


r 



YOURATARI® 
COMPUTER 

A Guide to ATARI® 400/800™ Computers 

By Lon Poole 
with Martin McNiff 

and Steven Cook 

OSBORNE/McGraw-Hill 
Berkeley, California 



The following are trademarks of Atari, Inc. Your ATARI® Computer is not 
sponsored or approved by or connected with Atari, Inc. All references to the 
following trademarks (registered trademarks noted with ®) in the text of this book 
are to the trademarks of Atari, Inc. 

ATARI®J1I,.® 

AT ARI® 400™ Computer 
AT ARI® 41O™ Program Recorder 
AT ARI® 800™ Computer 
AT ARI® 81O™ Disk Drive 
AT ARI® 820™ 40-Column Printer 
AT ARI® 822™ Thermal Printer 
AT ARI® 825™ 80-Column Printer 
AT ARI® 830™ Acoustic Modem 
AT ARI® 850™ Interface Module 
Star Raiders ™ 
Music ComposerTM 
Memory Module™ 

Published by OSBORNE/ McGraw-Hill 
630 Bancroft Way 
Berkeley, California 94710 
U.S.A. 

For information on translations and book distributors outside the U.S.A., please 
write OSBORNE/ McGraw-Hill at the above address . 

YOUR ATARI® COMPUTER 
A GUIDE TO AT ARI® 400j800™ COMPUTERS 

Copyright © 1982 by McGraw-Hili, Inc. All rights reserved. Printed in the United States of America . 
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or 
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior 
written permission of the publisher, with the exception that the program listings may be entered, stored , 
and executed in a computer system, but they may not be reproduced for publication. 

34567890 HCHC 8765432 

ISBN 0-931988-65-9 

Cover design by Mary Borchers 

Cover illustration by J . V. Benes 

Book composition by K.L.T. van Genderen 

Photos by Harvey Schwartz unless otherwise credited 



CONTENTS 

Introduction v 

1 Presenting the AT ARI Home Comptuers 1 

2 How to Operate the AT ARI Computers 13 

3 Programming in BASIC 41 

4 Advanced BASIC Programming 103 

5 The Program Recorder 183 

6 AT ARI Printers 199 

7 The ATARI 810 Disk Drive 221 

8 Introductory Graphics 271 

9 Advanced Graphics 291 

10 Sound 325 

11 Compendium of BASIC Statements and Functions 337 

Appendixes 

A Error Messages and Explanations 405 

B STATUS Statement Codes 412 

C Derived Trigonometric Functions 414 

D Codes, Characters, and Keystrokes 416 

E A TARI BASIC Keywords and Abbreviations 425 

F Memory Usage 426 

G Useful PEEK and POKE Locations 434 

H Conversion Tables 443 

I Bibliography 450 

Index 453 

iii 



ACKNOWLEDGMENTS 

This book would not exist without the assistance of the people at Atari, Inc. We 
wish to especially thank J. Peter Nelson and Sandy Bertino, who graciously 
arranged equipment loans for our first-hand forays into the dark, half-charted 
regions of AT ARI BASIC. We used the same equipment for the photographs in the 
book. Thanks also to Go Sugiura of AMDEK Corporation for the use of one of 
their color monitors. Yes, a color monitor does display a considerably sharper 
image than a television set. 

Cynthia Greever tested most of the pro'grams listed in the book and researched 
facts for the appendixes. Finally, we wish to thank John Crane and his colleagues at 
John Crane Consulting. They reviewed the manuscript and made many excellent 
suggestions for improvements. We, of course, bear the responsibility for any errors, 
misconceptions, and misinterpretations that remain. 



INTRODUCTION 
This book is your guide to the AT ARI home computers . It describes the AT ARI 
400 and AT ARI 800 computers themselves and covers the common external devices 
and accessories, including disk drive and printers. We assume you have access to an 
AT ARI home computer system that is completely hooked up according to the 
instructions in the appropriate operator 's manual provided with each system com
ponent. We do not explain how to install your system, but rather how to use it once 
it is installed. 

The book is divided into three parts. Each part focuses on one kind of AT ARI 
computer user. The first part addresses the person who plans to use commercially 
prepared programs but has little or no desire to program the computer. The second 
part teaches the programmer or prospective programmer how to use BASIC* on 
the AT ARI computer. The third part organizes information about the AT ARI 
computer in the style of a reference manual for the user who understands the 
generalities but needs to look up the specifics. These three parts are not mutually 
exclusive. Users of the first part may venture into the second part just to see what 
BASIC programming is all about. Users of the second and third parts are likely to 
find themselves referring to the first part from time to time. 

• This book covers only standard AT ARI BASIC, sometimes called Sheperdson BASIC. Another 
version of BASIC, Microsoft BASIC, is ava ilable as an accessory from Atari, Inc. A third version, 
called BASIC A+, is available from Optimized Systems Software, of Cupertino, California. Neither 
Microsoft BASIC nor BASIC A+ is covered in this book. 

v 



vi A GUIDE TO ATARI 400/800 COMPUTERS 

The first two chapters answer two questions: "What is an AT ARI computer?" 
and "How do you make it work?" You have probably noticed that an AT ARI 
computer system consists of several pieces of equipment all strung together with 
wires and cables. The first chapter tells you what all the pieces are and what they do. 
The second chapter tells you how to operate each component part. With this 
knowledge you are ready to use any of the ready-to-run programs that are widely 
available for word processing, financial analysis , bookkeeping, computer-aided 
instruction, and entertainment. 

Chapters 3 through 10 teach you how to write your own BASIC programs. 
Chapter 3 starts things off with a tutorial approach to the fundamentals of standard 
AT ARI BASIC. Chapter 4 continues with coverage of advanced programming 
topics and BASIC features. 

Several advanced topics are important enough to warrant their own chapters. 
Chapter 5 covers using the program recorder to record and read back data in 
BASIC. Chapter 6 explains how to use the AT ARI printers, with emphasis on the 
AT ARI 825 80-column printer. Chapter 7 explains how to use the disk drive to store 
programs and data files. Chapters 8 and 9 tell you how to program graphics on the 
display screen. These two chapters also explore ways to bypass BASIC to achieve 
some special graphics effects . Chapter 10 sounds out the AT ARI computer's audio 
abilities. 

Chapter II begins the reference section of the book. Here you will find detailed 
coverage of each statement and function available in standard AT ARI BASIC, 
including disk statements. The Appendixes conclude the reference section. 



1 
PRESENTING THE 
A T ARI PERSONAL 

COMPUTERS 

A complete AT ARI personal computer system includes several separate pieces of 
equipment. Figure I-I shows a typical system, centered around an AT ARI 800 
computer. Your system may not look exactly like the one pictured. System compo
nents come from a long list of optional equipment, but every system has three 
components in common: the AT ARI 400 or 800 computer itself, the built-in 
keyboard, and a television. Let's take a closer look at each of these and at some of 
the more common pieces of optional equipment. This chapter will not describe how 
to hook up any of these components to the AT ARI computer. For complete 
installation instructions, refer to the operator's manual supplied with your AT ARI 
400/ 800 computer, or with the individual piece of equipment. 

THE COMPUTER COMPONENTS 
There are two models of the AT ARI personal computer. The AT ARI 400 (Figure 
1-2) and AT ARI 800 (Figure 1-3) computers are identical underneath the packag
ing. There is no electronic difference between them. Their performance is identical, 
and they obey the same instructions . 

Anything you can do on the AT ARI 400 computer, you can do on the AT ARI 
800 computer. The reverse is generally true , but not always. The AT ARI 800 
computer has some features that make it more versatile than the AT ARI 400 computer. 
You can personally change the memory capacity of the AT ARI 800 computer, but 
the memory capacity of the AT ARI 400 computer is relatively fixed at the time you 
buy it. You have the choice of using a television monitor with the AT ARI 800 
computer for a sharper display, but the AT ARI 400 computer can only use a regular 
television set. The keyboard on the AT ARI 800 computer is larger and more like a 

1 



2 A GUIDE TO ATARI 400/800 COMPUTERS 

FIGURE 1-1. A typical AT ARI personal computer system 

FIGURE 1-2. The AT ARI 400 personal computer 



Chapter 1: PRESENTING THE AT ARI PERSONAL COMPUTERS 3 

--------g ATARI~ 

, '- > J f.' , ":' , I=- I ,", ': t':' I J. ,.;.."" ,-::''' ,I!l.\" , - 

~ - _ u. . Q ~ IN ,eo I R ! T I v f U I I ,0 I P ,a -- , __ I , ---

I - f A IS, 0 , ~ ,0 , H , oJ I K iL, ~ t·.. ,.!'" ,::\ 
I --;=.-- r Z ' ; x ' ; C I v I a f N ,t.A , r. ,:J I ! ,.If\.. 1-' 

/ 

FIGURE 1-3. The AT ARI 800 personal computer 

typewriter keyboard , while the AT ARI 400 computer has a flat panel. You can plug 
in two accessory cartridges on the AT ARI 800 computer, versus one on the AT ARI 
400 computer. 

The AT ARI 400 computer does have a raison d'etre. It has a sealed keyboard 
which protects the interior from dust, lint, and spilled liquids. It is more compact, 
weighs less, and costs less than the AT ARI 800 computer. 

From this point on, we will refer to both models collectively as the AT ARI 
computer. Where photographs and illustrations show one model, you can assume 
they apply to the other model as well. We will note anything to the contrary. 

The Keyboard and Television 
The keyboard and television screen make communications with the AT ARI com
puter possible. The keyboard transfers instructions from your fingertips into the 
computer. To facilitate touch-typing, the keys are arranged in the same order as on a 
standard typewriter. But the AT ARI 400 computer is not well suited to touch
typing because of the compact size and different feel of its keyboard. Both key
boards have some keys you won't find on a typewriter. These special keys are 
discussed in Chapter 2. 

The display screen is usually an ordinary color television set. The AT ARI 800 
computer also accepts a color television monitor. A black-and-white television set 
will also work, but colors will show up in shades of gray. The screen not only 



4 A GUIDE TO ATAR1400/800 COMPUTERS 

FIGURE 1-4. Typical television set hookup 

displays everything you type so you can visually verify its accuracy, it also displays 
the reactions of the computer to your instructions. 

The standard display screen has several different modes of operation. One is for 
monochromic text (for example, black-and-white or blue-and-white) only. Two 
other modes produce text in as many as four different colors. There are also modes 
designed especially for graphics . In the monochromic text mode, the standard 
screen is divided into 24 lines of 40 characters each. The other modes subdivide the 
screen differently. Graphics are discussed further in Chapters 8 and 9. 

Most AT ARI computer owners use a television set for their display screen either 
because they have one or because it provides a good excuse to get one. The television 
monitor produces a sharper picture than a television set in the computer environ
ment, but you can't use it to watch your favorite show. 

The television set connects directly to the AT ARI computer through a switch box 
which attaches to the television antenna terminal (Figure 1-4). With the switch in 
one position, the television functions as a television, but with the switch in the other 
position, the television takes its orders from the AT ARI computer. 

A television monitor requires no switch box; it attaches directly to the five-pin 
socket on the side of the AT ARI 800 computer (Figure 1-5). 

Inside the Console 
The AT ARI 400/ 800 computer console houses the part of the computer that 
controls, with your guidance, the rest of the system. Lurking beneath the keyboard 



Chapter 1: PRESENTING THE AT ARI PERSONAL COMPUTERS 5 

FIGURE 1-5. Typical television monitor hookup 

FIGURE 1-6. Hatch for plug-in cartridges 

are all the electronics that give the AT ARI computer its personality. Fortunately, 
you need never concern yourself with these undercover items. 

The AT ARI 400 has a hatch on top which opens to accept a plug-in cartridge. The 
AT ARI 800 computer will accept two cartridges (Figure 1-6). In fact, the entire top 
comes off the AT ARI 800 computer, allowing access to the main memory banks 
(Figure 1-7). 



6 A GUIDE TO ATARI 400/800 COMPUTERS 

Memory 
Computer memory is typically measured in units called bytes. Each byte of memory 
can hold one character or a similar amount of data. Depending on the number of 
chips, your ATARI computer has anywhere from 18,432 to 61,440 bytes of 
memory. This is usually stated 18K to 60K, where K represents 1024 bytes. The 
amount of memory available determines how much the computer can do, as you 
will see later. 

The AT ARI computer actually has two kinds of memory. One is called ROM 
(read-only memory). Its contents never change, even when you turn off the power. 
ROM contains the programs that give the AT ARI computer its unique identity and 
enable it to understand and respond appropriately to the commands you type in at 
the keyboard. The other kind of memory is called RAM (random-access memory, 
also called read / write memory). The contents of RAM can be changed. In fact, the 
program in RAM determines what task the AT ARI computer will currently per
form. RAM works only as long as the power remains on. As soon as you turn off the 
AT ARI computer, everything disappears from RAM. 

On the AT ARI 800 computer, RAM comes in separate 8K or 16K plug-in 
modules (Figure 1-8). You plug in the RAM modules underneath the top cover 
(Figure 1-7) in some combination to provide as much RAM as you need. 

Changing the RAM capacity of an AT ARI 400 computer is not a task for the 
average user. Some AT ARI computer dealers do have the facilities to do it. 

FIGURE 1-7. AT ARI 800 computer memory banks 



Chapter 1: PRESENTING THE AT ARI PERSONAL COMPUTERS 7 

The 410 Program Recorder 
Fortunately, you can use a cassette tape recorder to transfer programs to and from 
RAM, thereby storing a whole library of programs on cassettes. The 410 Program 
Recorder (Figure 1-9) is designed specifically to work with an AT ARI computer. A 
single 30-minute cassette can hold as many as 51 ,200 characters. 

FIGURE 1·8. ATARI 800 computer plug-in R AM memory modules 

FIGURE 1·9. ATARI 410 Program Recorder 



8 A GUIDE TO AT ARI 400/800 COMPUTERS 

The 810 Disk Drive 
A disk drive far surpasses the program recorder as a program storage device. It is 
more reliable, stores more, and operates faster. The disk drive easily and quickly 
stores data such as names and addresses for a mailing list, or correspondence for a 
word processor. The 810 Disk Drive (Figure 1-10) stores as many as 92,160 
characters on each removable diskette . 

Programs 
The programs you use with your system are as much a part of the system as any of 
the physical devices. Several different classes of programs must coexist in order for 
the AT ARI computer to perform any specific chore . Programs that do things like 
game playing, word processing, accounting, and financial analysis are called appli
cation programs. You often transfer them to RAM from a cassette or diskette . 
When you want your AT ARI computer to be a word processor, for instance, you 
use the diskette with the word processing application program on it and transfer the 
program into RAM. Chapter 2 explains how to do this . Application programs also 
come on ROM cartridges (Figure I-II) that you plug in underneath the hatch of 
either AT ARI personal computer (Figure 1-6). If you want to playa game, you plug 
in the appropriate cartridge. 

More often than not, programmers write application programs in a programming 
language that is easy for them to use but too advanced for the AT ARI computer to 

FIGURE 1-10. ATARI 810 Disk Drive 



Chapter 1: PRESENTING THE AT ARI PERSONAL COMPUTERS 9 

FIGURE 1-11. Some plug-in ROM cartridges 

understand without some help. A special program called an interpreter does just 
what its name implies. It translates the application program from the language in 
which it is written to a language the computer can understand. The interpreter for 
standard ATARI BASIC comes on a ROM cartridge which plugs in under the 
hatch of either AT ARI personal computer. 

The interpreter in turn relies on another program to coordinate the system 
components. This program, called the operating system program, performs funda
mental system operations like transferring programs from cassette or disk to 
memory, and echoing keystrokes on the display screen. The AT ARI operating 
system program always resides in ROM. On the ATARI 800 computer, the operat
ing system is in a plug-in module under the top cover (Figure 1-7). 

Game Controls 
There are three kinds of game controls that attach to the front of the AT ARI 
computer (Figure 1-12). Joysticks, paddles, and keyboard controllers are com
monly used with games, and are showing up increasingly often in other programs. 
However, many applications do not require these game controls, so your system 
may not have them. 

Printers 
Many applications, especially in business and finance, need a printer to produce 
reports on paper. There are three AT ARI printers. The 820 Printer and 822 
Thermal Printer (Figure 1-13) connect directly to the AT ARI communications line. 
The 825 Wide-Carriage Printer connects to the AT ARI computer through the 850 
Interface Module (Figure 1-14). Printers other than ATARI printers can be 



10 A GUIDE TO AT ARI 400/800 COMPUTERS 

FIGURE 1-12. Game controls 

.r 

FIGURE 1-13. AT ARI 822 Thermal Printer Photo courtesy of Atari. Inc. 



Chapter 1: PRESENTING THE AT ARI PERSONAL COMPUTERS 11 

FIGURE 1-14. AT ARI 825 Printer and AT ARI 850 Interface Module 

attached to the 850 Interface Mod ule too. There are printers of every size, price, and 
description. Some will print correspondence that looks just as good as anything a 
typewriter can produce. Others will reproduce your graphics displays (in color, in 
some cases). There are also printers that are a compromise between the two. 





2 
HOW TO OPERATE 

THE ATARI 
COMPUTER 

Any computer system can be a bit intimidating when you first sit down in front of it. 
This chapter will make you more comfortable around the AT ARI computer by 
explaining how to use it. Before you read any further, make sure your system is set 
up properly. The operator's manuals that come with each piece of equipment have 
complete instructions to help you with the installation procedure. If you need more 
assistance to be sure you've done it right, check with someone else who uses an 
AT ARI computer like yours, or with your computer dealer. 

INSTALLING ROM CARTRIDGES 
The ROM cartridge installed in your AT ARI computer can make quite a difference 
in the way it behaves. The cartridge is under the hatch cover on top of the console 
(Figure 2-1). The AT ARI 400 computer has one cartridge socket. The AT ARI 800 
computer has two; almost all cartridges go in the left socket. If there is another 
cartridge in the socket , grasp it firmly and pull it straight up and out. Hold the 
cartridge you plan to use so the label is facing you. Plug it into the socket. Press 
firmly on top of the cartridge to make sure it is all the way in. Close the hatch, and 
you're done. 

If no cartridge is installed , the AT ARI computer operates in memo pad mode. 
The computer isn't very useful in this mode; it merely displays whatever you type, as 
if you were typing a memo. 

This book assumes that the cartridge labeled "BASIC Computing Language" is 
installed. 

13 



14 A GUIDE TO ATARI 400/800 COMPUTERS 

, I, .: -' __ -.-, Q, IN, 11:, PO, ' 1", .... , ' U, \.1,0. p. _ _ .~. __ 

-, ..... , "', 0, If, ... , .... , .. , __ • '"'. " "''', _ _ '" nu 

_. • :I!, "V, C'::, IV, ., .... ' ..... 'ii.' ~. 1. -.., _ 

FIGURE 2-1. Installing a ROM cartridge in the ATARI 800 computer 
(A T ARI 400 computer similar) 

TURNING ON THE POWER 
Before you turn on any power switches, make sure all the system components are 
connected together correctly. Figure 2-2 diagrams one way to connect the pieces of a 
full-feature system. 

You must turn on the pieces of your AT ARI system in a certain order, as shown 
below. 

I. Turn on the television. Tune it and the AT ARI computer to the same channel. Set the 
antenna switch to "computer." 

2. If you plan to use diskettes during this session, turn on Disk Drive I. Insert a diskette 
which has the disk operating system on it. Close the drive door. 

3. If you plan to use a component attached to one of the serial interface jacks of the 850 
Interface Module, turn on the 850 Interface Module now. Otherwise, leave it off. 

4. Turn on the ATARI 400 / 800 console. 
5. Turn on the printer when you are ready to use it. The 825 Printer also requires that the 

850 Interface Module be on. 

lf you don't follow this procedure, the AT ARI computer may be unable to com
municate properly with some of the system components. The steps outlined above 
will now be described in detail. 

Step 1: The Television 
First, turn on the television set or television monitor, whichever your system uses 
for a display screen. Let it warm up while you turn on the rest of the system. Turn 



ATARI 400 or 800 
computer 

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 15 

810 Disk Drive 

4\0 Program 
Recorder 

TV set with 
antenna switch 

850 Interface 
Module 

825 Printer 

FIGURE 2·2. Typical connections between AT ARI system components 

down the volume for now (some monitors have no volume control). The rest of this 
section pertains only to the television set. If your system uses a television monitor, 
go on to the next section. 

Locate the slide switch hanging from the television antenna terminals and set it on 
the "computer" or "game" setting (Figure 2-3). With the switch in this position, the 
television set becomes the AT ARI computer's display screen. Tune the television set 
to channel 2 or 3, whichever is weaker in your neighborhood. If you're not sure 
which channel to use, try channel 2. You can switch to channel 3 later if reception on 
channel 2 is poor. 

The AT ARI computer must be set to broadcast on the same channel the televi
sion is tuned to. There is a slide switch on the side of the keyboard console (Figure 
2-4). Set it to match the television channel (2 or 3). 



16 A GUIDE TO ATAR1400/800 COMPUTERS 

FIGURE 2·3. Setting the TV antenna slide switch 

FIGURE 2·4. Selecting the AT ARI computer's TV output channel 



Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 17 

Step 2: The Disk Drive 
If your system has no disk drive, or if you won't be using the one it has, skip this 
section. Otherwise, turn on the drive now. The drive will whirr and click for a few 
seconds, and its front panel lamps will light. This is normal. After a few seconds, the 
noises will stop and all lamps but the power indicator lamp will go off. 

If you have more than one drive , you must turn on Drive I now; the other drives 
are optional. To determine which is Drive I , look through the access hole in the 
back of each drive (Figure 2-5). You can see one or two switch levers. The position 
of these levers determines the drive number. Drive I has both levers all the way over 
to the left. You may only be able to see the black lever in front; it may be hiding the 
white lever behind it. 

Take one of the diskettes labeled "Disk File Manager Master Copy," "Disk File 
Manager II Master Copy," or a duplicate copy of one of these diskettes . You can 
also substitute any other diskette recommended by a reliable source for use at 
power-on time. Carefully insert the diskette in Drive I, label side up. Slide it all the 
way in and gently close the drive door. For more information on diskette handling, 
see the section later in this chapter on using the disk drive. 

Step 3: The 850 Interface Module 
Turn on the 850 Interface Module only if you plan to use a component attached to 
one of its serial interface jacks (Figure 2-6). Otherwise, leave it switched off for now. 

I/O CONNI!CTO"'S 
( 

~p --..... --
i) OP' V E eOOE NO 'l 

~A • . : . 
.., • ,Q' ~-. .. 

PVlJA NO.J """"" 

FIGURE 2-5. Determining the disk drive number 



18 A GUIDE TO ATARI 400/800 COMPUTERS 

FIGURE 2·6. The 850 Interface Module serial interface jacks 

Step 4: The ATARI 400/800 Console 
For the fourth step, lift the hatch cover and make sure the proper ROM cartridge is 
installed (Figure 2-1), then close the cover securely. Double-check that all system 
components are correctly interconnected (Figure 2-2). Locate the power switch on 
the side of the console, next to where the power cord plugs into the computer 
(Figure 2-7). Turn the switch to "on" and turn up the television volume a bit. Things 
start to happen. The power lamp on the keyboard comes on. The television displays 
a blue field with a black border and starts to make clicking noises (if the volume is 
turned up enough). If the disk drive is on, it starts to whirr. Soon the message 
READY appears in white letters on the screen (Figure 2-8). The disk drive stops. 

If the READY message does not appear after 30 seconds, something is wrong. 
Turn everything off, recheck all connections, and try again. If you are using the disk 
drive, be sure that you are using a proper diskette, that it is inserted label-side up, 
and that the drive door is closed. Otherwise the drive simply whirrs and makes 
rasping sounds. The message BOOT ERROR appears on the display screen. 

If the AT ARI computer still won't start, turn the power off. Unplug the computer 
and get help from someone with more experience (your dealer). 

Step 5: The Printer 
Once you have completed the steps described above, you can turn the printer on and 
off whenever you like. It must be on to print, of course, but can remain off 
otherwise. With the 825 Printer, the 850 Interface Module must also be on to print. 

Turning Components On and Off 
During a session with the computer, the AT ARI 400/ 800 console must remain on. 
You can turn many other components on and off as you need them, once the initial 



Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 19 

. .. ~. . -.. ~~, 

FIGURE 2-7. The console power switch on the AT ARI 800 computer 
(A T ARI 400 computer similar) 

FIGURE 2-8. The display screen after a successful power-on sequence 



20 A GUIDE TO ATARI 400/800 COMPUTERS 

power-on sequence is complete. The television, disk drive, and printer can all be 
turned off and on at will . However, the 850 Interface Module must remain on unless 
the only thing connected to it is the 825 Printer. In that case, you can turn it off until 
you need to print. 

What You See on the Screen 
The READY message on the television display screen means the AT ARI computer 
is now ready to accept your commands via the keyboard (Figure 2-8). Just below the 
READY message you will see a white square. This white square is called the cursor. 
It marks the location where the next character you type will appear on the screen. 

THE KEYBOARD 
The ATARI 400 and 800 keyboards are shown in Figure 2-9. The two keyboards are 
similar, but the AT ARI 800 keyboard is larger than the sealed AT ARI 400 
keyboard . 

The AT ARI keyboard looks much like the keyboard of an ordinary typewriter, 
but it has some extra keys you won't find on most typewriters. Two are on the left 
side, marked Escand CTRL. Three others are on the right, marked BREAK, CAPS/ LOWR, 

and A . Several of the standard keys have extra words or symbols on them, and on 
the far right is a column of four yellow special/unction keys. 

o ATAR! 

FIGURE 2-9. The keyboards 

.. 

~
\ 

'"" 

.. 

-



Chapter 2: HOW TO OPERATE THE AT ARI COMPUTER 21 

Take a few minutes and experiment with the keyboard. Go ahead and type on it. 
Nothing you type will do any harm to the computer that can't be cured by turning 
the power off and on again. 

Automatic Repeat Feature 

Hold one of the letter keys down, say the G key. A single G appears. After a few 
seconds, G's start streaming across the display. This automatic repeat feature of the 
keyboard works with every key except SHIFT, BREAK, and the yellow special 
function keys, including SYSTEM RESET. 

Line Length 

Display lines on the AT ARI computer are 40 characters wide. Margins are set such 
that 38 of the 40 positions are usable. The two leftmost columns are outside the 
standard left margin. 

The SYSTEM RESET Key 

SYSTEM RESET is one of the yellow special function keys on the far right side of the 
keyboard. When you press SYSTEM RESET, everything stops. No matter what the 
computer is doing when SYSTEM RESET is pressed, control of the computer returns 
to the keyboard. 

Sometimes SYSTEM RESET causes a lot of problems, especially if a disk drive is 
active when this key is pressed . Therefore, you must exercise extreme caution not to 
press the SYSTEM RESET key accidentally. 

The RETURN Key 

As you type along, the characters you type show up on the display screen. In 
addition, the AT ARI computer saves everything you type in its memory but does 
not try to interpret what you type until you press the RETURN key. The RETURN key 
signals the computer that you have finished the line you have been typing. When 
you press RETURN , the computer examines everything on the line that you just typed 
in. If those characters are not legitimate, an error message appears . 

The BREAK Key 

BREAK interrupts whatever is going on and brings it to a halt. Press BREAK while 
entering a command, for example , and the computer disregards everything you've 
typed on the current display line. 

When running a program, do not use the BREAK key unless specifically instructed 
to do so. Some programs are careful to disable it, but others will stop if BREAK is 
pressed. You can usually continue a program by typing the command CO NT and 
pressing the RETURN key, but the display screen will be ruined at the very least. 



22 A GUIDE TO ATARI 400/800 COMPUTERS 

The SHIFT Key 
When you first turn on the AT ARI computer, letters are always upper-case. It 
doesn't matter whether or not you use the SHIFT key. The SHIFT key does affect 
some keys in this mode, though. You get one character by pressing a key with the 
SHIFT key held down and another by pressing the same key without holding the 
SHIFT key down. The character you get when using the SHIFT key is printed on the 
top edge of the key. Table 2-1 lists some SHIFT key combinations; Appendix D 
provides a complete list. 

We use the notation SHIFT- to describe a compound keystroke involving the 
SHIFT key. For example, SHIFT-3 (press the SHIFT and 3 keys simultaneously) 
produces the # character. 

The CTRLKey 
CTRL is a contraction of the word "control." The CTRL key is always used together 
with another key in the same manner as the SHIFT key. You hold the cTRLkey down 
while you press and release another key. We designate the use of the CTRL key in 
conjunction with another key by prefixing the name of the other key with CTRL-. 
For example, CTRL-B means press the CTRL and B keys simultaneously. 

The CTRL key, like the SHIFT key, allows some keys to have an additional 
function. Some of the functions you get with CTRL key combinations are printed on 
the top edge of the keys, in reverse notation. For example, CTRL-TAB clears a tab 
stop. CTRL combined with any of the letter keys produces a graphics character. 
Table 2-2 lists some of the CTRL combinations; Appendix D provides a complete 
list. 

The CAPs/loWR Key 
When you first turn on the AT ARI computer, all the letters you type are displayed 
on the screen as capital letters, regardless of whether the SHIFT key was pressed 
when you typed them. Press the CAPS/ LOWR key to get upper- and lower-case 
capability. Now you get lower-case letters without the SHIFT key, upper-case with it. 
To get back to upper-case mode, press the SHIFT and CAPS/ LOWR keys at the same 

TABLE 2-1. Selected SHIFT Key Effects (Upper-case mode) 

Keystroke 
SHIFT-TAB 
SHIFT-< 
SHIFT- > 
SHIFT-BACK S 
SHIFT-CAPS/ LOWR 

Character or Action 
Set tab stop 
Clear display screen 
Insert blank line 
Delete current line 
Switch keyboard to upper-case mode 



Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 23 

TABLE 2-2. Selected CTRL Key Combinations 

Keystroke 

CTRL-TAB 
CTRL-

CTRL- = 
CTRL- + 
CTRL- * 
CTRL-l 
CTRL-3 
CTRL- < 
CTRL- > 
CTRL-BACK S 
CTRL-CAPS I LOWR 

Character or Action 

Clear tab stop 
Move cursor up one line 
Move cursor down one line 
Move cursor left one space 
Move cursor right one space 
Freeze! restart screen display 
Usually results in an error 
Clear display screen 
Insert a space 
Delete next character 
Switch keyboard to graphics mode 

time. Press the CTRL and CAPS( LOWR keys simultaneously to switch the keyboard to 
graphics character mode. 

The A Key 
The A key switches the keyboard back and forth between normal and inverse video 
modes. Inverse video characters come out reversed, blue letters on a white 
background . 

The Arrow Keys 
The four arrow keys are called up-arrow, down-arrow, left-arrow. and right-arrow. 
They are all CTRL key combinations: CTRL-- (I), CTRL- = (I), CTRL- + (-), and 
CTRL- II (-) . 

You will find the arrow keys very useful because they allow you to correct any 
typing mistakes you might make, enabling you to change information you have 
already entered. 

The - key works like the backspace key on a typewriter. Each time you press it, 
the cursor backs up one space. Try it now. Type in any word (try PRINT). Press the 
- key several times and watch the cursor back up along the word you just typed in. 
Notice that the characters you back over do not disappear from the display screen. 
Try backing the cursor all the way to the left edge of the screen. When you get to the 
edge and press the - key again, the cursor jumps to the right edge of the screen. 

As you might suspect, the - key moves the cursor to the right along the display 
line. It does not erase characters it passes over. When the cursor reaches the right 
margin, it reappears at the left margin on the same line. 

In a similar fashion, the I and 1 keys move the cursor up or down one line. With 
the cursor at the top of the screen, the I key puts it at the bottom of the screen. With 
the cursor at the bottom of the screen, the 1 key puts it at the top. 



24 A GUIDE TO ATARI 400/800 COMPUTERS 

The BACK S Key 
Each time you press the BACK S key, the character at the location of the cursor is 
erased and the cursor backs up one space . Try backing all the way to the left edge of 
the screen. The cursor bumps into the left margin; press BACK S again and the cursor 
doesn't move. 

The CLEAR Key 
Press CTRL- < or SHIFT- < and the display screen clears. The cursor moves to the 
upper left-hand corner of the screen. This corner is called the home position. 

The INSERT and DELETE Keys 
Activating the INSERT or DELETE keys requires a combination keystroke using 
either the CTRL key or the SHIFT key. CTRL- > inserts a blank space to the right of 
the cursor. CTRL-BACK S deletes the character to the right of the cursor. In either 
case, the cursor does not move. 

SHIFT- > inserts a blank line above the line the cursor is on; the entire display 
from the cursor line down shifts down one line. SHIFT-BACK S deletes the whole line 
the cursor is on; lines below that move up on the screen. 

The TAB Key 
When you press the TAB key alone, the cursor advances to the next tab stop . 
Standard tab stops, present when you turn on the AT ARI computer, are set eight 
columns apart. Because the standard left margin is indented two columns from the 
edge of the screen, the first tab stop is only six columns to the right of the left margin. 
SHIFT-TAB sets a new tab stop at the location of the cursor. CTRL-TAB clears the tab 
stop at the location of the cursor. 

The Esc Key 
Esc stands for "escape," which is a term left over from the days when teletypes were 
common computer terminals . Somehow the name has stuck. Unlike the SHIFf and 
CTRL keys, the ESC key is never used by holding it down while pressing another key. 
Esc is always pressed and released before the next key is pressed and released. This 
two-key operation is called an escape sequence. 

The ESC key lets you suspend the immediate effect of keystrokes like CLEAR 
(SHIFT- <) in order to enter them as values. Escape sequences are mainly used in 
programming; they are covered more fully in Chapter 4. 

The Other Keys 
The other keys on the AT ARI keyboard are no doubt familiar to you. There are the 
letters of the alphabet, the digits 0 through 9, and a standard set of symbols. 

Many typists do not distinguish between the number zero and the letter "0" or the 
number one and the lower-case letter "\." The AT ARI computer can't cope with this 



Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 25 

ambiguity. You must be very careful to type a numeral when you mean a numeral. 
To help you remember, the AT ARI keyboard shows the zero with a slash through it, 
and zeros are displayed on the screen with that slash. 

USING THE 410 PROGRAM RECORDER 

If your AT ARI system includes a program recorder, you can load programs from 
cassette tapes. There are many program tapes you can buy, and you can make your 
own as well (we11 tell you how in Chapter 3). 

Handling Cassettes 
Be careful with cassettes. They are easily damaged and not easily replaced. Avoid 
touching the surface of the tape itself. No matter how clean your skin is, natural oils 
will contaminate the tape. Make sure you put tapes back in their cases when they are 
not being used. Never store them in hot areas, direct sunlight, or near magnetic 
fields (like those found near electric motors) . 

Selecting Blank Cassettes 
The 410 Program Recorder uses only audio cassettes - never digital cassettes. You 
can't go wrong with the best quality normal-bias tape. Good quality tapes will work 
too, but avoid cheap bargain cassettes. They tend to jam up after a while, rendering 
your valuable programs inaccessible. 

Most programs take up very little tape. Therefore, short tapes tend to be just as 
useful as long ones. 

Labeling Cassettes 
You should label every cassette with information about the programs it contains. 
This prevents the headache of searching through cassette after cassette for the 
program you need . 

Write-Protecting Cassettes 
Each cassette has two notches in the rear edge (Figure 2-10). When the notches are 
uncovered, the 410 Program Recorder can sense the holes and will not record on the 
cassette. New blank cassettes have tabs covering the holes so the tape can be 
recorded on. You can protect important programs by knocking out the correct tab 
and exposing the hole. Later, if you want to record over a protected tape, simply 
cover the hole with tape. 

Each cassette has two sides to it. One notch protects one side, while the other 
notch protects the other side. To determine which notch is correct, hold the cassette 
so that the exposed tape is toward you and the side you wish to protect is facing up. 
Remove the tab on the left side to prevent recording over the side facing up. 



26 A GUIDE TO AT ARI 400/800 COMPUTERS 

Write protect notches 

/ \ 
~ 

e~ 
~ ~ 

Je 
J • • • .. \ • 0 

FIGURE 2-10. Cassette write-protect notches 

USING THE 810 DISK DRIVE 
If you have one or more disk drives connected to your AT ARI computer, you can 
get programs on diskettes instead of cassettes. 

What Kind of Diskettes to Buy 
From time to time you may need extra blank diskettes. The AT ARI 810 Disk Drive 
uses standard 5Y4-inch diskettes . It can use either soft-sectored or hard-sectored 
diskettes , although soft-sectored are preferred. Any well-known brand of diskette 
will work. 

Handling Diskettes 
You must be very careful when you handle a diskette. Diskettes are much more 
delicate than cassette tapes. Never bend a diskette. Never touch the surface of the 
diskette (the part inside the holes) , and never force a diskette into the drive. Always 
replace diskettes in their envelopes when you remove them from the drive, and 
protect them from heat, direct sunlight, and magnetic fields (like those found near 
electric motors) . Be especially careful with the "Disk File Manager Master Copy" or 
"Disk File Manager II Master Copy" that came with the disk drive. 

Write-Protecting Diskettes 
Most diskettes have a square notch cut out of the right side. The 810 Disk Drive will 
write on a diskette only if it senses the presence of the notch. To prevent accidentally 
writing on a diskette, cover its notch with an adhesive label or a piece of tape (Figure 
2-1l). 



Chapter 2: HOW TO OPERATE THE AT ARI COMPUTER 27 

Protective jacket 

Hard / soft -sectored hole 

Write protect notch 

FIGURE 2-11. Write-protecting a diskette 

Diskette Insertion 
The proper way to insert a diskette into the disk drive is shown in Figure 2-12. Hold 
the diskette between your thumb and forefinger. Open the door on the disk drive 
and gently slide the diskette all the way into the drive. There should be almost no 
resistance. If the diskette will not go in easily, remove it and try again. Make sure 
you are holding the diskette as level as possible. Once the diskette is inside the drive, 
gently close the drive door. The door should close very easily. If there is any 
resistance, release the door and push the diskette completely into the drive, then try 
again. If you force the door shut you will destroy the diskette. Sometimes it helps 
center the diskette if you wait until after the disk starts spinning to close the door. 

The Disk Operating System 
Before you can use any disk drive, a special program called the disk operating 
system must be in memory. The disk operating system, or DOS, is a special program 
that controls all disk-related activities. The process of placing a copy of DOS in 
memory is called booting. In computer jargon you can say "boot the disk" or "boot 
the DOS," or just "boot DOS." 

Turning off the AT ARI 400 / 800 console erases DOS from memory. If you need 
to use a disk drive the next time you turn on the system, you must reboot DOS. You 
do not have to reboot DOS when you just turn a disk drive off or on. 

Booting DOS 
There is only one way to boot DOS. The procedure is as follows: 

I . Turn on Drive I . To determine which is Drive I on a multiple-drive system, look in the 
access hole at the back of each drive. Find the drive with both the black and white 
switches a ll the way to the left (Figure 2-5); that's Drive I. 



28 A GUIDE TO ATARI 400/800 COMPUTERS 

FIGURE 2-12. Inserting a diskette into a disk drive 

2. Place a diskette with a copy of the disk operating system on it into Drive 1. The 
diskettes labeled "Disk File Manager Master Copy" and "Disk File Manager II 
Master Copy" have a copy of DOS on them. 

3. Turn the console power off and on. The disk drive whirrs as it transfers DOS from the 
diskette to the computer's memory. The READY message appears on the display 
screen when the boot finishes . 

You probably noticed that the standard power-on procedure described earlier in 
this chapter includes these steps. Thus, if you follow that procedure, you will boot 
DOS as a matter of course. 

If any problem occurs during the boot, the message BOOT ERROR appears on 
the display screen. The disk drive may also make disconcerting rasping sounds. 
Boot errors occur when there is no diskette in the drive, the drive door is open, the 
diskette is in upside down, there is no copy of DOS on the diskette, the diskette is 
damaged or defective, or the disk drive malfunctions. 

The DOS Menu 
Part of the disk operating system is a set of utility programs. Many are strictly for 
programmers, but almost every disk user has occasion to use one or two of them. To 
use them, first boot DOS. With the same diskette still in the disk drive, type the 
following command on the AT ARI keyboard: 

DOS 

Press the RETURN key. The display screen changes to look like Figure 2-13. This is 
called the DOS menu. Your menu may look a bit different. 



Chapter 2: HOW TO OPERATE THE AT ARI COMPUTER 29 

FIGURE 2-13. Typical DOS menu 

There are two different versions of the disk operating system, and each has a 
slightly different menu. Unless you plan to program the AT ARI computer, you 
need to use only menu items A, 0, E, I, J, L, and O. Those seven are the same in both 
versions. With one version of the disk operating system the menu appears imme
diately. The other version has to access the disk drive first; it may take as long as 30 
seconds for the DOS menu to appear. 

WARNING: The DOS command may erase the program you were last using from the 
AT ARI computer's memory. Do not use the DOS command unless you are willing to 
restart the program you were last using. 

The Diskette Directory 
If you have successfully booted a diskette, you may be interested in knowing what 
programs it contains. Use the DOS command, as described above, to get the DOS 
menu. Select item A by typing the letter A (followed by pressing the RETURN key). 
This message appears at the bottom of the display screen: 

DIRECTORY--SEARCH SPEC.LIST FILE? 

Press the RETURN key to list all the program names on the diskette in Drive I. If the 
directory flashes by too fast, try again. This time, press CTRL-I whenever you want 
to freeze the display. Press CTRL-J again to restart the display. 

To list the directory on your printer, select menu item A. Then type a comma, the 
letter P, a colon, and press RETURN . 

• P: 



30 A GUIDE TO ATAR! 400/800 COMPUTERS 

If your system has more than one disk drive, you may want to list the directory of 
a drive other than Drive 1. Once again, choose menu item A. To specify the drive 
you want, type the drive number, then a colon. 

01: 

Then press RETURN. 

There are other ways to respond to menu choice A that let you specify what kinds 
of program names you want to see, and more. Chapter 7 has more information. 

Preparing Blank Diskettes 
From time to time you may need extra diskettes for the programs you run on your 
AT ARI computer. Before you can use a diskette for the first time, you mustformat 
it. The formatting process gets a diskette ready for subsequent use. If the application 
program you are using includes specific instructions for formatting diskettes, by all 
means use them. In their absence, you can use the following general instructions for 
preparing extra diskettes. 

To format a diskette, start by getting the DOS menu on the screen. Place the 
diskette you want to format in a disk drive. Select DOS menu item I. The following 
message appears at the bottom of the display screen: 

WHICH Df,IVE TO FO'RMAT? 

Type the drive number: Dl, D2, D3, etc., then press RETURN. 

Next you are asked to verify the disk number by entering a Y. Any other entry 
cancels the format operation. Enter Y and the format operation begins. It takes 
about one minute. When the disk drive stops making noises, the format is complete. 

Now prepare a label for the new diskette. Remove the diskette from the drive and 
apply the label. 

WARNING: The format operation erases anything that was on the diskette before
hand . Do not format a diskette that has your only copy of a program on it! 

Duplicating Diskettes 
You will certainly want to make backup copies of your diskettes. DOS menu item 
J does this, even if you have only one drive. Select item J and this message appears: 

OUP DISK-SDURCEtDEST DRIVES? 

Before going any further, place a write-protect label over the notch on the original 
diskette. This simple precaution may save you considerable grief if you make a 
mistake in the rest of the procedure. 

Type the drive number where you plan to put the original diskette (the source), a 
comma, and the drive number where you plan to put the backup diskette (the 
destination). 

DltDl 

If you specify the same source and destination drives, this message may appear: 

TYPE "Y" IF 01< TO IJSE PF(oGr-~AM AREA? 



Chapter 2 : HOW TO OPERATE THE AT ARI COMPUTER 31 

WARNING: If you type a Y in response, the duplication operation may erase the 
program you were la st using fro m the co mputer 's memory. Do not answer Y here 
unless you are willing to resta rt the progra m you were last using. 

Type the letter Y and the duplication begins. Any other response to this question 
terminates the duplication process. 

Messages appear on the display screen, asking you to insert first one diskette, 
then the other. If the source and destination drives are the same, the AT ARI 
computer may tell you to swap diskettes several times. You insert the source 
diskette, the computer reads part of it into its memory, you insert the destination 
diskette, the computer writes that piece out , and so on until the whole diskette is 
duplicated. Each time you insert a diskette , you must press RETURN to signal that 
drive door is closed and everything is ready. 

You might accidentally reverse the source and destination diskettes. If you put a 
write-protect label on the source, an error message will appear on the display screen. 
You must start the duplication process over again. If you did not write-protect the 
source, it may be ruined . 

Under some conditions , you will not be able to boot DOS from a duplicate copy 
of a diskette. To rectify this situation, first boot DOS from some other diskette. Get 
the DOS menu on the screen, and select menu item H. This message appears: 

DRIVE TO WRITE DOS FILES TO? 

Place the diskette you ca nnot boot from in the disk drive. Type the number of that 
drive (Dl, D2, etc.) and press RETURN. A message like this appears: 

TYPE "Y" TO WIUTE DD S TO [>FnVE 1'? 

Type the letter Y, and a copy of the disk operating system is written on the diskette. 

Duplicating a Program 
DOS menu item 0 copies a program from one diskette to another. It works with one 
or more drives. This message appears: 

NAME OF FILE TO MOV E? 

Type the name of the progra m you wish to duplicate: 

BLASTOFF 

Press RETURN. Do not prefix the name with a drive number. This message appears: 

TYPE "Y" IF ()f( TO U!:;E PI'WGI'<At1 Ai'<EA ? 
CAUTION: A " Y" INVL.IOATE ~; rlEM. f.;A V 

WARNING: If you type a Y in respon se , the duplication operation may erase the 
program you were last using from the co mputer 's memory. Do not answer Y here 
unless you are willing t o resta rt t he progra m you were las t using. 

Messages appear on the display screen, asking you to insert first one diskette, 
then the other. You may be prompted to swap diskettes several times. You insert the 



32 A GUIDE TO AT ARI 400/800 COMPUTERS 

source diskette, the AT ARI computer reads part of the program into its memory, 
you insert the destination diskette, the computer writes that piece out, and so on 
until the whole program is duplicated . If the program is not too long, it will take 
only one pass to duplicate it. Each time you insert a diskette , you must press 
RETURN to signal that the drive door is closed and everything is ready. 

DOS menu item C will copy a program from one drive to another; it will also 
make a second copy of a program on the same diskette . See Chapter 7 for more 
information. 

Deleting a Program 
The time may come when you want to remove a program from a diskette. Choose 
DOS menu item D. This message appears: 

DELETE FILE f:>PEC 

Type the drive number, a colon, and the program name, like this: 

DZ:HANGMAN 

Press RETURN. You may omit the drive number and colon if Drive I is used . 

Renaming a Program 
A program can have any name you want to give it. There are, however, a few 
restrictions. First, no two programs on the same diskette can have the same name. 
Next, the name may be no more than eight characters long. The characters you can 
use are the upper-case letters A through Z and the digits 0 through 9. The first 
character must be an upper-case letter. You can add a period followed by as many as 
three characters to the end of the name. This is called a file name extension. The 
extension .SYS is reserved; read Chapter 7 if you need to use it. 

To rename a file, select DOS menu item E. The following message appears: 

RENAME - GIVE OLD NAM E, NEW 

Type the name the program has now, a comma, and the name you want the program 
to have, like this: 

GAMEl 0, E::DMt::S 

Press RETURN. Do not include the drive number, just the program name. 

LOADING AND RUNNING A PROGRAM 
There are many programs already written for the AT ARI computer. Some come on 
cassette, some on diskette, and some on either. Before you can use a program, you 
must transfer it to the computer's memory from cassette or diskette . This is called 
loading. Once it is loaded, you can start the program running. 



Ch ap ter 2: HOW TO OPERATE THE AT ARI COMPUTER 33 

Loading a Program from Cassette 
The AT ARI computer has three commands for loading programs from the pro
gram recorder. They are not interchangeable. The appropriate one to use is deter
mined when the program is recorded. If you must, you can determine the right one 
by trial and error. The commands are CLOAD, ENTER "C", and LOAD "C". 

The steps for loading a program from cassette are as follows: 

I. Position the tape to the start of the program. First, rewind the tape completely. Reset 
the tape counter to zero . If the program you want is the first one on the cassette, go on 
to the next step. If not , try to learn the tape counter reading where the program starts. 
That way you can ad vance the tape with the program recorder's FAST FORWARD lever. 
Otherwise, you must load each program in turn until you reach the one you want. 
Repeat the following steps for each extra program you must load . 

2. On the AT ARI keyboard type the CLOAD, ENTER "C:", or LOAD "C:" command. 
Use the one that's right for your program. Press RETURN. The ATARI console beeps 
once. 

3. Depress the PLAY lever on the program recorder. The AT ARI computer cannot tell 
whether you do this . If you do not, it will try to load your program and fail. 

4. Press the RETURN key on the keyboard . The tape starts moving. If the volume on the 
television set is turned up , you will hear several seconds of silence followed by one or 
more short bursts of sound from the television speaker. These sounds indicate that the 
program is loading. The sound bursts cease when the loading finishes. 

The program is now loaded . If you get any error messages during the loading 
process, you're probably using the wrong loading command. Try one of the others. 
If none works, the cassette is blank, damaged , defective, or upside down. 

Loading a Program from Diskette 
Some programs are loaded and run automatically when you boot DOS. In that 
case, all you have to do is use the correct program diskette during the power-on 
procedure (page 14). 

You must boot DOS before you can load most programs from diskette. Once 
DOS is booted, you can load a program from a disk with one of two commands: 
ENTER "program" or LOAD "program". In use, you replace the term program 
with the drive number, a colon, and the program name, as follows: 

LOAD 00 [) 1. : L.EDGEF( . H,-:>'E; 00 

You can leave off the drive number and colon if Drive 1 is used. 

Starting a Program Running 
When the program you want is loaded, type RUN and press RETURN to get it 
started . The program takes over control of the computer, including the keyboard 
and display screen. To regain control , you can press BREAK in many programs. If 
this does not work, check the specific operating instructions for the program you are 



34 A GUIDE TO AT ARI 400/800 COMPUTERS 

using. In a dire emergency, you can press the SYSTEM RESET key or turn the 
computer's power off and back on again , but in either case you will have to restart 
the program. 

There is a single command that both loads and runs a program from cassette. It is 
RUN "C:". You can use it in place of the LOAD "c:" command. It will not work 
with programs that must be loaded with either the CLOAD or ENTER "C:" 
commands. 

A similar command both loads and runs a program from diskette. It is RUN 
"program". You can use it in place of the LOAD "program" command. It will not 
work with programs that must be loaded with the ENTER "program" command. 

SETTING TELEVISION COLOR 
The AT ARI computer features full color graphics. If any of the programs you plan 
to use or write will use this feature , you should adjust the color settings on your 
television set or TV monitor for the correct balance. The colors will be about right if 
you leave them unchanged from your normal television viewing. If you wish, you 
may adjust the contrast, brightness , color, and tint controls of your television until 
you get an acceptable picture . 

USING GAME CONTROLLERS 
The game controllers plug into the front of the AT ARI 400/ 800 console (Figure 
2-14). Instructions for your program should tell you which socket to use. If not, try 
each socket in turn, starting with socket number 1 on the left. 

FIGURE 2-14. Game controller jacks 



Chapter 2: HOW TO OPERATE THE AT ARI COMPUTER 35 

Knobs on the paddles rotate nearly full-circle. Some of the available rotation is 
unused . Starting with the knob fully clockwise, only the first two-thirds or so of 
rotation means anything. The last third produces no change. 

The joysticks are fairly sturdy but can be damaged by overzealously leaning into 
them over a period of time. They respond just as fast to gentle pressure as to hard 
pressure. You will prolong their life appreciably by treating them with consideration. 

USING THE 850 INTERFACE MODULE 
If your system uses an 850 Interface Module, it also uses an 825 Printer or 
something connected to one of the serial interface jacks. If you use the 850 Interface 
Module just with the 825 Printer, you can turn it off when you are not printing. In 
order to use equipment attached to a serial interface jack, the 850 Interface Module 
must remain on all the time. 

USING A PRINTER 
Any of the printers need only be on when you actually print. Be careful, though. If 
the printer is off at the wrong time, the program trying to use it may fail. 

The 825 Printer has a switch labeled ONLINE/ LOCAL. It must be in the "Online" 
position to print. In the "Local" position you can use the REV / FWD switch to 
manually move the paper up or down. 

ADDING RAM TO THE AT ARI 800 COMPUTER 
Someday you may acquire a program that won't run on your system because you 
don't have enough RAM. You can add more RAM to an AT ARI 800 computer, up 
to a point. RAM comes in modules of different denominations. Atari has 8K and 
16K modules; other sources have different sizes. As many as three modules plug in 
under the top cover. 

To remove the cover, first lift the hatch. Release the two latches (Figure 2-15), 
then lift the whole cover up and forward (Figure 2-16). 

To remove a RAM module , grasp it firmly at each end and pull straight up 
(Figure 2-17). It may help to wiggle the module slightly as you pull. 

To install a RAM module, place it in the empty socket nearest the front. Place 
your thumbs on top of the module at each end. Press down with firm, even pressure. 
You must fill the sockets from front to back. Do not leave empty sockets in the 
middle or front positions . If you are using both 8K and 16K modules, put the 16K 
modules in front. 

To replace the cover, you must fit the two metal tabs at the back of the cover into 
the matching holes in the AT ARI 800 chassis. Slide the cover back and down until it 
is even with the AT ARI 800 cabinet. Fasten the two latches (Figure 2-18) and close 
the hatch. 



36 A GUIDE TO ATAR1400/800 COMPUTERS 

FIGURE 2-15. Releasing the AT ARI 800 computer top cover latches 

FIGURE 2-16. Removing the ATARI 800 computer top cover 



Chapter 2: HOW TO OPERATE THE AT ARI COMPUTER 37 

FIG URE 2-17. Removing a RA M memory module (AT ARI 800 computer only) 

FIGURE 2-18. Fastening the AT ARI 800 computer top cover latches 



38 A GUIDE TO AT ARI 400/800 COMPUTERS 

COPING WITH ERRORS 
The AT ARI computer is a marvelous piece of equipment, but it shares a problem 
common to all computer systems. It lacks imagination. Every instruction you give it 
must be exactly right or it will not work as you expected. The results of a mistake 
can run the gamut from annoying to aggravating to devastating. 

Error Messages 
When you type something incorrectly and press RETURN, the AT ARI computer 
usually responds with a cryptic error message. Often the message gives you a clue as 
to what you did wrong; sometimes, however, it does not. The general remedy is the 
same in either case: retype the line. Often the message consists only of the word 
ERROR and a number. You must look up the number to get an explanation of the 
error. Appendix A contains a complete list of error numbers and explanations. 

If the error message occurs while you are running a program, consult the prograr:1 
instructions. 

Correcting Typing Mistakes 
As you type commands on the AT ARI keyboard you are bound to make mistakes. 
Some of the keys we described earlier make it easy to correct errors you notice on a 
line before you press RETURN to end the line. They are the BACK S, - (CTRL-+), 

- (CTRL- A), TAB, BREAK, and CLEAR (SHIFT- < ) keys and key sequences. 

The BACK S key backspaces the cursor and erases characters it passes over. Characters 
are replaced by blank spaces. 

The - key moves the cursor one space to the left on the current display line with
out erasing the character it passes over. 

The- key moves the cursor one space to the right on the current display line with
out erasing the character it passes over. 

The TAB key moves the cursor right to the next tab stop, without erasing any characters 
it passes over. 

The BREAK key cancels the line you are currently typing. 

The CLEAR key clears the display screen and leaves the cursor in the upper left corner. 

Let's see how you might use these editing features . Suppose you want to type the 
following command, 

LDAD "D:l:MUGIC" 

but just before you press RETURN you notice you've made a mistake. 

LOAf, "[) 1 : MU~;IC" 

You have several choices. You can press BREAK to cancel the line and start all over 
again. You can use the - key or the BACK S key to back up and correct the mistake. 

Try correcting this error with the - key. Press and hold the CTRL and + keys. The 
cursor races back to the start of the line . Take your finger off the + key when the 



Chapter 2: HOW TO OPERATE THE AT ARI COMPUTER 39 

cursor gets to the error. If you back up too far, use the - key to line up the cursor 
over the offending S. Press the D key and presto! The line is correct. You can press 
RETURN with the cursor where it is; there is no need to move the cursor to the end of 
the line first. 

Accidental BREAK 

Sooner or later you will hit the BREAK key when you did not intend to. Some 
programs are set up to ignore the BREAK key entirely. Those that are not should 
have specific instructions about what to do if you accidentally press the BREAK key 
while running that program. Be sure you know what to do before you start your 
program. If you press BREAK while running a BASIC program you will be able to 
restart the program from the beginning. This is small consolation during some 
phases of accounting applications and the like, since running the program a second 
time may not work. 

When BREAK takes effect, the AT ARI computer stops everything it was doing. 
Control returns to the keyboard; you will see a message similar to the following: 

STOPPED AT LINE 1005 

What should you do? You can probably continue the program by typing the 
CO NT command. If that does not work, you are out of luck. You will have to restart 
the program from the beginning. Before you blithely type RUN, make sure you 
won't ruin anything by running the program again. Check the program instructions. 
Ask someone else who also uses the program. Call your dealer if you have to. The 
solution may be complicated . Get specific instructions for your program. 





3 
,PROGRAMMING 

IN BASIC 
BASIC is a computer programming language. It consists of a set of statements and 
commands. Each statement or command tells the computer to do something 
specific and fairly simple . You command the computer to perform a complex task 
by giving it instructions in terms of several BASIC statements. A program is simply 
a collection of statements . The process of selecting and arranging the statements is 
what programming is all about. 

This chapter teaches you how to write your own BASIC programs on the AT ARI 
computer. We could have you first memorize all the facts about each BASIC 
statement, one by one. But you would probably give up. 

Individual statements don't mean much; it's the way you combine them. A study 
of individual BASIC statements quickly degenerates into learning a bunch of 
seemingly arbitrary rules . That tells you nothing about programming or good 
programming practice. 

The rigorous statement definitions appear in Chapter II . This chapter presents 
BASIC statements in a logical sequence. You see each new statement in a working 
environment, not an academic one. Look up the complete details and subtleties of 
individual statements in Chapter 11 when you need to , but do not try to learn 
programming there. 

STARTING UP BASIC 
There are at least three different versions of BASIC available on the AT ARI 
computer. This book covers only the standard version shipped with the AT ARI 400 
and AT ARI 800 computers. It resides in the ROM cartridge labeled "BASIC 

41 



42 A GUIDE TO AT ARI 400/800 COMPUTERS 

Computing Language," part number CXL4002. Other versions of BASIC will be 
similar to standard AT ARI BASIC but will differ in details . 

Installing the BASIC ROM Cartridge 
The AT ARI computer is quite versatile. Besides knowing BASIC, it can play 
games, compose music, tutor, and more. If you wish to program it in standard 
ATARI BASIC, the "BASIC Computing Language" ROM cartridge must be 
installed. You will find complete instructions for installing the cartridge in Chapter 
2 (Figure 2-1). 

Turning On the Power 
Chapter 2 also tells you the proper order in which to turn on the various system 
components. The AT ARI computer is definitely particular about that. The console 
may not be able to communicate properly with the external components if you turn 
them on in the wrong sequence. BASIC is ready to go when you see the message 
READY displayed on the TV screen. 

LEAVING BASIC 
To get the AT ARI computer out of BASIC, just remove the BASIC ROM car
tridge. During the process, the computer turns itself off. This erases any BASIC 
program you might have been using. 

Another way to leave BASIC is to type the command BYE and press RETURN. 

The computer goes into memo pad mode. It isn't very useful in this mode; it merely 
displays whatever you type. Press the SYSTEM RESET key to get back into BASIC. 

PRINTING CHARACTERS 
When you first start BASIC, it is in immediate mode, also called direct or calculator 
mode. In this mode, the computer responds immediately to any instruction you 
issue it. Try typing in this example: 

PfnNT "LET El .. EEPINC DOC!3 LIE" 

Don't forget to press the RETURN key after the last quotation mark. The computer 
immediately displays this: 

LET SLEEPING DOGS LIE 

f~EA[)Y 

• 
The computer may instead display the message ERROR- followed by what you 

typed in. This means it cannot understand your command . You probably mis
spelled the word PRINT. If the computer displays the number 0 instead of any 
message, it means you left out the first quotation mark. In either case, you can 
simply type the instruction again, being more careful this time. Computers are 



Chapter 3: PROGRAMMING IN BASIC 43 

extremely particular about spelling and punctuation. Even the slightest error can 
cause the computer to balk, or even worse , to do the wrong thing. 

A command like the one above instructs the computer to print everything 
between the quotation marks onto the display screen. 

There is a limit to the length of the message you can put between quotation marks. 
The longest message can be wider than the display screen . This means a command 
can occupy more than one display line . Long commands automatically wrap 
around to the next lower line on the display screen . Type this, and press RETURN: 

PF(INT "UNDEF( NOHMAL ClF(ClJMSTANCEf't THE 
MAN WOUL.D E:E CONSIDEI:(ED CI(AZY" 

The computer responds with this: 

UNDER NORMAL CIRCUM STANCE S , THE MAN WO 
UL.D BE CON SIDERED CRA Z Y 

F(EADY 
i;}~ 

AT ARI BASIC allows 114 characters on a single command line. This is exactly 
three display lines . As you approach the limit , the computer beeps. The limit 
includes the PRINT command and punctuation . Anything you type past the limit is 
ignored when you press the RETURN key to end the line. 

PRINTING CALCULATIONS 
You can use the AT ARI computer in immediate mode as you would a calculator; it 
responds directly with the answers to arithmetic calculations . Try the following 
examples: 

PHINT 'H, f.) 
J.O 

[(EADY 
""fUNT ~)OO "- ,!3 7 

63 

[(EADY 
f"fUNT 1 0 O)l(2::l 
Z::lO 0 

F(EADY 
f"F(INT 96 / 12 
8 

[(EADY 
PfUNT 3"Z 
8. 'i'9 ci9<;>'Y88 

Addition 

Subtraction 

Multiplication 

Division 

Exponentiation 

Atari . Inc. is revising BAS IC so that l: rrors such as this will not occur 



44 A GUIDE TO ATARI 400/800 COMPUTERS 

F(EADY Combination 
Pf(INT 3)1(4)1(10-"800 
-- 680 

F(EADY 
~ 

The correct answers are on the line immediately following each of the commands . 
Notice that you do not use quotation marks in these examples. Enclose a calculation 
in quotation marks and watch what happens. 

Numeric values can have a total of nine significant digits. Values with more than 
nine digits are truncated (chopped off) to nine or fewer nonzero digits. The limit 
applies to the total number of digits before and after the decimal point. The 
following examples illustrate how the truncation works: 

PRINT 12 .34567896 
12 .~l'1567D9 

f(EcADY 
PRINT 12 .34567894 
12. :3'1:5c, 7 D9 

F(E{~DY 

PF(INT 1 234:567095 
123'15c,7890 

READY 
~ 

If you try some of your own arithmetic calculations in immediate mode, you will 
notice that the result is sometimes displayed using scientific notation. 

PRINT 123 456709 123 
1. 2 34~:;6 7B9 [+:l.l 

F(EADY 
~ 

If you do not understand scientific notation, stick to simple calculations for now. 
We will talk more about scientific notation and numeric values later in this chapter. 

Abbreviated PRINT Statement 
AT ARI BASIC allows you to abbreviate the PRINT statement with a question 
mark (?). Here are some examples you can try: 

?" TH1E MM(CHE~:; ON" 
TIME Mt-rl:(CHES ON 

I:(EADY 
';, 1 :3· .. ·i I6*6 
,-,263 

r(EADY 
~ 



Chapter 3: PROGRAMMING IN BASIC 45 

ERROR MESSAGES 
One message the AT ARI computer will issue when it detects a situation it cannot 
cope with was mentioned earlier in this chapter. It displays ERROR- followed by 
the offending instruction . There is also a slightly different form of error message. 
When the AT ARI computer thinks it knows what kind of error occurred, it displays 
a diagnostic error number. Consider division by 0: 

?110 

EFawF( .... 1:1. 
~ 

The official translation of error number II is "Floating point overflow / underflow 
error." In other words, dividing by 0 yields a value too large for the computer to 
handle. 

Getting an error number helps . You still have to look up the number in Appendix 
A for an interpretation, but at least you have some clue as to what went wrong. 
Unfortunately, the computer's diagnostic abilities are limited. One error number 
can apply to several different situations, so do not expect a definitive analysis of 
your error. The AT ARI computer uses fewer than 60 error numbers to diagnose the 
myriad of possible errors and combinations of errors. 

EXTRA SPACES 
Are you struggling with the question of where to put spaces in a line and where not 
to? AT ARI BASIC is somewhat sensitive on the subject. Your best bet is to mimic 
the style we use in our examples. AT ARI BASIC requires blank spaces in some 
places . Generally, you should put a blank space wherever it tends to make the line 
more readable. Use only one space, though . In a few instances, multiple blanks trip 
up BASIC. There is one place where the use of blank spaces is entirely your choice: 
inside PRINT statement quotation marks. If you come across a situation in which 
you are not sure where to put spaces, go ahead and type the line. The worst that will 
happen is that you will get an error message and will have to retype the line. 

STATEMENTS, LINES, AND PROGRAMS 
A program consists of one or more statements which provide the computer with an 
exact and complete definition of the task it is to perform. If the task is short and 
simple, the program can be short and simple as well. The immediate mode instruc
tions we have experimented with so far are each small, simple programs. Each one 
has just one statement - one instruction to the computer. These are trivial cases. 
Most programs have 10, 100, 1000, or even more statements. Consider the following 
statements: 

r'F(INT "CDWS 1100" 
COWS MOD 



46 A GUIDE TO AT ARI 400/800 COMPUTERS 

1:([t,DY 
PI:(INT "Fcm Ft,NCY E:l..l.JE" 
FClIO;: F,~NCY BLUE 

f(EADY 
Pf(INT "HOOF ···D····NU" 
HO()F···· [:···· NLJ 

"(LADY 
m 

Each of these immediate mode programs prints a line of text on the display screen. 
Each program has exactly one statement and exactly one line. 

AT ARI BASIC allows you to put more than one statement on a line. You 
separate mUltiple statements on the same line with a colon. Compare the following 
immediate mode program with the example above: 

Pf(INT "COWS MO~'': PIUNT "FClF( F ANCY DLLJE 
": F'f(INT "HOOF···· E: ···NU" 
COWS t10D 
FDf( F{)NCY E:Ll.H: 
HClOF···· [: ···· NU 

f(EADY 
~ 

This three-statement, one-line program prints the same three lines of text as the 
previous three single-statement programs. 

Program, Logical, and Physical Lines 
There is no specific limit to the number of statements on one program line. 
Remember that a line cannot be longer than 114 characters, though. If you are 
typing a long line, the computer will beep when you type the 107th character. You 
are approaching the limit. Anything you type past the limit is ignored; errors are 
likely. So there is a limit to how much you can do with a one-line immediate mode 
program. 

The ATARI computer treats every program line as a single line, even ifit occupies 
more than one display line . A program line is one example of a logical line. The 
shortest logical line has one character. Normally, the longest line has 114 characters 
(Chapter 4 explains how to extend this to 120 characters). Thus, each logical line is 
made up of one, two, or three physical lines. Pressing the RETURN key marks the end 
of the logical line. 

A One-Line Program 
You can put quite a lot of program on one line in immediate mode. For example, 
consider the following statements: 

FClIO;: 1>=1 TD 722: ';'''A''; : NE XT 1 : '~ "I::' HEW! " 



Chapter 3: PROGRAMMING IN BASIC 47 

At this point, don't worry what these new instructions do. Type in the line exactly 
as shown, ending with a RETURN. If you type it in successfully, you will see the letter 
A displayed across the next 19 lines of the display screen, followed by the message 
PHEW! on the 20th line . 

FDI;: 1'''1 TD 7 :? ;·~: '~ "(;";:NE X T :r: :,? "PHEW!" 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
PHEW' 

f~EADY 
lili 

The program line is still conveniently displayed at the top of the screen. This is 
because the program displays just enough characters to scroll the program line to 
the top of the 38-column screen, but not off the screen. 

When the one-line program described above is finished , the READY message 
and cursor are displayed at the bottom of the screen. 

PROGRAMMED MODE 
The programming we have done so far is educational and somewhat interesting, but 
there is only so much you can do in immediate mode. Another problem with 
immediate mode programs is that you have to retype the program each time you 
want to use it. There are some advanced editing techniques which will be discussed 
shortly that will allow you to reuse the program as long as it still appears on the 
display screen, but this is still a limitation. 

What you need is a way to enter several program lines and to hold off using those 
lines. That way you can write programs to do tasks that are too complex for one-line 
programs. 

There is a way to get around the problems of immediate mode: you can write 
programs in programmed mode. also called deferred or indirect mode. In pro
grammed mode, the computer accepts and stores the program in its memory, but 



48 A GUIDE TO AT ARI 400/800 COMPUTERS 

does not perform any of the operations specified by the program until you tell it to 
do so. You can enter as many program lines as you wish. Then, when you enter the 
appropriate command, the computer performs the operations specified by the 
programmed mode program. 

Program Execution 
The computer executes, or runs, a program when it performs the operations that the 
program specifies. In immediate mode each program line is executed as soon as you 
press the RETURN key. In programmed mode you must issue the RUN command to 
execute a program. Each time you do so, the program runs again. 

Clearing Out Old Programs 
Because the AT ARI computer stores programmed mode programs in its' memory, 
you must specifically instruct it to erase an old program before you type in a new 
program. Do this by typing the command NEW. If you forget to type NEW, your 
new program will be mixed in with your old program. 

Ending Programs Properly 
The end of an immediate mode program is obvious. This is not the case with 
programmed mode, as you will soon see. The END statement tells BASIC to stop 
executing your program and return to immediate mode. Therefore, an END state
ment should be the last statement your program executes. AT ARI BASIC does not 
require an END statement. It will end a program automatically when it runs out of 
instructions. Nevertheless, careful programmers a Iways end their programs with an 
END statement. 

Line Numbers 
Line numbers make programmed mode possible. A line number is simply a one-, 
two-, three-, four-, or five-digit number entered at the beginning of a program line. 
The line number is the only difference between a programmed mode program line 
and an immediate mode program line. 

Try the following programmed mode program: 

NEW 

F(EM)Y 
10 PIUNT "1:(u[:DEI'( BABY [:UGGY BUt1I"'EI'(!:;" 
ZO END 
F(uN 
I'(U88ER BADY BUGGY BUMI"'EI'(S 

1:(Ep,DY 
l® 

Each line number must be unique. No two program lines can have the same number. 
If you use the same line number more than once, the computer remembers only the 



Chapter 3: PROGRAMMING IN BASIC 49 

most recently entered program line with that line number. To see how this works, 
type in the following program lines: 

NEW 

READY 
10 PRINT "FIF~ST LINE 1 0 " 
1 0 Pf~INT "SECOND LINE 1. ()" 
20 END 
RUN 
SECOND LINE 10 

READY 

• 
Line numbers determine the sequence of program lines in a BASIC program. The 

first line must have the smallest line number, while the last line must have the largest 
line number. Even if you type in the lines out of order, the AT ARI computer will 
rearrange them in the proper sequence by line number. Consider the following 
program, with line numbers out of order: 

NEW 

f~EADY 
3 0 F'F~INT "CUT" 
1 0 PFUNT "FISH" 
2 0 F'F~INT "OF," 
'10 PFUNT "BAIT" 
50 END 
FWN 
FISH 
OR 
CUT 
BAIT 

F~EADY 

• 
To prove that the AT ARI computer does not forget programmed mode pro

grams, clear the display screen with the CLEAR key (CTRL- < ) and then rerun the 
program. 

FWN 
FISH 
(]F~ 

CUT 
BAIT 

F~EADY 

• 
It is a simple matter to add program lines to a program that is currently in the 

computer's memory. You can add a line to the beginning, the end, or anywhere in 
the middle of a program by typing the line with a line number that will position it 



50 A GUIDE TO AT ARI 400/800 COMPUTERS 

where you want it. Suppose you want to add a line to the beginning of the last 
example program. As long as you have not typed the command NEW, the program 
will still be in the computer's memory. Since the lowest line number currently in that 
program is 10, any program line you type in now with a line number less than 10 will 
be placed at the beginning of the program. Add the following line: 

5 PRINT "EITHEH" 
HUN 
EITHEf~ 
FISH 
OR 
CUT 
BAIT 

f~EADY 

II 

It's a good thing the original program started with line 10 rather than line O. It's 
always a good idea when assigning line numbers to start your program with a fairly 
high line number and leave plenty of room between line numbers so you can add 
program lines later. 

Multiple-Statement Program Lines 
You can put more than one statement on a single program line. The first statement 
follows the line number. The second statement follows the first, with a colon 
between the two statements . Keep in mind that a single program line cannot exceed 
114 characters. 

Listing Program Lines 
You can see what program lines the computer has stored in its memory by typing the 
command LIST. Try it right now. If you have not typed NEW or turned off the 
machine since you tried the last example, you should see the following program 
lines displayed on the screen: 

LHlT 

::;i . PF~INT "EITHEH 
1 0 PFUNT "FISH" 
ZO Pf~INT "DF~" 

3 0 PFUNT "CUT" 
40 PfUNT "DAIT" 
~i 0 END 

F~EADY 

lil< 

This is called a program listing. There are variations of the LIST command which 
allow you to list one line at a time or a group of lines. The latter option is especially 
handy when you have a long program that will not fit on the display screen all at 



Chapter 3: PROGRAMMING IN BASIC 51 

once. With the last example program still in the computer's memory, typing the 
command LIST 10 causes program line 10 to appear on the display screen: 

LIST 10 

10 f"F,INT "FISH" 

READY 
m 

To list several sequential program lines , you must specify both the starting and 
ending line number, as in this example: 

LI~>T 20 tilO 

20 PFUNT "OF;:" 
30 PF;:INT "CUT" 
ilO PF;:INT "BAIT" 

F;:EADY 
~ 

In AT ARI BASIC, you can list all program lines up to and including a specific 
program line. You can also list all program lines from a specific program line up to 
the end of the program. Here are examples of those two versions of the LIST 
command: 

LIST Otl.O 

5 PfUNT "EJ:nIEf;:" 
:l 0 PFUNT "FI~;H" 

f;:U~,DY 

LI: ~:>T 30 t 32767 

30 PFUNT "CUT" 
ilO PFUNT "BAIT" 
:'jO END 

F;:EADY 

Interrupting a Listing 
You can halt a listing before it reaches the end by pressing the BREAK key. This is 
especially useful for aborting the interminable listing of a long program. 

You can temporarily freeze the listing of a program by typing CTRL-I . The listing 
will resume when you type CTRL-I again. CTRL-I allows you to review the listing of a 
long program at your own pace. 

LOADING AND SAVING PROGRAMS 
The ATARI 410 Program Recorder enables you to save a programmed mode 
program outside the main computer and later load that program back into memory. 



52 A GUIDE TO AT ARI 400/800 COMPUTERS 

Suppose you have the following program in memory: 

10 ? "FIL.LET OF FENNY SNAf([, " 
;:. () '? "IN THE CAULDFWN DOlL. AND DAf(E" 
::l () '? "EYE OF NE~T AND TDE DF FI;:DG," 
I.tO ? "~DOI... OF [:AT AND TONGUE DF DOG," 
~'i 0 '? "ADDEH ' S FOHI< AND BLIN[)-~OF~M' f.) ST 
INC" 
60 '? "LIZAfW'~; LEG AND H()~LET ' f:) ~INC;," 

7 0 ? "FOF~ A C HAI'~M DF POW I:WUL TROUBLE, 

BO ? "LII<E A HEL.L. ·- · BF~OTH BOIL.. AND [:UBBL.. 
E·· " , + 

<j> () ';) "DOUBLE t DOUJ::U:, TOIL. AND TF,DUBLE 
+ " , 
10 () '? "FIf~ [ DUF~N AND CAULDfWN BUDDLE + " 

l:lO END 

To save this program, put a tape in the program recorder. Enter the following 
command at the keyboard: 

Cf.)AVE 

The computer beeps twice. Rewind the tape to the beginning, then simultaneously 
press the RECORD and PLAY levers on the program recorder. Press any key on the 
keyboard, except the BREAK key. The tape starts to move. If the volume on the 
television set is turned up, you will hear 20 seconds of a continuous high-pitched 
tone. This will be followed by one or more short bursts of sound from the television 
speaker. The sound bursts cease when the recording finishes. The tape stops. 

At this point type NEW to erase the program from the computer's memory. Then 
type LIST to verify that it is gone. 

To load the program into the computer from the tape, enter the following 
command at the keyboard : 

CLClAD 

The computer beeps once. Rewind the tape to the beginning. Depress the PLAY lever 
on the program recorder. Then press any key on the keyboard , except the BREAK 

key. The tape starts moving. If the volume on the television set is turned up, you will 
hear several seconds of silence followed by one or more short bursts of sound from 
the television speaker. These sounds indicate the program is loading. The sound 
bursts cease when the loading finishes. The tape stops. Use the LIST command to 
verify that the program is in memory. 

Chapter 5 explores other ways to save and load programs on cassette. Chapter 7 
explains how to save programs on diskette, which is even more convenient than 
cassette tape. 



Chapter 3: PROGRAMMING IN BASIC 53 

Saving Multiple Programs on One Tape 
You may have noticed that it did not take very much tape to save the example 
program. A longer program would require more tape, but there is usually enough 
tape on one cassette to hold sevnal BASIC programs. You can save programs 
sequentially on the tape: the second follows the first, the third follows the second, 
and so on. 

Loading the second , third, and subsequent programs on a cassette is not as 
straightforward as loading the first. After you rewind the tape to the beginning, you 
must get past the first program in order to load the second , past the second to load 
the third, and so on. You can do this by typing the CLOAD command repeatedly 
until the program you want is in memory. This is a slow process, but it works . 

You can speed things up considerably by using the program recorder's tape 
counter. Reset the tape counter to 0 when you rewind the tape to the beginning 
before saving a program. After saving the first program, jot down the tape counter 
reading. This is the starting tape counter reading for the second program. Save the 
second program and note the tape counter reading at the end of it (for the start of the 
third program). 

To load the second program, rewind the tape to the beginning and reset the tape 
counter to O. Then use the FAST FORWARD lever on the program recorder to 
position the tape counter to the reading for the start of the second program. You can 
use the REWIND lever on the program recorder to back the tape up if you overshoot 
with the FAST FORWARD lever. Now use the CLOAD command to get the second 
program. 

ADVANCED EDITING TECHNIQUES 
Chapter 2 examined ways to correct typing mistakes before pressing the RETURN 

key. Here is a quick summary of those simple editing techniques: 

The BACK s key backspaces the cursor and erases characters it passes over. Characters 
are replaced by blank spaces. 
The ~ key moves the cursor one space to the left on the current display line without 
erasing the character it passes over. 
The - key moves the cursor one space to the right on the current display line without 
erasing the character it passes over. 
The TAB key moves the cursor right to the next tab stop, without erasing any characters 
it passes over. 
The BREAK key cancels the line you're currently typing. 

The CLEAR key clears the display screen and leaves the cursor in the upper left corner. 

These simple editing techniques are useful in both immed iate mode and pro
grammed mode. Let's take a look at some other editing techniques . These new 
methods are particularly useful when you want to make changes to programmed 
mode lines. 



54 A GUIDE TO ATAR1400/800 COMPUTERS 

DELETING PROGRAM LINES 
To delete an entire line, type its line number and then press the RETURN key. When 
you list the program, you will see that the line and line number are no longer part of 
the program. Here is an example: 

NEW 

F~EADY 
100 F'IUNT "V]XHJE IS ITS OWN I~EWM([)" 

1J. 0 PFnNT "IF THE SHOE FIn;, WEAF, IT" 
120 PF,INT "WHERE nI EF~E'S SMOI-([, THEF~E I 

S FIf~E" 

1:30 Pf~INT "LDOI-( BEFDF~E YOU LEAP " 
1.1! 0 PIUNT "BI:::EVITY IS THE SOUL DF WIT" 

150 END 
110 
130 
LIST 

1 0 0 PRINT "vunUE IS ITS OWN m :WM([)" 
1 Z 0 PRINT "WHEF~E THE I:~E 'S SMOf(E, THEm: I 

S FIHE" 
HO PF~INT "BF~EVITY IS THE !:;OUL OF WIT" 

150 END 

READY 

ADDING PROGRAM LINES 
You can type in new program lines in any order, at any time, in immediate mode. 
Their line numbers will determine their position in the program. The AT ARI 
computer will merge them automatically with any other program lines currently in 
memory. Try adding line 110 back into the example above. 

110 PIUNT "IF THE !:; HClE FITS, WLM( IT" 
LUll 

100 PIUNT "VnnUE :U:; ITS OWN I:;;EWAFW" 
110 prnNT "IF THE !:;HDE FIn;, WEM~ IT" 
1~'.() PI:n NT "WHEf~E THEI:~E ';~ SMDI-(E, THEI:~[ I 

~; Fn~E" 

HO PFG:NT "[:I'(EVITY IS THE S DUL OF WIT" 

1::;0 END 

READY 
~: 



Chapter 3: PROGRAMMING IN BASIC 55 

CHANGING PROGRAM LINES 
The simplest way to change a program line is to retype it. This is unsatisfactory for 
several reasons. Retyping is a time-consuming chore and the chances of typographi
cal errors are high. Fortunately, there is a way to modify program lines you have 
already entered into the computer's memory. This is possible because anything 
displayed on the screen is live. You can edit anything on the screen. By using the 
CTRL key in conjunction with several other keys, you can move the cursor around on 
the screen at will. This allows you to position the cursor at any point on any line that 
is displayed on the screen . Then you can replace, insert, or delete characters as you 
like. 

Listing the Line to Edit 
In order to edit anything, whether it is an immediate or programmed mode program 
line, or the response to a question asked by the computer, it must be visible on the 
display screen. In the case of an immediate mode line, if it's not visible, you're out of 
luck. You'll have to retype it. But you can redisplay programmed mode lines with 
the LIST statement. Simply specify starting and ending line numbers for a screen
sized section of the program. If you list too much, stop the listing with the BREAK 

key while the line you want to change is still on the screen. It doesn't matter how a 
line gets on the screen; once it's there , you can change it. 

Moving the Cursor 
There are seven keys that move the cursor. The BACK S, -, -, and TAB keys have 
already been discussed. The space bar is another. It actsjust like the- key, except it 
replaces every character the cursor passes over with a blank space . The f and j keys 
were mentioned in Chapter 2. The f key moves the cursor up one display line at a 
time. When the cursor reaches the top of the screen, the f key circles it around to the 
bottom line. Conversely, the j key moves the cursor down one display line at a time. 
When the cursor reaches the bottom of the screen, the j key circles it around to the 
top line. 

Making Changes Permanent 
You must press RETURN to effect the changes you make to a program line. The 
changes do not remain in effect if you simply move the cursor to another program 
line with the arrow keys. In that case the changes only affect the picture on the 
display screen. The cursor can be anywhere on the program line when you press the 
RETURN key. Even if the program line uses more than one display line, you can press 
RETURN with the cursor anywhere on the line. 

Canceling Changes 
There are three ways to cancel changes you've made. These only cancel changes 



56 A GUIDE TO AT ARI 400/800 COMPUTERS 

you've made since you last pressed RETURN. They are 

Press the BREAK key until the cursor is out of the program line 

Use the arrow keys to move the cursor out of the program line 

Press the CLEAR key (CTRL- <) to clear the screen display. 

Replacing Characters 
Replacing one character with another is simplicity itself. Merely position the cursor 
on the character you wish to replace , and type the replacement right over it. For 
example, with the cursor like this 

100 '? "ESTIt1ATED Tlt1[ OF rnF<IUVAI..." 

you can type the characters DEPARTURE" and get this: 

1 0 () '? " EBTIMATED TIME DF DEF'ARTUI:;;E" ~~ 

Press RETURN to effect the change . 

Deleting Characters 
There are three ways to delete characters one at a time. You can position the cursor 
over the character you want to remove and press the DELETE key (CTRL-BACK s). 
The entire program line shifts one space left to fill the void. The character disap
pears. For example, with the cursor like this 

1 () PF<INT "DUT t DAMNED !:IF'DT I DUT t I f.;ijR 
AY'" 

press the DELETE key (CTRL-BACK s) twice and you will get the following: 

10 PFUNT "DUT t DAMNED !:)f'DT 'OUT t :r f:;~Y 
'" 

The BACK S key and space bar also delete characters. They both replace the old 
character with a blank space. BACK S moves the cursor left as it erases; the space bar 
moves it right. 

Inserting Characters 
To insert characters, you must first insert blank spaces. Then you can type other 
characters over the inserted spaces. Use the INSERT key (CTRL- » to insert blank 
spaces. Each space you insert moves the rest of the entire program line one space to 
the right. If this pushes the last character of the program line past the end of the 
display line, a new display line is appended to the program line. Consider this 
situation: 

10 PI'UtH "I"'I:UCE PEl'( PDUNDIll 
20 PF(lNT "NUME:EF< OF I"'DUNDS" 
30 PF(lNT "TOT~,L PFnC[" 



Chapter 3 : PROGRAMMING IN BASIC 57 

To add some text to the end of line 10, first press INSERT (CTRL- » 21 times: 

1 0 PRINT "PRICE PEF~ PDUND ~ 

20 PRINT "NUMBER OF PDUNDS" 
30 PRINT "TOTAL PFUCE" 

Notice that a new display line opens up between program lines 10 and 20. Now type 
in the new text: 

10 PF~INT "PFUCE PEF~ POUND , WE !:>T DF THE 
I:WCI<IE!:;i 

20 PFnNT "NUME:EI:;: OF PDUND S" 
:3 0 PF~INT "TOT AL PF(ICE" 

Press RETURN to finalize the change. 

Automatic Repeat 
Hold almost any key down for a few seconds and it automatically repeats. Use this 
feature to speed up your editing work. 

REEXECUTING IN IMMEDIATE MODE 
The fact that anything on the display screen is live allows you to reexecute any 
immediate mode statements that are still visible on the display screen. You can 
reexecute an immediate mode statement just as it is, or you can edit it first. 

In either case, the first thing to do is position the cursor somewhere on the 
immediate mode line. Use the arrow keys (CTRL--, CTRL-=, CTRL-+, and CTRL-*). 

You can now make changes to the line using the techniques just described for 
replacing, deleting, and inserting characters on a line. Then, with the cursor still on 
the immediate mode line, press RETURN . The line executes. 

To see how this works, look at the following immediate mode program which 
calculates the cubic feet of storage space.in a 10 X 25 X 8 foot room: 

PRINT "CU. FT. OF SPACE = ";10)1(25)1(8 
CU. FT. OF SPACE = 2000 

READY 

• 
You can easily change this immediate mode program to calculate the storage 

space in rooms of different sizes. To change the dimensions to 10 X 25 X 14, for 
example, first position the cursor at the beginning of the immediate mode line (press 
CTRL-- four times). Now press and hold the - key (CTRL-*). The cursor will 
fast-forward along the immediate mode line. Release both keys in time to stop the 
cursor when it gets to the digit 8. If you overshoot or undershoot by not releasing the 
keys at the proper time, you can move the cursor back and forth one character at a 
time with the - and - keys . For that matter, you could move the cursor from the 
start of the line to the 8 by pressing the - key 34 times, instead of using the 



58 A GUIDE TO AT ARI 400/800 COMPUTERS 

automatic repeat feature. Still another alternative is to press the TAB key four times 
and the - key three times. Get the cursor there any way you like. 

With the cursor positioned over the 8, type in the new room dimension of 14 and 
press RETURN. 

PHINT "CU. FT. OF ~;F'ACE :'~ ";10*25*14 
CU. FT. OF SPACE = 3500 

f~EADY 

m 

PROGRAMMING LANGUAGES 
A programming language is the means of communication between you and the 
computer. There are many different programming languages. Some, like BASIC, 
are general purpose languages , while others are designed to make it easy to write 
programs in specific areas such as business, science, graphics, text manipulation, 
and so forth. Programming languages are as varied as spoken languages. In addi
tion to BASIC, other common programming languages include FORTRAN, 
Pascal, C, COBOL, APL, PL/ M, PL-l, and FORTH. 

AT ARI computers can use several programming languages, BASIC and 
FORTH among them. This book concentrates on describing how to program the 
AT ARI computers in BASIC. 

No matter what the programming language, every program statement must be 
written following a well-defined set of rules. These rules taken to gether are referred 
to as syntax. Each programming language has its own syntax. 

Programming languages, like spoken languages, have dialects. Dialects manifest 
themselves as minor variations in syntax. The AT ARI computer has several such 
dialects of BASIC. Standard ATARI BASIC (shipped with the ATARI 400/ 800 
computer) and Microsoft BASIC are available from Atari. BASIC A+ is available 
from Optimized Systems Software. Very often, programs written in one dialect will 
not work correctly when the AT ARI computer is expecting instructions in another 
dialect; this is especially true of Microsoft BASIC. Furthermore, a BASIC program 
written for the AT ARI computer may not run on another computer, even if the 
other computer also claims to be programmable in BASIC. However, having 
learned how to program your AT ARI computer in any of its BASIC dialects, you 
will have little trouble learning any other dialect of BASIC. , 

Some programming language syntax rules are obvious. The addition and sub
traction examples at the beginning of this chapter use syntax that is familiar to 
everyone. You do not have to be a programmer to understand them. But most 
syntax rules seem completely arbitrary and meaningless until you have learned the 
syntax. You should not try to seek a rationale for syntax rules; usually there is none. 
For example, why use an asterisk (*) to represent multiplication? Normally, you 
would use a cross (X) for multiplication . But the computer would have no way of 
differentiating between the use of "X "to represent multi plication or to represent the 



Chapter 3: PROGRAMMING IN BASIC 59 

letter "X." Therefore, nearly all computer languages have opted for * to represent 
multiplication. Division is universally represented by the / sign. There is no special 
reason for this selection; the division sign (-:-) is not present on computer keyboards, 
so some other character had to be selected. 

ELEMENTS OF BASIC 
Most of the syntax rules for BASIC concern individual statements. BASIC state
ment syntax deals separately with its three major elements: line numbers, data, and 
instructions to the computer. We will describe each in turn. There are also a few 
rules that pertain to the program as a whole, such as statement order. These rules 
will be covered in appropriate places throughout the chapter. 

LINE NUMBERS REVISITED 
We have already talked about line numbers to some extent. After a brief review, we 
will go into more detail. In programmed mode , every line of a BASIC program must 
have a unique line number. Line numbers determine the sequence of instructions in 
a program; the statement with the lowest line number is first and the statement with 
the highest line number is last. 

Standard AT ARI BASIC allows one- to five-digit line numbers with integer 
values between 0 and 32767. 

Line Numbers as Addresses 
In essence, line numbers are a way of addressing program lines. This is an important 
concept, since every program will contain two types of statements: 

. Statements that create or modify data, and 

. Statements that control the order in which operations are performed. 

Clearly, the things a program does must happen in a specific, reliable order. What 
good would it do if the computer executed instructions at random? Normally, 
program execution begins with the first statement in the program and continues 
sequentially (Figure 3-1). Most programs, however, have some non-sequential 
execution sequences. That is when line numbers become important. You can 
instruct the computer not to execute the next line, but instead to go to a different 
line number and continue execution there (Figure 3-2). 

DATA 
The main business of computer programs is to input, manipulate, and output data. 
Therefore, the way a programming language handles data, whether it be numbers or 
text , is very important. Will will now explore the types of data you may encounter in 
an AT ARI BASIC program. 



60 A GUIDE TO AT ARI 400/800 COMPUTERS 

Start-lO~ 

20--' 

C30~ 
40--' 

C50:> 
etc. 

FIGURE 3-1. Sequential program execution 

Start-tO") 

C
20 

30 
40.) GOTO 70 

50 J 
60 / 

C
70 

80~ 
etc. 

FIGURE 3-2. Non-sequential program execution 

Strings 
A string is any character or sequence of characters enclosed in quotation marks. We 
have already used strings with the PRINT statement as messages to be displayed on 
the screen. Here are some more examples of strings: 

"IGNORANCE IS BLISS" 

"ACCOUNT 4019-181-324-837" 

"NICK CHARLES" 

"SAM & ELLA CAFE" 

"MARCH 18, 1956" 

There is no specific limit to string length. In immediate mode, strings must fit on 
one program line. In Chapter 4 a way to combine strings in programmed mode will 
be presented. In this mode the only length restriction is imposed by the amount 
of memory available. A string with no characters in it is called the null string or 
empty string. 



Chapter 3: PROGRAMMING IN BASIC 61 

Most string characters are produced by typing at the keyboard. To get some 
characters, you just press the right key. If you want a 3, press the 3 key. Other 
characters may require the SHIFT, CTRL, CAPS / LOWR, or .AI.. keys, as described in 
Chapter 2. Appendix 0 lists all the AT ARI BASIC string characters and tells you 
which key or combination of keys produces each one. 

Non-Keyboard Characters 
Press some keys, and characters appear on the display screen. Generally, the 
characters you see are the characters the string gets. This is not the case with some 
exotic characters, though. For example, the arrow keys (CTRL--, CTRL-= , CTRL-+ 

and CTRL-*) move the cursor around. These cursor movement "characters" are not 
part of the string. Chapter 4 describes a way to make them a part of a string value. 

Non-Character Keys 
Some keys cannot produce string characters under any circumstances. For exam
ple, RETURN always ends the line you're typing. Other such keys are BREAK, SYSTEM 

RESET, SHIFT, CTRL, and CAPS / LOWR. 

Numbers 
BASIC stores all numbers in the AT ARI computer's memory with a decimal point. 
The decimal point is not fixed; there can be any number of digits on either side of it. 
If the number has no fractional part , the decimal point is assumed after the last digit. 
Numbers expressed in this way are called floating point numbers. The name refers 
to the decimal point's ability to float, accommodating fractions with different 
numbers of digits. 

You must express all numbers without commas. For example, you must use 
32000, not 32,000. 

Integers 
An integer is a number that has no fractional portion or decimal point. The number 
can be negative (-) or positive (+). An unsigned number is assumed to be positive. 
AT ARI BASIC treats integers the same as it treats any other floating point 
numbers; there is no separate class of integers . The following numbers are integers: 

o 

44 
32699 

-15 

Floating Point Numbers 
A floating point number can be an integer , a number with a decimal fraction, or just 
a decimal fraction . The number can be negative (-) or positive (+). If the number has 
no sign it is assumed to be positive. 



62 A GUIDE TO ATARI 400/800 COMPUTERS 

Here are some examples of floating point numbers: 

5 
-15 

65000 
161 

o 
0.5 
0.0165432 

-0 .0000009 
1.6 

24.0055 
-64.2 

Scientific Notation 
Very large and very small floating point numbers are represented in AT ARI BASIC 
using scientific notation. Any number that has more than ten digits in front of the 
decimal point will be expressed in scientific notation. Any fractional number closer 
to 0 than ±O.OI will be expressed in scientific notation. 

A number in scientific notation has the following format: 

± number E ± ee 

where 
± is an optional plus sign or minus sign. 

number is an integer, fraction, or combination. The number portion contains the 
number's significant digits; it is called the coefficient or mantissa. If no 
decimal point appears, it is assumed to be to the right of the coefficient. 

E is always the letter E. It stands for exponent. 

± is an optional plus sign or minus sign. 

ee is a one- or two-digit exponent. The exponent specifies the magnitude of the 
number, that is , the number of places to the right (positive exponent) or to the 
left (negative exponent) that the decimal point must be moved to give the true 
decimal point location. 

Here are some examples of scientific notation compared to the same value in 
standard notation: 

Standard Notation Scientific Notation 

1000000000 IE+09 

0.00000000 I IE-09 

200 2E+02 
-12345678900 -1.23456789E+ 10 

- 0.00000 123456789 -1 .23456789E-06 

As you can see, scientific notation is a convenient way of expressing very large 
and very small numbers. 



Chapter 3: PROGRAMMING IN BASIC 63 

Number Ranges 
The smallest (most negative) floating point number is -9.99999999E+97. The largest 
floating point number is 9.99999999E+97. When a fractional number gets closer to 
zero than ±9.99999999E-98 it will be converted to O. 

Roundoff 
It was mentioned earlier in this chapter that floating point numbers can have nine 
significant digits, but no more. For a number greater than I or less than -I, this 
means only the leftmost nine digits can be nonzero . The AT ARI computer replaces 
any digits in excess of 9 with zeros . Here are some examples (note that large 
numbers print in scientific notation): 

PRINT 12315678989 
1.231567891::+10 

F(EADY 
7-123156789123156789 
---1.23'1~';6789E+17 

F(EADY 
7---1500 0 017~:i. 75 
-150000175 

F(EADY 
790000000.7558 
90000000.7 

F(EADY 
m 
Fractional numbers between 1 and -I are subject to the same limitation_ In this 

case, though, the nine significant digits start with the first nonzero digit to the right 
of the decimal point. Here are some examples: 

PRINT .1 231567899 
0.1 2315678';> 

READY 
7-.123156789123456789 
-- 0 • 12:3156789 

F,EADY 
7-123156789.123156789 
-- 123156789 

F(EADY 
7.000000000900000007558 
9.00000007[--10 

F([ADY 
m 



64 A GUIDE TO ATARI 400/800 COMPUTERS 

VARIABLES 
Our discussions of data thus far have only considered constant values. It is often 
more convenient to refer to data items by name rather than value. Variables are used 
for this purpose. 

If you have studied elementary algebra, you will have no trouble understanding 
the concept of variables and variable names . If you have never studied algebra, then 
think of a variable name as a name which is assigned to a letter box (Figure 3-3) . 
Anything which is placed in the letter box becomes the value associated with the 
letter box name, until something new is placed in the letter box. In computer jargon, 
we say a value is stored in a variable. 

A variable does not always have to refer to the same value. This is the real power 
of variables - they can represent any legal value. You can change a variable's value 
during the course of a program. BASIC has a number of statements that do this; 
they will be described later. 

Variable Names 
Variable names can have from as many characters as will fit on a program line. The 
first character must be a capital letter. The rest of the characters in the variable name 
can be any digit or capital letter. You must end string variable names with a dollar 
sign, but not numeric variable names . Figure 3-4 illustrates these rules . 

String Variables 
Before you use a string variable , you must specify the maximum length it can have. 
You do this with the DIM statement, which we will describe later. If you fail to do 
so, an error occurs when the variable is referenced . 

String variables can refer to strings of any length . The only limit is the amount of 
memory available when the variable is used. Blank spaces in a string count toward 
its total length . Blank spaces at the end of a string, called trailing blanks, count too. 

Here are some string variable names, legal and illegal: 

Legal 

A$ 
CUSTNAME$ 
PARTl$ 
RESPONSE$ 
X8$ 

Numeric Variables 

Illegal 

$ 
9$ 

BRAND.NAME$ 
a$ 
Name$ 

Numeric variables can have integer values or floating point values . Numeric values 
are restricted to the range _1097 to + 1097

. If you attempt to store a value that is too 
large in magnitude in a numeric variable , an error occurs. When the value of a 
floating point variable gets closer to 0 than ±9.99999999 X 10-98 AT ARI BASIC 
converts it to O. 



Chapter 3: PROGRAMMING IN BASIC 65 

ATAR I MEMORY 

FIGURE 3-3. Variables 

000···00 

1 I t L""h""", mo" be $[",,"'og ,,,,.b", 
Second, third, fourth, etc. characters (optional) can 

be any letter or digit 
First character must be a letter 

FIGURE 3-4. Naming variables 

Here are some numeric variable names in AT ARI BASIC, both legal and illegal: 

Arrays 

Legal 

A 

CUSTZIPCODE 
XO 
PARTNO 

Illegal 

APPLICANT'SAGE 
3X4Z 

STOTAL 

Score 

Arrays are really nothing more than a systematic way of naming a large number of 
variables. They are used frequently in many types of computer programs. If you do 
not understand what arrays are, or how to use them, then read on. The information 
that follows will be very important to your programming efforts. 

Conceptually, arrays are very simple things. When you have two or more data 
items, instead of giving each data item a separate variable name, you give the 



66 A GUIDE TO ATARI 400/800 COMPUTERS 

collection of data items a single variable name. The collection is called an array; its 
name is an array name. Individual data items are often called array elements. The 
elements in an array are numbered. You select an individual item using its position 
number, which is referred to as its index. 

Arrays in standard ATARI BASIC can represent only numeric values. Chapter 4 
explains a way' to simulate string arrays . 

Arrays are a useful shorthand means of describing a large number of related 
variables. Consider, for example, a table of 200 numbers. How would you like to 
assign a unique variable name to each of the 200 numbers? It would be far simpler to 
give the entire table one name, and identify individ ual numbers in the table by their 
location within the table. That is precisely what an array does for you. 

As an example of array usage, consider how you might keep track of individual 
scores in a bowling tournament. There could be a separate variable name for each 
bowler (Figure 3-5). This has one advantage: the variable names can be similar to 
the bowlers' names. But what happens at the next tournament, where the bowlers 
have different names? 

How about keeping the scores in an array (Figure 3-6)? Now your program 
doesn't care which variable name refers to which bowler. We can use BOWLER as 
the array name. Each element is one bowler's score. An index (enclosed in paren
theses) follows the array name. Thus a specific data item (that is, one bowler's score) 
is identified by an array name and an index. For example, BOWLER(3) has the 
score for bowler number three. 

Although Figure 3-6 does not show it , every array has an element with an index 
of o. Therefore , there is a BOWLER(O) in addition to BOWLER(J) through 
BOWLER(IO). 

Array Dimension(s) 
You must specify the number of elements in an array before you use it. You do this 
with a DIM statement, which will be described later. 

AT ARI BASIC arrays can have one or two indexes. One-dimension arrays have 
one index; two-dimension arrays have two indexes . A one-dimension array is like a 
table with just one row of numbers (Figure 3-6). The index identifies a number 
within the single row. An array with two dimensions is like an ordinary table of 
numbers with rows and columns: one index identifies the row, the other index 
identifies the column. 

Let's extend the bowling tournament example to two dimensions. Suppose there 
are five teams, each with ten bowlers. There are four options for keeping track of the 
50 bowlers' scores. First, each bowler could have his own variable. Second, the 
entire tournament could have a a single 50-element array. Third, each team could 
have a separate ten-element array. Fourth, the tournament could have one two
dimension array (Figure 3-7). This last choice is the best. The first index of the 
two-dimension array is the team number and the second index is the bowler number 
on that team. So BOWLER(3,2) would be the score of bowler 2 on team 3. 



Chapter 3: PROGRAMMING IN BASIC 67 

'" 215 2611 135 '"0 IJ ; '" '" 172 ii i 

LEO 101\ SL' E TED J IM l.O U ART nEE 

FIGURE 3-5. Using separate variable names 

IS H 215 268 lB 170 1 ~7 195 2JI 172 17 1 

BOWI.ER/I) BOWI.ERm BOW1. ER!)) BOWLER]J) BOWI.ER(5) II(}WI.ER(6) llow I.ER(7) IfOWLERIK) BOWLER(9) BOWLER(IO ) 

FIGURE 3-6. Using an array 

16' 215 207 Ion 'SI '" 223 ' 48 Il. 

UOWlERfol.QI BOWLERI.!.!) BOWLER!J.:! I BowLERI.:.], 1I00\'LERI .1.·Q UO\\' \.E R(,Ul BDIA' LF.R(J ,6] BOWLfR(J.1I BOWLER(4.81 BOWLER(4.9) 

I ~8 19) t l!4 '" 207 210 22.1 '76 207 229 

BOWlER(3.Q) HOWLERi),]) BOWLF.R{3.2 ) HOWLER{3JI ROWLERIH) UOWLE R(.\.5) UOWLERIJ,6) BOW LER]])) BowLERi3,8) 80WLERO.9) 

'" '" 202 201 202 110 162 ,70 131 ,14 
UOWLER(2.0) BOWLER!:! . I ) BOWLER!:!.:!) BOWI.ER!:!.3) HOWLER]:!,'" IlOWUR!,,5) BOWLER(2.6) HOWLER!:!.7) BOWLER!:!.!!) !JOWl.ERe:!.9} 

13. 131 16. 110 211 Il. 218 203 'OJ 
BOWLERII,O) BOWLER(I.I) BOWLER! 1.2) HOWLERI IJ) tJOWLEH.( 1 . .\ 1 JlOWI.ERII.5 1 1I0WLERII.M BowLERII.7) BOWLER( 1.8) nOW I. EH.( 1.9) 

III '" IJl '" 206 WI 2 11 '" 169 '64 
BOWL[RIO.O) BOWLER(O. I) BOWLER(O.:!) BOWLER/O.]) BowI.ER(OAJ BOWLER(O.5 1 BOWLERIO.b) IlOWLER(O.7) nOWLER(O.K) BOW\.E R(O.'I) 

FIGURE 3-7. Using a two-dimension array 

EXPRESSIONS 
How do you combine the values of variables and constants to get new values? You 
use expressions. Remember how we calculated the values of simple arithmetic 
problems in immediate mode? The following statement tells the AT ARI computer 
to add 4 and 6 and display the sum: 

PF~INT 4+6 
10 

F~EADY 

li1i 



68 A GUIDE TO AT ARI 400/800 COMPUTERS 

This statement is almost identical: 

PRINT A+E: 
o 

HEADY 
m 

It tells the computer to add the values of numeric variables A and B, and then 
display the sum. 

The plus sign specifies addition. Standard computer jargon refers to the plus sign 
as an operator. Variables A and B are operands. The plus sign is an arithmetic 
operator because it specifies addition, which is an arithmetic operation. 

Arithmetic operators are easy enough to understand; everyone learns to add, 
subtract, multiply, and divide in early childhood. But there are other types of 
operators: relational operators and Boolean operators. These are also easy to 
understand, but they take a little more explanation since they involve more abstract 
notions. 

Each category of operators defines a type of expression. There are numeric 
expressions, relational expressions, and Boolean expressions. 

Compound Expressions 
The simplest expression consists of one or two operands and an operator. You can 
combine simple expressions to form more complex ones. You can use one or two 
simple expressions as the operands of a larger expression. It in turn can be an 
operand in another expression, and so on . We will call these built-up expressions 
compound expressions. Most expressions are compound expressions. 

Precedence of Operators 
Compound expressions call for more than one operation to occur. For example, 
this statement calls for both addition and division in the same expression: 

PFUNT A+E:/l0 

There is a standard scheme for determining in what order to evaluate an expres
sion. These rules of precedence will be outlined for numeric, relational, Boolean, 
and mixed-type expressions, in that order. First, let's look at a way to override the 
standard order of evaluation. 

Overriding Standard Precedence 
You can change the order in which the AT ARI computer evaluates expressions by 
using parentheses . Any operation within parentheses is performed first. When more 
than one set of parentheses is present, the AT ARI computer evaluates them from 
left to right. 

One set of parentheses can enclose another set. This is called nesting. The AT ARI 
computer evaluates the innermost set first, then the next innermost, and so forth . 



Chapter 3: PROGRAMMING IN BASIC 69 

Parentheses can be nested to any level. You may use them freely to clarify the order 
of operations being performed in an expression. 

Here are some immediate mode arithmetic calculations which use parentheses: 

PF\INT (2+10»)1(3 
36 

F~EADY 

Pf~INT « (2+10»)1(3 ) +31>)1(10 · 
670 

f~EADY 
PRINT - (2 A (3+(8 /4») 
-:31.99993444 

f~EA[)Y 

j§ 

Numeric Expressions 
Numeric expressions operate on numeric variables and constants. They use arith
metic operators: addition (+), subtraction (-), multiplication (*), division (f), and 
exponentiation ( " ). They also use the unary minus (-) operator to indicate a 
negative numeric value. Operations are performed in this order: unary minus first, 
followed by exponentiation, then multiplication and division, and finally addition 
and subtraction. Operations of equal precedence are performed in order from left to 
right. 

Here are some numeric expressions: 

87.5 - 4.25 results In 79 
1.5 " (3 / 2/ 2) results In 1.35540299 
AL * (PL - 3.1 * CB) results In the value of AL times the 

result of subtracting the prod
uct of 3.1 times the value of 
CB from the value of PL 

7.5 * 2/ 5 results In 3 

Relational Expressions 
Relational operators allow you to compare two values to see what relationship one 
bears to the other. You can compare whether the first is greater than, less than, 
equal, not equal, greater than or equal, or less than or equal to the second value. The 
values you compare can be constants, variables, or any kind of expressions. If the 
value on one side of a relational operator is a string, the value on the other side must 
also be a string. Other than that, you can compare one type of value to another using 
relational operators. 



70 A GUIDE TO ATARI400/800 COMPUTERS 

TABLE 3-1. Relational Operators 

Operation 

Less than 

Greater than 

Equal to 

Not equal to 

Operator 

< 
> 
= 

Greater than or equal to 

Less than or equal to 

<> 
> = 
< = 

If the relationship is true, the relational expression has a numeric value of I. If the 
relationship is false , the relational expression has a numeric value of O. 

Table 3-1 lists relational operators. They all have the same precedence. When 
more than one is present in a single expression, they are evaluated from left to right. 

Here are some examples of relational expressions: 

1 = 5 - 4 

14 > 66 

15 >= 15 

"AA"> "AA" 

"DUDE" < "DUKE" 

(A = B) = (A$ > B$) 

results In 

results In 

results In 

results In 

results In 

I (true) 

o (false) 

I (true) 

o (false) 

I (true) 

depends on the values of the 
variables . If the value of A is 
equal to the value of Band 
the value of A$ is greater 
than the value of B$, then 
this expression results in 
I (true) . 

Relational expressions are easy enough to understand . One way they can be used 
is a bit more difficult: relational expressions can be part of a numeric expression. 
Relational expression values 0 (false) and I (true) are legitimate numeric values. 
This can be confusing. For example, what meaning does the expression (9 = 9) * 4 
have? None, outside of a BASIC program. But in BASIC, (9 = 9) is true. True 
equates to I. Therefore (9 = 9) * 4 is the same as I * 4, which results in 4. Here are 
some examples: 

25 + (14) 66) 

A + (I = B - 4) 

equals 

equals 

25 + 0 
A + I if B = 5, or A + 0 otherwise. 



Chapter 3: PROGRAMMING IN BASIC 71 

String Comparisons 
You may be wondering what rules the AT ARI computer uses when it compares 
strings. There are two considerations. First is string length. Strings of unequal 
lengths are not equal. (Remember that blanks count toward string length.) If a 
shorter string is identical to the first part of a longer string, the longer string is 
greater than the shorter string. 

The second consideration is whether the strings contain the same characters, in 
the same order. Strings are compared one character at a time, starting with the 
leftmost character - the first character of one string with the first character of the 
other, the second character with the second character, and so on until one of the 
strings is exhausted or a character mismatch occurs. For comparison purposes, the 
letters of the alphabet have the order A < B, B < C, C < D, etc. Numbers that 
appear in strings have conventional ordering, namely 0 < I, I < 2,2< 3, etc. Other 
characters that appear in strings, like +, -, $ , and so on, are arbitrarily ranked in the 
order shown in Appendix D. 

Boolean Expressions 
Boolean operators give programs the ability to perform logic operations. Hence 
they are often called logic operators. There are four standard Boolean operators: 
AND, OR, Exclusive OR, and NOT. BASIC on the AT ARI computer supports 
three of these operators: AND, OR, and NOT. 

If you do not understand Boolean operators, then a simple supermarket shopping 
analogy will serve to illustrate Boolean logic. Suppose you are shopping for break
fast cereals with two children, Spike and lola. The AND Boolean operator says you 
will buy a cereal if both children select that cereal. The OR Boolean operator says 
that you will buy a cereal if either child selects it. The NOT Boolean operator 
generates an opposite. If Spike insists on disagreeing with lola, then Spike's 
decision is always the NOT of lola's decision. 

Computers do not work with analogies; they work with numbers. Therefore 
Boolean logic reduces the values it operates on to I or 0 (true or false). Since 
Boolean operators work on the values 0 and I, they are most often used with 
relational expressions. Remember that relational expressions also result in a value 
of 0 or I . Boolean operators can work on other types of operands, as we will see in 
the next section. 

Table 3-2 summarizes the way in which Boolean expressions are evaluated. This 
table is called a truth table. Boolean operators have equal precedence. If several 
Boolean operators are present in the same expression, they are evaluated from left 
to right. 

Here are some examples of Boolean expressions: 

NOT «3 + 4) > = 6) results in 0 (false) 

("AA" = "AB") OR «8 • 2) = 4 /\ 2) 

NOT ("APPLE" = "ORANGE") 

AND (A$ = B$) 

results in 

results In 

I (true) 

I (true) if A$ and B$ are equal; 
o (false) if not. 



72 A GUIDE TO ATAR1400/800 COMPUTERS 

TABLE 3-2. Boolean Truth Table 

The AND operation results in a I only if both values are I. 

I AND I = I 
o AND I =0 

I AND 0= 0 

o AND 0= 0 

The OR operation results in a I if either value is I. 

lOR I = I 
o OR I = I 

I ORO = I 

o OR 0 = 0 

The NOT operation logica\1y complements each value. 

NOT 1=0 

NOTO = I 

Mixed-Type Expressions 
What if the operands of an expression don't match the operator? That depends. You 
can't use string operands with numeric or Boolean operators, only with relational 
operators. And you can compare one string only to another string. Other than that, 
you can mix types freely. The result is a mixed-type expression. 

The AT ARI computer must resolve several questions when it evaluates a mixed
type expression. Which operation does it perform first? How does it convert a value 
from one type to another? Table 3-3 lists the operators of all types, from highest 
precedence to lowest. This table shows that anything in parentheses is evaluated 
first. If there is more than one level of parentheses present, the AT ARI computer 
evaluates the innermost set first , then the next innermost, and so on. (Recall that we 
covered this concept of nesting earlier.) Next, numeric expressions are evaluated. 
After that, relational expressions are evaluated. Finally, Boolean expressions are 
evaluated. 

AT ARI BASIC converts relational and Boolean expressions to 0 iffalse, 1 iftrue. 
Conversely, it converts a numericO to false ; any other numeric value is true. Strings 
don't convert. However, the result of a string comparison is a numeric value (0 or 1), 
so you can use it in a numeric expression. 

Here are some examples of mixed-type expressions: 

Legal 

43 AND 137 
(A$ = B$) AND -6.25 
(K = M) = (Z$ = Y$) 

lIIegal 

1600 + "PENNSYLVANIA AVENUE" 
ST$ < = A 
NOT (A$) = B$ 



Chapter 3: PROGRAMMING IN BASIC 73 

TABLE 3-3. Operators 

Precedence Operator Meaning 

High Parentheses denote order of 
9 ( ) evaluation 

8 /\ Exponentiation 

7 - Unary Minus 
Arithmetic 6 • Multiplication 

Operators 6 / Division 

5 + Addition 

5 - Subtraction , 

4 = Equal 

4 <> Not equal 

Relational 4 < Less than 

Operators 4 > Greater than 

4 < = Less than or Equal 

4 > = Greater than or Equal 

3 
Boolean 

NOT Logical complement 

2 AND Logical AND 
Operators 

I OR Logical OR 

Low 

KEYWORDS 
All of the words that define a BASIC statement's operations are called keywords. 
Appendix E lists all standard AT ARI BASIC keywords. You will encounter many 
of these keywords in this chapter; others are described elsewhere in this book. 

When executing BASIC programs, the AT ARI computer scans every BASIC 
statement, seeking out keywords . It can generally tell a variable from a keyword, 
but not always. Therefore , you should keep keywords out of your variable names. 
At least avoid using keywords at the beginning of variable names. 

Abbreviating Keywords 
You learned early in this book that you can abbreviate the PRINT statement with a 
question mark. Many other AT ARI BASIC keywords can be abbreviated . You can 
often abbreviate a keyword by typing its first letter. For example, the letter L means 
LIST. How does the computer know your abbreviation is a keyword, and not a 
variable name? Simple: you put a period at the end of it. L. is the full abbreviation 
for LIST. 



74 A GUIDE TO AT ARI 400/800 COMPUTERS 

In some cases one letter is ambiguous. The letter L could mean LIST or LOAD. 
The single-letter abbreviation is arbitrarily assigned to one of the keywords, gener
ally the one used most often. For other keywords that start with the same letter, you 
have to use the first two, three, or even four letters of the keyword. LO. is the 
abbreviation for LOAD. Appendix E lists the shortest abbreviations for each 
keyword. You can always use more letters than the minimum, but you must use 
enough letters to positively identify the kt:yword . Thus you can abbreviate PRINT 
with PRIN., PRI., or just PR .. 

BASIC STATEMENTS 
Now consider the third major element of BASIC syntax: statements. Each state
ment instructs the AT ARI computer to perform some kind of operation or take 
some action. It is common practice to use the terms statement and command 
interchangeably and somewhat ambiguously. Strictly speaking, a command is an 
instruction issued in immediate mode. The same instruction in programmed mode 
is a statement. 

This chapter introduces you to programming concepts, stressing the way state
ments are used . The details you need for the most common situations are discussed 
in this chapter. You should also read the definitive statement descriptions in 
Chapter 11. These descriptions tell you all the things a statement does for you (and 
against you). 

One last caveat before beginning. Although this chapter introduces you to 
programming concepts, it cannot possibly cover programming in depth. If you need 
more instruction in programming, consult one of the BASIC primers listed in 
Appendix I. 

Remarks 
An appropriate way to begin the discussion of BASIC statements is with the one 
BASIC statement the computer ignores: the remark statement. If the first three 
characters of a BASIC statement are REM, then the computer ignores the state
ment entirely. So why include such a statement? Because remarks make your 
program easier to read. 

If you write a short program with five or ten statements, you will probably have 
little trouble remembering what the program does - unless you put it aside for six 
months and then try to use it again. If you write a longer program with 100 or 200 
statements, then you are quite likely to forget something very important about the 
program the very next time you use it. After you have written dozens of programs, 
you will stand no chance of remembering each program in detail. The solution to 
this problem is to document your program by including remarks that describe what 
is going on. 

Good programmers use remarks in all of their programs. All of the program 
examples in this chapter will include remarks , to try to get you into the habit of 
doing the same thing yourself. 



Chapter 3: PROGRAMMING IN BASIC 75 

Remark statements have line numbers , like any other statement. A remark 
statement's line number can be used like any other statement's line number. 

Assignment Statements 
Assignment statements let you assign values to variables. You will encounter 
assignment statements frequently in every type of BASIC program. Here is an 
example of an assignment statement: 

90 REM Initiali ze vari able X 
100 LET X=~l 

In statement 100, variable X is assigned the value 3. This same statement could be 
rewritten like this: 

100 X=3 

The word LET is optional; it is usually omitted. 
Here is a string variable assignment statement: 

215 A$ = "AU';D f~AN" 

The string variable A$ is assigned the characters ALSO RAN. Notice that the 
characters are enclosed in quotation marks . The quotation marks do not become 
part of the string value. 

Here are three assignment statements that assign values to array variable 
BOWLER( ), which we encountered earlier when describing arrays: 

200 REM BDWLER() h as bowler's score s 
210 BDWLER(I) =150 
220 BDWLER(2) =2 10 
230 BDWLER(3)=Z68 

Remember, more than one statement can be placed on a single line; therefore the 
three BOWLER( ) assignments could be placed on a single line, as follows: 

200 REM BOWLER() ha s bowler 's score s 
210 BOWLER(1) =1 50:BOWL ER( Z)=Z1 0:S0WLER 
(3)=268 

Recall that a colon must separate adjacent statements appearing on the same line. 
Assignment statements can include any of the arithmetic or logical operators 

described earlier in this chapter. Here is an example of such an assignment 
statement: 

100 V=33+7/9 

The statement above assigns the va lue 33.77777771 to numeric variable V; it is 
equivalent to the following three statements: 

90 REM X a nd Y need to be initialized 
se par atel ~ for l ater use 
100 X:::7 
liD Y:::9 
120 V <l ~I+ X /Y 



76 A GUIDE TO AT ARI 400/800 COMPUTERS 

which could be written on one line like this: 

100 X=7 :Y=9:V=33+X/ Y 

The following are assignment statements that perform the Boolean operations 
given earlier in this chapter: 

9 0 REM These exaMPles were de scri b e d e 
a rlier in the chapter 
100 A=NOT«3+q)~6) 
1:L 0 B""' ( "At-,",::: "AE:") ()F( « E))\(2) " ( ' I":.:') ) 

DATA and READ Statements 
When a number of variables need data assignments in an AT ARI BASIC program, 
you can use the DATA and READ statements rather than the type of assignment 
statement described earlier. Consider the following example: 

5 REM Initialize all variables 
10 DATA 10, 20, -4, 300 
20 READ A.E:.C.D 

The statement on line 10 specifies four numeric data values. These four values are 
assigned to four numeric variables by the statement on line 20 . After the statement 
on line 20 is executed, A = 10, B = 20, C = -4, and D = 300. 

All the DATA statements in your program construct a single list of values (Figure 
3-8). For example, a DATA statement that specifies ten values would construct a 
ten-entry list. Two DATA statements each specifying five of the ten data entries 
would construct exactly the same list. 

READ statements use a pointer to the list of DATA statement values. The 
pointer starts at the beginning of the list. Each time a READ statement uses a value 
from the list, it moves the pointer ahead to the next value (Figure 3-9). The first 
READ statement executed in a program starts with the first value on the list and 
takes values sequentially, assigning them to variables named in the READ state
ment. The second READ statement executed starts with the next unassigned list 
value. The third READ statement executed picks up where the second one left off, 
and so forth. 

The DATA list can contain both numeric and string values . The values must be 
constants, not expressions. The AT ARI computer will not evaluate expressions. 
You can use scientific notation to express numeric constants. Do not enclose string 
constants in quotation marks. The AT ARI computer includes them as part of the 
string value. 

What you see is what you get . Look at these two statements: 

10 DATA 0, - 0.8.1. 2558E3 
20 DATA A+B, TOTAL,NAMES 

The statement on line 10 has three numeric values: 0, - 0.8, and 1255.8 (note the use 
of scientific notation). The statement on line 20 has three string values. The first 
value is three characters long: A + B. The second va lue is six characters long; the 



Chapter 3: PROGRAMMING IN BASIC 77 

10 DATA 10, 20, 30, 40, 50,60,70,80,90 , 100 } 

. .. \ 
First !1st Item -110 

20 I 

10, 20,30, 40, 50}~ ~~ 

60, 70, 80, 90, 100 }-ll! > 
90 

100 _ Last list item 

10 DATA 

190 DATA 

FIGURE 3-8. Building a list of values with a DATA statement 

10 DATA 10,20,30,40,50,60,70, 80 , 90 . 100 ----

Assigns DATA List 

A = 10 { 10 
_______ B = 20 1 20 

...-A-. C = 30 30 

220 READ A, B, C ./ { ~~ 

C= 40~{60 
~D=50 70 

340 READ C,D /; I~~ 
A = 60 
E = 70 

/~:~~ 
...-"'--. 

490 READ A, E, F , G 
500 READ B • B = 100 

FIGURE 3-9. READ statements access the list of DATA values sequentially 

blank space ahead of the word TOTAL is part of the string value, The third string 
value is the five characters NAME$. 

When you assign values to variables using a READ statement, each variable 
must be the same type (string or numeric) as the corresponding value it is assigned 
from the DATA statement list. Any character can be assigned to a string variable, so 
no possibility of a type mismatch error exists, An error will occur if there is an 
attempt to assign a string value to a numeric variable. 



78 A GUIDE TO AT ARI 400/800 COMPUTERS 

10 DATA 10,20, 30,40,50,60, 70,80, 90,100 -----

Assigns 

. A = 10 { 

. ~-;;:-----. B = 20-
220 READ A, B, C C = 30 

C=40/ 
~D=50 

-'-
340 READ C, D 
350 RESTORE - _____ -

A=IO 
E = 20 

/~:!: 
~ 

490 READ A, E, F, G 
500 READ B • B = 50 

{ 

DATA List 

10 
20 
30 
40 
SO 
60 
70 
80 
90 

100 

FIGURE 3-10. RESTORE statement starts over at the top of the list 
of DATA statement values 

RESTORE Statement 
You can at any time send the pointer back to the beginning of the list of DATA 
statement values by executing a RESTORE statement (Figure 3-10). A variation of 
the RESTORE statement lets you put the pointer at the first data value on a specific 
line number. Here is an example: 

10 DAT A 1, 2, 3,4, 5 
2 0 DATA 10,20, 3 0 ,4 0, 5 0 
3 0 F~EAD A 
'I 0 PI:~INT {~ 

49 REM Move DATA poi nte r t o line 2 0 
~j 0 F~E ~>Tm~E ;?, 0 
/.,0 F(EAD A 
7 0 PIUNT A 

The READ statement on line 30 assigns the first value on the list of DATA 
statement values to variable A. The RESTORE statement on line 50 moves the 
pointer to the start of line 20. The next READ statement (line 60) picks up the first 
value there and assigns it to variable A. 



Chapter 3 : PROGRAMMING IN BASIC 79 

DIM Statement 
If you plan to use arrays or string variables in your program, you need to declare 
their maximum sizes (or dimensions) in DIM statements. One DIM statement can 
provide dimensions for any number of arrays and string variables, as long as the 
statement fits on a standard program line. The computer must first encounter a 
string variable or array in a DI M statement. Error 9 occurs if you try to use a string 
variable or array without first dimensioning it. 

You dimension an array or string variable by stating its name and then specifying 
its maximum size. Enclose the size in parentheses. Only one- or two-dimension 
numeric arrays are allowed - no string arrays or numeric arrays with three or 
more dimensions. The following example dimensions a five-character string, a 
numeric array of 13 elements (0 through 12), and a second array of 20 elements: 

10 OIM 51$(5), NB(12), BDWLER(1,9) 

The number following a string variable name in a DIM statement is the maxi
mum length that string can be during the program. The number (or numbers) 
following an array name in a 01 M statement is equal to the largest index value that 
can occur in that particular index position. But remember that indexes begin at O. 
Therefore SCORE(lO) dimensions array SCORE( ) to have II values, not 10, since 
indexes 0, 1,2,3,4,5,6,7, 8, 9, and 10 will be allowed . BOWLER(8,10), likewise, 
specifies a two-dimension variable with 99 elements, since the first dimension can 
have values 0, 1,2,3, etc., while the second dimension can have values 0 through 10. 

You cannot use an array index higher than the number of elements you declared; 
each index must have a value between 0 and the number of elements dimensioned. 
You can assign a string variable a value that's too long. The AT ARI computer 
assigns the first part of the value to the variable. It disregards the extra characters at 
the end of the value. 

Redimensioning Arrays and Strings 
Once you have dimensioned an array or string variable you cannot redimension it 
unless you first clear it. AT ARI BASIC lets you undimension every string variable 
and array, all at once. The CLR command does this. It also sets every simple 
numeric variable to 0 and resets the pointer to the list of DA T A statement values, 
like the RESTORE statement does. This is shown in the following example: 

X:<1 7 

F~EADY 

f"FnNT X 
::17 

READY 
10 DATA 1,2,3,4,5 
F~EA[) A, [: 



SO A GUIDE TO ATARI400/800 COMPUTERS 

I:~EADY 

PF~INT A,E: 
1 

,., 
L. 

F~EADY 

Cl..f~ 

F~EADY 

PF~INT X 
0 

F~EADY 
F~EAD A, E: 

F~Er., DY 

PF~INT A,E:: 
1 '2 

F~EA[)Y 

~. < 

BRANCH STATEMENTS 
Statements within a BASIC program are normally executed in ascending order of 
line numbers (Figure 3-1) . Branch statements change this execution sequence. 

GOTO Statement 
GOTO is the simplest branch statement. It allows you to specify the statement 
which will be executed next. Consider this program fragment: 

20 A:::: "1 
30 GDTD 100 
it () [: = 5 
50 C::::6 
100 PIUNT A 
110 PFUNT E:JKC 

The statement on line 20 is an assignment statement; it assigns a value to variable A. 
The next statement is a GOTO; it specifies that program execution must branch to 
line 100. Therefore, the instruction execution sequence surrounding this part of the 
program will be line 20, then line 30, then line 100. Of course, some other statement 
must branch back to line 40. Otherwise the statements on lines 40 and 50 will never 
be executed. 

You can branch to any line number, even if the line has nothing but a remark on 
it. However, the computer ignores the remark, so the effect is the same as branching 
to the next line. For example, consider the following branch: 

ZO A":"1 
30 GOTD 70 
"10 B= 5 
70 REM This line is onl~ a reMark 
ao PF~INT A, E:: 



Chapter 3: PROGRAMMING IN BASIC 81 

Program execution branches from line 30 to line 70 . There is nothing but a 
remark on line 70, so the computer moves on to line 80, executing the statement 
there. Even though you can branch to a remark, you might as well branch to the 
next line, like this: 

2 0 A''' ' j 
::l O celTO BO 
'10 E:"' :,i 
7 0 REM This line i s onl~ a reMark 
B 0 f"I'GNT A , [: 

The AT ARI computer will calculate the line number to branch to. Instead of an 
actual line number, use a numeric expression, like this: 

10 DATA 0,1, 2 , 3, 4 
2. 0 F<EAD (.' 1 

::l O PFUNT A 
'10 COlD J 0 )l(A+~"j 0 
:.'jO PFUNT "LINE ~'.'jO" 

6 0 GOlD 2 0 
UO ["FUNT "I._INE DO" 
9 0 GOlD 2.0 
1:L 0 F'I:<INT "LINE :1.10" 
1 2 0 1:<E ~:; TCmE 

130 COlD ;~ O 

The computer has to evaluate the expression on line 40 before it knows where to 
go. It branches to line 50 if variable A is 0, to line 80 if A is 1, or to line 110 if A is 2. 

Attempting to branch to a nonexistent line number causes an error. This is true 
whether the computer has to calculate the line number or not. 

To test the calculated GOTO statement, type in the following program, then 
execute it by typing RUN: 

9 REM Initi a li z e variab l e B 
10 [: "'4 
2 0 f"FnNT [: 
::J O (.1 ,,- [::-·<:l 
'10 GDlD 30 )l( {>,+~'.'j() 

;jO END 
79 F<EM [:''' '1 
DO f"1'(Hn [: 
9 0 [:"';'j 
:I. 0 () COlD ~~ O 

1. 09 I:<EM B '=' ~j 

110 PF<INl [: 
12 0 E,:'< l 
130 GOlD Z O 

Can you account for the sequence in which digits display (4,4,5,5 , 3)? Try rewriting 
the program so it displays the repeating sequence 3, 4, 5, 3, 4, 5, 3, 4, 5, etc. 



82 A GUIDE TO ATAR1400/800 COMPUTERS 

Computed GOTO Statement 
There is another kind of GOTO statement that uses an expression and a list of line 
numbers . The following program segment illustrates this type of statement: 

10 OATn 0,1, 2,3,4 
20 F~EAO A 
30 PIUNT A 
40 ON A+1 GOTO 50 ,8 0,110 
~50 PIUNT "LINE ~'jO" 

60 GOTD 2 0 
80 PIUNT "LINE BO" 
90 GOTD 20 
110 PF(INT "U:NE 110" 
12 0 1:~[!3T DF(E 

1:30 GOTD ;'~ O 

The statement on line 40 is a computed GOTO. If variable A is 0, the program 
branches to line 50. If A is I , the program goes to line 80; if A is 2, execution 
continues at line 110. 

The ON-GOTO statement contains a numeric expression and a list of line 
numbers. The AT ARI computer evaluates the expression. If its value is I, the 
computer branches to the first line number on the list; if 2, to the second; if 3, to the 
third; and so forth. If the value is 0, or greater than the number of line numbers in 
the list, the program just executes the statement right after the ON-GOTO 
statement. 

The expression can't have a negative value or a value greater than 255, or an error 
results. The line numbers in the list can be numeric constants or expressions. 

The following AT ARI BASIC program demonstrates how the computed GOTO 
statement works. 

10 D""I 
ZO f"I:~IN T I::: 
3 0 A""D·...;Z 
10 DN A GOlD 180,70,150 
19 REM Value is zero or l arge 
~.'j 0 PF~lN T "ONCE (\CAIN" 
59 REM Start over 
6 0 CelTD 10 
C, 'j' 1:( Et1 I::: '''' il 
70 PIUNT I::: 
tlO 1::::: 5 
90 COTD 3 0 
1"19 I:(EM E:'<5 
1::;0 PIUNT I::: 
160 [:<3 
17 0 COTD 2 0 
17'-; f~EM D"" 1 
1 B 0 PI:(INT D 
190 [: '''6 
ZOO COTD 30 



Chapter 3: PROGRAMMING IN BASIC 83 

LOOPS 
GOTO and ON-GOTO statements let you create any sequence of statement execu
tion that your program logic may require . But suppose you want to reexecute an 
instruction (or a group of instructions) many times . For example, suppose array 
variable A( ) has 100 elements , and each element needs to be assigned a vaiue 
ranging from a to 99. Writing 100 assignment statements would be incredibly 
tiresome. Even using DATA and READ statements would be tedious. It is far 
simpler to reexecute one statement 100 times in a loop. 

FOR and NEXT Statements 
You can create a loop using the FOR and NEXT statements, like this: 

1.0 DIM ,':; ( 9'Y) 
2 0 FOR N= O TO 'Y'Y STEP 1 
3 0 ACN) "' :1. 
'10 NE XT N 

Statements between FOR and NEXT are executed repeatedly. In the above 
example, a single assignment statement appears between FOR and NEXT; there
fore this single statement is executed repeatedly. This kind of program structure is 
called a FOR- NEXT loop. 

So you can see the workings of FOR-NEXT loops, the following program dis-
plays the values it assigns to array A( ) within the loop: 

10 DIM A C 9(1) 
2 0 FOR N= O TO 99 STEP 1. 
:,) 0 ACN ) == N 
3 5 ["fUNT A C N) 
'fa NEXT N 
5 0 END 

When you run the program, it displays 100 numbers , starting at a and ending at 99 . 
Statements between FOR and NEXT are reexecuted the number of times speci

fied by the index variable appearing directly after the keyword FOR; in the 
illustration above this index variable is N. N is specified as going from a to 99 in 
steps of I. Variable N also appears in the assignment statement on line 30. There
fore , the first time the assignment statement is executed , N will equal 0 and the 
assignment statement will be executed as follows: 

3 0 ACO) " O 

The value of N starts at a and increases by the step value, which is specified on line 20 
as I. N therefore equals 1 the second time the assignment statement on line 30 is 
executed. The assignment statement has effectively become this: 

:3 0 t, ( l) ''' 1. 

Index variable N continues to be incremented by the specified step value until the 
maximum value, 99 in this case, is reached or exceeded . 



84 A GUIDE TO ATARI 400/800 COMPUTERS 

The step does not require a value of I; it can have any numeric value . Change the 
step to 5 on line 20 and reexecute the program. Now the assignment statement is 
executed just 20 times. Incrementing the index variable 19 times by 5 will take it to 
95. The 20th increment will take it to 100, which is more than the specified 
maximum value of 99. Keeping the step at 5, you can cause the assignment 
statement to be executed 100 times by increasing the maximum value of N to 500. 
Try it. (Remember to change the DIM statement as well.) 

The step size does not have to be positive. If the step size is negative, however, the 
initial value of N must be larger than the final value of N. For example, if the step 
size is -I and we want to initialize 100 elements of A( ) with values ranging from 0 to 
99 , then the statement on line 20 would have to be rewritten as follows: 

:1.0 DH1 A('?'I) 
2 0 FOR N=99 TO 0 STEP - :I. 
::lO A (N) ""N 
:l:;j PIUNT ,!, (N) 
'10 NEXT N 
:;j() END 

Execute this program to test the negative step. 
If the step size is I (and this is frequently the case), you do not have to specify a 

step size definition. Simply omit the keyword STEP and the step value. In the 
absence of any definition, BASIC assumes a step size of I. 

You may specify the initial and final index values and the step size using 
expressions. 

Nested Loops 
The FOR-NEXT structure is referred to as a program loop since statement execu
tion loops around from FOR to NEXT, then back to FOR. This loop structure is 
very common. Almost every BASIC program you write will include one or more 
such loops. Loops are so common that they are frequently nested one inside the 
other like a set of mixing bowls . There can be any number of statements between 
FOR and NEXT. Frequently there are tens, or even hundreds of statements. And 
within these tens or hundreds of statements additional loops may occur. Figure 3-11 
shows an example of a single level of nesting. 

Complex loop structures appear frequently , even in relatively short programs . 
Figure 3-12 shows an example with the FOR and NEXT statements but none of the 
intermediate statements. In this example, the outermost loop uses index variable N. 
It contains three nested loops that use indexes X, Y, and Z. The X loop contains two 
additional loops that use indexes A and B. The Y loop contains one nested loop that 
uses index P. The Z loop contains no nested loops. 

Loop structures are very easy to visualize and use. There is only one error which 
you must avoid: do not terminate an outer loop before you terminate an inner loop. 
Figure 3-13 illustrates such an illegal loop structure. 

The ATARI computer makes a note in its memory of the location of each FOR 
statement it executes. That way it knows where to loop back to when it encounters a 



10 

~
;~ 
'10 

[~~: 
70 
ElO 
90 

Chapter 3: PROGRAMMING IN BASIC 85 

DIM A(99) 
FOR N=O TO 99 STEP :I. 
A(N)'-=N 
REM Print all values 
FOR J:::O TO N 
PFUNT t-. (J) 

NEXT J 
NEXT N 
END 

of A() SD far 

FIGURE 3-11. Single-level FOR-NEXT nesting 

- 50 FOF( N::::l TO lO 
- 60 FOF, X:::;?:5 TO 3'17 ~)TEP ~J 

[ 

100 FDI:;: A::::9 TD () STEr- ... 1 

1'10: N[X1 A 

[ 

ZO 0 FDf, D:::;?5 TD :I. () 0 nTEP :5 

280: NEXT [: 
300 NEXT X 

. 
- 500 FClf( Y::::l TD ~?O ::;TEP ? 

600 FOR P=lO TD 20 

[650: NEXl P 
-700 NE XT Y 

n:m 7:.:::l TO :I. () 

[ :lO()~ 

1090 NEXT Z 

-1200 NE XT N 

FIGURE 3-12. Complex FOR-NEXT loop nesting 
(Intermediate program lines omitted for clarity) 



86 A GUIDE TO AT ARI 400/800 COMPUTERS 

~
~.JO 

60 

.I. 0 (J 
ZOO 

I ()I, N ~<1. TO :I. 0 
I' OR X=2 5 TO 3 47 STEP 3 

NEX f N 
NE XT X 

FIGURE 3-13. Illegal FOR-NEXT loop nesting 

NEXT statement. When the loop terminates, the computer erases the notation from 
its memory. Therefore, if a program habitually branches out of FOR-NEXT loops , 
memory gradually fills up with unexpunged FOR statement location notations. 
Eventually there will be no memory left, and the program will come to a halt. 

Every NEXT statement must have a matching FOR statement. An error occurs if 
the computer cannot pair up a NEXT statement with an earlier FOR statement. 

SUBROUTINE STATEMENTS 
Once you start writing programs that are more than a few statements long, you will 
find short sections of program that are used repeatedly. Suppose you have an array 
variable (A( ), for example) that is reinitialized frequently at different points in 
your program. Would you simply repeat the three instructions that constitute the 
FOR-NEXT loop that was described earlier? Since there are just three instructions, 
you may as well do so. 

Suppose the loop has 10 or II instructions that process array data in some fashion 
before it initializes the array. If you had to use this loop many times within one 
program, rewriting the same 10 to 15 statements each time you wished to use the 
loop would take time, but more importantly it would waste a lot of computer 
memory (Figure 3-14). 

You could separate out the repeated statements and branch to them. The group of 
statements is then referred to as a subroutine. 

A problem arises, however. Branching from the main program to the subroutine 
is simple enough. The subroutine has a specific starting line number, so you could 
execute a GOTO statement whenever you wish to branch to a subroutine. But at the 
end of the subroutine, to where do you return (Figure 3-15)? If two GOTO 
statements branch to the subroutine, the subroutine may have to return to either 
one. The solution is to use special subroutine statements. Instead of a GOTO, use a 
GOSUB statement. 

GOSUB and RETURN Statements 
The GOSUB statement branches in the same way as a GOTO, but in addition it 
remembers the location to which it should return (Figure 3- I 6). In computer jargon, 
we say GOSUB calls a subroutine. 



Chapter 3: PROGRAMMING IN BASIC 87 

etc. 

FIGURE 3-14. Duplicate routines use up memory 

10 

100 
110 

190 
200 

250 
260 

GOTO 2000 Subroutine 

-------....... 2000 -- Start GOT02000/; 
GOTO 2000 2150 _ End 

480 GOTO 2000 
500 

Return 
where? 

FIGURE 3-15. Branching to a subroutine with GOTO 



88 A GUIDE TO ATAR! 400/800 COMPUTERS 

Main Program Subroutine 

I 
100 GOSUB 2000 

110 I 

2000T "'---Start 

2150 RETURN -End 

FIGlJRE 3-16. Branching to a subroutine with GOSUB 

You end the subroutine with a RETURN statement. It causes a branch back to 
the statement that follows the GOSUB statement. If the GOSUB statement is the 
last one on the line, the program returns to the first statement on the next line. 

The three-statement loop which initializes array A( ), if it were converted into a 
subroutine, would look like lines 2000 through 2050 below: 

10 REM Main PrograM 
20 REM It is a good idea to 
30 REM diMension a ll variables 
40 REM together at the s t a rt of 
50 REM the Main prograM 
60 DIM A(99) 
7 0 GClSLJI:: 2 000 
80 REM Di sp la~ proof of return 
90 PF~INT "F(ETURNED" 
lOO END 
2000 REM Subroutine starts 
201 0 FOR N=O TO 99 
2020 A(N)'::'N 
2 030 PlUtH A (N) 
;'~()'10 NEXT N 
2 050 F(ETUF(N 

POP Statement 
Under some circumstances you will not want a subroutine to return to the statement 
following the GOSUB statement. You might be tempted to just use a GOTO 
statement to return , but that can cause a problem because BASIC is still remember
ing to where it should return. In cases like this, use the POP statement. Otherwise 
you risk an error caused by the accumulation of unused return locations. All POP 
does is make BASIC forget the most recent return location. You can then use a 
GOTO statement to branch somewhere else in the program. 

Bypass the RETURN statement sparingly. Using POP excessively to enable 
GOTO branching out of subroutines leads to tangled, confusing programs. 



Chapter 3: PROGRAMMING IN BASIC 89 

Nested Subroutines 
Subroutines can be nested. That is, a subroutine can itself call another subroutine, 
which in turn can call a third subroutine, and so on. You do not have to do anything 
special in order to use nested subroutines. Simply branch to the subroutine using a 
GOSUB statement and end the subroutine with a RETURN statement. BASIC will 
remember the correct line number for each nested return. 

The following program illustrates nested subroutines: 

10 REM Main PrograM 
20 REM It is a good idea to 
30 REM diMension all v a riables 
40 REM together at the st a rt o f 
50 REM the Main prograM 
60 DIM A( ??) 
70 GOSUI:: 2000 
80 REM Displa~ proof of return 
c,> 0 F:'IUNT "F(ETURNED" 
100 END 
2000 REM Subroutine starts 
2010 FOR N=O TO ?9 
2020 A(N)""N 
202? REM Subr. displ a ~s value 
2030 CClSUI:: 3000 
Z OLlO NEXT N 
:2 0 ~5 0 F(EnmN 
3000 REM Nested subroutine start 
:]010 PlUtH A(N) 
3020 F(ECTUFm 

This program moves the PRINT A(N) statement out of the subroutine at line 2000 
and puts it into a nested subroutine at line 3000. Nothing else changes. 

While it is perfectly acceptable and even desirable for one subroutine to call 
another, a subroutine cannot call itself. Neither can a subroutine call another 
subroutine which in turn calls the first subroutine. This is called recursion. and is 
not allowed in BASIC on the AT ARI computer. 

You can specify the line number in a GOSUB statement with a numeric expres
sion, as follows: 

100 COSUS A~500+2000 
1:l 0 F(EM 

The AT ARI computer evaluates the expression on line 100, then branches to the 
line number that results. 

Calling a nonexistent subroutine causes an error. This is true whether or not the 
computer has to calculate the line number. 

Computed GOSUB Statement 
GOTO and GOSUB statement logic is very similar. It should be no surprise that 
there is a computed GOS UB statement akin to the computed GOTO statement. The 
ON-GOSUB statement contains an expression and a list of line numbers. The 



90 A GUIDE TO AT ARI 400/800 COMPUTERS 

AT ARI computer evaluates the expression. If its value is I, the computer calls the 
first subroutine on the list; if 2, the second; and so forth. If the value is 0, or greater 
than the number ofline numbers on the list, the program just executes the statement 
right after the ON-GOS UB statement. The expression can't have a negative value or 
a value greater than 255 , or an error results . 

The program remembers where the ON-GOSUB statement is. No matter which 
subroutine gets called, the next RETURN statement branches back to the remem
bered line number. 

You can nest subroutines using ON-GOSUB statements, just as you can nest 
subroutines using standard GOSUB statements. 

Here is an example of an ON-GOSUB statement: 

100 ON A GOSUB 1000,500,5000, 23 00 
110 I:(EM 

If A is I, a subroutine beginning at line 1000 is called . If A is 2, a subroutine 
beginning at line 500 is called. If A is 3, a subroutine beginning at line 5000 is called. 
If A is 4, a subroutine beginning at line 2300 is called. If A has any value other than I 
through 4, program execution falls through to line 110 (no subroutine is called). 

CONDITIONAL EXECUTION 
ON-GOTO and ON-GOSUB are conditional statements. That is , the exact flow of 
program execution depends on the values of one or more variables which can 
change as the program is running. The exact program flow depends on the condi
tion of the variables. 

IF-THEN Statement 
The IF-THEN statement is another conditional statement. It has the general form 

IF expression THEN statement 

If the expression is true, then the statement is executed. Relational and Boolean 
expressions are most common with IF-THEN statements, but numeric expressions 
can be used as well. This statement gives a BASIC program real decision-making 
capabilities. Here are three simple examples of IF-THEN statements: 

10 IF A=8+5 THEN PRINT MS GS 
ltD IF CC ~~ ": "M" THEN IN":O 
50 IF Q{14 AND M{ Ml THEN GOTO 66 

The statement on line 10 causes a PRINT statement to be executed if the value of 
variable A is five more than the value of variable B. The PRINT statement will not 
be executed otherwise. The statement on line 40 sets numeric variable IN to 0 if 
string variable CC$ is the letter M. The statement on line 50 causes program 
execution to branch to line 66 if variable Q is less than 14, and variable M is less than 
,variable M I. Both conditions must be true or program execution will continue with 



Chapter 3: PROGRAMMING IN BASIC 91 

the statement on the next line . If you do not understand the evaluation of expres
sions following IF, then refer to the discussion of expressions given earlier in this 
chapter. 

An IF-THEN statement can be followed by other statements on the same 
program line. AT ARI BASIC executes statements that follow an IF-THEN state
ment on the same line only if the expression in the IF-THEN statement is true. If the 
expression is false, program execution drops down to the first statement on the next 
program line. Consider the following program segment: 

10 IF lJ>:I. 0 0 THEN F'IUNT "DEWEY WINS": GD 
~:;LJ[: ;~OOO 

20 T=T+V:F'RINT T 

The program will print the message DEWEY WINS and call the subroutine at line 
2000 only if the value of variable V is greater than 100. If V is less than or equal to 
100, the program will not print the message or call the subroutine, but will instead 
proceed directly to the first statement on line 20. 

A second form of the IF-THEN statement is available in AT ARI BASIC. 
Whenever the conditionally executed statement is a GOTO statement, you can omit 
the word GOTO if you wish. The following two statements are equivalent: 

10 IF MM$=OD$ THEN GOTD :1.00 

10 IF MM$ =DD$ THEN 100 

INPUT AND OUTPUT STATEMENTS 
There are a variety of BASIC statements that control the transfer of data to and 
from the computer. Collectively these are referred to as input/ output statements. 
The simplest input / output statements control data input from the keyboard and 
data output to the display screen. These simple input / output statements will be 
discussed in the paragraphs that follow. But there are also more complex 
input / output statements that control data transfer between the computer and 
peripheral devices such as the program recorder, disk drives, and printers. These 
more complex input / output statements are described in Chapters 4 through 7. 
Chapters 8 and 9 cover output statements to the display screen for graphics. 
Chapter 10 investigates outputting sound to the television. 

We have already encountered the PRINT statement, which outputs data to the 
display screen. We will discuss this statement first, before looking at input 
statements. 

PRINT Statement 
Why use the word PRINT instead of DISPLA Y or some abbreviation of the word 
"display"? In the early 1960s, when the BASIC programming language was being 
created, displays were very expensive and generally unavailable on medium- or 



92 A GUIDE TO AT ARI 400/800 COMPUTERS 

low-cost computers. The standard computer terminal had a keyboard and a printer. 
Information was printed where today it is displayed; hence the use of the word 
PRINT to describe a statement which causes a display. 

The PRINT statement will display text or numbers. For example, this statement 
will display the single word TEXT: 

10 PFaNT "TE XT" 

To display a number, you place the number, or a variable name, after PRINT, 
like this: 

10 A~:J.O 

20 PfUNT 5'~1 

The statement above displays the numbers 5 and 10 on the same line. 
You can display a mixture of text and numbers by listing the information to be 

displayed after the word PRINT. Use commas to separate individual items. The 
following PRINT statement displays the words ONE, TWO, THREE, FOUR, and 
FIVE, interspersed with the numerals that correspond to each word: 

10 PfUNT "ONE" t 1, "TWCl" t Z, "TI·H~EE" ,:], "FD 
LJF~". '1 t "FIVE",::; 
20 END 

If you separate variables with commas, as we did above, then the AT ARI 
computer automatically allocates a fixed number of spaces for each item displayed. 
Try executing the program above to prove this. If you want the display to remove 
spaces, separate the variables and constants using semicolons, like this: 

10 Pf([NT "ONE";:l ;" TWO" ; Z ; "THI:~EE" ;::J ; "FO 
l.m"i4 ; "FIV[";~::; 

2. 0 END 

Run this program to see how the semicolons work. 
You will recall from Chapter 2 that the cursor is the white square that marks the 

location where the next character you type will appear on the display screen. The 
PRINT statement also uses it. The first item in a PRINT statement is displayed at 
the location of the cursor. 

A PRINT statement will automatically return the cursor to the left margin as its 
last action. In computer jargon, this is called a carriage return. When the PRINT 
statement performs the carriage return , it also drops the cursor down one line. This 
is called a line feed. You can suppress the carriage return and line feed by putting a 
comma or a semicolon after the last value in the PRINT list . A comma occurring 
after the last value will move the cursor to where the next value would be displayed, 
if there were one. The next PRINT statement starts there . To illustrate this, type in 
the following three-statement program and run it: 

10 PIUNT "ONE",:[, " TWO" ,? 
2. 0 Pf~lNT " '1Hf([[", :J, " 1::·Ol.J f~" ,il 
]0 [ND 



Chapter 3: PROGRAMMING IN BASIC 93 

Output occurs on two lines. Add a comma to the end of the statement on line 10 and 
again execute the program. The two lines of display now occur on a single line. 

Now replace the comma at the end of line 10 with a semicolon and again run the 
program. The display occurs on a single line, but the space between the numeral 2 
and the word THREE has been removed. By changing other commas to 
semicolons you can selectively remove additional spaces. 

Numerals have been displayed thus far by inserting them directly into the PRINT 
statement. You can, if you wish, display the values of variables instead. The 
following program does the same thing as the first PRINT statement example, but 
uses array A( ) to create digits . Enter and run this program. 

~5 DIM A(S) 
10 FO I( N"":l TO ~5 

Z O f'1 (N) "" N 
30 ~~EXT N 
'10 P IUNT "ONE"; tl ( :l ) ; "nw" ; (.'1 (:2) , "THr(E 
; I~I ( ::l) ; "FOUH" ; t l ( II ) ; "FIVE" ; t l (!''j) 

~'j () leND 

You can put the displayed words into a string variable and move the PRINT 
statement into a FOR-NEXT loop by changing the program as follows: 

10 Dn1 N<1;(!"j) 

Z O DATA ONE,TWO , THH EE,FO UH ,FIVE 
]0 FCm N"" :L TO ~'j 
110 F(EAD N1; 
~'jO f"f(INT N'¥ ; N ; 
(.,() NE XT N 
69 HEM Heturn cursor to left Margi n 
7 0 PF(INT 
GO E~W 

Notice the simple PRINT statement on line 70. It performs a carriage return and 
line feed , returning the cursor to the left margin. 

INPUT Statement 
When the computer executes an INPUT statement, it waits for input from the 
keyboard. Until the computer gets the input it requires, nothing else will happen. 

In its simplest form , an INPUT statement begins with the word INPUT and is 
followed by a variable name . Data entered from the keyboard is assigned to the 
named variable. The variable name type determines the type of data that must be 
entered . A numeric variable name can be satisfied only by numeric input. To 
demonstrate numeric input , key in the following short program and run it (try 
entering some alphabetic data and see what happens): 

10 INPUT A 
Z O F'f(INT I~ 

Z5 HEM End prograM if 0 entered 
3 0 IF A=O TH EN END 
' 10 coro :lO 



94 A GUIDE TO ATARI 400/800 COMPUTERS 

Upon executing an INPUT statement, the computer displays a question mark, 
then waits for your entry. The program above displays each key as you press it. In 
computer jargon, the display screen echoes the keyboard . Press the RETURN key to 
end your entry for the INPUT statement. The PRINT statement on line 20 displays 
the number you entered , so the number actually appears twice in this program. The 
first display occurs when the INPUT statement on line 10 is executed and you make 
an entry at the keyboard . The second display is in response to the PRINT statement 
on line 20. 

The INPUT statement can input more than one value at a time. To do this, list all 
the variables for which you want to input values following the word INPUT. 
Separate the variables with commas. When such an INPUT statement is executed, 
you must respond with a separate value for each variable. Press the RETURN key 
after each value. Be sure each value is the same type as the variable to which it will be 
assigned. 

When you respond to an INPUT statement, do not use commas as punctuation in 
large numbers; enter 1000, not 1,000. 

The following example inputs two numeric values then displays these inputs: 

20 INPUT A.D 
:30 Pf(INT ,().[: 
:35 REM End progr aM if 0 i s entered 
10 IF A=O OR [:=0 THEN END 
~o;O COTO ;>' 0 

Run the program above and enter one number followed by a comma, then 
another number, and then press RETURN. Now try something a bit different. Enter 
one number and press RETURN. As you can see, the AT ARI computer reminds you 
to enter the next value. Enter another number and press RETURN . Thus, when an 
INPUT statement calls for more than one numeric value, you have a choice of 
entering all the values on one line, separated by commas, or entering them on 
separate lines. 

The INPUT statement works somewhat differently with string variables. Try this 
example: 

10 DIM A~~(9) 

20 INPUT A~; 

29 REM End prograM if null e ntr~ 

:30 IF A~;"""" THEN END 
'10 PIUNT A~I; 

50 GOTe) 20 

String variable A$ is only dimensioned for nine characters. Try entering more. 
AT ARI BASIC ignores the extra characters. 

You have to enter each string value on a separate line. If an INPUT statement 
specifies a list of variables and there are string variables in the list, the associated 
string values must be entered on separate lines. This is because AT ARI BASIC lets 
you include commas as part of a string value. You can prove this for yourself by 
running the example program above and entering the string value DOE, JOHN. 



Chapter 3: PROGRAMMING IN BASIC 95 

The following program illustrates what happens when a string variable is one of 
several variables in an INPUT statement list. Experiment with this program. Try to 
enter all four values on the same line, separated by commas. What happens? Try 
entering each value on a separate line. See what happens if you enter a numeric 
value or a comma as part of a string value. 

10 DIM AS(10I t BS(101 
20 INPUT A$tAtBStB 
30 PRINT AS t At 8S t B 
35 REM End prograM if nul l e ntr~ 
'to If" A~I;::::"" TH EN END 
~)O GOlD ?O 

Editing During INPUT 
You can use all the regular editing keys when responding to an INPUT statement: 
the arrow keys, the INSERT and DELETE keys, the TAB key, and the BACK S key. They 
all work with responses to INPUT as they would when changing program lines. 
Bear in mind that the line at which you press RETURN is the line that the INPUT 
statement gets . Try using the editing keys with the last example program. 

INPUT Statement Prompts 
The INPUT statement is very fussy; its syntax is too demanding for any normal 
human operator. Imagine some poor person who knows nothing about program
ming. On encountering the kind of error message that can occur if one comma 
happens to be out of place, he or she will give up in despair. You are therefore likely 
to spend a lot of time writing "idiot-proof" data entry programs. These are pro
grams which are designed to watch out for every type of mistake that a person can 
make when entering data. An idiot-proof program will cope with errors in a way 
that anyone can understand . 

One simple trick is to display a short message that describes the expected input. 
You do this with a PRINT statement just before the INPUT statement. The 
displayed message is called aprompt message. It appears in the PRINT statement as 
a string constant or variable. The message will be displayed on the same line as the 
input request if you end the PRINT statement with a semicolon. Here is an example: 

9 REM Test Multiplication facts 
1 0 FOI~ N:" :L TO 9 
ZO PF(INT "HDW MUCH n, "; N)I(9; 
:30 INPUT (~NS 

39 REM If wron g answert tr~ again 
10 IF ANS<>N*9 THEN GDTD 20 
19 REM Else do next probleM 
50 PF(INT "AE::~}DI,_ UTELY F(ICHT I" 
60 NE XT N 
7 0 END 

This certainly beats trying to guess which INPUT statement you are supposed to 
answer. 



96 A GUIDE TO AT ARI 400/800 COMPUTERS 

HAL TING AND RESUMING PROGRAM EXECUTION 
If a program is running and you want to stop it, press BREAK . You will see a message 
like this: 

STOPPED AT LINE 120D 

Instead of 1200, the AT ARI computer displays the actual line number at which 
program execution halted. The computer then returns to immediate mode . It 
finishes only the statement it was executing; it will begin no new statement. 

You can continue program execution by typing the command CONT. The 
computer does not pick up exactly where it left off. Execution resumes at the start of 
the next program line. For example, suppose you are running the Expense Analysis 
program (Figure 3-17), and press BREAK while the computer is executing the 
INPUT statement on line 50. When you type CONT, the program resumes at line 
60. The computer does not complete line 50. This causes problems later in the 
program. Try it yourself. 

If you are already in immediate mode, BREAK merely cancels the line you were 
typing. 

9 RE~ Anal~ze Monthl~ expenses 
10 DIM EXPNS$(10),SPENTC1) 
19 REM Expense categor~ naMes 
20 DATA RENT,PHONE,GAS,ELECTRIC,FOOD 
29 REM Enter expenses 
30 FOr, N=O TO 1 
40 READ EXPNSS:PRINT EXPNSS; 
50 INPUT X:SPENTCN)=X 
60 NEXT N 
69 REM Enter inCOMe 
70 PRINT : PF\lNT "INCDME"; 
80 INPUT INCDME 
89 REM Now COMpare inc. & expo 
90 PRINT :PRINT :PRINT "ANALYSIS---" 
1 0 0 PF,INT 
1:LO RESTORE 
120 FOR N~: O TD .It 
130 READ EXPNSS 
139 REM Calc. & print percentages 
140 PRINT EXPNS$;" IS ";SPENTCN)/INCOM 
ElI( 100 ;" /. OF INCOME" 
1:50 NEXT N 
160 END 

FIGURE 3-17. Expense Analysis program listing 



Chapter 3: PROGRAMMING IN BASIC 97 

The SYSTEM RESET Key 
You can of course interrupt your program at any time by pressing the SYSTEM 

RESET key. This is, however, a drastic measure. The program stops dead in its 
tracks. The display screen clears . The computer goes through an initialization 
process and returns to immediate mode. You can try continuing the program with 
the CONT command . As with the BREAK key, execution resumes with the program 
line after the one where the reset occurred. The more complex the program, the 
smaller your chances of continuing successfully after a reset. 

The END Statement 
The program will halt execution when it encounters an END statement, as de
scribed earlier in this chapter. The READY message appears on the display screen. 
The computer returns to immediate mode. 

As with the BREAK key, you can continue program execution by typing the 
command CO NT. Execution resumes at the program line after the one containing 
the END statement. Add the following line to the Expense Analysis program 
(Figure 3-17): 

6~; END:? "WAI..JW~;" 

Run the program. When it stops, type CONT and press RETURN. Execution 
continues at line 70; the PRINT statement at the end of line 65 is never executed. 

The STOP Statement 
AT ARI BASIC has another statement which will halt program execution: the 
STOP statement. The STOP statement displays a message like this: 

STOPPED AT LINE 12 00 

Instead of 1200, the computer displays the actual line number of the STOP state
ment, then returns to immediate mode. 

You can continue program execution by typing the command CONT. Execution 
resumes at the start of the program line after the STOP statement. To see how this 
works, add the following line to the Expense Analysis program (Figure 3-17): 

6::; SlOt::·:-:, "M()() ~;E" 

Run the program. Use the CONT command to continue the program when it stops 
at line 65. The second statement on line 65 is not executed. The computer resumes 
execution at the beginning of line 70. 

FUNCTIONS 
Another element of BASIC is the function . In some ways functions look like 
variables. In other ways they act more like BASIC statements. The discussion that 
follows shows you how to use functions. Chapter II has a complete list offunctions, 
in alphabetical order. 



98 A GUIDE TO AT ARI 400/800 COMPUTERS 

Consider the following assignment statement: 

10 A" SCm ([: ) 

The variable A is set equal to the square root of the variable B. The keyword SQR 
specifies the square root function . 

Here is a string function: 

'Z () L ::: LEN «() ~ I ; ) 

In this example the numeric variable L is set equal to the length of string variable 
D$. 

All functions except one have the same format (Figure 3-18). You specify a 
function with a keyword (like SQR for square root). In this respect functions are 
similar to statements. But functions are always followed by one argument. (The 
exception is USR, which can have more than one argument .) The argument is 
enclosed in parentheses . 

The function performs standard calculations or other operations on the argu
ment. It comes up with a value which can be used exactly like any variable or 
constant. Some functions yield numeric values , while others yield strings. For 
example, the SQR function always calculates the square root of its single numeric 
argument. The LEN function always counts the number of active characters in its 
single string argument. 

Functions can be substituted for variables or constants anywhere in a BASIC 
statement, except to the left of an equal sign. In other words, you can say that 
A = SQR(B), but you cannot say that SQR(A) = B. 

Every function in a BASIC statement is reduced to a single numeric or string 
value before any other parts of the BASIC statement are evaluated. Function 
arguments can be constants, variables, or expressions. Therefore, before the com
puter can perform the function, it may have to evaluate the function argument. It 
can then apply the function to the argument, yielding the final numeric or string 
value. Not until all functions in a given expression are evaluated is the expression 
itself evaluated . For example, consider the following statement: 

10 B=24.7 . (SQR(C)+5)-SIN(O. 2 +() 

fun ction (argument) T -C Co",,",. ",.b1<. 0, ",="00, 
strIng or numerIC 
as function requires 

Keyword that specifies 
the function 

FIGURE 3-18. Function format 



Chapter 3: PROGRAMMING IN BASIC 99 

The AT ARI computer evaluates the SQR function as soon as it retrieves the value 
of variable C. Then it evaluates the expression 0.2 + D and applies the SIN function 
to it. Finally it uses the function results in evaluating the entire expression. Suppose 
SQR(C) = 6.72 and SIN(0.2 + D) = 0.625. The expression is first reduced to 
24.7 * (6 .72 + 5) - 0.625. Then this simpler expression is evaluated. Variable B, 
then, is 288.859. 

Numeric Functions 
Here is a list of the numeric functions that you can use in AT ARI BASIC: 

SGN 

ABS 

RND 

INT 

SQR 

EXP 

LOG 

CLOG 

SIN 

COS 

ATN 

Returns the sign of an argument: + I for a positive argument, -I for a negative 
argument, 0 for a zero argument . 

Returns the absolute value of an argument. A positive argument does not 
change; a negative argument is converted to its positive equivalent. 

Generates a random number between 0 and I. 

Truncates the fractional part of the argument value . . 

Computes the square root of the argument. 

Raises the constant e (2.71828179) to the power of the argument (eBri
). 

Returns the natural logarithm of the argument. 

Returns the common logarithm of the argument. 

Returns the trigonometric sine of the argument. 

Returns the trigonometric cosine of the argument. 

Returns the trigonometric arctangent of the argument. 

Using Numeric Functions 
Use functions freely wherever they make your programming job easier. You need 
not bother with numeric functions you do not already understand , however. For 
example, if you do not understand trigonometry, you are unlikely to use SIN, COS, 
and A TN functions in your programs. 

The following short program uses a numeric function: 

10 PRINT "Enter a nUMber"; 
20 INPUT A 
29 REM DeterMine sign of entr~ 
30 B=SGN(A) 
"f0 PRINT A:" is "; 
50 IF B'"'1 THEN PRINT "positive.":GOTO 
10 
60 IF B=-1 THEN PRINT "negative.":GOTO 

10 
69 REM IF B isn't 1 or -1, Must be 0 
70 PRINT "neither positive nor negativ 
e. 1I 

80 GOTO 10 

This program figures out whether a number entered at the keyboard is positive, 
negative, or neither. 



100 A GUIDE TO ATARI 400/800 COMPUTERS 

Degrees and Radians in Trigonometric Functions 
The three trigonometric functions normally measure angles in radians. You can 
change to degrees by executing the DEG statement before using the trigonometric 
functions. Executing the RAD statement switches back to radians . Here are some 
examples: 

DEC; 

I'(E,:ADY 
? SIN(90) 
1 

F~EAD Y 
F~A D 

F~EADY 
? ~;IN(:l+5 7 :l) 

O.'yr,><yr,>9 r,> 'Yf3:3 3 

HEADY 
1$ 

String Functions 
String functions allow you to manipulate string data in a variety of ways. Here is a 
list of the string functions that you can use in AT ARI BASIC (see Chapter 4 for 
more information). 

ADR Determines where in memory a string is stored. 
ASC Converts a string character to its standard numeric code (AT ASCII) equivalent. 
LEN Counts the number of characters contained in a text string. 

STR$ Converts a numeric value to a string of digits. 

V AL Converts a string of digits to its equivalent numeric value. 
CHR$ Converts a numeric (AT ASCII) code to its equivalent text character. 

String functions let you determine the length of a string and convert numeric 
values, numeric (ASCII) codes, and string characters. Here are some examples: 

STR$(14) Converts 14 to "14". 
LEN(" ABC,,) Determines the length of the string, in this case, 3. 

VAL("14") Converts "14" to 14. 

System Functions 
Some functions give you access to the AT ARI computer on a more fundamental 
level than does BASIC in general. Chapter 4 discusses how to use these functions . 

PEEK Fetches the contents of a memory location. 
FRE Returns available free space- the number of unused RAM memory bytes. 



Chapter 3: PROGRAMMING IN BASIC 101 

USR Transfers control of the AT ARI computer to a machine language program. 

PADDLE Reports the position of the paddle controller knob. 

PTRIG Indicates whether the paddle controller button is being pushed. 

STICK Reports which way the joystick controller is leaning. 

STRIG Indicates whether the joystick controller button is being pushed. 





4 
ADVANCED 

BASIC 
PROGRAMMING 

This chapter carries on from Chapter 3 in describing how to program the AT ARI 
computer in BASIC. It covers many new BASIC statements and explores new 
facets of some familiar ones. Chapter 3 taught you enough to let you make your 
computer do some fancy tricks; this chapter shows you how to make it a useful tool. 

USING STRINGS 
The earliest computers were only able to use numbers. This made it difficult for the 
average user to communicate with them. AT ARI BASIC makes it easy to use 
characters, not just numbers, in string values. To write a truly effective program, 
you need to learn as many string handling techniques as you can. 

How Strings are Stored 
In order to make full use of strings, you must understand how characters are stored 
in the AT ARI computer's memory. This concept is really very simple. Computer 
memory can store numbers, but not characters . Characters are therefore converted 
to numbers. The AT ARI computer uses a special numeric code, a variation of the 
standard code that most computers use. The standard code is called ASCII (Ameri
can Standard Code for Information Interchange). The AT ARI computer uses a 
slightly different code, called AT ASCII (AT ARI ASCII). For example, the 
AT ASCII code for the letter A is 65, for B it is 66, Cis 67, and so on. You will find a 
complete table of AT ASCII codes and characters in Appendix D . 

103 



104 A GUIDE TO AT ARI 400/800 COMPUTERS 

The ASC function converts the first character of a string to its AT ASCII code. To 
see how this works, try the following program: 

10 DIM A$(1) 
20 PRINT "Enter one character"; 
30 INPUT A$ 
40 PRINT "The AT ASCII code for ";A$;" 
is:1I 
50 PRINT ASC(A$) 
59 REM Use BREAK ke~ to stop prograM 
60 GOTO 20 
RUN 
Enter one character?A 
The ATASCII code for A is: 
65 
Enter one character?8 
The ATASCII code for 8 is: 
56 
Enter one character? m 

Escape Sequences 
Have you tried to assign any of the cursor movement characters , like - (CTRL-+), to 
a string variable? Or have you tried to put them in a PRINT statement string 
constant? Unless you divined the way to do it from Appendix D, you probably met 
with no success. 

There is a way to get special characters into a string. Fjrst press the ESC key, then 
type the keystroke that yields the special character. This process is called an escape 
sequence. We designate an escape sequence by prefixing the name of the second 
keystroke with ESC\. For example, ESC\CTRL-+ means press the ESC key, release it, 
then press the CTRL and + keys simultaneously. The cursor doesn't move left, as it 
would had you not pressed the ESC key. Instead, the escape sequence generates a 
single character. In this case, the character is AT ASCII code 30. If you print that 
character, then the cursor moves left. Table 4-1 lists all the escape sequences and the 
characters they produce. 

What you see when you type an escape sequence is not exactly what you get as a 
string character. For example, type ESC\CTRL-+ and you will see the character - . 
Strictly speaking, this is not the character that goes in the string. You can see this for 
yourself in immediate mode . Try the following example (where you see the -
character in the PRINT statement, type ESC\ CTRL-+): 

PfnNT "Mn--N" 
ANT 

HEADY 
m 



Chapter 4: ADVANCED BASIC PROGRAMMING 105 

TABLE 4-1. Escape Sequences 

Keystroke Echoed ATASCII String 
Character Code Character 

ESC\ ESC ~ 27 Escape code 
ESC\ BACK S rn 126 Cursor left, replace with blank space 
ESC\ TAB [E 127 Cursor right to next tab stop 

ESC\ CTRL-- [!] 28 Cursor up 
ESC\ CTRL-= [!j 29 Cursor down 
ESC\ CTRL-* [B 30 Cursor right 
ESC\CTRL-+ ~ 31 Cursor left 

ESC\CTRL-BACK S [] 254 Delete character 
ESC\ CTRL- > [] 255 I nsert character 
ESC\ CTRL- < ~ 125 Clear screen 
ESC\ CTRL-TAB a 158 Clear tab stop 
ESC\ CTRL-2 [J 253 Sound built-in speaker 

ESC\ SHIFT-BACK S 0 156 Delete line 
ESC\SHIFT-> (] 157 Insert line 
ESC\ SHIFT-< ~ 125 Clear screen 
ESC\ SHIFT-TAB C 159 Set tab stop 

It is possible to display the exact characters you see when you type an escape 
sequence. You simply precede each escape sequence character with the special 

escape sequence ESC\ ESC. Try the following example (where you see "", type 
ESC\ CTRL- =; where you see ~ , type ESC\ ESC): 

Pf(INT "~,,"~","" 

"""" 

f(EADY 
il$ 

The CHR$ Function 
In AT ARI BASIC, you can produce a character directly from its AT ASCII code 
number. The CHR$ function translates an AT ASCII code number into its charac
ter equivalent. For example, to create the symbol "$", first find its AT ASCII code in 
Appendix D. Then use the code with CHR$, as follows: 

Pf(INT CHf($ ( 36 ) 
$ 

f(EADY 
m 

The CHR$ function works equally well with any AT ASCII code. Experiment in 
immediate mode using numbers between 0 and 255. 



106 A GUIDE TO ATARI 400/800 COMPUTERS 

You can use the CHR$ function in conjunction with regular strings in a PRINT 
statement, as follows : 

'? CHF~$ (34) ; "Cluee n o f "; c~m ~~ ( 1 2.3) ; CHF~$ ( 
3 11) ; CHF~$ (2.53) 
"(lU£~£H'1 of ." 

F~EADY 

m 
The CHR$ function lets you include otherwise unavailable characters like quota

tion marks as part of a string value. 

Substrings 
There is a way to extract only part of a string variable's value. Pieces of string values 
are called substrings. To designate a substring, first specify the string variable name. 
Immediately following that , in parentheses, state the position of the first and last 
characters to use. For example, suppose the present value of string variable A$ is the 
six characters ABCDEF. A$(2,4) specifies the substring BCD, the second through 
the fourth characters in the string. Substrings may look like array elements, but 
remember that AT ARI BASIC does not allow string arrays . 

Specifying the position of the last character in a substring is optional. If the last 
character is not specified, BASIC assumes you want the entire right-hand portion of 
the string. For example, if A$ is ABCDEF as before , A$(2) specifies the substring 
BCDEF. In this case, the end of the substring is the same as the end of the whole 
string. 

You can specify the first and last character positions with a numeric constant, 
variable , or expression. 

A substring can be on the left-hand side of an equal sign in an assignment 
statement, as shown in the following example: 

10 DIM M(2.0) 
20 A$ ::= "Fn~~)T N(~ME" 

30 A ~~( 7 t?) ::::"E:AU" 

40 ? A1i 
FWN 
Fn~ST BA!3E: 

f~EA[)Y 
)I 

Error number 5 occurs if there is any problem with the substring specification. 
The last substring character cannot come before the first. For example, with A$ still 
ABCDEF, substrings A$(4,3) and A$(7,1) will cause error 5. Neither the first nor 
the last character numbers can be O. 

String Concatenation 
You canjoin strings together to form one longer string. This is called concatenation 
(Figure 4-1). With concatenation, you can develop strings of any length. The only 



Chapter 4: ADVANCED BASIC PROGRAMMING 107 

I STRINGI . \ + I STRING2\ + I STRING3\ 

Becomes 

I STRING I I STRING21 STRING31 

FIGURE 4-1. String Concatenation 

limit is the amount of RAM available. The LEN function allows you to concatenate 
strings in AT ARI BASIC. Here is an example: 

10 DIM AS(10),BSC10),CSC10) 
20 AS,""WIND" 
:OlO BS'"''' PIPE" 
40 C$="LINE" 
50 A$CLENCAS)+1)=8S 
60 PHINT A~I; 
70 B$CLENCBS)+l)=CS 
ElO Pf~INT E:~~ 

90 END 
fWN 
WINDF'IPE 
PIPELINE 

F,EADY 
It. 

If you wish to concatenate strings for output only, it is just as easy to use the 
PRINT statement with semicolon separators between strings. The previous pro
gram could be rewritten as follows: 

10 DIM AS(4),B$C4),CSC4) 
20 AS""" WIND" 
clO BS,:."PIP[" 
'10 C$'" '' LINE" 
50 f"FGNT A~;;E:~~ 
60 PHINT [:SiCS 
70 END 
fWN 
WINDPIPE 
PIPELINE 

F,EADY 
It. 

This version produces exactly the same output as the first version, but uses fewer 
statements and shorter string variables to do it. This is definitely an improvement, 



108 A GUIDE TO AT ARI 400/800 COMPUTERS 

unless of course you want to use the concatenated strings again in the same 
program. 

Graphics Characters 
The AT ARI computer has 29 special graphics characters you can generate from the 
keyboard by using the CTRL key in conjunction with other keys. These are listed in 
Appendix D. You can use these characters in string values just as you would use any 
other character. By combining graphics characters in the right sequence, you can 
draw pictures. For example, you can use them to draw a playing card. Use the I and 
\ characters (CTRL-F and CTRL-G) for the corners. The - character (CTRL-M) will 
draw the top of the card , the _ character (CTRL-N) the bottom, I (CTRL-V) the left 
edge, and the I character (CTRL-B) the right edge . CTRL-; is the. character. The 
following program will draw the ace of spades. 

100 ? I IJI-- "'- . ·-- - -.- _,OM ~- ' \ I I 

110 ? "I ,; I 
120 ? "I I " 
130 ';> "I { II 

1"1 () ? "i 1" 
150 '? II! I" 
16 0 ? II! I ·' 
17 0 ' ;) "I I" 
lBO ';> "I I" 
1'f0 '? "I I" 
200 ? " I i'l 

210 ';) "I I" 
2 2 0 '? "I I" 
230 'i) "I ri 1" 
240 ? "\_._------ __ /" 

Notice that many of the lines in this program print exactly the same string. It 
would be much more efficient to establish a string variable with a value equal to the 
string printed on line 120. Then instead of repeating the string constant, the 
program could simply print the string variable. 

Numeric Strings 
A numeric string is a string whose contents can be evaluated as a number. Numeric 
values can be converted to numeric strings using the STR$ funcion . The general rule 
is that a numeric value is converted to a string in the same format in which it would 
appear in PRINT statement output. If the numeric value would display with a 
minus sign, the first character of the string is a minus sign. If the numeric value is 
very large or very small, it is expressed in scientific notation when it is either 
displayed or converted to a numeric string. This is illustrated in the following 
program: 

10 DIM N ~~ ( 2 0) 
20 ? "Entel' a l",uMbf?I' ''; 
ao INPUT N 



'to N ~~~~:;T I'( ~~ (N) 
50? "NI.!ME'I' :i. c "; N 
{,O?" StT'in(,1 ";N ~I; 

Chapter 4: ADVANCED BASIC PROGRAMMING 109 

69 REM Use BREAK ke~ to end 
70 GOlD 20 
FWN 
Enter ill nI.!Mber ?- .00 98 
Nut".e ric "-9.8[",,, 03 

String "" 9.8E>03 
Enter a n1.!Mber ? 1234567899 
NUMeric 1234567 890 
String 123 456789 0 

Entc0 r a nUMber ? ~ 

Run the program and enter some positive and negative numbers. Try a number with 
more than ten digits, and a number with more than ten nonzero digits after the 
decimal point. 

It is possible to concatenate numeric strings using the LEN function. Try entering 
a few numbers in the following program: 

10 DIM N$(100) 
20 ? "Enter a few digits"; 
30 INPUT N 
39 REM Append the latest input 
40 N$(LEN(N$)+1)=STR$(N) 
50 ? "The new nUMber is:" 
60 ? N$ 
70 ? 
79 REM Use BREAK ke~ to end 
80 GOTO 20 
F,UN 
Enter a few digits?1234 
The new nUMber is: 
1234 

Enter a few digits?5678 
The new nUMber is: 
12345678 

Enter a few digits?9098 
The new nUMber is: 
123456789098 

Enter a few digits? m 

Initializing String Variables 
There is a trick you can employ to assign the same value to every character of a 
string variable. This is illustrated in the following program: 

10 DIM S$(lOO) 
19 REM Assign character to propagate 
20 S$::"@" 



110 A GUIDE TO AT ARI 400/800 COMPUTERS 

29 REM Establish end of prop a g a tion 
30 S~H100)=:S$ 

39 REM Propagation to end of string 
40 S$(;~) ==S$ 

50 PRINT S$ 
60 END 
FWN 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@@@@@@ 

F~EADY 

• 
First, assign a value to the first character of a string (line 20). You can use any 

value; use the CHR$ function if you like. Next, you must establish the end of the 
propagation (line 30). This can be anywhere up to the maximum dimensioned 
length of the string. Then a single assignment statement propagates the first charac
ter through the string, stopping at the point you just established (line 40). 

The propagation trick on line 40 works as follows. The computer assigns the 
value of the string on the right side of the equal sign to the string on the left side. It 
does this one character at a time. The first character of the left-hand string is S$(2). 
The first character of the right-hand string is S$( I). So S$(2) gets the value of S$( I). 
N ow the program moves on to the second character of each string: S$(3) on the left, 
S$(2) on the right. The new value of S$(2) is assigned to S$(3). The assignment 
continues character by character. The left-hand string starts out one step ahead of 
the right, and stays that way. The assignment on line 40 ends when the last character 
of the left-hand string receives a value from the right-hand string. This happens 
when S$(lOO) receives the value of S$(99). 

Simulating String Arrays 
AT ARI BASIC does not allow string arrays. You can simulate a string array with a 
string variable. We will call this arrangement a pseudo-array. What you do is divide 
the string into substrings of equal lengths, and treat each substring as an element of 
the pseudo-array (Figure 4-2). To compute the starting position of a pseudo-array 
element, you need to know its element number and the length of each array element. 

There are two limitations to string psuedo-arrays: 

All elements of the pseudo-array must have the same length. The length is fixed at its 
maximum. If you want to assign a short string value to one element, you have to fill out 
the unused part of the element with blanks. The LEN function will not work with 
pseudo-array elements , since element length doesn't vary. 

The process of calculating the starting location of a pseudo-array element is time
consuming. You may notice delays in your program execution. 

The following program uses a string pseudo-array: 

10 DIM A$(100)tTEMP$(10),BL$(10) 
19 REM Ten string values 



Chapter 4: ADVANCED BASIC PROGRAMMING 111 

20 DATA Rick~.Luc~.Fred.Ethel •• 1234567 
8901.+++.A+B=lEl00 •••• abracadabra 
29 REM Initialize BL$ to blanks 
30 BL$=" ":BL$( 10 )=BL$:E:L$(2)=BL$ 
39 REM Assign pseudo-arra~ values 
40 FOr, N=l TO 10 
49 REM 1st. put value in teMP. string 
50 READ TEMP$ 
59 REM Get length of new value 
60 TL=LEN(TEMP$) 
69 REM Pad short values with blanks 
70 IF TL(10 THEN TEMP$(TL+l)=BL$ 
79 REM COMPute start of arra~ eleMent 
80 START=(N-l)*10+1 
89 REM Assign value to arra~ eleMent 
90 A$(START)=TEMP$ 
100 NEXT N 
109 REM displa~ assigned values 
110 FOR N=l TO 10 
119 REM COMPute start of eleMent 
120 START=(N-l)*10+1 
130 ? "EleMent ";N;" is: ";A$(START.ST 
ART+9) 
140 NEXT N 
150 END 
RUN 
EleMent 1 is: Rick~ 
EleMent 2 is: Luc~ 
EleMent 3 is: Fred 
EleMent 4 is: Ethel 
EleMent 5 is: 
EleMent 6 is: 1234567890 
EleMent 7 is: +++ 
EleMent 8 is: A+B=lEl00 
EleMent 9 is: .+ 
EleMent 10 is: abracadabr 

READY 

• 
In this program, string array A$ plays host to the pseudo-array. The pseudo-array 
has ten elements of ten characters each, for a total of 100 characters (line 10). Each 
element gets one of the string values from the DATA statement list (line 20). 
Included among these is a null value and two values that are too long to fit in one 
array element. The program assigns string variable BL$ a blank value (line 30). You 
could eliminate variable BL$ by using blank string constants instead, but this way is 
neater. The program assigns each string value from the DATA statement list to a 
temporary string variable (line 50). This is necessary because AT ARI BASIC 
doesn't allow subscripted variables in READ statements. The program concaten
ates blanks onto a short value to remove the remains of the previous value (lines 60 
and 70). Finally, the program computes the index of the pseudo-array element and 



112 A GUIDE TO AT ARI 400/800 COMPUTERS 

String variable X$ 

10 20 30 40 50 

NOTE: String variable X$ is divided into ten elements of equal lengths. Element I is 
X$(1 ,10). element 2 is X$( II ,20), element 3 is X$(21 ,30), element 4 is X$(31,40), 
and ekment 5 is X$(41,50). 

FIGURE 4-2. String pseudo-arrays 

assigns it the value built up in the temporary variable (lines 80 and 90). When you 
run the program, notice what happens to the null string value and the values that are 
too long. 

V ARIABLE STORAGE 

There is a limit to the number of variables you can have in one AT ARI BASIC 
program. The maximum is 128. Each numeric variable name, string variable name, 
and array name you use counts toward the limit. An entire array only counts as one 
name, no matter how many elements it contains. 

AT ARI BASIC maintains a list of variable names. This list is called the variable 
name table (VNT). The variable name table has room for J 28 variable names, hence 
the J 28-variable limit. Each time you use a new variable name in immediate mode, it 
is added to the variable name table. Variables in programmed mode are added to the 
variable name table as they are encountered during program execution. 

Variable names stay in the variable name table until a NEW command is 
executed. Then the entire variable name table is cleared. Merely deleting all referen
ces to a variable will not remove it from the variable name table . 

When you record a program on cassette using the CSA VE statement, the variable 
name table is saved along with the program lines. When you read the program back 
in with the CLOAD statement, the recorded variable name table takes the place of 
the variable name table currently in memory. Chapter 5 explains a way to record 
programs on cassette without recording the variable name table. Chapter 7 dis
cusses what happens to the variable name table when you save and load programs 
from diskette. 

DIRECT ACCESS AND CONTROL 
A number of statements allow you direct access to the AT ARI computer's memory 
and its communication channels to input and output devices. As BASIC programs 



Chapter 4: ADVANCED BASIC PROGRAMMING 113 

become more complex, they tend to need this direct access . Several ofthe programs 
in this chapter require direct access. Later chapters rely even more heavily on direct 
access and control statements. For example, you need these statements in order to 
exercise the AT ARI computer's full graphics capabilities. 

Memory and Addressing 
The AT ARI computer can have as many as 65 ,536 individually addressable 
memory locations. They are addressed by number, 0 through 65535. Each usable 
memory location can hold one number ranging between 0 and 255. Everything in 
memory must be converted to a number in this range. The AT ARI computer uses 
different coding schemes to convert programs and data to sequences of numbers 
that are stored in this fashion. It has one scheme for BASIC keywords, and others 
for general character data, numeric values, graphics displays, machine language 
code-the list goes on. The computer knows by context how to decode memory 
contents. When you see memory contents in their raw form, as numbers between 0 
and 255, you will have to decide what they mean . Appendix 0 will help you decode 
A T ASCII codes to characters. 

PEEK and POKE 
The PEEK function lets you examine the value stored in any memory location. 
Consider the following statement: 

10 A"I::·EEI< (200 ) 

This statement assigns the contents of memory location 200 to variable A. 
The POKE statement puts a value into a memory location. For example, the 

following statement takes the value of variable A and stores it in memory location 
8000: 

20 F'O I<E 8000,A 

You can specify the address for PEEK and POKE with a number, a variable, or 
an expression. In any case, its value must be between 0 and 65535 or error number 3 
occurs . No error results from using PEEK or POKE with a memory location that is 
outside the available memory on your computer. For example, an AT ARI compu
ter with 16K of RAM has no memory at location 24000. In this case, a PEEK or 
POKE to that location would be meaningless but would not cause an error. 

You can use the PEEK function with RAM or ROM . You can use the POKE 
statement with either kind of memory, but it will only affect RAM that actually 
exists. By definition, ROM can only be read . It cannot be changed with the POKE 
statement. 

Appendix G lists useful memory locations to use PEEK and POKE with. 

PROGRAM OUTPUT AND DATA ENTRY 
The most inexperienced programmer quickly discovers that the input and output 
sections of a program are its most difficult parts. 



114 A GUIDE TO ATAR1400/800 COMPUTERS 

Nearly every program uses data which must be entered at the keyboard . Will a 
few INPUT statements suffice? In most cases the answer is "no." What if the 
operator accidentally presses the wrong key? Or worse, what if the operator discov
ers that he or she input the wrong data-after entering two or three additional data 
items? A usable program must assume that the operator is human, and is likely to 
make any conceivable human error. 

Results, likewise, cannot simply be displayed or printed haphazardly by a group 
of unplanned PRINT statements. A human being will have to read this output. 
Unless the output is carefully designed, it will be very difficult to read. As a 
consequence, information could be misread, or entirely overlooked. This chapter 
will explore some ways of arranging information on the display screen for best 
readability. Chapter 6 addresses the same topic for the printer. 

DISPLA Y SCREEN OUTPUT 
We use the wordJormatting to describe the process of arranging information on a 
display screen so that the information is easier to understand or more pleasing to the 
eye. The basic tool for displaying information is the PRINT statement. We've 
already used it to print numeric and string data, one or more items per line. 

The key to formatting output on the display screen is cursor control. PRINT 
statement output starts wherever the cursor is located . Each character that displays 
on the screen affects the position of the cursor. After displaying most characters, the 
cursor moves one column to the right. A few characters, notably escape sequences, 
move the cursor in other directions . The PRINT statement may end with a carriage 
return, moving the cursor to the beginning of the next display line. A new statement, 
POSITION, can move the cursor to any spot on the display screen. Let's see how we 
can use these facts to control display screen output. 

Carriage Return 
It is natural to associate a carriage return with the RETURN key. When you press the 
RETURN key, the cursor advances to the beginning of the next display line. This 
happens because the RETURN key generates an AT ASCII end-oj-line (EOL) charac
ter, which causes a carriage return. A carriage return occurs whenever the display 
screen receives an AT ASCII EOL character. The PRINT statement can also 
generate an EOL character. 

Normally, a PRINT statement outputs an EOL character as its last action. That 
explains why the cursor advances to the next display line at the end of a PRINT 
statement. For example, this program displays a column of 20 Z's in the first 
position of each display line: 

1 ',0 DIt1 C$(l) 
200 C~t>"':"Z" 

2 10 FCm ]>=: 1. TD ZO 
~~ 2 0 PRINT C$ 
2 3 0 NEXT I 



Z.lfO F'F,INT "PI··IEW' " 
Z!'50 END 

Chapter 4: ADVANCED BASIC PROGRAMMING 115 

Of course, a semicolon or comma at the end of a PRINT statement suppresses the 
carriage return; or does it? Try this variation on the last program: 

1<;>0 DIM C~I; ( 1 ) 
200 C~~ =:"Z" 

210 FOI:;: I:=l TO 760 
220 PHINT C$; 
230 NEXT I 
2.lf0 PRINT "PHEW'" 
250 END 

The screen fills with 20 lines of Z's. The word "PHEW!" appears at the beginning of 
the 21st line. Where did those 20 carriage returns come from? The semicolon at the 
end of the PRINT statement on line 20 is supposed to suppress the EOL character. 
It doesn't seem to work at the end of a display line. 

Whenever anything is displayed in the last column of any row, it triggers a 
carriage return. This is a feature of the display screen. Rather than lose the 
characters off the screen to the right, the display screen performs a carriage return 
and continues the same output line on the next display line. 

The computer is doing more than moving the cursor down to the next display 
line. It is actually tacking another whole display line onto the end of the logical line 
started by the first display line . There is no way to stop this; commas and semicolons 
won't work in this instance . This doesn't matter in most cases. Letters and digits 
always appear as letters and digits. The cursor control characters, j, I, -, and -
(AT ASCII codes 28 through 31), always move the cursor the same way. But the 
delete-line and insert-line characters (A T ASCII codes 156 and 157) work on logical 
lines, not just physical lines. The tab characters (AT ASCII codes 127, 158, and 159), 
which we will investigate soon, also work with logical lines. If you use any charac
ters that work on logical lines , it is best to simply avoid displaying anything in the 
last column. That way no logical line will be longer than one physical display line. 

Suppose something is displayed in the last column of the last line on the screen. A 
carriage return occurs, but there is no next line to advance to. The computer forces 
the entire first logical line off the screen so the cursor will have a place to go. The 
following program illustrates this: 

300 PRINT "first logical line, which i 
s so long, it takes two displa':;! lines" 

309 REM Skip down to bOttOM line 
310 FOR N=1 TO 21 
320 PRINT 
330 NEXT N 
339 REM Space over to last character 
3'f0 FOR N=1 TO 37 
350 PRINT "-"; 
360 NEXT N 



116 A GUIDE TO ATARI 400/800 COMPUTERS 

369 REM Ring the be ll a whil e 
37 0 FOR N=l TO 25 
3 8 0 PRINT CHR%( 253l1 
39 0 NE XT N 
3 99 REM Di s pla~ l as t col ., l ast line 
't OO f"F(lNT "m"; 
409 REM Leep until BREAK ke~ hit 
'110 GOlD ' \1 () 

This program first displays the "first line" message (line 300) . Then it outputs 21 
EOL characters, moving the "first line" message to the top of the screen, and leaving 
the cursor at the beginning of the bottom line (lines 310 to 330). Next it outputs 37 
hyphens, moving the cursor to the penultimate column of the last row (lines 340 to 
360). After that, it sounds the console speaker for a few seconds (lines 370 to 390). 
This gives you a chance to watch the top line carefully. Finally, the program displays 
a character in the last column of the bottom display line (line 400). A carriage return 
occurs. The "first line" message is instantly pushed off the top of the screen so the 
cursor can advance to the next display line . Notice that the whole logical line scrolls 
off the top, not just the top display line . The program loops indefinitely to suppress 
the READY message that would occur if it ended (line 410). Press the BREAK key to 
end the program. 

Were you surprised that sounding the speaker did not cause a carriage return? 
After all, the PRINT statement on line 380 looks like it should display a character in 
the last column of the bottom line. It doesn 't, because the bell character, ATASCIl 
code 253, is a nonprinting character. It has no effect on the cursor position. 

Technically, the automatic carriage return signals the end of a physical line only, 
not necessarily the end of a logical line. The logical line ends only when an EOL 
character occurs . But a logical line can comprise at most three display lines. 
Therefore, if three automatic carriage returns happen with no intervening EOL 
character, an EOL character automatically occurs along with the third carriage 
return. 

Columnar Output 
It is usually much easier to scan a list of items if they are organized in columns. This 
is true of both numbers and characters . AT ARI BASIC has two ways to produce 
output in columnar form. One is to use commas between values in PRINT state
ments. The other is to use the TAB key with escape sequences. 

If the computer finds a comma after a PRINT statement value, it moves the 
cursor to the right. It fills in blank spaces between the end of the value just displa yed 
and the next column stop. The first column stop is ten spaces from the left margin. 
Additional column stops occur every ten spaces after that. The program in Figure 
4-3 uses two of the three available column stops, as shown in the sample output in 
Figure 4-4. 

There is a catch to using commas. The two spaces just ahead of a column stop 
must be blank. If these spaces are not blank , that stop is deactivated for the current 



Chapter 4: ADVANCED BASIC PROGRAMMING 117 

9 REM Oispl a ~ ga s c ost table 
10 PFU:NT " 1··low Mu c h PE'T' q a 110n"; 
ZO INPUT CPC 
:10 PF~INT "i~'Ver a (3e M:l le s pE~ r gallo r," ; 
LIO INPUT MPG 
50 PFU:NT "tlII...E~:;", "C(."'LLDN~;", "(D f;;T" 
60 PF~INT " ", " ............. - "," 
70 FOR MI =100 TO 17 00 STEP 100 
79 REM COMpu t e gal . to ne a re s t 10th 
80 GAL=INT(MI /MPC~10) / 10 

89 REM COMp ut e co s t to nearest cent 
90 CDST=INT(CPC~CAL~100)/100 
100 PRINT MI , CAL,CD ST 
110 NEXT MI 
120 F'IUNT 
130 F'FUNT , "MPG"'" ;MI"C, "!~" ;CPC; " p(,·~r qa 
1 + II 

140 END 

NOTE: Sample output shown in Figure 4-4 . 

FIGURE 4-3. Gas Cost program listing 

MII. .. E~:; Gt,LL()N ~; CDST 
......... _ ..... _ .. _ ...... 

100 1+ + ~:.~ 7 .7't 
ZOO 9 :I. ~.'j. '18 
::lOO 13. 6 ;·'. 3. ::lfl 
'100 lB.l 3 1 .1 ::) 
:'.'j [) () ~·?2 . 7 39.0"1 
600 Z7.Z 1.16. 70 
700 3 1..D ~:.:j it • (~)? 
BOO JC). ::l 6 Z. '1:3 
900 '10 . 9 7 0 . 34 
:1.000 't~) • ' I 7 B. DB 
1:1. 0 0 ~'j 0 B6 
:1.200 ~:.:; it • ~:) ?J, 7'1 
:1.300 1::' 0 . .} } :l.Ol . JtB 
1 Lt 00 6] . 6 10 9 .]9 
1500 6B .:I. :1.1 7 . 1 ::l 
1600 7Z,7 :I. ?~:j. 0"1 
1700 77.Z 132 . 70 

MPG ''' 22 !!;l. 7 2 p (.~l' ~Fd • 

F~EADY 
~~.~ 

FIGURE 4-4. Sample output from Gas Cost program (Figure 4-3) 



118 A GUIDE TO AT ARI 400/800 COMPUTERS 

display line. The next EOL character reactivates the stop. In the following program, 
the second PRINT statement value is nine characters long. It encroaches on one of 
the spaces ahead of a column stop, disabling the stop . 

PF\INT " NAME", "TELEPHDNE", "PAFnY" 
NAME TELEPHDNE PARTY 

F~EADY 

~ 

The Tab Feature 
The tab feature on the AT ARI computer is much like the tab feature on a type
writer. It allows you to move the cursor rapidly from left to right to the next 
established tab stop . A number of tab stops are preset when you turn on the AT ARI 
computer. They occur across the entire length of a logical line. On the standard 
38-column screen, there are tab stops at the left margin (column 2) and at columns 7, 
15,23, and every eight columns after that (Figure 4-5). The tab feature is similar in 
function to commas in PRINT statements. The two are completeley independent, 
however. The locations of column stops have no bearing on the locations of tab 
stops, and vice versa. 

The TAB key advances the cursor to the next tab stop on the screen. To tab the 
cursor in immediate mode, simply press the TAB key. The cursor moves past 
anything already displayed , without erasing it. If you press the TAB key with the 
cursor at or beyond the last tab stop, the cursor advances to the beginning of the 
next logical line. 

To tab the cursor in programmed mode, display AT ASCII code 127. You can do 
this with the CHR$ function or by using ESC\ TAB in a string value. We can rewrite 
the program in Figure 4-3 to display columnar output using the tab feature instead 
of commas. Change the program as shown below; where you see the character ~ , 
type ESC\ TAB. 

~;O Pf<INT "~MIL..Ef:)~GALL(]NB~C(]ST" 
60 pr~:r.NT "~ .... _ .. - ..... -. ~ .- .... -- ........ -... -. ~ .-... _ .... .... " 
:tOO Pf<INT "~";MI ; "~";GAL;"~" ; Cmn 
13 0 prn:NT "~~MPG= ";MPG;"~!~";CF'G; " per 
<:j a l . II 

140 END 

The modified program displays the same table as the original (Figure 4-4), but the 
spacing is a bit different. 

You can set additional tab stops in any column. To set a tab stop in immediate 
mode, move the cursor to the desired column, then press SHIFT-TAB. 

You can set tab stops using a PRINT statement. The PRINT statement has to 
display a string which moves the cursor to the desired column, then displays the 
tab-set character. You can place the tab-set character in a string with the escape 
sequence ESC\ SHIFT-TAB or with CHR$(l59). The following program sets a tab 



Chapter 4: ADVANCED BASIC PROGRAMMING 119 

2 7 15 23 31 39 

42 47 55 63 71 79 

82 87 95 103 III 119 

NOTE: The first two columns are not visible on some television screens, hence are outside 
the standard left margin. 

FIGURE 4-5. Standard display screen tab stops 

stop in the fifth space to the right of the left margin, then displays a message starting 
there: 

11 0 PRINT " " ; CHR$ ( 159) 
120 PRINT CHR$(127);"THIS MESSAGE IS I 
NDENTED FIVE SPACES FROM THE LEFT MARG 
IN" 
RUN 

THIS MESSAGE IS INDENTED FIVE SPA 
CES FROM THE LEF T MARGIN 

READY 
~ 

To clear a tab stop in immediate mode, move the cursor to the desired column and 
press CTRL-TAB. To clear a tab stop in programmed mode, move the cursor to the 
desired column and display AT ASCII code 158. You can display this code with the 
CH R$ function or with the escape sequence ESC\CTRL-TAB. The following program 



120 A GUIDE TO AT ARI 400/800 COMPUTERS 

clears all the preset tab stops. Where you see t, type ESC\CTRL--. For ~ type 
ESC\ TAB, and for ~ type ESC\CTRL-TAB. 

198 REM ***Clear preset tab stop s*** 
199 REM 1st, create a long line 
500 FOR N=l TO 111 
510 PF,INT "H"; 
520 NEXT N 
529 REM Move cursor back up 
530 PF\INT "t1't"; 
539 REM Clear all stops 
510 FOR N=l TO 16 
550 PRINT "~~"; 

560 NEXT N 
570 END 

There is one thing to watch out for when you use the tab feature. If you print 
anything in the space just before a tab stop, you temporarily inactivate that stop. 
The next EOL character reactivates the stop. Here is an example of this aspect of 
tabbing (type ESC\ TAB where you see ~): 

50 PRINT "MILEB~GALLDNB~COBT" 
6 0 PRINT "--.- -.--- ~ --.. -.. --.. --- ~ .-.-.-- " 

7 0 PF\INT 100;" ~" ; 1. 5; "~ " ;7 • 71 
ElO END 

Both lines 50 and 60 display something in the space just ahead of the first tab stop, 
inactivating it. Line 70 does not. As a result, the columns do not line up as intended . 
Press the SYSTEM RESET key before you run this program to clear any nonstandard 
tab stops you may have set. 

Right-Justified Output 
Both of AT ARI BASIC's methods for aligning output in columns line values up on 
the left edge of the column. This is called left-justified output, and is fine for words 
and other alphabetic values. Numbers, on the other hand, are easier to read if they 
line up on the right. We can add a subroutine to the Gas Cost program (Figure 4-3) 
to right-justify its three columns . Figure 4-6 shows the new version of the program. 

The main program uses the following new variables: 

N, the numeric value that will be right-justified 

NS, the number of spaces available in the column 

BU, a string full of blanks 

T$, a string variable used temporarily 

N$, the output string. 

The main program has changed in order to add the subroutine. It now dimensions 
BL$, T$, and N$ to have at least as many characters as the widest column (line 5). It 
fills BL$ with blanks (line 7). The single PRINT statement now uses three lines (lines 
100, 102, and 104). Notice that the PRINT statements on lines 100 and 102 end with 



Chapter 4: ADVANCED BASIC PROGRAMMING 121 

4 REM Stri ng need ed for s ubroutine 
5 DIM NS(10),T$(10),Bl$(40) 
6 REM Fill BlS() with blanks 
7 Bl$ (1)=" ": BlS (40) =8U;: BU~( 2) =BlS 
9 REM Di spla~ gas cost table 
10 Pf(INT "How Much p ~'r ~:la 11 on" ; 
2 0 INPUT CPG 
~J O F'fUNT "AvE~rage M:i.les peT' ']allon"; 
"10 INPUT MPC 
!:'jO F'F\INT "MILES", "GALLONS", 01 CCJ!3T" 
60 PRINT " ----.-.- ". " . ___ .. _. _____ 01, " -- .-... --.-" 

7 0 FOR MI=100 TO 1700 STE P 100 
79 REM COMpute ga l . to neares t 10th 
80 CAL =INT(MI / MPG*10)/10 
89 REM COMpute cost to nearest cent 
90 COST=INT(CPG*GAL*100)/l00 
100 NS =5:N=MI:GOSUB 11000:F'RINT NS(l,N 
S) • 

102 NS=7:N =GAlIGOSUB 11000:F'RINT Nt(1, 
NS) , 
104 NS=6IN =COST:GOSUB 11000:F'RINT NS(l 
,NS) 
110 NE XT MI 
12 0 PIUN T 
13 0 PRINT , "MPG :=:" ; MPG,"S";CPG ; " P~T ~la 
:I. . .. 
:1. 4 0 END 
10995 REM *************************** 
10996 REM * Subroutine al igns * 
10997 REM *nuMeric values on r:i.ght * 
10 998 REM *************************** 
10 999 REM Co nvert to left - Just stri ng 
:1.1000 TS::::STRS (N) 
11009 REM Er ase s tale v a lue of NS 
1:l 0 1 0 N~~ :::: BU; 

11019 REM Right-Justif~ 
11020 NS(NS - LEN (TS)+1,NS) =T$ 
1:l 030 F, ETUF,N 

NOTE: Shading shows lines changed from Figure 4-3 . Sample output shown in Figure 4-8. 

FIGURE 4-6. Right-justified Gas Cost program listing 

a comma. This advances the cursor to the left edge of the next column. 
The subroutine needs individual access to each digit of the number to be justified. 

BASIC allows such access only in string variables, so the subroutine converts the 
number to a numeric string (line 11000). Next, it fills the output string with blanks 
(line 11010). That guarantees a reliable , benign value in parts of the string that don't 
end with a digit . Finally, it right-justifies the number (line 11020). It figures out how 



122 A GUIDE TO ATARI 400/800 COMPUTERS 

long the number is and how close to the right edge of the column that number has to 
start in order to fit (Figure 4-7). 

As an exercise, try changing the program to use the tab feature instead of 
commas. 

The right-justified output (Figure 4-8) is a definite improvement over the original 
output (Figure 4-4). This is especially true in the left-hand column, where none of 
the numbers have decimal points . 

Decimal-Aligned Output 
It would be easier to read col~mns of numbers with decimal points if the numbers 
lined up on the decimal point. To do this, we have to decide where to fix the decimal 
point in each column. Then we have to figure out where the decimal point is in each 
number. This is not a trivial task , because BASIC uses floating point numbers. The 
decimal point could be anywhere. Once we find it, we have to shift it right or left so it 
lines up properly. This may mean truncating extra digits from the right or filling in 
extra blanks on the right. To do all these things, we have to change the main 
program and the subroutine, as Figure 4-9 shows . 

The new subroutine has all the requirements of the old one, plus a few new ones. 
Variable DD must specify the number of decimal digits . The subroutine also uses 
variables DP, NL, and 1. The main program must assume that the subroutine will 
change their values before it returns . 

The subroutine must discover the position of the decimal point in the number. It 
begins by assuming there is no decimal point (line 11030), then uses a FOR-NEXT 
loop to search through the numeric string until it finds one (lines 11040 to 11060). If 
no decimal point turns up , the subroutine sticks with its initial assumption: the 
decimal point follows the last digit . At this point (line 11070), variable DP has the 
number of digits up to and including the decimal point. The number is going to take 

I~'-------NS------~II 

Blanks J Value (T$) I 
~NS - LEN(T$) I LEN(T$)--1 

LThe value of T$ starts 
here , at NS - LEN(T$) + 1 

NOTE: Variable T$ has the value to be justified. The program in Figure 4-6 
uses this technique . 

FIGURE 4-7. Right-justifying a string value 



Chapter 4: ADVANCED BASIC PROGRAMMING 123 

MILES GALLONS COST --_ .. __ . _._. -_ ... __ ._ -
100 it. 5 7.74 
200 9 15.48 
300 13.6 23.39 
400 18.1 31.13 
500 ~~2. 7 39.04 
600 ~~7. 2 46.78 
700 31.8 54.69 
800 36.3 62.43 
900 'to.9 70.34 

1000 45.4 78.08 
11 00 50 86 
1200 54.5 93.7.lf 
1300 59 101.48 
1400 63.6 109.39 
1500 68.1 117.13 
1600 72.7 125.04 
1700 77.2 132.78 

MF'G=22 $1.72 per gal. 

READY 
~ 

FIGURE 4-8. Sample output from Right-justified Gas Cost program (Figure 4-6) 

that many characters, plus the number of post-decimal digits specified by variable 
DO. 

Compare the output from this version (Figure 4-10) with the output from the last 
version (Figure 4-8). Now all columns are easy to scan. 

Notice that BASIC does not print a decimal point with whole numbers . Neither 
does it print trailing zeros, that is, zeros at the end of a number which don't change 
the value. A decimal point and trailing zeros can be added to numbers that need 
them. Add these lines to the end of the program in Figure 4-9: 

11089 REM DeciMal digits requested? 
11090 IF 00=0 THEN RETURN 
11099 REM Ensure deciMal point's there 

11:l00 N$(NS "-OD,NS-OD)= ". " 
11109 REM Replace trailing blanks with 
zeros 
11110 FOR J =NS-DD+l TO NS 
11120 IF N$(J,J)=" " THEN N$(J,J)="O" 
11130 NEXT J 
11140 RETURN 



124 A GUIDE TO AT ARI 400/800 COMPUTERS 

4 REM String needed for subroutine 
5 DIM N$(10),TS(10),BLS(40) 
6 REM Fill BlS() with blanks 
7 E:L$(1)=" "!E:L$(40)::BL$!BL$(2)~.::BL$ 

9 REM Displa~ gas cost table 
10 PRINT "How Much peT' gallon"; 
20 INPUT CPC 
:30 PRINT "Avera!]e Miles per gallon"; 
40 INPUT MPC 
50 PRINT "MILES","GALLONS"," COST" 
60 PRINT "-- .. ---", "-.---- - -.-", "-------,, 
70 FOR MI=100 TO 1700 STEP 100 
79 REM COMpute gal. to nearest 10th 
80 CAL=INT(MI/MPG*10)/l0 
89 REM COMpute cost to nearest cent 
90 COST=INT(CPG*CAL*100)/100 
100 NS=6!DD=0:N=MI!GOSUB 11000!PRINT N 
$ ( 1 , NS) , 
102 NS=7!OO=1:N=GAL:COSUB 11000!PRINT 
N$(1,NS), 
;04 NS=7:00=2:N=COST!GOSUB 11000!PRINT 
N$(l,NS) 

11 0 NEXT MI 
120 PRINT 
130 PF\INT , "MPG =";MPG ,"$";CPC; " per ga 
1. II 
1"10 END 
10995 REM *************************** 
10996 REM * Subroutine aligns * 
10997 REM *nuMeric values on deciMal* 
10998 REM *************************** 
10999 REM Convert to left-just string 
11000 TS:oSTF,$ (N) 
11009 REM Erase stale val ue of N$ 
11 O:l 0 N$=E:L $ 
11029 REM AssuMe dec. point at end 
11030 DP=lEN(T$)+1 
11039 REM look for real dec. point 
11040 FOR J=l TO lEN(T$) 
11050 IF T$(J,J)="." THEN DP=J:J=NS 
11060 NEXT .J 
11069 REM COMpute nUMber length 
11070 Nl=DP+DD 
11079 REM Right-justif~ 
11080 N$(NS-NL+l,NS)=T$ 
11090 r,ETUI:::N 

NOTE: Shading shows lines changed from Figure 4-6. Sample output 
shown in Figure 4-10. 

FIGURE 4-9. Decimal-aligned Gas Cost program listing 



Chapter 4: ADVANCED BASIC PROGRAMMING 125 

MILE ~) GALLON~:; COST 
.-..... _ .... -.. _ ........ . .... _ .. _ ..... _ .......... 

100 'I. ::OJ 7.7'1 
?O O 9 1~'j.'18 

300 D.6 ?::l.:39 
'100 18. 1 31.1:3 
~'j 00 ZZ.7 ::l ey . 04 
6 00 27 .2 '16. 7B 
7 00 ::11.. 8 54.69 
BOO 36.3 6 ? '1:3 
',00 '10. 9 7 0.:34 

1000 'I ~"j • 4 70.0 B 
1:l () 0 ~'j 0 B6 
1? 00 ~:s 't t ~:) 93.74 
1:300 ~j9 101.4B 
1400 6:3.6 109. ::)9 
1~) 0 0 6B.l l.:l7 • 1:3 
1600 7?7 1?~).04 

17 00 77 .? 13? 78 

MPG'=22 $1..72 pf!r ~.lal • 

f<EADY 
l'l 

FIGURE 4-10. Sample output from Decimal-aligned Gas Cost program (Figure 4-9) 

What happens if you enter unrealistic values for gas price and mileage? Try 
entering $14.98 per gallon, and 2 miles per gallon. Error 5 occurs on line 11080 
because the cost figure is too large for the last column. There are three ways to guard 
against this error: the subroutine can check, the calling program can check, or the 
calling program can carefully set the column width to make the error unlikely. At 
this point, we are using the latter alternative. We designed the columns to handle the 
largest probable values . 

The most foolproof way to forestall an error like this is to have the subroutine 
check. Then no matter what the program user enters or how the program calls the 
subroutine, the error is blocked . Add this to the subroutine in Figure 4-9: 

11019 REM Check for too - large nUMbers 
11020 IF ABS(N» =10 A (NS- D[) -2 ) THEN N$= 
T~~: N$ (NS) ,,,, " JI(": F(ETUF<N 

Line 11020 makes sure the number will fit in the column. It assumes a sign 
character will occupy one space (a minus sign for negative numbers , a blank space 
for positive ones). If the number is too large, the subroutine generates as many digits 



126 A GUIDE TO AT ARI 400/800 COMPUTERS 

as will fit. The last character becomes an asterisk to announce the overflow 
condition. 

Try running the program with line 11020 added. The modified program displays 
much more slowly, which is quite a price to pay to avoid an error that careful output 
design will all but eliminate. Error checking has its place, but clearly not here. 

CURSOR CONTROL 
Semicolons, commas, and tab characters are fine for controlling the cursor in 
simple tables like those shown so far. More complicated displays demand more 
cursor control. AT ARI BASIC offers two ways of directly controlling the cursor. 
One is to program the cursor movement characters, using the CHR$ function qr 
escape sequences. The other way is to use the POSITION statement. 

Clearing the Display Screen 
Sometimes a program needs to erase everything on the display screen. Displaying 
A T ASCII code 125 clears the screen and puts the cursor in the upper left-hand 
corner, its home position. You can use either CHR$(l25), ESC\ CTRL- <, or 
ESC\ SHIFT-< to generate the necessary character. 

Cursor Movement 
It is possible to move the cursor to any space on the screen by programming the t; I, 
-, and - characters. These cursor movement characters do not erase any characters 
they pass over. They behave exactly the same in programmed mode as they do in 
immediate mode. 

The Future Value program (Figure 4-11) figures out what an investment you 
make today will be worth some years from now. After computing a future value, the 
program moves the cursor on top of your last inputs , one at a time. That lets you 
enter a new number or just press RETURN to leave the last entry unchanged. 

The POSITION Statement 
The POSITION statement places the cursor at any location on the screen. Youjust 
specify the column number and row number where you want the cursor positioned . 
The next PRINT statement starts at that screen location. Try this: 

9 REM Clear screen 
10 ? CHR$(125); 
20 For~ J=l TO 23 
30 POSITION J.J 
40 ? IlIC"; 
50 POSITION 24-J.J 
60 ? "lIC"; 
70 NEXT J 
79 REM Loop until BREAK pressed 
80 GOTD 80 



Chapter 4: ADVANCED BASIC PROGRAMMING 127 

10 OIM R$(1),CU$(24),CR$(40) 
19 REM Fill strings wi cursor MoveMent 
char act,(;) I' s 

20 CU$=CHR$(Z8):CU$(24)=CU$:CU$(Z)=CU$ 

30 CR$=CHR$(31):CR$(40)=CR$:CR$(2)=CR$ 

40 PF<INT CI-m$( 125); "FUTUF~E VALUE OF AN 
INVESTMENT" 

50 PRINT 
60 PRINT "AMount investE~d" 
70 PRINT "NOMinal interest rate" 
80 PF~INT "CoMPounded how Man~ tiM(~S ea 
ch ~ear" 
90 PRINT "How Man~ ~ears";CU$(l,4) 
100 PRINT CR$(l,15);:INPUT AMT 
110 PRINT CR$(l,21);:INPUT IR 
120 PRINT CR$(l,35);:INPUT CMP 
130 PRINT CR$(l,14);:INPUT YR 
139 REM Calc. intI'. rate pel' period 
140 IP=IR/CMP/100 
149 REM Calculate future value 
150 FV=AMT~(l+IP)A(CMP*YR) 
159 REM Round to nearest cent, print 
160 PF<INT "Fut.ure value: $" ;INT(FV*100 
+0.5)/100 
170 PF<INT 
180 PRINT "Change investMent."; 
190 INPUT R$ 
200 IF F~$::::"Y" THEN PIUNT CU$(l,7);:GOT 
o 100 
210 ENO 
F,UN 
FUTURE VALUE OF AN INVESTMENT 

AMount invested?6800 
NOMinal int.erest. rat.e?9.5 
COMpounded how Man~ tiMes each ~ear?4 
How Man~ ~ears?10 

Future value: $17388.64 

Change investMent?Y 

FIGURE 4-11. Future Value program listing and sample output 



128 A GUIDE TO ATARI 400/800 COMPUTERS 

When you run this program, the screen clears and a cross appears. 

)I( )I( 

)I( )I( 

)I( :I< 
)I( )I( 

)I( :I< 

)I( )I( 

)I( )I( 

)I( )I( 

)I( )I( 

)I( )I( 

)I( )I( 

)I( 

lK )I( 

lK )I( 

)I( lK 

)I( )I( 

lK )I( 

)I( )I( 

lK :I< 

lK )I( 

)I( )I( 

)I( )I( 

lI<lItl )I( 

Notice how the leftmost parts of the cross are one space to the left of the normal 
left margin. Also , the top line of the screen is blank. How can this be? The first time 
the POSITION statement on line 30 is executed, it should put the cursor at column I 
on row I. This is actually the case. There are usually only 38 usable columns on each 
line. But remember, the screen actually has 40 columns; the first two are normally 
unused because they are outside the standard left margin. 

The POSITION statement ignores margins and treats the screen as a 40 X 24 grid. 
It numbers columns from 0 at the left edge to 39 at the right, and it numbers rows 
from 0 at the top of the screen to 23 at the bottom (Figure 4-12). 

As a further example, try changing the Future Value program (Figure 4-11) so it 
uses the POSITION statement instead of cursor movement characters. You can 
eliminate the cursor movement string variables, CU$ and CR$. That makes lines 20 
and 30 unnecessary. Lines 100, 110, 120, 130, and 200 all change to use the 
POSITION statement instead of the PRINT statement. 

Determining Cursor Position 
The POSITION statement does not move the cursor. It updates certain locations in 
the computer's memory with the new cursor position. The next time something is 
displayed on the display screen, it appears at the position dictated by those memory 
locations. The new row number is in location 84. The new column is in location 85. 
You can use the PEEK function at any time to find out where the cursor will be next: 
PEEK(84) for the row number, PEEK(85) for the column number. In some screen 
graphics modes, which we will cover in Chapters 8 a nd 9, the AT ARI computer uses 



Chapter 4: ADVANCED BASIC PROGRAMMING 129 

0---------1---------2---------3---------
01234567 890 1 234567890 123 456789 012345 6789 

l0r+~~-r~-r+-r+~~-r~-r~r+1-r+4-+4-r1-~-r+4-r1-r+~ 
Ilr+~~-r~-r+-r+~~-r+4-r~r+1-r+4-+4-r1-~4-+4-r1-r+~ 12 
1 3 ~~~~+1-r+-r+1-~~+1-r~r+~~~+1-r4-~-r+1-r4-~~ 

14~~~-r~-r+-~1-~-r~-r~~4-~~+4-r4-~~+4-r+-~~ 
15r+4-r+-r+4-r~r+~~4-+4-r~r+1-r+4-+4-r1-r+4-+4-r+-r+~ 
1 6 r+~r+-r~-r~r+~~-r+4-r~r+1-r+4-+4-r1-~4-+4-r+-r+~ 17 
1 8 ~1-~-r~-r~r+4-~-r+4-r~r++-~~~-r+-~~+4-r+-~~ 

1 9 ~1-~-r~-r~r+4-~-r+4-r~r++-~~~-r+-~~+4-r+-~~ 
20 r+~r+-r+4-r~r+~~4-+4-r~r+1-r+4-+4-r1-~4-+4-r+-r+~ 
2 Ir+4-r+-r+4-r~r+~~4-+4-r~r+1-r+4-+4-r1-~4-+4-r+-r+~ 
22r+4-r+4-+4-r~r+~~4-+4-r~r+1-r+4-+4-r1-~4-+4-r+-r+~ 
23 ~~~-L~-L~LL~~-LLJ-L~LL~~~~-L~~~~-L~~~ 

NOTE: The first two columns are not visible on some television screens, hence are outside 
the standard left margin . 

FIGURE 4-12. POSITION statement column and row numbering 

two locations for the column number. In this case, PEEK(86) * 256 + PEEK(85) 
gives the column number. 

Each time the PRINT statement displays something, it updates two other 
memory locations with the last cursor position. Location 90 has the row number; 91 
has the column number. PEEK(91) gives the last cursor column. PEEK(90) gives 
the last cursor row. Rows are numbered from 0 to 23, columns from 0 to 39, as with 
the POSITION statement (Figure 4-12). 

Resetting Margins 
You can change the display screen margins with the POKE statement. The AT ARI 
computer uses memory location 82 to keep track of the left margin, and location 83 
for the right margin. The standard left margin is at column 2. To change it to column 
0, use this statement: 

f"Of(E 82, () 

The standard right margin is at column 39, the far right edge of the screen. The 
following statement changes it to column 38: 

F'Of{E 83, 38 



130 A GUIDE TO ATARI 400/800 COMPUTERS 

When you reset margins, remember that the PRINT statement observes the 
margins. There is no character you can display with a PRINT statement that will 
move the cursor outside the margins . When output reaches the right margin, a 
carriage return occurs. To prove this for yourself, try the following program: 

10 POKE 83, lO:REM Right Margin 
20 FOF~ J::1 TO 10 
30 PRINT CHR$(3l);:REM Cur so r right 
"to NEXT J 
50 PRINT "PUCE" 
60 POKE 83, 39:REM Right Margin 
FWN 

PLJCE 

F~EADY 

• 
The cursor starts off at the left margin, in column 2. The PRINT statement inside 
the FOR-NEXT loop (lines 20 through 40) advances it nine spaces to the right 
margin, column to. There it circles back to the left margin. The loop advances the 
cursor another two spaces, where a word is printed (line 50). 

The POSITION statement can put the cursor outside the established margins. If 
the cursor is to the right of the right margin, only the first character of the next 
PRINT statement appears there. The computer displays the first character, then 
does an immediate carriage return. The following program illustrates this. 

10 POKE 83, 10:REM Right Margin 
20 PRINT CHR$(125':REM clr. screen 
30 POSITION 20,8 
"to PRINT "SAFFFWN" 
50 POKE 83, 39:REM Right Margin 

The letter "S" appears at column 20, row 8. The rest of the PRINT statement output 
appears on row 9, starting at the left margin. 

Widening the margins reduces the length not only ofthe physical display line, but 
of the logical line as well. A logical line never contains more than three physical 
lines, no matter what their lengths. 

PROGRAMMING INPUT 
Nearly every program requires some kind of input from the person using it. The goal 
of any program should be to minimize input errors and make it easy for someone 
using the program to spot and correct errors that do occur. There are ways to 
organize input which tend to minimize input errors. This section discusses the 
following methods: 

Display helpful messages 

Expect natural, intuitive responses 

Check inputs for reasonableness and range 

Use an error-handling subroutine 



Chapter 4: ADVANCED BASIC PROGRAMMING 131 

Group inputs logically 

Allow review and change of grouped inputs 

Restrict responses: use game controllers 

Restrict choices: use menus. 

Prompt Messages 

Prompt messages were introduced in Chapter 3. Many of the example programs in 
this chapter have used them. As the examples have illustrated, prompt messages 
should be succinct. Space on the display screen is usually at a premium, so verbosity 
is a luxury. Keep the prompt brief. Try to leave enough room on the same line for 
the entire input response. When this is impossible, put the prompt message on one 
line and input the response on the next. Since the INPUT statement always displays 
a question mark, it's best to phrase prompt messages as questions. 

Amplifying Input Instructions 
Sometimes it is impossible to phrase a prompt message satisfactorily. Either it is too 
cryptic or it takes up too much room. In a case like this, you can display an amplified 
prompt message elsewhere on the screen. Here's how it works. The program 
displays a short prompt message next to the input. The program lets the user enter 
"H" ifhe needs help. Ifhe does , the program displays amplified instructions. It puts 
the instructions in some standard location on the screen, say the bottom four lines. 
All it takes is a few PRINT statements to display the instructions. After displaying 
the instructions, the program must return to the input where the call for help 
originated. Figure 4-13 provides an example. 

The program in Figure 4-13 inputs a single-letter command on the second line of 
the screen. It expands the command letter to a command word and displays the 
word on the right side of the top line. A complete program would do more than print 
the command, of course. 

Figure 4-13 has a strange subroutine at line 32767. The subroutine does abso
lutely nothing but return. This technique is often useful with the ON-GOSUB 
statement. In this program, for example, there is no command "B." If the user enters 
a B, the program branches to the "do nothing" subroutine, then returns to get 
another command. The same thing happens to commands F and G. When the com
mand is anything past H , the expression in the ON-GOSUB statement is larger than 
the number of lines on its list. Therefore, program execution falls through to the 
next program line, 390. Line 390 checks for the one remaining valid command, P. 

The subroutine at line 1400 ends with POP and GOTO statements. If this were a 
RETURN statement, the program would branch back through line 380 to line 310. 
There the screen would be cleared, erasing the amplified instructions before anyone 
could read them. 



132 A GUIDE TO ATARI 400/800 COMPUTERS 

10 DIM BI...$(10),CMD$ll),R$11) 
49 REM Fill BI...$ with blanks 
~.) 0 Bl..~t>"'" " : [:I...~; 1 '10 ) ''-BL.~;: BL ~I; (2) ="BI...~; 
?99 REM AMPlified instr. line no. 
300 AMP~JUB"'? 0 0 0 
310 PRINT CHR$ll?5)IREM clear scrn 
~l? 0 P()~)ITIClN Z,:I. 
330 PI:::INT "CClI1t1~,ND IACDEP, H for h(·?lp) 
" . , 
3'10 INPUT CMD~I; 

359 REM Process entr~ here 
360 PClSITION ?O,O 
~l70 PFnNT "CoMl1and i~:; " ; 
380 ON ASCICMD$)-61 GOSUB 600,3?767,80 
O,lOOO,1?OO,3?767,32767,1400IGClTO 310 
390 IF CMD~~<> ''I'''' THEN :H 0 
100 PF(INT "P I' i nt" : f(ETUI:(N 
600 P IU NT "Add" I f(ETUF(N 
no 0 PRINT " Cha ngf?": F(ETI.H(N 
1000 PIUNT "D elf~'tf~":r(ETl.Jr<N 

1 ZOO PlUtH "Enlj" I POSITIClN Z, 10 I END 
:I.'fOO PFUNT "Help " 
:1.'1:1.0 GCH:;UB ?OOO 
14Z0 POP IGOT() 3Z0 
1994 REM ~*~~***~~~~*~~**~~****~*~* 
1995 REM ~ Subroutine to explain ~ 

1996 REM ~ prOMpt Message • 
1997 REM .~**~*~*~*.*******~~***~*~ 
1998 REM Clear dedicated area, then 
1999 REM Position c ur sor 
;-:. 00 0 C;()~3UB ?:30 0 
;-:'009 REM Now displa~ instructions 
ZO 1 0 PF(INT " _ ... _____ ....... __ ._.C oMMand ~3I..1MMaT' ~J __ _ 

;?o;~o PFUNT 
;·'.O~lO PFUNT " 
d€~ I (;.,tt~" 
;'.0'10 PI:UNT " 
help"; 
2050 F(ETUI:(N 

C::::chan(;le 

P""P I' :i. nt 

2296 REM ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
2297 REM ~ Subroutine to clear ~ 
2298 REM ~ instructions area ~ 

2299 REM .~~~~~~~*****~****~******* 
2300 POSITION 2,19 
2310 FOR J=20 TO 23 
2~l;?O PF(INT 
2330 PRINT 81...$11,38): 
?3'IO NEXT ,.J 
2350 POSITION 2,20 
;'. ::l6 0 f( E TLJr< N 
3?767 RETURN:REM Do-nothing subr. 

FIGURE 4-13. Command Input program listing 



Chapter 4: ADVANCED BASIC PROGRAMMING 133 

Any character or word could trigger the instructions; our choice, H, is arbitrary. 
You can put the instructions anywhere on the screen, but it is preferable to display 
every set of instructions in the same area. 

In fact , you can display instructions of almost any length and complexity in just a 
few lines , if you do it one piece at a time . Of course the program must wait for the 
user to finish reading each piece of the instructions before it goes on to the next 
piece. A single INPUT statement takes care of that. At the same time, the program 
can allow the user to interrupt the instructions and return to the regular input 
sequence. Replace the subroutine at line 2000 in Figure 4-13 with the one in Figure 
4-14. 

Another common place to put instructions is at the beginning of a program. The 
displayed instructions will not replace well-written printed instructions, but they are 
often a sufficient reminder for someone who is a bit rusty. You may recognize 
Figure 4-15 as the instructions for the Future Value program (Figure 4-11). 

Input Masks 
Some limit always exists on the length of a response. The program can display a 
string of characters which demarcate the response length . Such a string is called an 
input mask. 

Any character will do for the input mask. Underline characters, asterisks , and 
number signs are common choices. The program can use one kind of character for 
string input masks and a different kind of character for numeric input masks. That 
gives the user even more information about the expected response. The following 
program uses underline characters for string input and number signs for numeric 

input: 

10 DIM NMSK$(40), SMSKS(4 0),R'(40),CL$( 
' I () ) 
19 REM Fill input Mask str ings 
Z 0 NM ~:)I< ~ I;""" 'II' " : N~'I~:)I<~I; ( 4 () ) ""N M ~; I« I; ( :I. ) : NMS I<t, ( 
Z) '"'NMSI<~I; ( :l ) 
3 0 ~; ~1~)I<1;''"'' .... " : ~:;M~:)j(~; ( ' I () ) ""~3M~)I<1; ( :I. ) : bM~:; f(~ I; ( 
Z) "'~,;M~; f($ ( :I. ) 
39 REM F i ll cursor MoveMent string 
40 CLS=CHRS(30): CLS(40) =C LS (1):C L'(Z ) = 
eLS(l) 
cl O F'f(INT CHr(~~ (1/5) ; "ENTElU NG DILLS HEC 
EIVED" 
100 PI:n:NT " [XI::'ENSE ,:)CCOUNT CDDt:: I S "; f:l 
MSKS(1,6) ;C LS( 1, 7); 
110 INPUT r(~~ 

12 0 I"'IUNT "{-;MOUNT DF UU.L IS "; NMSI<$ ( 1. 
, B) ; CU ; ( 1. , 'i) ; 

1 :30 INPUT 1:( 
1 110 END 

Each PRINT statement that prints an input mask also prints a string of characters 



134 A GUIDE TO AT ARI 400/800 COMPUTERS 

1991 REM ~**.*** •• **** •• * ••• ****.** 
1995 REM. Subroutine to explain * 
1996 REM. prOMpt Message • 
1997 REM •••••••• *.* •••• *.*.** •• *** 
1998 REM Clear dedicated area, then 
1999 REM Position cursor 
Z OOO CO SUI::: ;~::l 00 
Z009 REM Now displa~ in s tructions 
;? 0 1 0 PF(INT " __ ._._ .. __ ''_._ ... '' .. _CoMMand !:)UMt'lal' ~j _._ 

20Z0 PIUNT "More detail (ACDP, N for n 
onf~) " 
ZO:30 PF(1NT " 
df:) lets" 
2010 PF,INT " 
help " ; 

A:=:a dd 

E":end 

2019 REM More detail? 
2 050 POSITION 31,21 
2060 INPUT R$ 
~?,070 IF F($::::"N" THEN F(ETUf(N 

H== 

20BO ON ASC(RS)-61 GOTO 2150,32767,221 
0,2210 
2090 IF I:($<>"P" THEN GOTO 2050 
2099 REM Displa~ instr. for Print 
2100 GOSUB 2300:REM Clear instr. area 
2110 PHINT " ______ ____ CoMMan/j: Pr i nt __ 

212 0 PRINT" F'r irlts a list of e:·:pense 
c~ateg()l' iss" 

2130 PFUNT "and their nl"IMbers." 
2140 RETURN 
2119 REM Displa~ ins tructions for Add 
2150 GOSUS Z300:REM Clear instr. area 
~?l. 60 PF<INT ",, __ __ ________ CoMMand: Add_ 

" 
2170 Pf(INT" To add em e:·:pen s e cat-ego 
r~~, ~c),-," 
2180 PF<INT "MI-,st assigrl ita ~5 di9i t n 
uMbel' , ;:)" 
2190 PFUNT "1 to !:'i char acter' naMe, and 

fT' eq l-, enc~ " 

Z200 f,ETUf(N 
22 09 REM Displa~ instructions for Chan 
ge, Delete 
2210 GOSUS 2300:REM Clear instr. area 
222 0 PFn:NT " ____ . __ CoMMa nr..l: Chmnge ClI' [) 
E~ I E.'te ________ ,, " 

2230 PF(INT" T 0 c~ hange ClI' d('? 1 ete an e 
NP (~ n$e cat-· II 

NOTE: Shading shows changes from Figure 4-13. 

FIGURE 4-14. Extended Amplified Instructions subroutine listing 

(continued) 



Chapter 4: ADVANCED BASIC PROGRAMMING 135 

2 240 PF,INT "egor ~ t :j()U MI.ls t know its n 
uMber. Us e" 
22 50 PI=i:INT " COMM a nd P to 1 i s t n,3Mes an 
d rll .. IMb e T' s" 
2260 RETUF,N 

NOTE: Shading shows changes from Figure 4-13 . 

FIGURE 4-14. Extended Amplified Instructions subroutine listing (continued) 

which back the cursor up to the beginning of the input mask (lines 100 and 120). 
They actually back up one space behind the first mask character; that is where the 
INPUT statement will display a question mark (lines 110 and 130). 

Chuosing Input Responses 
You can decrease the chance of error just by choosing input responses carefully. 
Your program should allow and expect its user to respond in a natural, intuitive 
way. It is convenient when you write a program to insist that the user code all input, 
but this forces the user to perform a mechanical task every time he or she wants to 
use the program. Since the computer excels at mechanical tasks , why not let it do the 
coding? If the natural response is a word or letter which the program will eventually 
need converted to a number, let the program make the conversion. 

This is exactly what we did on lines 310 through 390 of Figure 4-13 . The user 
enters a mnemonic command code: A, C, 0 , E, P, or H (line 340). The program 
figures out which subroutine to call (line 380) in order to carry out the command. 
Imagine how much easier it would be to write a program that required the user to 
input a numeric command, but how much harder it would be to use that program. 

Checking Input Responses 
It doesn't matter how carefully you design your input requests; you can't be sure 
how people will respond . If a bad input could cause a problem, the program should 
check for it. Are string entries too long? Are numeric entries within range? Does the 
entry make sense in context? Will it cause an error later in the program? 

If you want to write a thorough program, you will make every effort to anticipate 
errors that someone using your program might make. Your program will catch 
entry errors and force the user to reenter values that would cause the program to 
halt abnormally. 

It is true that BASIC will catch some kinds of data entry errors for you. It will not 
accept alphabetic entry when inputting a numeric value with a statement like 
INPUT A. If you try to enter letters in response to such a statement, the computer 
issues an error message and stops the program. 

Built-in error checking capabilities are limited , though. It is possible to enter a 



136 A GUIDE TO AT ARI 400/800 COMPUTERS 

:I. 0 D:r: M F~~; ( 1 ) 
40 COSUS 300:REM Di s pla~ instructions 
290 END 
300 PIUNT CHF~~H l.;?'~j); "FUTI.JF\[ VAL.UE DF A 
N INVESTt1ENT" 
310 I"'r-i:INT 
3;~0 PI:~I NT "Thi s PI'()~.lT'aM calculates a f 
utur €.~ II 
3:~0 Pf~INT "val'.le of a n inv£~stMent wh~~n 
intf.~I'~~s t" 

3'10 F'FnNT "i~" a factoI'. Ym.l Must pl'ovi 
de th~~ " 

::l50 F'F,INT " a Mount of the :i. nit i ali nv€·~s 
tME~nt, the" 
360 PfGNT "noM i na], i ntf:~T' (;~st T' ate, thf~ 
nUMbf:~T' of II 
:l70 PF,INT "COMP ound i ng p E~r i ods p er ~ea 
1', ar,d the" 
380 PRINT "n' . .lMb(~T' of ~jE~i.H'S of investME~ 
nt. 1t 

:l90 PRINT 
400 PfnNT "AssuMinq thE~T'e al'E~ no addit 
ional" 
410 PfnNT "df.~po~'itf.'; 01' withdl'awals, th 
e future" 
'120 PF,INT "value is based on this forM 
ula: II 
'130 F'IUNT 
'1'10 PRINT ," FV:=A MT* ( 1 + IF,/CMP) 1\ (CMP)I(YR ) 

'150 PIUNT "where: FV - total value aft 
er YR ~eal's" 
'160 PRINT " AMT== initial i.nvestM 
ent" 
'170 prUNT " IF, .. nOMinal interes 
t rate" 
'180 PRINT " CMF':::: cOMpounding fre 
q'.'enc'::j" 
'190 PRINT " YR :::: nUMber of '::jears 

500 F'F~INT 
510 PRINT "PI' ess th(;) RETUF,N ke'::j t,o beg 
in"; 
520 INPUT f~$ 

530 PRINT CHF,$( 125); "FUTURE VAL.UE DF A 
N INVESTMENT" 
5'10 RETURN 

FIGURE 4·15. Future Value Instructions program listing 



Chapter 4: ADVANCED BASIC PROGRAMMING 137 

value ofthe correct type that has an unacceptable value. That is, the value may cause 
a program error further down the line . Here is a short program that illustrates this 
problem: 

100 INPUT X 
200 F"f(lNT 100 /X 
300 END 

If you enter 0 in response to the INPUT statement (line 100), the program will fail 
when it tries to divide by 0 in the PRINT statement (line 200). It is easy enough to 
avoid this. Add the following lines to the program above to check the input to make 
sure it is not 0, and request reentry if it is. 

110 IF X<>O THEN 200 
120 PF(lNT "NOT ALLOWED ••• f~E --E NTER" 
130 GOTO 100 

By extending the principle illustrated in this example, you can see how easy it is to 
check an entry for problem values. Depending on the circumstances, it may make 
sense to check input with the ON-GOTO or ON-GOSUB statements, rather than a 
series of IF-THEN statements . 

Sometimes checking for errors is expensive. It can take a lot of programming 
time , program space, and program execution time. Consider a typical yes-or-no 
question, for example. The program should allow any of the correct "natural" 
responses. They are: yes, no , Yes, No, YES , NO, y, n, Y, or N. There are ten answers 
in all; that's quite a few for a program to have to check. You can easily reduce the 
number of input tests : simply check the first character input. If the response is not 
allowed, the program repeats the input request. Try this program: 

10 DIM R$ ( '10 ) 
200 F"IUNT 
210 PFUNT "ENTER ANOTHEF, BILL"; 
220 INPUT R$!R$=R$( 1 ,1) 
230 IF R$="Y" OF~ F,$ ="~ " THEN 9 0 
2'10 IF F,$="N" Of~ R$="n" THEN [ND 
250 GDTO 210 

The TRAP Statement 
AT ARI BASIC has a special statement that allows you to trap errors that it catches 
before it displays an error message and halts program execution. Here is an 
example: 

100 TF~AF' 2. 0000 

Once such a statement has been executed , AT ARI BASIC will branch to the 
specified line number if it detects an error. It will also place a numeric code 
describing the error in memory location 195, which you may inspect with the PEEK 
function. Appendix A explains what each error code number means. AT ARI 
BASIC also saves the line number where the error occurred. The expression 



138 A GUIDE TO AT ARI 400/800 COMPUTERS 

PEEK(l87) * 256 + PEEK(l86) reveals the line number. 
The TRAP statement is deactivated each time an error occurs. The program must 

execute another TRAP statement to reactivate it. To negate an active TRAP 
statement and restore the AT ARI computer to its normal automatic error handling 
state, use the statement TRAP 40000. 

An Error-Handling Routine 
The usual procedure for handling errors with the TRAP statement is to write an 
error-handling routine. AT ARI BASIC branches to the routine when an error 
occurs. At the end of the routine, the program can branch back to the beginning of 
the line where the error occurred , or to any other program line. The error-handling 
routine can take different actions depending on the nature of the error and the 
current state of the program, which can usually be determined by inspecting the 
values of key variables. 

The following program demonstrates the TRAP statement. This program treats 
errors that are unrelated to keyboard entries as fatal errors. It reports the error 
number and error-causing line, and halts the program. Entry errors are not fatal. 
The program announces them and requests reentry. 

10 DIM X$(10) 
50 TF~AF' 8000 
200 F'F\INT "ENTEF~ A ~3 TF\ING VALUE"; 
210 INPUT X$ 
220 IF X$ :=:"E" THEN ~'jOO:fU:: M End proC}r ? 
230 PF\INT "ENTEF~ A NUMEF~IC VALUE"; 
240 INPUT X 
249 REM Error occur s if entr~ = 0 
250 X:::X/X 
499 REM End ProC}raM 
500 PF\INT "L..M'T ENTRIE~:; WEf(E: "; X$;" A 
ND ";X 
510 TRAP 40000:REM Turn off TRAP 
520 END 
7998 REM +++++ Error handler +++++ 
7999 REM Get error nUMber 
8000 E :::: F"EE~«]' (75) 
8009 REM Get line no, wher e e rror was 
8010 EL =PEEK(187)~256+PEEK(186) 

8020 IF E=3 OR E=8 THEN 8100 
8029 REM Non - input error occurred 
80:3 0 PRINT "AFmGH I EI:-':FWf( NO, "; E;" FOU 
ND" 
8 0 4 0 PFUNT "DN LINE ND, "; n . 
80~50 PFG:NT "WF~ITE TI··IIS INFO, DDWN t ALD 
NG WITH" 
8060 PRINT "WHAT YOU WEH E DOING," 
8070 PF,INT "CONSULT THE USEF( '~, MANUAL 
FOR HELP" 
8080 END 
8100 REM Input error occurred 



Chapter 4: ADVANCED BASIC PROGRAMMING 139 

8110 PRINT CHR$(253);:REM Ring bell 
81.20 PRINT "[I:;:ROF"" TF<Y AGAIN" 
81.30 TRAP 8000:REM Reset TRAP 
81.'10 COTO EL 

Input Utility Subroutines 
At this point we can develop a general input subroutine. It will use all the input 
techniques we have discussed so far: prompt messages, amplified instructions, input 
masks, response checking, and an error-handling routine. 

The input subroutine will use several other subroutines. One of them clears lines 
on the display screen (Figure 4-16). It uses variable BL$ to clear all but the last 
column of each line. Clearing the last column would force a carriage return. If that 
happens on the last line, the screen scrolls up one line. Extra programming could 
overcome this, at the expense of memory and execution speed. In most cases, this 
simpler solution is adequate. The main program must dimension and fill BL$ with 
blanks. 

Another auxiliary subroutine flashes an error message in the top right corner of 
the display screen (Figure 4-17) . The message to display must be in variable ERM$, 

97 REM •••••••••••••••••••••••• **.*** 
98 REM . Clear Oispla~ Lines * 
99 REM •• * ••••• * •• * •• * •• * ••• * ••••• **. 
100 FOR J=Ll TO L2 
11 () PCJ!:>ITl(jN (), • .1 
120 PRINT BL$(l, 39); 
1 ::l 0 NEXT • .1 
140 1:<ETUf<N 

FIGURE 4-16. Clear Display Lines subroutine listing 

16 7 REM ••••••••••••••••••••• *.** •••• 
168 REM • Oispla~ Error Me ssage * 
169 REM * •••••••• * ••••• * ••••••••••••• 
1 70 FOR J=l TO 3 
180 PO SITION 20,0 
:I ? 0 !""f<INT EF<t1~; ~" Ef<F<()R"; CHF«~ (:>'5:]) ; 

20 0 FOR J:I=l TO 100:NE XT J1:REM Dela~ 
2 10 POSITION 20,0 
;->.? 0 I::'F<INT [:1 . ~ I > ( :1. , 1 '? ) : I<Et'l Er a~:;(·:) IVI(·:·)~:;q, 

2:] 0 NEXT , .. 1 
;-!'/IO F<ETUF<N 

FIGURE 4-17. Display Error Message subroutine listing 



140 A GUIDE TO AT ARI 400/800 COMPUTERS 

which the main program must dimension . The subroutine always appends the word 
"ERROR" to the message. It also beeps the console speaker each time the message 
flashes . It uses an empty FOR-NEXT delay loop, so the message stays on the screen 
for a few seconds. 

We also need a subroutine to clear the area at the bottom of the screen where the 
amplified instructions go (Figure 4-18). All this subroutine does is call the subrou
tine that clears display lines (Figure 4-17) and position the cursor to the start of the 
instruction area. 

Figure 4-19 shows the input subroutine itself. First the subroutine makes sure the 
error handler is active (line 600). Then it displays the input mask at the specified 
column and row (lines 630 and 640). Input is always into a string variable R$ (line 
660). This allows the user to enter a question mark to cue amplified instructions (line 
670), even during numeric entry. It also allows the user to just press the RETURN key 
during a numeric entry; the subroutine treats it as a 0 (line 700). The input 
subroutine checks for numeric range (line 720) or string length (line 750). It does not 
enforce any length restrictions on numeric entries, nor does it truncate or round 
numeric responses to some number of decimal places. These latter two functions 
usually vary from one input to the next, so they are better done outside the input 
subroutine. 

The input subroutine uses two variable line numbers , ERRHDL (line 600) and 
AMPSUB (line 670). This allows the calling program to provide its own routines 
and thereby vary the way it treats error-handling and amplified instructions . 
AMPSUB must be a real line number. The line can consist of only a RETURN 
statement, but it must exist. ERRHDL, on the other hand, can have an illegally high 
line number like 40000. If it does, AT ARI BASIC handles errors itself. 

We also need a subroutine that inputs with a prompt message (Figure 4-20). It 
displays a prompt message on the second line of the screen and calls the input 
subroutine (Figure 4-19) to input a value on the line after that. 

The last utility routine is the error handler (Figure 4-21). If an input error occurs, 
it uses the Display Error Message subroutine (Figure 4-17) to flash a message. Then 
it returns to the beginning of the line where the error occurred . If a non-input error 
occurs , the error handler displays an advisory message and ends the program. 

247 REM ~~~~~~~~~~~~~~~~-~ ~ ~~~~~~~~~~ 

2 48 REM -C l ea r In s tr . Ar ea of Sc r een~ 
2 49 REM ~~~~~*~*~*~~~~~~~~~~*~~~~~~~* 
250 Ll= 2 0 : L2=23 :GOSUB 1 0 0 
26 0 PO SITION 2.2 0 
;?7 0 f~ETl.mN 

NOTE: Requires the Clear Display Lines subroutine (Figure 4-16). 

FIGURE 4-18. Clear Instruction Area subroutine listing 



Chapter 4: ADVANCED BASIC PROGRAMMING 141 

596 REM •• ***.** ••• *** •••• ** •••• ** ••• 
597 REM * General Input Su broutine • 
598 REM ••• ** ••••••• **** ••••••••• ** •• 
599 REM Enable erro r - ha ndl er 
cll) 0 T 1', (1f:' El'mHDL 
60 '! 1', E t1 C:I. E' a l' al"l p :I. . in;;; t r·. :I. :i. r, E) ,,; 

6 1 0 Co~)U[: l~.'j 0 
630 POSITION IC+l,IR 
640 PRINT MSKt(l,IL) 
65 0 POSITION IC,IR 
659 REM I nput and c heck respo nse 
660 1NI::'UT 1:,,1; 
663 FOR Jl =l TO 1L 
664 REM Strip out extra Mask cha r s. 
665 FOR J l=l TO IL:IF Rt(Jl,Jl)()MSK$( 
1,1) THEN NE XT Jl 
666 R$=RS(l,Jl - 1) 
669 REM AMPlif~ in s tructions? 
1.,70 IF 1', '~ '" " .;> " THE N CO ~3 UE:: (.>, riP ~:;Li[: ; GO T CI 6 
JO 
68 0 IF LCI)HI THEN COTO 750l REM s tring 
69 0 REM Null entrs = nUMeric 0 
7 00 II::· 1', ;1,"" "" THEN I" .'~ """ ()" 
7 0'! REM Process nUMeric response 
7 1 0 I:("'\) ,~, L ( 1:;:$) 

71 0 IF R)=LO AND R(=HI THEN RETURN 
729 REM NUMeric Range error 
73 () EI,ti;J;"" NUt1EI';:IC l',tINGE" 
710 COSUS 17 0 :G OTO 62 0 
749 REM Stri ng I n pu t 
75 0 IF LEN(RS)(=IL THEN RETURN 
759 REM Stri ng l e ngth error 
76 0 EI',li$ "" "~:;T I',INC i...ENGTH " 
770 COSUS l !O:COTD 620 

NOTE: These subroutines must be present: Clear Display Lines (Figure 4-16), 
Display Error Message (Figure 4-17), and Erro r Ha ndler (Figure 4-21). 

FIGURE 4-19. General Input subroutine listing 

Table 4-2 lists all the utility subroutines by line number. It shows which subrou
tines use which variables, and which subroutines require other subroutines to be 
present. A program that uses any of these subroutines has to do a number of things . 
It must dimension string variables which the selected subroutines use , as described 
in Table 4-3. It must assign va lues to the variables these subroutines use, as 
described in Table 4-4. 

Have you noticed how the subroutines assume that the main program dimen
sions variables such as PRMT$ and MSK$ correctly? They could check that 



142 A GUIDE TO ATARI400/BOO COMPUTERS 

796 REM ~ •• ~ ••• ~.~ •••••••••••••••• *** 
797 REM. Input with ProMPt • 
798 REM ••••••••• ~~ •• ~~.~ •••••••••••• 
799 REM Clear proMPt & input lines 
800 Ll=1IL2=Z:GOSUB 100 
809 REM Print proMpt Message 
81 0 PO~;:rTI()N 2. 1 
B20 PRINT PI'(MT~I; 

B29 REM Input value 
B30 IC=Z:IR= 2:GDS UB 600 
BIlO I([TLJI'(N 

NOTE: Requires the following subroutines: Clear Display Lines (Figure 4-16) 
and General Input (Figure 4-19). 

FIGURE 4·20. Input with Prompt subroutine listing 

7996 REM ++++++++++++++++++++++++++++ 
7997 REM + Error handler + 
7998 REM ++++++++++++++++++++++++++++ 
7999 REM Get error nUMber 
8000 E'''F'EEI-{ ( 195 ) 
8009 REM Get line no. where error was 
BOlO EL=F'EEK(187)*Z56+F'EEK(186) 
B020 IF E= 3 OR E=B THEN Bl00 
B029 REM Non-i nput error occurred 
f:)030 PFUNT "AF(F( GH' EHfWF( NO. ";E;" FOU 
NO" 
80-'10 PF(INT "ON LINE NO. ";EL. 
8050 PRINT "1·mITE THIS INFO. DOWN. ALO 
NG WITH" 
El 0 6 0 PI=i:INT "WHAT YDU WEF(E DOING." 
El070 PIUNT "CONSULT THE USER'S MANUAL 
FDF( HELP" 
80130 END 
8100 REM Input error occurred 
Elll0 ERM$ ::::" INPUT" 
ElIZ0 GDSUB 170:REM Flash Messa ge 
8130 TRAP ERRHDL:REM Reset TRAP 
81-'10 GOTO EL.. 

NOTE: Requires the Display Error Message subroutine (Figure 4-17). 

FIGURE 4·21. Error Handler program listing 



Chapter 4: ADVANCED BASIC PROGRAMMING 143 

TABLE 4-2. Utility Subroutine Requirements 

Line Figure and Title Variables Subroutines 

100 4-16. Clear Display Lines BL$, J, L1, L2 None 
170 4-17. Display Error Message BL$, ERM$, J, 11 None 
250 4-18. Clear Instruction Area L1 , L2 100 
600 4-19. General Input AMPSUB, ERM$, ERRHDL, ERRHDL, 

HI , IC, IL, IR, JI, LO, MSK$, AMPSUB, 
R, R$ 170, 250 

640 4-37. String Input IC, IL, IR, J , R, R$, X None 
800 4-20. Input with Prompt IC, IR, L1, L2, PRMTS 100, 600 
850 4-38. Disable BREAK Key 1 None 
6000 4-33. Move Cursor with Stick BR, DLYI , J , LC, RC, SC, None 

SR, TR 
6500 4-31. Numeric Input with BU, HI, IC, IL, INC, IR, None 

Joystick 1, LO, R, SO 
8000 4-21. Error Handler E, EL, ERM$, ERRHDL 170 
8200 4-36. Enter Valid Date 0 , DA T$, IC, IR , M, MSK$, 8400 

R$, Y 
8400 4-36. Input Two Digits 11 , R, R() None 

TABLE 4-3. Utility Subroutine String Variable Dimensions· 

Variable Minimum Maximum 

BU 39 None 
DAT$ 8 8 
ERM$ 13 13 
MSK$ 0** 39 
R$ 1** 39 
PRMT$ 0 39 

* Used in Figures 4-16 through 4-21, 4-31 , 4-33, and 4-36 through 4-38. 

** Must accommodate the largest input. 

IL < = LEN(PRMT$) and that IL<= LEN(MSK$). But these are programming 
errors, not user errors. Once discovered and corrected, a programming error will 
almost never reappear. It would be a waste of computer memory and execution 
speed for the program to check for such errors. 

Let's use the utility subroutines (Figures 4-16 through 4-21) in a program. Type 
them all in together, then use the CSA VE statement to record them on a cassette. 
That way you can use the CLOAD statement to get them back in memory when 
future example programs need them, rather than retyping them each time. 

Once you have all the subroutines in memory, type in the listing shown in Figure 
4-22. The resulting program first dimensions and initializes the variables that the 



144 A GUIDE TO ATARI 400/800 COMPUTERS 

TABLE 4-4. Input Utility Subroutine Variable Usage 

Variable 

AMPSUB 

BL$ 
BR 
0 
DAT$ 
DLYI 
E 
EL 
ERRHDL 

HI·· 
IC 

IL 
INC 
IR 
1 
11 
LI 
L2 
LC 
LO·· 
M 
MSK$ 
PRMT$ 
R 
R( ) 
R$ 

RC 
SC 
SO 
SR 
TR 
Y 

Value 
Change?· 

No 

No 
No 
Yes 
Yes 
No 
Yes 
Yes 
No 

No 
No 

No 
No 
No 
Yes 
Yes 
Yes 
Yes 
No 
No 
Yes 
No 
No 
Yes 
Yes 
Yes 

No 
Yes 
No 
Yes 
No 
Yes 

Use 

Line number of the subroutine 
that amplifies the prompt message 
Blank characters for erasing the screen 
Bottom row cursor limit 
Day entered 
Date entered , with punctuation 
Cursor speed 
BASIC error number 
Line number where error occurred 
Line number of the error handler; if none, 

let ERRHDL = 40000 
The largest number that can be entered 
The input column number , 0 to 38. Avo id column 39, 

since it forces a carriage return 
The input length 
Increment 
The input row number, 0 to 23 
Temporary 
Temporary 
First display line to clear , 0 to 23 
Last display line to clear, LI to 23 
Left-hand column cursor limit 
The smallest number that can be entered 
Month entered 
Input mask characters 
The prompt message; it can be null 
Returns the numeric value input, if any 
Temporary 
Returns the string value input , or string equivalent 

of numeric input 
Right-hand column cursor li mit 
Stick-directed cursor column 
Delay between incrementing 
Stick-directed cursor row 
Top row cursor limit 
Year entered 

• The subroutines change the values of only the indicated variab les. 

** If LO >HI, the subroutine inputs a string value. If not, it inputs a numeric value. 

subroutines use (lines 10 to 40). Then it branches around the subroutines to start the 
main execution sequence (line 90). It sets up a 20-character string input (lines 10 10 
to 1040) and a numeric input (lines 1050 to 1110). The prompt message for the 
numeric input includes the response to the string input (lines 1050 to 1070). Notice 
that the string input has no amplified instructions-AMPSUB is 32767, the "do
nothing" subroutine. There are amplified instructions for numeric entry, however 
(lines 7000 to 7040). 



Chapter 4: ADVANCED BASIC PROGRAMMING 145 

10 DIM PRMT'(10),MSK'(10),8L$(10),ERM$ 
(1 J ),I'( ~~(20 ) 

19 REM Fill 81...$ with blanks 
20 E:L$ :::: " ": 8L$ (40) " [:1...$: E:UI; ( 2) : : :[:I...~I; 

29 REM Fill MSK' with input Mask char 
30 M~lI<:.p:", ,, _": MSI<~I; ( '10) :: : : MSI<~I; : MSI<~;( 2) "':MSI<$ 
(1) 

39 REM Error - handler starting line 
'10 EI:mHDI...::::80 0 0 
89 REM branch to start of prograM 
90 GO TO 1000 
999 REM --- Ma in PrograM ---
1000 PRINT CHR'(125):REM clr. screen 
1009 REM Input string value 
1010 PI'(MT ~~ ::-~ "What i fj the bowler's last 
naMe'?" 
1020 II... =20:LO=1:Hl=0 
1030 AMPSUB=32767 
1010 GOGU8 800 
1049 REM Enter nUMeric value 
1050 PF(MT$="What did " 
1060 PRMT'(LEN(PRMT$)+l)=R' 
1070 PI:(MT ~~ ( LEN (F'r';:MT$) +1) "," scoT'e'?" 
1080 IL=7:LO =0:HI =300 
10 <;> 0 AMf"GU8::10 0 0 
1100 GOGUE: 800 
1110 GOTO 1010 
6997 REM - -- NUMeric Input Instr. ---
6998 REM Clear dedicated area, then 
6999 REM position cursor 
7000 GOSU[: 250 
7010 PFUNT "Enter a positive nUMeric' v 
alul:.', " 
7020 PI'UNT "less than 300." 
7030 RETURN 
32767 RETURN :REM do - nothing subr. 

NOTE: Shows the input utility subroutines (Figures 4-16 through 4-21) in action. 

FIGURE 4-22. Enter Bowling Scores program listing 

Group Inputs 
Very often a program needs several pieces of information, not just one or two. It can 
input the data items in a number of different ways . One way is to input each item in 
turn at the same place on the screen, using a different prompt for each item to guide 
the operator. This is the approach the last example program (Figure 4-22) used to 
enter names and scores. That program reminded you whose score to enter by 



146 A GUIDE TO ATAR1400/800 COMPUTERS 

incorporating the name into the prompt message for the score. Imagine the confu
sion that would occur without this aid . You would always have to remember the last 
name you entered . 

That program could display the most recent entries on the unused part of the 
screen. Try changing it so it displays the most recent name and score on lines 5 and 6 
of the screen (Figure 4-23). 

The best way of handling multiple-item data entry is to display a form on the 
screen, and fill in the form as data is entered . Related data items stay on the screen 
until all items are entered. To do this, the program first displays the form. This 
consists of a label for each item and enough space next to the label for the entry 
(Figure 4-24). The labeled items are called fields. Each field has a number. You 
enter data sequentially, starting with the first field and ending with the last. 

Only minimal programming effort is required to accomplish this. Suppose you 
want to input a name and address. There are five items to enter: name, street, city, 
state, and ZIP code. The input utility subroutines we just developed will do most of 
the work (see Tables 4-2, 4-3 , and 4-4 and Figures 4-16 through 4-21). If you 
recorded them on cassette as we suggested, load them into memory now. Otherwise 
you will have to retype them. Be sure none of the program lines from the last 

What i s the b owl e r 's l as t n a Me? 
t1C CI m 

NaMe l ast e nt ered : SNER D 
Score l ast e ntered: 188 

FIGURE 4-23. Displaying the most recently entered data for reference 



Chapter 4: ADVANCED BASIC PROGRAMMING 147 

ENTER NAME AND ADDRESS BELOW 

1.) NaME!: 
;?) ~;treet: 

cll Ci.t~:I: 
'j) ~:;tatE!: ~5) ZlT': 

FIGURE 4-24. Displaying a form for data entry 

example program (Figure 4-22) remain. Add the following program lines to clear 
the screen and display the initial form: 

9 REM Initialize variables 
10 DIM PRMT$(40), MSKS(40), BLS(40),ER 
M$ (1:3) 
19 REM Fill BL$ with blanks 
20 E:U~'"'" ":BL$(40)'~BU':[:I ... ~'(Z)'"BI...~I' 
29 REM Fill MSK$ with input Mask char 
30 M~lI<~'''''' .... ": M~31<~I; ('10) "t1SI<~;: M~31<S (;?) ""MSf(~; 

39 REM Error-handler starting line 
'10 EI:~I:~HDL"'DO 0 0 
D9 REM Branch to start of prOgraM 
90 GOlD 1000 
999 REM Clear screen & displa~ forM 
1000 PFn:NT CHR$ ( :I. 2:'5) ; "ENTEr, NAME AND A 
[)[)F(E~3~; E:El..OW" 
1 0 1 0 PF~INT: PIUNT 
1020 PI:~INT "1) NaME'~ :" 

1030 PIUNT "Z) Stn~et:" 

1040 F'F,INT ":3) Cit~:l:" 



148 A GUIDE TO AT ARI 400/800 COMPUTERS 

1 050 pr~INT " '1) Statf~: II 

1060 POSITION 20,6 
1070 PIUNT "~5) ZIP:" 
1900 END 

Next, the program has to input the name, street, city, state, and ZIP code. Add a 
separate subroutine to input each field: 

50 DIM NA$(20),STT$(20',CI$(20',ST$(2) 
, ZI~~ (9) t f~~; (20) 
1099 REM Enter all 5 fields 
1100 FOR F= l TO 5 
:1.1:1.0 GDSUB ;?OOO 
11 ;.~ 0 NEXT F 
1130 GOTO :li00 
1996 REM ++++++Subroutine 2000+++++++ 
1997 REM Branch to e ntr ~ routine 
1998 REM for field F 
1999 REM Input s tring wi no sMplif. 
200 0 LO=1:HI=0:AMPSUB=32767 
2010 ON F GOTO 2100,22 00, 230 0, 2100.250 
o 
2097 F~EM 

2098 REM Enter 20-char naMe 
;?099 F~EM 

210 0 IC=13:IR=3:IL=20:GOSUB 600 
2110 NA$ =RS:RETURN 
21'17 F~EM 

2198 REM Enter 20-chsr street 
2199 I:~EM 

2200 IC=13:IR =1:IL=20:COSUB 600 
2210 STT$=RS:RETURN 
2297 F~EM 

2298 REM Enter 20-char cit~ 
229', F~EM 

2300 IC=13:IR=5:IL=20:COSUB 600 
2310 CI$=R$:RETURN 
2397 F~Et1 

2398 REM Enter 2-char state 
;1.399 r~ EM 

2100 IC=13:IR=6:IL=2:COSUB 600 
2110 ST$=R$:RETURN 
2 '1 97 F~EM 
2198 REM Enter 9-char ZIP 
2'1',';> F~EM 

2500 IC =28:IR=6:IL=9:COSUB 600 
2510 ZI$=R$:RETURN 
32767 RETURN :REM do-nothing s ubr. 

Run the program. If it does not run correctly, check your listing carefully. In 
particular, look for missing subroutines and for semicolon errors in PRINT 
statements. 

When you run the Name-and-Address program; it displays an entry mask for 



Chapter 4: ADVANCED BASIC PROGRAMMING 149 

each of the five fields in turn . This tells you which field to enter. Note how easy it is 
to see what you are entering. 

Reviewing and Changing Input 
When you finish entering everything on a form, the program can easily allow 
changes to any individual field. All it needs to know is the number of the field to 
change. 

You can add the ability to make changes to the Name-and-Address program. 
When initial form entry is complete, the program will need to ask whether you want 
to make changes. If so, it must input the field number you want to change and use an 
ON-GOSUB statement to call the appropriate input subroutine. Figure 4-25 shows 
the complete program with statements added to allow changes (lines 1130 through 
1230), and all subroutines. 

Study the Name-and-Address program carefully. Be sure you understand the 
data entry aids which it uses. These aids are listed below. 

By labeling each field and juxtaposing an entry mask at the appropriate time, the 
program clearly indicates what data is expected, and how many entry spaces are 
available . 
If you exceed the allowed entry length , the program reports an error. 

When you enter the number of a field to change, the entry mask again quickly tells you 
whether you specified the correct field number. 
When the program asks questions , it only recognizes meaningful responses: Y or N for 
yes or no, or a number between I and 5 to select a field. 

The following are data entry features which have not been included but could be 
added: 

The program could check the ZIP code for any nondigit entry. (Note that similar codes 
in some countries do allow both letters and numbers, however.) 

Many cautious programs ask the question "Are you sure?" when you answer no in 
response to the question "Do you want to make any changes?". This gives the program 
user a second chance to make changes in the event that he or she accidentally pressed the 
wrong key. 
The program could recognize a special character which, when input, retains the prior 
value'. For example, if the you choose the wrong field to change, the example program 
now forces you to reenter the field. The program could easily recognize a character 
which retains the previous field value. 

Try modifying the Name-and-Address program yourself to include the additional 
safety features described above. 

Using Game Controllers to Restrict Responses 
One problem with all forms of input is the multitude of choices the user has. Every 
extraneous choice is a potential error. The program must check for inappropriate 
responses. If it neglects to check, some user will make the mistake that crashes the 



150 A GUIDE TO ATARI 400/800 COMPUTERS 

9 REM Initialize variables 
10 DIM PRMT$(40),MSK$(40),Bl$(10),ERM$ 
(13) 
19 REM Fill BlI with blanks 
20 E:lS="" ": Bl$ (40) =E:l$: E:L$ (2) =E:l$ 
29 REM Fill MSKS with input Mask char 
3 0 MSf{$::'" _ " : MSK$ (40) =MSf{$: MSf{$ ( 2) =MSf($ 

39 REM Error-handler starting line 
40 Ef,RHDl == 80 0 0 
5 0 DIM NA$(20),STT$(20),C~$(20),ST$(2) 
,ZI~~(9) ,RS(20) 
89 REM Branch to start of prograM 
90 GOTo 1000 
97 REM ****************************** 
98 REM * Clear Displa~ Lines * 
99 REM ****************************** 
100 FOR J =ll TO l2 
110 POSITION O,J 
120 PRINT Bl$(1,39); 
130 NEXT J 
140 RETURN 
165 REM ***************************** 
166 REM * Displa~ Error Message * 
169 REM ***************************** 
170 FO';: J=l TO 3 
180 POSITION 20, 0 
190 PRINT ERM$;" ERROR";CHRS(253 ); 
200 FOR Jl=l TO 100:NEXT Jl:REM Dela~ 
210 POSITION 20,0 
220 PRINT BlS(1,19):REM Erase Mesg. 
230 NEXT J 
240 f,ETURN 
247 REM ***************************** 
248 REM *Clear Instr. Area of Screen* 
249 REM ***************************** 
250 ll=20:L2=23:GoSUB 100 
260 POSITION 2,20 
27 0 RETURN 
596 REM ***************************** 
597 REM * General Input Subroutine * 
598 REM ***************************** 
599 REM Enable error-handler 
600 TRAP Ef,R HDl 
619 REM Clear aMPl. instr. lines 
620 GOSUS 250 
630 POSITION IC+l,IR 

NOTE: Demonstrates forms data entry. Uses all input utility subroutines (Figures 4-16 
through 4-21). Can be modified to create a mailing list data file on cassette 
(see Figure 5-2). (continued) 

FIGURE 4-25. Name-and-Address program listing 



Chapter 4: ADVANCED BASIC PROGRAMMING 151 

610 PRINT MSK$(l,IL) 
650 POSITION IC,IR 
659 REM Input and check response 
660 INPUT R$ 
663 FOR Jl=l TO IL 
661 REM Strip out extra Mask chars. 
665 FOR Jl = l TO IL:IF R$(Jl,Jl)(>MSK$( 
1,1) THEN NEXT Jl 
666 R$=R$(1,Jl-1) 
669 REM AMplif~ instructions? 
670 IF R$="?" THEN GoSUE: AMPSUE::GOTO 6 
30 
680 IF Lo) HI THEN GOTo 750:REM string 
690 REM Null entr~ = nUMberic 0 
700 IF R$ ="" THEN R$ ::: "O" 
709 REM Process nUMeric response 
710 R=VAL< F,$) 
720 IF R)= LO AND R(= HI THEN RETURN 
729 REM NUMeric Range error 
730 EF,M$ =" NUMERIC F,ANGE" 
710 GOSUE: 170:GOTO 620 
719 REM String Input 
750 IF LEN(R$) (=IL THEN RETURN 
759 REM String length error 
760 ERM$ ="SmING LENGTH" 
770 GOSUB 170lGoTO 620 
796 REM ***************************** 
797 REM * Input with ProMpt * 
798 REM ***************************** 
799 REM Clear proMPt & input lines 
800 Ll =1:L2=2 lGOSUB 100 
809 REM Pr i nt proMpt Message 
810 POSITION 2 ,1 
820 PRINT PRMTS 
82 9 REM Input value 
830 IC =2:IR=2lCOSUE: 600 
810 F, ETURN 
999 REM Clear screen & displa~ forM 
10 () 0 PF~INT CHR$ ( 125) ; "ENTER NAME AND A 
DDRESS BELOW" 
1010 PRINT lPRINT 
1020 PRINT "1) NaMe:" 
1030 PRINT "2 ) Streetl" 
1010 PRINT "3) Cit~l" 

1050 PF,INT "1) Statel" 
1060 POSITION 20,6 

NOTE: Demonstrates forms data entry. Uses all input utility subroutines (Figures 4-16 
through 4-21). Can be modified to create a mailing list data file on cassette 
(see Figure 5-2). 

(continued) 

FIGURE 4-25. Name-and-Address program listing (continued) 



152 A GUIDE TO ATARI 400/800 COMPUTERS 

1070 F'FnNT "5) ZIP:" 
1099 REM Enter all 5 fields 
1100 FOR F=1 TO 5 
1110 GOSUE: 2000 
1120 NEXT F 
1129 REM Allow changes 
1130 F'RMT$ =: " Do ~ou want to Make an:! ch 
anges" 
1110 LO=1:HI=0:AMF'SUE:=32767 
1150 IL=l:GOSUE: 800 
1159 REM Anal:Jze response 
1160 IF R$=:"N" OR f($="n" THEN 1100 
1170 IF R$""Y" OR F($::::":J" THEN 1;~00 

11130 ERM$="Y or N please":GOSlJB 170 
1190 GOTO 1130 
119("1 REM' Get fiE! 1 d rll..lMIJE!T' 
1200 F'F(MT$="Which field" 
1210 LO=1:HI=5:AMF'SlJ8=32767 
1220 IL=l:GOSUB 800 
1230 F=R:GOSUB 2000:GOTO 1130 
1900 END 
1996 REM ++++++Subroutine 20 00+++++++ 
1997 REM Branch to entr:J routine 
1998 REM for field F 
1999 REM Input string wi no aMPlif. 
2000 LO=1:HI=0:AMF'SlJB=32767 
2010 ON F GOTO 2100,2200,2300,2100,250 
o 
2097 F(EM 
2098 REM Enter 20 -char naMe 
2099 REM 
2100 IC=13:IR=3:IL=20:GOSUB 600 
2110 NA$=R$:RETURN 
2197 F(EM 
2198 REM Enter 20 - char street 
2199 F(EM 
2200 IC=13:IR=1:IL=2 0:GOSlJB 600 
2210 STT$=R$:RETURN 
2297 REM 
2298 REM Enter 20-char cit:J 
2299 F(EM 
2300 IC=13:IR=5:IL=20:GOSUB 600 
2310 CI$=R$:RETURN 
2397 REM 
2398 REM Enter 2-char state 
2399 REM 

NOTE: Demonstrates forms data entry. Uses all input utility subroutines (Figures 4-16 
through 4-21). Can be modified to create a mailing list data file on cassette 
(see Figure 5-2). 

(continued) 

FIGURE 4-25. Name-and-Address program listing (continued) 



Chapter 4: ADVANCED BASIC PROGRAMMING 153 

2100 IC=13:IR=6:IL=2:GOSU8 600 
2110 ST$=R$:RETURN 
2197 REM 
2198 REM Enter 9-char ZIP 
2199 REM 
2500 IC=28:IR=6:I~=9:GOSU8 600 
2510 ZI$=R$:RETURN 
7996 REM ++++++++++++++++++++++++++++ 
7997 REM + Error handler + 
7998 REM ++++++++++++++++++++++++++++ 
7999 REM Get error nUMber 
8000 E=PED( ( 195) 
8009 REM Get line no. where error was 
8010 EL=PEEK(187)*256+PEEK(186) 
8020 IF E=3 OR E=8 THEN 8100 
8029 REM Non-input error occurred 
8030 PRINT "ARRGH! ERROF~ NO. "; E;" FOU 
NO" 
8010 PRINT "ON LINE NO. ";EL 
8050 PRINT "WRITE THIS INFO. DOWN, ALO 
NG WITH" 
8060 PRINT "WHAT YOU WERE DOING." 
8070 PRINT "CONSULT THE USER'S MANUAL 
FOR HELP" 
8080 END 
8100 REM Input error occurred 
8110 ERM$="INPUT" 
8120 GoSUB 170:REM Flash Me~sage 
8130 TRAP ERRHDL:REM Reset TRAP 
8110 GO TO EL 
32767 RETURN :REM do-nothing subr. 

NOTE: Demonstrates forms data entry. Uses a ll input utility subroutines (Figures 4-16 
through 4-2 I). Can be modified to create a mailing list data file on cassette 
(see Figure 5-2). 

FIGURE 4-25. Name-and-Address program listing (continued) 

program. The solution to this problem is to eliminate the keyboard as the input 
device and use the game controllers instead . The joystick is the easiest to adapt. It is 
not always possible to use a game controller instead of the keyboard, but the 
number of ways in which game controllers can be used is surprising. 

The STICK function reads the joystick in AT ARI BASIC. It returns a value 
between 5 and 15, depending on the direction the stick is pointed (Figure 4-26) . The 
STRIG function reads the joystick trigger button. It returns a 0 value only if the 
trigger is being pressed . You can hook up as many as four joysticks to an AT ARI 
computer at once. Therefore you must state which stick you want the STICK or 
STRIG function to read . Sticks are numbered 0 through 3 for these functions. Stick 



154 A GUIDE TO AT ARI 400/800 COMPUTERS 

14 
F-~=~ 
I I 
I I 

10 ,,?> I I 
//~~----~--4-------~ \/ "n 

fT':----

Iql \L. __ _ 

V, 
" " ---" t I 7 ___ .11 

/ " ~"'/~------+-~------~~,, //; 
9 '.Y I "/5 

I 
I I 
I:::~ 

13 

FIGURE 4-26. STICK function values 

o plugs into socket I (the leftmost socket) on the front of the AT ARI computer, 
stick I plugs into socket 2, and so on. The following program shows how these two 
functions work: 

10 PRINT CHRS(125) 
20 POSITION 2,~'j 

29 REM Use BREAK ke~ to stop prograM 
:;)0 PIUNT "f"TICI< il VALUE: "; ST1CI< (0) ; 

" . , 
'10 PF(INT "~:>TICI< 0 Tf(ICGEI'(: "; 
~:jO IF STlue (0 ) :" 0 THEN Pf(INT "ON " : COTD 

zo 
60 I"'FrINT "OFF" : GDTD 2 () 

AT ARI BASIC reads the paddle with the PADDLE function. It returns a value 
between I and 228 , depending on the amount of rotation (Figure 4-27). The PTRIG 
function reads the paddle trigger button. It returns a 0 value only if the trigger is 
being pressed. Paddles come in pairs . You can hook up as many as four pairs to an 
ATARI computer at once. Therefore you must state which of the eight paddles you 
want either of these functions to read. Paddles are numbered 0 through 7 for these 
functions . Paddles 0 and 1 plug into socket I on the front of the ATARI computer, 
paddles 2 and 3 plug into socket 2, and so on. The following program shows how 



Chapter 4: ADVANCED BASIC PROGRAMMING 155 

Full counterclockwise 

FIGURE 4-27. PADDLE function values 

these two functions work: 

10 PRINT CHR$(1 25) 
20 POSITIDN 2,5 
29 REM Use BREAK ke~ to s top progr a M 
30 PluNT "PADDLE 0 VALUE: "; PADDLE (0 
) ; .. II ; 

40 PI:U:NT "PADDLE 0 Tfn:C;GER : " ; 
~~O IF PTIUG(O )=-' O THEN PIUNT "ON " : C;C)'ro 

20 
60 ""fU:NT "OFF" : GOTD ;~ O 

Joystick Control of the Display 

Full clockwise 
rotation 

When dealing with large quantities of data , the display screen can only show a small 
amount of the data at one time. One way to do this is to use the display screen as a 
window on the data . At any time it shows only part of the data available. Viewing 
data in this way is easy if the data is in the form of numeric array variables or even 
string pseudo-arrays (described earlier in this chapter). Imagine that the array data 
is written on a large chalkboa rd and you are looking at the chalkboard through the 
viewfinder of a camera. The chalkboard is large enough that you cannot get it all in 
the viewfinder at one time, but you can view any part of the chalkboard by moving 
the viewfinder up , down, right , or left. The display screen can imitate the viewfinder, 
and the joystick can control its movement over the field of data . 

We will now show how to implement this technique with a two-dimension 
numeric array. As the value of each array element, we will assign a four-digit 
number which identifies the array indexes, like this : 

X(i,j) = OiOj 



156 A GUIDE TO ATARI 400/800 COMPUTERS 

For example: 

X(3,2) = 0302 
X(19,8) = 1908 
X(I 1,12) = 1112 

This numeric array can be initialized very simply with some nested FOR-NEXT 
loops, as follows : 

10 DIM X(~.)(). :I.'t) 
49 REM Initialize arra~ 
50 PFUNT Cfm~l; (12~j) : "PLEASE ~AIT-" " - INITI 

ALIZATIDN IN PFWCES S": 
60 F()I'~ f(=O TO 14 
70 F()f~ J =: O TO 50 
80 X(J.K)=(J+l)~100+K+l 
90 NEXT J 
100 NEXT 1< 

The computer takes about ten seconds to execute these lines. This is a long time to 
leave the program user in suspense, so the program displays an advisory message 
about the initialization. Without such a message, the program user may well assume 
that the computer is not working. It is a good idea to display a prominent message 
whenever such periods of apparent inactivity occur. 

The fourth and fifth rows of the display will show column headings. The first ten 
spaces of each line will show row headings (Figure 4-28). We deliberately created a 
window that is smaller than the entire screen in order to better illustrate the concept 
of a window on data . There is nothing to prevent you from creating a window that 
occupies your entire screen, but there will be occasions when you want a small 
window so that other data can appear on the screen concurrently. 

As the part of the array that is visible changes, the program will have to change 
the row and column numbers in the headings. The following subroutine accom
plishes that: 

998 REM +++++ Subroutin e 1000+++++ 
999 REM Di5pla~ headings 
1000 FOR J=l TO 3 
1010 POSITION 3+J~10.3 
1020 PfUNT "CDLUt1N": 
10~10 NE XT ,J 
1040 FOR J=O TD 2 
1050 POSITION 16+J~1 0.4 

1059 REM right-ju5tif~ one-digit no 
1 o cd) IF C",")+1<1.0 THEN PI:UNT " ": 
1070 PRINT C+J+l: 
lOBO NE XT J 
1090 FOR J = O TO 9 
1100 POSITIDN 3.J+5 
11:l 0 Pf~ItH "fW~ "; 
1119 REM right-justif~ one-digit no . 
11 20 IF f(h)+1<1.0 THEN PF(INT " " ; 
1130 PRINT R+J+1: 



Chapter 4: ADVANCED BASIC PROGRAMMING 157 

C 0 L U MN CO 
X X 

R 0 W Y Y 

R 0 W Y Y 

R 0 W Y Y 

R 0 W Y Y 

R 0 W Y Y 

R 0 W Y Y 

R 0 W Y Y 

R 0 W Y Y 

R 0 W Y Y 

R 0 W yy 

FIGURE 4-28. Screen format for data window program 

1140 NE XT J 
11~j() I'~ETUI'~N 

L U MN CO L U M N 

X X X X 

Note that lines 1070 and 1130 add I to the row and column numbers as they are 
displayed. AT ARI BASIC arrays have elements with 0 indexes, but most people 
start counting with I, not O. Therefore, the program makes this minor translation io 
make it easier to use. 

The following lines display array values starting with X(25,7) in the upper left 
corner of the window: 

2 0 OIM XS (10),8L' (40) 
29 REM Fill BLS with blanks 
30 [:u~,,,,, ": [:u~ (It 0 ) "'E:I... ~I;: E:U~ (2) ~"'[:L~; 
2 00 R=2 4:C=6 :REM arra~ center 
2 10 GOSU[: 1000:REM Headings 
2 19 REM Fill in yalues 
220 FOR K=1 TO 10 
230 FOR J=1 TO 3 
240 POSITION J~10-1,K+4 
250 X'=S TRS( X(R+K-l,C+J-l» 
26 0 PRINT [:LS(1,10 -LEN(XS»;XS; 
270 NE XT J 



158 A GUIDE TO ATARI 400/800 COMPUTERS 

2 80 NEXT 1< 
290 POSITION 2,1 
350 END 

Variable R determines the topmost column in the window. Variable C determines 
the leftmost column. Each array value is converted into a numeric string on line 250 
before being printed. This conversion simplifies display formatting. It makes it easy 
to right-justify the array values in the columns, as shown by the PRINT statement 
on line 260. 

Our program takes great care to terminate the display on the 39th column of the 
display, rather than the 40th and last column. If you run displays out to the 40th 
column, you will run afoul of the wrap-around logic, whereby lines that are more 
than 40 characters long automatically continue on the next line. You should do your 
best to avoid the display formatting nightmare that can result from the interaction 
between carriage returns generated by printing in column 40 and your own format
ting carriage returns . 

These lines monitor joystick 0: 

299 REM Move window right 
300 IF STICK(0)=7 AND C(12 THEN C=C+l: 
GOTO 210 
309 REM Move window left 
310 IF STICK(0) =11 AND C)O THEN C=C- l : 
GOTO 210 
319 REM Move window down 
320 IF STICK(0) =13 AND R(41 THEN R=R- 1 
:GOTO 210 
329 REM Move window up 
330 IF STICK(0) =14 AND R)O THEN R=R- l : 
GOTO 210 
339 REM Use BREAK ke~ to stop prograM 
340 GOlO 290 

If the stick is moved right, left, down, or up, and the window is not already as far 
as it can go in that direction, the program adjusts variables Rand C. Then it 
redisplays the window, starting with these new array indexes. 

The complete program, illustrated in Figure 4-29, is a relatively primitive pro
gram. It has only one speed: slow. It takes about two seconds to redisplay the 
window each time the row or column number changes; that's 20 seconds to move the 
window ten rows. You could fine tune the program and possibly cut this time in half, 
but ten seconds is still a long time. Instead of red is playing the window as often as 
possible while the stick is held in one direction, the program could redisplay only 
when the stick is centered. That way the window red is plays just one time for each 
nonstop move. We have reduced the time it takes to move the window to two 
seconds, plus the length of time the stick is off-center. Of course, the program has to 
update the column numbers as it moves the window horizontally, and the row 
numbers as it moves vertically, so the user knows where the window is. That small 
overhead will take very little time. Try making these changes to Figure 4-29 
yourself. 



Chapter 4: ADVANCED BASIC PROGRAMMING 159 

10 DIM X(~50,1"t) 

20 DIM BL$("tO),XS("t) 
29 REM Fill BL$ with blanks 
30 [:l..$::=" ":E:U; ('10)=BL$:E:U;(2)==BL$ 
'19 REM Initialize arra~ 
50 PFUNT CHF(S( 125); "PLEASE WAIT--INITI 
ALIZATIoN IN PFWCESS"; 
60 FOR K=O TO 1'1 
70 F(m c)==O TO ~:;O 

80 X(J,K)=(J+1)*100+K+1 
90 NEXT ,J 
100 NEXT f( 

199 REM Main prograM 
200 PIUNT CHI,( ~H 125) ; "Use stick to Move 

window"; 
205 R=25:C=7:REM arra~ center 
210 GOSUE: 1000:REM Headings 
219 REM Fill in values 
220 FOR K= l TO 10 
230 FOR J=1 TO 3 
2'10 POSITION J*10-1,K+'1 
250 XS=STRS(X(R+K-l,C+J-1» 
260 PRINT BL$(1,10-LEN(XS»;XS; 
270 NEXT J 
2B 0 NEXT 1< 
290 POSITION ;~, 1 
299 REM Check Jo~stick 
300 IF STICK(O)=7 AND C(12 THEN C=C+l: 
GDTo 210 
310 IF STICK(0)=11 AND C)O THEN C=C-l: 
GOTO 210 
320 IF STICK(0)=13 AND R("tl THEN R=R+l 
:C;OTO 210 
330 IF STICK(O)=l"t AND R)O THEN R=R-l: 
GDTO ;~1O 

3'10 GOTO 290 
998 REM +++++ Subroutine 1000 +++++ 
999 REM Displa~ headings 
1000 FOR J=l TO 3 
1010 POSITION 3+J*10,3 
1020 PfUNT "COLUMN"; 
1030 NEXT J 
10"tO FOR J=O TO 2 
1050 POSITION 16+J*10,4 
1059 REM right- justif~ one-digit no. 
1060 IF C+,J+1<10 THEN PF(INT " "; 
1070 PRINT C+J+l; 
lOBO NEXT J 
1090 FOR J=O TO 9 
1100 POSITION 3,J+5 

FIGURE 4-29. Screen Data Window program listing 

(continued) 



160 A GUIDE TO ATAR1400/800 COMPUTERS 

1110 PF~INT "FWW ,,; . 
1119 REM right- Justif~ one- digit no. 
l1Z0 IF r~+J+l<10 THEN PRINT" "; 
1130 PRINT R+J+l; 
1140 NEXT J 
1150 RETUI:;:N 

FIGURE 4-29. Screen Data Window program listing (continued) 

You can also move the window diagonally. The STICK function can detect 
diagonal stick positions (Figure 4-26). Try expanding the program between lines 
300 and 330 to enable diagonal window movement. If the program detects a 
diagonal joystick position, it must change both row and column, variables Rand C. 
Furthermore, when the window moves diagonally , it might run into both the top (or 
bottom) and side of the array at the same time. Be sure to check for this condition. 
Figure 4-30 summarizes the effects of the various joystick positions on the row and 
column variables. 

Numeric Input with the Joystick 
We can write a program that uses the joystick to input a numeric value. The 
program starts by displaying a number on the screen. Then it monitors the joystick. 
Move the stick to the left and the program decreases the number. Move the stick to 
the right and the number increases. Center the stick and the number stops changing. 
When the number you want to input is on the screen, press the trigger button. Here 
is a simple program to input a number between I and 10: 

1000 F~::::l 

6509 REM Eras e old value. pas . cur s. 
6510 PRINT CHR$ ( 125 ) 
6519 REM Displa~ c urrent va lu e 
6530 PRINT 1:( ; 
6539 REM Quit when tri gger pr e s sed 
6550 IF STRIG(O)=O THEN END 
6579 REM Move ahead? 
6580 IF STICK(0 )= 11 AND R< >LO THEN R=R 
···1:C;OTO b~jl0 

b589 REM Move back? 
b590 IF STICK(0) =7 AND R< >HI THEN R=R+ 
l:GDTD b510 
6599 REM No change 
6600 GDT!) b5~:'iO 

The program works , but it is hard to stop at a particular number. The program is 
too sensitive to joystick movement. It is checking the stick position too often. Delay 



Chapter 4: ADVANCED BASIC PROGRAMMING 161 

R = R - I 
C=C 

f..-::=~ 
I I 

R = R - I I I 
C = C - I ~.,... : I 

//~------~~-+------~~ 

~/'0 

1":----
R = R I' 
C = C - I \L __ _ 

V" 
" " 

R = R - ! 

---I) R = R 
.1/C=C+1 

/ , 
~" ~/:-<--------t---+-------""', /~ 

R = R + I '.Y I -{./ R = R + I 
C=C-I I C=C+! 

I I 
I::==~ 

R = R + I 
C=C 

NOTE: R is the row index , C the column index. 

FIGURE 4-30. Joystick position affects data window indexes 

it with a FOR-NEXT loop, like this: 

6559 REM Dela~ before checking s tick 
6560 FOR J=l TO 30:NE XT J 

The number of loop iterations determines the delay time. A long delay makes it 
easier to step from one value to the next, but it takes longer to get from a low value 
to a high one. A short delay has the opposite effect. 

This program is even more useful as a subroutine (Figure 4-31). It uses the same 
variables as the General Input subroutine (Figure 4-19) to specify input range (LO 
and HI), cursor position (IR and IC), and field size (IL). It also returns the input 
value in variable R. Variable INC is the amount to increment or decrement the value 
each time it changes (lines 6580 and 6590). The subroutine employs a two-speed 
delay loop to control the speed with which the number changes (line 6560). It starts 
out with a small delay (line 6570) for maximum speed and minimum control. As 
soon as the stick centers, the subroutine shifts to low speed (line 6600). So if you 
move the stick either right or left and hold it there, the number changes at high 
speed. Quickly tap the stick right or left and the change occurs slowly. 



162 A GUIDE TO AT ARI 400/800 COMPUTERS 

10 DIM BL$(40) 
19 REM Fill BL$ with blanks 
20 E::L$:~" ":BL$(40)=E:UdBUi (2)::::E:L$ 
1000 PRINT CHR$(125) 
1199 REM Set range, start val, incrMt 
1200 LO=0IHI=200IR=100IINC= .5 
1209 REM Set cursor pas. & field size 
1210 IC=10IIR=11IIL=3 
12;~ 0 GOSUE: b50 0 
12::10 F'IUNT 
1240 PF~INT "NUMber selected I ";r, 
1900 END 
b496 REM **************************** 
6497 REM * NUMeric Input wi Jo~stick* 
6498 REM **************************** 
6499 REM Erase input field 
b500 POSITION IC,IR 
b510 PRINT E:LS(l,IL) 
6519 REM Displa~ current value 
6520 POSITION IC,IR 
6530 PFUNT F~; 
b539 REM Quit when trigger pressed 
b550 IF STRIG(O)=O THEN RETURN 
b559 REM Dela~ before checking stick 
b560 FOR J=l TO SDINEXT J 
b569 REM AssuMe Min. dela~ 

b570 SI)::l 
6579 REM Move ahead? 
6580 IF STICK(O)=11 AND R<>LO THEN R=R 
···INC: GOTO 6510 
b589 REM Move back? 
6590 IF STICK(O)=7 AND R<>HI THEN R=R+ 
INC:GOTO 6510 
b599 REM No changelMax. dela~ factor 
6600 SD=30IGOTO 6550 

NOTE: Sample main program (lines 10 through 1900) demonstrates the 
use of this subroutine. 

FIGURE 4-31. Numeric Input with Joystick subroutine listing 

Using Menus to Restrict Choices 
The easiest way to eliminate user errors is to carefully design your program so the 
user has as few options as possible. The very nature of the questions the program 
asks can make the user's job easy or difficult. So far, the example programs have 
asked the user to fill in the blank. Sometimes fill-in questions are the only choice. At 
other times a multiple-choice question will do. Instead of "What do you want to 
do?" . the program asks "Which option do you choose?". That is what a menu does. 



Chapter 4: ADVANCED BASIC PROGRAMMING 163 

You may recall the program in Figure 4-13; it inputs a command. The choices 
were A, C, D, E, P, or H . You can fashion a menu to do the same input (Figure 
4-32). Using the input utility subroutines (Figures 4-16 through 4-21), you could 
easily write a program to display the menu and input the command. 

The menu approach is better for both the user and the programmer. The user 
doesn't have to remember or look up the allowable options. The programmer 
doesn't have to write complicated program lines which display amplified instruc
tions. There is no guarantee the user will only enter a displayed option, though, so 
the program must still check for the proper input. 

Almost all input can be broken down into a series of multiple-choice questions. 
Each multiple-choice question can be presented as a menu. The user works his way 
through the menus to arrive at an answer to the final question. 

Using a Joystick for Menu Selection 
The computer can be programmed to move the cursor around on the screen under 
the control of a joystick. If there is a menu displayed on the screen, the user moves 
the cursor until it rests on one of the menu selections. He or she then presses the 

Select COMMand with stick and trigger 

Al.j(l 

Chanc.le 
[) €.~ 1 (;~ t (.~ 

Print 
HE~ I p 
End 

FIGURE 4·32. Designing a menu to input commands 



164 A GUIDE TO AT ARI 400/800 COMPUTERS 

trigger button on the joystick to make the selection. The BASIC program senses 
this, figures out where the cursor is, and determines which menu selection that 
location corresponds to. 

The subroutine in Figure 4-33 harnesses the joystick to the cursor. First it checks 
the joystick trigger (line 6000). If it is being pressed, the subroutine ends, leaving the 
cursor at its last position. The subroutine uses a delay loop to control its sensitivity 
to the joystick (line 6010). Variable DL Y I determines the number of iterations. The 
number of iterations affects the cursor speed . More iterations slow the cursor down; 
less speed it up. The balance of the subroutine senses the stick position, displays 
appropriate cursor movement characters, and adjusts the cursor position variables 
so they always match the actual cursor position (lines 6020 through 6060). Variables 
SC and SR keep track of the cursor column and row position. The cursor can only 
move inside a box defined by four variables: 

LC, the left column limit 

RC, the right column limit 

TR, the top row limit 

BR, the bottom row limit. 

To see how the subroutine works, type it in along with the following program: 

999 REM Clear screen & displa~ grid 
1000 PRINT CHR$(125) 
1010 POSITION 0,11 
1020 PRINT "01234567890123456789012345 
67890123456789" 
1030 FOR J=O TO 23 
1040 POSITION 21,11 
1050 PRINT J-INT(J/l0)*10; 
1060 NEXT J 
1069 REM Start cursor at grid into 
1070 POSITION 21,11 
1080 PRINT CHR$(253); 
1089 REM Variables Match curs. pos. 
1090 SC =21:SR=11 
1099 REM Establish cursor range 
1100 LC=2:RC=39:TR =0:SR =23 
1109 REM Set stick speed 
1110 DLY1 ==2 0 
1119 REM Have stick Move cursor 
1120 GOSlJE: 6000 
1900 END 

This program begins by displaying cross hairs to help you gauge cursor movement 
(lines 1000 through 1060). Then it moves the cursor to the center of the cross hairs 
(line 1070). There it "displays" the nonprinting character which sounds the console 
speaker (line 1080). Finally, it assigns the necessary variables and calls the Move 
Cursor with Stick subroutine (lines 1090 through 1120). 



Chapter 4: ADVANCED BASIC PROGRAMMING 165 

5996 REM ~~~~~~~***~~~~~*~~~~~*~~~*** 
5997 REM ~ Move cursor with stick ~ 

5998 REM *********~*~******~****~***~ 
5999 REM Push trigger to stop cursor 
6000 IF STRIC(O)=O THEN RETURN 
6009 REM Slow cursor down 
6010 FOR J=1 TO DLY1:NEXT J 
6019 REM Check s tick position 
6020 IF STICK(0)=7 AND SC<>RC THEN SC= 
SC+1:PRINT CHR$(31); 
6030 IF STICK(0)=11 AND SC<>LC THEN SC 
=S C-l:PRINT CHR$(30); 
6010 IF STICK(0)=13 AND SR<>BR THEN SR 
=SR+l:PRINT CHR$(29); 
6050 IF STICK(0)=11 AND SR<>TR THEN SR 
=SR-l:PRINT CHR$(28); 
6060 GOTO 6000 

FIGURE 4-33. Move Cursor with Stick subroutine listing 

The program below uses the Move Cursor with Stick subroutine (Figure 4-33) to 
input a menu choice. If the last example is still in the computer's memory, you can 
avoid retyping the subroutine. Delete lines 1000 through 1900 and add the following 
lines: 

999 REM Clear screen & displa~ Menu 
1000 PRINT CHR$(125) 
1010 PRINT "Select COMMand with stick 
and tr iqg~?r" 
1020 PRINT 
1 030 PF\INT" Add" 
1040 PRINT" Change" 
1 050 N\INT" Delete" 
1. 060 PF\INT" Prir,t" 
1 070 PIUNT" Help" 
1080 prUNT" End" 
1089 REM Start cursor at 4,3 
1090 POSITION 4,2 
1100 PRINT CHR$(29); 
1110 SC=4: SF~ ::::3 

1119 REM Establish cursor range 
1120 LC=4:RC=1:TR=3:SR=8 
1129 REM Cursor speed 
1130 DL Yl='30 
1140 COSUS 6000 
1900 END 

This program displays a menu of commands (lines 1000 through 1080). Then it 
places the cursor over the first letter of the first command (lines 1090 and 1100). The 
stick can move the cursor up and down over the first letters of the commands, but it 



166 A GUIDE TO AT ARI 400/800 COMPUTERS 

cannot move the cursor from side to side (line 1120). As before, pressing the trigger 
button stops the cursor; variables SC and SR then have the cursor coordinates. 

The only thing left to do is to translate the cursor position into the chosen 
command and act on that command. The lines below show how the translation 
takes place. All they do is display the name of the selected command. An actual 
program would do more, of course. Add these lines to the last example program: 

1149 REM Cursor row tells cOMMand 
1150 POSITION 2.0 
1160 ON SR-2 GOSUB 2000.2500.3000.3500 
.4000:C;OTO 1(»00 
1170 POSITION 2.10 
1'700 END 
~~o 0 0 PF~INT "Add ": RETl.mN 
2~:;0 0 PI:~INT II Chan(3(~ II : I'~ETl.JI:~N 

3000 PFUNT "[)(~ 1 E)tf,)" : F~ETlJr';:N 

3500 PI:~INT "Print " : f~ETl.JRN 
'1000 Pf~INT "Help " : f([TURN 

ADVANCED INPUT AND OUTPUT 
A program can go just so long before it must either input or output information. 
Until now we have used statements that automatically choose the output device. 
The CLOAD and CSA VE statements always use the program recorder. In our 
examples so far, the INPUT statement has always used the keyboard, and the 
PRINT statement has always used the display screen. AT ARI BASIC supports' 
input and output beyond simple INPUT and PRINT statements. There are addition
al variations on PRINT and INPUT, and there are new input and output state
ments. This chapter will describe these new features as they pertain to the keyboard 
and display screen. Later chapters will describe how these new features make input 
and output possible with the program recorder, printer, and disk drive. 

Device Names 
Every input and output device has a name. The simplest names consist of one capital 
letter followed by a colon. For example, the display screen is device S:, and the 
keyboard is device K:. 

In immediate mode, the AT ARI computer consolidates the screen and keyboard 
and calls the result the editor, device E: . The INPUT statement also uses the editor. 
When you press a key, the corresponding character appears on the screen automati
cally. Your program does not have to echo each character back to the screen. 

The other devices also have names. These will be discussed later. 

Input/Output Channels 
The AT ARI computer communicates with all input and output devices indirectly, 
by means of input/ output channels. There are eight channels in all, numbered 0 



Chapter 4: ADVANCED BASIC PROGRAMMING 167 

through 7. In order to communicate with a specific input or output device, a BASIC 
program first links the device to one of the channels. If the program requests input 
from that channel, it comes from the desired device. Similarly, the program directs 
output to a channel, which pipes it to the previously selected output device. A 
program uses input / output channels the same way you use the channel selector on a 
television set. You set the channel selector to link the television to a specific station. 
The television then displays the show sent by the station you selected. 

We use the term channel in this book, but elsewhere you may see channels called 
input / output control blocks, IOCBs, file numbers , or logical unit numbers. 

BASIC reserves channels 0, 6, and 7 for specific activities. Channel 0 is perma
nently reserved for the editor (device E:). Command input from the keyboard in 
immediate mode uses channel O. All simple INPUT and PRINT statements use 
channel O. Channel 7 is used for some printer operations and for program loading 
and saving. The special AT ARI BASIC screen graphics statements use channel 6; 
Chapters 8 and 9 describe those statements. 

Channels I through 5 are completely available to a BASIC program. Channels 6 
and 7 are available on a limited basis. If the program uses none of the special screen 
graphics statements, it can use channel 6. If it does not load or save programs nor 
use the LPRINT statement (see Chapter 6), it can use channel 7. 

Opening a Channel 
The OPEN statement links a channel to a device. Subsequent input or output 
statements can then access that device by means of the channel number. 

The OPEN statement consists of the keyword OPEN followed by four parame
ters. It looks like this: 

OF'EN :11: 1 , 12, () , "E: " 

The first number after the keyword OPEN is the channel number. The last 
parameter is the device name. In the example above, channell is opened to the 
editor (device E:). 

The second number in the OPEN statement specifies the kind of action that will 
be allowed on the channel. The action can be input, output, or both. The action 
must make sense. For example, a program cannot open the keyboard for output, 
because it cannot output to a keyboard. Generally speaking, action 4 is input, action 
8 is output, and action 12 is input and output. Some devices support other actions, 
which will be described when those devices are discussed . 

There is one more parameter, the one just ahead of the device name. It is used in 
different ways, depending on the device. When the device is the keyboard (K:) or 
editor (E:), it is ignored. With the display screen (S:), it selects the screen mode, 
which can be text or graphics. In this chapter we will discuss only text mode. 

Opening a channel to the editor (device E:) or the text mode screen (device S:, 
third parameter 0), always clears the display screen. The following program illus
trates this. 



168 A GUIDE TO AT ARI 400/800 COMPUTERS 

10 DIM F($ ( 1) 

20 PIUNT "PHESS F(ETI.H(N TO EXECUTE OPEN 
.STATEMENT" 

25 INPUT R$ 
30 OPEN :11:1,4,0,"S:" 
'10 F'FUNT "OPEN CLEAI~ED E;CI:(EEN" 

Closing a Channel 
Once open, a channel stays open until the end of the program or until explicitly 
closed. When a program ends by executing an END statement, all channels are 
closed. The same thing happens if the program ends by running out of statements. 
But if the program halts as a result ofa STOP statement, the BREAK key, or an error, 
all open channels remain open. 

The CLOSE statement explicitly closes one channel. Here is an example: 

CL()~;E :11=:l 

The PRINT # Statement 
A new form of the PRINT statement lets you direct its output to any open channel. 
It is identical to the regular PRINT statement in every way, except the first item on 
its list is the channel number. Consider these two statements: 

10 PIUN.T :IH; r,$ ; 1:( 
20 PfUNT F(~~; F( 

Both of these produce the same output. The second (line 20) goes to the display 
screen, while the first (line 10) is directed to the device linked to channell. Device 
and channel must be linked by a previously executed OPEN statement. 

Notice that we used a semicolon after the channel number in the PRINT # 
statement (line 10). A comma will work, but it causes the output of enough blank 
characters to move the cursor to the start of the next column stop. A PRINT # 
statement with only a channel number outputs only an EOL character. 

It so happens that any channel open to the display screen is always open for 
output, no matter what the action parameter is. Therefore action 4, normally input 
only, is the same as action 8, output only. This program illustrates: 

10 DPEN =I: 1, 'I, 0 , "~3: " 
20 PFUNT :1:1. "EVEN THOUGH THE ACTION CA 
LLS FOH INPUT ONLY, THE CHANNEL IS STI 
LL DPEN F()f( OUTPUT" 

The OPEN statement (line 10) clears the screen and opens channell, nominally for 
input only. But a PRINT # statement to channel I produces output on the display 
screen anyway. 

The INPUT # Statement 
The INPUT # statement is not limited to the keyboard. It can receive input from any 



Chapter 4: ADVANCED BASIC PROGRAMMING 169 

channel that is open for input. The new format looks like this: 

I NPUT :0:1, F, 

You can use either a comma or a semicolon after the channel number; the result is 
the same. 

The INPUT # statement works almost the same with or without a channel 
number present. It continues to input characters until you press RETURN, generat
ing an EOL character. Then it attempts to assign the entry to the next variable on its 
list . An error occurs if it finds anything wrong. Try this program: 

10 DPEN :H:1,l 2. ,O, "El " 
2 0 INPUT U,A 

Notice anything different? This form of the INPUT statement does not display a 
question mark on the screen. That is the only difference. 

The General Input subroutine was developed earlier in this chapter (Figure 4-19). 
It uses a standard INPUT statement to receive keyboard entry. That means it 
always displays a question mark just ahead of the input mask. Sometimes that is not 
appropriate. Try changing the subroutine to use the INPUT # statement instead. 
The main program will have to open an input channel for the subroutine, of course. 
If you use a variable to specify the channel number in the INPUT # statement, the 
main program can use any channel. 

The PUT Statement 
The PUT statement outputs a single numeric value to an open output channel. 
When the channel is open to the text display screen, the numeric value is interpreted 
as an AT ASCII code (see Appendix D). The corresponding character appears on 
the screen. The following example illustrates this: 

:1. 0 UPEN II::I.,\:),O , "E:" 
? () i"'I'(INT " kJ H(" f :r: ~" TH E:: (>, T ," , ~:;C:r:I CODE " ; 
3 () I NI::'UT 1';: 
it ° PI:U:NT " 'I' HA I' C i ·-I(il' ;: ,~,C'nJ( l~:; ! "i 
~) ° f'UT :1I: :l , 1'( 
6 0 PUT tl , :l. 5S : RE::M E:: OL (carr i age ret.) 
69 REM Use BREAK ke~ to stop p r ograM 
70 GUrU zo 

Like the PRINT statement, PUT determines where to display by looking at 
memory locations 84 (row) and 85 (column). Unlike the PRINT statement, the PUT 
statement does not output an EOL character when it finishes . Therefore, the 
program has to do it explicitly (line 60). The PUT statement requires a comma after 
the channel number. A semicolon will cause an error. 

The GET Statement 
The GET statement inputs a single character from an open channel. It does not 
display the character on the screen. You do not press RETURN after typing the 



170 A GUIDE TO ATAR1400/800 COMPUTERS 

character. The entry always results in a numeric value, the AT ASCII code of the 
input character. Type in the following program and run it: 

10 OPEN 0/1':1.,4,0,"1-(: " 
20 PFGNT "HIT ANY I-(EY "; 
::lO GEl ,n' :L,F~ 

.110 PFGNT "YOU HIT "; CHI:~\I; ( f~) ;", ATMlCII 
CODE "; F~ 
49 REM Use BREAK ke~ to stop prograM 
~5 ° GOTD 20 

A program can be made to wait for a specific character, like this: 

10 OPEN l:l,4,0,"f(:" 
20 GET '1' 1, F, 
3 ° ]:F F~<>A~3C ( " X") THEN GOTO Z 0 
.110 END 

The program inputs one character (line 20) and tests to see if it is the specific 
character it wants (line 30). The user must enter the letter X. Nothing else will do . 

Programs frequently use the GET statement with the keyboard or editor when 
generating dialogue with the user. For example, the program may wait for the user 
to indicate he or she is there by pressing a specific key. The following program waits 
for the user to press the RETURN key: 

10 OPEN t1,'1,0,"I<:" 
2 ° PF~INT "AT' f,~ ~DU ther E~';) " 

3 ° PF~INT "PT' ess; I:~ETUF~N if SC) ." 

40 GET '1'1 tf~ 
50 IF R<>155 THEN GOTD 40 
6>0 PI:;:INT "m(, let' s get on with it. 

Notice that this sequence never displays the character entered at the keyboard. 

Entering a Valid Date 
In this section we will develop a program that inputs a valid date using the GET 
statement. You must take more care with such simple data entry than might at first 
appear necessary. In all probability the date will be just one item in a data entry 
sequence. If you carefully design data entry for each small item, the user won't have 
to restart or back up in a long data entry sequence whenever he or she makes a 
mistake in a single entry. 

The user will have to enter the month, day of the month, and year as two-digit 
numbers (Figure 4-34). The program supplies the dashes that separate the entries. 
Depending on your personal preferences, you may substitute slashes or any other 
character for the dashes . 

The user should be able to see immediately where to enter the next data . 
Therefore, the program will use an entry mask (Figure 4-35). The following pro
gram lines create such a mask: 

10 DIM MSK'( Z),R'(Z),DAT$ (8), R(1) 
20 t1 S I«~::-" 



Chapter 4: ADVANCED BASIC PROGRAMMING 171 

FIGURE 4-34. Format for date entry 

~
r--------cursor displays at entry 

character position 

-OJ-IT] 

TTT 
FIGURE 4-35. Entry mask for date entry 

Data must be entered into 
these character positions 

:l 0 0 () PlUtH cl·m ~~ ( :I. ~~~3) ; "Enter a va l :i. d da 
te" 
1 0 1 0 IC=:l~"j: IR ''''j 
1 020 GO~3U[: 0200: I'~ [ M Input ;Ja .. te 
1050 END 
8200 POSITION I C,IR:PRINT CHR $(253)1 
8210 F"FUNT MSf(~~(:I.,2);"·-";MSf( $ ( 1, 2 ) ; "····" 

; MSl< ~; ( :l ,2) ; 
8220 POSITION I C,IR:PRINT CHR$(253); 
0'170 I'(ETUI:~N 

The program clears the screen so that residual garbage on the screen does not 
surround the request for a date (line 1000). It starts date entry at column 15 and row 
4 (lines 10 I 0 and 8200) . After displaying the date entry mask, the cursor moves back 
to the first character of the mask, although this is not apparent because of the END 
statement (line 1050). 

Try using an INPUT statement on line 8400 to input the month. Add the 
following statement and run the program: 

B'IOO INPUT I:(~~ 

The INPUT statement will not do . A question mark displaces the first input mask 
character. An INPUT # statement would remedy that, but the user could still enter 
too many characters and ruin the display. 

This is an occasion to use the GET statement. Add the following program lines: 

59 REM Open ke~board input channel 
60 0 PEN '11:1,'<j, 0 , "1< : " 



172 A GUIDE TO ATARI 400/800 COMPUTERS 

8100 FOR Jl=O TO :I. 
G'll 0 GET :11::1. tf( 
8440 PRINT CHRS(R );IREM Echo input 
0'1~"j 0 NEXT ,J 1 

These statements accept a two-digit input. The input appears in the first part of 
the entry mask. The program automatically terminates the data entry after two 
characters have been entered. The user does not have to press RETURN. 

Three two-digit entries are needed: month, day, and year. Rather than repeating 
statements on lines 8400 through 8460, we will put these statements into a subrou
tine and go to it three times, as follows : 

8230 COSUB 8400lREM Month 
0270 PRINT CHRS(3:1.)1 
0280 COSUB 8400:REM Des 
034 0 PRINT CHRS(31)1 
8350 COSUB 8400lREM Year 
B3BO I'(ETUI:(!'-l 
8397 REM .*.***.* •• *** •••••••• *.* •••• 
0398 REM. Input Two digit s * 
8399 REM ****.****.* ••• *.*.*.****.**. 
8400 FOR J1=0 TO 1 
8410 GET i1,RIR (Jl)=R 
0410 PRINT CHR$(Rl l :REM Ec ho input 
0 '1::50 NE XT ,H 
B460 R'=CHR$(RCO» : R$(2)=CHR$(RC1 » 
0'170 I:(ETUI'(N 

There are three ways to help the user avoid errors while entering a date: 

Accept only numeric characters (digits) 

. Test for valid month, day, and year entries 

. Provide a means of restarting the date entry. 

Figure 4-36 shows the complete Enter Valid Date subroutine, including im
provements. Only numeric entries are allowed (line 8430). The month must be 
between 1 and 12 (line 8250). The program does not take leap years into account, 
but otherwise it checks for the maximum number of days in the specified month 
(lines 8290 through 8320) . Any year from 00 through 99 is allowed (line 8360). 
Entering an invalid date restarts the entire date entry sequence. If the user presses 
the BACK S key, the entire date entry sequence restarts (line 8420). 

Notice that the date is built up in the eight-character string DAT$ as month, day, 
and year are entered (lines 8260, 8330, and 8370). 

It takes extra time to write a good data entry program that displays information 
in a pleasing manner and checks for valid data input, allowing the user to restart at 
any time . It is certainly worthwhile to spend the extra time at this stage. You will 
write a program once. A user may have to run the program hundreds or thousands 
oftimes. Therefore, you spend extra programming time once in order to save users 
hundreds or thousands of delays. 



Chapter 4: ADVANCED BASIC PROGRAMMING 173 

10 DIM MSK$(Z),R$(Z),DAT$(8),R(1) 
~~O MSt< ~I;::;: II . __ 'J 
59 REM Open ke~bDard input channel 
60 OPEN 11,4,0,"1<:" 
1000 PIUNT CHR'(1Z5);"Entel' a valid da 
tE., 11 

1010 IC"15 :11'("4 
1020 GOSUB 8200:REM Input date 
1030 POSITION 15,6 
10 "t 0 PFUNT DA l$ 

1050 END 
8197 REM ~*********************~***** 
8198 REM * Enter Valid Date * 
8199 REM **************************** 
8200 POSITION IC,IR:PRINT CHRS(253); 
B210 PF(INT MSI-($ ( 1 ,2) ; ".-." ; MSH$ ( 1 ,2) ; "._." 
;MSf($(:J.,2); 
8220 POSITION IC,IR:PRINT CHR'(253); 
8230 GOSUB B"tOO:REM Month 
8240 M::::VAL (R$) 
8250 IF M(1 OR M)f2 THEN 8200 
8260 DAT$(1,2)=F,$:OAT$(3,3)="-" 
8270 PRINT CHR$(31); 
8280 GOSUB 8400:REM Da~ 
8290 D"'VAL< R$) 
8300 IF 0(1 THEN 8200 
8310 IF M=2 AND D)29 THEN 8200 
8320 IF (M=4 OR M=6 OR M=9 OR M=11) AN 
D 0 )3 0 THEN 8200 
8325 IF 0)31 THEN 8200 
8330 OAT$(4,5)=R$:OAT$(6,6)=" .... OI 

8340 PRINT CHR$(31); 
8350 GOSUB 8"t00:REM Year 
8360 IF Y(O OR Y)99 THEN 8200 
8370 OAT$(7,8)::::R$ 
8380 F(ETUF(N 
8397 REM **************************** 
8398 REM * Input Two digits * 
8399 REM **************~************* 
8400 FOR J1=0 TO 1 
8410 GET 11,R:R(J1)=R 
8419 REM BACK S Ke~ Means restart 
8420 IF R"'126 THEN POP :GOTO 8200 
8429 REM Ignore nondigit entries 
8430 IF R(48 OR R)57 THEN 8"t10 
8"t40 PRINT CHRS(R);:REM Echo input 
8'1~50 NEXT J1 
8460 R'=CHRS(R(O»:R$(l)=CHRS(R(l» 
8 '1l 0 I'(ETURN 

FIGURE 4-36. Enter Valid Date subroutine listing 



174 A GUIDE TO ATARI 400/800 COMPUTERS 

A String Input Subroutine 
The General Input subroutine (Figure 4-19) developed earlier in this chapter has a 
serious shortcoming. You may have noticed that it lets the user type in entries that 
are longer than the input mask. Worse yet, the user can move the cursor all over the 
display screen with the arrow keys. All this adds up to a high probability that sooner 
or later the user will ruin the display . If you use the GET statement instead of the 
INPUT statement, you can control the input much more closely. You also rid the 
program of the irksome question mark that the INPUT statement displays. 

Figure 4-37 shows a bare-bones subroutine that inputs a string value. It begins by 
setting the input value to null, just in case an obsolete value was there (line 600). To 
keep the display neat, it turns the cursor off (line 610). It then displays the input 
mask (lines 630 and 640). Note that the calling program must dimension and assign 
the mask variable, MSK$, must assign the screen location to variables Ie (column) 
and IR (row), and must assign the input length to variable IL. The subroutine inputs 
one character with the GET statement (line 660). Here it assumes the main program 
has opened channel I for input from the keyboard. It then computes the current 
input length (line 670). After that, it analyzes the character just input. The RETURN 

key generates an EOL character, which terminates entry (line 680). Digits, capital 
letters, and punctuation marks are added to the input string, if space permits (line 
690). The BACK S key causes the subroutine to back up one character. It redisplays 
the input mask (lines 710 and 720) and removes the last character from the input 
string (lines 740 and 750). 

There are a number of ways in which the String Input subroutine (Figure 4-37) 
could be improved. Here are some ideas: 

Use a variable to specify the input channel. 

Allow upper- and lower-case letters (AT ASC II codes 97 through 122). 

Add a TRAP statement at the beginning to enable an error handler at line ERRHDL. 

Call a subroutine at line number AMPSUB to display amplified instructions if a 
particular character is entered. This is a bit trickier than in the General Input subroutine 
(Figure 4- I 9) if the subroutine checks for the special character as each character is input. 

Allow numeric input with range checking (LO < = R < = HI). As a last step before 
returning from the subroutine, check whether the input is to be numeric . If so, convert 
the string value to a numeric value and check the numeric va lue for range. Rely on the 
TRAP statement and your error handler to take care of non-numeric entry errors. Do 
not try to check the string before converting it. 

The program below shows the String Input subroutine (Figure 4-37) in use. If you 
want to run the program, be sure you type the subroutine in along with these 
program lines. 

9 REM Initialize variables 
1 D DIM MSI<$ ('ID) 
29 REM Fill MSI<$ with input Mask char 
~l () MSI<~I; == " ._ ": MSI-(~; ('10 ) "':MSI<~~: M!31-($ (;~) ==MS f( $ 



Chapter 4: ADVANCED BASIC PROGRAMMING 175 

597 REM ~~~~~~*****~~~**~*****~*~~*** 
598 REM * String Input Subroutine * 
599 REM ~***********~~****~****~****~ 
bOO F,$'''''''' 
bl0 POKE 755,O:REM Cursor off 
629 REM Displa~ input Mask 
b30 POSITION IC,IR 
b40 PRINT MSK$(l,IL) 
649 REM Position to start of field 
650 POSITION IC,IR 
659 REM Input next character 
660 GET ,n':l,F~ 
670 J ''''LEN (F~$) 
679 REM Cursor on & quit if RETURN 
680 IF R=155 THEN POKE 755,2:RETURN 
689 REM If character OK, add to input 
690 IF R>=32 AND R(=95 AND J(IL THEN R 
$(J+1,J+l)=CHR$(R):PRINT CHR$(R);:GOTO 

660 
699 REM Check for valid backspace 
700 IF R(>126 OR J=O THEN GOTO bbO 
709 REM Renew Mask & erase last char. 
710 POSITION IC+J-l,IR 
720 PRINT MSK$(l,l); 
730 POSITION IC+J-l,IR 
710 IF J>l THEN R$=R$(l,J-l) 
750 IF J=l THEN F~$="" 
760 GOTO 660 

FIGURE 4-37. String Input subroutine listing 

49 REM Open ke~board input channel 
~'jO OPEN '1101,1,0, "f(!" 
89 REM Branch to start of Main prograM 

90 GOTO 1000 
1000 PRINT CHR$(125):REM Clr screen 
1010 POSITION 2,4 
1020 PRINT "NAME" 
1030 IC=7:IR=4:IL=20:GOSUB bOO 
1040 POSITION 2,8 
1 0 ~j 0 1::'I'i:INT "ENTERED: "; F~$ 
1060 CLOSE t1 
1070 END 

Disabling the BREAK Key 
The most carefully designed program is still vulnerable. The BREAK key can stop the 
program. A message automatically appears on the screen, ruining the display. It will 
probably be impossible to continue the program right where the break occurred , 



176 A GUIDE TO ATARI 400/800 COMPUTERS 

because the CONT statement resumes at the start of the program line where the halt 
occurred when the BREAK key was pressed. If that happens to be a multiple
statement program line, some statements at the beginning of the line will be 
reexecuted. 

There is a way to disable the BREAK key (Figure 4-38). Unfortunately, it is not 
foolproof. Several things reenable the BREAK key, including the SYSTEM RESET key, 
the first PRINT statement that displays on the screen, any OPEN statement with 
the display screen (device E: or S:), the first PRINT statement after such an OPEN 
statement, and the GRAPHICS statement (see Chapter 8). The easiest way around 
these limitations is to frequently execute the Disable BREAK Key subroutine (Figure 
4-38) . A good place to do that is in the input subroutine. You can do this in either the 
General Input subroutine (Figure 4-19) or the String Input subroutine (Figure 4-37) 
on line 620 with a GOSUB 850 statement. 

The LOCATE Statement 
AT ARI BASIC includes a statement which figures out the AT ASCII code number 
of a character at any particular screen location. It is the LOCATE statement. This 
statement has the following format: 

LOCATE ::l, 'I, AC 

The numeric variable name (AC in the example) is assigned the AT ASCII code of 
the character at the column and row specified by the first two numbers . In order to 
use LOCATE, channel 6 must be open for input from the display screen. 

The LOCATE statement not only interrogates the screen, it moves the cursor one 
position to the right. If this happens at the end of a row, the cursor moves to the first 
column of the next row down . The cursor doesn't actually move until the next 
PRINT or PUT statement outputs something to the screen. The LOCATE state
ment moves the cursor in the same manner as the POSITION statement, by 
updating memory locations 84 (row) and 85 (column). You can defeat the cursor 
advance feature of the LOCATE statement by saving the contents of memory 
locations 84 and 85 before the LOCATE statement and restoring them after it, like 
this: 

100 0 OPEN :\1:6, 1. 2, 0 , "S : " 
1'100 P8'1=PEEK(8'1):P85=PEEK(85) 
~'110 LOCATE C,R,CODE 
1'120 POKE 8'1,P8'1:POKE 85,P85 

The LOCATE statement is used in a somewhat different way with a graphics 
display. 

Joystick Character Entry 
Earlier in this chapter we looked at a way to input numeric values with thejoystick, 
completely independent of the keyboard . By using the LOCATE statement in 
conjunction with the joystick, a program can input any character directly from the 
screen. The program first displays the characters to choose from. The user moves 



Chapter 4: ADVANCED BASIC PROGRAMMING 177 

847 REM *~~~~~~~~*~~~*~~~~**~******** 
848 REM * Disable BREAK Ke~ * 
849 REM **************~************** 
850 J=PEEK(128) - 128 
860 IF J(O THEN RETURN 
870 POI-(E 16,J 
880 POKE 53774,J 
890 F,ETUF,N 

FIGURE 4-38. Disable BREAK Key subroutine listing 

the cursor from one character to the next with the joystick. When the cursor rests on 
the desired character, the user presses the trigger button. The program reads the 
value from the screen with a LOCATE statement. The next program illustrates this 
technique. It requires the Move Cursor with Stick subroutine (Figure 4-33). 

19 REM AT ASCII codes of gaMe tokens 
20 DATn 0,1 6, 19,20,96,123 
999 REM Open screen input/output chan 
100 () (WEN 'lI'i>,:I. Z , 0 , "S ; " 
1010 PRINT CHRS(125):REM Clr. screen 
1019 REM Displ a~ token choices 
:I. 0:2:0 PI'(INT "Choo ~,;p ~j(J ur tokE~n" 

:I. 030 1:(E!:;TOI'(E :/0 
1040 FOR J =3 TO 8 
1 0 ~j 0 1:(E,'iD TOI<EN 
10 6 0 POSITION 4,J 
10 7 0 PRINT CHRS(TOKEN) 
1080 NEJ<T J 
1089 REM Start cursor at 4,3 
1090 POSITION 4.2 
1100 PRINT CHRS(29); 
111 0 ~:;C""I.l-: ~:; I:«J . 
111 9 REM Establi s h cursor range 
1120 LC=4IRC=4 :TR=3:8R=8 
1129 REM Cursor speed 
lUO DLY1"":30 
11 4 0 casus 6000lREM Move cursor 
1149 REM Re ad char. off screen 
1150 LOCATE SC,SR,TOKEN 
1159 REM Reverse cursor out of token 
1160 TOKEN=TOKEN-128*SCNCTOKEN-127) 
11 7 0 PO SITION 2, 12 
11 B 0 PI:U}fI" "Y ClU ChClS(~~ "; CHf($ ( TOI-(EN) 
1'10 0 END 

The program begins by displaying a choice of six game tokens (line 20 and lines 1000 
through 1070). Then it positions the cursor over the first token (lines 1090 and 
1100), establishes the portion of the screen in which the cursor can roam (line 1120), 
and the speed at which the stick will move the cursor (line 1130). It lets the user move 



178 A GUIDE TO AT ARI 400/800 COMPUTERS 

the cursor with the joystick until it covers the token he wants (line 1140). It uses a 
LOCATE statement to determine the AT ASCII code of the token that the cursor 
covers (line 1150). Because the cursor is covering the token, the AT ASCII code is 
the inverse of the token's actual code, so the program has to reverse the cursor out of 
the code (line 1160). 

DEBUGGING PROGRAMS 
A new program never seems to work quite the way you expect it to . Even if there are 
no errors in the BASIC syntax, there may be errors in the program logic. Either kind 
of error is a bug. The process of finding and eliminating program errors is called 
debugging. There are several approaches you can take to debugging a program. 

This is an appropriate place for the usual warning: take your time, plan it out, get 
it right the first time. Don't sit down at the keyboard with a half-baked notion about 
what you want your program to do and start typing away. If you are new to 
programming, supplement this book with one of the BASIC primers listed in 
Appendix I to get some pointers on good programming practices. 

Surprisingly, the PRINT statement is a very useful debugging tool. You can 
temporarily put extra PRINT statements in your program at strategic points to 
display messages which tell you that the program has reached a certain point 
without failing. This helps you trace the flow of program execution. The extra 
PRINT statements can display intermediate values of variables as well. This gives 
you more information about program progress. It also helps you figure out which 
part of a multiple-part calculation is faulty . 

PROGRAM OPTIMIZATION 
Traditionally, the optimal program is the one that runs the fastest and uses the least 
memory. A better measure of a program's merit is its usefulness. It is all too easy to 
get caught up in the quest for quintessential program efficiency and forget why you 
wrote the program in the first place: to get a job done. Of course, useful programs 
can be efficient, and vice versa. A fast program is less tiring and requires less 
patience to use than a slow one. Avoiding memory waste leaves room for more 
program features which make the program easier to use. In this spirit, we will 
describe a few ways to write programs that are faster and use less memory. 

Some of the techniques for making a program run faster will make it take more 
space, while some ways of decreasing space requirements will increase program 
execution time. When a conflict arises, you will have to decide which is more 
important in your particular program. 

Faster Programs 
Spend time carefully designing your program before you write a single program 
statement. Keep these tips in mind: 

. Identify the time-consuming parts of the program: array and string initialization, 



Chapter 4: ADVANCED BASIC PROGRAMMING 179 

lengthy calculations, screen displays, and so on. Use the fastest methods you know of to 
accomplish these tasks. 

Place the most frequentl y used subroutines on the lowest line numbers. Do the same 
with popular FOR-NEXT loops. Wheneve r BASIC looks for a line number, it starts at 
the beginning of the program. It will find the lowest line numbers faster than the highest 
ones . 

When you use nested FOR-NEXT loops, try to put the loops with the most iterations 
furthest inside the loop. This minimizes the bouncing back and forth between loops. 

Instead of repeating a calculation, do it once, assign the value to a variable, and use the 
variable. 

Simplify calculations. Addition and subtraction take less time than mUltiplication and 
division . Exponentiation takes the longest. Functions, especially nested functions , are 
slow. You may avoid needless calculations inside a FOR-NEXT loop by clever use of 
the index variable or step value . 

Put FOR-NEXT loops on the same program line. 

Once you get your program working, go back and rewrite it. BASIC does not lend 
itself to efficient programming. During debugging you probably added pieces of 
code and used some new variables. Consolidate those fragments and reuse existing 
variables. Cleaning up the program also makes it easier to change in the future. 

More Compact Programs 
The time to start saving space is during the design phase of your program. Use the 
methods listed below, but use them with caution. Many of them lead to programs 
that are hard to decipher. Figuring out how to make the program work the first time 
is hard enough. It's even worse to have rediscover how the program works every 
time you look at it. 

Avoid using constants (e.g., 0, 100, "Y, " "ENTER ") . Instead , assign the value of the 
constant to a variable early in your program. Then use the variable where you would 
have used the constant . As a side benefit, it will be easier to change the one assignment 
statement than to hunt down and change every occurrence of the constant. 

Use subroutines to avoid duplicating program lines . This will also improve the readabil
ity, reliability, and changeability of your program. 

Use the zero elements of arrays (for example, X(O), B(O». 

Use READ and DATA statements rather than simple assignment (LET) statements to 
initialize variables . Better yet , use INPUT and GET statements and data files (see 
Chapters 5 and 7). 

Branch using variables instead of constants for line numbers . 

Be thrifty with the use of variables. Reuse standard variables for FOR-NEXT loop 
indexes, intermediate calculations, and the like. Don't overdo it , though . Some unique 
variables enhance program readability (for example, R$ is always user response) . 

Put more than one statement on a program line. Note , however, that compound 
program lines are hard to edit and harder still to read and understand. 

Use REM statements judiciously; abbreviate comments. But be careful; the fewer 



180 A GUIDE TO ATARI 400/800 COMPUTERS 

remarks your program has, the harder it will be to understand when you come back to it 
later on. 

Rewrite the program once it is working. This will not only speed it up, but will 
save space as well. 

MACHINE LANGUAGE PROGRAMMING 
In a manner of speaking, the AT ARI computer does not understand BASI C 
statements. It has to translate BASIC into a more primitive language, called 
machine language. Machine language instructions are not words, like PRINT or 
OPEN, but numbers. It takes many machine language instructions to equal one 
BASIC statement. Each machine language instruction has a name, but the compu
ter uses the number, not the name. What's more, machine language doesn't use 
variables, only constants. 

Programming in machine language is much more complicated than program
ming in BASIC, so why bother? Machine language gives you more control over the 
computer's actions. It is similar to the control you get with the PEEK function and 
the POKE statement, but is more flexible and powerful. 

There is another kind of computer language closely related to machine language. 
It is called assembly language. Instead of numeric instructions, assembly language 
uses mnemonic abbreviations of the machine language instruction names. Each 
assembly language instruction corresponds to one machine language instruction. In 
most cases, people write assembly language programs and let the computer assem
ble them into machine language equivalents. It is also possible to write programs 
directly in machine language. 

There are many machine languages. The AT ARI computer understands one of 
them, 6502 machine language. 

This book will not attempt to teach you assembly language or machine language 
programming. If you need to learn or brush up on assembly language or machine 
language programming, consult one of the books in Appendix I before reading the 
rest of this chapter. 

The USR Function 
AT ARI BASIC allows you to transfer to a machine language program and return 
back to the BASIC program. The USR function does this. Here is an example: 

1 ~"j 0 () A'"'USf~ (:L 66'1 ) 

USR is a function, not a statement. This means you have to use it like a variable or 
an expression. This also means it returns a numeric value. 

There must always be at least one parameter inside the parentheses of a USR 
function; there can be many. The first parameter is the memory location where the 
machine language program starts. Other parameters are separated by commas. 
They must have values between 0 and 65535. BASIC passes the parameter values to 
the machine language subroutine via the 6502 hardware stack. The following 



Chapter 4: ADVANCED BASIC PROGRAMMING 181 

example shows four USR parameters in use , including the machine language 
program address: 

1550 PRINT USRCMLA.2.RNDCO)*255.100) 

The Hard ware Stack 
When AT ARI BASIC encounters a USR function, it pushes its current location 
within the BASIC program onto the hardware stack. Then, starting with the last 
parameter on the list, BASIC converts each parameter to a hexadecimal integer 
between 0 and 65535, and pushes the two-byte value onto the hardware stack. In 
each case, the low byte precedes the high byte. The first parameter, which is the 
starting address of the machine language program, is not placed on the hardware 
stack. After pushing the last value on the stack, BASIC pushes a one-byte count of 
the number of two-byte parameters, not including the address parameter. Figure 
11-4 illustrates how the USR function uses the hardware stack. 

The USR function always affects the 6502 hardware stack, even if only the 
address parameter is present. In that case, it pushes only the one-byte count of 
parameters, which is 0, onto the stack. 

The machine language program must always remove these entries from the 
hardware stack, or the computer will not be able to return to the BASIC program. A 
single assembly language instruction like PLA removes one byte from the hardware 
stack. The PLA instruction is equivalent to machine language instruction 68 
hexadecimal, or 104 decimal. 

The machine language program can transfer an integer value between 0 and 
65535 back to the BASIC program. It must place the low byte of the value in 
memory location 212 and the high byte in location 213. BASIC converts the 
hexadecimal integer stored there into a numeric value, the value of the USR 
function. 

To return to the BASIC program, the machine language program must execute 
an assembly language R TS instruction. That is machine language instruction 60 
hexadecimal, or 96 decimal. 





5 
THE 

PROGRAM 
RECORDER 

The AT ARI 410 Program Recorder can store BASIC programs or data outside the 
computer's memory, on cassettes. Later, it can read the programs or data back into 
memory. 

PROGRAM STORAGE 
There are three AT ARI BASIC statements - CSA VE, LIST, and SAVE - that 
save programs on cassette. Each of these statements has a counterpart - CLOAD, 
ENTER, and LOAD - that loads a program back into memory. 

Saving a Program 
CSA VE is a special statement for saving programs on cassette only. LIST and 
SA VE are general statements that output a program to any device, the program 
recorder being just one . Any of the following statements will record a program on 
the program recorder: 

CSAVE 
LIST "e:" 
SAVE "C:" 

Notice that you must specify the program recorder (device C:) for the LIST and 
SAVE statements. 

Both the CSAVE and SAVE "C:" statements always save the entire program 
from memory. The LIST "c: " statement can save all or part of the program. As with 
other forms of the LIST statement, you can specify the first and last lines to be 
listed . For example, the following statement records only program lines with line 
numbers between 100 and 1000. 

183 



184 A GUIDE TO AT ARI 400/800 COMPUTERS 

LIST IC:" t l00 t l000 

The CSAVE, LIST "C:", and SAVE "C:"statements all cause the same sequence 
of events. First, the computer beeps its built-in speaker twice. This is your signal to 
put a cassette into the program recorder. With the REWIND and FAST FORWARD 

levers, cue the tape to the spot where you want the recording to start, generally the 
beginning of the tape. Then depress the RECORD and PLAY levers. The AT ARI 
computer cannot tell when you finish setting up the tape in the program recorder. 
You must signal it when the cassette is ready by pressing the RETURN key on the 
keyboard. The tape starts moving. If you turn up the volume on the television, you 
will hear the recording taking place. First there is a steady, high-pitched tone. This is 
followed by one or more bursts of sound . Each sound burst means the program 
recorder is saving another block of the program on the cassette. The longer the 
program, the more blocks it takes, and the more sound bursts you will hear. The 
sound bursts stop when the recording is complete. The tape stops as well. You can 
now press the STOP lever. 

Loading a Program 
The CLOAD statement loads programs saved on cassette by the CSA VE statement. 
ENTER and LOAD are general statements that input a program from any device. 
ENTER "C:" can only load programs saved by the LIST "C:" statement. LOAD 
"C:" can only load programs saved by the SAVE "C:" statement. 

Both the CLOAD and the LOAD statements erase the program currently in 
memory before loading a new one. The ENTER statement, on the other hand, 
merges the program it loads with the program in memory. If there are incoming 
lines with the same line numbers as existing lines, the incoming lines replace the 
existing ones. To circumvent the merging, type NEW before using the ENTER 
statement. 

The CLOAD, ENTER "C:", and LOAD "c:" statements all cause the same 
sequence of events. First, the computer beeps its built-in speaker once. This is your 
signal to put the cassette containing the program you want to load into the program 
recorder. Use the REWIND and FAST FORWARD levers to cue the tape to the spot 
where the program starts, generally the beginning of the tape. Depress the PLAY 

lever. The AT ARI computer cannot tell when you finish setting up the tape in the 
program recorder. You must signal it when the cassette is ready by pressing the 
RETURN key on the keyboard. 

The tape starts moving. If you turn up the volume on the television, you will hear 
the program load taking place. First there is a period of silence, typically lasting 20 
seconds. This is followed by one or more bursts of sound . Each sound burst means 
the program recorder is loading another block of the program from the cassette. 
The longer the program, the more blocks there are, and the more sound bursts you 
will hear. The sound bursts stop when the whole program is in memory. The tape 
stops as well. You can now press the STOP lever. 



Chapter 5: THE PROGRAM RECORDER 185 

The Tape Counter 
A program is usually recorded starting at the beginning of the tape. That way it is 
always easy to find:just rewind the tape completely. A program can start anywhere 
on the tape, as long as you can find it again. If you can't find it, you can't load it. 

You can use the tape counter to mark the start of a program. You must remember 
to always reset the tape counter whenever you rewind the tape. It must always start 
at 0 when the tape is full y rewound. Never reset the counter at any other time. If you 
put a new tape in the program recorder, don't assume it is rewound. Depress the 
REWIND lever just to be sure, then reset the counter. If you observe these pre
cautions, a recording that started at a certain tape counter reading will always start 
at that reading. 

Tape counter speed varies from one recorder to the next. Thus, tape counter 
readings noted on one recorder may not match those on another. 

One-Step Program Load and Run 
A new form of the RUN statement lets you load and run a program from cassette in 
one step. It looks like this : 

RUN "e:" 

This is essentially a combination of the LOAD "c:" and RUN statements . There
fore it works only with programs recorded on cassette by the SA VE "c:" statement. 

Chaining Programs 
The RUN statement works just as well in programmed mode as it does in immediate 
mode. A program that contains a RUN "c:" statement will run and load another 
program when that statement is executed. This process of one program loading 
another is called chaining. 

To see how this works, put a cassette in the program recorder, rewind it all the 
way, and type in the following statements : 

NEI-l 

READY 
10 PRINT "PROGRAM ONE" 
20 PRINT "PRESS RETURN I-lHEN THE TAPE I 
S READY" 
30 RUN "e:" 
SAVE "e:" 

READY 

That puts the first program on tape. Notice that the program includes instructions 
to the user (line 20) so he will know what to do when the RUN "c:" statement (line 
30) beeps the built-in speaker. 



186 A GUIDE TO AT ARI 400/800 COMPUTERS 

The program is still in memory. Change it to become the second program, and 
save the result on tape. 

10 PRINT "PROGRAM TWO" 
SAVE "C:" 

READY 

Now there are two programs on the tape. Make a few changes to the second 
program, which is still in memory, to create the third and final program, and save it 
on tape. 

1 0 PFUNT "PF,OGRAM THF,EE" 
20 END 
30 
SAVE "C:" 

F,EADY 
m 
The cassette now has three programs on it, one right after another. The first will 

load and run the second, and the second will load and run the third. Rewind the tape 
and try it: 

RUN "C:" 
PROGRAM ONE 
PRESS RETURN WHEN THE TAPE IS READY 
PROGRAM TWO 
PRESS RETURN WHEN THE TAPE IS READY 
PROGRAM THREE 

READY 
~ 

Chained programs look to the user much like one long program. When programs 
are chained, the user must press RETURN to continue with the next program module. 
This interrupts program continuity somewhat, but not as much as having to type 
RUN "C:" between every module. 

The main drawback to chaining programs with the RUN statement is that it 
clears all variables before it loads the next program. Therefore, one program cannot 
use values that were input or calculated by an earlier program in the chain. 

Subroutine Libraries 
Review the utility su brou tines developed in Chapter 4 (Figures 4-16 through 4-21 , 
4-31,4-33, and 4-36 through 4-38) . They are useful subroutines in many programs, 
but it is certainly inconvenient having to retype them every time you want to use 
them. One way to get around this is with the CSA VE and CLOAD statements. Type 
in all the subroutines together and record them with the CSA VE statement. Then 
when you start to write a new program, the first thing you do is load the whole 
subroutine package with the CLOAD statement. Delete the lines you won't need, 
and you are left with the subroutines you want. This method works well unless you 



Chapter 5: THE PROGRAM RECORDER 187 

have two subroutines that use the same line numbers, or more subroutines than will 
fit in memory at once. 

The LIST "c:" and ENTER "c:" statements make it easy to incorporate subrou
tines into programs . All you do is record each subroutine as a separate program 
with the LIST "c:" statement. It usually works best if you put only one or two 
subroutines on each side of a tape. Then when you write a new program, you can 
merge subroutines at any time by using ENTER "c:" statements. 

Program Recording Formats 
Recording a program is outwardly the same no matter which statement you use , 
CSA VE, LIST "C:", or SA VE "C:". But the three statements each record programs 
in a different format. 

The LIST statement outputs programs in the same format regardless of the 
device. It sends out the AT ASCII code of every character in the program listing. 

Both the CSA VE and SA VE statements abbreviate keywords with one-character 
tokens. Thus, instead of storing five AT ASCII characters for the keyword PRINT, 
the tokenized format stores just one character, the token for PRINT. The CLOAD 
and LOAD statements load tokenized programs. It doesn't matter what the codes 
for the tokens are, since the computer encodes and decodes them for you. 

The AT ARI computer records programs in blocks. The difference between the 
CSAVE and SA VE "c:" statements is the space between those blocks on the tape. 
The CSA VE statement records programs more densely than the SA VE "C:" state
ment. Thus loading and saving proceed a bit faster with CSA VE and CLOAD than 
with SAVE "C:" and LOAD "C:". 

Variable Name Table 
AT ARI BASIC keeps a table of all the variable and array names you have used in 
programmed or immediate mode. The CSA VE and SAVE statements record this 
variable name table along with the program lines. The CLOAD and LOAD 
statements load the variable name table back into memory, replacing the current 
variable name table. 

The LIST statement does not record the variable name table, nor does the 
ENTER statement load a variable name table. The existing variable name table 
remains. When you run the program, variables and arrays it uses are added to the 
variable name table. 

Over a period of time, the variable name table can become cluttered with obsolete 
variable names. It is easy to clear out the deadwood. First, record the program with 
the LIST statement. Then clear the varia ble name table completely with the NEW 
statement. Of course, this erases the program as well. Load the program back into 
memory with the ENTER statement. 

STORING DATA 
Many computer applications involve large amounts of data, more than the compu
ter can possibly store in its memory at once . AT ARI BASIC lets you store data on 



188 A GUIDE TO ATARI 400/800 COMPUTERS 

cassette with the PRINT # and PUT statements. The INPUT # and GET statements 
read the data back in. 

Data Files, Records, and Fields 
The computer stores data on a cassette in files, much as you might store informa
tion in a filing cabinet. Each cassette is the equivalent of a filing cabinet; each 
cassette file is the equivalent of a file drawer. A cassette can have one file or many 
files, just as a filing cabinet can have one drawer or many. A cassette file, like a filing 
cabinet drawer, can be full or empty. 

Data files are divided into records and fields. These can be compared to the file 
folders and their contents in a file drawer. There can be any number of records in a 
data file, as long as the tape is long enough to hold them all. A record can have any 
number offields , though all records in the same file generally have the same number 
of fields . If a field is unused, its value is zero or blank. The computer writes a special 
record, called the end-of-file (EOF) record , to mark the end of the file. 

Cassette data files do have one limitation : data in them can only be accessed 
sequentially. You must always start at the beginning of the file and read through to 
the end . You cannot add or delete records . 

The Cassette Buffer 
Rather than transfer data to and from the program recorder character by character, 
the AT ARI computer does it in 128-character blocks . It sets aside part of its 
memory to hold one block of cassette data. This area is called the cassette buffer. 

Cassette File Format 
Every cassette data file has three components: the leader, data blocks , and an 
end-of-file record (Figure 5-1). The 20-second leader gives the program recorder 
and the computer a chance to synchronize and prepare for data transfer. All data 
blocks except the last one contain 128 characters (bytes) of data. The last data block 
contains the last few characters in the file, usually less than 128. The very last block 
on the file is the special end-of-file block. 

A record may take more than one block, exactly one block, or less than one block, 
depending on its length. Generally speaking, the program does not have to worry 
about how the data records are blocked. The computer takes care of that automati
cally. The only exception will be discussed in the next section. 

Opening a Data File 
When you open a file , the information in it becomes accessible. The information 
remains accessible until you close the file . Use the OPEN statement to open a 
cassette data file , like this: 

OPEN tl,B,O,"e:" 

This statement opens channel I for output to the program recorder. . 



Chapter 5: THE PROGRAM RECORDER 189 

20-second leader Data block 

~ ~ = I Data block EOF 

FIGURE 5-1. Cassette data file format 

As with other devices , the second parameter of the OPEN statement determines 
whether the specified channel is open for input or output. A value of 4 means input, 
8 means output. A cassette file cannot be open for input and output simultaneously. 
The third OPEN statement parameter is 0 for normal data files. 

When you open a cassette data file, the computer goes through its tape-cueing 
process. It beeps the speaker once for input , twice for output. Then it waits while the 
user positions the tape to the proper starting point with the REWIND and FAST 

FOR WARD levers . When the user presses a key on the keyboard, the program 
recorder starts the tape moving. 

It is a good idea to display some instructions for the user just before opening a 
cassette data file . That way the speaker beeping won't take the user by surprise. Here 
is an example: 

10 PRINT "Cue tape; press RETURN when 
read'::J"; 
20 OPEN 12,.q,O,"CI" 

As soon as the tape starts moving, the computer starts to read or write the 
20-second file leader. If the channel is open for output, it writes the leader. If the 
channel is open for input , it reads the leader. During this time, the computer will 
execute no other statements. 

When the program recorder finishes reading or writing the leader, the program 
must immediately read or write the first data. If the file is open for output, the 
program must write 128 characters out to the program recorder. If it fai ls to do so, 
an error may result when the file is subsequently read. If there is no real data ready 
to go, the program can write a dummy block of zeros or blanks. If the file is open for 
input , the program must read the first data value from the file. If it does not, an error 
may occur when it tries to read data later in the program. Examples will be provided 
later in this chapter. 

Closing a Data File 
Closing an inactive data file is important because it frees a channel for other use. 



190 A GUIDE TO ATAR1400/800 COMPUTERS 

The CLOSE statement closes a data file. Here is an example: 

CLOSE t1 

It is especially important to close a file that has been open for output. Failure to 
do so may result in loss of data. The cassette buffer may be partially full of data. 
Closing the file outputs the partially full buffer to the last data block on the cassette 
file. If the file is not closed , the partially full cassette buffer is never output. 

Both the END and RUN statements automatically close all open channels. The 
computer also closes all open channels when it runs out of programmed mode 
statements to execute. 

Writing to Data Files 
Either a PRINT # or a PUT statement can output data to a cassette file. Both 
statements direct output to an open channel. It makes no difference to which device 
the the output channel is linked. If an OPEN statement has linked the output 
channel to the program recorder (device C:), that is where the data ends up. The 
following program demonstrates this: 

10 PRINT "CI.le tape; press RETUr~N when 
read~"; 

20 OPEN t3 t B t Ot "C:" 
30 PRINT t3;"This Message is written t 
o the prograM recorder." 
""0 CLOSE t3 

The PRINT # statement outputs numeric and string values in AT ASCII code. 
Always use semicolons, rather than commas, to separate items in a PRINT # 
statement to the program recorder. Commas are perfectly legal, but only result in 
extra spaces being recorded . 

Each separate data value sent to the program recorder must end with an EOL 
character. When the value is read back, the EOL character determines where it ends. 
One way to guarantee that the EOL character occurs is to output each value with a 
separate PRINT # statement. Never end such PRINT # statements with a semicolon 
or comma. Another way to output the EOL character is with the CHR$ function, as 
follows: 

10 PRINT "C"le tape; pT'ess RETURN when 
read';!"; 
20 OPEN 13,8,0,"C:" 
30 PRINT 43;A;CHR$(155);e;CHR$(155);C 
""0 CLOSE 13 

Each PUT statement outputs a single numeric value between 0 and 255 . Each 
value takes the same space as one AT ASCII character. The following program 
outputs a dummy record right after it opens an output channel to the cassette. 



Chapter 5: THE PROGRAM RECORDER 191 

10 PI;:INT "C._.e tape; pI' ess F,ETUF,N when 
read~"; 

20 OPEN 13.8.0."C:" 
29 REM DUMM~ cassette record 
30 FOR J=l TO 128 
40 PUT 13.0 
50 NEXT J 
60 PRINT 13."First act'.lal data" 
70 CLOSE 13 

Reading Data Files 
The INPUT # statement reads values stored by the PRINT # statement. The channel 
number it specifies must be open for input from the program recorder. To see how it 
works, first use the following program to create a data file: 

10 DIM A$(120) 
20 PRINT "What Message do ~o'.1 want rec 
orded?" 
30 INPUT A$ 
40 PRINT 
50 PRINT "C'.Ie tape; press RETURN when 
read~"; 
60 OPEN 13,8.0."C:" 
70 PRINT 13;A$ 
80 CLOSE 13 

The next program uses the INPUT # statement to read back the message recorded 
by the previous program. Don't forget to rewind the tape. 

10 DIM A$(lZ0) 
ZO PRINT "C._.e tape; press RETURN when 
read~"; 
30 OPEN 13,4,0,"C:" 
40 l;NPUT 13;A$ 
50 PRINT A$ 
60 CLOSE 13 

The INPUT # statement interprets data from a cassette file as AT ASCII codes. 
Every time it encounters an EOL character (AT ASCII code number 155), it assigns 
the characters it has read since the last EOL character to the next variable on its list. 
If the variable is numeric, the INPUT # statement converts the characters it has read 
into a numeric value. If the value is not numeric, error 8 occurs. 

Each GET statement reads one numeric value. Your program must decide how to 
interpret that value. For example, it can interpret the value as an AT ASCII code 
with the help of the CHR$ function. The next program uses the GET statement to 
read the same file as the last program. 



192 A GUIDE TO ATAR1400/800 COMPUTERS 

10 PHINT "C')e tape; press HETURN when 
read'.:j"; 
20 OPEN 4:3,4,0,"C:" 
30 GET 4:3,A 
39 REM Print chars. until EOL 
40 IF A<>155 THEN? CHR$(A);:GOTO 30 
50 ? :REM Force carriage return 
60 CLOSE 13 

Notice that this program has to watch for the EOL character itself (line 40). 

A Practical Example 
Consider a practical use of cassette files: a mailing list. Two programs will be 
needed . One will input names and addresses from the keyboard and save them on 
cassette. The other will read the names and addresses from the tape and display 
them on the screen. In Chapter 6 we will develop a program to print mailing labels 
from the cassette file . 

Records on the mailing list file will each have five fields: name, street, city, state, 
and ZIP code. Our programs will always use the same string variables to reference 
each field : NA$, STT$, CI$, ST$, and ZIP$ . 

The program that creates the mailing list file must first dimension the record 
variables and open an output channel to the program recorder. The program should 
output a dummy record after it opens the output channel. The first real data will not 
be ready until the user enters it , and there is no telling how long that will be. The 
following program lines do all that: 

50 DIM NA$(20),STT$(20),CI$(20),ST$(2) 
,ZI$(9),R$(20),EOL$(1) 
60 EOL$=CHR$(155):REM EOL character 
69 REM Open file, write dUMM'.:J record 
70 GOSUE: 3000 
1900 END 
2999 REM Open for cassette output 
3000 PRINT CHR$(125);"Cue tape, press 
RETURN, and stand b'.:!." 
3010 OPEN 4:1,B,0,"C:" 
3019 REM Output a dUMM'.:J record 
3020 FOR Jl=l TO 12B:PUT 11,0:NEXT Jl 
3030 RETUHN 

Next, the program must enter the data for one record, as follows: 

1000 PHINT CHR$(125);"ENTER NAMES AND 
ADDRESSES" 
1010 PHINT:PHINT 
1020 PRINT" NaM e: "; 
1030 INPUT NA$ 
1040 PRINT" Street:"; 
1050 INPUT STH 
1060 PF~INT" Cit'.:J:"; 
1070 INPUT CIS 



1080 PRINT" State:"; 
1090 INPUT SH 
1100 POSITION 20,6 
1110 PRINT "ZIP:"; 
1120 INPUT ZIt 

Chapter 5: THE PROGRAM RECORDER 193 

If the user makes a mistake, the program should at least allow him to start over 
again. The following lines do that: 

1130 POSITION 2,1 
1140 PRINT "Reenter this?" 
1150 INPUT R$:R$=R$(l,l) 
1160 IF R$="N" OR R$="n" THEN 1300 
1170 IF R$:::"Y" OR R$=",;:!" THEN 1000 
1180 GOTO 1130 

When the user indicates that the data is correct, the program can output it to the 
program recorder. The output goes to the program recorder via the cassette buffer. 
If there is room in the cassette buffer for all of it, the output occurs very quickly. But 
the cassette buffer may become full and have to be recorded on the cassette. That 
will take a few seconds. Just to be safe, the program should advise the user to stand 
by while the output occurs. Add the following program lines: 

1300 POSITION 8,21 
1310 PRINT ")I( )I()I( PLEASE STAND BY )I( )I( 

*11; 
1319 REM Output cassette record 
1320 PRINT t1;NA$;EOL$;STT$;EOLS;CI$;E 
OL$;ST$;EOL$;ZI$ 

With the output completed , the program can now erase the advisory message and 
check with the user to see if there is more data . Add the following lines: 

1329 REM Erase advisor';:! Message 
1330 PRINT CHR$(156):REM Delete line 
1340 POSITION 2,1 
135 0 PF~INT "Add another naMe and addr e 
55" 

1360 INPUT R$:R$=R$(l,l) 
1370 IF R$ ·.:: "Y" OR F~$="';:j" THEN 1000 
1380 IF R$< >"N" AND R$ <> "n" THEN 1340 

When the user finishes entering names and addresses, the program outputs one 
more record, then closes the file . The extra record is called a trailer record. It marks 
the end of the file . It has special values in all five fields - values the user is unlikely 
to enter. A program which reads the file can watch for these special field values and 
stop reading when they appear. These lines finish the program: 

1389 REM Output trailer record 
1390 FOR J=l TO 5:REM 5 fields 
1400 PRINT tl;CHR$(253);EOL$; 
1410 NEXT J 
1 Jt2 0 CLOSE t1 
1900 END 



194 A GUIDE TO ATAR! 400/800 COMPUTERS 

50 DIM NA$(ZO),STT$(ZO),CI$(ZO),ST$(Z) 
,ZI$(9),R$(ZO),EOl$(1) 
60 EOl$=CHR$(155):REM EOl character 
69 REM Open file, write dUMM~ record 
70 GOSUE: 3000 
1000 PRINT CHF~$ ( 125) ; "ENTER NAMES AND 
ADDRESSES" 
1010 PRINT :PRINT 
1020 PRINT" NaMe:"; 
10:30 INPUT NA$ 
1040 PF,INT" Street:"; 
1050 INPUT STH 
1060 PRINT" Cit~:"; 
1070 INPUT CI$ 
1080 PRINT" State:"; 
1090 INPUT SH 
1100 POSITION 20,6 
11:L 0 F'F,INT "ZIP:"; 
1120 INPUT ZI$ 
1130 POSITION 2,1 
1140 PRINT "Reenter this?" 
1150 INPUT R$:R$=R$(l,l) 
1160 IF R$="N" OR r,$="n" THEN 1300 
1170 IF R$="Y" OR R$="'j" THEN 1000 
1180 GOTO 1130 
1300 POSITION 8,21 
1310 PRINT ")I( )I()I( PLEASE STAND 8Y )I( )I( 

.11; 
1319 REM Output cassette record 
1320 PRINT tl;NA$;EOl$;STT$;EOl$;CI$;E 
Ol$;ST$;EOl$;ZI$ 
1329 REM Erase advisor'j Message 
1330 PRINT CHRS(156):REM Delete line 
1340 POSITION 2,1 
1350 PRINT "Add another naMe and addre 
ss" 
1360 INPUT R$:R$=RS(1,l) 
1370 IF R$="Y" OR R$="'j" THEN 1000 
1380 IF R$<>"N" AND R$<>"n" THEN 1340 
1389 REM Output trailer record 
1390 FOR J=l TO 5:REM 5 fields 
1400 PRINT t1;CHR$(253);EOl$; 
1410 NEXT J 
1'1120 CLOSE t1 
1900 END 
2999 REM Open for cassette output 
3000 PRINT CHR$( 125); "Clle tape, press 

NOTE: Demonstrates cassette data file output. Shaded lines can be added to Figure 4-25 
to add output capability to it. 

(colllinued) 

FIGURE 5-2. Mailing List Entry program listing 



Chapter 5: THE PROGRAM RECORDER 195 

RETURN. and stand b':l." 
3010 OPEN :t1.B.O."C:" 
3019 REM Output a dUMM':l record 
30Z0 FOR Jl=l TO lZBtPUT tl t OtNEXT Jl 
3030 RETURN 

NOTE: Demonstrates cassette data file output. Shaded lines can be added to Figure 4-25 
to add output capability to it. 

FIGURE 5-2. Mailing List Entry program listing (continued) 

The complete program appears in Figure 5-2. You probably noticed that the data 
entry section is fairly crude . One of the programs in Chapter 4 inputs the same data, 
name and address, but uses many more data entry aids (Figure 4-25). Compare lines 
1000 through 1180 in Figure 5-2 with lines 1000 through 1230 in Figure 4-25. You 
may wish to combine the cassette output portions of Figure 5-2 (lines 50, 60, 70, 
1300 through 1420, and 3000 through 3030) with Figure 4-25 (all lines except 50) for 
the best program. 

A program to read the cassette file starts out by dimensioning the variables used 
to read a data record. Then it opens an input channel to the program recorder, and 
reads past the dummy record at the beginning of the file. Use the following lines: 

50 DIM NA$(ZO).STT$(ZO).CI$(ZO).ST$(Z) 
.ZI$(9).R$(ZO) 
69 REM Open file. read dUMM':l record 
70 GOSUE: 3100 
1900 END 
3099 REM Open for cassette input 
3100 PF,INT CHR$(lZ5);"Cue tape. press 
F'ETURN. and stand b'::l." 
3110 OPEN =8=lt4,O."C:" 
3119 REM Input a dUMM'::l reco r d 
31Z0 FOR J1=1 TO 1Z8tGET tl.RtNEXT J1 
3130 RETLmN 

Next, the program displays some instructions for the user. The display can be 
stopped by pressing CTRL-I, a standard ATARI computer feature. Pressing CTRL- I 

again restarts the display. The following lines display the instructions: 

1000 PRINT CHR$(125):REM Clr screen 
1010 PRINT "DISPLAY MAILING LIST" 
10Z0 POSITION ·Z .Zl 
1 030 PRINT "Press CTRL-l to stop displ 
a'::l." 
1 0 4 0 PF\INT "Pr ess CTRL -1 aga into r eSll 
Me." 
1050 POSITION Z.Z 
1060 PRINT "Press RETURN when read'::l to 
begin" 

1070 INPUT R$ 



196 A GUIDE TO ATAR! 400/800 COMPUTERS 

50 DIM NA$(ZO),STT$(20),CI$(ZO),STS(Z) 
,ZI$(9) ,r~$(ZO) 
69 REM Open file, read dUMM~ record 
70 GOSUE: 3100 
1000 PRINT CHR$(lZ5):REM Clr .creen 
1010 pr~INT "DISPLAY MAILING LIST" 
10Z0 POSITION Z,21 
1030 F'FaNT "Press CTRL --l to stop displ 
a~," 
1040 PRINT "Press CTRL-·l again to resu 
Me." 
1050 POSITION 2,2 
1060 PFUNT "Press RETUF~N when read~ to 
begin" 

1070 INPUT R$ 
1079 REM Displa~ Mailing list 
1080 OPEN 14,8,O,"S:" 
1089 REM Read next record 
1090 INPUT 11,NAI,STTI,CII,STS,ZII 
1099 REM Watch for trailer record 
1100 IF NA$=CHRI(Z53) THEN 1200 
1110 PRINT t4;NAS 
1120 PRINT 14;STTS 
1130 PRINT 14;C1S 
1140 PRINT 14;STS;" ";Zl$ 
1150 PRINT :PRINT 
1160 GOTO 10(;>0 
1199 REM Trailer record found; quit 
1200 CLOSE t1 
1210 CLOSE 14 
1900 END 
3099 REM Open for cassette input 
3100 praNT CHr~S(125);"Cue tape, pl'ess 
RETUF~N, and stand b~." 
3l:LO OPEN :1=1,4,0, "C:" 
3119 REM Input a dUMM~ record 
3120 FOR J1=1 TO 128:GET 11,R:NEXT J1 
3130 RETURN 

NOTE: Demonstrates cassette data file input. Can be modified to print a mailing list on 
a printer (see Figure 6-4). 

FIGURE 5-3. Mailing List Display program listing 

The program will display the mailing list on the screen, so it opens an output 
channel to the screen. Then, one by one, it reads records from the cassette and 
displays them on the screen. Each time it reads a record, it checks to see if it is the 
trailer record. Without this check, the program would eventually read the end-of
file record, which would cause error 136. The following lines finish the program. 



Chapter 5: THE PROGRAM RECORDER 197 

1079 REM Displa~ Mailing list 
1080 OPEN 14,8,O,"S:" 
1089 REM Read next record 
1090 INP UT 11,NAS,STTS,CIS,STS,ZIS 
1099 REM Watch for trailer record 
1100 IF NAS=CHRS(253) THEN 1200 
1110 PRINT 14;NAS 
1120 PRINT t4;STTS 
1130 PRINT t4;CIS 
11'10 prnNT t4;Srs;" "; ZlS 
1150 PRINT: PFUNT 
1160 GOTO 1090 
1199 REM Trailer record found; quit 
1200 CLOSE t1 
1210 CLOSE 14 

The complete program listing appears in Figure 5-3 . Chapter 6 has a modified 
version of this program that prints the mailing list instead of displaying it (Figure 
6-4). 





6 
A T ARI PRINTERS 

When you turn on an AT ARI computer, output automatically goes to the display 
screen. It is easy to divert the output to a printer instead. 

This chapter will concentrate on programming output on the three AT ARI 
printers: the AT ARI 820 Printer, the AT ARI 822 Printer, and the AT ARI 825 
Printer. When it comes to printing ordinary text and numbers, there is very little 
difference between the three AT ARI printers. The main difference is in the width of 
the print line. The AT ARI 820 and 822 Printers both have 40-column lines, just 
like the display screen. The AT ARI 825 Printer has a nominal80-column line; it can 
print as many as 132 characters per line. It also has a number of programmable 
features which will be covered at the end of this chapter. Until then, everything 
applies equally to all three printers unless stated otherwise. 

Before going any further, make sure your printer is properly connected and 
turned on. The AT ARI 825 Printer must be hooked up through the AT ARI 850 
Interface Module, and both components must be turned on. Refer to the operator's 
manual for detailed installation instructions . 

PRINTING PROGRAM LISTINGS 
If you type the LIST command at the keyboard, the BASIC program in the AT ARI 
computer's memory will be listed on the display screen. A variation of the LIST 
command lets you divert the listing to a printer. It looks like this: 

LIST "F':" 

P: is the printer's device name. By explicitly stating the device name with the LIST 
command, you tell the computer where output goes. You can also specify starting 

199 



200 A GUIDE TO AT ARI 400/800 COMPUTERS 

and ending line numbers to be listed. The following command lists all program lines 
between lines \0 and 100 on the printer: 

LIST "P:", :1.0,lOO 

No matter which device it goes to, the listing looks much the same. One exception 
is line length. The output device, not the LIST statement, determines the maximum 
line width. The display screen, the AT ARI820 Printer, and the AT ARI822 Printer 
all have a 40-column limit. Program lines longer than 40 characters will wrap 
around to the next display or printer line . Normally, the AT ARI 825 Printer has an 
80-column limit. On this printer, a program line will not wrap around unless it is 
more than 80 characters long. . 

None of the printers can print graphics characters, such as ~ and 00. On the 
ATARI 820 and 822 Printers , graphics characters appear as blank spaces in a 
printed listing. On the AT ARI825 Printer, some graphics characters do not print at 
all, while others cause strange special effects. These will be described at the end of 
this chapter. 

PROGRAMMING PRINTER OUTPUT 
Programming output on the printer is almost the same as programming output on 
the display screen. It is certainly no harder , although some differences do exist. For 
example, the printer has no cursor. The POSITION statement will move the cursor 
around on the screen display, but it will not move a print head around on a piece of 
paper. The printer prints an entire line at a time . Lines print sequentially, one line 
after another. On the screen, you can display the headings on a form (see Figure 
4-24), then go back and fill in values for each heading. You cannot do this on the 
printer. Instead , you must print all the headings and values for one line before you 
go on to the next. 

The LPRINT Statement 
AT ARI BASIC has a special statement for sending output to the printer. This 
statement, LPRINT, is designed to work with the 40-column printers in exactly the 
same way a PRINT statement works with the display screen. LPRINT, however, 
prints on the printer, rather than displaying on the screen. Here are some examples: 

10 LPFaNT "L.PFUNT BTATEMENT DEMON!:>TF(ATIDN" 
20 LPIUNT 
::l() LPIUNT "ND. DNE"," NO. TWO"," ND. TH~,(EE" 

10 L.PRINT 2.2E+11,-100. 7 6 , 
50 LPRINT 1231567890 

The LPRINT statement does not work quite right under all circumstances on the 
AT ARI 825 Printer. If an LPRINT statement generates 40 characters or fewer and 
ends with a semicolon or comma, the output of the next LPRINT statement begins 
in column 41 of the same print line. Run the above program, and you will see that 
lines 40 and 50 demonstrate this phenomenon. If an LPRINT statement generates 



Chapter 6: AT ARI PRINTERS 201 

between 41 and 80 characters and ends with a semicolon or comma, the output of 
the next LPRINT statement starts at the beginning of the next print line. 

The LPRINT statement automatically uses channel 7 for output. No OPEN 
statement is necessary. If the channel is already open to some other device, an error 
occurs , closing channel 7 in the process . Subsequent LPRINT statements will work 
fine. 

PRINT # and PUT with a Printer 
Either a PRINT # or PUT statement can send output to the printer. Both of these 
statements direct output to an open output channel. They do not care which device 
the output channel is linked to . In order for the output to go to the printer, you need 
only link the output channel to the printer (device P:) . The following is an OPEN 
statement which does that: 

After executing this statement, any PRINT # or PUT statement to channel 2 will 
send output to the printer. 

The following program prints two lines of text on a printer: 

10 REM OUTPUT 2 LINES TO A PRINTER 
20 REM Open a printer output channel 
30 OF'EN :i'3,8,0,"P:" 
40 F'F\INT 'K<3;"Nice (:lU~S finish la!;t" 
50 F'F\INT ~<3; "Ch€"at e rs never prosper" 
60 CUJf:lE 'Il'3 

Output is much slower on the printer, but is otherwise identical to screen output. 
No matter what the output device is , PRINT # statements (lines 40 and 50 in the 
example) always format output the same way. In fact, the PRINT # statement itself 
knows only which channel to put the output on. It has no idea to which device the 
output is going. Try changing the OPEN statement so that it opens channel 3 to the 
display screen (device S:). Rerun the program, and the same two lines of text appear 
on the screen instead of on the printer. 

Mixing Screen and Printer Output 
A program can alternate its output between the printer and the display screen. Plain 
PRINT statements, without channel numbers, always go to the screen. The 
LPRINT statement always goes to the printer. You can mix these statements freely 
in any program. Use PRINT for output that will always go to the display screen. Use 
LPRINT for output that will always go to the printer. 

What about output that may go to either the printer or the screen? By using the 
PRINT # statement, you can let the program user decide where program output will 
appear. Of course, the program must display its output in a manner that will work 
on either the screen or the printer. It must start at the top of the page and print each 
line completely before it moves on to the next. It must print lines no more than 38 
characters long. It can print at most 24 lines at a time, or some lines will scroll off the 



202 A GUIDE TO AT ARI 400 /800 COMPUTERS 

top of the screen and be lost. Here is an example: 

10 DIM N1; ( 12) 
20 PRINT "OUTPUT ON SCF,EEN DR PFG:NTER 
(8 OR P)"; 
30 INPUT N~; 

40 IF N~;(:L.1):="!3" THEN N$=" 8 :":GOTO 70 

50 IF N~t>(lt1):"'''P'' THEN N$="f":":GOTO 70 

60 GOTO 20:REM Didn ' t respond S or P 
69 REM Open output chan. per request 
70 OPEN i4,8,O,N$ 
79 REM Input data 
80 PFUNT "ENTEF~ A NAME"; 
90 INPUT N~~ 

99 REM Output to chosen device 
100 PFG:NT *4; N$;" bacl<.war' ds is "; 
110 FOR J=LEN(N$) TO 1 STEP - 1 
120 PRINT 14;NS(J,J); 
130 NEXT J 
140 f"RINT 14:REM EOL 
1~50 IF N$<>"END" THEN 130 
160 CLO!3E :1=4: END 

The program asks the user where program output should appear (lines 20 through 
60). It assigns the appropriate device name, S: or P: , to a string variable (line 40 or 
50). The OPEN statement that opens channel4 uses the string variable to specify the 
device name (line 70). Program output goes out over channel 4 to its final destina
tion (lines 100, 120, and 140). 

Line Length 
Remember that if you display anything in the last column of the display screen 
(column 39), a carriage return occurs automatically. The same thing happens if you 
print in the last column of a printer line . Print a 40-character line on the AT ARI 820 
or 822 Printer, or an 80-character line on the AT ARI 825 Printer, and an automatic 
carriage return occurs on the printer. Screen margins, however, reduce screen width 
to 38 columns. Therefore, a full line on the display screen is normally shorter than a 
full line on a printer. A 38-character line will cause a carriage return on the screen 
but not on a printer. The following program demonstrates this feature: 

10 REM Open output channels 
20 OPEN :l:2,8,0,"S:" 
30 OPEN :1<3,8,O,"P:" 
39 REM Print on displa~ and printer 
4 ° FOF, c):::2 TO 3 
49 REM Print a 39-character line 
50 PRINT t,J; "THIS LINE EXCEEDS DISPLAY 

WIDTH BY ONE!" 
60 NEXT ,J 
70 END 



Chapter 6: AT ARI PRINTERS 203 

The program displays the same message on the screen and the printer. It is too long 
for one screen line, but fits on one printer line. If the message were one character 
longer, it would also produce an automatic carriage return on a 40-column printer. 
On the AT ARI 825 Printer, the output line must be 80 characters long before the 
automatic carriage return occurs. 

Line length considerations are the same with the LPRINT statement as with the 
PRINT # statement. 

The Printer Line Buffer 
The printer has enough memory of its own to hold one line of print. This printer 
memory is called aprinter line buffer. As PRINT #, LPRINT, and PUT statements 
send characters to the printer, those characters go into the printer line buffer. The 
printer does not display them immediately upon receipt. It waits until it gets an EOL 
(end-of-line) character. Then it prints the entire line and advances to the next line. If 
the line buffer fills up before an EOL character arrives, the printer prints the line, 
clears the buffer, and advances to the next line on its own. This happens when you 
print 40 characters or more (80 characters or more on the AT ARI 825 Printer). The 
following program demonstrates this. 

9 REM Open printer output channel 
10 OPEN '1<3,8,0," F': " 
20 FOR J=O TO 99 
29 REM Print digits 0 thru 9 
30 PRINT 13;J- INT(J / l0)*10; 
39 REM Displa~ no. of each digit 
40 F'F~INT J 
50 NEXT ,J 
59 REM Force output of last line 
60 F'HINT '10:3 
70 CLOSE 13 

The program prints the digit pattern 0123456789 ten times (lines 20, 30, and 50). It 
displays the number of the digit as it outputs each one to the printer (line 40). Notice 
that the digits do not print each time a number displays on the screen, which is when 
they are output. Nothing prints until the line buffer is full. The program prints 100 
digits; the last few do not exactly fill a line. Therefore, the program must print an 
EOL character to force the printer to empty its buffer (line 60) . 

The printer line buffer does not care where the characters it gets come from . They 
may come from LPRINT, PRINT # , or PUT statements, on any output channel. 
The printer line buffer simply takes each character, puts it in the line buffer, and 
waits patiently for an EOL character or a full buffer. 

Formatted Printer Output 
Formatting output for the printer is similar to formatting output for the display 
screen. You can use commas in PRINT # or LPRINT statements to align columns . 
Review the Gas Cost program (Figure 4-3) for the display screen method. By 



204 A GUIDE TO ATARI 400/800 COMPUTERS 

1 REM Strings needed for subroutine 
5 DIM N$ ( 10),TS(10) , 8L$(10) 
6 REM Fill SLS() with blanks 
7 [:l..~~ (1) ,"," ": [:L.~; (10) "-'[:I...~I;: E:L.~; (2) "'BL.~~ 
9 REM Displa~ gas cost table 
10 PFnNT "How Much p(~'r' qal1on"; 
20 INPUT CPC 
:30 PRINT "~IVE!T ' agE! I"li 1 (,!S P(,!T' (~la lIon" ; 
.itO INPUT t1PG 
12 PI;:INT "Outp '..It on SCT' ('~f..' n OT' PI' i nt(~r 
(~3 or P)" 
1.i/ INPUT 'U 
16 IF T~~O,:l),""F''' THEN OPEN :\I,~),8.0,"Pt 

" t GOTD ~3 0 
48 OPEN ,.,~.),B,O,"S:" 

~:j 0 F'I:;:INT l~~S;" MILES" , "GAL.LONS" , " cmn 

6 0 PF~INT '''~5 1 "._ ..... _._" , "._._ ... _.-.- .. " , "._ .... _ .... _ ..... -

70 FOR MI=100 TD 1700 STEP 100 
79 REM COMPute gal. to nearest 10th 
80 GAL.=INT(MI/MPG*10)/10 
89 REM COMPute cost to ne a rest cent 
90 COST=INT(CF'G*GAL~100) / l00 

100 NS=6tOO=OtN=MltGOSUB 11000tPRINT ~ 
~5; N$ ( 1 ,N~3) , 
102 NS=7!DO=ltN=GAL.tGOSUB 11000tPRINT 
"'~S; N$ ( 1 ,N~:;) , 
104 NS=7:0D=2tN=COST:GOSUB 11000:F'RINT 

t::.; 1 N$ ( 1 • N~3 ) 
ltO NEXT MI 
120 F'IUNT lF~S 

130 PFUNT 't5,"MPG="lMF'G,"$";CPG;" pE!r 
<;:(al. " 
140 END 
10995 REM ~~*~*********~*~**~~*~*~*** 
10996 REM ~ Subroutine aligns * 
10997 REM *nuMeric values on deciMal* 
10998 REM ~~~*~********~~*********~** 
10999 REM Convert to left-just strinq 
11 000 T~I;'-'-Enl'd; (N) 
11009 REM Fill output str with blanks 
1101 0 N;~""E::l.. ~~ 

11029 REM ASSUMe dec. point at end 
11030 OP=LEN(TS)+l 
1103? REM L.ook for real dec. point 

NOTE: Shading shows lines changed from Figure 4·9. Output similar to Figure 4·10. 

FIGURE 6-1. Decimal-aligned Printer Output program listing 

(continued) 



Chapter 6: AT ARI PRINTERS 205 

11040 FOR J =l TO LENCTS) 
11 0 ~5 0 IF T ~I; C ,j, cJ)"" ." THEN DF',,:,j: ,j::::NS 

l:l 0100 NE XT ,J 
11069 REM COMpute nUMb er length 
110 7 0 NL ::::D F' +[)[) 
11079 REM Right-Ju stif~ 
110 80 N$CNS-NL+ l,NS)=T$ 
110 90 f,ETUF,N 

FIGURE 6-1. Decimal-aligned Printer Output program listing (continued) 

changing the PRINT statements On lines 50, 60, 100, 110, 120, and 130 to LPRINT 
statements, you can generate the same output on the printer. None of the printers 
supports the programmed tab feature, so you cannot use it to align columnar 
output. 

The methods presented in Chapter 4 for right justification and decimal alignment 
also work with printer output. Figure 6-1 shows a new version of the Decimal
aligned Gas Cost program (compare this figure with Figure 4-9), This new version 
gives the user a choice between screen and printer output. If the user enters "P," 
output goes to the printer (lines 42 through 46). Any other entry sends output to the 
screen (line 48). The program uses PRINT # statements instead of the original 
PRINT statements (lines 50, 60, 100, 102, 104, 120 and 130). There are nO other 
changes. 

Paging 
AT ARI printers pay nO attention to page length. They assume they are printing On 
an endless roll of paper, with nO page boundaries. 

There is a way to print program listings page by page. Use a separate LIST 
statement to list one page-sized chunk at a time. Explicitly specify a starting and 
ending line number for each chunk, so that the program lines within that chunk will 
fit on one page. 

Paging program output is much less tedious . The program must count output 
lines. It must regularly check the line count against a maximum number oflines per 
page. Ifthe count equals or exceeds the maximum, the program prints blank lines to 
advance the paper to the top of the next page. There it can print a title and column 
headings, if desired. The following program uses a special subroutine (Figure 6-2) to 
do the testing and handle the top-of-page ritual. Type in both the subroutine and 
these program lines: 

'10 GOTO 1000 
993 REM --- Start of Mai n F'rOgraM ---
999 REM Open printer output channel 
1000 OPEN :R:il, B, O,"F':" 



206 A GUIDE TO AT ARI 400/800 COMPUTERS 

1010 PRINT CHR$(125):REM Clr. screen 
1020 PRINT "Align pr inter at top of pa 
ge" 
1 0 3 0 PF\INT "How M<lrI~ 1. i rH'.1S" 

10ilO INPUT L 
10il9 REM Force new page 
1050 Pl=61:GOSUB 900 
1060 PRINT 
1070 PF([NT "PT' int:inq; pleas~~ stand b'::J 

" . • • • t 

1080 FOR J=1 TO L 
1090 FOR K=l TO il 
1100 PF\INT ~'I ;INT C F~N[)C 0) '#.799) +200; "-"; 
INTCRN[)(0)'#.999)+1000; 
1110 NEXT f( 
1119 REM Output EOl to print line 
1120 PRINT :1"1 
1129 REM Page full '::Jet? 
1130 PL=PL+l:GOSUB 900 
11ilO NEXT ,J 
1150 END 

This program prints four columns of seven-digit numbers. It assumes that before 
starting the program, the user sets the printer so it is ready to print on the first line at 
the top of a page. By setting PL to 61 (line 1050), the Top of Page subroutine (line 
900) will leave five blank lines at the top of the first page before it prints the title. The 
program then outputs one column at a time (lines 1090 through 1110). Then it 

897 REM '#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#. 
898 REM '#. Top of Page Subroutine '#. 
899 REM *'#.'#.********'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.'#.***** 
900 IF PL(55 THEN RETURN 
909 REM Advance to next page 
910 FOR Jl=l TO 66-Pl.. 
920 lPRINT :NEXT Jl 
929 REM Print title 
9:30 lPI:n:NT ;; "TITLE" 
9 JI0 lPRINT 
9il9 REM Print colUMn headings 
950 l..PF\INT "COL l";"CDL 2";"CDl 3";"CD 
l.. il" 
959 REM Reset line count 
960 PL."::;!: F~ETlJl'~N 

NOTE: Title (line 930) and column headings (line 950) are only samples. 

FIGURE 6-2. Top of Page subroutine listing 



Chapter 6: AT ARI PRINTERS 207 

outputs an EOL character to force the printer to print its line buffer (line 1120). 
Each time a line is printed, the program increments the line counter and uses the 
subroutine to see how full the page is (line 1130). The subroutine will skip to the top 
of the next page if the program has printed 56 lines on the current page. 

A Practical Example 

In Chapter 5 we introduced a program to enter names and addresses for a mailing 
list and to build a mailing list file on cassette (Figure 5-2). Another program read the 
file and displayed the names and addresses on the display screen (Figure 5-3). It 
would be more useful to print the addresses on labels. Pressure-sensitive labels on 
continuous fan-fold carrier paper (Figure 6-3) are widely available. 

The changes required to make the program in Figure 5-3 print labels are quite 
simple. First, line 1080 must open an output channel to the printer instead of to the 
display screen. Second , the output format must fit the labels. 

The label forms (Figure 6-3) are one label wide, 12 labels per 12-inch page. The 
first line of the second label is one inch below the first line of the first label. There are 

0 [ ] 0 

0 0 

0 [ 1 
0 

0 0 

0 [ ] 0 

0 0 

0 [~ -~ ....-, 

NOTE: Not shown actual size . 

FIGURE 6-3. Typical mailing list labels 



208 A GUIDE TO AT ARl 400/800 COMPUTERS 

five lines of name and address data to print. The printer prints six lines to an inch. 
That leaves one blank line between labels. Therefore, line 1150 must print one blank 
line between addresses. Printer output cannot be stopped by pressing CTRL-l, so the 
instructions on lines 1030 and 1040 need revision. Figure 6-4 shows the final 
program. 

50 DIM NA$(20),STTS(20),CIS(20),STS(2) 
,Z:U(9) ,f(~~(20) 
69 REM Open file, read dUMM~ record 
70 GOSUl:: ::1100 
1000 PRINT CHR$(125):REM Clr screen 
1010 PFG:NT "PF,INT MAILING LABELS" 
1020 POSITION 2,21 
1030 PRINT "Place continuous label s in 
printer." 
10"10 PRINT "Ali'3n at top (Jf first label." 
1050 POSITION 2,2 
1060 PF(INT "PI' ~?SS I;:ETURN wh(~n r ~?ad~ to 

b€·) '3 in" 
1 070 nWUT r(~~ 

1079 REM Displa~ Mailing list 
:l080 OPEN 't'I,B,O,"P:" 
1089 REM Read next record 
1090 INPUT t1,NAS,STTS,CIS,ST$,ZI$ 
1099 REM Watc h for trailer record 
1100 IF NAS=CHRS(25::1) THEN 1200 
1110 PRINT 14;NAS 
1120 PRINT 14;STTS 
11::10 PRINT 14;CIS 
1:l'10 PI;:nn VI; ST$;" "; ZIS 
1:l~) 0 PFaNT VI 
1:l60 GenO 10'10 
119'1 REM Trailer record found; quit 
1200 CLOSE *1 
1210 CL.OSE 1"1 
1';>00 END 
309'1 REM Open for cassette input 
:31 0 0 PfnNT cl·ms (12~) ; "Cue tap(?, PI'(=SS 

F,ETUF,N, and ~:;ta nd b~." 

::Il :l0 OPEN 11,4,O,"C:" 
311'1 REM Input a dUMM~ record 
3120 FOR J1=1 TO 12B:GET 11,R:NEXT Jl 
:]130 r(ETUI:(N 

NOTE: Shading shows lines changed from Figure 5-3. Prints labels from cassette data file 
prepared using the program in Figure 5-2. 

FIGURE 6-4, Mailing List Labels program listing 



Chapter 6: AT ARI PRINTERS 209 

PRINTER CHARACTER SETS 
All AT ARI printers can print numbers, punctuation, upper-case letters, and lower
case letters. None of them can print graphics characters like U , I!J , or ~, nor can 
they print inverse characters . 

The printers have a slightly different character set than does the display screen 
because they use a slightly different character code. The printers use the ASCII code 
to define their character sets, while the display screen uses the AT ASCII code. The 
two codes are very similar for code numbers between 32 and 127. Appendix 0 lists 
both codes side by side. Table 6-1 summarizes the standard character set for the 
AT ARI 820 and 822 Printers. Table 6-2 summarizes the AT ARI 825 Printer 
character set. The AT ARI 825 Printer interprets many of the codes lower than 32 as 
special control characters. These are discussed in more detail at the end of this 
chapter. 

TABLE 6-1. AT ARI 820 and 822 Printers Standard 
Character Set Summary 

Decimal Code 

0-31 
32-95 

96 
97-122 

123 
124 
125 
126 
127 

• Display screen characters are listed in Appendix D. 

Character 

Space 
Same as display screen· 
\ 

Same as display screen· 
{ 

Space 

TABLE 6-2. AT A RI 825 Printer Character Set Summary 

Decimal Code 

0-31 
32-95 

96 
97-122 

123 
124 
125 
126 
127 

*Display screen characters are listed in Appendix D. 

Character 

Control characters (see Table 6-4) 
Same as display screen· 
\ 

Same as display screen· 

I 
I 
J 

Non-printing 



210 A GUIDE TO AT ARI 400/800 COMPUTERS 

TABLE 6-3. Sideways Character Set (AT ARI 820 Printer) 

... ... ... .. ... 
OJ ~ OJ ~ OJ ~ OJ ~ OJ ~ " " " " e '" .. . 5 '" .. .5 '" ~ .5 .. .. .5 .. .. ... ... ... ... 
.~ -g .. (j"" .. ,,"" .. "",, .. "",, .. 

..c .. 0 ..c .. 0 ..c .. 0 ..c .. 0 ..c 
QU U Qu u Qu u Qu u Qu u 

48 0 64 ® 80 Il.o 96 ® 112 Il.o 

49 - 65 < 81 C; 97 < 113 C; 

50 '" 66 al 82 c:r:: 98 al 114 c:r:: 
51 '" 67 U 83 (JJ 99 U 115 CIl 

52 "" 68 Cl 84 f-- 100 Cl 116 I-
53 V"\ 69 UJ 85 ;:J 101 UJ 117 ;:J 

54 '" 70 
"'"' 

86 > 102 
"'"' 

118 > 
55 r- 71 0 87 is 103 0 119 is 
56 00 72 ::c 88 x 104 ::c 120 X 
57 a- 73 - 89 >- 105 - 121 >-
58 .. 74 -, 90 N 106 -, 122 N 
59 .. 75 ~ 91 ~ 107 ~ 123 ~ 

60 V 76 ....J 92 /' 108 ....J 124 /' 

61 " 77 :::E 93 ,....., 109 :::E 125 ,....., 
62 A 78 Z 94 - 110 z · 126 -
63 c-' 79 0 95 j III 0 127 I 

Printing Sideways Characters (ATARI 820 Printer) 
In addition to normal characters, the AT ARI 820 Printer can also print most of its 
character set sideways. This is accomplished by opening a printer output channel 
with a third parameter of 83 , like this: 

OPEN :l:4.B.B:l. "r":" 

Subsequent PRINT tt and PUT statement output to channel 3 will appear sideways 
on the AT ARI 820 Printer. 

The sideways character set is somewhat different from the normal set. It has no 
lower-case characters. Table 6-3 lists the sideways character set. 

There are 29 characters per line in sideways mode. 

PRINTER CONTROL CHARACTERS (ATARI 825 Printer) 
The AT ARI 825 Printer has a number of special features. The rest of this chapter 
will describe them; you need not read on unless you have an AT ARI 825 Printer. 
The features include the following: 

Advance paper one line 
Advance paper one-half line 
Back paper up one line 
Back paper up one-half line 

Backspace 



Microspace forward and backward 

Underline 

Print subscripts and superscripts 

Print elongated characters 

Print condensed characters 

Print proportionally sized characters 

Print boldface characters 

Justify the right margin. 

Chapter 6: AT ARI PRINTERS 211 

Al! these features are activated by control characters . Table 6-4 lists control 
characters for the AT ARI 825 Printer. You send the AT ARI 825 Printer a con
trol character the same way you send it any regular character: with an LPRINT, 
PRINT #, or PUT statement. Of course, you have to generate the control character 
somehow, and there are no keys with the control functions printed on them. The 
simplest way to generate control characters is with the CHR$ function. For exam-

TABLE 6·4. Printer Control Characters (AT ARI 825 Printer) 

Decimal Graphics ATARI825 
Code(s) Character( s) Keystroke(s) Printer function 

10 ~ CTRL-J Line feed 
27 & 10 ~ ~ ESC\ ESC & CTRL-J Reverse line feed 
27 &28 ~ [!] ESC\ ESC & ESC\ CTRL - - Half-line feed 
27 & 30 ~ [B ESC\ ESC & ESC\ CTRL - + Reverse half-line feed 

13 0 CTRL-M Carriage return with 
automatic line feed 

15 [;] CTRL-O Start underlining 
14 ~ CTRL-N Stop underlining 

27 & 14 ~ ~ ESC\ ESC & CTRL-N Start double-wide printing 
27 & 15 ~ [;] ESC\ ESC & CTRL-O Stop double-wide printing 

27 & 19 ~ [±] ESC\ ESC & CTRL-S Select standard (10 cpi) 
characters 

27 &20 ~ [!] ESC\ ESC & CTRL-T Select condensed (16.7) 
characters 

27 & 17 ~ crJ ESC\ ESC & CTRL-Q Select proportionally sized 
characters 

27 & I ~ [E] ESC\ ESC & CTRL-A One dot blank space 
27 & 2 ~ 01 ESC\ ESC & CTRL-B Two dot blank spaces 
27 & 3 ~ ~ ESC\ ESC & CTRL-C Three dot blank spaces 
27 & 4 .~ 8J ESC\ ESC & CTRL-D Four dot blank spaces 
27 & 5 ~ 6J ESC\ ESC & CTRL-E Five dot blank spaces 
27 & 6 ~ IZl ESC\ ESC & CTRL-F Six dot blank spaces 
8 & nn· ~ CTRL-H & keystroke· Backspace nn· dots 

• The characte r that follows the backspace control character (ASCII code 8) is interpreted as the 
number of dots to backspace . Use Appendix D to select the keystroke which produces the 
A T ASCII character whose code number equals nil, the number of dots to backspace. 



212 A GUIDE TO ATARI 400/800 COMPUTERS 

pie, the control character that advances the paper one full line, the line feed 
character, is ASCII code 10. The following program advances the paper ten lines. 

9 REM Advance paper 10 lines 
10 F()f( cJo= 1 TD 10 
20 LPRINT CHR$(10) 
30 NEXT J 

You can also generate control characters directly with certain keystrokes, just like 
you do for cursor control and graphics characters on the display screen. Table 6-4 
lists the keystrokes that generate each control character. When you type these 
keystrokes, certain graphics characters echo on the screen. This is because the 
screen interprets the keystroke as an AT ASCII character (see Appendix D), and 
displays it accordingly. When the character is sent to the ATARI 825 Printer, it will 
interpret the same code as a control character and will respond accordingly. For 
example, look at the keystroke eTR L-J. It generates the ~ graphics character on the 
display screen, but it advances the paper one full line on the AT ARI 825 Printer. 
Try this new version on the last example (where you see ~, type eTRL-J): 

9 REM Advance paper 10 lines 
10 FOr, cJ0=1 TO 10 
20 LPRINT "IW" 
30 NEXT J 

Many of the AT A RI 825 Printer features require a pair of control characters in 
tandem. In all but one case, the first character is ASCII code 27, the ASCII escape 
character. You can generate the ASCII escape character with CHR$(27) or with the 
ESC\ ESe keystroke. (Recall from Chapter 4 that the notation ESC\ ESe means press 
the ESC key, release it, then press it again.) As an example of a pair of control 
characters, consider ASCII codes 27 and 10. Together they make the AT ARI 825 
Printer back up the paper one full line, that is , perform one reverse line feed. The 
following program backs up the paper five lines. It uses the CHR$ function to create 
each reverse line feed. 

9 REM Back paper up 5 lines 
10 FOR cJ=1 TO 5 
20 LPRINT CHR$(27);CHR$(10) 
30 NEXT J 

Most of the special features on the AT ARI 825 Printer are produced by control 
character pairs like this . Two features, right margin justification and boldface 
characters, require more BASIC programming than just printing a control charac
ter or two. These will be discussed in more detail later in this chapter. 

Listings Containing Control Characters 
Don't be surprised if strange things happen when you list a program in which you 
typed control characters directly inside quotation marks. The display screen trans
lates them into harmless graphics characters. The AT ARI 825 Printer, though, 
cannot tell it is just printing a program listing. It obeys the control characters and 
ruins the listing in the process. Suppose, for example, you have a program that 



Chapter 6: AT ARI PRINTERS 213 

contains the statement PRINT #2; "~:'. When this statement is executed, the 
ATARI 825 Printer performs a line feed. The character also causes a line feed when 
you list it. 

If you use the CHR$ function to generate control characters, your program will 
list with no surprises . The control characters are created only when the CHR$ 
function is executed . That happens only when the program is run. At program 
listing time, the CHR$ function is just a benign series of normal , everyday charac
ters: C, H, R, and so on. 

Vertical Paper Movement 
Four control characters control vertical paper movement. They move the paper 
forward and backward one full line or one-half line at a time. The paper moves up 
and down, but the print head does not move at all. It takes one control character to 
move the paper, and another to move the paper back. Try the following program: 

10 LF'FaNT .. How dr:l. I" ; CHR$ (27) ; CHI'\:$ ( 10 
>; .. hie ";CHR$(lO);"aM," 

The program prints this: 

hie 
How dr~ I aM, 

Notice that the AT ARI 825 Printer prints the line in three parts. After each part it 
returns the print head to the left margin. 

Aside from novelties like this, the principal use of the line feed character (ASCII 
code 10) is rapid paper advance. True, a plain LPRINT or PRINT # statement (one 
with no items to print and no terminating semicolon) will advance the paper one 
line. But plain LPRINT and PRINT # statements move the print head, while line 
feed characters do not. Therefore, a succession of line feed characters will advance 
the paper faster than a series of plain LPRINT or PRINT # statements. 

Subscripts and Superscripts 
Printing subscripts and superscripts is easy. Here's how to print a subscript: 

I. Roll the paper forward one-half line with one pair of control characters: ASCII codes 
27 and 28 . This puts the print head one-half line below the main text line . 

2. Print the subscript text. 

3. Roll the paper back one-half line with another pair of control characters: ASCII codes 
27 and 30. This puts the print head back over the main text line . 

To print a superscript, just reverse the first and last steps: 

I. Roll the paper back one-half line with one pair of control characters: ASCII codes 27 
and 30. This puts the print head one-half line above the main text line. 

2. Print the superscript text. 

3. Roll the paper forward one-half line with another pair of control characters: ASCII 
codes 27 and 28. This puts the print head back over the main text line. 



214 A GUIDE TO ATARI 400/800 COMPUTERS 

The following program demonstrates superscripts: 

10 PRINT "COMPute;:> 1.5 '1:.0 what poweT' ''; 
20 INPUT R 
30 LPIUNT "(1.5)";CHF~$(27);CHr'$(30);R; 

CHF~$ (27) ; CHH$ (28) ; "=" ; 1 • 5AF~ 

If you enter 5 in response to the INPUT statement (line 20) , the program prints this: 

(1.5)5=7.5937~99~ 

Underlining 
One control character (ASCII code 15) starts character underlining. The AT ARI 
825 Printer continues to underline characters until instructed to stop by another 
control character (ASCII code 14). Turning off the printer also cancels underlining 
mode. Here is an underlining example: 

LF'I:;::r:NT cl·m$( l~"j); "War and Pf.!aCf~" ;CHF~!~( 1 
~);", b~l Leo Tolf.;to~l" 

Printed output of this immediate mode program looks like this: 

~Ji}'L ... _Q.C!.r;L--':~f.)_1:H.;~~~. , b ~:l I... e 0 T 0 :I. f'; t (] ~:l 

Character Size and Line Length 
Standard character size on the AT ARI 825 Printer is ten characters per inch. 
Condensed characters are also available; they print 16.7 characters per inch. In 
either case, character width is uniform. The AT ARI 825 Printer can also print 
proportionally sized characters. In this mode, an "I" or an "I" is narrower than an 
"M" or a "W." On the average, proportionally sized characters print 14 to the inch. 
However, all proportionally sized digits are the same size; numbers will print 12.5 
characters per inch. 

Different pairs of control characters switch from one character size to another. 
When one of these pairs occurs, character size changes with the next non-control 
character. However, if the characters in the print line are standard sized, character 
size will not change to condensed or proportional until the start of the next print 
line. Similarly, if the characters in the print line are condensed or proportionally 
sized, character size will not change to standard until the start of the next print line. 
Thus, you can mix proportional and condensed characters on the same print line, 
but you cannot mix either of those sizes with standard characters. 

Once a character size is in effect, it stays in effect until another control character 
occurs to change it. Character size reverts to standard when you turn the printer off 
and back on again. 

In addition to all this, the AT ARI 825 Printer can take any character and print it 
twice its normal width , or double-width. You activate double-wide character mode 
with one pair of control characters (ASCII codes 27 and 14). Characters continue to 



Chapter 6: AT ARI PRINTERS 215 

print in double-wide mode until you deactivate it with another pair of control 
characters (ASCII codes 27 and 15), or until a carriage return occurs. 

The following program demonstrates the different character sizes. (Table 6-4 tells 
you which keystrokes produce the graphics characters you see below.) 

10 DIM STD$(2),CDS$(2),PRP'(2),CW$(2) 
19 REM Assign printer control chars. 
20 STDS="~[±]" :REM 10 cpi chaT'acterls 
30 C[)S$"'''~~'':REM 16.7 cpi characters 
40 PF(P!~='''~ [rl": I:;:EM i"rc)Porti.onal chaT'. 
99 REM Open printer (Jutput channel 
100 OPEN *::l,8,0,"P:" 
110 PFUNT ~~:3; STD$; "Standard Character!; 

120 GOSlJE: :LO 0 0 
1:30 PFUNT ~~3 ; CDSS ; "Condensed ChaT'acter 
5

11 

140 GOSLJE: lOOO 
150 PF(INT t:3;PRP$;"F'roportional Charac 
ters" 
160 GOSUI:: 1.000 
200 END 
999 REM Print entire character set 
1000 CI-I$=,'"':REM Start w/ l-wide char. 
1010 FOR L=1 TO 2 
1020 FOR K=32 TO 96 STEP 32 
1029 REM Select char. width 
1030 PRINT t:3;CI-I$; 
1039 REM Print next 32 characters 
1040 FOR J=l TO 31 
1050 PRINT t3;CHR$(J+K); 
1060 NEXT J 
1069 REM Force printer buffer output 
1070 PFUNT 13 
lOBO NEXT f( 

1089 REM Select 2 - wide characters 
1 090 CW$="[~I[;l" 
1099 REM And repeat character set 
1100 NEXT L 
1110 PRINT t3:REM Blank line 
11~:0 RETURN 

Character width on the AT ARI 825 Printer is measured in terms of dots. It varies 
from six dots for the narrowest proportionally sized character to 36 dots for the 
widest double-wide, proportionally sized character. Standard and condensed char
acters are between these extremes, at a nominal ten and nine dots each, respectively. 
Table 6-5 summarizes character widths. Table 6-6 lists specific widths for all 
proportionally sized characters. 

Maximum line length on the AT ARI 825 Printer is always eight inches. 
Remember that when a line is full, an automatic carriage return occurs. A full line of 
standard characters contains 80 characters. A full line of condensed characters 
contains 132 characters. Since proportionally sized character widths differ, you 



216 A GUIDE TO AT ARI 400/800 COMPUTERS 

TABLE 6-5. Summary of Character Widths (AT ARI 825 Printer) • 

Character 
Size 

Standard 
Condensed 
Proportional 

* Double-wide characters are twice the width shown. 

Dots per 
Character 

10 
9 

6 to 18 

TABLE 6-6. Widths of Proportionally Sized Characters (AT ARI 825 Printer) * 

.. .. .. 
OJ ~ OJ 

.. 
OJ ~ 

y ti y 

.5 .. or 
'" .5 OJ 

or 
'" .5 .. f .. .. 

y"" or '0 y"" co '0 y"" or 
.. 0 .c .. 0 .c .. 0 .c 
Qu u Q QU u Q Qu u 

32 Space 7 64 @ 14 96 , 
33 ! 7 65 A 16 97 a 
34 " 10 66 B 15 98 b 
35 # 15 67 C 14 99 c 
36 $ 12 68 D 16 100 d 
37 % 16 69 E 14 101 e 
38 & 14 70 F 14 102 f 
39 7 71 G 16 103 g 
40 ( 7 72 H 16 104 h 
41 ) 7 73 I 10 105 i 
42 • 12 74 J 14 106 j 
43 + 12 75 K 16 107 k 
44 , 7 76 L 14 108 I 
45 - 12 77 M 18 109 m 
46 7 78 N 16 110 n 
47 / 12 79 0 16 III 0 

48 0 12 80 P 14 112 P 
49 I 12 81 Q 14 113 q 
50 2 12 82 R 15 11 4 r 
51 3 12 83 S 12 115 s 
52 4 12 84 T 14 116 t 
53 5 12 85 U 16 1I7 u 
54 6 12 86 V 16 118 v 
55 7 12 87 W 18 119 w 
56 8 12 88 X 16 120 x 
57 9 12 89 Y 16 121 Y 
58 : 7 90 Z 10 122 z 
59 ; 7 91 [ 12 123 { 
60 < 12 92 \ 12 124 I 
61 = 12 93 ] 12 125 I 
62 > 12 94 /I 12 126 -
63 ? 12 95 - 12 127 None 

• Double-wide characters are twice the width shown. 

'" '0 
Q 

7 
12 
12 
10 
12 
12 
10 
12 
12 
8 
6 

12 
8 

16 
12 
12 
12 
12 
10 
12 
10 
12 
12 
16 
12 
12 
10 
10 
7 

10 
12 
0 



Chapter 6: ATARI PRINTERS 217 

cannot simply count characters to see when the line is full. You have to count dots. 
There are 1200 dots per line, but the printer considers the line full when it contains 
1185 dots. At that point, it will accept one more character, of any width, as the last 
character on that line. It then performs a carriage return. To avoid the automatic 
carriage return, do not print more than I 185 dots per line. 

Half as many double-wide characters of any kind fit on one line. Therefore, 40 
double-wide standard characters, 66 double-wide condensed characters, or 600 
double-wide dots fill one line and cause an automatic carriage return. 

Microspacing Forward and Backward 
You can space forward on the print line in fixed amounts with the space character 
(ASCII code 32). A standard space character is ten dots wide, a condensed space 
character is nine dots wide, and a proportional space character is seven dots wide. 
There are also six pairs of control characters which add blank space to the print line 
in amounts of one to six dots . ASCII code 27 is always the first of the control 
character pair for this operation. The ASCII code of the second control character 
specifies the number of blank dots to add (one to six). The most straightforward 
way to specify this is with the CH R$ function. The number inside the parentheses is 
the number of dots to space forward. The following programs show how this works: 

9 REM Open printer output channel 
10 OPEN t~5, 8, 0 , "P: " 
19 REM 1 to 6 dots between words 
2 0 FOI': ,J:=: 1 TD 6 
30 PF<INT t~5; "H()" ;CHF($( 2 7> ;CHR$(J); 
40 NEXT J 
50 PlUtH :J:!"i; "HUM" 

The program prints this: 

HO HO HO HO HO HO HUM 

Forward microspacing is primarily useful in printing boldface characters and in 
justifying the right margin, two topics we will address shortly. 

The AT ARI 825 Printer can also backspace on the print line. It backspaces only 
in dot increments. Backspacing over a standard or condensed character is possible; 
just specify the appropriate number of dots (see Table 6-5 for dot equivalents). 

The backspace control character is ASCII code 8. The printer interprets the 
character after the ASCII backspace code as the number of dots to backspace. The 
number of dots equals the ASCII code of the character. It can be any number 
between 0 and 127. Consider this program: 

9 REM Open printer output r hannel 
10 OPEN is,8,O,''f'':'' 
20 PRINT :I:~5;"F'T'i.rot striv..(?outs"; 
29 REM Overprint the la s t 10 chars. 
30 PRINT IS;CHR$(8);CHRS(100); 
40 F'F(INT :l:S; "-- _ .. __ ._._--._ .. _.- with the backs 
pace character" 



218 A GUIDE TO ATARI 400/800 COMPUTERS 

The program outputs a backspace character, then immediately outputs the number 
of dots to backspace (line 20) . It backspaces 100 dots, the equivalent often standard 
characters . Right after that, it prints ten hyphens. Because of the back
spacing, they end up printing over the last ten characters printed, like this: 

Print ~~r±kea~~~ with the backspace character 

The AT ARI 825 Printer does not backspace by literally moving the print head 
backward along the print line. Instead, it returns the print head to the left margin, 
then moves it right back to the spot where it was , less the number of backspace dots. 
The net effect is to backspace the print head . 

Instead of using the CHR$ function to specify the number of dots, you can use the 
equivalent ASCII character. In the last example, you could replace CHR$(lOO) 
with its ASCII equivalent, the letter "d ." Line 30 would then look like this: 

30 PfUNT :1t5;CHR$(8);''d''; 

You cannot backspace over the last character of a full print line. By the time the 
backspace control character gets to the printer, the full line will have printed. 

Boldface Characters 
It is possible to darken printed characters for additional emphasis. The simplest way 
to do this is to overprint them two or more times. Here is an example: 

9 REM Open printer output channel 
10 OPEN i5,8,O,"F':" 
20 PRINT i~:;; "This 1 ine pr inted once." 
30 FOR J:::1 TO 2 
40 PFUNT :1\:5; "This line printed twice f 
Clr added eMPhasis." 
49 REM Back up one line 
50 PRINT t5;CHR$(27);CHR$(10>; 
60 NEXT J 
69 REM Cancel l a st reverse line feed 
70 PFUNT :1:5 
BO END 

The program uses a FOR-NEXT loop to print a message twice (lines 40 through 60). 
Each time the printer finishes the message, it advances the paper to the next line (line 
40). The program backs the paper up one line (line 50). That way the next printing 
will overprint the first printing. When the loop ends, the program has just backed 
the paper up one line . Therefore it must advance the paper one line to cancel that 
extra reverse line feed (line 70). Here is the result: 

This line printed once. 
This line p~inted twice for added eMPhasis. 

The boldface effect can be enhanced by staggering the second printing one dot. 
Add these lines to the last example: 



Chapter 6: ATARI PRINTERS 219 

80 FOR J=l TD 2 
90 PRINT t5;"This l.ine printed boldfac 
e for Ma:·dMuM el"lphasis." 
99 REM Back up one line 
100 PRINT t5;CHR'(27);CHR$(10) 
109 REM Microsp ace one dot 
110 PRINT· t5;CHR'(Z7);CHR$(1); 
120 NEXT J 
129 REM Cance l last reverse line feed 
130 PRINT ;Do~j 

140 END 

This is what you get: 

This line printed once. 
This line printed twice for added eMphasis. 
This line printed bold~ace ~or MaxiMuM eMPhasis. 

Right Margin Justification 
Dot spacing makes right margin justification possible. You must determine the 
number of dots between the last character on the line and the right margin. Then 
you must find new places somewhere else on the line for everyone of those dots . 
This means sneaking in one or two blank dots between each character. You have to 
do it evenly across the line, or the line will look unbalanced . You may be able to put 
a few more dots between words than between letters. A good program recognizes 
where it can best add extra space, and where it will look ugly. 

Writing even a simple justification program is not a trivial task . It can be done in 
BASIC, but it will be very slow. You may wish to experiment with it as an exercise. 
Right margin justification is best programmed in assembly language. 





7 
THE ATARI 

810 DISK DRIVE 
The disk drive is one of the most important components of a computer system. Disk 
drives allow almost instantaneous access to a large block of information. The 
AT ARI 810 Disk Drive can store about 90,000 characters on a single diskette. That 
is nearly twice as much information as can be held in the computer in 48K of RAM. 
When you turn off the computer, all of the information in RAM disappears, but 
information stored on a diskette remains intact. 

DISKS 
Disks store information magnetically, the same way a tape recorder does. The 
biggest difference between a disk and tape is that a disk is round, like a record. A 
disk spins in the disk drive, much like a record spins on a turntable. Inside the disk 
drive there is a magnetic head that can read and write information on the disk. The 
head operates on the disk drive like a needle does on a record player. You can put 
the needle anywhere you want on a record.!t isjust as easy to place it in the middle or 
at the end of the record as it is to place it at the beginning. The computer, likewise, 
can direct the read / write head to any location on the surface of the disk. This ability 
is called random access. Thus , the disk is a random access storage device. 

There are three kinds of disks: hard disks , Winchester disks, and diskettes . 
Currently, diskettes are the most common type of disk used with microcomputers 
like the AT ARI 400/ 800 computers. We will describe all three types of disks. 

221 



222 A GUlDE TO AT ARI 400/800 COMPUTERS 

u 
'c 
g 
Ul 
o 

E 
Ll 
o 
~ 

~ 
8 
o 
] 

~----------------------------------------------------------~~ 
FIGURE 7-1. Typical hard disk drive and removable disk cartridge 

Hard Disks 
Hard disks are made of a rigid material , such as aluminum, that has been coated 
with a magnetic substance. Hard disks typically store 5 to 10 million characters . 
Usually the hard disk comes in a cartridge which is inserted in the drive (Figure 7-1). 
The disk and disk drive are separate so that you can change disks . Hard disks cost 
about $ I 50 each; hard disk drives cost $3000 to $ 10,000. 

Winchester Disks 
Winchester disk drives (Figure 7-2) use a special technology that allows six to ten 
times more data to be stored on a disk than on conventional hard disks . Winchester 
disks are extremely susceptible to dust and dirt-even cigarette smoke. Because 
they must be kept very clean, the disk surfaces are sealed inside the drive and cannot 
be changed easily. Winchester disk drives cost from $2500 to $8000. 

Diskettes 
A diskette consists of a vinyl disk enclosed in a stiff plastic envelope. The flexible 
vinyl disk is very fragile. The stiff envelope protects the diskette from damage 
during normal handling and use. Never remove the diskette from its protective 
envelope. Figure 7-3 shows what a 5 \I4-inch diskette looks like inside its envelope. 

The diskette spins freely inside the envelope. Openings in the envelope allow the 



Chapter 7: THE AT ARI 810 DISK DRIVE 223 

e 
II 
!:', 

<Il 

~ 
~ 
o 
u 
'0 
:>, 

~ 
" :3 
o 

" .., L-______________________________________________________________ ~~ 

FIGURE 7-2. Winchester disk drive (Shown with cover removed) 

FIGURE 7-3. Inside the protective diskette envelope 



224 A GUIDE TO ATAR1400/800 COMPUTERS 

FIGURE 7-4. Write-protecting a 5Y4-inch diskette 

center of the diskette where the drive can grip and spin the diskette. 
Diskettes are also known asfloppy disks orj7exible disks. They come in two sizes: 

8-inch diameter and 5 \4-inch diameter. The smaller ones are also called mini-disks 
or mini-diskettes. The AT ARI 810 Disk Drive uses 5 \4-inch diskettes; it can store 
92,160 characters on a single diskette. 

Write-Protecting Diskettes 
There is a notch on the side of the diskette that is used to allow or prevent 
information from being written on a diskette. This notch is called a write enable 
notch, because the disk drive will not write on a diskette unless the notch is present. 

Some diskettes have no notch. They are permanently protected against accidental 
writing. You can protect a notched diskette by covering the notch with a write
protect label or a piece of opaque tape (Figure 7-4). 

DISK FILES 
The disk drive stores information infiles, much as you might store information in a 
filing cabinet. Each diskette is the equivalent of a file drawer; each file is the 
equivalent of a file folder. A diskette can contain many files , or it can contain no 
files. The maximum number of files per diskette is 64; however, if some of the files 
are long, the diskette may become full with fewer than 64 files . A single file can have 
any length that can be physically accommodated by the diskette. 



Chapter 7: THE ATARI 810 DISK DRIVE 225 

A disk file can contain a BASIC program, a machine language program, or data. 
The techniques for reading and writing each kind of file are different, as you will 
discover later in this chapter. 

File Names 
Every file has a name, which is used to distinguish it from other files on the diskette. 
File names can contain up to eight characters. The characters can be any combina
tion of capital letters and numbers, but the first character must be a capital letter. 
No blank spaces, special characters (such as $, @, or #), or punctuation marks of 
any kind are allowed in file names. 

File Name Extensions 
A file name can have a suffix of one, two, or three characters. The suffix is called a 
rile name extension. File name extensions can contain any combination of letters 
and numbers. The first character can be a number; it is not restricted to letters, as is 
the file name itself. You specify a file name extension by adding a period to the end 
of the file name, then the extension. For example, FILENAME with the extension 
TXT would be written as FILENAME.TXT. 

The extension is sometimes called thefile type, because ofthe common practice of 
using it to indicate the type offile. Table 7-1 lists some common conventions for file 
name extensions and the types of files they imply. Avoid the extension .SYS, since it 
is reserved for system files. 

TABLE 7-1. Common File Name Extensions 

Extension 

SYS 

BAS 

LST 

ASM 

OAT 

TXT 

OBJ 

BAK 

TMP 

Implied File Type 

System files. Files which contain system programs like the disk 
operating system, or language interpreters like Microsoft BASIC. 

Files which contain BASIC programs in tokenized (SAVE state
ment) format. 

BASIC programs stored as A TASCH characters (LIST statement 
format). 

Assembly language programs in source (text) form. 

Data files. DT A is also used. 

Text files . 

Object files . Assembly language programs assembled into machine 
language. 

Backup files . Copies of a file made in case the original version is 
accidentally destroyed. 

Temporary files which contain information that will be needed for 
only a short time. 



226 A GUIDE TO ATARI 400/800 COMPUTERS 

The Disk Directory 
Part of every diskette is set aside for a directory. The directory contains the name, 
location, and size of every file on the diskette. When you specify a file name, the 
computer looks up the file name in the directory. That is how it determines whether 
the file already exists and , if so, where it is on the disk. 

THE DISK OPERATING SYSTEM 
The disk operating system (DOS) is a computer program that controls the opera
tions of the disk drive. When a BASIC program needs to use the disk for any reason, 
the disk operating system performs the actual disk operation and returns the results 
to the BASIC program. The disk operating system program is written in machine 
language, not in BASIC. 

Versions of the Disk Operating System 
There are currently two versions of the disk operating system. DOS 1.0 was the first 
version released by Atari , Inc . It was shipped with all AT ARI 810 Disk Drives 
through the end of 1981 . It has now been replaced by DOS 2.0S . The version you are 
using should be marked on the diskette label. Later in this chapter we will describe 
characteristics of the two versions that will enable you to tell them apart without 
looking at the label. 

This chapter will describe both DOS 1.0 and DOS 2.0S. The descriptions of DOS 
2.0S are accurate as of December 1981 . 

The two versions of the disk operating system are very similar, but not identical. 
DOS 2.0S can read a diskette prepared by DOS 1.0, but DOS 1.0 will have mixed 
success reading diskettes prepared by DOS 2.0S; errors may occur at random. In 
any event, do not write information on a diskette with a discrepant version of the 
disk operating system. Doing so can destroy data on the diskette . To be safe, place a 
write-protect label on any diskette before you use it with a discrepant version of the 
disk operating system. 

The Two Parts of the Disk Operating System 
There are two parts to the disk operating system program. One part records and 
loads BASIC programs and reads and writes data files. The other part is a package 
of utilities that assist in disk maintenance activities . These utilities also allow you to 
read and write machine language program and data files. 

In DOS 1.0, the two parts of the disk operating system are treated as one 
program. They are stored on disk in one file, named DOS.SYS. In DOS 2.0S , the 
two parts of the disk operating system are treated as two programs. They are stored 
on disk in two files. The two parts are divided in DOS 2.0S to make better use of the 
computer's memory. The first part (file name DOS.SYS) is needed whenever you 
use the disk drive, but the second part (file name DUP.SYS) is not required unless 



Chapter 7 : THE AT ARI 810 DISK DRIVE 227 

you are using the disk utility package. Separating these functions means that your 
program can use the memory that would otherwise be occupied by the disk utility 
package. 

Program and Data Transfer 
The disk operating system controls the flow of all information between the disk 
drive and the computer. It does this in I 28-character blocks. It sets aside part of the 
computer's memory to hold one block of disk data. This is called the disk buffer. 
There are actually four disk buffers , one for each of the four disk drives that can be 
attached simultaneously to the AT ARI computer. 

When the disk operating system receives a request for more program lines or 
data, it tries to fill the request from the disk buffer. If the buffer runs out, the disk 
operating system replenishes it by reading another block from the disk. 

Recording a program or writing to a data file also proceeds one block at a time. 
As the disk operating system receives program lines or data to go to the disk, it puts 
them in the disk buffer. When the buffer becomes full, the disk operating system 
writes it out to the disk. 

STARTING UP WITH A DISK DRIVE 
Before the AT ARI computer can execute any disk command, the disk operating 
system program must be in memory. If you had a lot oftime, you could type it into 
memory using the keyboard. But there is an easier way: it is called booting the disk. 
Booting the disk, or booting DOS, reads a copy of the disk operating system 
program from a diskette and places it in the computer's memory. 

How to Boot DOS 
Chapter 2 has complete instructions for booting DOS. If you follow the standard 
power-on procedure (page 14), you will boot DOS as a matter of course. To 
recapitulate, these are the three key steps required to boot DOS: 

Turn on Drive I. To determine which is Drive I on a multiple-drive system, look in the 
access hole at the back of each drive. The drive with both the black and white switches 
all the way to the left is Drive I (Figure 2-5). 

Place a diskette containing a copy of the disk operating system program (file name 
DOS.SYS) into Drive I . The diskettes labeled "Disk File Manager Master Copy" (DOS 
1.0) and "Disk File Manager II Master Copy" (DOS 2.0S) have copies of DOS on them. 

Turn the console power off and on. The disk drive whirrs as it transfers DOS from the 
diskette to the computer's memory. 

While the boot is in progress, you will hear beeping sounds from the television 
speaker if the sound level is turned up. After about 20 seconds, the BASIC READY 
prompt will appear. 

To all appearances , nothing unusual has occurred. What you can't see is that 
during those 20 seconds the disk operating system program was loaded into 



22B A GUIDE TO ATARI400/BOO COMPUTERS 

DISK OPERATING SYSTEM II VERSION 2.OS 
COPYRIGHT 1980 ATARI 

A. DISK DIRECTORY I. FORMAT DISK 
B. RUN CARTRIDGE J. DUPLICATE DISK 
C. COpy FILE K. BINARY SAVE 
D. DELETE FILECS) L. BINARY LOAD 
E. RENAME FILE M. RUN AT ADDRESS 
F. LOCK FILE N. CREATE MEM.SAV 
G. UNLOCK FILE O. DUPLICATE FILE 
H. WRITE DOS FILES 

FIGURE 7-5. DOS 2.0S menu 

memory. The computer can now interpret references to the disk drive. 
You can boot DOS from any diskette that has file DOS.SYS. Booting DOS 

transfers the machine language disk operating system program from file DOS.SYS 
into the computer's memory . With DOS 1.0, this includes both parts of the disk 
operating system. With DOS 2.0S, it includes only the first part; it does not include 
the disk utility package. In either case, the contents of file DOS.SYS remain in 
memory until you turn off the computer. 

THE DISK UTILITY PACKAGE (DOS MENU) 
After you boot DOS, you can use any of the disk statements. The first one to use is 
the DOS command. Simply type the following command and press RETURN: 

DOS 

The DOS menu appears on the display screen (Figure 7-5 or 7-6). If you are using 
DOS 1.0, the menu appears immediately. If you are using DOS 2.0S, the disk utility 
package must be loaded from disk; you must wait several seconds while this takes 
place. 

The DOS command transfers control of the computer from BASIC to the DOS 
menu. If you boot DOS without a ROM cartridge inserted in the computer, you will 
never see the BASIC READY message. Instead, the DOS menu appears as soon as 
DOS is booted. 

Executing the DOS statement with DOS 2.0S transfers the disk utility package 
into memory from disk file DUP.SYS. That file must be present on the diskette in 
Drive I when the DOS statement is executed . The contents offile DUP.SYS go into 



Chapter 7: THE AT ARI 810 DISK DRIVE 229 

the area of memory where BASIC programs reside. This destroys any BASIC 
program present in memory. When you leave the DOS menu and return to BASIC, 
your program will be gone, just as if you had issued a NEW command. At that point 
there is no way to retrieve the program unless you saved it on diskette or cassette. 
Later in this chapter we will discuss a way to have the computer automatically 
preserve your BASIC program when it executes the DOS statement. 

With DOS 1.0, the disk utility package is transferred into memory when you boot 
DOS. Since it is present in memory when the DOS statement is executed, file 
DUP.SYS is not used. In this case , the disk utility package resides in an area of 
memory that does not conflict with a BASIC program. With DOS 1.0, therefore, 
executing the DOS statement will not affect your program. 

Determining the DOS Version 
The time it takes for the DOS menu to appear is a foolproof way to determine 
whether you are using DOS 1.0 or DOS 2.0S. If Drive I becomes active before the 
menu appears, you are using DOS 2.0S. The version number also appears in the 
upper right-hand corner of the DOS 2.0S menu (Figure 7-5). 

The MEM.SA V File 
When the computer executes the DOS statement under DOS 2.0S, it loads the disk 
utility package from disk file DUP.SYS into memory. In the process it writes over 
part of the memory area where BASIC programs reside. This section describes how 
the computer can automatically preserve the contents of the overwritten memory 

DISK OPERATING SYSTEM 
COPYRIGHT 1979 ATARI 

912Lt179 

A. DISK DIRECTORY I. FORMAT DISf( 
B. F,UN CAF\TRIDGE 
C. COPY FILE K. 

J. DUPLICATE DISK 
BINARY SAVE 
BINARY LOAD 
RUN AT ADDRESS 

D. DELETE FILE(S) L. 
E. RENAME FILE M. 
F. LOCf{ FILE N. DEFINE DEVICE 
G. UNLOCf{ FILE O. DUPLICATE FILE 
H. ~RITE DOS FILE 

NOTE: Item N, DEFINE DEVICE, is not implemented. 

FIGURE 7-6. DOS 1.0 menu 



230 A GUIDE TO A TAR! 400/800 COMPUTERS 

area with the special file MEM.SA V. This does not apply to DOS 1.0, so skip this 
section if you are using that version of DOS only. 

With DOS 2.0S, whenever the computer executes the DOS statement it searches 
the diskette in Drive I for file MEM.SA V. If the file exists, the computer saves 
everything in the memory area that will be used by the disk utility package onto file 
MEM.SA V. Then it loads the disk utility package from file DUP.SYS and transfers 
control to the DOS menu. When you return to BASIC, the contents of file 
MEM.SA V are restored to memory, leaving your program intact. 

The disadvantage of using MEM.SA V is the time it takes to save and restore the 
memory area. Usually, it takes about ten seconds to load the disk utility package 
from the DUP.SYS disk file . If there is a MEM .SA V file , it takes an additional 20 
seconds to save the program area; you must wait three times as long before you will 
see the DOS menu. Later, when you return to BASIC, it takes another seven 
seconds to restore the program area. 

Both MEM.SAV and DUP.SYS must be on the same diskette, in Drive I, when 
the DOS statement is executed. If you want to use all of the space on a diskette for 
your own files, put DUP.SYS and MEM.SAV on a separate diskette (possibly on 
the same diskette that has the DOS.SYS file), and put that diskette in Drive I before 
you type the DOS command. That same diskette must be in Drive I when you 
return to BASIC, or the program from memory cannot be restored. 

One of the disk utilities creates special file MEM.SA V specifically to save, and 
later restore, the contents of the memory area used by the disk utility package. 
Instructions for creating a MEM.SA V file are provided later in this chapter. 

The MEM .SA V file also works with non-BASIC programs. If the MEM.SA V 
file is present, the contents of the memory area that the disk utility package will 
occupy are saved on it and then restored when you finish with the disk utilities. It 
does not matter what the memory area was used for . 

Ambiguous File Names 
Many of the disk utilities ask you to enter one or more file names. You can always 
enter an explicit file name . Sometimes, however, it is easier to use an ambiguous file 
name. For example, you may be unable to explicitly state a file name because you 
only remember the first three letters. You can have the disk operating system use 
any file name it finds that starts with the characters you specify. As another 
example, you may wish to copy all files with a certain extension from one disk to 
another. In DOS 2.0S, you can do this without typing each individual file name. 

The disk operating system treats the asterisk (*) and question mark (?) characters 
as "wild card" characters. An asterisk represents an entire file name or extension. 
For example, the file name *.BAS is interpreted to mean "all files which have a 
.BAS extension." Similarly, the file name DAT AFILE.* refers to all files named 
DAT AFILE, regardless of their extensions. 

In a file name, characters to the right of an asterisk are ignored. For example, 
*FILE.TXT is treated as *.TXT, but the name GAME*.BAS will match all file 



Chapter 7: THE AT ARI 810 DISK DRIVE 231 

names that begin with GAMEand havea .BAS extension. The asterisk works in the 
opposite way when it is part of an extension; characters to the left of the asterisk are 
ignored . Thus the extension .A* is interpreted as .*, but .*A will match all 
extensions that end in the letter A. 

A question mark can represent any single character. For example, the file name 
GAME?BAS matches any five-character file names which begin with the four 
letters GAME and have the extension .BAS. 

The ambiguous file name ????????TXT is equivalent to * .TXT. Each question 
mark represents one character position, so eight question marks represent all 
possible file names. 

If you use a consistent system in naming your files, the wild card characters will 
provide you with a very powerful programming aid. This feature is even more useful 
when combined with the conventions for extensions given in Table 7-1. 

DOS MENU SELECTIONS 
The DOS menu (Figures 7-5 and 7-6) offers many selections which manipulate 
information stored on diskettes. This part of the chapter describes the selections 
which are most useful to a BASIC programmer. A few ofthe items pertain mostly to 
machine language programming; they are described at the end of the chapter. 

When the DOS 2.0S menu first appears you will see this prompt message near the 
bottom of the screen: 

SELECT ITEM OR [RETURNJ FOR MENU 
~ 

The prompt for DOS 1.0 is similar: 

SELECT ITEM 
lI3 

Whenever you see either of these prompt messages, you can choose an item on the 
DOS menu. Each item is preceded by a single letter. To choose an item, type the 
appropriate letter and press RETURN. Then proceed as described in the paragraphs 
that follow. Most selections will ask you for additional information, such as a file 
name or drive number. If you do not enter a letter now, but just press RETURN, the 
menu is redisplayed. 

The various menu items are all valid with any diskette you use with your AT ARI 
810 Disk Drive. You can switch diskettes any time the disk drive BUSY lamp is off. 

You can abort any selection at any time by pressing the BREAK key. You will be 
asked to choose another menu item. 

If at any time you press the SYSTEM RESET key, the DOS menu releases control of 
the computer. If the BASIC cartridge is installed, control returns to BASIC. You 
will see the READY message. If there is no cartridge installed, DOS is rebooted and 
the DOS menu reappears. 



232 A GUIDE TO AT ARI 400/800 COMPUTERS 

DIRECTORY-- SEARCH SPEC t LIST FILE? 

FIGURE 7-7. Directory listing prompt 

,..---------- File lock flag 

r-------- File name 

,..----- File name extension 

r- File size 
-'- -'--'-

*DOS SYS 038 
*DUP SYS 041 
628 FREE SECTORS 

NOTE: Other files may also be listed. DOS 2.0S shown; DOS 1.0 does not include file DUP.SYS 
and has other minor differences . 

FIGURE 7-8. Master diskette directory 

What Is on a Diskette 
To display the names of all the files on a diskette, choose DOS menu item A, DISK 
DIRECTORY. When you select it, a prompt message appears on the screen (Figure 
7-7). If you press RETURN in response to this prompt, the computer will search for all 
file names on the diskette in Drive I, and list them on the screen. If you are using 
DOS 2.0S, the directory will contain at least files DOS.SYS and DUP.SYS (Figure 
7-8). If you have DOS 1.0, the directory listing will not include file DUP.SYS. 

Parts of the Directory 
Each file in the directory is listed on a separate line. There are four parts to a 
directory entry: the lock flag , the file name, the file name extension, and the file size 
(Figure 7-8). 

The lockflag is an asterisk which appears before the file names of some files. The 
presence of an asterisk indicates that the file is locked. Locked files cannot be 
changed or deleted . This safety feature lets you protect valuable files from acciden
tal change or erasure. Other DOS menu selections lock and unlock files; these will 
be described shortly. 



Chapter 7: THE ATARI 810 DISK DRIVE 233 

The file name and file name extension (if any) appear side by side in the directory 
listing. Note that the directory does not put a period between them. File names less 
than eight characters long are padded on the right with trailing spaces. Extensions 
always appear at the ninth character position. You must include a period whenever 
you type an extension, however. 

File size is reported in the right-hand column of the directory listing. The number 
listed is the number of I 28-character blocks that the file uses. Large files use more 
blocks than small files. The smallest files use only one block. 

The last line of a directory listing displays the number of I 28-character blocks 
that are available on the diskette. This will be 707 on a blank DOS 2.0S diskette, and 
709 on a blank DOS 1.0 diskette. The number listed is obtained by adding up the 
sizes of all the files on a diskette and subtracting that sum from 707 (DOS 2.0S) or 
709 (DOS 1.0). You will receive a "disk full" error if you try to store more data than 
can fit in the available free space on a diskette. 

Listing the Directory from Any Drive 
You can get the directory listing of any drive connected to your AT ARI computer. 
When the directory listing prompt appears (Figure 7-7), type the drive number and a 
colon before pressing RETURN. The following example lists the names of files on the 
diskette in Drive 2: 

DIRECTORY--SEARCH SPEC, LIST FILE? 
02: 

The capital letter D is optional. 

Restricted Directory Listing 
You can instruct the computer to display only those names which fit a particular 
format. You do this with the help of ambiguous file names. For example, you can 
list only those file names which start with the letter E, as follows: 

DIRECTORY--SEARCH SPEC, LIST FILE? 
ElI:,lI: 

When the disk operating system displays the directory listing prompt (Figure 7-7), it 
is requesting two things, the search specification (SEARCH SPEC) and the output 
device name (LIST FILE). Ifyoujust press RETURN to answer this prompt, you are 
accepting the default specifications. The disk operating system will search for all 
files on Drive I, and output them to the display screen. 

You may specify your own ambiguous file name as the search specification. For 
example, if you want to see all file names that have the extension .BAS, respond like 
this: 

DIRECTORY--SEARCH SPEC, LIST FILE? 
D:l:)I(.E:AS 



234 A GUIDE TO AT ARI 400/800 COMPUTERS 

Since D I: is the default drive , you can leave it off, like this: 

DIRECTORY- -SEARCH SPEC. LIST FILE? 
*.E:AS 

Either way, you get a listing of only those files that have the extension .BAS. 
In the most extreme case, you can specify an exact file name you want to search 

for . If the file is not on the diskette, its name will not be listed . In that case, the 
directory listing will show only the available free space on the diskette. 

Directory Listing on Any Device 
The directory listing prompt (Figure 7-7) also requests entry of an output device, or 
LIST FILE. Thus far we have not explicitly stated an output device. The disk 
operating system has been using the default output device, the display screen. To 
specify an output device, type a comma, the device name, and a colon, and press 
RETURN. The following response would list all files from Drive I on the printer: 

DIRECTORY--SEARCH SPEC. LIST FILE? 
D1:*.*.P: 

You can omit the file specification entirely. You will get a listing of all files on 
Drive I. The following response generates the same directory listing as the last 
response: 

DIRECTORY-- SEARCH SPEC. LIST FILE? 
• P: 

Remember to type a comma before the P:. The comma tells the disk operating 
system that the P: is a response to the second item requested, the output device 
(LIST FILE). If you omit the comma, the disk operating system will think you want 
to search for all the file names on the diskette in the specified output device. In this 
case that device is the printer; the task is clearly impossible. 

To print the directory of a diskette in a drive other than Drive I, type the drive 
number and a colon before the comma, like this: 

DIRECTORY--SEARCH SPEC. LIST FI LE? 

LEA VING THE DOS MENU 
To transfer control of the computer from the DOS menu to the the ROM cartridge, 
choose DOS menu item B, RUN CARTRIDGE. Pressing the SYSTEM RESET key 
has the same effect. If the BASIC cartridge is installed, the READY message 
appears. If the Editor / Assembler cartridge is installed , the EDIT prompt appears . 
If there is no ROM cartridge in the computer, the message NO CARTRIDGE 
appears; you must choose another menu item. 

If the MEM.SA V file is active (DOS 2.0S only), do not use DOS menu item B to 



Chapter 7: THE ATARI 810 DISK DRIVE 235 

return to BASIC. Instead, press the SYSTEM RESET key. This will insure that the 
memory area is correctly restored from file MEM.SA V. 

COPYING FILES 
To copy the contents of a file to a different file, choose DOS menu item C, COpy 
FILE. Both files can be on the same diskette as long as the file names are different. 
Both files can be on different diskettes as long as both diskettes are accessible 
simultaneously. In other words , you must have two disk drives in order to copy a file 
from one diskette to another. If you have only one disk drive and wish to copy a file 
to a different diskette, you must use DOS menu item 0, DUPLICATE FILE. 

When selected, DOS menu item C displays a prompt message. It asks you to 
specify the source and destination disk drive numbers and file names. Here is an 
example: 

COPY FILE--FROM,TO? 
FILE1.8AS,FILE1.8AK 

In this example no drive number is specified for either file . The disk operating 
system will use Drive 1 for both . Notice that the file names are separated by a 
comma. 

If the destination file already exists, it is overwritten by the contents of the source 
file. If the destination file does not exist, it is created . 

If the source file does not exist, error number 170 occurs. Other error messages 
appear if there is not enough room on the destination diskette (error 162) or if the 
destination diskette directory is full (error 169). 

A message appears if the MEM.SA V file is in use (DOS 2.0S only). It requests 
permission to use the entire program area of memory for the copy operation (Figure 
7-9). If you agree , the contents of file MEM.SA V will not be restored to memory 
when you leave the DOS menu; any program you hoped to preserve by means of the 
MEM.SA V file will be gone when you return to BASIC. To allow this, type Yand 
press RETURN . Any other response aborts the file copy operation, preserving the 
integrity of file MEM.SA V. You can use the file copy operation and still preserve 

TYPE "Y" IF Of~ TO USE PF,OGRAM AREA 
CAUTION: A "Y" INVALIDATES MEM.SAV 
Ii 

FIGURE 7-9. Prompt requesting permission to use program area 



236 A GUIDE TO AT ARI 400/800 COMPUTERS 

a program in memory. Simply leave the DOS menu and save the program 
onto cassette or diskette. Then you can let the file copy operation invalidate file 
MEM.SA V, knowing that you can always reload your program from diskette or 
cassette. 

The file named DOS.SYS is a special file. The file copy operation, DOS menu 
item C, cannot copy it. An error occurs if you try. 

Copy with Ambiguous File Names 
DOS 2.0S allows wild card characters in the name (or extension) of the file to be 
copied from. If they are present, the destination can be a disk drive number only. Do 
not specify a destination file name or extension. Here is an example: 

COPY FILE--FROM,TO? 
lIC.BM(,DZ: 

This response will copy all files with .BAK extensions from Drive I to Drive 2. 
Files that have a .SYS extension are not copied during any ambiguous file name 

copy operation. To copy a .SYS file, specify the entire file name explicitly, using no 
wild card characters. 

The Copy Append Option 
In DOS 2.0S, the file copy operation (DOS menu item C) can append one file to the 
end of another. To do this, type the two characters I A directly after the destination 
file name. Here is an example: 

COPY FILE--FROM,TO? 
DZ:NAMES.TXT,D3:NUMBERS.TXT/A 

The destination file must already exist. The I A suffix prevents the destination file 
from being overwritten by the contents of the source file . Instead, the contents of the 
source file are added to the end of the destination file . 

Do not use the I A suffix to append BASIC programs stored with the SAVE 
statement. It will not work. The first program will be tacked onto the end of the 
second, but the LOAD statement will not recognize it. In effect, nothing happens. 

You can append BASIC programs only if both programs are stored with the 
LIST statement. Lines in the first file will be tacked onto the end of the second file . 
Then when you issue an ENTER command to load the second file, BASIC merges 
the two sets of program lines. It is just as if, starting with the second program in 
memory, you typed in every line from the first file . Lines already in memory will be 
replaced by later lines with the same line number. You may want to save the 
program back into the file with the LIST statement. Doing so will eliminate 
duplicate lines, which waste disk space. 

File Copy with One Drive, Two Diskettes 
If you have only one disk drive attached to your AT ARI computer and wish to 
transfer files from one diskette to another, you must use DOS menu item 0, 



Chapter 7: THE AT ARI 810 DISK DRIVE 237 

DUPLICATE FILE. It requests the name of the file you wish to transfer. 

NAME OF FILE TO MOVE? 

• 
Type the name of the file you wish to transfer. Enter only one file name; the source 
and destination file names are the same. Do not specify a drive number. DOS menu 
item 0 always uses Drive I for both source and destination. 

You can use wild card characters in the file name. In this case, all files that match 
the ambiguous file name will be transferred , one at a time. However, files that have a 
.SYS extension will not be transferred. If you want to transfer a .SYS file, you must 
specify the entire file name explicitly. 

Next, a message appears if the MEM.SA V file is in use (DOS 2.0S only). It 
requests permission to use the entire program area of memory for the file duplicate 
operation (Figure 7-9). If you agree, the contents of file MEM.SA V will not be 
restored to memory when you leave the DOS menu; any program you hoped to 
preserve via the MEM.SA V file will be gone when you return to BASIC. To allow 
this, type Y and press RETURN. Any other response preserves the integrity of file 
MEM.SA V and the program area of memory. The file transfer will still take place, 
but at a much slower pace. 

With the preliminaries out of the way, the transfer begins. Messages appear on 
the display screen, asking you to insert first the source disk and then the destination 
disk. You may have to swap disks several times. Each time you insert a disk, you 
must signal that it is ready by pressing RETURN on the keyboard. 

When you insert the source disk , the computer reads part of the source file into its 
memory. When you substitute the destination disk, the computer writes that piece 
of the file onto the destination file. You may have to change diskettes several times if 
the file is very large, or if you are moving more than one file. 

CAUTION: Using DOS menu item 0 with DOS 1.0 effectively erases the program 
area of memory. If you had a BASIC program in memory, it will be gone when you 
return to BASIC after duplicating files. 

REMOVING UNNEEDED FILES 
After a while , you will probably end up with a number of files you no longer need. 
To remove files from a diskette and make the space they used available for other 
files, choose DOS menu item 0, DELETE FILE(S). When you select it, the 
following prompt message appears: 

DELETE FILE SPEC 

• 
You must enter the disk drive number and file name of the file you wish deleted. 

You may use wild card characters to specify an ambiguous file name and extension. 
Next, this message appears: 

TYPE "Y" TO DELETE ••• 



238 A GUIDE TO ATAR1400/800 COMPUTERS 

The diskette is searched for all the file names that match your specification. 
Whenever a match is found, the file name is printed, followed by a question mark. If 
you wish to delete the file, type the letter Y and press RETURN. Type any other letter 
if you do not want the file deleted. 

You may not delete any file that is locked. If you try to delete a locked file, error 
number 167 occurs, and the delete selection is aborted. 

To erase all files from a diskette, use *.* as the delete file specification, like this: 

DELETE FILE SPEC 
)1(,)1( 

Disabling Delete Confirmation 
Normally, DOS menu item 0 requires that you confirm every file name to be 
deleted. This is a good way to avoid accidentally deleting the wrong file, but 
becomes somewhat tedious when you use an ambiguous file name in order to delete 
a large number of files. If you want to circumvent the confirmation step for each file, 
type the characters I N right after the file name. For example, the following response 
deletes all files on Drive I, without asking "yes" or "no" for each file: 

DELETE FILE SPEC 
)I(,)I(/N 

Be very careful when you use the I N suffix, since you cannot recover a file once it 
is erased. 

CHANGING FILE NAMES 
To change the name of any file on a diskette, choose DOS menu item E, RENAME 
FILE. The following prompt message appears: 

RENAME - GIVE OLD NAME. NEW 
II 

Enter the old file name, a comma, and the new file name. You may specify a drive 
number for the old file name, but not for the new name. Use DOS menu item C to 
move a file to a different drive. 

Error 170 occurs if the old file name you specify does not exist. Error 167 occurs if 
it is locked . 

CAUTION: If the new file name already exists on the diskette, you will end up with 
two files with the same name. If this happens, future references to one file will also 
affect the other. If you try to rename one, the other will be renamed also. The only way 
to recover from duplicate file names is to delete both files and start over. If you are not 
sure whether a file name is in use , list the file directory with DOS menu item A before 
you rename a file. 

Ambiguous file names are allowed . Here is an example: 

RENAME - GIVE OLD NAME. NEW 
)I(,DATt)l(,TXT 



Chapter 7: THE AT ARI 810 DISK DRIVE 239 

This will change all.DAT extensions to .TXT. The following response changes all 
file extensions to .ZZZ: 

RENAME - GIVE OLD NAME. NEW 
*.*.*.ZZZ 

Be very careful with ambiguous file name changes. It is all too easy to end up with 
duplicate file names. 

Do not change the name of file DOS.SYS, or the diskette will not boot. If you 
change the name of the DUP.SYS file (DOS 2.0S only), you will not be able to load 
the DOS menu from that diskette. 

LOCKING FILES 
Locking a file prevents any action that changes the information stored for that file, 
including changing the file name. To lock files, choose DOS menu item F, LOCK 
FILE. When you select it, this prompt appears: 

WHAT FILE TO LOCK? 

• 
Enter the disk number and file name of the file you want locked. The following 

example locks the DOS boot file, on Drive I: 

WHAT FILE TO LOCK? 
DOS.SYS 

You may use wild card characters to specify an ambiguous file name to be locked . 
For example, *.* will lock every file. Similarly, *.BAS will lock all files with .BAS 
extensions . 

It is a good idea to lock the DOS.SYS file, and the DUP.SYS file if it exists. That 
prevents you from accidentally changing their names or contents. 

REMOVING FILE LOCKS 
To unlock files, choose DOS menu item G, UNLOCK FILE. When you select it, 
this prompt appears: 

WHAT FILE TO UNLOCK? 

• 
Enterthe disk number and file name of the file you want unlocked. The following 

example unlocks file MAILLIST.DAT, on Drive 2: 

WHAT FILE TO UNLOCK? 
DZ:MAILLIST.DAT 

You may use wild card characters to specify an ambiguous file name to be 
unlocked. For example, • . * will unlock every file. Similarly, *.BAS will unlock all 
files with .BAS extensions. 



240 A GUIDE TO AT ARI 400/800 COMPUTERS 

WRITING NEW DOS FILES 
The disk operating system program is stored on one or two files. DOS 1.0 is on file 
DOS.SYS, while DOS 2.0S uses two files, DOS.SYS and DUP.SYS. To write a 
copy of these files onto a diskette in a specific drive, choose DOS menu item H, 
WRITE DOS FILES. The programs are copied from the computer's memory, not 
from another diskette. The procedure is slightly different for DOS 1.0 and DOS 
2.0S. 

Write DOS 2.05 Files 
In DOS 2.0S, this prompt message appears after you select DOS menu item H: 

DRIVE TO WRITE FILES TO? 
m 

Enter Drive number I, 2, 3, or 4. 
Nowa prompt message appears asking you to confirm your choice by typing Y: 

DRIVE TO WRITE FILES TO? 
1. 
TYPE "Y" TO WRITE DOS TO DraVE 1 
~ 

If you type anything other than a capital Y, the operation will be aborted . 

Write DOS 1.0 File 
DOS 1.0 always writes file DOS.SYS to Drive I. You cannot choose the drive. This 
prompt message appears: 

TYPE "Y" TO WRITE NEW DOS FILE 
~ 

FORMATTING DISKETTES 
Before you can use a new diskette it must be formatted. The formatting procedure 
writes timing marks and other information on the diskette. The disk operating 
system uses this information to ascertain where it is on the diskette. Because 
formatting writes over everything previously on the disk , it will erase a used 
diskette. This can be disastrous if you accidentally format the wrong diskette. 

To format a diskette, choose DOS menu item I, FORMAT DISK. The following 
prompt message appears: 

WHICH DRIVE TO FORMAT? 

• 
Enter the number of the drive that contains the diskette you wish to format. Since 

formatting a diskette will erase anything stored on it, you will be asked to confirm 
your choice, as follows . 



WHICH DRIVE TO FORMAT? 
1 
TYPE "Y" TO FORMAT DRIVE 1 
~ 

Chapter 7: THE AT ARI 810 DISK DRIVE 241 

This is your last opportunity to avoid erasing the wrong diskette. It is a good time to 
double-check the diskette in the drive to make sure it is the one you wish to erase. 

When you respond with a Y to the above prompt, the drive will become active, 
and you may hear beeps from the TV speaker. Any other response will abort the 
selection. The format operation takes about one minute. 

COPYING ENTIRE DISKETTES 
Although DOS menu item C allows you to copy files as needed, you will frequently 
wish to copy the contents of an entire diskette. To do that, choose item J , DUPLI
CATE DISK. It copies all files on a diskette , even files with .SYS extensions. It can 
copy from one drive to another. It can also copy using just one drive. 

When you select DOS menu item J, this prompt message appears: 

DUP DISK--SOURCE.DEST DRIVES? 
~ 

CAUTION: Using DOS menu item J with DOS 1.0 effectively erases the program 
area of memory. If you had a BASIC program in memory, it will be gone when you 
return to BASIC after duplica ting a disk . 

Single-Drive Duplication 
If you have only one drive, respond like this: 

DUP DISK- -SOURCE.DEST DRIVES? 
1.1 

Now this prompt appears: 

INSERT SOURCE DISK. TYPE RETURN 
m 

If the diskette you wish to copy is not already in the disk drive, insert it now. Press 
RETURN. The computer will read part of the diskette's contents into its memory. It 
will then ask you to insert the destination disk, with this prompt: 

INSERT DESTINATION DISK.TYPE RETURN 

• 
Place a formatted diskette into the drive, close the drive door, and press RETURN. 

A few seconds later, the INSERT SOURCE DISK message will reappear. You 
must change diskettes again. This process will repeat several times, depending on 
how much memory your computer has and how much data is stored on the source 
diskette . The diskette-swapping cycle will repeat until the entire disk is copied . 



242 A GUIDE TO AT ARI 400/800 COMPUTERS 

Right after you first insert the source disk, another message will appear, but only 
if the MEM.SA V file is in use (DOS 2.0S only). The message requests permission to 
use the entire program area of memory for the duplicate disk operation (Figure 7-9). 
If you agree, the contents of file MEM.SA V will not be restored to memory when 
you leave the DOS menu; any program you hoped to preserve via the MEM.SA V 
file will be gone when you return to BASIC. To allow this, type Y and press 
RETURN. Any other response aborts the duplicate disk operation, preserving the 
integrity of file MEM.SAV. It is possible to duplicate a diskette and still 
preserve a program in memory. Simply leave the DOS menu and save the program 
onto cassette or diskette. Then you can let the disk duplication invalidate file 
MEM.SA V, knowing that you can always reload your program from diskette or 
cassette. 

Multiple-Drive Duplication 
Duplicating diskettes is much easier if you have two disk drives connected to your 
AT ARI computer. Specify one drive as the source drive and the other drive as the 
destination. When you use two drives to duplicate, there is no need to swap 
diskettes. The following example will copy from the diskette in Drive I to the 
diskette in Drive 2: 

OUP OISK--SQURCE,DEST DRIVES? 
1,2 
INSERT BOTH DISKETTES, TYPE RETURN 

• 
As with single-drive duplication, you will see another prompt message (Figure 

7-9) iffile MEM.SA Vis active (DOS 2.0S only). Reply with a Yifit is all right to use 
the entire program area of memory for the disk duplication. If it is not, reply with 
an N; the disk duplication will be aborted . 

CREATING A MEM.SA V FILE 
To create the special file called MEM.SA V (DOS 2.0S only), choose DOS menu 
item N, CREATE MEM.SA V. The file will be created on the diskette in Drive I. 
The following prompt message will appear: 

TYPE "Y" TO CF,EATE MEM.SAV 

• 
Enter Y to proceed with MEM.SA V file creation; any other entry aborts the file 
creation. 

If the file already exists on the diskette, the message MEM.SA V FILE 
ALREADY EXISTS appears and the operation is aborted. 

BASIC PROGRAMS ON DISK 
Five BASIC statements form a very useful connection between BASIC and the disk 
operating system. The SAVE and LIST statements store programs on a diskette. 
The LOAD, ENTER, and RUN statements retrieve programs from a diskette. 



Chapter 7: THE AT ARI 810 DISK DRIVE 243 

Storing a Program 
When you type a program into the computer, it will remain in memory until the 
power is turned off, or until it is erased by a statement such as NEW. The SA VE and 
LIST statements allow you to store a program in a diskette file of your choice. You 
must specify the disk drive number, the file name, and any file name extension. 
Either of the following statements will store a program on the diskette in Drive I: 

SAVE "D 1 ! MYPF,OG. BA S" 
LIST "Dl!MYF'ROG.LST" 

You can omit the drive number, but not the device name (D: is the disk drive 
device name). Drive I is assumed unless you specify otherwise. The following 
statements will also write to the diskette in Drive I : 

SAVE "D!MENU.E:AS" 
LIST "D!MENU.LST" 

Notice that we use extension .BAS with the SA VE statement and extension .LST 
with the LIST statement. That makes it easy to identify whether we used LIST or 
SA VE to store a particular file. This is important because the two statements do not 
use the same recording format. 

The LIST statement outputs in the same format regardless of the device. It sends 
out the AT ASCII code of every character in the program listing. 

The SAVE statement abbreviates keywords with one-character tokens. Thus, 
instead of storing five AT ASCII characters for the keyword INPUT, it stores just 
one character, the token for INPUT. 

The SAVE statement always stores the entire program from memory. The LIST 
statement can store all of the program or any part of it. You can specify the first and 
last lines to be stored. For example , the following statement stores only lines with 
line numbers between lO and 50: 

LIST "D!DATASTMT.LST",10,50 

Retrieving a Program 
The LOAD statement retrieves programs that were stored in tokenized format by 
the SAVE statement. The ENTER statement retrieves programs that were stored in 
straight AT ASCII code by the LIST statement. Because of the different formats, 
you cannot use LOAD and ENTER interchangeably. 

You must specify a disk drive number , file name , and file extension. If the drive 
number is absent, Drive I is used. The following statement retrieves a program 
stored by a SAVE statement: 

LOAD "DZ!MAILLIST.BAS" 

The following statement retrieves a program stored by a LIST statement: 

ENTER "D!CHESS.BAS" 



244 A GUIDE TO ATARI 400/800 COMPUTERS 

The file name and extension must be the same as the ones you used to store the 
program. Both LOAD and ENTER check to see if the file name you specify actually 
exists on the diskette in the drive you specify. If not, error 170 results. If the file is 
present, the new program is read in from the diskette , and BASIC displays the 
READY message when program retrieval is finished. 

The LOAD statement erases any program currently in memory. The new pro
gram replaces the old one. The ENTER statement, on the other hand, merges the 
program it retrieves with the program in memory. If there are incoming lines with 
the same line numbers as existing lines, the incoming lines replace the existing lines . 
To circumvent the merging, type NEW before using the ENTER statement. 

The RUN Statement 
Frequently, the first thing you will want to do after loading a program is to run it. 
Normally this takes two commands, as in the following example: 

LOAD "D:PAYROLL.E:AS" 
READY 
RUN 

You can abbreviate this two-step process by adding the file name to the RUN 
statement. Shorten the previous example like this: 

r\uN "D: PAYROLL. BAS" 

The program will run as soon as it is loaded . The LOAD command becomes an 
implicit step. 

Chaining Programs 
When executed, a programmed mode R UN statement will load and run another 
program. Chapter 5 explained how this chaining process works with cassettes . It 
works even better with diskettes. 

To see how chaining works , we will create three small programs on a diskette. The 
first program will load and run the second , and the second will load and run the 
third . To begin, enter and save the first program: 

NEW 

r,EADY 
10 PRINT "PROGRAM ONE" 
20 RUN "DUP2.8AS" 
SAVE "Dl:P1.BAS" 

READY 
lit 

That stores the first program in file P1.BAS, on the diskette in Drive 1. 
The program is still in memory. Change it to become the second program, and 

store the result in file P2.BAS. 



10 F'F\INT "F'ROGRAM TWO" 
20 RUN "D1:F'3.E:AS" 
SAVE "Dl:F'2.E:AS" 

F,EADY 
~ 

Chapter 7 : THE AT ARI 810 DISK DRIVE 245 

N ow you have stored two programs on the diskette in Drive I . Make a few changes 
to the second program, which is still in memory, to create the third and final 
program, and store it in file P3 .BAS. 

10 PRINT "F'F,OGRAM THREE" 
20 END 
SAVE "D1:F'3.8AS" 
READY 
m 

The diskette now has three chained programs on it. The first will load and run the 
second, and the second will load and run the third. Use the RUN statement to load 
and run the first program. 

RUN "Dl:F'l.E:AS" 
PROGRAM ONE 
PF\oGRAM TWO 
PROGRAM THREE 

READY 
II 

The other two programs run automatically, with no action on your part. 
Chained programs look to the user very much like one long program. Recall from 

Chapter 5 that the user has to press the RETURN key to continue with each successive 
program module on cassette. There is no need to do this with programs on disk. 

The main drawback to chaining programs with the RUN statement is that it 
clears all variables before it loads the next program. This means that one program 
cannot use values that were input or calculated by an earlier program in the chain. 

Subroutine Libraries 
Over a period of time, programmers develop general purpose subroutines which 
they use in one program after another. Chapter 4 introduced several such subrou
tines (Figures 4-16 through 4-21 , 4-31,4-33,4-36,4-37, and 4-38). Using subroutines 
like these saves programming time, but somehow you must enter the subroutines 
every time you use them. You can type them in, but that is dull and time-consuming. 
You can avoid the retyping by building a library of subroutines on disk. 

It is extremely easy to create and use a library of subroutines on disk. Every time 
you write a subroutine, store in on disk with the LIST statement. Later, when you 
want to include the subroutine in a program you are writing, use the ENTER 
statement to retrieve it. It will merge with the program in memory. 



246 A GUIDE TO ATAR1400/800 COMPUTERS 

Variable Name Table 
Recall from earlier chapters that AT ARI BASIC keeps a table of all the variable 
and array names you have used in programmed or immediate mode. The SAVE 
statement stores this variable name table along with the tokenized program lines. 
The LOAD statement replaces the current variable name table with the one it 
retrieves from the disk file . 

The LIST statement does not store the variable name table, nor does the ENTER 
statement restore one to memory. The existing variable name table remains, unless 
you use the NEW statement. 

Over a period of time, the variable name table can become cluttered with obsolete 
variable names. It is easy enough to remove these unwanted names. First, store the 
program with the LIST statement. Then use the NEW statement to clear the 
variable name table completely. Of course, this also erases the program lines. Load 
the program back into memory with the ENTER statement. 

USING DISK DATA FILES 
The disk drive is ideally suited to storing large quantities of data. The BASIC 
statements PRINT # and PUT store data on disk. The INPUT # and GET state
ments read data back in. 

Data Files, Records, and Fields 
From the computer's perspective, a data file is no different from a program file. 
Both are simply collections of numbers. What makes the difference is the way in 
which the numbers are interpreted. From the user's standpoint, a program file 
contains program lines and a data file contains numeric and string values. Files are 
generally arranged in some kind of logical order. For example, one file might 
contain a mailing list, which is nothing more than a collection of names and 
addresses. Each name and address is called a record. Any name-and-address record 
contains several items: name, street, city, state, and ZIP code. These specific data 
items are called fields. Every record usually has the same fields. Only the values in 
the fields vary. 

File Accessing Methods 
There are two ways to access disk files. One is called sequential access. A sequential 
file is just like a file on cassette. To read or write the last item in the file, you must 
read or write all previous items. For some applications, sequential access is 
acceptable. 

Random access allows more flexibility than does sequential access. You may read 
or write any record in the file with equal ease, regardless of its location. For many 
applications, random access is the best solution. 

DOS 2.0S supports both sequential and random access. DOS version 1.0 sup
ports only sequential access. 



Chapter 7: THE AT ARI 810 DISK DRIVE 247 

How Data is Stored 
To quickly find one particular character among the thousands stored on a diskette, 
the disk operating system divides storage space on a diskette into 720 parts, called 
sectors. Each sector holds exactly 128 characters. 

DOS 2.OS reserves 13 sectors of each diskette. Sectors 1, 2, and 3 store the 
program that boots the disk operating system itself into memory. Sectors 361 
through 368 are used for the diskette directory. Sector 360 keeps track of which 
sectors are in use, and which are free, on the whole diskette. This is called the 
Volume Table of Contents. The last sector of every diskette, sector 720, is also 
reserved. DOS 2.OS leaves 707 sectors free for you to use. 

DOS 1.0 uses only sector 1 for the DOS boot program, leaving two additional 
sectors for data storage. DOS 1.0 uses the other sectors reserved by DOS 2.OS for 
the same purposes. 

Tracks 
To make it easier to find a particular sector, the 720 sectors of a diskette are 
arranged into 40 concentric circles of 18 sectors each, called tracks (Figure 7 -10). By 
moving the read / write head to a particular track, a maximum of 18 sectors will be 
read before the desired one is found. 

OPENING DATA FILES 
Disk files must be opened before they can be used. Opening a file causes the disk 
operating system to retrieve information about the file. You are informed whether 
the file is on the disk, and if so, where it is on the disk. Opening a file also sets aside 
an area of memory to be used as afile buffer. The file buffer is similar to the disk 
buffer, but it is dedicated to the file . I t allows you to access a small portion of the file 
without activating the disk drive for every item accessed, and that saves a good deal 
of time. 

The OPEN statement opens an input / output channel to a disk file. It looks like 
this: 

OPEN IZ t 8 t Ot
I Dl:FILENAME.EXT" 

This statement opens channel 2 for output to file FILENAME.EXT on Drive l. 
The first parameter in the OPEN statement is the channel number. As Chapter 4 

explains, channels I through 5 are always available for your BASIC program. 
Channels 6 and 7 are also available under some circumstances. The BASIC graphics 
statements use channel 6 (see Chapters 8 and 9). The CLOAD, CSA VE, and 
LPRINT statements use channel 7. If you use any of these statements, they will 
automatically take over channel 6 or 7. 

After a program opens a channel to a disk file, it refers to the channel number, not 
to the file itself. The OPEN statement must occur in the program before any other 
reference to the file occurs. 



248 A GUIDE TO AT ARI 400/800 COMPUTERS 

J.Io--- Sectors 

-t------=t:;~Tracks 

-256 bytes of data stored on one sector 

FIGURE 7-10. A diskette's recorded surface 

There are five disk access modes: input (mode 4), output (mode 8), update (mode 
12), append (mode 9), and directory input (mode 6). The value of the second OPEN 
statement parameter determines the access mode. We will describe the different 
modes shortly. 

The third OPEN statement parameter is ignored. Make this parameter O. 
The fourth and final OPEN statement parameter specifies the drive number and 

file name. If you omit the drive number, Drive 1 will be used, but you must always 
specify the disk drive with a capital D and a colon. You may specify any drive, file 
name, and extension you like. Do not use DOS.SYS, MEM.SA V, or DUP.SYS, 
however, as these files are needed for proper operation of the disk operating system. 

If you open a file for anything other than mode 8 output, the file name must exist 
on the drive as specified . If it does not, error 170 occurs. 

Access mode 8 is the only mode that will cause a file to be created. The other 



Chapter 7 : THE ATARI 810 DISK DRIVE 249 

modes expect the file to already exist. If the file does exist, access mode 8 will first 
delete, then recreate the file . This will erase all information already in the file. 

Normally, no more than three disk files can be open simultaneously. Each one 
must use a different channel, of course. In DOS 2.0S there is a way to extend the 
limit so there can be seven files open simultaneously. You must make a minor 
change to the disk operating system. The procedure is described at the end of this 
chapter. 

CLOSING DATA FILES 
There are many ways to close a channel. The END statement will close all open 
channels. The following program opens a channel for output to a disk data file and 
closes it implicitly with an END statement: 

100 PRINT "NOW OPENING FILE ••• " 
200 OPEN t:l,B,O,"D1:DATAFILE.TMP" 
300 PRINT "THE FILE IS NOW OPEN." 
.q00 END 

This program has a major flaw: it does not explicitly close the file. The best way to 
close a channel that is open to a disk data file is with the CLOSE statement. The best 
time to do it is right after you are finished with the file . This is especially important 
with a file that has been opened for output. Not closing output files can result in loss 
of data, or even destruction of data on another diskette. 

Correct the last program by adding line 390, as follows: 

100 pr\INT "NOW OPENING DATA FILE ••• " 
200 OPEN :H,8,O"iDl:DATAFILE.TMP" 
300 PRINT "THE FILE IS NOW OPEN." 
390 CLOSE f,1 
"l00 END 

WRITING TO DATA FILES 
Just opening and closing files is a fairly useless activity. Disk files are supposed to 
store information. This section will show you how to modify the last program so it 
will store information. 

Information is sent to disk files in the same way it is sent to the program recorder 
or printer: by means of the PRINT # statement. Anything you can print can be sent 
to a file . In fact, you might visualize a sequential file as paper in the printer. The 
printer puts each character it receives into the printer buffer. When the buffer is full, 
the printer prints the buffer's contents on the paper. Similarly, when information is 
sent to a disk file, it goes into the file buffer. When the buffer is full, its contents are 
written on the disk. 

To direct the PRINT # statement to a disk file, use the channel that you assigned 
in the OPEN statement for that file. The last example program assigned channell to 
the file OAT AFILE. TMP. The following program writes some text on that file. 



250 A GUIDE TO AT ARl 400/800 COMPUTERS 

100 F'r(INT "NDI-l OPENING DATA FILE. •• " 
200 OPEN l:L t 8 t Ot "Dl:DATAFILE.TMF''' 
300 F'raNT "THE FILE IS NDI-l OPEN." 
310 pr,INT 'iI'1;" I-lOF\DS CANNOT DESCF(IBE" 
320 pr,INT '11<1;" I-IDI-l SPEECHLESS I FEL. T" 
390 CLDSE <11:1 
"100 END 

When you run this program, the old file OAT AFILE.TMP on your disk is deleted, 
then recreated as a new, empty file . This happens because the OPEN statement 
specifies access mode 8 (line 200) . The OPEN statement also sets a pointer to the 
beginning of the file buffer (line 200). At this point the file buffer looks like Figure 
7-11. 

The first PRINT # statement outputs 21 text characters to the file (line 310). They 
end up in the file buffer. The file buffer pointer moves to the 22nd position. Since the 
PRINT # statement does not end with a semicolon or comma, it also outputs an 
EOL character. That moves the file buffer pointer to position 23. The file buffer now 
looks like Figure 7-12. 

Start of Buffer End of Buffer 

)<--r---: -------{::J 
Pointer 

FIGURE 7-11. Empty disk file buffer 

Start of Buffer End of Buffer 

'---
____ ~E __ ----~lj WORDS CANNOT DESCRIBEO 

L 

Pointer 

FIGURE 7-12. Disk file buffer with data 



Chapter 7: THE AT ARI 810 DISK DRIVE 251 

Start of Buffer End of Buffer 

E E:J WORDS CANNOT DESCRIBEOHOW SPEECHLESS I FEL TO 
L L 

'-------------.------/, 

Pointer 

FIGURE 7-13. Disk file buffer with two fields 

The next PRINT # statement outputs another 21 text characters, plus an EOL 
character (line 320). These characters also end up in the file buffer. The pointer now 
points to the 46th position . The file buffer looks like Figure 7-13. The program has 
stored two fields of data in the file buffer. Each field is terminated by an EOL 
character. 

The CLOSE statement forces the contents of the file buffer to be output to 
channell (line 390). Since channell is linked to file DATAFILE.TMP, the contents 
of the buffer are stored in it. 

The file buffer has a capacity of 125 characters. The buffer actually takes up 128 
bytes of memory, but three are not available. The contents of the buffer are written 
to the diskette each time the buffer fills. 

With sequential access, the file pointer can only be moved forward . The only way 
to move the pointer backward is to close the file, then reopen it. Whenever a file is 
opened , the pointer is set to the first character in the file. 

Experiment with the example program above. Change the PRINT # statements 
to store different data. Try using string variables and numeric variables and con
stants. You may add more PRINT # statements, as long as they occur after the 
OPEN statement and before the CLOSE statement. 

Remember that if any PRINT # statement terminates with a semicolon or comma 
it will not output an EOL character to the file. The characters in the next PRINT # 
statement become part of the sa me field . Here is an example: 

100 OPEN :H:1, B , 0, " D : ONEFIELD. TMP" 
200 PFUNT :11:1; "TIIl ~; IS THE FIR~H"; 
300 PF~INT U;"AND THIS n.; THE ~:;ECDND" 

400 CLOSE :JI:1 
500 END 

Output from the first PRINT # statement (line 200) is concatenated with output 
from the second PRINT # statement (line 300). The result is one data field in the file 
(Figure 7-14). 



252 A GUIDE TO ATARI400/800 COMPUTERS 

Start of Buffer End of Buffer 

~L..:_H_IS_I_S_T_H_E_F_IR_S_T_A_N_D_T_H_I_S_I_S_T_H_E_S_E_C_O_N_D--=~r-____ ~:j 
• Pointer 

FIGURE 7-14. Concatenated output 

Commas in PRINT # Statements 
In PRINT # statements , commas can occur as separators between items, like this: 

745 PRINT 14; "HELL.O I". "WHAT IG YOUI;: NA 
ME?" 

They can also occur at the end of a PRINT # statement, like this: 

9456 F'F,INT 12; "THE END". 

The computer does not know the difference between writing data to a disk file and 
writing data to the screen. On the screen, a comma causes spaces to be output 
between items until the cursor is at the next column stop. A comma also suppresses 
the EOL character. For more details , see Chapter 4. In a disk file , the file buffer 
pointer takes the place of the cursor. Consider the following statement: 

Assuming that channel I is open for output to a disk file, the statement above will 
output one field to the file . Because commas separate the items, nine blank spaces 
are appended to each character. Because a comma ends the statement, no EOL 
character is output. Figure 7-15 illustrates this . 

Because of the blank spaces inserted by commas, you should not use commas in 
PRINT # statements that output to disk files. If you want items to be concatenated, 
use a semicolon. 

If you do not want items to be concatenated, you should put each field in a 
separate PRINT # statement. Another solution is to explicitly output an EOL 
character between fields , as shown below: 

233 PRINT t5;"YES!";CHR$(155);"WE HAVE 
NO E:ANANAS" 

CHR$(155) generates an EOL character. 



Chapter 7: THE AT ARI 810 DISK DRIVE 253 

Start of Buffer End of Buffer . ~ 
11....---1 _2 -----.3 __ ~:~ 

• Pointer 

FIGURE 7-15. Commas in PRINT # statements 

If you intend to use the above technique extensively, you may wish to define a 
string variable as an EOL character. Here is an example: 

5 DIM R~; (1.) 
10 RS=CHR$(155)!REM EOl 

431. PRINT 12;NAMES;R$;RANK;R$;SERIALNU 
ME:ER 

Writing with the PUT Statement 
A PUT statement can output a single numeric value to a disk file. The value must be 
between 0 and 255. The value is usually interpreted as an AT ASCII character code. 
Each value takes the same space on the file as one character from a PRINT # 
statement. The PUT statement does not output an EOL character. The following 
program will store the text "HELLO" on a file , complete with the enclosing quotes 
and a terminating EOL character. 

10 OPEN ,n'5,fJ,O,"D:HELLD.TXT" 
20 PUT 01'5,34: r~EM " 
30 PUT 15,72:REM H 
40 PUT t5,69:REM E 
50 PUT 15,76:REM L 
60 PUT 15,76:REM l 
70 PUT 15,79!REM 0 
80 PUT "'5,3'1: F~EM " 
90 PUT 15,155:REM (EOl) 
100 CLOSE 41'5 
1l. 0 END 

READING SEQUENTIAL DATA FILES 
Once data has been stored on a disk file , it can be retrieved, or read from the file. The 
INPUT # and GET statements read file data and assign the values to variables. To 



254 A GUIDE TO AT ARI 400/800 COMPUTERS 

see how these statements work with the disk, first run the following program to 
create the file DAT AFILE.TMP: 

200 OPEN tl,8,O,"DUDATAFILE.TMP" 
310 PF~INT U;"DAMN THE TOF~PEDOE~';!" 
320 F'F\INT Ii; "FULL. SPEED AHEAD!" 
390 CLOSE :1:1 
400 END 

The next program will read data fields from DAT AFILE.TMP and display them 
on the screen: 

100 DIM A$(100) 
190 REM Open file for input 
200 OPEN t:L,4,O,"D:DATAFILE.TMP" 
300 INPUT U;M 
400 PFUNT A$ 
500 GOTO 300 
600 CLOSE 1-1 
700 END 

When you run the program, this appears on the screen: 

DAMN THE TORPEDOES! 
FUL.L SPEED AHEAD' 

EF~F\DF\ "" 136 AT L.INE 300 

Error 136 occurred because the program tried to read past the end of the file. Since 
the program was stopped at line 300 by the error, the CLOSE statement was not 
executed . In this case that is not important. The program did not write to the file, so 
the file buffer never contained new data that needed to be written on the disk. 

It is not good practice to write programs that end with errors. You can avoid the 
end-of-file error by using the TRAP statement. Add a new line to the program 
above, as follows: 

100 DIM A$(100) 
190 REM Open file for input 
200 OPEN :U,'+,O,"DUDATAFILE.TMF''' 
210 TRAP 600 
300 INPUT i1; A$ 
400 PHINT A$ 

500 GOTO 300 
600 CLOSE Ii 
700 END 

Now the program ends neatly, without the error message. 
To be really safe, the program should check to make sure that the error is in fact 

an end-of-file error. Without proper checking, the program treats any error as an 
end-of-file error. Here is a new version of the last program, with more careful error 
checking: 

100 DIM A$(100) 
190 REM Open file for input 
200 OPEN tl,4,O,"Dl:DATAFILE.TMF''' 



210 TRAP 510 
300 INPUT t1;A$ 
400 PF,INT A$ 
500 GOTO 300 
509 REM Get error nUMber 
510 ERR=PEEK(195) 
519 REM End of file? 
520 IF ERR=135 THEN 600 

Chapter 7: THE ATARI 810 DISK DRIVE 255 

529 REM If not, print error nUMber 
530 PF\INT "EF~F\oF, NUME:EF, "; ERF\;" HAS DC 
CUF\F~ ED ! " 
600 CLOSE :fl'1 
700 END 

The INPUT # statement reads one data field at a time. It keeps reading characters 
until it encounters an EOL character. Then it assigns the field value to the next 
variable on its list. The value type must match the variable type; an error results if 
you try to read a non-numeric string into a numeric value. 

Using GET to Read Files 
The GET statement reads a file character by character. Each GET statement reads 
one numeric value. Your program must decide how to interpret that value. Most 
often it will use the CHRS function to interpret the value as an AT ASCII character 
code. The next program uses the GET statement to read the same file as the last 
program. 

190 REM Open file for input 
200 OPEN 'U,4,O,"DUDATAFILE.TMP " 
210 TRAP 510 
300 GET U ,A 
400 PRINT CHR$(A); 
500 GOTO 300 
509 REM Get error nUMber 
510 ERR=PEEK(195) 
519 REM End of file? 
520 IF ERR=135 THEN 600 
529 REM If not, print error nUMber 
53 0 PF\INT "EF,F,OF, NUMBEr, "; ERR;" HAS DC 
CUF~f~ ED! " 
t)OO CLOSE i1 
700 END 

OPEN TO APPEND 
When you open a file for output (mode 8), everything in the file is erased, and the 
pointer is set to the beginning of the file. It is possible to add to information that is 
already in a file without erasing the old data. 

If you specify mode 9 (append) when you OPEN a file, the pointer will be set to 
the end of the file. The file must exist or error 170 will occur. 

Suppose there is a disk file T ALE.TXT which contains only the text "ONCE 



256 A GUIDE TO AT ARI 400/800 COMPUTERS 

UPON A TIME" followed by an EOL character. Then the following program is 
executed: 

210 OPEN =1'2,9,0, "0 :TALE. TXT" 
220 PFaNT ,.'2; "THEF,E WAS A FLOI"F'Y DISf( 
DF,IVE" 
230 PHINT 12;" THAT HAD NO DISf(ETTE" 
2"10 CLOSE 1-2 
250 END 

Because mode 9 (append) was used in the OPEN statement (line 210), the file buffer 
pointer is set to the next available position on the file (Figure 7-16). When more text 
is sent to the file (lines 220 and 230), it is appended to the end of the file (Figure 7-17). 

Start of Buffer End of Buffer 

,--' ---.----~:~ ) ONCE UPON A TIME~ 

• Pointer 

FIGURE 7-16. Opening a disk file to append 

Start of Buffer 

E E 
ONCE UPON A TIMEOTHERE WAS A FLOPPY DISK DRIVEOTHAT 

L L 

End of Buffer 

HAD NO D1SKETTE~ n--~ 
________________ ~L._--------------~l~ 

4 
Pointer 

FIGURE 7-17. Appending data to a disk file 



Chapter 7: THE A TARI 810 DISK DRIVE 257 

Whenever you use append mode, another sector (128 characters) is automatically 
allocated for the file. This happens every time a mode 9 OPEN statement is 
executed . A program can consume disk space at a rapid rate if it is not carefully 
designed. Fortunately, there is another way to add data to an existing file, as the 
next section describes . 

OPEN FOR UPDATE 
Mode 8 (output) and mode 9 (append) both permit only writing. Mode 4 (input) 
permits only reading. In order to both read and write, you must use mode 12 
(update). A file must exist before it can be opened for updating. 

When a file is opened for update , the pointer is set to the beginning of the file, and 
the data already in the file is left intact. The file may be read or written to at this time. 
For each character that is read or written, the file pointer is moved forward one 
position. 

Data written to the file replaces previous data on a character-by-character basis. 
For example, the next program creates a data file and writes the message "THIS IS 
THE OLD DATA" on it. 

100 OPEN :II'''!, B, 0, "0: TESTFILE t TMF''' 
110 PFUNT ,n'''!;''THIS IS THE OLD DATA" 
120 CLOSE 'R'''! 
130 END 

This program updates the same file: 

200 OPEN 41'3,1.2,0, "D: TEST FILE • TMF''' 
210 PRINT 41'3; " HELLO" 
220 CLOSE t3 
230 END 

The OPEN statement leaves the pointer at the beginning of the file (line 200). The 
PRINT # statement output starts there. The five characters of "HELLO" and the 
EOL character replace the first six characters of the data previously in the file. Two 
fields are now stored in the file, demarcated by EOL characters (Figure 7-18). 

The data already on file can be read. This moves the pointer forward in the file. 
Thus you can start writing at any point between the beginning and the end of the file. 
Simply read along until the pointer is at the desired position, then write. Either an 
INPUT # statement or a GET statement will read data and move the file pointer 
forward. INPUT # reads fields, while GET reads single characters. The following 
example uses the GET statement: 

100 TRAP 1900:REM In case no file 
190 REM Open file for update 
200 OPEN 'R'3,12,0,"D!WOF,DS.TXT" 
600 TRAP 1700:REM In case no $ 
790 REM Read characters until $ found 
BOO GET t3,A!IF CHR$(A)<>"$" THEN 800 
900 REM Dollar sign found 



258 A GUIDE TO AT ARI 400/800 COMPUTERS 

Start of Buffer End of Buffer 

~' E _E ----------/}:Jl HELLOOS THE OLD DA T AO 
L L 

• Pointer 

FIGURE 7-18. Writing over existing data 

1000 PFUNT 13;" 1234.56"; 
1100 REM Last seMicolon above 
1200 REM Inhibits Eol character 
1300 CLOSE 13 
1400 prn:NT "UPDA 'FE COMPLETE" 
1500 GoTo 2000 
1700 praNT "NO DOllAR SIGN IN FILE" 
1800 GoTo 2000 
1900 F'r~INT "FILE DOES NOT EXIST" 
2000 END 

The program opens a file for update (line 200), The file must exist or the program 
will end (lines 100 and I 900), A GET statement reads each character of the file until 
a dollar sign occurs (line 800), Then the next seven characters are replaced by the 
number 1234.56 (line 1000), 

STORING NUMBERS IN FILES 
You may have already experimented with storing numbers in a file. There are 
several ways to do it. The following program illustrates: 

100 PRINT "NOW OPENING FILE ••• " 
200 OPEN :1:1,8,0,"D1:DATAFIlE.TMF·" 
3 0 0 praNT "THE FILE IS NDW DPEN." 
310 pr~INT 11;"MY ADDRESS IS 1234 NOraH 

STREET" 
320 PRINT :1:1;1,2,3,4,5 
330 A=10:B=20:C=30 
340 D=40: E~~:50 
350 PRINT tl;A,B,C,D+A,E*B 
390 CLOSE :1:1 
400 END 

You can store numbers as part of a string value (line 3 I 0) . You can store them 



Chapter 7: THE ATARI 810 DISK DRIVE 259 

directly, either from numeric constants (line 320), or using numeric variables and 
expressions (line 350). 

If you store numbers directly, you may read them back by using an INPUT # 
statement that contains a numeric variable. The program below illustrates how 
numbers should be stored and retrieved: 

99 REM Open di sk file for output 
100 OPEN :1:2, B, 0, "D: NUMBERS. DAT" 
109 REM Enter 10 nUMb e r s 
110 FOR J=l TO 10 
120 PF\INT "ENTER A NUMBER TO ~lTDr\E"; 

130 INPUT N 
139 REM Store each nUMber on file 
1. 4 0 N\ItH 12; N 
150 NEXT .j 

160 CLDSE 12 
199 REM Open disk file for input 
20 0 OPEN :602,4,0, "D: NUMBERS. DAT" 
209 REM Read 10 nUMbers 
210 PRINT "YDU ENTEF,ED: " 
220 FOR I=l TO 10 
230 INPUT :JI:2,N 
239 REM Displa~ each stored nUMb er 
240 PF\INT N 
250 NEXT I 
260 CL.OSE 12 
300 END 

The program creates a data file (line 100). It then asks you to enter ten numbers, 
each of which it stores on the data file (lines 110 through 160). Notice how the 
CLOSE statement activates the disk drive to write out any numbers that remain in 
the file buffer (line 160). Finally, the program reopens the data file, this time for 
input (line 200). Then it reads back and displays each number it stored (lines 220 
through 250). 

It is important to understand how numbers are read from disk files. As far as the 
computer is concerned, a number being read from a file continues until the end of a 
field is reached (as marked by an EOL character). If a comma is found, the number 
being read will stop at that point, but additional data in the file will be read and 
discarded until an EOL is reached. None of the characters encountered between the 
comma and the EOL character have any effect on the numeric value . 

A single PRINT # statement can store more than one number when the numbers 
are separated by commas, as shown here: 

560 PRINT 13;1,2,3, 

In this case there will be no EOL or comma stored after any of the values. The 
commas in the PRINT # statement merely insert extra blank spaces, as described 
earlier (Figure 7-15) . 

You cannot read such values into a numeric variable one at a time, as follows. 



260 A GUIDE TO AT ARI 400 /800 COMPUTERS 

650 INPUT 4:3 I X 
660 INPUT 13;Y 
670 INPUT =l=31Z 

Nor can you read them in with one INPUT # statement, like this: 

792 INPUT t3IA,B,C 

In either case an error will result, since embedded spaces are not allowed in 
numbers. 

If you use semicolons instead of commas to separate the numbers in the PRINT # 
statement, they are all concatenated in the file . A subsequent attempt to read the 
numbers back will interpret them as one number. 

The way to avoid this problem is to make sure each value is separated by an EOL 
character. Consider this program: 

300 OPEN :l:4,8,0,"D:NUME:EF(S.DAT" 
340 FOR I = 1 TO 10 
35 ° PF(INT :l:4;I I 
360 NEXT I 
370 CLOSE t4 

The ten values will be stored as one large number. The problem can be corrected by 
removing the semicolon at the end of the PRINT # statement. 

You may store values separated by semicolons, but you must store a comma 
between each value. A comma can be placed between each value by putting it within 
quotation marks, like this: 

270 N(INT t4 ;ClTY I"," IF-RICE I", "nOTAL 

You must be very careful to read the values back the same way they are stored, in 
this case as a set of three. The numbers stored by line 270 above must be read like 
this: 

450 INPUT i4IQ,P,T 

You cannot try to read one value at a time, like this: 

450 INPUT i41Q 
'160 INPUT :I:'t;F' 
470 INPUT :1:4 n 

In this case, the second and third values will be discarded while BASIC looks for an 
EOL character. The INPUT # statements on lines 460 and 470 will not work as you 
expect. You can always read every character with a GET statement, searching for 
commas and EOL characters as you go, but that is a lot of trouble. 

In short, you should separate every value with an EOL character. It requires no 
more space than a comma, and it will result in a file format that is easy to use. 



Chapter 7 : THE AT ARI 810 DISK DRIVE 261 

RANDOM FILE ACCESS 
Random access allows you to reference any part of a file without regard the the 
remainder of the file. The BASIC statements that allow you to do this are NOTE 
and POINT. These statements work only with DOS 2.0S. If you are using DOS 1.0, 
you may skip this entire section . 

The NOTE Statement 
The NOTE statement is used to determine the current position of a file pointer. The 
pointer location is returned as two pieces of information: the number of the last 
sector referenced, and the number of the last character referenced within that sector. 
Here is an example: 

NOTE 12,SECT,CHAR 

This statement refers to the file opened on channel 2. It assigns the number of the 
last sector accessed to variable SECT. It also assigns to variable CHAR the number 
of the last character accessed in that sector. 

The sector number returned is not relative to the number of sectors in the file; it is 
the absolute sector number on the diskette. It may be any number from I to 719. The 
first sector of the file is not necessarily sector number I, and subsequent sectors of 
the file may have sector numbers lower than the first. Sector numbers of a file may 
or may not be sequential. The first sector might be number 148, for example, and the 
second might be number 153, or 127. 

The POINT Statement 
The POINT statement is the opposite of NOTE. POINT moves the pointer to the 
sector and character numbers you specify. A subsequent PRINT #, PUT, INPUT #, 
or GET statement will start at that point. Here is an example: 

120 S=250:C=10:POINT i3,S,C 

These statements move the pointer for the file open on channel 3 to sector 250, 
character 10. 

The sector and character numbers must be specified by numeric variables. They 
may not be constant values , even though their values are not changed by execution 
of the POINT statement. The file number specified must refer to an open file. 

The sector number should be an actual diskette sector number (l to 719). The 
character number must be between 0 and 125 (the number of usable characters in a 
sector). 

No checking is done to see if the sector you specify is part of the file being 
referenced until the actual read or write operation is performed. When the opera
tion does occur, the disk operating system will check that the sector being accessed is 
part of the file specified by the channel number. If they do not match, one of the 
following errors will result. 



262 A GUIDE TO ATARI 400/800 COMPUTERS 

Error 170 (end of file) occurs if an INPUT # or GET statement tried to read. 

Error 171 (point invalid) occurs if a PRINT # or PUT statement tried to write . 

Using NOTE and POINT 
NOTE and POINT allow you to randomly access data stored in files. Efficient use 
of NOTE and POINT will allow your AT ARI computer to perform complex data 
processing. 

The next three sections describe different random access methods. Each method 
has its strengths and weaknesses. All require fairly long and complex programs. 
Unfortunately, space does not permit sample programs to illustrate each method. 

Indexed Data Files 
One way to use NOTE and POINT is to maintain two files in place of one. One file 
serves to store the actual data for each record your program needs to access. The 
second file is an index to the first file. It contains a key for each record in the first file . 
Along with each key, the index file stores the location where the data record starts in 
the first file. Each location is specified by a sector number and character number. At 
the start of your program, the keys and their associated sector and character 
numbers are read into arrays. 

To find a record, the program searches through the index until it finds the key for 
the desired record. Then it uses the associated sector and character numbers with a 
POINT statement to position the disk to the proper data record. After that, it can 
read the data record with INPUT # or GET statements or write the data record with 
PRINT # or PUT statements. 

Adding a record between two existing records is a time-consuming chore in an 
indexed file. You must physically move each record that follows the new record in 
order to open up a space for the new record. You must add the new key to the index 
file, and also change the index file so all the keys after it point to the correct new 
locations. Physically deleting a record requires the same amount of work, but in 
reverse. You must move all the records that follow the deleted record down in the 
file, remove the deleted key from the index, and change the pointers for all the keys 
that follow it. 

To save space, your program can store sector and character numbers in a string 
variable, using the CHR$ and ASC functions to convert between string and 
numeric values. Only three characters will be needed for each record: two for the 
sector number (1 to 719), and one for the character number (0 to 125). 

The main strength of indexed or keyed file accessing is the speed with which you 
can find a record. Searching an array of keys in memory is much faster than reading 
through a file record by record. 

Linked List Data Files 
Another random access method maintains a linked list of records . In a linked list, 
each data record has a pointer to the next data record. The pointer consists of a 
sector number and a character number. 



Chapter 7: THE AT ARI 810 DISK DRIVE 263 

To find a record in a linked list, you must start with the first record and read each 
record in turn until you find the one you want. This is no better than a straight 
sequential file. 

The advantage to a linked list is the ease with which you can add and delete 
records. To add a record to a linked list file, the program stores the new record on 
the diskette and notes its location (sector and character numbers). Next, the 
program locates the record which should precede the new entry. We will call that 
record the preceding record. The new record is set to point where the preceding 
record now points. The pointer for the preceding record is changed to point to the 
new record. 

Deleting a record from a linked list is accomplished by setting the pointer in the 
preceding record equal to the pointer stored in the record to be deleted. 

Indexed Linked Data Files 
For the fastest record lookup, addition, and deletion, you can use an indexed linked 
list. This method uses an index file, so a particular record can be located by key. 
Each data record is linked to the next one, so adding or deleting records only 
requires changing pointers. The indexed linked list method is quite complex and 
requires extensive programming to implement. You should probably not attempt it 
unless you are an advanced programmer. 

READING THE DIRECTORY 
Another mode that can be specified by the OPEN statement is directory access 
(mode 6). Directory access lets you read the disk directory as if it were a data file. 
Each field in the "file" is one line from the directory. 

You must specify a file name in the OPEN statement; it may be an ambiguous file 
name. The "file" pointer will be set to the first character of the first field that matches 
the file name specified. 

When you read from the "file," only the lines containing file names that match the 
specified file name will be returned. File names that do not match will be automati
cally skipped. At the end of the "file," the "number of sectors free" line will be 
returned, regardless of the file name you specified in the OPEN statement, even if 
there was no match. 

The program below will display the entire directory of the diskette in Drive I, 
without using the DOS menu: 

10 DIM A$(ZO) 
19 REM Open disk for director~ access 
20 OPEN 11.6,0,"D:)I(,)I(" 
30 TRAP 90:REM For end of director~ 
~ 0 INPUT t:1; A$ 
50 PRINT A$ 
60 GOTO ~O 

90 END 
lfyou want to list only those names which have a .BAS extension, change line 20 

to read as follows. 



264 A GUIDE TO A TARI 400/800 COMPUTERS 

20 OPEN tl,6,O,"D:)I(.8AS" 

Do not execute any other OPEN statement while the directory is open. If you do, 
the "directory file" pointer will be moved, and subsequent directory file reads will be 
confused. 

MACHINE LANGUAGE PROGRAM FILES 
The DOS menu contains a number of selections which facilitate reading, writing, 
and executing machine language program files. These selections are used to manip
ulate objectfiles, which are files of binary numbers usually created by the AT ARI 
Assembler/ Editor. They can also be used to read and write any block of contiguous 
memory locations without respect to the memory contents. 

Many AT ARI computer users will not need these selections. If you are not 
familiar with assembly language or machine language, some of the terms in this 
section will be foreign to you. You may skip this entire section if you wish. 

SAVING BINARY DATA 
To save areas of memory onto a diskette or cassette, choose DOS menu item K, 
BINARY SA YE. This selection is different in DOS 1.0 and DOS 2.0S. 

Binary Save from DOS 1.0 

When you select DOS menu item K in DOS 1.0, this prompt message appears: 

SAVE-GIVE FILE,START,END 
~ 

You must enter the file name and the starting and ending locations of the block of 
memory you wish to save. The starting and ending locations are treated as hexade
cimal numbers. Here is a sample response: 

SAVE-GIVE FILE,START,END 
PROGRM1.0BJ,3EOO,1AFF 

This will create an object file named PROGRM1.0BJ on Drive 1. The file will 
contain the block of memory between locations 3EOO and 4AFF. 

You may prefix the file name with a disk drive number, like this: 

SAVE-GIVE FILE,START,END 
DZ:PROGRM3.0BJ,3D70,1ZFF 

Files created by DOS menu item K are usually read back into memory by DOS 
menu item L, BIN AR Y LOAD. After loading memory, item L normally returns 
control of the computer to the DOS menu. If you save the binary file in a special 
way, it will automatically be run after it is loaded. 

To save a file so that DOS menu item L will load and automatically run it, you 
must first place the program starting address in memory locations 736 and 737 (2EO 



Chapter 7: THE AT ARI 810 DISK DRIVE 265 

and 2E I hexadecimal) . Before entering the DOS menu, use POKE statements to do 
this. The low byte of the starting address goes in location 736, the high byte in 737. 
The following statements set up a starting address of 16400 (4010 hexadecimal): 

A=16400 

READY 
POKE 736.A-INTIA/2 56)*256 

F,EADY 
POKE 737.INTIA/256) 

After setting up memory locations 736 and 737, enter the DOS menu and choose 
item K. When you specify the file name, append the suffix / A. This causes the 
starting address to be saved along with the binary data. Here is an example : 

SAVE - GIVE FILE.START.END 
PROGR M3.08J/A.3CFF,4EFF 

Binary Save from DOS 2.05 
When you select DOS menu item K in DOS 2.0S, this prompt message appears: 

SAVE--GIVE FILE.START,ENDI.INIT.RUN) 
~ 

You must enter the file name and the starting and ending locations ofthe block of 
memory you wish to save. The starting and ending locations are treated as hexade
cimal numbers . Here is a sample response: 

SAVE--GIVE FILE.START.ENDI.INIT,RUN) 
PROGRM1.0BJ.3EOO,4AFF 

This will create an object file named PROGRM 1.0B1 on Drive I. The file will 
contain the block of memory between locations 3EOO and 4AFF. 

You may prefix the file name with a disk drive number, like this: 

SAVE--GIVE FILE.START.ENDI,INIT,RUN) 
DZ:PROGRM1.0BJ.3D70.42FF 

You may also specify two additional memory locations. The first, the IN IT 
location, is the starting location of an initialization routine. The second, the RUN 
location, is the starting location of the main program. These are locations that DOS 
menu item L will use to automatically execute the program after it loads the 
program into memory. These two addresses are interpreted as hexadecimal values. 
Here is a sample response : 

SAVE--GIVE FILE.START.ENDI.INIT.RUN) 
PROGRM3.08J.3CFF.4EFF.4EOO.4010 



266 A GUIDE TO ATAR1400/800 COMPUTERS 

The initialization address can be omitted with the run address still specified, like 
this: 

SAVE--GIVE FILE,START,ENDC,INIT,RUN) 
PROGRM1.0BJ,3E10,517F,,1800 

If an initialization address is specified, that routine will be executed first. The 
routine must end with an assembly language RTS instruction. At that point, 
execution branches to the run address. 

Merging Binary Files 
In DOS 2.0S, you can use the / A option of DOS menu item C (COPY FILE) with 
binary files created by DOS menu item K (BIN AR Y SAVE). The result is a 
compoundfile. A compound file is simply one or more binary files merged together. 
Compound files allow you to store information from two or more separate, non
contiguous areas of memory, without affecting all of the memory between those 
areas. 

Initialization and run addresses are handled a bit differently in compound files. 
Each initialization address is still used , but only the final run address applies. As 
each part of the compound file is loaded, it is checked for an initialization address. If 
there is one, the initialization routine is executed before the next part of the 
compound file is loaded. The final run address is taken from the last part of the 
compound file. 

LOADING BINARY FILES 
DOS menu item L, BINARY LOAD, loads a file created by DOS menu item K, or 
one created by the Assembler/ Editor cartridge. It will also automatically execute 
the loaded file, if the file was saved with a run address. 

When you choose DOS menu item L, this prompt appears: 

LOAD FROM WHAT FILE? 
~ 

You must enter the name of the binary file to be loaded . Here is an example: 

LOAD FROM WHAT FILE? 
PROGF<M 1. OBJ 

This will load the binary data from file PROGRMI.OBJ into memory at the 
locations specified when the file was created. The file may have been saved by DOS 
menu item K with an automatic execution address. If so, execution begins imme
diately at that address. 

You can specify a disk drive number ahead of the file name, like this: 

LOAD FROM WHAT FILE? 
DZ: PFWGRMZ. DBJ 



Chapter 7 : THE AT ARI 810 DISK DRIVE 267 

The binary file may conflict with the area of memory used by the DOS menu 
program in DOS 2.0S. If this happens, file MEM.SA V must exist on the diskette in 
Drive 1. In this case, the part of the binary file that conflicts with the DOS menu 
program is saved on file MEM.SA V until the binary file is executed. If the required 
MEM.SA V is absent, the message NEED MEM.SA V TO LOAD THIS FILE 
appears. 

Preventing Automatic Execution 
In DOS 2.0S, you can prevent automatic execution of a file that was created with an 
initialization or run address. All you do is append the suffix / N to the file name. 
Here is an example: 

LOAD FROM WHAT FILE? 
F'FWGHM3. DE:J/N 

EXECUTING A LOADED PROGRAM 
To execute a machine language (object) program that is in memory, choose DOS 
menu item M, RUN AT ADDRESS. This prompt message appears: 

HUN FROM WHAT ADDRES S? 
~ 

You must enter the starting address of the program. The address you enter is 
treated as a hexadecimal number. Be very careful. Entering the wrong address could 
cause the system to hang up . In that case you must turn the system off and back on 
again. 

The DOS menu branches to the machine language program with an assembly 
language JSR instruction. If the machine language program ends with an assembly 
language RTS instruction, control returns to the DOS menu. 

THE AUTORUN.SYS FILE 
DOS 2.0S recognizes a special binary file name, AUTORUN.SYS. If this file is 
present when you boot DOS 2.0S , it will be loaded automatically. If it was saved 
with initialization or run addresses , it will be executed automatically as well. 

There is a standard AUTORUN.SYS file. It contains a program which estab
lishes an RS-232 serial handler program in memory. The RS-232 handler is required 
in order to use the serial ports of the AT ARI 850 Interface Module. 

You can have your own machine language program automatically loaded and 
run as part of the power-on, DOS boot procedure. Simply use DOS menu item K to 
save it on a binary file named AUTORUN.SYS. If your program ends with an 
assembly language RTS instruction , control transfers to a built-in initialization 
routine. Among other things , the initialization routine enables the use of the 
SYSTEM RESET key . If your program does not end with an R TS instruction, it should 
initialize memory location 580 (244 hexadecimal) to 0, and memory location 9 to I. 



268 A GUIDE TO AT ARI 4001800 COMPUTERS 

MODIFYING DOS 2.05 
This section describes two simple modifications you can make to DOS 2.0S. These 
modifications are valid only on DOS 2.0S. Do not make them on DOS 1.0. 

Freeing Memory with DOS 2.05 
DOS 2.0S is designed to support as many as four AT ARI 810 Disk Drives. A 
separate disk buffer is reserved in memory for each drive. If you have fewer than 
four drives, you can increase the memory available to your BASIC programs. Each 
drive you don't use will yield 128 bytes (characters) of memory. 

You can free the memory set aside for unused drives. You must change the value 
stored in memory location 1802 to reflect the actual number of drives connected to 
your computer. 

Make sure the BASIC cartridge is in the computer. Then boot DOS by turning 
the AT ARI 400 / 800 computer's power off and back on again. When the READY 
message appears, type this command: 

?F'Ea(1802) 

The computer will print a code number that indicates the number of drives DOS 
2.0S is currently set up to use. Table 7-2 translates the code into the number of 
drives. Use Table 7-2 to determine the code for the number of drives you actually 
have. Then use a PO K E statement to change location 1802 to the code shown in the 
table. For example, to change to a one-drive system, type this: 

F'Df([ 1802 t 1 

Next, type the DOS command to get the DOS menu. Put a blank diskette in 
Drive I. Format the diskette with DOS menu item I if necessary. Then write the disk 
operating system program out to the diskette with DOS menu item H. You have just 
created a new version of the disk operating system on diskette. Use this as your new 
master diskette. 

Now every time you boot from the diskette you just created, the memory savings 

TABLE 7-2. Disk Drives Allowed by DOS 

Number of 
Drives 

• Values for memory location 1802 

I 
2 
3 
4 

Code 
Value· 

I 
3 
7 

15 



Chapter 7: THE ATARI 810 DISK DRIVE 269 

will be in effect. If you boot from an old diskette. the memory savings will not be in 
effect. 

Allowing More Files Open at Once 
Normally. only three data files can be open simultaneously. When you boot DOS, it 
looks at memory location 180 I. The num ber it finds there is the limit on files open. 

With DOS 2.0S. you can change memory loca tion 180 I to the number offiles you 
want to have open simultaneously. The maximum is seven . Each file requires an 
input / output channel. and there are only seven of those available. There is a penalty 
for increasing the limit. however. For each file you add. you lose 128 bytes of 
memory. The memory is set aside for a file buffer when you boot DOS. 

Make sure the BASIC cartridge is in the computer. Then boot DOS by turning 
the AT ARI 400 800 computer power off and back on again. When the READY 
message appears. type this command: 

? F'EEI( (l80 1) 

The computer will print the number of files it currently allows open at one time. 
The number will probably be 3. Use a POKE statement to change location 180 I to 
the number you want; remember. 7 is the practical maximum. For example. to 
cause seven files to be open simultaneously. type this: 

F'm{[ 11301,7 

Next, type the DOS command to get the DOS menu. Put a blank diskette in 
Drive I . Format the diskette with DOS menu item I if necessary. Then write the disk 
operating system program out to the diskette with DOS menu item H. You have just 
created a new version of the disk operating system on diskette. Use this as your new 
master diskette. 

Now every time you boot from the diskette you just created. the new limit on 
simultaneous files open wi ll be in effect. If you boot from an old diskette. the old 
limit will be in effect. 

DISK CRASH 
To close the chapter, we will describe one of the worst disk calamities that can occur, 
a disk crash. There are two types of disk crashes: hard crashes and soft crashes. 
Hard crashes happen when the diskette has a phys ical defect, like a rip or a piece of 
dirt on it. A hard crash can cause damage to the read / write head inside the drive. 
The damaged head can, in turn. damage more diskettes . For this reason, a lways 
handle diskettes with care. 

A soft crash occurs when the data on the diskette becomes garbled. This most 
frequently happens when one or more files have been written to but not closed, a 
different diskette is placed in the drive, and the files from the first diskette are closed. 
To fully appreciate the resulting mess you must experience it. 





8 
INTRODUCTORY 

GRAPHICS 

Whatever you use your AT ARI computer for , its graphics capabilities can enhance 
any program you write. This chapter describes the various graphics modes you can 
use with BASIC. In addition, you will learn a few tricks which will help you squeeze 
more performance out of your computer. 

There are nine graphics modes, numbered from 0 to 8, that you can use with 
BASIC. You activate these graphics modes with the GRAPHICS statement, fol
lowed by the number of the mode to activate. You will see later that variations on 
these nine modes exist. For now, it is best to concentrate on some basic concepts 
which you will need to know before going any further. 

COLOR REGISTERS 
In any graphics mode, you can control one or more foreground colors (text or 
graphics color) , the background color, and the border color which frames the 
background. The AT ARI computer has color registers - memory locations which 
set the foreground , background , and border colors. For instance, press the RESET 

key and enter this: 

~;[ TCOL.or.;: 2, () , () 

The background color turns black. Here, the BASIC statement SETCOLOR 
changed the value of the register controlling the background color. In effect, the 

271 



272 A GUIDE TO ATAR1400/800 COMPUTERS 

screen color changed instantly. The border color will change to green if you enter 
this: 

SETCOLCm 4,12,8 

The following statement turns the text black: 

SETCDLClF( :l, 0 ,0 

Unlike other personal computers, which give you an irrevocable color choice 
before drawing graphics, the AT ARI computer allows you to change colors on the 
screen by using the SETCOLOR statement at any time. With this approach it is 
possible to draw invisibly on the screen, change a color register 's value. and 
illuminate a fully-drawn graphics image in an instant. 

Using SETCOLOR 
The numbers (or numeric expressions) that follow SETCOLOR select which color 
register to change, what color to change it to, and what the brightness (or lumi
nance) of that color will be. From one graphics mode to the next, however, different 
registers control foreground, background, and border colors. 

The first number after SETCOLOR indicates which register to set; registers are 
numbered from 0 to 4. The second number selects the color itself; colors are 
numbered from 0 to 15. Table 8-1 lists the colors available, and their numeric values 
for use with the SETCOLOR statement. The third and last number sets the 
luminance from 0 (darkest) to 14 (brightest). Only even-numbered luminance 
settings are meaningful. This number can actually exceed 14, but the color register 
will ignore the excess value over 14. With the colors and luminance settings 
available, up to 128 different shades of color are possible. The following short 
program will give you some idea of the possible color combinations: 

10 GHAf'HICS 0 
20 lIST :HEM PUT SOME TEXT ON THE SCRE 
EN 
30 FOR I=() TO 15 
40 SET COLOR 2,I,0:REM SET BACKGROUND C 
OlOR 
50 SETCOlOR 4,15-I,O:REM SET BORDER CO 
lOR 
60 FOR J=O TO 14 STEP 2 
70 SETCOlOR 2,I,J:REM INCREASE BACKGRO 
UND lUMINANCE 
80 SETCOlOR 0,0,14-J:HEM DECREASE TEXT 

lUMINANCE 
90 SETCOlOR 4,15-I,J:REM INCREASE BORD 
ER LUMINANCE 
100 NEXT J 
110 NEXT I 

The five color registers have preassigned color numbers and luminance values. 
These are listed in Table 8-2. You can change the color number and luminance 
values with the SETCOLOR statement. 



Chapter 8: INTRODUCTORY GRAPHICS 273 

TABLE 8-1. Color Numbers Used with SETCOLOR 

Number Color 

0 Grey 
I Gold 
2 Orange 
3 Red 
4 Pink 
5 Violet 
6 Blue-Purple 
7 Blue 

Number 

8 
9 

10 
II 
12 
13 
14 
15 

TABLE 8-2. Default (Preassigned) Color Register Settings 

Register Color Luminance 
Number Number Value 

0 2 8 
I 12 10 
2 9 4 
3 4 6 
4 0 0 

The COLOR Statement 

Color 

Light Blue 
Blue-Green 
Aqua 
Green-Blue 
Green 
Yellow-Green 
Orange-Green 
Orange 

Actual 
Screen Color 

Orange 
Aqua 
Blue 
Light Red 
Black 

The COLOR statement should not be confused with the SETCOLOR statement. In 
some graphics modes, multiple foreground color registers are available. The 
COLOR statement selects one of the available color registers and uses that color 
register to draw with. For instance , in graphics mode 7 it is possible to plot or draw 
graphics in three foreground colors. The COLOR statement selects which of the 
three possible registers to use when plotting points or drawing lines. Therefore, the 
COLOR statement is often unnecessary in text modes, or in other modes which 
have only one possible foreground color register. 

The numeric expression after COLOR will often select different color registers, 
depending on the current graphics mode. One consistent rule with COLOR is that 
COLOR 0 will always select the background color register, while COLOR I will 
always select the foreground color register. Tables 8-3 and 8-4 enumerate the color 
registers selected by various COLOR statements in the different graphics modes. 

In graphics mode 0 (the normal text mode) you cannot draw lines or plot points. 
The COLOR statement does not select a color to plot or draw with. Instead , by 
placing the code number of an AT ASCII character after COLOR, you can select a 
text or graphics character to plot with . For bar graphs , or for extensive use of the 
mode 0 character graphics , the COLOR statement can be very useful. 



274 A GUIDE TO ATARI 400/800 COMPUTERS 

TABLE 8-3. Graphics Modes Summary 

~ = 
~ 

0 
~ e ~ ~ ~cc .., 
" ~ " " .Q ..,1;; 1;; ..!!o ~ E :: x ~.~ = .- . .., "...l ~ 

~ " " .- ~ " " " .. " ~o ... 
.~ ;z :Q CIJ = eel: o " ~eI: ... = E ~eI: ~u ~'i .. z: " I:.! .. ~ .. ~ " ~ 

l~ "".., o .- ~-= ~.9 ~..2 'E.E .!a .c E _ 
.. 0 - .. ~ 0 ~.-= " ... .- ... ~::ol 

o ~ u u o 0 .. 0 o 0 ::olE!!. o~ U< CIJ_ I'-<U =U =U eI:~ 

Normal text 0 I co lor, 40 X 24 I (Color is not 2 4 . 992 
2 lumina nces selectable) 

Double-width I 5 20 X 20 (split) O. I , 2. 3 4 4 (see 674 (split ) 

text 20 X24 (fu ll ) Table 8-4) 672 (full) 

Double-width, 2 5 lO X 20 (split) 0, I, 2, 3 4 4 (see 424 (split) 
double-height 12X 20 (full) Tab le 8-4) 420 (full) 
text 

Fou r-color 3 4 40 X 20 (split) 0, I, 2 4 4 CO LOR I: Mode 3: 

graphics 40 X 24 (full) registe r 0 434(split) 

5 4 80X40(split) 0, I . 2 4 4 CO LOR 2: 432 (full ) 

80 X 48 (full ) register I Mode 5: 
COLOR 3: 1174(split) 

7 4 160 X80(split) 0, I. 2 4 4 register 2 11 76 (full ) 
160 X 96 (full) COLOR 0: Mode 7: 

register 4 4 190(split) 
4200 (full) 

Two-color 4 2 80 X 40 (split) 0 4 4 CO LOR I: Mode 4: 
graphics 80 X 48 (full) register 0 694(split) 

6 2 160 X 80 (spli t) 0 4 4 COLOR 0: 696 (full ) 

160 X 96 (full) register 4 Mode 6: 
2174 (split) 
2184(full) 

High- 8 I color. 320 X 160 (split ) I (color is not 2 4 COLOR I: 8112(split) 
reso lutio n 2 luminances 320 X I92 (full ) selec table) register I 8138(full) 
graphics COLOR 0: 

register 2 

• In Mode 0, COLOR will accept an AT ASCII characte r to plot wi th. For example, COLOR ASq" !") in Mode 0, 
followed by PLOT or ORA WTO statements, wi ll place! characters on the screen. 

TABLE 8-4. Color Register Assignme nts, Grap hics Modes I and 2 

ATASCII Color Register 
Characters Values Assigned 

Upper-case 32-90 Normal: 0 
alphabet (A-Z), 160-218 Inverse" : 2 
numbers, special 
characters (! $ + -) 

Lower-case· 61- 122 Normal: I 
alphabet 225-250 Inve rse": 3 

"Lower-case and inverse characters display as normal , upper-case text. They a re ass igned to 
different registers, however. 



Chapter 8: INTRODUCTORY GRAPHICS 275 

GRAPHICS STATEMENT OPTIONS 
Graphics modes 1 through 8 set a split screen when the GRAPHICS statement 
executes . Graphics mode 0 text is confined to the four lines at the bottom of the 
screen. This is the text windo w, and it is not always needed for displaying graphics. 
You can eliminate the text window altogether, thus allowing you more vertical 
display lines for graphics. 

To set up a graphics screen without a text window, add 16 to the expression after 
GRAPHICS. For instance, the statement GRAPHICS 24 would put the display 
into high-resolution graphics mode 8, with no text window. This yields 32 more 
high-resolution lines than the statement GRAPHICS 8. Since the text window is 
not used , the graphics mode selected makes use ofthe remaining part of the display 
normally allocated to the text window. 

By adding 32 to the expression after GRAPHICS, you eliminate the automatic 
screen clearing normally performed by a GRAPHICS statement. However, don't 
get the idea that you can display normal (mode 0) text, then execute GRAPHICS 40 
(graphics mode 8 with 32 added) , and have the text stay on the screen. Once the new 
graphics mode is in effect, anything on the screen is interpreted as being in the new 
mode. To find out more about mixing graphics modes in your program, consult the 
section on inserting text into graphics displays later in this chapter. 

To combine the options of full-screen graphics without destroying the previous 
contents of the graphics page, add 48 to the graphics mode desired. A good 
application of this option is to selectively open and close the text window at 
particular points in the program, as shown here : 

10 GRAPHICS 8+16:REM FULL-SCREEN GRAPH 
ICS 
ZO COLOR 1:PLOT 0,0 
30 DRAWTO 319,191:REM DRAW A DIAGONAL 
40 FOR DLAY~l TO ZOO:NEXT DLAY:REM DEL 
AY LOOP 
50 GRAPHICS 8+3Z:REM OPEN THE TEXT WI~ 
DOW 
60 PRINT "A DIAGONAL LINE" 
70 FOR DLAY=l TO ZOO:NEXT DLAY:REM DEL 
AY LOOP 
SO GRAPHICS 8+4S:REM NOW CLOSE THE TEX 
T WINDOW 
90 GO TO 40 

The screen flickers when the AT ARI computer switches graphics modes, but the 
unsightliness may be worth the trouble. 

Using the Text Window 
PRINT and INPUT statements use the text window for normal data entry and 
display. The computer will force a program out of a full-screen graphics mode in 



276 A GUIDE TO ATAR1400/800 COMPUTERS 

order to display PRINT statements, accept responses to INPUT statements, or 
display error messages. The computer erases the screen and returns to graphics 
mode O. You can program around this in graphics modes I and 2, which normally 
display text, but other graphics modes will be more difficult to use with full-screen 
graphics and some kind of text display or data entry. The method used earlier to 
open and close the text window might be useful in this case. 

EXPANDED TEXT: MODES 1 AND 2 

In graphics modes I and 2, the text on the screen is expanded. A GRAPHICS I 
statement sets up a screen 20 characters wide and 20 rows deep. GRAPHICS 2 
creates a screen 20 characters wide and 10 rows deep. In full-screen modes 1 and 2, 
24 and 12 rows are available, respectively. 

Displaying Expanded Text 
In graphics modes 1 and 2, lower-case text and inverse video characters display on 
the screen as normal upper-case text. The two high-order bits of each AT ASCII 
character, normally used to identify lower-case or inverse video text, are used as 
color register selectors in these modes. In the text window, both upper-and lower
case characters will display. In these expanded text modes, PRINT statements can 
go to either the screen or the text window; therefore, you have to use different 
syntax to place data on the screen. Try this short program: 

10 GRAPHICS 1 
20 PFUNT :1:6;" E:·:P aNdEd TeXt" 
30 PRINT "MODE 0 TEXT" 

Expanded text displays at the top of the screen, and then normal text displays in 
the text window. The first PRINT statement directs output to the mode I area. Any 
time you want to display expanded text, use PRINT #6 in this mode. 

If you want to eliminate the text window and have the entire screen contain 
expanded text , use GRAPHICS 17 to set up a screen with 24 lines of 20 characters, 
and use GRAPHICS 18 to display 12 lines of 20 characters. 

Color Registers in Modes 1 and 2 
Color register 4 is used to control the background and border colors. SETCOLOR 
doesn't control the colors of the expanded text on the screen, however. Instead, the 
A T ASCII character set is divided among the color registers . 

As mentioned earlier, the high-order bits of each byte used for expanded text will 
assign a color register. Although this appears to be a strange way to assign color 
registers , you can take advantage of this feature to make screen displays much more 
dynamic than mode 0 displays. Enter and run the following program. 



Chapter 8: INTRODUCTORY GRAPHICS 277 

10 GRAPHICS 17:RE M FULL-SCREEN 
2. 0 F'F([NT ,.,6;" lI:E3l1:!:lll:Cll:~lI:!:l;4(~~lI:Cll:!:l " 
3 0 PRINT 16;"~ )1(" 

40 F'F\INT "'6; " * Marquee :::I" 
50 F'FUNT "'6;"~ lI:" 
60 PRINT 16;" lI:iJ;4(iJlI:~lI:::JlI:iJlI:~lI:::JlI:~C" 
7 0 SETCOLOR 2,1,8:REM SET THE NORMAL - V 
IDEO M;TERIS~(~; 

SO SETCOLOR 0,10,S:REM SET THE REVERSE 
ASTERIS~(S 

90 FOR DLAY =l TO 50:NEXT DLAY 
100 SETCOLOR 0,1,8:REM RESET THE REVER 
SE ASTERIS~(S 
110 SETCOLOR 2,10,S:REM RE SET THE NORM 
AL ASTERIS~(S 

12 0 FOR DLAY =l TO 50:NEXT DLAY 
130 GOTO 70 

GRAPHICS PROGRAMMING STATEMENTS 
In graphics modes 2 through 8, four BAS IC statements - PLOT, ORA WTO, 
LOCATE and POSITION - control graphics input and output. You can actually 
use these statements in any graphics mode, but you wouldn't normally use them to 
display or manipulate text. 

PLOT and DRAWTO 
The PLOT and ORA WTO statements enable you to plot points and draw lines on 
the graphics screen. The PLOT statement illuminates a single point on the screen. 
The following example, in graphics mode 3, plots random points on the screen in all 
of the available colors: 

10 GRAPHICS 3+16 
20 COLOR RND(0)lI:4:REM CHOOSE A RANDOM 
FOREGROUND REGISTER 
30 PLOT RNDCO)lI:39,RNDCO) lI: 19:REH PLOT R 
ANDOH POINT 
10 GOTO 20 

ORA WTO can best be illustrated by this graphics mode 8 program: 

10 GF(APHICS B+1 6 
2 0 SETCOLOR 2,0,0:REH BLACK BACKGROUND 
30 COLOR l:REM SELECT FOREGROUND REGIS 
TEF~ 

40 FOR Y=O TO 191 STEP 3 
50 PLOT O,Y 
60 [)F~A~TO '(,191 
70 NEXT Y 
80 G(]TO 80 

Because ORA WTO indica tes only the column and row to draw to , the PLOT 



278 A GUIDE TO ATARI 4001800 COMPUTERS 

statement at line 40 is necessary in order to show which column and row to draw 
from when connecting the line. 

POSITION and LOCATE 
The POSITION statement is functionally similar to PLOT. POSITION, however, 
sets the coordinates without plotting. In the last example program, line 40 could be 
rewritten as follows : 

"to POSITION O,Y 

Replacing this statement in the DRA WTO example program would produce a 
slightly different result. Coordinate (0 , Y) would not be illuminated. POSITION can 
also be used to move the cursor in graphics mode 0, I, or 2. 

The LOCA TE statement reads a point that you specify on the graphics screen and 
passes its value back to a BASIC variable. Here is an example: 

10 LOCATE 10,1"t,X 

This LOCATE statement reads a value from the point at the eleventh row and 
fifteenth column. This value identifies the color selected for the graphics point. The 
value corresponds to the color statement value , which determines the color register 
used for the graphics point. Table 8-3 shows the possible color values that LOCATE 
will return to the variable. 

FOUR-COLOR GRAPHICS: MODES 3, 5, AND 7 

Three graphics modes - 3, 5, and 7 - have three foreground color registers 
available, as well as one color register for the background and border color. The 
three modes differ in resolution, and therefore in the amount of memory they use. 

Notice that you can select the background color register, using a COLOR 0 
statement, in order to erase selected parts of a graphics image. Here is an example: 

10 GRAPHICS 7+16 
20 SETCOLOR 2,0,0:REM BLACK BACKGROUND 
30 COLOR l:REM SELECT FOREGROUND REGIS 
TER 
10 STEPSIZE=1:REM DRA~ EVERY LINE 
50 GOSUB 100 
60 COLOR O:REM DRA~ ~ITH BACKGROUND CO 
LOr~ 

70 STEPSIZE=6:REM UNDRA~ EVERY SIXTH L 
INE 
BO GOSUB lOO 
90 GOTO 90 
100 REM PLOT SUBROUTINE 
110 FOR Y- O TO 95 STEP STEPSIZE:REM DR 
AW THE FIGUr~E 
120 PLOT O,Y 
130 DRA~TO Y,95 
110 NEXT Y 
15 0 F~ETUI\N 



Chapter 8: INTRODUCTORY GRAPHICS 279 

Color Registers in Modes 3, 5, and 7 

Background and border colors are controlled by color register 4. You can select 
register 0, I, or 2 for foreground colors. Color register 3 is not used in four-color 
modes. 

Graphics Mode 3 

Executing a GRAPHICS 3 statement will turn the screen into 20 rows of 40 
graphics cells. This is the lowest-resolution graphics mode on the AT ARI compu
ter. This mode allows you to plot points and draw lines in three different foreground 
colors. You will need to use the COLOR statement to select the color register to plot 
and draw with. This graphics mode is ideal for displaying large block letters and 
creating simple games. 

TWO-COLOR GRAPHICS: MODES 4 AND 6 

Modes 4 and 6 allow one foreground and one background / border color register. 
These modes have resolution equivalent to that of modes 5 and 7; however, modes 4 
and 6 allocate less memory than the four-color modes. Four-color modes need two 
bits of memory per graphics point for color register selection. In a two-color mode, 
only one bit is needed. If a bit in the screen memory is set to I, this selects the 
foreground color register; otherwise, the background color is assumed. As a result, 
memory consumption is nearly half that of four-color modes. 

HIGH-RESOLUTION GRAPHICS: MODE 8 

Graphics mode 8 offers the highest resolution possible on the AT ARI computer, 
but it also costs the most in terms of memory consumption. Resolution in split
screen mode is 160 rows, with 320 points across. In full-screen mode, 192 rows of 
320 points are available. In this mode, the foreground color cannot be selected. 
In other words, the background / border color register controls the color of the 
graphics points. However , you can set the luminance of the foreground color 
register. 

Extra Colors in Mode 8 
Technically, graphics mode 8 allows only one foreground color, and that color 
really is not unique from that chosen for the graphics screen background. It is 
possible, however, to obtain other colors by manipulating the patterns of bits which 
make up each point on the graphics screen. 

In graphics mode 8, the screen has 320 separate horizontal positions. Each of 
these 320 picture cells (or pixels) equals one half of a color cycle. A color cycle is 
actually the amount of time the television receiver takes to illuminate two graphics 
pixels (Figure 8-1). 



2S0 A GUIDE TO AT ARI -lOa /sao COMPUTERS 

One One 
co lo r co lor 
cycle cycle 
~ 

Electron beam ~l -.! 

FIGURE 8-1. Color cycles and pixels 

I 

:.:.::,,·~ .. :~,.:~.:l.;.::.'.::; ... ::.:: .. · .. :~ ~ili~* 
. . ~ .. ;.l . .t .. ~:;~ .. \:·. ~:~~: :~.:< 

'-v-" 
Two 
pixeb 

By cleverly staggering the illuminated pixels , you will cause a color phase shift, 
which is a by-product of changing the luminance of a television signal across color 
cycle boundaries. Remember that the computer is not changing the color - only the 
luminance of the signal. This forces a color change on the television set. Table 8-5 
lists the bit patterns that generate colors produced by variations in luminance . The 
exact color seen on the TV screen will be differe nt for different TV sets. 

The following program will generate the luminance-varied colors in horizontal 
bands down the screen: 

5 GRAPHICS a:SETCOLOR 1,0,15 
10 REM 4-COLOR MODE 8 
20 DATA 85,170,255 
30 SCRMEM=PEEK(88)+PEEK(89)*256 
40 READ X:PRINT "BIT VALUE=";X 
80 FOR I=SCRMEM TO SCRMEM+l000 
85 REM CYCLE THROUGH THE COLORS 
90 F'Df(E I, X 
100 NEXT I 
105 SCRMEM=SCRMEM+l000 
110 IF X=255 THEN STOP 
120 GOTO 40 

Using PLOT and DRAWTO with Extra Colors 
The luminance-varied, or phase-shifted, colors can be overdrawn with PLOT and 
DRA WTO statements. After you run the example program listed above, type in a 
few PLOT and DRA WTO statements . Then change the plotting color by alter
nately typing COLOR I and COLOR O. This method is good for setting back
ground colors , but it is unwieldy for more advanced uses. 



Chapter 8: INTRODUCTORY GRAPHICS 281 

TABLE 8-5. Bit Patterns for Luminance-Varied Colors 

Bit pattern 

00 
01 
10 
I I 

Color generated 

No illumination (mode 8 background) 
Solid phase-shifted color # I 
Solid phase-shifted color #2 
White (mode 8 fo reground) 

In order to predictably use graphics plotting statements with extra colors, you 
can simulate graphics mode 7 when the graphics screen is actually in mode 8. 
Graphics mode 7 allows four color registers. In this mode, each color register is two 
bits wide. By loading each color register with the bit pattern desired , you can use 
COLOR statements to select which of these extra mode 8 colors to use. 

By using POKE statements to change a few memory locations, you can retain the 
mode 8 screen and manipulate it as if you had more colors available, as in mode 7. 
The following program illustrates this graphics mode 7 simulation with full mode 8 
resolution: 

5 DEG lREM USE DEGREES 
1 0 GF~APHICS 8 
20 POKE 87 t 7lREM POKE MODE 7 TO THE OR 
EF~ATlNG SY~3TEM 
30 SETCOLOR Z t l1 t l1lSETCOLOR l t Ot OlR EM 

USE THE MODE 8 COLOR REGISTERS 
10 X=60lY=10lREM SET COORDINATES 
50 FOR Rl=12 TO 36 STEP 3 
60 COLOR llR=RllGOSUB 210lREM PLACE 81 
NARY '01' DATA ON SCREEN 
70 COLOR ZlR=Rl+1lGOSUB 210lREM PLACE 
BINARY '10' DATA ON SCREEN 
80 COLOR 3lR=Rl+2lGOSUB 210lREM PLACE 
BINARY ' 11' DATA ON SCREEN 
90 NEXT Rl 
100 STOP 
200 REM PLOT A CIRCLE CAPPEARS ELLIPTI 
CAL DUE TO MODE 7 SIMULATIONl 
210 PLOT X+F'tY 
220 FOR ANG=O TO 360 STEP 18 
230 DRAWTO X+R*COSCANGltY+R*SINCANGl 
210 NEXT ANG 
250 RETURN 

The disadvantage of this method is the error message you get when trying to use 
PLOT or ORA WTO beyond the screen boundaries that are normal for graphics 
mode 7. On the horizontal axis , each point plotted is two pixels wide. Therefore, the 
screen resolution is cut in half on the horizontal axis (to 160 points) , even though 
PLOT and ORA WTO statements can cross the full width of the screen. In mode 7, a 
maximum of 96 rows are available. In graphics mode 8, 192 rows are available. 



282 A GUIDE TO ATARI 400/800 COMPUTERS 

Although the effective horizontal resolution is halved in this mode, the screen will 
still hold 192 rows. This leaves 96 rows that you can't use on the bottom half of the 
screen. This is an unfortunate side effect , caused by trying to fool the computer. To 
get around this problem, you have to again deceive the computer with some POKE 
statements. 

Memory location 89 holds a pointer to the beginning memory address of the 
graphics screen. By modifying this pointer, it is possible to use the lower 96 rows. 
The progra m listed below contains a subroutine at lines 1200 to 1290 which enables 
you to plot or draw on either portion of the screen. 

10 DEG :REM USE DEGREES 
20 GF~APHICE; D 
30 SETCOLOR 2.0,0 
40 POf(E 87,7 
50 FOR M=60 TO 120 STEP 60 
6 0 F()F~ 1=: 1 TO 3 
70 coum I 
80 F~=20 

90 X=30+I*8+R:Y=M:REM SET RADIUS 
100 PLT=l:GOSUB 1200 
110 FOR ANG=O TO 360 STEP 12 
120 PLT=O 
130 X=I*8+30+R*COSCANG):Y=M+R*SINCANG) 
140 GOSl.JE: 1200 
1~50 NEXT ANG 
160 NE XT I 
170 NEXT M 
180 STOP 
1190 REM *~************************** 
1191 REM * 4- COLOR MODE 8 GRAPHICS * 
1192 REM * SUBROUTINES * 
1193 REM. ======================= * 
1194 REM *Y=ROW CO - 192),X=COLCO-159)* 
1195 REM *PLT=OCDRAWTO),PLT=lCPLOT) * 
1196 REM *************************.** 
1200 SA=PEEK(89)+15:REM START OF SCREE 
N MEMOF~Y 
1210 IF PLT=O THEN GOTO 1260 
1220 IF Y(96 THEN PLOT X,Y:RE TURN 
1230 P()f([ 89. SA 
1240 PLOT X.Y-96 
12~50 GOTD 1:300 
1260 IF CX (8 0) AND CY(96) THEN ORAWTD 
X. Y : RETUF~N 
1280 PDf(E 89, SA 
1290 ORAWTO X,Y-96 
1300 POKE 89.SA-15 
131 0 F~ETlJF~N 

To use this subroutine, set variable X to the column (0 to 160), set variable Y to 
the row (0 to 191), and variable PL T to I for plotting orO for drawing. If you use this 



Chapter 8: INTRODUCTORY GRAPHICS 283 

subroutine for drawing, make sure that you have already performed a PLOT 
statement in the same region of the screen. 

INSERTING TEXT ON THE GRAPHICS SCREEN 
The text window is always available for placing text on the same screen as graphics , 
but no built-in method exists for overlaying text on the graphics images. It is easy to 
insert text on a two-color graphics screen (graphics mode 4, 6, or 8). The technique 
involves using a section of memory reserved for the character set. 

A bit map of the character set resides in memory; location 756 contains the 
starting address of the character set as a multi pie of 256. Each character is defined in 
eight-byte segments. Once located in the bit map, that character's binary representa
tion can be transferred, byte by byte, to predefined coordinates on the graphics 
screen. The following program illustrates this technique: 

10 DIM TXT$(6't) 
20 GF,APHICS 8 
30 INPUT X,y,TXT$ 
50 GOSUB 2000 
60 GOTO 30 
1995 REM TEXT CONVERSION SUBROUTINE 
2000 SA=PEEK(89)*256+PEEK(8S):REM TOP 
OF SCREEN RAM 
2010 MODE=PEEK(87):REM DETERMINE GRAPH 
ICS MODE 
2020 IF MODE=8 THEN COLS='t0:RO~S=192 
2030 IF MODE=6 THEN COLS=20:RO~S=96 
20't0 IF MODE='t THEN COLS=10:RO~S=2't 
2050 IF Y>RO~S OR X>COLS THEN RETURN 
2060 START =SA+Y*COLS+X:REM START ADDRE 
55 FOR DISPLAY 
2070 FOR El=l TO LEN(TXTS) 
2080 GOSLJB 2200 
2090 CHARSET=PEEK(756)*256:REM READ CH 
ARACTER SET VECTOR 
2100 CHARSET=CHARSET+E3*8 
2110 FOR E2=7 TO 0 STEP -1 
2120 POKE START+E2*COLS,PEEK(CHARSET+E 
2) 
2130 NEXT E2 
21't0 X=X+l:IF X) =COLS THEN START=START 
+COLS*S:X=O:REM SCROLL TO NEXT LINE 
2150 START=START+l 
2160 NEXT El 
2170 RETURN 
2195 REM ATASCII CONVERSION ROUTINE 
2200 E3=ASC(TXT$(El,El» 
2210 IF (E3(32) OR (E3 ) 127 AND E3(160) 

THEN E3=E3+6't:RETURN 
2220 IF E3)31 AND E3(96 THEN E3=E3-32 
2230 RETURN 



284 A GUIDE TO ATAR1400/800 COMPUTERS 

Variables X and Y should be set to the column and row where the text will start 
displaying. TXT$ can be dimensioned to some other length. 

Lines 2000 to 2060 determine the graphics mode in effect, set the screen width for 
text, and calculate the starting memory address for text insertion . The subroutine at 
lines 2200 to 2230 converts the character code of each letter in TXT$ to an offset; 
that is, the number of bytes from the beginning of the character set table to the 
character's actual binary definition. 

Lines 2100 through 2130 transfer the character's eight-byte, bit-mapped defini
tion to the appropriate area of the screen. Line 2140 scrolls the text to the next line if 
the next character will not fit on the same line. 

The string variable TXT$ holds the string to display, and variables X and Y store 
the column and row coordinates for the first letter to display. The column coordi
nate can range from 0 to the number of columns available in the current mode. In 
mode 4, the screen will fit ten characters across; in mode 6, 20 characters fit across 
(similar to mode 2) , and in mode 8, 40 characters will fit on each row. The row 
number can range from 0 to the maximum number of rows available in the current 
graphics mode. Therefore, you can place graphics much more flexibly on the 
vertical axis. 

This subroutine is fairly slow because of the PEEK and POKE statements used, 
but it is possible to speed up the transfer of data from the character set table to the 
graphics screen by writing an assembly language program to convert the character 
data. 

With this subroutine it is possible to display upper- and lower-case text and 
graphics characters. Inverse video characters will display unpredictably. 

FILLING THE SCREEN WITH SOUD COLORS 
Along with the standard BASIC statements for graphics, a special command to the 
operating system, called the XIO statement, will fill the screen boundary with a solid 
color. The XIO statement requires some preparation before use, however. The 
following BASIC statements set up the screen and draw a shape: 

10 GF,APHICS 7 
20 COLOR 1 
30 PLOT 70.40 
40 SET COLOR Z.O.O 
50 DRAW TO 35.0 
60 DF,AWTO 3'1. 0 
70 POSITION 0.40 
80 pm{E 765.1 
90 XIO 1FJ.t6.0.0. I S:" 

Lines 80 and 90 pertain to the actual use of the XIO statement. The POKE 
statement on line 80 uses the same number as a number used for color register 
selection in the COLOR statement. Use Table 8-3 to select values to use with the 
POKE statement. The fill color will respond to SETCOLOR statements as normal 



Chapter 8: INTRODUCTORY GRAPHICS 285 

point or line graphics on the screen. The XIO statement on line 90 will always have 
the same format; use it exactly as shown in the example program. 

Using the XIO Fill Command 
The XIO fill command is designed to work with four-sided figures. However, if you 
run the example above you will see what appears to be a triangle. Notice the 
ORA WTO statement from coordinates (35, 0) to (34, 0). This command will act in a 
predictable fashion only if you follow these steps: 

I. Use the PLOT statement to plot a point at the lower right-hand corner of the figure . 

2. Use the DRA WTO statement to draw a line to the upper right-hand corner. 

3. Draw a line to the upper left-hand corner. 

4. Use the POSITION statement to move the cursor to the lower right-hand corner. 

5. Use the POKE statement to place a number, equal to the COLOR statement used for 
plotting, at memory location 765. 

6. Perform XIO #6,0,0 , "S". 

These statements can be executed in the order specified, or you can reverse the 
order of steps I through 4. XIO works unpredictably if the first five steps are not 
performed in the proper sequence. XIO has other limitations. First, if any illumi
nated graphics pixels exist between the left and right sides of the figure to be filled, 
XIO will stop filling the figure at that point. To understand this, enter the following 
statement along with the example program at the beginning of this section: 

15 PLDT 25,25 

The fill command works from left to right only. If the figure defined started at the 
lower right-hand corner, the fill command will start at the top of the figure. If it 
started at the upper right-hand corner, the fill operation will begin at the bottom of 
the figure. This command is fast but very dumb. However, you can use this 
command creatively to generate attractive graphics very quickly. 

GRAPHICS APPLICATIONS 
The programs in Figures 8-2 , 8-3 , and 8-4 serve as examples to use in programming 
graphics with BASIC. Figure 8-2 illustrates how graphics mode 0 can still be used to 
communicate graphics quite effectively . Figure 8-3 is a data entry program which is 
usable in full-screen graphics mode I or 2. Compare this program to the String 
Input subroutine in Chapter 4, written for graphics mode 0 (Figure 4-37). In Figure 
8-4, a regression analysis program written for another computer has several graph
ics statements added to it in order to maximize its usefulness on the AT ARI 
computer. Not only does this program output the numerical data needed, it adds 
another dimension to the answer by graphing it in two colors. 

As your knowledge of graphics grows, you will find yourself able to create more 
sophisticated graphics displays. Chapter 9 will acquaint you with some of the 
advanced graphics capabilities unique to the AT ARI computer. 



286 A GUIDE TO ATARI 400/800 COMPUTERS 

10 REM BAR CHART PROGRAM 
11 F(EM 
12 F(EM 
15 REM DATA TO BE USED FOR DISPLAY 
16 REM EACH PAIR IS MONTH, THEN SALES 
:1. 7 F(Et1 
20 DATA JAN,800,FEB,820,MAR 
21 DATA 765,APR,779,MAY,610 
22 DATA JUN,650,JUL,780,AUG 
23 DATA 800,SEP,825,OCT,840 
24 DATA NOV,870,DEC,910 
;!'~:j F(EM 
26 I:(EM 
30 GRAPHICS O:SETCOLOR 2,12,12 
35 SETCOLOR 1 ,0, 0 
40 P=12:REM NUMBER OF MONTHS 
50 LINES=20ICOLMS=30 
5~5 moM 
7:5 F(EM 
80 DIM MONTH$(P*3), X$(3),S ALES(P) 
B7 I,(EM 
B8 REM READ IN THE SALES DATA 
09 F(Er1 
'to FCm ]>:1. TO P 
100 READ XS:REM READ MONTH NAME 
110 MONTH$(LENCMONTHS)+1)=X$ 
120 F(EAD Nut1 
:1.30 !;;ALE!:; ( I) ""NUt1 
1:30 F(EM 
1:39 REM FIND HIGHEST, LOWE ST SALES 
140 IF SALES(I»=HI THEN HI=SALESCI) 
150 IF SALES(I)(= LO DR LO=O THEN LO=SA 
I...ES(I ) 
160 NEXT I 
:l67 F(EM 
16B REM FIND PLOTTING SCA LE 
170 MID=(HI+LO) /2 :REM EXPECTED MEAN 
180 SCALE=INTCHI-LO)/I...INES 
190 SPACE =INT(COLMS/P):REM SPACING 
1 'i'l .1:( nl 
200 PCW!:: 7~'j2 , 1 : F'FnNT ":1. 't8~l SALE~; (000 I 

8)11 

211 REM NOW PLOT TH E DATA 
220 FDF( ]>1 TO P 
230 GClSl.JE: 1000 
240 NEXT I 
2~.) 0 F(]f( I'" 1 TD P 
26 0 PDSITIClN 31,1+3 
270 M'''(I''' l )*~l+:I. 
200 PF(INT MONTHS (M, M+2) ;" "; SALES (I) ; 

FIGURE 8-2. Bar chart 

(colllillued) 



Chapter 8: INTRODUCTORY GRAPHICS 287 

300 NEXT I 
310 GOTO 310 
1000 REM PLOT SUBROUTINE 
1010 X<I)K~lF"ACE 

1020 Y=CCHI-CMID+SALESCI»/2»/SCALE 
1 02~5 coum ASC C II "): F(EM PLOT CHAI'(. 
1.030 PLOT X,Y 
1040 DRAWTO X,LINES 
1050 FOR J=l TO 3 
1060 POSITION X,LINES+J 
1070 M"'CI··-l))I(:3+.J 
1080 PRINT MONTHSCM,M)I 
1090 NEXT .J 
UOO RETUFW 

FIGURE 8-2. Bar chart (continued) 

10 LENGTH=7:LINE=9:COL=10 
:1.::; CHAPHICS 1 
ZO POf,ITION O. LINE: PfUNT '~6; "ENTEF( " 
::10 GOSUE: l?OO 
4 0 ~3T(lF' 

l200 REM lKlKlKlKlKlKlKlK)I(lK)K)I(lKlKlK)I()I()I()I(lK)I()I(lKlKlK)I(lKlK 
1210 REM lK GRAPHICS MODE 1 OR ? DATAlK 
l220 REM lK ENTRY MODULE lK 
12:30 REM )I( -------------------------lK 
1240 REM )I( LENGTH=MAX ENTRY LENGTH )I( 
1250 REM lK LINE=LINE TO ENTER ON )I( 
1260 REM lK COL=COLUMN TO ENTER ON )I( 
1270 HEM lK)I()I()I()I(lK)I(lK)I(lK)I()I()I()I()I()I()I()I()I(lKlK)I()I()I()I()I(lK)I( 
1280 DIM DS(LENGTH) 
12<;> 0 IF 1-([:(]f:'EN'= 0 THEN OPEN 'U, 4,0, II ~(: II 

: I-([:OPEN'"1 
1300 POSITION COL,LINE 
1:310 FOR 1=1 TO LENGTH 
l3?0'~ ~'6;"._."; 

:1.:330 NEXT I 
1340 POSITION COL,LINE 
1350 HEM NOW GET DATA FHOM THE KEYBOAR 
[) 

l:360 GET ,"'l,X 
l:370 IF X)=3? AND X{=95 AND LENCOS){LE 
NGTH THEN O$CLENCDS)+1)=CHHSCX):? i6;C 
HR$CX);:GOTD 1:360 
1380 IF X{)l?6 THEN l460 :F(EM [:YPA-SS IF 

NOT [: ,~,C~(SPACE 

l390 IF LENCDS){l THEN 1460:REM HEJECT 

FIGURE 8-3. Data entry 

(continued) 



288 A GUIDE TO ATARI 400/800 COMPUTERS 

BACKSPACE IF NO DATA LEFT 
1400 IF L.EN(D ~~)'-:: 1 THEN IY~ ::' "'' 

1410 IF LEN(D$»1 THEN D' =D '(1,LEN(D$) 
·_·1 ) 
142 0 POSITION COL+LEN(D') ,LINE 
1430 PF\INT t'6;"_ .. "; 
1440 POSITION COL+LEN(D'),LINE 
146 0 IF X=155 THEN RETURN 
1470 GOTO 1:360 

FIGURE 8-3. Data entry (continued) 

o REM LINEAR REGRESSION WITH PLOTTING 
1 REM ADAPTED FROM SOME COMMON BASIC P 
ROGRAMS, ATARI EO. 
2 REM GRAPHICS SUBROUTINES ADDEO AS FOL 
I ... OWS : 
3 REM LINE 800 SETS SCREEN PARAMETERS 
4 REM L.INE 900 SETS SCALING, LINE 1000 

PERFORMS PLOTTING 
:'5 G R (., F' ITr. u; () 
1. () PI'~INT "I...INEAI:~ F~EGI'~EE;SION" 

~?,O PIUNT 
:30 PFUNT "NUt1BER OF I-(NOW N POINT S" ; 
.110 INPUT N:DIM XY(N,2) . 
50 GOSUB 7 00:REM INITIALI ZE DATA 
60 GOS UB 800:REM SET SCALING 
99 REM - LOOP TO ENTER COORDINATES OF 
POINTf.; 
100 FCJI:;: 1> 1 TO N 
110 PRINT " X,Y OF POINT ";1; 
120 INPUT X,Y:XY(I,1)=X:XY(I,Z)=Y 
125 GOSUB 850:REM FIND DATA BOUNDS 
129 REM - ACCUMULATE INTERMEDIATE SUMS 
130 ,.J "",.J+X 
140 ~(""I-(+Y 

l~'jO L"" i...+ X"2 
:LbO M""M+Y "2 
170 F~~? "" f~ 2 + XlKY 
:l!30 NE XT I 
189 REM - COMPUTE CURVE COEFFICIENT 
190 B=(NlKR2-K*Jl /( NlK i... - J "2l 
20 0 (.,,,, (1-( ·_·[:lKd) I N 
220 PI:;:It~T "F( Xl "" ";A;" + (";E:;" lK Xl" 
229 REM - COMPUTE REGRESSION ANAi...YSIS 
2:30 J=[:lK(R2-JlKK / Nl 

FIGURE 8-4. Regression analysis with plotting 

(collfilllled) 



Chapter 8: INTRODUCTORY GRAPHICS 289 

?3?'j COSLJE: <;> 00 
?'IO M~'ti--I(/\?/N 

;~?S 0 I(::::M····,.J 
Z60 PlUtH 
Z70 f(2::::d/ t1 
ZOO PFUNT " COEFFICIENT DF DETEf(tlINATIO 
N (1',/\2):" 
ZB2 F'fUNT ~( ? 

Zf:l~l PFUNT 
290 PF,INT "COEFFICIENT OF CDHF(ELATION: 

291 PHINT SQR(RZ) 
z'n PFUNT 
::lO 0 PFUNT "STANDAF,l) EF(F(OI,( DF ESTIMATE: 

::l01 PHINT SQH(K/(N-Z» 
310 PRINT 
3"10 PfUNT "PHESS ANY I(EY TO ~:;EE GF(APH " 

350 OPEN :1'1, It. 0, "f(l" 
360 GET 'U, X9 
370 G(WI.JB :1.000 
3BO GOTO :3BO 
699 HEM -----------------INITIALIZE AR 
RAY---- ------------------
700 FOR I=l TD N:XY(I,I)=0:XY(I,2)=0:N 
EXT I 
710 Y11AX"0 
no XMAX=O 
7?SO f(ETUf(N 
799 REM -----------------8ET SCREEN PA 
RAMETERS-----------------
800 fWW S':::79 
B 10 CDLMS"" 159 
B19 HEM 80X160 SCREEN FDR CRAPHICS MDD 
E 7 
B20 F,EnJF\N 
B"I9 REM ------------------TEST BOUNDAR 
Y X AND Y VALUES---------
B50 IF XY(I,l»XMAX THEN XMAX=XY(I,l) 
860 IF XY(I,2»YMAX THEN YMAX=XY(I,2) 
B90 I,(EnJF\N 
B99 REM -----------------9ET SCALING F 
ACTDRS FOR PLDTTING------
900 YSCALE=YMAX/RDWS 
910 XSCALE=XMAX/CDLMS:REM SPACING 
9Z0 r';:ETLJm~ 

999 REM --------------PLOTTING SUBROUT 
INE----------------------
1000 GRAPHICS 7 

FIGURE 8-4. Regression analysis with plotting (continued) 

(continued) 



290 A GUIDE TO AT ARI 400/800 COMPUTERS 

1010 SETCOlOR 0,12,2:REM X/Y AXIS COLO 
F( 

1019 REM DRAW THE X AND Y AXES 
1020 PLOT O, O:DRAWTO O,ROWS 
1030 DRAWTO COlMS,ROWS 
1040 COLOR 2:REM ORANGE POINTS 
1050 FOR 1=2 TO N 
1060 PLOT INT(XY(I,l)/XSCAlE),ROWS- INT 
(XY(I,Z)/YSCALE):NE XT I 
1069 REM NOW PLOT THE TREND LINE 
1070 CDum :,l 
1080 PLOT O,ROWS- (A/YSCALE):REM PLOT Y 

INTEf(CEPT 
1090 FOR 1=1 TO N 
1100 Y=A+ XY( I,1)*8:DRAWTD XY(I,1)/XSCA 
LE,ROWS-(Y/YSCALE) 
1.110 NEXT I 
l1Z0 pm;ITION 0,0: PFnNT "ACTUAL [)ATA~'Y 
ELLClW; 'mEND I...INE==[:I...UE" 
1 DO PRINT "1'(EGF(E!,SHlN ECllJATIDN:": PIUN 
T "F(X)::";E:;"X'" ";A 
11401'([TURN 

FIGURE 8-4. Regression analysis with plotting (continued) 



9 
ADVANCED 
GRAPHICS 

The previous chapter focused on AT ARI computer graphics features available in 
BASIC. The material in this chapter is more difficult , however, because BASIC is 
not equipped to handle the more advanced graphics capabilities built into the 
computer's hardware. The AT ARI computer is a highly capable graphics machine, 
but bear in mind that you can face a great deal of frustration trying to understand 
and exploit these features . Throughout this chapter you will find programs which 
will help you become more familiar with otherwise difficult material. Some of the 
programs are written for easy adaptation to subroutines that you can use in your 
own programs. 

This chapter will explore the following topics : 

Animating graphics displays with character set animation 

Display lists, which allow you to set up custom graphics displays 

Player-missile graphics, fast-moving graphics objects for games and other applications . 

These are only a portion of the possibilities open to you as you become a more 
accomplished AT ARI computer user. 

CHARACTER SET ANIMATION 
The character set is a bit map; that is , a set of binary representations of each 
character the computer displays . The standard character set resides in ROM, 
starting at address 57344 (EOOO hexadecimal). Address 756 (2F6 hexadecimal) is the 
Character Address Base Register, abbreviated CHBAS, which is a pointer, or a 
vector to the character set bit map . Normally, CHBAS points to address 57344 
(EOOO hexadecimal), but by placing a new address in CHBAS, a new character set of 

291 



292 A GUIDE TO ATAR1400/800 COMPUTERS 

Binary Data Decimal 

00110000 48 
00010000 16 
00111000 56 
01111100 124 
10111010 186 
01001000 72 
10000100 132 
10000010 130 

00110000 48 
00010000 16 
00111000 56 
00111000 56 
01111000 120 
10101100 172 
01001000 72 
01000100 68 

00110000 48 
00010000 16 
00111000 56 
00111000 56 
01111000 120 
00101000 40 
00101000 40 
00010000 16 

00110000 48 
00010000 16 
00111000 56 
01111100 124 
10111010 186 
00111000 56 
00010000 16 
00101000 40 

00110000 48 
00010000 16 
00111000 56 
00111000 56 
01 I 11100 124 
00111000 56 
01001000 72 
01001000 72 

NOTE: Each character requires eight television scan lines. One memory byte defines which 
picture elements to illuminate on each scan line. 

FIGURE 9-1. Character bit maps 



Chapter 9: ADVANCED GRAPHICS 293 

your own design can take the place of standard characters. You can replace the 
character set with a font that you like better, or you can invent characters in order to 
create your own graphics. Consider the "characters" in Figure 9-1 . The five "charac
ters" form a crude, five-step animation sequence. 

You can define this animation sequence as characters, place the character defini
tions in memory with POKE statements, reset the character address base register to 
point to the animation characters, and then perform the animation. The following 
sample program illustrates simple character set animation: 

1 REM CHARACTER SET ANIMATION DEMO 
5 DIM CHRBASE(5) 
10 DATA ~8,16,56,12~,186,72,132,130 
20 DATA ~8,16,56,56,120,172,72,68 
30 DATA ~8,16,56,56,120,~0,40,16 
~O DATA ~8,16,56,12~,186,56,16,~0 
50 DATA ~8,16,56,56,12~,56,72,72 
51 REM ----- -------CHARACTER SET DEFIN 
E D- - - -, __ 00_-- - ---
60 GRAPHICS 0 
70 SETCOLOR 2,12,8:REM SET GREEN BACKG 
ROUND 
80 SETCOLOR 1,0,0:REM SET BLACK CHARAC 
TERS 
90 FOR H=l TO 5 
100 CHRBASE(H)=(PEEK(7~2)-H*~)*256:REM 

SET CHARACTER BASE ADDRESSES 
110 FOR I=CHRBASE(H) TO CHRBASE(H)+7 
120 READ X 
130 POKE I,X:REM MOVE THE CHARACTER SE 
T DATA TO MEMORY 
140 NEXT I 
150 NEXT H 
160 POSITION 0,0 
170 LIST :REM PUT TEXT ON THE SCREEN 
180 FOR 1=1 TO 5 
190 POKE 756,INT(CHRBASE(I)/256) 
200 IF 1=2 THEN GOSUB 9000 
210 FOR DLAY=l TO 15:NEXT DLAY 
220 NEXT I 
230 GOTO 180 
8999 REM ---------- MARCHING SOUND SUBR 
OUTINE---------
9000 FOR Q=O TO 3 
9010 SOUND Q,255,0,4 
9020 NEXT Q 
9030 FOR Q=O TO 3 
90~0 SOUND Q,O,O,O 
9050 NEXT Q 
9060 RETURN 

The DATA statements on lines 10 through 50 define the POKE values for five 
characters . 



294 A GUIDE TO AT ARl 400/800 COMPUTERS 

Character Offset 
When you design a character set, keep in mind the difference between the AT ASCII 
value for a character and where in the character set table that character's definition 
lies. In the previous example, the space character definition was replaced in five 
different character sets; each new character defined would display, rather than a 
space. By using one POKE statement to cycle between character sets, it is possible to 
change whole character sets instantly. 

Designing your own character set will involve more than creating the bit map it 
will use . Table 9-1 shows the actual offsets of AT ASCII characters from the 
beginning of the character set table. 

Locating the Character Set in Memory 
Before placing the new character set anywhere free memory exists, the character set 
or sets will each have to begin on a 1024-byte boundary when using BASIC graphics 
mode 0, or on a 512-byte boundary when using BASIC graphics mode I or 2. In the 
previous program example, address 742 contains the high end of user-available 
memory. In most cases you should be able to set a graphics mode 0 character set 
table address by subtracting 4 from the current contents of this address. In this case, 
address 742 provides the page, or 256-byte address region, where the table can 
begin. Subtracting 2 from the contents of address 742 will yield the page where a 
BASIC graphics mode I or mode 2 character set can begin. 

USING DISPLAY LISTS 
The graphics display on the AT ARI computer is controlled by a special micro
processor called ANTIC. This chip has its own instruction set, similar in principle to 
the 6502 microprocessor. The instruction set consists of display instructions, and 

TABLE 9-1. Character Definition Offsets· 

ATASCII 
Value 

0-31 
32-95 
96-127 

128-159 
160-223 
224-255 

Actual 
Offset·· 
64-95 
0-64 

No change 
192-223 
128-191 

No change 

• Add eight times the offset shown to 57344 for the decimal starting location. 

"Multiply this offset by 8 to locate the character definition. 



Chapter 9: ADVANCED GRAPHICS 295 

by combining a set of display codes you can write a program, called a display list, 
which controls graphics output in ways which are not possible using BASIC. 

Actually, the operating system creates display lists whenever a BASIC program 
executes a GRAPHICS statement. ANTIC executes each instruction in the display 
list. Based on each instruction, the contents of screen memory are interpreted as text 
or graphics data. ANTIC then sends video control information to another proces
sor (the CTIA chip). Therefore, ANTIC is a legitimate microprocessor. It has a 
program counter (called the instruction register), a data memory register (called the 
memory scan counter) , and several control registers, each of which controls a 
particular aspect of video output. 

ANTIC can switch graphics modes from one display instruction to the next. In 
other words, it is possible to set up a display with five lines of graphics mode 0 text at 
the top of the screen, 60 lines of high-resolution graphics under that, and expanded 
text on the rest of the screen (graphics mode I or 2 text, for example). Therefore, 
you can mix graphics modes in horizontal sections down the screen. 

The Display Processing Cycle 
The following is a greatly simplified outline of the steps ANTIC performs when 
executing display list instructions : 

I. Fetch the display list instruction and load it into the instruction register. 

2. The instruction indicates which graphics mode to use; ANTIC interprets the contents 
of memory as graphics data or character display data. 

3. If the instruction indicates character display data, ANTIC reads a byte of screen 
memory, looks up the character set bit map, and transfers the bit-mapped character 
image to the display. 

4. If the instruction indicates graphics display data, ANTIC transfers the data directly to 
the display. 

5. Increment the display list counter, which points to the next display list instruction. 

6. Increment the memory scan counter by the number of bytes transferred from screen 
memory to the display. 

7. Repeat these steps from the beginning. 

ANTIC and Video Output 
ANTIC continually reexecutes the display list, fetching instructions, processing the 
contents of screen memory, outputting video control signals to CTIA (the television 
signal output controller chip) , and jumping back to the beginning of the display list. 
The television receiver, meanwhile , scans the surface of the screen horizontally with 
an electron beam, from left to right, as shown in Figure 9-2. When the beam reaches 
the bottom of the screen, it jumps back to the top line. 

Without going into the more complicated aspects of television broadcast theory, 
each horizontal line on the screen is a scan line. The AT ARI computer outputs a 
video signal of 262 scan lines. At the end of every scan line, the television's electron 
beam turns off and resets to the left-hand side of the next scan line. After the last 



296 A GUIDE TO A TAR! 400/800 COMPUTERS 

scan line, the electron beam returns to the upper left-hand corner of the screen, 
during a latent period called the vertical blanking interval. During this interval, 
the electron beam is shut off until the receiver is ready to scan the screen again. 

ANTIC can control each scan line on the television receiver; however, not all 262 
lines are visible. Because of a broadcast compensation factor called overscan, the 
actual number of visible scan lines on a television receiver is closer to 200 than 260. 
In the interest of compatibility with hundreds of different brands of televisions, 
Atari set a conservative standard of 192 scan lines for its graphics displays under 
BASIC. Depending on the graphics mode selected by a display list instruction, 
ANTIC will output from 1 to 16 scan lines of video information for each horizontal 
line the mode uses. 

THE DISPLAY LIST INSTRUCTION SET 
The four classes of display list instructions include the following: 

Graphics display 
Character display 
Display blank lines 
Jumps . 

"-'. ----------------
"-
~~-------~-------

<~:: .... -----~-------
" --~----------

-----------~-

- .. .---
-- . -----

=-.. 

- . --
• ->~ _____ -4------ '-

'- -.,-
--------------

FIGURE 9-2. Television scan lines 



Chapter 9: ADVANCED GRAPHICS 297 

In these classes of instructions, the following options are possible: 

. Load memory scan counter 
Scroll display 

. Call interrupt. 

Display List Structure 
Every display list should have a structure to it. First , the display list has to 
compensate for overscan; the blank scan line instructions are designed for this 
purpose . Second, display lists have to load the memory scan counter with the 
starting address of memory which contains the actual graphics or text data to 
display. Third, the display list will contain the actual display instructions, specifying 
which graphics mode or modes to use. Lastly, a jump instruction directs ANTIC's 
execution back to the start of the display list. In some cases , the jump instructions 
are necessary to continue display lists or display memory across address boundar
ies . This will be discussed in detail shortly. 

Blank Scan Line Instructions 
Although ANTIC has eight blank scan line instructions (as shown in Table 9-2), the 
only one that is used frequently is the instruction to send eight blank scan lines (code 
112, or 70 hexadecimal) to the screen. This instruction is used at the beginning of the 
display list. 

Load Memory Scan Counter Instruction 
The load memory scan counter instruction is not a separate instruction, but rather 
an option that is available with all display mode instructions. By adding 64 (40 
hexadecimal) to an instruction, you effectively set two instructions. First , ANTIC 
loads the memory scan counter with the address contained in the two bytes imme
diately following the current instruction. Second, the display mode instruction 
executes. This option, sometimes called the LMS option, can be added to any 
display mode instruction. 

Jump Instructions 
ANTIC uses two types of jump instructions. The first is a simple unconditional 
jump that reloads the display list counter and continues executing the display list at 
the new address . The second jump instruction should always be used at the end of a 
display list. This second jump instruction waits for the start of the vertical blanking 
interval, a l400-microsecond pause that the television receiver performs after 
scanning the last scan line on the screen. During this time, the electron beam used to 
scan the picture tube returns to the upper left-hand corner of the screen. If ANTIC 
simply jumps back to the first display list instruction without waiting for the vertical 
blanking interval, the computer will lose synchronization with the television set, 
resulting in poor picture quality. 



29S A GUIDE TO ATAR1400/S00 COMPUTERS 

TABLE 9·2. Display List Instructions 

Instruction BASIC Bytes Scan Bits 
Code Graphics Horizontal Per Lines Per 

Data/Color 
Pixels Select Mask 

Decimal Hex Mode Line Used Pixel 

0 00 - - I -
16 10 2 

Output 32 20 - - - 3 -
Blank Scan 48 30 - 4 -
Lines 64 40 - - 5 -

80 50 - - 6 -
96 60 - - - 7 -

11 2 70 8 -

2 02 0 40 40 8 8 
IDDDDDDDDI· 

3 03 - 40 40 10 8 

4 04 40 40 8 8 
Character 

Icc lcclcclcclt Modes 
5 05 - 40 40 16 8 

6 06 I 20 20 8 8 

Icc l DDDDDDl't 
7 07 2 20 20 16 8 

8 08 3 40 10 8 2 IITJ t 

9 09 4 80 10 4 I 
IQ c = 0 - Backgro und 

C = I - Register 0 

10 OA 5 80 20 4 2 [IT] t See codes 6, 7, 8 

II OB 6 160 20 2 I 
Graphics See code 9 
Modes 

12 OC - 160 20 I I 

13 OD 7 160 40 I 2 

rut See codes 6, 7, 8 
14 OE - 160 40 8 2 

15 OF 8 320 40 16 I lQ]' 

, D = 0 - Register 2 t cc = 00 - Register 0 CC = 10 - Register 2 
D = I - Register I CC = 01 - Registe r I CC = I I - Register 3 

ANTIC Display Instructions vs. BASIC Graphics Modes 
As mentioned earlier, ANTIC does not limit you to one graphics mode per screen. 
Also, some ANTIC display modes are not available in BASIC. The first three 
columns of Table 9-2 show ANTIC display instruction codes and their BASIC 
graphics mode equivalents. Notice that ANTIC modes 3, 4,5, 12, and 14 are not 
directly usable with GRAPHICS statements, nor is there a direct correspondence 
between the display list instruction and its equivalent BASIC graphics mode 
number. Before going any further, a sample display list might prove helpful as an 



Chapter 9: ADVANCED GRAPHICS 299 

illustration. Figure 9-3 shows a display list for a screen set up in full-screen BASIC 
graphics mode 2. 

Notice the first three bytes: 112, 112, 112. Look up this instruction code in Table 
9-2; this is the display instruction to output eight blank scan lines in the background 
color. These three instructions take up 24 scan lines at the top of the screen. You 
should normally place these three instructions at the start of any display list, 
because they account for television overscan. Although you can omit these three 
instructions, you might find it impossible to see the top edge of the graphics display 
as a result. 

The next instruction is three bytes long. The first byte, 71 (47 hexadecimal), 
contains a display instruction with 64 (40 hexadecimal) added to it. This instruction 
sets up one line of ANTIC mode 7 (BASIC graphics mode 2) text, and also loads the 
memory scan counter with the two bytes that follow the instruction . Any display 
mode instruction byte with 64 added to it will signify to ANTIC that the next two 
bytes after the instruction will be an address to load into the memory scan counter. 
Therefore, the instruction indicates that ANTIC should read display memory from 
address 20539 (5038 hexadecimal) - low-order byte first, as usual - unless other
wise directed by another display mode instruction with the load memory scan 
option. 

Instruction 
Byte 

o 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

(Decimal Equivalent) 

II 
12 
13 
14 
15 
16 
17 
18 
19 

112 
112 
112 
71 
59 
80 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

65 
o 

79 

} 

These instructions 
set up 24 blank 
scan lines 
BASIC mode 2 instruction with LMS bits set 
(3B) } Address where screen memory 
(50) starts (503B hexadecimal) 

Jump and wait for vertical blank 
(00) } Address to jump back to for 
(4F) reexecuting display list 

NOTE: These ANTIC instructions set up the equivalent of BASIC graphics mode 2. 

FIGURE 9-3. Sample display list program 



300 A GUIDE TO AT ARI 400/800 COMPUTERS 

. The next II instructions in the display list set the remaining lines of BASIC 
graphics mode 2 text. After the last ANTIC mode 7 instruction, instruction code 65 
precedes yet another two-byte address . This is a jump instruction, followed by the 
address ANTIC should jump to for its next display list instruction. 

This display list is quite simple. Custom display lists are often difficult to create 
manually, mostly because so many bureaucratic rules apply to their construction 
and use. 

Creating Custom Display Lists 
Suppose you wanted to cut a display into horizontal segments, as follows: 

l Normal text r------------------i} (2 lines X 8 scan lines = 16) 

Graphics mod p. 8 
(80 lines X I scan line = 80) 

MODE () TEXT 

} 

Double-size text 
(6 lines X 16 scan lines = 96) 

Total 192 

First, you should plan a display screen with 192 scan lines in addition to the 24 
required blank lines at the top of the display. Looking again at Table 9-2, the 
column headed "Scan Lines Used"shows how to calculate a proper screen size. The 
display above will hold exactly 192 scan lines . Make sure you set up the screen 
properly, because ANTIC will display as many lines as you specify. However, 
displaying too many lines will often cause an unsightly vertical roll on the video 
screen. 

Display List Placement 
Several rules apply to the exact placement of the display list in memory. First, the 
display list itself cannot cross a I K address boundary because the display list 
counter is not a fulll6-bit register. Therefore, a portion of a display list that nears a 
I K boundary might look like this: 

Display List, 
Contents (Decimal) 

14 } 61 J ump one byte past 
I (01) address 1024 

64 (40) 
([no instruction] 
\..: 14 

RAM Address 

1020 
1021 
1022 
1023 
1024 
1025 



Chapter 9: ADVANCED GRAPHICS 301 

The memory scan counter is not a 16-bit register either. Therefore, a display list 
will have to contain the L MS option someplace after the display list begins in order 
to reload the memory scan counter before crossing a 4K screen memory boundary. 
Actually, the memory scan counter has limitations similar to the display list 
counter. If a display list were constructed with enough display mode lines to cause 
the memory scan counter to cross a 4K boundary (perhaps in ANTIC mode 
15 - BASIC graphics mode 8), the instructions would appear as follows : 

Instruction 
(Decimal) 

Instruction 
Register 

15 I ANTIC mode 15 instruction 
79 r with LMS mask on 
40 } These two bytes 
64 reload the memory 
15 scan counter 

Memory 
Scan Counter 

16304 -- Increases by 40 
163441 bytes per scan line 
16344 ANTIC mode 15 
16344 
16424

1 
Jump instructions 
do not increment the 
memory scan counter 

New scan counter 
address loaded with 
the LMS instruction 

Other difficulties emerge: where in memory is a good place to put the display list? 
It is possible to replace the display list set up in memory by the operating system; one 
excellent area for display lists is page 6 (addresses 1536 to 1791, or 600 to 6FF 
hexadecimal) . AT ARI BASIC normally leaves this area untouched . 

It is not good practice to overlay existing display lists with new ones unless you 
have very little memory to experiment with. There should be ample room for a 
display list on page 6. Once the display list is placed into memory with POKE 
statements (or using the display list loader program shown in Figure 9-4), the 16-bit 
address at memory locations 560 and 561 (230 and 231 hexadecimal) must have the 
new display list starting address placed in it. Next , the DMA control register 
(SDMCTL) has to be turned off momentarily while the new display list start 
address is placed at locations 560 and 561 (230 and 231 hexadecimal). Do this by 
performing a POKE 559,0. Once the new address is in place and the DMA control 
register is switched back on, the new display list takes effect. This process is shown 
on lines 150 through 190 of the listing in Figure 9-4. 

The Display List Loader Subroutine 
Suppose you wanted to set up several different ANTIC modes on one screen. The 
calculations and planning involved might take hours . The program in Figure 9-4 
eliminates virtually all of the tedious details of display list creation; all you have to 
do is set up a list of DATA statements in the program and identify the starting 
address you want for the display list. Make sure you have used a GRAPHICS 
statement to set up the screen mode that takes up the most memory of all the modes 
you decide to use for the custom screen. 



302 A GUIDE TO A TAR! 400/800 COMPUTERS 

1 REM DISPLAY LIST EXAMPLE PROGRAM WIT 
H L()ADEF~ FWUTINE 
10 DIM TOPSCRN(5':REM 'DIM' THIS VARIA 
BLE TO NO. OF SEGMENTS + 1 
20 GRAPHICS 8:REM SET ASIDE MAXIMUM ME 
MoF~Y 

30 SETCoLoR 2.0.0 
itO DATA 2.3 
50 DATA 6.1 
60 DATA 7.1 
70 DATA 15t1itit 
flO DATA -1.0 
87 REM ----THE FIRST FOUR DATA STATEME 
NTS 
fl8 REM ----ARE USED BY THE DISPLAY LIS 
T 
89 REM ----LOADER SUBROUTINE TO SET UP ... 
90 REM ----3 LINES OF BASIC MODE O. 
100 REM ---1 LINE OF BASIC MODE 1. 
110 REM ---1 LINE OF BASIC MODE 2 
120 REM ---AND litit LINES OF BASIC MODE 

8 
130 REM - --THE LAST DATA STATEMENT 
131 REM --~TERMINATES THE LIST ••• 
litO LST=1536:REM USE THE FREE RAM AREA 
• PERFECT FOR DISPLAY LISTS 
150 GOSUB 1700:REM SET UP THE DISPLAY 
LIST 
160 POKE 559.0:REM DI~ABLE DMA 
170 POKE 560.0:REM PLACE NEW DISPLAY L 
1ST ADDRESS 
180 pm{E 561.6 
190 POKE 559.3it:REM RE-ENABLE DMA 
200 X=O:GOSUB it30:REM SET SEGMENT 0 
210 POKE 87.0:REM MIMIC MODE 0 
220 POKE 752.1:REM INHIBIT CURSOR 
230 POSITION 15.0 
2itO PRINT t6;"AN EXAMPLE" 
250 POSITION 12.1 
260 PRINT f.6;"oF WHAT YOU CAN DO" 
270 X=l:GoSUB it30:REM SET SEGMENT 1 
28 0 POKE 87. 1:REM MIMIC BASIC GRAPHICS 

MODE 1 
;?90 POSITION (). 0 
::lOO PF~INT ~~b;" MI XI NG !;;CI'~EEN MODES" 
310 X=2:COSUB 430:REM SET SEGMENT 2 
320 POKE 87.2:REM MIMIC BASIC GRAPHICS 

MODE ~>. 

FIGURE 9-4. Display List Loader program 

(continued) 



Chapter 9: ADVANCED GRAPHICS 303 

3::10 PO GI TI ON :I. , () 
340 PIUNT '1I'6;"U~31NG DI~:;PLAY I...ISTG" 
350 X=3!COG UB 430!REM SET I...A ST SEGMENT 
360 POKE 87,8 !REM RE SET TO GRAPHICS MO 
DE f:l 
::17 0 COLCm 1 
3ElO PLOT 0,0 
390 DRAWTO 319,143 
400 PLOT ::1 19, 0 
410 DRAWTO 0,143 
4;~ O ~:;TOP 

430 POKE 8El,TOPSCRN(X)~(INT(TOPGCRN(X) 

450 POKE 89,INT(TOPSCRN(X)/256)!RETURN 
1690 REM *********************** 
1691 REM * DIGPLAY LIST LOADER * 
1692 REM * =================== * 
1693 REM * SET LST TO THE GTART* 
1694 REM * AODRE SG OF YOUR OWN * 
1695 REM * DIG PLAY LIST. THIS * 
1696 REM * ROUTINE CHECKS FOR * 
1697 REM * lK BOUNDARY ERRORG. * 
169El REM *********************** 
17 0 0 ~3EG ME NT =' 1 
17:l 0 LOC "" LS r 
172 0 TOP SC RN(0) =PEEK(8El ) +PEEK(El9)*256! 
REM ' TOP OF SCREEN' ADDRE SS 
173 0 BOUND=INT«LST/ 10 24+ 1) *1 024)! REM 
DEFINE NEXT 1K BOUNDARY 
174 0 BOUND 2=I NT(TOPSCRN(O)/4 096+1 ). 409 
6: REM DEFINE NE XT 4K BOUNDARY 
1750 FOR X= LOC TO I...O C+2 
1760 POKE X,112!REM PLACE THE 'BLANK 8 

LINES' INSTRUCTION AT THE START 
1770 LOC =L OC+l 
1780 NEXT X 
1790 TOPSCRN(SEGMENT)=TOPSCRN(SEGMENT
l)!REM SET ADDRESS FOR THIS SEG MENT 
1800 READ MODE,REPEAT 
1810 IF MODE<O THEN OP =65!ADDR=LST:GOS 
UB 2030: RETUF,N 
1820 INCR=40:REM SET BYTE INCREMENT FO 
R EACH MODE LINE 
1830 IF MODE> =6 AND MODE< =12 THEN INCR 
=20 
1840 IF MODE =8 OR MODE=9 THEN INCR=10 
1850 FOR X=l TO REPEAT 
1860 IF LOC <> BOUND - 3 THEN 1900:REM CHE 
CK FOR lK BOUNDARY 

FIGURE 9-4. Display List Loader program (continued) 

(continued) 



304 A GUIDE TO AT ARI 400/800 COMPUTERS 

1870 OP=I:ADDR=BOUND:GOSU8 2030:REM IN 
SERT A JUMP INSTRUCTION 
18BO LOC =LOC+l:BOUND=80UND+l023 
1890 GOTD 1(700 
1900 POKE LOCtMODE:REM POKE THE MODE B 
YTE 
1910 REM FIRST MODE LINE MUST HAVE THE 

LMS E:YH: SET 
1920 IF (SEGMENT<>1 OR X<>l) AND (BOUN 
D2- TOPSCRN(SEGMENT»=INCR) THEN 1980 
1930 REM SET THE LMS BYTE 
1940 OP=MODE+64 
1950 ADDR =TOPSCRN(SEGMENT) 
1960 IF BOUND2-TOPSCRN(SEGMENT) <INCR T 
HEN 80UND2=80UND2+1096:ADDR=ADDR+INCR 
1970 GOSUE: 2030 
1980 LOC =LOC+1:REM INCREMENT DISPLAY L 
HIT E:YTE POINTER 
1990 TOPSCRN(SEGMENT)=TOPSCRN(SEGMENT) 
+INCR 
2000 NEXT X 
2010 SEGMENT=SEGMENT+l 
2020 GOTO 1790:REM READ THE NEXT SEGME 
NT 
2030 POKE LOCtOP:REM STORE JUMP CODE 
2040 LOC=L.OC+l 
2050 POKE LOC t ADDR - (INT(ADDR/ 256)*256) 
2060 LOC:::LOC+l 
2070 POKE LOC t INT(ADDR/ 256) 
;~080 RETURN 

FIGURE 9-4. Display List Loader program (continued) 

The OAT A statement format consists of the ANTIC display mode (not BASIC 
graphics mode) number to select, followed by the number of display lines to set up. 
Therefore, on lines 40 through 80, three lines of BASIC graphics mode 0 text are 
specified, one line of BASIC graphics modes 0 and 2, and 144 lines of BASIC 
graphics mode 8. These display lines add up to 192 scan lines, just the right number 
for the graphics display. At line 140, the variable LST is set to address 1536 (600 
hexadecimal), and addresses 560 and 561 (230 and 231 hexadecimal) contain the 
low-order and high-order bytes of this address. 

Lines 200, 270, 310, and 350 set the variable X to a segment of the screen; that is, 
segment 0 is the first screen segment defined· in a OAT A statement. Therefore, by 
setting X and performing a GOS VB 430, the program resolves the screen addressing 



Chapter 9: ADVANCED GRAPHICS 305 

errors that would otherwise occur. Try running the example program. Alterna
tively, you can just use lines 430 to 450 and 1700 to 2080 of the program as 
subroutines in your own programs. 

DISPLA Y LIST INTERRUPTS 
The interrupt feature is a highly advanced and somewhat exotic feature of ANTIC 
display lists. At the end of each display mode line, ANTIC fetches the next display 
instruction. If the display list interrupt mask - a predetermined overlay of bits on 
a byte - is set, ANTIC will turn control over to a special routine which can be as 
long as 18 machine cycles for the 6502 microprocessor. You can't accomplish much 
in 18 cycles, but there is often enough time to change a color register value, or reset 
some register before returning from the interrupt to display list execution. The steps 
involved are shown below. 

Before executing a display list routine with interrupts , do these steps: 

I. Load the interrupt routine into some safe area of memory (the 255-byte area starting at 
address 1536 (600 hexadecimal) is ideal). 

2. Modify certain bytes of the display list to execute display list interrupts. 

3. Enable display list interrupts with the statement POKE 54286,192. 

4. Use the POKE statement to change addresses 512 and 513 (200 and 20 I hexadecimal) 
to the address of the first assembly language instruction to execute in the display list 
interrupt routine . (Remember that the display list interrupt itself is the mask on the 
display list instruction; the display list interrupt routine is not executed by ANTIC, but 
rather by the 6502 microprocessor.) 

The interrupt routine itself should do these steps: 

I. Save all registers to be used by pushing them onto the 6502 stack. 

2. Perform the interrupt routine. Keep it short, and make sure your total routine does not 
exceed 18 cycles . Interrupt routines longer than 18 cycles will cause ANTIC to 
broadcast bad video data. 

3. Restore the registers you saved by pulling them off the stack and replacing them in their 
appropriate registers. 

4. Perform an assembly language R TI (return from interrupt) instruction to resume 
display list processing. 

Every time the interrupt service routine executes, these steps are required. Other
wise, critical 6502 register values will be destroyed (and possibly your program as 
well) . 

Example of a Display List Interrupt 
The following example will be especially useful if you have no previous exposure to 
assembly language programming. Suppose you wanted to have the top half of a 
graphics mode 0 screen appear as it normally does, but instead of turning the text on 



306 A GUIDE TO AT ARI 400/800 COMPUTERS 

the entire screen upside down (as you can do with a PO KE 755,3), you wish to turn 
the lower half of the screen upside down. 

A display list interrupt mask placed on the display mode instruction halfway 
down the screen will allow display list processing to stop long enough to set the 
vertical reflect bit at address 54273 (C14l hexadecimal) to 4. This value does not 
change until the vertical blanking interval starts . Once ANTIC jumps to the top of 
the display list again, the vertical reflect bit is automatically reset. 

Here is the assembly language listing, placed at the start of memory page 6: 

0000 10 )1(= $600 
0600 "'18 20 PHA ;SAVE ACCUMULATOR ON STACK 
0601 A90"'l 30 LDA *"'1 
0603 8D01D"'I "'10 STA $0"'101 ;SET VERTICAL REFLECT BIT 
0606 68 50 PLA ;REST ORE REGISTER'S PREVIOUS VALUE 
0607 "'10 60 RTI ;GO BACK TO DISPLAY LIST PROCESSING 

The following program is the BASIC program used to change the display list . By 
changing the display instruction for the 12th line of the display, the top and bottom 
halves of the display have opposite orientations. Try this program; the DATA 
statements contain the display list interrupt routine: 

5 GRAPHICS 0 
10 DLIST=PEEK(560)+PEEK(561»)I(256 :REM F 
IND THE DISPLAY LIST START ADDRESS 
20 POKE DLIST+16 , 130:REM REPLACE LINE 
"'I OF THE DISPLAY WITH DLI INSTR. 
30 FOR 1=1536 TO 15"'13:REM POKE THE DLI 

SERVICE ROUTINE STARTING AT $600 
35 DATA 72,169,"'1,1"'11,1,212,10"'1,6"'1 
"'10 READ X 
50 pm:E I,X 
60 NEXT I 
65 pm:E 512,0 
66 POKE 513,6:REM POKE THE DLI VECTOR 
ADDRESS 
70 POKE 5"'1286,192:REM ALLOW DLI EXECUT 
ION 
80 FOR 1=0 TO 23 
90 POSITION 0, I P "RIGHTSIDE UP"; 
100 NEXT I 

For a detailed look at addresses you can change with display list interrupts, 
consult the AT ARI Personal Computer System Hardware Manual, available from 
Atari, Inc. It is beyond the scope of this chapter to explore all of the possibilities 
available to you with this interrupt capability. If your interest lies in this area, you 
can at least see the general structure of the display list interrupt routine in order to 
apply it effectively. 



Chapter 9: ADVANCED GRAPHICS 307 

PLA YER-MISSILE GRAPHICS 
It is hard to take a term like "player-missile graphics" and treat it fairly, because it 
connotes arcade games and other capabilities generally useless for practical applica
tions. Players and missiles are special graphics objects designed for rapid movement 
on the graphics screen. There are up to four player objects available, each with a 
corresponding missile. Some simple examples of players are shown in Figure 9-5. 

Each player object has a limit on its height, or vertical definition, and its width, or 
horizontal definition. Each player object may have a maximum height of 256 
vertical lines, which are limited to a width of eight bits. A player can extend from the 
top to the bottom of the screen. Missiles are movable graphics objects, similar to 
players but with only two bits of horizontal definition. 

Player objects can indeed be used for games, but they can just as easily be used as 
stationary graphics objects . For instance, a data entry program could use a player 
object as a cursor, or all four players could be used as borders on the screen. There 
are three main reasons for using player-missile graphics: independence, rapid 
movement, and availability of more colors. 

Player-missile graphics are totally independent of other AT ARI computer gra
phics. The graphics modes normally available on the AT ARI computer are called 
playfield graphics. PRINT, PLOT, DRA WTO, and other BASIC keywords per
form playfield graphics. Player-missile graphics, on the other hand, are fully
defined shapes such as those shown in Figure 9-5 . Think of the player-missile 
graphics capability as an overlay on the screen. This overlay has boundaries which 
exceed the size of the playfield graphics borders and have no relation to the current 
graphics mode. In addition, player-missile graphics images can appear to be in front 
of or behind the playfield graphics on the screen, thus allowing you to write 
programs with the illusion of three dimensions . 

Players can move on the screen rapidly, without adversely affecting computing 
speed. Consider the first player illustration (Figure 9-5), and how you would define 
it using standard BASIC PLOT and DRA WTO statements. Moving this object 
around on the screen involves erasing the object from its previous location, calculat-

FIGURE 9-5. Sample player bit maps 



308 A GUIDE TO ATARI 400/800 COMPUTERS 

ing the new screen coordinates for it, and then redrawing the object at the new 
location. This takes up an enormous amount of computing power, because the 6502 
microprocessor is doing most of the work. Player-missile graphics use a technique 
called direct memory access, or DMA, through the ANTIC chip . DMA frees the 
6502 microprocessor for other tasks; therefore, less 6502 time is used to move these 
graphics objects around . Player-missile graphics bypass the 6502 microprocessor, 
whereas playfield graphics manipulation has to go through the operating system 
and, therefore, the 6502 microprocessor. 

Player-missile graphics add more colors to the graphics display. Each player 
object has its own color register, and these color registers are independent of those 
used for playfield graphics . No matter what the playfield graphics mode is, there will 
always be four extra color registers available for player objects. With player-missile 
graphics, BASIC graphics mode 0 can have five colors on the screen. In other 
playfield graphics modes, as many as nine colors can display on the screen at one 
time. 

It is difficult at first to understand player-missile graphics because BASIC only 
has provisions in the language for playfield graphics. The organization and use of 
player-missile graphics are quite different and much more involved because they 
must be used at the machine level. This makes your programs harder to write . 
However, this section contains subroutines that perform most of the functions 
necessary to use player-missile graphics with BASIC. 

Player-Missile Graphics Memory Organization 
If you want to use player-missile graphics in your program, you need to set up a 
table containing the definition of each player object. The best place for this table is 
at the high end of RAM, where it will be least likely to interfere with other memory 
which is already allocated. There is a restriction on where you can locate the table, 
however. Player-missile graphics memory can be located on any 1024- or 2048-byte 
boundary in memory, depending on the vertical resolution of the player. 

Defining the Player 
Each player is eight bits wide. You have to create a bit map of the object drawn. 
Each part of the grid you filled in will have a binary value of I , and each unfilled 
square in the grid will have a value ofO. Therefore, the player's bit-mapped image is 
a series of one-byte numbers which will go into the player-missile graphics table . 
The program in Figure 9-6 will help you design a player image. Plug a joystick into 
port I and run the program. Notice that the borders on either side of the screen 
confine you to a horizontal definition of eight picture cells. When you have finished 
designing the player, press the RETURN key and the player image will display at close 
to its actual size. If you want to make more changes to the player image, press the 
space bar. When the flashing cursor reappears, you can once again use the joystick 
to alter the player image. By pressing RETUR N after looking at the actual-size player 
image, you will see the player bit map defined on the screen, along with another look 
at the player you created. 



Chapter 9: ADVANCED GRAPHICS 309 

5 REM CREATE PLAYER/MISSILE IMAGE 
10 DIM CURSOR(Z',PLAYER(Z3,7' 
ZO GRAPHICS 3 
30 SETCOLOR 2,O,O:REM BLACK TEXT WINDO 
W 
't 0 PF~INT "PLUG JOYSTID( IN POFn 1; PRES 
S TFnGGEF," 
50 GOSUB 610:PRINT 
1.>0 PRINT "USE TRIGGER TO DRAW (m ERASE 

PLAYER," 
70 PF,INT "PRESS <F~ETURN> WHEN FINISHED 

DRAWING," 
80 GOSUB 670:REM SET UP THE SCREEN 
90 IF PEEK(76't' = lZ THEN GOTO 290:REM E 
XIT IF <RET> WAS HIT 
100 GOSUB 770:REM READ THE JOYSTICK 
110 IF (UP AND (CURSOR(Z'(=O" OR (DOW 
NAND (CURSOR(Z'>=Z3" THEN GOTO 90 
120 IF (LEF AND (CURSOR(1'(=0" OR (RI 
GT AND (CURSOR(1'>=7" THEN GOTO 90 
1:30 COL.OR 1 
1't0 IF PLAYER(CURSOR(Z',CURSOR(1>'=0 T 
HEN COL.OR 0 
150 PLOT CURSOR(1'+16,CURSOR(Z':REM RE 
-POSITION CURSOR 
160 CURSOR(Z'=CURSOR(Z'-UP 
170 CURSOR(Z'=CURSOR(Z'+DOWN 
180 CURSOR(l'=CURSOR(l'-LEF 
190 CURSOR(1'=CURSOR(1)+RIGT 
ZOO COL.OR Z 
210 PLOT CURSOR(1)+16,CURSOR(2) 
220 Xl=STRIG(O):REM IF TRIGGER PRESSED 
, TURN PLAYER BIT ON OR OFF 
230 IF Xl=l THEN 90 
2't0 PLAYER(CURSOR(2',CURSOR(1"=1-SGN( 
PLAYER(CURSOR(Z),CURSOR(l») 
250 COLOR 3 
21.>0 IF PLAYER(CURSOR(2),CURSOR(1»=0 T 
HEN COLOF, 0 
270 PLOT CURSOR(1'+16,CURSOR(Z) 
2ElO GOTO 90 
Z90 GRAPHICS 7:REM RE - DISPLAY THE PLAY 
ER IN HIGHER RESOLUTION 
300 POKE 76't,O:REM CL.EAR THE KEYBOARD 
310 X2 =Z:X3=0 
3Z0 Xl ::: 76:Yl =20 
330 GOSUB 910:REM DISPLAY THE PL.AYER 
350 F'F,INT "(RETUFm> TO END; ( SPACE> TO 
GO E:AD( TO PLAYEF," 
360 IF PEEK(76't) =lZ THEN GOTO 't'tO:REM 

FIGURE 9-6. Player-Missile Image program 

(continued) 



310 A GUIDE TO ATARI 400/800 COMPUTERS 

IF <RET > HIT, DISPLAY PLAYER VALUES 
370 IF PEEK(764)<>33 THEN 360:REM IF N 
OT <SPACE> , KEEP LOOKING FOR KEYPRESS 
380 GRAPHICS 3+16 
390 GOSUB 740:REM RESE T THE SCREEN 
400 Xl ::: 1.6:Yl :::'0 
410 X2=1:X3==0 
420 GOSUB 910 
430 GOTO 90 
440 GRAPHICS O:REM DISPLAY PLAYER BIT 
MAP AND PLAYER IMAGE 
450 FOR Y ~ O TO 23 
460 POSITION O, Y 
470 PRINT "BYTE "; y; 
480 Xl=O 
490 FOR X=O TO 7 
500 X2=PLAVERCY,7- X) 
510 IF X2=0 THEN 530 
520 Xl =Xl +INTCCX2*2)AX+O.Ol):REM ADD E 
ACH BIT IN ORDER OF SIGNIFICANCE 
530 NEXT X 
540 POSITION 12 ,Y:PRINT Xl; 
55 0 NEXT V 
560 Xl::2.4:Yl =O 
570 X2 =ASC ('.' ") : X3 =ASC C" ") 
580 F'Of(E 752 ,1 
590 GOSUB 910 
600 GOTO 590 
610 REM ------ ------ ----WAIT FOR TRIGG 
ERIEMIT BEEP------
62 0 IF STRIGCO) =l THEN 62 0 
630 SOUND 0,50,1.0,4 
640 FOR DLAY=l TO 10:NEXT DLAY 
650 SOUND 0 , 0 , 0,0 
660 F,ETlJF,N 
669 REM - ------REM INITIALIZE VARIABLE 
S AND SET SCREEN--
670 CURSOR(l)::O 
680 CURSOR(2)::0 
690 FOR R:: O TO 23 
700 FOR c=o TO 7 
710 PLAVERCR,C)::O 
720 NEXT C 
730 NEXT R 
740 COLOR 3 
750 PLOT 15,O:DRAWTO 15,2~:PLOT 24,0:0 
RAIHO 24,23 
760 GRAPHICS 3+48:RETURN 
769 REM - - - --- --ROlJTINE TO READ JOVSTI 
CK SETTING--- - --- -

FIGURE 9-6. Player-Missile Image program (continued) 

(colll inued) 



Chapter 9: ADVANCED GRAPHICS 311 

770 REM READ JOYSTICK ROUTINE 
780 RDNG=STICKCO) 
790 DOWN=O 
800 UP=O 
810 LEF=O 
820 RIGT=O 
830 IF RDNG=15 THEN RETURN 
840 IF RDNG=14 THEN UP=l 
950 IF RDNG=7 THEN RIGT=l 
860 IF RDNG=13 THEN DOWN=l 
870 IF RDNG=ll THEN LEF=l 
880 GOSUB 630:REM BEEP THE SPEAKER 
890 RETURN 
900 REM ----------------DISPLAY THE PL 
AYER -------------
910 FOR Y=O TO 23 
920 FOR X=O TO 7 
930 COLOR Xl 
940 IF PLAYERCYtX)=O THEN COLOR X3 
950 PLOT X+Xl t Y+Yl 
960 NEXT X 
970 NEXT Y 
980 F,ETURN 

FIGURE 9-6. Player-Missile Image program (continued) 

Now that you have the player object in a coded form, you can repeat the process 
for as many as four player objects . 

Player Vertical Definition 
Player objects can be defined in 128 bytes or 256 bytes. A player object defined in 
128 bytes is projected on the display as shown in Figure 9-7. Each byte of this player 
object takes up two television scan lines . Players defined in 256 bytes will only use 
one scan line for each byte of the player object, as shown in Figure 9-8. 

Note that the player objects differ in their projected sizes on the display. There
fore, players defined in 256 bytes have twice the vertical resolution of 128-byte 
player objects, and appear less "blocky" on the screen. You should decide whether 
you need this extra resolution. Because all players must be defined with the same 
length, this decision can save you a lot of memory. Player objects defined in 128 
bytes are called double-resolution players, and players defined in 256 bytes are 
called single-resolution players. 

The Player-Missile Graphics Table 
The player-missile graphics table must start at an address evenly divisible by 1024 
for double-resolution players , or 2048 for single-resolution players. The BASIC 



312 A GUIDE TO AT ARI 400/800 COMPUTERS 

immediate-mode statement ?PEEK(106)*256 will display the last usable memory 
address on your computer. In order to properly locate the table in memory, the 
nearest 1024- or 2048-byte boundary address must be found. 

Computer 
memory 

Display 
screen 

... I I 28-byte 
~=====!.~:=~ player definition 
1------.J·-----1 

• • • • • • • • .-• 

Each vertical 
player byte 
takes up two 
TV scan lines 

FIGURE 9-7. Displaying double-resolution players 

Computer 
memory 

Display 
screen 

f-....... _- ----1 } 256-byte 

"",.,a-•• ------1 f player definition 

~l 
Each player 
byte takes 
up one TV 
scan line 

FIGURE 9-8. Displaying single-resolution players 



Chapter 9: ADVANCED GRAPHICS 313 

Laying Out the Table 
The player-missile graphics table layout is shown in Figure 9-9. The tab le is fixed in 
length. No matter how few players you define , the table will always be 1024 bytes or 
2048 bytes long in order to fit all four players and missiles. The first section of the 
table is vacant; this area of the table is available for other uses, such as storing 
alternate player object definitions or display lists. After this vacant area are five 
other areas where the missiles and players are defined . 

The missile definition area will hold four missile objects, each two bits wide. As 
with players, missiles can also be defined with double or single resolution. 

The next four areas are all of equal size, and each area holds one player object. 
Figure 9-9 shows the offset from the beginning of the player-missile graphics table 
for each player and missile. You will use these offsets to move the objects on the 
screen. 

The next step is to reset address 106 (6A hexadecimal) with the address of the 
player-missile graphics table. This step is necessary because the operating system 
will use all available memory; the highest available addresses are always used to set 
up the playfield graphics memory area. This conflict of memory use will adversely 
affect playfield graphics, player-missile graphics, or both. At worst, your computer 
will lock up. 

Missile 
Area 

f--8bits-

Unused 

o I I I 2 I 3 

Player 0 

Player I 

Player 2 

Player 3 

Offset from PMBASE 

(Double (Single 
Resolution) Resolution) 

0 0 

+384 +768 

+512 +1024 

+640 +1280 

+768 +1536 

+896 +1792 

+1024 +2048 

NOTE: All locations shown are offsets from the start of the player-missile graphics table 
base address (PMBASE). 

FIGURE 9-9. Player-missile graphics table layout 



314 A GUIDE TO ATARl400f800 COMPUTERS 

Calculating the Start Address 
The AT ARI computer will not resolve memory conflicts automatically; you will 
have to do that yourself. Although you already know that the player-missile 
graphics table has to reside on a I K or 2K address boundary, the playfield display 
has restrictions as well. Locating the player-missile graphics table at the highest part 
of memory will cause addressing problems for playfield graphics. For example, 
some areas of the display may not be usable, or PLOT statements will not place 
graphics points at the expected row and column. 

If playfield graphics screen memory is allocated normally, you can locate the 
player-missile graphics ta ble just before it withou t any memory conflicts. However, 
if a program changes graphics modes, it is possible to start yet another conflict 
which would eradicate the player-missile graphics table entirely. This problem 
would occur if a program switched from GRAPHICS 0 to GRAPHICS 7, for 
instance. In this case, the table would be erased entirely. The sensible thing to do is 
to look at the GRAPHICS statements in your program; find the statement that 
allocates the most RAM and plan the location of the player-missile graphics table 
accordingly. To calculate the player-missile graphics starting address, perform the 
following steps: 

I . Use the PEEK function to determine the contents of address 560. 

2. Use the PEEK function to determine the contents of address 561 and multiply the 
result by 256. 

3. Add the results of steps I and 2. 

4. Divide the result of step 3 by 1024 if using double-resolution graphics, or by 2048 if 
using single-resolution graphics . 

5. Truncate the remainder, subtract I, and mUltiply it by 1024 (double-resolution) or 2048 
(single-resol utio n) . 

The result of step 5 is the starting address for the player-missile graphics table . 
In a BASIC program, 

1000 REM SINGLE = I MEANS SINGLE RESOLUTION 

1010 PMBASE = PEEK(560) + PEEK(561) * 256 
1020 IF SINGLE THEN DIVISOR = 2048 
1030 IF (NOT SINGLE) THEN DIVISOR = 1024 

1040 PM BASE = INT(PMBASE / DIVISOR - I) * DIVISOR 

Protecting The Player-Missile Graphics Table 
Once you determine the ending address of the player-missile graphics table, use a 
POKE statement to put this two-byte value in locations 14 and 15, with the 
low-order byte first , as always. The operating system interprets the address con
tained at locations 14 and 15 as an absolute lower limit for playfield graphics 
memory allocation. Therefore, setting this address is critical to protecting the 
player-missile graphics table from destruction whenever a new GRAPHICS state
ment executes. 



Chapter 9: ADVANCED GRAPHICS 315 

Placing Players and Missiles in the Table 
Now that memory has been safely set aside for the player-missile graphics table, 
player and missile bit maps can go into it. The first step is to clear the areas of the 
table that will actually hold data. Area I of the player-missile graphics table is 
unused . There is no need to clear it , nor is there any need to clear areas of the table 
which will not contain active bit maps. 

Controlling the Player-Missile Graphics Display 
There are several control registers which, as the name implies, control the actual 
player-missile graphics display: 

Player-Missile base register 

DMA and graphics control registers 

Width registers 

Color registers 
Horizontal position registers 

Priority control register. 

Some of these registers need to be set only once, when setting up player-missile 
graphics, but others will require constant resetting, depending on how your pro
gram will manipulate players and missiles. Atari technical manuals abbreviate the 
names of these registers . The abbreviations are listed in the section headings which 
follow. 

The Player-Missile Base Register (PMBASE) 
Memory locations 54279 and 54280 (D407 and D408 hexadecimal) will contain the 
starting address of the player-missile graphics table. Since the address has to be on a 
I K or 2K boundary , location 54279 must always be O. Only the page number 
(high-order byte of the address) is significant . 

The Graphics Control Register (GRACTL) 
The graphics control register enables direct memory access (DMA) for player
missile graphics , along with the DMA control register explained below. GRACTL 
is located at address 53277 (DO I D hexadecimal) , and you can select to enable player 
DMA only (with a POKE 53277 ,2) , missile DMA only (POKE 53277,1), or com
bined player-missile DMA (POKE 53277,3). 

The DMA Control Register (DMACTL) 
Setting the D MA control register will switch player-missile graphics on or off. If the 
GRACTL register is not set to enable player-missile DMA, you will only see 
playfield graphics. DMACTL and GRACTL must both be set in order to display 
players and missiles. DMA acts as a parasite on the 6502 microprocessor, in that it 
steals machine cycles from the 6502. If you want to stop displaying player-missile 



316 A GUIDE TO ATAR1400/800 COMPUTERS 

TABLE 9-3. Player-Missile DMA Control Register Values 

Value to 
POKE 

4 
8 

12 
Add 16 

Setting 
Which Results 

Enable Missile DMA only 
Enable Player DMA only 
Enable Player-Missile DMA 
Single-line resolution 

(double-line resolution = default) 

graphics objects, reset the DMACTL register. This will give the microprocessor 
some of its speed back. 

Use the POKE statement to put a value from those shown in Table 9-3 in address 
559 (22F hexadecimal) in order to set the DMACTL register. 

Player Width Registers (SIZEPO - SIZEP3) 
Four eight-bit registers, at addresses 53256 through 53259 (0008 through DOOB 
hexadecimal), control the horizontal size of the four players . By changing values at 
these addresses, you can double or quadruple the width of player objects (but not 
their height). If player size will not change in your program, the players are left at 
normal size. 

Address 53256 controls the first player's width, address 53257 controls the second 
player's width, and so on. When writing programs to move the player objects 
horizontally, the width register setting will affect that player's horizontal position 
register setting. (See the "Player Horizontal Position Registers" section later in this 
chapter.) To set a player to double width , set its width register to I; for quadruple 
width, set the register to 3. A value of 0 or 2 will set the player to its normal width. As 
an example, the statement to set the third player to double width would be POKE 
53258,1. 

Missile Width Register (SIZEM) 
One register, at address 53260 (DOOC hexadecimal), controls the size of all missiles. 
The same settings as shown above for the player width registers apply to the missile 
width register: 0 or 2 for normal width, I for double, and 3 for quadruple width. 

Player-Missile Color Registers (COLPMO - COLPM3) 
The four player-missile color registers are each one byte long, starting at address 704 
(2CO hexadecimal) for the first player and ending at 707 (2C3 hexadecimal) for the 
fourth player. Both the player and its associated missile are set to the same color. 
Table 9-4 shows the values to place in these registers with the POKE statement in 
order to set the color and luminance combination you want. 



Chapter 9: ADVANCED GRAPHICS 317 

TABLE 9-4. Playfield and Player-Missile Color Register Values 

Color Value* 

Decimal Hex 

Grey 0 0 
Gold 16 10 
Orange 32 20 
Red 48 30 
Pink 64 40 
Violet 80 50 
Purple 96 60 
Blue 112 70 
Blue 128 80 
Light Blue 144 90 
Turquoise 160 AO 
Blue-Green 176 BO 
Green 192 CO 
Yellow-Green 208 DO 
Orange-Green 224 EO 
Light Orange 240 FO 

·Add an even number, 2 to 14 , to set luminance ; 0 = no luminance, 14 = maximum luminance. 

Player Horizontal Position Registers (HPOSPO - HPOSP3) 
The player horizontal position registers are used to relocate player objects on the 
horizontal axis. By simply changing register contents with POKE statements, you 
can move the player object to the horizontal position you specify. Depending on the 
width register setting for the player object, you can position a player at the left side 
of the screen, then set a new horizontal position value which causes the object to 
immediately reappear elsewhere on the screen. The minimum value of each position 
register is 0, and the maximum value is 227. Depending on the player size specified 
in DMACTL, these register settings will range between 40 as the leftmost visible 
position and 190 as the rightmost position. 

These registers are write-only registers ; that is, you will not be able to use PEEK 
to determine the location ofa player. Therefore, your program will have to maintain 
variables which contain, among other things, the current horizontal position of 
player and missile objects on the screen. Later you will see an example of the 
horizontal position registers in use. Player O's horizontal position register resides at 
address 53248 (0000 hexadecimal); player 1 at 53249; player 2 at 53250, and player 
3 at 53251. 

Missile Horizontal Position Registers (HPOSMO - HPOSM3) 
Starting at address 53252 (0004 hexadecimal) , four missile position registers 
receive values used to reposition missiles on the horizontal axis. 



31B A GUIDE TO AT ARI 400/BOO COMPUTERS 

PLAYER-MISSILE GRAPHICS EXAMPLES 
This section will present various tricks you can do with player-missile graphics. 
These programs all use the subroutines introduced earlier in this chapter to set up 
the player-missile graphics table in memory, initialize and load it, and control the 
movement of the objects. However, in the previous section, the problem of moving 
players and missiles up and down was never covered. We will now address this 
problem. 

Moving Players and Missiles Vertically 
Player and missile objects move vertically by moving their bit maps higher in 
memory (to place them lower on the screen), or lower in memory (to place them 
higher on the screen). This process is very slow in BASIC. Using an assembly 
language subroutine to perform the movement is much faster. The assembly lan
guage program below will move player or missile objects' bit maps byte by byte. 

0000 10 *=$0600 ,BEGIN ROUTINE HERE 
OOCB 20 LOCATION =$OOCB IPLAYER LOCATION 
OOCD 30 LENGTH =$OOCD ;LENGTH OF PLAYER 
0600 68 '10 MOVEUP PLA ;PULL ARGUMENT OFF STACK 
0601 AOOt 50 LOY 1$01 ;INITIALIZE INDEX 
0603 B1CB 60 UPMORE LOA (LOCATION),Y 
0605 88 70 DEY ;TRANSFER ONE BYTE UP 
0606 91CB 80 STA (LOCATION),Y 
0608 C'ICD 90 CPY LENGTH ;FINISHED MOVING PLAYER? 
060A C8 01110 INY ;ADD 2 TO REGISTER 
060B C8 0110 INY 
060C 90F5 o 1;!0 BCC UPMORE ;KEEP MOVING IF NOT DONE 
060E C6CB 0130 DEC LOCATION 
0610 60 01'10 RTS ;OTHERWISE RETURN 
0611 68 0150 MOVEDOWN PLA ;ALSO PULL HERE 
0612 A'ICD 0160 LOY LENGTH 
061'1 B1CB 0170 DOWNMORE LOA (LOCATION),Y 
0616 C8 0180 INY ;MOVE A BYTE DOWN 
0617 91CB 0190 STA (LOCATION),Y 
061 '1 88 0200 DEY 
061A 88 0210 DEY ;DECREMENT THE INDEX 
061B 10F7 0220 BF'L DOWNMORE ;CONTINUE IF MORE LEFT 
0610 E6CE: 0230 INC LOCATION 
061F 60 02'10 RTS 

You can incorporate this subroutine into a BASIC program easily enough by 
running the following program: 

~ooo REM **************************** 
~001 REM * P/M GRAPHICS MOVE ROUTINE* 
~002 REM *==========================* 
~003 REM * RUN THIS PROGRAM TO LOAD * 
~OO~ REM * THE MOVE ROUTINE INTO RAM* 
4005 REM * STARTING AT ADDR 1536. * 
~006 REM **************************** 
~010 D~TA 104,160,1,177,203,136,145 
4020 DATA 203,196,205,200,200,1~~,2~5 
4030 DATA 198,203,96,104,16~,205,177 
4010 DATA 203,200,115,203,136,136 



4050 DATA 16,247,230,203,96 
4060 FOR 1=1536 TO 1567 
4070 READ J 
4080 pm(E I, J 
4090 NEXT I 

Chapter 9: ADVANCED GRAPHICS 319 

All ATARI computers have a reserved area of RAM (locations 1536 through 1791) 
which will safely store subroutines such as this . Once loaded, the subroutine will 
remain there until you either turn off the computer or decide to re-use the area for 
something else. The player-missile graphics examples that follow assume that the 
assembly language subroutine listed above is already loaded into memory before 
you run them. 

Simple Player Movement 
In the example shown below, only one player will be used, and the movement will be 
on the horizontal axis. The DATA statement at line 30 defines the player object. 
Once its area is cleared, the player image moves into RAM. The player-missile base 
register and the graphics and DMA control registers are activated for double
resolution players at standard width. The player's color - blue in this case - is set 
by placing the composite color and luminance in player O's color register with a 
POKE statement on line 130. The player object moves from left to right, by 
increasing the value of player O's horizontal position register (lines 190 to 210). 
Make the following changes to this program. First , experiment with the player's 
width setting. Then, alter the FOR-NEXT loop to allow movement from right to 
left . You can also experiment with different color register values. Move on to the 
next section after trying some variations. 

10 GF<APHICS 0 
20 SETCOLOR 2,0,0 
25 REM PLAYER IMAGE DEFINED IN DATA ST 
ATEMENTS BELOW 
30 DATA 24,60,255,36,66 
40 Y=64:REM VERTICAL SETTING FOR PLAYE 
R 
50 A=PEEK(106)-8:REM FIND END OF MEMOR 
Y 
60 POKE 51279,A:REM POKE START ADDRESS 

TO PME:ASE 
70 START=256*A+512:REM START ADDRESS F 
OR PLAYER 0 IMAGE 
80 POKE 559,46:REM SET DMACTL 
90 POKE 53277,3:REM SET GRACTL 
100 FOR I=START TO START+127 
l10 POKE ~,O:REM CLEAR PLAYER 0 AREA 
120 NEXT I 
130 POKE 704,136:REM SET PLAYER 0 COLO 
R REGISTER 
140 POKE 53248,0:REM SET PLAYER HORIZ. 

POSITION TO 0 



320 A GUIDE TO AT ARI 400/800 COMPUTERS 

150 FOR I=START+Y TO START+1+Y 
160 READ X:REM PUT PLAYER IMAGE IN MEM 
ORY 
170 pm{E I,X 
180 NEXT I 
190 FOR POS=O TO 228 
200 POKE 53218,POS:REM MOVE PLAYER 0 1 

COLOR CYCLE TO THE RIGHT 
210 NEXT POS 
220 GOTO 190 

Vertical and Horizontal Player Movement 
The example program in Figure 9-10 shows more elaborate movement than the 
previous example. The exception here is that the machine language subroutine for 
vertical player movement is used. Notice also that each FOR-NEXT loop moves the 
player object a bit differently in order to give some illusion of three dimensions. 

Increased Player Resolution 
The limitations of player images prevent players from being very useful for some 
applications. The example shown in Figure 9-11 uses a player with 32 bits of reso
lution, as defined in Figure 9-12. 

As you can see when running the program, BASIC moves the flying saucer across 
the screen in ajerky manner. This is caused by both the slowness of the language and 
the concatentation of the four player images. 

Using the Priority Registers 
A relatively easy example of setting priority between playfield and player-missile 
graphics can be seen in Figure 9-13. The priority register can have several settings: 

I gives all players priority over playfield. 
2 gives players 0 and I priority over all playfield registers. plus players 2 and 3. 
4 gives playfield priority over players . 
8 gives playfield color registers 0 and I priority over all players and playfield registers 2 and 3. 

10 GHAPHICS 1+1b 
20 SETCOLOH 0,0,12 
30 SETCOLOH 2,0,0 
10 DATA 153,189,255,189,153 
50 GOSUe 3bO:REM DISPLAY A STAR FIELD 
FIRST 

FIGURE 9-10. Player movement 

(COlli ill lied) 



60 Y'=l 
70 A=PEEK(106'-8 
80 pm(E 106,A 

Chapter 9: ADVANCED GRAPHICS 321 

90 POKE 54279,A:REM POKE PM8ASE ADDRES 
S 

110 POKE 559,62:REM SINGLE-LINE RESOLU 
TION PLAYEF~ DMA 
120 POKE 53277,3:REM ENABLE PLAYER DMA 
130 pm<E 53256,0 
140 FOR I==START+l024 TO START+1280 
150 POKE I,O:REM CLEAR THE P/M GRAPHIC 
S AF,EA 
160/ NEXT I 
170 PSTART=START+l024+Y 
180 POKE 204,INT(PSTART/256':REM POKE 
HIGH-ORDER PART OF PLAYER ADDRESS 
190 POKE 203,PSTART-(PEEK(204'*256'-1: 
REM POKE LOW - ORDER PLAYER ADDRESS 
200 POKE 205,5:REM PLAYER LENGTH 
210 F,E!HOF,E 
220 FOR I=PSTART TO PSTART+4 
230 READ A 
240 pon: I,A 
250 NEXT I 
260 FOR 1=50 TO 120:GOSUB 320:NEXT I 
270 POKE 53256,1:REM DOUBLE SIZE 
280 FOR 1=118 TO 167 STEP 2:GOSUB 320: 
GOSUB 320:NEXT I 
290 POKE 53256,3:REM QUAD SIZE 
300 FOR 1=166 TO 250 STEP 2:GOSU8 320: 
NEXT I 
310 GOTO 1:30 
320 A=USR(1553':POKE 53248,I:COLR=COLR 
+1 
330 IF CQLR)255 THEN COLR=O 
340 POKE 704,COLR 
350 RETUF,N 
360 FOR M= l TO 22 
370 X=F,ND(O'*20 
380 Y=F~ND (:1., *24 
390 POSITION INT(X',INT(Y':? i6;".":RE 
M PLOT RANDOM 'STAR' POINTS 
400 X=RND(O'*20 
410 Y=RND(1.'*24 
420 POSITION INT (X, ,INT (Y' : F'F,INT ,.,6; " . 

430 NEXT M 
440 RETURN 

FIGURE 9-10. Player movement (continued) 



322 A GUIDE TO AT ARI 400/800 COMPUTERS 

1 REM PLAYER - MISSILE 32-8IT RESOLUTION 
2 REM -------------PLAYER / MISSILE BIT MASKS--------------
3 ~3ETCOL[m 2,0,0 
10 DATA 0,0,0,0,3,15,119,254,255,63,31,7,4,14,14 
20 DATA 1,2,2,31,240,255,255,255,239,254,255,255,240,15,0 
30 DATA 128 ,64,64,248,15,255 ,255,255,247,127,255,255,15, 

~?40 , 0 
'10 Y::::BO 
45 DATA 0,0,0,0,192, 240,236,127,255,252,248,224,32,112, 
50 A=PEEK(106) -BI REM FIND END OF MEMORY 
60 POKE 54279, AIREM POKE START ADDRESS TO PMBASE 
70 START=256*AIREM START ADDRESS FOR PLAYER/MISSILE 

GI:(APHICS TABLE 
80 POKE 559,461REM SET DMACTL 
90 POKE 53277,31REM SET GRACTL 
100 FOR I=START+512 TO START+l024 
110 POI<E I, 0 
120 NEXT I 
130 FOR 1=704 TO 708 
140 POI-(E I, 100 
150 NEXT IIREM SET PLAYERS TO AQUA 
160 Fm( H"':O TO ::l 
170 POKE 53248+H,X+H*8IREM SET HORIZONTAL POSITIONS 
180 POKE 53256+H,1IREM SET PLAYER SIZE 
190 FOR I=START+512+Y+(128*H) TO START+526+Y+(128*H) 
200 READ X 
210 P()I-(E I,X 
;·?20 NEXT I 
?l5 NEXT H 
230 FOR 0=0 TO 228 STEP 4 
240 Ffm 1"'::::0 TO 3 
2~;0 POS::::D+1c)*F' 
260 IF POS(220 THEN POKE 53248+P,POS 
270 NEXT P 
;? BO NEXT D 
2'} 0 COTD 2::l0 

FIGURE 9-11. Player with 32 bits of resolution 

In the example presented, the player object appears to be in front of the yellow 
portion of the screen as it heads toward the middle of the picture. Before returning 
to the left edge of the screen, the priority register is reset to give the yellow playfield 
priority over the player, thus giving the impression that the player is going behind 
the yellow playfield . 



Chapter 9: ADVANCED GRAPHICS 323 

FIGURE 9-12. Combining players 

~:j COLOR 3 
1 0 Gf(APHIC~:; 7+ 1. 6 
20 DATA 60,126,219,255,189,195,1.26,60 
30 SETCOLOR 2,0,0 
40 PLOT 125,95 :REM CREATE A PLAYFIELD 
O[:cJECT 
~50 Df(AWTD 80,0 
60 DF(AWTO 79,0 
7 0 POSITION 45,95 
80 POKE 765,l:REM ORANGE TRIANGLE 
8~.'j XID 18, *6 , 0 , 0 , "S : " 
90 A=PEEK(106)-24:REM FIND END OF MEMO 
f(Y 
100 POKE 54279,A:REM POKE START ADDRES 
S T() PME:ASE 
110 ~nAl'n",;>'~:j6)1(A: F(EM ~nAIH A[)[)f(E~:;f.; FDF( 
PLAYER/MISSILE GRAPHICS TABLE 
12 0 POKE 559,46:REM SET DMACTL 
130 POKE 53277,3:REM SET GRACTL 
140 FOR J=START+51. 2 T() START+1024 

FIGURE 9-13. Setting playfield and player-missile graphics priority 

(cont inued) 



324 A GUIDE TO AT ARI 400/800 COMPUTERS 

150 POKE J,O:REM CLEAR PLAYER/MISSILE 
AF~EA 

:L 60 NEXT ,J 
170 FOR I=START+580 TO START+587 
1BO f~EAD X 
1 <y 0 PClI<E I, X: f-;:EM pur" THE PLAYEF~ IN THE 

TABL.E 
ZOO NEXT I 
230 POKE 623,1:REM GIVE PRIORITY TO PL 
AYEFW 
240 POKE 704,86:REM PURPLE PLAYER 
250 FOR K=60 TO :L80 
2f.,O PClI<E !::j~1248, 1< 
270 NEXT 1< 
280 POKE 623,4:REM GIVE PLAYFIELD PRIO 
IUTY 
290 FOR J=180 TO 60 STEP -1 
:]00 F'CH(E !:j32 i I8, ,J 
::1:1. 0 NEXT ,J 
~120 GOTD Z30 

FIGURE 9-13. Setting playfield and player-missile graphics priority (continued) 



10 
SOUND 

The AT ARI computer can generate sounds and music in two distinctly different 
ways . It can activate its own buil t-in speaker, and it can drive the television speaker. 

THE BUILT-IN SPEAKER 
The AT ARI computer clicks its built-in speake r every time you press a key. It also 
sounds the speaker to cue program recorder operation. The speaker is controlled by 
memory location 53279. Storing a 0 there sends a pulse to the speaker. Pulsing the 
speaker several times in rapid succession generates a tone. The faster the pulsing, the 
higher the tone . The following program demonstrates this : 

1 0 F'F~INT 01 TONE V,~Ll.JE (1 :", f·II , :l 0 ::: LO) 01 

20 INPUT T 
29 REM Loop establishes duration 
3 0 FOR J=l TO 15 
40 POKE 53279, 0 :REM Speaker 
49 REM Dela~ loop affect s tone 
5 0 FOI;: f(":l TD T 
C, 0 NEXT f( 
70 NEXT J 
80 GOTO 10 

BASIC doesn 't execute fast enough to create any high notes on the built-in 
speaker, but it can be useful on so me occasions. For exa mple , you could modify the 
Display Error Message subroutine (Figure 4-17) so that it sounds the speaker in 
addition to displaying an error message . 

325 



326 A GUIDE TO AT ARI 400/800 COMPUTERS 

TELEVISION SPEAKER SOUND 
The AT ARI computer can make a wide variety of sound effects and music come out 
of the television speaker. Such sounds can be simple or complex: they can have one, 
two, three, or four voices . Each voice can vary in pitch by more than three octaves. It 
can vary from a pure tone to a highly distorted one. Each voice has its own loudness 
level, independent of the television volume setting. 

The SOUND Statement 
In BASIC, SOUND statements control the TV speaker. Turn up the volume control 
on your television and try this example: 

SOUND 0.121,10,8 

You should hear the note middle C. The numbers tell the computer to generate a 
pure, undistorted middle C of moderate loudness. Every SOUND statement must 
have four numbers (Figure 10-1). The first number determines which voice will be 
used. The second number sets the pitch. The third number regulates distortion. The 
fourth number controls the loudness. You can use a numeric variable or expression 
in place of any number. 

The sound continues until you turn it off. To do that, set the pitch, distortion, and 
loudness to 0, like this: 

SOUND 0,0,0,0 

Voice 
The AT ARI computer has four independent voices. This means it can make as 
many as four different sounds simultaneously. The different voices blend together 
in the television speaker, like voices in a chorus. The first number in the SOUND 
statement determines which voice the SOUND statement will affect. Voices are 
numbered ° through 3. You must use a separate SOUND statement to control each 
voice. This sequence of immediate mode statements generates a C chord: 

SOUND 0.12.1.10,8 

READY 
SOUND 1,96,10,8 

F,EADY 
SOUND 2,81,10,8 

F,EADY 
SOUND :3,60.10,8 

F,EADY 

A simple FOR-NEXT loop will turn off all sound: 

FOR J =O TO :3IS0UND J,O,O,OINEXT J 



Chapter 10: SOUND 327 

SOUNDO, 121 , 10,8 

~J~ 
Voice Pitch Distortion Loudness 

FIG URE 10-1. SOUND statement parameters 

Pitch 
The second number in a SOUND statement sets the pitch. It can be between 0 and 
255. The AT ARI computer can produce all notes - sharps, flats , and naturals -
from one octave below middle C to two octaves above it (Figure 10-2). It can 
produce a good many other tones as well. For example, there are six intermediate 
values between middle C a nd the tone one-half step below it, B. Such tones do not 
correspond exactly to any of the notes on the chromatic scale, so they will be of no 
use for programming music. You can use them for sound effects, however. Run the 
following program: 

10 FOR J=-255 TO 255 
20 SOUND 0,ABS(J),10,8 
30 PRINT "PITCH VALUE: "; AE:S ( ,J) 
10 FOR K=1 TO 50:NEXT K 
50 NEXT J 
60 SO LJND 0,0,0,0 

The program above shows off the AT ARI computer's complete tonal range. As 
you listen, notice that the low notes seem to last longer than the high notes. You can 
see that the program holds each tone for the same length of time (line 30). But the 
tone produced by a pitch value of 255 is very nearly the same as that produced by 
pitch values of 254,253, and even 252. These low tones run together, sounding like 
one sustained note. In contrast, there is a marked difference betweeen pitch values 
11 and 10. Each change in pitch value is definitely discernible. The program glides 
smoothly through the low tones but ends up hopping choppily through the high 
tones. 

Distortion 
The AT ARI computer produces both pure and distorted tones. The third number in 
a SOUND statement regulates distortion. It can be any value between 0 and IS. 
Distortion values of 10 and 14 generate pure tones. Other even-numbered distortion 
va lues (0,2,4,6, 8, 10, and 12) introduce different amounts of noise into the pure 
tone. The amount of noise depends on both the distortion value and the pitch value. 



328 A GUIDE TO ATAR1400/800 COMPUTERS 

-...... CbC~ b. 
o 

J 

~ 26 28 29 31 33 35 3} 40 42 45 47 50 53 57 60 64 

, bO obq alb 0 a 
68 72 76 81 85 91 

cbCt> 
96 

obo ob~ 

108 114 121 128 136 144 153 

o OliO 

h(; 
ObO 

102 lOll 114 

obo a 

162 173 182 

.g. 
121 

obo obO 0 a 
193 204 217 230 243 255 

.e1lQ.C 
OliO 0 

255 243 230 217 204 193 182 17.3 162 153 144 136 128 121 114 108 

o 
_If 

/, ..... - ::>IIC> 
J #. 0#::>-

_ 0110 

.eIlG 0 II~ - 91 85 
121 114 108 102 96 

_11_ 01l0€t-#a. 

81 76 72 68 64 

.0 ~#a. .0 

60 57 53 50 

0- - . 
I . .... 

~ 47 45 42 40 37 35 33 31 29 28 26 

FIGURE 10-2. SOUND statement pitch values and the chromatic scale 

Some combinations of distortion and pitch combine to produce an undistorted 
secondary tone with harmonic overtones. The secondary tone is different in pitch 
from the pure tone. The following statement produces a pure C#: 

SOUND 0, 2~1 () , 10 , B 

Change the distortion value to 12, as follows : 
SOUND 0,230,12,8 

A much lower secondary tone results . In fact, this secondary tone is lower than the 
pure tone you get with an undistorted pitch of 255: 

SOUND 0,255,10,13 



Chapter 10: SOUND 329 

Unfortunately, a secondary tone does not have a reliable pitch of its own. This 
program demonstrates: 

9 REM Start secondar~ tone 
10 SOUND 0,230,12,8 
20 FOR K=l TO 50:NEXT K 
29 REM Turn off sound 
30 SOUND 0,0,0,0 
39 REM Wait randoM tiMe 
10 FOR K=l TO 50*RND(0):NEXT K 
19 REM Repeat; use BREAK to end 
50 GOTO 10 

In the program above, the variable pause that occurs while the sound is off (line 40) 
randomly changes the pitch of the secondary tone (line 10). 

Some combinations of pitch and distortion blank each other out. The result is 
silence. Try this statement, for example: 

\ 

SOUND 0.123.6,0 

Generally speaking, odd-numbered distortion values (I, 3, 5, and so on) silence 
the specified voice. But if the voice is off, a SOUND statement with an odd
numbered distortion value causes a single click, then silence. Turning the voice off 
then causes another click. Here is a program that demonstrates how odd-numbered 
distortion values work: 

10 FOR cJ= 1 TO 20 
20 SOUND 0,0,1,8 
30 SOUND 0,0,0,0 
10 FOR f(=l TO 100:NEXT f( 
50 NEXT J 

Table 10-1 summarizes sound characteristics for each distortion factor. The 
f6llowing program will help you explore them in more detail: 

10 FOR P=O TO 255 
20 FOR 0=0 TO 15 
30 PF\INT "f"'ITCH""";F',"DIST==";D 
10 SOUND O,F',O,iO 
50 FOR K=l TO 10:NEXT K 
60 NEXT D 
70 NEXT P 

Loudness 
The fourth number in a SOUND statement controls the loudness of the specified 
voice. It lets the program determine the audio level. It also allows the program to 
mix a multiple-voice sound, with each voice at a different loudness level. You can 
control the overall volume with the television volume control; if you turn it all the 
way down, you will hear no sound . 

The loudness value can be between 0 (silent) and 15 (loudest). Loudness change is 



330 A GUIDE TO ATAR1400/800 COMPUTERS 

TABLE 10-1. SOUND Statement Distortion Characteristics 

Distortion Silences" 
Secondary 

Comments 
Value· Tones t 

14 None None Pure tone 

12 Many Many High tones less distorted 

10 None None Pure to ne 

8 None None Static (low tones) to white noise 
(h igh tones) 

6 Few Few No change below pitch 200 

4 Few Few Stat ic (low tones) to throbbing 
(high tones) 

2 Few Few Same sounds as 6 

0 Few None Blend of 4 and 8 

• Any odd-numbered distortion va lue generates a single click when it turns 
on a vo ice. Turning off the voice may generate another click. 

** Some combinations of distortion and pitch va lues generate silence. 

t Some combinations of distortion and pitch va lues generate a tone wi th 
harmonic overtones . 

linear: 8 produces a sound half as loud as 15, the value 12 is halfway between 8 and 
15 in loudness , and so on. This program demonstrates the loudness range: 

10 FOR J=-15 TO 15 
20 SOUND 0,121,10,ABS(J) 
30 NEXT J 
40 SOUND 0,0,0,0 

Pitch affects apparent loudness. For a combination of reasons, the highest-
pitched sounds seem quieter. Listen to the output of this program: 

10 FOR J =-5 0 TO 50 
2 0 SOUND 0,ABS(J),10,8 
3 0 FOR K=l TO 50:NEXT K 
40 NEXT J 
50 SOUND 0,0,0,0 

Statements that Turn Off Sound 
As you have seen, a SOUND statement with 0 volume will turn off a single voice. 
Some AT ARI BASIC statements automatically turn off all four voices. When the 
computer executes an END statement, it shuts off all four voices as it ends the 
program. END also works in immediate mode. The RUN statement also turns off 
all sound. A sound you start in immediate mode will not continue when you run a 
programmed mode program, unless the program recreates it. Other statements that 
turn off all sound include CLOAD, CSA VE, DOS, and NEW. Pressing the SYSTEM 

RESET key turns off all sound voices, but pressing the BREAK key does not. 



Chapter 10: SOUND 331 

Duration 
A characteristic of sound that is just as important as any other is its duration. The 
SOUND statement has no duration parameter. There is no way the SOUND 
statement alone can determine how long a sound remains on. It remains on until the 
computer executes a statement that turns it off. Clearly this will not happen as long 
as the computer is busy executing other statements. 

One way to control sound duration is to interweave sound statements with other 
program statements. A constantly changing sound results. The following program 
generates random tones while it outputs a number: 

10 DIM N$(40) 
20 PRINT CHRS(125):REM Clr screen 
29 REM Restart in case of error 
~~ 0 TF(AF' 20 
40 PRINT "ENTEr;: A NUME:ER" 
50 INI:'UT N 
70 NS:"" ~;rRS(N) 

80 FOR J=l TO LENCNS) 
90 SOUND 0.64*RNDCO)+16.10.10 
100 F'RINT N$CJ.J); 
110 SOUND 1.32*RNDCO)+8.10.10 
120 NEXT J 
130 SOUND O.O.O.O:SOUND 1.0.0.0 
140 GOTO 2 0 

Suppose you want a sound to last a specific length of time, then turn off. Your 
program must turn the sound on, pause the right amount of time, then turn the 
sound off. You can use SOUND statements to turn the sound on and off, but how 
do you make the program pause? The easiest way is with a FOR-NEXT loop. 
Several example programs have used this technique. Here is another: 

10 SOUND O.47t10.:LO 
20 FOY( f( :::: 1 TO 100:NEXT f( 
30 !30UND o .64. 10 .10 
40 FOR f(:::::l TO 100:NE XT 1< 
:j 0 GOTO :lO 

Experiments show that in AT ARI BASIC, empty FOR-NEXT loops iterate 
about 445 times per second. Therefore, a loop that goes from I to 100, like the one 
on line 40 above, causes a pause of just under one-quarter second. However, this 
timing data is not guaranteed. Your ATARI computer may be slightly different. 
You can conduct your own experiment to determine the speed of empty FOR
NEXT loops on your computer. You will need a clock or watch with a second hand. 
Type in this program: 

10 FOR J=l TO 35000:NEXT J 

Now type the command RUN. As you press the RETURN key to start the program, 
note the position of the second hand. After 30 seconds have elapsed, press the 
BREAK key. Type this immed iate mode statement to calculate the number of empty 



332 A GUIDE TO AT ARI 400/800 COMPUTERS 

FOR-NEXT loop iterations your computer executes every second: 

?INT(J/30) 

Sample Sound Effects 
The AT ARI computer can create many realistic sound effects. All it takes is the 
right combination of voices, pitch, distortion , volume, and timing. Finding the right 
combination for a particular sound can be difficult. There are no formulas that 
apply; you wi ll have to experiment. Experience will reduce the number of experi
ments it takes to come up with a particular sound. As you learn how to create 
different sounds, it will become easier to come up with new ones. Sometimes in the 
pursuit of one effect you will discover a sound that would be perfect for another 
effect. Make notes of such discoveries; they will expedite future experiments. To get 
started, try the programs in Figure 10-3. Experiment with them and see if you can 
improve them . 

:1.0 ? "DUFUYLrON " ;: INF'UT D 
99 REM THINK === 
100 FOR J = :L TO D.l 0 
110 SO UND 0,RND ( 0) *B O+50,10,3 
12 0 NEX T ,J 
? OO END 

("19 [(EM """""" [:Al..l.. 
100 FOR J =Z5 TO 1 STEP - 1 
11 () FOI'< 1<"" 1 TO ~"j 
12 0 SO UND 0 , 125,1"1 ,6 
:L ::l 0 NEXT 1< 
140 SO UND 0,0,0,0 
150 FOR K=1 TO J *5INEXT K 
160 NEXT ,J 
;.>. 00 END 

99 REM === DRAIN === 
:L 0 0 V""C,"1 
110 FOR J =1 TO 30 
120 SO UND 0,V- J ,1 0,10 
130 SO UND 1 , F+J,10~10 

140 FOR K=l TO 3 0- JINEXT K 
150 SO UND 0,0,0,0 
16 0 SOUND 1,0,0 , 0 
17 0 FOR K=:L TO :LOINE XT K 
:LBO NE XT ,J 
ZOO END 

FIGURE 10-3. Sample sound effects program listings 

(continued) 



Chapter 10: SOUND 333 

99 REM === FILL === 
100 FOR J=140 TO 9 0 STEP - 1 
110 SOUND O,J,10,10 
120 FOR K=l TO 20:NEXT K 
130 SOUND 0,0,0,0 
140 FOR K=1 TO 10:NE XT K 
1 :''j 0 NEXT ,J 
ZOO END 

99 REM === FALLING OBJECT === 
100 FOR J' 30 TO 200 STEP 3 
110 SOUND O,J,10,J/Z5 
120 FOR K=1 TO J / l0:NEXT K 
1:30 NE XT ,.I 
140 SOUND 0 ,20 ,0,14 
lS0 SO UND 1 ,255 . 10,15 
160 FOR K=l TO 100:NEXT K 
?OO END 

99 REM === EXPLOSION === 
100 FOR J= -1 0 TO 10 
110 SOUND O,200,4,10-ABS(J) 
12 0 SOUND l ,255, 4,10-ABS(J) 
130 SOUND 2,2Z5,4, 10 - ABS(J) 
140 SOUND 3,150,4,10-ABS(J) 
160 FOR K=1 TO ZOO:NEXT K 
170 NE XT ,.I 
~~O 0 END 

:I. 0 F'FaNT "HDW M~INY !:a-IOT!:;"; 
;-? 0 INPUT [) 
99 REM === GUNSHOTS 
100 FOI'< ,.I'" 1 TCl D 
110 SO UND 0,5 , 0,15 
l Z0 FOR K=l TO 28:NEXT K 
130 SClUND 0,0,0,0 
140 FOR K=l TO RND(O)*ZOO:NE XT K 
1 :::; 0 NE XT ,J 
ZOO END 

10 PlUtH "Dl.mATIClN"; :INPUT D 
99 REM === JACKHAMMER === 

FIGURE 10-3. Sample sound effects program listings (continued) 

(continued) 



334 A GUIDE TO AT ARI 400/800 COMPUTERS 

:1. 00 FOI;: cJ:::: l TO D 
110 SO UND O,130+RNDCO'~2, 2, 15 

120 FOR K=1 TO 110+RNDCO'*100:NEXT K 
13 0 FOR K=1 TO 110 +RNDCO'*100:NEXT K 
1'10 NEXT J 
200 END 

10 PFn:NT "[)UF~ATION" ;: INPUT [) 
99 REM === SIREN === 
100 FOF, cJ:::: l TO D 
110 FOR K=-16 0 TO 160 STEP 2 
120 SOUND O,ABSCK'+95,10,8 
130 FOR L=1 TO 10:NEXT L 
110 NE XT 1-( 
1~)0 NE XT cJ 
2 00 END 

10 PF([NT "DUF~ATION";:INPUT [) 
99 REM === HI - LO SIREN 
100 FCm • .J '-" 1 TO D 
110 SOUND 0,1 7, 10,8 
120 FOR L=l TO 100:NEXT L 
130 SOUND 0,61,10,8 
140 FOR L=1 TO 100:NEXT L 
1~'j0 NE XT • .J 
ZOO END 

10 PFnNT "DUF~ATION";: INPUT D 
99 REM === HORN === 
100 SOUND 0,121 , 10, 8 
110 SOUND 1,1 28,1 0,8 
120 SOUND 2,8,2,2 
130 FOR J =1 TO D~70:NEXT J 
2 00 END 

1 0 PF~INT "DUI:~ATI()N" ;: INPUT D 
99 REM === BU ZZER === 
100 SOUND O,12,Z,15 
110 FOR J =l TO D~200:NEX T J 
;!. O 0 END 

:lO PF(INT "[)UF~ATION";: INPUT D 
99 REM === PHONE === 
100 Fm~ • .J =:1. TO D 
110 SOUND 0 , 86,10,5 

FIGURE 10-3. Sample sound effects program listings (continued) 

(colllillued) 



120 SOUND 1,88,10,5 
130 SO UND 2,10,2,1 
110 FOR K=l TO 500:NEXT K 

Chapter 10: SOUND 335 

150 FOR K=O TO 3:S0UND K,O,O,O:NEXT K 
160 IF J=D THEN GOTO 180 
170 FOR K=l TO 750:NEXT K 
180 NEXT .,} 
20 0 END 

10 PI:-':INT II DUF(r-,TION" ; : INPUT D 
99 REM === BIRDS === 
100 FOR J=l TO D~5 
110 FOR K=3 TO 10 
120 SO UND O,K,lO,8 
130 NEXT K:NEXT J 
200 END 

10 F'F\INT "DUF,ATION";: INPUT D 
99 REM === SEA ---
100 FOR L=l TO D 
110 FOR J=O TO 15 
120 SOUND O,J,8,1 
130 FOR K=1 TO 20+RND(O)~ 10:NEXT K 
140 NEXT .J 
150 FOR J=15 TO 0 STEP -1 
160 SOUND O,J,8,4 
170 FOR K=l TO 50+RND(0)~30:NEXT K 
180 NEXT J:FOR K=1 TO 300+RND(0)~300:N 
EXT 1< 
190 NEXT I... 
200 END 

99 REM === TAKEOFF 
100 FOR L=l TO D 
110 FOR J =O TO 15 
12 0 SOUND 0,J,8,J/3 
:l'lO NEXT J 
150 FOR J='15 TO 0 STEF' -1 
160 SOUND 0,J,8,J/6+6 
170 FOR K=l TO 70+J~3:NEX T K 
IBO NEXT .J 
190 NEXT L 
20 0 END 

FIGURE 10-3. Sample sound effects program listings (continued) 





11 
COMPENDIUM OF 

BASIC STATEMENTS 
AND FUNCTIONS 

This chapter describes the syntax for all AT ARI BASIC statements and functions. 
Statements are described first, listed in alphabetical order. Then functions are 
described, also in alphabetical order. Included in the section on statements are 
descriptions of two single-keystroke commands , BREAK and SYSTEM RESET. These 
two differ from the rest of the BASIC statements, but are included here because they 
affect program execution as much as any statement. 

This chapter serves as a reference for all statements and functions. The examples 
in this chapter show you some of the ways you can correctly use each BASIC 
statement. They by no means exhaust all possibilities . For more examples, many in 
working programs, refer to earlier chapters. 

IMMEDIATE AND PROGRAMMED MODES 
All statements can be executed in immediate or programmed mode. In some cases 
only one mode is practical. 

BASIC VERSIONS 
The features and attributes of all statements and functions described in this chapter 
are those of standard AT ARI BASIC (also known as Sheperdson BASIC) . Other 
versions of BASIC, such as Microsoft BASIC and BASIC A+, are not specifically 
covered. 

337 



338 A GUIDE TO ATAR1400/800 COMPUTERS 

NOMENCLATURE AND FORMAT CONVENTIONS 
A standard scheme is used for presenting the general form of each statement and 
function. Listed below are the punctuation, capitalization, and other mechanical 
conventions used . 

{} Braces indicate a choice of items. One of the enclosed items must be 
present. Braces do not appear in actual statements . 

[ ] Anything enclosed by brackets is optional. Brackets do not appear in 
actual statements. 

Ellipses mean that the preceding item can be repeated. Ellipses do not 
appear in actual statements. 

Line numbers A beginning line number is implied for all programmed mode 
statements . 

Other 
punctuation 

UPPER-CASE 

italics 

All other punctuation marks - commas, semicolons, quotation 
marks, and parentheses - must appear as shown. 

Upper-case words and letters must appear exactly as shown. 

Italicized items are used generically, not literally . They show where a 
certain type of item is required. Definitions of the generic terms 
describe the type of item required. Wherever an italicized item 
appears, you must substitute an exact wording or value, according to 
the generic term definitions listed below and in the statement 
descriptions . 

Generic Term Definitions 
The following italicized abbreviations are used generically in statement and func
tion definitions. Any italicized terms not listed here are peculiar to the statement in 
which they appear. They are defined in the text that describes that statement. 

chan Channel number for input or output; a numeric expression (numexpr) where 
no functions are allowed, and which must evaluate exactly to 1,2,3, 4,5,6, or 
7. Do not use fractional values. 

col Display screen column number; a numeric expression which has a minimum 
value of 0 and a maximum value of 39 in graphics modes 0 and 3, 19 in modes 
I and 2, 79 in modes 4 and 5, 159 in modes 6 and 7, and 319 in mode 8. 
N on-integer values are rounded to the nearest integer. 

const Any numeric or string constant. Quotation marks are treated as part of a 
string constant's value, not as delimiters . 

dey A string constant or variable that specifies an input or output device. Mean
ingful values are "C:", "E:","K: ", "P:","R[n]:","S:",and "D[n]filename [.ex t]". 

D[n] A disk drive number which must be D, D I, D2, D3 , or D4. 

expr Any numeric, relational , or Boolean constant, variable, function, or expres
sion; any valid combination thereof. 

ext Any disk file name extension, one, two, or three characters long. Valid 
characters are letters A through Z and digits 0 through 9. 



Chapter 11 : COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 339 

filename Any disk file name, one to eight characters long. Valid characters are letters 
A through Z and digits 0 through 9. The first character must be a letter. 

indev A string constant or variable that specifies an input device. Meaningful 
values are "C:", "E:", "K:", "R[n]:", "S:", and "D [n]filename [.ext ]". 

Iinexpr A numeric expression that evaluates to an existing BASIC program line 
number. Non-integer values are rounded to the nearest integer. 

memadr A numeric expression , variable , or constant that evaluates to any memory 
address. Memory addresses may range from 0 to 65535. 

numexpr Any numeric constant , variable, function, or any valid combination thereof. 

numvar Any numeric variable name (not including arrays). 

outdev A string constant or variable that specifies an output device. Meaningful 
values are "C:", "E:", "P:", " R[n]:", "S:", and "D[n ]filename[.ext]". 

row Low-resolution graphics row number; a numeric expression which has a 
minimum value of 0 and a maximum value of 23 in graphics modes 0, I, and 
3; of II in mode 2; of 47 in modes 4 and 5; of95 in modes 6 and 7; and of 191 in 
mode 8. 

strvar Any string variable name, not including substrings. 

string Any string constant, variable, substring, or function that returns a string 
value. 

var Any numeric or string variable name, not including substrings or arrays. 

Abbreviating Keywords 
AT ARI BASIC lets you abbreviate many keywords in order to save typing effort. 
For example, you can type SE. and AT ARI BASIC will automatically extend it to 
SETCOLOR. 

In this chapter, abbreviations that are permitted are listed at the beginning of the 
discussion of each statement. You can use the abbreviated keyword wherever the 
fully spelled-out keyword is allowed. 

STATEMENTS 
This section describes all the AT ARI BASIC statements. The descriptions include 
the general format of each statement, as well as one or more examples of the 
statement in use. 

IBREAK (BREAK)I 
Halts program execution and returns the computer to immediate mode. 

Format: BREAK 

Example: BREAK 

Pressing the BREAK key interrupts every BASIC statement, although there is 
sometimes a brief wait while the computer finishes an input or output operation. 
Occasionally, the BREAK key will not interrupt the LPRINT statement. In this case, 
only the SYSTEM RESET key will interrupt the output. 

When the interrupt occurs, the computer switches to immediate mode and 



340 A GUIDE TO AT ARI 400/800 COMPUTERS 

graphics mode 0, displaying the message STOPPED AT LINE line, where line is 
replaced by the line number at which the program halted. You can continue 
program execution with the CONT statement. Execution will resume at the start of 
the next program line higher than line. If you type any other statement before 
CONT, the programmed mode program will not resume. 

In immediate mode, the BREAK key cancels the current logical line. The computer 
skips to the start of the next logical line. 

The BREAK key never turns off any sound voices nor closes any open input / out
put channels. 

iBYE (B.)i 
Switches from BASIC to memo pad mode. 

Format: BYE 

Examples: BYE 
B. 

Does not affect memory used to store the BASIC program or variables. After 
executing BYE, you can return to BASIC by pressing the SYSTEM RESET key. Any 
BASIC program lines that were present are still there. The variable name table is 
unchanged . If before leaving BASIC you booted the disk operating system, the 
RS-232 serial device handler, or both, they are still booted when you return to 
BASIC. 

iCLOAD (CLOA.)i 
Operates the program recorder in playback mode, transferring a previously 
recorded program from a cassette to the computer memory. 

Format: CLOAD 

Examples: CLOAD 
CLOA. 

First, the CLOAD statement opens channel 7 for input from the program 
recorder. If channel 7 is already open to another device, an error occurs. When the 
error occurs, the channel is closed automatically and you can use CLOAD 
successfully. 

When the computer executes a CLOAD statement, it sounds its speaker once. 
This signals you to put the right tape in the program recorder, use the FAST 

FORWARD and REWIND levers to position the tape to the correct spot, then depress 
the PLAY lever. Finally, press any key on the keyboard (except BREAK). If the 
vo lume on the television set is turned up , you will hear several seconds of silence 
followed by one or more short bursts of sound from the television speaker. These 
sounds indicate that the program is loading. The sound bursts cease when the 
loading finishes . 

The CLOAD statement can only load a tokenized BASIC program. Therefore, it 
works with programs recorded by the CSA VE or SAVE statements. It does not 



Chapter 11 : COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 341 

work with programs recorded by the LIST statement, which records BASIC text in 
A T ASCII code. 

During the loading process, the CLOAD statement also replaces the resident 
variable name table with the one for the incoming program. 

CLOAD Invokes NEW 
Using the CLOAD statement automatically invokes the NEW statement. Even 
before the computer sounds its speaker, it clears all program lines and variables out 
of memory. If you press the BREAK key when you hear the prompting tone, the 
CLOAD operation halts, but any program that was in memory will be gone. None 
of the new program will be present. 

When the CLOAD operation ceases (successful or not, or complete or not), the 
computer shuts off all sound voices and closes all input / output channels except 
channel O. Note that it closes channel 6, which many of the graphics statements use. 

Halting CLOAD 
You can halt the CLOAD operation at any time by pressing the SYSTEM RESET key. 
The BREAK key also works , except during the first 20 seconds after the CLOAD 
operation starts , while the program recorder reads past the leader tone that prefixes 
every program. 

ICLOSE (CL.)I 
Unassigns an input / output channel. 

Format: CLOSE #chan 

Examples: CLOSE #1 
CL. #UNITA 

You must close a channel that is open for input, output, or both before you can 
reassign it to a different device with an OPEN statement. Closing a channel that is 
not open has no effect. No error occurs. 

If channel chan is open for output to the program recorder or to a disk file, there 
may be a partial data record in the computer memory, waiting to be output. 
Normally, the computer only outputs whole records to these two devices. Closing 
the channel forces output of any partial record, followed by an end-of-file record. 

The END statement closes all open channels except channel 0, which BASIC uses 
for standard communication with the keyboard and display screen. 

Assigns 0 to all numeric variables. U ndimensions numeric array variables and string 
variables. Resets the pointer to the beginning of the list of DAT A statement values. 

Format: CLR 

Example: CLR 

CLR does not remove variables from the variable name table (VNT); only the 



342 A GUIDE TO AT ARI 400/800 COMPUTERS 

NEW statement does that. Thus, CLR does not make room for new and different 
variable names in a program that has run afoul of the 1 28-name limit imposed by the 
VNT. 

The CLR statement does cancel the length attributes of string variables and 
numeric arrays. Therefore, after executing a CLR statement, you can redimension 
numeric arrays and string variables as available memory permits. 

ICOLOR (c.)1 
Determines which color register the next PLOT or DRA WTO statement will use . In 
graphics modes 0, 1, and 2, also determines which character the next PLOT or 
DRA WTO statement will display. 

Format: 

Examples: 

COLOR numexpr 

COLOR I 
C. ASq"Z") 
COLOR CI+ADJ / 3 

The value of numexpr specifies which color register will be used by the PLOT or 
DRA WTO statement. The value must be between ° and 65535. Non-integer values 
are rounded to the nearest integer. 

There are five color registers , numbered ° through 4. Table 11-1 correlates values 
of numexpr with color register numbers in each graphics mode. It shows, for 
example, that a COLOR 2 statement in graphics modes 3, 5, and 7 selects color 
register I. 

Assigning Colors 
Each color register specifies the hue and luminance of a color. The SETCOLOR 
statement assigns specific hue and luminance attributes to a color register. The color 

TABLE 11-1. Color Register Numbering and Availability 

SETCOLOR 
COLOR numexpr Value in Graphics Modes· 

Register Number 
3, S, 7 4,6 S·· 

0 I I -
I 2 - I 
2 3 - 0 
3 - - -
4 0 0 -

• In modes 0, I , and 2, numexpr determines the character that will display; 
see Tables 11-3 and 11-4 . 

•• In mode 8, COLOR chooses luminance only. Color register 2 always controls hue. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 343 

TABLE 11-2. Color Register Default Values 
(SETCOLOR register numbers) 

Color 
Hue Register Number 

0 2 
I 12 
2 9 
3 4 
4 0 

Luminance Color 

8 Orange 
10 Green 
4 Dark blue 
6 Red 
0 Black 

registers default to the values shown in Table 11-2 whenever you turn on the 
computer, press the SYSTEM RESET key, or execute a DOS or GRAPHICS 
statement. 

COLOR in Graphics Mode 0 

In graphics mode 0, display elements are characters, not points. In this mode, the 
COLOR statement determines the actual character that the PLOT and ORA WTO 
statements will display. Table 11-3 lists values of numexpr and the character each 
one produces in graphics mode O. The value of numexpr can be between 0 and 
65535, but values above 255 are converted modulo 256 to values between 0 and 255. 

COLOR in Graphics Modes 1 and 2 
Graphics modes I and 2 are similiar to mode 0, but there are two character sets. 
Each character set has 64 elements. The standard character set contains the usual 
upper-case letters, numbers, and punctuation. An alternate character set contains 
special graphics characters and lower-case letters. The standard character set is 
automatically selected every time you turn on the computer, press the SYSTEM 

RESET key, or use the GRAPHICS statement. The statement POKE 756,226 selects 
the alternate character set. The statement POKE 756,224 reselects the standard 
character set. 

Table I 1-4 lists the values of numexpr which produce each of the 64 characters in 
both character sets of graphics modes I and 2. Notice that each character can be 
produced by anyone offour values. Each of the values produces the same character, 
but selects a different color register. The value of numexpr can be between 0 and 
65535, but values above 255 are converted modulo 256 to values between 0 and 255. 

COLOR in Graphics Modes 3 through 7 

In graphics modes 3 through 7, the value of numexpr specifies which color register 
will determine the hue and luminance that subsequent PLOT and ORA WTO 
statements will use. Table 11-1 shows which color registers are available in each 
mode . The value of numexpr can be between 0 and 65535; values above 3 are 
converted modulo 4 to a number between 0 and 3. 



344 A GUIDE TO AT ARI 400/800 COMPUTERS 

TABLE 11-3. COLOR and Graphics Mode 0 
(Characters displayed by values of numexpr) 

.: .. .: .. .: .. .: .. .: ... .: ... c ~ oS ~ oS ~ oS ~ oS ~ oS ~ ... -- .. -- .. -- .. -- .. -- .. -- .. 
.. E .. .. E .. .. E .. .. E .. .. E .. .. E .. .. ... ... ... ... ... 
-= 5 

.. ~ ~ .. -! e .. 
-= ~ .. .;~ .. -!5 .. 

.c .c .c .c .c .c >:z \..) >:z \..) >:z \..) >:z \..) >:z \..) >:z \..) 

0/ 128 ~ 23 / 151 [i] 46/ 174 GJ 69/ 197 IT] ... 92/ 220 [SJ 115 / 243 5J •• > 

1/129 [8 24/152 ~ 47 / 175 [{] 70/198 [f] 93 / 221 CO 116/ 244 [TI 
2/ 130 OJ 25/153 [[] 48/176 [ill 71 / 199 lID 94/ 222 ~ 117/ 245 ~ 
3/ 131 ~ 26/ 154 [g 49 / 177 OJ 72/ 200 [I] 95 / 223 Q 118 / 246 G{] 
4/ 132 BJ 27 / --- ~ 50/ 178 [ZJ A •• 73 / 201 OJ 96/ 224 ~ 119/ 247 GiJ 
5/ 133 [i] 28 / 156 [!] 51 / 179 @] 74/ 202 GIl 97 / 225 @] 120/ 248 B " 
6/134 [Z] 29/157 [!] 52/ 180 [1J 75 / 203 [EJ 98/226 llil I .. 121 /249 8l 
7/ 135 [SJ 30/ 158 [E 53 / 181 ITlJ , .) 76/ 204 [J 99 / 227 ca 122/ 250 [ZJ ... 
8/ 136 ~ 31 / 159 ~ 54/ 182 [ill 77/ 205 WJ 100/ 228 [ill 123/ 251 ~ 
9/ 137 Gl 32/ 160 0 55 / 183 [Z] 78 / 206 lliJ 101 / 229 ~ 124/ 252 CO 

10/ 138 [iJ 33 / 161 OJ 56/ 184 [ill 79/ 207 [IT] 102/ 230 [I] 125/ --- elr 
C' scm 

11 / 139 ~ 34/ 162 B 57/ 185 [1J 80/ 208 [] 103 / 231 [ill 126/ 254 [!] 
12/ 140 ~ 35 / 163 [!] 58 / 186 ITl 81 / 209 [ill 104/ 232 llil 127 / 255 [E 
13/141 Ll 36/164 III 59 / 187 [] 82/ 210 lliJ 105 / 233 OJ ---/ 155 EOL 

14/ 142 ~ 37/165 [%] 60/188 8J 83 / 211 WJ 106/ 234 CIl --- / 253 [J \] 

15/ 143 [;] 38 / 166 lliJ 61 / 189 G 84/ 212 ITl 107 / 235 OJ .. -
16/144 ~ 39/167 [J 62/ 190 0 85 / 213 [TIl 108/ 236 OJ 
17/ 145 ~ 40/168 IT] 63/191 l1J 86/ 214 [2] 109/ 237 [fJ 
18/146 El 41/169 IT] 64/ 192 lliJ 87/ 215 [H] 110/ 238 [Q] 
19/ 147 [±] 42/170 ~ 65/ 193 [ill 88 / 216 [K] n 111 / 239 [Q] 
20/148 ~ 43 / 171 El 66/194 [ill 89 / 217 [YJ 112/ 240 [8 
21 / 149 ~ 44/ 172 GJ 67/195 [U 90/ 218 [Z] 113 / 241 @] 
22/ 150 [] 45/173 [J 68/196 OIl 91 / 219 OJ 114/ 242 [!J 

COLOR in Graphics Mode 8 
In graphics mode 8, color register 2 determines the hue of all points, all lines , and the 
background. The COLOR statement does not even indirectly control the hue of 
points and lines, only their luminance. The value of numexpr specifies which color 
register will determine the luminance (see Table 11-/). The value of numexpr can be 
between 0 and 65535; values above 0 are converted modulo 4 to a number between 0 
and 3. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 345 

TABLE 11-4. COLOR and Graphics Modes I and 2 
(Characters and color registers selected by values of COLOR numexpr) 

Value for 
Character" 

Value for 
Character" Color Register Color Register 

0 I 2 3 Std. Alt. 0 I 2 3 Std. Alt. 

32** 0 160 128 D ~ 64 96 192 224 illl ~ 
33 I 161 129 OJ [8 65 97 193 225 [6J @) 
34 2 162 130 B [] 66 98 194 226 [ill [G J..I 

35 3 163 131 00 ~ 67 99 195 227 [£] [iJ 
36 4 164 132 OJ [3] 68 100 196 228 02J [ill .. I 

37 5 165 133 El 5J 69 101 197 229 IT] [Q] ... 

38 6 166 134 llil (... [Z] 70 102 198 230 [[] [I] 
39 7 167 135 ['] [S] 71 103 199 23 1 [IT] WJ J 

40 8 168 136 IT] ~ 72 104 200 232 [j] llil 
41 9 169 137 [}] Gl 73 105 20 I 233 CIJ OJ 
42 10 170 138 El ~ 74 106 202 234 OJ OJ 
43 II 171 139 G ~ 75 107 203 235 [ill OJ 
44 12 172 140 GJ [] 76 108 204 236 OJ CD 
45 13 173 141 [J Ll 77 109 205 237 [ill Ill] 
46 14 174 142 [J bJ 78 110 206 238 [ill [Q] 
47 15 175 143 [ZJ [;] 79 III 207 239 ill] l.. [Q] 
48 16 176 144 [ill [±] 80 11 2 208 240 IT] [£J 
49 17 177 145 OJ Cd 8 1 113 209 24 1 illJ @] 
50 18 178 146 [ZJ El 82 114 210 242 llil [lJ 
51 19 179 147 ClJ ,:) [±] 83 115 211 243 [TIl ,.) 5J ... 
52 20 180 148 @] [!] 84 116 212 244 OJ IT] 
53 21 18 1 149 [ill ..J [;] 85 117 213 245 [IT] Gl] 
54 22 182 150 [Q] [] 86 118 2 14 246 [2J [{] 
55 23 183 151 [2J [i] 87 119 2 15 247 [ill llil 
56 24 184 152 [IT] 0 ~ 88 120 216 248 [KJ .. , CJ " 
57 25 185 153 [2J ., [] 89 121 217 249 [Y] GJ 
58 26 186 154 IT] [g 90 122 218 250 CZJ , .. CD ... 
59 27 187 None t ITJ ~ 91 123 2 19 251 OJ [!] 
60 28 188 156 0 [jJ 92 124 220 252 Q IT] 
6 1 29 189 157 G [!] 93 Nonet 22 1 253 CD ~ 
62 30 190 158 [J [B 94 126 222 254 El []] 
63 3 1 191 159 [2] ~ 95 127 223 255 [J [E] 

NOTE: 

" For standa rd characters , POKE 756,224. For a lternate characters . POKE 756.226 . 
.. 155 selects the same character and color register as value 32. 

t No value selects this color register / character combination. 



346 A GUIDE TO ATARI 400/800 COMPUTERS 

ICOMI 
Reserves space in memory for numeric arrays and string variables . 

Format: 
{

Slrvar (numexpr) } [{ SlrVar (nul11expr) } J 
COM ' ... 

nUl11var (numexpr [,nul11expr]) nUI11 var (nwnexpr [,nul11expr]) 

Examples: COM A$(24) , ARRAYI(25) , ARRAY2(5 ,5) 
COM NAME$(30), ADDRI$(30) , ADDR2$(30), ADDR3$(30) 

This statement is exactly the same as the DIM statement. 

ICONT (CON.)I 
Resumes execution of the next instruction after a program halt. 

Format: CONT 

Example: CONT 

A program can be halted by executing a STOP or END statement, or by pressing 
the BREAK key. Use the CO NT statement to continue a halted program. 

Program execution resumes with the first statement on the program line imme
diately following the line where the halt occurred. Thus, if the halt occurs before the 
end of a multiple-statement line, CONT will not finish off the line. Instead, execu
tion will resume at the beginning of the next line. 

CONT and the BREAK Key 
If you press the BREAK key during a statement that takes some time to finish 
(INPUT or LIST, for example) , that statement will be interrupted and the program 
will halt. A subsequent CONT statement restarts program execution at the first 
statement on the next program line. The interrupted statement is not resumed. 

It is possible to block execution of even the first statement on a program line. If 
you happen to press the BREAK key just after the computer advances to the start of a 
new program line, but before it starts executing the first statement on that line , 
program execution will halt before that first statement is executed. A subsequent 
CONT statement advances to the next program line and resumes execution there, 
bypassing the whole program line on which the halt occurred . 

CONT With No Halted Program 
You may issue the CO NT statement even if there is no halted program (that is , there 
is no program running). The computer acts as though the program halted after the 
first statement of the first program line. So the CONT statement starts program 
execution at the beginning of the second program line. 

CONT After Errors 
Errors can also ha lt program execution . You can often continue the program with a 
CONT statement, but the computer never executes the statement which caused the 
error, nor any statements that fo llow it on the same program line . So be careful 



Chapter 11 : COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 347 

when you use the CONT statement after an error. Continuing programs after an 
error is risky. The statement which is never executed may be vital. Skipping it 
because it caused an error will cause problems later in the program. If you correct a 
program error, resume execution with and immediate mode GOTO instruction. 

CONT After SYSTEM RESET 

You may attempt to continue program execution with the CONT statement after 
pressing the SYSTEM RESET key . Execution will resume at the start of the program 
line immediately following the one where the reset occurred . Chances are slim that 
the program will work properly after a reset. 

CONT in Programmed Mode 
Ordinarily, you will only use the CONT statement in immediate mode. While it is 
perfectly legal in programmed mode , it does nothing except take up extra memory 
and slow the program down. 

ICSA VE (cs.)1 
Operates the program recorder in record mode , transferring a program from the 
computer memory to a cassette. 

Format: CSA VE 
Examples: CSA VE 

CS. 

The CSA VE statement uses channel 7 for output to the program recorder. If 
channel 7 is already open to another device , an error occurs, the channel is closed 
automatically, and you can use CSA VE successfully. 

When CSA VE executes , it sounds the computer speaker twice. This signals you 
to put the right tape in the program recorder and use the FAST FORWARD and 
REWIND levers to position the tape to the correct spot . Then depress the RECORD 

and PLAY levers on the program recorder . Finally, press any key on the keyboard 
(except BREAK). The computer turns off all active sound voices at this time . If the 
volume on the television set is turned up , you will hear 20 seconds of a continuous 
high-pitched tone . This will be followed by one or more short bursts of sound from 
the television speaker. The sound bursts cease when the recording finishes. 

The CSA VE statement records program lines in a tokenized format, not in 
ATASCII code . It also records the program's variable name table. Only the 
CLOAD statement can read a program recorded by CSA VE. You cannot use the 
ENTER or LOAD statements to read a CSA VE recording. 

Halting CSA VE 
To halt the CSA VE operation, press either the BREAK key or the SYSTEM RESET key. 
The program recording will be incomplete . CLOAD cannot load an incompletely 
saved program. 



34B A GUIDE TO AT ARI 400/BOO COMPUTERS 

IDATA (0.)1 
Creates a list of values to be assigned to variables by READ statements. 

Format: 

Examples: 

DAT A canst [,eanst ... ] 

DATA Sunday, Monday, Tuesday, 
Wednesday, Thursday, Friday, Saturday 
D. 100, -89, 1.414E-2 
DATA 2+2 
D. ARTICHOKE" BROCCOLI ,"SPINACH", 

The DATA statement specifies numeric values, string values, or both . The values 
are assigned to numeric or string variables by one or more READ statements. A 
comma signals the end of one constant and the start of another. DATA statements 
may appear anywhere in a program. They need not be executed to be accessed by a 
READ statement. No other statements may follow DATA statements on a program 
line. 

DATA Statement String Constants 
Since commas separate constants, string constants cannot include them. All other 
characters, including quotation marks and blank spaces, are considered part of a 
string constant value. In fact, a string constant can consist of nothing but blank 
spaces, or even of nothing at all. One comma immediately following another in a 
DATA statement indicates a string constant with no value and a length of O. The 
same is true of a comma at the end of a DATA statement. 

DA T A Statement Numeric Constants 
Numeric constants can be expressed in standard arithmetic notation or scientific 
notation. Unlike string constants, they cannot be null; an error results when a 
READ statement tries to assign a null constant to a numeric variable. 

Arithmetic expressions are not evaluated. Instead, they are treated as string 
values. For example, the expression 2+2 is considered a three-character string 
constant, not a numeric constant with a value of 4. 

OAT A in Immediate Mode 
No error occurs if you enter a DATA statement in immediate mode, but the 
elements will not be accessible to a READ statement. 

IDEG (DE·)1 
Tells BASIC to expect arguments in degrees rather than radians, for subsequent 
trigonometric functions . 

Format: DEG 

Examples: DEG 
DE. 

After executing the DEG statement, BASIC treats the arguments of trigonomet-



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 349 

ric functions as degrees. To switch back to radians, use the RAD statement, turn the 
computer off and back on again, or press the SYSTEM RESET key. BASIC also 
reverts to radians after a NEW or RUN statement. 

101M (01.)1 
Reserves space in memory for numeric arrays and string variables. 

Format: js,rvar (numexpr) } [{strvar (numexpr) } J DIM , ... 
Inumvar (numexpr [.numexpr]) numvar (numexpr [.numexpr]) 

Examples: DIM A$(24), ARRA YI(25), ARRA Y2(5,5) 
DIM NAME$(30), ADDRI$(30), ADDR2$(30), ADDR3$(30) 

Numeric arrays and strings must be dimensioned before they can be used in any 
other way. AT ARI BASIC allows numeric arrays of one or two dimensions and 
simple string variables with a length of one character or more. 

Arrays 
When an array is dimensioned , space is set aside in memory for each of its elements. 
The value of each numexpr is rounded to the nearest integer to determine the 
maximum size of the corresponding array dimension - in other words, the maxi
mum value of that array subscript . When a program references an array, the value 
of each subscript must be no less than 0 and no more than the maximum established 
for that subscript by the DIM statement. 

Strings 
DIM statements declare the maximum lengths of string variables. In each case the 
maximum length is the value of numexpr, rounded to the nearest integer. The actual 
length of a string variable can vary between 0 and this declared maximum. 

Size Restrictions 
The absolute maximum size of anyone string variable is 32,767 characters. Array 
and string lengths are also limited by the amount of memory available at the time 
the DIM statement is executed . Once dimensioned , array and string sizes can only 
be changed after executing a CLR statement, which undimensions all arrays and 
strings. An error occurs if a second DIM statement is executed in programmed 
mode for a given array or string variable, even if the dimension or length is 
unchanged. 

1005 (00·)1 
Activates the disk operating system utilities menu. 

Format: DOS 

Examples: DOS 
DO. 



350 A GUIDE TO AT ARI 400(800 COMPUTERS 

TABLE 11-5. DOS Statement Utilities Menus 

Disk Operating System 

Version 1.0 Version 2.0S 

A. Disk Directory A. Disk Directory 
B. Run Cartridge B. Run Cartridge 
C. Copy File C. Copy File 
D. Delete File(s) D. Delete File(s) 
E. Rename File E. Rename File 
F. Lock File F. Lock File 
G. Unlock File G. Unlock File 
H. Write DOS File H. Write DOS Files 
I. Format Disk I. Format Disk 
J. Duplicate Disk J . Duplicate Disk 
K. Binary Save K. Binary Save 
L. Binary Load L. Binary Load 
M. Run at Address M. Run at Address 
N. Define Device N. Create MEM.SAV 
O. Duplicate File O. Duplicate File 

This statement causes the disk operating system menu of 15 utility functions to 
appear on the display screen. If the disk operating system is not present, the DOS 
statement puts the computer in memo pad mode (see the BYE statement). 

When BASIC encounters a DOS statement, it clears the display screen, resets the 
color registers to their default values (see Table 11-2), shuts off all sound voices, and 
closes all input / output channels except channel O. Note that it closes channel 6, 
which many of the graphics statements use . 

There are two versions of the disk operating system in use, version 1.0 and version 
2.0S. The menus for the two versions differ. Table 11-5 itemizes both versions. See 
Chapter 7 for specific information on each menu item. 

Disk Operating System Version 1.0 

When you use the DOS statement with version 1.0 of the disk operating system, the 
utilities menu appears immediately on the display screen. You may choose anyone 
of the utilities, or return to BASIC. Chapter 7 has complete instructions for each 
utility. 

To return to BASIC, press the SYSTEM RESET key, or choose menu selection B.If 
there was a BASIC program in memory before you executed the DOS statement, it 
will still be there unless you used the DUPLICATE DISK or DUPLICATE FILE 
menu selections. If you did, your program will be gone when you return to BASIC. 

Disk Operating System Version 2.05 
The utilities menu does not appear immediately when you use the DOS statement 
with version 2.0S of the disk operating system. First the computer must load file 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 351 

DUP.SYS into memory from Drive I. This process takes about ten seconds. Iffile 
DUP.SYS is not on the diskette in Drive I , the computer simply returns to BASIC. 

Before it loads file DUP.SYS, the computer checks to see iffile MEM.SA V exists 
on Drive I. If so, the computer uses it to preserve the memory area which file 
DU P.SYS will use. This area of memory contains the first part of any BASIC 
program that happens to be in memory. It is also where the RS-232 device handler 
resides when it is present. This save operation takes another 20 seconds. 

After performing all these housekeeping chores, the computer displays the disk 
utilities menu . You may choose any item, or return to BASIC. Chapter 7 has 
complete instructions for each utility . 

To return to BASIC, press the SYSTEM RESET key, or choose menu selection B. If 
the RS-232 serial device handler, a program, or both were present before you 
executed the DOS statement, they will still be there only if the computer can copy 
them back from file MEM.SA V. The recopy operation takes about seven seconds. 
If you allow the computer to use the program area of memory during the COPY 
FILE or DUPLICATE FILE menu selections, or if you used the DUPLICATE 
DISK menu selection at all, file MEM.SA V cannot restore the RS-232 serial device 
handler or your program. 

If the RS-232 serial device handler is present before using the DOS statement but 
is not restored from the MEM.SA V file for any reason, and you use menu option B 
to return to BASIC, any subsequent use of the SYSTEM RESET key causes a system 
crash recoverable only by switching the computer power off and back on . This will 
not happen if you return to BASIC with the SYSTEM RESET key. 

The DOS Statement in Programmed Mode 
The DOS statement is used mainly in immediate mode. You can use it in pro
grammed mode, but it halts your BASIC program. There is no way to continue a 
program from the point where the DOS statement halted it. 

!DRAWTO (DR.)i 

Draws a straight line between the point last displayed and a specified end point. 
Format: ORA WTO col,row 

Examples: DRAWTO 10,15 
DR. COLl,ROWI 
DR. BASECOL+COLOFFSET,BASEROW+ROWOFFSET 

This statement draws a line from the point last displayed by a PLOT or 
DRA WTO statement to the column and row specified by the values of col and row, 
rounded to the nearest integer. The line drawn will be straight or as close to straight 
as possible. The staircasing phenomenon causes a diagonal line to zigzag as it 
approximates a straight line. 

The AT ARI computer uses memory location 90 to keep track of the row where 
the DRA WTO statement will start the next line, and memory locations 91 and 92 



352 A GUIDE TO AT ARI 400/800 COMPUTERS 

for the starting column. The ORA WTO and PLOT statements update these 
memory locations, but none of the other BASIC statements do . Thus, statements 
like GET, PUT, and POSITION have no effect on the starting point of the line that 
the ORA WTO statement constructs. 

The most recently executed COLOR statement determines which color register 
will choose the line color. The ORA WTO statement uses the background color 
register if no COLOR statement has been executed since you turned on the 
computer. 

DRAWTO in Graphics Modes 0, I, and 2 
The ORA WTO statement is primarily used in graphics modes 3 through 8, but it 
also works in graphics modes 0, I , and 2, which display characters rather than 
points . In these modes, ORA WTO constructs a line of characters starting with the 
character last displayed and ending at the position specified by col and row. The line 
will be straight, subject to the staircasing effect. The last COLOR statement 
executed determines which character will compose the line, and in modes 1 and 2, 
which color register will choose the line color (see Tables 11-3 and 11-4). If no 
COLOR statement has been executed since you turned on the computer, COLOR 0 
is used . 

Causes a program to halt . 

Format: END 
Example: END 

In programmed mode, this statement ends the program execution, sets the 
display screen to graphics mode 0, turns off all sound voices, and closes all 
input / output channels except channel O. A program does not have to end with an 
ENO statement. When the computer runs out of BASIC statements, it ends the 
program automatically, just as if it had encountered an ENO statement. 

IENTER (E. )1 
Transfers a previously recorded BASIC program from cassette or disk to the 
computer memory. 

Format: ENTER indev 

Examples: ENTER "C:" 
E. PGM$ 
E. "D2:BUDGET.BAS" 

The ENTER statement transfers BASIC text from physical device indev to its 
memory. In this way it is like the CLOAO and LOAO statements, but there are 
some important differences. 

The ENTER statement does not erase existing program lines from the computer 
memory before it transfers new lines into memory. It adds the new lines to any lines 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 353 

already there. If a line to be added has the same line number as a line already in 
memory, the line in memory is erased and the new line replaces it. 

When the ENTER statement finds a new variable name in the incoming program 
lines, it adds it to the existing variable name table (VNT) in memory. It does not 
remove any names from the VNT. 

The ENTER statement can only transfer BAS IC text that is in AT ASCII code, so 
it works only with programs recorded by the LIST statement. It does not work with 
programs recorded by the SA VE or CSA VE statements, which record programs in 
a tokenized format. 

The ENTER statement uses input channel 7 to receive program lines from the 
program recorder and disk drive. It works fine even if channel 7 is already open . 
However, it does close the channel when it finishes, blocking any prior claimant's 
further use. The ENTER statement also turns off all sound voices. 

ENTER with the Program Recorder 
The statement ENTER "c" operates the program recorder in playback mode, 
transferring a program from cassette to the computer memory. First, the computer 
sounds its speaker once. This signals you to put the right tape in the program 
recorder and use the FAST FOR WARD and REWIND levers to position the tape to the 
correct spot. Then depress the PLAY lever on the program recorder. Finally, press 
any key on the keyboard (except BREAK). If the volume on the television set is 
turned up, you will hear several seconds of silence followed by one or more short 
bursts of sound from the television speaker. These sounds mean the program 
transfer is taking place. The sound bursts cease when the transfer finishes . 

ENTER with the Disk Drive 
In order to use the ENTER statement with a disk file name, the disk operating 
system must be in memory as a result of a successful boot when you turned on the 
computer (see page 27). If the disk operating system is absent, an error results. If it is 
present but no file exists as specified, an error results. If everything is set up 
correctly, the computer transfers the BASIC text from diskette to its memory. 

Halting ENTER 
You can interrupt the ENTER statement by pressing the SYSTEM RESET key. Any 
program lines added to the computer memory before you press SYSTEM RESET will 
remain in memory. 

Pressing the BREAK key during an ENTER operation will not stop the operation. 
It will interrupt the operation, but only momentarily. This usually means some 
pieces of the program being transferred never make it into memory. 

Erasing Unused Variables from the VNT 
The ENTER statement makes no changes to the existing program or VNT, except 
to add to them. This suggests a method for eliminating unused variables from a 
program's VNT. Figure II-I elaborates. 



354 A GUIDE TO AT ARl 400 /800 COMPUTERS 

Start with the 
program in memory. 

Record the program 
on cassette or disk 
with the LIST statement. 

Use the NEW statement 
to clear the program 
and variable name table 
out of memory. 

Read the program back 
into memory with the ENTER 
statement. A new VNT is 
constructed at this time . 

If desired, record 
the program on cassette 
or disk with a CLOAD 
or LOAD statement. 

FIGURE 11-1. Clearing out the variable name table 

IFOR (F.)I 
Starts a loop that repeats a set of program lines until an automatically incremented 
variable attains a certain value . 

Format: FOR numvar = startexpr TO endexpr [STEP stepexpr ] 

Examples: FOR COUNT = I TO 100 
F. COUNTDOWN = 100 TO 1 STEP -1 
F. INTERIM = START TO FINISH STEP INCREMENT 

When FOR is first executed, numvar is assigned the value of startexpr. The 
statements following FOR are executed until a NEXT statement is reached. numvar 
is then incremented by the value of stepexpr (or by I if the STEP clause is not 
present). After that, the new value of numvar is compared to the value of endexpr. 



Chapter 11 : COMPENDIUM OF BASIC STA TEMENTS AND FUNCTIONS 355 

The sense of the comparison depends on the sign of stepexpr. If the sign is positive 
and the new value of numvar is less than or equal to endexpr, execution loops back 
to the statement just after the FOR. The same thing happens if the sign of stepexpr 
is negative and the new value of numvar is greater than or equal to endexpr. On 
the other hand, if numvar is greater than endexpr (stepexpr positive) or less than 
endexpr (stepexpr negative) , execution continues with the instruction that follows 
the NEXT statement. Because the comparison occurs after incrementing numvar, 
the statements between FOR and NEXT are always executed at least once . 

Nesting FOR-NEXT Loops 
FOR-NEXT loops may be nested. Each nested loop must have a unique index 
variable name (numvar). Each nested loop must be wholly contained within the 
next outer loop; at most, the loops can end at the same point. Since AT ARI BASIC 
allows 128 different variables, you can have at most 128 levels of FOR-NEXT 
nesting. 

Loop Expressions Evaluated Once 
The loop's start, end, and increment values are determined from startexpr, endexpr, 
and stepexpr only once, on the first execution of the FOR statement. If you change 
these values inside the loop it will have no effect on the loop itself. 

Terminating the Loop Early 
You can change the value of numvar within the loop . This lets you terminate a 
FOR-NEXT loop early . Somewhere inside the loop , set numvar to the end value 
(endexpr), and on the next pass the loop will terminate itself. 

FOR in Immediate Mode 
FOR may be used in immediate mode. The entire loop must be entered on one line. 
If NEXT is not present, the loop will execute once. 

Use Caution with FOR-NEXT Loops 
Do not start the loop outside a subroutine and terminate it inside the subroutine . 
Do not branch into the middle of a FOR-NEXT loop; the loop must start with a 
FOR statement. Avoid branching out of FOR-NEXT loops. This takes up memory 
by leaving an unresolved entry on the run-time stack. 

IGET (GE.)I 
This statement retrieves a single numeric value from a previously opened input! 
output channel. 

Format: GET #chan, nurnvar 

Examples: GET #1, NMBR 
GET #CH, X 



356 A GUIDE TO AT ARI 400/800 COMPUTERS 

Channel chan must be open for input. The GET statement assigns a one-byte 
numeric value between 0 and 255 to numvar. The value assigned depends on the 
device interrogated. 

GET with the Keyboard 
From the keyboard (device K:), the GET statement assigns to numvar the decimal 
value of the AT ASCII code for the next key or combination of keys pressed. 
Appendix D lists the code produced by each keystroke. Program execution pauses 
until a key is pressed . 

The BREAK key does not produce an AT ASCII code; pressing it halts the GET 
operation. Pressing CTRL-3 in response to a GET statement causes an error. CTRL-I 
halts the screen display, as usual. The A , CAPS / LOWR, SHIFT, and CTRL keys 
themselves do not produce AT ASCII codes of any kind, although they do change 
the codes which other keys produce. The four yellow special function keys do not 
produce AT ASCII codes. 

GET with the Program Recorder 
The AT ARI computer transfers data from the program recorder in blocks of 128 
one-byte values. After opening the program recorder for input, the first GET 
statement causes the computer to read a block into the cassette buffer area of its 
memory, assign the first value to numvar, and stop the tape. Each subsequent GET 
statement takes the next sequential value from the cassette buffer in memory. When 
the entire buffer has been used, the computer starts the tape and reads another 
block. 

Any attempt to get data past the end of a file results in an error. Closing the input 
channel stops the tape. You can close the input channel with a CLOSE or END 
statement. 

GET with the Disk Drive 
The GET statement will read data from a disk file that has been opened for input. 
The GET statement reads the one-byte values that were recorded by a PUT 
statement. It can also read the multiple-byte values recorded by a PRINT state
ment, one byte at a time. Each value it reads is the AT ASCII code of the character 
recorded by the PRINT statement. 

The computer reads data from the disk drive in one-sector blocks, not one value 
at a time. It reads the first block of values into the disk buffer area of its memory 
when a data file is first opened for reading. A subsequent GET statement takes the 
first value from the buffer in memory and assigns it to numvar. When the entire 
buffer has been used , the computer fills the buffer from the next sector of the disk 
file . The ATARI 810 Disk Drive has 125 one-byte values per sector. 

The POINT statement causes the computer to read in a new block from the disk 
file if it specifies a location that is outside the sector currently in memory. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 357 

GET with the Display Screen 
When used with the display screen (device S: or E:), the GET statement retrieves the 
code of the character or graphics point displayed at the current cursor position. This 
code observes the same rules as the one specified by the COLOR statement. In 
graphics mode 0, the code specifies which character is displayed (see Table 11-3). In 
graphics modes I and 2, the code specifies which color register is in use and which 
character is displayed (see Table 11-4). In graphics modes 3 through 8, the value 
retrieved indicates which color register is in use at the particular cursor position (see 
Table II-I). 

Each time GET reads a va lue from the display screen, it moves right to the next 
cursor position. It does this by updating memory location 84 with the row number 
of the next cursor position, and memory locations 85 and 86 with the next column 
number. The next statement that stores or retrieves data from the display screen 
occurs in the new cursor position. However, none of this applies to the DRA WTO 
or XIO statements, which maintain a separate cursor position in memory locations 
90,9 1, and 92. 

If you use the GET statement on the last column of a given row on the display 
screen, the cursor advances to the first column of the next line. If you try to access 
the display screen without first repositioning the cursor after a GET statement at the 
last column of the last ro w, an error results. 

Executing a PRINT statement after a GET statement may change the code of the 
character or graphics point just retrieved , spoiling the display. To circumvent this, 
use the POSITION statement to move the cursor back one space. Then use the PUT 
statement to rewrite the code just retrieved. 

GET with RS-232 Serial Devices 
There must be an open input channel to the proper RS-232 serial port of the AT ARI 
850 Interface Module, and this will be possible only if the RS-232 handler is in 
memory as a result of a successful boot when you turned the computer on (see page 
14). In addition, the serial port must be conditioned for concurrent input and output 
with an XIO 40 statement. Finally, the translation mode may need to be set with an 
XIO 38 statement. All this must happen before executing a GET statement on the 
channel in question . 

With this protocol out of the way, a value comes through the serial port to the 
AT ARI 850 Interface Module. It translates the value to an AT ASCII code if the 
translation mode in effect requires it. Appendix 0 contains a table of ASCII and 
A T ASCII codes. The AT ARI 850 Interface Module passes the values on to the 
computer, one at a time. 

iGOSUB (Gos.)i 
Causes the program to branch to the indicated line. When a RETURN statement is 
subsequently executed , the program branches back to the statement immediately 
following the GOS UB statement. 



356 A GUIDE TO ATARI 400/600 COMPUTERS 

Format: 

Examples: 

GOSUB linexpr 

GOSUB 100 
GOS. PYMTCALC 
GOS. BASEAGE+ELAPSED 

The GOSUB statement calls a subroutine. AT ARI BASIC starts executing the 
subroutine at line number linexpr. This entry point need not necessarily be the 
subroutine line with the smallest line number. 

If linexpr 'does not evaluate to an existing line number, an error results. 

Subroutine Termination 
Each time the computer executes a GOSUB statement, it saves the return location 
on the run-time stack. The return location specifies the BASIC statement that 
follows the GOSUB statement which called the subroutine, even if it is on the same 
program line as the GOSUB statement. At the end of the subroutine, the RETURN 
statement clears the run-time stack entry as it branches back to the point where the 
subroutine was called. 

Branching out of a subroutine, for instance with a GOTO statement, will not clear 
the stack. This takes up memory by leaving an unresolved entry on the run-time 
stack. A program that does this repeatedly will eventually exhaust available 
memory, and an error will result. But you can branch out of a subroutine with a 
GOTO, IF-THEN, or similar statement if you first execute a POP statement to clear 
the last return location from the run-time stack. 

A program rarely runs out of memory because of run-time stack problems, but it 
can happen . There is always some finite number of GOSUB statements that can 
occur without a RETURN or POP statement occurring. Subroutines share the 
run-time stack with FOR-NEXT loops, so the permissible level of subroutine 
nesting depends on the concurrent level of FOR-NEXT loop nesting. 

Subroutine Location 
A GOSUB statement may occur anywhere in a program. A subroutine, on the other 
hand, must begin at the start of a program line. 

IGOTO (G.)I 
Unconditionally causes program execution to branch to the line indicated. 

Format: 

Examples: 

GOTO linexpr 

GOTO 1120 
G. TABLE+OFFSET 

Program execution continues immediately with the first instruction at line 
number linexpr. An error occurs if no such line number exists in the program. 

IGRAPHICS (GR.)I 
Sets one of the graphics modes; optionally clears the display screen. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 359 

TABLE 11-6. GRAPHICS Statement Options 

BASIC Graphics Suppress Text 
Mode 

0 
I 
2 
3 
4 
5 
6 
7 
8 

Format: 

Examples: 

Window 

-
17 
18 
19 
20 
21 
22 
23 
24 

GRAPHICS numexpr 

GRAPHICS 5 
GRAPHICS 20 
GR. 32+MODE 

Suppress Screen Suppress Both 
Clear 

32 -
33 49 
34 50 
35 51 
36 52 
37 53 
38 54 
39 55 
40 56 

The GRAPHICS statement resets the screen display to the graphics mode 
specified by the value of numexpr, rounded to the nearest integer. This statement 
normally clears the display screen, too. To suppress this, add 32 to the graphics 
mode number. Table 11-6 shows the appropriate values for each graphics mode. 

When the computer executes a GRAPHICS statement, it reserves the amount of 
memory required by the specified graphics mode, enables the text cursor (sets 
memory location 752 to 0), and sets the color registers to their default values (see 
Table 11-2). 

Graphics Modes 
AT ARI BASIC supports several different graphics modes. Mode 0 is the text mode 
that you see when you turn on the computer. Modes I through 8 are graphics modes 
that can either be full-screen or can have a four-line text window across the bottom 
of the screen. The area inside the text window is graphics mode O. Table 11-7 
summarizes the characteristics of the different modes. 

The Text Window 
Modes 1 through 8 include a four-line text window at the bottom of the screen. 
Mode 0 text output to channel 0 appears in the text window. The display screen 
ignores anything that PLOT, ORA WTO, PUT, XIO, or PRINT statements 
attempt to display in the text window via channel 6. 

You can suppress the text window at the time the GRAPHICS statement is 
executed by adding 16 to the value of numexpr (see Table 11-6). This will give you 
the equivalent of four additional mode 0 lines of space of at the bottom of the 
display screen. 



360 A GUIDE TO ATARI 400/800 COMPUTERS 

When the text window is absent, there is no place for output that would normally 
go to it. Such output includes the question mark printed by an INPUT statement, 
the ouput of a PRINT statement with no explicit channel number or with channel 0, 
and the message that appears at any program break, whether caused by an error, a 
STOP statement, or the BREAK key. If any text output occurs in graphics modes I 
through 8 when no text window is present, the entire display screen reverts to 
graphics mode O. The screen is cleared and the text output appears at the top of the 
screen. 

Channels 0 and 6 for Output 
The GRAPHICS statement opens channel 6 for output to the display screen (device 
S:). Once you execute a GRAPHICS statement, you cannot use channel 6 unless 
you first execute a CLOSE #6 statement. After such a CLOSE statement, you will 
not be able to use the ORA WTO, PLOT, or LOCATE statements until you reopen 
the display screen with a GRAPHICS statement (or an OPEN statement). 

At the same time the GRAPHICS statement opens channel 6 for output to the 
display screen graphics area, it opens channel 0 for output to the screen editor 
(device E:) in the text area. In graphics mode 0, this area coincides with the channel 6 
area, taking up the entire screen. In modes I through 8 when the graphics window is 
present, the two areas are clearly separated. In modes I through 8 when the graphics 
window is absent, using channel 0 returns the whole screen to mode O. 

TABLE 11-7. Graphics Modes Summary 

Rows 

0 
'" ~~ -:z ~ c: .. c: 0 E 0._ rIl 

." .. ..c:"=' = Color E = .. Mode - .. 0 - .. - I: '0 ~C"'~ 
~ = " ~~ Registers ~"= ~CIl U CII:~ Type 

0 24 - 40 I·, 2t , 4# 993 Text 
I 24 20 20 0, 1,2,3, 4t# 513 Character Graphics 
2 12 \0 20 0, 1,2,3, 4t# 261 Character Graphics 
3 24 20 40 0,1 , 2,4t# 273 Graphics 
4 48 40 80 0, 4t# 537 Graphics 
5 48 40 80 0, 1, 2, 4t# 1017 Graphics 
6 96 80 160 0, 4t# 2025 Graphics 

7 96 80 160 0, 1,2, 4t# 3945 Graphics 
8 192 160 320 I· , 2t, 4# 7900 Graphics 

• Character luminance only; hue same as background . 

t Background hue and luminance. 

# Border hue and luminance. 



Chapter 11 : COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 361 

Mode 0 

Graphics mode 0 is a pure text mode. Its 24 lines can have as many as 40 characters 
each . Standard margins exclude the first two columns on the left edge of the screen. 

Mode 0 characters always display in the same color as the background, although 
you can set the luminance of each separately (see Table 11-7). 

Mode 0 Margins 
You can use the POKE statement to reset the left and right margins. They must be 
between 0 and 39. Memory location 82 has the left margin, 83 the right. The margins 
do not stop your program from operating on the entire display screen. They only 
affect where PRINT statement output will appear. 

Mode 0 Cursor 
The cursor shows where the next character will be displayed. You can change the 
location of the cursor with the POSITION statement. You can also make the cursor 
invisible and play other tricks with it by changing the value of locations 752 and 755 
(see Appendix G). 

Mode 0 Character Set 
Mode 0 can display 128 different characters. Each character can be normal or 
inverse. The standard character set uses the one-byte AT ASCII encoding scheme 
(see Table 11-3.). You can define your your own character set, as described in 
Chapter 9. 

Mode 0 Logical Lines 
The AT ARI computer organizes text on the mode 0 display screen into logical lines. 
Logical lines can be 1 to 120 characters long, a maximum of three screen display 
lines. An end-of-line (EOL) character signals the end of a logical line. 

When the cursor reaches the bottom of the screen, the logical line at the top of the 
screen scrolls off the top, making room for more text at the bottom. 

Modes 1 and 2 

Modes 1 and 2 are character graphics modes. Each display element comes from a 
64-item character set. Mode 2 characters are twice as tall as mode 1 characters, 
although both are the same width , as shown in Table 11-7. Both modes have 
characters twice as wide as those in mode O. 

AT ARI BASIC has two character sets for modes 1 and 2. The standard character 
set contains the usual upper-case letters, numbers , and punctuation. An alternate 
character set contains special graphics characters and lower-case letters. The stand
ard character set is automatically selected every time you turn on the computer, 
press the SYSTEM RESET key, or use the GRAPHICS statement. The statement 
POKE 756,226 selects the alternate character set. The statement POKE 756,224 



362 A GUIDE TO AT ARI 400/800 COMPUTERS 

reselects the standard character set. Table 11-4 identifies the characters in both 
character sets. You can also define your own character sets . 

Characters in modes 1 and 2 can appear in any of the colors specified by four 
color registers . A fifth color register specifies the background color. Part of the 
same code that determines which character will appear also determines which color 
register will be used (see Table 11-4). The SETCOLOR statement determines which 
color the color register produces. 

If you print a string that is too long for one line , the extra characters wrap around 
to the start of the next line. Modes I and 2 screens do not scroll, however.lfyou try 
to display something below the bottom edge of the screen, an error results . 

Modes 3 Through 8 

Modes 3 through 8 display points , lines, and solid areas. The point size, number of 
points per line, number of lines on the display screen, and number of color registers 
used vary from one of these modes to the next. See Table 11-7 for details . 

The cursor is never visible, but can be moved under program control. The 
POSITION statement changes the cursor position in memory locations 84 (row) 
and 85 and 86 (column). These locations store the next cursor position, not its 
present position, and are used by most statements. Memory locations 90 (row) and 
91 and 92 (column) store the current cursor position that the ORA WTO, PLOT, 
and XIO statements use . 

The ORA WTO, PLOT, and XIO statements are the most common in modes 3 
through 8. You can also use the PUT statement, and even the PRINT # statement if 
you wish. 

IIF-THENI 
Conditionally causes the program to execute the indicated instruction or instructions. 

Formats: IF expr THEN statement [:statement ... ] 
IF expr THEN linexpr 

Examples: IF NAME$ ="LESTER ROADHOG MORAN" THEN RETURN 
IF ZIP > 90000 AND NAME$(l,l) < = "8" THEN PRINT #2;NAME$ 
IF RESPONSE$ = "Y" THEN PRINT "HOW MANY"; :INPUT QTY 
IF A = 8 THEN 1735 
IF COST(NI,N2) THEN 25300+COST(NI,N2) / IE4 

In the first format above, if the expression (expr) specifies a true condition, 
BASIC executes the statements that follow the keyword THEN on the same 
program line. lfthe specified condition is false, control passes to the first statement 
on the next program line and BASIC does not execute any of the statements 
following the keyword THEN. 

In the second format above (the conditional branch format) , the program 
branches to line number linexpr if the condition is true. Otherwise, execution 
continues with the first statement on the program line that follows the IF-THEN 
statement. 



Chapter 11: COMPE NDIUM OF BASIC STATEMENTS AN D FUNCTIONS 363 

Types of Expressions 
The most common types of expressions (expr) used with the IF-THEN statement 
are relational and Boolean expressions, since both evaluate to true or false. The 
expression may also be a numeric expression. [f its value is not 0, the condition is 
considered true. If its value is 0, the condition is considered false and execution 
continues at the first statement on the next higher program line. The expression 
cannot have a string value , although it can compare strings. 

Relational expressions which compare for less than «), greater than (» , or not 
equal « » can use a STR$ function only on one side of the inequality sign. The 
same limitation applies to the CHR$ function. 

String Comparisons 
When expr is a comparison of strings, the AT ASCII codes (listed in Appendix D) 
for the characters involved determine the relative values of the strings . Strings are 
compared character by character until a mismatch occurs. Then the string with the 
higher AT ASCII code in the mismatch position is considered greater. If no mis
match occurs, the longer string is greater. 

Statement Restrictions 
If either a GOTO or REM statement is one of the many statements following the 
keyword THEN, it must be the last statement on the line. Any statements that 
follow it on the same program line can never be executed . 

Additional IF-THEN statements may appear following the keyword THEN as 
long as they are completely contained on the original IF-THEN line. However, a 
Boolean expression is easier to read than nested IF-THEN statements. For exam
ple, the following two statements a re equivalent, but the second is easier to read. 

10 IF A$ = "X" THEN IF B = 2 THEN IF C> D THEN 50 

10 IF A$ = "X" AND B = 2 AND C> 0 THEN 50 

IINPUT (I. )1 
Accepts character entry from the keyboard or other input device, evaluates it, and 
assigns the value or values entered to the variable or variables specified. 

Format: INPUT [#chan {JJ var [, var ... J 

Examples: INPUT RESPO NSES 
I. #4, RECORD$ 
I. #2, A, B, C 

The INPUT statement gets a line of data from an input device. The input line 
consists of zero or more AT ASCII characters followed by an AT ASCII end-of-line 
(EOL) character. On the keyboard, the RETURN key produces an EOL character to 



364 A GUIDE TO AT ARI 400/800 COMPUTERS 

end the input line. No matter what the input device is, the EOL character is required 
to end the input line. 

The computer interprets the input line as a string value, one or more numeric 
values, or some combination of these. The way it interprets the input line depends 
on the number and type of variables (var), but is entirely unaffected by which input 
device is used. 

When the chan option is absent , input comes from the keyboard via the editor 
(device E:). When the chan option is present , the specified channel must be open for 
input. The OPEN statement specifies the input device. 

Mul tiple-Variable Input 
Generally speaking, when a single INPUT statement calls for more than one value, 
numeric or string, you can put each one on a separate input line by ending each 
value with the EOL character (the RETURN key). In fact , you must terminate strings 
this way. But you can also terminate a numeric value with a comma, and enter the 
next value, whether string or numeric, on the same input line. Commas are treated 
as part of string values , so they do not work as string value terminators. 

Numeric Input 
When BASIC encounters a numeric variable , it translates the input line - up to the 
next comma - into a numeric value. Numeric input follows the rules for numeric 
constants, detailed in Chapter 3. It consists of an optional sign (+ or -) followed by 
one or more digits (0 through 9), with one optional decimal point. Blank spaces may 
prefix or suffix the number, but may not separate the digits , signs, and decimal 
points from each other. 

Also allowed is a suffix for expressing the exponent part of a number in scientific 
notation. The suffix comprises three parts: the capital letter E, an optional sign, and 
a one- or two-digit number. The exponent must have a value generally between -99 
and -I, or between 1 and 97. A value of 0 is not allowed, nor are fractional 
exponents. There can be no decimal point in the exponent. The exponent value 
cannot cause the numeric value as a whole to exceed its allowable range (see below). 
Blank spaces cannot separate the exponent from the mantissa. 

Numeric input must be larger (less negative) than -I E+98 and smaller than I E+98, 
Values closer to 0 than ±9.99999999E-98 are rounded to O. 

If there are no characters before the next comma or EOL character, an error 
results . This happens on the keyboard if you simply press RETU RN. An error also 
occurs if non-numeric characters occur, or if numeric characters occur in the wrong 
places. Example include too many decimal points , the sign in the wrong place, or a 
scientific notation exponent too large or too small. 

String Input 
Each string value must be on a separate input line. Only an EOL character (the 
RETU RN key) terminates string entry; commas are treated as part of the string value. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 365 

The string value is the sequence of AT ASCII characters exactly as they occur in the 
input line, with no conversion or translation. If no characters come in before an 
EOL character (the RETURN key) , the string value is null, its length O. On the other 
hand, the number of characters that come in can exceed the dimensioned length of 
the string variable to which they are assigned. If this happens, the INPUT statement 
ignores the excess characters until the next EOL character (RETURN key). 

INPUT from the Editor or Keyboard 
If the INPUT statement uses the editor (device E:) , BASIC displays a question mark 
at the current cursor position on the graphics mode 0 screen as a cue to begin entry . 
However, if chan is present, no question mark appears. With devices other than the 
editor, no question mark appears on the display screen; this includes the keyboard 
itself (device K:). If it takes more than one input line to enter all the values for an 
INPUT statement, a new question mark appears (subject to the rules just stated) at 
the beginning of each new line as a cue to continue entries. 

The keyboard (device E: or K:) works the same way in the context of an INPUT 
statement as it normally does. The cursor movement keys perform their usual 
editing functions, the CLEAR key (SHIFT- < ) clears the entire display screen, the 
BREAK key halts the INPUT statement, the RETURN key terminates the entry line, 
and so on. Chapter 2 explains these features in detail. Do not use the cursor control 
keys (-, - ,1,1, etc.) to move the cursor out of the logical input line and back in. This 
may cause the question mark to become part of the input response. 

When the input device is the keyboard (device E: or K:), each keystroke adds 
another AT ASCII character code to the input line. The keyboard can produce all 
256 codes. Appendix D shows which keys and combinations of keys produce which 
codes . 

INPUT from Other Devices 
The rules for the INPUT statement are the same regardless of the input device. 
From devices other than the keyboard (device E: or K:) , the EOL character 
performs the function of the RETURN key. Commas can separate numeric values 
requested by a single INPUT statement. 

INPUT from the Disk Drive and Program Recorder 
The computer transfers data from the disk drive and program recorder to its 
memory in blocks of characters . On the AT ARI 810 Disk Drive, there are 125 
characters per block. The program recorder has 128 characters per block. 

One block might contain part of a string value, one string value, one numeric 
value, or several values separated by EOL characters or commas. BASIC assigns 
values to INPUT statement variables from the block in memory on a first-come, 
first-served basis. If it needs more characters, it gets another block from the disk 
drive or program recorder. 

Any attempt to get data past the end of a disk or cassette file results in an error. 



366 A GUIDE TO AT ARI 400/800 COMPUTERS 

INPUT with RS-232 Serial Devices 
There must be an open input channel to the proper RS-232 serial port of the AT ARI 
850 Interface Module, and this will be possible only if the RS-232 handler is in 
memory as a resul t of a successful boot when you turned on the computer (see page 
14). In addition, the serial port must be conditioned for concurrent input and output 
with an XIO 40 statement. Other XIO statements may be required to condition the 
serial port. For example, the translation mode (for converting incoming ASCII 
characters to AT ASCII) may need to be set with an XIO 38 statement. All this must 
happen before executing an INPUT statement on the channel in question. 

With this protocol out of the way, input line characters come through the serial 
port to the AT ARI 850 Interface Module. It translates them to AT ASCII charac
ters according to the translation mode in effect. Two of the translation modes will 
change an incoming ASCII carriage return character to the AT ASCII EOL charac
ter required to end an input line. Appendix D has ASCII and AT ASCII code tables. 

The AT ARI 850 Interface Module passes on the translated characters to the 
computer, one at a time. It interprets them as a string or numeric value in the 
manner described above. 

ILET = (= or LE. =)1 
The assignment statement, LET =, or simply =, assigns a value to a specified 
variable. 

Format: 

Examples: 

[LET] var = expr 

LET A = B 
LE. A$ = "Foreign Correspondent" 
COURSE(l,N) = COURSE(J,N-J) + SIN(X j Y) 
DECISION = RIGHT OR WRONG 
REORDER = ONHAND < = MINIMUM 

Variable var is assigned the value computed by evaluatingexpr. The variable can 
be a simple numeric or string variable, a numeric array element, or a substring 
(subscripted string variable). The variable must be the same type as the expression. 
An exception allows BASIC to assign the value of a Boolean or relational expres
sion to a numeric variable. Such expressions have a value of I if true, 0 if false. 
Relational expressions that compare simply for less than «), greater than (», or 
not equal « » can use a STR$ function only on one side of the inequality. The 
CHR$ function is similarly restricted. 

When you use substring notation to assign characters to a string, only the 
specified substring is affected. Other parts of the string variable retain their previous 
values. Parts that had no previous values have random values. 

ILIST (L.)I 
Displays all or part of the program currently in memory. Can also transmit all or 
part of the program currently in memory to a specified output device. 



Chapter 11: COMPENDIUM OF BAS IC STATEMENTS AND FUNCTIONS 367 

Formats: LIST [linexp'j [,1inexp'2] ] 
LIST outdev [,/inexp'j [,linexp'2] ] 

Examples: LIST 
L.I60 
L. "P:",JOO,200 
L. "D:DOGBREED.BAS" 

The first format above lists program lines to the display screen via the editor 
(device E:), in graphics mode O. Characters may list differently than they display in 
other graphics modes when the program is run. The second format lists program 
lines to a specific output device, outdev, which can be the display screen (device S:, 
or via the editor, E:), in addition to the printer (device P :), one of the RS-232 serial 
ports (device R[n]:), a disk file (device D[n]filename [.ex t]), or the program 
recorder (device C:). 

Any portion of the program may be listed using either format. If you specify two 
line numbers and both exist, the program will list starting at linexp'l and continuing 
through linexp'2' The line numbers specified in a LIST statement do not have to 
exist in the program. If the starting line number (linexp'l) does not exist, the listing 
starts at the next higher line number. If the ending line number (linexp'2) does not 
exist, the listing ends at the next lower line number. If you specify only one line 
number (linexp'l)' just that line will be listed, if it exists . If you specify no line 
numbers, the entire program is listed. 

Form of Output 
The LIST statement automatically extends any keywords that you abbreviated as 
you typed them in. It also adds extra spaces around variables and keywords to make 
the listing more readable . 

Program lines are limited to three screen lines each, but these limits are calculated 
before LIST expands the abbreviations and adds the extra spaces. You can there
fore extend the apparent length of a program line past the normal limit by abbre
viating extensively and leaving out unneeded spaces when you type it in. However, 
such a line will be too long to edit. 

The LIST statement sends out BASIC text in AT ASCII code, no matter which 
destination device is used . The ENTER statement can read it back from the 
program recorder or disk drive. The CSA VE and SAVE statements cannot read a 
LIST statement's recording. The LIST statement does not record the variable name 
table (VNT). See Figure 11 -1 for a way to use the LIST and ENTER statements to 
reset the VNT. 

Input/Output Channels and Sound Voices 
The LIST statement transmits to all devices on channel 7, except the display screen, 
for which it uses channel O. It works fine even if channel 7 is already open. However, 
it does close channel 7 when it finishes, disabling any prior use. The LIST statement 
also closes all sound voices. 



366 A GUIDE TO AT ARI 400 /600 COMPUTERS 

LIST with the Program Recorder 
The statement LIST "c" operates the program recorder in record mode, transfer
ring a program from the computer memory to a cassette. First, it sounds the 
computer speaker twice. This signals you to put the right tape in the program 
recorder and use the FAST FOR WARD and REWIND levers to position the tape to the 
correct spot. Then depress the RECORD and PLAY levers on the program recorder. 
Finally, press any key on the keyboard (except BREAK) . If the volume on the 
television set is turned up, you will hear 20 seconds of a continuous high-pitched 
tone. This will be followed by one or more short bursts of sound from the television 
speaker. These sounds mean the program transfer is taking place. The sound bursts 
cease when the recording finishes . 

LIST with the Disk Drive 
In order to use the LIST statement with a disk file name, the disk operating system 
must be in memory as a result of a successful boot when you turned on the computer 
(see page 27). If the disk operating system is absent , an error results. If it is present 
but no file exists as specified , an error results. If everything is set up correctly, the 
computer transfers the BASIC text from its memory to diskette. 

LIST with the Printer 
To print a listing of the program in memory on the AT ARI printer, use the 
statement LIST "P:". The printer must be turned on. The AT ARI 825 Printer must 
also be switched online, and the AT ARI 850 Interface Module it connects through 
must be on as well. Printer character sets differ from the graphics mode 0 character 
set, so some characters will look different on a printed listing. 

The AT ARI 825 Printer translates several AT ASCII codes as control characters. 
Strange things can happen when you list a program than contains control charac
ters directly inside question marks. The printer performs the control code functions , 
ruining the listing. This will not happen if the codes are specified using the CHR$ 
function . 

LIST with the RS-232 Serial Ports 
To use the LIST statement with one of the RS-232 serial ports , the RS-232 serial 
device handler must be in memory as a result of a successful boot when you turned 
on the computer (see page 14). If the device handler is absent, an error results. The 
device may require conditioning with XIO statements before executing the LIST 
statement. If everything checks out, the computer transfers the BASIC text from its 
memory to the serial port. It does not check to see if the serial device received the 
listing, or even if there is a serial device. 

Halting LIST 
Once LIST starts executing, you can interrupt it by pressing either the BREAK key or 
the SYSTEM RESET key. Output ceases. Output to a cassette file will be incomplete , 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 369 

but you will be able to read the recorded part with an ENTER statement. 
When you interrupt a listing to a disk file, chances are very good that the file will 

simply not exist. But if you use the BREAK key , or the SYSTEM RESET key near the 
end of the listing, the computer may finish off the file before it halts the LIST 
operation. And if the timing is wrong, pressing the SYSTEM RESET key will kill the 
listing, abort the file , and lock up the system. Your only recourse then is to turn the 
computer off and back on again. 

\LOAD (LO.)\ 
Transfers a previously recorded BASIC program from an input device to the 
computer memory. 

Format: LOAD indev 

Examples: LOAD "C" 
LO. "D:PROGRAMI" 
LO. PRG$ 

The LOAD statement transfers a BASIC program from physical device indev to 
memory. During the loading process, the LOAD statement also replaces the resi
dent variable name table with the one for the incoming program. 

The LOAD statement can only load a tokenized BASIC program recorded by the 
SA VE statement. It cannot load programs recorded by the CSA VE statement, 
which uses different timing, or by the LIST statement, which records BASIC text in 
A T ASCII code. 

The LOAD statement uses input channel 7 for transfer from the program 
recorder and disk drive. It works even if channel 7 is already open. 

LOAD Invokes NEW 
Using the LOAD statement automatically invokes the NEW statement. It clears all 
previous program lines and variables out of memory. 

When the LOAD operation ceases (successful or not, or complete or not), BASIC 
shuts off all sound voices and closes all input / output channels except channel O. 
Note especially that it closes channel 6, which many of the graphics statements use. 

LOAD with the Program Recorder 
The statement LOAD "c" operates the program recorder in playback mode, 
transferring a program from cassette to the computer memory. First, the computer 
sounds its speaker once. This signals you to put the right tape in the program 
recorder and use the FAST FOR WARD and REWIND levers to position the tape to the 
correct spot. Then depress the PLAY lever on the program recorder. Finally, press 
any key on the keyboard (except BREAK) . If the volume on the television set is 
turned up, you will hear several seconds of silence followed by one or more short 
bursts of sound from the television speaker. These sounds mean the program 
transfer is taking place. The sound bursts cease when the transfer finishes. 



370 A GUIDE TO AT ARI 400/800 COMPUTERS 

LOAD with the Disk Drive 
In order to use the LOAD statement with a disk file name, the disk operating system 
must be in memory as a result of a successful boot when you turned on the computer 
(see page 27). If the disk operating system is absent, an error results . If it is present 
but no file exists as specified , an error results. If everything is set up correctly, the 
computer transfers the BASIC text from diskette to its memory. 

Halting LOAD 
Once LOAD starts executing, you can interrupt it by pressing the SYSTEM RESET 

key. There will be no program lines in the computer memory unless the load 
operation had a chance to finish. Pressing the SYSTEM RESET key while loading a 
disk file program may lock up the system. Your only recourse then is to turn the 
computer off and back on again. 

Pressing the BREAK key during a LOAD operation will rarely stop the operation. 
It will interrupt the operation, but only momentarily. Some pieces of the program 
being transferred may never make it into memory. 

iLOCA TE (LOC. )1 
Retrieves the code of the character or graphics point displayed at a specified screen 
display location. 

Format: 

Examples: 

LOCATE col. row. numvar 

LOCATE 5, 10, PIXEL 
LOC. COL, ROW, SCRNVAL 
LOC. PEEK(86)*256+ PEEK(85), PEEK(84), ANSR 

The LOCATE statement retrieves the code of the character or graphics point 
displayed at the column and row specified by the values of col and row. It assigns the 
code value to numvar. 

The code is a one-byte numeric value between 0 and 255 . It observes the same 
rules as the code specified by the COLOR statement. In graphics mode 0, the code 
specifies which character is displayed (see Table 11-3). In graphics modes I and 2, 
the code specifies which color register is in use and which character is displayed (see 
Table 11-4). In graphics modes 3 through 8, the value retrieved indicates which 
color register is in use at the particular cursor position (see Table II-I). 

LOCATE Uses Channel 6 

In order for the LOCATE statement to work, channel 6 must be open for input to 
the display screen. The GRAPHICS statement does this. 

Cursor Update 
Each time LOCA TE reads a value from the display screen, it moves right to the next 
cursor position. It does this by updating memory location 84 with the row number 
of the next cursor position, and memory locations 85 and 86 with the next column 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 371 

number. The next statement which stores or retrieves data from the display screen 
occurs in the new cursor position . However, none of this applies to the ORA WTO 
or XIO statements, which maintain a separate cursor position in memory locations 
90,91, and 92. 

If you use the LOCATE statement on the last column of a given row on the 
display screen, the cursor advances to the first column of the next line . If you access 
the display screen without first repositioning the cursor after a LOCATE statement 
at the last column of the last row, an error results. 

PRINT After LOeA TE 
Executing a PRINT statement after a LOCATE statement may change the code of 
the character or graphics point just retrieved , spoiling the display. To circumvent 
this, use the POSITION statement to move the cursor back one space. Then use the 
PUT statement to rewrite the code just retrieved. 

ILPRINT (LP.)I 
Outputs characters to the system printer. 

Format: LPRINT [expr] [{ : } .. . [expr ]] ... 

Examples: LPRINT "Customer "; CUST 
LP. R$;" Score:", INT(POSBL/ RIGHT*JOO) 

This statement is like the PRINT statement, except that output goes to a printer 
attached directly to the serial bus, like the AT ARI 820 or 822 Printers, or to a 
printer attached to the parallel port of the AT ARI 850 Interface Module, like the 
AT ARI 825 Printer. The printer must be turned on. The AT ARI 850 Interface 
Module must be on also, if the printer is attached to it. If the printer is not ready to 
print, the computer waits briefly, then an error occurs. 

There are a number of acceptable variations on the LPRINT statement. LPRINT 
by itself outputs an EOL character. When LPRINT is followed by one or more 
expressions, the values of those expressions are printed. The way the values appear 
depends on their nature and on the use of semicolons or commas between values. 

Printing Numeric Values 
Numeric values within certain limits are printed using standard arithmetic notation. 
Scientific notation is used for values closer to 0 than ±O.O 1 and for any values with 
more than ten digits in front of the decimal point. Negative values are preceded by a 
minus sign; positive values are not preceded by anything. 

Printing String Values 
By printing certain string values on some printers, you can activate different type 
fonts and other special features . Chapter 6 has more information. 



372 A GUIDE TO ATARI 400/800 COMPUTERS 

Commas and Semicolons 
LPRINT statement expressions must be separated by either a comma or a semi
colon. Commas and semicolons control the spacing between printed values. A 
semicolon causes the next value to print immediately after the value just printed; the 
two are concatenated with no intervening spaces . A comma causes the next value to 
print at the next column stop, several spaces over from the last value. 

Column stops are ten characters apart, at columns I, II , 21, and so on. If any 
character is printed in either of the two spaces just ahead of a column stop (for 
example, in column 19 or 20), that column stop is inactivated . 

LPRINT and the AT ARI 825 Printer 
The LPRINTstatement has some quirks when used with the AT ARI 825 Printer. If 
an LPRINT statement prints more than 40 characters, output from the next 
LPRINT statement always starts a new line on an AT ARI 825 Printer. A comma or 
semicolon at the end of the LPRINT statement has no effect. But if an LPRINT 
statement prints 40 characters or less and ends with a semicolon, or 38 characters or 
less and ends with a comma, output from the next LPRINT statement starts on the 
same line, at column 41. In either case, output from the next LPRINT statement will 
start a new line. LPRINT output to the AT ARI 825 Printer is normal if no 
semicolon or comma ends the statement. 

Input/Output Channels and Sound Voices 
The LPRINT statement uses channel 7 for output to the printer. If channel 7 is 
already open to another device , an error occurs, which closes the channel. You can 
then use LPRINT successfully. 

The LPRINT statement shuts off all sound voices. 

INEWI 
Deletes the current program and all variables from memory. 

Format: NEW 

Example: NEW 

This statement also shuts off all sound voices; closes all input / output channels 
except channel 0, which remains open to the editor (device E:); and sets trigonomet
ric functions to radians. 

INEXT (N.)I 
Terminates the loop started by a FOR statement. 

Format: NEXT numvar 

Examples: NEXT COUNT 
N. J 

When BASIC executes a NEXT statement, it increments the loop index variable 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 373 

numvar by an amount specified in the corresponding FOR statement. The program 
then either continues with the statement following NEXT or loops back to the 
corresponding FOR, depending on the parameters set in the FOR statement. (See 
the discussion of FOR earlier in this chapter.) 

If numvar does not match the loop variab le of the most recently executed FOR 
statement, an error occurs . 

NEXT in Immediate Mode 
A NEXT statement will terminate an immediate mode FOR-NEXT loop only if it 
follows the FOR statement on the same immediate mode program line. 

When BASIC encounters a NEXT statement at the beginning of an immediate 
mode line, it looks for the most recent programmed mode FOR-NEXT loop that 
matches and is still active. If it finds one, it continues the loop at the FOR statement. 
If not, an error occurs. 

INOTE (NO·)I 
Determines the current location of the fi le pointer for the specified disk file. 

Format: 

Examples: 

NOTE #ehan, seervar, byrevar 

NOTE #5 , SCTR, BYTE 
NO. #FILE2, S, B 

This statement checks the current location of the pointer for the disk file open to 
channel chan. It assigns the absolute sector number to numeric variable sectvar, and 
the byte number within the sector to numeric variable bytevar. These variables 
cannot be array elements . Channel chan can be open to a disk file for any operation . 

NOTE is not available in version 1.0 of the disk operating system. 

ION-GOSUBI 
Provides conditional subroutine calls to one of several subroutines in a program, 
depending on the current value of an expression. 

Format: ON numexpr GOSUB linexpr [,/inexpr ... ] 

Examples: ON X GOSUB 100, 200 , 300 
ON SI GOSUB B+L*100,I2000, 12050, 100 

The program branches to the first line number (linexpr) if the integer value of 
numexpr is I , the second if it is 2, and so on. The next RETURN statement 
encountered sends the program back to the statement that follows the ON-GOSUB 
statement. 

The expression must have a value in the range 0 through 255 or an error occurs. If 
the expression evaluates to 0 or to a value greater than the number of line numbers 
listed , program execution continues with the next statement following the 
ON-GOSUB. 



374 A GUIDE TO AT ARI 400/800 COMPUTERS 

10N-GOTOI 
Causes a conditional branch to one of several lines in a program, depending on the 
current value of an expression. 

Format: ON numexpr GOTO linexpr [,linexpr ... ] 

Examples: ON RESPONSE GOTO 1000 , 2000, 3000, 4000, 5000 
ON RND(O)* 10 GOTO 1 OO+SPEED* 10, 2000, 3000, 3000, 3000 

The program branches to the first line number (linexpr) if the integer value of 
numexpr is I, the second if it is 2, and so on. 

The expression must have a value in the range 0 through 255 or an error occurs. If 
the expression evaluates to 0 or to a value greater than the number of line numbers 
listed, program execution continues with the next statement following the 
ON-GOTO. 

10PEN (0.)1 
Assigns an input / output channel number to a specific device, including a disk file. 

Format: OPEN #chan, taskexpr, auxexpr, dey 

Examples: OPEN #1, 4, 0, "C:" 
O. #5, ACT, 0, "D:SCORE.DAT" 
O. #2, 8, 0, "P:" 

Before BASIC can access an external device for input or output, it must open a 
channel (chan) to it. If the channel is already open to another device, an error 
occurs. 

The value of the first expression (taskexpr) specifies the kind of activity (for 
example, input or output) that will be going on; Table I I -8 elaborates. In most 
cases, the second expression (auxexpr) is unused, as Table 11-9 shows. The follow
ing sections explain the details for each device. 

The fi nal parameter in the OPEN statement, dey, selects the device that the 
input / output channel will be associated with. The dey parameter can be a string 
constant or a string variable. Table I 1- IO lists the standard device names. 

OPEN with the Program Recorder 
The program recorder can be open for input or output, but not for both input and 
output simultaneously. 

Opening for input operates the program recorder in playback mode. The compu
ter sounds its speaker once. This signals you to put the right tape in the program 
recorder and use the FAST FOR WARD and REW IND levers to position the tape to the 
correct spot. Then depress the PLAY lever on the program recorder. Finally, press 
any key on the keyboard (except BREAK). The program recorder takes about 20 
seconds to read past the leader which starts every cassette file. Before it reaches the 
end of the leader, the computer must input the first data value with a GET or 
INPUT statement. After that, the tape stops, unless the program recorder receives 
more instructions to keep it going. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 375 

TABLE 11-8. OPEN Parameter Number I (taskexpr) 

Device 
Task Task 

Number Description 

Program recorder 4 Read 
(C:) 8 Write 

Disk file 4 Read 
(D[n)filename 6 Read disk directory 

[.ext)) 8 Write - new file 
9 Write - append 

12 Read and write - update 

Screen editor 8 Screen output 
(E:) 12 Keyboard input & screen output 

13 Screen input & output 

Keyboard 4 Read 
(K:) 

Printer 8 Write 
(P:) 

RS-232 serial port 5 Concurrent read 
(R [n):) 8 Block write 

9 Concurrent write 
13 Concurrent read and write 

Clear Text Read Write 
Screen Windowt 

Screen display 8 Yes No No Yes 
(S:) 12 Yes No Yes Yes 

24 Yes Yes No Yes 
28 Yes Yes Yes Yes 

40 No· No No Yes 
44 No· No Yes Yes 
56 No· Yes No Yes 
60 No· Yes Yes Yes 

• Screen always cleared in graphics mode O. 
t No separate text window in graphics mode O. 

Opening for output operates the program recorder in record mode. The computer 
sounds its speaker twice. This signals you to put the right tape in the program 
recorder and use the FAST FORWARD and REWIND levers to position the tape to the 
correct spot. Then depress the RECORD and PLAY levers on the program recorder. 
Finally, press any key on the keyboard (except BREAK). If the volume on the 
television set is turned up, you will hear a continuous high-pitched marker tone 
being written as the cassette file leader. Within about 30 seconds of the time the 
OPEN statement is executed, the program must output 128 data bytes or close the 
output channel. Otherwise, garbage will be recorded on the file and an error will 
occur when the file is read back. 



376 A GUIDE TO ATARI 400/800 COMPUTERS 

TABLE 11-9. OPEN Parameter Number 2 (auxexpr) 

Device Function Description 

Program recorder Normal inter-record ga ps 
(C:) Short inter-record gaps 

Disk drive Ignored 
(D[nlfilename 

[.extl) 

Screen editor Ignored 
(E:) 

Keyboard Ignored 
(K:) 

Printer Normal characters 
(P :) Sideways characters (AT ARI 820) 

RS-232 serial port Ignored 
(R[n]:) 

Screen display BASIC graphics mode 0 
(S:) BASIC graphics mode I 

BASIC graphics mode 2 
BASIC graphics mode 3 
BASIC graphics 
BASIC graphics 
BASIC graphics 
BASIC graphics 
BASIC graphics 

TABLE 11-10. OPEN External Devices (de v) 

Device 

Program recorder 
Disk file 
Screen editor 
Keyboard 
Printer 
RS-232 serial port 
Display screen 

OPEN with a Disk File 

mode 4 
mode 5 
mode 6 
mode 7 
mode 8 

Name 

C: 
D[nlfilename [.ext 1 
E: 
K: 
P: 
R[n]: 
S: 

Value 

0 
128 

0 

0 

0 

0 
83 

0 

0 
I 
2 
3 
4 
5 
6 
7 
8 

In order to use the OPEN statement with a disk file name, the disk operating system 
must be in memory as a result of a successful boot when you turned on the computer 
(see page 27). If the disk operating system is absent, an error results. 

A disk file can be opened for data input, directory input, and for output in several 
different modes . The value of taskexpr determines the mode, as Table 11-8 shows. 
Normally, a maximum of three files can be open at one time. Chapter 7 explains a 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 377 

way to increase this limit to seven files with version 2.0S of the disk operating 
system. 

A file name is required when opening the disk for directory input , but it need not 
actually exist. The specified file name must exist when the task is input, update , or 
append, or else an error occurs. If the task is simple output and the file does not 
exist, it is created. If the task is simple output and the file exists, it is erased and a 
new one created. If a newly created file is not closed properly, the sectors allocated 
for it may remain a llocated but unusable until the disk is reformatted. 

OPEN with the Printer 
The printer can only be opened for output. It must be turned on when the OPEN 
statement is executed . If there is an ON LI NE! LOCAL switch on the printer , it must be 
in the "online" position as well. If the printer connects through the AT ARI 850 
Interface Module, it must be on also . If any of these conditions are not met, an error 
occurs . 

OPEN with the RS-232 Serial Ports 
To use the OPEN statement with one of the serial devices, the RS-232 serial device 
handler must be in memory as a result of a successful boot when you turned on the 
computer (see page 14). If the device handler is absent , an error results. But the 
computer reports no error if the device attached to the specified port is off, there is 
no device attached, or the AT ARI 850 Interface Module itself is off. 

In addition to being opened , the serial device may require conditioning with XIO 
statements. A given port can only be open on one channel at a time. 

OPEN with the Display Screen 
The OPEN statement links channel chan with the display screen when dev is S: . The 
value of auxexpr specifies the graphics mode . The value of taskexpr determines 
whether to clear the screen, whether a text window will be present, and whether the 
screen is open for output only, or both input and output (see Table 11-8). 

Each time the display screen is opened , the text cursor is reset, the color registers 
are set to their default colors (see Table 11-2), and tab stops are set at columns 7, 15 , 
23, . . . , 103, III , and 119. In graphics mode ° the screen is always cleared . Also, the 
cursor is visible unless you turn it off with a POKE 755 ,0 statement. 

The different graphics modes require different amounts of memory. The OPEN 
statement reserves memory for screen data and the display list in the highest part of 
available memory. 

OPEN with the Screen Editor 
The screen editor is an input / output device that uses the keyboard for input and the 
graphics mode ° display screen for output. Each time the screen editor is opened, the 
graphics mode is set to 0, the display screen is cleared , the text cursor is reset, the 



378 A GUIDE TO AT ARI 4001800 COMPUTERS 

color registers are set to their default colors (see Table 11-2), and tab stops are set at 
columns 7, 15 , 23 , . . . , \03 , III, and 119. 

The value of taskexpr determines whether the screen editor is opened for input , 
output, or both. It can also enable a special input mode which causes INPUT 
statements to use the display screen as the input device. When this happens , the 
logical line where the cursor is located provides the value for the current INPUT 
statement variable. The value ends at the next EOL character on the screen; the 
RETURN key is ignored . 

OPEN with the Keyboard 
The keyboard (device K:) can be opened only for input. 

IPEEK j 
Listed in the Functions section at the end of this chapter. 

IPLOT (PL.)I 
Displays a point at the specified location on the display screen . 

Format: PLOT col, row 

Examples: PLOT 5,15 
PL. COL, ROW 

This statement plots a single dot of color on the screen at the column and row 
specified by the values of col and ro w. The maximum row and column values vary 
with the graphics mode (see Table 11-7). The most recently executed COLOR 
statement determines which color register will choose the point color. The PLOT 
statement uses the background color register if no COLOR statement has been 
executed since you turned on the computer. 

The PLOT statement updates memory location 90 with the row number at which 
it plots, and memory locations 91 and 92 with the column number. A subsequent 
DRA WTO statement will use this as the starting point of the line it constructs. 

PLOT in Graphics Modes 0, I, and 2 

The PLOT statement is primarily used in graphics modes 3 through 8, but it also 
works in graphics modes 0, I , and 2. In these modes , PLOT places a character, 
rather than a dot , on the screen. The last COLOR statement executed determines 
which character will display, and in modes I and 2, which color register will choose 
the character color (see Tables 11-3 and 11-4). If no COLOR statement has been 
executed since you turned on the computer, COLOR 0 is used. 

IpOINT (P.)I 
Changes a disk file's pointer to a specified location. 

Format: POINT #chan, sec/var, by /evar 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 379 

Examples: POINT #5 , SCTR, BYTE 
P. #FILE2, S, B 

This statement moves the file pointer to the sector number specified by the value 
of numeric variable sectvar, and to the byte within the sector as specified by numeric 
variable bytevar. If sectvar is outside the limits of the file, an error will occur. The 
value of bytevar must be between 0 and 125. Channel chan must be open to a disk 
file for input, update , or append (see OPEN). 

This statement is not available in version 1.0 of the disk operating system. 

lf9KE (POK·)I 
Stores a byte of data in a specified memory location. 

Format: POKE memadr, bytexpr 

Example POKE 756,226 

A value between 0 and 255, provided by bytexpr, is written into memory at 
location memadr. If the memory location specified exceeds the maximum location 
in memory (for example, 16383 if you have 16K of memory) , or accesses a read-only 
memory location, POKE has no effect. 

Use caution with POKE. Some memory locations contain information essential 
to the computer's uninterrupted operation. Change random memory locations and 
you can destroy your program or lock up your system. 

Ipopi 
Causes BASIC to forget the return location for the most recently executed FOR, 
GOSUB, or ON-GOSUB statement. 

Format: POP 

Example: POP 

The FOR, GOSUB, and ON-GOSUB statements place a return location on the 
run-time stack. BASIC uses this location when it encounters a NEXT or RETURN 
statement. The POP statement removes one entry from the top of the run-time 
stack. No error occurs if the run-time stack is empty. 

POP effectively changes the most recently executed GOSUB or ON-GOSUB 
statement into a GOTO or ON-GOTO statement, after the fact. The next RETURN 
statement executed will branch to the instruction immediately following the second 
most recently executed GOSUB or ON-GOSUB. 

A POP statement executed inside a FOR-NEXT loop terminates the loop. 
BASIC behaves as though it never executed the most recent FOR statement. 

IpOSITION (POS.)I 
Moves the cursor to a specified location on the display screen. 

Format: POSITION col, ro w 

Example: POSITION 10,3 
POS. 5, BASE + N3 



380 A GUIDE TO AT ARI 400/800 COMPUTERS 

All display screen input and output statements except DRA WTO, PLOT, and 
XIO obtain the next cursor position from memory locations 84 (row) and 85 and 86 
(column) . The POSITION statement changes the contents of these memory loca
tions. The value of col specifies the new column, and the value of row specifies the 
new row. The next GET, PRINT, PUT, INPUT, or LOCATE statement to the 
display screen occurs at the new cursor position. The cursor does not visibly move 
when the POSITION statement is executed; it moves when a subsequent statement 
accesses the display screen. 

If the POSITION statement moves the cursor off the edge ofthe screen, no error 
occurs until a subsequent statement tries to use the display screen. 

IPRINT (PR. or ?)I 
Outputs characters to the display screen or another output device. 

Format: 

Examples: PRINT " Beware the Dog" 
PRo "REMAINING ENERGY"; RE; 
? #6, "X-axis" 
? #3; A$,A,B$,B,C$,C 

There are a number of acceptable variations on the PRINT statement. PRINT by 
itself outputs an AT ASCII end-of-line (EOL) character. When PRINT is followed 
by one or more expressions, the values of these expressions go out on channel chan, 
which must be open for output. The way the values appear depends on their nature 
and on the use of semicolons or commas between values, but does not depend on the 
output device at all. 

Printing Numeric Values 
Numeric values within certain limits are printed using standard arithmetic notation. 
Scientific notation is used for values closer to 0 than ±O.O I and for any values with 
more than ten digits in front of the decimal point. Negative values are preceded by a 
minus sign; positive values are not preceded by anything. 

Commas and Semicolons 
PRINT statement expressions must be separated by either a comma or a semicolon. 

Commas and semicolons control the spacing between printed values. A semi
colon causes the next value to print immediately after the value just printed ; the two 
are concatenated with no intervening spaces. A comma inserts blank spaces 
between the end of the value just printed and the next column stop. 

Column stops are ten characters apart, at columns 11,21,31, and so on, across an 
entire logical line. If any character is printed in either of the two spaces just ahead of 
a column stop (for example, in column 19 or 20), that tab stop is temporarily 
inactivated. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 381 

A single PRINT statement can output an entire line or just part of a line. If the list 
of PRINT statement expressions does not end with a comma or semicolon, the 
computer outputs an EOL character after the last item on the list, terminating the 
output line. 

A comma or semicolon wilJ suppress the EOL character. If the list ends with a 
semicolon, the next PRINT statement outputs its first character directly after the 
last character output by the current PRINT statement, with no intervening spaces. 
If the list ends with a comma, the next output wilJ be in the first position ofthe next 
column field, with blank spaces in between. 

PRINT with the Display Screen 
PRINT statement output goes to the display screen if the chan option is absent, or if 
it is present and opened for output to device S: or E:. Regardless of the graphics 
mode, the PRINT statement always outputs characters from the 256-element 
graphics mode 0 character set (see Table 11-3). In mode 0, the computer displays 
these characters as is. It translates them to another character set for graphics modes 
1 and 2, and to dots of color for graphics modes 3 through 8. 

Graphics modes I and 2 have two character sets. Roughly speaking, the standard 
set includes upper-case letters , digits , and punctuation, and the alternate set 
includes lower-case letters and graphics characters . There are no inverse characters 
in either set , but each character can appear via any offour color registers. Table I 1-4 
shows both character sets. 

Two things affect the translation of PRINT statement characters for a mode I or 
2 display screen. First, memory location 756 chooses between standard and alter
nate characters. POKE 756,226 chooses standard; POKE 756,224 chooses alter
nate. Second, the AT ASCII code of the PRINT statement character chooses the 
color register and the exact character. To translate, look up the mode 0 character in 
Table 11-3 and note its AT ASCII code. Be sure to differentiate between the codes 
for normal and inverse characters. Then find the code from Table 11-3 in Table 
I I -4. The column heading above the code in Table I I -4 gives the color register 
number that the PRINT statement wilJ use . Read across to the right in Table 11-4 to 
get the mode I and 2 characters, both standard and alternate. 

In graphics modes 3 through 8, the AT ASCII codes of the PRINT statement 
characters determine which color registers wilJ choose the dot colors. In modes 3, 5, 
and 7, the AT ASCII code is reduced modulo 4 to a number between 0 and 3. In 
modes 4, 6, and 8, the AT ASCII code is reduced to 0 or I: even codes are 0 and odd 
codes are I. The results of the reductions choose the color register the same way the 
parameter of a COLOR statement does (see Table 11-1). 

PRINT statement output starts at the current cursor location, which is stored in 
memory locations 84 (row) and 85 and 86 (column). The ORA WTO, GET, INPUT, 
LOCATE, PLOT, POSITION, PRINT, PUT, and XIO statements all affect the 
cursor position. 



382 A GUIDE TO ATARI 400/800 COMPUTERS 

PRINT with the Program Recorder 
To use the PRINT statement with the program recorder, channel chan must be open 
for output to the program recorder. 

A single PRINT statement might output only part of a record, so the computer 
stores data headed for the program recorder in its memory until it has 128 bytes. 
Then the entire block of data goes out. An EOL character forces output of the 
block, even if it is not full. In this case, the 128th byte contains the length of the 
block, stored as a hexadecimal number. 

If the output channel is open for normal inter-record gaps, the tape can stop and 
start in between blocks. With short inter-record gaps, the tape keeps moving and 
your program must keep up with it, or garbage gets recorded . 

PRINT with a Disk File 
To use the PRINT statement with a disk file, channel chan must be open for output, 
update, or append to the disk file. 

In most respects, data is output to a disk file in the same way it is output to the 
display screen. The computer transfers data to the disk drive in blocks. It stores 
output from PRINT statements in its memory until it has a full block. An EOL 
character forces output of the block, even if it is not full. The AT ARI 810 Disk 
Drive has 125 characters per block. 

PRINT with the Printer 
To use the PRINT statement with the printer, channel chan must be open for output 
to the printer. The printer must be turned on when the PRINT statement is 
executed. If there is an ONLINE/ LOCAL switch on the printer, it must be in the online 
position as well. If the printer connects through the 850 Interface Module, it must be 
on also. If any of these conditions are not met , an error occurs. 

Character sets on most printers differ from the one in graphics mode O. None of 
the AT ARI printers can print the graphics characters , for example. The character 
that does appear depends on the printer. Tables 6-1 and 6-2 summarize the AT A RI 
printer character sets . 

PRINT with the RS-232 Serial Ports 
To use the PRINT statement with one of the serial devices, channel chan must be 
open for output to the proper RS-232 serial port. This will be possible only if the 
RS-232 handler is in memory as a result of a successful boot when you turned on the 
computer (see page 14). In addition, XIO statements may be required to condition 
the serial port. For example, the translation mode (for converting incoming ASCII 
characters to AT ASCII) may need to be set with an XIO 38 statement. All this must 
happen before executing a PRINT statement on the channel in question. The 
computer reports no error if the device attached to the specified port is off, there is 
no device attached, or the AT ARI 850 Interface Module itself is off. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 383 

With this protocol out of the way, PRINT sta tement characters go through the 
AT ARI 850 Interface Module to the seria l port. It translates them to ATASCII 
characters according to the translation mode in effect. Two of the tra nslation modes 
will change an outgoing AT ASCII EOL character to an ASCII carriage return 
character. Appendix D has ASCII and AT ASCII code tables . 

IpUT (PU.)\ 
Sends a single numeric value to a previously opened output channel. 

Format: PUT #chan. numexpr 

Examples: PUT #1, NMBR 
PU. #CH, X 

Channel chan must be open for output. The PUT statement outputs the value of 
numexpr, rounded to the nearest integer. If the va lue is not between 0 and 255, it is 
output modulo 256 (256 goes out as 0, 257 as I, 258 as 2, etc .) . 

PUT with the Program Recorder 
To use the PUT statement with the program recorder, channel chan must be open 
for output to the program recorder. 

A single PUT statement might output only part of a record, so the computer 
stores data headed for the program recorder in its memory until it has 128 bytes. 
Then the entire block of data goes out. An EOL character forces output of the 
block, even if it is not full. In this case, the 128th byte contains the length of the 
block, stored as a hexadecimal number. 

If the output channel is open for normal inter-record gaps, the tape can stop and 
start in between blocks. With short interrecord gaps, the tape keeps moving and 
your program must keep up with it , or garbage gets recorded. 

PUT with the Disk Drive 
The PUT statement will write data on a disk file that is open for output. The PUT 
statement outputs one-byte va lues that can be read by a GET sta tement. The 
INPUT statement cannot read the individual va lues a PUT statement writes. 

The computer writes data to the disk drive in one-sector blocks, rather than one 
value at a time. PUT statements fill the disk buffer area of computer memory, one 
byte at a time . When the buffer is fu ll , the computer writes the entire contents on the 
disk file . The CLOSE statement writes out any bytes left in the buffer. On the 
AT ARI 810 Disk Drive, there are 125 values per sector. 

The POINT statement can cause the computer to read in a new block from the 
disk file if it specifies a location that is outside the sector currently in memory. 

PUT with the Display Screen 
When used with the display screen (devices S: or E:), the PUT statement displays 
either a character or a graphics point at the current cursor position, depending on 



384 A GUIDE TO ATARI 400/800 COMPUTERS 

the graphics mode. In graphics mode 0, the value of numexpr determines which 
character to display (see Table 11-3). In graphics modes 1 and 2, the value of 
numexpr determines which color register to use and which character to display (see 
Table 11-4). In graphics modes 3 through 8, the value of numexpr determines which 
color register to use at the particular cursor position (see Table II-I) . 

Each time PUT displays a value on the display screen, it moves right to the next 
cursor position. It does this by updating memory location 84 with the row number 
of the next cursor position, and memory locations 85 and 86 with the next column 
number. The next statement that stores or retrieves data from the display screen 
occurs in the new cursor position. However, this does not affect the DRA WTO or 
XIO statements, which maintain a separate cursor position in memory locations 90, 
91, and 92. 

If you use the PUT statement on the last column of a given row on the display 
screen, the cursor advances to the first column of the next line. If you try to access 
the display screen without first repositioning the cursor after a PUT statement at the 
last column of the last row, an error results. 

PUT with the Printer 
To use the PUT statement with the printer, channel chan must be open for output to 
the printer. The printer must be turned on when the PUT statement is executed. If 
there is an ONLINE/ LOCAL switch on the printer, it must be in the online position as 
well. If the printer connects through the AT A RI 850 Interface Module, it must be 
on also. If any of these conditions are not met , an error occurs. 

PUT with the RS-232 Serial Ports 
There must be an open output channel to the proper RS-232 serial port of the 
Interface Module, and this will be possible only if the RS-232 handler is in memory 
as a result of a successful boot when you turned on the computer (see page 14). In 
addition, XIO statements may be required to condition the serial port. For exam
ple, the translation mode may need to be set with an XIO 38 statement. All this must 
happen before executing a PUT statement on the channel in question. The compu
ter reports no error if the device attached to the specified port is off, there is no 
device attached, or the AT ARI 850 Interface Module itself is off. 

With this protocol out of the way, PUT statement values go through the ATARI 
850 Interface Module to the serial port. It translates them to AT ASCII characters 
according to the translation mode in effect. 

IRADI 
Tells BASIC to expect arguments in radians, rather than degrees, for subsequent 
trigonometric functions. 

Format: RAD 

Example: RAD 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 385 

After executing the RAD statement, BASIC treats the arguments of trigonomet
ric functions as radians. To switch to degrees, use the DEG statement. BASIC 
defaults to radians when it executes a NEW or RUN statement, or when you press 
the SYSTEM RESET key or turn the computer off and back on again. 

IREAD (REA.)I 
Assigns values from DATA statements to variables. 

Format: READ var [,var ... ] 

Examples: READ NAME$, RANK$, SERIALNO 
REA. LEVEL, GRADE, EVAL$ 

There is a pointer to the DATA list that determines which value to assign to the 
first variable (var) in the READ statement. At the start of the program and after a 
RESTORE statement, the pointer points to the first OAT A statement value. As 
each READ statement variable gets a value , the pointer moves ahead to the next 
value. 

The variables must match the type of the corresponding OAT A statement values. 
A numeric value assigned to a string variable causes no problem. A string assigned 
to a numeric variable causes an error. 

OAT A statements need not be executed for the READ statement to find them. 
An error occurs if the READ statement cannot find enough DATA statement 
values. 

READ in Immediate Mode 
The READ statement may be executed in immediate mode as long as the program 
in memory contains enough DATA statement values. Otherwise, an error occurs. 

IREM (R. or .)1 
Allows you to place explanatory comments, or remarks, in a program. 

Format: REM comment 

Examples: REM Error Handling Subroutine 
R . Compute Interest 

. Get user response (Y or N only) 

The comment is any sequence of characters that will fit on the current program 
line. 

Remark statements are reproduced in program listings, but are otherwise 
ignored. A REM statement may be on a line of its own or it may be the last 
statement of a multiple-statement line. 

REM cannot occur ahead of any other statements on a multiple-statement line, 
since BASIC treats all text following the REM statement as a comment, and 
executes none of it. 



386 A GUIDE TO AT ARI 400/800 COMPUTERS 

IRESTORE (RES.)i 
Resets the pointer to the list of OAT A statement values. 

Format: RESTORE [linexpr ] 

Examples: RESTORE 
RES. 140 

The pointer determines which value the next READ statement will start with. 
When no line number (/inexpr) is specified, the RESTORE statement moves the 
pointer to the start of the first OAT A statement in the program. When a line 
number is specified, the pointer moves to the start of the first DATA statement on 
or after that program line. 

IRE TURN (RET.)i 
Causes the program to branch to the statement immediately following the most 
recently executed GOSUB or ON-GOSUB statement. 

Format: RETURN 

Examples: RETURN 
RET. 

The RETURN statement gets the return location from the run-time stack. If a 
POP statement has removed an entry from the stack, the program branches to the 
statement following the next most recent GOSUB or ON-GOSUB statement. 

If more RETURN (and POP) than GOSUB statements are executed in a pro
gram, an error occurs. 

IRUN (Ru.)i 
Switches from immediate mode to programmed mode. Optionally loads a program 
from some input device to the computer memory. Executes the program in memory. 

Format: RUN [indev] 

Examples: RUN 
RUN "C:" 
RU. P$ 
RU. "D2:BUDGET.BAS" 

Program execution starts at the lowest numbered line in the program. The RU N 
statement turns off all sound voices and closes all input / output channels, thereby 
disabling any graphics modes. It sets trigonometric functions to radians. 

Program Load Feature 
When the indev option is present, the RUN statement transfers a BASIC program 
from physical device indev to memory, then runs that program. 

The RUN statement can only load a tokenized BASIC program recorded by the 
SA VE statement. It cannot load programs recorded by the CSA VE statement, 
which uses different timing, or by the LIST statement, which records BASIC text in 
AT ASCII code. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 387 

During the loading process, any program previously in memory is erased. The 
variable name table for the incoming program replaces the one in memory. 

The RUN statement uses input channel 7 for transfer from the program recorder 
and disk drive. It works even if channel 7 is already open. However, it does close the 
channel when it finishes. 

RUN with the Program Recorder 
The statement RUN "c" operates the program recorder in playback mode, 
transferring a program from cassette to the computer memory. First, the computer 
sounds its speaker once. This signals you to put the right tape in the program 
recorder and use the FAST FOR WARD and REWIND levers to position the tape to the 
correct spot. Then depress the PLAY lever on the program recorder. Finally, press 
any key on the keyboard (except BREAK). If the vo lume on the television set is 
turned up, you will hear several seconds of silence followed by one or more short 
bursts of sound from the television speaker. These sounds mean the program 
transfer is taking place. The sound bursts cease when the transfer finishes . 

RUN with the Disk Drive 
In order to use the RUN statement with a disk file name, the disk operating system 
must be in memory as a result of a successful boot when you turned on the computer 
(see page 27). If the disk operating system is absent, an error results. If it is present 
but no file exists as specified, an error results. If everything is set up correctly, the 
computer transfers the BASIC text from diskette to its memory and executes it . 

Halting RUN 
Once program execution begins, you can interrupt it by pressing the SYSTEM RESET 

key. If the computer was in the middle of loading a program, there will be no 
program lines in the computer's memory unless the load operation had a chance to 
finish . Pressing the SYSTEM RESET key whi le loading a disk file program may lock 
up the system. Your only recourse then is to turn the computer off and back on 
again. 

Pressing the BREAK key stops the program. It rarely stops a program load. It will 
interrupt the load , but only momentarily. Some pieces of the program being 
transferred may never make it into memory. 

ISAVE (s.)1 
Transfers a BASIC program from the computer's memory to an output device. 

Format: SA VE ourdev 

Examples: SAVE "C:" 
S. "D:PROGRAMI" 
S. PRGM$ 

The SA VE statement transfers a BASIC program from memory to output device 



388 A GUIDE TO AT ARI 400/800 COMPUTERS 

outdev. Normally outdev specifies the program recorder (device C:) or a disk file 
(device D[n ]filename [.ext ]) . Specifying another output device, such as the print
er or display screen, generally results in gibberish showing up on the device. It may 
make sense to use the SAVE statement with one of the RS-232 serial ports (devices 
R[n]:), depending on what you have attached to the port. 

The SA VE statement outputs a tokenized BASIC program that only the LOAD 
and RUN statements can load. The CLOAD and ENTER statements cannot load a 
program that the SA VE statement saves. During the recording process, the SA VE 
statement also saves the variable name table for the outgoing program. 

Input /Output Channels and Sound Voices 
The SA VE statement uses channel 7 for output. It works even if channel 7 is already 
open. However, it does close the channel when it finishes. The SA VE statement also 
shuts off all sound voices. 

SA VE with the Program Recorder 
The statement SA VE "C:" operates the program recorder in record mode, transfer
ring a program from the computer's memory to a cassette. First, it sounds the 
computer speaker twice. This signals you to put the right tape in the program 
recorder and use the FAST FOR WARD and REWIND levers to position the tape to the 
correct spot. Then depress the RECORD and PLAY levers on the program recorder. 
Finally, press any key on the keyboard (except BREAK). If the volume on the 
television set is turned up, you will hear 20 seconds of a continuous high-pitched 
tone. This will be followed by one or more short bursts of sound from the television 
speaker. These sounds mean the program transfer is taking place. The sound bursts 
cease when the recording finishes. 

SAVE with the Disk Drive 
In order to use the SA VE statement with a disk file name, the disk operating system 
must be in memory as a result of a successful boot when you turned on the computer 
(see page 27). If the disk operating system is absent, an error results. If everything is 
copasetic, the computer transfers the BASIC text from its memory to diskette. Ifthe 
specified file already exists, it is replaced by the program in memory. 

SA VE with the RS-232 Serial Ports 
To use the SAVE statement with one of the RS-232 serial ports , the RS-232 serial 
device handler must be in memory as a result of a successful boot when you turned 
on the computer (see page 14). If the device handler is absent, an error results. The 
device may require conditioning with XIO statements before executing the SAVE 
statement. If everything checks out, the computer transfers the BASIC text from its 
memory to the serial port. It does not check to see if the serial device received the 
program, or even if there is a serial device. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 389 

Halting SAVE 
You can halt the SAVE operation at any time by pressing either the BREAK key or 
the SYSTEM RESET key. The program recording will be incomplete. The LOAD and 
RUN statements cannot load an incompletely saved program. 

ISETCOLOR (SE.)I 
Assigns hue and luminance attributes to one of the color registers. 

Format: SETCOLOR regexpr, huexpr, lumexpr 

Examples: SETCOLOR 2,2,2 
SE. REGNO, HUE, LUM 

Numeric expression regexpr must have a value between 0 and 4. It determines 
which color register is affected by the current SETCOLOR statement. 

The value of huexpr must be between 0 and 15. It specifies one of the 16 hues 
(colors) listed in Table II-II. 

The value of numeric expression lumexpr establishes the luminance (brightness) 
of the hue. Its value must be an even number between 0 and 14. Odd numbers yield 
the same luminance as the next lowest even number (e.g., 3 produces the same result 
as 2). 

If the values of any of the expressions are not integers, they are rounded to the 
nearest integer. The values of huexpr and lumexpr may actually range up to 65535, 
though values larger than IS are converted modulo 16 to values between 0 and 15 . 

The color registers are set to the default values listed in Table 11-2 whenever you 

TABLE 11-11. Hues (Values of huexpr for SETCOLOR statement) 

Number 

o 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 

Hue Range" 

Black to white 
Brown to go ld 
Orange to yellow 
Terra cotta to pink 
Mulberry to magenta 
Violet to lavender 
Indigo to white 
Sky blue 
Royal blue to baby blue 
Turquoise blue 
Ultramarine to powder blue 
Midnight blue to aquamarine 
Sea green to turquoise green 
Forest green to Kelly green 
Olive 
Khaki to yellow 

• Television adjustment affects hue radically , as does luminance va lue. 



390 A GUIDE TO AT ARI 400/800 COMPUTERS 

TABLE 11-12. Color Register Uses 

Graphics Color Register 

Mode 0 1 2 3 4 

0 - C· C , Ba - Bo 
I C C C C Ba, Bo 
2 C C C C Ba, Bo 
3 P P P - P, Ba, Bo 
4 P - - - P, Ba, Bo 
5 P P P - P, Ba, Bo 
6 P - - - P, Ba, Bo 
7 P P P - P, Ba, Bo 
8 - p. P, Ba - Bo 

NOTE: C = Character Ba = Background • Determines luminance only; hue same 
P = Point or Line Bo = Border as background. 

turn on the computer, press the SYSTEM RESET key, or execute a DOS or 
GRAPHICS statement. 

The Color Registers 
AT ARI BASIC uses five memory locations to specify colors on the field of the 
display screen. These locations are called color registers. 

The COLOR statement chooses which of the color registers many graphics 
statements will use when they display characters, points, or lines. Thus it works in 
conjunction with the SETCOLOR statement to determine the hue and luminance of 
items on the display screen. Table 11-12 summarizes color register use in the various 
BASIC graphics modes. 

There are five color registers, numbered 0 through 4. Table 11-1 correlates the 
COLOR statement with color registers in each graphics mode. It shows, for exam
ple, that a COLOR 2 statement in graphics modes 3, 5, and 7 selects color register 1. 

ISOUND (so.)1 
Turns one sound voice on or off. Also sets the voice's pitch, distortion, and volume . 

Format: SOUND voicexpr. pitchexpr. distexpr. volexpr 

Examples: SOUND 2, 100, 10, 15 
SO. VI , P, D, V2 

Each SOUND statement sets the tone produced by one ofthe AT ARI computer's 
four voices. Numeric expression voicexpr determines which voice is affected. Its 
value must be between 0 and 3. 

The value of numeric expressionpitchexpr sets the pitch. Its values range from 0 
(highest note) to 255 (lowest note), as Table 11-13 shows. 

The value of numeric expression distexpr establishes the distortion of the tone. Its 
value must be an even number between 0 and 14. A value of 10 or 14 is a pure tone. 
Forpitchexpr values between 126 and 255, distexpr values 0 and 4 produce about 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 391 

the same sound. If a voice is on, an odd value of distexpr turns the voice off. 
Numeric expression volexpr adjusts the voice's volume setting. The value must be 

between 0 (no sound) and 15 (full volume). Values can be as high as 65535 without 
causing an error, but above 15 they turn the voice off. 

When pitch, distortion, and volume are all 0, the voice is silenced. A subsequent 
odd-numbered distortion produces a single click. Alternately executing a SOUND 
statement that has 0 pitch, distortion, and volume with a SOUND statement that 
has an odd-numbered distortion produces a stream of clicks. 

If the values of any of the expressions are not integers, they are rounded to the 
nearest integer. The values of pitchexpr and distexpr may actually range up to 
65535, although values larger than 15 are converted modulo 16 to values between 0 
and 15. 

All four voices are turned off when you press SYSTEM RESET or when BASIC 
executes any of the following statements: CLOAD, CSA VE, DOS, END, ENTER, 
LIST (except to the display screen), LOAD, NEW, RUN, SAVE. 

ISTATUS (ST.)I 
Retrieves the status of the most recent input or output operation on the specified 
channel. 

Format: ST ATUS #chan. numvar 

TABLE 11-13. Musical Notes for Pitch Values 
(Values of pitchexpr in SOUND statement) 

Value Note Value Note 

29 C 91 F 
31 B 96 E 
33 A#/ Bb 102 D#/ Eb 

35 A 108 D 
37 G# / Ab 114 C# / Db 

40 G 121 C 
42 F# / G b 128 B 
45 F 136 A# / B b 
47 E 144 A 
50 D#/ Eb 153 G# / Ab 

53 D 162 G 
57 C#/Db 173 F# / Bb 
60 C 182 F 
64 B 193 E 
68 A#/ Bb 204 D# / E b 

72 A 217 D 
76 G# / Ab 230 C#/D b 

81 G 243 C 
85 F# / Gb 



392 A GUIDE TO AT ARI 400/800 COMPUTERS 

Examples: STATUS #5 , STAT 
ST. #C, S 

This statement assigns the status code of the last activity on channel chan to 
variable numvar. If the code is higher than 128, an error occurred. Status codes are 
listed in Appendix B. 

If numvar is an array element, BASIC reports no error when it executes the 
ST ATUS statement. However, subsequent references to the same array result in 
errors, until the array is redimensioned. 

!STOP (STO.)! 
Causes a BASIC program to halt execution. 

Format: STOP 

Examples: STOP 
STO. 

The computer returns to immediate mode (graphics mode 0). The message 
STOPPED AT LINE line is displayed, where line is the line number at which the 
STOP was executed. If the STOP statement is executed in immediate mode, the line 
number information does not appear. 

The CONT statement will restart the program at the beginning of the program 
line that immediately follows the one where the halt occurred. CONT will not 
restart a multiple-statement immediate mode line. 

The STOP statement does not turn off any sound voices or close any open 
input / output channels. 

ISYSTEM RESET (SYSTEM RESET)! 
Halts program execution immediately; returns the computer to immediate mode. 

Format: SYSTEM RESET 

Example: SYSTEM RESET 

Pressing the SYSTEM RESET key stops the computer dead in its tracks, no matter 
what it is qoing. An initialization process occurs. Trigonometric functions use 
radians, not degrees. Color registers return to their default values (Table 11-2). The 
display screen comes under control ofthe screen editor in graphics mode O. Display 
screen margins and tab stops are reset . All sound voices are silenced. All input / out
put channels except channel 0 are closed abruptly; data may be lost. 

You may attempt to continue program execution with the CONT statement. 
Execution will resume at the start of the next program line higher than the one 
where the reset occurred . The program is not likely to work properly after a reset. 

ITRAP (T.)I 
Branches to the line number indicated when a subsequent error occurs in a BASIC 
program. 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 393 

Format: TRAP linexp, 

Examples: TRAP 20000 
T. ERRLINE 

This statement sets a flag that causes the program to branch to the line number 
indicated (linexpr) when an error occurs subsequently. This disables the automatic 
error handling which halts the BASIC program. Instead , the BASIC program must 
handle the error condition itself. TRAP must be executed before an error occurs, or 
no branch takes place when the error does occur. 

Each type of error has a code number. The code of the most recently occurring 
error is stored in memory location 195. PEEK(195) retrieves the error code. The 
error codes and their messages are listed in Appendix A. 

The expression 256 * PEEK(187) + PEEK(l86) reveals the line number on 
which the error occurred . If the error occurred in immediate mode, the line number 
is not meaningful. 

The occurrence of an error clears the flag set by the TRAP statement. Executing 
another TRAP statement resets the flag. Executing a TRAP statement where the 
value of linexpr is between 32768 and 65535 turns off the flag . 

IXIO (x.)1 
General input / output statement. 

Format: 

Examples: 

XIO cmd. #chan. numexp'j ' numexp'2' dey 

XIO 18 ,#6 ,0,0,"S: " 
XIO LOCK, #3, 0, 0, FILEI $ 

The XIO statement can perform a wide variety of input and output operations. 
The value of cmd specifies the operation. Table 11-14 lists the possibilities. 

Channel chan needs to be open for input or output, as appropriate , except for the 
XIO 3 (open) statement. The final parameter, dey. selects the input or output device. 
The remaining parameters provide supplementary information; the exact use 
depends on the operation . All parameters must always be present , although not all 
are always used. Tables 11-14 through 11-17 present each XIO operation's require
ments for the various parameters . In each case, BASIC rounds numeric values to 
the nearest integer if necessary. 

FUNCTIONS 
AT ARI BASIC functions are described below in alphabetical order. Nomenclature 
and abbreviations are described at the beginning of this chapter. 

Returns the absolute value of a number. This is the value of the number without 
regard to sign. 

Format: ABS(numexpr) 

Example: IF A = ABS(A) THEN PRo "POSITIVE" 



394 A G UIDE T O AT ARI 400/800 COMPUTERS 

TABLE 11-14. X IO Commands 

Action Command 
BASIC 

Equivalent numexpr, numexpr2 

General: 

Open channel 3 OPEN Table 1 1-8 Table 11-9 
Read line 5 INPUT 0 0 
Get character 7 GET 0 0 
Write line 9 PRINT 0 0 
Put character II PUT 0 0 
Close channel 12 CLOSE 0 0 
Channel sta tus 13 STATUS 0 0 

Screen graphics: 

Draw Line' 17 DRAWTO 0 0 
Fill Area2 18 None 0 0 

Disk) 

Rename file' 32 DOS Menu 0 0 
Delete files 33 DOS Menu 0 0 
Lock files 35 DOS Menu 0 0 
Unlock files 36 DOS Menu 0 0 
Move pointerS

,6 37 POINr 0 0 
Find file pointer 5,6 38 NOTE6 0 0 
Format entire disks 254 DOS Menu 0 0 

RS-232 se ria l port:7 

Output partial block 32 None 0 0 
Control DTR, RTS , XMT 34 None Table 11 -15 0 
Baud rate , word size, 36 None Table 11-1 6 Table 11-16 

stop bits, and ready 
monitoring 

Translation mode 38 None Table 11-17 A T ASCII code 
Concurrent mode 40 None 0 0 

NOTES: 

, Move cursor to start of line with POSITION statement before XIO 17. 

2 Use POKE 765, numexpr to choose fill co lor register, and draw ve rtical boundary lines before 
XIO 18. 

3 Disk operating system must be in memory. 

• The dey parameter of XIO 32 specifies file to change. 

5 The del' parameter specifies the fil e, not the file to which #chan is open. 

6 Not avai lable with version 1.0 of the disk operati ng system. 

7 The RS-232 se rial device handler must be in memory. 



Chapter 11 : COMPEND[UM OF BAS[C STATEMENTS AND FUNCTIONS 395 

TABLE 11-15. X[O 34 (Serial) Parameter numexp'l 

Add one number from each 
Selected values column to get value of 

of numexprl numexp', 

DTR RTS XMT DTR RTS XMT Value 

No change 0 0 0 Off Off 0 [62 

Turn off 128 32 2 Off Off 1 163 
(XM T to 0) Off On 0 178 

Turn on 192 48 3 
Off On I 179 

(XMT to 1) On Off 0 226 
On Off 1 227 
On On 0 242 
On On 1 243 

TABLE 11-16. XIO 36 (Seria[) Parameters numexp" and numexp'2 

numexpr, 
numexpr2 (Add one value from each column) 

Stop Bits Va lue Word Size Value Baud Rate Value DSR CTS CRX Value 

I 0 8 bits 0 300 0 No No No 0 
2 128 7 bits 16 45.5 1 No No Yes 1 

6 bits 32 50 2 No Yes No 2 
5 bits 48 56.875 3 No Yes Yes 3 

75 4 Yes No No 4 
110 5 Yes No Yes 5 
134.5 6 Yes Yes No 6 
150 7 Yes Yes Yes 7 
300 8 
600 9 

1200 10 
1800 II 
2400 12 
4800 13 
9600 14 
9600 15 

IADRI 
Returns the decimal starting address of a string variable or string constant in the 
computer's memory. 

F ormat: ADR(string) 

Example: A = USR(ADR(SUBR$» 



396 A GUIDE TO AT ARI 400/800 COMPUTERS 

TABLE 11-17. XIO 38 (Serial) Parameter numexprl 

Add one value from each column 

Line Translation Input Output 
Feed A T ASCII - ASCII Parity Parity 

Append Value Mode Value Mode Value Mode Value 

No 0 Light 0 Ignore 0 No change 0 
Yes· 64 Heavy 16 Oddt 4 Odd I 

None 32 Event 8 Even 2 
Ignore t 12 Bit on 3 

• Line feed character appended after carriage return (AT ASCII EOL). 

t Check parity as indicated , then clear parity bit. 

It is possible to put a machine language program in a BASIC string variable. The 
AD R function can determine the starting add ress of the string variable, which is the 
same as the starting address of the machine language program in it. This address can 
be used with the USR function to execute the machine language program. 

IASCi 
Returns the AT ASCII code number for a specified character. 

Format: ASCCstring) 

Example: IF ASC(RESPONSE$) < 78 THEN 990 

If the string is longer than one character, ASC returns the AT ASCII code for the 
first character in the string. If string is empty, ASC returns 44. AT ASCII codes are 
listed in Appendix D. 

IATNI 
Returns the arctangent of the argument. 

Format: ATN(numexpr) 

Example: PRINT ATN(T) 

Computes the arctangent in radians of numexpr, or in degrees if the DEG 
statement is in effect. The angle returned is in the range -1T / 2 through +1T / 2. 

ICHR$I 
Returns the string value of the specified AT ASCII code. 

Format: CHR$(numexpr) 

Example: PRINT CHR$(65)) 

Returns the character represented by the integer value of numexpr, interpreted as 
an AT ASCII code. Appendix D has a table of AT ASCII character codes. Meaning-



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 397 

ful values of numexpr lie between 0 and 255. The value can range up to 65535 
without error; values 256 and higher are converted modulo 256 to numbers between 
o and 255 . 

Relational expressions that compare for less than «), greater than (», or not 
equal « » can use a CHR$ function only on one side of the inequality sign. 

ICLOGI 
Returns the common logarithm of a number. 

Format: CLOG(numexpr) 

Example: A = B*CLOG(A) 

Computes the common (base 10) logarithm of numexpr. An error occurs if 
numexpr is 0 or negative. 

Returns the cosine of an angle. 
Format: 

Example: 

COS(numexpr) 

COS(3.14IS) 

Computes the cosine of numexp,. radians, or numexpr degrees if the DEG 
statement is in effect. 

Returns e raised to a power. 
Format: EXP(nu117expr) 

Example: RATE = EXP(SUMPOW) 

Computes e (the base of natural logarithms , 2.71828179) raised to the power 
numexpr. 

Returns the number of bytes of RAM memory currently availab le. 
Format: FRE(nu117expr) 

Example: ? FRE(O) 

The memory available to you is that which is not already taken by the operating 
system, the disk operating system, the display screen data, the display list, or a 
BASIC program and its data. 

The value of numexpr is not used by FRE. An error occurs if it is absent or its 
value is outside the range ±9.99999999E+98. 

Returns the integer portion of a number. 
Format: INT(numexpr) 



398 A GUIDE TO AT ARI 400/800 COMPUTERS 

Example: A = (INT(A / 2)*IOO+.5)/ 100 

Returns the largest integer less than or equal to the value of numexpr. 

!LEN! 
Returns the length of a string. 

Format: LEN(slring) 

Example: A$(LEN(A$)+ I) = B$ 

Counts the number of characters in string, including all spaces and nonprinting 
characters, from the start of the string to the last character used. 

!Loci 
Returns the natural logarithm of a number. 

Format: LOG(numexpr) 

Example:A = B*LOG(A) 

Computes the natural (base e) logarithm of numexpr. An error occurs if numexpr 
is 0 or negative. 

!PADDLEI 
Returns the current value of the paddle specified. 

Format: PADDLE(numexpr) 

Example: PLOT PADDLE(0) / 6, PADDLE(I) / 12 

The value returned is an integer between I and 228 based on the rotation of 
paddle number numexpr (Figure 11-2), or the resistance of a device connected to 
game controller jack numexpr. The paddles are numbered 0 through 7. If the paddle 
number is less than 0 or greater than 255 , an error occurs. If the paddle number is 
between 8 and 255 , PADDLE returns a somewhat unpredictable number. 

IPEEKI 
Returns the contents of a memory location. 

Format: PEEK(memadr) 

Example: LMARGN = PEEK(82) 

The value returned is the decimal equivalent of the binary value stored at memory 
location memadr. Appendix G lists some useful memory locations. 

IPTRICI 
Determines whether the trigger button of the specified paddle is on or off. 

Format: PTRIG(numexpr) 
Example: IF PTRIG(I) = 0 THEN PRI NT " Boom! " 

The value returned is 0 if the trigger of paddle number numexpr is being pressed, 
I if released. The paddles are numbered 0 through 7. If the paddle number is less 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 399 

Full counterclockwise 

NOTE: Intermediate values vary from paddle to paddle. 

FIGURE 11-2. PADDLE values 

Full clockwise 
rotation 

than 0 or greater than 255, an error occurs. If the paddle number is between 8 and 
255, PTRIG returns a somewhat unpredictable number. 

IRNOI 
Returns a random number. 

Format: RND(numexpr) 

Example: IF RND(O) < 0.3 THEN DAMAGE = ON 

Returns a floating point number greater than or equal to 0 and less than I . The 
value of numexp,. has no effect on the value of the random number returned, but it 
must be present. 

Identifies a number as positive, negative, or zero. 
Format: SGN(numexpr) 

Example: IF SGN(A) = -1 THEN PRINT "NEGATIVE" 

The SGN function returns + I if numexp,. is positive, -I if it is negative, and 0 if it is 
zero. 

Returns the sine of an angle. 
Format: 

Example: 

SIN(numexpr) 

SIN (ANG) 



400 A GUIDE TO AT ARI 400/800 COMPUTERS 

Computes the sine ofnumexpr radians , or numexpr degrees if the DEG statement 
is in effect. 

Returns the square root of a positive number. 
Format: SQR(numexpr) 

Example: HYPOT = SQR(LEG I A 2 + LEG2 A 2) 

A negative value of numexpr causes an error. SQR (numexpr) operates faster 
than (numexpr) A ( 0.5). 

ISTICKI 
Identifies the current position of a joystick. 

Format: STICK(numexpr) 

Example: IF STICK(O) = 14 THEN ROW = ROW - I 

The value returned is an integer between 0 and 15, based on the position of stick 
number numexpr (Figure 11-3). The joysticks are numbered 0 through 3. If the stick 
number is less than 0 or greater than 255 , an error occurs. If the stick number is 
between 4 and 255, STICK returns a somewhat unpredictable number. 

~----

I II 1 
"----

FIGURE 11-3. STICK va lues 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 401 

ISTRIGI 
Determines whether the trigger button of the specified joystick is on or off. 

Format: STRIG(numexpr) 

Example: IF STRIG(l) = 0 THEN PRINT "Boom!" 

The value returned is 0 if the trigger of stick number numexpr is being pressed, 1 
if released . The sticks are numbered 0 through 3. If the stick number is less than 0 or 
greater than 255 an error occurs . If the stick number is between 4 and 255 , STRIG 
returns a somewhat unpredictable number. 

ISTR$I 
Converts a numeric value to a string. 

Format STR$(numexpr) 

Example: ZIP$ = STR$(ZIP) 

The value of numexpr is converted to AT ASCII string characters. The characters 
are the same as those that would be printed by a PRINT numexpr statement. 
Therefore, STR$ (2 / 3) = "0 .6666666666" and STR$ (12300000000) = "1.23E + 10." 
If numexpr exceeds the limits for numeric values, an error occurs. 

Relational expressions that compare for less than «), greater than (» , or not 
equal « » can use a STR$ function only on one side of the inequality sign. 

Branches to a machine language program, optionally passing values. 
Format: USR(memadr [,numexpr .. . J) 

Example: A = USR(1536 ,ADR(A$) ,ADR(B$» 

When BASIC encounters a USR function , it pushes its current location within 
the BASIC program on the hardware stack and calls the machine language program 
which starts at memory location memadr. The machine language routine must 
already be there. Figure 11-4 illustrates how the USR function uses the hardware 
stack. 

Function Arguments 
The value of each USR function argument , numexpr, must be between 0 and 65535 . 
BASIC passes the values to the machine language program via the hardware stack. 
Starting with the last numexpr on the list, BASIC evaluates each expression, 
converts the value to a two-byte hexadecimal integer, and pushes the integer onto 
the hardware stack (Figure 11-4). After pushing the final value onto the stack, it 
pushes a one-byte count of the number of arguments. The machine language 
program must pull all this off the stack (with PLA instructions, for example) before 
it returns to BASIC. Even if there are no arguments, the machine language program 
must pull the one-byte argument count off the stack. 



402 A GUIDE TO ATARI 400/800 COMPUTERS 

Current 
top of stack 

Bottom of 

Number of USR arguments 

First USR argument 

Second USR argument 

~~ ~:: 

Last USR argument 

Return address in 
BASIC program 

Contents of stack 
~~ ,~ 

T before USR T 
stack '--_________ ---'_ 

Zero or more 
arguments allowed 

NOTE: The low byte is first and the high byte is second in all two-byte stack values. The starting 
address of the machine language routine is not pushed onto the stack, nor is it included 
in the argument count. 

FIGURE 11-4. USR and the hardware stack 

Function Value 
The machine language program can return a two-byte hexadecimal value via 
memory locations 212 and 213, low byte in 212, high byte in 213. When the machine 
language program returns, BASIC converts the contents of these locations to a 
numeric value between 0 and 65535. 

Returning to BASIC 
The machine language program returns to BASIC by executing an assembly 
language R TS instruction, which pulls the return location off the hardware stack 
(Figure 11-4). This fact makes it clear why the machine language program must pull 
all argument-related data off the stack before returning. 

V AL converts a numeric string to a numeric value. 
Format: V AL(string) 



Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 403 

,-------------------Any number of blank spaces 

.------------------Optional plus or minus sign 

,--------------Any number of digits (0 through 9), 
in any order 

r------------- Optional decimal point 

....----------- Any number of fraction digits 
(0 through 9), in any order 

ir
optional exponent, comprising: 

Capital letter E 
Optional plus or minus sign 
One or two digits 

~ r Any number of blank spaces 

..--.. -'- --
[ ] [[ ±]] D ... [ .][D ... ] [E [{ ± ]] 0 [D]] [ ] 

FIGURE 11-5. Acceptable numeric format for VAL 

Example: TOT = V AL(A$) + V AL(B$) 

Returns the numeric value represented by sIring. If the first character of string is 
not a numeric character, an error occurs . Otherwise, string is converted character by 
character until a non-numeric character is encountered. Figure 11-5 illustrates 
acceptable numeric format in string values. 

If the numeric value of sIring is too large or too small (for example, 1 E99), an 
error occurs. 





A 
ERROR MESSAGES 

AND EXPLANATIONS 
The AT ARI computer reports errors by number. This appendix explains what 
those numbers mean. Some of the error titles in this appendix differ slightly from 
error titles in standard Atari , Inc. , manuals. In those cases, the standard title 
appears in lighter type directly beneath the title used in this appendix. 

2 Out of Memory 
Memory Insufficient 

There is not enough RAM available for the BASIC program or variables, or there 
are too many levels of FOR-NEXT loop nesting or subroutine nesting. 

3 Bad Value 
Value Error 

A numeric value is too large, too small, or negative when it should be positive. 

4 Too Many Variables 
A program can have at most 128 different variable names. Variable names once 
used but now absent may still count toward this limit (see Figure II-I). 

5 String Length Exceeded 
String Length Error 

A substring specifies a character past the end of the dimensioned string length. 

405 



406 A GUIDE TO ATAR1400/800 COMPUTERS 

6 DA T A List Exhausted 
Out of Data Error 

A READ statement tried to read past the end of the OAT A statement list of values. 

7 Number Greater Than 32767 

A numeric value is negative or greater than 32767 in a situation where such a value is 
not allowed. 

8 INPUT Statement Type Mismatch 
INPUT Statement Error 

An INPUT statement encountered a mismatch betweeen variable and value type. 
Numeric values cannot contain letters, puctuation, graphics characters, and so 
forth. 

9 Array or String Dimension Error 
A DIM statement includes a string variable or array that is already dimensioned, or 
an array larger than 32,767 bytes. Or, the program tried to use an undimensioned 
string variable or array, or a nonexistent array element. 

10 Expression Too Complex 
Argument Stack Overflow 

An expression has too many levels of parentheses or function nesting. 

11 Numeric Overflow 
Floating Point Overflow/Underflow Error 

The program tried to divide by zero, or in some other way tried to calculate or use a 
number larger in magnitude than 9.99999999 X 1097

. 

12 Line Not Found 
A GOSUB, GOTO, IF-THEN, ON-GOSUB, or ON-GOTO statement tried to 
branch to a nonexistent line number. 

13 NEXT Without FOR 
No Matching FOR Statement 

No FOR statement was executed for the NEXT statement just executed. Possibly 
nested FOR-NEXT loops are crossed. A POP statement (which does not follow a 
GOSUB statement) in the middle of a FOR-NEXT loop effectively disables the 
most recently executed FOR statement. 



Appendix A: ERROR MESSAGES AND EXPLANATIONS 407 

14 Line Too Long 
The statement is too complex or exceeds one logical line . 

15 GOSUB or FOR Line Deleted 
A RETURN or NEXT statement can no longer find the line which contained its 
companion GOSUB or FOR statement. 

16 RETURN Without GOSUB 
RETURN Error 

A RETURN statement was executed before a GOSUB statement. 

17 Undecipherable Statement Encountered 
Garbage Error 

Faulty RAM, a POKE statement, or a machine language subroutine changed a 
program statement to meaningless , unexecutable garbage. 

18 Invalid String Character 
The program tried to convert a non-numeric string to a numeric value with the VAL 
function. 

19 Program Too Large 
LOAD Program Too Long 

The program being loaded will not fit in the available RAM. 

20 Bad Channel Number 
Device Number Larger 

The program tried to use channel 0 or a channel number larger than 7. 

21 Not LOAD Format 
LOAD File Error 

A LOAD statement tried to load a program and found data or a program that was 
recorded by the CSA VE or ENTER statement . 

128 BREAK Abort 
You pressed the BREAK key while the computer was in the middle of an input or 
output operation. 

129 Channel Already Open 
IOCB Already Open 

The program tried to use a channel that was already in use. BASIC graphics 



408 A GUIDE TO AT ARI 400/800 COMPUTERS 

statements automatically use channel 6; other statements use channel 7. When this 
error occurs, the troublesome channel may be automatically closed. 

130 Unknown Device 
Nonexistent Device 

The program tried to use an unknown device. Table 11-10 lists standard device 
names. Note that the serial ports (device names R:, RI:, R2:, R3 :, and R4:) are 
recognized only if the RS-232 serial device handler is present as the result of a 
successful boot when you turned on the computer (see Chapter 2). 

131 Output Only 
IOCB Write Only 

A GET or INPUT statement used a channel opened for output only. 

132 XIO Syntax Error 
Invalid Command 

Something is wrong with an XIO command. 

133 Channel Not Open 
Device or File Not Open 

The program tried to use a channel before opening it. 

134 Unknown Channel Number 
Bad IOCB Number 

The program can only use channels I, 2, 3, 4, 5, 6, and 7. 

135 Input Only 
IOCB Read Only 

A PRINT or PUT statement tried to use a channel that was open for input only. 

136 End of File 
EOF 

The program encountered an end-of-file record or tried to read a disk sector that 
was not part of the open file. 

137 Record Truncated 
T runca ted Record 

The computer encountered a data record longer than 256 bytes and truncated it. 



Appendi x A: ERROR MESSAGES AND EXPLANATIONS 409 

138 Device Does Not Respond 
Device Timeout 

The specified external device does not respond in a reasonable amount of time. 
Make sure that all power switches are on, all connecting cables are properly and 
securely attached, and all ONLINE! LOCAL switches are in the "online" position . 

139 Device Malfunctions or Refuses Command 
Device NAK 

The program recorder or disk drive malfunctioned or cannot perform a command. 
The AT ARI 850 Interface Module cannot perform a command, typically five-bit, 
six-bit, or seven-bit input at a too-high baud rate, or serial device not ready 
(readiness checking enabled) . 

140 Framing Error 
Serial Bus 

Serial bus data inconsistency. Cassette or diskette may be faulty or defective. 

141 Cursor Out of Range 
Rowand column limits vary with different graphics modes (see Table 11-7). 

142 Data Frame Overrun 
Serial Bus Data Frame Overrun 

Serial bus data inconsistency. Cassette or diskette may be faulty or defective . 

143 Data Frame Checksum 
Serial Bus Data Frame Checksum 

Serial bus data inconsistency. Bad recording on, or readback from, cassette or 
diskette . Cassette or diskette may be faulty or defective . 

144 Disk Error 
Device Done Error 

The diskette is physically protected against writing, or the diskette directory is 
scrambled . 

145 Read-After-Write Compare Error, or 
Bad Screen Mode Handler 

The disk drive detected a difference between what it wrote and what it was supposed 
to write. Or, there is something wrong with the screen handler. 



410 A GUIDE TO ATAR1 400/800 COMPUTERS 

146 Function Not Implemented 
The program tried to output to the keyboard , input from the printer, or some such 
impossible action. 

147 Insufficient RAM for Graphics Mode 
Insufficient RAM 

Different graphics modes require different amounts of RA M (see Table 11-7). 

150 Serial Port Open 
Port Already Open 

Each serial port can be open to only one channel at a time. 

151 Concurrent Mode Error 
Concurrent Mode I/O Not Enabled 

A serial port must be opened for concurrent mode before enabling current mode 
input / output with the XIO 40 statement (see Tables 11-8 and 11-14). 

152 Concurrent Mode Buffer Error 
Illegal User-Supplied Buffer 

The program specified an inconsistent buffer length and address during the startup 
of concurrent input / output using the optional program-provided buffer feature. 

153 Concurrent Mode Active 
Active Concurrent Mode I/O Error 

The program tried to conduct input or output on a serial port while another serial 
port was open and active in concurrent mode . 

154 Concurrent Mode Inactive 
Concurrent Mode I/O Not Active 

The input or output just attempted via a serial port requires concurrent mode . 

160 Drive Number Unknown 
Drive Number Error 
The drive number can only be D: , 01:,02:, D3 :, or 04:. 

161 Too Many Files Open 
Normally, only three disk files can be open at the same time. Chapter 7 explains a 
way to extend this limit with DOS 2.0S . 



Appendix A: ERROR MESSAGES AND EXPLANATIONS 411 

162 Disk Full 
There is no room on the diskette; all sectors are in use. 

163 Unrecoverable System Error 
Unrecoverable System Data I/O Error 
During the input or output of data the computer found an error which it cannot 
determine the cause of nor recover from . 

164 File Number Mismatch 
A POINT statement moved the file pointer to a sector not part of the open file. Or, a 
disk file is scrambled; the intra-sector links are disorganized and inconsistent. 

165 Bad File Name 
File Name Error 

A file name started with a lower-case letter , contained illegal characters, or used 
wild card characters (* and ?) improperly. 

166 POINT Data Length Error 
A POINT statement tried to move to a nonexistent byte number in a sector. 

167 File Locked 
Locked disk files cannot be written to or erased, or have their names changed . 

168 Unknown XIO Command 
Command Invalid 

The program tried to use an XIO command that does not exist or is not defined for 
the specified device. 

169 Directory Full 
A diskette directory has room for 64 file names . The amount of disk space available 
(number of sectors free) has no bearing on this. 

170 File Not Found 
The specified file name is not in the directory of the diskette now in the specified disk 
drive. 

171 POINT Invalid 
The program tried to access a disk sector that is not part of the open file. 



B 
STATUS STATEMENT 

CODES 

This appendix lists the values returned by the STATUS statement, followed by a 
message telling what the number means. For a more detailed description of the 
messages, see Appendix A. 

412 

Decimal 
Code 

3 
128 
129 
130 
131 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 

Meaning 

Operation complete and OK 
End of file ap proaching: next read gets last data In file* 
BREAK abort 
I / O channel already open (I0CB in use) 
Unknown device 
Opened for write only 
Device or file not open 
Unknown I/ O channel number 
Opened for read only 
End of file 
Record truncated 
Device does not respond 
Device malfunctions or refuses command 
Serial bus input framing error 
Cursor out of range 
Serial bus data frame overrun error 
Serial bus data frame checksum error 

*This code differs from the error code in Append ix A. 



Decimal 
Code 

144 
145 
146 
147 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 

Appendi x B: STATUS STATEMENT CODES 413 

Meaning 

Disk write-protected 
Bad screen model Read-after-write compare error 
Function not supported by handler 
Insufficient RAM for screen mode 
Disk drive number unknown 
Too many open disk files 
Disk full 
Fatal 110 error 
Disk file number mismatch 
File name error 
POINT data length error 
File locked 
Unknown XIO command 
Directory full (64 files) 
File not found 
POINT invalid 



C 
DERIVED 

TRIGONOMETRIC 
FUNCTIONS 

While the following list of derived functions is by no means complete, it does 
provide some of the most frequently used formulas. Certain values of x will 
invalidate some functions (for example, if COS(x) = 0 then SEqx) is nonreal), so 
your program should check for them. 

ARCCOS(x} = -ATN(x/ SQR(-x * x + I» + 1.5707633 
Returns the inverse cosine of x(ABS(x} < I}. 

ARCCOT(x} = -ATN(x} + 1.5707633 
Returns the inverse cotangent of x . 

ARCCOSH(x} = LOG(x + SQR(x * x - I» 
Returns the inverse hyperbolic cosine of x(x > = I). 

ARCCOTH(x} = LOG«x + I} / (x - 1»/ 2 
Returns the inverse hyperbolic cotangent of x(ABS (x> I). 

ARCCSC(x) = ATN(I / SQR(x * x - I» + (SGN(x) - I) * 1.5707633 
Returns the inverse cosecant of x(ABS (x ) > I). 

ARCCSCH(x} = LOG«SGN(x) * SQR(x * x + I) + I) / x) 
Returns the inverse hyperbolic cosecant of x (x > 0). 

ARCSEC(x} = ATN«SQR(x * x - I» + (SGN(x) - I) * 1.5707633 
Returns the inverse secant of x (ABS(x) > = I). 

ARCSECH(x) = LOG«SQR( -x * x + I) + I} / x} 
Returns the inverse hyperbolic secant of x (0 < x < = I). 

ARCSIN(x) = ATN(x/ SQR( -x * x + I» 
Returns the inverse sine of x (ABS(x) < I). 

414 



Appendix C: DERIVED TRIGONOMETRIC FUNCTIONS 415 

ARCSINH(x) = LOG(x + SQR( x * x + I» 
Returns the inverse hyperbolic sine of x. 

ARCT ANH(x) = LOG«(1 + x) / (I - x» / 2 
Returns the inverse hyperbolic tangent of x (ABS(x) < I). 

COSH(x) = (EXP(x) + EXP( -x» / 2 
Returns the hyperbolic cosine of x. 

COT(x) = COS(x) / SIN(x) 
Returns the cotangent of x (x < > 0). 

COTH(x) = EXP( -x )/ (EXP(x ) - EXP( -x » * 2 + I 
Returns the hyperbolic cotangent of x (x < > 0). 

CSC(x) = 1/ SIN(x) 
Returns the cosecant of x (x < > 0). 

CSCH(x) = 2/ (EXP(x) - EXP( -x» 
Returns the hyperbolic cosecant of x(x< > 0). 

LOGa(x) = LOG(x) / LOG(a) 
Returns the base a logarithm of x (a > 0, x > 0). 

LOGlO(X) = LOG(x) / 2.30258509 
Returns the common (base ten) logarithm of x(x > 0) . 

MODa(x) = INT« x / a - INT(x/ a» * a + 0.05) * SGN(x / a) 
Returns x modulo a: the remainder after division of x by a(a < > 0). 

SEC(x) = I / COS(x) 
Returns the secant of x (x < > 7r / 2). 

SECH(x) = 2/ (EXP(x) + EXP( -x» 
Returns the hyperbolic secant of x. 

SINH(x) = (EXP(x) - EXP( -x» / 2 
Returns the hyperbolic sine of x. 

TAN(x) = SIN(x) / COS(x ) 
Returns the tangent of x (x < > 0) . 

TANH(x) = -EXP( -x) / EXP(x) + EXP( -x» * 2 + I 
Returns the hyperbolic tangent of x. 



D 
CODES, 

CHARACTERS, 
AND KEYSTROKES 

Table 0-1 lists all 256 characters in the standard AT ARI display screen graphics 
mode 0 character set. It gives the A T ASCII code for each character. You can use the 
code with the CHR$ function to generate the character itself. All these characters 
can also be produced by a keystroke or combination of keystrokes. Table 0-1 also 
includes that information. 

The keystroke(s) shown in Table 0-1 always produce the code number indicated . 
As long as the computer is operating in graphics mode 0, they also generate the 
character shown. But in other graphics modes , a particular code may produce a 
different character (see Table 11-4), or even a graphics dot. 

A few of the codes generate control characters. When displayed by a PRINT 
statement, nothing actually appears on the screen. Instead , the cursor moves or 
some other control process occurs. You can output control characters with a 
PRINT statement: either use the CHR$ function or type an escape sequence inside 
quotation marks (see Chapter 4). When you type an escape sequence, a character 
appears on the screen, but the control process does not occur. The process happens 
only when the control character is displayed while the program is running. The 
character you see only represents the control process that will take place. However, 
if a program displays AT ASCII code 27 immediately before the control character, 
the representative character displays and the control process does not occur. Table 
0-1 shows the representative characters , marked with footnotes that explain the 
control processes the characters implement. 

416 



Appendi x D: CODES, CHARACTERS, AND KEYSTROKES 417 

Lower-Case Characters 
Many of the characters can be typed directly only when the keyboard is in lower
case mode. Such characters are marked in the "Keystrokes to Produce Character" 
column of Table D-l with the symbol (LOWR) . Pressing the LOWR key once puts the 
keyboard in lower-case mode. Pressing the CAPS key (SHIFT-LOWR key) puts the 
keyboard back in upper-case mode . 

Inverse Characters 
Almost half the characters are inverse characters. To type them directly, the 
keyboard must be in inverse mode. Such characters are marked in the "Keystrokes 
to Produce Character" column of Table D-I with the symbol (J1I..) . Pressing the JII.. 

key once puts the keyboard in inverse mode . Pressing it again puts it in normal 
mode. Every time this key is pressed , it switches to the opposite mode. 

TABLE D-1. Codes, Characters, and Keys trokes 

.s .s 
II> II> - .. .. ~ .. - .. .. ~ .. - ~ ~ ..:0: ~~ U ~ ~--. ..:0: ~~ -; U ---. -; 

<J <J ~ o <J <J <J - ti ~ o <J <J 

.5 ~ 00 '" - '" = .. :s '" .5 ~ 00 '" - '" = .. :s '" < .. U ;< t;; ." ... < .. U;< "t; "0 ... 
<J'"O ~1l ~o'" <J '"0 

~1l ~ 0 '" ~ 0 00.= ... ~ .. .= ~ 0 00.= ... ~ .. .= Qu <u <u~ :::.:: ~u QU <u <u~ :::.:: ~u 

0 [!] NULL CTRL- , 11 ~ VT CTRL-K 

1 [B SOH CT RL-A 12 ~ FF CTRL-L 

2 [] STX CTRL-8 13 LJ CR CTRL-M 

3 ~ ETX CT R L-C 14 [;] SO CTRL-N 

4 8J EOT CTRL-D 15 [;] SI CTRL-O 

5 [i] ENQ CTRL-E 16 ~ DLE CTRL-P 

6 [Z] ACK CTRL-F 17 ~ DC1 CTRL-Q 

7 [S] BEL CTRL-G 18 EJ DC2 CTRL-R 

8 ~ BS CTRL-H 19 [±J DC3 CTRL-S 

9 GJ HT CTRL-I 20 [!] DC4 CTRL-T 

10 ~ LF CTRL-J 21 ~ NAK CTRL-U 



418 A GUIDE TO ATARI 400/800 COMPUTERS 

TABLE 0-1. Codes, Characters , and Keystrokes (continued) 

~ ~ 
'" '" - .. .. .. .. - .. .. .. .. 

-; -~ ~~ ~ ~ ~ -; - ~ ~~ ~ ~ ~ u u 
.5 .. en 

(,I - ~-6f .5 .. en 1;l - !: = ~ 01 _ 01 C -01 C < .. u :; < < .. u :;< '" 'C .. (,I'C E-<;! ~ 0 01 (,I'C E-<;! ~OOl 
.. 0 en..c ... .... ..c .. 0 en ..c ... .... ..c Qu <u <ue ~ =..u Qu <u <ue ~ =..u 

22 [jJ SYN CTRL-V 42 ~ * * 

23 [i] ETB CTRL-W 43 [±J + + 

24 ~ CAN CTRL-X 44 GJ , , 

25 [[J EM CTRL-Y 45 B - -

26 [g SUB CTRL-Z 46 [J 
27 [iJ1 ESC ESC\ ESC 47 [Z] / / 

28 ffT FS ESC\ CTRL- - 48 IT[] 0 0 

29 [±r GS ESC\ CTRL-= 49 [IJ I I 

30 [!]4 RS ESC\ CTRL-+ 50 [ZJ JC:. 2 2 

31 ~ 5 US ESC\ CTRL-* 51 Q] 3 3 

32 D Space SPACE BAR 52 [i] 4 4 

33 IT] ! SH IFT-I 53 ~ ,.J 5 5 

34 [ij " SHIFT-2 54 ~ 6 6 

35 [!] # SHIFT-) 55 [ZJ .... 7 7 

36 [!J $ SHIFT-4 56 lliJ <:) 8 8 

37 00 % SH IFT-5 57 [2] 9 9 

38 [ill & SH IFT-6 58 ITJ SHIFT-; 

39 [] , SHI FT-7 59 IT] , , 

40 IT] ( SHIFT-9 60 8J < < 

41 [I] ) SH IFT-O 61 EJ .. - = = 



Appendi x D: CODES, CHARACTERS, AND KEYSTROKES 419 

TABLE D-l. Codes, Characters , and Keystrokes (continued) 

£ 0 -'" '" - .. .. .. .. - .. .. .. .. 
;; - .. .. ~~ ~ ~ ~ ;; - .. .. ~~ ~ ~ ~ u- u-
. 5 .. frl :il - 01 C .. = ~ .5 .. frl :il _ 01 C ~.gf < .. u :; < t;"C- < .. u :; < ... '0 .... ~ .... 0 01 ... '0 .... ~ .... 0 01 
.. 0 frl..c ... .... ..c .. 0 frl..c ... .... ..c Qu <u <ue ::c =-- u Qu <u <uc ::c =-- u 

62 [] > > 82 [E] R R 

63 EJ ? SHIFT-/ 83 [ill ~.> 
S S 

64 [ill @ SH IFT-8 84 IT] T T 

65 Itll A A 85 [ill U U 

66 ill] B B 86 [QJ V V 

67 [g C C 87 [ill W W 

68 02J D D 88 I y.1 .' \ 
X X 

69 IT] E E 89 Iyl y y ... 

70 [[] F F 90 [Z] 1> .. 
Z Z 

71 [ill G G 91 IT] [ SHIFT- ; 

72 [8J H H 92 [S] \ SHIFT- , 

73 QJ I I 93 CO ] SHIFT- + 

74 GIJ J J 94 ~ I SHIFT- • 

75 [ill K K 95 Q - SHIFT--

76 OJ L L 96 ~ , 
CTRL-. 

77 [ill M M 97 [ill <., a (LOWR) A 

78 [ill N N 98 [ill I .. b (LOWR) B 

79 [IT] 0 0 99 EJ c (LOWR) C 

80 IT] P P 100 @] d (LOWR) D 

81 [QJ Q Q 101 ~ e (LOWR) E 



420 A GUIDE TO AT ARI 400/800 COMPUTERS 

TABLE D-l. Codes, Characters, and Keystrokes (continued) 

-; 
e .. 

0c::i ~ 
.. 0 
QU 

102 

103 

104 

105 

106 

107 

108 

109 

110 

III 

112 

113 

114 

liS 

116 

117 

118 

11 9 

120 

121 

- .. - .. u-rn ;: < .. 
(-o~ 
<u 

f 

g 

h 

k 

m 

n 

o 

p 

q 

u 

v 

W 

x 

y 

(LOWR) F 

(LOWR) G 

(LOWR) H 

(LOWR) I 

(LOWR) J 

(LOWR) K 

(LOWR) L 

(LOWR) M 

(LOWR) N 

(LOWR) 0 

(LOWR) P 

(LOWR) Q 

(LOWR) R 

(LOWR) S 

(LOWR) T 

(LOWR) U 

(LOWR) V 

(LOWR) W 

(LOWR) X 

(LOWR) Y 

-; 
05 .. 
... ~ 
.. 0 
Qu 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

P 
L!::J 

~ 
IT] 

~r 
[!]7 
[E8 
C 
~ 
IJ 
CI 
C1 
~ 
~ 
~ 
r:J 
I! 
~ 
1;1 
~ 
Ii 

z 

DEL 

(LOWR) Z 

CTRL-; 

SH IFT- = 
ESC\ CTRL-< 
or 
ESC\ SHIFT- < 

ESC\ BACK S 

ESC\ TAB 

(A) CTRL-, 

(A) CTRL-A 

(A) CTRL-B 

(A) CTRL-C 

(A) CTRL-D 

(A) CTRL-E 

(A ) CTRL-F 

(A) CTRL-G 

(AI.. ) CTRL-H 

(A) CTRL-I 

(AI..) CTRL-J 

(AI..) CTRL-K 

(AI..) CTRL-L 

(A) CTRL-M 



Appendix D: CODES, CHARACTERS, AND KEYSTROKES 421 

TABLE D-1. Codes, Characters , and Keystrokes (continued) 

0 0 ... ... 
'" - .. '" - .. .. .. .. .. .. ... - .. .. .:0: .. ~ Oi - .. .. .:0: .... 

Oi U- ... ..- U ... ... ..-
cr, ~ - '" ;.-, o '" '" .5 .. cr, ~ - '" ;.-, 

o u 't 
.5 .. _ 01 C !: = CIS 

_ 01 C .:: = CIS < .. u :; < '" -,: .. < ... u :; < '" -,: ... ",-,: 
E-~ ;.-, 0 01 ",-,: 

E-~ ;.-, 0 01 
.. 0 cr,.c ... .... .c .. 0 cr,.c ... .. ... .c 
QU <u <ue ;:.:::~u Qu <u <ue ;:.:::~u 

142 ~ (A) CTRL-N 162 II (A) SHIFT-2 

143 rI (A) CTRL-O 163 III (A) SHIFT-3 

144 C (A) CTRL-P 164 II (AI.) SHIFT-4 

145 ~ (A) CTRL-Q 165 EI (A) SH IFT-5 

146 = (A) CTRL-R 166 II (A) SH IFT-6 

147 C (A) CTRL-S 167 II (A,) SHIFT-7 

148 C (A) CTRL-T 168 II (Ai.) SHIFT-9 

149 ~ (A) CTRL-U 169 II (A) SHIFT-O 

150 [I (A) CTRL-V 170 II (A) * 

151 ~ (A) CTRL-W 171 II ("'-) + 

152 c:I (A) CTRL-X 172 II (A) , 

153 [J (A,) CTRL-Y 173 II (A) -

154 1:1 (A) CTRL-Z 174 II (A) . 

155 EOL 9 (A) 
175 II (A) I RETURN 

156 ()IO ESC\ SHIFT- 176 m (A) 0 
BACK S 

157 0" ESC\ SH IFT-> 177 II (A) I 

158 ml2 ESC\ CTRL- 178 III (A) 2 
TAB 

159 DI3 ESC\ SHIFT-
TAB 

179 iii (A) 3 

160 II (A) 180 II (A) 4 
SPACE BAR 

161 II (A) SHIFT- I 181 III (A) 5 



422 A GUIDE TO ATARI 400/800 COMPUTERS 

TABLE D-l. Codes, Characters, and Keystrokes (continued) 

-; 
.5 ... 
... '0 
... 0 
Qu 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

- .. -... u-
CIl :; 
00( .. 
f-o~ 
OO(U 

II 
II 
m 
m 
D 
H 
II 
II 
a 
II 
OJ 
m 
II 
II 
m 
II 
II 
OJ 
m 
II 

(J") 6 202 II 
(A) 7 203 II 
(A) 8 204 II 
(A) 9 205 III 
(JI\.) SHIFT-; 206 m 
(II\.) ; 207 m 
(I" ) < 208 II 
(A) = 209 m 
(A) > 210 III 
(A ) SHIFT- / 211 III 
( A ) SHIFT-8 212 0 
(A) A 213 m 
(A) B 214 m 
(A) C 215 m 
(A ) 0 216 It 
(AI..) E 217 D 
(A) F 218_ 

(II\.) G 2 19 II 
(A) H 220 II 
(A) I 221 II 

(A) J 

(A) K 

(A) L 

(A)M 

(!II.) N 

(A) 0 

(A) P 

(A) Q 

(I1\.) R 

(A) S 

(AI..) T 

(I1\.) U 

(A )V 

(A)W 

(A)X 

(A) Y 

(A ) Z 

(A) SHIFT- , 

(A) SHIFT-+ 

(A) SH IFT-. 



Appendix D: CODES, CHARACTERS, AND KEYSTROKES 423 

TABLE D-l. Codes, Characters, and Keystrokes (continued) 

OJ 
.5 ... 
... -0 
... 0 
QU 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

Notes 

- .. 
-~ U ... 
en 01 
~ .. 
.... ~ 
~u 

11 
II 
C 
II 
II 
II 
II 
III 
o 
III 
m 
II 
II 
II 
D 
II 
III 

(A--) SHIFT· * 

(A--) SH IFT·· 

(A--) CTR L-. 

(A--) (LOWR) 
A 

(A) (LOWR) 
B 

(A) (LOWR) 
C 

(A) (LOWR) 
D 

(A--) (LOW R) 
E 

(A) (LOWR) 
F 

(A--) (LOWR) 
G 

(A.) (LOWR) 
H 

(A--) (LOWR) 
I 

(A--) (LOWR) 
J 

(A--) (LOW R) 
K 

(A--) (LOWR) 
L 

(A ) (LOWR) 
M 

(A--) (LOW R) 
N 

OJ 
.5 ... 
... -0 
... 0 
Qu 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

- .. 
-~ U ... 
en 01 
~ :; .... .: 
~u 

III 
II 
III 
II 
II 
II 
III 
LI 
III 
II 
III 
II 
D 
D 
[;)14 

r:r 
n l 6 

(A) (LOWR) 
o 

(If...) (LOWR) 
p 

(A,) (LOWR) 
Q 

(A) (LOWR) 
R 

(A) (LOWR) 
S 

(A--) (LOWR) 
T 

(A) (LOWR) 
u 

(A) (LOWR) 
v 

(A) (LOWR) 
W 

(A) (LOWR) 
X 

()fI.) (LOWR) 
Y 

(AI..) (LOWR) 
z 

(A) CTRL-; 

(AI.) SHIFT-:; 

ESC\CTRL-2 

(A) ESC\ 
CTRL-BACK S 

(A) 
ESC\CTRL- > 

IThe character ~ represents a control character. In most cases, this control character does nothing; 
CHR$(27) is generally a nondisplaying character. However, if the next character displayed is a 
control character (ATASCII codes 27, 28, 29, 30, 31 , 125, 126, 127, 156,157,158,159,253,254, or 
255), the control process does not take place. Instead, the representative character itself appears. 



424 A GUIDE TO AT ARI 400/800 COMPUTERS 

TABLE 0-1. Codes, Characters, and Keystrokes (continued) 

Notes (continued): 

2The character [!] represents the control character which moves the cursor up one row. If the 
character displayed just before this was AT ASCI I code 27, the character [!] displays; the cursor does 
not move. 

3The character (!] represents the control character which moves the cursor down one row. If the 
character displayed just before this was A T ASCII code 27 , the character (!] displays; the cursor does 
not move. 

4The character [±J represents the control character which moves the cursor one column left. If the 
character displayed jU5t before this was AT ASCII code 27, the character [±J displays; the cursor does 
not move. 

5The character [±] represents the control character which moves the cursor one column right. If the 
character displayed just before this was AT ASCII code 27, the character [±] displays; the cursor does 
not move. 

6The character ~ represents the control character which clears the screen and moves the cursor to 
the home position. If the character displayed just before this was AT ASCII code 27, the character ~ 
displays; the screen is not cleared. 

7The character IJ] represents the control character which moves the cursor one column left and 
replaces the character there with a blank space. If the character displayed just before this was 
A T ASCII code 27, the character [!J displays; the cursor does not move . 

sThe character [f] represents the control character which advances the cursor to the next tab stop. If 
the character displayed just before this was AT ASCII code 27 , the character [IJ displays; the cursor 
does not move. 

9The AT ASCII end-of-line character. 

IOThe character D represents the control character which deletes the line on which the cursor is 
located. If the character displayed just before this was A TASCII code 27, the character D displays ; 
the deletion does not occur. 

liThe character f] represents the control character which inserts a line above the one on which the 
cursor is located . If the character displayed just before this was A TASCII code 27 , the character f] 
displays; the insertion does not occur. 

12The character CI represents the control character which clears the tab stop (if any) at the current 
cursor position. If the character displayed just before this was AT ASCII code 27, the character CI 
displays; no tab stop is affected. 

13The character D represents the control character which sets a tab stop at the current cursor 
position. Ifthe character displayed just before this was AT ASCII code 27, the character D displays ; 
no tab stop is set. 

I'The character [J represents the control character which beeps the built-in speaker; nothing is 
displayed . If the character displayed just before this was ATASCII code 27, the character [J 
displays; the speaker remains silent. 

15The character [] represents the control character which deletes the character to the right of the 
cursor, shifting the remainder of the logical line one space to the left. If the character displayed just 
before this was AT ASCII code 27 , the character [] displays; no deletion occurs. 

16The character [] represents the control character which inserts a blank space to the right of the 
cursor, shifting the remainder of the logical line one space to the right. If the character displayed just 
before this was AT ASCII code 27 , the character [l displays; no insertion occurs. 



E 
ATARI BASIC 

KEYWORDS AND 
ABBREVIA TIONS 

Keyword Abbrev. Keyword Abbrev. Keyword Abbrev. 

ABS GOTO G. PUT PU. 
ADR GRAPHICS GR. RAD 
AND IF READ REA. 
ASC INPUT I. REM R. or . 
ATN INT RESTORE RES. 
BYE B. LEN RETURN RET. 
CLOAD CLOA. LET LE. RND 
CHR$ LIST L. RUN RU. 
CLOG LOAD LO. SAVE S. 
CLOSE CL. LOCATE LOC. SETCOLOR SE. 
CLR LOG SGN 
COLOR C. LPRINT LP. SIN 
COM NEW SOUND SO. 
CONT CON. NEXT N. SQR 
COS NOT STATUS ST. 
CSAVE CS. NOTE NO. STEP 
DATA D. ON STICK 
DEG DE. OPEN O. STRIG 
DIM DI. OR STOP STO. 
DOS DO. PADDLE STR$ 
DRAWTO DR. PEEK THEN 
END PLOT PL. TO 
ENTER E. POINT P. TRAP T . 
EXP POKE POK. USR 
FOR F. POP VAL 
FRE POSITION POS. XIO X. 
GET GE. PRINT PRo or ? 
GOSUB GOS. PTRIG 

425 



F 
MEMORY USAGE 

The AT ARI computer memory is divided into three general categories: random 
access memory (RAM), read-only memory (ROM), and input l output locations 
(1 / 0). Figure F-J shows how memory is generally allocated on an AT ARI compu
ter. The other figures and tables in this appendix amplify this figure. 

426 



58
53

3
r
-
-
-
-
..

. 

58
36

8 

T
ab

le
 F

-2
 

O
pe

ra
ti

ng
 

S
ys

te
m

 
V

ec
to

rs
 

T
ab

le
 F

-I
 

O
pe

ra
ti

ng
 

S
ys

te
m

 
R

O
M

 

55
29

6 
1 

' 
T

ab
le

 F
-3

 
1/

0 
C

hi
ps

 
53

24
8 

L
' _

_
_

_
_

 J 

T
ab

le
s 

F
-9

. 
F

-I
O

 
R

A
M

 U
se

d 
by

 D
O

S
 

an
d 

Fi
le

 S
ys

te
m

 
M

an
ag

er
 

10
87

9 
, 

\ 

17
92

1 
~
 
..

 
_ 

, 

11
51

 r
' -
-
-
-
-
-
-
-
1

 
T

ab
le

 F
-4

 
O

pe
ra

ti
ng

 
S

ys
te

m
 R

A
M

 

5
12

1 
,;

 

F
IG

U
R

E
 F

-l
. 

A
T

A
R

I 
40

0
/8

00
 c

om
pu

te
r 

m
em

or
y 

m
ap

 

65
53

5 
65

53
5 

~
4
9

15
1 

T
ab

le
 F

-6
 

B
A

S
IC

 R
O

M
 

1
-_

_
_

_
_

_
 --

" 
40

96
0 

F
ig

ur
e 

F
-2

 
M

em
or

y 
U

sa
ge

 

o 
0 

T
ab

le
 F

-7
 

R
A

M
 U

se
d 

15
35

 
~
 _

_
_

 ...
,,2

5
5 

by
 B

A
S

IC
 

12
8 

~
 

'"
0 

'"
0 '" ::l 0
..

 x· :-!1
 

$:
 

rr1
 

$:
 o ;;0
 

-<
 c:: (

f)
 

~
 

C
l 

rr
1 ..,. N
 

'l
 



L
ef

t 
C

ar
ti

dg
e 

O
nl

), 
b
4
K
r
l
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
 

O
pe

ra
ti

ng
 

S
ys

te
m

 R
O

M
 

56
 K

 IL
-=

-~
:.

..
.:

..
:=

::
::

::
;;

;;
;;

__
_,

 

4
~
K
 

40
K

 

J2
K

 

2
4

K
 

16
K

 

XK
 oJ
:i:::·:iil:::i;

i:.i:~::::;
::::::::

i::i:::::
:::i:::':I

:::::':i:·
i.,::';,'.:::

·::i:.:i:':;·
:!:i:.~:~:.:~:

 
L

eg
en

d
: 

D
R

O
M

 

D
R

A
M

 

II
lII

Ill
I

F
re

cR
A

M
 

D
NO

' 
av

a
ila

b
le

 

F
IG

U
R

E
 

F
-2

. 
M

em
or

y 
us

ag
e 

L
ef

t 
an

d
 R

ig
h

t 
C

ar
tr

id
ge

s 
(A

T
A

R
I 

80
0 

co
m

p
u

te
r)

 

O
pe

ra
ti

ng
 

S
ys

te
m

 R
O

M
 

R
ig

ht
 C

ar
tr

id
ge

 O
nl

y 
(A

 T
 A

R
I 

80
0 

co
m

p
u

te
r)

 

O
pe

ra
ti

ng
 

S
ys

te
m

 R
O

M
 

N
o

 C
ar

tr
id

ge
s 

O
pe

ra
ti

ng
 

S
ys

te
m

 R
O

M
 

~
Lc

ft
 c

a
rt

ri
dg

e 
(f

o
r 

B
A

S
IC

 s
ec

 
=

T
ab

le
 F

·6
) 

~
 R

ig
ht

 c
a

rt
ri

d
ge

 

~
 D
is

pt
~
y
 (

ex
ac

t 
si7

.e
 d

ep
en

ds
 o

n 
~
 g

ra
ph

ic
s 

m
o

d
e)

 

D
D

O
S

 (
se

c 
T

ab
le

s 
F

·9
 a

n
d 

F
·I

O)
 

§
B

A
S

IC
 R

A
M

 (i
f 

B
A

S
IC

 c
a

rt
ri

d
ge

 p
re

sc
n!

) 

m
O

pc
ra

ti
n

g
 s

ys
te

m
 R

A
M

 (
se

c 
T

ab
le

 F
·7

) 

.... N
 

ti
l > C
) c: 6 tT
l 

-l
 o > -l
 

> ~
 

.... a 2.
 

ti
l a a (
)
 o $;
 

"0
 

c: -l
 

tT
l 

:N
 

C
Il 



Appendix F: MEMORY USAGE 429 

Operating system ROM (see Table F-I) 

Floating point rou tines 

I/ O chips (see Table F-3) 

Unused 

Left ca rtrid ge RO M. when present 

f-------------------
Right cartridge RO M. when present 

(ATAR I 800 computer only) 

r---------- ---------
RAM (8K to 40K additional) 

DOS. when present 

Operating sys tem RA M 
(see Ta ble F-5) 

FIGURE F-3. Memory loca tions without BASIC resident 

Operating system ROM (see Ta ble F- I) 

Floating point routines 

110 chips (see Table F-3) 

Unused 

BAS IC ROM (see Ta ble F-6) 

Right ca rtrid ge RO M. when prese nt 
(ATARI800 computer on ly) 

BASIC program , buffers. ta bles. 
run-time stack 

(RK to J2K additi onal) 

DOS , when present 

8K BASI C and Opera ting sys tem 
RAM (see Table F-7) 

65536 

57344 

55296 

53248 

49152 

40960 

32768 

24576 

10879 

1792 

o 

65536 

57344 

55296 

53248 

49152 

40960 

32768 

24576 

10879 

1792 

o 

FIG URE F-4. Memory locations with standard ATARI BASIC resident 



430 A GUIDE TO AT ARI 400/800 COMPUTERS 

TABLE F-l. Operating System ROM 
(Memory Locations 55296-65535) 

Location 

55296-57393 
57344-58367 
58368-58533 
58534-59092 
59093-59715 
59716-60905 
60906-61047 
61048-61248 
61249-6 1666 
61667-62435 
62436-65535 

Usage 
Floating point routines 
Character set 
Vectors (see Table F-2) 
CIO 
Interrupt handler 
SIO 
Disk handler 
Printer handler 
Cassette handler 
Monitor 
Display and keyboard handler 

TABLE F-2. Operating System Vectors 
(Memory Locations 58368-58533) 

Location 

58368-58383 
58384-58399 
58400-58415 
58416-58431 
58432-58447 
58448-58495 
58496-58533 

Type of 
Memory 

ROM 
ROM 
ROM 
ROM 
ROM 
ROM 
ROM 

Usage 

Editor 
Screen 
Keyboard 
Printer 
Cassette 
Jump vectors 
Initial RAM vectors 

TABLE F -3. 110 Chips (Memory Locations 53248-55295) 

Typ~ of 
Location Memory Usage 

53248-53503 1/ 0 CTIA or GTiA 
53504-53759 I/ O Unused 
54760-54015 I/ O POKEY 
54016-54271 I/ O PIA 
54272-54783 I/ O ANTIC 
54784-55295 I/ O Unused 



Appendix F: MEMORY USAGE 431 

TABLE F-4. Operati ng System RAM (Memory Locations 512-11 51) 

Location 

512-553 
554-623 
624-647 
648-655 
656-703 
704-7 11 
7 12-735 
736-767 
768-779 
780-793 
794-831 
832-847 
848-863 
864-879 
880-895 
896-9 11 
912-927 
928-943 
944-959 
960-999 

1000-1020 
1021-1151 

Interrupt vecto rs 
Miscellaneous 
Game controllers 
Miscellaneous 

Usage 

Screen RAM (depends on graphics mode) 
Colors 
Spare 
Miscellaneous 
DCB 
Miscellaneous 
Ha ndler add ress tab les 
I/ O Channel 0 (IOCBO) 
I/ O Channel I (lOCBI) 
I/ O Channel 2 (IOCB2) 
I/ O Channel 3 (IOCB3) 
I/ O Channel 4 (lOCB4) 
I/ O Cha nnel 5 ( IOCB5) 
I/ O Channel 6 ( IOCB6) 
I/ O Channel 7 ( IOCB7) 
Printer buffer 
Spare 
Casse tte buffer 

TABLE F-S. RAM Used by Operating System, Resident Cartridge, 
or Free RAM (Memory Locations 0-2047) 

Location 

0-127 
128-255 
256-5 11 
512-1 151 

1152-1 79 1 
1792-2047 

Usage 

Operating system zero page RAM 
User zero page RAM 
Stack 
Operating Sys tem RAM (see Table F-4) 
Use r RAM 
User Boot Area 



432 A GUIDE TO ATARI 400/800 COMPUTERS 

TABLE F-6. BASIC· ROM (Memory Locations 40960-49151) 

Location 

40960-41036 
41037-41055 
41056-42081 
42082-42158 
42159-42508 
42509-43134 
43135-43358 
43359-43519 
43520-43631 
43632-43743 
43744-44094 
44095-44163 
44164-4500 I 
45002-45320 
45321-47127 
47128-47381 
47382-47542 
47543-47732 
47733-48548 
48549-49151 

* Applies to standard ATARI BASIC only. 

Usage 

Cold start 
Warm start 
Syntax 
Search 
Stateme nt name tab le 
Syntax tables 
Memory man~ger 
Execute CONT 
Statement table 
Operator table 
Execute expression 
Operator precedence 
Execute operator 
Execute function 
Execute statement 
CONT subroutines 
Errors 
Graphics 
I/ O routines 
Floating point 

TABLE F-7. RAM Used by BASIC· (Memory Locations 0-255F) 

Location 

0-127 
128-255 
256-51 1 
512-1151 

1152-1405 
1406-1535 
1536-1 79 1 
1792-End of 
free RAM 

* Applies to standard ATARI BASIC only. 

Usage 

Operating system zero page RAM 
BASIC zero page RAM (see Table F-8) 
Stack 
Operating system RAM 
Syntax stack 
Input line buffer 
Free RAM 
BASIC program: 

Syntax buffer or argument stack** 
Name table** 
Value table** 
Tokenized program** 
Array-strings area** 
Run-time stack** 

** The actua l memory locations depend on program and variable usage. 



Appendix F: MEMORY USAGE 433 

TABLE F-S. BASIC Zero Page RAM (Memory Locations 128-255) 

Location 

128-145 
146-202 
203-209 
210-255 

Usage 

Program pointers 
Misc. BASIC RAM 
Unused 
Floating point work area 

TABU F-9. RA M Used by DOS Version 1.0 and 
File Management System (FMS) 

Location 

1792-4863 
4864-9855 
9856-10879 

Usage 

File management system RAM 
Disk operating system (DOS) RAM 
Disk I/ O buffers 

TABLE F-IO. RAM Used by DOS Version 2.0S and 
File Management System (FMS) 

Location 

1792-4863 
4864-9855 
9856-10879 

10880-LOMEM 

Usage 

File management system RAM 
Disk operating system (DOS) RAM 
Drive 1-4 buffers and sector buffers 1-2 
Disk operating system (DOS) 

Utility programs (Sector buffers 3-7) 



G 
USEFUL PEEK AND 
POKE LoeA TIONS 

Many memory locations are dedicated to certain specific uses . This appendix lists 
the locations that are of interest to BASIC programmers. Locations not listed are of 
little interest or are most easily accessed via standard BASIC statements. The PEEK 
function lets you read the contents of memory locations, and the POKE statement 
lets you change the contents. 

In BASIC, all memory locations and their contents are expressed in terms of 
decimal numbers. Memory locations are addressed by number, from 0 to 65535. 
Each memory location contains a numeric value between 0 and 255. It takes two 
consecutive memory locations to store values greater than 255. In this case, the total 
value equals the value of the first location, plus 256 times the value of the second. 
For example, PEEK(85) + 256 * PEEK(86) is the current column position of the 
cursor. Conversely, the statements POKE 85, COL - INT(COL/ 256) * 256 and 
POKE 86, INT(COL/ 256) * 256 change the cursor column to the value of variable 
COL. 

Some memory locations are known by name as well as numeric location. Such 
names are listed in parentheses after the memory location title . 

Memory Configuration 
14,15 Display Screen Lower Limit (APPMHI) 

434 

These locations contain the highest location available for program lines and 
variables. Memory above that is used for the screen display. 



Appendix G: USEFUL PEEK AND POKE LOCA nONS 435 

88,89 Screen Memory Address (SA VMSC) 
These addresses contain the lowest address of the screen memory. The value at 
that address is displayed at the upper left-hand corner of the screen. 

106 Top of RAM Address (Most Significant Byte) (RAMTOP) 
This location contains a value 16 times the number of 4K RAM blocks present. 
PEEK (740) / 4 gives the number of 1 K blocks present. 

741,742 Free Memory High Address (MEMTOP) 
At any time, PEEK(741) + 256 * PEEK(742) - 1 is the highest memory location 
in the free memory area. The value changes when power is turned on, SYSTEM 

RESET occurs, or a channel is opened to the display. 

743,744 Free Memory Low Address (MEMLO) 
This location contains the address of the first location in the free memory region. 
The value changes when power is turned on or SYSTEM RESET occurs. 

Display Screen 
77 Attract Mode On/Off (ATRACT) 

Setting this location to 0 disables attract mode on the display screen. This 
happens automatically whenever a key on the keyboard is pressed. Setting this 
location to 254 enables attract mode. This happens automatically after nine 
minutes without a key being pressed . 

82 Left Margin of Text Area (LMARGN) 
Specifies the column of the graphics mode 0 left margin. PEEK (82) will be 
between 0 and 39,0 being the left edge of the screen. The default is 2. 

83 Right Margin of Text Area (RMARGN) 
Specifies the column of the graphics mode 0 right margin. PEEK (83) will be 
between 0 and 39, 39 being the right edge of the screen. The default is 39. 

84 Current Row Cursor Position (ROWCRS) 
Specifies the row where the next read or write to the main screen will occur. 
PEEK (84) will be at least 0; its highest value depends on the graphics mode (see 
Table 11-7). 

85,86 Current Column Cursor Position (COLCRS) 
Specifies the column where the next read or write to the main screen will occur. 
PEEK (85) will be at least 0; its highest value depends on the graphics mode (see 
Table 11-7). Location 86 will always be 0 in graphics modes 0 through 7. 

87 Display Mode (DINDEX) 
This location contains the current screen mode. 

90 Starting Graphics Cursor Row (OLDROW) 
This location determines the starting row for the DRA WTO and XIO 18 (graph
ics FILL) statements. 



436 A GUIDE TO AT ARI 400/800 COMPUTERS 

93 Cursor Character Save/Restore (OLDCHR) 
This location contains the character that is underneath the visible text cursor. 
The value is used to restore the hidden character when the cursor moves. 

91,92 Starting Graphics Cursor Column (OLDCOL) 
This location determines the starting column for the ORA WTO and XIO 18 
(graphics FILL) statements. 

94,95 Cursor Memory Address (OLDADR) 
This location contains the memory address of the current visible text cursor. The 
value is used in conjunction with OLOCHR (location 93) to restore the original 
character hidden by the cursor when the cursor moves. 

96 Ending Graphics Cursor Row (NEWROW) 
This location determines the ending row for the ORA WTO and XIO 18 (graph
ics FILL) statements. 

97,98 Ending Graphics Cursor Column (NEWCOL) 
This location determines the ending column for the ORA WTO and XIO 18 
(graphics FILL) statements. 

201 Display Screen Tab Interval (PT ABW) 
Specifies the number of columns between each tab stop. The first tab will be at 
column number PEEK (201). The default is 10. 

656 Text Cursor Row Position (TXTROW) 
Specifies the row where the next read or write to the split-screen text window will 
occur. PEEK (656) will be between 0 and 3,0 being the top of the split-screen text 
window. 

657,658 Text Cursor Column Position (TXT COL) 
Specifies the column position where the next read or write to the split-screen text 
window will occur. PEEK (657) will be between 0 and 39,0 being the first column 
of the split-screen text window. Location 658 is always 0 unless you change it. 

675-680 Display Screen Tab Stop Map (T ABMAP) 
The tab stops are retained in a 15-byte (l20-bit) map. Each bit corresponds to a 
column on a logical line. If the bit is on, a tab stop is set in that column (see Figure 
G-l). Whenever you open the display screen (device S: or E:), each byte of this 
map is assigned the value 1, thereby providing default tab stops at columns 7, 15, 
23, and so on. 

752 Cursor Inhibit (CRSINH) 
When this location has a value of 0, the display screen cursor will be visible. 
When the value is nonzero, the cursor will be invisible. Cursor visibility does not 
change until the next time the cursor moves. 

755 Character and Cursor Control (CHACT) 
This location normally has a value of 2. Other values can make the cursor opaque 
or invisible and can make all characters display upside-down. Table G-llists the 
other values and characteristics . 



Appendi x G: USEFUL PEEK AND POKE LOCATIONS 437 

Column 
Numbers 0 I 2 3 4 5 6 7 

10101010101010111 Location 675 
Column 
Numbers 8 9 10 II 12 13 14 15 

10101010101010111 Location 676 
Column 
Numbers 112 113114115116117118119 

10101010101010111 Location 689 

NOTE: Each bit corresponds to one screen column. If the bit is on. a tab stop is set in that column. 
Default condition is illustrated . 

FIGURE G-l. Tab stop bit map 

TABLE G-l. Cursor and Character Control (Values of PEEK(755» 

Decimal Cursor Characters 

Value Transparent Opaque Present Absent Normal Inverted 

0 X X X 
I X X X 
2 X X X 
3 X X X 
4 X X X 
5 X X X 
6 X X X 
7 X X X 

756 Character Address Base (CHBAS) 
This variable determines which character set will be used in screen modes I and 2. 
A value of224 provides the capital letters and number set; a value of226 provides 
the lower-case letters and graphics character set. 

765 Fill Data (FILDA T) 
This location contains the data value for the region to be filled by an XIO 18 
command. 

766 Display Control Characters (DSPFLG) 
When this location is 0, the ATASCII codes 27-31, 123-127, 187-191, and 
251-255 perform their normal display screen control functions (see Table 4-1). 
When this location is nonzero, these AT ASCII codes generate characters on the 
display screen (see Table 4-1). 

659 Split-Screen Text Window Screen Mode (TINDEX) 
This location contains the current split-screen mode. 



438 A GUIDE TO AT ARI 400/800 COMPUTERS 

660,661 Split-Screen Memory Address (TXTMSC) 
These locations contain the lowest address of the split-screen memory. The value 
of that address is displayed at the upper-left hand corner of the split-screen text 
window. 

665-667 Split-Screen Cursor Data 
These locations contain the split-screen equivalents of OLDCHR (location 93) 
and OLDADR (locations 94 and 95). 

763 Last ATASCII Character or Plot Point (ATACHR) 
This location contains the AT ASCII code for the character most recently written 
or read, or the value of the graphics point last displayed . The value at this 
location is used to determine the line color when a DRA W or XIO 18 (FILL) is 
performed. 

54273 Character Control Register (CHACTL) 
Same as location 755 (CHACT). 

Display lists 
512,513 Display List Interrupt Vector (VDSLST) 

These locations store the address of the instructions that will be executed in the 
event of a display list interrupt. 

559 DMA Control Register (SDMCTL) 
This location enables or disables direct memory access. The default value is 22, 
which enables DMA for fetching display list instructions and for retrieving 
normal playfield display data. A value of 0 disables DMA. Table 9-3 lists values 
which relate to player-missile DMA. 

560,561 Display List Address (SDLST) 
This location stores the address of the active display list. 

54286 Non-maskable Interrupt Enable (NMIEN) 
This location enables or disables the display list interrupt and the vertical blank 
interrupt. A value of 0 disables the display list, 128 disables the vertical blank and 
enables the display list, and 192 enables both. 

Player-Missile Graphics 
623 Player/Playfield Priorities (GPRIOR) 

This location determines what color will display when players overlap playfield 
objects. A value of I gives all players priority over the playfield. A value of2 gives 
players 0 and I priority over all playfield registers, and priority over players 2 and 
3 as well. A value of 4 gives the playfield priority over players. A value of 8 gives 
playfield color registers 0 and I priority over all players and priority over 
playfield registers 2 and 3. 



Appendix G: USEFUL PEEK AND POKE LOCATIONS 439 

704-707 Player-Missile Color Registers (COLPMO-COLPM3) 
Each of these locations determines the color of a player and its associated missile. 
Table 9-4 lists the values which produce the available colors. 

53248-53251 Player Horizontal Position Registers (HPOSPO-HPOSP3) 
Each of these locations determines the horizontal position of one player. Values 
range between 0 (the left edge of the screen) and 277 (the right edge of the screen). 

53256-53259 Player Width Registers (SIZEPO-SIZEP3) 
Each location changes the magnification factor used to display one player. A 
value of 0 or 2 displays a player at normal width, I displays twice normal width, 
and 3 displays quadruple width . 

53260 Missile Width Register (SIZEM) 
This location controls the magnification of all four missiles. A value of 0 or 2 
displays missiles at normal width, I displays twice normal width, and 3 displays 
quadruple width. 

53277 Graphics Control Register (GRACTL) 
Along with location 559 (DMACTL), this location controls DMA for player
missile graphics. A value of 2 enables player DMA only, a value of I enables 
missile DMA only, and a value of 3 enables both 

54279,54280 Player-Missile Base Register (PMBASE) 
These locations contain the starting address of the player-missile definition table. 

Cassette Buffer 
61 Cassette Buffer Pointer (BPTR) 

This location contains a pointer to the next location to be used in the cassette 
buffer. The value may be anything from 0 to the value in BLIM (location 650). If 
BPTR = BLIM, then the buffer is full if writing or empty if reading. 

63 Cassette End-of-File Flag (FEOF) 
This location is used by the cassette handler to indicate whether an end-of-file has 
been detected. If the value of this location is 0, an end-of-file has not yet been 
detected; if the value is not 0, it has been detected. 

64 Beep Count (FREQ) 
This location contains the number of beeps requested by the cassette handler. 

649 Cassette Read/Write Mode Flag (WMODE) 
This location specifies whether the current cassette operation is read (value = 0) 
or write (value = 128). 

650 Cassette Buffer Size (BLIM) 
This location contains the number of active data bytes in the cassette buffer. 
BLIM will have a value from 0 to 128. 



440 A GUIDE TO AT ARI 400/800 COMPUTERS 

1021-1151 Cassette Buffer (CASBUF) 
These locations are a buffer used by the cassette handler to read data from and 
write data to the program recorder. 

Keyboard 
17 BREAK Key Flag (BRKKEY) 

A 0 in this location indicates that the BREAK key has been pressed . 

694 Inverse Video Keystrokes (INVFLG) 
When this location is 0, keystrokes generate AT ASCII codes for normal video 
characters. If the value is nonzero, keystrokes generate AT ASCII codes for 
inverse video characters. 

702 Shift/Control Lock Flag (SHFLOK) 
Meaningful values for this location are 0 (normal mode - no locks in effect), 64 
(caps lock), and 128 (control lock). 

764 Keyboard Character (CH) 
This location reports the value of the most recently pressed key, or the value 255, 
which indicates no key has been pressed. 

767 Start/Stop Display Screen (SSFLAG) 
When this location is 0, screen output is not stopped. If the value is 255, output to 
the screen is stopped. The value is complemented by pressing CTRL-1. 

53279 CONSOLE Switch Port (CONSOL) 
This location has two uses. PEEK (53279) tells whether a special function key is 
pressed. To ensure an accurate reading, do a POKE 53279,8 before doing a 
PEEK(53279). Table G-2 lists the values that result from various combinations 
of special function keys. 

POKE 53279,0 extends the cone of the built-in speaker. POKE 53279,8 
retracts it. Alternate the two statements repeatedly to produce a series of clicks 
from the speaker. The operating system effectively does an automatic POKE 
53279,8 every 1/ 60 second. 

Sound Control 
65 Input/Output Noise Control (SOUNDR) 

This location is normally nonzero . In that case, noise is audible over the televi
sion audio circuit during disk or cassette read and write operations. If this 
location is 0, the noise is inhibited. 

Printer 
29 Printer Buffer Pointer (PBPNT) 

This location specifies the current position in the computer's printer buffer. The 
value ranges from 0 to PBUFSZ (location 30) . 



Appendi x G : USEFUL PEEK AND POKE LOCATIONS 441 

TABLE G-2. Special Function Key Detection (Values of PEEK (53279» 

Decimal 
Value 

o 
I 
2 
3 
4 
5 
6 
7 

30 Printer Buffer Size (PBUFSZ) 

Function Key(s) 
Being Pressed 

OPTION, SELECT, and START 
OPTION and SELECT 
OPTION and START 
OPTION 
SELECT and START 
SELECT 
START 
None 

This location specifies the size of the computer's printer buffer. The value is 40 for 
normal mode or 29 for sideways mode . 

960-999 Printer Buffer (PRNBUF) 
The printer handler collects output from LPRINT statements to the printer in 
the computer's printer buffer, sending it out when an EOL occurs, or when the 
buffer is full. 

Free Area 
1536-1663 Conditionally Available 

These locations are normally free for machine language programs, display lists, 
and so forth. However, whenever the INPUT statement retrieves more than 128 
characters, it uses these locations to hold the characters in excess of 128. 

1664-1791 Unconditionally Available 
These locations are always free for machine language programs, display lists, and 
so forth . 

BASIC Program Control 
186,187 Stop Line Number (STOPLN) 

These locations report the line number in which a BASIC program halts because 
of a STOP or TRAP statement, an error, or use of the BREAK key. 

195 Error Number (ERRSA V) 
If an error occurs , its number is placed in this location. Appendix A translates 
error numbers to messages . 

212,213 USR Function Value (FRO) 
A machine language program or subroutine can use these locations to send a 
numeric value to the BASIC program which called it. 

251 Radians or Degrees (RADFLG or DEGFLG) 
If the value of this location is 0, trigonometric functions calculate in terms of 
radians, if 6, in terms of degrees . 



442 A GUIDE TO ATARI 400(800 COMPUTERS 

TABLE G-3. Interrupt Status / Enable Bits 

Bit 

o 
I 
2 
3 
4 
5 
6 
7 

Timer I 
Timer 2 
Timer 4 

Interrupt 

Serial output (byte) transmission finished 
Serial output data needed 
Serial input data read y 
Other key 
BREAK key 

564 and 565 Light Pen Position (LPENH and LPENV) 
Location 564 reports the horizontal position of a light pen. Location 565 reports 
the vertical position. These are not the same as the actual screen row and column 
numbers. There are 228 horizontal positions (each is called color clock). The 
leftmost horizontal position is 67. Each time you move the light pen one position 
to the right, the value in location 564 increases by I. After the value reaches 255, it 
resets to 0 and resumes counting by I from there. The rightmost horizontal 
position is 7. There are 96 vertical positions, numbered from 16 at the top of the 
screen to III at the bottom. 

Interrupt Control 
53744 IRQ Interrupt Status/Enable (IRQST/IRQEN) 

This location reports interrupt status via PEEK, or enables interrupts via PO KE. 
Each bit corresponds to a different interrupt (see Table G-3). With PEEK, a 0 bit 
means the corresponding interrupt is present and a 1 bit means it is not present. 
With POKE, a 0 bit disables the corresponding interrupt and a I bit enables it. 



H 
CONVERSION TABLES 

This appendix contains the following conversion tables: 

Hexadecimal-Binary Numbers 

. Hexadecimal-Decimal Integers 

Use Table H-I to convert between hexadecimal numbers in the range O-OF and 
binary numbers in the range 0000-1111. 

Convert larger binary numbers to hexadecimal numbers by converting four 
binary digits at a time, working from right to left. If there are fewer than four binary 
digits in the leftmost group , add leading zeros. Here is an example: 

1001012 = OOIOOIOh 
~ 

2 5 
~ 

2516 

Convert hexadecimal numbers larger than OF to binary one digit at a time. Here is 
an example: 

Oilo Oili' 
~ 
0110011 h 

TABLE H-I. Hexadecimal-Binary Conversion 

Hexadecimal Binary Hexadecimal Binary 

00 0000 08 1000 
01 0001 09 1001 
02 0010 OA 1010 
03 0011 08 1011 
04 0100 DC 1100 
05 0101 OD 1101 
06 0110 DE 1110 
07 0111 OF 1111 

443 



444 A GUIDE TO AT ARI 400/800 COMPUTERS 

TABLE H-2 . Hexadecimal-Decimal Integer Conversion 

The table below prov ides for d irec t conversions between hexa

dec imal integers in the range O-FFF and decima l integers in 
the rOl1ge 0-4095. For conversion of lorger integers, the 

table values may be added to th e following figures : 

Hexadecima l 

(11 ano 
02000 
03000 
04000 
05000 
06 000 
07000 
08000 
09000 
OA 000 
08000 
DC 000 
00000 
DE 000 
OF 000 
10000 
11000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 
IA 000 
IB 000 
IC 000 
10000 
IE 000 
IF 000 

00 
01 
02 
03 

04 
05 
06 
07 

08 
09 
OA 
OB 

DC 
00 
OE 
OF 

0 

0000 
0016 
0032 
0048 

0064 
0080 
0096 
0112 

0128 
0144 
0 160 
0 176 

0192 
0208 
0224 
0240 

De cimal 

4096 
8 192 

12 288 
16384 
20480 
24576 
28672 
32 768 
36 864 
40960 
45056 
49 152 
53 248 
57 344 
61 440 
65536 
69632 
73728 
77 824 
81920 
86 0 16 
90 11 2 
94208 
98304 

102400 
106 496 
110592 
114688 
118784 
122 880 
126 976 

I 2 

000 1 0002 
00 17 0018 
0033 0034 
0049 0050 

0065 0066 
0081 0082 
0097 0098 
0 11 3 0 114 

0129 0130 
0145 0146 
0161 0162 
0177 0 178 

0193 0194 
0209 0210 
0225 0226 
0241 0242 

Hexadecimal 

20000 
30000 
40000 
50000 
60000 
70000 
80000 
90000 
AO 000 
BO 000 

CO 000 
DO 000 
EO 000 
FO 000 

100000 
200000 
300000 
400000 
500000 
600000 
700000 
800000 
900000 

AOO 000 
BOO 000 

COO 000 
000000 
EOO 000 
FOO 000 

I 000000 
2000 000 

3 4 

0003 0004 
0019 0020 
0035 0036 
0051 0052 

0067 0068 
0083 0084 
0099 0100 
0 115 01 16 

013 1 0132 
0 147 0148 
0163 0164 
0179 0180 

0195 0196 
0211 0212 
0227 0228 
0243 0244 

Dec imal 

131 072 
196608 
262 144 
327680 
393216 
458 752 
524 288 
589824 
655 360 
720896 
786 432 
851 968 
917504 
983040 

I 048576 
2097 152 
3 145 728 
4 194304 
5 242 880 
6 291 456 
7340032 
8388608 
9437184 

10485760 
II 534 336 
125829 12 
13631 488 
14680064 
15 728 640 
16777 216 
33 554 432 

5 6 

0005 0006 
0021 0022 
0037 0038 
0053 0054 

0069 0070 
0085 0086 
0101 0 102 
0 117 0118 

0 133 0 134 
0149 0150 
0165 0 166 
0181 0182 

0197 0198 
0213 0214 
0229 0230 
0245 0246 

7 

0007 
0023 
0039 
0055 

0071 
0087 
0103 
0 11 9 

0 135 
015 1 
0167 
0183 

0 199 
0215 
0231 
0247 

Hexadecimal fractions may be converted to deci mal fractions 

a s follows: 

1. Express the hexadecima l fraction 05 on integer tim es 
16 -n, where n is the number of significant hexadecimal 

p laces to the right of the hexadecima l point. 

O. CA9BF3 16 = CA9 BF3 16 x 16-6 

2. Find the decimal equivolerlt of the hexadecimal integer 

CA9 BF3
16 

= 13278195
10 

3. Multiply the decimal equivalent by 16-n 

13278 195 
x 596 046 448 x 10-16 

0.791 442096 10 

Decimal fract ions may be converted to hexadecimal fraction s 
by successively multiplying the decima l fraction by 16

10
, 

After each mult iplication, the integer portion is remo ved to 
form a hexadecima l fraclion by building to the right of the 

hexadecimal point. However, since decima l arithmetic is 
used in this conversion, the integer portion of each product 

must be conve rted to hexadec imal numbers . 

Example : Conver t 0.895 10 to its hexadecimal equi .... a lent 

0.895 

F=
~ 
~ z ~ 

0.E51 EI6 (j3P1~ 
8 9 A B C 0 E F 

0008 0009 0010 00 11 00 12 0013 00 14 0015 
0024 0025 0026 0027 0028 0029 0030 0031 
0040 0041 0042 0043 0044 0045 0046 0047 
0056 0057 0058 0059 0060 0061 0062 0063 

0072 0073 0074 0075 0076 0077 0078 0079 
0088 0089 0090 0091 0092 0093 0fI94 0095 
0104 0 105 0106 0107 0108 0109 0 11 0 01 11 
0 120 0121 0122 0123 0124 0125 0126 0127 

0136 0 137 0138 0139 0140 0141 0142 0143 
0152 0153 0154 0 155 0156 0157 0158 0159 
0168 0169 0170 0 171 0 172 0173 0174 0 175 
0184 0 185 0186 0 187 0 188 0 189 0190 0191 

0200 0201 0202 0203 0204 0205 0206 0207 
0216 0217 0218 02 19 0220 0221 0222 0223 
0232 0233 0234 0235 0236 0237 0238 0239 
0248 0249 0250 0251 0252 0253 0254 0255 



Appendix H: CONVERSION TABLES 445 

TABLE H-2. Hexadecimal-Decimal Integer Conversion (continued) 

0 I 2 3 4 5 6 7 8 9 A 8 C D E r 

10 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
I I 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
12 0289 0289 0290 0291 02 92 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
13 0304 0305 0306 0307 0308 0309 0310 (13 11 0312 0313 03 14 0315 03 16 0317 0318 0319 

14 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 033 I 0332 0333 0334 0335 
15 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
16 0352 0353 0354 0355 0356 0357 03S8 0359 0360 0361 0362 0363 0364 0365 0366 0367 
17 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 038 1 0382 0383 

18 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
19 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 04 12 0413 0414 04 15 
IA 04 16 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
18 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

IC 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
ID 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
IE 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
If 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
22 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
25 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
26 0608 0609 0610 0611 0612 0613 06 14 0615 "616 0617 06 18 0619 0620 062 1 0622 0623 
27 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 Q636 0637 0638 0639 

28, 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 068 1 0682 0683 0684 0685 0686 0687 
28 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2C 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 J719 
2D 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2E 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2f 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

30 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 07BO 0781 0782 0783 
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
32 0800 0801 0802 OB03 0804 0805 0806 OB07 0808 0809 0810 0811 0812 0813 0814 0815 
33 0816 08 17 0818 0819 0820 082 1 0822 0823 0824 0825 0826 0827 0828 0829 0830 0631 

34 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
35 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
36 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
37 0880 0881 0882 0883 0884 0885 0886 0887 OB88 0889 0890 0891 0892 0893 0894 0895 

38 0896 0897 0898 0899 0900 0901 0902 09()3 0904 0905 0906 0907 0908 0909 0910 0911 
39 0912 0913 0914 09 15 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
38 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3C 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0910 0971 0972 0973 0974 0975 
3D 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3E 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3f 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 



446 A GUIDE TO ATARI 400/800 COMPUTERS 

TABLE H-2. Hexadecimal-Decimal Integer Conversion (continued) 

0 1 2 3 4 5 6 7 8 9 A 8 C D E F 

40 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 111 7 111e 111 9 

46 1120 1121 1122 1123 1124 1125 1126 11 27 1128 1129 11 30 1131 1132 11 33 1134 11 35 
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 11 51 

48 1152 i 153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
49 1168 1169 1170 1171 1172 1173 11 74 1175 11 76 1177 1178 1179 1180 1181 1182 11 83 
4~ 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 11 97 1198 11 99 
48 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4C 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
~2 131 2 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
57 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5~ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
58 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 147 1 

5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5D 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5E 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 151 7 1518 15 19 
5F 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 153 1 1532 1533 1534 1535 

60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 155 1 
61 1552 1553 1554 1555 1556 15.7 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65 1616 1617 16.18 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
67 1648 1649 16;0 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1;62 1663 

68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 16/6 1677 1678 1679 
69 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6~ 1696 1697 1698 1699 1700 170 1 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
68 1712 1713 171 4 1715 17 16 1717 1718 1719 IlLO I lL l IlL2 IlL3 IlL4 IlL5 I lL6 I lL7 

6C 1728 IlL9 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 174 1 1742 I J43 
6D· 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 175' 1758 1759 
6E 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 17lL 1773 1774 1775 
6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 179 1 



Appendix H: CONVERSION TABLES 447 

TABLE H-2. Hexadecimal-Decimal Integer Conversion (continued) 

0 I 2 3 4 5 6 7 8 9 A B C D E f 

70 1792 1793 1794 1795 1796 1797 1798 1799 1800 180 1 1802 1803 1804 1805 1806 1807 
71 1808 1809 1810 1811 1812 1813 1814 1815 18 16 1817 181 8 181 9 1820 1821 1822 1823 
72 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
73 1840 184 1 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

74 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
75 1872 l a73 1874 1875 1876 1877 1878 1879 1880 188 1 1882 1883 1884 1885 1886 1887 
76 1888 1889 1890 1891 18>2 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
77 1904 1905 1906 1907 1908 1909 1910 19 11 1912 1'113 1914 1915 1916 1917 1918 1919 

78 1920 192 1 1922 1923 1924 1925 1926 1927 1928 1929 1930 193 1 1932 1933 1934 1935 
79 1936 1937 1938 1939 1940 194 1 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7A 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7B 196 8 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198 1 1982 1983 

7C 1984 1985 1986 1987 1988 1989 1990 199 1 1992 1993 1994 1995 1996 1997 1998 1999 
7D 2000 200 1 2002 2003 2004 2005 2006 2007 2008 2009 20 10 20 11 2012 20 13 20 14 20 15 
7E 2016 2017 2018 20 19 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
!f 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

80 204B 2049 2050 205 1 2052 2053 2054 2055 2056 2057 2058 2059 2060 206 1 2062 2063 
81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
83 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

84 2 11 2 21 13 2114 2115 2116 21 17 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85 2128 2129 2130 213 1 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86 2144 2145 2146 2147 2148 2149 2150 215 1 2152 2153 2154 2155 2156 2157 2158 2159 
87 2160 216 1 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 220 1 2202 2203 2204 2205 2206 2207 
8A 2208 2209 2210 22 11 2212 22 13 22 14 2215 22 16 22 17 2218 2219 2220 2221 2222 2223 
8R 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8e 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 225 1 2252 2253 2254 2255 
8D 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8E 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8f 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 230 1 2302 2303 

90 2304 2305 2306 2307 2308 2309 23 10 231 1 2312 2313 2314 23 15 2316 2317 2318 23 19 
91 2320 232 1 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92 2336 2337 2338 2339 2340 234 1 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 236 1 2362 2363 2364 2365 2366 2167 

94 2368 2369 2370 2371 2372 2373 2J7~ 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96 2400 240 1 2402 2403 2404 2405 2406 2407 2408 2409 24 10 24 11 2412 241 3 24 14 2415 
97 24 16 24 17 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 243 I 

98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9 A 2464 2465 2466 2467 2468 2469 2470 247 1 2472 2473 2474 2475 2476 2477 2478 2479 
9B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9C 2496 2497 249B 2499 2500 250 1 2502 2503 2504 2505 2506 2507 2508 2509 2510 251 1 
9D 25 12 25 13 2514 2515 2516 251 7 2518 25 19 2520 252 1 2522 2523 2524 2525 2526 2527 
9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 254 1 2542 2543 
9f 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 



448 A GUIDE TO AT ARI 400/800 COM PUT ERS 

T ABLE "-2. Hexadecimal-Decimal Integer Conversion (continued) 

0 I 7 3 4 5 6 7 8 9 A B C D [ , 

AD 2560 756 1 2567 2563 25M 2565 2566 2567 2568 2569 2570 2571 2577 25n 1574 2575 
AI 2576 2577 l578 2579 2580 2581 2582 2583 25 84 2585 2586 2587 2:>88 2589 2590 7591 
A2 2592 2593 2594 2595 2506 2597 2598 2599 2600 2601 2602 2603 2604 2605 7606 2607 
A3 2608 2609 2610 26 11 2612 2613 2614 7615 2616 2617 26 18 76 19 7670 262 1 l617 7673 

A4 2624 2625 2626 2627 2628 26 29 2630 2631 2632 2633 2634 2635 26 36 2637 7638 2639 
AS 2640 264 1 2642 2643 2644 2645 2646 2647 7648 2649 2650 265 I 2652 26 53 7654 2655 
A6 7656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 267 1 
A7 2672 2673 2674 2675 2676 2677 2678 2679 2680 268 1 2682 2683 2684 2685 2686 2687 

A8 2688 2689 2690 26 9 1 2692 26 9 3 2694 2695 2696 2697 2698 2699 2700 7701 2702 2703 
A9 2704 2705 2706 2707 2708 2709 27 10 2711 2712 2713 2714 2715 27 16 271 7 2718 77 1 Q 

AA 2720 272 1 2722 2723 2724 2725 2726 7727 2728 2729 2730 2731 2732 2733 2734 2n5 
A8 2736 2737 2738 2739 2740 2741 27 42 2743 2744 2745 2746 27 47 2748 2749 7750 2751 

AC 2752 275 3 2754 2755 2756 2757 275 8 2759 2760 276 1 2762 2763 2764 2765 2766 276:' 
AD 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 27 82 2783 
AE 27 84 2785 2786 2787 2788 2789 2790 279 1 2792 2793 2794 2795 2796 7797 2798 2799 
AF 2800 280 1 2802 2803 2804 2805 2806 2807 2808 2809 28 10 2811 281 2 281 3 28 14 281 5 

80 2816 28 17 28 18 28 19 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 283 1 
BI 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
82 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3 2864 2865 2866 2867 2868 2869 2870 287 1 2872 2873 287 . 2875 2876 2877 2878 2879 

B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 289 1 2892 2893 2894 2895 
85 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 7911 
B6 29 12 29 13 2914 29 15 2916 2917 2918 29 19 2920 2921 2922 2923 2924 2925 2926 7927 
87 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 294 1 2942 2943 

88 2944 2945 2946 2947 2948 2949 2~50 295 1 2952 2953 295-1 2955 2956 2957 2958 2959 
B9 2960 296 1 2967 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 7974 2975 
BA 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 298t 2987 2988 2989 2990 2991 
BB 2992 2993 2994 2995 2996 2997 2998 2999 3000 300 1 3002 3003 3004 3005 3006 3007 

BC 3008 3009 3010 30 11 3012 30D 30 14 3015 30 16 3017 3018 30 19 3020 30 21 3022 3013 
BD 3024 3025 3026 3027 3028 3029 3030 303 1 3032 3033 3034 3035 3036 3037 3038 3039 
BE 3040 304 1 3042 3043 3044 3045 3046 3047 3048 3049 3050 305 1 3052 3053 3054 3055 
Bf 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 307 1 

CO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
CI 3088 3089 3090 309 1 3091 3093 3094 3095 3096 3097 3098 3099 3100 3101 310 2 3 103 
C2 3104 3105 3 106 3 107 3108 3109 3110 3 111 311 2 3113 3 114 3115 3116 3 11 7 3118 3110 

C3 3 120 3 121 3122 3123 3124 3125 3 126 3127 3128 3129 3130 3 131 3 132 3133 3 134 3135 

C4 3136 31 37 3 138 3139 3140 314 1 3142 3143 3 144 3 145 3146 3 147 31 48 3149 3 150 31 5 1 
C5 3152 3 153 3 154 3155 3156 3157 3158 3159 3160 31 6 1 3162 3163 3 164 3165 31 66 31 6 7 
C6 3 168 3169 31 70 3171 3172 3 173 3174 3175 3176 3177 317B 3179 3180 3181 3182 3183 
C7 3 184 3 185 3 186 3187 3188 3189 3 190 3 19 1 3192 3193 3194 3195 3196 3197 3 196 3 1QO 

C8 3200 320 1 3202 3203 3204 3205 3206 3207 3208 3209 32 10 3211 3212 321 3 321' 321 5 
C9 3216 32 17 32 18 32 19 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 ~2) I 

CA 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 324 7 
CB 3248 3249 3250 325 1 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 326) 3:63 

CC 3264 3265 3266 3267 3268 3269 3270 327 1 3272 3273 3274 3275 3276 32 77 3778 3 270 
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 329 1 3292 3293 329 4 379 5 
C E 3296 3297 3298 3299 3300 330 1 3302 3303 3104 3305 3306 3307 3308 3309 33 10 3311 
CF 33 12 33 13 3314 3315 33 16 33 17 33 18 3319 3320 3321 3322 33 23 3324 33 25 33 26 332; 



Appendix H: CONVERSION TABLES 449 

TABLE H-2. Hexadecimal-Decimal Integer Conversion (continued) 

0 I 2 3 4 5 6 7 8 9 A B C D E f 

DO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
DI 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
D2 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
D3 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 ;'387 3388 3389 3390 3391 

D4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 .3405 3406 3407 
D5 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D7 3440 3441 3442 3443 3444 3445 34016 3447 3448 3449 3450 3451 3452 3453 3454 3455 

D8 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
D9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 348. 3485 3486 3487 
DA 34B8 3480 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DB 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 35 17 3518 3519 

DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
DD 3536 3537 3538 3539 3540 354 1 3542 3543 3544 3545 3546 3547 3548 3549 3550 355 1 
DE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
Df 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
EI 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E5 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 370~ 3706 3707 3708 3709 3710 3711 

E8 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EC 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
Ef 3824 3825 3826 3827 3B28 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

fO 3840 3841 3e.12 3843 3844 3845 3e.16 3e.17 3848 3849 3850 3851 3852 3853 3854 3855 
f 1 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
f2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
f3 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 389C 3899 3900 3901 3902 3903 

f4 3904 3905 3906 3907 3908 3909 3910 39 11 3912 3913 3914 3915 3916 3917 3918 3919 
f5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
f6 3936 3937 393R 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
fA 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FD 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FF 4080 4081 4082 4083 40e.1 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 



BASIC 

I 
BIBLIOGRAPHY 

Albrecht, Finkel, and LeBaron. What to Do After You Hit Return. Rochelle 
Park, N.J.: Hayden Book Company. 

Coan, James S. Advanced BASIC. Rochelle Park, N.J.: Hayden Book 
Company. 

Coan, James S. Basic BASIC. Rochelle Park, N.J.: Hayden Book Company. 

Dwyer, T., and Critchfield, Margot. BASIC and the Personal Computer. 
Reading, Mass.: Addison-Wesley, 1980. 

Neirson, John M. The Little Book of BASIC Style. Reading, Mass. : 
Addison-Wesley, 1978. 

Assembly Language Programming 
Dejong, Marvin. Programming and Interfacing the 6502, With Experiments. 

Indianapolis: Howard W. Sams, 1980. 

Foster, Caxton C. Programming a Microcomputer: 6502. Reading, Mass .: 
Addison-Wesley, 1978. 

Leventhal, Lance A. 6502 Assembly Language Programming. Berkeley: 
Osborne / McGraw-Hill, 1979. 

450 



Appendi x I: BIBLIOGRAPHY 451 

Osborne, Adam. An Introduction to Microcomputers: Volume 1 - Basic 
Concepts. 2nd ed. Berkeley: Osborne / McGraw-Hill, 1980. 

Scanlon, Leo J . 6502 Software Design. Indianapolis: Howard W. Sams. 

Zaks, Rodnay. 6502 Applications Book. Berkeley: Sybex, 1979. 

Periodicals 
Atari Connection. 1265 Borregas Avenue, P.O. Box 427, Sunnyvale, California 

94086. 

BYTE. 70 Main Street, Peterborough, New Hampshire 03458. 

Compute! P.O. Box 5406, Greensboro, North Carolina 27403 . 

Creative Computing. 39 East Hamover Avenue, Morris Plains, New Jersey 
07950. 

Desktop Computing. 80 Pine Street, Peterborough, New Hampshire 03458. 

Micro. P.O. Box 6502, Chelmsford, Massachusetts 01824. 

Microcomputing. 80 Pine Street, Peterborough, New Hampshire 03458. 

Personal Computing. P.O. Box 13916, Philadelphia, Pennsylvania 191Ol. 

Popular Computing. 70 Main Street, Peterborough, New Hampshire 03458 . 

Purser's Magazine. P.O. Box 466 , El Dorado , California 95623. 

Recreational Computing. 1263 El Camino Real, Menlo Park, California 94025. 

Atari Publications 
The following publications are available from Atari , Inc., 1265 Borregas Avenue, 
P.O. Box 427 , Sunnyvale , California 94086. 

Albrecht, Bob; Brown, Jerald R. ; Finkel, LeRoy. Atari BASIC. New York, 
Chichester, Brisbane, Toronto: John Wiley & Sons, Inc., 1979. 

AT ARI 810 Disk Drive Operator's Manual. 

A TARI 400 / 800 Disk Utility. 

AT A RI 400/ 800 Operating Systems. 

A TARI 825 80-Column Printer Operator's Manual. 

ATARI850 Interface Module Operator's Manual. 

A TARI Personal Computer System Operating Systems User's Manual and 
Hardware Manual. 

ATARI400/ 800 Basic Reference Manual. 

ATARI400/ 800 Disk Operating Systems Reference Manual. 



INDEX 

A key, 23 
Abbreviations, 44, 73-74,339,425 
ABS, 99 , 393 
ADR, 100,395 
Amplified input instructions, 131 -33 
Amplified Instructions program, 134-35 
AND,71-72 
Animation , character, 291-94 
Antenna switch, 15 
ANTI C 

compared to BASIC, 298 
example, 299-300 
instructions, 297 
purpose, 294-96 

Arithmetic operators, 68, 69 
Arrays 

dimensions, 66 
optimal use of, 179 
size restrictions, 349 
sizes, 79-80 
string simulation, 110-12 
using, 65-67 

Arrow keys, 23, 57, 95 
ASC, 100, 104, 396 
ASCII 

characters, 416-24 
on printers, 209 

Assembly language, 180-81 . See also Binary files; 
Machine language 

Assignment statements, 75-78, 348, 366 
ATARI400 computer 

compared to ATARI 800 computer, 1-3 
keyboard , 3 
memory, 6 

ATARI800 co mputer 
compared to ATARI 400 computer, 1-3 
keyboard,3 
memory modules, 6, 7 

ATASCII 
characters, 416-24 
in strings, 103-105 

ATN, 99,396 
AUTORUN.SYS file , 267 

BACK S key, 24, 95 
Backups, 30-31 
Bar Chart program, 286-87 
BASIC 

elements of, 59 
leaving, 43 
ROM cartridge, 42 
starting up, 14,41-42 
statements, 74 
versions, 337 

Binary files . See also Assembly language; Machine 
language 

auto-execution prevention, 267 
execution address, 264-65 

452 

Binary files (continued) 
initialization address, 265 
loading from disk, 266-67 
merging on disk, 266 
saving on disk, 264-66 

Blank cassettes, 25 
Blank diskettes 

preparing, 30 
se lecting, 26 

Blank spaces, 45 
Boldface printing. 218-19 
Boolean expressions, 71-72 
BOOT ERROR message, 28 
Booting 

DOS, 27-28, 227-228 
serial device handler, 14 

Branching 
optimal, 179 
statements, 80-91 

BREAK key 
accidental use, 39 
disabling, 175-76 
during program, 33-34, 96 
summary, 339-40 
using, 21 
BY E, 42, 340 
Byte, defined , 6 

Calculator mode. See Immediate mode 
CAPS/ LOWR key, 22-23 
Carriage return. See also EOL character 

on display screen, 114-16 
printer, 202-03 
and PRINT statements, 92 
and right margin, 130 

Cassette buffer, 188, 439-40 
Cassette program loading, 33 
Cassettes, 25. See also Program recorder 

capacity, 7 
Chaining 

from cassette, 185-86 
from disk, 244-45 

chan, 338 
Channels 

closing, 168 
defined , 166-67 
opening, 167-68 

Characters 
a nimation , 291-94 
ASCII codes, 416-24 
ATARI 825 Printer control, 210-13 
ATASCII codes, 416-24 
bit maps, 283-84, 291-93 
changing, 291-94 
emphasized , on ATAR1825 Printer, 218-19 
entering with joystick, 176-78 
graphic, 108 
graphics mode 0, 361 



Characters (co ntinued) 
graphics modes I and 2, 361-62 
keystrokes to produce, 416-24 
non-keyboard, 61 
on printers, 209-12 
selected by COLOR, 344 
sideways on ATARI 820 Printer, 210 
sizes on ATARI 825 Printer, 214-17 
sto rage , 103 
typing, 22-23 
wild card, 230-31 

CHR$, 100, 105-106,396-97 
in program listings , 213 

Chromatic scale , 327 , 328 
Clear Display Lines subroutine, 139, 143 
Clear Instruction Area subroutine, 140, 143-44 
CLEAR key, 24 
Clearing display screen, 126 
CLOAD, 33, 53, 184,330,340-41 
CLOG, 99, 397 
CLOSE, 168, 341 

with cassette files, 190 
with disk file s, 249, 251 

CLR , 79-80, 341-42 
col, 338 
Colons, 50 
COLOR, 273, 342-45 

extra colors, 281 
Color adjustments, 34 
Co lor cycles, 279-80 
Color phase shift , 280 
Color registers 

default values, 343 
defined , 271-74 
modes I and 2, 276-77 
modes 3, 5, and 7, 279 
modes 4 and 6, 279 
mode 8, 279 
se lected by COLOR, 345 
summary table , 342 
uses, 390 

Colors 
hues, 272-73, 389 
luminance , 272-73 
luminance-va ried , 279-82 
phase-shifted, 279-82 

Column stop, 116 
Columnar output, 116-25 
COM,346 
Command Input progra m, 132 
Commas 

during input, 94 
in PRINT statements, 92-93 

Co mpiler. See Interpreter 
Compound expressions, 68 
Computed GOTO. See ON-GOTO 
Concatenation, 108 
Conditional statements, 90 
consl, 338 
CO!'lT, 96-97 , 346-47 
Co ntrol characters, ATARI 825 Printer, 210-13 
Co pying. See Duplicating 
COS, 99, 397 
CSAVE, 52,183-84,347 

turns sound off, 330 
CrR L key, 22-23 

Cursor, 20, 361 
controlling, 126-30 
memory locations, 435-38 
position , 128-29 
and PRIl\"T statements, 92 

Cursor movement, 55 
by joystick, 164-65 
keys, 23 

Data entry 
grouping, 145-49 
joystick for numeric input , 160-62 
reviewing a nd Changing, 149, 152 
user responses , 130, 135, 137 

Data files. See Files 
DATA, 76-78. 348 
Debugging, 178 

INDEX 453 

Decimal-aligned Gas Cost program, 124 
Decimal-aligned output, 122-25 
Decimal-aligned Printer Output program, 204~5 
Deferred mode. See Programmed mode 
DEG, 100, 348-49 
DELETE key, 24, 56, 95 
dey, 338 
Device names, 166 
Dialects , 58 
DIM, 79, 349 
Direct memory access, Player-Missile and, 308 
Direct mode. See Immediate mode 
Disable BREAK Key subroutine, 143-44, 176-77 
Disk buffer, 227 
Disk directory, 29-30, 226 

any drive , 233 
clearing, 238 
listed anywhere, 234 
reading in a program, 263-64 
restricted listing, 233-34 
viewing, 232-34 

Disk drive . See also Diskettes 
crash, 269 
determining drive number, 17 
po we r on, 17 
program loading, 33 
usefulness, 8 
using, 26-32 

Disk operating system. See DOS 
Disk utilities, 28-32, 226-28 
Diskettes, 26-27. See also Disk drive; Disks 

booting , 27-28 
capacity, 8 
construction, 222-24 
duplicating, 30-31,241-42 
formatt ing, 30, 240-4 1 
how data is stored , 247 
volume table of contents, 247 
write-protecting, 224 

Disks. See also Disk drive; Diskettes 
hard , 222 
sectors, 247 
theory, 221 
tracks, 247 
Winchester, 222-223 

Display Error Message subroutine, 139, 143-44 
Disp lay List Loader subroutine, 301~5 
Display lists 

custom, 3OO~1 



454 A GUIDE TO AT ARI 400/800 COMPUTERS 

Display lists (continued) 
instructions, 296-98 
interrupts, 305-06 
memory locations, 438 
placement , 300, 30 I 
purpose, 295 
sample, 299-300 
structure, 297 

Display screen 
clea ring, 126 
color or black-and-white , 3 
memory locations, 435-38 
output , 114-25 
resetting margins, 129-30 
television set or monitor, 3-4 
theory, 295-96 
modes of operation, 4 
as window on data, 155-60 

Do-nothing subroutine, 131 
DOS, 27-29 

booting, 27-28, 227-228 
booting problems, 31 
modifying version 2.OS, 268-69 
turns sound off, 330 
versions , 226 , 229 
writing new boot files , 240 

DOS menu , 228-29 
leaving, 234-35 
maki ng selections, 231 
prese rving memory, 229-30 
using, 28-32 
versions compared, 350 

DOS statement, 228-29, 349-51 
DRAWTO, 277-78, 351-52 

extra colors, 280-81 
Duplicating 

diskette, 30-31 
program, 31-32 
D[nl, 338 

Editing 
during input , 95 
programs, 53-57 

810 Disk Drive . See Disk drive 
825 Printer, connecting, 9, II 
850 Interface Module, 9, II 

power on, 17 
using, 35 

END, 48, 97, 168,352 
closes disk files, 249 
turns sound off, 330 

ENTER, 33, 352-54 
with disk drive , 243-44 
progra m recorder, 184 

Enter Bowling Scores program, 143-45 
Enter Valid Date subroutine, 143-44, 170-73 
Entry mask . See Input mask 
EOL character, 114-16, 168. See also 

Carriage return 
disk files, 250-51 
printer, 202-03 

Error Handler program, 140, 142, 143-44 
Errors 

correcting typographical, 38-39, 53-57 
data entry, 125-26, 135, 137, 162-63, 172 
handling, 138-39 

Errors (colll inued) 
messages, 38, 45, 405-11 
trapping, 137-39 

Esc key, 24 
Escape sequences, 24, 104-05 
EXP, 99,397 
Expense Analysis program, 96 
expr, 338 
Expressions, 67-72 
ext, 338 

Fields, grouped input, 146 
File names , 225 

ambiguous, 230-3 1, 233-34 , 236-38 
in disk directory, 233 
changing, 238-39 
duplicate, 238 
extensions , 225 

File numbers. See Channels 
filename, 338 
Fi les 

appendi ng to on disk, 255-57 
cassette, 188, 189 
closing, 189-90, 249 
copying and appending on disk , 236 
copying on disk , 235-37 
deleting from disk, 237-38 
disk buffer, 250-53 
disk pointer, 250-53, 256 
disk, 224, 246 
DOS, 240 
dummy record , 189, 192, 195 
duplicating with one disk drive, 236-37 
end of, on cassette, 188 
end of, on disk , 254-55 
increasing number open simultaneously, 269 
indexed and linked on disk, 263 
indexed on disk, 262 
linked list on disk, 262-63 
locking on disk , 239 
machine language. See Binary files ; 

Machine language 
numeric values on disk, 258-60 
opening on cassette, 188 
opening on disk, 247-49 
random access on disk , 26 1-62 
reading from cassette, 19 1-92 
reading sequentia l disk, 253-55 
sizes, in directory, 233 
trailer record , 193, 196 
unlocking on disk , 239 
updating on disk , 257-58 
writing on cassette, 190-91 
writing on disk, 249-53 

Floating point numbers, 61 
FOR, 83-86, 354-55 
Formatting 

date entry, 170-71 
diskettes, 30, 240-41 
display sc reen, 114-25, 155-60 
printer output, 203-04 

410 Program Recorder. See Progra m recorder 
FRE, 100, 397 
Function keys, 20 
Functions, 97- 101 

derived , 414-15 



Functions (con tinued) 
format, 98 
string, 100 
system, 100-101 
using, 98-99 

Future Value Instructions program, 136 
Future Value program, 127 

Game controllers 
choices, 9, 10 
data entry with , 149, 153-55 
using, 34-35 

Game tokens, entering with joystick, 177-78 
Gas Cost program, 11 7 
General Input subroutine , 140-41 , 143-44, 169 

shortcomings, 174 
GET 

for date entry, 171-72 
from cassette, 191-92 
with disk files , 225, 257-58 
with keyboard , 169-70 

GOSUB, 88, 357-58 
GOTO, 80-81, 358 
GRAPHICS, 275,358-62 
Graphics 

applications, 285-90 
cha racters, 22-23, 108 
Data Entry program, 287-88 
extra colors, 279-82 
memory locations, 435-39 
solid color fill , 284-85 
summary of modes, 360 
summary of options, 359 
text mode resolution, 4 
text with, 283-84 

Graphics modes 
character, 275-77 
four-color, 278-79 
high-resolution, 279 
line and point, 277-79 
summary, 275 
two-color, 279 

Hatch , plug-in cartridge, 5 
Home position , 126 

IF-THEN, 90-91, 362-63 
Immediate mode, 42 

ari thmetic , 43 
reexecuting, 57 

indev, 339 
Index variable, 83 
Indirect mode. See Programmed mode 
IN PUT, 93-95 , 363-66 

to any channel, 168-69 
from cassette, 191 
with disk files, 254-55 , 257-60 
eliminating question mark, 174 
in text window, 275-76 
unsuitable for date entry, 171 

Input. See Data entry 
Input and output, 166 
Input masks, 133, 170-71 
Input Two Digits subroutine, 143-44, 172-73 
Input utilities, 139-44 
Input with Prompt subroutine, 140, 142-44 

Input l output channels . See Channels 
Input l output statements, 91 
INSERT key, 24, 56 , 95 
Installation instructions, I, 13 
Instruction register, 295 

INDEX 455 

Instructions, programming data entry, 131-33 
INT, 99, 397-98 
Integers, 61 
Interpreter, 9 
Inverse characters, 23 
IOCB. See Channel 

Joystick, 9. See also Game controllers 
as data ent ry device, 153 
as display controller, 155-61 
for character entry, 176-78 
for menu selection, 163-66 
for numeric input, 160-62 

Keyboard , 20-25 
ATARI 400 compared to ATARI 800, 3 
automatic repeat, 21 
memory locations, 440 

Keyboard controllers, 9. See also Game controllers 
Keywords, 73 , 425 

LEN, 100,398 
LET, 75-76, 366 
Letters . See Characters 
Line feed, 92 
Line length, 21 

ATARI 825 Printer, 214-17 
limit, 43 
printer, 202-03 

Line numbers, 48-50 , 179 
as addresses, 59 
calculating, 81, 89 

Iinexpr, 339 
LIST, 50-51, 55, 366-69 

with disk drive, 243 
with program recorder, 183-84 

Listing. See Program listing 
LOAD, 33, 369-70 

program' recorder, 184 
Disk drive, 243-44 

LOCATE, 176,278, 370-71 
Locked files , 232, 239 
LOG, 99, 398 
Logic operators, 71-72 
Logical lines , 46, 115, 11 8, 361 

and margins, 130 
Logical unit numbers . See Channels 
Loops, 83-86 

delay, 164 , 331-32 
nested , 84-86 

LPRINT,371-72 
Luminance-varied colors, 279-82 

Machine language programs. See also Binary files 
executing, 267 
from BASIC, 401-02 

Mailing List Display program, 195-97 
Mailing List Entry program, 192-95 
Mailing List Labels program, 207-08 
Margins, 118,361 

resetting, 129-30 



456 A GUIDE TO ATARI 400/800 COMPUTERS 

MEM.SAV file, 229-30, 235-36, 237, 351 
creating, 242 

memadr, 339 
Memo pad mode, 13 
Memory 

AT ARI 800 modules, 6 
capacity, 1,6 
RAM and ROM, 6 
usage, 426-33 
useful locations, 434-42 

Memory locations, addressing, 113 
Memory scan counter, 295 
Menus 

in data entry, 162-63 
joystick with , 163-66 

Microspacing, 217-18 
Mistakes . See Errors 
Mixed-type expressions, 72 
Move Cursor with Stick subroutine, 143-44, 164-65 
Music. See Sound 

Name-and-Address program, 146-53 
Nesting 

loops, 84-86 
subroutines, 89 

NEW, 48, 330, 372 
circumventing program merging, 184 

NEXT, 83-86, 372-73 
Nonprinting characters, 116. 164 
NOT,71-72 
NOTE, 261-63 , 373 
Null string, 60 
Numbers, 61 

ranges, 63 
roundoff, 63 
scientific notation, 62 
storing on disk, 258-60 

Numeric expressions, 69 
Numeric functions, 99-100. See also Functions 
Numeric Input with Joystick subroutine, 143-44, 

161-62 
Numeric strings, 108-109 
Numeric values, inputting, 364 
Numeric variables, 64. See also Variables 
numexpr, 339 
numvar, 339 

Object files. See Binary files 
ON-GOSUB, 89-90, 373 
ON-GOTO, 82, 374 
OPEN, 167-68,374-78 

appending to disk files, 255-57 
cassette, 188-89 
disk file, 247-49 
printer, 20 I 
sideways characters on ATARI 820 Printer, 210 
updating disk files , 257-58 

Operands, 68 
Operating system, defined, 9 
Operators, 68, 73 

precedence of, 68-69, 72-73 
OR,71-72 
oUidev, 339 
Output 

display screen, 114-25 
formatting on printer, 203-04 

Output (continued) 
paging on printer, 205-06 
screen and printer mixed. 201 

PADDLE, 101 , 154-55,398 
Paddles, 9. See also Game controllers 
Parentheses, 68-69 
PEEK , 100, 113, 398 
Phase-shifted colors, 279-82 
Physical lines, 46 
Pixels, 279-80 
Player Movement program, 320-21 
Player-M issile 

bit maps, 308 
color registers, 316-17 
controlling, 315 
defining players, 308-11 
examples, 318-2 1 
horizontal movement, 319-20 
horizontal position, 317 
increased resolution, 320-23 
memory locations, 437-39 
priority with playfield , 320-22, 323-24 
table layout , 311-13 
table locatio n, 314, 315 
table protection, 314 
two-dimensional movement, 320-21 
uses, 307 
vert ica l definition , 311-12 
vertical movement , 318-19 
width,3 16 

Player-Missile Image program, 308-11 
Player-Missile Movement subroutine, 318-19 
Player-M issile! Playfield Priority program, 323-24 
Player-M issile 32-bit Resolution program, 322 
PLOT, 277-78 , 378 

extra colors, 280-81 
POINT, 261-63 , 378-79 
POKE, 113, 379 
POP, 88 
POSITION, 126-28, 278 , 379-80 
Power off, 18-19 
Power on , 14-20 

console, 18, 19 
printer, 18 
television. 14-15 

Precedence of operators, 68-69, 72-73 
PRINT, 91-93, 380-83 

after LOCATE, 37 1 
to any channe l, 168-69 
on cassette , 190-91 
commas in disk files, 252-53, 260 
to disk files, 249-53, 258-60 
EOL character, 114-16 
with printer, 20 I 
in text window, 275-276 

Printer. See also 825 Printer 
ATARI 825 microspacing, 217-18 
ATARI 825 paper movement, 213 
choices, 9-11 
connecting, 9, II 
line buffer, 203 
memory locations, 440-41 
using, 35 



Program examples 
Amplified Instructions, 134-35 
Bar Chart, 286-87 
Clea r Display Lines, 139 
Clear Instruction Area, 140 
Command Input, 132 
Decimal-aligned Gas Cost, 124 
Decimal-aligned Printer Output, 204-05 
Disable BREAK Key, 177 
Display Error Message , 139 
Display List Loader, 301-04 
En ter Valid Date, 173 
Error Handler. 142 
Expe nse Analysis. 96 
Future Value . 127 
Future Value Instructions. 136 
Gas Cost , 117 
General Input . 141 
Graphics Data Entry. 287-88 
Input Two Digits. 173 
Input with Prompt, 142 
Joystick menu selection. 165-66 
Mailing List Display, 196-97 
Mailing List Entry, 194-95 
Mailing List Labels, 208 
Move Cursor with Stick. 165 
Numeric Input with Joystick. 162 
Player Movement, 320-21 
Player-Missile Image, 309-11 
Player-Missile Movement, 3 18-19 
Player-Missile / Playfield Priority, 323-24 
Player-Missile 32-bit Resolution, 322 
Regression Analysis, 288-90 
Right-justified Gas Cost, 121 
Screen Data Window, 159-60 
Sound Effects, 332-35 
String initialization, 109-10 
String Input. 175 
Top of Page, 206 

Program execution 
changing sequence, 80 
halting and resuming, 96 

Program lines, 46 
Program listing, 50-51 

by page, 205 
control characters in, 212- 13 
halting, 51 
on printer, 199-20 I 

Program recorder, 51-53. See also Cassettes 
program recording formats , 187 
storing data on, 187-91 
tape counter, 53 , 185 
usi ng, 25-26 

Program statements, 45-46 
Programmed mode, 47 
Programming languages, 58 
Programs 

adding lines, 54 
application. 8-9 
chaining from cassette, 185-86 
chaining from disk, 244-45 
changing lines. 55-57 
classes of, 8 
clearing from memory, 48 
cursor movement in, 126-29 
debugging, 178 

Programs (continued) 
deleting from diskette, 32 
deleting lines, 54 
duplicating on disk , 31-32 
editing, 53-57 
execution sequence, 49, 59, 60 
faster, 178-79 
input and output, 113-1 4 
libraries on cassette, 186-87 
libraries on disk , 245 
loading, 33 
loading from cassette, 184 
loading from disk , 243-44 
machine language, 180-81 
merging from cassette , 184 
merging from disk, 244 
more compact, 179 
optimizi ng, 178-80 
renaming on disk , 32 
running, 33 

INDEX 457 

saving machine language on disk, 264-66 
saving on cassette , 52-53, 183-84 
saving on disk, 243 
screen output, 114-25 
tokenized, 187 
user input , 130 

Prompt messages, 95, 131 
Pseudo-arrays, string, 110-12 
PTRIG , 101 , 154-55, 398-99 
PUT,383-84 

on cassette, 190-91 
on disk files, 253 
on display screen, 169 
on printer, 201 

RAD, 100,384-85 
RAM. See also Memory 

adding, 35-37 
defined,6 

READ, 76-78, 385 
Read-only memory. See ROM 
Read / write memory. See RAM 
READY message, 18-20,28 
Recursion , 89 
Redimensioning arrays and strings, 79-80 
Regression Analysis program, 288-90 
Relational expressions, 69-70 
REM , 74-75, 386 

branching to, 80-81 
and program optimality, 179-80 

Renaming program on diskette, 32 
RESTORE. 78, 386 
RETURN key, 21, 55 
RETURN, 88-90, 386 
Right-justification 

ATARI 825 printer, 219 
display output, 120-22 
Right-justified Gas Cost program, 121 

RND, 99. 399 
ROM cartridges 

contain programs, 8-9 
instal la tion , 13-14 

ROM , defined, 6 
row, 339 
RS-232 se rial device. See Serial device 



458 A GUIDE TO AT ARI 400/800 COMPUTERS 

RUN, 34, 48, 386-87 
disk drive, 244 
program recorder, 185 

SA VE, 387-89 
disk drive , 243 
program recorder, 183-84 

Sca n lines. 295-96 
Scientific notation, 62 
Screen Data Window program, 156-61 
Screen. See Display sc reen 
Semicolons, in PRINT statements, 92-93 
Serial device handler, 267 

booting, 14 
Se rial interface jacks, 18 
SETCOLOR, 271-72, 389-90 
SGN, 99, 399 
SHIFT key, 22 
Significant digits , 44, 63 
S IN. 99 , 399-400 
Slide switch, 15 
SOUND, 326-30, 390-91 
Sound 

distortion, 327-29. 330 
duration , 331-32 
effects, 332-35 
loudness, 329-30 
memory locations, 440 
musical notes, 391 
pitch. 327-29 
turning off. 330 
voice, 326 

Sound Effects programs. 332-35 
Spaces, 45 
Speaker, built-in, 325 
Special function keys, 20 
SQR. 99, 400 
Stack, hardware , 181 
Staircasing, 351 
Starting up. See Booting; Power on 
STATUS, 391-92 
Status codes, 412-13 
Step variable. 83-84 
STICK. 101, 153-54,400 
Stick. See Joystick 
STOP, 97 , 392 
STR$, 100,40 1 
STRIG, 101 , 153-54.401 
Strikeouts. 218 
SIring. 339 
String Input subroutine, 143-44, 174-75,285 
String variables, 64. See also Variables 

initializing, 109-10 
lengths, 79-80 

Strings, 60 
arrays, 110-12 
comparing, 7 1,363 
conca tenati ng, 106-108 
inputting, 364-65 
numeric. 108- 109 
redimensioning, 79-80 
size restrictions. 349 
special characters in, I 04 
sto rage, 103 
subscripts, 106 
using, 103-112 

Slrvar, 339 
Subroutines , 86-89, 179 

libraries on cassette, 186-87 
libraries on disk, 245 
termination, 358 

Subscripts 
string, 106 
array, 66 
printed 213-14 

Substrings, 106. See also Strings 
Superscripts, printed , 213-14 
Syntax , 58 
System components, I 
SYSTEM RESET key, 21 , 42,97,392 

Tab feature , 11 8-20 
TAB key, 24 , 95 
Tape counter, 185 
Tape recorder. See Program recorder 
Tape. See Cassettes 
Television channel, computer, 15 , 16 
Television monitor 

connecting to computer, 4, 5 
as display screen, 4 

Television set 
co nnecting to computer, 4 
as display screen , 4 
tuning, 15 

Text window, 275-76, 359-60 
Top of Page subroutine, 205·{)7 
Trailing zeros, 123 
TRAP, 137-39, 392-93 

end of disk files, 254-55 
Truncation, 44 
Turning on power. See Power on 

Underlining, printed, 214 
USR , 101, 180-81 , 401-02 
Utilities 

disk , 28-32 
data entry, 139-44 

V A L, 100, 402-03 
var. 339 
Variable name table, 112, 341, 347 , 367 

cassette, 187 
ciearing. 353-54 
disk programs, 246 

Variables. See also Stri ng variables; Numeric variables 
assigning values, 75-78 
inpuuing values, 93-95 
naming, 64, 65, 73 
number of. 112 
optima l use of, 179 
printing values, 92-93 
storage, I 12 

Vertical blanking interval, 296-97 
VNT. See Variable name table 

Write-protecting 
cassettes. 25-26 
diskettes, 26-27 

XIO, 393-96 
graphics fill , 284-85 






	Cover
	Contents
	Presenting the Atari Personal Computers
	How to Operate the Atari Computer
	Programming in BASIC
	Advance BASIC Programming
	The Program Recorder
	Atari Printers
	The Atari 810 Disk Drive
	Introductory Graphics
	Advanced Graphics
	Sound
	BASIC Statements and Functions
	Appendix
	Error Messages
	Status Statement Codes
	Derived Trig Functions
	Codes, Characters, and Keystrokes
	BASIC Keywords
	Memory Usage
	Useful PEEKs and POKEs
	Conversion Tables

	Bibliography
	Index

