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Preface

There are very few books on writing computerised games of strategy and
fewer still giving actual worked examples. This book aims to fill that gap
for owners of Atari home computers, although I hope that the owners of
other machines will also find it useful.

This is a book pitched at intermediate level. It assumes that the reader
is already acquainted with Atari BASIC. Machine code programmers
have also been catered for, with many hints on how to modify routines
for their programs. These sections are interwoven with the rest of the text
and BASIC programmers can lightly skip such paragraphs, knowing that
they are not missing any vital information.

The programs that are presented here generally require less than 16K
of free RAM for their operation; the exception is Warp Trog which
requires 32K. The Atari 400 and 800 models will also require the Atari
BASIC cartridge; the more recent models 600XL and 800XL have Atari
BASIC fitted as standard.

The programs are written to illustrate principles rather than to be
‘clever’. The knowledgeable reader is encouraged to enhance them.

I make no apology for numerous references to commercial strategy
programs, many unavailable for Atari machines, since much can be
learned by éxamination of the state of the art.

For the same reason, many of the underlying principles in each chapter
are illustrated by reference to chess. Although BASIC is not suitable for
programming chess, the game provides good illustrations of all the points
made in the book, while at the same time the rules are well known.

Writing strategy games requires the blending of many sciences; not only
a knowledge of programming but also of certain mathematical and coding
techniques. In order to keep the book to a manageable length, I have
given a brief outline of such methods where appropriate, then referred
readers to other sources for more detail.
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KEY

The following standard variables are used in programs in this book:

Q

QQ :
XX
REV
AO :

Evaluation score

Best score yet found at 1-ply

Present location of piece on board at square A(X,Y)
Temporary new location of piece moving to square A(U,V)
+1 when computer is considering program’s best move

— when computer is considering opponent’s reply

The mathematical expression 10 exp N in the text is equivalent to the
number 10N. Thus 10 exp 33 is equivalent to 10%, ie 1 followed by 33
zeros: 1,000,000,000,000,000,000,000,000,000,000,000.
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CHAPTER1
Introduction

There comes a time in any computer owner’s life when he becomes tired
of zapping aliens. As the 1,079,864th flying saucer crashes spectacularly
to the ground (or, more often, the player crashes instead), he thinks about
signing a peace treaty with the rest of the galaxy and turning to something
else.

The next option that most computer owners try is one of the many
adventures that are available in machine code or BASIC. Sooner or later,
even this palls (or the owner doesn’t like solving puzzles), leaving the last,
and most difficult option, the field of intelligent games.

There are a huge number of games for computers where ‘the other side’
is trying to overcome you, just as you are trying to overcome it. The
enemy moves may be divided arbitrarily into random moves, directed
moves and intelligent moves.

An example of a random enemy move occurs when you are flying a
spaceship, or steering a submarine, when an enemy spaceship/destroyer
suddenly pops up and starts firing. What has happened is that the program
has encountered a line such as:

1000 Q = INT(RND(1)*6+1): IFQ >5 THEN GOSUB ATTACK

where Q is a variable set to a figure between 1 and 6. If it exceeds 5, then
the enemy will start its attack.

Directed moves give the appearance of being intelligent, since they are
aimed directly at you, the player. As an example, a spaceship will always
fire exactly at you, instead of firing randomly in all directions. Again, the
spaceship may also make its move directly towards you (with the
occasional random movement to make life harder). This is achieved by
continually reducing the distance between both pieces. Let us suppose
that your spaceship is positioned on the screen at location P,Q and the
enemy is located at position X,Y. Then the enemy spaceship can steer
towards your spaceship with the simple routine:

1000IFX>PTHENX =X — MO
1010IFX<PTHENX =X + MO
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1020IFY>QTHENY =Y — MO
1030IFY <QTHENY =Y + MO

where MO is the number of screen locations that it can move in any one
turn.

Space Invaders (TM) is a classic example of a game combining firing at
random times with directed angle of firing, at your cannon. A trivial
example of the same thing can be seen in Program 1-1:

5 REM PROGRAM 1-1

10 GRAFHICS 17:FOKE 752,1

20 X=10:FIRE=100

30 COLOR 3:FLOT 10,1

40 COLOR O:PLOT X.18

S50 IF STICK(O)=11 THEN X=X-1:IF X2
THEN X=2

60 IF STICK(0)=7 THEN X=X+1:IF X>18
THEN X=18

70 COLOR 43:FLOT X,18

80 IF RND(1)>0.96 THEN GOSUR 100

85 IF STICK (M =15 AND RND (1) >0.7 THEN
GOSUER 100:REM FIRE MORE OFTEN IF
STATIONARY

90 |BOTO 40

100 COLOR 42:FLOT 10,2:DRAWTO X, 17

110 COLOR O:FLOT 10,2: DRAWTO X,17

120 POSITION X, 18:FRINT #&; "BANG"

IO SOUND 0,40,8,8

140 FOR KE=1 TO 100:NEXT K

150 SOUND 0,0,0,0

160 POSITION X, 18: PRINT #é;" "

170 RETURN

Plug a joystick into port 1, type in Program 1-1 and RUN it, moving
your ‘ship’ — the character ‘+’ — from left to right with the joystick. The
‘enemy’ —the character ‘#’ — will randomly fire shots directly at your ship,
wherever it moves. If you stand still, you will be hit more often.

Problem: Modify Program 1-1 so that the enemy moves towards you,
instead of firing. (Hint: use MO = 1).

An interesting example of directed play was the mechanical device
made by a Spaniard, Quevedo, in 1890 for the express purpose of playing
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the king-rook versus king ending at chess. The result should always be a
forced win for the side with the rook, and it should take no more than 16
moves at most, with best play.

According to a reconstruction of the algorithm by Michie in 1975,
Quevedo’s machine made no intelligent moves, but directed its pieces
towards a win by the following sequential process:

1) If the rook is threatened by EK (Enemy King), move it to the furthest

file from the EK

Else 2) If the vertical distance between EK and rook > 1 square, move
rook 1square down

Else 3) If vertical distance between king and EK > 2 squares, move king
1square down

Else 4) SPACE = horizontal distance between king and EK. If SPACE
= 0 then move rook down 1 square (check or checkmate move)

Else 5) If SPACE is odd then move rook 1 square horizontally towards
centre of board

Else 6) (SPACE iseven). Move king 1 square so as to reduce SPACE.

Note that the program does not at any stage have to pick between
several moves. Its move is always forced by the program sequence.

Quevedo’s program was a simple one and always assumed that the
pieces started on different ranks (try it with king and rook on the same
rank) and that the enemy king was always nearest to the bottom of the
board, while the rook was the next nearest to the bottom. It sometimes
took 62 moves to force checkmate, but it was the first program to be able
to play any part of chess at all.

Intelligent moves are harder to program, and this book is devoted solely
to telling you how. We define an ‘intelligent’ move as one which the
program selects after considering a number of different alternatives. It is
as though, in Program 1-1, the ‘enemy’ tested several different shots
before firing the one which hit your ‘ship’.

An intelligent game is one which uses intelligent moves. Note that even
a comparatively trivial game like noughts and crosses (tic-tac-toe) or
hexapawn can rate as an intelligent game by this definition.

Most intelligent games are strategy games played on two-dimensional
boards, such as chess on a chess board.

To understand much of this book it is absolutely essential to know how
to use arrays. An account is given in the Atari BASIC book but a brief
description will be given here.

An array consists of a large number of locations which are
distinguished by a coordinate system. As with reading a map, the board
isdivided into grids.

A chess board is numbered as a grid, as shown in Diagram 1-1, so that
the bottom left square is labelled (A,1), the top right is (H,8) and square
Xis (D,5). The Atari computer will not recognise an array of letters and
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Diagram 1-1

ABUC MPDYVE E G

numbers, so the letters must first be translated into numbers. This is
easily done by turning each letter into its number in the alphabet; thus
A=1,B=2,C=3,...... ,Z=26.

It can be represented in BASIC by

10NUMBER = ASC (NAMES$) — 64

where NAMES is the letter which you are trying to convert to a number,
and NUMBER is the result.

So chess location (A,1) becomes (1,1) in Atari internal code.

The Atari 400 and 800 computers, and their related successors, are fine
machines with excellent sound and colour graphics capabilities. Atari
BASIC s available as a cartridge for the 400 and 800 machines and is built
into the new range of models. They do, however, have a number of
idiosyncracies not commonly found in other machines. The most
significant example of this is their handling of string arrays. The very
common Microsoft BASIC — which is also available as a cartridge for the
Atari computers — permits multi-dimensional string arrays such as
A$(5,5). Standard Atari BASIC allows only one-dimensional string
arrays, such as A$(25). This makes conversion from Atari BASIC to an
assembler routine easier than Microsoft’s approach, but it is otherwise
much less flexible.

Another weakness of Atari BASIC is that all arithmetic is done in slow,
memory-expensive six-byte BCD floating-point format, and there is no
facility for using fast, two-byte integer arithmetic. By way of
compensation, Atari BASIC’s method of tokenising BASIC lines as soon
as you enter them makes Atari BASIC run faster than many Microsoft
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BASICS. Curiously, though, Atari Microsoft BASIC, which does not
tokenise lines until the program is RUN, is actually faster than standard
Atari BASIC!

Useful features of Atari BASIC include an error trapping mode, called
simply the TRAP statement. The hardware provides a real-time clock,
useful in many games, which can also be called in BASIC by PEEKing
memory locations 18, 19 and 20, the last location being updated every
Yeoth of asecond. Type in Program 1-2 and see.

5 REM PROGRAM 1-2

10 PO 18,0:FOKE 19,0:FOKE 20,0

20 BRAFHICS O:FPOKE 752,1 :
E20 TIME=286%2E6KFEER (18) +256%FEEK (19)

40 FOSITION 8,10:FRINT "ELAFSED TIME =
" INT(TIME/60) 3" SECONDS "
50 60TO IO

The highest value which can be accommodated in Program 1-2 is
279620 seconds, when it resets to zero. This is more than three days, long
enough for virtually all applications.

Machine code programmers are well catered for. The central
processing unit (CPU) is the well tried and tested 6502 chip running at
1.79 MHz (USA) or 2.217 MHz (UK). There is an Atari assembler editor
on cartridge — mostly designed for adding machine code routines to
BASIC - and a Macro Assembler on disk, as well as several independent
offerings.

Other languages offered include the newly trendy Forth, C, Lisp,
Pascal and a BASIC Compiler, but not, to my knowledge, the old
stalwart Fortran.

Itis clear that the Atari computers are extremely flexible, so that there
is no difficulty in programming excellent intelligent games once the
principles have been mastered.

One feature that all intelligent games have in common is that they need
to run quickly. Since many moves may be rejected before the right one
is found, every effort should be made to accelerate the essential routines.

The seminal book De Re Atari (APX publishers) has a whole section
on increasing speed. Top of the list is RECODE the program. Only
further down do we find such well-known techniques as stacking the most
commonly called routines at the head of the program (BASIC searches
through a program, looking for a called line number, from top to bottom)
and using variables instead of numbers. For example, instead of saying
repeatedly
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Q=1+2*3
you should write
Q=A+B*C

where A, B and C were previously defined at the beginning of the
program as being equal to 1,2 and 3.

Recording can be tremendously effective in accelerating speed. Some
time ago I copied a program (one of my own!) from another computer
onto my Atari. the lines were intended to display a board on the screen,
and translated as follows, in Program 1-3:

5 OREM FROGRAM 1
10 GRAFHICS 0:FOKE 7 1

20 FOR I=1 TO 30:FOR J=1 TOQ 20
30 PLOT I+8.J+2
40 NEXT JiNEXT I
50 FOSITION 0,0

When I ran this program, a board of hearts appeared. I consulted my
new Atari manual, had a brainwave, and entered in the following:

30 COLOR43: PLOTI+8,J+2

Type in the modified program and RUN it. Success! A board (of ‘+’
symbols) appears on the screen.

Now list the program. Note that the statement COLOR 43 is needlessly
evaluated 599 times. No wonder the map takes six seconds to appear in
full. i

On can recode Program 1-3 entering the lines below:

15COLOR 43
30PLOTI+8,J+2

Re-RUN the program. It takes five seconds to display the board, one
second less than the earlier version.
‘We can recode Program 1-3 again, to give Program 1-4:

5 REM FROGRAM 1-4

10 GRAFHICS O:FOKE 7352,1
15 COLOR 43

20 . EDR I=3 TO. 22

0 FLOT 8, I1:DRAWTO 78,1

10
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40 NEXT I
50 POSITION 0,0

Enter Program 1-4 and RUN it. The board now appears in one second.
The last square is always missing, and needs to be filled in with

45PLOT 38,22

Note that only one FOR-NEXT loop is now used.

Problem: What would happen if you replaced line 20 in Program 1-4 with
20FORI=8TO38

and replaced line 30 with

30PLOTI,3: DRAWTOI,22

Try it and see, with an accurate stop watch.

Recoding has reduced the board display time from six seconds to one
second. The board display can also be done in machine code, Program
1-5.

5 REM FROBRAM 1-5

10 DIM E$(42) : CHECKSUM=S790: C=0

20 FOR I=1 TO 41:READ B:FOKE ADR(E$)+I,B:

C=C+BzNEXT I

DATA 104,1462,0,160,0,104,
L 204, 169,11, 145, 204, 200, 1

e

205 1040,
L 208, 24

04,

P STOP
40 SCR=256%FE
70 GBRAFHICS <
(E$)+1,8CR
80 FOSITION 0,0

1(89)+FEEK (88)+129
FOKE 732, 1: 0=USR (ADR

Ignoring the time spent setting up the machine code program in string
ES$, the board display appears virtually instantly. Yet, to the human eye,
the reduction of time from six seconds to one second in BASIC seems to
be much more important than the further reduction from one second to
zero seconds. ;

Coding in assembly language can be very useful, and we shall see in a
later chapter that it is essential in many circumstances, but never forget

11
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that BASIC will run sufficiently fast for many intelligent games if it is
properly coded.

A fashionable method of programming computers in high-level
languages these days is called structuring. Essentially this means
deploying the whole program as a series of subroutines, all placed in
sequence and called by a short main program which contains practically
nothing else. Even the initialisation procedures are stored in an
initialisation subroutine.

Practitioners of structuring are very fond of their art, which they seem
to see as an end in itself, and look down their noses at those who do not
structure their programs.

Naturally, I would advise readers to place their program routines in
easily distinguished blocks. However, true structuring runs counter to the
principle of having the most-called routines at the top of the program and
has little else to commend it. I would emphasise that structuring programs
is only of benefit to the programmer, and not to the user. Ultimately, one
hopes that a user will be the end product of a program, not another
programmer.



CHAPTER?2
The Evaluation Function

Underlying all games of strategy, and indeed most of life, is the concept
of assigning a score to each of a number of possible moves, then picking
the best of the alternatives.

A simple, everyday example of this occurs when we have £150 to spend
on a number of glittering gadgets. We could spend all of it on (a) a new
Atari 400 (TM) computer, or (b) £100 on a new*fridge and £50 on a
transistor radio or (c) £150 on a new television, or (d) £150 on 900 Mars
Bars.

Which choice we make depends on the value or score we assign to each
possibility. Let us say that our test of the various possibilities is to score
each one according to how many hours satisfaction each will give us,
counted in months we shall spend with them. Then we can assign the

following scores:

a) Atari400 100 (at least!)

b) Fridge and radio 10 (never use them)

c) Television 20 (evenings only)

d) 900 Mars Bars 0.5 (eat them ’til I'm sick)

On this basis, clearly the Atari has the best score, and therefore should
be the one that we spend our money on.

In any game of strategy, it should be possible to assign a score to the
position which arises after any move.

The game of chess provides an excellent example. Chess is one of a
number of two-player strategy games known as zero sum games. In an
equal position, the score is evaluated as zero. If the position is not equal,
itis as bad for one side (—N) as it is good for the other (+N).

Chess players over the years have evolved a series of scores for each
chess piece used, reflecting the relative values of each. A pawn is worth
1 unit, a bishop or knight 3 units, a rook 5 units and a queen 9 units. A
king must not be captured, or the game is lost, so we assign it a very high
score such that no combination of other pieces will exceed its value. I shall
give the king a value of 255 units, for reasons which I shall explain later
(Chapter 5).

In Diagram 2-1, we can evaluate the position as +255+5+1+1 for
white, the computer, and +255+5 for black, the opposition. By

13
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Diagram 2-1

w“n O =N oo

N WA

AWSIR & Er B El) TR AGHGIH

convention, a positive score is always taken as favourable for the
program, so it would score

White pieces — Black pieces
=(255+5+2)-(255+5)
=+2

The program evaluates the diagram as indicating that it is winning by
2 units.

How would we evaluate Diagram 2-1 in BASIC? The pieces are all
placed on a board which can be represented by an array A(8,8).

The white pieces are located at squares el (king), d1 (rook) and e2 and
2 (pawns). 'We write A(5,1)=255: A(4,1)=5: A(5,2)=1: A(6,2)=1.
Remember that we convert letters to board numbers.

Similarly, for the black pieces at €8 and a8, we write A(5,8)=—255:
A(1,8)=-5. The rest of the board consists of zeros.

The following subroutine will evaluate the chess board:

Program 2-1

1000Q=0: FORI=1TO8
1010FORJ=1TO8

1020 Q=Q+A(L,J)
1030NEXTJ: NEXTI
1040 RETURN

Use this calling program:

14
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10DIM A(8,8,)

20FOR I=1TO8: FORJ=1TO 8

30 A(1,J)=0

40NEXTJ : NEXTI

50 A(5,1)=255: A(4,1)=5: A(5,2) =1: A(6,2) = 1
60A(5,8) = —255: A(1,8) = —5

70 GOSUB 1000

80PRINT“EVALUATION = ”;Q

90STOP

Typeinlines 10 to 1040 and RUN. The result should be +2.

Examine the subroutine carefully. The variable Q is used to store the
evaluation score which is obtained, and it must be cleared (set to zero)
before use.

In line 1020, the value of each board square is added, or subtracted if
negative, from the total stored in Q.

There is no reason why we should use Q to keep the evaluation, but
I have done this for many years now, and it will be used for this purpose
in the rest of the book.

The example I have just given for the chess position is known as the
material count for the chess position. In chess it is necessary to add many
other factors (such as mobility and control of the centre) to get a sensible
evaluation score, but for many other games the material count will
suffice. Try putting in other chess values to Program 2-1 and see the
results.

Now try setting up your own chess board, with pieces scattered over
it, and evaluate the score. As an example, try the position in Diagram
2-2. I make the score —5; this means that the computer is losing by a score
equal to arook (it is actually losing by a knight and 2 pawns).

Diagram 2-2:

s
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The means of evaluating a position in a program is known as the
evaluation function, abbreviated to EF.

Problem: Modify Program 2-1 so that it will evaluate the material count
of the draughts (checkers) position shown in Diagram 2-3.

Diagram 2-3

= white man
8 = white king
= black man
g = black king

Use +1 or —1 for a white or black man and +3 or —3 for a white or black
king. RUN Program 2-1. I make the result +1.

Let us modify Program 2-1 to take account of pawn movement. We
know that if a pawn reaches the eighth rank, then it becomes a queen.
So, we can assume that advancing a pawn is a good thing. I am adding
a score of 0.01 to the evaluation score (Q) for every row that the pawn
has advanced. 0.01 is an arbitrary figure which will not upset the material
count too much.

If we look at Diagram 2-2 again, there is one white pawn on row 2, so
we add 0.01*2. There is one pawn on row 3, for which we add 0.01*3 and
there is one pawn on row 4, so we add 0.01*4 for this. In general, we add
0.01*J for each pawn on the Jth row.

There are five enemy pawns on line 7, so we subtract 0.01*(9-7) for
each. (Why 9-7?) In general, we subtract 0.01*(9-J) for each pawn on
the Jthrow.

Type in the following lines to Program 2-1:

16
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50 A(1,7) = —1: AQ2,7) = —1: A(6,7) = —1: A(7,7) = —1: A(8,7) =

=)

55 A(6,8) = —5: A(7,8) = —255: A(3,6) = —3: A(4,6) = —3: A(5,6) =
9

60A(1,2) =1: A(2,4) =1: A(3,3) =1: A(2,1) =255
65A(5,3) =3: A(8,3) =9: A(3,1) =5

1025IF A(I,J) =1 THEN Q=Q + J*0.01

1026 IF A(1,J) = —1 THEN Q=Q — (9—J)*0.01

RUN Program 2-1. The new evaluation score should be —5.01.

So far, we have considered only evaluating positions which arise after
we have made our move. We take each piece which can be moved,
temporarily move it to the new square, evaluate the new position
(remembering to temporarily remove any captured piece), then replace
the piece inits old position (and replace any captured pieces).

Another possibility which is sometimes used is to evaluate the worth
of moving a piece, without evaluating the full position that then arises.

This is obviously much faster than evaluating the complete position,
but it misses the full value of the position. In the special case of material
count only, the results are identical, but strategic factors may be
overlooked.

For example, if we move a bishop to capture an enemy pawn, we can
score the move with the value of the pawn. What the program has missed,
though, is that moving the bishop has uncovered an attack on the
program’s queen. See Diagram 2-4.

Diagram 2-4

A full EF would spot the attack on the queen (if pins were evaluated).
It is possible to program some protection against this kind of oversight,

17
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but the results never — in my experience — match the full EF. The move-
evaluation becomes unwieldy and ultimately, if taken to excess, the
original time saved is lost on testing the strategic consequences of the
move.

Evaluating moves in place of positions is generally best suited to tactical
games such as draughts, not strategic games like chess.

Finding the best move

As the program runs, it will test the move of each piece it has, scoring each
move according to the EF. Often, one piece will have several moves, with
one score for each.

This can be represented by what is called a tree, which, unusually, has
branches below the surface instead of above (perhaps they should be
called roots?).

The starting position (SP) can be scored by the EF before evaluating
all the other moves, although this is not necessary in the example
following, and all the other moves are scored as shown in Diagram 2-5.

Diagram 2-5

Starting Position

10 : 0.5 20 100

Move A results in a score of 10, move B results in a score of 0.5, and
soon.

As the program makes each move and obtains the score (Q), it
compares this score with another store (QQ) which is set to some suitably
low figure so that all possible subsequent scores are higher than its original
value.

Theoretically, QQ should be set at —infinity. Atari BASIC does not like
—infinity, so we shall assign QQ the value of —1000. This is lower than the
material count in chess if the program loses its king (255), nine queens
(9*9 = one for each promoted pawn and the original queen), two rooks
(2*5), two bishops (2*3) and two knights (2*3).

If the score Q for the move is higher than QQ - which it must be for
the first move — then QQ is exchanged for the value of Q, and other stores

18
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are used to hold all the data concerning the move of the piece which led
to that score; where it moved from (two locations) and where it moved
to (two locations). Store QQ now contains the score of the first move.
Each subsequent move score is compared with the new value in QQ,
and, if it is larger, again QQ is exchanged for the new score, and the move
data is updated to the new move.
An example will make the method clearer:

Program 2-2 -

10 DIM X (20),Y(20),U(20),V(20),Q(20): QQ=—-1000 : EVALUATE
=1000

20FORI=1T020

30GOSUBEVALUATE: Q(I)=Q: X(I)=I: Y(I)=1: U() =1:

VI =1

401F Q(I)>QQ THEN QQ=Q(I):X=X(I): Y=Y(I):U=U(I):V=V(I)
SONEXTI

60PRINT QQ,X;Y,U;V

70STOP

80FORI=1TO020

90 PRINT Q(I),X(I); Y(I),U(I); V(I)

100NEXTI

110END

1000 REM EVALUATE

1010 Q=0:Q=Q+RND(1)

1020 RETURN

The evaluation in Program 2-2 consists solely of a random number
generator, and the ‘moves’ are the numbers 1 to 20.

RUN Program 2-2. It will print a value for QQ along with values for
X,Y,U and V which are the values associated with QQ. Remember that
QQ contains the best score of all 20 moves. The program will also display

STOPPED ATLINE 70

Make a note of the printed variables QQ,X,Y,U and V. Then type in
CONT (return).

The program will continue by printing out all the random numbers that
were evaluated, together with all the associated ‘moves’.

Check carefully that the value you wrote down for QQ is the highest
random number present (it is possible, but unlikely, that some other
numbers will equal QQ, but none will be higher). Check, too, that the
values for X(I),Y(I),U(I) and V(I) corresponding to the highest value of
Q(I) match the values of X,Y,U and V which you wrote down.
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If they don’t match, then either you have made a typing or writing
error, or you have not yet noticed that there is another value of Q(I)
which matches QQ.

This method is used to pick the best move for the program out of any
number of possibilities.

Sometimes we want to know what the worst move is for the program
— ie, the best move for the opposition. In that case, we set the store QQ
equal to + infinity, let us say QQ = + 1000, and line 40 in Program 2-2
isreplaced by:

40 TF Q(I) < QQ THEN QQ = Q(I): X=X(I): Y=Y(I): U=U(I):
v=V()

The astute reader may have wondered why, if the first move by the
program always serves to replace QQ with the score of that move, the
program does not start with

QQ = (score for first move)
instead of
QQ = — infinity (—1000)

The reason is simply programming convenience. Compare the
following:

10QQ = —1000

20 (MOVE)

30 (EVALUATE)

40 TF Q(I) >QQ THEN QQ = Q(I): etc.
50GOTO20

and

20 (MOVE)
30(EVALUATE)
35IF (Move No. = 1) THEN QQ = Q(1)
40IFQ(I) > QQ THEN QQ = Q(1): etc.
50GOTO20

The first program considers the redundant line 10 just once. The

second considers the equally-redundant line 35 for every move —and that
takes time!
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Random selection between moves of equal merit

The method of move selection in Program 2-2 will give the best of several
alternative moves. If there are several moves which are equally the
strongest, then the first one will be taken.

If line 40 is rewritten as

401F Q(I) > = QQ THEN QQ = Q(I): etc.

then the last of the equal strongest moves will be selected.

In either case, the play will never vary. Often this is of no great
significance, especially if there are a large number of alternative moves
and the evaluation function is complex.

In other cases, where there is a simple EF, it is useful to enable the
program to select randomly between the several strongest moves. This
is most easily done by adding a small random number to the EF. For
example, insert into Program 2-1

1035Q = Q + INT(RND(1)*3+1)

The line adds a random number between 1 and 3 to the evaluation score.

If the random number is sufficiently large, then the program will be
able to select between several nearly-best moves as well as the best move;
convenient with complicated EFs, which give different scores to several
moves all of which are nearly as strong as each other.

Commercial programs for strategy games vary as to whether they add
a randomising factor. Sci-Sys chess computers generally do not, for
example, whereas Fidelity chess computers usually have a wide variation
between moves (large random factor), and computers from Applied
Concepts a lesser variation. In any case, the latter machines make it
possible to leave out the random factor, if it is unwanted.

Adding random numbers to an EF poses no problem in BASIC, thanks
to the RND command. With machine code programs, it is necessary to
PEEK into the ROM location of 53770. The latter has access to part of
the POKEY chip and takes the most sigaificant byte from the polynomial
counter, giving a random eight bit number between 0 and 225 (decimal).
This location is updated at machine code speeds, so that successive calls
to 53770 from a machine code routine will give continually different
random results.

21






CHAPTER 3
Search in Depth

In the last chapter, we considered how the program finds its best move.
However, before making any move, it is always wise to consider the
consequences.

If a chess program decides that it should capture a pawn with its queen,
it must also decide whether the opponent will in turn capture the queen
— or capture another major unit elsewhere on the board. The original
score for capturing the pawn (+1) can be turned, after loss of the queen,
into a score of (+1—9)=—8, leading to an undesirable position according
to the material count EF.

The program tries to make moves which will maximise its evaluation
score; it is only natural that the opponent will make counter-moves which
will tend to maximise his score; that is, by minimising the program score.
In turn the program will try to make yet further moves which will reduce
the damage that the opponent can do to the program’s score. This process
will go on as deep as we look into the projected sequence of moves.

In general, suppose that the program can make three moves — A B, and
C - and that the opponent can make three different responses to each
move A,B and C. The positions arising after eacfopponent counter-move
need to be scored. d

The program may initially score each move A, B and C as +4, +5, and
+2, so that move B looks the best. However, if the positions arising from
the three counter moves by the opponent to move A are scored as 6,—1
and 1, then the best that the program can hope for from A is a score of
—1, since the opponent will — or should — play the move which is worst
(lowest scoring) for the program. The score of —1 is known as the ‘backed-
up’ score for move A.

Similarly, if the three counter-moves from move B give positions scored
at —3, 3 and 1 then the best score the program can hope for from move
Bis —3.

Problem: If the counter responses to move C lead to positions scored as
0,1and?2, what s the ‘backed-up’ score for move C? (0)

It is helpful to draw these moves in the form of a tree, as in Diagram
3-1.

Each junction between moves is known as a ‘node’. The three nodes
resulting from moves A, B and C represent the first move looked forward
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Diagram 3-1
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by the program, and is called the “first ply’ of search.

Each move A,B and C has a further 3 nodes, representing the
opponent’s three counter-moves. These 9 nodes represent the second
move looked forward by the program, (one move for the program, one
move for the opponent), and are called the ‘second ply’ of search.

Note that the ‘backed-up’ scores for moves A, B and C, respectively
—1, —3 and 0, mean that move C is now the best for the program.

The program can look furtherforward indefinitely. Each second ply
node can be sub-divided into several third ply nodes, representing moves
by the program to modify the opponent’s moves. Each third ply node can
be composed of a number of fourth ply nodes.

An example of such a deep tree is given below Diagram 3-2.

At the fourth ply, the opponent is trying to minimise the score, so the
backed-up score from moves A111 to A113 is +1 at the third ply; from
moves A121 to A123 it is —1. At the third ply, the program is trying to
maximise the score, so the backed-up second ply score from 1, —1 and
Ois1.

At the second ply the opponent is trying to minimise the score, so the
backed-up first ply score from 1,2 and 3is 1.

At the first ply, the program tries to maximise the score, so the actual
move taken from A (1), B(—1) and C (0) will be move A.

This process for finding moves, by maximising the program score whilst
minimising the opponent’s response, is known as the minirmax method.

Minimax searching is used not only in games of strategy, but also in the
Pentagon’s (and Moscow’s?) war games. Both sides try constantly to take
actions which benefit their own side at minimum cost. Think about that
next time there are missiles in Cuba or battlefleets off Nicaragua.

The method of searching all legal moves and replies to examine which
is the best is known as a ‘full-width’ search. A Selective Search uses a
complicated EF to pick out the most plausible moves for further
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examination in depth, while rejecting the rest. Selective search is
normally carried out at deeper levels after an initial full width search at
the first ply.

How far ahead should a program search? If you study a game ‘tree’,
you will see that the number of positions to score increases geometrically
the deeper you search. If we assume that both sides always have 10 moves
each, then at depth 1 (first-ply) the computer will score 10 positions. At
depth 2 (2-ply) it will score 100 positions, at depth 3 (3-ply) 1000 positions
and at 4-ply 10000 positions. If it takes %10 second to score each position,
then a 1-ply search will need 1 second, 2-ply will need 10 seconds, 4-ply
will need 1000 seconds and 8-ply will need over 3 years!

How deep your program searches will therefore depend on the speed
it takes to carry out its evaluation, also allowing for the time taken to
generate moves. A BASIC program can barely search beyond 2-ply for
two main reasons:

Firstly, it runs too slowly, and each EF will probably take a second or
two to score.

Secondly, Atari BASIC will not permit ‘recursion’; that is, a
subroutine calling itself. It is obviously desirable that the program has
only one move generator which is called as a subroutine at each level of
search. In Atari BASIC, you would have to write a new move generator
ateach level. One way around this is described in Chapter 12.

These problems can be overcome by use of machine-code or, I believe,
with a Pascal compiler. The high level language Pascal permits, indeed
encourages, the use of recursion, and a compiler would give the necessary
speed. However, I have no personal experience with Pascal, and in any
case [ know of no Pascal compiler for the Atari at the time of writing.

A search simply to a fixed depth can be very dangerous. Consider the
chess position in Diagram 3-3.

Diagram 3-3
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With a fixed search depth of 3-ply, the program will evaluate this
sequence:

1.c8xe8 f6xe8

2.e5xe8
as favourable (+3—5+3) and will carry it out, failing to notice the
subsequent loss of the queen!

The English mathematician Turing was one of the first to point out that
move-sequences must be searched in depth until no further captures are
possible. This is known as a Turing-Dead position, and is widely used in
the more sophisticated computer programs for such games as chess,
draughts and Reversi/Othello. :

The search deep into a line containing many alternative captures can
be very time consuming, and it has been suggested that it may not be
necessary if a sufficiently sophisticated EF is used. Thus in Diagram 3-3,
the program will not capture the rook even with a fixed 3-ply search, since
it sees that at the end of the move sequence the queen can be captured
even though it has not YET been.

This illustrates the constant trade-off between the EF and searching in
depth. It takes longer to score a large EF than it does to score several
moves with a simple EF, but the more complicated EF may save much -
time searching at progressively deeper levels.

Another limitation of a fixed depth of search is the so-called horizon
effect. A program may ignore the disastrous end of a move sequence, if
it can interpose a series of pointless moves which push the disastrous
culmination beyond its fixed depth of search; in other words, pushing the
disaster over the ‘horizon’. Consider Diagram 3-4,

Diagram 3-4

If the bishop does not take the pawn (which sacrifices the bishop), then
the pawn will be promoted to a queen so the sequence is either c4xe2 ch
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f3xe2, which scores +1—3=-2 for the program, or c4—b5 (say) e2—el
(=Q) which scores +1—9=—8 for the program. Instead, if it has a fixed
3-ply search, it will play

Tcd—dSch- - 8-

2d5—c4
which scores 0 for the program. The next opponent move, promotion of
the pawn, has been pushed over the horizon by the check, which appears
to lead to a better position than the exchange of the bishop for the pawn.

Even the best commercial chess programs can be prone to the ‘horizon’
effect.

\

Alpha-Beta

It takes a long time to search all the variations of a tree by the minimax
algorithm, and any method which reduces the number of nodes to be
scored will reduce that time significantly. Such a method is the alpha-beta
algorithm which gives identical results to the Minimax search while
searching fewer nodes. Consequently, Minimax should never be used in
any program without also employing the alpha-beta modification.
Discovered in 1959, the underlying principle of alpha-beta searching is
that if a position is scored after an opponent move which is worse for the
program than its previous best backed-up score, then there is no need to
waste time searching the other nodes of that opponent move.

If you refer back to Diagram 3-1, the backed-up score for move A is
—1. When considering move B, the first considered opponent move gives
a score of —3, so that the backed-up score for move B must be, at best,
—3 for the program. Since —3 is worse than the —1 already scored for A,
all the other opponent responses to move B can be ignored, and move B
can be dropped from consideration. This is called alpha pruning. On the
other hand, none of the terminal nodes of move C are less than —1, so
all the responses to move C will be evaluated in full. The value for move
A is called the alpha cut-off valye, since alpha pruning is carried out by
reference to it. The cut-off value will be updated as better backed-up
scores are found for the program.

At deeper levels, with the opponent to move and considering program
counter-replies, the alpha-beta algorithm works in reverse. This time, any
terminal node which exceeds the move stored as worst will cause a cut-off
of all the other nodes for that move. This is known as beta pruning, and
has associated beta cut-off values.

In general, alpha pruning will occur at even ply levels and beta pruning
atodd ply levels.

A further example is given in Diagram 3-5

The backed-up score for computer move Al is 1. (Problem: Why?).
The node A21 has a score of 2. This means that the backed-up score for
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computer move A2 must be higher than 1, so the next 2 nodes are beta-
pruned and move A2 is dropped. Similarly, move A31 scores higher than
Al, so move A3 is dropped at once. This means that the backed-up value
of move Ais1.

The backed-up score for move B1 is 0. This is worse than the backed-up
score for move A, so moves B2 and B3 are alpha-pruned — no matter how
good they are, the opponent will choose move B1.

Deep alpha-beta pruning
This section is difficult, but is unlikely to be needed by BASIC
programmers since they will not search deep into the game tree anyway.

In 1973, Gillogly demonstrated that alpha-befa cut-off values could be
used to prune the tree at any even number of levels below the cut-off
value being considered. As an example, consider Diagram 3-6.

The backed-up value for move A is +3. The alpha cut-off is therefore
3. The backed-up value for move B is +6. This is better than move A for
the program, so the alpha cut-off is now set to +6.

Looking 4-ply into the tree for move C, the program finds that move
C111 scores +5. It means — since at this level the opponent is moving —
that the best score the program can make from its move C11 at the 3rd
ply is +5, which is lower than the alpha cut-off value already stored in
alpha. Accordingly, moves C112 and C113 are deep alpha pruned
(shown in the diagram as @ « ). Considering the next program move at
3-ply, the backed-up score for move C12 is +7 (minimising moves C121,
C122 and C123) which exceeds the alpha cut-off. The alpha cut-off value
isnowsetto7.

Opponent move C131, in response to program move C13, scores +6,
which is less than the new alpha cut-off value, and so moves C132 and
C133 are alpha pruned in the usual way (shown in the diagramas «).

A similar method can be applied to deep beta pruning. It follows, then,
that only two stores called ALPHA and BETA, which retain the updated
alpha and beta cut-off values, are needed to alph-beta prune the entire
game tree. ALPHA and BETA are initially set to — infinity and + infinity
respectively.

Nevertheless, you would be well advised at first to use more stores to
avoid confusion. They should be set to — infinity for all program moves
and + infinity for all moves by the opponent.

By constantly updating several stores holding the best moves for both
sides at each ply level, it is possible to construct a best sequence of moves
known as the principle variation.

For example, when evaluation is complete the best first ply move for
the program would be piece X1,Y1 to U1,V1 held in store 1. The best
second ply move for the opponent would be X2,Y2 to U2,V2 in store 2
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and so on until the end of the search is reached.

The first move of the principle variation (at 1-ply) is the move that the
program will make. The second move (at 2-plyy is the best reply which
it has found for its opponent. This move can be used to provide a hint to
the opponent as to what he should do.

Although the alph-beta mechanism is fairly easy to understand in
principle, it can be horribly confusing to put into practice. Always, always
test your Minimax program without the alpha-beta mechanism first, and
then with the pruning routines added. You should get identical results
every time, but remember to remove any random factors from the EF.

I remember sitting over a hot computer at one in the morning, trying
to work out just what was going on. I had a bottle of the *79 Hainfelder
Ordensgut Kabinett to hand, and, as I kept filling my glass, and sank
slowly deeper under the table, I felt that I had at last come to a closer
understanding of the alpha-beta mechanism.

In BASIC, we do not need to consider searching deeper than 2-ply,
and the following routine will do the trick on a 8x8 chess board:

1000 REM MOVE OPPONENT PIECE

1010 AB=0:FORI=1TO8:FORJ=1TO8

1020 IF AB = 1 THEN 1060

1030 IF A(1,J)>=0 THEN 1070

1040 (Move piece)

1050 (Gosub evaluate)

1060 (Restore piece)

1070NEXTJ: NEXTI

2000 REM EVALUATION

2010 Q=0: (Evaluate)

2020 IF Q<QQ THEN QQ=0Q : (store moves)

2030 IF Q< ALPHA THEN AB=1

2040 RETURN

where ALPHA is the best backed-up score (alpha cut-off) at the first ply,
and QQ is the best response yet found for the opponent (worst for the
computer). AB is the flag for alpha-beta pruning, operating when
setat1.

The program becomes more complicated if you are evaluating moves,
instead of positions. See the move-storage routines for Warp Trog at the
back of the book.

If you find this account of Minimax and alpha-beta pruning confusing
— as you probably will — separate accounts can be found in D N L Levy’s
Computers and Chess (Batsford) and Birmingham and Kent’s Advances
in Computer Chess (Edinburgh University Press). It took me several
readings of different accounts to understand the mechanism.
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CHAPTER 4
Advanced Methods

In this chapter we shall discuss a number of more advanced=algorithms
and heuristics to enable the program to select its move. They will only be
of interest to really dedicated programmers, and are not necessary for the
beginner.

An algorithm is a procedure which s mathematically precise; its
consequences can be exactly calculated, A heuristic is an empirical
procedure, a ‘rule-of-thumb’ with no precise mathematical justification,
but which experience shows will normally - but not always — give the result
that we want.

Alpha-beta pruning and Minimax searching are both algorithms, With
a knowledge of the game tree, we can always predict the end result.

The method works well, and is often used in amateur programs, but it
is possible to improve it still further.

. The improvement is effected by increasing the efficiency of alph-beta
pruning. We have seen that if the program has a backed-up score for move
A of 1, then any opponent response o move B which scores less than |
will lead 1o the rejection of move B; similarly any opponent response to
move C which scores less than 1 will lead to the rejection of move C, and
S0 0n.

But what if all the opponent responses 1o move B exceed 1, leading to
a new backed-up score for move B, which is in turn exceeded by all the
opponent responses to move C? In that case, no alpha-bela pruning
occurs at all, See Diagram 4-1.

The problem arises because the best move (C) isconsidered last.

1f the program’s EF is good enough, then it should already have guessed
that move C would be strongest at its first ply of search, before searching
deeper. Move B might also have been considered the second best,

1f the program generated all its first moves at | ply before searching any
deeper, it can then sort them into numerical order, putting the highest
scoring move at the top of the list to be searched. This means that Diagram
4-1 must now be rewritten as in Diagram 4-2.

The first backed-up score (for move C) is now 3. The first counter-move
to move B is 2. Thiz is less than the backed-up score for C, so both other
nodes of B are pruned out,

Similarly, two of the three terminal nodes from move A are rejected
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Diagram 4-1
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after the first is evaluated as only 2.

In Diagram 4-1, the computer evaluated 9 positions at level 2. In
Diagram 4-2 the program evaluated 3 positions at level 1 (prior to sorting)
and 5 atlevel 2. Thisis a total of 8 nodes.

The saving in this instance is only one evaluation, but the example was
a very simple one with only 3 program moves and 3 responses to each.
In a more complicated game, such as chess with its average of 30 moves
perside, the saving becomes enormous.

It is possible to show mathematically that proper ordering of the moves
before using the alpha-beta algorithm can save (N-2*SQR(N)) of the
total number (N) of terminal positions examined.

For example, if there are 10,000 terminal nodes, 9,800 nodes are not
evaluated, only 200 are evaluated.
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How well the program puts the moves into order depends on how
effective its EF is. Again, there is a trade-off between the time taken to
score a complex EF and the saving caused by more efficient pruning.

Similar considerations apply when the program considers its responses
to the opponent’s counter-moves. In principle, the opponent moves could
be sorted before searching deeper. However, this increases the number
of sorts needed, and the time taken to do so may exceed the savings of
more efficient pruning. Only experimentation can determine its value for
any program, but most good commercial chess programs — which face the
severest test — change only the order of the program’s moves, changing
the order (if necessary) at each ply of search.

Another useful trick in this context, again used by many commercial
chess programs, is to carry out a complicated positional evaluation for
each move at the first ply of search (which may take a long time in
computer terms, several seconds for 30 moves in chess) then search each
subsequent ply level scoring the material count only. The material count
can be evaluated very quickly indeed. There are problems with this
approach, though. We shall discuss the method further in Chapter 11.

The program can sort its moves by any of the standard methods,
moving into order all the moves and their associated scores. A simple
bubble sort is sufficient in machine-code.

Combining deep search and sorting is rather time consuming in
BASIC, and if you are sorting more than 10 moves, a ‘fast-sort’ (for
example the Shell-Metzner method) is desirable. Such methods usually
use a random factor in the sorting algorithm, so that equally-scored
moves may be sorted on successive occasions into different orders. The
result may cause you confusion while testing an alpha-beta algorithm!

This is how we might combine Minimax search with sorting in BASIC:

10 N=0:REM N=no of moves considered

20 (Find move) :N=N+1

30 (Move piece from location X,Y, to U,V)

40 (Evaluate position as Q)

50 X(N)=X:Y(N)=Y:U(N)=U:V(N)=V:Q(N)=Q

60 (Restore piece)

701IF (Any more moves) THEN 20

80FORI=1TON

90 (Sort X(N),Y(N),U(N),V(N),Q(N) into descending order of Q(N))
100NEXTI

The above program generates all the computer’s moves at the first ply,
scores them and then sorts them into decreasing score order. The counter
N keeps track of the number of moves.

As the next step, the computer would carry out each sorted move, from
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square X(N),Y(N) to square U(N),V(N), generate all the opponent’s
responses, score the new positions, then replace its pieces from square
U(N),V(N) back to square X(N),Y(N).

Suppose N = 0? Then the program has no legal moves left. In many
games, such as draughts/checkers, it would mean that the program had
lost the game. In chess, no legal moves means that the game is
stalemated. In either case, routines should detect the N=0 condition and
take the appropriate action.

Another interesting situation occurs when N = 1. It means that the
program has only one legal move. The move can therefore be made at
once, without need to search to any deeper level. Such drastic chopping
off of all deep levels is known as the chopper mechanism. It appeared for
the first time in commercial chess programs as late as 1980. Incorporate
aroutine in your program to test for N=1.

Iterative deepening

The whole process that I have described, finding and scoring the moves
at the first ply, sorting, searching counter moves to the second ply, sorting
and searching to the third ply and so on; is known as iterative deepening.
(Iteration means increasing by 1, deepening refers to the ply level of the
tree).

Because the program has its moves ordered so that its best-move-yet
is always at the top of the list, the program can be interrupted at any time
and the top move of the list will always be its best move to the level
searched.

On the other hand, interrupting an un-sorted program may result in
the best move being anywhere in the list. Commercial programs which
permit you to halt their thinking and display the best move yet found —
or which use timers which decrease to zero to interrupt the program —
must inevitably use the method of iterative deepening.

By placing the best moves at the top of the list, iterative deepening also
allows the program to carry out a selective search. It can, at any ply
depth, simply take just the top few moves off the list — one of which is
almost certain to be the best, however deep it searches — and then search
these few moves deeper, if necessary selecting only the top few moves
of the corresponding counter-moves.

For example, if a chess program can find 30 initial moves, after
searching to a depth of 3 ply, the 30 moves can be placed in order. The
top six moves can be searched to a depth of 4 ply, and the top six
opponent responses searched to a depth of 5 ply.

This method, or something similar, probably lies behind the claims for
certain commercial chess programs that they use a selective search. It is
very necessary to have a good EF, to ensure that the top six moves at each
level contain the actual best move.
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The alpha-beta pruning mechanism chops out part of the game tree at
all levels down to the deepest. To make alpha-beta more effective at the
penultimate level, it would be necessary to sort all the nodes at the last
level into order: requiring generation of all those nodes, defeating the
pruning objective.

It is reasonable to assume that any move which is best for the player
at the deepest ply, in response to the second player’s previous move, will
also be good in response to any of the second player’s other moves at that
ply level. Such a best move should be stored and used before any other
to try to refute all the second player’s moves at the penultimate ply level.
The move is called the killer heuristic, being empirically likely, but not
mathematically certain, to refute the other player’s moves. Diagram 4-3
will illustrate the idea.

Diagram 4-3
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The backed-up score for program move A is 0. The best opponent
response was move Al12. Move A12 is stored as the killer heuristic, and
is the first tested in response to program move B. The method assumes
that most, or all, of moves B11, B12, B13 and C11, C12 and C13 are the
same as moves All, A12 and A13, which is very likely in nearly all
strategy games. However, they lead to different positions against
different program moves A, Band C.

The killer heuristic is used to replace identical move B12, and is
considered first in response to move B. The result (—1) is worse for the
program than the backed-up score for move A, so moves B11 and B13
are at once alpha pruned.

Similarly moves C11 and C13 can be alpha pruned. Hence use of the
killer heuristic has led to only five positions (3 to move A, 1 to move B
and C) being evaluated. Ordinary alpha-beta pruning in the same position
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would result in six positions being evaluated (3 to move A, 2 to move B,
1tomove C).

Problem: Which move (A,B or C) will the program make? (A)

The killer heuristic can be kept the same throughout the evaluation of
the final level, or it can be updated as each series of moves is evaluated.
Care must be taken that the killer heuristic actually exists at any given
moment: if the killer is Q x P for most of the final ply level, then the
sudden capture of the queen on the previous ply level makes the killer a
nonsense. Hence, continually updating the killer is wiser.

The killer heuristic can also be used at other levels of the search tree,
where the move held in the alpha or beta stores serves as the killer. One
particular application where the killer heuristic is especially effective is in
problem solving of the ‘mate-in-four’ kind that can be found in chess.

An example of the killer heuristic in action can be seen in Warp Trog
at the end of the book.

I have already mentioned that the alpha-beta pruning mechanism can
be operated by two stores, set initially at + infinity and at — infinity
(decimal 32767 or $7FFF in signed two’s complement two-byte machine
code). A somewhat esoteric advance is the use of the alpha-beta window,
where the alpha and beta stores are set initially much closer to zero than
to + or — infinity.

The rationale is that the program assumes that no truly good, or
spectacularly bad, sequence exists for either side at any given moment.
By narrowing the alpha-beta pruning range, superficially very good or
very bad positions — which we assume will not be so good or so bad on
closer inspection —can be pruned out at once.

Obviously, this requires careful setting of the alpha and beta stores to
work well. A special case occurs when we assume that the program (or
its opponent) can always find at least one move that will make the position
for the player moving better than it was before the move. In this case, the
technique is known as razoring, and its original proponents claimed a ten-
fold acceleration in search time, relative to ordinary ordered alpha-beta
pruning.

If no moves, or very few moves, are found after using an alpha-beta
window, then the alpha and beta stores are reset to + and — infinity and
the moves are re-examined, resulting in a waste of time.

Hard pruning
The above techniques are all that are needed to make a very strong move
at any game of strategy, and some of the world’s strongest chess
computers use no other pruning methods.

However, another common method of tree pruning exists. Known
simply as hard pruning, it relies solely on cutting out all moves which fail
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to exceed a certain score which the programmer has preset. Thus, in a
game of chess, any move which gives a backed-up score of less than (say)
—2 (loss of two pawns) from the original position is simply chopped out
at the lowest level of search where the low score is encountered.

The method, although crude, can be surprisingly successful provided
that the evaluation function is a good one. The early Chess Challenger
models (not the present ones) used hard pruning and played generally
rather sensibly, although they would rarely sacrifice a queen even to avoid
checkmate, since moves involving the queen sacrifice were pruned out
early on.

The big problem with this approach occurs if all the projected moves
score so badly that they are pruned out. It is necessary to test whether
a sufficient number of moves have been generated; if not, the pruning
score limit (set at —2 in the example) must be lowered to enable extra
moves to be considered.

Hard pruning need not be implemented at all levels; pruning can be
started only at deeper levels and can also be done on the opponent’s
responses.

Another complicated trick is to save programming time by storing the
best sequence of moves found. Then, if the opponent on his turn plays
the next move in the sequence, the program already has a good first move
to hand to start from with its likely sequel, although a new deep search
may cause the sequence to be modified.

A useful addition to the EF is a heuristic which tells whether a program
is ahead in material or not. If the score from the heuristic is added to the
EF, then the program will tend to make exchanges if it is winning, or
avoid exchanges if it is losing.

The best known such heuristic is due (I think) to the American
checkers programmer A Samuel, who formulated the heuristic.

Q = Q + (Stronger side’s material)/(Weaker side’s material) * (Program
material —opponent material).

where Q is the evaluation score.

Finally, it is often useful to evaluate the starting position before any
move is considered. It will give important information about the state of
play, eg whether the endgame has been reached, and other applications
have already been described.

If you have waded your way this far through the preceding three
chapters, you are probably feeling rather like a character from Tennyson
who has been hurried from sport to sport without finding much to smile
at.

For light relief, turn now to Chapter 7 where two 1-ply games written
in BASIC are described. Type them in, but at this stage concentrate only
on what the EF is achieving.
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CHAPTER 5
Set up your Game Board

One of the most important features of any game of strategy is setting up
the initial position. It requires more thought than is often given.

Virtually all games of strategy are played on boards, and this must be
examined first. In the examples given earlier in this book, a two-
dimensional array A(X,Y) was used to represent the board. A complete
chess board could therefore be represented as shown in Diagram 5-1,
where all the computer’s pieces are assigned positive values, and the
opponent’s are negative. The values represent the nominal value of the
pieces.

Diagram 5-1

Note that it is necessary to give the bishop a slightly higher value than
the knight to distinguish both pieces.

All the remaining squares are set to zero. The standard Atari BASIC
does not clear reserved array space when the program is RUN, so the first
step needed is a program line to do this job. Otherwise , your free squares
may contain odd numbers like —0.210079E—10 (really!)

A BASIC program to set up and display the chess board would be
Program 5-1.
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T ACT.D

DATA S5,

In practice, for reasons we shall see in the next chapter, it is often
desirable to add a rim all the way around the board. The rim is a series
of squares whose array values must be set to a value distinguishable from
the rest of the board, and from any piece. In the chess example, we could
give the rim a value of 7. Change line 10 in Program 5-1 to read:

10DIM A(9,9)

and change line 110 to read
110FORI=0TO9: FORJ=0TO9
then add lines.

95FORI=0TO9
96 A(L,0)=7: A(0,])=7: A(19)=7: A(9,1)=7
97NEXTI

and re-RUN the program. The board now has a solid rim.

In games of chess, a second rim is often needed and this means that in
BASIC the whole board array would inconveniently need to be moved
up. However, few people will write chess programs in BASIC, so this
need not concern the writer of BASIC strategy games.

It is sometimes desirable to have two separate boards representing the
position, but inverted with respect to each other. It means that all moves
by both sides appear, to the program, to be going the same way which
simplifies the move generator. For the same reason, the rim may change
sign as the program searches each successive ply; that is, it will be +7 at
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each ply level where the program moves (odd ply depths) and —7 at each
ply level where the oponent moves (even ply depths). Such modifications
are sometimes convenient, sometimes not, depending on the game.

Atari BASIC, like many BASICS, uses six consecutive bytes in
memory to hold a single floating point number as its BCD representation.

It does not permit integer-only BASIC to be used, which would require
only two bytes per number. Thus the array A(8,8) requires no fewer than
8*8*6 = 384 bytes just to hold a few simple integers such as 1,0 and 9.

We can reduce the memory requirement by putting the board into a
single ‘vector’ stored in a string. Atari BASIC requires only one byte to
store each element of a string. The expression A$(64) requires just 64
bytes. Unfortunately, Atari BASIC does not support Microsoft-style
multidimensional string arrays (eg A$(8,8) ). This is probably Atari
BASIC'’s single worst failing. However, we can store the board as a single
vector in a one-dimensional string. There seems to be no limit (except
memory) up to 32767 as to the size of a string array, which will
accommodate any reasonable game board.

The string vector is constructed by multiplying the vertical coordinate
less one of any square on the board by the depth of the board, and adding
the horizontal coordinate.

In general, the string vector value (V) of any square X,Y on an 8x8
board is
V=X+(Y-1)*8

Thus, square 2,3 of an 8*8 chess board has a string location of 2+(3—1)*
8 = 18, while square 3,2 has a string location of 11.

If you are incorporating a rim into the board, you should allow for the
extra width of the board. A double-rimmed chess square will occupy 12*
12locations.

We can now write
V=(X+2)+ (Y+1)*12
Thus square 2,3 will now have a string location of 2+2 + (3+1)*12 = 52.
Problem: On an ordinary chess board, what are the string locations of
squares A,1and H,8? (1 and 64)

What are the locations of the same squares on a double-rimmed board?
(27 and 118)

To fill the string, it is necessary to work out the string locations of every
piece, and also of every rim square, and fill the rest of the string with
Zeros.

Example: On a 3*3 square with 1 rim, there are two pieces, value +1 and
+2, atlocations 1,3 and 2,2. The string vector will be

“77777 70007 70207 71007 77777

(the spaces are put in for clarification, and must not appear in the actual
string). Note that the piece of value +1 has a string vector value of 17,
and it appears in the 17th position of the string as we would expect. The
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7s are rim values.

The method has certain limitations. For one thing, how would you put
in an opponent piece, eg —5? It is possible to do this with string-slicing
methods (all positive numbers must be put in as, eg, +5), but is rather
tedious. Again, no number above 9 can be used without further tedious
spadework. If you wanted to use the number —100, then all other
numbers would have to be expressed as +001, —001, +010 as required.

However, the method has certain advantages for machine code
programmers. The array can be filled with 1-byte figures in two’s
complement notation. Thus a positive number up to 7F(hex) can be
stored as one byte, while the opponent pieces can be stored as their two’s
complement form. For example, an opponent piece of value 3 can be
stored as (256-3) = FD(hex).

Using this method, the highest value that can be stored for any piece
is 7F (127 dec). This is still acceptable as a value for the indispensable
king in chess, since it exceeds the combined sum of all other pieces
(including 9 queens) which comes to 103(dec).

It still leaves us with the problem of defining the exact value of the
pieces. Earlier, we gave a knight a value of 3 units, while a bishop was
rated at 3.2. Such values cannot be accommodated in one-byte numbers,
and in any case setting a pawn at a value of +1 does not allow any scope
for the subtleties of positional evaluation, which is normally worth less
than a pawn.

One solution is to assign each piece a two-byte signed value, with the
most significant byte having the nominal value of the piece. For example,
a pawn would be 0100, and an enemy pawn FF00. Consequently the
string vector for the board must be assigned two bytes per square of the
board and rim.

The method of storing pieces on a board as their nominal values works
satisfactorily and is convenient in BASIC. However, it should be clear
from the previous paragraphs that it is somewhat less convenient in
machine code.

A better method for the machine code programmer — which also works
in BASIC - is to assign each piece a ‘token’ value. Thus, in chess, each
pawn would be assigned the token value of 1, each knight a token value
of 2, each bishop a token value of 3, each rook a token value of 4 and
the queen and king token values of 5 and 6.

A table of look up values is used to attribute the piece values to the
piece tokens. For example, the program searches the board, finds a piece
token of 4 at square 1,1 and looks up the 4th value in the table, which
has a value of 5. The program then knows that the piece at square 1,1
isarook (token 4) with a value of 5 units.

We still have to assign token values to the opposing pieces. They can
be given negative values corresponding to the positive values of the
program pieces, or they can be given completely separate token values
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of theirown.

Program 5-2 given below initialises a chess value look up table in the
array B(6), and allows you to place token values of chess pieces on the
board at location X,Y in the form X,Y,TOKEN (return). The program
then searches the board until it finds the token and prints out the token
with its location and the piece value.

5 REM FROGRAM 52

10 DIM AB,8),B(&)

FOR I=0 TO &

READ C:R(D=CaREM FILL LOOE UF TABLE

NEXT I

DATA O, 1,0 :

REM DATQ CL]NT(HN‘ES FIECE VALUES

Hé6H GRAFHICES O

60 FOR I=1 TO 8:FOR J=1 TO 8:A(1,J)=0:NEXT
JrNEXT I:REM CLEAR BOARD

FOUPRINT “ENTER-X,Y, " TOEKEN"

80 INFUT X,Y,TOKEN

8 ﬂF \' -8 0OR TOKEN»& THEN 70

a2 205

110 F[Jh I=1 TO 8:F

120 Z=48(01.0):1IF Z ) THEN VAL UE=R(Z): PRINT
=Y N-= " TOKENs " LOCATION VaXs ' ey
1" FIECE VALUE = "pVALUE

120 NEXT JsNEXT I

140 A0X,¥Y)=0

13530 G010 70

OrR J=1 TO 8

So far, we have only discussed two-dimensional games boards, and
their one-dimensional representations. There is, of course, no reason
why a three-dimensional board should not be used, as in 3-D noughts and
crosses, or in the 3-dimensional chess played by Mr Spock in Star Trek
(TM).

In theory, you could play any game of strategy in as many dimensions
as you like. However, only computers would be likely to play 10-
dimensional chess even remotely well; human players would have trouble
visualising the moves!

Screen display
The Atari computers offer excellent sound and graphics facilities which
can be used to enhance any program.

Graphics modes 0, 1 and 2 are probably the most useful in this context.
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allowing characters to be printed on the screen, whereas levels 4 to 8 (and
9 to 11 if you have the GTIA chip) are map modes which are mostly used
to plot individual pixels. In addition, ANTIC — the screen display chip —
offers a further three character modes which are best accessed through
acustomised Display List.

Graphics mode 0 offers a screen display of 40 by 24 characters in two
colours, while modes 1 and 2 allow respectively displays of 20 by 20 and
20 by 10 characters in up to four colours.

A full account of the use of Atari graphics and customised character sets
is beyond the scope of this book; an excellent description can be found
in Your Atari Computer by Lon Poole (Osborne/McGraw Hill).

The Atari reference manuals supplied with the 400/800 computers
lamentably make no mention of user-selectable character sets. The
original 1K character set— 128 characters —supplied with the Atari BASIC
cartridge is in ROM, and cannot be modified, but it is possible to copy
the set into free memory above your program where they can be altered
to suit the programmer’s whim.

Each character consists of 8 bytes, and a useful character set for chess
pieces is given in Table 5-1.

Table 5-1

PIECE DATA FOR CHARACTER
Pawn 0,0,16,56,56,16,124,0
Knight 0,16,56,120,24,56,124,0
Bishop 0,16,40,68,108,56,124,0
Rook 0,84,124,56,56,124,124,0
Queen 0,84,40,16,108,124,124,0
King 0,16,56,16,56,124,124,0

The use of this character set is illustrated in program 8-1

Character sets must be copied onto 1K boundaries of free memory if
in graphics mode 0. Because of the increased memory needed to store four
colours in modes 1 and 2, only half of the character set can be copied, and
it must start at a /2K boundary.

1t takes several seconds to copy 1024 or 512 bytes from ROM into free
memory, and the machine code program, Program 5-3, will do the trick
much quicker.

5 REM FROGRAM S5-3
10 DIM E$ )

106) -8) %256 6=43:REM 6 = NO. OF
1 FAGE = 256 BYTES
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FOR I=1 TO Zé&

40 READ A:FOKE ADR(E$)+1,A

50 NEXT I

40 O=LISK (ADR (E$) +1,

70 DATA 104,104
207,104
208, 160, 0

80 DATA 177

230, 207

AK256,F, 6)
. 205,104, 1
04, 104, 1

204, 104,
w208, 166

2 200,208,249, &

.96

When in position, the new character set can be called with
POKE 756, F/256

after each graphics statement. Individual characters can be given one of
up to four colours by a COLOR statement, after first setting the four
colour registers with the SETCOLOR command. The relationship
between the COLOR command for the piece, and which COLOR register
it uses, is complex and can be deduced from the Atari BASIC manual or
from Table 11-4 of Your Atari Computer.

The Atari computers also offer up to four player-missile sprites.
Although highly spectacular in arcade shoot-outs, I have never found a
serious use for these in strategy games. However the American book De
Re Atari suggests that they could be used to add extra, independent colour
to the original screen. Another application can be seen in Program 5-6,
where one of the four players serves as a cursor to move pieces on the
board.

Sound statements should also be used to indicate when the program has
made its move and to accept or reject (different sound) the user’s input.
A simple beep can be programmed as in Program 5-4:

I REM FROGRAM S-4

10 FREG=80: DELAY =40

20 SOUND O, FREQR, 10,4

Z0 FOR I=1 TO DELAY:NEXT I
40 SOUND 0,0,0,0

Experiment by changing the sound frequency and the delay.

The program must accept the user’s input, and by far the commonest
means of doing this will be through the keyboard.

Many American software writers exclusively use the Atari joystick as
a means of accepting user input, on the grounds that it reduces the chance
of the user making a mistake.
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As an example, Atari’s own chess program in ROM requires use of the
joystick to move each piece. This is fine for the complete novice who does
not understand algebraic chess notation, but excruciatingly tedious for
someone who does. And, after a time, one would expect the user to
become more proficient, not less, in chess notation. For years, I made do
with Descriptive Chess Notation (eg, P-K4, P-Q4) for recording chess
games, but within four weeks of buying my first chess computer, I had
become highly proficient at keying in moves with computer-acceptable
Algebraic Notation.

As an alternative to the joystick, the user should type in moves at the
keyboard. Unwanted keys can be masked out. A suitable routine, which
gets a character from the keyboard and prints it at location 10,10, is given
in Program 5-5.

At this stage, the program can also conveniently do any necessary
alphanumeric conversion; that is, if the move A2 is typed in, the letter
A can be converted to the number 1 by the routine

NUMBER = LETTER -64

(LETTER is actually the ASCII value of the typed character).

The Atari computer has a useful error-trapping mechanism, called
TRAP, which should be used to detect any likely input errors. TRAP
must be cleared before each re-use. An example would be:

10 TRAP 1000

20 (INPUT ROUTINE)

30 (REST OFPROGRAM)

1000 TRAP 40000: PRINT “ILLEGAL MOVE”: GOTO 10

A subroutine also exists to disable the Break key of the computer. The
subroutine is:

1000 I=PEEK (128)—128
1010 IFI<O THEN RETURN
1020 POKE 16,1

1030 POKE 53774,1

1040 RETURN
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The subroutine should be called after every graphics statement.

We now come to the vexed question of error-trapping versus tamper-
proofing. If the program expects an input of a number, then clearly the
program should guard itself against receiving a letter instead. Such a
mistake would be natural. The user should always be protected from such
errors.

On the other hand, is there really any reason to mask the BREAK and
SYSTEM RESET keys? I don’t believe that anyone could touch these
keys accidentally — I know I never have — and therefore only deliberate
tampering will operate them. Whether accidental or deliberate, the
resultant crash will certainly deter the user from doing it again. So, I do
not see any reason to make programs tamper-proof. In this view, I am
at variance with most American authors whose views are possibly
coloured by their litigious climate (‘The program crashed when I
meddled? Let’s sue the programmer for mental distress!”)

This is a matter of philosophy, which the program writer must decide
for himself.

The last program in this section, Program 5-6, illustrates how player—
missile graphics can be used to move pieces on a board (the reader is
assumed to understand the principles of player—missile routines; if in
doubt, see Your Atari Computer or De Re Atari).

I have included this program since I recognise that not everyone will
share my views about using the keyboard instead of the joystick. Plug a
joystick into port 1, then move it about the board. Press the trigger to
pick up any of the numbered pieces, move the joystick again, and press
the trigger to release the piece. Only legal moves (ie moves to vacant
squares) will be accepted.

REM FROGRAM S-&
10 DIM A8, 8)  UPs(21) , DOWNSE
20 FOR 1 TO 20:READ R2F

! T
+1,BsMEXT

40 DATAH 104,
177, 2« 136,1
W 245,96

S0 DATA 104,104, 133,
177,202
08, 245,946

&0 FOR I=1 TO 8:FOR J=1 TO .8

70 ACTLT)=0

80 NEXT J:ACl,5)=TsNEXT I

G0 A=FEEE (10&6) -8

Ty 160, 10,
258
255,72
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100 PORE 106, A BRAPHICE 2
110 FOEE 54279,A4
20 FHMBASE=2DH6HKA

130 FOR I=PMBASE+S12 TO PMBASE+&E9: FOKE
FLOPREXT %

140 FOEE S559,46:P0OKE S3277,2

180 POk 2456, 0: REM 'PLAYER SIZE

140 FOEE 704, 200:REM PLAYER COLOUR

170 POEE 627, 1:REM PLAYER FRIORITY
OVER FLAYFIELD

1RO X=1008 V=801 HORI Z=5S3248: REM HORIZONTAL
FOSTTION

190 FOR I=0 TO 7:READ B:FOKE FPMBASE+IDLIZ+I+Y,
BE:NEXT I:REM FLAYER SHAFE

200 DATA 285,129,129,129,129,129,129,255

210 FOR I=1 TO 8:FOR J=1 TO 8

220 IF A(I,.J)=0 THEN COLOR 176:PLOT I+5,

-JuGOTO 240

) COLOR A(I,J)+48:PLOT I+5,9-J

NEXT J:COLOR 144+T:PLOT I+, 98 COLOR

144+1: PLOT 5,9-1sNEXT I

GOSUR 470

Al=INT ((X~-94) /8+0, 5) +1 1 AR2=9- (INT ( {Y-24)

/8+0.5)+1)

270 PIECE=A(AL, A2 IF PIECE=0 THEN GOSUR

500: GOTO 250

PRINT “MOVE FROM "“3Als"™  “3A2

SOUND O, 40,10,46

FOR k=1 TO &0:sNEXT K:REM TRIGGER DELAY

SOUND 0, 0,0,0

GEOSUER

Bl=INT {( (X-94&) /B+0, 5) +1 s B2=9- (INT ( {Y-24)

JE+0,5) 410

240 FIEC AlRL, B20s IF PIECE2>0 THEN GDSUE

5003 GOTO 250

FRIME T "pR1s "t B2

AAL, AL =01 ARL, B2 =PIECE

COLOR A(RL,B2)+48:PLOT I+R1,9-R2

COLOR 1762 PLOT S5+A1, 9-A2

SOLND O, 50,10,8

FOR k= O:NEXT K:REM TRIGGER DELAY

SCLIND

GOTO 2

iF c‘TF\I(:;(U)«U THEN RETURN




440
450

&O
470
480
490
500

G110

Chapter 5 Set up your Game Board

BTICK (O)=14 AND Y324 THEN A=LSR(ADR
(LIF$) , FMBABE+S114Y) s Y=Y-1

IE STICK (0) AND Y480 THEN A=LSR (ADR
(DOWNS)  FMBASE+ATLI4+Y) 5 Y=Y+l

IF STICK (O =11 AND X:>9& THEN Xs=X-1

IF STICK (0)=7 AND X<152 THEN X=X+1

POEE HBRIZ, X

GOTO 420

SOUND O, 120,10,6:FOSITION 7,0:FRINT #63
CTLLEGAL" :FOR E=1 TO 100:MEXT K
SOUND O, 0,0, 0:FREITION 7, 0:PRINT #&;"
" RETURN i
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CHAPTER 6
The Move Generator

Having established the board, both internally and on the screen, the
program can now move its pieces. But before moving them it has to find
them!

One method to find the program’s piece, when the time comes to move
it, is to search through the board until a square is found with a positive
value, denoting that a program piece is located there. The opponent’s
pieces will have negative scores, and can be similarly located.

This method works well, but is a little slow. Whether a chess program
has all of its chess pieces intact, or just a king and a pawn, it must still
search through a whole chessboard (64 squares) to find its pieces. The
problem is exacerbated on a larger board. My most recent strategy game
Convoy Battle — soon to be released for the Atari —moves up to five ships
on a30*20 board. That’s 600 squares to examine!

The solution is to keep the locations of all the pieces separately in their
own tables, one for each side. These tables are known unsurprisingly as
Piece Tables.

Instead of searching through all the squares of the game board, the
program just has to search through its piece tables for the locations of the
pieces of each side. The piece table does not normally — except in very
simple games — replace holding the pieces on the game board; it is a
supplement.”

In many commercial chess programs, all the major pieces are stored in
a piece table, but the pawns are not. It is possible by this means to find
attacks by one piece on another with great rapidity. This is particularly
important in chess where attacks on the king or queen by either side must
be quickly discovered.

An example of the operation of a piece table in BASIC follows:

Program 6-1

EM FROGRAM &1

DIM &8, 8), 088 0464)

FOR I=1 TO B:F J=1 TO 8
[ =D

NEXT JaNEXT I

A2, 3 =01AE,4)=3
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; (] =\AL CAS (TR, TXE) )
100 FRINT "PIECE NO "sI.X.Y,A(X.Y)
110 NEXT I

20 FOR I=1 TO 2:R
K=\ (A% (T K-
(X244, ThE+D) )
FRINT “F E NO "1, XY ALX,Y)

M OFPONENT FI
3, Tk )1 Y=VAL (A%

Note that the program uses one piece table to hold both sides’ pieces.
Two piece tables could also have been used.

The moves made by the located piece depend on what sort of piece it
is. In any case, only one common memory store should be used to hold
the current location of the piece and each of its new locations. In a two-
dimensional game, the memory store would have four locations, two to
describe the starting point and two to hold each new move. Thus, in a
chess game, the queen would be initially located at X,Y. Each generated
legal move would be to a new location at U,V, both U and V being
constantly updated. When the next piece was considered, X,Y would be
updated to the new piece’s location and U and V repeatedly modified.

All moves must be tested for legality. In particular, the move should
not stray off the board. On a game board which measures N by N squares,
the requirement that the piece stays on the board is

IF (N+1-U)*U >0AND (N+1-V)*V >0 THEN (accept move)
Oddly enough, the simpler and equivalent expression

IFU >0 AND U <N+1AND V > 0 AND V < N+1 THEN (accept
move)

actually evaluates faster, particularly when comparing machire code
versions.
Faster stillis the test:

IF A(U,V) <> 7THEN (accept move)

Here we see the value of the board rim mentioned in the previous chapter,
where the rim was setas 7.

You can visualise this more clearly by picturing a rook moving down
a file. Either it can cautiously stop at each square and test whether the
square is on the board, or it can thunder down until it bounces off the rim.
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In chess, knights have awkward habit of hopping over the board rim.
For this reason, you will need a double rim around the board - it cannot
leap over both.

It is often helpful to make the rim change sign, according to which side
is moving (see previous chapter).

The legality of other moves depends on the rules of the game. Few
strategy games, however, will allow the program to move onto its own
pieces, and a test to see if the target square is occupied is usually
necessary. Exceptions to this rule include Ludo and Backgammon.

The general procedure to move a piece from square A(X,Y)
temporarily to square A(U,V), to evaluate the position arising, can be
seen in Program 6-2:

Program 6-2

10C=A(U,V): A(U,V) = AX,Y): AX,Y) =0
20 (Evaluate position)
30A(X,Y)=A(U,V):A(U,V)=C

When the best move is found, then move the piece permanently with
line 10 alone. .

It will also be necessary when making moves to update the piece table
(although this can often conveniently be left until the best move has been
decided and made). See Program 6-3:

Program 6-3

DIM A% (20) AR,

AFE="560 e s ns"

AlS, 6)=1:I=1:REM FIECE NUMBER

X=VAL (A% (2XI~1, 2XI~1)) : Y=VAL (A% (2XT,2%1))

S0 UsX+1:V=Y+1

60 C=AWUWVM AUV =AXY) 1 AXY)=0

70 FRINT "PIECE TABLE WAS: "3A$

80 FRINT "FIECE MOVED FORWARD RBY ONE
SOUARE DOWNWARDE AND SIDEWAYE"

Q0 A% (1, 2)=8TR$ (10XL+V)

100 FRINT "FIECE TABLE IS NOW: "j;A%

Problem: RUN Program 6-3 substituting actual values for P and Q
(between 1 and 8).

Note carefully line 70. This is a convenient way in Atari BASIC of
modifying the string holding the piece table. If you were programming
in machine code, it would be simply a question of updating the
appropriate memory locations of the piece table.
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It will be instructive to see how we actually program a move generator
in BASIC. I have selected the game of Hexapawn as my example, since
it is a simple game requiring a 1-ply search by the program. Hexapawn
is played on a 3x3 board, with three computer pawns on the top rank and
three of the user’s pawns on the bottom.

The objective of the game is for both sides to advance their pawns until
they reach the other side of the board. The first player to do this has won.
The moves are simple pawn moves: one square forward at a time if the
path is unobstructed by any other piece, capturing diagonally forwards
if an opposing pawn is on the appropriate square.

In the original Hexapawn, one side loses if it cannot make a legal move
and the first side to move should invariably lose. I have considered-
positions where no legal move exists, for the side whose turn it is to move,
as stalemate.

Program 6-4

100 REM %% HEXAFAWN %X

110 DIM A3, 3) . A% (4)

120 FOR I=1 TO Z:FOR J=1 TO 3

130 AL, J)=0

140 NEXT JsNEXT I

150 EVALUATE=S50: MOVE=47(

160 AL, D) =1:A(2, 3 =1:A(

170 AL, 1) =-1:1A(2,1) ==
#4s "HEXAPAWN" : GOS

BRAFHICS 1:P 752, 1

FRINT "DO YOU WANT TO GO FIRST (Y/N)7"

INFUT A$:IF As="Y" THEN 330

IF A$="N" THEN 230

GOTO 200

[O=-100

FOR I=1 TO 3:FOR J=1 TO 3

IF ACI,J)=1 THEN GOSUE MOVE

NEXT J:NEXT I

IF OR=-100 THEN FOSITION 1,15:FRINT #

STALEMATE ! ": GOTO 740: REM NO LEGAL MO\

280 AW, V1) =ACXL, Y1) 1A (X1, Y1) =0z REM

MOVE FIECE ON EOARD

GOSUR SCREEN

IF Vi=1 THEN FOSITION 4,15:PRINT #6é3"

I WIN!";GOTO 740

310 FOSITION 0,15

5 REM %% YOUR MOVE %%
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TRAF 760:PRINT “FROM ":
FOR L TO AO:NEXT 1:6

240 TNFUT
THEN
FRINT "T0 "p [NFUT
Ji1 OR Y
S

UV IF U<) OR LUXE OR

bt} @]

IF ARS (L-X):
= Y=Y > THEN 2

Li=X AND AL, VY0 THEN

© ARG (LX) =1 AND A, V)

AU, V)=—1 THEN L0

420 AMWULVI=AXY) i AX,Y)=0

430 GOSUE SCREEN

440 IF Y=I THEN POSITION 4, 15:FRINT #&3"
YOU WIN!":60T0 740

450 GOTO 230

460 REM ¥k FIND MOVES %%

470 X=Il:Y=J

480 U=liV=J-12IF AWNLVI=0 THEN GOSUR
EVALUATE

490 IF I-1<1 THEN 320

S5O0 UsI-lsW=J-10IF AW Vi=-1 THEN GOSUR
EVALUATE

@i0 "I¥ T+133 THEN 530

H20 U=I+laV=J-12IF AL VI=-1 THEN GOSUER
EVALUATE

H5E0 RETURN

540 REM.%%X EVALUATE %X

SE0 Q=0:C=A0,V) A MLV =AX, Y) 1 AX,Y)=0:REM
TEMFORARILY MOVE FIECE

560 FOR M=1 TO 3:FOR N=1 TO X

570 IF AM NI =1 THEN QB=0+ (4-N) X (4-N) : [F N=1
THEN Cl=04+20: REM ADVANCE FAWN

G980 IF AMyN)=-1 THEN @=G-NkN

D590 Q=0+ M, Nt REM MATERIAL COUNT

&O0 =0+RND (1) t REM RANDOM FACTOR

410 IF QX0 THEN QR=0:Xl=X:Yl=Y:Ul=U:V1=V

620 NEXT N:NEXT M

HI0 A, Y)=AW, V) 1AW,V =C:REM RESTORE
MOVED FPIECE

&40 RETURN

&HE0 REM ¥XSCREEN DISFLAY %k

.
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FOR I=1 TO Z:FOR J=
ITION 2%I+5,2%(4-])

F adil, D THEN FRINT #é&63"X"
700 IF AL, D) =-1 THEN PRINT #é&4;" 0"
710 NEXT J:NEXT I
720 FOSITION O,10

I=1 TO 100:NEXT

Type in the program and RUN it. The computer handles all the moves
correctly, but note that if you cannot make a move you will have to
terminate the game with the BREAK key.

Enter your moves in the form (FROM) X,Y (return) (TO) U,V
(return), where X,Y are the starting positions of your pawn — X is the
horizontal coordinate and Y the vertical — and U,V are where it moves
to. Forexample, type in (FROM) 1,1 (return) (TO) 1,2 (return).

Lines 110 to 140 clear the Hexapawn board, which is stored in array
A(3,3). Lines 160 and 170 set up the pieces which are displayed in the
screen subroutine (lines 660-730).

Your move is entered in lines 340 and 350. The next lines down to line
410 check that your input is legal; if not, you try again. Line 420 moves
your legal move on the board and line 440 checks to see whether your
move wins.

When it is the program’s turn to move, it checks every square of the
board to see if it has a piece there (lines 240-260). If there is (board array
square is +1), it goes to the move generator, lines 470-530.

The square where the program piece was found was at array I,J. These
locations are temporarily stored in locations X and Y. Square X,Y
represents where the piece is. It then reduces Y by 1, since the piece is
moving down the board, and X is varied between —1,0 and +1. The new
possible moves are stored in variables U and V.

The program tests to see if it can move forward (U=X), if no other
piece obstructs it, and if it can move diagonally forward (U=X+1 or
U=X-1), provided that there is an opposing piece to capture.

If any of these conditions are met, the program goes to the evaluation
subroutine (lines 550-640). The piece at X,Y is temporarily moved to
square U,V, the position is evaluated and scored (score in variable Q),
and the piece is move back to its original square, replacing any
temporarily captured piece that was at square U,V. (Don’t ever forget
todo that!)

The evaluation function tests for material count — captures are
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favoured — and for the distance that each piece on both sides has
advanced (lines 570 and 580). A small random factor is added for variety.

The scores for each move are then matched with the store QQ, which
was previously set at —100. If the score exceeds QQ, the moves leading
to that score are stored in variables X1,Y1,U1and V1.

When the move routine is completed, the value of QQ is examined.
If it is still —100, then the program made no moves and the result is
stalemate (line 270). Otherwise, the piece at square X1,Y1 is moved to
square U1, V1 (line 280). If the piece is on the last rank, then the program
has won (line 300), otherwise it is your turn to move again.

Try to understand the program Hexapawn before moving on to the
next chapter which contains two more program examples.

59






CHAPTER7
Game Examples

It is my intention in this chapter to show how a conventional evaluation
function, as used in games of chess or draughts, can give perfect play in
simpler games with minimal effort. The principle is that the program
generates each legal move for itself, then scores the position which arises
after each of these legal moves has been made. The highest scoring (best)
move is the one played. Two games will be considered.

Both games may look quite long. The problem with all such computer
programs is the amount of effort devoted to the screen display and error-
trapping for the user’s input. The most important part of both programs
is the 1-ply evaluation function.

Noughts and Crosses (Tic-Tac-Toe)

Noughts and crosses is an extremely simple game played on a 3*3 board.
For the sake of convenience, I shall label the squares of the board as
follows:

1 2 3
4 S 6
7 8 9

Itis not possible for either side to win against best play by the other.

Previous approaches to the game include the ‘if there’s an enemy piece
here, then you put your piece there’ method. The method can just be
successful owing to the comparatively small number of moves which need
to be considered. The total number of all possible moves is 9! (factorial
9) which comes to 362,880 moves. Since the board exhibits four-fold
symmetry, it is in principle possible to reduce the number of positions
which have to be considered.

Different positions are said to show symmetry if they can be transposed
into each other by rotating them. For example, after playing an X into
square 5, then an O placed in any of the squares 1, 3, 7, or 9 will lead to
the same position, as will an O played into squares 2, 4, 6 or 8. However,
such means of simplification have not been much employed by the
practitioners of the method.
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Another ingenious method of solving the noughts and crosses problem
is that of making the machine play randomly, remembering the moves
which lead to defeat and avoiding these move sequences thereafter. This
method is applicable only to very simple games, such as noughts and
crosses and hexapawn, owing to the very large number of moves that may
have to be stored in some games.

Noughts and crosses can, in principle, be played by a combination of
an evaluation function coupled with the ability to ‘look-ahead’ - evaluate
the opponent responses to its moves. It is the latter which takes most of
the time as the game ‘tree’ of possible moves and counter-moves grows
geometrically; in this particular case, the geometric growth is restrained
by the limited number of remaining legal moves. However, noughts and
crosses is so simple that it is possible to play a perfect game with a 1-ply

search.
Another attraction of using an evaluation function to assign scores to

each possible move is that of drawn games — where no legal moves remain
—and wins for either side can be easily recognised with no extra work.

To win at noughts and crosses, you require a straight line — up, down
or diagonally - of three noughts or three crosses; there are eight such lines
in all. Assigning a score of +1 to each machine piece and —1 to each
opponent piece means that a line score of +3 wins for the machine and
of —2 wins for the opponent (since he will have the next move). A
machine win must be given priority over the projected win for the
opponent.

A positive score in any line favours the program, a negative score
favours the opponent. The sum of all the line scores, weighted for 2 or
3 pieces of one type in a line, gives the evaluation score which is, in
essence, a measure of the control which the machine has over all the lines.

This simple evaluation function is found in lines 560-710, and it plays
aperfect game.

The method of play is that the machine scores each of its possible legal
moves, and stores the best score (Q) yet found in the store SC together
with the move creating it in store K. Counter CO is incremented whenever
a legal move can be made; if it remains at 0 then there are no legal moves
and the game is ended.

If the program moves first, it will always calculate that it should occupy
the centre square (greatest line control), so I have given it this move as
a book opening in line 170. Another book line is found in line 430. This
uses the principle of symmetry to recognise a position where the opponent
has played into each corner and the program has played into the centre.
The EF would force the program to play a losing move into a corner.

The random number generator in line 700 causes random selection
between moves of otherwise equal merit. Thus, if the opponent starts in
square 5, the machine will randomly play between squares 1,3,7and 9.

The program takes less than five seconds to generate each move. It will
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never lose. It will also force a win against incorrect play by the opponent
even as early as his first move.

Type in the Noughts and Crosses program and RUN it. After deciding
whether to move first, simply make your move, on your turn, by entering
the number of the square where you wish to place your O and X. The
program handles everything else.

REM %k NOLGHTES AND CROSSES kX
DIM AP B9 AEP) CHE1) DS
GRAFHICS O

TION 1O, & FRINT "NOUGHTE AND

CROS

140 FOR I=1 TO 1A =0:1A% ([, D)=8TR$(1):
MEXT I

150 FOSITION 7, 10:FRINT "DO WANT TO GO
FIRST (Y/M) 2"

160 INPUT C#$:IF Ce="Y" THEN C&="X":D$="0":
GOTO 180

N D) D= X
752, 1:CO=1:60TO 200

LB 450

200

GUR S560:A (1) =0: REM TEMPORARILY
MOVE FIECE, EVALUATE AND RESTORE FIECE
IF @:8C THEN SC=Q:k=J

NEXT J

CO=03A ) =11 A% (K, ) =D$

EOR S 1=1-10 9

IF A(I)=0 THEN CO=C0+1

NEXT I

GOSUR 450

X=201 GOSUR 770

FOSITION O,17

IF 8C>50 THEN FRINT #é63"

I WIN!'":GOTQ 780

340 IF CO=0 THEN PRINT #&3" END OF GAME":
GOTO 780
FOSITION O,17:7 #&63 "YOUR MOVE 4
GOSUR 720: Z=LETTER-48
IF A(Z THEN 360

AlZ)=—1:1A%(Z, 2)=C%
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780 SOUND 0, 120,10, 6:S0UND 1, 160,10, 6:FOR
K=l TO 100:NEXT KiSOUND 0,0, 0,0 SOUND
10,0, 0:END

Race!

Race! is a simulation of the children’s game Ludo, retaining the latter’s
essential features. Just for fun, I have structured the program — it runs
so fast that there is no need to worry about the stacking of subroutines.

The rules of Race! are simple. Each side has four pieces, numbered
1to 4. The computer simulates throwing a die in line 360, giving a random
number between 1 and 6. This is displayed. (A die, by the way, is the
singular form of dice; one die, two dice).

Both sides need to throw a six to start. After throwing a six, they may
place any piece on the ‘board’, which is actually just a straight line 18
squares long. Each side also has another turn after throwing a six.

If one piece lands on a square occupied by an enemy piece, then the
enemy piece returns to the start and has to throw a six to move again.

If two, or more, pieces of the same side reside on one square, then
there is a ‘block’ and no enemy piece can land on, or pass through, the
block.

When a piece lands exactly on the end of the board, it is ‘home’ and
is placed in its home location. When all four pieces of one side are home,
then that side has won and the game is over.

There are two ways of making the program start moving a piece by
throwing a six. One is an elaborate test of the location of each piece when
asix is thrown, then moving the piece.

The other method, used in this program, is to put an artificial ‘block’
on the first five squares of the board which a piece can move over, but
not land on. Thus, only a six will clear the artificial block. But now, there
are five unused squares on the board. I suppressed these by moving the
whole board down five squares. See, for example, line 600. Thus, the
board on your TV screen looks as though it is 18 squares long, but it is
actually 23 squares long.

Variable Y holds the original location of each piece as its move is tested
and V is where it moves to. Variable X holds the original position of the
piece which has the best move and therefore actually moves, and U is the
square to which it moves. Note that a piece table (A$) is used to hold
the position of all the pieces for both sides.

Type in the program and RUN it. Enter your moves by keying in the
number of the piece which you want to move, followed by RETURN.
If you have no legal move, type in zero (0).

Problem: In what way does this program differ from Ludo? How does
it compare with Backgammon?
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100
110

EAR=

120
1730
140
150
160
170
180
190
200
210
220
230
240
280
260
270
2B0
290

330
40
330
260
70

380
390
400
410
420
430
440
450
460
470
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REM *¥ RACE! by John White XX
INIT=260: THROW=Z2&60: CMOVE=410: MOVE
YMOVE=&40: TESTMOVE=780: EVALUATE=840: CL.
92603 BEEF=1020
HOME=1 1203z ROOF=1 050

GOSUR INIT

Al=+1: GOSUR THROW

GOSUR CMOVE

IF QR=-999 THEN 180

GOSUR MOVE

IF DIE=& THEN 140

Al=~1:GOSUR THROW

GOSUE YMOVE

IF J=0 THEN 2730

GOSUR MOVE

IF DIE=& THEN 190

GOTO 140

REM X% INITIALISE XX

DIM A(24) N(3) A% (16) U (2),VE(8)
FOR I=1 TO 24:A(I)=0:NEXT I

FOR I=1 TO S:A(I)= EXT 1
N(L)=0:NCE) =0z As="
BV LR ST
GRAPHICS 1:POKE 752,

COLOR 11:PLOT 1,8:DRAWTO 17,8:COLOR 42:
FLOY 18,8

FOR I=1 TO 4:COLOR I+48:PLOT O,8+1:
COLOR I+144:FLOT O,8-T:NEXT I

FOSITION 7,0:FRINT #&3 "RACE!"

RETLIRN

REM %% THROW DICE %X

DIE=INT (&XRND (1) +1)

FOSITION 2,15:7 #63Vs ((A0+1) Xx2+1, (AD+1D)

H

¥2+4) ;" THROW = ";DIE
IF DIE=é6 THEN GOSUER RBEEF
RETURN

REM X% COMFUTER MOVE XX
QR=-999: FOR k=1 TO 250:NEXT K

FOR I=1 TO 4

Y=VAL (A% (2% I1-1,2%1))

IF Y=41 THEN S500:REM FIECE IS HOME
V=Y+DIE

NG=0: GOSUR TESTMOVE

IF NG<X0 THEN 300




Chapter 7 Game Examples

GOE
IF ¢
NE

LB EVALUATE
2 THEN Q@=C:J=11X=Yill=V

I
RETURN
REM %% MOVE FIECE %%

Ug=8TRS (L) 2 IF LEN(U$) =1 THEN L$="0":Us$

(LENM(US) +1) =8TR$ (LD

540 IF A =-A0 THEN A LD =0:608UR CLEAR

HEHO A LD =A0+A LD

S60 A =AX)-A0:z IF A XADC0 THEN A(X) =0

S70 A% (ERI-1,2%]) =%

THEM FOQHB HOME s RETURN

K=0 THEN X=

600 IF AD=1 THEN FOLHR J+48: PLOT Hm‘ 8T
COLOR Oz PLOT X-8,8+J

610 IF AO0=-1 THEN COLOR J-4+144:FLOT U-35,
8+IyCOLOR "0 PLOT. X~5,8+1

H20 RETURN

630 REM %% YOUR MOVE %X

&40 TRAF 1200: FRINT "WHICH FIECE? "

HE0 INFUT I

&60 IF I=0 THEN FRINT "NO MOVES ":Jd=0:

. FRETURN

&70 IF I<1 OR Ix4 THEN GOSUER BOOF:FPRINT
"SELECT NO. «FROM 1 ~ 4":GOTO 650

HB0 Y=VAL (AS (2XT+7, 2%I+8))

&R0 IF Y=0 0OR Y=61 THEN 710

700 IF AdY)==0 THEN GOSUR ROOF:GOTO &S50

710 V=Y+DIE

720 NG=0:GEOSUER TESTMOVE

70 IF NGCH0 THEN GOSUR BOOF:GOTO &350

740 J=I+4:U=V;iX=Y

750 I=IxA0

740 RETURN

770 REM %k TESTMOVE XX

780 IF VERI THEN NG=1:RETURN

790 FOR N=Y+1 TO V

800 IF AMNI=3 THEN 820

810 IF AN XAD<C~1 THEN NG=1

820 NEXT N

810 IF AWV =5 THEN NG=1

840 RETURN

850 REM %% EVALUATE XX

860 QD=0
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870 IF A(VI=—1 THEN O=0+40

880 IF A(V)=+1 THEN B=0+20

890 IF A(Y)=+1 THEN Q=0-10

200 Q=0+Y

910 IF V=6 THEN Q=0+5

920 IF V=23 THEN Q=0+40

9TO E=ECRND (1)

940 RETURN

950 REM %% CLEAR CAPTURED FIECE %X

960 M1=0:IF AD=+1 THEN Mi=4

970 FOR M=1+M1 TO 4+M1

980 IF AS(2KM-1,2%M) =% THEN A% (2kM-1, 2kM) =

"OO"y BOSUER 1080 ;

990 NEXT M

1000 RETLRN

110 REM BEEF

SOUND O, 80,10, 6:FOR K=1 TO 40:NEXT ki

SOLIND C), .G - ] . O

1070 RETLRN

1040 REM %% BOCOP %%

1050 SOUND O, 120,10, 4:FOR K=1 TO 80:NEXT k:
SOUND ©0,0,0,0

1060 RETURN

1070 REM %% REFLACE CAFTURED FIECE XX

1080 IF AD=1 THEN COLOR M-4+144:PLOT O,
B-M+4: COLOR O3 FLOT U-5, 8-M+4

1090 IF AD=-1 THEN COLOR M+48:FLOT ©,8+M:
COLOR O:PLOT U-5,8+M

1100 RETURN

1110 REM %% PIECE HOME %%

1120 FOSITION 2, 15:PRINT #&3 "FIECE HOME
My A (R =0 A (2RI -1, PRI =161 s N(AD+R) =
N(AD+2) +1

1170 GOSUR BOOF

1140 IF AD=1 THEN COLOR J+48:FLOT 19,12+J:
COLOR O:FLOT X-5,8+J

1150 IF AD: THEN COLOR J—4+144:FLOT 19,4+
(COLOR OsPLOT X=5,8+1

1160 IF N(AD+2) <4 THEN RETURN

1170 FOSITION 4,13:7 #63" GAME OVER"

1180 GOSUR BOOF

1190 END

1200 TRAF 40000:GOSUE BOOF:GOTO &40

ot
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CHAPTER 8
Book Openings and the Opening

So far, we have considered methods to enable a program to make those
moves which are in general found in the middle game.

A special situation arises in the early moves of a strategy game. Since
the starting position for most such games is always known, unlike
positions which arise in midgame, it is possible for the programmer to
incorporate certain book moves into the opening play. These are moves
which are made, not by calculation, but by reference to a ‘book opening
library’ which is loaded with the rest of the program into RAM.

There are three advantages to a book opening library. First, it enables
the program to make its moves almost at once, saving time for
computation of later moves. Secondly, it enables the program to make
certain non-obvious strategic moves, which long experience between
human players will have determined to be the best. Thirdly, the play from
the library may enable the program to avoid opening traps.

Book openings can be useful in a variety of games, but by far the most
important example is chess, where literally hundreds of openings are
known. Two well-known examples, from the Queen’s Gambit opening,
provide illustration. After the Queen’s Gambit moves

1.d2—d4 d7-dS
2.c2—¢c4

then acceptance of the proferred pawn by the program, playing

followed by a grim determination to hang on to it, invariably spells long-
term disaster against accurate play by white, the opener. However, it
takes a deep search to see this, deeper than any normal chess program
can see. As a result, any chess program which is not pre-programmed to
avoid the trap invariably falls into it.

The second example from the Queen’s Pawn opening is the thematic
pawn move c¢7—c5 by black at some stage. The theoretical justification is
to give black space on the queen’s side, or sometimes to smash open the
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centre for a fianchettoed bishop on black’s KN2 (g7) square.
In the Tarrasch line, this thematic move is played as early as move 3:

1.d2—d4 d7-d5
2.c2—cd el—eb
3.bl=e3:.. c7=-cd

Yet it is very hard to design a chess program to play this move early in
the game by calculation. Directly telling the program to play the move,
as part of its book library, is much easier.

The book opening library is so useful that now few games of strategy
are played without it. Some commercial libraries are enormous; the
Gruenfeld chess cartridge devotes 12K of ROM to openings alone, while
some mainframe programs require large disks to hold the entire library.
Even programs available in software are now often enhanced by the
addition of several book moves, although amateur programmers seem to
have trouble with this and rarely program a book line more than three
moves deep.

Let us consider what is required of a good book opening library —
requirements which many commercial programs do not yet meet.

Firstly, the program should be capable of playing from both ends of the
game board, regardless of who moves first. Few game positions are
symmetrical in the sense that the same book opening library can be used
to play both ends of the chess board. Instead, the program must have the
capability to transpose moves from one side of the board to the other. For
example, if a book library requires a knight to be moved from square b8
to c6, then the library must also store a routine so that the knight can be
made to make the same move from square gl to {3, should the opponent
be playing the same book line from his side of the board.

The general transposition routine is

A(x,y) = A(9-x,9-y)

where x and y are the positions of the piece on an 8*8 board. It is not
necessary to transpose the entire book library, only the moves as they are
accepted from the opponent and as they are made by the book. It will also
be necessary to move the move-counter up or down by one, depending
on which side starts.

The second feature of a book opening library — which is where most
amateur libraries fall down — is that the program should be able to
distinguish several possible opponent responses which lead to different
variations of the same opening, and then switch between them. If the
program opens with e2—e4, then opponent responses of e7—e5 (Ruy
Lopez) and c7—c5 (Sicilian) are highly likely — to say the least — as well
as numerous other possibilities. If the program has decided that it will
only play the Sicilian on this occasion, then the reply e7—e5 will
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immediately take the program out of the book library even if the move
was part of the original book. At a more subtle level, the Sicilian defence
has several variants — for example the Rauzer and Dragon lines — and
these must also be distinguished. I know of several commercial programs
which cannot switch between openings in this way.

A third feature of a good book opening is that the user should be able
to select his own opening at will; failing a choice, the book should pick
an opening at random. The program should be able to prompt the
opponent as to his continuation in the selected book line.

Finally, when the library is exhausted or the user deviates from the
library line and its stored alternatives, the program must return to its own
evaluation function.

Construction of a book library is by no means a trivial task. The size
of the library is essentially dependent only on the size of available free
memory.

The moves made by the library should certainly lead the program into
a position which it likes. Many chess programs show a strong preference
for pins, as of knights against kings by bishops. In this case, suitable book
openings include, for example, the Nimzo-Indian line as black:

1.d2-d4 g8-f6
2.c2-c4 eT7-e6
3.bl—<3 f8-b4

or the Ruy Lopez as white:

l.e2-e4 e7-€5
2.g1-f3  b8-c6
3.f1-b5

One writer of a famous program, a weak chess player himself, arranged
a book library of sorts by asking for a selection of moves from a weak
club player. What he got was a book which gave no consideration to its
idiosyncratic style of play, and included such curiosities as (program
black):

1.d2-d d7-d5
2.c2—c4 g8-f67!

The book library must also leave the program in a sensible position
where it knows what to do if a non-book move is made. A classic example
of neglecting this precaution came with the old Challenger 7 computers
which sometimes tried to play the Cambridge Springs defence to the
Queen’s Pawn Opening. The line is (computer plays black):
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1.d2-d4 d7-d5
2.c2—c4 e7-e6
3.bl-¢c3 g8-f6
4.c1-g5 b8-d7
5.e2-e3 c7-c6
6.g1-f3  d8-a5

The crux of the position is after black’s move 4, where white cannot
win a pawn by

5.c4xd5  e6xd5
6.c3xd5

owing to the devastating and striking queen sacrifice:

7.g5xd8 f8-bd+
8.d1-d2 b4xd2
9.elxd2 e8xd8

when black is winning. And yet, the Challenger 7 could not ‘see’ all of
moves 5to 9. After white plays

5. c4xd5

it will not sacrifice its queen in the approved manner. Thus, the
manufacturer’s choice of this opening in effect presented the human
opponent, white, with a pawn for free!

Ever. modern machines are not free from this problem. The latest
Steinitz chess:-module makes a similar present of a pawn to white in one
line of the Benoni, a line where the pawn capture should be unsound,
costing white a piece.

The manufacturers of the Chess Champion Mark V computer have
elected to pre-program a wide range of highly unusual book openings
which soon flummox both human and machine opponents. However,
most good commercial book libraries give random conventional
responses, often weighted so as to mimic the frequency that different
openings are encountered in actual human play. The latter approach is,
in my opinion, preferable. The shortcomings of unusual book lines can
be mercilessly exposed by a real expert. In any case, most players would
rather practise against openings that they will also encounter away from
the computer.

Another oversight by many chess programmers is what to do against
a very odd opening, such as a2-a4. Most libraries immediately give up and
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the program enters its evaluation mode. In fact, a library can
automatically play e7-e5 against any opening move except d2-d4, f2-f4
or gl-f3. The general concept of having a ‘universal’ opening move,
allowing for certain exceptions, is widely applicable to most games of
strategy.

The last problem to consider is whether to store a book opening library
in the form of moves or positions. The advantage of the former is that it
is faster and requires less space. The advantage of the latter is that it is
possible to reach book positions by transportation of move order.

Diagram 8-1

For example, we can reach the standard King’s-Indian positions in
Diagram 8-1 by several routes:

eg 1.d2-d4 g8-f6
2.c2—c4 g7-g6
3.bl<3 f8-g7
4.e2-e4 d7-d6

or 1.d2-d4 d7-d6
2.c2—c4 g8-f6
3.bl<3 g7-g6
4.e2-e4 f8-g7

or 1.c2—c4 g8f6
2.b1—<3 d7-dé
3.d2-d4 g7-g6
4.e2-e4 f8-g7 andsoon.
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If the program is to make a book move from position 8-1, then either
the library must store all the likely moves to that position or it can store
the position itself and the move fromit.

Both appearances are viable at machine code speeds, but calculation
of positions is too slow in BASIC. The approaches are amenable to
different programming methods.

A book library is not constructed by storing a series of moves as a
geometrically increasing tree. The method of ‘He made move A, so I
made move B, so he made C, so I shall make move D’ is tremendously
wasteful of memory space, and, at deep levels into the tree, the time of
search becomes excessive even at machine code speeds.

What is required is a move-matching method which takes the opponent
move, finds the move number and at once comes up with the book move.
The important feature is that no matter how deep into the book that the
program looks, the time to find the response remains short. (In fact the
time scarcely varies regardless of the depth).

The method used by all good libraries is essentially based on the
principle known as ‘hash coding’. A full account of hash coding is beyond
the scope of this book, but the general idea is that the opponent move or
the position arising is assigned a distinctive hash code which is calculated
on one of its properties. The program then takes the code and looks up
what happens next from a large table. As an example of hashing, let us
take a series of people’s names: JOHN, JOE, FRED, MARY and TOM.
One way of assigning unique hash codes to each name would be to sum
the ASCII values of the letters of each name. Thus JOHN becomes
ASC(“J”)+ASC(“O”)+ASC(“H”)+ASC(“N”) = 303

We could then find the ages of JOHN, JOE, FRED, etc. by looking
upin a table what age value is assigned to hash code 303 (for JOHN).

But what if there are two people, called JOHN and NHOJ? They will
have the samé hash code values according to the formula above, resulting
in a ‘collision’. Most of the theory of hash coding is concerned with what
to do in the event of collisions, and a full account can be found in the
magazine Practical Computing (September 1982) for BASIC
programmers, and in the book 6502 Assembly Language by Rodney Zaks
(Sybex) for assembly language programmers.

Hash coding is particularly suited to book opening libraries based on
positions, rather than moves. It is easier to implement if all the pieces are
already stored in a piece table, when the positions of the pieces in the table
also indicate the nature of the piece. It also has a wider applicability.

The position in Diagram 8-2 was given in the Daily Telegraph
newspaper as a puzzle. Position 8-2 must be reached in exactly 4 moves
by white and 4 moves by black from the normal chess starting position.
(Try it. There are no catches, only legal moves are required, but it is
extremely difficult).
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Diagram 8-2

The solution will be given for the frustrated at the end of the chapter.
It reputedly took grandmaster Petrosian 20 minutes.

Hash coding is the key to using a computer to find the moves. No
evaluation function is needed, nor can any pruning be permitted since all
legal moves must be tested for both sides. The program should generate
each legal move for both sides alternately until both sides have made all
possible permutations of exactly four moves. Each position that arises is
hashed and compared with the wanted hash value previously determined
for the position in Diagram 8-2. When a match is found, the move
sequence leading to it gives the solution to the puzzle.

The moves of a book opening library can be semi-hashed — if that is
the right expression —so as to give a match of moves versus move number.
These could be stored in a two-dimensional string array. Since neither
Atari BASIC nor machine code accommodate two-dimensional string
arrays, we are forced back to the one-dimensional vectors described in
Chapter 5.

This approach is illustrated in the Book Opening program given at the
end of the chapter. The string array B$ stores all the opening moves for
the computer. Array C$ stores all the corresponding moves for the
opponent. The DATA statements in lines 270-460 store all the openings
in numerical code. Each DATA statement is made up of blocks of four
figures, such as 7866. Each block refers to a board location: from square
7,8 to square 6,6 (knight move). Note the blocks of zeros before and
closing the book.

The principle of the program is that the computer first chooses its
opening line OP, either randomly or by selection by the opponent. The
program makes its move, then gets the opponent response. If the
response is correct for the line OP, then the next book move is made.
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If the response does not fit, it is matched with other book lines which also
made the same last program move and accepted the same opponent
response. The book line indicator OP is then updated to the new line,
if a match is found. Otherwise, the book library ends.

One difficulty with this simplified approach to storing book openings
is that it is sometimes possible to ‘fool’ the program by arriving at the
same consecutive three moves, on the same turns, from different
positions.

The difficulty can be obviated to some extent by careful design of the
library. Another partial solution is to check that there is actually a piece
at the square from which the book library is trying to make its next move.
In the Book Opening program, the check can be seen in line 1030.

A more sophisticated, but still partial, solution is to store a token
representing the value of each piece with each book opening move. It
then becomes possible to check that the appropriate piece is present to
be moved by the book library.

More complex solutions to the difficulty are not worth pursuing, since
hash coding is now more suitable.

I have often used the method illustrated in the program to provide an
opening library for my strategy games, and have found it generally
satisfactory.

The program is purely illustrative, and ten book lines are included
which can be selected by number (see Table 8-1). Alternatively, select
book opening ‘O’ and the program will select an opening randomly.

Enter your move in the form C7C5(Return). If you want a hint, type
in HELP(Return).

The chess pieces used in the program are those that were described in
Table 5-1.

Table 8-1

RefNo Opening

0 Random Selection by Program
i Sicilian — Rauzer

2 Sicilian—Dragon

3 Ruy Lopez-Open

-+ Giuoco Piano

5 King’s Gambit

6 French - Winawer

vl QGD - Orthodox

8 Nimzo-Indian— Rubinstein
9 King’s Indian - Classical

10 English—Symmetrical

~
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The main book move checking routines are found in lines 920-1040.
Castling is stored as a king move only. Extra program routines recognise
the odd king move, and complete the castling.

In this illustrative program, the book DATA statements occupy only
asmall fraction of the total program lines. In a full book, they would dwarf
the rest of the program. If you understand the program, try modifying it
to accept the book moves as DATA from disc or tape. You could then
build up a library of book openings entitled Nimzo-Indian, Ruy Lopez
and so on, which would give you a graphical means of learning book
openings — much more fun than learning from books. In this connection,
note that the book moves are stored in DATA statements that are Z
blocks long — where Z is the total number of lines stored — and each block
has four numbers, and that there are two DATA statements for each
move of the line (one for each side).

The book terminates as soon as a block of ‘0000’ is encountered in the
line. Thus some lines could be shortened relative to the others, just by
filling the unwanted part of the line with zeros.

Opening development

It will often happen that the program exits from its book library while it
is still in the opening. While this may be of no consequence in many cases,
in some games, such as chess, it is important that the program use a
modified evaluation function until the opening moves are over. The
opening stage will probably be complete after the first ten moves or so,
necessitating counting the moves as the program makes them.

In the case of chess, the modified EF should give weight to developing
the minor pieces (knights before bishops), castling and to control of the
central squares with pawns. According to Levy, development of the
queen before castling should be subject to a penalty of half a pawn; if you
adopt this, make sure that your penalty for doubling pawns on a file is
more than half a pawn.

Always consider what will happen in the opening of your program if the
opponent steps quickly out of the book library — perhaps deliberately.

100 REM %% RBOOE OFENING %X

110 BGRAFHICSE O:PRINT BOOK OFENING®

120 Z=10:REM NO. OF QOFPENINGS STORED

120 M=8:REM DEFPTH OF OFENINGS STORED

140 PRINT "Storing positions. "

130 DIM A, 8) X (4),Y(4)

160 DIM BSC(Z+2) Xk (M+1) %4) , CHE(Z+2) % (M+1) %4)
X6 (4) Y6 (4) HE (4) ,0F$ ()

170 DIM A$(Z%x4) G5 (37), 16 (42) 1 CH=""1 B=""

180 GOSUR 10460
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190 RESTORE 220

200 FOR I=1 TO 8:FOR J=1 T0 B:A(I,J)=0:NEXT
JNEXT 1

210 FOR I=1 TO @:READ C:A(I,1)=C:A(I,B)=A(],
1) +321AI, 7)=343A(1,2)=2aNEXT I

220 DATA S.3,4,6,7,4,3.5

230 FOR I=1 TO M+2

240 READ A%:BE(LEN (B$)+1)=A%

250 READ A%:CH(LEN(C$)+1)=A%

260 NEXT I

270 DATA 000D0O0OOCC00000000000000000000000
000000

280-DATA QOOOOO000000000000000000000G0OO000
000000 GOOV00000 _

290 DATA szﬁgsﬂll52545254525&525543&!&64442
AHB232H "

200 DATA 3735373557555755575557564745786678
663735

310 DATA 716371637146371463626442443254327432
342133

320 DATA 47444746283462836556847455756575677
762836

CEZ0CODATA 42444244612561347 1632133213213
333273

346"3?;972544;5441nneaaau7z75eaz47asaqaz4ﬁa

350 DATA 6344463442514323361T4545531 78525352
546172
350‘zgzgvgaaawﬂa§7§abilﬁa47&:57;5aasyzvaa47

270w %"A MTF213TI5171 AZAGMV 187163614361
7163

Z80 DATA 2BI&777668575544R78624335878382758
787866

390 DATA 317531 58615133444244223352537 16371
635171

400 DATA IB474B7727255524687779572847243357
555878

410 DATA 4142615214285142323341741131228351
714244 '

420 DATA 1AZB2E36474462442283635443736474528
473544

430 DATA SISLSI7IZ2IT2L42727374776143311344
4546344
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440 DATAH 2644387REET7Q4AT4E7ETIORTHAEIAZB4T74T
TEI644
"""""""""""""""""""""""" QOO0

DOOGOOCOO00000OCOO0OOOOOOOOOO00

470 HE="0000" s MO=0: B(=1

480 FOSITION 5, 10:FRINT "SELECT OPENINGY
4 T OB IF OF4O OR- OF 2 480

IF OF=0 THEN O
REM #% INITIAL
GRAFHICE 2:PC

40 THEN GOSUE 920z IF B0 X0

*RINT "END (OF BOOE": SOUND
(=1 TO &OrNEXT I:SOUND

oW

560 FOSITION 0,01 FRINT #&3"  FROM "3;CHR$ (X

(1)+64) 3", "3 X (23" TO "3;CHR$AX(Z)+64) 3
YL X(4)

570 ACXCE) , X (4))=ALX (1) X {2t AIX (1) X (D))=
O3IF ACX(Z),X(4))=7 THEN R=1zRi=X(3):
BOSUR 880

=80 REM %% SCREEN DISFLAY %%

590 FOR J=1 TO 8:FOR I=1 TO 8

00 IF A(9-I,0)=0 THEN COLOR ASC(".")

610 IF A(9-1,0):0 THEN COLOR A(9-I,J)+128

IF A(9-1,J) 310 THEN COLOR A(9-I,J)-32

AZ0 PLOT: 281,

640 NEXT I:PRINT sNEXT J

50 POSITION O,9:FRINT #63" H G F E D

B v

I=1 TO S8:FOSITION O, I:FRINT #631:

NEXT I

470 REM %% OFFONENT MOVE kX

680 POKE 752, 0: TRAF 1050

490 SOUND 0,100,10,6:FOR I=1 TO 40:NEXT I:
SOUND 0,0,0,0

700 FRINT " YOUR MOVE": INFUT H$

IF H$<>"HELP" THEN 750

0 PRINT "BOOK LIBRARY SUGGESTS FROM *;

730 PRINT CHRE(Y (1)+64) 5", "sY (23" TO "3

CHR$ (Y (5)+64) 3, "3 Y (4)

X1

79




Writing Strategy Games

740 GOTO &80

750 FOKE 732,1

&0 Al=VAL (CHR$ (AS
(CHRS (ASE (HE ( 1~1&) )

770 1IF A1»8 OR A THEN &80

7RO Bl=VAL (HS (2, 2)) s BE2=VAL (H$ (4, 4))

790 IF B1>8B OR B THEN &80

800 IF AWML, B <34 OR AALELD)

810 AWM, B =41, B AL RBL) =0

B20 HE=GTRE (1000%A1+100XB1+10XAZ+RE)

830 POSITION (2-A1)X2,B1:PRINT #63"."

240 FOSITION (9-A2) X2, B2 FRINT #&63 CHRS (A (A2,

THE (1, 1)) ~16) ) s AZ=VAL

0

THEN &80

R50 IF A(AR,B2) =39 THEN R=8:Rl=AZ;G0SUE 880

8460 GOTO D530

870 REM k% CASTLING ROUTINE %X

880 IF R1=2Z THEN AWM, FR)=AC1,R) 1AL, R)=0

890 IF R1=7 THEN A(&,R)=A(B,R):A(B,R)=0

GO0 RETURN

10 REM ¥k BOOE ROUTINE XX

Q20 K= (MO-1) XZ¥4+0P %43

30 IF He=Cs (kK,kK+3) THEN 990

40 OF$="":FOR I=1 TO Zik=(MO-1)%XZ%4+1%4--%

P50 IF HE=CH (K, K+3) AND B$ (K, K+3)=X$ THEN
OFs$ (LEN(OFS$) +1)=8TR$ (1)

P60 NEXT I

270 IF OP$="" THEN BO=0:RETURN

QEO J=INT (RND (1) ¥LEN (OF$) ) +1: OF=VAL (OF$
(J,d))

R0 XE=RE (MOXZXx4+0F k4 MOk Z X 4+0F %4)

1000 Yé=C8 (MOXZX4+0F %42, MOKkZk4+0F%4)

1010 FOR I=1 TO 4:X(D)=VAL(X$(I, D)):Y (D)=

VAL (YS (L, 1)) s NEXT I

IF X(1)=0 0OR Y(1)=0 THEN BO=0

IF ACX(L) X(2))<1 OR A(X(1) X (2))F10

THEN BO=0

1040 RETURN

1050 TRAF Z2747:60TO &80

1060 REM %xx SET UP CHESS PIECES XX

1070 F=(PEEK (104&) ~8) ¥284: Te="80UAREFAWN
ENIGHTRISHOFROOE QUEEN KING "

1080 RESTORE 1110

1090 FOR I=1 TO Z&:READ A:FORE ADR(GS) +1, Az
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NEXT 1
1100 FREM %% TRANSFER CHARACTER SET TO RAM XX
1110 DATA 104, 104,17 205, 104,1 4,104,
207,104, 204,104, 104, 133, 708, 16
b, 208, 1460,0
$129 DATA 177,204,145

205, 230, 207, 20

206,200, 208, 249, 23
08, 240, 96
1130 Q=L AXP5E,F,4)
1140 REM %X READ C 5 CHARACTER DATA XX
1150 FOR I=0 TO &43:READ A:FOEE F+I,AsNEXT I
11860 DATA C) 1.) (.l (') l_) (.) l“) (8]
1170 DATA 255,129,129, 129, 129, 129, 129, 255
1180 DATA u_u,za,da,qﬁ,xﬁ,ih4_u
1190 REM X% FAWN
1200 DATA 0,16,56,120,24,56,124,0
1"1u REM %% KNIGHT
220 DATA 0, 14,40,68,108,56,124,0
REM %% BISHOP
DATA 0,84,124,56,56,124,124,0
REM %% ROOK
DATA 0,84,40,16,108,124,124,0
REM %% CLEEN
DATA 0,16,56,16,56,124,124,0
290 REM %% KING
1300 BGRAPHICS 2:POKE 752,1
1310 POKE 756,F/256:REM %X ENAELE NEW
CHARACTER SET
FOR I=2 TO 7
COLOR T:PLOT S,1:POSITION 8, 1:FRINT #63
T (6KI~5,6%1) 1 COLOR I+12Q:FPLOT 17,1
1340 NEXT I
1350 RETURN

The solution to the problem in Diagram 8-2:
1l.e2-e4 e7-€5
2.f1-b5 e8-—7
3.b5xd7 c7—c6
4.d7-e8 e7xe8

Easy when you know how, isn’t it?

81






CHAPTERY
Endgame

There comes a stage in most games of strategy when there are few pieces
or moves left to play. This stage is generally referred to as the Endgame
and usually different programming principles are needed to play it well.
We shall again use chess as our example.

By convention, a chess end game is deemed to start when the queens
are off the board. However, it is possible to reach a position where
practically all the material except the queens is off the board, and this
clearly gives an endgame. Conversely, positions also arise when the
queens are exchanged very early, leaving most of the other material still
on the board. From a programming viewpoint, thisis not an endgame.

On of the earliest commercial chess programs to tackle the problem was
the famous Sargon 2.5 chess computer, which caused the program to enter
its endgame at move 30, regardless of the position. Move 30 was taken
as a crude yardstick that the endgame was about to begin.

Subsequent programs, including those from the same manufacturer,
have used the EF to decide when the endgame begins, a much more
satisfactory arrangement. The total amount of material on the board is
evaluated, excluding kings, and the result is tested to see if the pre-set
endgame level has been reached. In the Morphy chess program, the
endgame is reached when the total material count is less than a value of
about 25 (pawn = 1, rook = 5, etc), while Morphy’s successor, the Steinitz
program, starts its endgame when about 30-35 points worth of material
remain.

In BASIC, we would write the subroutine:

1010 (DIM A(8,8))

1020Q=0: FORI=1:FORJ=1TO8
1030Q = Q + ABS(A(I,)))

1040 NEXT J: NEXT1

1050 Q = Q-2*255: REM REMOVE KINGS
1060 IF Q < 25 THEN (start endgame)

1070 RETURN

The reason that endgame routines need to be employed is that different
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factors now assume prominence which were less important previously.
For example, the promotion of a pawn to a queen becomes of critical
importance in a chess endgame, but would be unlikely to arise during the
middle of the game.

Many programs reduce the time spent on thinking in the closing stages
of a game, because there are fewer moves to consider. Instead, it is much
wiser for the program to increase its depth of search. This is particularly
facile when using the method of search known as iterative deepening,
when it is possible to keep increasing the depth of search until either a
timer halts the search or a definite, pre-selected number of positions have
been evaluated.

A chess program has two disadvantages in the endgame compared with
its human adversary. Firstly, because of the limited number of moves, a
human can spot the critical line very quickly and mentally search that one
line to great depth.

A simple example of this can be seen in Diagram 9-1.

Diagram 9-1

Itis at once obvious to the human eye that black (to move) must play g7-f6
(or to f7 or to f8) to save the pawn. Anything else loses the pawn to white’s
attacking king. Yet to see this ‘obvious’ move takes a search of 11 ply for
the program. Many chess programs fail the test, either advancing the
pawn or aimlessly moving the king. Some, however, move the king in the
right direction simply because of a desire to centralise it.

As a matter of detail, black cannot win this endgame even if he does
save the pawn. Against accurate play by white, stalemate always occurs.

The second disadvantage is that a human player can immediately
recognise chess patterns and play with full knowledge of the moves
required by that pattern. It is very difficult to teach a program that
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positions 9-2 and 9-3 are essentially the same and can be played the same
way.

Diagram 9-2

Diagram 9-3

Modifications to the chess evaluation function during the endgame
should include the following features:

Firstly, the look-ahead must be increased, as explained above.

Secondly, the king, which was previously tucked away out of harm’s
way in one corner (eg, by castling) must now be made more active. The
king is rather a strong piece in the endgame, and has roughly the power
of a rook. It should be made to make its way cautiously towards the centre
of the board.
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Thirdly, pawns should be advanced as chains up the board. There is
a great deal of theoretical work published on pawn movements, but this
need not concern us here. The value of a pawn should increase as it
arrives near its queening square, especially if it is supported by other
pawns. This will compensate for the fact that promotion of a strong,
advanced pawn to a queen may remain outside the program’s normal
look-ahead.

The threat or promise of pawn promotion is very difficult to program
properly. Levy has recommended that a pawn which cannot be caught
by an opposing piece before promotion should be assigned the value of
a queen, but it is time-consuming to implement the routines required to
see if the pawn can be blocked. Very few chess programs really
understand the potential of an advanced pawn until the promotion of the
pawn comes within their normal look-ahead of 3 -4 moves.

The following position arose on move 49 in a game between the Chess
Champion Mark V (playing black) and a human (white) in the Silica
Chess Computer Symposium of Spring 1982, after the queens had been
exchanged on move 7:

Diagram 9-4

White had clear chances to promote his outside ‘a’ pawn while black
fiddled around at the bottom of the board. Unfortunately, the human
player did not appreciate the strength of his passed pawn either, and the
game was eventually drawn.

From the diagram, white should have played a4-aS!, which probably
forces the computer to play a2-b4. In fact, the program might well have
missed that move and played on as it did, as do other chess programs
against which I have tested the same position. Instead white played 1. f2—
e3 and play continued
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Vivasotnes c2-c1(=Q)
2.b3xcl a2xcl
3.e3-d4 g8-g7

and ultimately the draw.

Another problem on the same lines was described by WW Foster in
the magazine Personal Computing (October, 1980). In Diagram 9-5, with
the program (black) to move, the black king must not capture the white
bishop; otherwise, one of the white pawns on the ‘a’ and ‘e’ files can be
pushed home against any black defence. If black refrains from taking the
bishop, the position is probably a draw.

Diagram 9-5

To see this result requires a look-ahead of at least 12 ply, and no
commercial program can see within a reasonable period of time (several
hours!) that it must leave the white bishop alone. Only a special routine
would give the answer within a short period of time and it would be hard
to program so as to be widely applicable.

Another of my favourite endgame positions, arising from an actual
game, is shown in Diagram 9-6.

There is no ‘right’ answer to the problem of the program’s (black’s)
best move — some strong programs play a7-a6, others move the king
downwards — but one move is definitely wrong, despite being favoured
by two powerful commercial programs. That move is 1...... h7-hs 7!
which is well met by

2.g4-g5 f4xh4??
3. g5-g6!

and black cannot prevent the g pawn from queening except at the loss
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Diagram 9-6

of the rook. Once again, a program failed to assess the threat of pawn
promotion properly.

Horizon moves also come into prommence in the endgame. Once a
program determines that an enemy pawn is about to become a queen,
it will often make any sacrifice — giving up several pieces in succession
— to delay the fateful move. The reason is that at any one moment the
loss of a minor piece (-3 or —5) to the program outweighs the advantage
to the opponent of replacing a pawn with a queen (-8 for the program).

A final possibility for playing the endgame is to construct tables of
moves in response to certain positions which arise. This requires
knowledge of hashing positions, described in the chapter on book
openings, and must also allow for transpositions between related
positions. Some mainframe computer chess programs have even started
from desirable final positions, working back to find a forced move
sequence which leads from the present position to the desired one.

The last approach probably requires a large disk to store all the ‘book
endings’ and is hardly suited to the Atari computers. I have never
implemented the method myself, but some readers may find the
knowledge useful.

The principles which I have expounded for playing the endgame of
chess apply equally to numerous other strategy games. At draughts, for
example, one of my own commercial programs plays endgame routines
when just five pieces remain on the board, at which stage the inferior side
is expected to head for a ‘double-corner’ and the superior side to pin the
inferior against the edge of the board.

Always consider the possibility that the endgame play of your program
may have different requirements to its play in midgame.
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Look-up tables

Reference has been made occasionally to look-up tables in this book and
it may help some readers if I give an example of what a look-up table
actually does.

It often happens that we want to assign a value to a second variable
which is dependent on the value calculated by the program for the first
variable. For example, if the program calculates that variable C is equal
to 1, we may wish to set variable D equal to 10. If C is equal to 2, we shall
make D 20. If Cis equal to 3, we put D equal to 30, and so on.

In this trivial case, we can write

D=10*C

But what if there is no direct relationship between C and D? Suppose
that when the program calculates C as 1, we wish to put D equal to 100.
When Cis 2, D is to become 35. When Cis 3, D will be 0.1. We can write
out the relationship between C and D in the form of a table. Table 9-1
is called a Look-Up Table. The program looks-up the value of D every
time that it calculates the value of C.

Table 9-1
Associated
Value of C Value of D

100
35
0.1
61
79
82

OOV A WN—

—

Program 9-1 shows how to implement a look-up table in Basic. Lines
10 to 50 set up the table in array A(X). I have assumed that there are ten
elements to the table; that is, ten numbers to look up.

In line 70, the program calculates a value for C. It is a simple random
number generator returning values between 1and 10.

In line 80, the program looks up the value of D in the array A(X). The
results for Cand D are printed in line 90.

The loop in lines 60 and 100 simply causes the program to look up
random values of C twenty times in all.
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M FROGRAM 91
DIM ACLO)

FOR I=1 TO 10
READ Bed (D)
NEXTods s PR TR & Bl

DATA 100,35,0.1.61,79,82,3,6.0, 1000
FOR I=1 TO 20

CmINT (RND (OY X10) +1

100 NEXT
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CHAPTER 10
Computer Draughts

Draughts is an ancient game, known in the USA as Checkers and on the
Continent as Dames or Damenspiel. It is played on a normal chess board
but is considerably less complex than chess.

The object of draughts is to prevent your opponent from moving,
usually achieved by removing all the opponent pieces by jumping over
them. There are only two types of piece —men and kings — these have very
simple moves. Draughts is therefore eminently suitable for programming
onto a computer, although the ability of a piece to make multiple jumps
requires a little thought in the move generator. A little known rule is that
if a man jumps onto the eighth rank, becoming a king, it is not then able
to make further jumps as a king on that move.

It is probably true to say that most competent draughts players are also
chess players. There are comparatively few draughts clubs. Many chess
players denounce the lack of complexity in draughts, yet there can be no
doubt that a great deal of skill is required to play the game well. According
to the games expert Hoyle, one former world champion could set up a
position and demonstrate a forced win from it in a maximum of 53 (sic)
moves.

It seems fairly clear that tactical ability is more important than strategic
skill at draughts, the opposite to the requirements of chess. The winning
player will be the one who can calculate most deeply into a position. This
suits the modern computer which can analyse much deeper into a game
of draughts — owing to the limited number of moves — than into chess. The
best draughts programs have now won some games against the world
human champions.

As is usual when writing computerised games of strategy, it is necessary
to consider the evaluation function — EF - to assess a position and to
decide how deep the program should look into a position, remembering
that the number of moves increases geometrically the deeper the program
looks.

The first strong draughts program was written in the USA by Arthur
Samuel for the IBM 704 in the early 1950s. It looked to a depth of 3 ply
— further for captures — and used a sophisticated EF based on the
experience of draughts experts. It was also programmed to exchange
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pieces when it was ahead, and to avoid exchanges when it was losing. The
alpha-beta pruning mechanism was not known at the time, but the
machine was able to play reasonably quickly and already represented a
strong opponent to humans.

Samuel proposed a new method of numbering the draughts board,
related to the conventional method, such that the difference between
board numbers when a piece moved was always 4 or 5. See Diagram 10-1.
The conventional draughts notation is given in Diagram 10-2.

Diagram 10-1

Diagram 10-2

Thus a black man on square 20 (moving up the board) will move to
squares 24 or 25. A black king on square 20 will move to squares 24,25,
160r15.
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Note that locations 18, 27 and 36 are dummy squares, off the board.
A test is needed in the move generator to tell a moving piece that a move
to any square that is less than 10, greater than 44 or equal to 18, 27 or
36isillegal.

Problem: What is the move difference when a piece captures another?
What happens if you add the move difference to a piece jumping from
square 237

Several draughts programs have been published or made available in
software for personal computers. Most of these combine a limited 1-ply
search with a moderate evaluation function.

One of the most famous examples is that found in Creative Computing’s
101 Basic Computer Games. Simply called Checkers, it had five
evaluation features, scoring high for a capture, promotion of a man to a
king, moving to the side of the board and backing up one of its own pieces,
and scoring low for moving a piece to where the opponent could capture
it. Written in BASIC, Checkers took about five seconds to make each
move.

Recently I saw a published game of draughts which contained only two
features in the EF: making captures and promoting men to kings. It was
claimed to play a ingly sensible game, although I have my doubts.
Numerous other versions of draughts have been published in games’
collections; all seem to use a 1-ply search only.

One of the features of games of tactics — rather than of strategy —is that
it is possible to obtain sensible results by assessing the value of a move
rather than assessing the merit of the position which arises after the move.
This can be done much faster than assessment of positions, an important
factor when programming in BASIC. Creative Computing’s Checkers
used this approach.

A controversial problem is whether or not to give credit for, or to
penalise, a move by a piece towards the side of the board. Most
programs, including Checkers, favour the move to the board edge, since
it reduces the danger of the piece being suddenly captured, but it misses
the concept of control of the centre and Hoyle has also pointed out that
a piece on the edge of the board exerts only half of its effect and has only
half of its mobility. There is no easy answer to this conundrum for the
programmer.

As far as I am aware, the strongest, commercially available draughts
program is Borchek, which can be obtained as a cartridge for the Great
Game Machine. Borchek relies almost exclusively on material evaluation
coupled with a very deep search to find its moves. The only other
evaluation features that I have definitely identified have been a tendency
for pieces to move to the side of the board and a back-up of its own pieces.
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The novice level looks at least five ply deep, while the next level takes
only one second to find its moves.

Faced with a choice between weak, 1-ply draughts programs and
nearly-unbeatable deep search alternatives, it does seem that there is a
clear need for a shallow-search program which is hard enough to give a
good game to beginners, but not so hard as to be disheartening. By far
the majority of those who pore over draughts boards are casual players.

One of my own commercial programs is a draughts game called M-
Checkers which has a look ahead of up to 3 ply coupled with a moderate
EF which scores positions rather than moves — giving credit for backing
up its own pieces, making kings, avoiding the side of the board (to
improve centre control) controlling certain squares and avoiding enemy
pieces. 3

The EF is also coupled with routines to ensure that captures must be
made — no huffing is permitted — and the material count indicates whether
or not one side has won. (Huffing is a rule permitted in some draughts
circles, where a player refuses to make a forced capture — because the
consequences look so ghastly — and loses instead the piece which should.
have made a capture.)

The material count also enables extra endgame routines to be called
when fewer than five pieces remain. These compensate for the program’s
lack of look ahead in the ending. One routine is a simple proximity
algorithm — the program moves its pieces towards the enemy if it is
winning, away if it’s losing — the other encourages movement along the
two long diagonals, so that if the program is losing the piece heads for
the double corner; if winning it keeps the enemy pieces out.

There is at least one draughts program commercially available for the
Atari computers. This is Checker King, written in machine code and
available from APX, which uses the joystick to move the pieces.
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Chess

The origin of computer chess essentially dates back to a lecture by Claude
Shannon of Bell Telephone Laboratories in 1949 (published in 1950).
Shannon pointed out that an average game of chess lasts forty moves for
each side and that there are an average of thirty move possibilities during
each of those moves. This means that there are some 10exp120 possible
games of chess. To examine these at the ridiculously high rate of one
million variations per second would require a search time of 10exp108
years to exhaust all possibilities.

It is certainly not possible, then, to make a computer program play a
perfect game of chess by exhaustive search. If a program can choose its
best move at the first ply in one second, (ie, evaluating each position in
140 of a second) then, using the Minimax method of search alone, it will
take 30 seconds to search to 2 ply, 900 seconds to search to 3 ply, and 27000
seconds (7.5 hours) to search to 4 ply. If it takes %3 second to evaluate each
position, the program will take 312 days to search to a depth of 4 ply.

If the program uses optimally ordered alpha-beta pruning, taking %30
second per evaluation, then it will take a little over 60 seconds (allowing
for time spent finding the best move at each ply) to search to 4 ply. This
should make clear the advantage of using a good EF in a chess program!

Contrary to popular opinion, it is actually rather easy to write a chess
program of sorts. The real difficulty is in getting it to play well at a
reasonable speed. The evaluation function is likely to be the most time-
consuming part of any running chess program, and in order to attain the
necessary speed it will have to be written in machine code.

A good machine code program will find its best move at one ply in about
one second. By comparison, the same program written in BASIC (on
another computer; not the Atari) took about three minutes to find its one-
ply move, while a Fortran compiler gave the same result in about five
seconds.

Realistically speaking, a chess program has got to be written in machine
code, although the information in this chapter may be of value to other
programmers. However, a really good chess program can only be written
by an expert machine code programmer, probably one who uses assembly
language every day, perhaps as his daily occupation (which, incidentally,
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does not include me).

For a program as complex and time-consuming as chess, every available
device has to be used to accelerate the program. This means optimising
the code, reducing the number of page boundaries crossed and using page
zero for storage of variables. Doubtless a real machine code expert has
other tricks up his sleeve which I have yet to discover myself. The Atari
Assembler cartridge is not very suitable for programming a chess
program, since it uses much of page zero itself.

Considerable increases in speed can be accomplished simply by
upgrading the central processing unit, the 6502 chip. A faster chip is
available from Newell at around £30. In any case, the 6502 chip in UK
Atari computers runs faster (at 2.217 MHz) than the US version at 1.79
MHz, apparently so as to compensate for the different television scan
frequencies. I have no information as to whether the Newell chip is
compatible with PAL television circuitry.

The general methods used to write a chess program have already been
illustrated in earlier chapters of this book, including the techniques
needed to set up the board, store the pieces in a piece table and search
the game tree in depth, as well as the routines needed to play the opening
and endgame. When setting up the board, it is necessary to consider the
respective values of the bishop and the knight. Many programs set both
pieces equal to 3 units (pawn = 1), but the bishop could have a value of
anything up to 3.5 units. The actual figure can have a considerable
influence on the effects of a pin by a bishop against a knight onto a king,
such as occurs in the Nimzo-Indian defence shown in Diagram 11-1.

Diagram 11-1

After white has played a2-a3 in position 11-1, black can either exchange
the bishop for the knight, or retreat the bishop. Which happens —
assuming that no ‘book’ move is played from an opening library — depends
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very much on the respective values of the bishop and the knight relative
to the weightings involved in the change of mobility in retreating the
bishop or capturing the knight.

Some of the latest commercial chess programs now dynamically alter
the values of the bishop and knight according to the current position.

Chess has two moves which can only be played in special circumstances.
One of these is ‘en passant’, using a pawn on the fifth row to capture an
enemy pawn which tries to slip past it with a direct move from the seventh
row to the fifth. The other is castling.

En passant is quite easy to cater for. A flag is set whenever one side
makes a move enabling the other to make a capture en passant. Castling,
on the other hand, is much more difficult. Not only must the program
check that neither the king nor the appropriate rook have been moved
previously, but it must also ensure that the king does not move through
check nor settle in check. This must be done every time that castling is
considered as a possible move, which has a delaying effect on the
program evaluation. Early castling is not only strategically desirable by
achess program, it also speeds up the rest of the program. Do it quickly.

The difficulty involved in getting a program to castle legally can be seen
from the disqualification of one commercial chess computer from the
1981 Paris Micro tournament, when it castled through check.

While on the subject of special moves, it is worth remembering that
a queen move is comprised solely of a bishop and a rook, and does not
need a separate move generator, and that a knight can move through
other pieces (hop over them), en route to its location.

It is necessary to have a routine to test if the king is in check, both for
castling and to see whether the king needs to be defended. The difficulty
is to know when to callit, since it is so time consuming. Obviously, it must
be called before the program makes its first move. There is no point in
spending long calculation time in evaluating a position if the king must
be moved.

Many of the world’s strongest commercial programs used to test for
checkmate in every position, but the trend now is to drop this method
to save time; probably the test for checkmate is done only at the lowest
levels of search.

It is theoretically possible to avoid or win checkmate just by making
the value of the king sufficiently high, so that capture or loss of a king
automatically gains a high score. The big problem with this approach can
be seen in Diagram 11-2. ;

White, to move, will permit the following sequence, thinking that the
final position is favourable (+5) for it:

1.g3xg5 bdxb2
2.g3xg7 b2xbl

97



Writing Strategy Games

Diagram 11-2

3.g7xg8

In fact, of course, white lost after black’s first move. It is therefore
essential to test for checkmate after the first ply of search for both sides,
even if you do not test at deeper plies. Remember, too, to allow for the
possibility of discovered check. Just testing whether the moving piece is
giving check is not sufficient.

The two most important routines in the evaluation function are the
material count and the mobility assessment, a routine which measures
how many squares each piece is able to move oniits turn.

What else you put into the EF is up to you, but each additional feature
makes the program run just that little bit slower. A chess EF is unlikely
to contain more than 20 elements if it is to run quickly. Useful minor
features include fianchettoing a bishop, doubling rooks along a file or
column and placing rooks on the enemy seventh and eighth rows.

A more important feature to include is that of square control. When
you assess each piece’s mobility, you should also keep tabs on the squares
which they can reach - these are influenced by the pieces which can reach
them. A square is controlled if the influence of one side’s pieces exceeds
that of the other. The influence of a piece decreases with its value; thus
a pawn has much greater influence (since it is more readily expendable)
than a minor piece, and the latter has more influence than the queen.

Problem: How much influence does a king have relative to a queen in
the midgame? How much in the endgame?

The control of some squares, especially at the centre, is more

important than that of other squares, and your EF should take this into
account.
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It is even possible to dispense with a lot of look-ahead investigating
captures, if the EF evaluates square control properly.

The manoeuvring of pawns is complex, but the EF should certainly test
for, and try to avoid, the doubling of pawns, especially if they are
isolated. Isolated doubled pawns are scarcely worth more than a single
pawn, whilst doubled pawns supported by others are worth perhaps 0.75
—0.85 of a pawn each.

Diagram 11-3 Isolated and Doubled Pawns

White has connected, doubled pawns.
Black has isolated, doubled pawns.

Another useful feature in the EF is to score highly any move which
makes an attack on an opposing piece, particularly on the opposing king
and queen. Even though deep analysis may show that this gains little,
there is always the hope that the other side may blunder; in any case,
chasing a piece around may finally trap it.

There are one or two commercial programs available which use
‘strategic’ evaluation methods, rather than purely tactical considerations.
Although these methods are kept secret by the manufacturers, it does
appear by analysis of the games played by their machines that their EF
favours moving pieces into lines where they bear onto the enemy king;
ie, lines which are not blocked by their own pieces but may be blocked
by enemy men. They also put emphasis on advancing pawn chains
together. An example of a ‘strategic attack’ can be seen in Diagram 11-4,
where the program would be expected to play f1-d3, h2-h4, h1-h3, h3-
g3, d1-g4 in some appropriate order when the disposition of black’s forces
makes such moves safe.

Setting up an accurate evaluation function is tedious and mostly a
matter of trial and error. It is possible to get the program to play itself,
using different weightings for one feature of the EF every time it changes
side, while holding the other features constant, but this will not always
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Diagram 11-4

give optimal results without also changing other features of the EF. The
reward for all the effort comes when the program starts to play as you
originally intended.

Various methods have been used by commercial chess programmers for
searching the game tree in depth. There are so many move variations in
chess that some kind of selectivity is essential. Most programmers aim at
a full-width search to a depth of 4-ply (even if they consider only the first
few moves at this depth) which provides a good game. Some programs,
as we have seen, use selective search methods with a powerful EF to pick
out a handful of moves for both sides which can be examined to a depth
of 5- to 6-ply. Such programs are prone to suffer from the occasional
tactical blunder.

Another popular method is to use a powerful EF to score all the first
ply moves for the program, and then to search deeper scoring only the
material count. This works quite well, while saving a lot of computing
time, but it overlooks the fact that the strategic position may have
changed. Programs of this type are very prone to having doubled pawns
inflicted on them, which does not affect the material count, and the
opponent move, causing the program to capture with the pawn which
became doubled, was not positionally evaluated.

One way round the last problem, if your program looks to a fixed depth,
is to do the positional assessment again at the final depth of search. But
if the program can be interrupted by a timer, or by stopping when a fixed
number of positions have been evaluated, then there is no satisfactory
answer.

Increasing the depth of search is subject to the law of diminishing
returns, since the time required to score each deeper ply level increases
geometrically. Doubling the time spent searching into the game tree
rather less than doubles the strength of the play. It is much more
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important to rely on a good EF for strong play.

In the 1960s, an American university program called TECH was
devised. It was intended to be a ‘benchmark’ program against which
others should be tested. Its evaluation function consisted purely of a
material count; there were no other features at all, but it was able to
search to considerable depth. :

Against human opponents, TECH was found to be sadly deficient due
to its lack of positional sense. If it could not see a powerful, material-
winning tactical combination, then it just blithered and blathered. Very
little time elapsed before the programmers of TECH were forced to add
book openings and some positional factors in order to get a sensible game
out ofit.

On the other hand, chess programs are, as yet, unable to form long-
range plans, and they all play each other tactically. It would be extremely
interesting to know how well the original TECH would have done against
some of the modern chess programs. I must emphasize very strongly, that
games between chess programs do not necessarily reflect their
performance against an inventive human opponent. Humans and
computers use different methods to try to beat an opposing chess
program, a point which seems to be completely misunderstood by those
who play machines against each other. It does not follow that if program
A beats program B, the latter graded at ELO 1700 against human
opponents, that program A should be graded higher than ELO 1700, since
different processes are being compared.

There is considerable debate in computing circles about whether a chess
program is best advised to use a fast, full-width search or a slower,
selective search to beat a human opponent.

Proponents of the first method argue that a computer program should
cash in on its greatest strength, its ability to calculate fast. The extreme
example of -this is the current World Chess Computer Champion, the
custom-designed Belle of Bell Telephone Laboratories. Belle searches
deep into the game tree at colossal speed, using special chips to consider
several different moves simultaneously. The main programmer claims
that he does not even play chess. Belle’s program is backed up by a huge
‘openings and endings’ library on hard disks.

The exponents of the selective approach, who include Levy and the
former World Champion, grandmaster Botvinnik, counter-argue that
increasing the depth of search is subject to diminishing returns and that
a chess program should mimic human grandmaster play by picking out
a handful of plausible alternative moves and searching these in depth to
find the best one. This is known as the ‘goal-plausibility’ approach, and
is being intensely researched on several mainframe machines.

The psychologist de Groot was able to demonstrate that human
grandmasters made most of their moves on the basis of pattern
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recognition. They recognised that any chess position was related to one
that they had previously played, and were at once able to locate the
decisive moves from which to select.

The problem is to program pattern recognition into a chess computer,
and I suspect that advances in computer technology will support the Belle
approach for some time yet, particularly if commercial programs are
designed to test several moves simultaneously. However, this requires
special hardware and would be unsuited to the Atari programmer.

An example of the selective approach was the old German Schach
program (Shach is German for chess) which played an impressive
strategic game while looking just one move ahead.

Sargon

It should be clear now that there are many new advances waiting to be
made in the field of computer chess. The basic technique for writing chess
programs is well-established, and there are many worthy attempts that
occupy less than 4K of RAM. In fact, there is even one program which
fits within a 1K Sinclair ZX-81 computer, but it uses no look-ahead and
plays very badly. It shows what can be done by an expert programmer,
though.

The Atari programmer does not have to worry about running out of
memory, and I would strongly advise spacing out your program to begin
with, not worrying too much about elegance, nor too much about speed.
My first chess program occupied about 20K of RAM and played badly.

Mention must be made of Sargon — A Chess Program by Dan and
Kathe Spracklen (Hayden Publishers). This is a book written by two of
the most accomplished experts in the field, describing their first
important chess program and giving the full assembly language code for
SARGON-I.,

The main problem with the book for an Atari user is that it is written
in Z-80 code, so that it cannot be used with the Atari’s 6502
microprocessor. It is amine of useful information, though.

I wonder if the Spracklens would have published Sargon-I if they had
known of the forthcoming success of the Sinclair Spectrum/Timex 2000
with its Z-80 microprocessor? I was astonished by the number of chess
programs quickly released for this machine by programmers I had never
heard of, all complete with en passant and castling routines nonchalantly
fitted. After testing some of them, it became clear that many were blatant
copies of the original Sargon-I program, adapted for the Spectrum then
slightly modified and attributed to the new programmer. These programs
can be distinguished by the fact that they all make the same silly moves
as Sargon-I in the same silly positions.

The chess programmer can embellish his program with a few extra
facilities. It can be asked to give its most favoured continuation, or a ‘hint’
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as to what the opponent should do, after it has completed its move
calculations.

The program should always have a facility to allow the user to modify
the board. This is easy to program, requiring alteration to the piece table
and the main board.

Problem: Should the program be permitted to castle after modifying the
board? Can the user choose for himself?

By PEEKing memory locations 18, 19 and 20, the program can operate
areal-time clock. Location 20 is updated every Yeoth of a second, and the
locations 18 and 19 are updated as the next higher locations reach 256.
The method is outlined in Chapter 1 of this book.

The clock can be used to show the elapsed time for both sides and also
to interrupt the thinking of the program and force it to display its best
move found so far (using the method of iterative deepening).

In theory, it should be possible to force a machine code interrupt with
the IRQ or NMI lines, but I have no personal experience of the method;
not have I been able to obtain expert advice from a hardware engineer
on the best means.

Finally, it is worth bearing in mind that any program capable of looking
three to four ply ahead is bound to appear quite good — it will make no
obvious blunders, no matter how poor its evaluation function — but a
really strong chess program will require assistance with the EF from a
competent chess player.
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CHAPTER 12
Other Strategy Games

There are many other games of strategy which can be programmed into
a computer. I have made no previous mention of the game Othello (TM
in the USA), otherwise known as Reversi, for the excellent reason that
1 do not know the rules. However, many computer versions of Othello/
Reversi exist, including two for the Atari; one from APX and another by
the Spracklens from Hayden. Versions of Othello/Reversi are now so
good that even the World Champion (human) has been beaten, in this
case by a program called The Moor (not available for Atari computers).

The Japanese game ‘GO’ is so complex that it has essentially baffled
attempts to synthesise a good GO program. Both Othello/Reversi and
GO programs would best be written in machine code.

Turning to card games, several programs have been written to play
Contract Bridge. The programming can be quite tricky, since four players
need to be considered instead of the two players of most other games.
Poker can also be simulated, and the computer calculates the odds rather
better than most humans. For reasons that I do not understand, Cribbage
has also proved to be a programmers’ favourite. A 1-ply search seems to
be sufficient for the computer to play an adequate game.

Backgammon is a board game that can be easily simulated in BASIC,
requiring essentially only a 1-ply search. A feature of all games that rely
heavily on chance is that forward searching becomes highly speculative.
These games offer the richest pickings for the BASIC programmer. Ludo
is very similar in principle, and Monopoly (TM) can also be programmed
on the same lines.

There are two games which have drawn the attention of a number of
BASIC programmers. The first of these is 3D-Noughts and Crosses which
is, as the name suggests, simply an extension of ordinary noughts and
crosses into three dimensions. The game is traditionally played on a board
that measures 4x4x4 units and victory is achieved by the first player to
complete a line of four units in any direction, including diagonally. 3D-
Noughts and Crosses is much harder to play than the two dimensional
version, and a good computer program will often beat a human opponent.

One problem lies in the representation of the board. Some commercial
versions of the game provide elegant, multi-coloured three dimensional
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pictures showing the original cube laid open like a Battenburg cake. A
simpler method is to show each of four slices of the board at separate
corners of the screen display. The top left slice can then be the top of the
cube and the bottom right slice is the bottom of the cube.

3D-Noughts and Crosses can be satisfactorily programmed in BASIC
with a 1-ply search, using much the same method as that outlined in the
Noughts and Crosses program of Chapter 7. An elegant method of
programming the game using ‘intelligent’ move selection — with random
selection between moves of equal merit — was described by W N James
in Practical Computing (January, 1981). James’s program used a look-up
table to assign scores to a limited range of possible moves which were all
selected by reference to the last move previously played by the opponent.

James’ program was written in Microsoft BASIC and occupied only 2K
of memory. It could be easily converted to Atari BASIC by anyone
familiar with the Microsoft dialect. It is not perfect, since the program
does not consider all possible moves by the computer, only those which
block the opponent’s move; nevertheless, it is claimed to win
‘consistently’. James made the fascinating —if immoral — proposal that the
programmer alter the look-up table data so that the program will make
silly moves when the programmer enters his name before commencing
play. But when another player enters his name, the correct look-up table
data is restored. The result is that whenever the programmer plays, he
wins easily. Whenever another player tries the program, he always loses!

It should be possible to write an unbeatable program for 3D-Noughts
and Crosses, still using only a 1-ply search, but it would be slow in BASIC
and would need to be written in machine code to avoid long response
times.

A related game is Connect-4 (TM), also known as Link-4 (TM) and
Four-In-A-Row. The object of the game is for each player, taking
alternative turns, to be the first to make a line of four counters in a row,
vertically, horizontally or diagonally, on a board which normally
measures seven squares across and six squares deep.

So far, we have only a simple, two dimensional version of 3D-Noughts
and Crosses. The special characteristic of Connect-4 is that counters may
only be played on the board from the bottom of the board upwards. The
commercial versions of the original game are supplied with a vertical
board (on a stand) into which both sides drop their counters alternately;
gravity then makes the counters fall to the bottom of the board.

This means that at any one moment there are only seven possible places
to put a counter: on top of any of the other counters in the seven vertical
columns (see Diagram 12-1). When the board is nearly filled, and some
of the columns are completely occupied, the number of possible moves
will be less than seven.

Because the number of possible moves at each turn is so limited, a deep
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Diagram 12-1

Pd b db i

Dotted lines denote next legal moves by O (to move).

search into the game using the methods described in earlier chapters
would give an invincible program. Unlike chess, the total number of
moves is finite (it is actually 7exp36x6x5x4x3x2x1, roughly 2*10exp33)
and although this is too large to be exhaustively searched within a
reasonable period of time even by a machine code program, such a
program could almost certainly ‘see’ further than its human opponent.

Connect-4 is also eminently suitable for programming in BASIC. The
commercial versions all seem to be variants of 1-ply BASIC programs —
with differing qualities — but there is no reason why the enthusiastic
BASIC programmer should not write a program capable of searching to
adepth of three ply.

I mentioned earlier that deep searches are difficult in Atari BASIC,
since recursion — the calling of a subroutine by itself — is not permitted.
This would mean that a different move generator has to be called at each
level of search. Fortunately, there is a way around the problem.

The method is to generate all the legal moves at the first ply of search
and store them. When all the first ply moves have been stored, each one
is then separately made temporarily on the board and the opponent
counter responses are made with the same move generator and again
stored. Finally each of the opponent moves is temporarily made on the
board and the program’s counter-counter moves (at the third ply) are
made with the same move generator.
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The process can be carried on indefinitely, although it is rather clumsy
and — in more complex games — expensive on memory. However, it
should not be necessary to store all the moves at each ply of search after
the first, only all the moves in response to the other side’s last, temporary
move.

I do encourage readers to try their hand at programming Connect-4,
which is comparatively simple to design and which is still capable of
providing an entertaining game. Try a 1-ply search to begin with, then
adeeper search if you feel ambitious.

The Japanese game of Go-Moku requires players to form lines of five
counters in a row, and is therefore conceptually related to Connect-4 and
Noughts and Crosses. Go-Moku is played on a GO board of 19x19
squares, and counters can be placed anywhere on the board, As a result,
Go-Moku is far more complex than the latter games, although some good
machine code programs now exist to play it. These use all the techniques
required of a good chess program.

Scrabble (TM) is another game which requires only a 1-ply forward
search, but is complicated by the need to store a huge dictionary in hash
form. One solution is to program Scrabble with a limited dictionary which
the opponent is also forced to play from. A clever trick used in some
commercial games to compress text is to search the text for the most
commonly used clusters of letters, then to replace the clusters with
tokens. A special translation routine recognises the tokens and expands
them back to their original size before printing the result.

Note that many of the games I have mentioned are trademarked, and
you would need a licence to offer such games for sale. There remains the
possibility of inventing your own games with their own rules, designed
to facilitate easy programming. An example of this is my program Warp
Trog, described in Chapter 13, which was explicitly invented with a view
to easy programming.

Calculation of probabilities

I have already indicated that games with an element of chance, such as
Backgammon where dice are thrown, are suitable for 1-ply programs
writtenin BASIC.

It is also possible to do forward searching in many cases, taking into
account the probability that certain dice numbers will turn up. If you
throw one die, the chance of any number between one and six turning
up is completely even; that is, any number is equally likely to come up.

If two dice are thrown, the number which results could be any between
two and twelve, but the likelihood of each number coming up is not even.
The most likely number to be thrown is seven.

This is not the place to teach elementary statistics. Readers without
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such knowledge can use Table 12-1 to tell what the probability is that any
number thrown by two dice will turn up.

Table 12-1

No. thrown Probability of
by 2 dice occurrence (%)

2 2.78

3 5.56

4 8.33

5 1111

6 13.89

7 16.67

8 13.89

9 11.11

10 8.33

11 5.56

12 2.78

Note that alpha-beta pruning is no longer possible in game trees
involving random chances.

Problem: Why not? Think about such a game tree carefully.
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CHAPTER 13
Warp Trog

Warp Trog is a game of strategy designed for two players. You are one
of those players, the other is your computer. The game illustrates most
of the principles which have been outlined in earlier chapters.

Warp Trog is a highly sophisticated program which will play a hard
game while normally taking less than fifteen seconds per move. I
originally offered it for sale on another computer, but I have adapted the
earlier version for this book. It is designed to play a strong, fast game,
rather than to be easily understood.

The most-used routines are stacked at the head of the program which
uses a 2-ply forward search to find its moves with alpha-beta pruning. The
moves are sorted into score order after the first ply with a fast sort which
can be seen in lines 1560-1810. The killer heuristic is found in lines 540
to 560. The chopper mechanism can be seen in line 730.

"The position of all the pieces is held in a common piece table, X$, which
stores the positions of both sides. The board is the array A(8,8) — using
an array larger than the 6x6 board saves checking whether each move has
gone off the board, when such moves are only of one square at a time.

The evaluation routines (lines 1860-2250) score each move as it is made,
rather than evaluating the position which arises after the move. The
former method is faster and suited to tactical games like Warp Trog.

Alphanumeric conversion is handled in lines 1820-1840. Subroutine
3090-3190 defines the character set used in the game.

A book opening library has been provided as well as extra routines to
play the endgame. The library is a special, dedicated version designed to
find opening moves regardless of who moves first, and is found in lines
2410-2670. The library is not related to any of the methods described in
Chapter 8.

The computer will randomly select between moves of roughly equal
merit. The moves are counted and error trapping routines will prevent
you from making any illegal moves.

You may wish to see how effective iterative deepening is in shortening
program evaluation time. First, prevent the program from sorting its
moves into order by deleting line 740. Play a few games, timing the moves,
and average out the result.
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Next, eliminate the alpha-beta pruning by deleting line 640 and re-time
the moves of a few more games. You should now realise just how effective
iterative deepening is as an evaluation technique.

Read the rules before attempting to play!

The computer always plays from the top of the board. Whenit is your turn
to move, the computer will display “YOUR MOVE”.

Enter Q 1 for the computer’s suggestion for your move
Y 1to enter the computer’s suggestion (if desired)
W 1to warp

Otherwise enter your move in the form X,Y where X is a letter, (a - f)
and Y is a number (1 - 6), followed by X’,Y’ where X’ and Y’ have the
same meanings as X and Y. There is no need to press RETURN.

The Rules
Warp Trogis played on a6 * 6 board, labelled as follows:

Diagram 13-1

ARt 1CoqiD @ vEwit B

Each side has four Valgs and one Trog to begin with. The objective of
the game is to prevent your opponent from moving. This can also be
accomplished by taking all your opponent’s pieces.

Valgs move one square at a time forwards only. On the sixth rank they
are promoted to Trogs. Valgs cannot move onto a square occupied by
their own side. If they move onto a square occupied by an opposing man,
then that man is removed.

Trogs can move one square in any direction (except diagonally), up,
down or sideways. Any enemy man on the square is removed. Trogs
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cannot move onto a square occupied by their own side.

Two pieces next to each other are said to be ‘supported’ if they are on
the same horizontal line. Supported pieces cannot be captured by enemy
Valgs. They can, however, be captured separately by enemy Trogs. There
is no support between pieces on the same vertical line.

Each side is permitted up to five warps. All the Trogs on that side will
disappear and reappear randomly, removing any enemy pieces which they
may land on. They will not land on their own pieces.

Warping is carried out from the top right square to the bottom left. Any
Trog which moves left or downwards from its original position will
therefore warp again — sometimes repeatedly. It is therefore desirable to
move your Trogs as close to square F6 as possible before warping.

A Trog which tries to warp onto one of its own pieces will not move.
If the side attempting to warp has no Trogs, then nothing will happen.
This is a good way of losing a move if you wish to.

Hints for play

The closer that the warping Trog is to the top right corner of the board,
the more effective will be its warping.

Although a warping Trog may hit and remove an enemy piece, it is also
likely to warp onto a square where it may be easily captured. The
likelihood of this depends on the number of enemy pieces and how many
of them are Trogs. If you have only one Trog and your opponent has only
one Trog, then warping gives you only one chance of hitting your
opponent (unless you warp more than once in the same move), but there
are four chances that your Trog will appear next to the enemy Trog where
the enemy can capture you.

As a rule, early in the game you should close up your Valgs against
enemy Valgs before warping. This reduces the chance that your Trog will
appear in front of an enemy Valg where it can be captured.

Note that the side which moves first is going to have to warp first
against best play by the opponent — knowing when to warp requires
experience.

The concept of ‘opposition’ is very important in Warp Trog. Two
opposing Trogs separated by one square (see Diagram 13-2) are said to
be in ‘distant opposition’ . This means that the side to move has reduced
mobility. If two opposing Trogs are separated by one square diagonally,
then they are said to be in ‘close opposition’ . The side to move has
greatly reduced mobility, and you should always try to place your Trogs
against enemy Trogs in this way if it is then your opponent to move.

Because of ‘close opposition’, one side or the other is certain to win
in the end, even if both sides have only one Trog left. However,
remember that it is possible to warp out of trouble as long as you have
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Diagram 13-2

»

7

Distant opposition Close opposition

some warps left.

Try to promote Valgs to Trogs as fast as possible. When you have a
large number of Trogs, warping may be devastating, going on for many
warps with a corresponding large number of chances of hitting your
opponent.

(82)+RE

(88)

TO CD STER 2:U=I1:V=J+4: GOSUR

TO CD STEF Z:V=J:U=I+A:;GOSUR

THEN RE

190 IF AL, J=CIxA0 THEN 210
200 IF (S6NA WL,V =-A0) AND ((SEN (A (U-CD,

Vid=-A0) OR (S6GN(AWU+CD, V) =-A0)) THEN

RETURN

N==N-+1

GOSUR 1860

AR N =L BER M) =Y AR (N =1 BOC N =]

FOSITION O,0:FRINT #&3FLAGHL

LN =0

IF RN =80 THEN S0=0(N) : 81=0A (N) : 82=ER

(ND) = AR (N 8 S4=R0 (N)

270 IF FLAG=0O THEN S(1)=81:8(2
1820:6OTO 290

=55 GOSUR
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280
270

J00
310
T20
330
340
a0

60
70
B0

=290
440
410
420
430
440
450
4&0
470

480
450
S00
Slo
S20
S50
o940
oo
560
970
=80
=590

HOO
Bl0

620
&30

Chapter 11 Werp Trag

GOTO 300

POSITION O,Q:PRINT #&3" From ";S$(3,35) 3
WM B to "8kl 11" B2

IF BA(K)-80<=R{0) THEN ABR=1

RETURM

DIM AA(Z5) ,BEI(25) ,0(253) ,E(20) ,F (2G)

DIM C{20),D(20) ,AB(25) ,BC(25) ,0A (25)
DIM B(5,2),A(8,8);R(3),5(3)

DIM AR(Z20) ,RE{4) , S£ (4], X% (20) ,B£(8),CH
(3),3%(7),A5%(20) ,G% (37)

FOR I=1 TO &:FOR J=1 TO &:A(I,J)=0:zNEXT
JIMEXT I
Atl,2)=—1l1A{2,21==11A(3, 2)=—31 A (5, 2)
==1ltAle, 21=—1

AL, S =1:A(2,5)=1:1A(4,51=3:A(5,5)=1:4
(6,591 =1

KE="12223252421525455545"

Ch=1:CZ=3

GOSUE 2090

AE="4 1 g

AE (3, 32)=CHRE(34):1 A% (5,5 =CHR% (=4}

Cli=20

GOSUE 2910

7 "DO ¥YOU WANT TO B0 FIRST? {¥Y/M)I"
INPUT C%:IF CH="¥Y" THEN AQ0=1:G0BUER
2770:60T7T0 1100

IF C#="N" THEN GOSURB 2770:607T0 500
E0TO 470

TO==100: MO=MO+CDR(Q)==100
AD=1:80=-99: AB=0: FLAG=0;: PA=1

IF BO=0 THEN GOSUR 24103 IF BO=0 THEM 9&0
GOTO =S80

I=8(3) 2 J=8(4) 180=-99 AB=01 U=5 (1) : V=5(2)
IF K=1 THEN &30

ON AT, J)+4 GOSUR 210,210,200

GAOTO &30

FOR J1=1 TO 5

I=VAL (X (J1X2+9,J1%249) ) s J=VAL (XSG (J1 %2+
10, J1%2+10) )

ON AT, +4 GOSUE 140,140, 140,140,150,
150, 120, 120

MEXT J1

BOTO &80

FOR JE=1 TO S
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&40
&E0

HEO

G770
&80
&HF0

700

710
720
730
740
750
760
770

780

790
800
810
/820

830
840
8350
860
870

880
870
Q00
L0

20
QIO

P40
P50

116

IF ABR=1 THEN &70

T=VAL (X (JEX2—1, JE¥E~1)) 1 I=VAL (X$
(JEX2, JEX2))

ON ACI,J)+4 GOSUBR 120,120,150, 140, 140,
140, 140

NEXT JK
IF N0 THEN 710

IF FLAG=0 THEN FOSITION 7,2:FRINT #é;
YOU WIN “:? :GOTO 2750

IF FLAG=1 THEN FOSITION 8,2:FRINT #&;
"I OWIN ":EOTO 2710

IF FLAG=1 THEN RETURN

M=N: FLAG=1: A0=—1: FA=&

IF M=1 THEN GOSUR 2780:G0TO 930

GOSUE 1560

R(0)=-99

=1 TO M

1) =AA ) 1 F (M—k+1) =EER (K) £ C(M-E+1)
=AR(K) 1 D (M—kE+1) =R (K)

0A (M—k+1) =0 (K) £ 0 (1) =03 AA (K) =03 BE (k) =0z
BC () =03 AR (K) =0

NEXT K

FOR k=1 TO M

N=0

RY=A (E () ,F (K)) s AE () ,F (1)) =A (0 (),
D))z AT (K) (D (E) ) =0

GOSUR 540

QZ=0A (K) -S0

IF QZ:R(0) THEN 870

GOTO 910

R(O =0Z:R(1)=E () sR (D) =F (K) s R (3 =C (K) :
R (4) =D (k)
S(1)=81:8(2)=82: 8 () =83: 8 (4) =54

GOSUR 1820

FOSITION O,0:FRINT #63" from ";R$ (I, 3)
PR 3T to "FR$(L, 103", "iROD)

ACC ) , D I =AE (), F (K) ) s ACE (K) F ()
=RY

NEXT K

IF R(O)<=0.9 AND R(O) >~7 AND WA<& THEN
WA=WA+1: GOSUR 2290:60TO 970

IF RND (1) >0.2 OR R(O) 0.1 THEN 940

IF (OT<7 OR OT:>12) AND QY<-& AND WAL&
THEN WA=WA+1:GOSUR 2290:G0TO 970




&0
AL,
P80
990
1000

1010
1020
1030
1040
1080
10&0
1070
1080
1090

1100
1110
1120
1130
1140
1150
11460

1170

1180

1190
1200
1210
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GOSUR 1820:60OTO 1000
SE="WARF "1 8 (2) =01 8 (4) =0
FOSITION O,0:FPRINT #&3" WARF "
GOTO 1100

POSITION O,0:PRINT #63" from ";R$(3,3)
s N R4 2" o "IRE GRS HERCTY

IF R(2)=1 AND ARCE) R(4))=1 THEN A(R
(R R4y ) =3

IF ARS (RO ~R(Z) ) =1 AND R{Z)=3I AND
AZ=R(1) AND B2=R(2)+1 THEN A(AZ,R2)=0
RY=A(R(1) ,R(2)) s AR ,RE2))=AR(I),
RO4) ) s AR R (4))=0: IF RBO=0 THEN 1080
FOR I=1 TO 5:IF X&(2%I+9,2%I+10)=8TR$
(ROZYR1O0+R(4) ) THEN X$ (2%I+9,2%I+10)=8
TRE(R L) KLOHR(2) ) s QF =]

NEXT T

FOR I=1 TO S:IF X$(2%I~1,2%1) =X$ (2KOF
+9, 2XEOF+10) THEN X$(2%I-1,2%I)="00"
NEXT I

POSITION R(1) X242, (7-R(2)) %k2+2: 7 #63
CHR$ (ASBC (A (AR ,RE2ND+4, AR (RIZ2))D

e

FOSTTION R(3) K242, (7-R(4)) k2+2: 7
#o3A% (4, 4)

FLAG=0: N=03 TO=-1003: AD=CD

SOUND ©,80,10,6:FOR L=1 TO 40:NEXT L:
SOUND 0,0,0,0

POSITION 0,5:7 “MOVE = “3;MO
AS$="YOUR MOVE"

FOSITION O,7:FPRINT AS$

OT=0; QY=0: FOR I=1 TO 5:11=A(VAL (X$
(I%2-1,I%2-1)) VAL (X$(I%2, I%2)))

J1=A (VAL (X$ (IX2+9, IT¥2+9) ) , VAL (X$ (T¥x2+
10, T¥2+10))) 1 T=0T+I1:OY=0Y+J1: NEXT I
IF @T=0 THEN POSITION 7,2:PRINT #b;
YOU WIN ":GOTO 2750

IF QY= THEN FOSITION 8,7:PRINT #6:
"] WIN ":G0TO 2750

TRAF I200:GOSUE 3020

AL=LETTER

FOKE SCREEN+CUX40+20, A1-32

GOSUE 3020

B1=LETTER
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1240

280

1260

1270

1280

1290
1200
1510

1400
1410
1420
147320
1440
1450
14460
1470
1480
1490

18500

1510
1520
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FOREE SCREEN+CLX40 B y

IF A1=89 AND & O THEN ﬁl =8 () +&4dy

B1=8G(4) +48: A= (1) +&4s B2=8 (2) +48: GOTO

1350

IF ALl=87 AND WRI& THEN WR=WE+1: BGOSR
290: GOTO 1540

IF AL=87 AND WRH>S THEN AS$="NO WARFS":

GOTD 1140

IF Al=B1 THEN FRINT "TRY "i8%(Z,3);8(4)
3 SANeBREh ) Y SR 1R EOT O 190
GOSUER 2020

2=LETTE
FOEE SCREEN+CUX40+25, AR-12
GOSUR ZOZO0
B”“LETTEH
FOEE SCREEN+CUX40+24, BE-I2
Al=A1=-&4: AR=AR-&4 Bl=R1-48: B2=R2-48
IF AGAZ,B2) <0 THEN 1450
IF A(AL,B1) -1 THEN 1450
IF AGAL,B1)=~CD THEN 1420
IF ARS(RZ-R1)=1 AND ARS (AZ-A1)=0
THEN 14640
IF ARS(RZ~R1)=0 AND ABRS(AZ-A1)=1
THEN 14460
GOTO 1450
IF B2-R1<:CD OR AZ2<:A1 THEN 1450
IF AGAZ,B2) >0 AND (A (AZ+CD, B2) >0 OR
A(AZ-CD, B2) >0) THEN 14350
GOTO 14460
GOSUR 2260:60T0 1140
IF B2=6 AND AAL,BL)=-1 THEN A(AL,R1)

PD&ITIDN AZK2+2, (7-B2) X2+2: PFRINT #6;
CHR$(ASC(A$(A(Al,Bl)+4,A(A1,BI)+4))+96)
FOSITION ALX2+E, (7-B1) X2+2: PRINT
#bH3AE (4, 4)

AAZ, B2 =0(A1 B :AAL,BL) =0

QZ=0:FOR I=1 TO S:IF X$(2XI-1,2%1)=5TR%$
(ALX10+R1) THEN X$ (2%I-1,2%1)=8TR% (A
2%10+B2) : QZ=2%1-1

NEXT I

FOR I=1 TO S:IF X$(2XI+9,2%I+10)=X$(Q7,
0Z+1) THEN X$ (2XI+9,2%I+10)="00"
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PRINT 5

GOTO 500

S8=1:FOSITION O, 0:FRINT #é&;"#"
Bel, L=1sB(1,2)=M

LL=E (88, 1) : RR= R (88, 2) : 88=88-1
DI=LlzJJ=RR: XX=0(INT (RND (1) % (RF-LL)
+0. 5 +LL)

IF QOID) »=XX THEN 14620
TI=11+1:6ATO 14600

IF XX 1T THEN 14640
JJs=JI-1:GOTO 1620

IE.11>J]. THEN 1710

W= (T 1) D(lﬂ‘C‘fdd)'f‘(JJ)-NN
W=AA (T 1) 1 AA (T =AA (JJ) 1 AR (IT) =WW
Wi=BRBOIT) s BROID) =RBR (I s BROIT) =WW
WW=AR(I1) s AR (I 1) =AR(IT) ¢ AR (J.J) =WW
W=RC (DT s BC (I D) =B (1D 2 BO (IJ) =WW
TI=T1+1:JJ=J0-1

IF II<=JJ THEN 1600

IF JJ-LL:>=RR-II THEN 1760

IF II:=RR THEN 17350

88=68+1 1 R(88, N =I1:B(88,2)=RR
RR=JJ: GOTO 1790

IF LL»=JJ THEN 1780
§8=08+1:RB(88, D =LL:B(88,2)=JJ
Li=I1

IF LL<RR THEN 13590

IF 88>0 THEN 13580

RETURN

FOR KI=1 TO 3 STEF 2

R (BT, KT =CHRS$ (ASC (8TR$ (RKI) ) ) +146) 2
Hﬁ(&l‘fT)‘LHR$(ﬁSL(STh$( (1)) i+1&)
NEXT KI

RETURN

@=RND (1) 740

Q=C+ARS (A, V)

IF AW, V-AD) =-CZ¥A0 THEN B=0-2

IF AL V-AD) =-A0 THEN (=0-0,73
GOTO 1910

GOTO 1920

IF (8EN(AW+CD, V) ) =A0 OR 86N (A LI-CD.V))
=A0) AND ARG (J-V) =1 THEN G=0+0.75

119.



Writing Strategy (rames

1920

1930

1740

1950
1960
1970

1780

1950
2000
2010
2020
2030
2040

2050
20860

2070
2080
2090

2100

2116

2120
2130
2140
2150
2160
2170
2180
21790
2200
2210
2220
2230
2240

120

IF AU, V+A0) ==CZ4a0 THEN Q=0-0,&%XARS
(AL, J1)

IF A(U-CD,V)=-CZ¥A0 DR A(U+CD,V)=-CZXA0
THEN O=0-0,5%ABS(A(1,0))

IF A(I,J+A0)=-CZ4#A0 OR A{I-CD,J)=—CZ$a0
OR A(I+CD,J)=-CZ¥A0 THEN Q=0+0.35

IF A{I,J)=A0 THEN 2150

A=0+U/100+V/ 100

IF BT-OY<10 THEN R=0+(1/(ARS (UI-42)+8))
+ (17 (ARS {V-RBZ) +B) )

IF (I=3 OR I=4) AND (J=3 OR J=4) THEN
B=G-0. 1

B=0-( (U=1)+ (U=8) + (V=11 +(V=() ) /18

R=0+( (I=1)+(I=4)+(I=1)+(I=41) /10

IF A(U,V+A0)=-A0 THEN @=0+0,3

FOR CA=-2 TO Z STEF 4

IF U+CA<CD THEN NEXT CA

IF SBN(AU+CA, V) )=-A0 THEN 0=0+0, 15%
ARS (A (UHCA, V) ) /2

IF V+CA<CD THEN NEXT GA

IF BGN{AU,V+CA) I =—A0 THEN G=Q+0.15%
ABS (AU, VY+CA) ) /2
MEXT CaA

FOR CA=—1 TO 1 STEF 2

IF (A{I+CA,J-CA)=-CZ*A0) OR (A(I+CA,
J+CAY=-CZ¥A0) THEN Q=0-0.22

IF SGN{A(U+CA,V-CA))=—AD THEN QG=Q+0+0.
1¥ABS (A (U+CA, V-CA))

IF 8GN (A (U+CA,Y+CA) ) =—A0 THEN G[=R+0).
1+0, 1xABS (A (U+CA, V+CAL)

IF A{U+CAV)=—A0 THEN G=G+0.Z

IF A(UHCA,V)I=A0 THEN Q=0+0. 1

NEXT CA

RETURNM

IF VY=PA THEM Q@=0Q+0.35

IF V=PA+A0 THEN O=0+0.3

IF Y=PA+2%A0 THEN G=0+0,2

IF SGN(A(U-CD,Y))=A0 THEN B=0+0,3

IF S6N{AULCD, V) )=A0 THEN G=0G+0.2
@X=0sFOR CA=V TO FPA STEF -A0
Dyx=0xX+A (U, CA)

NEXT CA

IF SGN(RX)=0 OR SGN(QX)=AC0 THEN
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B=0+0, 15

RETURN

AS$="ILLEGAL "“:SETCOLOR 4,3, 10: SOUND
0,120,10,6:FOR L=1 TO 40:NEXT L
SOUND 0,0,0,0:SETCOLOR 4,0,0

RETURN

FOR I=& TO 1 STEF -1:FOR J=6 TO 1
STEP =1

SETCOLOR 0, I,d

SOUND 1,5%1,10,6:S80UND 2,5%J,10,6
BY=INT (AXRND (1) +1) s 0Z=INT (6%RND (1) +1)
IF A(I,J)=-CZ¥A0 THEN 2350

GOTO 2370 :

IF SBN(ARY,R2))=A0 THEN SOUND O,4,4,6:
FOR L=1 TO 100:NEXT L:SOUND 0,0,0,0
IF SGN(A(RY,RZ))<—A0 THEN A(QRY,RZ)=4
(I, D) :A(I, D) =0:GOSUE 2840

NEXT J:NEXT I

SETCOLOR 0,2,8

_ 0:SOUND 2,0,0,0

BOSUR 2930z BO=13: RETURN

IF MOD=1 THEN J$="4445344":GOTO 2680
IF MOD=2 AND A(4,4)=CZ AND A(4,2)43-CZ
AND A(3,3)<»=CZ THEN 2440

GOTO 2460

IF A(3,4)=-CZ THEN J$="3,4,4,4,%,34":
GOTO 2480

J$="4T44T43" : GOTO 2680

IF MO=2 THEN QZ=AZ

IF 0Z=0 THEN BO=1:RETURN

ON BZ GOTO 2490,2530, 2560, 2590, 2620,
2650

IF MO=2 THEN J$="2425224":60T0 2680
IF MO=3 AND AZ=2 AND E2=3 THEN J$=
"1415114":GOTO 2680

IF MD=3 AND AZ=3 AND E2=3 THEN J$=
"E4SS5454: GOTO 2680

EO=1: RETLRN

IF MO=2 THEN J$="1415114":G0T0O 2680
IF MO=3 AND A2=1 AND B2=3 THEN Jé$=
NPA4PE2241: GOTO 2680

EO=1: RETURN

IF MO=2 THEN @Z=INT(RND(1)%2):IF
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ACL~RZ,3) =0 THEN 2580
B
Rl (1)‘4'R(Q mdbeQ7s R(4) =5y X% (
-~ﬂ/)*2k9 ~QZ) ¥ 2410 =8TRS (LOXR (1) +R
(2)): F\.ETLIRN

IF MO=2 AND A(4,5)=0CZ THEN J$="444757544"
1 GEOTO 2680

IF MO=2 AND A4, 4) =07 AND AlsH,3) =0
THEN J$="&465564" GOTO 2680

BO=1 3 RETURN

hd o) MD—L AND A (4, 2) =0 THEN J&="4465564"

IF MQO= (5, 2) ==CD THEN Jé=
“‘4;5454" &DTD 2680

BO=1 8 RETURN

15 MO=2 THEN J#="1415114":GOTD 24680
IF MO=3 AND A(Ll,3)=-CD THEN J$=
"‘4554 4";GOTD 2680

B=11RETURN

FOR I=1 TO S:R(D=VAL(JI$(I, 1)) :NEXT I
XE (RS XE+9, R K2+10)=T$6 (6, 7)

RETURN

R =C) tR(D=E(K) : GOSUR 1820:R(2) =
F R 2 R4 =D (kD

FOSITION O,0:FPRINT #&63" from "jR$ (35,5
r",";H(4)-“ £ FERS (L1 Ve i
POSITION R(1)%2+2, (7~ R( 2) YRR+ T by
CHRS (ASC (AS (AR ,RO2D) +4, ARLY JRO2))
+d ) -E2)

FOSITION ROZ) X2+2, (7-R4)) X2+2: PRINT
#hHy A (4, 4)

SOUND 0,460,10,&6:80UND 1,150,10,6:FOR
E=1 TO 100:NEXT E:S0OUND 0,0, 0, Oz SOUND
T.0,000

el = R END.

FRINT " i RETURN
RO =80:R(1D=811R(2) =821 R () =811 R(4) =64
S(1) =038 (D) =018 (3) =018 (4) =0 RETURN
BRAPHICS 17:POKE 752,1

FOSITION 5,5:7 #&6; "WARF TROG"
FOSITION 4,827 #6'"1n:t1allslnq

GOTO Z20

ON AD+2 GOTO 2880, 2850, 2850
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FOR k=1 TO S IF XS CGOREFD 2K+ 10) =8THRS
(QYX10+R2) THEN X$ (2XE+9, 2%+ 10) ="00"

IF X$¢ 2 2KED =ETRE (1OXI+T) THEN X$
(ZXE~1, 2% =8TRS (1OXQY+QZ)

NEXT K:RETURN

FOR k=1 TO S8 IF X$ (2%k-1, 2%K) =8TR$ (QYX
10+E7Z) THEN X%(n*ﬁ- o KK ="

IF X& (2%E+9, 2XE+10) =8TR® (10%I+J) THEN

XS (2KE4D, 2XEA10)=8TRS (LOXQY+RZ)
MEXT Ki:RETURN
GRAFHICS 1:FOEE 732,1
FOKE 756,F/7256
FOR I=1 T0O &:FOR J=6 TOQ 1. STEP ~1
FOSITION 16, J%2+2:7 #é37~Jd
POSITION IT¥2+2, (7-d) X2+2
W= (1, J) 2 IF WO THEN 7 #é&5 CHRS (ASC
(A% (W+4, W) ) +94)
A0 THEN 7 #é3 CHRE (ASC (A% (W4, W+4

IF N:n THEN 7 $#és A% (W4, W+d)

NEXT JiNEXT I

POSITION 4,16:7 #3;"A B C D E F"
RETLIRN

CLOSE #1:0PEN #1,4,0,"K:"

GET #1,LETTER

IF (LETTER:48) AND (LETTER<SS)

THEN Z080

IF (LETTER>&4) AND (LETTER<71)

THEN 2080

IF* (LETTER=81) OR (LETTER=87) 0R
(LETTER=8%9) THEN Z080

GOTO 2020 3

RETLIRN

FOR I=1 TO Zé&:READ A:POKE ADR(GS)+1, A
NEXE T

Fe= (FEER (106) ~8) X254

DATA 104,104, 13E, 205, 104, 135,204,104,
1A, 207, 1“4 1??‘?Ué 104,104, « 208,16
65L08‘160_H

DATA 177,204,145,206,200,208,249,230,
”chZTQ.a“7.MOl.MUB.;4U 94

A=LSR (ADR(G%) +1, 224%256,F, 4)

FOR I=0 TO 31:READ B:FOKE F+I,B:NEXT I
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DATA
DATA
DATA
DATA

4000504 850810,0
255,129,129, 129,129,129, 129, 255
255, 255,255, 255, 255, 255,255, 255

24, 60,126,255, 255, 126, 60, 2

RETURN

TRAF

40000 GOSEUR 2260: 6070 1140



CHAPTER 14
Proceed with Caution

Any program must be thoroughly tested before use, as well as being
debugged. Obviously, any program must be debugged before it can be
used at all and this section deals only with the more subtle problems which
may arise.

It is essential that every line of the program is tested at some stage, or
you may get a surprise when a rarely used routine — such as en passant
in chess — gets its first airing. Most of the program can probably be tested
in blocks, or subroutines, but check off every line against your master
listing, then GOTO or GOSUB any lines or blocks which remain. It is
likely that you will collect some error codes in this way even if no genuine
error exists, so make allowances for ERROR 13 (NEXT without FOR)
or ERROR 16 (RETURN without GOSUB) and similar problems.

It is also absolutely essential to check that your evaluation function is
giving the results that you intended. Set up a few standard positions and
evaluate them; compare the result with that which you have calculated by
hand (first delete any randomising routines).

The piece table, if you have one, is another potential trouble area.
Check that when a piece is moved on the board (or off it, by capture),
the piece table is updated. Otherwise pieces will become ‘lost’ on the
board because they are not referenced by the piece table.

Another common problem is with the screen display. Make sure that
your pieces move correctly on the screen, with particular care taken in the
opening (if a book library is provided) and on the final move. I have often
forgotten to make the winning side complete its final move before
announcing that it has won. A similar problem arises when the program
operates the ‘Chopper’ mechanism — when it is forced to make its one and
only legal move at once — again remember to update the piece table and
the screen display. -

Error messages such as ‘Illegal Move’ must be catered for without
permitting them to scroll onto other parts of the screen. The Atari
computers’ split screen modes are very useful for such messages. The
display can be kept intact in the upper part of the screen, while the lower
partscrolls all input data and error messages out of sight.

This brings us to the dreaded error-trapping of the user’s input, long
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the bane of my life. All the user’s input, usually of moves, must be
checked for validity — it is sometimes possible to couple the move
generator to the input routine to test that the move is a legal one, but it
is usually easier to write a special input routine.

The Atari’s TRAP statement can be used to filter out certain types of
error, such as typing a letter instead of a number, or vice-versa, or dealing
with a number that is too large for an array, but it cannot check the legality
of moves.

I always find that it takes me many, many attempts to write a complete
error checking routine which eliminates all user mistakes; it is my
experience that almost as much time gets spent on this part of the program
as on any of the more difficult of the other sections.

Itis very good discipline always to write any program as though you will
later offer it for sale, even if you do not actually intend to do so. The Atari
Program Exchange offers a very useful booklet to anyone who hopes to
submit a program to APX for publishing; it contains numerous hints on
how to give your program a professional appearance.

This book outlines all the general principles that you will need to write
a game of strategy and I have given several examples to aid
comprehension; nevertheless, it is worth emphasising that the principles
will need to be adapted to each and every program. I have often used the
principle underlying the book opening program given in Chapter 8 in my
own strategic games, but have had to modify the actual running routines
—as well as the book library itself — every time that I have used it to date.

I also seem to need to change the operation of the alpha-beta pruning
mechanism at repeated intervals, depending on whether the EF is called
after every move, after every position, or is only called in full at the lower
levels of search.

Writing any strategy game requires a great deal of thought before you
start programming. You should consider carefully what each part of the
program is trying to accomplish, and whether a faster or more elegant
routine could be written. I have shuddered at some of the things I have
programmed in the past, and at some future date I shall very likely
shudder at parts of the ideas and concepts described in this book. The
opening library in Warp Trog does not follow the principles expounded
in Chapter 8, but I have left it alone for the sound reason that it works
as well as I would wish. As a general rule, if something works well for you,
then leave it alone!

Endgame

If you have followed this book through carefully, and worked out all the
examples, you should be in a position to write your own intelligent
games.
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Chapter 14  Proceed with Caution

The day may come when you are the proud author of a complicated
and powerful program to play a strategy game — it may be chess, it may
be something else — and you will want to set about finding out just how
strong it really is.

The most important point to remember is that your program will be
played by a human, not by another computer, and so it is against other
humans that it must be assessed.

Most programs employ completely different processes to find their
moves, to that used by a human player. Games between computers are
therefore a very poor test of how well your computer program would
perform against an inventive human opponent.

Always test your programs against human opponents, not against
other computers.
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This book aims to show owners of all Atari computers
(400, 800, 600XL, 800XL) how to write computerised
games of straie%y such as chess. Practical examples
are given of all the routines developed.

To wril:c?ames of strategy requires not only a
knowledge of programming but aiso of certain
mathematical and coding techniques. The book is
pitched at an intermediate level. We assume that you
already know some Atari BASIC. Machine code
programmers have also been catered for with many
hints on how to modify the routines for their own
programs.

We look at the programming theory behind intelligent
games before moving on to practical examples o

ow to set up a board, move pieces, standard
openings and endgame moves. We then give sample
games for draughis, chess and other strategy games.

John White has been a comg ter addict specialising
in strategy games since 1968. Some of his games are
available commercially. He is also interested in chess
computers and organised the 1982 Chess Computer
Symposium, the first major tournament to assign
gradings to chess computers by their play against
human opponents. He has written many magazine
articles on strategy games and chess computers and
is a regular contributor to Popular Computing Weekly.
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