options for the
priority re g l ste~:

36

PRIOR (623)

ADD
For overlapping areas of Players
to have a thIrd color ••.••.•.••••.•..•.••...•••••••••.••..•••• 32

For al I 4 Missiles to have the color
In location 711(Playfleld 3) •••• • ••••••••••••••••••••••••••••• 16

ADD ONLY ONE FROM THE FOLLOWING LIST

PrO, PF1, PO to P3, PF2, PF3, BACKGROUND •••••••••••••••••••• 8
PFO to PF3, PO to P3, BACKGROUND •••••••••••••••••••••••••••• 4
PO & Pl, PFO to PF3, P2 & P3, BACKGROUND •••••••••••••••••••• 2
PO to P3, PFO to PF3, BACKGROUND •••••••••••••••••••••••••••• 1

To use this location, just add up the options and POKE the
TOTAL NUMBER Into 623. You can only choose one set of
priorities, so either choose 8, 4, 2, or 1.

A 5TH PLAVER?

Remember In example 5.5, the Color Utility, how you
could press SELECT and have al I the Missiles come together
Into a single Player? This Is how It was done. I POKEd 623
wltn 17 for both the priority I wanted and to change the
colors (lines 1000 to 1050). Then I simply moved their X
locations next to each other. Remember that ~Isslles are
only 2 pixels wide each. You can use them together just I Ike
a regular Player. The mathematics to keep track of them wll I
be a little harder, that's all.

16 PIXEL WXDE PLAVERS
EXAMPLE 3.13

You now know that you have at least 128 pixels In the Y
direction to work with. For Single line resolution you have
256. BUT so far we have been hindered by only 8 pixels of
width. The answer Is obvious, but 1'1 I mention It anyway.
Just position two Players near each other so they match up!
You can write some simple math to always keep them 8 apart
In the X direction. Look at example 5.13 to see an ATARI
logo made this way.

37

EXAMPLE ~ _ 14

(32K required)

Just In case you have gotten to this point In the
Tutorial, and feel you haven't gotten your money's worth,
example 5.14, the last program, Is an Editor to create and
change your Player shapes. I hope you I Ike It I Here Is how
to use It:

1) When the program starts, It wi I I ask if you want to
load In old data, or create new shapes. Choose NEW.
2) Then Press the SELECT button . The message "Player'
to edit" will appear. Pick any number from 0 to 4.
Player 4 Is made up of the Missiles.
3) A flashing cursor wi I I appear In the editing box on
the left. Press D t o draw and move the cursor with the
four cursor control keys (the CTRL is not needed).
4) To stop drawl ng, pr ess E (erase) . Move the cursor to
the next spot you wan t to dra w.
5) While continuing to e dit the shape, press START to
see the Player's shape updated . The Player wll I appear
next to It's number.
6) You may also move the Player you are currently
editing anywhere on the screen by using a Joystick In
Port 1.
7) You can change the size of the Player being edited
(except '4), by press I ng SELECT and choos I ng 0, 1, or 3
for normal, double, or quadruple size.
8) Press OPTION to edit a different Player.
9) Press S to save th e sh a pes you have made to tape or
disk.
10) Press L to load any saved Players back In. Disk
users wi I I find a set of Players on the disk already.
Remember when you load In a set of Players you won't
see them untl I you pr ess OPTION and request each one!

This Editor should allow you to quickly create Players
for any purpose. Write to us with suggestions on
Improvements and I will Incorpor ate your Ideas In later
versions of this program . The code for this also Is a great
Tutorial on handling Players by using strings to store them
In. Advanced users should study It .

********************* *** ************

At this point let me see If there are any loose Ideas
that need to be covered . First , let's go way back to the
game In example 5.2. You have learned al I of the technical
aspects of writing a game using PMG. I want to discuss the
structuring of a game . This means what goes where in the
program coae. You should be able to figure out the rest, but
If I've missed anything, please write .

38

NOTE:

Because of the special characters In this program, the
II st I ng be I ng referred to w II I be found a few pages on I n the
listings section of the manual.

WI-fD's A
SPECIAl­

Cr-4ARAC-rER.

Lines 40 to 60 set the colors. Line 70 points to a
subrOUilne to draw the Playflelds. Always do this toward the
end of your program so that the main loop will run more
quickly. The Playfleld In this case consists . of Just
plotting a lot of data. This Is similar to the earlier
discussion on Playflelds.

Line 80 te I I s you that the program hasn't stopped, but
Is just setting up Itself. This Is always a nice touch.

Line 110 Is tricky. It's another mathlne language .
subrouilnel But this one Is far more useful than the
earlier one. Here I set up four starting locations that are
In a safe area of memory, right between PMBASE and
PMBASE+768 where the Missl Ie data starts. Since line 20
clears this whole area out, we know It Is safe and
available. You'll see what goes there In a moment.

Now, In lines 130 to 310, I POKE In the data for two
shapes for the Pacman(tm) and two for the Squlgl Iy Monster.
These start at convenient Increments so I can find the
shapes later.

LIne 330 Is the machine code which Is stored In a string.
You may copy this line out for other programs along with
It's dimension statement In line 50 and It's USR call.

Lines 380 to 440 do the normal math that Is needed to
keep track of X and Y for TWO joysticks.

Lines 450 to 480 are the neat part. First let me tell you
what the machine language can do for you. The routine Is a
memory move routine. It takes the values In the memory
locations you tell It, and moves them to any other location.
You can use IT to move and entire screen of data Instantlyl
I use It to change the shape that Is In the area where the
data for the two Players Is stored. These lines simply tell
the compuTer •••

Line 450: "Move the Pacman(tm) data from the location
called shape2 to the Player 0 area using 20 bytes of data"

39

Line 460:"Same thing, but move Squiggly data to Player 1
area"

Line 470:"Move a different Pacman~tm) shape · to the
Player 0 area"

Line 480:"Move a different Squiggly shape to the Player
area.

AI I of the moves above also take care of movement up or
down the screen at the same time with the addition of the Y
coordinate you want In the "move data to" location. This
rouTine wIll move all 5 Players and/or the Missiles very
quickly. The earlIer. machine language routine only moved
Player O.

Lines 490 to 570 take care of a I I the Co I I I s Ions that we
might be Interested In, and each branches to a subroutine or
makes some change on the same line.

The scoring and sounds are straight
sound... Increment a score ••• change
depend on your Imagination, I.e., what
In the game?

forward •••• Make a
a color. ALL of these
do you want to happen

Here are the lines to use for the second machine language
routine.

50 DIM A$(100)

:33: CI tII :$i= =-•• hl!]-I [;;0 h::"lf-nh:'E)h~h~h~h::wm.~ "eo
a:w:D.e~ t-el1.1:"1]U.E:!'r!C'D-I-fJ "er..iCW:ljJi.e~]ouLf'~].··
450 D=USR (ADR (A$), From Address, To Address, # of bytes to move)

Even though I did not emphasize the use of Missiles very
much, hope you rea I I ze that they are hand I ed just I Ike
Players except .they are two bits wide. A good example . of
moving them Is In example 5.1, lines 640 to 710.

Your main limits are having only two pixels of width, and
the Missile data areas all In the same stripe. This means
you must POKE O's Into the data area for Missiles you don't
want to ShOW on the screen, or just move them off screen
WiTh the horizontal position registers.

I left a few strange things In the programs In terms of
colors, sizes, and moving shapes off screen when not In use.
If you are going to understand PMG, I suggest you now take
any of my examples and start to clean up little details to
be more to your liking. That will be your final exam •••

WILL YOU PASS?

Scores will be mailed out on Friday. BYE! II

40

5 REM EX5.2
MAIN! CN-tARACTER
.1.0 GOTIO 5810

SELECTED PROGRAM LISTINGS

(c) .1. '9>82 BV
c: It) P V ~~ I G U lr

·=-.ANTil
Ar __ , R J[

Ie: 1I:;j: 1II Z

][IJooVC.
IE D IU C AT J[10 1M t~IL

210 FOR I=PMBA5E YO PMBA5E+2048:POKE I.O:HEMT L;RETURN
:-S:O REM *****PLAVEIR SETUP *ioot-X-joo[,-;j('

41

P~'ilC

40 GR~PHIC5 7:PIOKE 711O~.1.21:POKE 7.1.2.0:POKE 704.41~POKE 765,4
.1: POKE 55"3,62
50 DIM A$(101O) :POKE 623.1
66 POKE 7108 • .1.103:POKE 752.1:POKE 710'.148
710 G05UB 6"3IO:REM DRAW BACKGROUND
81O? **"* WAIT A MQMENT PLEASE '*'-*'.1*"
'10 A=PEEKC11(6)-32:PQKE 5427"3 . A~PMBA5E=A*256

.1.106 POKE 53277.3:PIOKE 53256.IO:POKE 53256 • .1.510

.1..1.0 GI05UB 21O:5HAPE.1.=PMBA5E :SHAPE2=PMBASE+51O:SHAPE3=PMBASE+.1.0
O:SHAPE4=PMBASE+151O
.1.210 RESTORE .1.61O:V.1.=.1.72:V2 =.1.72 :X1 =66:M2=.1.9 6
136 FOR I=PHBA5E TO PHBASE+21O~READ B
.1.46 PIOKE I.B:NEKT I
.1 5 6 R IE 1M -:Iol'-)oE-,_ [> A 11" A FlO R PAC: MA •• .:Il. 'loE-JoE-.l>Hof. . .;pf .

.1.60 D~TA 10.10,10.28.62.11'.127.126.124 • .1.210.124 • .1.26,127,126,62 ,
28 .,10.10,10 .,10 . 10
1710 RESTORE :Z.1.1O
.1.80 FOR I=PMBASE+51O TQ PMBASE+71O : IREAD B
.1.'10 PQKE I.B:NEKT I
200 REM)o(]If:)o()o(loE- I>ATA !FOR PACt'lAN2 *~oHoe-_

2.1.6 DATA 10.6.6 . 28.62 • .1.18.126.126 ,126.126 • .1.27,.1.25 • .1.2:6,62.20,0
.0 .,6 .,10.10
2:210 POKE 55' .,62
2310 RESTQRE 260:FOR I=PHBASE+1010 TQ PMBASE+.1.21O:READ B
246 POKE I.B:HEKT I
256 REM)o()o()o()o()o(DATA FOR MONSTER.1. *****
260 DATA 10.6,10.0.124,214.214,254 .124.68. 68,284,0.0.0,0,0,0,0
.10.10
27'0 RESTORE 310
:Z81O
2"310
31010
3.1.10

FQR I=PMBASE+.1.51O TQ PMBASE+.1.71O:READ B
POKE I.B:NEXT I
REM ~~** D~TA FQR MONSTER2 *~~~
DATA 1O.0,IO.e • .1.24J254.2.1.4.2~4 • .1.24.68.68 • .1.02,O.0.0.e,e,e,e

., 10 .• 10.10

320 SCOREMON=3:SCOREP~C=3

:3 :~; 0 iiI:$ =" h~+A [ij/O h:'1lElh::"I.'Jh::"l!!1lh~h:~h::"I!EJ.:"I["nrJ(_1[I(:r~~f.] "e~:::n::D"e'fn3J-l-~ .. ern
:"!U"'J!l.er:;c'~ "e"''i:WJlJI<I!I'e~~~ilX~3[!l::;III.'"
:,',;: 41, 0 ? ;? :? :? " 'lj;fi:jII:::~Di:j!] ii".IiR:IiUr.~~" : FOR :r = .:l. T 0 3 0
,[It; NlEX 'lf' ::r
'3:!S I[Il IR IE 1M --'JooE-II'1f11 I N L 0 0 P **-JoE..j.H'H',.,

:~: 60 I[;OSUB .:11.0:310

370 POKE 53278 • .:l.:REM CLEAR ALL COLISION LOCATIONS CSO THEY H
OLD' 0'5)

380 ST.:l.=STICKCO' :S=PEEKC5327"
::';5100 ST2'::::SU" Te~((;[::11

·~l[j,O IIF 5 :=3 1J" UEINI POKE '764, . .:1..2: J~IlJN "1): 1E::M:"5. :3"
410 Y1=Y1+C5T1=131W2-CST1=.:l.41*2
420 V2=V2+{ST2=131*2-CST2=.:l.4>*2
4:3:0

4-'11· 0
.41· '5:0

4f.i.0
·'U· 7'0

H.:l. = M.:l. + (ST.:l.=71-CST1=11) :POKE 53248.M1
M2=X2+{ST2=71-(ST2=11) :POKE 532451o.M2
D=USIRCADRCA$).SHAPE2,PHBASE+1024+Y1,20)
D=USRCADRCA$1.SHfIIPE4.PMBASE+1280+V2.20)
D=USRCADR(A$] . SHfIIPE1.PHBASE+.:l.024+Y.:l..201

480 D=USRCADRCAS].SHAPE3,PHBASE+.:l.280+V2.20]
490 IF PEEKC53252]=2 THEN POKE 704.200:POKE 705.41:S0UND 0.2
00 • .:l.0.8:FOR I=1 TO 30 : NEMT I:SOUND 0.0.0.0
500 IF PEEK(53252'=.1 THE~ M1=H1-(ST1=7]+(ST1=11) :POKE 53248,
M1:Y1=Y1-(ST1=13~*3+CST1=14~_3

510 IF PEEK(53253~=2 THEN POKE 705,200:POKE 704.4~:SOU~D 0.2
00 • .:l.O.8:FOR T=1 TO 30:HEMT I:SOUMD 0.0.0.0
520 IF PEEK{532531=1 THE~ K2=K2" 'ST2=7)+(ST2~~1] :POKE 5324'.
M2:Y2=Y2-(ST2=13~*3+C5T2=14'*3

530 IF PEEK(53260)<>0 THEN GOSU8
540 IF PEEK{S3253)=4 THE~ GOSU8
550 IF A~DCO'*100>~~ THEM COLOR
560 IF PEEK(53252)=4 THEM 1[;05U8
570 POKE 53278,0:1[;011"0 380
~'>80 G~l:~'PHTe ·~", .:Il.-.?'

61[110

6J .. 0

6 2: 0

? :U6; "'11--1111:: d::n 11<: IE: GO][NG TO
.. ? ~~#tJ. ~ 1/ II I~ ... :r "U-" 1-1 ~ Ie:: to IMP L. /[: "1" lE

". ~t.t6;'" IFI~~ST TO STU[)Y
? :It.:Hj ;" IFEt:lJTUIRE~j. TI'tIf.liT

P II.... d~~ 'ii" II U

1[:; t~H t"alE:: II II

' !" MilE

TDiF.::

ifi· :3: (I' ? 1t.H"; ",AlT,I:'4IHI (TII'''n OFf"1E,1R5 US" '"

'Ii· ,t 0';' #1:(;';' "ili]GC_~T~njJfIIlt!lllllli:-L~r.::~" ,
'E; !f.> 0 ? 1rib;' "1i.".ilJl~_:::E:r.l_:3[;:t:i>.:r.:: __ ~i:-,:uIiiI" •

?" #f.~:> .; II 1I[ii[::.l:~ti:~I~l~'!I~~I±~.[E'C~I~E~RH II

",p :Z ~'~ : (;; 0 "r 0 ~'> ';;" 0

HD'O

3:PLOT 35,55:PLOT

66(j,

61"0
tEi· ;f:I;O

6Si't]J
,~,·OO

? 1t.1i 6; "" 1:;;;Vf.I~~~:"'I:."-:~UCJl:!;tIIUW'£;;l?r::.,;r~:r.']:::i';riI· ,
FOR 1=1 TO 3000~~EMT][:GOTO 30

1.1. (1'

R IE Ir1l ~""'jo(-- II'} ;::, c: 11<: I[; R 0 lUI N I> ')ofC(oofCIoI'"'''''_-;l>f-'j·HooHoof.-*:Jool;.;''''*'' l'''*''I~:-;Oof-'toof.-:P;,

RESTORE 140:COLOR 1
READ M1.Y1.K2.Y2:IF M1=~9~ THEN 820

720 PLOT H1.Y1:DRfIIWTO K2.Y2
'7 :3;: (I, tG 0 T I[i ~? .:11.. e
740 DATA 20.20.20.0.20.0.0.0.0.0.0.7'.0.79.70.79.70.79.70.70
.O.50.10.50.0.40.10.40.~0.10.10.30 • .1.0.30.20.30
750 DATA 20.30.20.40.20.40.40,40,40.40.40.10.20.50.20.60.20.
60.10.60.10,60 . 10,70.10.70.50.70.50.70.50.40
760 DATA 30.30.30.0.30.0.70.0.70.0.70.10.50.0.50 .30.50 ,40.60
.40.60.10.60.50.30.50.40.50.30.60.40.60
770 I>AT~ 70 . 30,~O.30.90.30.'0.50,70.50.70.30.70.20,100,20,10

0 . 20 • .:l.00.60.~O.10.~0.20 . 80.10.80.0

780 DATA 80 . 0.159,O.15~.0 . 15'.70.~5~,7~,BO.19.aO.79.80.60,80

~60.60.60,60.60.60.70

~~O DATA 'O . 60.90,70,90,70.~50.70 • .:l.50.70.~50.40.140.60.130.6
0,130.60 . 130.70.130,40 . 110,40 . 110.40.110.70
800 DATA 100,30,130 . 30.1~0.~O,110.20.110.20.150.20.140.20,14

0.50,140.50 . 120.50.120.50 • .120.60
810 DATA 150.10,150 . 30.140,O.1.0.~0.130.10.130.20,120.0.120.

10 • .:l.00.0.100.10.99~ . 99.9,~

42

;f.1; 2: 0 IR IE ~i -lot-'I'E-'lot-')oI'-'Jo(-';l'HoE- U'" J[L IL IB 0 :H: IE S *"""*"*;Io!-'****

830 COLOR 2:FOR 1=1 TO 20:PLOT 70.30+I:OR~WTO ~O.30+J[:HEXT J[

;[:1;4·(11 COLIOR :,~

;t'~'SO RIETIlJRN
RIEt'1 ~*""-'"',* SCOIRIE I='on IP'Ae t()o[)()()(]o(t~_ ifJ if. 0

;E~;;" ' O

:=::~'O

;E~;fliO

;8'51'0

COLOR O:PLOT 35.55:PILOT 135,65~SCOIREPAC=SCOIRIEPAC+1:FOIR I
TO 1 STEIP' -1:S0UNO O.I.~O.8:NIEXT I
GOSIlJIB 1030:IRIETIlJIRN
n IE 1M 'Joof..jo(-;Io!- 'S e to IR E ~i0 N S 'Y' IE: IR *.~ __ .JooHooHof

~OO COLOR O:PLOT 35.55:PILOT 135.65:5COIREMON=SCOIRIEMOH+1:FOIR I

=50 TO 1 STEP -1:S0IUND 0.I.10.8:N~XT I
~10 GOSUB 1030:RIETIlJIRN

ti0 N·S. T E IR ;1oE-'_*,~Io!--tof_

AND PEEK~704)=200 THEN
D' 2: 0 R IE 1M! ;",._;;;;..* P .~ ~:;: Iri][T "5

~30 IF PEEK(53260)=2
C+5:GOSIUB 1030:GOTO ~50
'~1'40 GO "ro ~'Jo60

SCORIEIP'AC=SCOREIP'~

~50 FOR][=200 TO 0 'STEP -1:S0UHD O.I.10.8:NEMT I
~;" (> (\I ~l: ~:: 1M ;,(-.Jo(-;;or,,* ~"'1 (II I~ ti I 11"" 5 IP' ~ C il'1 A IN! ·00-'jo(-,'jo(-,loE--JooE-loE-

~70 IF PEIEK(53261)=1 AND PEIEKC7(5)=200 THEN SCOREMON=SCOIREMO
~+5:GO'SUB 1030:GOTO 9~O
'51';[,,1;0 GOTO .:11.000
~~OFOR][=0 TO 200 STEP 1:S0IUND O.I.10.B:NEHT][:SOUND 0.0.0.
o
1000 K1=60:K2=1'O;Y1=172:Y2=172
1010 DUM=USRC~DR<AS~.PMBASE+200.IP'MBASE+1024+Y.240~
1020 DUM=USR(ADRCAS~.PHBA5E+200.PMBASE+1024.510]
.:1 .. 1[113:0 II'" 0 II< E:: 656, .1.: POKU::: 6~;;·;>,.::2::? "1P~,eMAINI=: "'; SGOu:;tEPAC .;"
s.nUJ[IGJ[L'''~= "'; 'SCOlfiEII'1I01l'oll: nK::TUIRN

<II. J:j:Eti EX 5.6
5 REM eC) 1~82 BY SANTA CRUZ EDUCATIONAL SOFTWARE. WRITTEN 8
"lI" 1'<:08IN 'SHERER
10 FOR I=1 TO 8:POKE 53247+I.0:NEXT I:GOTO 410
2 (]I R E 1M! -:\oHo(--lo(-'.)oE-)(- P LOT Slr1 (II P E: --)(--

:";:0 COLO~~ 0
40 D=D+CST=6)+(ST=7)+CST=5)-CST=')-CST=10)-(ST=1~)
50 E=IE+CST=13)+C'ST=~)+(ST=5)-(ST=6)-(ST=10)-(ST=14)

50 FOR X=O TO ~:FOR Y=O TO 25:PLOT M+D.Y+E:NEXT Y:NEXT K
70 RESTORE 150:.COLOR 1
80 FOR N=1 TO 100:IREAD H:READ V

'0 IF M=O AND Y=O THEN RETURN
100 PLOT X+D.Y+E:HEXT N
.:It j. {ll IE!;: C 1, ('j. 0) :="" h h h.J Hm ... 1F'_-'::""·r:r'...IIITr:..r.'::h .. .J Hill -.::iJ_1:.~"""T;;.J;:'.";h.J H~na>i:.~~
to ~p(ir"'JJGTE_'¥{~ ••• ' ,
120 REM POKE 53248.30
140 SOUND 2.0.8.2:FOR UOIL=1 TO 15 STEP 0.1;SOUND 0 .25.4.UOL:
SOUND 1.13.4.UOL
1S0 O~TA 5.0.3.1.4.1.5.~.6.1.2.2 .3.2.4.2. 5.2.6.2.7.2.1.3 .2.3
.7.3.8 .3.2.4.3.4.4.4.5.4.6.4.7.4.3.5.4.5.5.5.6.5
160 OATA 4.6.5.6.2.7.3 .7.4.7.5.7. 6,7.7.7.1.8.3.8.6.8.8 .8.1.'
.8.~.2.10.4.10.5.10.7.10.2.11.4.11.5.11.7.11

170 DATA 2.~2.7,12.3.13.6.13.3.1 •• 6.14.4.~5.5.15.4.16.5.16.4
.17.5.17.4.18.5.18.3.1~.4.1~.5.1~.6.1'

180 DATA 2.20.3.20.4.20.5.20.6.20.7.20.1.21.2.21.3.21.4.21.5
.21.6.21.7.21.8.21.2.22.3.22.4.22.5.22.6.22.7.22
1~0 DATA 3.23.4.23.5.23.6.23.4.24.5.24.0.0.0.0
:2:1[110 RlEti -lo(-.,.HooE-·_IPLAYE:R SETUIP __

210 DIM ESC60> :GRAIPHICS 6:~=20:E=50:POKE 55~.0~GOSU8 20:?
~HICH IS THE IPLAYER?":POKE 710.~48:POKE 712.148

:Z:ZCI ? "'~~~j SIZE'S. l!.]::.I!.""];1 = NEXT EX."
:;;~3{li E~'" (.1., 60) :="hhh.JIHITJ ... ~.1:7·r::3""~hJHill ... ~~,.l~hJt .. L~_~
h ~"IT:I'o..Ur.:;~~_~. ¥.'"

43

4 REt'. EH5. 8
5 REM cc~ 1'82 BY SANTA CRUZ EDUCATIONAL SOFTWARECROBIN SHER
ER)
.:IlO GOTO ;JO
26
3:0
40
50

FOR I=PM6ASE+1024 TO PMBASE+153:6:POKE
GOSU6 206:REM DRAW MOUNTAINS
DIM 1E:$(60~

GOSU6 300:RIEM DRAW STARS
60 POKE 7~0.O:POKIE 712.0:POKIE 704,123
70 GOSU6 380:REM SIETUP PLAYERS
80 POKE 204,A+4:POKIE 203.0:POKE 205.120

I .,O:HEXT I:RETURN

'9> 0 E:$" 1, 6 6:l1 =::'" h h II-> J Hill.. IF.::tIW" ~i'IJlTI.I~1I-> ..JIllirn u':;;~'--_I['=:I:::r:.::1II"" ,..- ,::;r.!':: h •. ' It (i.J"o • .ril.;:;:E'~"IF'[~h
.JI ~:J"U:;1::I.'G:1II ¥[~ " ,

1~0 REM POKE 53248.30
.:II .. :l. 0 R IE 1M "':·*·lIf.·t1t~ I 1M L 0 0 P ·'IHE-lnH.(..;!ot-'I*+E-'!oE-*·*

120 SOUND 2.0.B.2:FOR UOL=1 TO 15 STEP 0.1 SOUND O.25.4 . UOLI
SOUND 1.13.4.UOL
136 A=USR'ADRCE$~.STICK(O:ll~
j_4.0 NEXT IIJIOL
150 FOR UOL=14 TO 0 STEP -0.1:S0UND O.25.4.UOL:SOUND 1,13.4.
UOL
1.60
j_ 7' 6

1.BO
j .. '3'e
2:06
:Z.1.e

220

A=USRCADR(E$~ .5TICK(0)>
NIEXT UOL
IF PIEEK(5327'>=3 THIEN POKIE 764.12:RUN
GO TO .:L:lO
REM **.l>l,-*. PLOT !BACKGROUND ')'H****
GRAPHICS 8+16;RESTORE 260
COLOR .1.

230 RIEAD K.V:PLOT X.Y
24£10 READ K.Y:IF X>'OO THEN RETURN
250 DRAWTO X.Y+10:GOTO 240

"'N>: EH5 . "9>'"

260 D4T~ 0,157.27.166.39.166.4'.166.57.157.57.15B.6'.158.74.
164.87.170.87.171.30 . ~6,,'5.1.0

270 D4TA 110.70.112,65 . 114.50.116.63.127.'3.130,37.140.'7.15
3.63.153.57.165.B4.168.'1.175.103.181.123
280 DATA 130.174.1'3.174.205.165.207.14'.22'.133.245,156.256
.133.271.120.283.165.2B7.~72.2'1.164.300.8"9>.305.76

2'0 DATA 310,63.9".'"9>3
3 (II 0 ~~ IE M iOl,*"jo(-'!oE- 5 TAR S _lo(-
:::'~10 TRAP :;~70

:;:'<;:2:0 RES".--ORE :,~40

330 RE4D M.Y:PLOT M.Y:GOTO 330
340 D4TA 2.4.5.8.9.10.13.43.34.65.7.3.23.66.123.45.300.67.30
1.65.246.34.234.49.261.68.241.133.123.55.67."9>8
350 D4TA 12.64.75.58.11'.10.133.43.4,65.7."9>3.203.66.12.45.17
8.67.145.65.46.34.187.4'.123,68.21.133.243.55.116.74
36£10 DAT4 123.5.156.7.213.8,2'5.12.236.34.234.56.230.56.230.6
.• -;?'B ., 9

370
380
390
4 ·00
41.0
41.2:0

4 .30

RETURN
R IE M --. SET lJ P P LAY E R S -l>oH('+!.,--*

4=PEEK(106)-40:POKE 5427"9>.~:PMB4SE=~*256
GOSUB 20:REM CLE4R PM AREA
POKE 53277.3:RIEM TURN ON PM DMA
Z=20:REM INITIAL V POSITION
X=150:REM INITI4L K POSITION

OU~' SJl-t][P
OF SI-t][P

440 POKE 53248.X:POKE 5324'.X:REM POSITION SHIP CPL4VERO) AN
D FLAME CPLAYIER1>
450 RESTORE 480
460 FOR I=PMB45E+1024+Z TO PM64SE+12BO:READ 5HAPE:IF 5HAPE<>
o THEN POKE I.SHAPE:HEHT I
470 POKE 623.1:REM SET PRIORITY
480 DATA 8.60.126.1'5.126.60.24.126.165.129.30.0.0,0
490 POKE 55' .• 62
500 RETURN

44

240 A=PEEK(106~-16:POKE 5427'.A:POKE 204.A+4:POKE 203.0:PH6A
5 · E: =:: A.;jo(-:2:!5 6

250 POKE 53277.3:POKE 704.40:POKE 53248.150:POKE 205.120:POK
if": ~:;;3:2:S15.0

260 FOR I=PH6ASE+1~24 TO PM6ASE+1280:POKE Z.O:HIEKT X
:,;~: -;';" 0 R IE 5 T 0 IR IE :;;~ .51' 0

280 FOR I=PMBASE+1155 TO PMBf-ItSE+1203:READ B:POKE I.B:NEKT I
2~0 DATA 8.8.60.60.126 .12 6 • .:1..95 • .:1..95.126.126.60.60.24.24.126.1
26, .:I..6!5 • .:1..6.5

300 DATA 129.123.90.90.'0.'0.66.66.36.36.36.36.24.24.24.24.2
41· ,.2:4 .,.:2:4 .• 24

310 DATA 60.60 • .:1..26 • .:1..26.255.255.126,126.60.60.24.24.0.0.0.0.0

<,; ::;;~: 0 IP ,[]I II(l':: ~_> 5,~ .,. 6 2

:3: 3: 0 IR IE: 1M

:~; 41 0 If..t II=: ~'1 "'''*.'1«f..*',*'IoE·11'1 f-It T IN! L 0 0 po .]"H<I~,"'-}>f.-]of.-

:3: 'Ci; eI' R IE: ~oiI

360 IF STIRIG(O~=O THEN G05UB 20:FLAG=O
370 ST=STICKCO> :S = PEEK(53279~
380 IF 5=5 THEN G05UB 670
:;';·51'£il JLIF 5:::::3: ·lrIHENI POKE .;? fi, 4· • :L2 = POIKIE 5:~256 .• 0 :: IR:UJIN "[>:: IEX!5" .;> "
4001 (4:=USR (ADU (~E~~:)I .,. 5 ·rTC~((:10:»1 : GOTO 3fi,0
410 GRAPHICS 17:POKE 712.148
4::t~:0 ? :11:1:6;'" ·]f·UIS· NE'::H: ··1f [~:H:A U""PLIE

""·:J;:O ? j~:t:b .; '" 5HOU-.lS ''o'' OU lrlilE

41.~~(lt ? UtE>.; "l>TFFEIRENtGlE: I[jIE:TWEIE:1NI ~~"

,,"-~i;O ? ~::t:lb; '''HOnt1(';LL'V IL~~~ttAtWH SIiAP~:~'"

"11·601 ? 1t:t:6 .; '''IAlNU> ~" PIL .. A· .. ·U::n use
4· :;;"0 ? 111:6 ., " OUR _.~Ol,~:S: ·~: i c k ··ro SE E:'"
·41 ;['1; O~.;> ~:t Ib .; "" IJ...III-i Til:::: IHI][S T IHI IE r!J]F.r~::r:.liiil"" ,
4'0 FOR Z=1 10 300~;~EMT I:GOTO 210
!S 1[1' 0 R "=: ~11 ,"';'JoI'-l ,~'* P IL 0 11- .'j. ti A po E -lo!,-l<>b*.,..,..,.., ...

'~' _1 .. iJt COILO~: .JI..

520 D::::D+[ST=Ib'+(5T=7)+(ST=5)-[ST=']-C5T=10)-(ST=11)
530 E=E+[ST=13]+[5T=9'+(ST=5)1-[ST=6)-CST=10)-(5T=14)
5·<110 J:l:1E5TOHIE :;~7(~

550 FOR ~ = 1 TO 100:READ M:READ
560 IF M = O A~D Y=O TIHIEN 110
570 PILOT H+D.Y+E:~EMT N

580 IF Fl.AG=O THE~ COLOR O:GOTO 130
'.:i; 9' 01 U IE: T ILU ~:t &~

600 FOR H=1 TO 8:FOR Y=O TO 25:PLOT H+D.Y+IE:~EKT Y:NEKT H
IC;. ~M .. 01 R if": T HJ R Ii<II

6201 DATA 5,0.3.1 ••• 1.5.1.6 .1.2.2.3.2 .4.2.5.2.6.2.7.2.1.3~ 2,3

.7~3.8.3.2.4.3~4.4.4.5.4 . 6.4.7.4.3.5.4.5.5.5.6 . 5

630 DATA 4.6.5.6.2.7.3.7.4.7.5,7.6.7.7.7.1.8.3.8.6.8.8.8 . 1.'
.8.~.2.10.4.10.5.10.7.10.2.11.4.11.5.11.7.11

640 DATA 2.12.7.12.3.13.6,13.3.14.6 . 14.4.15.5.15.4.16,5.16 .4
.17.5.17.4.18.5.18.3.1'.4.1'.5.1'.6.1'
650 DATA 2.20.3.20.4.20.5.20.6 .20.7.20.1.21.2.21.3.21.4,21.5

b€i·O
~j. 7' 01

,[;. <I; (]I

.;;. ~:I' (Jt

.;;" .1. {jt

DATA 3.23.4.23.5.23.6.23.4,24.5.24.0.0.0.0
IR IE ~... *'''''·'''>f.-l'~'·''''''·~''i. J[;;~: IE: .~:;. ·lof.-·loI'·j·H.E·'Jof

P~::=II"'If:E:IK (:·;>t[i.4·~

][If'· PJ(=5I[i TU··Ull'::t~

J(If· P t(:::: :;<;: .~.. ·If Mil E ~~
If> to 11<: U=:
IPOIKIE:

.:11. . . f'

~:;: :;:t;: ::'~ !S II:;' .,. If~ :: IR IE: T "..II 1f;I: !NJ

!5 :~;: :;'.: 5 '15. ,. .~.. :: n IE: T U JI;l: U,~

730 J(F PK = 26 THEN POKE 53256.3:RIETUR~
.;;,. 41. (Jt G q], TO ·;;> 0 ,[It

45

3 REM CC) ~~82 BY SANTA CRUZ EDUCATIONAL SOFTWARECROBIN SHER
Er,!:)

4 REM IEM 5.~

5 FOR I=~ TO 8:POKE 53247+I,O:NIEMT I
8 GO TO .1.00
~o I>J[M E$(60)

20 E$ (~p 60:) ="hhh.JHm "'''IIIf..r.:''''~hJlim "~""[;;r.::h.Jtt~"'la:M:."l'f~h
JITl'LIi.~ • .uJ
30 ~=PEEKC~06)-~6:POKE 5427~.A:POKE 204,A+4:POKE 203.0:PMBAS
E=tI.*2!56
40 POKE 55~F62:POKE 53277,3:POKE 704.40:POKE 205.~20:POKE 53
25;6, .1.
50 FOR I=PMBASE+1024 TO PMBASE+1280:POKE I.O:NEMT I
60 FO~ I=PMBASE+.1..1.00 TO PHBASE+.1..1.27:REAI> B:POKE I,B:NEXT X
70 DATA 8.60 • .1.26,.1.'5 • .1.26.60.24.126.~65 • .1.2~.0.'O.'O.66.36.36.
24.24.24,O.24.60 • .1.26.255,~26.60.24.0
75 POKE 53248 • .1.50
80 A=USRCAI>RCE$).STICKCO» :IF PEEKC5327')=3 THEN POKE 764.12
: POKIE 53:2:56.9: RUN "I:>: EX!5. 110"'
'0 GOTO 80
_1.00 GRAPttICS .1.·7
_1.02 ? U6; "WE MENTIONEI> THAT
~04 ? #".1:6; ··',(OIlJ MIUST BE CAREI=UL
i06 ? j~6; "WHERE YOU PLACIE THE
.1 . .1.0
.1.20
~2:5

~30

.:1.4.0

.1.50
~60

~62

~65

? :1'*6 PLA EIR,/MISSILE I:>ATi~."'

? U6.· ·IlL-t.:n.~'l.l __ ;t;r'l.i.[o;orl![~ ••
? U6; ·'C!Ii8lllil::x.L>!{,1::a:.....u_:m1!laotl··
? U6; ··~~JI!UI.~~T~ __
? U6;:' ·[!f!.I .• ! ;t:!.I!~
? U6 ,;:·H

? UG ,P 1M

FOR I=:L

GRAPIHIICS
TO 3000:NEMT I:POKE

7: POIKIE 7_1.2,148
752, .1

~tH3I ? ""'IOVE: PLA· ... IER BOTti IC>:IRIECTIONS":? "PRESS rlJ.1i:I:Iifir.J "-0 GO ON

_1.'0 GOTO .1.10
2000 REM __ IPL.OT SttAPE)()()()(]o()(

2:0.1.9 COLOR .:11..

20.1.5 RESTORE 2~90
2:020 FOR N=1 TO 109:READ M:REAI> Y

3 REM ec) ~982 BY SANTA CRUZ EDUCATIONAL SOFTWARIECROBIN StiER
ER)
5 REM EX5.~0
~O FOR I=i TO 8:POKE 53247+I.0:NEMT I:POKE 55~,O:GOTO 30
2:0 FOR I=PMBASE+512 TO PMBA5E+~2:80:POKE I,O:NEXT I:RETIlJRN
:~o GRAPHICS o:? =? :? PRESS r.~(I:C:J TO GO ON": POIKE 752,.:1..
40 ? :? PRESS 1i',=r3!£~U FO~<: SINGLE LINE RESOLUTJ[ON IP

LAVER"
50 ? :?
LAYER"

PRESS t;.-:.J[,lIU FOR DOUBILE LINE

7'0 POKE 704 ~ 40
80 PMB=PEEKC~06>-~6
'0 POKE 5427'~PMB
100 PMBASE=PHB*256
110 POKE 53277.3:G05UB 20:POKE 55'.34
~20 X=125:Y=.1.10:YS~VE=100

1~0 POKE 53256.0:GOTO 200
.1.40
j_50

RIEM **Jo()()()(MAIN
P=PEEK(53279)

~60 IIF
.1.70 IF
.1.80 IIF

P=5 THEN
P=6 THEN
P=3 ~··HEN

.1.SPO GOTO ~50

POKE
POKE
POKE

55'~62::POKE 53248~~00

55'~46:POKE 53248~100

764 .,.1.2: RUN "I>: EM5 . .1..1."

46

RESOLUTION IP'

200 REM
2 .1. 0 R U=: M SIN G L E IL I N IE IR E SOL U T :[() IN)()0()0()0(JoE)(~"*

220 REM
230 IRES TORE 230:CNT=O
240 FOR I=PMBASE+~024+Y TO
2 50 REAO B:IF 6=0 THEIN 300
~~IEi,O CNT::::CNT+~

I .r IB
I

,;

PMBASE+.1.280

:2: 7 {II

1!:a6
1!: "51' 0

IPOIKE
NEXT
[)ATA ~24.2.1.4 , 2.1.4.254 • .1.24.68 , 68,204,O.O,O

366 REM
3..1. 0 RIEM DOUBLE LINE I~ESOILIIJT :[ON * *)()()()(
320 REM
330 RESTORE 230:CHT=0
3 40 FOR I=PMBASE+5.1.2+Y
3 50 RE~D B:IF B=O THEN
360 CHT=CNT+ .:II..

TO Pt1BASE+640
:3:30

:;:~7'O POKE I" IEf;

3:80 NEXT I
:;'S: ~-jl0 (.iOTO .1.!50

4 · REiI"l EX5 . .1. :3:
5 REM (C~ .1.'82 BY SANTA CRUZ EDUCATIONAL SOFTWARE(ROBIN SHER
E ~: >

.1.0 FOR 1=.1. TO 8:POKE 53247+I.0:NEXT I:GOTO 240
2 0 FOR I=PMIBASE+.1.024 TO PMBASE+.1.7,2:POKE I.O:NEXT I:RETURN
30 REM *--!of.-*PLAYEIR SE T UP)o()o()o()I()o(

4 0 GRAPHICS 7 : POKE 7.1.0.0:POKE 7.1.2 . 0:POKE 704,4.1.:POKE 706.4.1.:
POKE !5!53 ,, 62
5 0 A = PEEK(.1.06~ -24 : POKE 5427',A:POKE 204,A+4:PPKE 203,O:PMBAS
E: :::: A*'2!5 6

60 POKE 53277.3:X=.1.50 : POKIE 205 . ~20~POKE 53256.0:POKE S3250.~
~>O

70 GOSUIB 20
80 RESTORE .1..1.0:Y= 1!50
'0 FOR I=PMBASE+1024+Y TO PMBASE+.1.203:READ B:IF 0<>0 THEN PO
KE: I.IB:NEXT I
j . OO REM __ I:>ATA I=OR FIRST HALF *M-'JoE-

.1.10 DATA 2.2,2.2.2 , 2.2,2.2 . 4 , 4,4.8 • .1..1.2.0.0.0

.1.20 RESTORE .1so

.1.30 FOR I=PMBASE+1536+Y TO PMBASE+.1.732:READ B:IF B<>O THEN P
OKE: I,B:NEXT I
.1 .. 40
.1.50

REM **"l**"* DATA FOR 2ND I-tALF -)0(-_

DATA 160.~60 • .1.60.160 • .1.60.160 • .i60,.1.60 • .1.60 • .1.44 • .1.44,.1.44,.1.36
., :1.35. O. O. 0

.1.60 POIKE 553 ~ 62

.1.65 ? 16 BIT WIOE 5HAPE"

.1. 67 POKE 752,.1.

..1.68 ? < :::: = ==~: [lSE · .lO S T ·ICIK :::: :::: ::::::::= > ••

..1. 7' 0 REM
j . 80 REM -3IHo£-;K'1oHoE-loE-MAJCN LOOP ·ioof**--lIIE­
.1.30 REM
200 IF STIRIG(O ~ =O THEN GOSUB 20:FL~G=0
2.1.6 5T~STICIK(0) : S=PEEK(53:2:7'~

2:20 IIF 5=3 T~fEN PO.O::: 704 • ..1.2: ~ RUN "[) ~ E:H:!5 • 14."
225 X=H+(ST=7) - (ST = 1.1.] :POKE 53248~X:POKE 53250.X+8
2:30
:2:4· 0
2 : !5 (II

(;;IOTIO 2:00

GRAIPHI:C: '=i .1.7

? U6 .~" DO 'lOIUl WANT MO~:E

260 .? U6 .~ "COMPL:[CATE~D SI·tAPES?
:2: 7 0 ? U6;' ·1nTh~_!~:t""i:I!:_:.nlr."1ii~"'.~!lij;ij··
:2: 8 0 ? U6~' ·r.r~L'.::EI"l?Ii_!l:iir~··
230 ? :U6 ~ "mw:GiltIiKiS.:ECj ::J.I:::w:.~ ..
3 CO 0 ? U6;' 'EEr'"~i{1T~£'C:jiME1" ••
3.1. 0 ? #t6~' ·~.::"I:Fr..z~::u.."=-__ 1··
320 FOR 1=.1. TO 30~0:N~XT I:GOTO 40

47

TRICKY TUTORIAL ##6
SOUND

E d Lt c::: .a. t :i. C) II .a. 1

Tr-ic:::ky

presents

ILt t C)r- i.a.1 (t fTl)

SOUNDS

by JERRY WHITE

#6

This program starts with the simple sound
statement~ but progresses to chords~ complete
songs and special effects. It also
demonstrates the use of direct pokes to the
computers built in four channel frequency
controls. All of the material can be used b y
a beginner~ yet if it is studied~ you will
learn many of the tricks that Jerry White
puts into his other musical programs for the
ATARI(Name That Song, Player Piano~ My First
Alphabet's tunes). MUSIC FROM BASIC BECOMES
ALMOST EASY!

This program requires 16k for tape users
or 24k for disk, and a basic cartridge.

Educational Software Inc.
4565 Cherryvale
Soquel, CA 95073
~408) 476-4901

SOU O TUTORIAL NOTES=

This tutorial is different than the previous five in this series.
Like the others, it makes a complicated subject usable for the average
ATARI owner. Also, most people feel it is an excellant value for the
price. However, the format is quite different in that the program is
really self documenting. Also~ this is the first tutorial written by
someone other than myself. Both of these changes are for the better,
so I hope past purchasers of TRICKY TUTORIALS like this one to.

I suggest you learn the program by first running(and playing with)
all seven parts. Then, when you find a specific area that you want to
understand better, go to that program and load it into your memory.
Tape users should write down the starting number of each program. Now,
try looking at the program code itself to see what Jerry has done.
Think of a way you would like to modify the program, and go at it~ For
example, the song in part three,"DOE RAY ME", could be changed by
modifing the data statements. For your use, this part is reprinted on
the next page.

Following that page you will find a chart of the notes and pitches
available for the basic sound statement. Then comes the program for
the special sound effects. You can either retype these in to your own
programs as needed, modify them for new effects~ or just resave them
by themselves. Note that each little effect is not quite complete by
itself, but needs the variables VO-V3 defined. Finally, Jerry's
special gift to us is part seven for which both the listings and
instructions are included.

For an interesting effect take out the remark in line 74 of parts
1,2, & 4. Most people I showed this to didn't like the sound
associated with each letter being put on the screen. You may, or
perhaps you might change the pitch values in the sound statement in 74
to get your own unique effect.

It's up to you to experiment with sound. This program is the
foundation. Write and let us know what you think of it.

Educat I ona I Software Inc.
4565 Cherryvale
Soque I, CA 95073

(408) 476-4901
BYE ,

Robin Sherer

While many of the programs in this package display
documentation, SOUND.3 may require the printed type. This
program plays a song and displays sing along words on the
scr-een. I f you under-stand th is progr- am ~ and you c an read
sheet music~ you may wish to write you own BASIC songs.

If you don't know how to read sheet music~

get by i~ you have a good ear and use the old
er-rol~ method. I f you don' t hc.~\/e ei thel'- ~ and
sing, then just listen.

you
tr i al
you

might
and

can't

You will need some knowledge of music to write music.
I will have to assume that you understand the following
musical terms: NOTE or PITCH, CHORD, SHARP~ and FLAT. If
you're lost already, the rest of this program
documentation won't help you. Let us know if you'd like a
tutorial on reading music and describing the previously
mentioned musical terms.

listing. We Let's walk through the SOUND.3 program
begin by DIMensioning a string called LINE$
call E:~d "N" whi ch wi 11 store 50 pi tches.

and an arl~ay

These pitches
will store one will correspond to musical notes. LINE$

line of words in our song. We then set VO=O
V1=1 (I,.'OICE 1) ~ etc., then GOTO 100.

(Voice

Why the heck did he GOTO a line of DATA? I actually
should have gone to line 120, but ATARI BASIC will bail me
out a just fall through to line 120~ which sends us off to
a subroutine at line 21000. That routine just clears the
screen, displays the heading, POKEs location 77 with a
zero, and returns. In case you don't know what that POKE
does~ it temporarily defeats ATARI's automatic color
changing routine which is also known as attract mode.

into RETURNing to line 120,
the N (NOTE) array. Then I

we read data for 50
TRAPped to line

notes
19000

makes no sense at all since there is no line 19000 in
program. If you decide to make modifications to

which
this

program, get rid of that useless TRAP. By the way,
reason I got away with it was only because there are
other errors in this program. The POKE 82,8 indents
J.c~ft margin.

Before we start reading more data
important to understand the use of the
subroutines found from line 30 through

Look at the DISTORTION L.EVEL 10

at linE-? 210, it
"N" array and

line 74.

PITCH CHART.
1.

C.
lower

this
the

no
the

is
the

The
It's
This

t.he

first note is quite logically numbered
corresponding PITCH is 14 and the musical note is
is a very high sound. The higher the sound, the
NOTE # and PITCH value. In OLW "N" array, N (1) contains a

14. The DATA in lines
PITCHes on the CHART.

100 and 110 correspond to the

Why use NOTE numbers in an array when ATARI supplies
PITCH values in their BASIC REFERENCE manual? I"m glad
you asked. Start reading the PITCH numbers on the PITCH
chart unt i 1 you gE?t to the number 21. What happened to
20? If you look further down the chart~ you'll notice an
increasing number of missing numbers. Now look down the
column of NOTE #"s. You will find 50 consecutive numbers.
This provides us with a quick and easy way to let BASIC
calculate chords when we supply only the base note of the
desi rE?d chor-d"

The subroutine beginning at line 40 is our
calculator. You need only supply it with the NOTE
the var' i ab 1 e "P" . The rOLlt i ne assumes that P wi 11

c!-',Dr'd
in

be at
(PITCH
stDres

I east 8 and not gr-eater than 50. I t then set s PO
0) equal to N(P). Then it calculates our chord and
the pitches in P1~ P2~ and P3. In line 42~ we turn on all
4 voices. Notice that voice 0 is set at a greater
and the three notes of our chord are played at

volume~

a lower
volume but equal to each Dther.

In line 50 we get to our WAIT routine. We POKE the
value stored in the variable WAIT into location 540. This
location counts backwards to zero at the rate
second (JIFFIES). We just waste time at line 52
countdown is completed. Then we turn off VOICE 0
lil:::TURI'.I.

of 60
until

ONLY

pE~r

the
and

So what did all this accDmplish? In plain English~

we played a melody note along with a chord, then turned
off the melody note. The chDrd cDntinues to play. The
subroutine at line 60 is used to turn off ALL voices.

The subrDutine at line 30 will change only the melody
pitch~ then go on to the WAIT routine.

The subroutine at line 70 turns on all four vDices at
equal volume~ then decreases the volume gradually, until
all sounds are off.

Now~ where were we??? Ah yes~ line 210 where we read
LINE$~CHORD~P~WAIT:PRINT LINE$:and go off to the
subroutine beginning at line 40. We are reading the DATA
wh i ch beg ins at 1 i ne 1000. We read the ~'Jords, "DOE A DEER
A FEMALE DEER" into a str i ng then put it on the !5Creen.
We also read the number 49 into the variable CHORD~ 37
into the variable P~ and 45 into the variable WAIT.

Remember, we GOSUB 40 to play a melody
calculate our ~hord, play the chDrd, and kill some
The best way to learn from examining someone
program, is by acting as if you were the computer.
the instructions~ and see what you, or the computer,

not.E? ,
time.
elses

FollovJ
will

do. Let's try it.

I'll be the computer this time. I have just read the
data as I was instructed to do in line 210~ and now I'm at
the subroutine at line 40. I am told to make PO=N(P). I
just read DATA and set the value of P=37. I look up the
value of N(37) and see that it is 121. I set PO=121.

My next instruction is to make P1=NCCHORD). I read
the value of CHORD in line 210 and know that CHORD=49. I
lookup the value of N(49) which is 243~ and set Pl=243.
P2 must be set to the value stored in N(45) and P3 must be
set to the value stored in N(42). P2=193 and P3=162.

I turn on all four voices as indicated in line 42
then POKE the number 45 into my memory location 540. At
line 52 I look at the value stored in memory location 540
and compare it to O. It's not 0 so I check it again.
Each time I check that location, it's value is less than
it was the last time I looked, but it's not zero so I keep
checking. I'm getting bored.

Finally I find a zero and go on to line 54. I turn
off the sound of Voice a then RETURN from this subroutine
to l ine 220.

Now it's your turn .
doing what I just did. If

Continue through the
you start getting

program
confused,

take a pencil and write down values as you read and change
them. You should soon understand what I've put your
computer through, to play this simple song.

The logic in this program is not suitable for all
songs. You will have to make minor modifi cations for
different tempos, or if other than standard Major chords
are required. This program demonstrates one way to play a
simple song and an easy method of finding the notes of a
chord. Don't think you can just add a few lines of DATA
and create the Nutcracker Suite.

If you just want to enter the music, then see
sheet music form while it is played, I'd recommend
MUSIC COMPOSER. If you'd like to see your melody
would be played on a piano, or play your keyboard as
were a piano, consider the SANTA CRUZ SOFTWARE
PIANO package. I know the author, he used to be a
player.

it in
ATARI's
as it
if it
PLAYER

piano

SOUND.3 (c) 1981 by Jer-r-y White

10 0111 LINES(40) ,N(50):
VO=O:
VI=I:
V2=2:
V3=3:
SOTO 100

30 SOUND VO,N(P),10,14:
SOTO 50

40 PO=N (P):
PI=N(CHORD):
P2=N(CHORD-4):
P3=N (CHORD-7)

42 SOUND VO,PO,IO,14:
SOUND VI,PI,IO,6:
SOUND V2,P2,10,b:
SOUND V3,P3,IO,6

50 POKE 540,WAIT
52 IF PEEK(540)(>0 THEN 52
54 SOUND VO,O,O,O:

RETURN
60 FOR OFF=O TO 3:

SOUND OFF,O,O,O:
NEXT OFF:
RETURN

70 PO=N(P):
PI=N(CHORD):
P2=N(CHORD-4):
P3=N (CHORD-7)

72 FOR DECAY=B TO 0 STEP -I:
SOUND VO,PO,IO,DECAY:
SOUND VI,PI,IO,DECAY:
SOUND V2,P2,IO,DECAY:
SOUND V3,P3,IO,DECAY

74 NEXT DECAY:
RETURN ~ . ,,_ 0::\:\

100 DATA 14,15,16,17,IB,19,21,22,23,L4,2b,~ /,29,~1, •• ,

35,37,40,42,45,47,50,53,57,60,64,68,72,76,81,85,91,96
110 DATA 102, lOB, 114, 121, 12B, 136, 144,

153.162,173,IB2,193,204,217.230,243,255
120 SOSUS 21000:

FOR X=1 TO 50:
READ IT:
N(X)=IT:

NEXT X

200 TRAP 19000:
POKE B2,B:

?
210 READ LINES,CHORD,P,WAIT:

? LINES:
SOSUS 40

220 FOR I1E=1 TO b:
READ P,ioIAIT:
SO SUS 30:

NEXT I1E:
BOSUS bO:
WAIT=IO:
SOSUS 50

230 READ LINES,CHORD,P,WAIT:
? :

i LlNE$:
GOSUS 40

240 FOR ME=i TO b:
READ P,WAIT:
GOSUS 30:

NEXT HE:
BOSUS bO:
WAJT=30:
aosus 50

250 READ LINES,CHORD,P,WAIT:
? :
I LINES:
BOSUS 40

260 FOR I1E=1 TO 6:
READ P,WAIT:
BOSUS 30:

NEXT HE:
GOSUS bOI'
WAIT=IO:
BOSUS 50

270 READ LINES,CHORD,P,WAIT:
'1 • : ,
? LINE$:
GOSUS 40

2BO FOR HE=I TO 6:
READ P,WAIT:
GOSUS 30:

NEXT HE:
B05US 60:
~AIT=30:

BOSUS 50
290 READ LINE$,CHORD,P,~AIT:

? :
~ LINES:
BOSUS 40

300 FOR ME=I TO 5:
READ P, WAIT:
GOSUS 30:

NEXT HE
310 READ CHORD,P,WAIT:

BOSUS 40:
GOSUS bO:
WAIT=30:
BOSUS 50

320 READ LINES,CHORD,P,WAIT:
") . : ,
? LINE$:
BOSUS 40

330 FOR HE=1 TO 5:
READ P,WAIT:
BOSUS 30:

NEXT HE
340 READ CHORD,P,WAIT:

BOSUS 40:
BOSUS 60:
WAIT=30:
BOSUS 50

350 READ LINE$,CHORD,P,WAII:
? :

7 LINE$:
GOSUB 40

360 FOR ME=1 TO 5:
READ P,WAlT:
GOSUS 30:

NEXT ME
370 READ CHORD,P,WAIT:

GO SUE 40:
GOSUS 60:
WAlT=10:
GOSUE 50

380 READ LINE$,CHORD,P,WAIT:
? :
7 LINE$:
GOSUE 40

390 READ P, WAIT:
GOSUe 30

400 READ CHORD,P,WAIT:
GO sue 40

410 READ P,WAIT:
GOSUO 30

420 READ CHORD,P,WAIT:
GOSue 40

430 READ P,WAIT:
GOSUB 30

440 READ CHORD,P,WAIT:
GOSUB 40

450 GOSUB 60:
WAIT=10:
GOSUS 50:
FOR DECAY=15 TO 0 STEP -0.5:

SOUND VO,Nlll,10,DECAY:
NEXT DECAY

460 GRAPHICS 18:
'J 46:
, 46;" mdjor chords'

510 FOR ME=1 TO 8:
READ CHORD,P,LINE$:
POSITION ME*2,10-ME:
? #6;LINE$:
GOSUe 70:

NEXT ME
530 FOR ME=8 TO 1 STEP -1:

READ CHORD,P,LINE$:
POSITION ME*2,10-ME:
, #6;LINE$:
GOSUE 70:

NEXT ME
540 WAlT=15:

GOSUE 50:
POSITION 4,11:
7 46; "PRESS"

550 FOR DECAY=15 TO 0 STEP -0.5:
SOUND V0,N(6),10,DECAY:

NEXT DECAY
560 WAIT= 15:

GOSUE 50:
POSITION 10,11:
? #6; "START"

570 FOR DECAY=15 TO ° STEP -0.5:
30UND VO,N(I',10,DECAY:

NEXT DECAY
600 SET COLOR O,PEEK(20), 10:

IF PEEK(53279)~ } 6 THEN 600
700 GRAPHICS 18:

SETCOLOR 0,1,10:
SETeOlOR 1,11,12:
:3ETCOLOR 3! 4, i2

710 ? il6:
'i 16:
? i6;' PRESS option':
? ~6;' TO RERUN"

720 WA IT =bO:
GOSUB 50

730 ? 46:
? 16;" PRESS start':
? i6;' TO CONTINUE'

740 IF PEEK(53279)=3 THEN
RUN

750 IF PEEK(53279)=6 THEN 900
760 GO TO 740
900 RUN "D:SOUND.4'

1000 DATA DOE A DEER A FEMALE DEER
1010 DATA 49,37,45,35,15,33,45,37,15,33,30,37,30,33,45
1020 DATA RAY A DROP OF GOLDEN SUN
1030 DATA 42,35,45,33,15,32,15,32,15,33,15,35,15,32,90
1040 DATA ME A NAME I CALL MYSELF
1050 DATA 49,33,45,32,15,30,45,33,15,30,30,33,30,30,45
1060 DATA FA ' A LONG LONG WAY TO RUN
1070 DATA 44,32,45,3(1,15,28,15,28,15,30,15,32,15,28,90
1080 DATA SEW A ~EEDLE PULLING THREAD
1090 DATA 49,30,45,37,15,35,15,33,15,32,15,30,15,44,28,90
1100 DATA LA A NOTE TO FOLLOW SE~

1110 DATA 44,28,45,35,15,33,15,31,15,30,15,28,15,42 ,26,90
li20 DATA TEA A DRINK WITH JAM AND BREAD
1130 DATA 42,26,45,33,15,31,15,29,15,28,15,26,15,49,25,90
1140 DATA THAT WILL BRING US BACK TO DOE
1150 DATA 49,25,15,26,15
1160 DATA 44,28,30,32,30
1170 DATA 42,26,30,30,30
1180 DATA 49,25,90
1200 DATA 49,37,C
1210 DATA 47,35,0
i220 DATA 45,33,E
1230 DATA 44,32,F
1240 DATA 42,30,G SET COLOR 2,9,0:
1250 DATA 40,2B,A SETCOLOR 4,9,0:
12bO DATA 38,26,8 SETCOLOR 1,9,12:
1270 DATA 37,25,C POKE 752,1:
1300 DATA 37,25,c POKE 82,2:
1310 DATA 3B,26,b POKE 83,39:
1320 DATA 40,28,a POKE 201,7
1330 DATA 42,30,9 21010? " 1/:
1340 DATA 44,32,+' ,"QRRRRRRRRRRRRRRE"
1350 DATA 45,33,e 21020? ,": "AJOR CHORD HAR"ONY :'
13bO DATA 47 ,35, d 21030? , "IRRRRRRRRRRRRRRC"
1370 DATA 49, 37 ,c 21040 POKE 77,0:

21000 GRAPHICS 0: RETURN

F'r '-CH CH(::~h."T

NOTE # PITCH 1"1LJS I CAL I\JOTE

1 14 C
2 15 B
.~. 16 A# or Bb
4 17 (,
r.:- 18 Gff ...J or Ab
6 19 G
7 21 FfF or (3b
8 ,.,...,

.L..L. F
9

,.,..,..
..L..'_\ E

10 24 D# or Eb
1 1 ,."

..:..0 D
12 27 C# or Db
13 29 C
14 3 1 B
10::;'

~J
77 ._,.:. A# or Bb

16 7t= ._J A
17 37 G# or' Ab
18 40 G
19 42 F# or Gb
20 45 F
21 47 E
22 50 D# or Eb ,., ..,..
L '_'

<:::"..,..
w '_' D

24 57 C# or Db
25 60 C
26 64 B
27 68 A# or Bb
28 72 A
29 76 G# or Ab
30 81 G
3l. 85 F# or Gb
32 91 F
33 96 E
34 102 D# or Eb
35 108 D
:::'~6 114 C# or Db
37 121 C
38 128 B
39 136 A# or Bb
40 144 A
41 153 G# or Ab
42 162 G
4-:' '-.' 173 F# or Gb
44 182 F
45 193 E
46 204 D:H or Eb
47 217 D
48 230 C# or Db
49 243 C
50 ,.,1::"<:::"

.L....J...J B

SOUMD.o BASIC SOUND EFFECTS BY JERRY WHITE PAGE 1

ORE" SOUMD.o (c) 1991 by Jerry White 11/9/91
10 VO=0:Vl=1:V2=2:Y3=3:POKE B2,2:POKE 93,39:60TO 2000
50 POKE 540,WAIT
52 IF PEEK(540)()0 THEN 52
54 FOR OFF=O TO 3:S0UND OFF,O,O,O:NEXT OFF:RETURN
99 REI!
90 REI! ••• "ACHINE GUN .t.
91 REII
100 FOR SHOT=l TO 12:FOR VOL=15 TO ° STEP -5:S0UND YO,BO,O,YOL:SOUND Yl,bO,O,YOL
110 SOUND V2,200,4,YOL:SOUND V3,10,4,VOL:NEIT VOL:GOSUB 54:NEIT SHOT
120 RETURN
199 REI!
190 REI! ••• SURF/WAVES •••
191 REI!
200 FOR PO=10 TO 2 STEP -O.02:YOL=PO/2:SOUND VO,PO,9,VOl:SOUND Vl,PO+l,B,YOL
210 SOUND Y2,PO+2,9,YOL:SOUND V3,RND(0)13,9,YOL
220 FOR PO=3 TO 12 STEP 0.02:YOL=PO/2:S0UND YO,PO,9,VOL:SOUND Yl,PO+l,B,VOl
230 SOUND V2,PO+2,9,VOL:SOUND Y3,RND(0)'3,9,YOl:NEIT PO
240 FOR PO=10 TO 2 STEP -0.02:YOL=PO/2:SOUND YO,PO,B,YOL:SOUND Yl,PO+l,9,VOL
250 SOUND V2,PO+2,9,YOL:SOUND V3,RND(0)'3,9,VOL:NEIT PO:GOSUB 54:RETURN
289 REI!
290 REI! ••• LAZERS/PHOTONS .t'
291 REI!
300 FOR SHOT=l TO b:FOR PO=O TO 200 STEP 10
310 SOUND YO,PO,0,9:S0UND Yl,PO,10,8:SOUND Y2,PO,12,8:S0UND V3,PO,4,9
320 NEXT PO:NEXT SHOT:GOSUB 54:RETURN
399 REI!
390 REI! ••• POLICE/FIRE SIREN , ••
391 REI!
400 FOR PO=200 TO 50 STEP -1:S0UND VO,PO,10,8:S0UND Yl,PO+2,10,o:SOUND Y2,PO+4,10,2:S0UND V3,PO+o,10,2:NEIT PO
420 FOR PO=50 TO IbO STEP 0.2:S0UMD YO,PO,10,8:S0UND Yl,PO+2,10,b:SOUND V2,PO+4,10,4:S0UND Y3,PO+o,10,2:NEIT PO
430 GO SUB 54:RETURN
489 REI!
490 REI! ••• AIR RAID SIREN ttt
491 REI!
500 FOR LOOP=l TO 6:FOR PO=l TO 20:SOUND VO,80+PO,12,B:NEXT PO
510 SOUND VO,80,10,12:S0UND Vl,100,10,!2:S0UND Y2,13,4,12
520 WAIT=30:GOSUB 50:NEXT LOOP
530 FOR V=12 TO ° STEP -0.I:S0UND YO, (20-V)'10,10,Y:SOUND VI, (20-V)tl0+20,10,V:SOUND Y2,13,4,Y:NEXT V
540 GOSUB 54:RETURN
589 REI!
590 REI! ••• TELEPHONE RINGING •••
591 REI!
bOO FOR RING=1 TO 2:FOR LOUD=! TO 35:S0UND YO,20,10,8:S0UND V1,1,2,8
610 FOR LOOP=1 TO 2:S0UND VO,25,10,9:S0UND Yl,0,2,B:NEXT LOOP:SOUND YO,O,O,O:SOUND Vl,O,O,O:NEXT LOUD
620 FOR V=7 TO ° STEP -0.2:S0UND VO,20,10,Y:SOUND Vl,O,2,Y:NEXT V
630 NAIT=90:GOSUB 50:NEXT RING:GDSUB 54:RETURN
bB9 REI!
b90 REI! ••• WHISTLING 80118 .,.
691 REI!
700 FOR PO=O TO 150:S0UND 0,PO,10,PO/15+2:NEXT PO
710 FOR PO=O TO 240 STEP 5:YOL=14-PO/20:SOUND YO,PO,O,VOl:SOUND Vl,PO,B,YOL
720 SOUND Y2,PO+15,2,VOL:NEXT PO:GOSUB 54:RETURH
789 REI!
790 REI! ••• SPACE SHIP •••
791 REI!
800 SOUND V2,0,B,2:FOR VOL=1 TO 15 STEP 0.I:S0UND YO,25,4,YOL:SOUND Vl,13,4,VOL:NEXT VOL
810 FOR VOL=14 TO ° STEP -0.I:S0UND VO,25,4,VOL:SOUND Yl,13,4,VOL:NEXT VOL
820 GOSUB 54:RETURH
889 REI!

SOlJNI:::> _ 7

If you have run the first 6 programs in this package~
you should now have a good background for using the Atari
Basic SOUND command. The SOUND.5 program gave you some
idea of what you can do by quickly changing the values of
SOUND command variables. The SOUND.6 program demonstrated
sound effects and hopefully you are now thinking about
creating some of your own sound effect routines.

This machine has truly amazing sound capabilities.
Believe it or not~ the SOUND command is not the best way
to create sound effects. Using machine language speed is
one way to get sounds that Basic is ju~t too slow to
create. But you don't need machine language to get more
sounds from this computer.

Some truly amazing sounds can be created
POKE command. SOUND.7 lets you experiment with
using your joystick plugged into the first port.

using
POKEs

the
by

I'll give you more information on these POKE
locations later but first let me explain how to use the
SOUND.7 program. You can read the technical stuff later.

The numbers 53760 thru 53768 are displayed on the
screen. A greater than (>) symbol should appear next to
the top number. Move that > down to the number 53768 by
pulling back on the joystick. This is how we select the
location we wish to POKE. Once the > points to the
desired location~ press the trigger button. The location
number should turn blue.

Now push up on the joystick to make the number to be
poked into location 53768~80 . Push up to make the number
higher and pull down to make the number lower. Once you
have the number 80 next to the 53768~ press the trigger
button. This will cause the 53768 to go back to it's
original yellow color and the> to return to it's original
position next to the 53760.

No sound? Not yet~ be patient. Now
POKE for location 53760. Since the
position~ just press the trigger and
should turn blue. Use your joystick
53760~10~ then press the trigger.

>

to

lets
is

that
make

change the
already in
top number

the poke

Still no sound? Boy are you impatient. O.K. Move
the> to location 53761 and press the trigger. Now change
the poke to that location randomly. SOUND! ! ! It's about
time. Now it's time to experiment. That location at the
screen bottom is the key. Try changing it to 83~ 85~ and
other numbers between 0 and 255. Then go back and change
those top two locations.

What about 53762 thru 53767? Go ahead~ do what you
want. You can't hurt anything but you might drive some
people crazy if the volume on your TV is too high.

To exit this program~ just press
keyboard. This is also a good way to shut
and start over by giving the RUN command.

any
off

key
the

on the
sounds

Before using these POKE locations in Basic~ there are
two things you must know. The POKEY chip must first be
initialized. This is accomplished with a simple SOUND
O~O,O~O command and should be done at the beginning of
your program.

These locations or sound registers are write only.
For sound, you can POKE into these locations but PEEKing
will not reflect the value you just poked. Confusing?
You've got that right! The main thing is that you can
create sounds using experimental POKEs without
understanding what's happening or why.

For a detailed more explanation of these
and other SOUND information, I'd strongly suggest
the SOUND chapter in De Re Atari. This book is
to be available from APEX.

LOCATION DESCRIPTION
-------- -----------
53760 Voice 0 Frequency
53761 Voice 0 Control
53762 Voice 1 Frequency
53763 Voice 1 Control
53764 Voice ~ k Frequency
53765 Voice ~ L Control
53766 Voice 3 Frequency
53767 Voice 3 Control
53768 Audio Control

registers
you read
scheduled

SOUND.6 BASIC SOUND EFFECTS BY JERRY WHITE PAGE 2

890 RE" ". SPACE ECHO .,'
891 RE"
900 FOR YOL=15 TO 0 STEP -0.2:FOR PO=O TO 5:S0UND YO,PO,2,YOLzSOUND Vl,PO+l,2,YOL:NEXT PO
910 FOR Pl=YOl'10 TO VOL STEP -10:S0UND YO,Pl,10,YOL:SDUND Vl,Pl+YOL,10,YOL:NEXT Pl:NEXT VOL
920 RETURN
989 RE"
990 RE" ,., DOOR BELL ff.
991 RE"
1000 FOR VOL=15 TO 0 STEP -0.5:S0UND YO,29,10,YOL:SOUND Yl,30,10,YOL:NEXT VOL
1010 FOR YOL=15 TO 0 STEP -0.5:S0UND YO,35,10,YOL:SDUND Vl,36,10,YOL:NEXT VOl
1020 RETURN
1999 STOP
2000 RE" f.f "ENU OPTIONS 'f'
2010 GRAPHICS O:SETCOLOR 2,15,0:POKE 752,1:POKE 201,10:?
2020 ? ,'Q~~~~~~~~~~~~~ijij~'
2030? ,': SOUND EFFECTS :'
2040 ? ,'1~~~~~~~~~~~~~~~~':POKE 201,9:?
2100? ,. (I) "ACHINE GUN'
2110? " (2) SURF WAVES"
2120? " (3) LAZER FIRE'
2130? " (4) POLICE SIREN'
2140? " (5) AIR RAID SIREN'
2150? " (6) TELEPHONE RINGING'
2160? ," (7) WHISTLING 80"8'
2170? " <8} SPACE SHIP'
21BO ? " (9) SPACE ECHO'
2190? ,'(10) DOOR BELL'
2500? ,'(II) RUN LAST PROGRA"'
3000 POKE 53279,0:? :? " CHOICE'j:TRAP 9000: INPUT CHOICE:TRAP 40000
3010 CHOICE=INTICHOICEI:IF CHOICE(l OR CHOICE)11 THEN 9000
3020 IF CHOICE=11 .THEN RUN 'D:SOUND.7"
3030 GRAPHICS O:SETCOLOR 2,CHOICE,0:? :? :? :? :LIST CHOICEtl00-10,CHOICEfl00+BO
3040 GOSUB CHOICEfl00:? :? :? " PRESS ANY KEY FOR OPTIONS'j:POKE 764,255
3050 IF PEEK(764)=255 THEN 3050
3060 POKE 764,255:GOTO 2000
9000 RUN

******************************* *** SOUND.7 (SOUND EDITOR) ***
*** (c) 1981 by Jerry White ***

100 GO TO 10000
500 POSITION 1,O:

FOR ME=O TO 8:
POSITION 6,HE+2:
? 46;53760+ME;"= ' ;NiME);" ' :

NEXT ME
600 ? 46;" se lee t 1 oc at ion
700 POSITION 5,2:

ry 116; U I" :
Y=2

720 S=STICK(O):
IF 5=14 AND Y)2 THEN

POSITION 5, Y:
? 16; Ii ":

Y=Y-l :
POSITION 5, Y:
? 16jCHR$(30):
sosue 3000

730 IF PEEK(764) ()255 THEN 12000
740 IF 5=13 AND Y<10 THEN

POSITION 5, Y:
? #6;" ":
Y=Ytl :
POSITION 5, 'i:
'! 16;CHR$(30):
GOSUS 3000

760 IF STRIG(OI=1 THEN 720
800 GC=Y-2
900 POSITION 0,11:

? #6;" release trigger "
1000 IF STRIG(O)=O THEN 1000
1010 POSITION 5,Y:

? lIbj " "
1020 P=53760tGC:

L$=STR$(P):
FOR I1E=1 TO 5:

IT=ASC(L$(I1E,I1E)):
IT=IT +i28:
L$(ME,I1E)=CHR$(IT):

NEXT HE
1030 POSITION 6,Y:

? 16;L$
1040 POSITION 0,11:

ry 4bj 11 change poke
2000 S=STICK(O):

IF 5=14 AND N(GCi (255 THEN
N(GC)=N(GC)+j

2020 IF PEEK(764) ()255 THEN 12000
2100 IF 5:13 AND NIGC)O THEN

NIGC)=N(SCH
2200 POKE P,NIGC):

POSITiON 12, Y:
? #bjN(GC)j" 11

2300 IF STRIG(O)=1 THEN 2000
2400 POKE 65,0:

GO TO 500
3000 FOR ME=I TO 10:

POKE 53279,0:
POKE 53279,8:

NEXT ME:
RETURN

10000 GRAPHICS 18:
0111 N(8),L$(5):
SOUND 0,0,0,0:
POKE 710,154:
POKE 709,204

10100 'i6; ' SOUND EDITOR':
7 #6; " **t*t*t**tt,":
PQf:E 764,255

:1000 FOR HE=O TO 8:
N(I1E)=O:

NEXT ME:
CLOSE 11:
OPEN #1,4,O,"K:":
GOTO 500

12000 GRAPHICS 0:
LIST :
" '

; : END OF SOUND TUTORIAL BY JERRY WHITE, ":

END

~ .. l SOft •• ,."
-..aT.... TRICKY TVI'ORIAL II

,
(

d.lcatlor.l Sortwarc's
'PAGE PLiPPING TRICKY TUTORIAL 13

POR lIT 1>_
Use 'RUN:C' To J.oed

l

F.duealIoneI Software's
PLAYER MlSSTLE GRAPmcs 1'.1'. 15

-
Por AlAn 32K Computer

Use 'RUN:C' To to.t1

,

~

~

I
~

Ecklcetional Software's
HORZ/V!JlT SCROLL Tricky Tutorial • 2

POR ATARIM 16K COMPUTER
Use 'RUN:C' To Loed

l

~.--------------------~

f;I t Q, ~

-" eI
E«lIeetiOftlI Sortware's

IOU_D TRICKY TUTORIAL 16

	Cover
	Introduction

	Display Lists
	Scrolling
	Page Flipping
	Basics of Animation

	Player Missle Graphics
	Sound

