

INTERLISP REFERENCE MANUAL

BY WARREN TEITELMAN

contributions by:

A. K. HARTLEY

J. W. GOODWIN
BOLT BERANEK & NEWMAN

D. G. BOBROW
P. C. JACKSON
L. M. MASINTER
XEROX PALO ALTO RESEARCH CENTER

XEROX

PALO ALTO RESEARCH CENTER

3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304

BOLT BERANEK & NEWMAN Copyright) 1974 XEROX CORPORATION

Acknowledgements and Background

INTERLISP (formerly BBN LISP) has evolved from a succession of LISP systems

that began with a LISP designed and implemented for the DEC PDP-1 by D. G.

1

Bobrow and D. L. Murphy® at Bolt, Beranek and Newman in 1966, and documented by

D. G. Bobrow. An upwards compatible version of this LISP was implemented for
the SDS 940‘in 1967, by Bobrow and Murphy. This system contained the seeds for
many of the capabilities and features of the current system: a compatible

compiler and interpreter.z

3

uniform error handling, an on-line LISP oriented
editor,Y sophisticated debugging facilities.4 etc. 940 LISP was also the first
LISP system to demonstrate the feasibility of usihg software paging techniqugs
and a large virtual memeory in conjunction with a lisi-processing system [Bob2].
DWIM, the Do-What-I-Mean error.correction facility, was introduced into the
system in 1968 by W. Teitelman [Tei2], who was also responsible for

documentation for the 940 LISP system.

1 D. G. Bobrow is currently at Xerox Pale Alto Research Center (PARC). D. L.
Murphy is with Digital Equipment Corp.

2 The preliminary version of the compiler was written by L. P. Deutsch, now
at Xerox PARC. This was considerably modified and extended by D. L. Murphy
before producing the final working version.

3 The original idea of a LISP oriented structure editor belongs to L. P.
Deutsch. The editor in its current form was written by W. Teitelman, now
of Xerox PARC.

4

Designed and implemented by W. Teitelman.

In 1970, an upwards compatible version of 940 LISP called BBN LISP5 was
designed for the PDP-10 by D. G. Bobrow, D. L. Murphy, A. K. Hartley, and W.
Teitelman, and implemented by Hartley with assistance from Murphy. A. K.
Hartley was also responsible for modifying the 940 LISP compiler to generate
code fpr the PDP-10. BBN-LISP ran under TENEX, a sophisticated time sharing
system for the PDP-10 désigned and implemented by D. G. Bobrow, J. D.
Burchfiel, D. L. Murph&. T. R. Strollo, and R. S. Tomlinson.[Bob1] With
hardware paging 'and 256K of virtual memory provided by TENEX, it became
practical to provide extensive and sophistitated interactive user support
facilities, such as the programmer's assistant [Tei4], CLISP [Tei5], aﬂd a more
sophisticated nwxn. all of which were designed and-deveioped by W. Teitelman.
In 1971, the block compiler was designed and implemented by D. G. Bobrow. The
BBN-LISP Manual [Tei3] was written by W. Teitelman, with contributions from A.
K. Hartley and from J. W. Goodwin, who also wrote TRANSOR and the special
arithmetic functions, as well as a number of other utility functions. The name
of the system was changed from BBN-LISP to INTERLISP in 1973, when the
maintenance and development of the system evolved into a joint'effort'between
Bolt Beranek and Newman, and Xerox Palo Alto Research Center. The INTERLISP
reference manuallwas written by W. Teitelman, with contfibutions from A. K.
Hartley, J. W. Goodwin, and D. G. Bobrow. The cover was designed by
Alice R. Fikes. |

INTERLISP is currently the LISP system used at Bolt Beranek and Newman, Xerox
Palo Alto Research Center, Stanford Research Institute Artificial ;ntelligence
Center, Information Sciences Institute, and the Dendral Project at Stanford

University, in addition to being available at Computer Corporation of America

T T T N R e N e . E e e S e e A M e e e e e e R S S T e e e R D P W R e D e W e e

The design, construction and documentation for BBN LISP was sponsored by
the Information Processing Techniques Section of the Advanced Research
Project Agency, as was all of the subsequent work on the system that was
performed at BBN. Since March 1972, the contributions made to the
development of the system by W. Teitelman, including the preparation of
this manual, were sponsored by Xerox Palo Alto Research Center.

ii

and Case Institute of Technology. The‘ total user community now comprises

approximately one hundred users.

INTERLISP is a continuously evolving system, both in response to complaints,
suggestions, and requests of the many users scattered throughout the ARPA
network, as well as the long range goals of the individuals primarily

responsible for the system, which are currently:

Person Responsible for
W. Teitelman User Facilities: 1i.e., pretty-
Xerox Palo Alto print, editor, break and trace,
Research Center advising, printstructure, DWIM,
3180 Porter Dr. CLISP, programmer's assistant.

Palo Alto, Calif. 94304

A. K. Hartley Basic System: 1i.e., interpreter,

Bolt Beranek & Newman input-output, garbage collector; plus
50 Moulton St. all SUBRS, i.e. hand-coded machine language

Cambridge, Mass. 02138 functions such as PRINT, CONS, PROG, GO,
etc.; plus compiler.

J. W. Goodwin Special Arithmetic Functions: e.g.
Bolt Beranek & Newman LOG, SIN, SQRT, etc.; plus functions
50 Moulton St. for accessing TENEX capabilities

Cambridge, Mass. 02138 such as SUBSYS, FILDIR, et al.;
plus TRANSOR as well as various
utility functions such as LOADFNS,
SORT, etc. (as indicated in the text
of this manual).

The preparation of this manual has involved the efforts of several persons at
Xerox PARC, whom I specifically want to mention, and to express my appreciation
for their support through this arduous, and at times seemingly endless task.
Thank you Suzan (Jerome), Janet (Fafness). Peter (Deutsch), Bob (Walker), and

Larry (Tesler). I couldn't have done it without you.

Warren Teitelman
Palo Alto
December, 1973.

\

iii

TABLE OF CONTENTS

SECTION 1: Introduction

SECTION 2: Using INTERLISP‘

Using the INTERLISP Manualeeevvnvvenenns 1
Using the INTERLISP System on TeneXceveeesoss 4

SECTION 3: Data types, Storage Allocation. and Garbage
Collection

Data Types llllllll 000.'0.'l..'.li.l...'....lQODJCOO
Literal AtOMSccvveeversacroonnonncesoreans
PRAmMeS . .viitvvnrtsnnseososassnosssvssesnonnss

Numerical Atoms ceretrectaccecan
LISES tuuviuriiinnetoneoeenonsennnsnnnnesensoss
Arrays D Y ceene
Strings srsessesassssseseasesscanas

Storage Allocation and Garbage Collection ceeecenes
shared INTERLISP ..'.b.,,..f....'.‘..‘..'._‘.‘..'...'..

B O @D DN

=

SECTION 4: Function Types and Implicit PROGN

EXprscvn.. e e e s e eenseaoetsacesentansecanes 1
Compiled FUNCEIONS . iveveeeeenronennonsnssccansones 2
FUNCLION TYPO .ivivrerincnsrernorseevonencncssasnes 3
PROGN .. iiiiriiivennnenocessscnsesaanns Ceecsavensee 4

q

lmpliCit PROGN R A N R

SECTION §: Primitive Functions and Predicates
Primitive Functionscveevevvvvevennnnnnnnee . 1

RESETVAR and RESETFORMuvievuresnnnnnrnnnoonons 9
Predicates and Logical Connectiveseeveevses 11

SECTION 6: List Manipulation and Concatenation

SECTION 7: Property Lists and Hash Links

Property LiStS ...eeeeuenenenenaenenensnnnnenenenns
Hash Links 0oiiiieiinininniiennentoncecnsnnnes
Hash Overflowvviiencenoenocevonvnnonnons

N D

TABLE OF CONTENTS (cont.)

SECTIONIS: Function Definition and Evaluation

SECTION 9: The INTERLISP Editor

IntrOdUCtiOﬂ oooooooooooo L R R R I R A A I I NN I I NN A

Commands for the New Usercecevee. Cecearersans

Attention Changing Commands ...cecevovesoscsnocs
Local Attention Changing Commands
Commands That Search ceseesssesnus

Search Algorithmccieeeennacns e
Search Commands Cerecenesenes
Location Specification cetcennen
Commands That Save and Restore the
Edit Chainccvaeeenve cresevesanrevnns

Commands That Modify Structure et erceeenae

Implementation of Structure Modification
Commands ceeettesssnns e s e e
The A, B, : Commands ...ceceevvevorescoccnss

Form Oriented Editing and the Role of UP

Extract and Embedccieveervvrecnsosoanas

LI

.

"o

oo e

L)

The MOVE Commandc00v0.. hececsssesesnns
Commands That "Move Parentheses" ceeesene
TO and THRUccceevene ceseerercscececanaes .
The R Commandcoevveeene tesrasesencsennne
Commands That Printc.. ceetececerroovenen e
Commands That Evaluate ...cceeveecsrccacssoosonsces
Commands That Testcccoeveeeccanane beresseseans
Macros ..i.ivevevecen G esesesesaceesansssesseserecsasse
Miscellaneous Commands seneaasserersanenas
UNDO i iiiinninnnns Gt i s seriseses et e e bttt es a0
EDITDEFAULT ...iitiininnonnnns tetsecretestrersacanas
Editor Functions secsenas N

SECTION 10: Atom, String, Array, and Storage Manipulation

Pnames and Atom Manipulation thevsane

String Functions teseracsesere st et ecrsancsan
Searching Strings ...c.ceveeeeonnns vesresacene
String Storagec.000. ceretssasaressessens

Array FURCtionscveeereocacrvecessovsnoonaos

Storage Functionseeceevvees csesescesnnsoas

SECTION 11: Functions with Functional Arguments

SECTION 12: Variable Bindings and Pushdown List Functions

The Pushdown List and the Interpretercocceee

The Pushdown List and Compiled Functions

Pushdown List Functions ceeeissceravena
The Pushdown List and FUnarg ...cvceeeesceesconncse

ii

=W

TABLE OF CONTENTS (cont.)

SECTION 13: Arithmetic -Functions

General CommeNtsS ...ivverecveserossvasvesvasnssnsss
Integer Arithmeticcieieeivennreossssocessansnee
Floating Point Arithmetic R R R R R P R
Mixed Arithmetic ceseserecertesroevesens e
Special FUunRCLions ..c.iveecverovnsressosonsncsnssoe
Reusing Boxed Numbers = SETNciveven. cesacsense
Box and UnboOX «ivvevvvevecvnvosocsiorsonasanassnonse

NORANON ™

[WY

SECTION 14: Input/Output Functions

Files ...oiiviiiinennnnne e vsesecsecerevenssrecrvereres 1
Addressable F11eS .iveevevverrrvsceccscennssoes = 5
JFN Functions Cevecsectcsasesocseesases -8
INpUt FUNCLIONS . iverirvesernoeossossasssensascnsoe 10
OUtPUL FUNCLIONS v iveeesaassossesosececonconsase 18
Printlevel e tesecasesetstes s besenr s 19
Input/Output Control FUNCLIONS cv.vevvrrcecononnoes 21
Line~buffering and CONTROLccevvevevecoess 23
Special FUNCLIONS ... vivvvivsencentrveocvoonnsnsanes 26
Symbolic File INputoeeevincnensnnssonconcsnans 27
Symbolic File Outputcevivviinonencnnernosess 29
PRETTYPRINTcveeeees Ceceecssersecsesacsseans 29
Comment Featureveceeesnocrovessovsessnnsas 30
PRETTYDEF v .o.vvivvinnnn ceesetenserssanerssusas 31
Special PRETTYPRINT Controls cscesusrersenne s 38
File Package .iciveretecorerasessooosessnconsssases 44

SECTION 15: Debugging - The’Break Package

Debugging Facilities ...veirececsvececcooosncenenns 1
BREAK1ciivun.. Ceeeeens ceceseecsans evseaecn -4
Break Commands R R R R 7
Brkcomscveeecveoccccs cesees teesveae ceesen 14
BrRfILle ..viveneeerveesascocssonsssonsssnsssns 15
Breakmacros P eesesreesserese e aceseranne 15
Break FUNCLIONS .vuveeevcsaaororoovooonsnoonasoooons 16
BREAKIN ... iiiniesneoventoossanasarssansasosces 19

SECTION 16: Error- Handling

Unbound Atoms and Undefined Functionsc.cevees
Teletype Initiated Breaks ..vcceeeecnncssssceaososses
Control }i L 2NC I I I I I B B B O B N BN IR BN I S T I BRI I I R I R I Y
ControlB L0 L B B I I R BT I IR I BN Y I B B B Y)
ControlE 00000000000 8 8 % O 0 2 0PSO SN N
Other Types of Errors veesaene veceeanens
BreakCheCk - When tO Break‘ LI I I I I SRR S BN B A S R B R SN Y
Error Types ...cviiieeeseeannns seretsrressssasesans
Error Handling by Error TYPe .cceeevevoccccnes
Error FUNCtIONS ... vevioersroconsennssosscennesons

NONDIDWWNN-

-

S idd

TABLE OF CONTENTS (cont.)

SECTION 17: Automatic Error Correction - The DWIM Faclility

Introduction Leetatesesseacstcncstsnvaans e
Interaction with DWIMcciiiiieirrenionnnnnnne
Spelling Correction Protocolcccevvane
Parentheses Errors Protocolcvevvvonees

Spelling Correction cececsccscavtedroan.

Spelliﬂg LiStS L I R R R N B R I R A N AN Y SRS NN SR S

Error Correctionveeeeeeeeensocaossanesasosncee

Unbound AtOmSicivneensecesvonsesisoasoass
Undefined Car of FOrm ...cceceeeeereoneccoonns
Undefined Function in ApPlY ciceveveevansories
DWIMUSERFN ettt cssessruceens et catacaren s
Spelling Corrector Algorithmvevveeveesrnncess
DWIM FUNCLIONS ..vivveeeevecsonosvooacanccnnsnnosse

SECTION 18: The Compiler and Assembler

The Compiler ...iieiiiieesesornsrosceoncensssononoss
Compiler QUeStioNScevieerereceeesococnnnnsnsnas
Nlambdas C e s ssceessesrr s s ce et e0e b0
GlobhaA)VArS . iitveteserssoncteassocneanssonssessess
Compiler FUNCLIONS .. iieerereeeeseanccnsasnnonnoee

RECOMPILE ..vvtieerverncoeeosanroonosanseasenosse
Open FUNCLIONS . iiiiiiitiereennenooonoseosanososess
Compiler MAaCr0S ... ieveoetansesonceosonososansonne

FUNCTION and Functional Argumentseeeeeoeee

BlOCK COMPILiNg +vveevrreneneenosonsossansnsnssnnsse
SPBCVANS Lttt iteetonteoarnecrooseosoassoasnene
LOCAllreevVars ...isiiesertsessronvnnsvoccsscnss
RetfNS ...ttt eeeenveocesconocsnrococnanens
BlKappPIY NS i vvieieoreeseressoensosacensannos
BlKYibrary ...oieiiiiveiiionrvoveorncnooocsosnns

Linked Function €Calls ...eiiisereeecesonassncnsnnes
Relinking cerersesesseeesasesacrsene

The Block Compilercevinevecovroossoonecnoses
BLOCKCOMPILE ... vvvvvinnsssssnnnnnnssansenans
Block Declarationscveennvnveiceneronns
BCOMPL Ceeeessesticer et et eretaeenannnn
BRECOMPILE +.viiiiinnnnnnecosnonsonsonsacsonces

Compiler SErUCtUrecivieierececnnccocnoaoonsenns

ASSEMBLE et eesseecseaseset sttt cebotans a0

LAP C e eerteseeseritaette st terese s e

Using ASSEMBLE Chteesesessscasees st aenacennn

Miscellaneous cteccaereresatensanencansas

Compiler Printout and Error Messagescocevs..

SECTION 19: Advising

Implementation of AAVASING +vveveeernenevonennenssan
Advise FUNCLIONS ...vivreeenensancasascanasnnonsoss

iv

TABLE OF CONTENTS (cont.)

SECTION 20: Printstructure and Interscope

PriNtStrUCtUre ..t ivreeeorerronoeenesencsnaasonnse
L8 AT ok od ¢ 11X N

SECTION 21: Miscellaneous -

Measuring FUNCELIONS . ..iviriieinnenenneseonanoossnne
BREAKDOWN i iiiiierinneonoeneooocsossssvsnnesssss
EDITA ittt ittt eeineesninanoasasoseensnasens

Input Protocoliieeinieerenvensvenaoenvenons

EDITA commands and variables
Interfork Communicationciveeceveseeeronnnesenis
SUDSYS it i i i i i i ettt e
Miscellaneous TENEX Functionscevvievesonnnne
Printing Reentrant and Circular List Structures ...

SECTION 22: The Programmer's Assistant and LISPX

INtroduction ..., cvivieinnnionsesessonnrannonnsos
Overview et e eseessee e as et o bttt aabenannans
Event Spec1f1cat10n et e eeeeseseseser ettt taneennan
History Commandscc.veeeernoosesosssannssossns
Implementation of REDO, USE, and FIX
History Commands Applied to History Commands .
History Commands That Failcceivnnennnens
More History Commandscovevveernconvoees
‘Miscellaneous Features and Commandscocceee.
LT L 1 T o

Testmode D

Undoing out of ordercveveeeeenrncecnnas

SAVESET ceeesessesas Ceeecesecteeanas
Format and Use of the History List Cesesessseerenns
LISPX and READLINEiieenerenevoconecanssnnans
FUNCLI0NS o1ttt it ittnnnesacessosannonnsnoasssnnns
The Editor and the Assxstant Ceeertrsecerssensosean
Statistics Cesesasesstresa st ers 0 s a0 b s s e
Greeting and User Initializationci0vineeecnns

TABLE OF CONTENTS (cont.)

SECTION 23: CLISP - Conversational LISP

Introductioniieiveinneneneneronenonnosenoonss
CLISP SyntaXveeeeeeen Ceessessesesccrnsenonene
INFiX Operators . .iuieeieeeeetenesoceoancsosossnees
Prefix Operators t.iu.eeeeresoeesssecsooansssasseses
Constructing Lists = the <,> Operatorsceoeee
IF, THEN, ELSE v e s seeruescrtsncenasccasenenen
Iterative Statementsv.eveerronccooocsonsosos
Errors in Iterative Statementsccee0.
Defining New Iterative Statement Operators ...
CLISP Translationsueeeeeereeoescceasccocncenss
Declarationsiciiiieeteerennsionoesonnocncenos
LLocal Declarations D R LR I I PP
The Pattern Match Compileriveeeeveceoecoonnsss
Element Patterns ..i.eeeeeinnvernceennneonnsens
Segment Patternscvviiieiiriorererereonenns
ASSigNmMeENtS ..t iiiietenneesnoeenscecocacenee
Place-MarKersS ..ieveeeeeoeeesseecerensosoccsess
Replacements . ..ivverneenneroniannnsennoonens
ReCONSLIrUCLION ... vtivverneirennnseosoenedasa

Record Packageiveieiieeeroeenoseeoneennsensns.

Record Declarationscceeeeeseceeocnonees
CREATE ittt eeeeeeees et ettt stasesnnenee
Implementationveeeeeeeeeenceencennonennos
L0 T] D 1
L

Compiling CLISPccvviiiniiiniennneninnnnenns

Operation t et et e e e e s s ur e eeesec o0 b no e
CLISP Interaction With USeruviveeeeeeceonnsss
CLISP Internal Conventionseeeeeeeseeenonnenees
CLISP Functions and Variablesecevevoeoceess

APPENDIX 1: TRANSOR

Introduction S e et eececnsae e et o teenoes
USing TRANSOR 1 i.iivnteneeeseooensonssnesonnnssnnss
The Translation NOteSeveeveeeereeeroecennonss
TRANSORSET PP
Controlling the SWeeP ..vvevevreveesencocoaosensess

APPENDIX 2: INTERLISP Interpreter
APPENDIX 3: Control Characters

MASTER INDEX

vi

L =e - X I

~ SECTION 1
INTRODUCTION

This document is a reference manual for INTERLISP, a LISP system currently
impiemented on the DEC PDP-10 under the;BBN TENEX time sharing system.[Bobi]
INTERLISPI is designed to provide the user Qccess to the large yirtual memory
allowed by-TENEX with a relatively small penalty in speed (using special
paging techniques described in [BobZ]) Additional data types have been added,
including strings. arrays. and hash association tables (hash links) (Sections 7
and 10). The system includes a compatible compiler (Section 18) and
interpretef. Machine codevcan be intermixed with INTERLISP expressions via the
assemble directive of the compiler. The compiler also contains a facility for
"block compilation® which allows a group of functions to be compiled as a unit,
suppressing internal names. Each successive level of computation, from
interpreted through compiled, to block-~compiled provides’greater speed at a

cost of debugging ease.

INTERLISP has been designed to be a good on~line interactiVe system. Some of
the features provided include elaborate debugging facilities with tracing and
conditional breakpoints (Section 15). and a sophisticated LISP oriented editor
within the system (Section 9). _Utilization of a uniform error processing
through user accessible routines (Section 16) has allowed the implementation of
DWIM, a Qo-ﬂhat-l—ﬂeanvfacility. which automatically cor;rects many types of .
errors without vlosing the context of computation (Section 17). The CLISP

1 INTERLISP (formerly BBN LISP) is the most recent incarnation in a
succession of LISP systems. See Acknowledgements at front of manual.

1.1

facility (Section 23) extends the LISP syntax by enabling ALGOL-1ike infix
operators such as +, -, *, /, =, «, AND, OR, etc., as well as IF-THEN-ELSE
statements and FOR-WHILE-DO statements. CLISP expressions are automatically
converted to equivalent LISP forms when they are first encbuntered, CLISP also
includes list construction operators, as well as a LISP oriented pattern match

compiler.

A novel and useful facility of the INTERLISP system is the programmer's
assistant (Section 22), which monitors and records all user inputs. The user
can instruct the programmer's assistant to repeat a particular operation or
sequence of operations, with possible modifications, or to UNDO the effects of
specified operations. The goal of the programmer's assistant, DWIH; CLIsP,
etc. is to provide a programming environment which wiil 'cboperate" with the
user in the development of his programs, and free him to concentrate more fully
on the conceptual difficulties and creative aspects of the problem he is ﬁrying

to solve.

To aid in converting to INTERLISP programs written in other LISP dialeéts,
e.g., LISP 1.5, Stanford LISP, wé-have implemented TRANSOR, a subsystem which
accepts transformations (or can operate from previously defined
transformations), and applies these transformations to source pfograﬁs written
in another LISP dialect, producing object programs which will run on INTERLISP
(Appendix 1). In addition, TRANSOR alerts the programmer to pfoblem areas that
(may) need further attention. TRANSOR was used extensively in converting froﬁ
940 LISP to BBN-LISP on the PDP-10. A set of transformations is available for
converting from Stanford LISP and LISP 1.5 to INTERLISP.

A complete format directed list processing system FLIP [Tei1], is available for
use within INTERLISP. “

Although we have tried to be as clear and complete as possible, this document

1.2

is not designed to be an introduction to LISP. Therefore, some parts may only
be clear to people who have had sdme ‘experience with other LISP systems. A
good introduction to LISP has been written by Clark Weissman [Weii1]. Although
not completely accurate with respect to INTERLISP, the differences are small
enough to be maste_rod by use of this manual and on-line interaction. Another
useful introduction is given by Berkeley [Bérl] in the collection of Berkeley
and Bobrow [Ber2]. . _

Chénges to this mahual will be issued by replacing sections or pages, and
reissuing the inldex and table of contents at periodic intervals. In addition,
the manual will be maintained on-line, ’an'd up to date versions of any or all
chapters will be available in the form of TENEX files from W. Teitelman at
Xerox PARC.

1.3

Bibliography

[Beri]
{Ber2]

{Bob1]

[Bob2]
[Bob3]
[McC1]
[(Murt]
tSmil]
[Teil]

[Tei2]
[Teild]

[Teid]
[Tei5]

‘[weil]

- Berkeley, E.C., "LISP, A Simple Introduction" in Berkeley, E.C. and
Bobrow, D.G. [Ber2].

Berkeley, E.C., and Bobrow, D.G. (editors), The Programming Language
LISP, its Operation and Applications, MIT Press, 1966.

Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., and Tomlinson, R. S.
"TENEX, a Paged Time Sharing System for the PDP-10",
Communications of the ACM, March, 1972.

Bobrow, D.G., and Murphy, D.L. "The Structure of a LISP System Using
Two Level Storage", Communications of the ACM, V1§ 3, March 1967.

Bobrow, D.G., and Wegbreit, B. "A Model and Stack Implementation for
Multiple Environments® (to be published), Third International
Joint Conference on Artificial Intelligence, August 1973.

McCarthy, J. et al. LISP 1.5 Programmer's Manual, MIT Press, 1966.

Murphy, . D.L. "Storage Organization and Management in TENEX",
Proceedings of Fall Joint Computer Conference, December 1972.

Smith, D. "MLISP" Artificial Intelligence Memo No. 135 Stanford
University, October 1970.

Teitelman, W. FLIP, A Format Directed List Processor in LISP, BBN
Report, 1967.

Teitelman, W. "Toward a Programming Laboratory" in Walker, D. (ed.)
International Joint Conference on Artificial Intelligence, May
1969.

Teitelman, W., Bobrow, D.G., Hartley, A.K. Murphy, D.L. BBN-LISP
TENEX Reference Manual, Bolt Beranek and Newman, July 1971, first
revision February 1972, second revision August 1972.

Teitelman, W. "Automated Programmering - The Programmer's Assistant”,
Proceedings of the Fall Joint Computer Conference, December 1972.

Teitelman, W. "CLISP - Conversational LISP", Third International
Joint Conference on Artificial Intelligence, August 1973.

Weissman, C. LISP 1.5 Primer, Dickenson Press (1967).

1.4

SECTION 2
USING INTERLISP

2.1 Using the INTERLISP Manual - Format, Notation, and Conventions

The INTERLISP manual is divided into separate more or less independent
sections. Each section- is paginated independently, to facilitate 'issuing
updates of sections. Each section ‘contains an index to key words, functions,
and variables contained in that section. In addition, there is a composite

index for the entire manual, plus several appendices and a table of contents.

Throughout the manual, terminology and conventions will be offset from the text
and typed in italics, frequently-at the beginning of a section. For example,

one such notational convention is:

The names of functions and variables are written in lower case and underlined
when they appear in the text. Meta-LISP notation is used for describing forms.

" Examples: 'member[x;y] is equivalent to (MEMBER X Y), member[car[x];FO0] is
equivalent to (MEMBER (CAR X) (QUOTE FOO)){ Note that. in meta-LISP notation

lower case variables are evaluated, upper case quoted.

. notation is used to distinguish between cons and list.
e.g., if x=(A B C), (FOO x) is (FOO (A B C)), whereas (FOO . x)

is (FOO A B C). In other words, X is cadr of (FOO x) but cdr of (FOO . x).
Similarly, y is caddr of (FOO x y), but cddr of (FOO x . y). Note that this

2.1

convention is in fact followed by the read program,

i.e., (FOO . (A B C)) and (FOO A B C) read in as equal structures.

Other important conventions are:

TRUE in INTERLISP means not NIL.

The purpose of this is to allow a single function‘to be used both for the
computation of some quantity, and as a test for a condition. For exaﬁple. the
value of member[x;y] is either NIL, or the tail of y beginning with Xx.
Similarly, the value of or is the value of its first TRUE, i.e., non-NIL,
expression, and the. value of and is either NIL, or the value of its last

expression.

Although most lists terminate in NIL, the occasional list that ends in an atom,
e.g., (AB . C) or worse, a number or string, could cause bizarre effects.

Accordingly, we have made the following implementation decision:

All functions that iterate through a list, e.g., member, length, mapc, etc.
terminate by an nlistp check, rather than the conventional null-check, as «a
safety precaution against encountering data types which might cause itnfinite
cdr loops, e.g., strings, numbers, arrays.

Thus, member[x;(A B . C)J=member[x;(A B)]
reverse[(A B . C)J=reverse[(A B)]
append[(A B . C);yJ=append[(A B);y]

1

For users with an application requiring extreme efficiency,” we have provided

fast versions of memb, last, nth, assoc, and length which compile open and

1 A NIL check can be executed in only one instruction, an plistp requires
about 12, although both generate only one word of code.

z‘z

terminate on NIL checks, and therefore may cause infinite cdr loops if given

poorly formed arguments. However, to help detect these situations, fmemb,

flast, fnth, fassoc, and flength all generate errors when interpreted if their
argument ends in a non-list other than NIL, e.g. BAD ARGUMENT - FLAST.

~

Most fuhctions that set system parameters, e.g., printlevel, linelength, radix,
etc., return as their value the old setting. If given NIL as an argument, they
return the current value without changing it. -

All SUBRS, i.e., hand coded functions, such as read, print, eval, cons, etc.,
have ‘argument names' (U V W) as described under arglist, Section 8. However,
Jor tutorial purposes, more suggestive names are used in the descriptions of
these functions in the text.

Most functions whose names end in p are predicates, e.g. numberp, tailp, exprp;
most functions whose names end in ¢ are nlambda’s, i.e., do not require quoting
their arguments, e.g., setq, defineq, nlsetq.

"x is equal to y" means equal[x;y] is true, as opposed to "x 1is eq to y”

meaning eq[x:y] is true, i.e., x and y are the same identical LISP pointer.

When new literal atoms are created (by the read program, pack, or mkatom), they
are provided with a function definition cell initialized to NIL (Section 8), a
value cell initialized to the atom NOBIND (Section 16), and a property list
initialized to NIL (Section 7). The function definition cell is accessed by
the functions getd and putd described in Section 8. The value cell of an atom
is car of the atom, and its property list is cdr of the atom. In particular,
car of NIL and cdr of NIL are always NIL, and the system will resist attempts

to change them.

The term list refers to any structure created by one or more conses, i.e. it
does not have to end in NIL. For example, (A . B) is a list. The function
listp, Section §, is used to test for lists. Note that not being a list does
not necessarily imply an atom, e.g., strings and aerrays are not lists, nor are
they atoms. See Section 10.

Many system functions have extra optional arguments for internal use that are
not described in the writeups. For example, readline is described as a

Junction of no arguments, but arglist[READLINE] returns (LINE LISPXFLG). In
such cases, the user should just ignore the extra arguments.

INTERLISP departé from LISP 1.5 and other LISP dialects in that car of a form
is never evaluated: In other%words. if car of a form is not an atom with a
function definition, and not a function object, i.e. a list car of which is
LAMBDA, NLAMBDA, or FUNARG, an error is generated. apply or apply* (section 8)
must be used if the name of a function is to be computedlas for example, when

functional arguments are applied.

2.3

2.2 Using the INTERLISP System on TENEX - An Overview

Call INTERLISP by typing LISP followed by a carriage return. INTERLISP will
type an identifying message, the date, and a greeting, followed by a '«'. This
prompt character indicates that the user is "talking to* the top 1level
INTERLISP executive, called evalqt, (for historical reasons), 'just as 'e@'
indicates the user is talking to TENEX. evalqt calls lispx which accepts

inputs in either eval or apply format: if just one expression is typed on a

line, it is evaluated; if two expressions are typed, the first is apply-ed to
the second. eval and apply are described in section 8. In both cases, the

value is typed, followed by « indicating INTERLISP is ready for another input.

INTERLISP 1is normally exited via the fupction LOGOUT, i.e., the user types
LOGOUT(). However, typing control-C at any point in the computation returns
control immediately to TENEX. The user can then coatinue his program with no
i1l effects with the TENEX CONTINUE command, even if he interrupted it during a
garbage collection. Or he can reenter his program at gy_q_l_q_g with the TENEX
REENTER command. The latter is DEFINITELY not advisable if the Control-C was

——— | ——— — S————————————— —

typed during a garbage collection. Typing control-D at any point during a

computation will ‘return control to evalgt. If typed during a garbage
collection, the garbage collection will first be completed, and then control
will be feturned to INTERLISP's tbp level, otherwise, control rpturns

immediately.

When typing to the INTERLISP read program, typing a control-Q will cause
INTERLISP to print '##' and clear the input buffer, i.e., erase the entire line
up to the last carriage return. Typing control-A erases the last character
typed in, echoing a \ and the erased character. Control-A will not back up

beyond the last carriage return. Control-0 can be used to immediately clear

204 !

the output buffer, and rubout to immediately cléar the input buffer.z In
addition, typing control-U (in most cases) will cause the INTERLISP editor
(Section 9) to be called on the -expression being read, when the read is
completed. Appendix 3 contains a list of all control characters, and a

reference to that part of the manual where they are described.

Since the INTERLISP read program is normally line-buffered to make possible the
action of control-Q.a the user must type a carriage return before any
characters are delivered to the function requesting 1npué, e.g.,

«E T 4

T
However, the read program automdticclly supplies (and prints) this carriage
return when a matching right parenthesis is typed, making it unnecessary for
the user to do so, e.g.,

«CONS(A B)

(A . B)
The INTERLISP read program treats square brackets as ‘super-parentheses': a
right square bracket automatically supplies enough right parentheses to match
back to the last left square bracket (in the expression being read), or if none
has appeafed. to match the first left parentheses,
e.g., (A (B (CI=(A (B (C))),

(A [B (C (D] E)=(A (B (C (D))) E).

T o e e e = "o = W o w o w0 e T G e G G S e e e G e G e Es W A e W e e

2 The action of control-Q takes place when it is read. If the user has
'typed ahead' several inputs, control-Q will only affect at most the last
line of input. Rubout however will clear the entire input buffer as soon
as it is typed, i.e., even during a garbage collection.

3 Except following control[T], see Section 14.

4

'2' is used throughout the manual to denote carriage-return.

205

% is the universal escape character for read. Thus to input an atom containing
a syntactic delimiter, precede it by %, e.g. AB% (C or X%. See Section 14 for

more details.

Most of the "basics"™ of on-line use of INTERLISP, e.g. defining functions,
error handling, editing, saving your work, etc., are illustrated in the

following brief console session. Underlined characters were typed by the user.

1. The wuser calls INTERLISP from TENEX, INTERLISP prints a date, and a
greeting. The prompt character « indicates the user is at the top level of
INTERLISP.

2. . The user defines a function, fact, for computing factorial of n. In
INTERLISP, functions are defined via DEFINE or DEFINEQ, (Sectiod 8).
Functions may independently evaluate arguments, or not evaluate them, and
spread their.arguments. or not spread them (Section 4). The function fact
shown here 1s an example of an everyday run-of-the-mill function of one

argument, which is evaluated.

3. The user "looks" at the function definition. Function definitions 1in
INTERLISP are stored in a special cell called the funcfion definition cell,
which is associated with the name of the function (Section 8). This cell

is accessible via the two functions, getd and putd, (define and defineq use

putd). Note that the user typed an 1input consisting of a single
expression, i.e. (GETD (QUOTE FACT)), which was therefore interpreted as a
form for eval. The user could also have typed GETD(FACT).

4. The user runs his function. Two errors occur and corrections are offered
by DWIM (Section 17). In each case, the user indicates his approval, DWIM
makes the correction, i.e. actually changes the definition of fact, and

then continues the computation.

2.6

OLISPy 1
INTERLISP-10 11-17-73 oo

GOOD EVENING.

«DEFINEQ((FACT (LAMBDDA (N) (COND ((EQ N O) NIL) 2

(T (ITIMES N (FACTT (SUB1 N]

(FACT)

«(GETD_(QUOTE FACT)) 3
(LAMBDDA (N) (COND ((EQ N 0) NIL)) (ITIHES N (FACTT (SUBI N))))))
«FACT(3)

LAMBDDA [IN FACT] -> LAMBDA ? YES)

FACTT [IN FACT] -> FACT ? YES)

NON-NUMERIC ARG 5
NIL :
IN ITIMES

(BROKEN) 6
18Ty

ITIMES

COND

FACT

COND

FACT

COND

FACT

l‘l‘opt

:RETURN 1> ' 11
'*BREAK' = 1
6

«PP _FACT) 12

(FACT
[LAMBDA (N)
(COND
((EQ N 0)
1)

(T (ITIMES N (FACT (SUB1 N])
FACT 13
«PRETTYDEF({FACT) FACT) 14
FACT. ;1

2.7

5.

An error occurs that DWIM cannot handle, and the system goes into a break.
At this point, the user can type in expressions to be eval-ed or apply-ed
exactly as at the top level. The prompt character ':' indicates that the
user is in a break, i.e. thﬁt the conteit of his cémputdtion is available.
In other words, the system is actually "within" or *below” the call to

itimes in which the error occurred.

The user types in the break command, BT, which calls for a backtrace to be
printed. In INTERLISP, interpreted and compiled code (see Section 18 for
discussion of the compiler) are completely compatible, and in both cases,
the name of the function that was called, as well as the names and values
of its arguments are stored on the stack. The stack can be searched and/or

modified in various ways (see Section 12).

Break commands are discussed in Section 15, which also explains how the
user can "break" a particular function, i.e. specify that the system go
into a "break" whenever a certain function or functions are called. At
that point the user can examine the state of the computation. This

facility 1s very useful for debugging.

The user asks for the value of the vdriable n, i.e. the most recent value,
or binding. The interpreter will search the stack for the most recent
binding, and failing to find one, will obtain the top level value from the
atom's value cell, which is car of the atom (Section 3). If there are no
bindings, and the value cell contains the atom NOBIND, an unbound atom

error is generated (Section 16).

The user realizes his error, and calls the editor to fix it. (Note that
the system is still in the break.) The editor is described at length and in
detail in Section 9. It is an extremely useful facility of-INTERLISP.

Section 9 begins with a simple introduction designed for the new user.

2.8

10.

11.

12.

13.

14.

The user instructs the editor to replace all NIL's (in this case there is
only one) by 1. The editor physically changes the expression it is
operating on so when the user exits from the editor, his function, as it

is now being interpreted, has been changed.

The user exits from the editor and returns to the break.

The user specifies the value to be used by itimes in place of NIL by using
the break command RETURN.(This causes the computation to continue, and 6 is

ultimately returned as the value of" the original input, fact(3).

The user prettyprints (Section 14) fact, i.e. asks it be printed with

appropriate indentations to indicate structure. Prettyprint also provides '

a comment facility. Note that both the changes made to fact by the editor

and those made by DWIM are in evidence. .

The user writes his function on a file by using prettydef (Section 14),
creating a TENEX file, FACT.;1, which when loaded into INTERLISP at a later
date via the function load (Section 14), will cause fact to be defined as
it currently is.. There .1s also a facility in INTERLISP for saving and

restoring an -entire core image via the functions sysout and sysin
(Section 14). ‘

The user logs out, returning control to TENEX. However, he can still

continue his session by re-entering INTERLISP via the TENEX REENTER or
CONTINUE command.

2.9

Index for Section 2

Page

=
[
g
-]
-
(7]

APPLY[FN;ARGS] SUBR heesesssevaes ceeesenes .
apply formatc000. 1 essesesssesssessensnne
APPLY*[FN;ARG1;...;ARGNR] SUBR® ... iccvevneacana
ARGLISTIX] .svevvreeroosasess tteescecvesossocecsae
backtraceiiiiiciencenitansoons cevesarenseene
BAD ARGUMENT FASSOC (erroir message) ..ccececcee
BAD ARGUMENT - FLAST (error message)ocees
BAD ARGUMENT - FLENGTH (error message)coceee
BAD ARGUMENT - FMEMB (error messSage) ...cceccceves
BAD ARGUMENT - FNTH (error message) ...ceecesscee
BT (break command)civeevcvvasenoscossssons
CONTINUE (tenex command)cccocceevenccoccosone
CONTROL[U] SUBR ..cvvvnns ereecessesersesersnoves
control characterscieececenesccccccoancecs
CONErol=A . ierrevecnnsennsvossssssnosessssssssss
control-C ceecereesetessssearsessestnt
COI\tl"Ol-D coocotooot|nolo.'0000.00.0‘05000000!0'0!
CONtrol-0 . ..iiiieeroeesonoroscosorososssoroncsason
CONLIrol-Q ...iiiieeeasereenssocsocssconsosossnscans
CONtrol-U . iiietreenentorosesssnosasssacsssssas
debugging ...ciievticnncervrrscccctsrorecveronnnes
DEFINE[X] .iiinreevereeennnossncnorsoscscostsssne
DEFINEQIX] NL® ...t iiernnreonososveseoscsvosssas
dot NOtAtionN ...iiieiirertnvaroneanesroccocnrrans
DWIM ... iiiereecncccnnne tesesesessessesescrsnne
EQLX;Y] SUBR .eveveeevns teteesnervecrrserreesvons

1 ¢+ 1
]
F-3

. -
(<.} o

.

eq aaaaaaaa €0 0 0 0G0 NLLELEPILLIEERGEIEPIIEIEIOIOOBOIENINOPIEOOLEOS
EQUAL[X;Y] ooooo '."0;0l""l.l.'.ll't!.l'.......
Bqual PP AL I EIPIICOIEIIRIROECEIIOIOIEOIOEOIOIIOGEOEOETOIEEOEES

. s

€SCape Charactercocernscanosessscsnsrnossnse
EVAL[X] SUBR ...ccveven R Y
eval format ...cccceeivresrvessventossososcocasons
EVALQTcieeerenenanns tetesesssvsanetoenecens
FASSOC[X;Y] LR I I I R A I BRI IR I A R I I I S B RS B A S N I I AN)
files ...t eiernanncrnans ceseaas Cetecsessercanans
FLAST[X] .0 6000000080080 000000000005000080008000000
FLENGTH[X] tesieseseteecsness sttt seseatns
FMEMBEX Y] civenenveocvosossasssnssnsossssensssss
FNTH[X;N] 9 0 F 00000 PRIV ENINLIELIOCEOEOIOIIOIEOIENILOIOON
function definition cellcieevvceccncevcans
functional arguments Cessstsanssersnressacne
garbage collectioncicceccetriitctcccrconnnne
GETD[X] SUBR ..vivversesnnnnssancensosecsnosssoens
line-buffering ceesesecsecsssseans cees
LINELENGTH[N] SUBRccc.e. seeesetseserrresnens
LISTP[X] SUBR ...iveiennoceneas teesescsesassceanes
1iStS .. iieriennnens Seetesessesserssssrtesenasc o
LOAD[FILE;LDFLG;PRINTFLG]) ecesessesersecnes
LOGOUT[] SUBRccvee cesseseseeerssessssecentee
NLISTPIX] tititiieoeesessasacesosoanonsosnsessans
NOBIND i .iiiererenssnceroeosscsconnosasosovnsossoe
null-check ...ivceeceee e e sssessenesnseressre s e e
predicates sesesesesteasesnsesessssesevses
PRETTYDEFcc.c.. testeersersescensetrrennnoens
PRETTYPRINT ...iieveveceosnoocscosososoonocoonoonoss
PRINTLEVEL[N] SUBR seevesressevncssrnnane

-]

-]

-]

-
-4

INDEX.2.1

prompt character
property list ..

pushdown list

PUTD[X;Y] SUBR .
RADIX[N] SUBR ..

REENTER (tenex command)
RETURN (break command)

rubout

LR)

square brackets
SYSIN[FILE] SUBR

SYSOUT[FILE] EXPR

TENEX
true

U.B.A.

\
)
« (typed by syst

(error message)
value cell ...
variable bindings
o (carriage-return) .,.
(typed by system)
% (escape character)
. notation
: (typed by system)

(typed by system)

LI

S AP0 0BV I BLEVIOIOELIOEPNOEIENIOSIILIOIOEOLOILOEOIEOEDOSELODL

ccccc s s e e e

LA B A I B I B I B B R B B Y A Y

Che L L eI P PELOILILPOINLEOINIOEOIEOEOLIOGEIESEES

® 0 PV IOLILONIINROREIONIRIOEOEOIEOEERSIIOROTEOEEOTOEEO

l..0...0.000.!..0..'.000.'.0.0000

e es e

C9E PO PIELIOSIOIQCELIEOIEOEOIEOIPIPIPROIVTTOETDS
03008 sv 00000000t errene

PSS NIISICNNINIOEIIIOIEOPEOESISEOEITTIEBOOS

©sseP P LIV OCELINOIPIBOEOANIEOIIITOIOEOROEOIEOTEEOETNITOTIEOETSN

PSPPI PN LRELIISIIIOIEINIOEOEOEININOVINOECEOEILIOECOEILIETIOETYS

ccccc o0

LECEC R RN S SN A}

LU B A A I R A R A A R

® LGN OCLIOPIIOOLIEIOOIELIOEQRCEOEOIETOITPOETDS

LA A I I I R I R R A N A I I I R S

(U V W) (value of ARGLIST)

S0 r POV LOLILELEBEOIOIOIIPIOEONTSIS

et 00 ecs s

LA RS N R N N N N N N NN RN

....... $0 00000 ts 000000000

ooooo LA I I I I I I A R A SR SR Y)

LA I I R I A I AN A A S A AN A Ay

AL B I I A B IR A R B R B R A A A)

$PseP P00 POCLNOSPIIEIPLIELICEIEELNOIS

@06 0600000000000 00sGGLBLILILILGIEGIOLES

¢SOV SINIEOGENIOEOEOPEOIOIEOITOIOEORPIOIEOETPRNEOE

S8 20000 000000000000 0000000sNsRTRLE

em)

INDEX.2.2

® PO LI ONELIETIEOVIOEOEPINIOPEOOLOLIOEIEOLOIOESIEEOE

Page
Numbers

6,8

o o

BNDRD R NENDWRWNDOOGNNOMWWD LS
-
=)
-
©

s e

NNNNNNNNDNNNNDNDNNNNNNDNNNDNNNNNN DN

-
-]

. o

SECTION 3
DATA TYPES, STORAGE ALLOCATION. AND GARBAGE COLLECTIONI

INTERLISP operates ‘in aﬁ 18-bit address space. This address space is divided
into 512 word pages with a limit of 512 pages, or 262,144 words, but only that
portion of address space' currently in use actually exists on any storage
medium. INTERLISP itself and- all data storage are contained within this
address space. A pointer to a data element such as a number, utbl,*qtc.. is

simply the address of the data element in this 18-bit address space.

-3.1 Data Types

The data types of INTERLISP are Iists. atoms, pnames, arrays, large and small
integers, floating point numbers, string» characters .and string pointers.

Compiled cecde and hash'arrays are currently included with arrays.

In the descriptions of the various data type# given below, for each data type,
first the input syntax and output format are doséribed that 1s.vwhat'1nput
sequence will cause tho INTERLISP read program to construct an olcmont of that
type, and how the INTERL!SP print program will print such an element. Next,
those functions that construct elements of that data type are given. Note that
some data types cannot be input, they can only be constructed, e.g. arrays.
Finally, the format in which an element of that data type is stored in memory
is described. ‘ w

el K R I RN R N SR LR R e OO G D Y D R D P D S D EP S D O R D D M D D R D D P S S D W e e - o

This section was written by A. K. Hartley.

3.1

3.1.1 Literal Atoms

A literal atom is input as any string of non-delimiting characters that cannot
be interpreted as a number. The syntatic characters that delimit atoms are
space, ond-of—line.z line-feed, % () *] and [. However, these characters may

be included in atoms by preceding them with the escape character ¥%.

Literal atoms are printed by print and prin2 as a sequence of characters with

%'s inserted before all delimiting characters (so that the atom will read back
in properly). Literal atoms are printed by prinl as a sequence of characters
without tﬁese extra X%'s. For example, the atom consisting pf the five
characters A, B.'C. (, and D will be printed as ABCX(D by print and ABC(D by
prinl. The extra X's are an artifact of the print program; they are not stored

in the atom's pname.

Literal atoms can be constructed by pack, mkatom, and gensym (which uses.

mkatom).

Literal atoms are unique. In other words, if two literal atoms have the same
pname, i.e. print the same, they will always be the same identical atom, that’
is, they will always have the same address in memory, or equivalently, they

will always be gg.3 Thus 1if pack or mkatom is given a 1list of characters

corresponding to a literal atom that already exists, they return a pointer to
that atom, and do not make a new atom. Similarly, if the read program is given
as input of a sequence of characters for which an atom already exists, it

returns a pointer to that atom.

[l ettt dededtdll el d LA AL E LT R LT X R PR R R T N N

2 An end-of-line character is traﬁsmitted by TENEX when 1t sees a
carriage-return.

Note that this is not true for strings, large integers, floating point
numbers, and lists, i.e. they all can print the same without being eq.

3.2

A literal atom is a 3 word (36 bits) datum containing:

, [PRoPERTY LisT TOP LEVEL BINDING
WORD 1I: (COR) - (CAR)
0 7 18 35
WORD 2: FUNCTION CALLING INSTRUCTION
0 35
. ' TRESERVED FOR FUNCTIONS
0 7 18 35
FIGURE 3-|

Car of a literal atom, i.e. the right half of word 1, contains its top level
binding, initially the atom NOBIND. Cdr of the atom is a pointer to its
property list, initially NIL.

Word 2, the function definition cell, is a full 36 bit word, containing an
instruction to be executed for calling the function associated with that atom,
if any. The left half differs for different function types (i.e., EXPR, SUBR,

or compiled code); the right half is a pointer to the function definition.4

The pname cell, the left half of the third word, contains a pointer to the
pname of the atom. The remaining half word is reserved for an extension of

INTERLISP to permit storing function definitions on files.

4 This use of a full word saves some time in function calls from compiled

code in that we do not need to look up the type of the function definition
at call time.

3.3

3.1.2 Pnames

The pnames of atoms.5 pointed to in the third word of the atom, comprise
another data type with storage assigned as it is needed. This data type only
occurs as a component of an atom or a string. It does not appear, for example,

as an element of a list.

Pnames have no input syntax or output format as they cannot be directly

referenced by user programs.
A pname is a sequence of 7 bit characters packed 5 to a word, beginning at a

wofd boundary. The first character of a pname contains its length; thus the

maximum length of a pname is 126 characters.

3.1.3 Numerical Atoms

Numerical atoms, or simply numbers, do not have property lists, value cells,
functions definition colls,»or explicit pnames. There are currently two types

of numbers in INTERLISP: integers, and floating point numbers.

Integers

The input syntax for an integer is an optional sign (¢ or -) followed by a

P e e Y T R E R R P R P R R R T R R R R A L R L L L R AR L Ll A ol ol ol ol il

All INTERLISP pointers have pnames, since we define a pname simply to be
how that pointer is printed. However, only literal atoms and strings have
their pnames explicitly stored. Thus, the use of the term pname in a
discussion of data types or storage allocation means pnames of atoms or
strings, and refers to a sequence of characters stored in a certain part of
INTERLISP's memory.

3.4

sequence of digits, followed by an optional Q.% If the Q is present, the digits
are interpreted in octal, otherwise in decimal, e.g. 77Q and 63 both correspond
to the same integers, and in fact are indistinguishable internally since no

record is kept of how integers were created.

The setting of radix (Section 14), determines how integers are printed: signed

or unsigned, octal or decimal.

Integers are created by pack and mkatom when given a sequence of characters

observing the above syntax, e.g. (PACK (LIST 1 2 (QUOTE Q))) = 10. Integers
are also created as a result of arithmetic operations, as described in Section

13.

An integer is stored in.one 36 bit word; thus its magnitude must be less than
2'35.7 To avoid having to store (and hence garbage collect) the values of small
integers, a few pages of address space, overlapping the INTERLISP machine
language code, are reserved for their representation. The small number pointer
ttself, minus a constant, is the value of the number. Currently the range of
‘small’ integers'is -1536 thru +1535. The predicate smallp is used to test

whether an integer is 'small'.

While small integers have a unique representation, largé_integers do not. 1In
other words, two large integers may have the same value, but not the same
address in memory, and therefore not be eq. For this reason the function egqp

(or equal) should be used to test equality of large 1nteders.

and terminated by a delimiting character. Note that some data types are
self-delimiting, e.g. lists.

If the sequence of digits used to create the integer is too large, the high
order portion is discarded. (The handling of overflow as a result of
arithmetic operations is discussed in Section 13.)

3.9

Floating Point Numbers

A floating point number is input as a signed integer, followed by a decimal
point, followed by another sequence of digits called the fraction, followed by
an exponent (represented by E followed by a signed integer).8 Both4signs are
optional, and either the fraction following the decimal point, or the integer
preceding the decimal point may be omitted. One or the other of the decimal
point or exponent may also be omitted, but at least one of them must be present
to distinguish a floating point number from an integer. For example, the
following will be recognized as floating point numbers:
5. 5.00 5.01 .3 SE2 85.1E2
SE-3 -5.2E+6

Floating point numbers are printed using the facilities provided by TENEX.
INTERLISP calls the floating point number to string conversion routinesg using
the format control specified by the function fltfmt (Section 14). fltfmt is
initialized to T, or free format. For example, the above floating point
numbers would be printed free format as:

5.0 5.0 5.01 .3 500.0 510.0

.005 -5.2E6

Floating point numbers are also created by pack and mkatom, and as a result of

arithmetic operations as described in section 13.

A floating point number is stored in one 36 bit word in standard PDP-10 format.
The range is +2.94E-39 thru +1.69E38 (or 2¢-128 thru 2t127).

and terminated by a delimiter.

9 Additional information concerning these conversidns may be obtained from

the TENEX JSYS Manual.

3.6

3.1.4 Lists

The input syntax for a list is a séquenco (at least ono)’o of INTERLISP data
elements; e.g. 1literal atoms numbers, other 1lists, etc. enclosed 1in
parentheses or brackets. A bracket cén be used to terminate several Jists,

e.g. (A (B (C], as described in Section 2.

If there are two or more elements in a list, the final element can be preceded
by a . (delimited on both sides), indlcating that cdr of the fihal node in the
list is to be the element immediately following the ., e.g. (A . B) or
(A B C . D), otherwise cdr of the last node in a list will be NIL.Z! Note that
the input sequence (A B C . NIL) is thus equivalent to (A B C), and that (A B .
(C D)) is thus equivalent to (A B C D). Note however that (A B . C D) will

create a list containing the five literal atoms AB . C and D.
Lists are constructed by the primitive functions cons and list.

Lists are printed by printing a left parenthesis, and then printing the first
elemént of the 1ist,12 then printing a space, then printing the second element,
etc. until the final node is reached. Lists are considered to terminate when
cdr of some node is not a list. If cdr of this terminal node is NIL (the usual
case), car of the terminal node is printed followed by a right parenthesis. If

cdr of the terminal node is not NIL, car of the terminal node is printed,

LI DY PR R R YRR Y R Y ¥ X P S O S PT NN PP TGP E ceceeoeET TS ETE OB eww

10 () is read as the atom NIL.

11 note that in INTERLISP terminology, a list does not have to end in NIL, it
is simply a structure composod of one or more conses.

12

The individual elements of a list are printed using prin2 if the list is
being printed by print or prin2, and by prini if the list is being printed

by prini.

3.7

followed by a space, a period, another space, cdr of the terminal node, and
then the right parenthesis. Note that a list input as (A'B C . NIL) will print
as (A B C), and a list input as (A B . (C D)) will print as (A B C D). Note
also that printlevel affects the prihting of lists to teletype, and that
carriaﬁe returns may be inserted where dictated by linelength, as described in

Section 14.

A list is stored as a chain of list nodes. A list node is stored in one 36 bit
word, the right half containing car of the list (a pointer to the first element
of the list), and the left half containing cdr of the list (a pointer to the

next node of the‘list).

3.1.5 Arrays

An array in INTERLISP is a one dimensional block of contiguous storage of
arbitrary length. Arrays do not have input syntax; they can only be created by
the function array. Arrays are printed by both print, prin2, and gglg_} as ¢
followed by the address of the array pointer (in octal). Array elements can be

referenced by the functions elt and eltd, and set by the functions seta and

setd, as described in Section 10.

Arrays are partitioned into four sections: a header, a section containing
unboxed numbers, a section containing INTERLISP pointers, and a 'sectibn
containing relocation information. The last three sections can each be of
arbitrary length (including 0); the header is two words long and contains the
length of the other sections as indicated in the diagram below. The unboxed
number region of an array is used to store 36 bit quantities that are not
INTERLISP pointers, and therefore not to be chased froh during garbage
collections, e.g. machine instructions. The relocation informaion is used when

the array contains the definition of a compiled function, and specifies which

3.8

locations in the unboxed region of the array must be changed if the array is

moved during a garbage collection.

The format of an array is as follows:

HEADER WORD O ADDRESS OF RELOCATION
INFORMATION LENGTH
WORD | USED BY GARBAGE ADDRESS OF POINTERS
COLLECTOR

FIRST DATA WORD -
~NON-POINTERS

POINTERS

RELOCATION
INFORMATION

FIGURE 3-2
The header contains:

word 0 right length of entire block=ARRAYSIZE+2.

left

address of relocation information relative to word 0 of
block (> 0 if relocation information exists, negative
if array is a hash array, 0 if ordinary array).

word 1 right address of pointers relative to word 0 of block.

left

used by garbage collector.

3.1.6_ Strings

The input syntax for a string is a ", followed by a sequence of any characters .
except " and %, terminated by a ". " and % may be included in a string by

preceding them with the escape character X. '

3.9

Strings are printed by print and prin2 with initial and final "'s, and %'s

inserted where necessary for it to read back in properly. Strings are printed

by prini without the delimiting "'s and extra %'s.

Strings are created by mkstring, substring, and concat.

Internally a string is stored in two parts; a stfing pointer and the sequence
of characters. The INTERLISP pointer to a string is the address of the string
pointer. The string pointer, in turn, contains the character position at which
the string characters begin, and the number of characters. String pointers and

string characters are two separate data types.Ia

and several string pointers
may reference the same characters. This method of storing strings permits the
creation of a substring by creating a new string pointer, thus avoiding copying

of the characters. For more details, see Section 10. .

String characters are 7 bit bytes packed 5 tc a word. The format of a string

pointer is:

OF CHARACTERS |5 ™ ADDRESS OF STRING + CHARACTER
POSITION

(0] 19 IS 35

FIGURE 3-3

The maximum length of a string is 32K (K=1024) characters.

13 String characters are not directly accessible by user programs;

3.10

3.2 Storage Allocation and Garbage Collection

In the following discussion, we will speak of a quantity of memory being
assigned to a particular data typé. meaning that the space is reserved for
storage of elements of that type. Allocation will refer to the process used
to obtain from the already assigned storage a particular location for storing

one data element.

A small amount of storage is assigned to each data type when INTERLISP is

started; additional storage is assigned only during a garbage coilection.

The page is the smallest unit of memory that may be assigned for use by a
particular data type. For each page of memory there is a one word entry in a
type table. The entry contains the data type residing on the page as well as
other information about the page. The type of a pointer is determined by

axamining thé appropriate entry in the type table.

Storage is allocated as is needed by the functions which create new data

elements, such as cons, pack, mkstring. For example, when a large integer is

created by iplus, the integer is stored in the next available location in the
space assigned to integers. If there is no available locatioh. a garbage

collection is initiated, which may result in more storage being assigned.

The storage allocation and garbage collection methods differ for the various
data types. The major distinction is between the types with elements of fixed
length and the types with elements of arbitrary length. List nodes, atoms,
large integers, floating point numbers, and string pointers are fixed length;
all occupy 1 word except atoms which use 3 words. Arrays, pnames, and strings

(string characters) are variable length.

Elements of fixed length types are stored so that they do not overlap page

3.11

boundaries. Thus the pages assigned to a fixed length type need not be
adjacent. If more space is needed, any empty page will be used. The method of
allocating storage for these types employs a free-list of available locations;
thﬁt is, each. available location contains a pointer to the next available
location. A new element is stored at the first location on the free-list, and

the free-list pointer is updated.14

Elements of variable length data types are allowed to overlap page boundaries.
Consequently all pages assigned to a particular variable length type must be
contiguous. Space for a new element is allocated following the lhst space used

in the assigned block of contiguous storage.

when INTERLISP is first called, a few pages of memory are assigned to each dgta
type. When the ailocation routine for a type determines that no more space is
available in the assigned storage for that type, a garbage collection is
initiated. The garbage collector determines what data is currently in use and
reclaims that which is no longer in use. A garbage collection may also be

initiated by the user with the fuqction reclaim (Section 10).

Data in use (also called active data) is any data that.can be 'reached’' from
the currently running program (i.e., variable bindings and functions in
execution) or from atoms. To find the active data the garbage collector
‘chases' all pointers, beginning with the contents of the push-down lists and
the components (i.e., car, cdr, and function definition cell) of all atoms with

at least one non-trivial component.

- - - - " > " Y W P R e S S R P W WS e e W R T TR SR T W R AR YR D D W D R W P R R R AP R P P Y Y SR R 4D S Y S e W e

14 The allocation routine for 1list nodes 1is more complicated. Each page
containing list nodes has & separate free list. First a page is chosen
(see CONS for details), then the free list for that page is used. Lists
are the only data type which operate this way.

3.12

When a previously unmarked datum is éncounterod, it is marked, and»qll pointers
contained in it are chased. Most data types are marked using bit tables; that
is tables containing one bit fbr each datum. Arrays, however, are marked using

a half-word in the array header.

When the mark and chase process is completed, unmarked (and thqroforo unused)
space is reclaimed; Elements of fixed léngth types that are no longer active
are reclaimed by adding their locations to the free-list for that type. This
free list allocation method permits reclaiming space without moving any data,
thereby avoiding the time consuming process of updating all pointers to moved
data. To reclaim unused space in a block of storage assigned to a variable
length type, the active elements are compagted toward the beginning of the
storage block, and then a scan of‘all active data that can contain pointers to

the moved data is performed to update the pointers.

Whenever a garbage collection of any type is 1n1tiated.15 unused space fof all
fixed length types is reclaimed since the additional cost is slight. However,
space for a variable length typo'is reclaimed only when that type initiated the

garbage collection.

If the amount of storage reclaimed for the type that initiated the garbage
collection is less than the minimum free storage requirement for that type, the
garbage collector will assign enough additional storage to satisfy_the minimum
free storage requirement. The minimum free storage requirement for each data
may be set with the function minfs (Section 10). The garbage collector assigns
additional storage to fixed length types by finding empty pages, and adding the

appropriate size elements from each page to the free 1list. Assigning

L T T N e T e e % e v O e e e e W S W N e e G e e e Ge G ae m

collection' means either the type that ran out of space and called the
garbage collector, or the argument to reclaim.

3.13

additional storage. to a variable length type involves finding empty pages and
moving data so that the empty pages are at the end of the block of storage

assigned to that type.

In addition to increasing the storage assigned to the type initiating a garbage
collection, the garbage collector will attempt to minimize garbage‘collectibns
by assigning more $torage to other fixed length types according to the
following algorit.hm.t6 If the amount of active data of a type has increased
since the last garbage collection by more than 1/4 of the minfs value for that
type, storage is increased (if necessary), to attain the minfs value. If
active data has increased by less than 1/4 of the minfs value, available
storage 1is increased to 1/2 minfs. If there has been no increase, no more
storage is added. For example, if the minfs setting is 2000 words, the number
of active words has increased by 700, and after all unused words have been
collected there are 1000 words available, 1024 additional words (two pages)
will be assigned to bring the total to 2024 words available. If the number of
active words had increased by only 300, and there were 500 words available, 512

additional words would be assigned.

3.3 Shared INTERLISP

The INTERLISP system initially obtained by the user is shared; that is, ali
active users of INTERLISP are actually using the same pages of memory. ASs a
user adds to the system, pri#ata pages are added to his memory. Similarly, if
the user changes anything: in the original shared INTERLISP, for example, by

advising a system function, a private copy of the changed page is created.

16 We may experiment with different algorithms.

3.14

In addition to the swapping time saved by having several users accessing the
same memory, the sharing mechanism permits a large saving in garbage collection
time, since we do not have to garbage collect any data in the shared system,
and thus do not need to chase from any pointers on shared pages during garbage

collections.

This reduction in garbage collection time is possible because the shared system
usually is not modified very much by the user. If the shared system is changed
extensively, the savings in time will vanish, because once a page that was
initially shared-is made private, every pointer on it must be assumed active,
because it may be pointed to by something in the shared system. Since every
pointer on an initially shared but now private page can also point to private

data, they must always be chased.

A user may create his own shared system with the function makesx'. If several
people are using the same system, making the system be shared will result in a
savings in swapping time. Similarly, if a system is 1ara§ ahd seldom modified,
making it be shared will result in a reduction of garbage collection time, and

may therefore be worthwhile even if the system is only being used by one user.

makesys[file] ‘ creates a saved file in which all pages in this
system, including private user pages, are made
read execﬁte. i.e. shared. This System can then
be run via the TENEX command RUN, or GET and
START.

For example, new INTERLISP systems are brought up by loading the appropriate
compiled files and then performing,makesys[LISP.SAV].l7

-------------------------------------- L R L R P P T R R L P P Y Y E Y

makesys 1is also advised to set the variable makesysdate to (DATE), i.e. the
time and date the system was made.

3.15

Index for Section 3

ARRAY[N;P;V] SUBR

se0sv e et

array headerceceercasnssoroscsossrscssossssocss

array pointer

6o s s s 00000000

coeo e s

ArraysS ...ceoecsscess tesesseersrsssesessasereerena

AtOMS . ccvevrnnoncesns vee

es esess 00000

9evevs v v

Carriage’return R RN W AN A A S AT NE B A S B BN)
compacting ceeesesessecstesssssessnsss
CONCAT[X1;%X2;...;Xn] SUBR® ...evvvees

CONS[{X;Y] SUBR o

ERC IR A A I A N R

e 0 escs o

data tYPES ciiicertcscscrosrrrsnsrsncenscscnsoenns

E (in a floating point number)

ELT[A;N] SUBR

*ss 00 ev s

s eve00000 0

ELTD[A;N] SUBR R R N N A A S A A I A A A A
Gnd'Of'line S0P s s eI P LIS INAGIOIIPLEPOLIOVIOGEOOLENOEEEGEOES

EQP[X;Y] SUBR

teeveersoeve

escapecharacter .'l.'l.l.'..'."'Q.‘O'.'.OC‘;O‘.
floating point numbersc.eccvoocsrcssrososcas
FLTFMT[N] SUBR 8 9 68 0P 00 P0G IBLINISIIOENININCEOLIEOEPOLTPEETS

free-1listcc00ceee .o
function definition cell

se v s esses

T eo s v o0

e s 0es s e

garbage collectionccvecccercncccncssssvonnss
GENSYM[CHAR] .OQ.I.O'00“..i......lll...l!..."..'
hash arrays 8 6 8 8 8 0 P O U GO OOV P 0SSP BV EPOOS PSSO PEE TSNS
integers ceesseces evessscensesetveesssserves

large integers

00000 s e

000000 s 00

11"9‘feed ooooooooooooo te 0 s e esecccserres s
LINELENGTHIN] SUBR ...ccvveveevensonsssnssccossans

LIST[X1:X2;...:Xn] SUBR*
list nodes e
lists crssssssenae
literal atoms e
MAKESYS[FILE] EXPR -

ssee et

s s v s s v

e 00 v secee o

se v 000 s e
te0s 00000000
9 s 0 Ve eI

Se s o0 s s s 000

MAKESYSDATE (system variablelparameter) cecevene
"INFS[N TYP]4 SUBR 8 8 0 B 0P T O E I PO EIEENEPR e PRNIES
MKATOM[x] SUBR 4 8 0 6 5 8 6 0 0 00 08 OGS ENN OIS0l

MKSTRING[X] SUBR
NOBIND e 8 6 8 6 & 858 600 en e

LRCRC A I I 2K B 2 I

Pereprsesves

ee v 0000 s 0000

OCtAl .. .tiiteecasncocacavsrsrosnsossnssasnensnnse
PACKEX] SUBR .. cviieeccocecsorvanssrsanssacoocans .
page tesesssesasesresnsecate et s st asssse s e
pname cell etveecesesceresresseacesasens
Dnames LR RN B A S S A S R I SR A I I R I A 2K 2K 2 I I I I B
pointer cecsstsesscensssesrtacsrnenrre

PRINI[X;FILE] SUBR S RN R I R N N I A I IO O
PRINZ[IX;FILE] SUBR ...ivcieiecnncsnncnnsncancnnns
PRINT[X;FILE] SUBR €0 0000600000000 000000000000000
PRINTLEVEL[N] SUBR R R R R R I R A R R R N N RN N

private pages ...ccces .

ee o s 0 s 080000

ss 000000000

property list teeecesesessasvensensrnnnnes

Q (following a number) ...

RADIX[N] SUBR o

LR R A N SO

s e 00 s eenesee

s 0000000000

RECLAIM[N]} SUBR tetcesesessssasereersscsees
relocation information (in arrays) ..

RUN (tenex command)

CRCIC I SN RN N U)

SETA[A;N;V] € 6 0 0 500000 LITOISIDNIOINEBDEELIEGSOOSNY
SETD[A;N;VJ € 5 0 P PGP LLERNILIOOEOPNNONIITRINOOENIISENTEOETS

INDEX.3.1

- e o o & s & s o
1 OW
—
[

.4 6,11

N
]

-
|
- .
-

WWWWWWLWWWwWWWwWwWwWwwwwbw
w

e & o o « o o s o o o

P RN, O VRN AR NR WA= NNNG OO

%aclm 1= =

.
(<]
-y
-

o e « o o o « o o s o e s ® s o
[}

WWWWLWWWWWRWWWWRWWWWWLWWWRWWWWNWWLOWWWWLWLWLWLWLW

e o ¢ o & o

Otn—-@-aonmzuhnm;ohaN-ﬁ-bw-—hamc»—-m

Shared pages ‘.QO..QOOQ".'.l...l."......‘ll.i'.
shared system

sharing

small integers

SMALLP[N]
space ..

------- A N N R R

® s 00000000

oooooooooo S 400000000000t rseIsstORTNe

storage allocation

string characters
string pointers

strings

L A R I R N R I S S N S

(followed by a number)
character)

PO OB LLEI NN BEICEIPNOIOEOIIOGEOEOROEBOEOOIOGOES

% (escape

LEC I I Y

LI R S ¥

ad ™ ¢ ¢ N~

LI BN

L IR

SRV LN ILLILEIPINIIRELOERONIINIOGEOENCEIOEOEPLONEOOLEDLEOES

PO LN LCELITIOIOIIRNCEIPVINIIEOIOIOEOLIEOIOEOETNTS

SUBSTRING[X;N;M] SUBR
TENEX

R I R N A R I

SO LLLLIINNPILILILOLEOCENIEOIOIOIONIOIOENIUIOEIOIOOIOROOLOOOLEEEES

PP LI ILPOIILIIIEOLIOEIPVNTNEOIOOOEBROCEOIONBEOES

e PP LINLIIIINIELIOICOIEIIOIOLIOIIPRIIOIEOVLOROEOROIOES

P00 s 0scs 000 s 00RO ELRELLRLEDS

L N N N Y R RN RN
S 4P ELEINNIINNIOIOIERIEOINOEOIOEOREOESIOIONOGIETOIEGEE

A N N N N Y N RN RN

AR AL AL BU I I I I I B Y B B S A BT SE BN N S NPy

V9O LN IITIIEONILIOIELIILEONINIIIONEIBIRIOIROIIERIOIROOES

unboxed numbers (in arrays)
L]

M N N N Y N YRR R

LA AR R RN R NN BRI R NI NN I NP RN

$EO L L0000 00000000 EENELEIOOROIOEERNOIOIGEOEOTSDS

(in a floating point number)

® 9 000N LPLLILNIINIININNIENPIOIESIOIEEIOSIOERIOIOEOIBROIODOLS S

INDEX.3.2

®* 00000000 es e
SR sL LB OLNOEIUEPIOIOINIIOIEOLIEOECQOETDS

LA AL IR 2R B BB BN BE I IR IR BN A N IR B RS R 'Y

L N R

Page
Numbers

0-11
0-11

[y,

e e o o & o o

&NOQ&NNNGNON&-A-A:-NQ

- - OO «
- s
e O

-
[
[

e oA R R AR P AN AR A G AR R KERY XY XY XY XY

8 8 o & + e ¢ o s s

SECTION. 4
FUNCTION TYPES AND IMPLICIT PROGN

In INTERLISP, each function may independently have:
a. its arguments evaluated or not evaluated;
b. a fixed number of arguments or an 1ndefinite number of arguments,
c. be defined by an INTERLISP expression, by built-in machine code, or by

compiled machine code.

Hence there are twelve function types (2 x 2 x 3).

4.1 Exprs

Functions defined by INTERLISP expressions are called exprs. Exprs must begin

with either LAMBDA or NLAMBDA,I indicating whether the arguments to the
function are to be evaluated or not evaluated, respectively. Folldwing the

LAMBDA or NLAMBDA in the expr is the 'argument list', which is either

(1) a list of literal atoms or NIL (fixed number of arguments); or

(2) any literal atom other than NIL, (indefinite number of arguments).

Case (1) corresponds to a function with a fixed number of arguments. Each atom

in the 1list is the name of an argument for the function defined by this

1 Where unambiguous. the term expr is used to refer to either the function,

or its definition.

4.1‘

expression. When the function is called; its arguments will be evaluated or
not evaluated, as dictated by whether the definition begins with LAMBDA or
NLAMBDA, and then paired with these argument names.z This process is called
"spreading” the arguments, and the functibn is called a spread-LAMBDA or a

spread-NLAMBDA.

Case (2) corresponds to a function with an indefinite number of arguments.
Such a function is called a nospread function. If its definition begins with
NLAMBDA, the atom which constitutes its argument list is bound to the 1list of
arguments to the function (unevaluated). For example, if FOO 1is defined by
(NLAMBDA X --), when (FOO THIS IS A TEST) is evaluated, ‘X will be bound to
(THIS IS A TEST).

If a nospread function begins with a LAMBDA, indicating its arguments are to be
evaluated, each of its n arguments are evaluated and their values stored on the
pushdown list. The atom folloﬁing the LAMBDA is then bouﬁd to the nuﬁber of
arguments which have been evaluated. For example, if FOO is defined by
(LAMBDA X --) when (FOO A B C) is evaluated, A, B, and C are evaluated and X is
bound to 3. ‘A built-in function, arg[atm;m], is available for computing the
value of the mth argument for the lambda-atom variable atm. arg is described

in section 8.

4.2 Compiled Functions

Functions defined by expressions can be compiled by the INTERLISP compiler, as

Note that the function itself can evaluate selected arguments by calling
eval. In fact, since the function type can specify only that all arguments
are to be evaluated or none are to be evaluated, if it is desirable to
write a function which only evaluates some of its arguments, e.g. setq, the
function is defined as an nlambda, i.e. no arguments are evaluated in the
process of calling the function, and then included in the definition itself
are the appropriate calls to eval.

4.2

described in section 18, "The Compiler and Assembler". Functions may glso be
written directly in machine code dsing the ASSEMBLE directive of the compiler.
Functions created by the compiler, whether from S-expressions or ASSEMBLE

directives, are referred to as compiled functions.

4.3 Fun.ction' Type

The function fntyp returns the function type of its argument. The value of

fntyp is one of the following 12 types:

EXPR CEXPR SUBR
FEXPR CFEXPR FSUBR
EXPR* CEXPR* SUBR*

FEXPR® CFEXPR® FSUBR*

The types in the first column are all defined by expressions. The types in the
second column are compiled versionsbof the types in' the first column', as
indicated by the prefix C. 1In the third column are the parallel types for
built-in subroutines. Functions of types in the first two rows have a fixed
number of arguments, i.e., are spread functions. Functions in the third‘ and
fourth rows have an indefinite numbef of arguments, as indicated by thé
suffix *.’ The prefix F 1nd1cates no evaluation of arguments. Thus, for_'

example,‘a CFEXPR* is a compiled form of a nospread-NLAMBDA.

A standard feature of the INTERLISP system is that no error occurs if a spread
Junction is called with too many or too few arguments. Lf a function is called
with too many arguments, the extra arguments are evaluated but ignored. If a
Junction 1is called with too few arguments, the unsupplied ones will be
delivered as NIL. In fact, the Jfunction itself cannot distinguish between
being given NIL as an argument, and not being given that argument, e.g.,
(FO0) and (F0O NIL) are exactly the same for spread functions.

4.3

4.4 Progn

progn is a function of an arbitrary number of arguments. progn evaluates the

arguments in order and returns the value of the last, i.e., it is an extension

of the function prog2 of LISP 1.5. Both cond and lambda/nlambda expressions

have been generalized to permit 'implicit progns' as described below.

4.5 Implicit Progn

The conditional expression has been generalized so that each clause may contain

n forms (n > 1) which are interpreted as follows:

(COND
(P1 E11 E12 E13)
(P2 E21 E22) (1]
(P3)
(P4 E41))

will be taken as equivalent to (in LISP 1.5):

(COND

(P1 (PROGN E11 E12 E13))

(P2 (PROGN E21 E22))

(P3 P3) [2]

(P4 EAl)

(T NIL))
Note however that P3 is evaluated only once in [1], while it is evaluated a
second time if the expression is written as in [2]. Thus a clause in a cond
with only a predicate and no following expression causes the value of the
predicate itself, if non-NIL, to be returned. Note also that NIL is returned

if all the predicates have value NIL, i.e., the cond 'falls off the end'. No

error is generated.

LAMBDA and NLAMBDA expressions also allow implicit progn's; thus for example:

4.4

(LAMBDA (V1 V2) (F1 V1) (F2 V2) NIL)
is interpreted as:
(LAMBDA (V1 V2) (PROGN (F1 Vi) (FZVYZ) NIL))
The value of the last expressionAfoilqwihg LAMBDA (or ﬁ;AﬁBDA) is returned as

the value of the entire expression. In this examplg. the fdnction wou1d a1ways

return NIL.

4.5

Index for Section 4

Page
Numbers

ARG[LVAR;M] FSUBR ...eveesvcscccossocsscssscssonne
argument evaluationccecvevoccrcrrccnsecscns
argument list e caescsesseresressensacss e
ASSEMBLEccovevens teecusaesesneccasererenrasns
CEXPR (function type) ...cveceasesvcscsanscassnne
CEXPR® (function type) .e.veevcarecocossoccsssons
CFEXPR (function type) ...vecevscecocscocveccrnns
CFEXPR® (function tyPe) .ciciceoceccocncsnsososss
compiled functions ceceseesrescersernesee
compileriieeicniccnnes enhessssaensssseseresesan
COND[C1;C2;...;Cn] FSUBR® . ..vesvcnvronnssnssnnna
EVAL[X] SUBR Ceeesrvrreteeestessurtoansenna
EXPR (function type)civeerecrcnsvcsncnconcan
EXPR® (function type) .ceeosrevvvesscccessososnsa
EXPrS ciivvecne eeeceanenron Ceseseeseerrscesenuos
FEXPR (function type) ..ccocecececcosccsoccacncoe
FEXPR* (function type) censereesressessanaue
fixed number of argumentsccevesvccconcsvccnons
FNTYP[X] o"aolll-...'!lU'l.ll".......'....'..OQ.OO
FSUBR (function type)vececees cesestesessane
FSUBR* (function type) ..c.ccveccsovevenssasocnee
function typescve. heseseesnsescessscsnnens
implicit prognciieiinrreestscssccnscsascones
incorrect number of argumentscccccecsccncs
indefinite number of argumentscc00r0000
LAMBDA . ..cvveeicvvervennns Veesessesesnssrseernnus
NLAMBDA00.. ceecseseceesescscsarsctrorenas
nospread functionscciccveccecsvcsoncccrrens
PROGN[X1;X2;...:Xn] FSUBRY ...iveeeeeconorsvssans
pushdown listccieneererocossacscsnsrssensescs
spread functionsS ...ccceeercvacveccasrsvoccccocnce
spreading arguments ...cccseesncnsasensrssesannea
SUBR (function type) eesesescasrnssssscsessa
SUBR* (function type)ceecensecoccssnnscnsses
too few arguments ceereeeseststesencstarsans
too many argumonts S 0 0 0 0 0 0 DO PP OO DO NSO OE NS ENDE B

- 0N
9
N

e & e o

¢« e s e o

.

o e o & & e o

8
(78]

LK
NN
N - -
L -3

e o e o o

[- O O N - N A - G S i - - A Y - W N R)
WWWWNNNDBDNR R NWBRBRWWRWWRWWEWWNDLWNWWWWWer

INDEX.4.1

SECTION 5

"PRfHITIVE FUNCTIONS AND. PREDICATES

5.1 Primitive Functions

car[x]

cdrix]

caar[x] = car[car[x]]‘
cadr{x] = carf{cdr{x]]
cddddr({x] =

cdricdr{cdr{cdr{x]]13]

cons[x;y]

car gives the first olement of a list X, or the
left element of a dotted pair x. For literal
atom, value is top level binding (value) of the
atom. For all other nonlists, e.g. strings,

arrays, and numbers, the value is undefined, i.e.,

it is the right 18 bits of x.

cdr gives the rest of a list (all but the first
element). This is also the right member of a
dotted pair. If x is a literal atom, cdr{x] gives
the proberty list of x. Property 1lists are
usually NIL' unless modified by the user. The
value of cdr is undefined for other nonlists, i.e.

it is the left 18 bits of x.

All 30 combinations of nested cars
and cdrs up to 4 deep are included
in the system. All are compiled

open by the compiler.

cons constructs a dotted pair of x and y. If y is

a list, x becomes the first element of that list.

8.1

cons[x;y] is placed

To minimize drum accesses the following algorithm
is used for finding a page on which to put the
constructed INTERLISP word.

1) on the page with y if y is a list and there is room;

otherwise

2) on the page with x if x is a list and there is room;

otherwise

3) on the same page as the last cons if there is room;

otherwise

4) on any page with a specified minimum of storage, presently 16 LISP

words.

conscount[]

rplacd[x;y]

value is the number of conses since this INTERLISP

was started up.

Places the pointer y in the decrement, i.e. cdr,
of the cell pointed to by x. Thus it physically
changes the internal 1list structure of X, as
opposed to cons which creates a new list element.
The only way to get a circular list is by using
rplacd to place a pointer to the beginning of a
list in a spot at the end of the list.

The value of rplacd is x. An attempﬁ to rplacd
NIL will cause an error, ATTEMPT TO RPLAC NIL,
(except for rplacd[NIL;NIL]). For x a literal
atom, rplacd(x;y] will make y be the property list
of x. For all other non-lists, rplacd should be
used with care: it will simply store Yy in the left
18 bits of Xx.

5.2

rplaca(x;y] similar to rplacd, but replaces the address
' pointer of x, i.e., car, with y. The value of
rplaca is x. An attempt to rplaca NIL will cause
an error, ATTEMPT TO RPLAC NIL, (except for
rplaca[NIL;NIL]). For x a literal atom,
rplaca[x;y] will make y be the top level value for
%x. For all other non-lists, ghlggg should be used
with care: it will simply store y in the right 18
bits of Xx.

Convention: Naming a function by prefixing an existing function name with [
usually indicates that the new function is a fast version of the
old, t.e., one which has the same definition but compiles open and
runs without any °'safety’ error checks.

frplacd(x;y] Has the same definition as rplacd but compiles
open as one instruction. Note that no checks are
made on X, so that a compiled frplacd can clobber

NIL, producing strange and wondrous effects.

frplaca[x;y] Similar to frplacd.
quote[x] " This 1s a function that prevents its arguments

from being evaluated. Its value is x itself, e.g.

(QUOTE F00) is F00.7

kwote[x] , (LIST (QUOTE QUOTE) x),
if x=A, and y=B, then
(KWOTE (CONS x y))= (QUOTE (A . B)).

WD RS N S me AR A D G ED ER G e G AR S T W P G R TR P D D P SR R R e G5 S D R D AR A P D R A OB G W R AR R e S T P AR P P R A D AN e D e G P A e W e

Since giving quote more than one argument, e.g. (QUOTE EXPR (CONS X Y)), is

almost always a parentheses error, and one that would otherwise go

undetected, quote itself generates an error in this case,
. PARENTHESIS ERROR.

5.3

cond[cl;cz;...;ck]

selectalX;y i¥yi...:¥,:2]

The conditional function of INTERLISP, cond, takes
an indefinite number of arguments c,,C,, ... Cy,
called clauses. Each clause c; is a list ‘911 oo
e,4) of n 21 items, where the first element is
the predicate, and the rest of the.elements the
consequents. The operation of cond can be
paraphrased ‘as IF ey THEN @54 ... €4
ELSEIF ey, THEN e,, ... €., ELSEIF e44 ...

The clauses are considered in sequence as follows:
the first expression €44 of the:clause ¢y 1is
evaluated and its‘ Nvalue is classified as false
(equal to NIL) or true (not equal to NIL). If the
value of e,, is true, the expressions g, .. eni
that follow in clause c; are evaluated in
sequence, and the value of the conditional is the
value of eni’ the last expression in the clause.
In particular, if gél. i.e., if there is only one
expression in the clause c;, the value of the
conditional is the value of gli'b (which is

evaluated only once).

If e,y is false, then the remainder of clause ¢,
is ignored, and the next clause Cist is
considered. If no €44 is true for any clause, the

value of the conditional expressidn is NIL.

selects a form or sequence of forms based on the
value of its first argument x. Each y, is a list
selection key. The operation of selectq can be

paraphrased as:

5.4

IF x=s, THEN 84 o0 Oy
ELSEIF x=s, THEN ... ELSE z.

If $; is an atom, the value of x is tested to see
if it is eq to 8; (not evaluated). If so, the
expressions 0111"' ey are evaluated in sequence,
and the value of the'selectg is the value of the

last expression evaluated, i.e. Oki®

If s; is a list, the value of x is compared with
each element (not evaluated) of 54, and if x is eq
to any one of them, then ey to e, are evaluated

in turn as above.

If Yy 1is not selected in one of the two ways
described, y,,, is tested, etc., until all the y's
have been tested. If none is selected, the valuo'
of the selectq is the value of 2. 2z must be

present.

An example of the form of a selectq is:

[SELECTQ (CAR X)
(Q (PRINT FOO)
(FIE X))
((AEIOU)
(VOWEL X))
(COND
((NULL X)
NIL)
(T (QUOTE STOP]

which has two cases, Q and (AE I OU) and a

default condition which is a cond.

selectq compiles open, and is therefore very fast;

5.5

progl[xi;xz;...:xn]

prognlXxy iXy i-..iX,]

prog[args;ei;ez; oo ;on]

however, it will not work if the value of x is a
list, a large integer, or floating point number,

since selectq uses eq for all comparisons.

evaluates its arguments in order, that is, first
X4» then x,, etc, and returns the value of 1its
first argument x,, e.g. (PROG1 X (SETQ X Y)) sets

x to y, and returns x's original value.

progn evaluates each of its arguments in order,
and returns the value of its last argument as its
value. progn is used to specify more than one
computation where the syntax allows only one, e.g.
(SELECTQ ... (PROGN ...)) allows evaluation of

several expressions as the default condition for a

selectq.

This function allows the user to write an ALGOL-
like program containing INTERLISP expressions
(forms) to be executed. The first argument, args,
is a list of local variables (must be NIL if no
variables are used). Each atom in args is treated
as the name of a local variable and bound to NIL.
args can also cpntain lists of the form
(atom form). In this case, atom is the name of
the variable and 1is bound to the value of form.
The evaluation takes place before any of the
bindings are performed, e.g.,
(PROG ((X Y) (Y X)) ...) will biﬁd x to the value
of y and y to the (original) value of Xx.

5.6

go[x]

returnx]

The rest of the prog is a sequence of non-atomic
statements (forms) and atomic symbols used as
labels for go. The forms are evaluated
sequentially; the labels serve only as markers.
The two special functions go and return alter this
flow of control as described below. ‘Tho value of
the prog is usually specified by the function
return. If no return is executed, i.e., if the

prog "falls off the end,” the value of the prog is

© undefined, i.e. garbage.

go is the function used to cause a transfer in a
gggg; (GO L) will cause the program to continue
at the label L. A go can be used at any level in
a prog. If the label is not found, go will search

higher progs within the same function, e.g.

- (PROG == A -= (PROG -- (GO A))). If the label is

not found in the function in which the prog
appears, an error is generated, UNDEFINED OR_

" ILLEGAL €0.

A return is the normal exit for a prog. Its
argument is evaluated and is the value of the prog

in which it appears.

If a go or return is executed in an interpreted function which is not a prog,
the go or return will be executed in the last interpreted prog entered if any,

otherwise cause an error.

go or return inside o

and will

J a compiled function that is not a prog is not allowed,
cause an error at compile time.

As a corollary, gg or return in a functional argument, e.g. to mapc, will not

5.7

work compiled.

since nlsetq's and ersetq's compile as separate

functions, a go or return cannot be used inside of a compiled nlsetq or ersetq

if the corresponding prog is outside, i.e. above, the nlsetq or ersetq.

set[x;y]

setqlx;y]

setqqlx;y]

process.
that as a result,
equivalent:

‘This function sets x to y. Its value is y. If x

is not a 1literal atom, causes an error,
ARG NOT ATOM - SET. If x .is NIL, causes an error,
ATTEMPT TO SET NIL. Note that set is a normal
lambda-spread function, i.e., its arguments are
evaluated before it is called. Thus, if the value
of x is ¢, and the value of y is b, then set[x;y]
would result in ._(_:_ h.aving value b, and b being

returned as the value of set.

An nlambda version of set: the first argument is
not evaluated, the second is.2 Thus if the value
of X is C and the value of Y is B, (SETQ X Y)
would result in X (not C) being set to B, and B
being returned. If x is not a iiteral atom, an
error is generated, ARG NOT ATOM - SET. If x is
NIL, the error ATTEMPT TO SET NIL is generated.

Like setq except that neither argument is
evaluated, e.g. (SETQQ X (A B C)) sots X to
(A B C).

- " e W R R P e R e S W e R W R W SP D R E AD P E YS Reee

Since setq is an nlambda, neither argument is evaluated during the calling
However, setq itself calls eval on its second argument. Note
typing (SETQ var form) and SETQ(var form) to lispx is -
in both cases var is not evaluated, and form is.

5.8

rpaqlx;y] like setq, except always works on top 1level
' binding of x, i.e. on the value cell. rpaq
derives its name from rplaca quote, since it is
essentially an nlambda version of rplaca, e.g.
(RPAQ FOO form) is equivalent to

(RPLACA (QUOTE FOO) form).

rpaqqlx;y] like setqq for top level bindings.

rpaq and rpaqq are used by prettydef (Section 14). Both rpaq and rpaqq
generate errors if x is not atomic. Both are affected by the value of dfnflg
(Section 8). If dfnflg = ALLPROP (and the value of x is other than NOBIND),
1nst§ad of setting X, the corresponding value is stored on the property list of

X under the property VALUE.

Resetvar and Resetform

resetvar{var;new-value;from] The effect of resetvar is the same as
(PROG ((var new-yalue)) (RETURN form)), except
that resetvar is designed to work on GLOBAL
variables, i.e. variables that must be reset, not
rebound (see section 18). resetvar resets the
variable (using frplaca), and then restores its
value after evaluating form. The evaluation of

form 1s errorset protected so that the value is
3

raestored even if an error occurs.” resetvar also

adds the old value of var to a global list, so

In this case, after restoring the value, resetvar propagates the error
backwards by calling error!.

5.9

that 1if the user types Control-D (or Control-C
followed by REENTER) while form is beingv'
evaluated, the variable will be restored by the
top level INTERLISP executive. The value of

resstvar is the value returned by form. resetvar

compiles open.

For example, the editor calls lispx to execute editor history

commands by performing (RESETVAR LISPXHISTORY EDITHISTORY (LISPX --)), thereby

making lispx work on edithistory instead of lispxhistory.

The behavior of many system functions is affected by c¢alling certain funétioﬁs,

as opposed to resetting variables, e.g. printlevel,llineleng__. 1nput.'outpht;‘

radix, gcgag, etc. The function resetform enables a program to treat these

functions much like variables, and temporarily change their 'setting'

resetform(formi;form2] nlambda, nospread. formi is evaluated, then ﬁggmg"
is evaluated, then formi ' is ‘'restored', e.g.
(RESETFORM (RADIX 8) (F00)) ﬁill evaluaté“(FOO)
while radix is 8, and then restore the original

setting of radix.

formi must return as 1its value its "previous
setting® so that its effects can be undone by

applying car of formi to this value.

ressatform is errorset protected like resetvar, and
also records its information on a global list so
- that after control-D (or control-C REENTER), formi

is properly restored.

§5.10

The value of resetform is the value returned by

form2. resetform compiles open.

5.2 Predicates and Logical Connectives

atom[x] ‘ - is T if x is an atom; NIL otherwise.

litatom(x] is T if x is a literal atom, i.e., an atom and not

a number, NIL otherwise.
numberp[x] is x if x is a number, NIL otherwise.

Convention: Functions that end in p are usually predicates, i.e. they test for
some conditicn. ,

stringp(x] is x if x is a string, NIL otherwise.f
arrayp(x] is x if X is an array, NIL otherwise.
listp[x] is x if x is a list-structure, i.e., one created

by one or more conses; NIL otherwise.

Note thdt arrays and strings aere not atoms, but are also not lists, {.e. both
atom and listp will return NIL when given an array or a string.

nlistp{x] : not[listp[x]]
eqlx;y] : The value of eq is T, if x and y are pointers to
a--------. -------- ‘-----‘--ﬁ---.-ﬁ--------------.--- ----- W EmEm s ms oo we -0 D a5 un w

For other string functions, see SQction 10.

5.11

neqlx;y]

nullfx]
not{x]

eqplx;y]

equal[x;y]

and[xl;xz;..

ixn]

the same structure in memory, and NIL otherwise.
eq is compiled opén by the compiler as a 36 bit
compare of pointers. Its value is not guaranteed

T for equal numbers which are not small integers.

See eqp.

The value of neq is T, if x is not eq to y, and
NIL otherwise.

eqlx;NIL]
sam3 as null, that is eq[x;NIL].

The value of eqp is T if X and y are eq, i.e.
pointers to the same structure in memory, or if X
and y are numbers and are equal. Its value is NIL

oth@rwiso.s

The value of this function is T if X and y print
identically; the value of equal is NIL otherwise.
Note that x and y do not have to be eq.

Takes an indefinite number of arguments (including
0). If all of its arguments have non-null value,
its value 1is the value of its 1last argument,
otherwise NIL. E.g. and[x;member[x;y]] will have
as its value either NIL or a tail of y. and[]=T.
Evaluation stops at the first argument whose value

is NIL.

s For other number functions. see Section 13.

5.12

or[xlzxz;...;xn]

Takes an indefinite number of arguments (including
0). Its value is that of the first argument whose
value is not NIL, otherwise NIL if all arguments
havé value NIL. E.g. or[x;numberp{y]] has 1its
value x, y, or NIL. or[]=NIL. Evaluation stops at

the first argument whose value is not NIL.

every[everyx;everyfni;everyfn2] Is T if the result of applying everyfni

some[somex;somefni;somefn2]

to each element in everyx is true, otherwise NIL.
E.g., every[(X Y Z); ATOM]=T.

every operates by computing
everyfnl[car[everyx]].a If this yields NIL, every
immediately returns NIL. Otherwise, every computes
everyfn2[everyx], or cdr[everyx] if everyfn2=NIL,
and uses this as the 'new' everyx, and the process
continues, e.g. _every[x;ATOM;CDDR] is true if

every other element of x is atomic.
every compiles open.

value is the tail of somex beginning with the
first element that satisfies somefni, i.e., for
which somefni applied to that element is true.
Value is NIL if no Quch element exists.

E.g., some[x;(LAMBDA (Z) (EQUAL Z Y))] is

equivalent to member{y;x]. some operates

Actually, everyfni[car[everyx];everyx] is computed, so for example everyfni

can look at the next element on everyx if necessary.

5.13

analagously to every. .At each stage,
somefnif car{ somex];somex] is computed, and if this
is mot NIL, somex is returned as the value of
some. Otherwise, somefn2[somex] is computed, or
cdr[somex] if somefn2=NIL, and used for the next

Somex.

some complles open.
notany[somex;somefni, somefn2] same_as.not[some[somex;somefnl;somefnZ]]
notevery[everyx;everyfhl;everyfnﬂ] not[every[everyx;everyfni;everyfn2]]

memb[x;y] Determines if x is a member of the list y, 1i.e.,
if there is an element of y eg to x. If so, its
value is the tail of the list y starting with that

-element. If not, its value is NIL.

fmemb{x;y] Fast version of memb that compiles open as a five
instruction loop, terminating on a NULL check.
Interpreted, fmemb gives an error,
BAD ARGUMENT - FMEMB, 1if y ends in a non-list
other than NIL.

member[x;y] Identical to memb except that it wuses equal

instead of eq.to check membership of x in y.

The reason for the existence of bhoth memb and member is that eq compiles as one
instruction but equal requires o function call, and is therefore considerably

more expensive. Wherever possible, the user should write (and use) functions
that use eq instead of equal.

5.14

tailp{x;y]

assoc[x;y]

fassoc[x;y]

sassoc[x;y]

Is x, if x is a list and a tatl of y, i.e., X is
eq to some number of cdrs > o7 of Y, NIL

otherwise.

Y is a list of lists (usually dotted pairs). The

value of assoc is the first sublist of y whose car

- is eq to x. If such a list is not found, the

value is NIL. Example:

assoc[B;((A . 1) (B . 2) (C . 3))] = (B . 2).

Fast version of assoc that compiles open as a 6
instruction loop, terminating on a NULL check.
Interpreted, fassoc gives an error if y ends in a

non-list other than NIL, BAD ARGUMENT - FASSOC.

Same as assoc but uses equal instead of eq.

If X is eq to some number of cdrs > 1 of y, we say x is a proper tail.

5.15

Index for Section 5

Page
Numbers

ALLPROP .. iiiiiitieiinennnnnns cesesersrresccnsnnse 5.9
AND[X1;X2;...;Xn] FSUBRXiiivevvnsocnsscccocons 5.12
ARG NOT ATOM - SET (error mesSage) ..ccceeevesons 5.8-9
ARRAYP[X] SUBRcc... cecescesssssesssesnras 5.11
BITAYS tictvesuntsessssesvsosrnssoossossssvesssossoossse 5.11
ASSOCIX:Y] cevvenveeen et sessreeccesesssessaveons 5.15
ATOMIX] SUBR ...vivevncercnnnass cecesecscssvseras 5.11
ATTEMPT TO RPLAC NIL (error MeSSAYL) +evvveevsons 5.2-3
ATTEMPT TO SET NIL (error message) ..ccececesecsse
BAD ARGUMENT - FASSOC (error message)ccceeee
BAD ARGUMENT - FMEMB (error messSage)ccccocees
CAR[X] SUBR Pe e et s sertreteevseteesss s sernass
CDR(X] SUBR L LI I I I I I B B B B B B B B I B B N R R R B R B R R N B Y A)
COND[C1;C2;...3Cn] FSUBR®iiieeeeeconnconcnnas
CONd ClAaUSE .iuiveveeoensoeovessssoososcosennossse
CONS[X;Y] SUBR P
cons algorithmocovevecvoernrooreessnoansas
CONSCOUNTIN] SUBR ... vvetcvceececnovevecannanscnss
CONtrol=-D ...ttt icirievnrorernsoscossroncncesenoss
DFNFLG (system variable/parameter)ce..
dotted paircccv0erenee sesecssesessesscenens
EQEX;Y] SUBR i iiiveeevovesosoconosnsoessossononoes
EQP[X;Y] SUBR ...eevveeees Cieecsveseceanentrseuns
EQUALIX;Y] ceviveiereeeens Precerssesstcnrensranaeae
ERROR![] SUBR st esesrseeretsssvsteserrance
ERRORSET[U;V] SUBR ..iivivvevicovovovcconcsconconsns
ERSETQ[ERSETX] NL Csessesseseetseansseeerens
EVERY[EVERYX; EVERYFNI tEVERYFN2] cievevevevvenenos
false s cessserserestseeeseesers s nes
FASSOCEX;Y] teviinnenrasosessovcoasvoconensonsosns
FMEMB[X;Y] -------- -ooo---ot.ooooo‘oacooooocu'ottc
FRPLACA[X;Y] SUBR Pessscsssesessssoseane
FRPLACDEX;Y] SUBR ..cvevreenees teesnsavressrcesens
GCGAG[MESSAGE] SUBR . ..vecvecvocrcssscenorssonons
global variables ecessesscsvsssereannns
GO[X] FSUBR® ., sesesssessesssestscncnees
ILLEGAL RETURN (error message) ...cceecoeresessas
INPUT[FILE] SUBR Ceeetetsteeseensases s
KWOTE[X] .+eveeveeces Se et sesecnesssareessssennsane
large integers sesrestsesascstsrreanes
LINELENGTHIN] SUBR ...vevvicrecocssoocsoscncsocsns
LISTP[X] SUBR teessssecteeeetsaessssans
lists Ceesesaerese e tesesssbsanosseserenee
LITATOMIX] SUBR +evvvvevvovecoooncooossesronsnnas
literal QtOmMSceieevvensoscsocosncnsonnasnans
local variables cerevnenn Cerescesevseens
MEMBLX;Y] .evevveneenns evseseerssssasassssenness aee
MEMBERLX;Y] t.vvvvvrecennnans
NEQLX;Y) ..coevn... $savnconssssansessnsnes ceervee
NLISTPLX] .ievveeencnnsonns teestesesresearsssseas
NLSETQINLSETX] NLcc..... teesscascoenne ceesae
NOBINDcciieveeecennnnns sesesesetetsnanae cev e
NOTLEX] SUBR vrenrnnnnn Seteresscescsssesascans
NOTANY[SOMEX ; SOMEFN1;SOMEFN2] ..vvevevernnncnnnne
NOTEVERY[EVERYX;;EVERYFN1;EVERYFN2] ...cevvevvcnsns
NULLEX] SUBR tivveiettenecsoensnceccosasncsannnas

&= oy

e o e e o o

« o a e o

0N O = o

o o o W

e O N

e e o o

-0

e o o o s & o

b h h et (O OO h md bk ek) bk peh b ek peh b) e N NI RO et D G0 bt e B e DO O ek bk ek e (O A NI OO e D DD ek ek e e (D

NbH SN

INDEX.5.1

Page
Numbers

NUMBERPLX] SUBR ..vvvvrvvenronoonscosoesovsoosone 5.11
NUMbersSttt enerrennne creecessressnans 5.11
OR[X1;:X2;...:Xn] FSUBR® . .i.vveeenorcnnonoosnscns 5.13
OUTPUTCFILE] SUBR cereeccerscrrerenesene 5.10
PARENTHESIS ERROR (error message):iceseceeesee
predicatescccvivenns ceeens cerecasescenes
PRETTYDEF et teseseetcssesearoeransorne
PRINTLEVEL[N] SUBRivevrivresorsosnencnccenes
PROGLARGS;E1;E2;...:EN] FSUBR® ..ieveuovecnoncoons
PROG label csesesstorersescsavnsnscone
PROGI[X1;X2;...3Xn] SUBR tvcivecensesnvocncnsanns
pROGN[Xl;XZ;...;X"] FSUBR* S0 000 LRGSO OIIEOCEOIIIOISITISLIES
proper talliicciitcretvocnvssroccsesecnanoe
QUOTE[X] NL* e evessecsnsesensesaneseret s
RADIX[N] SUBRevvevunne e rrereseseneseeranse
REENTER (tenex command)ceevencessssscconsnsa
RESETFORM[RESETX;;RESETY;RESETZ] NL vvveeevvenvans
RESETVAR[RESETX;RESETY;RESETZ] NL cevecessonccnes
RETURNLX] SUBR tvvvveeeeeessccesonnssonosasennsne
RPAQLRPAQX;RPAQYJ NL .. cviiveereccrocnencnocansns
RPAQQ[X;YI NLcvvne.. ehesesesrecrevresseaevens
RPLACALX;Y] SUBR titveeevvvronsocecsooossssnosses
RPLACD[X;Y] SUBR L B B B BN BB B BN BN BN RN BN BE BN B BE BE RN BN BN BN BN BN BN BE BN X NN 3
SASSOC[XSAS;YSAS] ceesersessentnesesanas
SELECTQIX;Y1;Y2;...5Yn;Z] NL® .. vereeenennnooess
SETIX;Y] SUBR . .ivveivnnssseceosossossssoscososns
SETQ[X;Y] FSUBR* 00N LN ILLLEOILUNOLOIEBIEPLOENIOENCEIONOIDS
SETQQUXSET;YSET] NL .vvveevevoevcconcnnancsoasasns
small integers tesesesesreseseserrsessnenene
SOME[SOMEX ; SOMEFN1 ;SOMEFN2] ...cvevenvreenncennnse
STRINGP[X] SUBR ..v.vvvevtcecaccooosossososoencoss
strings ceeees teeeresescssscssasesvascasens
tail of @ 1iSt ..uivinveerorereasoooroononssnnnns
TAILPIX:Y] cveeerennnnens crreeseesscserenoneanoas
top level Valul ...iciererevsnccocacansenssccones
R P o - O,
UNDEFINED OR ILLEGAL GO (error message)
(UNDEFINED TAG) (error message) cecceesectsaevoee
VALUE (property Name)cecoceecoccosssssanass
value cell LR B AN BB B Y IR B N B N B B N R R R RN RN N N N RN NN N R

(-~ (<] (-] -

' O
<

« e e

--tausz:a.-s--.---—».—-@maa»&w«:oﬂoﬂ»-—w-—@@ﬂo—-to--w
. AIe=WwN

s & e @

- .
U~

INDEX.5.2

SECTION 6
LIST MANIPULATION AND CONCATENATION

list[xigxz;...;xn]“ - lambda-nospread function. Its value is a list of
the values of its arguments.

append[xl;xzs...;;n] Copies the top level of the list b and appends

/ this to a copy of top level list .9 appended to

... appended to x_, e.g.
append[(A B) (CDE) (FG)]J]=(ABCDEFE6).
Note that only the first n-1 lists are copied.
However nzi is treated specialiy; i.e. append[x]
can bé used to copy the top level of a single

'list.1

The follewing examples illustrate the treatment of

non-lists.

append[(A B C);D] = (AB C . D)

append[A;(B C)] = (B C D)

append[(A'B C . D);(EF G)] = (ARBCEFG)
append[(AB C . D)]J=(ABC . D)

To copy a list to all levels, use copy.

6.1

nconcl Xy ;iXys ...,]

nconciflst;x]

teconc[ptr;x]

Returns same value as append but actually modifies

the list structure of Xy ooe Xpoge

Performs nconc[lst;list[x]]. The cons will be on

the same page as 1st.

tconc is useful for building a 1list by adding
elements one at a time at the end, i.e. its role
is similar to that of nconci. However, unlike

nconci, tconc does not have to search to the end

of the list each time it is called. It does this
by keeping a pointer to the end of the list being
assembled, and updating this pointer'after each
call. The savings can be considerable for 1long
lists. The cost is the extra word required for
storing both the list being assembled, and the end
of the list. ptr is that word: car[ptr] is the
list being assembled, cdr[ptr] is last [car{ptr]].
The value of tconc is ptr, with the appropriate
modifications to car and cdr. Example:

«(RPTQ 5 (SETQ FOO TCONC FOO RPTN)))
((54321)1)

tconc can be initialized in two ways. If ptr is
NIL, tconc will make up a ptr. In this case, the
program must set some variable to the value of the
first call to tconc. After that, it 1is

unnecessary to reset ptr since tconc physically

changes it. Thus:

?2§§rigoo (TCONC NIL 1))
«(RPTQ 4 (TCONC FOO RPTN))
((14321)1)

6.2

lconcptr;x] .

attachix;y]

If ptr is initially (NIL), the value of tconc is
the same as for ptrsNIL, but tconc changes ptr,
e.g.

+~(SETQ FOO (CONS))

{(NIL)

«(RPTQ 5 (TCONC FOO RPTN))

((54321)1)

The latter method allows the program to
initialize, and then call tconc without having to

perform setq on its value.

Where tconc is used to add elements at the end of
a list, lconc is used for buildinh a list by
adding lists at the end, i.e. it is similar to

nconc instead of nconci, e.g.

+(SETQ FOO (CONS))

(NIL)

«(LCONC FOO (LIST 1 2))
({1 2) 2)

«(LCONC FOO (LIST 3 4 5))
((12345)5)

+(LCONC FOO NIL)
((12345)5)

Note that

«(TCONC) FOO NIL)

((1 2345 NIL) NIL)

«(TCONC FOO (LIST 3 4 5))
((12345NIL(345))(345))

lconc uses the same pointer conventions as tconc

for eliminating searching to the end of the list,

. S0 that the same pointer can be givén to tconc and

lconc interchangeably.
Value is equal to cons[x;y], but attaches x to the

front of y by doing an rplaca and rplacd, i.e.
the value of attach is eq to y, which it

6.3

remove{x;1]

Convention:

physically changes. y must be a list, or an error
is generated, ILLEGAL ARG.

Removes all occurrences of §’from 1ist 1, giving a
copy of 1 with all elements equal to x removed.

Naming a Junction by prefixing an existing function with d

Jrequently indicates the new function is a destructive version of

dremove(x;1]

copy[x]

reverse(1l]

dreverse[1]

2

the old one,
‘cannibalizes its argmment(s)

i.e. 1t does not make any new structure but

Similar to remove, but uses eq instead of equal,
and actually modifies the 1ist 1 when removing x,
and thus does not use any additional storage.

More efficient than remove.

Makes a copy of the list x. The value of copy is
the copied 1list. All levels of x are copied.2
down to non-lists, so that if x contains arrays
and strings, the copy of x will contain th§ same
arrays ind strings, not copies. Copy is recursive
in the car direction only, so that very long lists

can be copied.
Reverses (and copies) the top level of a 1list,
e.g. reverse[(AB (CD))]=((CD)BA). If x is

not a list, value is x.

Value is same as that of reverse, but draeverse

----------------------------- A o W R Y

To copy just the top level of x, do append[x].

6.4»

subst[x;y:z]

dsubstix;y;z]

lsubstix;y;z]

esubst{x;y;2;f1lg]

destroys the original 1ist 1 and thus does not use
any additional storage. More efficient than

reverse.

Value is the result of substituting the S-
expression Xx for all occurrences vof the S-
expression y in the S-oxﬁression z. Substitution
occurs whenever y is equal to car of some
subexpression of 2z, or when y is both atomic and
not NIL and eq to cdr of some subexpression of z.

For example:

subst[A;B;(C B (X . B))] = (C A (X . A))
subst[A;(B C);((B C) DB C)] = (ADBC),
not (A D . A). '

The value of subst is a copy of 'z with the

appropriate changes. Furthermore, if x is a list,

it is copied at each substitution.

Similar to subst, but uses eq and does not copy z,
but changes the 1list structure z itself. Like
subst, dsubst substitutes with a copy of X. More

efficient than subst.

Like subst except x is substituted as a segment,
e.g. lsubst[(AB);Y;(XY Z)]is (X AB Z). Note
that if x is NIL, produces a copy of z with all
Y's deleted.

Similar to dsubst, but first checks to see if y

actually appears in z. If not, calls error! where

6.5

flg=T means print a message of the form X ? This
function 1is actually an implementation of the
editor's R command (see Section 9), so that y can

use &, ==, or alt-modes as with the R command.

sublis[alst;expr;flg] alst is a list of pairs:
((ug « ve) (ug o vp) ooo (uy . v)) with each uy

atomic.

The value of sublis[alst;expr;flg] is the result
of substituting each v for the corresponding y in
g;g[.a Example:

sublis[((A . X) (C . Y));(AB CD)J=(XBYD)
New structure is created only if needed, or if
flg=T, we.g. if flg=NIL and there are no
substitutions, value is eq to expr.

subpair{old;new;expr;filg] Similar to sublis, except that elements of new are
substituted for correspdnding atoms of old 1in
expr. Example: ‘
subpair{(A C);(X Y);(AB CD)] = (X8 YD)
As with sublis, new structure is created only 1f.
needed, or if flg=T, e.g. if flgsNIL and there are
no substitutions, the value is eq to expr.

If 0ld ends in an atom other than NIL, the rest of
the elements on new are substituted for that atom.

For example, if 0lds(A B . C) and pews(U V X Y Z),

3 To remember the order on alst, think of 1t as old to new, 1.e. uy - Vyo

6.6

U is substituted for A, V for B, and (X Y Z) for
C. Similarly, if old itself is an atom (other than
NIL), the entire list new is substituted for it.

Note that subst, dsubst, lsubst, and esubst all substitute copies of the

appropriate expression, whereas subpatir and sublis substitute the identical
Structure (unless flg=T).

last{x] | Value is a pointer to the last node in thé list x,
e.g. if x=(ABC) then 1last[x] = (C). 1If
x=(A B . C) last[x] = (B . C). Value is NIL if x
is not a list.

flast[x] _ Fast version of last that compiles open as a 5
instruction loop, terminating on a null-check.
Interpreted, generates an error, BAD ARGUMENT -
FLAST, if x ends in other than NIL.

nleft{1;n;tail] Tail is a tail of 1 or NIL. The value of nleft is
the tail of 1 that contains n more elements than
tail,? e.g., if xa(A B C D E), nleft[x;2]=(D E),
nleft[x;1;cddr[x]]J=(B C D E). Thus nleft can be
used to work backwards through a list. Value is
NIL if 1 does not contain n more eleqents than

tail.

lastn[1;n] Value is cons[x;y] whare‘x is the last n elements
of 1, and x is the initial segment, e.g.
lastn[(A B C D E);2]=((A B C) D E)

If tail is not NIL, but not a tail of 1, the result is the same as if tail

were NIL, i.e. nleft operates by scanning 1 looking for tail, not by
computing the lengths of 1 and tail. :

6.7

nthix;n]

fnth{x;n]

length{x]

flengthlx]

count[x]

lastn[(A B);2]=(NIL A B).

Value is NIL if 1 is not a list containing at

least n elements.

Value is the tail of x beginning with the nth
element, e.g. if n=2, value is cdr[x], if n=3,
cddr[x], etc. If p=2i, value is x, if n=0, for
consistency, value is cons[NIL;x]. If X has fewer
than n elements, value is NIL, e.g.
nth{ (A B);3]=NIL, as is nth{(A . B);3] Note that
nth{ (A . B);2]=8B.

Fast version of nth that compiles open as a 3
instruction loop, terminating on a null-check.
Interpreted, generates an error, BAD ARGUMENT -
FNTH, if x ends in other than NIL.

Value is the length of the list x where length is
defined as the number of cdrs required to reach a
non-list, e.g.

length[(A B C)] = 3

length[(AB C . D)] = 3

length[A] = 0

Fast version of length that compiles open as a 4
instruction 1loop, terminating on a null-check.
Interpreted, generates an error, BAD ARGUMENT -
FLENGTH, if X ends in other than NIL.

-

Value is the number of list words in the structure

6.8

1difflx;y;z]

Xx. Thus, count is like a leng;h that goes to all

levels. Count of a non-list is 0.

Y must be a. tail of x, i.e. eq to the result of
applying some number of cdrs to x. . ldiff{(x;y]
gives a list of all elements in x up to y, i.e.,
the list difference of x and Y. Thus

1diff{x;member[FOO;x]] gives all elements in X up
to the first FOO.

Note that the value of ldiff is always new list structure unless YNIL, 1in
which case the value is x itself.

intersection[x;:y]

union[x;y]

If z is not NIL the value of 1ldiff is effectively
nconc[z;1diff[x;y]], i.e. the list difference is
added at the end of 2z.

If y is not a tail of x, generates an error,
LDIFF: NOT A TAIL. 1diff terminates on a

null-check.

Value is a list whose elements are members of both
lists x and y. Note that intersection[x;x] gives
a list of all members of x without any

duplications.

Value is a (new) list consisting of all elements

included on either of the two original lists. It

6.9

is more efficient to make x be the shorter 1ist.0

sort[data:comparefn]° | data is a 1list of items to be sorted using

comparefn, a predicate function of two arguments
which can compare any two items on data and return’
T if the first one belongs before the second. If
comparefn is NIL, alphorder 1is wused; thus
sort[data] will alphabetize a st. If comparefn
is T, car's of items are given to alphorder; thus '
sort[a-1ist;T] will alphabetize by the car of each
itenm. sort[x;ILESSP] will sort a 1list of

integers.

The value of sort is the sorted 1list. The sort is
destructive and uses no extra storage. ' The value
returned is eq to data but elements have been
switched around. Interrupting with control D, E,
or B may cause loss of data, but control H may be
used at any time, and sort will break at a clean
state from which t or control characters are safe.
The algorithm has been optimized with respect to

the number of compares.

Note: 1f comparefn[a;b] = comparefn[b;a], then the ordering of a and b may or

6

may not be preserved.

------------------------- LR R R Y R Y T Y P Y Y YT T LT Y PR T o gy ey

The value of union is y with all elements of x not in y consed on the front
of it. Therefore, if an element appears twice in y, it will appear twice
in union[x;y]. Also, since union[(A);(A A)] = (A A), while
union[(A A);(A)] = (A), union is non-commutative.

Sort, merge, and alphorder were written by J.W. Goodwin.

6.10

For example, if (FOO . FIE) appears before (FOO . FUM) in X, sort[x;T] may or
may not reverse the order of these two elements. Of course, the user can

always specify a more precise comparefn.

merge[a;b;comparefn] - & and b are 1lists which have previously been
sorted using sort and comparefn. Value is a
destructive merging of the two lists. It does not
matter which list is longer. After merging both g
and b are equal to the merged list. (In fact.
cdrfa) is eq to cdr[b]) merge may be aborted after

control H.

alphorder{a;b] A predicate function of‘ two arguments, for
alphabetizing. Returns T if its arguments are in
order, i.e. if b does not belong before a.
Numbers come before literal atoms, and are ordered
by magnitude (using greaterp). Literal atoms and
strings are ordered by comparing the (ASCII)
character codes in their pnames. Thus
alphorder[23;123] is T, whereas
alphorder{A23;A123] is NIL, because the character
code for the digit 2 is greater than the code for
i.

Atoms and strings are ordered before all other
data types. If neithgr a nor b are atoms or
strings, the value of alphorder is T, i.e. in

order.

Note: alphorder does no unpacks, chcons, conses or nthchars. It is several
times faster for alphabetizing than anything that can bde written using
these other functions.

6.11

cplistsix;y] compares X and y and prints their differences,
i.e. cplists is essentially a SRCCOM for 1list

structures.

6.12

Index for Section 6

Page
Numbers

ALPHORDER[A;B] #0000 000 CPLNIIEIEILIILIELEEOIOESIOEBROEIOOEOS TN
APPEND[L] = et eeane ciecesasustencennes
ATTACH[X;Y] Ceecesstetnctserrtnsasesesanssas
ATTEMPT TO RPLAC NIL (error message)eoeesee.
BAD ARGUMENT = FLAST (error messSage) ...ccceeeces
BAD ARGUMENT - FLENGTH (error message)
BAD ARGUMENT - FNTH (error message)eceoecee.
copyY St e v et esecatarerrs et nset ot esennee s
COPY X i iiiititiereerotenonsovoononsonnssocensas
COUNT[X] ..vvvvennns R
CPLISTS[X;Y]) .eveeenns e secesassaseasecasnesrtoas
doestructive fUNCLIONSvivrieeronneoronsoncans
DREMOVELX;L] cvvvttrrieeeneeeteansconnoonosasnnnss
DREVERSE[L] tviviiniveevoensennssosnonanssnnncnse
DSUBSTLX;Y;2] T
ERRORIL] SUBR titivtvenernonseannsssnssnsnncaness
ESUBSTLX;Y;Z;ERRORFLG;CHARFLG]vvevvvnnconess
FLAST[X] '...Il"'0....l‘......'..'.l‘.'..'..“...
FLENGTH[X] Seesecssnererrerensevscrsssanes
FNTH[X;N] creesarssannsn L A N N N N N I Y N N SN NS
ILLEGAL ARG (error meSSage)eeceescccencces
INTERSECTIONIX;Y] tivievvivsncsnnossonsnoonnsasnne .
LAST[X] L A I I I I I I A I N A P
LASTNLL;N] Secassscrsetsrsssserecasesenes
LCONCIPTR;X] +vvvivevnennnas Ceevsecerevecessrennnse
LDIFFEX;Y3Z) cveenennnns sttt eesseeeesrenscesneens
LDIFF: NOT A TAIL (error message) cecesrevsevosnne
LENGTH[X] et sesacresrnresanaaneessereens
LISTEX1;X2:...3Xn] SUBR® ...\ 'vrveeoooroonnovnnsee
list manipulation and concatenation
LSUBSTEX Y3ZT teereiereeeeoosoesocesaconsonnsssss
MERGE[A;B;COMPAREFN]vtveeernnsoncansconcones
NCONCEX1;X2;...3XNn] SUBR® .. ivvvvrvnnencesccnoces
NCONCI[LST;X] cevecnes e esssesecsceseccacnase
NLEFTEL NS TAIL] thtiiiiiieeernnnroovesocuncncanse
NTHLX;N]} Ceecessreecrranreses e renesecnn
NULL-CheCK .. iiiiieennoeoorosesosnnscsnnsenosnsse
R (edit command) cecsesseeessessrerecsessans
REMOVELX;L] cvvitevieoetcnonsoonsecossosnnacecnes
REVERSE[L] ceeaaene teteecterretseecnenns
SORT[DATA;COMPAREFN] ...ccvevernvrnnncncnnnnonces
SRCCOM iieiennnnnne tecessasetscssevesnonons
SUBLIS[ALST;;EXPR; FLG] cesesasetenesarsesesresnoss
SUBPAIR[OLD;NEW; EXPR tFLGY ciiiiiinievrnnceonnnnss
SUBSTEX;Y3Z] ciiierevecnoeocnocnconsasssscsnsonss
TCONCLPTR;X] cvvevencooecnnonssnonnnancsascossosse
UNIONL X Y] tiiieiienetoeneecceosonssnscsncasocnnne

[

»
1

o

-3

1N
.o

-
~ -

P OOWNNODDOTNAND DD DD DD D W e

PR
[
N

OQOO\OG\OO’!O\QG\@@QO’GiOOOOOOOOG\OQGOAOO’OOQ@O\O\O\?QQO\OOGOO

¢ ¢ o o o

CNUNODO =2 DDA NN NN e -

INDEX.6.1

- SECTION 7
PROPERTY LISTS AND HASH LINKS

7.1 Property Lists

Property lists are entities associated with literal atoms, and are stored on
cdr of the atom. Property lists are conventionally lists of the form (property
value property value ... property value) although the user can store anything
he wishes in cdr of a literal atom. However, the functions which manipulate
property lists observe this convention by cycling down the property lists two
cdrs at a time. Most of these functions also generate an error, ARG NOT ATOM,
if given an argument which is not a literal atom, i.e., they cannot be used
directly on lists.

The term 'property name' or 'property' 1is used for the property indicators
appearing in the odd positions, and the term 'property value' or 'value of «a
property’ or simply ‘'value' Jfor the values appearing in the even positions.
Sometimes the phrase 'to store on the property -~-' is used, meaning to place
the indicated information on the property list under the property name --.

Properties are usually atoms, although no checks are made to eliminate use of

non~-atoms in an odd position. However, the properiy list searching functions
all use eq.

Property List Functions

put{atm;prop;val] puts on the property list of atm, the property
| prop with valvue val. val replaces any previous

value for the property prop on this property list.

Generates an error, ARG NOT ATOM, if atm is not a

literal atom. Value is val.
addpropl[atm;prop;new;flg] adds the value new to the list which is the value

of property prop on property list of atm. If flg

is T, new is consed onto the front of value of

7.1

prop, otherwise it is nconced on the end (nconci).
If atm does not have a property prop, the effect
is the same as put{[atm;prop;list[new]], for
example, if addprop[FOO;PROP;FIE] is followed by
addprop[FOO;PROP;FUM], getp[FOO;PROP] will
be (FIE FUM). The value of addprop is the (new)
property value. If atm is not a literal atom,

generates an error, ARG NOT ATOM.

remprop[atm;prop] removes all occurrences of the property prop (and
its value) from the property list of atm. Value
is prop if any were found, otherwise NIL. If atm

is not a 1literal atom, generates an error,

ARG NOT ATOM.

changeprop{ x;propi;prop2] Changes name of property propi to propZ on
property list of X, (but does not affect the value
of the property). Value is x, unless propil is not
found, in which case, the value is NiL. If x is
not a literal atom, generates ah error,

ARG NOT ATONM.

get[x;y] Gets the item after the atom y on list x. 1f y is
not on the list X, value is NIL. For example,
get[A B C D);B]=C.

Note: since get terminates on a non-list, get[atom;anything] is NIL.

Therefore, to search a property list, getp should
be used, or get applied to cdr[atom].

7.2

getpl[atm;prop] gets the property value for prop from the property
list of atm. The value of getp is NIL if atm is

not & literal atom, or prop if not found.

ANote: the value of getp may also be NIL, if there is an occurrence of prop but
the corresponding property value is NIL.

Note: Since getp searches a iist two items at a
tiﬁe; the same object can be used as both a
property name and a property value, e.g., if the
property list of atm is (PROP1 A PROP2 B A C),
then - getp[atm:A] = C. Note however that
get[cdr[atm];A] = PROP2,

getlis[x;props] searches the property list of x, and returns the
property list as of the first.property on props
that it finds e.g., if the property list of x is
(PROP1 A PROP3 B A C), |
get1is[x;(PROP2 PROP3)]=(PROP3 B A C)
Value is NIL if no element on props is found. Xx
can also bé a list itself, in which case it is

searched as above.

deflist{1;prop] is used to put values under the same property name
on the property lists of several atoms. 1 is a
list of two-element lists. The first element of
each is a literal atom, and the second element is
the property value for the property prop. The
value of deflist is NIL.

Note: Many atoms in the system already have property lists, with properties
used by the compiler, the break package, OWIM, etc. Be careful not to
clobber such system properties. The value of sysprops gives the complete
list of the property names used by the system.

7.3

7.2 Hash Links

The description of the hash link facility in INTERLISP 1is included in the
chapter on property lists because of the similarities in the ways the two
features are used. A property list provides a way of associating information
with a particular atom. A hash link is an association between ahy INTERLISP
pointer (atoms, numbers, arrays, strings, lists, et al) called the hash-item,
and any other INTERLISP pointer called the hash-value. Property lists are
stored in cdr of the atom. Hash links are implemented by computing an address,
called the hash-éddress. in a specified array, called the hash-array, and
 storing the hash-value and the hash-item into the cell with that address. The
contents of that cell, i.e. the hash-value and hash-item, is then called the

hash-link.l

Since the hash-array is obviously much smaller than the total number of
~possible hash-items.2 the hash-address computed from item may already contain a
hash-link. If this link is fromn 133@,3 the new hash-value simply replaces the
old hash-value. Otherwise, another hash-address (in the same hash-array) must

4

be computed, etc, until an empty cell is found,” or a cell containing a

hash-link from item.

When a hash link for item is being retrieved, the hash-address is computed

1 The term hash 1link (unhyphenated) refers to the process of associating
information this way, or the 'gssociation' as an abstract concept.

2 which is the total number of INTERLISP pointers, i.e., 256K.

3 eq is used for comparing item with the hash-item in the cell.

4 After a certain number of iterations (the exact algorithm 1s‘complicated),

the hash-array is considered to be full, and the array is either enlarged,
or an error is generated, as described below in the discussion of overflow.

7.4

using the same algorithm as that employed for making the hash link. If the
corresponding cell is empty, there is no hash link for item. If it contains a
hash-link from item, the hash-value is returned. Otherwise, another

hash-address must be computed, and so¢ forth.6

Note that more than one hash link can be associated with a given hash-item by

using more than one hash-array.

Hash Link Functions

In the description of the functions below, the argument array has one of three
fofms: (1) NIL, in which case the hash-array provided by the system,

syshasharray, is used;6 (2) a hash-array created by the function harray, or

created from an ordinary array using clrhash as described below; or (3) a list
car of which is a hash-array. The latter form is used for specifying what is

to be done on overflow, as described below.

harray[(n] ' creates a hash-array of size n, equivalent to
| clrhash[array(nl].
clrhash[array] ‘ sets all elements of array to 0 and sets left half

of first word of header to -1. Value is array.

puthash{item;val;array] puts into array a hash-link from item to val.

For reasonable operation, the hash array should be ten to twenty percent
larger than the maximum number of hash links to be made to it.

syshasharray is not used by the system, it is provided solely for the
user's benefit. It is initially 512 words large, and is automatically
enlarged by 50X whenever it is ‘full'. See page 7.7.

7.8

gethash[item;array]

rehash{oldar;newar]

maphash[array;maphfn]

dmphash[arrayname]

Replaces previous link from same item, if any. If
val=NIL any old 1link is removed, (hence a

hash-value of NIL is not allowed). Value is val.

finds hash-link from item in array, and returns

the hash-value. Value is NIL if no link exists.

gethash compiles open.

hashes all items and values in oldar into newar.
The two arrays do not have to be (and usually

aren't) the same size. Value is newar.

maphfn is a function of two arguments. For each
hash-link in array, maphfn will be applied to the
hash-value and hash-item, e.g.
maphash{a; (LAMBDA(X Y) (AND(LISTP Y) (PRINT X)))]
will print the hash-value for all hash-links from

lists. The value of maphash is array.

Nlambda-nospread that prints on the primary output
file a loadable form which will restore what is in
the hash-array specified by arrayname, e.g.
(E (DMPHASH SYSHASHARRAY)) as a prettydef command

will dump the system hash-array.

Note: all eq identities except atoms and small integers are lost by dumping and
loading because read will create new structure for each item. Thus if
two lists contain an eq substructure, when they are dumped and loaged
back in, the corresponding substructures while equal are no longer eq.

reloading structures containing eq substructures so that these identities:

are preserved.

7.6

Hash Overflow

By wusing an array argument of a special form, the user can provide for
automatic enlargement of a hash-array when it overflows, i.e., is full and an
attempt is made to store a hash link into it. The array argument is either of
the form (hash-array . n), n a positive integer; or (hash-array . f), f a
floating point number; or (hash-array). In the first case, a new hash-array is
created with n more cells than the current hash-array. In the second case, the
new hash array will be f times the size of the current hash-array. The third

case, (hash-array), is equivalent to (hash-array . 1.5). In each case, the old

hash-array is rplacaed into the dotted pair, and the computation continues.

If .a hash-array overflows, and the array argument used was not one of these
three forms, the error HASH TABLE FULL is generated, which will either cause a
break or unwind to the last errorset, as per treatment of errors described in

Section 16.

The system hash array, syshasharray, is automatically enlarged by 1.5 when it
is full.

7.7

Index for'Section 7

Page
Numbers

ADDPROP[ATM;PROP;NEW;FLG] .eeveeceevccossvoscnsee
ARG NOT ATOM (error message) cecsassanenaes
CHANGEPROPL X;PROP1;PROP2] +eveencsococsanonconnoss
CIRCLMAKER[L] ...cceene Cetcresenesenessesasesanes
CIRCLPRINTLL;PRINTFLG;RLKNT] .iivvenvvncoancvnnns
CLRHASH[ARRAY] SUBR ceceecssresesesasssesans
DEFLISTLIL;PROP] .ivvirveerevscossonasossssasessose
DMPHASH[L] NLx ., et eeretessasenrsaseeer e
ERRORSET[U;V] SUBR teesesesrscannesensns
GET[X;:Y) cesssn etessosesessssssesesesssons
GETHASHL ITEM;ARRAY] SUBR ..vvevevevcessonssnsoaase
GETLIS[X;FROPS] R N A R I R I A N A A A S I A A S A S AT
GETPLATMPROP] tiiireiieennnenencanensesanaannnns
HARRAY[LEN]cccireeecnee ceeevecsoccssesonernas
hash link functionsvceeeveoovensscessnsnns
hash links seseseessceassenccssetboanne e
hash overflowiiieeeoccenocccsoscssassnsossans
HASH TABLE FULL (error message)cccceeceseee
hash'addl"ess 5 2 0 0 0P OV PN ELIOERNENVRNSOEOIEIVROELEOILOEOESSY

J
[N

*® e e s e o

1
[X~

e & s e & e ® s e o

R OONONMPErr R ek, ek, LA2ALNNDARWWANNIOWOARNINN -

hash-array ..cccceces. reesestettssssesesenesroannt .4-5,7
hash-itemc00c0.. Pesessecesrrscttatnrtetanan .4-6
hash-linkcccecees etetecacsesnscessancerrans .4-6
hash=valuecciiienrsconssssvocerssssssocscncs .4-6
MAPHASH[ARRAY;MAPHFN]cccve.. “esececsesven .
Property iceccccenss teetsessassasetecerenren

property list Ceservessariverevernoes -3
property name s essisseseercevenese s e 3
‘property value tetesesncscvrsrstoetresonne »3
PUT[ATM;PROP;VAL]c.n. csesesrsescesnooronene -2

PUTHASHL ITEM;VAL;ARRAY] SUBR ..cececcerncnonnanoes
REHASH[OLDAR;NEWAR] SUBR .eiveeecencconcocecsones
REMPROP[ATM;PROP] ceesesesastseerersesns
SYSHASHARRAY (system variable/parameter)
SYSPROPS (system variable/parameter)coccaees
value of a propertyceceececesccccsevcoscsccncs

NN NN NN NN NNSNSNNNNSNSNNSNNNNNNNNNNNNNNNNSN
-
~

e @ e o & ® ¢ e & e o

INDEX.7.1

SECTION 8
FUNCTION DEFINITION AND EVALUATION

General Comments

A function definition in INTERLISP is stbred in a special cell called the
function definition cell, which is associated with each literal atom. This
cell is directly accessible via the two functions putd, which puts a definition
in the cell, and getd which gets the definition from the cell. In addition,
the function fntyp returns the function type, i.e., EXPR, EXPR% ... FSUBR* as

described in Section 4. Exprp, ccodep, and subrg are true if the function is

an expr, compiled function, or subr respectively; argtype returns
0, 1, 2, or 3, depending on whether the function is a spread or nospread (i.e.,
its fntyp ends in %), or evaluaie or no-evaluate (i.e., its fntyp begins with F
or CF); arglist returns the list of arguments; and nargs returns the number of

arguments. fntyp, éxprp. ccodep, subrp, argtype, arglist, and nargs can be

given either a literal atom, in which case they obtain the function definition

from the atom's definitidn cell, or a function definition itself.

Subrs

1

Because subrs,” are called in a special way, their definitions are stored

--—-—--—-------------------------------------u--—-.--—-----—-------—----------——

Basic functions, handcoded in machine language, e.g. cons, car, cond. The
terms subr includes spread/nospread, eval/noeval functions, i.e. the four
fntyp's SUBR, FSUBR, SUBR*, and FSUBRx.

8.1

differently than those of compiled or interpreted functions. In the right half
of the definition cell is the address of the first instruction of the subr, and
1n.the left half its argtxp‘: 0, 1, 2, or 3. getd of a subr returns a dotted
pair of argtype and address. Note that this is not the same word as appears in
the definition cell, but a new cons; i.e., each getd of a subr performs a cons.
Similarly, putd of a definition of the form (number . address), where number =
0, 1, 2, or 3, and address is in the appropriate range, stores the definition

as a subr, i.e., takes the cons apart and stores car in the left half of the

definition cell and cdr in the right half.

Validity of Definitions

Although the function definition cell is intended for function definitions,
putd and getd do not make thorough checks on the validity of definitions that
"look like" exprs, compiled code, or subrs. Thus if putd is given an array
pointer, it treats it as compiled code, and simply stores the array pointer in
the definition cell. getd will then return the array pointer. Similarly, a
call to that functidn will simply transfer to what would normally be the entry
point for the function, and produce random results if the array were not

compiled function.

Similarly, if putd is given a dotted pair of the form (number . address) where
number is 0, 1, 2, or 3, and address falls in the subr range, putd assumes it
is a subr and stores it away as described earlier. getd would then return cons
of the left and right half, i.e., a dotted pair equal (but not eq) to the
expression originally given putd. Similarly, a call to this function would

transfer to the corresponding address.

Finally, if putd is given any other list, it simply stores it away. A call to

this function would then go through the interpreter as described in the

appendix.

8.2

Note that putd does not actually check to see if the s-expression 1is vélid
definition, i.e., begins with LAMBDA or NLAMBDA. Similarly, exprp is true if a
definition is a 1list and not of the- form (number . address), number =
0, 1, 2, or 3 and address a subr address; §g§£2 is true if it is of this form.
arglist and nargs work correspondingly.

Only fntyp and argtype check function definitions further than that described
above: both argtype and fntyp return NIL when exprp is true but car of the
definition is not LAMBDA or NLAMBDA.2 In other words, if the user qses putd to
put (A B C) in a function definition cell, getd will return this value, the
editor and prettyprint will both treat it as ; definition, exprp will return T,

ccodep and subrb NIL, arglist 8, and nargs 1.

getd(x] gets the function definition of Xx. Value is the
definition.® value is NIL if x is not a literal

‘atom. or ‘has no definition.

fgetd[x] fast version of getd that compiles open as
car[vagladdi[loc[x]]]]. Interpreted, generates an
error, BAD ARGUMENT - FGETD, if X is not a literal

atom.4

T TTTT T TR Mr G e S5 SR e W AR GRS S S D W N D W T G A P Ee ED G W W M G AR T Y AR Y A S A e W e TP e e Ge e e G Y Y P e W P e N e e e e e e e

2 These functions have different value on LAMBDAs and NLAMBDAs and hence must
check. The compiler and interpreter also take different actions for
LAMBDAs and NLAMBDAs, and therefore generate errors if the definition is
neither.

3 Note that getd of a subr performs a cons, as described on page 8.2. See
footnote on fgetd below.

q

Fgetd is intended primarily to check whether a function has a definition,
rather than to obtain the definition. Therefore, for subrs, fgetd returns
Just the address of the function definition, not the dotted pair returned
by getd, page 8.2, thereby saving the cons. :

8.3

putd[x;y]

putdqlx;y]

movd[from;to;copyflg]

puts the definition y into Xx's function cell.
Value is y. Generates an error, ILLEGAL ARG -
PUTD, if x is not a literal atom, or y is a

string, number, or literal atom other than NIL.

nlambda version of putd; both arguments are

considered quoted. Value is X.

Moves the definition of from to ¢to, i.e.,
redefines to. If copyflg=T, a copy of the
definition of from is used. copyflg=T is only
meaningful for exprs, although movd works for -
compiled functions and subrs as wdll. 'The value

of movd is to.

Note: fntyp, subrp, ccodep, exprp, argtype, nargs, and arglist all can be gtven
either the name of a function, or a definition.

fntyp[fn]

Value is NIL if fn is not a function definition or
the name of a defined function. Otherwise fntyp
returns one of the following as defined in the

section on function types:

EXPR CEXPR SUBR

FEXPR CFEXPR FSUBR
EXPR* CEXPR* SUBR*
FEXPR*® CFEXPR* FSUBR®

The prefix F indicates unevaluated arguments, the

prefix C indicates compiled code; and the suffix *

indicates an indefinite number of arguments.

8.4

subrp[fn]

ccodep[fn]

exprp[fn]

argtype[fn]

fontyp returns FUNARG if fn is a funarg expression.
See Section 11.

is true if and only if fntyp[fn] is either SUBR,
FSUBR, SUBR®, or FSUBR®, i.e., the third column of

fntyp's.

is true if and only if fntyp[fn] is either CEXPR,
CFEXPR, CEXPR®, or CFEXPR*, i.e., second column of

fntyp's.

is true if fntyp[fn] is either EXPR, FEXPR, EXPR%,
or FEXPR®, i.e., first column of fntyp's.
Howgver, exprp[fn] is also true if fn is (has) a
ligt definition that:is not a SUBR, but does not
begin with either LAMBDA or NLAMBDA. In other

words, exprp is not quite as selective as fntyp.

zg is the name of a function or its definition.
The value of argtype is the argtype of fn, i.e.,
0, 1, 2, or 3, or NIL if fn is not a function.
The interbretation of the argtype is:
0 eval/spread function

(EXPR, CEXPR, SUBR)

i no-eval/spread functions
(FEXPR, CFEXPR, FSUBR)

2 eval/nospread funcﬁions
(EXPR%, CEXPR®, SUBR%®)

3 no-eval/nospread functions
(FEXPR®, CFEXPR®, FSUBR®)

i.e., argtype corresponds to the rows of fntyps.

8.5

nargs[fn]

arglist{fn]

value is the number of arguments of fn, or NIL if

fn is not a function.5

nargs uses exprp, not
fntyp, so that nargs[(A (B C) D)]=2. Note that if
fn is a SUBR or FSUBR, nargs = 3, regardless of
the number of arguments logically needed/used by
the routine. If fn is a nospread function,

nargs = 1.

value is the ‘'argument list' for fn. Note that

the ‘'argument 1list' is an atom for nospread
functions. Since NIL is a possible value for
arglist, an error is generated,

ARGS NOT AVAILABLE, if fn is not a function.’®

If fn is a SUBR -or FSUBR, the value of arglist is (U V W), if a SUBR* or

FSUBR*, the value is U.

This is merely a 'feature' of arglist, subrs do not

actually store the names U, V, or W on the stack. However, if the user breaks

or traces a SUBR (Section 15), these will be the argument names used when an

equivalent EXPR definition is constructed.

define[x]

5

The argument of define is a list. Each element of
the list is itself a list either of the form (name
definition) or (name arguménts ces)e In the
second case, following 'arguments' is the body of

the definition. As an example, consider the

i.e., if exprp, ccodep, and subrp are all NIL.

If fn is a compiled function, the argument list is constructed, i.e. each

call to arglist requires making a new list., For interpreted functions, the
argument list is simply cadr of getd.

8.6

following two equivalent expressions for defining
the function null.

1) (NULL (LAMBDA (X) (EQ X NIL)))

2) (NULL (X) (EQ X NIL))

define will generate an error on encountering an atom where a defining list is
expected. If dfnflg=NIL, an attempt to redefine a function fn will cause
define to print the message (fn REDEFINED) and to save the old definition of fn
using savedef before redefining it. If dfnflgsT, the function is simply
redefined. If dfnflg=PROP or ALLPROP, the new definition is stored on the
property list under the property EXPR. (ALLPROP affects the operation of rpaqq
and ;_b_g_q, section 5). dfnflg is initially NIL.

dfnflg is reset by load to enable various ways of handling the defining of
functions and setting of variableslwhen loading a file. For most applications,

the user will not reset dfnflg directly himself.

Note: define will operate correctly if the function 1is already defined and
broken, advised, or broken-in.

defineq[xigxi;...;xn] nlambda nospread vefsion of define, i.e., takes an
indefinite number of arguments which are not
evaluated. Each Xy must be a list, of the form

~described in define. defineq calls define, so

‘dvfnflg affects its operation the same as define.

savedef[fn] Saves the definition of fn on its property list
' '. under prbperty EXPR, CODE, or SUBR depending on

its v_f..'lEZE- Value is the property name used. If

getd[fn] is non-NIL, but fntyp[fn] is NIL, saves

on property name LIST. This situation can arise

8.. 7

unsavedef[fn;prop]

when a function is redefined which was originally’

defined with LAMBDA misspelled or omitted.

IT fn-is a 1list, savedef operates on each function
in the 1list, and its value is a 1list of the

individual values.

Restores the definition of’[ﬁ from its pfoperty '
list under property prop (see savedef above).
Value is prop. If nothing saQed under prop, and
fn is defined, returns (prop NOT FOUND), otherwise
genorates an error, NOT A FUNCTION.

If prop is not given, i.e. NIL, unsavedef looks
under EXPR, CODE, and SUBR, in that order. The
value of unsavedef is the property'namé, of if
nothing is found and fn is a function, the value
is (NOTHING FOUND); otherwise generates an error,
NOT A FUNCTION.

If dfnflg=NIL, the current definition of fn, if
any, 1is saved using savedef. Thus one can use
unsavedef to switch back and forth/ between two
definitions of the same function, keeping one on
its property list and the other in the function

definition cell.

If fn is a 1list, unsavedef operates on each
function of the list, and its value is a list of

the individual values.

8.8

eval[x]7

el x]

apply[fn;args]

eval evaluates the expression x and returns this
value i.e. eval provides a way of calling the
interpreter. Note that eval is itself a lambda
type function, so its argument is the first

evaluated, e.g.,

«SET(FOO (ADD1 3))

- (ADD1 3)

«(EVAL F0O)
4

+EVAL(FOO) or (EVAL (QUOTE F00))
(ADD1 3) _

nlambda nospread version of eval. Thus it
eliminates the extra pair of parentheses for the
list of arguments for eval. i.e., e x 1is
equivalent to eval[x]. Note however that in
INTERLISP, the user can type just x to get Xx

evaluated. (See Section 3.)

apply applies the function fn to the arguments
args. The indi&idual elements of args are not
evaluated by apply, fn is simply called with args
as its argument 1ist.® Thus for the purposes of

apply, nlambda's and lambda's are treated the

same. However 1like eval, apply is a lambda
function so its arguments are evaluated before it

is called o.g.,

M A R R T D T W AR W TS D R R S G R R O SR W D G W G W Y R WP G S B e A R P SR e R WD SS GE ED W AP W ae W W

Note that fn may still explicitly evaluate one or more of its arguments

itself, as in the case of setq. Thus
(APPLY (QUOTE SETQ) (QUOTE (FOO (ADD1 3)))) will set FOO to 4, whereas
(APPLY (QUOTE SET) (QUOTE (FOO (ADD1 3)))) will set FOO to the expression

(ADD1 3).

8.9

apply*[fn;arg,;.

evala[x;a]

rpt{rptn;rptf]

.;arg,]

«SET(FO01 3)

3

«SET(FO02 4)

4

«(APPLY (QUOTE IPLUS) (LIST FOO1 FO02]
7

Here, fool and foo2 were evaluated when the second

argument to apply was evaluated. Compare with:

«SET(FOO1 (ADD1 2))

(ADD1 2)

«SET(FO02 (SUB1 5))

(SuB1 5)

«(APPLY (QUOTE IPLUS) (LIST FOO1 F002]

NON-NUMERIC ARG
(ADD1 2)

equivalent to apply[fn;list[argl;...;argn]] For
example, if fn is the name of a functional
argument to be applied to x and y, one can write
(APPLY* FN X Y), which is equivalent to
(APPLY FN (LIST X Y)). Note that (FN X Y)
specifies a call to the function FN itself, and
will cause an error if FN is not defined. (See

Section 16.) FN will not be evaluated.

Simulates a-list evaluation as in LISP 1.5. X is a
form, a is a list of dotted pairs of variable name
and value. a is 'spread' on the stack, and then x
is evaluated, i.e., any variables appearing free
in x, that also appears as car of an element of a
will be given the value in the cdr of that

elenent.

Evaluates the expression rptf rptn times. At any

point, rptn is the number of evaluations yet to

8.10

take place. Returns the value of the 1last
evaluation. If rptn < O, rptf is not evaluated,
and the value of rpt is NIL.

Note: rpt is a lambda function, so both its arguments are evaluated before rpt
is called. For most applications, the user will probably want to use

rptq.
rptqlrptn;rptf] nlambda version of rpt: rptn is evaluated, rptf is
not, e.g. (RPTQ 10 (READ)) will‘performvten calls
to read. rptq compiles open.
arglvar;m] : Used to access the individual arguments of a
lambda nospread function. arg is an nlambda
function used like set var is the name of ' the
atomic argument 1list to a lambda-nospread
function, and is not evaluated; m is the number of
the desired argument, and is evaluated. For
example, consider the following definition of
iplus in terms of plus.
[LAMBDA X
(PROG ((M 0)
(N 0))
LP (COND
((EQ N X)
(RETURN M)))
(SETQ N (ADD1 N))
[SETQ M (PLUS M (ARG X N)))
(GO LP] .
The value of arg is undefined for m less than or
equal to 0 or greater than the value of !g;.g
Lower numbered arguments appear earlier in the
form, e.g. for (IPLUS A B C),
G e mmeecsera~eram— .- emceem e ————-

For lambda nospread functions, the lambda variable is bound to the number
of arguments actually given to the function. See Section 4.

8.11

setarg{var;m;x]

arg[X;1]=the value of A,
arg[X;2]=the value of B, and

arg[X;3])=the value of C.

Note that the lambda variable should never be
reset. However, individual argumenhts can be reset

using setarg described below.

sets to x the mth argument for the lambda nospread
function whose argument list is var. var is
considered quoted, m and x are evaluated; e.g. in
the previous example, (SETARG X (ADD1 N)(MINUS M))

would be an example of the correct form for

setarg.

8.12

a-list

ADVISED (ﬁroperty name)

ALLPROP

APPLY[FN;ARGS] SUBR

APPLY*[FN

ARG[VAR;M] FSUBR

ARGLIST[X

;ARG1;
] *

Index for Section 8

ooooooo

* e 0

.3ARGn] SUBR*

ooooooooooooo

s s s 000

LAY

s e e

L R I A

ARGS NOT AVAILABLE (error message)

ARGTYPE[FN] SUBR

argument list .

BAD ARGUMENT - FGETD (error message)

ooooo

ooooooo

BROKEN (property name)

BROKEN=-IN (property name) ..

CCODEPLFN

CEXPR (function type)

] SUBR

s oo v o s e

s e 0w e

LRI SR BN I)

s v v

Pee 00280000

CRCRCRE N A B A)
ee s s 0000
trevevovooe
.o
LRI N)

ooooooo LRI

Se v eco e s o0

LA B BN A K N B B RE Y B A I BB A)

s e

S 06000 ss00s 0000 e

s e o e

s e e

«as 000

e e oo

oooooooo

CEXPR* (function type) ..

CFEXPR (function type)
CFEXPR* (function type)
CODE (property name)

DEFINE[X]
DEFINEQL X

DFNFLG (system variable/parameter)
E[XEEEE] NLx
EVAL[X] SUBR

EVALALX;A

EXPR (property name) ..
EXPR (function type) ...
EXPR* (function type)

EXPRP[FN]

se s v e

Tesevesessece

LEC I I A A A I

LRI RCRE NI R BN B B I Y

.

®s 0 0r v ers s eNesee

] NL*

co0 s 00000

$O VeIV IIITOIEIIEEIEVTOEOITEOIEOIITOLES

9800000006020 000 0PSRN NERLE

ss e e
e s 0 b0 0000

s e s e 0000 e

L R A A)

J SUBR

SUBR

------ e e 00

* e e e

FEXPR (function type) ...

FEXPR* (function type)

FGETD[X]
FNTYP[X]

FSUBR (function type)

oooooo

oooooo

oooooo

«oe

s e e s 00000 e

*o 00000000

LA R A R A)

ee e 00

L)

s e s 0000060000
ee e es e

LU R I R N I I I I B B R B Y B Y)

PP e s 00 ersees s

LRI B B B 2L 2 A A B B N RN B R B B R N SN I A Y

s e s 0 s 00

e e v s
s 0000000
s s e ev e

.o

I N EP LR IOIIIIITCEEIIIOEIEVYNOEOEEOEY

e ees 00

se 0 v

e e s 0000000000

oooooooo

FSUBR* (function type)

FUNARG (function type)
function definition and evaluation
function definition cell .

*se v e

sa e

functional argument

GETD[X] SUBR .
ILLEGAL ARG - PUTD (error message) .
INCORRECT DEFINING FORM (error message)
interpreter

-LAMBDA

..

oooooo

co ey

LIST (property name)
MOVD[FROM; TO;COPYFLG]

NARGS[X]
NLAMBDA
nospread

e s 006000

¢ s 00

o 00

LA AN

ces v oo

CRCRCA B)

e s 0

s s 00 e

ts e e 0

s e s
e s s 00000

LI BN AR S R)

seececsccne
ses s s e

ccccccccc

LRI I R A I N B A A A A A A I)

* P v0 b o0

NOT A FUNCTION (error message)
(NOT FOUND) ...
(NOTHING FOUND) .

PROP[X;Y]
PUTDLX;Y]
PUTDQL X; Y

REDEFINED (typed by system)

ooooo

SUBR
J NL

ooooo

ooooo

e e s e ev e

LRC I I }

e e

s e e e

LRI R B A

LI 2L I BN B Y B Y

oo

0 s 00000

AACECRC I B I IR A A B R B S N B I B S I N Y

erses v ecs v

sesevosvoe

LR R)

ee e

LA

ee s e e

L

® 00 r s N OB LOLLNLOEPPIONOLIOIRLEPLOIGIOIEOIOEOIOLIOLEEOLES

INDEX.8.1

LRI R Y U BE B SR K IR IR B A B R A

Page
Numbers

(-]

LN -]

]
&%
L
(<))

1 &=
]
o

L] 1
[] N w

e & & e+ o
1

N$L§&&b;wLLQboNA»aprab»waaahuzoo&vowanbauwﬂmuum»»»ovvw

.
UL

[]
(-}

e o o
[1 &~
O\QI(:) (LN RAN N W]
~

1Ot
W Ne=
- N
~

(3]
®

%
-
(-]

PRI ROPORIIRIRPIAIRITIRRERERIRNIRITRERERROREIIOOOTITIORPIRIOOORO®
]
-3

RPT[RPTN;RPTF]

RPTQ[RPTN;RPTF] NL

SAVEDEF[X]

SETARG[VAR;M;X] FSUBR

spread

........

D A I B A

oooooooo

SUBR (function type) ..

SUBR (property name)

SUBR* (function type) .

SUBRP[FN] SUBR
subrs 000

UNSAVEDEF[X; TYP]

00000 s o000 00

LA R c e s 00
DR I A N I Y .
900 v ser e
RN RN EE X eo e e
PR] ®0 00000
LECEC I AR A A N) .

ee v s s

eseences o

....... Sa s EEsEEBALINILEIEIIEEEDNTS

U (value of ARGLIST) ..
(U V W) (value of ARGLIST)

nnnnnn

cccccc

INDEX.8.2

G006 00t 00000000000

e e oo

LRI

o v s ev 00 0s e

S ee s eees 000000000

Page
Numbers

DD = = DN D -
-

- o Re-No-Ro-Re-Na-le.)

SECTION 9
THE INTERLISP EDITOR!

The INTERLISP editor allows rapid, convenient modification of 1list structures.
Most often it 1# used to edit function definitions, (often while the function
itself is running) via the function editf, e.g., EDITF(FOO). However, the
editor can also be used to edit the value of a variable, via editv, to edit a
property list, via editp, or to edit an arbitrary expression, via edite. It is
an 1ﬁportant feature which allows good on-line interaction in the INTERLISP

system.

This chapter begins with a lengthy.lntroduction intended for the new user. The

reference portion begins on page 9.15.

9.1 Introduction

Let us introduce some of the basic editor commands, and give a flavor for the
editor's language structure by guiding the reader through a hypothetical

editing session. Suppose we are editing the following incorrect definition of

append:

1 The editor was written by and is the rosponsibility of W. Teitelman.

9.1

[LAMBDA (X)
Y
(COND
((NUL X)
Z)
(T (CONS (CAR)
(APPEND (CDR X Y]

We call the editor via the function editf:

~EDITF(APPEND)
EDIT
®

The editor responds by typing EDIT followed by %, which is the editor's prompt

character, i.e., it signifies that the editor is ready to accept commands.z

At any given moment, the editor's attention is centered on some substructure of
the expression being edited. This substructure is called the current
expression, and it is what the user sees when he gives the editor the command
P, for print. Initially, the current expression is the top vlovoﬁl one, 1.e.,
the entire expression being edited. Thus:

xp
(LAMBDA (X) Y (COND & &))
®

Note that the editor prints the current expression as though printlevel were
set to 2, 1i.e., sublists of sublists are printed as &. The command ? will
print the current expression as though printlevel were 1000.

x?

(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND (CDR X Y))))))

3

and the command PP will prettyprint the current expression.

In other words, all lines beginning with * were typed by the user, the rest
by the editor.

9.2

A positive integer is interpreted by the editor as a command to descend into

the correspondingly numbered element of the current expression. Thus:

#2
xp
(X)
=

A negative integer has a similar effect, but counting begins from the end of
the current expression and proceeds backward, i.e., -1 refers to the last
element in the cﬁrrent expression, -2 the next to the last, etc. For either

positive integer or negative integer, if there is no such ¢lement, an error

occurs.‘3 the editor types the faulty command followed by a ?, and then another

%, The current expression is never changed inhen a command causes anm error.

Thus:

*p
(X)

2 7
%1
*p

A phrase of the form 'the current expression 1is changed’' or 'the current
expression becomes' refers to a shift in the editor's attention, not to a
modification of the structure being edited.

When the user changes the current expression by descending into it, the old

current expression is not lost. Instead, the editor actually operates by

T T T T T = T T W W e e R e W P e YR B S e R G D O G R R S e e W e e G U e e e e W S e P e e e

'Editor errors' are not of the flavor described in Section 16, i.e., they
never cause breaks or even go through the error machinery but are direct
calls to error! indicating that a command is in some way faulty. What
happens next depends on the context in which the command was being
executed. For example, there are conditional commands which branch on
errors. In most situations, though, an error will cause the aditor to type
the faulty command followed by a ? and wait for more input. Note that
typing control-E while a command is being executed aborts the command
exactly as though it had caused an error.

9.3

maintaining a chaein of expressions leading to the current one. The current
expression is simply the last link in the chain. Descending‘adds the indicated
subexpression onto the end of the chain, thereby making it be the current
expression. The command 0 is used to ascend the chain; it removes the last
link 6f the chain, thereby making the previous link be the current expression.
Thus:

®xp

X

®0) P

(X)

*0 -1 9
(COND (& Z) (T &))
®

Note the use of several commands on a single line in the previous output. The
editor operates in a line buffered mode, the same as evalgqt. Thus no command
is actually seen by the editor, or executed, until the line is terminated,
either by a carriage return, or a matching right parenthesis. The user can
thus use control-A and control-Q for line-editing edit commands, the same as hev

does for inputs to evalqt.

In our editing session, we will make the following corrections to append:
delete Y from where it appears, add Y to the end of the argument list.4 change
NUL to NULL, change'z to ¥, add Z after CAR, and insert a right parenthesis
following CDR X.

First we will delete Y. By now we have forgotten where we are in the function
definition, but we want to be at the "top®” so we use the command- t, which

ascends through the entire chain of expressions to the top level expression,

ke e e L

These two operations could be though of as one operation, i.e., MOVE Y from
its current position to a new position, and in fact there is a MOVE command
in the editor. However, for the purposes of this introduction, we will
confine ourselves to the simpler edit commands.

9.4

which then becomes the current expression, i.e., t removes all links except the

first one.

®et P
sLAHBDA (X) Y (COND & &))

Note that if we are already at the top, t has no effect, i.e., it is a NOP.
‘However, 0 would generate an error. In other words, t means "go to the top,"

while 0 means "ascend one link."
The basic structure_modification commands in the editor are:

(n) n > 1 deletes the corresponding

element from the current expression.

(neg ... e n,m > 1 replaces the nth element in the current
expression with
el e e 0 eml
(-n ey ... e) n,m 2> 1 inserts e; ... e, before the nth element

in the current expression.

Thus:
®p
(LAMBDA (X) Y (COND & &))
*(3)
(2 (X Y))
®p :

(LAMBDA (X Y) (COND & &))
n
All structure modificatior done by the editor is destructive, i.e., the editor

uses rplaca and rplacd to physically change the structure it was gtven.

Note that all three of the above commands perform their operation with respect

9.5

to the nth element from the front of the current expression; the sign of n is
used to specify whether the operation is replacement or insertion. Thus, there
is no way to specify deletion or replacement of the nth element from the end of
the current expression, or insertion before the nth element from the end
without counting out that element's position from the front of the list.
Similarly, because we cannot specify insertion after a particular element, we
cannot attach something at the end of the current expression using the above
commands. Instead, we use the command N (for nconc). Thus we could have
performed the above changes instead by:

*p
(LAMBDA (X) Y (COND & &))

*(LAMBDA (X Y) (COND & &))
*

Now we are ready to change NUL to NULL. Rather than specify the sequence of
descent commands necessary to reach NUL, and then replace it with NULL, e.g., 3
2 1 (1 NULL), we will use F, the find command, to find NUL:

*p

(LAMBDA (X Y) (COND & &))

*F NUL

%p

(NUL X)

(1 NULL)

0 p
((NULL X) Z)
®x

Note that F is special in that it corresponds to two inputs. In other words, F
says to the editor, "treat your next command as an expression to be searched
for." The search 1s'carried out in printout order in the current expression.
If the target expression 1is not found there, F automatically ascends and
searches those portions of the higher expressions that would appear after (in a

printout) the current expression. If the search is successful, the new current

9.6

expression will be the structure where the expression was found.5 and the chain
will be the same as one resulting from the abpropriato sequence of ascent and
descent commands. If the search is not successful, an error occurs, and

neither the current expression nor the chain is changed:a

®p .
((NULL X) 2
®*F COND P
COND ?

*p

*((NULL X) 2)
®

Here the search failed to find a cond following the current expression,
although of course a cond does appear earlier in the structure. This last
example illustrates another facet of the error recovery mechanism: to avoid
further confusion when an error occurs, all commands on the line deyond the one
which caused the,error (and all commands that may have been typed ahead while

the editor was computing) are forgotten.7

We could also have used the R command (for replace) to change NUL to NULL. A
command of the form (R e, e,) will replace all occurrences of e, in the current
expression by e,. There must be at least one such occurrence or the R command
will generate an error. Let us use the R command to change all Z's (even

though there is only one) in append to Y:

---------------------- DD D e R D T P WP R D Y D D R S S R WD Y S P P P P D G SR OB A S T S TN N G R S e G G N D G D NS G S A A

6 If the search is for an atom, e.g., F NUL, the current expression will be
the structure containing the atom.

6 F is never a NOP, i.e., if successful, the current expression after the
search will never be the same as the current expression before the search.
Thus F expr repeated without intervening commands that change the edit
chain can be used to find successive instances of expr.

7

i.e. the input buffer is cleared (and saved) (see clearbuf, Section 14).
It can be restored, and the type-ahead recovered via the command S$BUFS
(alt-mode BUFS), described in Section 22.

9.7

x¢t (RZ2Y)
xF 72
27
=pp
[LAMBDA (X Y)
{COND
((NULL X)
Y)
(T (CONS (CAR)
(APPEND (CDR X Y]

The next task is to change (CAR) to (CAR X). We could do this by
(R (CAR) (CAR X)), or by:

*F CAR

*(N X)

*p
(CAR X)
x

The expression we now want to change is the next expression after the current
expression, i.e., we are currently looking at (CAR X) in (CONS (CAR X) (APPEND
(COR X Y))). We could get to the append expression by typing 0 and then 3 or
-1, or we can use the command NX, which does both operations:

xp

(CAR X)

ANX P
(APPEND (CDR X Y))
x

Finally, to change (APPEND (CDR X Y)) to (APPEND (CDR X) Y), we could perform
(2 (CDR X) Y), or (2 (CDR X)) and (N Y), or 2 and (3), deleting the Y, and then
0 (N Y). However, 1f Y were a complex expression, we would not want to have to
retype it. Instead, we could use a command which effectively inserts and/or
removes left and right parentheses. There are six of these commands:
8I1,80,LI,LO,RI, and RO, for both in, both out, left in, left out, right in, and
right out. Of course, we will always have the same number of left parenthesss

as right parentheses, because the parentheses are just a notational guide to

9.8

structure that is provided by our print program.8 Thus, left in, left out,
right in, and right out actually do not insert or remove just one parenthesis,

but this is very suggestive of what actually happens.

In this case, we would like a right parenthesis to appear following X in (CDR X
Y). Therefore, we use the command ({RI 2 2), which means insert a right
parentheses after the second element in the second element (of the current

expression):

np

(APPEND (CDR X Y))
*(RI 2 2)

xp

(APPEND (CDR X) Y)
®

We have now finished our editing, and can exit from the editor, to test append,
or we could test it while still inside of the editor, by using the E cqmmand:

gA B) (C D E))

The E command causes the next input to be given to evalqt. If there is another
input following it, as in the above example, the first will be~app116d (apply)

to the second. Otherwise, the input is evaluated (eval).

We prettyprint append, and leave the editor.

8 Herein lies one of the principal advantages of a LISP oriented editor over
a text editor: unbalanced parentheses errors are not possible.

9.9

xpp
[LAMBDA (X Y)
(COND
((NULL X)
Y)
(T (CONS (CAR X)
(APPEND (CDR X) Y]
*0K
APPEND

-

9.2 Commands for the New User

As mentioned earlier, the INTERLISP manual is intended primarily as a reference
manual, and the remainder of this chapter 1is organized and presented
accordingly. While the commands introduced in the previous scenario constitutq
a complete set, i.e., the user could perform any and all editing operations
using just those commands, there are many situations in which knowing the right
command(s) can save the user considerable effort. We include here as part of
the introduction a 1ist of those commands which are not only frequently
applicable but also easy to use. They are not presented in any particular

order, and are all discussed in detail in the reference portion of the chapter.

UNDO undoes the last modification to the structure
being edited, e.g., if the user deletes the wrong
element, UNDO will restore it. The availability
of UNDO should give the user confidence to
experiment with any and all editing commands, no
matter how complex, because he can always reverse

the effect of the command.

BK like NX, except makes the expression immediately

before the current expression become current.

BF backwards find. Like F, except searches

backwards, i.e., in inverse print order.

9.10

\p

Restores the current expression to the expression
before the last "b;g jump", e.g., a find command,
an t, or another \. For example.‘ if the user
types F COND, and then F CAR, \ would take him
back to the COND. Another \ would take him back to
the CAR.

like \ except it restores the edit chain to its
state as of the last print, either by P, ?, or PP.
If the edit chain has not been changed since the
last print, \P restores it to its state as of the
printing before that one, 1.e., two chains are

always saved.

Thus if the user types P followed by 3 2 1 P, \P will take him back to the

first P,

i.e., would be equivalent to 0 0 0. Another \P would then take him

back to the second P. Thus the user can use \P to flip back and forth between

two current expressions.

&, -~

The search expression given to the F or BF commahd
need not be a literal s-expfession. Instead, it
can be a pattern. The symbol & can be used
anywhere within this pattern to match with any
single element of a list, and -- can be used to
match with any segment of a list. Thus, in the
incorrect definition of append used earlier,
F (NUL &) could have been used to find (NUL X),
and F (CDR --) or F (CDR & &), but not F (CDR &),
to find (CDR X Y).

Note that & and -- can be nested arbitrarily deeply in the pattern. For

9.11

example, if there are many places where the variable X is set, F SETQ may not
find the desired expression, nor may F (SETQ X &). It may be necessary to use
F (SETQ X (LIST --)). However, the usual technique in such a case is to pick
out a unique atom which occurs prior to the desired expression, and perform two
F commands. This "homing in" process seems to be more convenient than ultra-

precise specification of the pattern.

$ (alt-mode) $ is equivalent to -- aﬁ the character level, e.g.
VERS will match with VERYLONGATOM, as will SATOM,
SLONGS, (but not SLONG) and SVSNSMS. $ can be
nested inside of a pattern, e.g.,

F (SETQ VERS (CONS --)).

If the search is successful, the editor will print
= followed by the atom which matched with the $-
atom, e.g.,

*F (SETQ VERS &)
=VERYLONGATOM
»

Frequently the user will want to replace the entire current expression, or
insert something before it. In order to do this using a command of the form (n
ey ... em) or (-n 8y .. °m)' the user must be above the current expression.
In other words, he would have to perform a 0 followed by a command with the
appropriate number. However, if he has reached the current expression via an F
command, he may not know what that number is. In this case, the user would
like a command whose effect would be to modify the edit chain so that the
current expression became the first element in a new, higher current
expression. Then he could perform the desired operation via (1 ey ... °m) or

(-1 8y - em). UP is provided for this purpose.

9.12

up after UP operates, the old current expression is
the first element of the new current expression.
Note that if ﬁhe current expression happens to be
the fifst element in the next higher expression,
then UP 1sboxact1y the same as 0. Otherwise, UP
modifies the edit chain so that the new current

expression is a tailg of the next higher

expression:
*F APPEND P
(APPEND (CDR X) Y)
*Up P
... (APPEND & Y))
0 P

iCONS (CAR X) (APPEND & Y))

The ... is used py the editor to indicate that the
current expression is a tail of the next higher
expression as opposed to being an element (i.e., a
member) of the next higher expression. Note: if
the current expression is already a tail, UP has
no effect.

(B ey --. em) inserts ey ... @ before the current expression,

m
i.e., does an UP and then a -1.

(A 84 «-- °m) inserts ey ... e aftgr the current expression;
i.e., does an UP and then either a (-2 9 ... °m)

- or an (N @y oot °m)' if the current expression is

the last one in the next higher éxpression.

Throughout this chapter 'tail’ means 'proper tail' (see Section 5).

9.13

(: 8y ..o °m) replacés current expression by ey +.- O i.e.,
does an UP and then a (1 8y ... om).
DELETE deletes current expression; equivalent to (:).

Earlier, we introduced the RI command in the append example. The rest of the
commands in this family: BI, BO, LI, LO, and RO, perform similar functions and‘
are useful in certain situations. In addition, the commands ﬁBD and XTR can be
used to combine the effects of several commands of the BI-BO family. MBD is
used to embed the current expression in a larger expression. For example, if
the current expression is (PRINT bigexpression), and the user wants to replace
it by (COND (FLG (PRINT bigexpression))), he could accomplish this by (LI 1),
(-1 FLG), (LI 1), and (-1 COND), or by a single MBD command, page 9.47.

XTR is used to extract an expression from the current expression. For example,
extracting the PRINT expression froﬁ the above COND could be accomplished by
(1), (LO 1), (1), and (LO 1) or by a single XTR command. The new user is
encouraged to include XTR and MBD in his repertoire as soon as he is familiar

with the more basic commands.

This ends the introductory material.

9.14

9.3 Attention Changing Commands

Commands to the editor fall into three classes: commands that change the
current expression (i.e., change the edit chain) thereby "shifting the editor's
attention," commands that modify the structure being edited, and miscellaneous

commands, e.g., exiting from the editor, printing, evaluating expressions, etc.

Within the context of commands that shift the editor's attention, we can
distinguish among (1) those commands whose operation depends only on the
structure of the edit chain, e.g., 0, UP, NX; (2) those which depend on the
contents of the structure, i.e., commands that search; and (3) those commands
which simply restore the edit chain to some previous state, e.g., \, \P. (1)
and (2) can also be thought of‘ds local, small steps versus open ended, big
Jumps. Commands of type (1) are discussed on page 9.15-21, type (2) on page
9.21-34, and type (3) on page 9.34-36. ‘

9.3.1 Local Attention-Changing Commands '

ue (1) If a P command would cause the editor to type
' ... before typing the current expression, i.e. the
current expression is a tail of the next higher
expression, UP has no effect; otherwise
(2) UP modifies the edit chain so that the old
current expression (i.e., the one at the time UP
was called) is the first element in the new

current oxpression.IO

---------------------------- XYY R Y Y LY P YRR R LR R A R R LA L L X A & X A X J A R X d

If the current expression is the first element in the next higher
expression UP simply does a 0. Otherwise UP adds the corresponding tail to
the edit chain. -

9.18

Examples: The current expression in each case is

(COND ((NULL X) (RETURN Y))).

1. Lo B
COND
*yp P
(COND (& &))

2. %1 p
((NULL X) (RETURN Y))
xUp P
. ((NULL X} (RETURN Y))
=up p
. ((NULL X} (RETURN Y)))

3. XF NULL P

(NULL X)

xyp p

((NULL X) (RETURN Y))
xUp P

<+« ((NULL X} (RETURN Y)))

The execution of UP is straightforward, except in those cases where the current
expression appears more than once in the next higher expression. For example,
if the current expression is (A NIL B NIL C NIL) and the user perfofms 4
followed by UP, the current expression should then be ... NIL C NIL). UP can
determine which tail is the correct one because the commands that descend save
the last tail on an internal editor variable, lastail. Thus after the 4
command 1is executed, lastail is (NIL C NIL). When UP is called, it first
determines if the current expression is a tail of the next higher expression.
IT it is, UP is finished. Otherwise, UP computes

memb[current-expression;next-higher-expression] to obtain a tail beginning with

the current expression. there are no other instances of the current

expression in the next higher expression, this tail is the correct one.

The current expression should always be either a tail or an element of the
next higher expression. If it is neither, for example the user has

directly (and incorrectly) manipulated the edit chain, UP generates an
error.

9.16

Otherwise UP uses lastail to select the correct tail.!?

n(n>1) adds the nth element of the current expression to

the front of the edit chain, thereby making it be
the new current expression. Sets lastail for use
by UP. Generates an error 1if the current
expression is not a list that contains at least n

elements.

-n (n > 1) adds the nth element from the end of the current

expression to the front of the edit chain, thereby
making it be the new current expression. Sets
lastail for use by UP. Generates an error if the
current expression is not a iist that contains at

least n elements.

Sets edit chain to cdr of edit chain, thereby
making the next higher expression be the new
current expression. Generates an error 1f_ther§
is no higher expression, i.e. cdr of edit chain is

NIL.

Note that 0 usually corresponds to going back to the next higher left

12

--- D R I e R

Occasionally the user can get the edit chain into a state where lastail
cannot resolve the ambiguity, for example if there were two non-atomic
structures in the same expression that were eq, and the user descended more
than one level into one of them and then tried to come back out using UP.
In this case, UP prints LOCATION UNCERTAIN and generates an error. Of
course, we could have solved this problem completely in our implementation
by saving at each descent both elements and tails. However, this would be
a costly solution to a situation that arises infrequently, and when it
does, has no detrimental effects. The lastail solution is cheap and
resolves 99% of the ambiguities.

9.17

parenthesis,

but not always. For example, 1if the current expression 1is

(ABCDEFB), and the user performs:

*3 UP P
... CDEFG)
*3 UP P
... EF B)
®*0 P
.. CDEFOQG)

If the intention is to go back to the next higher left parenthesis, regardless

of any intervening tails, the command 10 can be used.Ia

10

NX

BK

does repeated 0's until it reaches a point where
the current expression is not a tail of the next
higher expression, i.e., always goes back to the

next higher left parenthesis.

sets edit chain to last of edit chain, thereby
making the top level expression be the current

expression. Never generates an error.

effectively does an UP followed by a 2,14 thereby
making the current expression be the next
expression. Generates an error if the current
expression is the last one in a list. (However,

INX. described below will handle this case.)

makes the current expression be the previous

T T T T T S N R N RN Ean®tnnoEdnnnese oo e S Ewwow eSS es e e e m - e e we - e

!0 is pronounced bang-zero.

Both NX and BK operate by performing a !0 followed by an appropriate

number, i.e. there won't be an extra tail above the new current expression,
as there would be if NX operated by performing an UP followed by a 2.

9.18

expression 1in the next higher expression.
Generates an error if the current expression is

the first expression in a list.

For example, if the current expression is (COND ((NULL X) (RETURN Y))):

*F RETURN P
(RETURN Y)
*BK P
(NULL X)
(NXn)n31 ' equivalent to n NX commands, except if an error
occurs, the edit chain is not changed.
(BK n) n > 1 equivalent to n BK commands, except if an error
occurs, the edit chain is not changed.
Note: (NX -n) is equivalent to (BK n), and vice versa.
INX makes current expression be the next expression at

a higher level, i.e., goes through any number of

right parentheses to get to the next expression.

For example:

xpp
(PROG ((L L)
(UF L))
LP (COND
((NULL (SETQ L (COR L)))
(ERROR!'))
([NULL (CDR (FMEMB (CAR L)
(CADR L]
(GO LP)))
(EDITCOM (QUOTE NX))
(SETQ UNFIND UF)
(RETURN L))
*F COR P
(COR L)
*NX

NX 7

*INX P

(ERROR!)

XINX P

((NULL &) (GO LP))
®INX P

(EDITCOM (QUOTE NX))
x

INX operates by doing 0's until it reaches a stage where the current expression
is not the last expression in the next higher expression, and then does a NX.
Thus !NX always goes through at least one unmatched right parenthesis, and the
new current expression is always on a different level, i.e., !NX and NX always

produce different results. For example using the previous current expression:

*F CAR P
(CAR L)
*INX P
(GO LP)
=\p P
(CAR L)
*NX P
(CADR L)
®

(NTHn) n ¢ 0 equivalent to n followed by UP, i.e., causes the
list starting with the nth element of the current

expression (or nth from the end if n < 0) to

9.20

become the current expression.15 Causes an error
if current 6xprassion does not have at least n

elements.

A generalized form of NTH using location specifications is described on page

9.32.

9.3.2 Commands That Search

All of the editor commands that search use the same pattern matching routine.

16

We will therefore begin our discussion of searching by describing the pattern

match mechanism. A pattern pat matches with x if:

1.
2.
3.
4.
5.

6a.

(NTH 1) is a NOP, as is (NTH -n) where n is the length of the current

pat is eq to x.

pat is &.

pat is a number and egp to X.

pat is a string and strequal[pat;x] is true.

If car[pat] is the atom ®ANY®, cdr[pat]) is a list of patterns and
pat matches x if and only if one of the patterns on cdr{pat]
matches x.

If pat is a literal atom or string containing one or more alt- '
modes, each 8 can match an indefinite number (including 0) of
contiguous characters in a literal atom or string, e.g.

VERS matches both VERYLONGATOM and

"VERYLONGSTRING" as do SLONGS (but not

SLONG), and $SVSLSTS.

expression.

16
9.88.

This routine is available to the user directly, and is described on page

9.21

6b.

If pat is a literal atom or string ending in two alt-modes, pat
matches with the first atom or string that 1; "close" to pat, in
the sense used by the spelling corrector (Section 17). E.g.
CONSSS$S matches with CONS, CNONCS$ with NCONC or NCONC1.
The pattern matching routine always types a message of the form
=X to inform the user of the object matched by a pattern éf type
6a or 6b,77 e.g. =VERYLONGATOM.
If car[pat] is the atom --, pat matches x if
a. cdr[pat]=NIL, i.e. pat=(--), e.g.

(A --) matchos (A) (A B C) and (A . B)

In other words, -- can match any tail of a list.
b. cdr{pat] matches with some tail of x,

e.g. (A == (&)) will match with (A B C (D)),

but not (A B C D), or (A B C (D) E). However,

note that (A -- (&) --) will match with

(ABC (D) E).

In other words, -- can match any interior segment of a list.
If car[pat] is the atom ==, pat matches x if and only if cdr[pat]
is eq to 5.18
Otherwise if x is a list, pat matches x if car[pat]

matches car{x], and cdr{pat] matches cdr{x].

When the editor is searching, the pattern matching routine is called to match

with elements in the structure, unless the pattern begins with ..., in which

case cdr of the pattern is matched against proper tails in the structure. Thus

if the current expression is (A B C (B8 C)),

unless editquietflg=T.

S D G R D TR D D R SR P D D TR D D D D R Y D D R TP D T G W e W e G D R D P SR AR N e P R G N R P O P R W W

Pattern 8 is for use by programs that call the editor as a subroutine,

since any non-atomic expression in a command typed in by the user obviously
cannot be eq to already existing structure.

9.22

AF (B --)

xp (B C)
.OF(couB.-)
p

... BC (BC))
Matching is also attempted with atomic tails (except for NIL). Thus

xp

(A (B .C))

®F C .

®p

L lc)
Although the current expression is the atom C after the final command, it is
printed as C) to alert the user to the fact that C is a tgil, not an
element. Note that the pattern € will match with either instance of C in
(AC (B .C)), whereas (... . C) will match only the second C. The pattern NIL
will only match with NIL as an element, i.e. it will not match in (A B), even
though cddr of (A B) is NIL. However, (... . NIL) (or equivalently (...)) may
be used to specify a NIL taeil, e.g. (... . NIL) will match with cdr of the

third subexpression of ((A . B) (C . D) (E)).

Search Algorithm

Searching bégins with the current expression and proceeds in print order.
Searching usually means find thé next instance of this pattern, and
consequently a match is not attempted that would leave the edit chain
unchanged.IQ At each step, the pattern is matched against the next element in
the expression currently being sqarched. unless the pattern begins with ... in

which case it is matched against the next tail of the expression.

------------------------------- D Y R D D s D e R D Y S D S AN D P Y D e W e

19 However, there is a version of the find command which can succeed and leave
the current expression unchanged (see page 9.26).

9.23

IT the match is not successful, the search operation is recursive first in the
car direction and then in the cdr direction, i.e., if the element under
examination is a list, the search descends into that list before attempting to

match with other elements (or tails) at the same level.zo

However, at no point is the total recursive depth of the search (sum of number
of cars and cdrs descended into) allowed to exceed the value of the variable
maxlevel. At that point, the search of that element or tail is abandoned,
exactly as though the element or tail had been completely searched without
finding a match, and the search continues with the element or tail for which
the recursive depth is below maxlevel. This feature is designed to enable the
user to search circular list structures (by setting maxlevel small), as well as
protecting him from accidentally encoﬁntering a circular list structure in the

course of normal editing. maxlevel is initially set to 300.21

IT a successful match is not found in the current expression, the search
automatically ascends to the next higher expr'essior|.2‘2 and continues searching
there on the next expression after the expression it Just finished searching.
If there is none, it ascends again, etc. This process continues until the
entire edit chain has been searched, at which point the search fails, and an
error is generated. If the search fails (or, what is equivalent, is aborted by

control-E), the edit chain is not changed (nor are any conses performed).

If the search is successful, i.e., an expression is found that the pattern

20 There is also a version of the find command (see page 9.27) which only
attempts matches at the top level of the current expression, i.e., does not
descend into elements, or ascend to higher expressions.

21 maxlevel can also be set to NIL, which is equivalent to infinity.

22

See footnote on page 9.24.

9.24

matches, the edit chain is set to the valug it would have had had the user

reached that expression via a sequence of integer commands.

If the expression that matched was a list, it will be the final link in the
edit chain, i.e., the new current expression. If the expression that matched
is not a list, e.g..‘ is an atom, the current expression will be the tail
beginning with that atom.23 i.e., that atom will be the first element in the

new current expression. In other words, the search effectively does an UP.24

Search Commands

All of the commands below set lastail for use by UP, set unfind for use by \

(page 9.35), and do not change the edit chain or perform any conses if they

are unsuccessful or aborted.

F pattern i.e., two commands: the F informs the editor that
the next command is to be 1interpreted as a
pattern. This is the most common and useful form
of the find command. If successful, the edit
chain always changes, 1.e., F pattern means find

the next instance of pattern.

If memb[pattern;current-expression] is true, F
does not proceed with a full recursive search. If
the valué of the memb is NIL, F invokes the search
algorithm described earlier.

TR WD GE G En T e WS G W W W W G S s W W R TGP R P A SR S T SR G R D D R G5 G D W OB NGB L S TR VI D S U R N AR R D D T G e D O e Wk W R D G AN R e D e

Unless the atom is a tail, e.g. B in (A . B). 1In this case, the current
expression will be 8, but will print as B).

24. Unless upfindflg=NIL (initially set to T). For discussion, see page

9.43-44.

9.25

Thus if the current expression is

(PROG NIL LP (COND (-- (GO LP1))) ... LP1 ...), F LP1 will find the prog label,

not the LP1 inside of the GO expression, even though the latter appears first

(in print order) in the current expression. Note that 1 (making the.atom PROG

- be the current expression), followed by F LP1 would find the first LP1.

(F pattern N)

(F pattern T)

same as F pattern, i.e., finds the next instance
of pattern, except the memb check of F pattern is

not performed.

Similar to F pattern, except may succeed without
changing edit chain, and does not perform the memb

check.

Thus if the current expression is (COND ..), F COND will look for the next
COND, but (F COND T) will 'stay here'.

(F pattern n) n > 1

Finds the nth place that pattern matches.
Equivélent to (F pattern T) followed by
(F pattern N) repeated n-1 times. Each time
pattern successfully matches, n is decremented by
1, and the search continues, until n reaches 0.
Note that the pattern does not have to match with
h identical expressions; it just has to match n
times. Thus if the current expression 1is
(FOO1 FOO2 FOO03), (F FOOS 3) will find FOO3.

If the pattern does not match successfully n
times, an error is generated and the edit chain is

unchanged (even if the pattern matched n-1 times).

9.26

(F pattern) or
(F pattern NIL)

only matches with elements at the

top level of the current expression, i.e., the
search will not descend into the current
expression, nor will it go outside of the current
expression. May succeed without changing edit

chain.

For example, if the current expression is

(PROG NIL (SETQ X (COND & &)) (COND &) ...), F COND will find the COND inside

the SETQ, whereas (F (COND --)) will find the top level COND, i.e., the second

one.

(FS patternl coe patternn)

(F= expression x)

(ORF patternl ces patternn)

BF pattern

equivalent to F patternl followed by F
pattern2 ++. followed by F patternn, so that if F
patternm fails, edit chain 1is left at place

pattornm_1 matched.

equivalent to (F (== . expression) x), 1i.e.,
searches for a struéture eq to expression, see

page 9.22.

equivalent to (F (2ANY%® pattern; ... patternn) N),
i.e., searches for an expression that is matched
by either patternl. patternz. cee Or patternn.

See page 9.21.

backwards find. Searches in reverse print order,
beginning with expression immediately before the

current expression (unless the current expression

is the top 1level expression, 1in which case BF

searches the entire oxpression, in reverse order).

9.27

BF uses the same pattern match routine as F, and
maxlevel and upfindflg have the same effect, but
the searching begins at the end of each list, and
descends into each element before attempting to
match that element. If unsuccessful, the search
continues with the next previous element, etc.,
until the front of the list is reached, at which

point BF ascends and backs up, etc.

For example, if the current expression is

(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W -=) ==)) =--), F LIST
followed by BF SETQ will leave the current expression as (SETQ Y (LIST Z)), as
will F COND followed by BF SETQ.

(BF pattern T) search always includes current expression, 1i.e.,
starts at the end of current expression and works

backward, then ascends and backs up, etc.

Thus in the previous example, where F COND followeBF SETQ found
(SETQ Y (LIST Z)), F COND followed by (BF SETQ T) would find the (SETQ W --)

expression.

(BF pattern) same as BF pattern.
(BF pattern NIL)

Location Specification

Many of the more sophisticated commands described later in this chapter use a

more general method of specifying position called a location specification. A

location specification is a list of edit commands that are executed in the

normal fashion with two exceptions. First, all commands not recognized by the

9.28

editor are interpreted as though they had been preceded by F.26 For example,
the location specification (COND 2 3) specifies the 3rd element in the first

clause of the next COND.z6

Secondly, if an error occurs while evaluating one of the commands in the
location specification, and the edit chain had been changed, i.e., was not the
same as it was at the beginning of that execution of the 1location
specification, the location operation will continue. In other words, the
location operation keeps going unless it reaches a state where it detects that
it is 'looping', at which point it gives up. Thus, if (COND 2 3) is being
located, and the first clause of the next COND contained only two elements, the
execution of the command 3 would cause an error. The search would then
continﬁe by looking for the next COND. However, if a poinﬁ were reached where
there were no further CONDs, then the first command, COND, would cause the
error; the edit chain would not have been changed, and so the entire location

operation would fail, and cause an error.

The IF command in conjunction with the ## function provide a way of using
arbitrary predicates applied to elements in the current expression. IF and 7
will be described in detail 1later in the chapter, along with examples

illustrating their use in location specifications.

Throughout this chapter, the meta-symbol @ is used to denote a location
specification. Thus © is a list of commands interpreted as described above. @

can also be atomic, in which case it is interpreted as list[@].

-l I R R R R el L L L L L T T T

Normally such commands would cause errors.

Note that the user could always write F COND followed by 2 and 3 for
(COND 2 3) if he were not sure whether or not COND was the name of an
atomic command.

9.29

(LC . @) provides a way of explicitly invoking the location
operation, e.g. (LC COND 2 3) will perform the the

search described above.

(LCL . @) Same as LC except the search is confined to the
current expression, 1i.e., the edit chain |is
rebound during the search so that it looks as
though the editor were called on just the current
expression. For example, to find a COND
containing a RETURN, one might use the location
specification (COND (LCL RETURN) \) where the \
would reverse the effects of the LCL command, and

make the final current expression be the COND.

(2ND . @) Same as (LC . @) followed by another (LC . @)
except that if the first succeeds and second

fails, no change is made to the edit chain.

(3RD . 9) Similar to 2ND.

(+- pattern) ascends the edit chain looking for a link which
matches pattern. In other words, it keeps doing
0's until it gets to a specified point. If
pattern is atomic, it is matched with the first
element of each link, otherwise with the entire

link.27

If pattern is of the form (IF expression), expression is evaluated at each
link, and if its value is NIL, or the evaluation causes an error, the
ascent continues.

9.30

For example:

xpp
[PROG NIL
(COND |
[(NULL (SETQ L (COR L)))
(COND
~ (FLG (RETURN L]
(INULL (CDR (FMEMB (CAR L)
(CADR L]}
*F CADR |
*(« COND)
*p

(COND (& &) (& &))
®

Note that this command differs from BF in that it does not search inside of
each link, it simply ascends. Thus in the above example, F CADR followed by
BF COND would find (COND (FLG (RETURN L))), not the higher COND.

If no match is found, an error is generated, and

the edit chain is unchanged.

(BELOW com x) ascends the edit chain looking for a ‘link
specified by com, and stops ;28 links below
that,29 i.e. BELOW keeps doing 0's until it gets

to a specified point, and then backs off x 0's.
(BELOW com) same as (BELOW com 1).
For example, (BELOW COND) will cause the cond clause containing the current

expression to become the new current expression. Thus 1if the current

expression is as shown above, F CADR followed by (BELOW COND) will make the new

X 1s evaluated, e.g., (BELOV com (IPLUS X Y).

29 Only links that are elements are counted, not tails.

9.31

expression be ([NULL (COR (FMEMB (CAR L) (CADR L] (GO LP)), and is therefore
equivalent to 0 0 0 0.

The BELOW command is useful for locating a substructure by specifying something
it contains. For example, suppose the user is editing a'list of lists, and
wants to find a sublist that contains a FOO (at any depth). He simply executes
F FOO (BELOW \). '

(NEX x) samo as (BELOW x) followed by NX.

For example, if the user is deep inside of a SELECTQ clause, he can advance to

the next clause with (NEX SELECTQ).
NEX same as (NEX «).

The atomic form of NEX is useful if the user will be performing repeated
executions of (NEX x). By simply MARKing (see page 9.34) the . chain

corresponding to X, he can use NEX to step through the sublists.

{NTH x) generalized NTH command. Effectively performs'
(LCL . x), followed by (BELOW \), followed by UP.

In other words, NTH locates X, using a search restricted to the current
expression, and then backs up to the current level, where the new current
expression 1is the taill whose first element contains, however deeply, the

expression that was the terminus of the location operation. For example:

%xp '

(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L))
*(NTH UF)

xp

.+« (SETQ UNFIND UF) (RETURN L))
%

9.32

If the search is unsuccessful, NTH generates an

error and the edit chain is not changed.

Note that (NTH n) is just a special case of (NTH x), and in fact, no special

check is made for X a number; both commands are executed identically.

(pattern .. @)3¢ e.g., (COND .. RETURN). Finds a cond that
contains a return, at any depth. Equivalent to
(but more efficient than) (F pattern N), (LCL . @)
followed by (+ pattern).

For example, if the current expression is

(PROG NIL [COND ((NULL L) (COND (FLG (RETURN L] --), then (COND .. RETURN) will
make (COND (FLG (RETURN L))) be the current expression. Note that it is the
innermost COND that is found, because this is the first COND encountered when
ascending from the RET_URN. In other words, (pattern .. @) is not always
equivalent to (F pattern N), follpwed by (LCL . @) followed by \.

Note that @ 1is a location specification, not just. a pattern. Thus
(RETURN .. COND 2 3) can be used to find the RETURN which contains a COND
whose first clause contains (at least) three elements. Note also that since @
permits any edit command, the user can write commands of the form

(COND (RETURN .. COND)), which will locate the first COND that contains a
RETURN that contains a COND. |

A S G A e > D S TS Ry R G U5 Sh W D W €S D T D D OV TR D D R W R LI PR R R R Y Y 4 X ¥ 1

30 An infix command, '..' is not a meta-symbol, it is the name of the command.
@ is cddr of the command.

- 9.33

9.3.3 Commands That Save and Restore The Edit Chain

Several facilities are available for saving the current edit chain and later
retrieving it: MARK, which marks the current chain for future reference, ~,31'
which returns to the last mark without destroying it, and e, which returns to

the last mark and also erases it.

MARK adds the current edit chain to the front of the

list marklst.

- ' makes the new edit chain be (CAR MARKLST).
Generates an error if marklst is NIL, i.e., no
MARKs have been performed, or all have been

erased.

- similar to « but also erases the MARK, 1i.e.,

performs (SETQ MARKLST (COR MARKLST)).

Note that if the user has two chains marked, and wishes to return to the first
chain, he must perform «+~, which removes the second mark, and then «. However,
the second mark is then no longer accessible. If the user wants to be able to

return to either of two (or moro) chains, he can use the following generalized

MARK :
(MARK atom) sets atom to the current edit chain,
(\ atom) makes the current edit chain become the value of

atom.

31 An atomic command; do not confuse + with the list command (+« pattern).

9.34

If the user did not prepare in advance for returning to a‘particular edit
chain, he may still be able to return to that chain with a single command by

using \ or \P.

\ makes the edit chain be the value of unfind.

Generates an error if unfind=NIL.

unfind is set to the current edit chain by each command that makes a "big
Jump", i.e., a command that usually performs more than a single ascent or
descent, namely ¢, «, «~, INX, all commands that involve a search, e.g., F, LC,

.., BELOW, et al and \ and \P themselves.32

For example, if the user types F COND, and then F CAR, \ would take him back to
the COND. Another \ would take him back to the CAR, etc.

\P restores the edit chain to its state as of the
last print operation, i.e. P, 7, or PP. If the
edit chain has not changéd since the last
printing, \P restores itbto its state as of the
printing before that one, ‘i.e., two chains are

always saved.

For example, if the user types P followed by 3 2 1 P, \P will return to the
first P, i.e., would be equivalent to 0 0 0.33 Another \P would then take him
back to the second P, i.e., the user could use \P to flip back and forth

between the two edit chains.

-------------------------------------- LI PR TR YL R T YR LY R Y R L X X X g

32 Except that unfind is not reset when the current edit chain is the top
level expression, since this could always be returned to via the t command.

33 Note that if the usér had typed P followed by F COND, he could use either \

or \P to return to the P, i.e., the action of \ and \P are independent.

9.35

(S var . @) Sets var (using setq) to the current expression
after performing (LC . ®). Edit chain is not

changed.

Thus (S FOO) will set foo to the current expression, (S FOO -1 1) will set foo

to the first element in the last element of the current expression.

This ends the section on “Attention Changing Commands."

9.4 Commands That Modify Structure

The basic structure modification commands in the editor are:

(n) n > 1 deletes the corresponding element from the
current expression.

(n ey ... © n,m > 1 replaces the nth element in the current

m’

expression with €4 e. 0.

(-n e ... e n,m > 1 inserts ey ... e, before the nth element

o’
in the current expression.

(Ne, ... en) m > 1 attaches ey ... e, at the end of the current

expression.

As mentioned earlier:
all structure modification done by the editor is destructive, i.e. the editor

uses rplaca and rplacd to physically change the structure it was given.

However, all structure modification is undoable, see UNDO page 9.78.

9.36

All of the above commands generate errors if the current expression is not a
list, or in the case of the first three commands, if the list contains fewer
than n elements. In addition, the command (1), i.e. delete the first element,
will cause an error if there is only one element, since deleting the first
element must be done by replacing it with the second element, and then deleting
the second element. Or, to look at it another way, deleting the first element
when there is only one element would require changing a list to an atom (i.e.

to NIL) which cannot be done.34

9.4.1 Implementation of Structure npdification Commands

Note: Since all commands that insert, replace, delete or attach structure use
the same low level editor functions, the remarks made here are valid for
ogll structure changing commands.

For all replacement, insertion, and attaching at the end of a list, unless the
command was typed in directly to ﬁhe editor.35 copies of the corresponding
structure are used, because of the possibility that the exact same command,
(i.e. same list structure) might be used again. Thus if a program constructs
the command (1 (A B C)) e.g. via (LIST 1 FOO), and gives this command to the

editor, the (A B C) used for the replacement will not be eq to 599.36

the current expression, since it will ascend to a point where it can do the

deletion.

36 Some editor commands take as arguments a list of edit commands, e.g.
(LP F FOO (1 (CAR F00))). In this case, the command (1 (CAR FO00)) is not
considered to have been "typed in" even though the LP command itself may
have been typed in. Similarly, commands originating from macros, or
commands given to the editor as arguments to editf, editv, et al, e.g.
EDITF(FOO F COND (N --)) are not considered typed in.

36

The 'user can circumvent this by using the I command, which computes the
structure to be used. In the above example, the form of the command would
be (I 1 FOO), which would replace the first element with the value of foo
itself. See page 9.62.

9.37

The rest of this section is included for applications wherein the editor is
used to modify a data structure, and pointers into that data structure are
stored elsewhere. In these cases, the actual mechanics of structure
modification must be known in order to predict the effect that various commands
may have on these outside pointers. For example, if the value of foo is cdr of
the current expression, what will the commands (2), (3), (2 X Y Z), (-2 X Y 2),

etc. do to foo?

Deletion of the first element in the current expression is performed by
replacing it with the second element and deleting the second element by
patching around it. Deletion of any other element is done by patching around
it, i.e., the previous tail is altered. Thus if foo.is eq to the current
expression which is (A 8 C D), and fie is cdr of foo, after executing the
command (1), foo will be (B C D) (which is equal but not eq to fie). However,
under the same initial conditions, after executing (2) fie will be unchanged,

i.e., fie will still be (B C D) even though the current expression and foo are

now (A C 0).37

Both replacement and insertion are accomplished by smashing both car and cdr of
the corresponding tail. Thus, if foo were eq to the current expression,
(ABCD), after (1 X Y Z), foo would be (XY Z B C D). Similarly, if foo were
eq to the current expression, (A B8 C D), then after (-1 X Y Z), foo would be
(XY ZABCD).

The N command is accomplished by smashing the 1last cdr of the current

A general solution of the problem just isn't possible, as it would require
being able to make two 1lists eq to each other that were originally
different. Thus if fie is cc- of the current expression, and fum is cddr
of the current expression, performing (2) would have to make fie be eq to

fum if all subsequent operations were to update both fie and fum correctly.
Think about it.

9.38

expression a la nconc. Thus if foo were eq to any tail of the current
expression, after executing an N command, the corresponding expressions would

also appear at the end of foo.

In summary, the only situation in which an edit operation will not change an
external pointer occurs when the external pointer is to a proper tail of the
data structure, i.e., to cdr of some node in the structure, and the operation
is deletion. If all external pointers are to elements of the structure, i.e.,
to car of some node, or if only insertions, replacements. or attachments are
performed, the edit operation will aglways have the same effect on an external

pointer as it does on the current expression.

9.4.2 The A, B, and : Commands

In the (n), (n ey .. em), and (-n ey +o- ‘em) commands, the sign of the
integer is used to indicate the operation. As a result, there is no direct way
to express insertion after a particular element, (hence the necessity for a
separate N command). Similarly, the user cannot specify deletion or
replacement of the nth element from the end of a list without first converting
n to the corresponding positive integer. Accordingly, we have:

(8 €y +«:.. ©

inserts ey ... o, before the current expression.

m) m

Equivalent to UP followed by (-1 ey ... °m)‘

For example, to insert FOO before the last element in the current expression,
perform -1 and then (B FO0O).

(Aey ... e,) inserts e, ... e, after the current expression.

m
Equivalent to UP followed by (-2 ey ... °m) or

(N @ .- °m) whichever is appropriate.

9.39

(: ey ... ©) replaces the current expression by ey ... €.

Equivalent to UP followed by (1 8y oot °m)'
DELETE, :, or (:) deletes the current expression.

DELETE first tries to delete the current expression by performing an UP and
then a (1). This works in most cases. However, if after performiﬁg upP, the
new current expression contains only one element, the commaﬁd (1) willynot
work. Therefore, DELETE starts over and performs a BK, followed by UP,
followed by (2). For example, if the current expression is
(COND ((MEMB X Y)) (T Y)), and the user performs -1.» and then ODELETE, the
B8K-UP-(2) method is used, and the new current expression will be ...

((MEMB X Y)))

However, if the next higher expression contains only one element, BK will not
work. So in this case, DELETE performs UP, followed by (: NIL), i.e., it
replaces the higher expression by NIL. For example, if the current expression
is (COND ((MEMB X Y)) (T Y)) and the user performs F MEMB and then DELETE, the
new current expression will be ... NIL (T Y)) and the original expression would
now be (COND NIL (T Y)). The rationale behind this is that deleting (MEMB X Y)
from ((MEMB X Y)) changes a list of one element to a list of no elements, 1.9.;

() or NiL.

If the current expression is a tail, then B, A, :, and DELETE all work exactly.
the same as though the current expression were the first element in that tail.
Thus if the current expression were ... (PRINT Y) (PRINT Z)), (B (PRINT X))
would insert (PRINT X) before (PRINT Y), 1leaving the current expression
«+«. (PRINT X) (PRINT Y) (PRINT 2)).

9.40

The following forms of the A, B, and : commands incorporate a location

specification:

(INSERT e, ... e BEFORE . @)% similar to (Lc .8)%? followed by (B

e ... em).

®p

(PROG (& & X) *XCOMMENT=® (SELECTQ ATH & NIL) (OR & &) (PRIN1 & T)
(PRIN1 & T) (SETQ X &

*(INSERT LABEL BEFORE PRIN1)

=p .

(PROG (& & X) *®COMMENT** (SELECTQ ATM & NIL) (OR & &) LABEL
(PRIN1 & T) (0

»

Current edit chain is not changed, but unfind is
set to the edit chain after the B was performed,
i.e. \ will make the edit chain be that chain

where the insertion was performed.

(INSERT @y «.. 8 AFTER . @) Similar to INSERT BEFORE except uses A instead of
8.

(INSERT ey ... ey FOR . ©) similar to INSERT BEFORE except uses : for B.

38 je.0@ is cdr[member[BEFORE command]]

39 except that if @ causes an error, the location process does not continue as

described on page 9.29. For example if @=(COND 3) and the next COND does
not have a 3rd element, the search stops and the INSERT fails. Note that
the user can always write (LC COND 3) if he intends the search to continue.

40 Sudden termination of output followed by a blank line return indicates

printing was aborted by control-E.

9.41

(REPLACE @ WITH ey - em)‘“ Here @42 is the segment of the command between
REPLACE and WITH. Same as
(INSERT 8y .. O FOR . @).

Example: (REPLACE COND -1 WITH (T (RETURN L)))

(CHANGE ¢ TO ey ... e Same as REPLACE WITH.

o)
(DELETE . @) doss a (LC . @)43 followed by DELETE. Current
edit chain is not changed.“ but unfind is set to

the edit chain after the DELETE was performed.
Example: (DELETE -1), (DELETE COND 3)

Note: if @ is NIL (i.e. empty), the corresponding operation is performed here
(on the current edit chain).

For'example, (REPLACE WITH (CAR X)) is equivalent to (: (CAR X)). For added
readability, HERE is also permitted, e.g. (INSERT (PRINT X) BEFORE HERE) will
insert (PRINT X). before the current expression (but not change the edit

chain).

41 By can be used for WITH.

42 See footnote on page 9.41.

43 See footnote on page 9.41.

4« Unless the current expression is no longer a part of the expression being

edited, e.g. if the current expression is ... C) and the user performs
(DELETE 1), the tail, (C), will have been cut off. Similarly, if the
current expression is (CDR Y) and the user performs (REPLACE WITH (CAR X)).

9.42

Note: @ does not have to specify a location within the current expression, t1.e.
it is perfectly legal to ascend to INSERT, REPLACE, or DELETE

For example, (INSERT (RETURN) AFTER ¢t PROG ~-1) will go to the top, find the
first PROG, and insert a (RETURN) at its end, and not change the current edit

chain.

The A, B, and : commands, commands, (and consequently INSERT, REPLACE, and
CHANGE), all make special checks in ey thru °n for expressions of the form (##
. coms). In this case, the expression used for inserting or replacing is a
copy of the current expression after executing coms, a list of edit cqmmands.45
For example, (INSERT (## F COND -1 -1) AFTER 3)%0 will make a copy of the last
form in the last clause of the next cond, and insert it after the third element

of the current expression.

9.4.3 Form Oriented Editing and the Role of UP

The UP that is performed before A, B, and : commands47

makes these operations
form-oriented. For example, if the user types F SETQ, and then DELETE, or
simply (DELETE SETQ), he will delete the entire SETQ expression, whereas
(DELETE X) if X is a variable, deletes just the variable X. In both cases, the
operation is performed on the corresponding form, and in both cases is probably
what the user intgnded. Similarly, if the user types

(INSERT (RETURN Y) BEFORE SETQ), he means before the SETQ expression, not

--------------------------------- T S e S e D R R S AP R R P R S SR D D P R R N R R R S e WA R R WY R WD W e e

45 The execution of coms does not change the current edit chain.

46 Not (INSERT F COND -1 (## -1) AFTER 3), which inserts four elements after
the third element, namely F, COND, -i, and a copy of the last element in
the current expression.

47

and therefore in INSERT, CHANGE, REPLACE, and DELETE commands after the
location portion of the operation has been performed.

9.43

before the atom SETQ.48 A consequent of this procedure is that a pattern of the
form (SETQ Y --) can be viewed as simply an elaboration and further refinement
of the pattern SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and
(INSERT (RETURN Y) BEFORE (SETQ Y -=)) perform the same operation49 and, in
fact, this is one of the motivations behind making the current expression after

F SETQ, and F (SETQ Y --) be tha same.

Occasionally, however, a user may have a data structure in which no special
significance or meaning is attached to the position of an atom in a list, as
INTERLISP attaches to atoms that appear as car of a list, versus those
appearing elsewhere in a list. In general, the user may not even Anow whether
a particular atom is at the head of a list or not. Thus, when he writes
(INSERT expression BEFORE FO0), he means before the atom FO0O, whether or not it
is car of a list. By setting the variable upfindfig to NIL,5¢ the user can
suppress the implicit UP that follows searches for atoms, and thus achieve the
desired effect. With upfindflg=NIL, following F FOO, for example, the current
expression will be the atom F0O. In this case, the A, B, and : operations will
operate with respect to the atom FO0O. If the user intends the operation to

refer to the list which FOO heads, he simply uses instead the pattern (FOO --).

- - - -

B A e S G e . . e W W e e e e B R el ek R

48 There is some ambiguity in (INSERT expr AFTER functionname), as the user
might mean make expr be the function's first argument. Similarly, the user
cannot write (REPLACE SETQ WITH SETQQ) meaning change the name of the
function. The user must in these cases write (INSERT expr AFTER
functioname 1), and (REPLACE SETQ 1 WITH SETQQ).

49 assuming the next SETQ is of the form (SETQ Y -=).

60

Initially, and usually, set to T.

9.44

9.4.4 Extract and Embed

Extraction involves replacing the current expression with one of its

subexpressions (from any depth).

(XTR . @) replaces the original current expression with the
expression that 1is current after performing

(LcL . 9).%1

For example, 1if the current expression 1s (COND ((NULL X) (PRINT Y))),
(XTR PRINT), or (XTR 2 2) will replace the cond by the print.

If the current expression after (LCL . @) is a
tatl of a higher expression, its first element is

used.
For example, if the current expression is (COND ((NULL X) Y) (T Z)), then
(XTR Y) will replace the cond with Y, even though the current expression after
performing (LCL Y) is ... Y).

If the extracted expression is a list, then after

XTR has finished, the current expression will be

that 1list.

Thus, in the first example, the current expression after the XTR would be

(PRINT Y).

See footnote on page 9.41.

9.45

If the extracted expression is not a 1ist, the new
current expression will be a tail whose first

element is that non-list.

Thus, in the second example, the current expression after the XTR would be

«.. Y followed by whatever followed the COND.

If the current expression initially is a tail, extraction works exactly the
same as though the current expression were the first element in that tail.
Thus if the current expression is ... (COND ((NULL X) (PRINT Y))) (RETURN 2)),
then (XTR PRINT) will replace the cond by the print, leaving (PRINT Y) as the

current expression.
The extract command can also incorporate a location specification:

(EXTRACT @, FROM . 92)52 Performs (LC . @,_)53 and then (XTR . @,). Current
edit chain is not changed, but unfind is set to

the edit chain after the XTR was performed.

Example: If the current expression is (PRINT (COND ((NULL X) Y) (T Z))) then
following (EXTRACT Y FROM COND), the current expression will be (PRINT Y).
" (EXTRACT 2 -1 FROM COND), (EXTRACT Y FROM 2), (EXTRACT 2 -1 FROM 2) will all

produce the same result.

62 @1 is the segment between EXTRACT and FROM.

63 See footnote on page 9.41.

9.46

While extracting replaces the current expression by a subexpression, embedding
replaces the current expression with one containing it as a subexpression.

(MBD 8y ... @ MBD substitutess4 the current expression for all

o’
instances of the atom * in ey «-. €, and replaces
the current expression with the result of ihat

substitution.

Examples: If the current expression is (PRINT Y),
(MBD (COND ((NULL X) %) ((NULL (CAR Y)) = (GO LP)))) would replace (PRINT Y)
with (COND ((NULL X) (PRINT Y)) ((NULL (CAR Y)) (PRINT Y) (6O LP))).

If the current expression is (RETURN X), (MBD (PRINT Y) (AND FLG *)) would
replace it with the two expressions (PRINT Y) and (AND FLG (RETURN X)) i.e., if
the (RETURN X) appeared in the cond clause (T (RETURN X)), after the MBD, the
clause would be (T (PRINT Y) (AND FLG (RETURN X))).

If ® does not appear in ey ... @, the MBD is

interpreted as (MBD (e1 ces @ x)).
Examples: If the current expression 1s (PRINT Y), then (MBD SETQ X) will
replace it with (SETQ X (PRINT Y)). If the current expression is (PRINT Y),

(MBD RETURN) will replace it with (RETURN (PRINT Y)).

MBD leaves the edit chain so that the larger expression is the new current

expreaession.

------------------- R e L L L T T T Y PR R Y L T L X X LN

as with subst, a fresh copy is used for each substitution.

9.47

If the current expression initially is a tail, embedding works exactly the same
as though the current expression were the first element in that tail. Thus if
the current expression were ... (PRINT Y) (PRINT Z)), (MBD SETQ X) would

/

replace (PRINT Y) with (SETQ X {PRINT Y)).

The embed command can also incorporate a location specification:

(EMBED © IN . x)55 does (LC . @)56 and then (MBD . x). Edit chain is
not changed, but unfind is set to the edit chain

after the MBD was performed.

Example: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN),
(EMBED COND 3 1 IN (OR * (NULL X))).

WITH can be used for IN, and SURROUND can be used for EMBED, e.g., (SURROUND
NUMBERP WITH (AND * (MINUSP X))).

9.4.5 The MOVE Command

The MOVE command allows the user to specify (1) the expression to be moved, (2)
the place it is to be moved to, and (3) the operation to be performed there,

e.g., insert it before, insert it after, replace, etc.

(MOVE @, TO com . @2)57 where com is BEFORE, AFTER, or the name of a list

55 ® is the segment between EMBED and IN.
66 See footnote on page 9.41.

67 @1 is the segment between MOVE and TO.

9.48

command, e.g., :, N, etc. performs (LC . 91),58
and obtains the current expression there (or its
first element.', 1f it is a tail), which we will
call expr; MOVE then goes back to the original
edit chain, performs (LC . Oz) followed by
(com expr).59 then goes back to 01 and deletes
expr. Edit chain is not changed. Unfind is set

to edit chain after (com expr) was performed.

For example, if the current expression is (A B C D), (MOVE 2 TO AFTER 4) will

make the new current expression be (A C D B). Note that 4 was executed as of

the original edit chain, and that the second element had not yet been

removed.ao

As the following examples taken from actual editing will show, the MOVE command

is an extremely versatile and powerful feature of the editor.

7

(PROG ((L L)) (EDLOC (CDDR C)) (RETURN (CAR L)))

*(MOVE 3 70 :

=9

(PROG ((L L)) (RETURN (EDLOC (CDDR C))))
x

xp

*(MOVE 2 TO N 1)

=p

x

(SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &))

... (SELECTQ OBJPR & & &) LP2 (COND & &))

--- s Ty T T T LY L L L L L A R

see footnote on page 9.41.

638

59

60

Setting an internal flag so expr is not copied.

If @
is p?i

specifies a location inside of the expression to be moved, a message
nted and an error is generated, e.g. (MOVE 2 TO AFTER X), where X is

contained inside of the second element.

9.49

xp
(OR (EQ X LASTAIL) (NOT &) (AND & & &))
*(MOVE 4 TO AFTER (BELOW COND))
xp
(OR (EQ X LASTAIL) (NOT &))
x\ p
. (& &) (AND & & &) (T & &))
»

®p)

((NULL X) *%COMMENT*% (COND & &))

*(-3 (GO NXT] :

*(MOVE 4 TO N (« PROG))

*p

((NULL X) ®*%COMMENT®* (GO NXT))

x\ P

(PROG (&) **COMMENT** (COND & & &) (COND & & &) (COND & &))
*(INSERT NXT BEFORE -1)

xp .
(PROG (&) **COMMENT** (COND & & &) (COND & & &) NXT (COND & &))

Note that in the last example, the user could have added the prog label NXT and
moved the cond in one operation by performing (MOVE 4 TO N (« PROG) (N NXT)).
Similarly, in the next example, in the course of specifying @2, thé location.
where the expression was to be moved to, the user aiso performs a sfructure
modification, via (N (T)), thus creating the structure that will receive the

expraession being moved.

*p
((CDR &) **COMMENT** (SETQ CL &) (EDITSMASH CL & &))
*MOVE 4 TO N 0 (N (T)) -1]

xp

((CDR &) **COMMENT** (SETQ CL &))

x\ P

*(T (EDITSMASH CL & &))

n

If @z is NIL, or (HERE), the current position specifies where the operation is
to take place. In this case, unfind is set to where the expression that was

moved was originally located, i.e. 01. For example:

xp
(TENEX)

*(MOVE * F APPLY TO N HERE)
=p

(TENEX (APPLY & &))

»

9.50

xp
(PROG (& & & ATM IND VAL) (OR & &) A*COMMENT** (OR & &) (PRIN1 & T) (
PRIN1 & T) (SETQ IND .

*(MOVE * TO BEFORE HERE)

xp

(PROG (& & & ATM IND VAL) (OR & &) (OR & &) (PRIN1 &
»p

(T (PRIN1 C-EXP T))

*(MOVE * BF PRIN1 TO N HERE)

xp

(T (PRIN1 C-EXP T) (PRIN1 & T))

. .

Finally, if @1 is NIL, the MOVE §ommand allows the user to specify where the
current expression is to be moved to. In this case, the edit chain is changed,
and is the chain where the current expression was moved to; unfind is set to

where it was.

xp
(SELECTQ OBJPR (&) (PROGN & &))
*(MOVE. TO BEFORE LOOP)

xp
. (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP

&) (SELECTQ

®x

9.4.6 Commands That "Move Parentheses®

The commands presented in this section permit modification of the 1list
structure itself, as opposed to modifying components thereof. Their effect can
be described as 1nsert1ng or removind a single left or right parenthesis, or
pair of left and right parentheses. Of course, there will always be the same
number of left parentheses as right parentheses in any list structure, since
the parentheses are just a notational guide to the structure provided by print.
Thus, n6 command can insert or remove just one parenthesis, but this 1is

suggestive of what actually happens.

was aborted by control-E.

9.51

In all six commands, n and m are used to specify an element of a list, usually
of the current expression. In practice, n and m are usually positive or
negative integers with the obvious interpretation. However, all six cohmands
use the generaliiod NTH command, page 9.32, to find their element(s), so that
nth element means the first element of the tail found by performing (NTH n).
In other words, if the current oxpressioﬁ is

(LIST (CAR X) (SETQ Y (CONS W Z))), then (BI 2 CONS), (BI X -1), and (BI X Z)

all specify the exact same operation.

All six commands generate an error if the element is not found, i.e. the NTH

fails. All are undoable.

(BI n m) both in, inserts a left parentheses before the nth
element and after the mth element in the current
expression. Generates an error if the mth element
is not contained in the nth tail, i.e., the mth

element must be "to the right" of the nth element.

Example: If the current expression is (A B (C D E) F 6), then (BI 2 4) will
modify it to be (A (B (C D E) F) 6).

(BI n) same as (BI n n).

Example: If the current expression is (A B (C D E) F 6), then (BI -2) will
modify it to be (A B (C D E) (F) 6).

(BO n) both out. Removes both parentheses from the nth
element. Generates an error if nth element is not

a list.

Example: If the current expression is (AB (CDE)FeG), then (BO D) will
modify it to be (AB C D E F 6).

9.52

(LI n) o left in, inserts a left parenthesis before the nth
element (and a matching right parenthesis at the
end of the current expression), i.e. equivalent

to (BI n ~1).

Example: if the current expression is (A B (CDE) F 6), then (LI 2) will
modify it to be (A (B (C D E) F G)).

(LO n) left out, removes a left parenthesis from the nth
element. All elements following the nth element
are deleted. Generates an error if nth element is

not a list.

Example: If the current expression is (A B (CDE) F 6), then (LO 3) will
modify it to be (AB C D E).

(RI n m) right in, inserts a right parenthesis after the
mth element of the nth element. The rest of the
nth element is brought up to the level of the

current expression.

Example: If the current expression is (A (B CDE) F 6), (RI 2 2) will modify
it to be (A (B C) D E F G). Another way of thinking about RI is to read it as
"move the right parenthesis at the end of the nth element in to after its mth

element.”

(RC n) right out, removes the right parenthesis from the
nth element, moving it to the end of the current
expression. All elements following the nth
element are moved inside of the nth element.

Generates an error if nth element is not a list.

9.53

Example: If the current expression is (A B (C D E) F G), (RO 3) will modify it
to be (A B (C D E F G)). Another way of thinking about RO is to read it as
"move the right parenthesis at the end of the nth element out to the end of

the current expression.”

9.4.7 TO and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to operate on several

contiguous elements, i.e., a sagment of a list, by using in their respective

location specifications the TO or THRU command.

(@1 THRU Oz) doas a (LC . 01). followed by an UP, and then a
(BI 1 GZ). thereby grouping the segment into a
single element, and finally does a 1, making the

final current expression be that element.

For example, if the current expression is (A (B (C D) (E) (F 6 H) I) J K),
following (C THRU G), the current expression will be ((C D) (E) (F 6 H)).

(@1 T0 02) Same as THRU except last element not included,
i.e., after the BI, an (RI 1 -2) is performed.

If both @1 and @2 are numbers, and @2 is greater than @1, then @2 counts from
the beginning of the current expression, the same as 01. In other words, if
thé current expression is (AB CDE F 6), (3 THRU 5) means (C THRU E) ‘not
(C THRU G). In this case, the corresponding BI command is (BI 1 @2-01+1).

THRU and TO are not very useful commands by themselves; they are intended to be

used in conjunction with EXTRACT, EMBED, DELETE, REPLACE, and MOVE. After THRU

and TO have operated, they set an internal editor flag informing the above

9.54

commands that the element they are operating on is actually a segment, and that
the extra pair of parentheses should be removed when the ‘operation is complete.
{

Thus:

®xp _
(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRIN1 & T) (SETQ IND &) (SETQ VAL &)
XXCOMMENT** (SETQQ '

*(MOVE (3 THRU 4) TO BEFORE 7)
*p

(PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &) (PRINi1 & T) (PRIN1 & T)
ARCOMMENT®*

]

*p
(* FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES OF SOURCEXPR AND
CURRENTFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR WHICH WILL HAVE BEEN
TRANSLATED, AND IT CAUSED THE ERROR.)

*(DELETE (USER THRU CURRS))

=CURRENTFORM.

xp .

(* FAIL RETURN FROM EDITOR. CURRENTFORM IS

xp
-.. LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLE &) (RETURN Y))
*(MOVE (1 TO OUT) TO N HERE]

xp

-+« OUT (SETQ FLE &) (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ Y &))
®

xpp
[PROG (RF TEMP1 TEMP2)
(COND
((NOT (MEMB REMARG LISTING))
(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS)) X%COMMENT%%
(SETQ TEMP2 (CADR TEMP1))
(GO SKIP))
(T ®XCOMMENT**
(SETQ TEMP1 REMARG)))
(NCONC1 LISTING REMARG)
(COND
((NOT (SETQ TEMP2 (SASSOC

*(EXTRACT (SETQ THRU CADR) FROM COND)
xp

(PROG (RF TEMP1 TEMP2) (SETQ TEMP1 &) *%COMMENT®* (SETQ TEMP2 &)
(NCONCi LISTING REMARG) (COND & &

9.55

TO and THRU can also be used directly with)(TR."2 Thus in the previous example,
if the current expression had besen the COND, e.g. the user had first performed

F COND, he could have used (XTR (SETQ THRU CADR)) to perform the extraction.

(el T0), (el THRU) both same as (@1 THRU -1), i.e., from @1 through
the end of the list.

Examples:

xp
(VALUE (RPLACA DEPRP &) (RPLACD &) (RPLACA VARSWORD &) (RETURN))
*(MOVE (2 TO) TO N (~ PROG))

*(N (GO VAR))

(VALUE (GO VAR))

xp
(T ®*XCOMMENT** (COND &) **COMMENT®* (EDITSMASH CL & &) (COND &))
*(-3 (GO REPLACE))

*(MOVE (COND TO) TO N t+ PROG (N REPLACE))

=p

(T *XCOMMENT** (GO REPLACE))

x\ p

(PROG (&) **COMMENT** (COND & & &) (COND & & &) DELETE (COND & &)
REPLACE (COND &) R*COMMENT** (EDITSMASH CL & &) (COND &))

n

62 Because XTR involves a location specification while A, B, :, and MBD do
not.

9.56

Rpp
[LAMBDA (CLAUSALA X)
(PROG (A D)
(SETQ A CLAUSALA)
LP (COND
((NULL A)
(RETURN)))
(SERCH X A)
(RUMARK (CDR A))
(NOTICECL (CAR A))
(SETQ A (CDR A))
(GO LP]
®*{EXTRACT (SERCH THRU NOTS) FROM PROG)
=NOTICECL ’
ap
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))
*(EMBED (SERCH TO) IN (MAP CLAUSALA (FUNCTION (LAMBDA (A) =]
®pp
" [LAMBDA (CLAUSALA X)
(MAP CLAUSALA (FUNCTION (LAMBDA (A)
(SERCH X A)
(RUMARK (CDR A))
(NOTICECL (CAR A]

9.4.8 The R Command

(R xy) replaces all instances of x by y in the current
expression, e.g., (R CAADR CADAR). Generates an

error if there is not at least one instance.

The R command operates in conjunction with the search mechanism of the editor.
The search proceeds as described on page 9.23-25, and X can employ any of the
patterns on page 9.21-23. Each time x matches an element of the structure, the
element is replaced by (a copy of) y; each time x matches a tail of the

structure, the tail is replaced by (a copy of) y.

For example, if the current expression is (A (B C) (8 . C)),
(R C D) will change it to (A (B D) (B . D)),

(R(... . C) D) to (A (B C) (B . D)),

(RC (DE)) to (A (B (DE)) (BDE)), and

(R (... . NIL)D) to (A(BC . D) (B.C).D).

9.57

If x is an atom or string containing alt-modes, alt-modes appearing in y stand
for the characters matched by the corresponding alt-mode in X. For example,
(R FOOS FIES) means for all atoms or strings that begin with FOO, replace the
characters 'FOO' by 'FIE'.63 Applied to the list
(FOO FOO2 XF001), (R FOOS FIES) would produce (FIE FIE2 XFOO1), and
(R SFOOS SFIES) would produce (FIE FIE2 XFIE1). Similarly, (R $DS $AS) will
change (LIST (CADR X) (CADDR Y)) to (LIST (CAAR X) (CAADR)).G4

The user will be informed of all such alt-mode replacements by a message of the

form x->y, e.g. CADR->CAAR.

Note that the $ feature can be used to delete or add characters, as well as
replace them. For example, (R $1 $) will delete the terminating 1's from. all
literal atoms and strings. Similarly, if an alt-mode in x does not have a mate
in y, the characters matched by the $ are effectively deleted. For example,
(R /3 $) will change AND/OR to AND.5S Y can also be a list containing
alt-modes, e.g. (R $1 (CAR $)) will change FOO1 to (CAR FOO), FIE1 to
(CAR FIE).

If x does not contain alt-modes, $ appearing in y refers to the entire

ST D MR G e S R R e e G GNP R ED N R D R N R P D G P G P P D R P R R A P D D N S e e G W S N R e R AR GRS WY D P e e e

63 If x matches a string, it will be replaced by a string. Note that it does
not matter whether x or y themselves are strings, i.e.
(R 3D3 SAS), (R "SDS" 3AS), (R SDS "SAS"), and (R "SD$" "3AS") are

equivalent. Note also that x will never match with a number, 1i.e.
(R $1 32) will not change 11 to 12,

64 Note that CADDR was not changed to CAAAR, i.e. (R SDS SAS) does not mean
replace every D with A, but replace the first D in every atom or string by
A. If the user wanted to replace every D by A, he could perform
(LP (R SDS 3AS)).

66 However, there is no similar operation for changing AND/OR to OR, since the

first $ in y always corresponds to the first $ in X, the second $ in y to
the second in x, etc.

9.58

expression matched by x, e.g. (R LONGATOM '$) changes LONGATOM to 'LONGATOM,
(R (SETQ X &) (PRINT $)) changes every (SETQ X &) to (PRINT (SETQ X &)).aa

Since (R $x3$ 3$y3) is a frequently used operation for replacing characters, the

following command is provided:
(RC x y) equivalent to (R 3x 3y$)

R and RC change all instances of x to y. The commands Ri and RC1 are available

for changing just one, (i.e. the first) instance of x to y.
(R1 x y) find the first instance of x and replace it by y.
(RC1 x y) . (R1 x $y8).

In addition, while R and RC only operate within the current expression, R1 and
RC1 will continue searching, a la the F command, until they find an instance of

X, even if the search carries them beyond the current expression.

(SW n m) switches the nth and mth slements of the current

expression.

For example, if the current expression is

(LIST (CONS (CAR X) (CAR Y)) (CONS (CDR X) (CDR Y))),

(SW 2 3) will modify it to be '

(LIST (CONS (CDR X) (CDR Y)) (CONS (CAR X) (CAR Y))). The relative order of n
and m is not important, i.e., (SW 3 2) and (SW 2 3) are equivalent.

----------------------- LA R o R e I T ™ Yy

66 If x is a pattern containing an alt-mode pattern somewhere within it, the
characters matched by the alt-modes are not available, and for the purposes
of replacement, the effect is the same as though x did not contain any alt-
modes. For example, if the user types (R (CAR F$) (PRINT $)), the second $
will refer to the entire expression matched by (CAR F$).

9.59

SW uses the generalized NTH command to find the

nth and mth elements, a la the BI-BO commands.

Thus in fhe previous example, (SW CAR CDR) would produce the same result.

9.5 Commands That Print

PP prettyprints the current expression.

p prints the current expression as though printlevel

were set to 2.

(P m) prints mth element of current expression as though

printlevel were set to 2.
(P 0) same as P

(P mn) prints mth element of current expression as though

printlevel were set to n.

(P 0 n) prints current expression as though printlevel

were set to n.
? » same as (P 0 100)
Both (P m) and (P mn) use the generalized NTH command to obtain the

corresponding element, so that m does not have to be a number, e.g. (P COND 3)

will work. PP causes all comments to be printed as *®*COMMENT®*® (see Section

9.60

14). P and ? print as **COMMENT*x only those comments that are\(top level)

elements of the current expression.67

ppx prettyprints current expression, including

comments.

PP* is equivalent to PP except that it first resets **comment**flg to NIL (see

Section 14). In fact, it is defined as (RESETVAR **COMMENT**FLG NIL PP), see

page 9.77.

PPV prettypfints current expression as a variable,
i.e. no special treatment for LAMBDA, COND, SETQ,
etc.;‘or for CLISP.

PPT ' prettyprints current expression, printing CLISP

transiations, if any.

All printing functions print to the}tplatype. regardless of the primary output
file. No printing function ever changes the edit chain. All record the
current edit chain for use by \P, page 9.35. All can be aborted with

control-E.

67 Lower expressions are not really seen by the editor; the printing command
simply sets printlevel and calls print.

9.61

9.6 Commands That Evaluate

E only when typed in.68 causes the editor to call
lispx giving it the next input as argument.og

Example: *E BREAK(FIE FUM)
(FIE FUM)
*E (F0O) ‘

(FIE BROKEN)

(E x) evaluates x, i.e., performs eval[x], and prints

the result on the teletype.
(ExT) same as (E x) but does not print.

The (E x) and (E x T) commands are mainly intended for use by macros and
subroutine calls to the editor; the user would probably type in a form for
evaluation using the more convenient format of the (atomic) E command.

(I c Xy v xn) same as (C Yy o-o y“) where y1=eva1[x1].

Example: (I 3 (GETD (QUOTE FO0))) will replace the 3rd element of the current
expression with the definition of foo.”? (I N FOO (CAR FIE)) will attach the

69 lispx is used by evalqt and break for processing teletype inputs. If

nothing else is typed on the same line, lispx evaluates its argument.
Otherwise, lispx applies it to the next input. In both cases, 1lispx prints
the result. See above example, and Sections 2 and 22. . »

70 The I command sets an internal flag to indicate to the structure
modification commands not to copy expression(s) when inserting, replacing,
or attaching.

9.62

value of foo and car of the value of fie to the end of the current expression.

(I F= FOO T) will search for an expression eq to the value of foo.
If ¢ is not an atom, ¢ is evaluated also.

Example: (I (COND ((NULL FLG) (QUOTE -1)) (T-1)) FO0), if flg is NIL, inserts
the value of foo before the first element of the current expression, otherwise

replaces the first element by the value of foo.

#l[coml;comz: o ;comn] is an NLAMBDA, NOSPREAD functidn (not a command).
Its value is what the current expression would be
after executing the edit commands com, ... com,

starting from the present edit chain. Generates

an error if any of com, thru com, cause errors.‘

The current edit chain is never changed.71

Example: (I R (QUOTE X) (## (CONS .. Z))) replaces all X's in the current

expression by the first cons containing a Z.

The I command is not very convenient for computing an entire edit command for
execution, since it computes the command name and its arguments separately.
Also, the I command cannot be used to compute an atomic command. The following

two commands provide more general ways of computing commands.

(COMS Xg oeo xn) Each x4 is evaluated and its value is executed as

a command.

71 pecall that A, B, :, INSERT, REPLACE, and CHANGE make special checks for ##
forms in the expressions used for inserting or replacing, and use a copy of
form instead (see page 9.43). Thus, (INSERT (## 3 2) AFTER 1) is
equivalent to (I INSERT (COPY (## 3 2)) (QUOTE AFTER) 1).

9.63

For example, (COMS (COND (X (LIST 1 X)))) will replace the first element of the

current expression with the value of x if non-NIL, otherwise do ndthing.u
(COMSQ com; ... comn) exscutes com; ... com..

COMSQ is mainly useful in conjunction with the COMS cbﬁunand. ifor éxamﬁlé.
suppose the user wishes to compute an entire list of commands for evaluatioh,
as opposed to computing each command one at a time aé ddesvihé COMS commahd.
He would then write (COMS (CONS (QUOTE COMSQ) x)) where x computed the list of
commands, e.g., (COMS (CONS (QUOTE COMSQ) (GETP FOO (QUOTE COMHANDS)))).J;

9.7 Commands That Test

(IF x) generates an error unless the value of eval[{x] is
true, 1i.e., if eval[x] causes an error or

eval[x]=NIL, IF will cause an error.

For some editor commands, the occurrence of an error has a well defined
meaning, i.e., they use errors to branch on, as cond uses NIL and non;NIL.‘ For
example, an error condition in a location specification may‘simply'mean 'nbt
this one, try the next.® Thus the location specification |

(IPLUS (E (OR (NUMBERP (## 3)) (ERROR!)) T)) specifies the first IPLUS whose
second argument is a number. The IF command, by equating NIL to eri'or;;
provides a more natural way of accomplishing the same result. Thus, an

equivalent location specification is (IPLUS (IF (NUMBERP (f¢ 3)))).

72, because NIL as a command is a NOP, see page 9.70.

9.64

The IF command can also be used to select between two alternate 1lists of

commands for execution.

(IF x coms comsz) N If eval[{x] is true, execute coms, ; if eval[x]
causes an error or is equal to NIL, execute

73
coms, .

For example, the command (IF (READP T) NIL (P)) will print .the current

expression provided the input buffer is empty.
IF can also be written as:

(IF x coms,) if eval[x] is true, execute coms,; otherwise

generate an error.

(LP . coms) repeatedly executes coms, & list of commands,

until an error occurs.

For example, (LP F PRINT (N T)) will attach a T at the end of every print

expression. (LP F PRINT (IF (## 3) NIL ((N T)))) will attach a T at the end of

each print expression which does not already have a second argument.7!

When an error occurs, LP prints n OCCURRENCES.

73 Thus IF is equivalent to (COMS (CONS (QUOTE COMSQ) (COND
((CAR (NLSETQ (EVAL X))) COMS1)
(T COMS2)))). -

74 i.e. the form (## 3) will cause an error if the edit command 3 causes an

error, thereby selecting ((N T)) as the list of .commands to be executed.
The IF could also be written as (IF (CODR (##)) NIL ((N T))).

9.65

kLPQ . coms)

where n 1is the number of times coms was
successfully executed. The edit chain 1is left as

of the last complete successful execution of coms.

same as LP but does not print the message

n OCCURRENCES.

In order to prevent non-terminating loops, both LP and LPQ terminate when the

number of iterations reaches maxloop, initially set to 30.75’Since the edit

chain is left as of the last successful completion of the loop, the user can

simply continue the LP command with REDO (Section 22).

(SHOW . x)

(EXAM . x)

{ORR coms, ... comsn)

X 1s a list of patterns. SHOW does a LPQ péinting
all instances of the indicated expression(s),
e.g. (SHOW FOO (SETQ FIE &)) will print all FOO's
and all (SETQ FIE &)'s. Generates an error if

there aren't any instances of the expression(s).

like SHOW except calls the editor recursively
(via the TTY: command described on page 9.70) on
each instance of the indicated espression(s) so

that the user can examine and/or change them.

ORR begins by executing coms,, a list of commands.
If no error occurs, ORR is finished. Otherwise,
ORR restores the edit chain to its original value,
and continues by executing coms,, etc. If noné of

the command lists execute without errors, i.e.,

maxloop can also be set to NIL, which is equivalent to infinity.

9.66

the ORR “drops off the end”, ORR generates an
error. Otherwise, the edit chain is left as of
the completion of the first command 1list which

executes without an error.7v

For example, (ORR (NX) (I{NX) NIL) will perform a NX, if possible, otherwise a
INX, if possible, otherwise do nothing. Similarly, DELETE could be written as
(ORR (UP (1)) (BK UP (2)) (uP (: NIL))).

9.8 Macros

Many of the more sophisticated branching commands in the editor, such as ORR,
| IF, etc., are most often used in conjunction with edit macros. The macro
feature permits the user to define new commands and thereby expand the editor's

repertoire.77 Macros are defined by using the M commandy
(M c . coms) ‘For ¢ an atom, M defines ¢ as an atomic command.’%
Executing ¢ is then the same as executing the list

of commands coms.

For example, (M BP BK UP P) will define BP as an atomic command which does

three things, a BK, and UP, and a P. Macros can use commands defined by macros

R L L L R R I R Ll L R L Il Ll i h il d

76 NIL as a command list is perfectly legal, and will always execute
successfully. Thus, making the last ‘'argument’ to ORR be NIL will insure
that the ORR never causes an error. Any other atom is treated as (atom),
i.e., the above example could be written as (OR NX INX NIL).

77 However built in commands always take precedence over macros, i.e., the
editor's repertoire can be expanded, but not redefined.

78

If a macro is redefined, its new definition replaces its old.

9.67

as well as built in commands in their definitions. For example, suppose Z is
defined by (M Z -1 (IF (READP T) NIL (P))), i.e. Z does a -1, and then if
nothing has been typed, a P. Now we can define 2z by
(M ZZ -1 Z), and ZZZ by (M Z2Z -1 -1 Z) or (M 227 -1 21).

Macros can also define list commands, i.e., commands that take arguments.

(M (c) (arg, ... arg,) . coms) c an atom. M defines ¢ as a list command.

Executing (c ey ... on) is then performed by

substituting ey for argy, ... e for arg,

throughout coms, and then executing coms.

For example, we could define a more general BP by (M (BP) (N) (BK N) UP P).
Thus, (BP 3) would perform (BK 3), followed by an UP, followed by a P.

A list command can be defined via a macro so as to take a fixed or indefinite
number of 'arguments', as with spread vs. nospread functions. The form given
above specified a macro with a fixed number of arguments, as indicated by its
argument 1list. If the ‘'argument 1list' is atomic, the command takes an

indefinite number of arguments.79

(M (c) arg . coms) c, arg both atoms, defines c as a list command.
Executing (cey ... e,) is performed " by
substituting (e1 voe en), i.e., cdr of the
command, for arg throughout coms, and then

executing coms.

For example, the command 2ND, page 9.30, can be defined as a macro by

(M (2ND) X (ORR ((LC . X) (LC . X)))).

79 Note parallelism to EXPR's and EXPR®'s.

9.68

Note that for all editor commands, 'built in' commands as well as commands
defined by macros, atomic definitions and 1list definitions are completely
independent. In other words, the existence of an atomic definition for ¢ in no
way affects the treatment of c when it appears as car of a list command, and
the existence of a list definition for c in no way affects the treatment of c
when it appears as an atom. In particular, c can be used as the name of either
an atomic command, or a list command, or both. In the latter case, two

entirely different definitions can be used.

Note also that once ¢ is defined as an atomic command via a macro definition,
it will not be searched for when used in a location specification, unless it is
preceded by an F. Thus (INSERT -- BEFORE BP) would not search for BP, but
instead perform a BK, and UP, and a P, and thén do the insertion. The

corresponding also holds true for list commands.

Occasionally, the user will want to employ the S command in a macro to save
some temporary result. For example, the SW command could be defined as:

(M (SW) (N M) (NTH N) (S FOO 1) MARK 0 (NTH M) (S FIE 1) 80
(I 1 FOO) «+ (I 1 FIE))

Since this version of SW sets foo and fie, using SW may have undesirable side
effects, especially when the editor was called from deep in a computation, we
would have to be careful to make up unique names for dummy variables used in
edit macros, which is bothersome. Furthermore, it would be impossible to
define a command that called itself recursively while setting free variables.

The BIND command solves both problems.

D N L L e A P R P R P PR ST R R R R L R E R R R L A L L X 2 X X X X d

80 A more elegant definition would be:
(M (SW) (N M) (NTH N) MARK 0 (NTH M) (S FIE 1) (I 1 (## « 1))
«~ (I 1 FIE)), but this would still use one free variable.

9.69

(BIND . coms) binds three dummy variables #1, 2, #3,
(initialized to NIL), and then executes the edit
commands coms. Note that these bindings are only
in effect while the commands are being executed,
and that BIND can be used recursively; it will
rebind #1, #2, and #3 each time it is invoked.3!

Thus we could now write SW safely as:

(M (SW (N M) (BIND (NTH N) (S #1 1) MARK 0 (NTH M) (S #2 1)
(I11#1)«(I14#2)))).

User macros are stored on a list usermacros. The prettydef command USERMACROS

(Section 14), is available for dumping all or selected user macros.

9.9 Miscellaneous Commands

NIL uniess preceded by F or BF, is always a NOP. Thus
extra right parentheses or square brackets 5t the

ends of commands are ignored.

TTY: calls thp editor recursively. The user can then
type in commands, and have them executed. The
TTY: command is completed when the user exits from

the lower editor. (see OK and STOP below).
The TTY: command is extremely useful. It enables the user to set up a'complex

operation, and perform interactive attention-changing commands part way through

81 BIND is implemented by (PROG (41 #2 #3) (EDITCOMS (COR COM))) where com
corresponds to the BIND command, and editcoms is an internal editor
function which executes a list of commands.

9.70

it. For example the command (MOVE 3 TO AFTER COND 3 P TTY:) allows the user to
interact, in effect, within the MOVE command. Thus he can verify for himself
that the correct location has been found, or complete the specification "by
hand.” In effect, TTY: says "I'll tell you what you should do when you get

there."

The TTY: command operates by printing TTY: and then calling the editor. The
initial edit chain in the lower editor is the one that existed in the higher
editor at the time the TTY: command was entered. Until the user exits from the
lower editor, any attention changing commands he executes only affect the lower
editor's edit chain.52 when the TTY: command finishes, the lower editor's edit

chain becomes the_edit chain of the higher editor.
OK : exits from the editor

STOP exits from the editor with an error. Mainly for
use in conjunction with TTY: commands that the

user wants to abort.

Since all of the commands in the editor are errorset protected, the user must
exit from the editor via a command.83_STOP provides a way of distinguishing
between a successful and unsuccessful (from the user's standpoint) editing
session. For example, if the user is executing (MOVE 3 TO AFTER COND TTY:).

and he exits from the lower editor with an OK, the MOVE command will then

L L L P R R Y R L R L N X]

82 Of course, if the user performs any structure modifidation commands while
under a TTY: command, these will modify the structure in both editors,
since it is the same structure.

83

- Or by typing a control-D. STOP is preferred even if the user is editing at
the evalqt level, as it will perform the necessary 'wrapup' to insure that
the changes made while editing will be undoable (see Section 22).

9.71

complete its operation. If the user wants to abort the MOVE command; he must
make the TTY: command generate an error. He does this by exiting from the
lower editor with a STOP command. 1In this case, the higher editor's edit chain

will not be changed by the TTY: command.

SAVE exits from the editor and saves the 'state of the
edit' on the property list of the function or
variable being edited under the property
EDIT-SAVE. If the editor is called ag#in on the
same structure, the editing is affaétively
"continued,” i.e., the edit chain, mark 1list,

value of unfind and undolst are restored.

For example:
xp
(NULL X)
XF COND P
(COND (& &) (T &))
*SAVE

Fo0

«EDITF(F00)

EDIT

*p

(COND (& &) (T &))
x\ p

(NULL X)
»

SAVE 1is necessary only if the user is editing many different expressions; an
exit from the editor via OK always saves the state of the edit of that call to
the editor.84 Whenever the editor is entered, it checks to see if it is editing

the same expression és the last one edited. In this case, it restores the mark

84 on the property list of the atom EDIT, under the property name LASTVALUE.

OK also remprops EDIT-SAVE from the property 1list of the function or
variable being edited. ‘

9.72

list, the undolst, and sets unfind to be the edit chain as of the previous exit

from the editor. For example:

«EDITF(F00)

EDIT

*p

(LAMBDA (X) (PROG & & LP & & & &))

xp -
{COND & &)
*0K
FOO
. any number of lispx inputs
. axcept for calls to the editor
«EDITF(FO0)

EDIT

xp '

(tAMBDA (X) (PROG & & LP & & & &))
P

(COND & &)

®

Furthermore, as a result of the history feature (section 22), if the editor is
called on the same expression within a certain number of lispx 1nputs,85 the
state of the edit of that expression is restored, regardless of how many other

expressions may hnvé been edited in the meantime.

----------- - R e S e R T T T R T SR TP AR R W D U5 YO TGP D R A G R T G P U W A R WD D O D R G R ORI e

85 Namely, the size of the history list, 1nitially 30, but it can be increased
by the user.

9.73

For example:

«EDITF(FOO)
EDIT
]

®p
(COND (& &) (& &) (&) (T &))
*0K

FOO :
- less than 30 lispx inputs, including editing

«EDITF(FOO)

EDIT

R\ P

(COND (& &) (& &) (&) (T &))
x

Thus the user can always continue oditing.'inclﬁding-updoing changes from a

previous editing session, if

(1) No other expressions have been edited since that session;aﬂ or
(2) That session was *sufficiently' recent; or

(3) It was ended with a SAVE command.

RAISE 1s an edit macro defined as UP followed by
(I 1 (U-CASE (## 1))), i.e. it raises to upper-
case the current expression, or if a tail, the

first element of the current expression.

LOWER Similar to RAISE, except uses l-case. |

86 Since saving takes place at exit time, intervening calls that were aborted

via control-D or exited via STOP will not affect the editor's memory of
this last session.

9.74

CAP First does a RAISE, and then lowers all but the
first charactor. i.q. the first character is left

capitalized.

Note: RAISE, LOWER, and CAP are all ﬂOPs if the corresponding atom or string 1s
already in that state.

{RAISE x) equivalent to (I R (L-CASE x) x), 1.e. changes
every lower-case X to upper-case in the current

expression.

(LOWER x) _ similar to RAISE, except performs' (I Rx (L~
CASE x)).

Note in both (RAISE x) and (LOWER x), x is typed in in upper case.

REPACK Permits the 'editing' of an atom or string.

For example:

*p

... "THIS IS A LOGN STRING")

REPACK

*EDIT

P

(THISX IS% A% LOGNX STRING)
%(SW G N)

VK 87

"THIS IS A LONG STRING"

bl

REPACK operates by calling the editor recursively on unpack of the current

87 Note that this could also have been accomplished by (R SGNS SNGS) or simply
(RC GN NG).

9.75

expression, or if it is a list, on unpack of its first element. If the lower

editor is exited successfully, i.e. via OK as opposed to STOP, the list of

atoms is made into a single atom or string, which replaces the atom or string

being ‘repacked.' The new atom or string is always printed.

(REPACK @)

JOINC

does (LC . @) followed by REPACK, e.d.
(REPACK THISS).

X 1s the text of a comment. ; ascends the edit
chain looking for a ‘'safe' place to insert the
comment, e.g., in a cond clause, after a prog
statement, etc., and iﬁserts (* . x) after that
point, if possible, otherwise before. For
example, if the current expression is
(FACT (SUB1 N)) in
[COND

((ZEROP N) 1)

(T (ITIMES N (FACT (SUB1 N]
(i CALL FACT RECURSIVELY) would insert
(* CALL FACT RECURSIVELY) before the ;g;ggg

expression.88

; does not change the edit chain, but unfind is

set to where the comment was actually inserted.

is used to join two neighboring COND's together,
e.g. (COND clausel clausez) . followed by

S S e s s s r e rrncta r e, w - - — - - - - - o - -

If inserted after the itimes, the comment would then be (incorrectly)

returned as the value of the cond. However, if the cond was itself a pro

statement,

and hence its value was not being used, the comment could be

(and would be) inserted after the itimes expression.

9.76

(SPLITC x)

CcL

DW .

(RESETVAR var form . coms)

(COND clause, clause,) becomes
(COND clausoi'clausa2 clause, clause,). JOINC
does an (F COND T) first so that you don't have to
be at the first COND.

splits one COND into two. Xx specifies the last
clause in the first COND, e.g. (SPLITC 3) splits
(COND élause1 clause, clause, clause4) into
(COND clauso1 clausez) (COND clause3 clauseq).
Uses qeneralizeq NTH command, so that X does not
have to be a number, e.g}.the user can say .
(SPLITC RETURN), meaning split after the clause
containing RETURN. SPLITC also does an (F COND T)
firste.

Clispifies current expression. See Section 23.

Dwimifies current expression. Ses Section 17 and

23.
executes coms while var is reset to the value of

form, and then restores var, i.e. effectively

calls the function resetvar (Section 5).

9.77

9.10 UNDO

Each command that causes structuré modification automatically adds an entry to

the front of undolst that contains the information required to restore all

pointers that were changed by that command.

UNDO undoes the last, 1i.e. most recent, structure

modification command that has not yet been

undona,89

and prints the name of that command,
e.9., MBD UNDONE. The edit chain is then exactly
what it was before the ‘'undone' command had beenA
performad.90 If there are no commands to undo,

UNDO types NOTHING SAVED.

1UNDO undoes all modifications performed during this

89~

80

editing session, i.e. this call to the editor.
As each command is undone, its name is printed a
la UNDO. If there is nothing to be undone, !UNDO
prints NOTHING SAVED. |

Since UNDO and !'UNDO cause structure modification, they also add an entry
to undolst. However, UNDO and 'UNDO entries are skipped by UNDO, e.g., if
the user performs an INSERT, and then an MBD, the first UNDO will undo the
MBD, and the second will undo the INSERT. However, the user can also
specify precisely which commands he wants undone by identifying the

corresponding entry on the history list as described in Section 22. In
this case, he can undo an UNDO command, e.g. by typing UNDO UNDO, or undo a
'UNDO command, or undo a command other than that most recently performed.

Undoing an event containing an I, E, or S command will also undo the side

- effects of the evaluation(s), e.g. undoing (I 3 (/NCONC FOO FIE)) will not

only restore the 3rd element but also restore FOO. Similarly, undoing an S
command will undo the set. See discussion of UNDO in Section 22. (Note
that if the I command was typed directly to the editor, /NCONC would
automatically be substituted for NCONC as described in Section 22.)

9.78

Whenever the user continues an editing session as described on page 9.72-74,
the undo information of ‘tho previous session is protected by inserting a
special blip, called an undo-block, on the front of undolst. This undo-block
will terminate the operation of a !UNDO, thereby confining its effect to the
current session, and will similarly prevent an UNDO command from operating on

commands executed in the previous session.

Thus, if the user enters the editor continuing a session, and immediately
executes an UNDO or !'UNDO, the editor will type BLOCKED instead of
NOTHING SAVED. Similarly, if the user executes several commands and then undoes

them all, another UNDO or !UNDO will also cause BLOCKED to be typed.

UNBLOCK removes an undo-block. If executed at a non-
blocked state, 1i.e. 1if UNDO or !UNDO could
operate, types NOT BLOCKED.

TEST adds an undo-block at the front of undolst.

Note that TEST together with !UNDO provide a 'tentative' mode for oditing, i.e.

the user can perform a number of changes, and then undo all of them with a

single !UNDO command.

9.79

9.11 Editdefault

Whenever a command is not recognized, i.e.,'1s not 'built in' or defined as a
macro, the editor calls an internal function, editdefault, 'to determine what
action to take.?! If a location specification is bding.executed, an ‘internal
flag informs editdefault to treat the command as though it had ‘been preceded by

an F.

If the command is a 1list, an attempt is made to perform spelling correction on

car of the command?? using editcomsl, a list of all list edit commands.?3 If

spelling correction is successful,?¥ the correct command name is rplacaed into
the command, and the editor continues by executing the command.
In other words, if the user types (LP F PRINT (MBBD AND (NULL FLG))), only one
spelling correction will be necessary to change MBBD to MBD. If spelling

correction is not successful, an error is generated.

If the command is atomic, the procedure followed is a little more elaborate.

Since editdefault is part of the edit block, the user cannot advise or
redefine it as a means of augmenting or extending the editor. However, the
user can accomplish this via edituserfn. If the value of the variable
edituserfn is T, editdefault calls the function edituserfn giving it the
command as an argument. If edituserfn returns a non-NiL value, its value
is interpreted as a single command and executed. Otherwise, the error
correction procedure described below is performed.

92 unless dwimflg=NIL. See Section 17 for discussion of spelling correction.

93 When a macro is defined via the M command, the command name is added to

editcomsa or editcomsl, depending on whether it is an atomic or 1list
command. The prettydef command USERMACROS (Section 14), is aware of this,
and provides for restoring editcomsa and editcomsl.

94 Throughout this discussion, if the command was not typed in directly, the

user will be asked to approve the spelling correction. See Section 17.

9.80

1)

2)

96

If the command is one of the list commands, i.e., a member of editcomsl,
and there is additional input on the same teletype line, treat the entire
line as a single list command.95 Thus, the user may omit parentheses for
any list command typed in at the top level (provided the'command is not

also an atomic command, e.g. NX, BK). For example,

*p
(COND (& &) (T &))
*XTR 3 2]

*MOVE TO AFTER LP
x ,

If the command is on the list editcomsl but no additional input is on the
teletype line, an error is generated, o.g.

®xp

(COND (& &) (T &))

*MOVE

MOVE?
®

If the command is on editcomsl, and not typed in directly, e.g. it appears
as one of the commands in a LP command, the procedure is similar, with the
rest of the command stream at that level. being treated as

“"the teletype line", e.g.

(LP F (COND (T &)) XTR 2 2).9%0

If the command was typed in and the first character in the command is an 8,

- - e o S G G e e e W G D A S P B I W N G R D U P W e e AR Y Ge GF U P P OV N @D IR P AP EN R SV AR SR AN O8O G5 OF ©D TV AP 4D GNP P @S R OV @GR GY G5 D W e S 0 A

The 1line is read using readline (Section 14). Thus the 1l1line can be
terminated by a square bracket, or by a carriage return not preceded by a
space.

Note that if the command is being executed in location context, editdefault
does not get this far, e.g. (MOVE TO AFTER COND XTR 3) will search for XTR,
not execute tt. However, (MOVE TO AFTER COND (XTR 3)) will work.

9.81

3)

q)

5)

6)

treat the 8 as a mistyped left parenthesis, and and the rest of the line as
the arguments to the command, e.g., ’

xp

(COND (& &) (T &))

®8-2 (Y (RETURN 2)))

=(-2

*p
(COND (Y &) (& &) (T &))

If the command was typed in, is the name of a functioh. and is followed by
NIL or a list car of which is not an edit command, assume the user forgot
to type E and means to apply the function to its arguments, type =E and the
function name, and perform the indicated computation, e.g.

*BREAK(F00)

=E BREAK
(FO0)
®

If the last character in the command is P, and the first n-1 characters
comprise a number, assume that the user intended two commands, e.g.,

®p

(COND (& &) (T &))

®x0p

=0 P
(SETQ X (COND & &))

Attempt spelling correction using editcomsa, and if successfu1,97 exacute

the corrected command.

Otherwise, if there is additional input on the same line, or command

stream, spelling correct using editcomsl, e.g.,

See footnote on page 9.81.

9.82

7)

*MBBD SETQ X

=MBD
]

Otherwise, generate an error.

9.12 Editor Functions

edite[expr;coms;atm] edits an expression. Its value 1s the 1last

element of editl[list[expr];coms;atm]. Generates

an error if expr is not a list.

editli{1l;coms;atm;mess] ed1t198 is the editor. Its first argument is the

100

edit chain, and its value is an edit chain, namely

the value of 1 at the time editl is exited.??

coms 1s an optional 1list of commands. For
1nteractivelediting, coms is NIL. In this case,
editl types EDIT and then waits for input from
teletype.IOO Exit occurs only via an OK, STOP, or
SAVE command.

If coms is not NIL, no message is typed, and each

edit-ell, not edit-one.

1 is a specvar, and so can be examined or set by edit commands. For
example, t 1s equivalent to (E (SETQ L (LAST L)) 7). However, the user
should only manipulate or examine 1 directly as a last resort, and then
with caution.

If mess is not NIL, editl types it instead of EDIT. For example, the TTY:

———

command is essentially (SETQ L (EDITL L NIL NIL (QUOTE TTY:))).

9.83

member of coms is treated as a command and
executed. If an error occurs in the execution of
one of the commands, no error message is printed,
the rest of the commands are ignored, and editl
exits with an error, i.e. the effect is the same
as though a STOP command had been executed. If
all commands execute successfully, editl returns

the current value of 1.

atm is optional. On calls from editf, it is the
name of the function being edited; on calls from
editv, the name of the variable, and calls from
editp, the atom whose property list is being
edited. The property list of atm is used by the
SAVE command for saving the state of the edit.
Thus SAVE will not save anything if atm=NIL, i.e.
when editing arbitrary expressions via edite or

editl directly.

edith[l;coms:mess;editlflgf“ like editl except does not rebind or
initialize the editor's various state variables,

such as lastail, unfind, undolst, marklst, etc.

editf[x] nlambda, nospread function for editing a function.
car[x] is the name of the function,cdr{x] an
optional 1list of commands. For the rest of the

discussion, fn is car[x], and coms is cdr[x].

The value of editf is fn.

editlflgs‘r is for internal use by the editor.

9.84

(1) In the most common case, fn 1is an expr, and editf simply performs

putd[fn;edite[getd[fn];éoms;fn]].

(2) If fn is not an expr, but has an EXPR property, editf prints PROP, and
performs edite[getp[fn;EXPR];coms;fn]. If edite returns (i.e. 1f the
editing is not terminated by a STOP), and some changes were made, editf
performs unsavedef[fn], prints UNSAVED, and then does putd[fn;value-of-
edite]. |

(3) If fn is neither an expr nor has an EXPR property, but its top level value
is a list, editf assumes the user meant to call editv, prints =EDITV, calls
editv and returns. Similarly, if fn has a non-NIL property list, editf

prints =EDITP, calls editp and returns.

(4) If fn is neither a function, nor has an EXPR property, nor a top level
value that is a list, nor a non-NIL property list, editf attempts spelling

102

correction using the spelling list userwords, and 1f successful, goes

back to (1).
Otherwise, editf generates an fn NOT EDITABLE error.

If editf ultima;ely succeeds in finding a function to edit, i.e. does not exit

by calling editv or editp, editf calls the function addspell after editing has

been completed.loa Addspell 'notices' fn, i.e. sets lastword to fn, and adds fn

et L L L R A X

102 Unless dwimflg=NIL. Spelling correction is performed using the function
misspelled?. If fn=NIL, misspelled? returns the last ‘'word' referenced,
e.g. by defineq, editf, prettyprint etc. Thus if the user defines foo and
then types editf[], the editor will assume he meant foo, type =FO0, and
then type EDIT. See Section 17.

103 ypjess dwimflg=NIL. addspell is described in Section 17.

9.85

to the appropriate spelling lists. If any changes were made, editf also calis
newfile?, which performs the updating for the file package as described in
Section 14.

editv[editvx] nlambda, nospread function, similar to editf, for
editing values. car[editvx] specifies the value,

cdrfeditvx] is an optional list of commands.

If car[editvx] is a 1list, it is evaluated and its value given to edite, e.g.
EDITV((CDR (ASSOC (QUOTE FO0O) DICTIONARY)))). In this case, the value of editv
is T.

However, for most applications. car[editvx] is a variable name, i.e. atomic. as
in EDITV(FOO). If the value of this variable is NOBIND, editv checks to see if
it is the name of a function, and if So, assumes the user meant to call editf,
prints =EDITF, calls editf and returns. Otherwise, editv attempts spelling
correction using the list userwords.?% Then editv will call edite on the value
of car[editvx] (or the corrected spelling thereof). Thus.'if the value of fég
is NIL, and the user performs (EDITV FOO), no spelling correction will occur,
since foo is the name of a variable in the user's system, i.e. it has a value.
However, edite will generate an error, since foo's value is not a 1list, and
hence not editable. If the user performs (EDITV FOOO), where the Value of fooo
is NOBIND, and foo is on the user's spelling list, the spelling corrector will
correct FOOO to FOO. Then edite will be called on the value of foo. Notekthdt'

this may still result in an error if the value of foo is not a list.

When (if) edite returns, editv sets the variable to the value returned, and

calls addspell and newfile?.

——-—-----—------—----—------—--------------------------------—-------------—---

104 ynless dwimflg=NIL. Misspelled? is also called if car[editvx] is NIL, so
that EDITV() will edit lastword.

9.86

The value of editv is the name of the variable whose value was edited.

editplx] nlambda, nospread function, similar to editf for
editing property lists. If the property list of
car[x] is NIL, editp attempts spelling correction
using userwords. Then editp calls edite on the
property 1list of car[x], (or the corrected
spelling thereof). When (if) edite returns; editp
rplacd's car[x] with the value returned, and calls

addspell.

The value of editp is the atom whose property list

was edited.

editfns{x] nlambda, nospread function, used to perform the
same editing operations on severdl functions.
car[x] is evaluated to obtain a list of functions.
cdr{x] is a 1ist of edit commands. editfns maps
down the 1list of functions, prints the name of
each function, and calls the editor (via editf) on

that function.los

For example, EDITFNS(FOOFNS (R FIE FUM)) will change every FIE to FUM in each

of the functions on foofns.

The call to the editor is errorset protected, so

- > o > W T - W " P W WS TS W S e W G Y SB %R N e S R e Gm W G W G PO P R R W TR WD T P D AR R D S SR D R D D S D D W R TS R R DR

106 i.e. the definition of editfns might be:
[MAPC (EVAL (CAR X)) (FUNCTION (LAMBDA (Y)
(APPLY (QUOTE EDITF)
(CONS (PRINT Y T) (COR X]

9.87

that if the editing of one function causes an
error, editfns will proceed to the next

function.‘oo

Thus in the above example, if one of the functions did not contain a FIE, the R

command would cause an error, but editing would continue with the next

function.
The value of editfns is NIL.
editde[pat;x;changeflg] is the pattern match routine. 1Its value is T if

pat-matches x. See page 9.21-23 for definition of
‘match* 107

Note: before each search operation in the editor begins, the entire pattern is
scanned for atoms or strings containing alt-modes. These are replaced by
patterns of the form (CONS (QUOTE $) (UNPACK atom/string)) for 6a, and
(CONS (QUOTE $3) (CONS (NCHARS atom/string) (UNPACK atom/string))), for 6b.108
Thus from the standpoint of editde, pattern type 6a is indicated by car[pat]
being the atom $ ($ is alt-mode) and battern type 6b by car[pat] being the atom
$% (double alt-mode).

06 In particular, if an error occurred while editing a function via its EXPR
property, the function would not be unsaved. In other words, in the above
example, only those functions which contained a FIE, i.e. only those
actually changed, would be unsaved.

107 changeflg is for internal use by the editor.

108 In latter case, atom/string corresponds to the atom or string up to but not
including the final two-alt-modes. In both cases, dunpack is used wherever
possible.

9.88

Therefore, if the user wishes to call editde directly, he must first convert
any patterns which contain atoms or strings ending in alt-modes to the form

recognized by edit4e. This is done with the function editfpat.

editfpat[pat;flg] makes a copy of pat with all patterns of type 6

converted to the form expected by editde.log

editfindp[x;pat;flg) allows a program to use the edit find command as a
pure predicate from outside the editor. Xx is an
expression, pat a pattern. The value of editfindp
is T if the command F pat would succeed, NIL
otherwise. editfindp calls editfpat to convert
pat to the form expected by editd4e, unless flg=T.
Thus, if the program is applying editfindp to
several different expressions using the same
pattern, it will be more efficient to call
editfpat once, and then call editfindp with the
converted pattern and flg=T.

esubst[x;y;:z;errorflg;charflg] equivalent to performing (R y x)IIo with z as
the current expression, i.e. the order of
arguments is the same as for subst. Note that y
and/or x can employ alt-modes. The value of

esubst is the modified z. Generates an errorii!

P T T P Y Y T R R L R R R R DL LR R L L L Ll ot ol di ol ol ool ol ol Sdhaihoad o didiada g

110 unless charflg=T, in which case it is equivalent to (RC y x). See page

9.59.

111‘of the type that never causes a break.

9.89

changename[fn;from;to]

changename is used by break
fni-IN-fn2.

editracefn{com]

1137 1] T

if y not found in z. If errorflg=T, also prints

&n error message of the form y ?.
esubst is always undoable.

replaces all occurrences of from by to in the
definition of fn. If fn is an expr, changename
performs nlsetq[esubst[to;from;getdtfn]]j. ff fg
is compiled, changename searches the literals of
fn (and all of its compiler generated
subfunctions), replacing each occurrence of from

with to.112

The value of changename is fn if at least one

instance of from was found, otherwise NIL.

and advise for changing calls to fn1 to calls to

is available to help the user debug complex edit
macros, or subroutine calls to the editor. If
editracefn is set to T, the function editracefn is
called whenever a command that was not typed in by
the user is about to be executed, giving it that
command as its argument. However, the TRACE and
BREAK options described below are probably

sufficient for most applications.

--- oo wewo -

2 winl succeed even if from is called from fn via a linked call. In this

case, the call will also be relinked to cali to instead.

9.90

"If editracefn is set to TRACE, the name of the
command and the current expression are printed.
If editracefn=BREAK, the same information is
printed, and the editor goes into a break. The

user can then examine the state of the editor.

editracefn is initially NIL.

9.91

Index for Section 9

Page

Numbers
(A el ... em) (edit command) eiererereeee. 9.13,30-40
ADDSRELL[X;SPLST;N] uuuuuu E R A R A N N N I N S RS A A 9-85'87

AFTER (in INSERT command) (in editor) 9.41
AFTER (in MOVE command) (in editor)i.eocov.. 9.48

(B el ... em) (edit command) crcecareevas 9.13,39-40
BEFORE (1in INSERT command) (in editor) 9.41
BEFORE (1in MOVE command) (in editor) 9.48

(BELOW com x) (edit command)cccovevinseones 9.31
(BELOW com) (edit command)cevveesnnencenas 9,31

BF (edit command) cestesecsatccaacannanoe 9.10,28
(BF pattern T) (edit commanﬂ) cereeseesetcsassenas 9.28

(BI n m) (edit command)cceeevcvncvonneonns 9.8,52

(BI n) (edit command)cceeceeovcsonncnnsnse 9.52

(BIND . coms) (edit command) vecsvesecenans 9.70

BK (edit command)c0... tesessessencnen .o 9.10,18-19
(BK n) (n a number, edit command)o 9.19
BLOCKED (typed by editor) Ceeesercesenensans 9.79

(BO n) (edit command) cessesesrseseaas 9.8,52

BY (in REPLACE command) (in editor)eee.. 9.42
CAN'T - AT TOP (typed by editor)eoeveveeen
CAP (edit command) creveaean crresersenaseas
(CHANGE @ TO ...) (edit comnand) teeteersesaeanee
CHANGENAME[FN; FROM T01 Ceercetsecrsresseenae
CL (edit command) N
commands that move parentheses (in editor)
(COMS x1 ... xn) (edit command)e00.. ceees
(COMSQ . coms) (edit command)vvvevvovncanes
continuing an edit SeSSiONcvceveerrrcronnns
control-D tescsesscsenscunensassaas
control-E teseseen ceesessreesescaacras
current expression (in editor)ieveeneencneas
DELETE (edit command) ceseesesseesenssssanan
(DELETE . @) (edit command) ceesreesnane
DESTINATION IS INSIDE EXPRESSION BEING MOVED
(typed by editor) sesresecsesannas e
DW (edit command) Gessseessesscvrenssnss
DWIMFLG (system variable/parameter)eece..
E (edit command) sessessesesnerecnanes
(E x T) (edit command) ceveenas ceseserseae
(E x) (edit command)ceeeeevoncoceonnnnee
EDIT (typed by editor)ceveeneroevocacsenes
edit chainc.... Ceriesesecrrseenons
edit commands that search cecsvacsrannae
edit commands that testceceeve. ceeens cees
edit macros terecsseessss et e s
EDIT-SAVE (property name) cecenn cresesessanne
EDITAE[PAT;X;CHANGEFLG] +.vevvinnenvennciononcesns
EDITCOMSA (editor variable/parameter) ceeveacaven
EDITCOMSL (editor variable/parameter)
EDITDEFAULT (in editor)cvvveevenvnnoenens .o
EDITELEXPR;COMS;ATM] i ittt rivnvevoseanonconcnns
EDITF[X] NLx _......... teesesctevenas tesecsesessae
EDITFINDP[X;PAT;FLG] W e eeenteseertnesevenna
EDITFNSEX] NL® . . iiiininnns teeevesseevreteerenen
EDITFPAT[PAT;FLG] D
editing compiled functionsccoeeencanees

17

« e o

©CBuD aL&wwﬂommwwawm

1-54

N WRNONOD.

W~

7,11-13,18,23
-33

OOOJNTI.&--
[a-Ne-] ~
NN (-3

63 86-87
84-86

om@m»ummmmummmhmom

’
6
7-88
9
0

0&0@@‘0‘0‘0‘0@0@00‘0@0@‘00‘0‘00 QU OUVOUOUVOOOOOOVOOY

INDEX.9.1

Page
Numbers

EDITLLL;COMS :ATM MESS] vivieerneeeenvesnssnacasss 9.83-84
EDITLO[L;COMS;MESS;EDITLFLG] ceeersecns e 9.84
EDITP[X] NL®c.. Cetecseeceasesenesenes 9.1,85,87
EDITQUIETFLG (editor variable/parameter) 9.22
EDITRACEFN P reesnesstoentnec s st e ussoases 9.90-91
EDITUSERFNiciiiioeeannnnas teesesesscssacene
EDITVLEDITVX]} NL* seecaccresrtsenssenaane
(EMBED @ IN ...) (edit command) ceecvanveve
errors (in editor)cciiiiiiininennennnnas
ESUBSTEX;Y;Z;ERRORFLG;CHARFLG] ...vvveereeennnnen
(EXAM . x) (edit command) Ceseccesesevssereasnene
EXPR (property name)cceceeee vesesescssans
(EXTRACT @1 from . €2) (edit command)
F (edit command)cc... ceseseecenesasans
F pattern (edit command) ceveeersessrsasans
(F pattern N) (edit command) teeesasscncnas .
(F pattern n) (n a number, edit command)
(F pattern T) (edit command) ceeseieann
(F pattern) (edit command)ccoveeevosecnnesns
(F= ...) (edit command)ccc00unesn cereaens
FOR (1n INSERT command) (in editor) cecescssnanes
FROM (in EXTRACT command) (in editor)
(FS ...) (edit command)cceeevevncevononense
generalized NTH command (in editor)
HERE (in edit command) Geeeseasresseanns
history list¢..... Cetrrreseentesnsessennes
(I ¢ x1 ... xn) (edit command) cetecccrseavsans .o
(IF x comsl coms2) (edit command)cocvveees .
(IF x comsl) (edit command) cereessessaas
(IF x) (edit command) Cieeseesencesesuns
implementation of structure modification commands
(in editor)ccvieieeevennnn ceeserenans .o
IN (in EMBED command) (in editor)ceoeeeeess
(INSERT ... AFTER . ©) (edit command)
(INSERT ... BEFORE . @) (edit command)
(INSERT ... FOR . @) (edit command)
JOINC (edit command)ccooeveeocvoscccnossns
L-CASE[X;FLG] ... iriieeeenennneanns heeesssessans
LASTAIL (editor variable/parameter)ccecveees
LASTVALUE (property name)ccceeevoe cecesoee
LASTWORD (system variable/parameter)cc....
(LC . @) (edit command) ceeesecsenanane
(LCL . @) (edit command) cessevcsesnsussanns
(LT n) (edit command) Shesesresecstsenanasas
LISPX ...ivviivnenn. Cecssesescesectsasscecsanie
(LO n) (edit command) ceresesecnnens
location specification (in editor)o
LOCATION UNCERTAIN (typed by editor)ccc..
LOWER (edit command) shtenetesens ceeseas
(LOWER x) (edit command)ccceccessee checeeans
(LP . coms) (edit command)c.ccevuennnns
(LPQ . coms) (edit command)cevveveoccccess
(M (c) (argl ... argn). . coms) (edit command)
(M (c) arg .. coms)cevuees Cesssessesnssenennns
(M c . coms) (edit command) ceesccennes
macros (in editor) ...civeieeeececcconcnoossnsanns
MARK (edit command) Ceesescstesseasesennas

o

985'86

[=-]

SADO
5] (-4
[« -]

N
]

N

(-}

- . .

+52,60
» 78

U
w
o

-17,25,84

J
o -]
-]

N~ o.ommmammn—-—-m\z BOUNWNNNIRNINIIO O
o .

1 e
NWwNwW
o w
-

>

.

]
-
(-]

s s 2

WO O D DO NN NP PP WWR AL A NDDBBEW OOADNONDWNDANNNNNNN DD D WS-

]
~
o

BNNRSIIOOOLEIR.

INDEX.9.2

Page
Numbers

(MARK atom) (edit command)cvvveeecenssnne
MARKLST (editor variable/parameter)veove..
MAXLEVEL (editor variable/parameter)
MAXLOOP (editor variable/parameter) e
MAXLOOP EXCEEDED (typed by editor) ceasenees
(MBD e1 ... em) (edit command) creasesrrens
(MOVE @i TO com . @2) (edit command) cesanes
n (n a number, edit command) trreeecesanee
(N el ... em) (edit command) cevesanee
(n el ... em) (n a number, edit command)
(n) (n a number, edit command) et eceves
NEWFILE?[NAME;VARSFLG] v vevvverenccncosonaconsns
NEX (edit command)ceevvevvcnns cvretererea
(NEX x) (edit command)ccenvvensveonooccoens
NIL (edit command) cencaeeaae ceeenns e
NOBINDcovivvnenen S
NOT BLOCKED (typed by editor) certevaans
NOT CHANGED, SO NOT UNSAVED (typed by editor) oo
NOT EDITABLE (error message) ceeecevnaas
NOTHING SAVED (typed by editor) ceesresancas
(NTH n) (n a number, edit command)vcevoee
(NTH x) (edit command) Ceeeveessesssnans
NX (edit command)cc000e ereesssssurenes
{NX n) (n a number, edit command) e cesstenenns
OCCURRENCES (typed by editor)ccvveeeeveees
0K (edit command) sesescen cerecee e
(ORF ...) (edit command) ...cceeveeeesncononsnoes
(ORR ...) (edit command) ceeseessseaarnnes
P (edit command) Ceestetssesecsrsrnsanos
(P mn) (edit command) cessecass cresencns
(P m) (edit command)vvveeneceeoreeosonnvooes
(pattern .. @) (edit command)ccevvenennnanns
pattern match (in editor)ceeeeeeeronsonns
PP (edit command)cc0vevnne cescesesecavens
PP* (edit command) ceescana et ecesseerans
PPT (edit command) Ceeiereieceereteseanenas
PPV (edit command)c.0.. Cecescssereseanes
prompt character S estsseesesestssestasnnnss
PROP (typed by editor)c... cesessesvenanese
(R x y) (edit command) ...ceceeevevonoveronsasans
(R1 x y) (edit command)ecveee.. veesseseen
RAISE (edit command) Cessecrsrssesscanses
(RAISE X) (edit command) seeeesseacaans
(RC x ¥) (edit command)ceovesereoessscannncs
(RCt x y) (edit command) cecesiesnresenens
READLINE[LINE;LISPXFLG]} Cetseeccereenesrrnes
REPACK (edit command)ccveee. ceveen ceves
(REPACK @) (edit command) cesecsasnsssse
(REPLACE @ WITH ...) (edit command) cireene
RESETVAR[RESETX;RESETY;RESETZI NL +vvevvvvnnnnnns
(RESETVAR var form . coms) (edit command)
(RI n m) (edit command)vevevevovnscceccens
(RO n) (edit command) cresesererrrenesesunes
(S var . @) (edit command)coeevevvosconnens
SAVE (edit command) sitteeccssasernersrnnnn
search algorithm (in editor)ceieeeecceccoss
(SHOW . x) (edit command)eceeeveosenncansss

NN CDAIWLEPOOIWWdDRLIION
RNOD

w W -

[~ K- -3

-
~
(-]

NODWROIDBNND »~ O~
[«
(2]

!
(]
w

,18- 19

.

QN’QUQQNGQONNWQONGNQO»‘@C&

,76,83

DN QO

[=3]
(-]

3,88-89

Pt o pa e A DO
D i
SN

(3.}
(2]
~

QN NIW DD DD
CENGy - NNNIAmOOAS G,

§ .
[ww
[42]

4,83-84

. s s

.

INDEX.9.3

Page

Numbers
spelling correctioniiiiiiiniineircsecnnon 9.82,86
(SPLITC x) (edit command)veeveeeoscnsvoncnns 9.77
STOP (edit command)cvveeennans seseccsanee 9.71-72,76,83-88
structure modification commands (in editor) ceene 9.36-60
(SURROUND @ IN ...) (edit command) ceesecees 9.48
(SW n m) (edit command) Ceeseasesaseeseseerennnns 9.59-60
teletypecc0cen. svscevesesossssasarsansnrne 9.61
TEST (edit command) h et essressssesesssesaseee s 9.79
THRU (edit command) ceeveee tevesteseesees 9.54-57
TO (edit command)civeeeenceeoncocnvsncnsace 9.54-57
TTY: (edit command)cieevneeeeenennsccnaonnons 9.66,70-72
TTY: (typed by editor)cceeveveoncsocssosoons 9.71
U-CASE[X] ..iviiiiinnnn. ctrvieesssearvnene cereees 9.74
UNBLOCK (edit command)ceceeveccnconccencans 9.79
UNDO (edit command)veeveeeoenvsnoonssonss 9.10,78
undoing (in editor) ceesssecscancees 9.10,36,78- 79
UNDOLST (editor variable/parameter)ceeecee. 9.72,78-79,84
UNDONE (typed by editor)ceveeeeeees revesan 9.78
UNFIND (editor varlable/parameter) teeeartrsesseen 9.25,35,41-42,46,48-51,
......................... e eresvsrtenanan 72-73,76,84
UNSAVED (typed by editor) et eecrcarseaseenensn e 9.85
UP {(edit command)cveeeevevenscscnnvonecas 9.12,15-16,25,43
UPFINDFLG (editor variable/parameter)cecoeees 9.25,28,44
USERMACROS (editor variable/parameter) 9.70
USERMACROS (prettydef command) crereseua 9.70,80
USERWORDS (system variable/parameter) 9.85-87
WITH (in REPLACE command) (in editor) 9.42
WITH (in SURROUND command) (in editor) veen 9.48
(XTR . @) (edit command)ocvvcevrvccecncenes 9.45
0 (edit command)co000. Cecessrecieeenrense . 9.4-5,17
10 (edit command)cvevevvecncesencononnanonss 9.18
INX (edit command) -........ eesseee Cebtecererenenen 9.19-20
1UNDO (edit command) Cesesssereenoane 9.78
FF[COMS] NL® . . . iiiiiiinnnnns creee ceevene 9.29,63
(in INSERT, REPLACE, and CHANGE commands) e 9.43
$ (alt-mode) (in edit pattern) crserenssenas 9.12,21
$ (alt-mode, in R command) (in editor) 9.58
33 (two alt-modes) (in edit pattern) ceenen 9.22
3BUFS (alt-modeBUFS) (prog. asst. command) 9.7
& (in edit pattern) ..ciiiiiiiercnessccnrannsnnes 9.11,21
& (typed by editor) ...cicecvesrecsecenconcensons 9.2
* (typed by editor)coivecececnecens cereens 9.2
® (in MBD command) (in editor) Cererteesvene ceeane 9.47
RXCOMMENT*® (typed by editor) cesean 9.60
RXCOMMENT2*FLG (prettydef variable/parameter) e 9.61
ANY (in edit pattern)ccceeeeeevcnenns cee 9.21
== (in edit pattern) Cetececesrvesesrecnose 9.11,22
=> (typed by editor)c.ceeeeecncenn ceretsene 9.58
=-n (n° a number, edit command) cheereenas 9.3,17
(-n el ... em) (n a number, edit command) - 9.5,36
. (edit command)icvetecnesrcnsonesessrvenas 9.33
. (in edit pattern) Teeecscesene ceesens 9.,22-23
... (typed by editor)ccicevevevniennennnnnsn 9.13,158
(2ND |, @) (edit command)cveeeeevenn ceetesa 9.30
(3RD . @) (edit command)ccoevevvieencnnnnas 9.30
8 (instead of left parenthesis) ..c.ieevrenneones 9.82
(: @1 ... em) (edit command)cccvveeevecose 9.14,40

INDEX.9.4

Page
Numbers

(; . x) (edit command) N 9.76
= (typed by editor)ciceecvveceoccrcecssevscns 9.12
== (in edit pattern)cccceeen cerasea ceanas 9.22
=E (typed by editor)ciivevveecesvosssosnane 9.82
=EDITF (typed by editor)ceceececoconcacenans 9.86
=EDITP (typed by editor)cceeeeeeconsenccaes 9.85
=EDITV (typed by editor) teesenesrenane
? (edit command)cc000000000 seteceasenerue
? (typed by editor) Ceereseseressecsssassnos
@ (location specification) (in editor)
(@1 THRU @2) (edit command)coecesnvevencocns
(@1 THRU) (edit command)ceevececrcoccccccnsse
(@1 TO @2) (edit command)cecevvevncrsnccoons
(@1 10) (edit command) eteecesaarscsennne
\ (edit command)ccoieveenoscccscncncssonses
(\ atom) (edit command)cceoeeccevencancsonns
\P (edit command)cocevvenecccnnccccccnonsas
t (edit command) Cetesereccssecsstecreasnens
+ (edit command) Cesecsssesescecassonanas
(~ pattern) (edit command)oceveeccscoaoscens
e (edit command)cicccvveccsscrccccssnnnne

- O
(=1
o

. o

N 34"35,
1,35,61

DL O

QOVOLOVOOVOVODIOVOOOVOLY
[N
=]

DWW WO RNWN®D

DO b

INDEX.9.5

SECTION 10
ATOM, STRING, ARRAY, AND. STORAGE MANIPULATION

10.1 Pnames and Atom Manipulation

The term 'print name' (of an atom) in LISP 1.5 referred to the characters that
were output whenever the atom was printed. Since these characters were stored
on the atom's property 1list under the property PNANME, pname was used
interchangeably with 'print name'. 1In INTERLISP, all pointers have pnames,
although only literal atoms and strings have their pname explicitly stored.

The pname of a pointer are those characters that are output when the pointer is
printed using prini,

e.g., the pname of the atom ABC%(DI consists of the five characters ABC(D. The
pname of the list (A B C) consists of the seven characters (A B C) (two of the

characters are spaces).
Sometimes we will have occasion to refer to the prin2-pname.

The prin2-pname are those characters output when the corresponding pointer 1is
printed using prin2.

Thus the prin2-pname of the atom ABCX(D is the six characters ABCX(D. Note that

the pname of numbers depends on the setting of radix.

% is the escape character. See Sections 2 and 14.

10.1

pack[x] If x is a list of atoms, the value of pack is a
single atom whose pname is the concatenation of
the pnames of the atoms in x, e.g.
pack[(A BC DEF G)]=ABCDEFG.

If the pname of the value of pack[x] is the same
as that of a number, pack[x] will be that number,
e.g. pack{(1 3.4)]=13.4,

pack[(1 E -2)]=.01.

Although x is usually a list of atoms, it can be a
list of arbitrary INTERLISP pointers. The value
of pack is still a single atom whose pname is the
sam@ as the concatenation of the pnames of all the
pointers in x, e.g.

pack[((A B)"CD")] = %(A% BX)CD.

In other words, mapc[x;prini] and prini[pack{x]]
always produce exactly the same output. In fact,
pack actually operates by calling prini to convert
the pointers to a stream of characters (without
printing) and then makes an atom out of tho

result.

Note: atoms are restricted to < 99 characters. Attempting to create a larger
atom either via pack or by typing one in (or reading from a file) will
cause an error, ATOM TOO LONG.

unpack[x;flg] The value of unpack is the pname of x as a list of

characters (atoms).z a.g.

There are no special ‘character-atoms' in INTERLISP, i.e. an atom
consisting of a single character is the same as any other atom.

10.2

unpack[ABC] = (A B C)
unpack["ABC(D"] = (A B C %X(D)
In other words prini[x] and mapc[unpack[x];print]

produce the same output.

If flgsT, the prin2-pname of x is used, e.g.
unpack["ABC(D";T]= (%" A B C %(D %").

#ote: unpack[x] performs n conses, where n is the number of characters in the

pname of x.

dunpack[x;scratchlist;flg]

nchars[x;flg]

nthchar[x;n;flg]

a destructive version of unpack that does not
perform any conses but instead uses scratchlist to
make a list equal to unpack[x;flg]. If the p-name

is too long to fit in scratchlist, dunpack calls

unpack and returns unpack[x:flg]. Gives an error

if scratchlist is not a list.

number of characters in pname of 5.3 If flg=T, the
prin2-pname is used. E.g. nchars["ABC" J=3,
nchars["ABC";T7]=5.

Value is nth character of pname of x. Equivalent
to car[nthfunpack[x;flg]:n]] but faster and does
no conses. n can be negative, in which case

counts from end of pname, e.g. -1 refers to the

Both nthchar and nchars work much faster on objects that actually have an

internal representation of their pname, i.e. literal atoms and strings,
than they do on numbers and lists, as they do not have to simulate

printing.

10.3

packe[x]

checon{x;flg]

chconi[x]

dchcon[x;scratchlist;flg]

character[n]

fcharacter[n]

gensym[char]

See footnote 2.

last character, -2 next to last, etc. If n is
greater than the number of' characters in the
pname, or less than minus that number, or 0, the

value of nthchar is NIL.

like pack except x is a list of (ASCII) character
codes, e.g. packc[(70 79 79)]=F00.

like unpack, except returns thefpname of X as a
list of (ASCII) character codes, e.d.
chcon[FOO] = (70 79 79). If flg=T, the prin2-pname

is used.

returns character code of first character of pname
of x, e.g. chconi[FO0] = 70. Thus chcon[x] could
be written as mapcar[unpack[x];chcbni].

similar to dunpack

n is an ASCII character code. Value is the atom
having the corresponding single character as its
pnamg.4 e.g. character[70] = F. Thus, unpack{x]
could be written as mapcar[chcon[x];character].

fast version of character that compiles open.

Generates a new atom of the form xnnnn, where

x=char (or A if char is NIL) in which each of the

10.4

n's is a digit. . Thus, the first one generated is
A0001, the second A0002, etc. gensym provides a
way of generating new atoms for various uses
within the system. The value of gennum, initially
10000, determines the next ggggxg, e.g. if gennum

is set to 10023, gensym[]=A0024. -

The term gensym is used to indicate an atom that was produced by the function
gensym. Atoms generated by gensym are the same as any other literal atoms:
they have property lists, and can be given function definitions. Note that the
atoms are not guaranteed to be new.

For example, if the user has previously created A0012, either by typing it in,

or via Eack or gensym ifself, when gennum gets to 10011, the next value

returned by gensym will be the A0012 already in existence.

mapatoms[fn]

10.2 String Functions

stringp[x]

strequal(x;y]

mkstring(x]

rstring]

Applies fn to every literal atom in the system,
e.g. mapatoms[(LAMBDA(X)(AND(SUBRP X)(PRINT X)))]
will print every subr. Value of mapatoms is NIL.

Is x if x a string, NIL otherwise. Note: if x is
a string, nlistp[x] is T, but atom[x] is NIL.

Is x if X and y are both strings and equal, i.e.
prinf the same, otherwise NIL. Equal uses
strequal. Note that strings may be equal without
being eq.

Value is string corresponding to prini of x.

Reads a string - see Section 14.

10.5

substring[x;:n;m]

gnc(x]

Value is the substring of x consisting of the nth
thru mth characters of x. If m is NIL, the
substring is the nth character of x thru the end
of X. n and m can be negative numbers, as with
nthchar. Returns NIL if the substring is not well
defined, e.g. n or m> nchars[x] or

< minus[nchars[x]] or n corresponds to a character

in x to the right of the character indicated by m.

If x 1s not a string, equivalent to
substring[mkstring[x];n;m], except substring does
not have to actually make the string if x is a
literal atom.® For example,

substring[(A B C);4;6]="B C".

get next character of string x. Returns the next
character of the string, (as an atom), and removes
the character from the string. Returns NIL if x
is the null string. If x isn't a string, a string
is made. Used for sequential access to characters

of a string.

Note that if x is a substring of y, gnc[x] does
not remove the character from y, i.e. gnc doesn't
physically change the string of characters, just

the pointer and the byts count.a

6 See string storage section that follows.

6

See string storage section that follows.

10.6

glc[x]

concatlx,;xy;...ix,]

rplstringlx;n;y]

mkatom[x]

gets last character of string Xx. Above remarks

about gnc also supply to glc.

lambda nospread function. Concatenates (copies
of) any number of strings. The arguments are ,
transformed ﬁo strings if they aren't strings.
Value is the new string, e.g.

concat["ABC" ;DEF;"GHI"] = "ABCDEFGHI". The value

of concat[] is the null string, "".

Replace characters of string x beginning at
character n with string y. n may be positive or
negative, Xx ﬁnd Yy are converted to strings if
they aren't already. Characters are smashed into
(converted) x. Returns new g. Error if there is
not enough room in x for y, i.e. the new string
would be longer than the original.’ Note that if x
is a substring of 2z, z will also be modified by
the action of rplstring.

Creates an atom whose pname is the same as that of
the string x or if x isn't a string, the same as
that qf mkstring(x], e.g. mkatom[(A B C)] is the
atom %(AX B% CX). If atom would have > 99

characters, causes an error, ATOM TOO LONG.

If y was not a string, x will already have been partially modified since

rplstring does not know whether y will 'fit' without actually attempting

the transfer.

10.7

Searching Strings

strpos is a function for searching one string looking for another. Roughly it
corresponds to member, except that it returns a character position number
instead of a tail. This number can then be given to substring or utilized in
other calls to strpos.

strpos[x;y;start;skip;anchor;tail]
x and y are both strings (or else they are
converted automatically). Searches y beginning at
character number start, (or else 1 if start is
NIL) and looks for a sequence of characters equal
to x. If a match is found, the corresponding
character position 1s returned, 6therwise NIL,_
e.9.,
strpos["ABC", "XYZABCDEF*" J=4
strpos["ABC*, *"XYZABCDEF";5]=NIL
strpos["ABC","XYZABCDEFABC";5]=10

skip can be used to specify a character in X that
matches any character in y, e.g.

strpos[*A&C&" ; "XYZABCDEF " ;NIL;&]=4

If anchor 1is T, strpos comparés X with the
characters beginning at position start, or 1. If
that comparison fails, strpos returns NIL without
searching any further down y. Thus it can be used
to compare one string with some bortion of another
string, e.g.

strpos["ABC"; "XYZABCDEF";NIL;NIL;TJ=NIL

strpos["ABC" ; "XYZABCDEF" ;4;NIL;T]=4

10.8

Finally, if tail is T, the value returned by
strpos if successful is not the starting position
of the sequence of characters corresponding to x,
but the position of the first character after
that, i.e. starting point plus nchars[x] e.g.
strpos["ABC"® ; "XYZABCDEFABC" ;NIL;NIL;NIL;T]=7.

Note that strpos["A";"A";NIL;NIL;NIL;T]=2, even

though "A" has only one character.

Example Problem

Given the strings x, y, and 2, write a function foo that will make a string

corresponding to that portion of x between y and 2, e.g.

foo["NOW IS THE TIME FOR ALL GOOD MEN®";"IS";"FOR"] is " THE TIME ".

Solution:

(FOO
[LAMBDA (X Y Z)
(AND (SETQ Y (STRPOS Y X NIL NIL NIL T))
(SETQ Z (STRPOS Z X Y))
(SUBSTRING X Y (SuB1 Z])

strposlla;str;start;neg] str 1s a string (or else 1t' is converted
| automatically to a string), a is a 1list of

characters or character codas.8

strposl searches
~ str beginning at character number start (or else 1
if start=NIL) for one of the characters in a. If

one is found, Strposl returns as its value the

If any element of a is a number, it is assumed to be a character code.
Otherwise, it is converted to a character code via chconi. Therefore, it
is more efficient to call strposl with a a list of character codes.

10.9

corresponding character position, otherwise NIL.
E.g., strposl{(A B C);"XYZBCD"]=4. If neg=T,
strposl searches for a character not on a, e.g.,

strposit(A B8 C); “"ABCDEF";NIL;T]=4.

If a is an array, it is treated as a bit table.
The bits of (ELT A 1) correspond to character
codes 0 to 43Q, of (ELT A 2) to codes 44Q to 107Q,

etc. Thus an array whose first element was 17Q

would be equivalent to a list (40Q 41Q 42Q 43Q) or

(% 1 %" #).

If a is not a bit table (array), strposl first converts it to a bit table using

makebittable described below. If strposl is to be called frequently with the

same list of characters, a considerable savings can be achieved by converting
the list to a bit table once, and then passing the bit table to strposl as its

first argument.

makebittable[1l;neg;a] makes a bit table suitable for use by strposl. 1
and neg are as for strposl. If a is not an array
with at least 4 elements, makebittable will create
an array and return that as its value. Otherwise

it uses (and changes) a.

Note: if neg=T, strposl must call makebittable whether a is a list or an
array. To obtain bit table efficiency with neg=T, makebittable should be
called with neg=T, to construct the "inverted" table, and the resulting table

(array) should be given to strposl with neg=NIL.

10.10

String Storage

A string is stored in 2 parts; the characters of the string, and a pointer to
the characters. The pointer, or 'string pointer', indicates the byte at which
the string begins and the length of the string. It occupies one word of
storage. The characters of the string are stored five characters to a word in
a portion of the INTERLISP address space devoted exclusively to storing

characters.

Since the internal pname of literal atoms also consists of a pointer to the
beginn;ng of a string of characters and a byte count, conversion between
literal atoms and strings does not require any additional storage for the

characters of the pname, although one cell is required for the string pointer.g

When the conversion is done internally, e.g. as in substring, strpos, or

strposl, no additional storage is required for using literal atoms instead of

strings.

The use of storage by the basic string functions is given below:

mkstring(x] X string no space

X literal atom . new pointer

other new characters and pointer
substring(x;n;m] x string new pointer

X literal atom new pointer

other new characters and pointer
BT e e e e e

Except when the string is to be smashed by rplstring. In this case, its
characters must be copied to avoid smashing the pname of the atom.
rplstring automatically performs this operation.

10.11

gnc{x] and glc{x] x string

other

concat[xl;xz;...xn] args

rplstring(x;n;y])] x string

x other

Yy any type

10.3 Array Functions

no space, pointer is modified
like mkstring, but doesn't make much

sense

any type new characters for whole new

string, one new pointer

no new space unless characters are in
name space (as result of
mkstringfatom]) in which case x 1is
quietly copied to string space

new pointer and characters

type of y doesn't matter

Space for arrays and compiled code are both allocated out of a common array

space. Arrays of pointers

following functions:

array[(n;p;v]

and unboxed numbers may be manipulated by the

This function allocates a block of n+2 words, of
which the first two are header information. The)
next p { n are cells which will contain unboxed
numbers, and are initialized to unboxed 0. ' The
last n-p > 0 <cells will <contain pointers
initialized with v, i.e., both car and cdr are
avallable for storing infofmation, and each
initially contain v. If p is NIL, 0 is used
(i.e., an array containing all INTERLISP

pointers). The value of array is the array, also

10.12

called an array pointer. [f sufficient space is
not available for the array, a garbage collection
of array space, GC: 1, is initiated. If this is
unsuccessful in obtaining sufficient space, an

error is generated, ARRAYS FULL.

Array-pointers print as #n, where n is the octal representation of the pointer.
Note that #n will be read as a literal atom, and not an array pointer.

arraysize[a] Returns the size of array a. Generates an error,

ARG NOT ARRAY, if a is not an array.

arrayp{x] Value is x if x is an array pointer otherwise NIL.
No check is made to ensure that X actually

addresses the beginning'of an array.

elt[a;n] Value is nth element of the array 310 elt
generates an error, ARG NOT ARRAY, if a is not the

beginning of an array.11

If n corresponds to the
unboxed region of a, the value of elt is the full
36 bit word, as a boxed integer. If n corresponds
to the poinier region of a, the value of elt is

the car half of the corresponding element.

setala;n;v] sets the nth element of the array a. Generates an
107 T et oo b arrav (aetualle ommaan ST T

elt[a;1] is the first element of the array (actually corresponds to the 3rd
cell because of the 2 word header).

11 arrayp is true for pointers into the middle of arrays, but elt and seta

must be given a pointer to the beginning of an array, i.e., a value of
array.

10.13

error, ARG NOT ARRAY, if a is not the beginning
of an array. If n corresponds to the unboxed
region of a, v must be a number, and is unboxed
and stored as a full 36 bit word into the nth
element of a. If n corresponds to the pointer
region of a, v replaces the car half of the nth

element. The value of seta is v.

Note that seta and elt are always inverse operations.

eltd[a;n] same as elt for unboxed region of a, but returns
cdr half of nth element, if n corresponds to the
pointer region of a.

setd[a:n;v] same as seta for unboxed region of a, but sets cdr
half of nth element, if n corresponds to the
pointer region of a. The value of setd is v.

In other words, eltd and setd are always inverse operations.

10.4 Storage Functions

reclaim{n] Initiates a garbage collection of type n. Value
of reclaim is number of words available (for that
type) after the collection.

Garbage collections, whether invoked directly by the user or indtrectly by need
Jor storage, do not confine their activity solely to the data type for which
theyiwere called, but automatically collect some or all of the other types (see
Section 3).

ntyp[x] Value is type number for the data type of
INTERLISP pointer x, e.g. ntyp[(A . B)] is 8, the
type number for lists. Thus GC: 8 indicates a

garbage collection of list words.

10.14

typep[x;n]

gcgag[message]

type number

arrays, compiled code 1
stack positions; 2
list words ' 8
atoms : 12
floating point numbers 16
large integers 18
‘small integers 20
string pointers 24
pname storage 28
string storage 30
eq(ntyp[x];n]

message is a string or atom to be printed (using
prini) wherever a garbage collection is begun. If
message=T, its standard setting, 6C: is printed,
followed by the type number. When the garbage
collection is éomplete. two numbers are printed
the number of words collected for that type, and
the total numbef of words available for that type,
i.e. allocated but not necessarily currently in

use (see minfs ﬁelow).

Example:
«~RECLAIN(18)

GC: 18

511, 3071 FREE WORDS
3071 '
«RECLAIM(12) '
GC: 12 .

1020, 1020 FREE WORDS
1020

If message=zNIL, no garbage collection message 1is
printed, either on entering or leaving the garbage

collector. Value of gcgag is old setting.

10.15

minfs{n;typ]

Sets the minimum amount of free storage which will
be maintained by the garbage collector for data

types of type number typ. If,. after any garbage
collection for that type, fewer’ than n free words
are present, sufficient storage will be added (in

512 word chunks) to raise the level to n.

If typ=NIL, 8 is used, i.e. the minfs refers to

list words.

If n=NIL, minfs returns the current minfs setting

for the corresponding type.

A minfs setting can also be changed dynamically, even during a garbage

collection, by typing control-S followed by a number, followed by a period.IZ

If the control-S was typed during a garbage collection, the number is the new

minfs:setting for the type being collected, otherwise for type 8, i.e. list

words.

Note: A garbage collection of a 'related’ type may also cause more storage to
be assigned to that type. See discussion of garbage collector algorithm,

Section 3.
storage[flg]
12 When the

Prints amount of storage (by type number) used by -

and assigned to the user, e.g.

control-S is typed, INTERLISP immediately clears and saves the

input buffer, rings the bell, and waits for input, which is terminated by

any non-number.
continues.

ignored.

~The input buffer is then restored, and the program
If the input was terminated by other than a period, it is

10.16

getrpln]

Ll L L L

equal to 3.

+«STORAGE()

TYPE USED ASSIGNED
1 80072 87552

8 7970 9216

12 7032 7680

16 0 512

18 1124 2560

24 118 512

28 4226 4608

30 573 1024

SUM 101115 113664

If flg=T, includes storage used by and assigned to
the system. Value is NIL.

garbage collection trap. Causes a (simulated)
control-H interrupt when the number of free 1list
words (type 8) remaining equals n, i.e. when a
garbage collection would occur in n more conses.
The message GCTRP 1is printed, the function
interrupt (Section 16) is called, and a break
occurs. Note that by advising (Section 19)
interrupt the user can program the handling of a

getrp instead of going into a break.ls

Value of gectrp is its last setting.
getrp[-1] will ‘disable' a previous gctrp since

there are never -1 free list words. getrp 1is

initialized this way.

For gctrp interrupts, interrupt is called with intype (its third argument)
If the user does not want to go into a break, the advice

should still allow interrupt to be entered, but first set intype to -1.
This will cause interrupt to "quietly"” go away by calling the function that

was interrupted.

The advice should not exit interrupt via return, as in

this case the function that was about to be called when the interrupt
occurred would not be called.

10.17

conscount[n]

closer[a;x]

openr{al]

gctrp[] returns number of 1list words left, i.e.
number of conses until next type 8 garbage

collection, see Section 21.
conscount[] returns number of conses since.
INTERLISP started up. If n is not NIL, resets

conscount to n.

Stores x into memory location a. Both x and a

must be numbers.

Value is the number in memory location a, i.e.

boxed.

10.18

Index for Section 10

Page
Numbers

AOOON (QenSYM) ..eveveevececssscssssasasscesccacs 10,5
ARG NOT ARRAY (error mesSage)ccceceeesesossss 10.13-14
ARRAY[N;P;V] SUBRvverrvcvsevovcvccscsnsonass 10.12
array functionsceecenevevervesvesacersass 10.12-14
array headerc.ceeecesccccacssssecssseseoss 10.12
ARRAYP[X] SUBR ...iieeeeesssanacsasossosnencnecsss 10.13
ARRAYS FULL (error message)cccoeeeevesssscsss 10,13
ARRAYSIZE[A] .. veeeevevoesasosssenevssenccossses 10.13
ATOM TOO LONG (error mesSage)cccceeveeeeses. 10.2,7
bell (typed by system)cccceceesvcccscesess 10.16
CHARACTERIN] SUBR ..vevevecscasacsasssssncconenes 10.4
character atoMSsecceeesssoscsscscscosssensas 10.2
character codesccceecevvees veesessseveses 10.4
CHCON[X;FLG] SUBR ..cvevevsscssvesnsssesasasceeces 10.4
CHCONILX] SUBR ...t venccsovonnssvsonssosnncences 10.4
CLOSER[A;X] SUBR ...ccecvrcocvsnscasnancasscsenss 10.18
compiled €OdEcceevesnereccoccovovsenccssvess 10.12
CONCATIX1:X2;...;Xn] SUBR® ..cveeveeeesacneceesss 10.7,12
CONSCOUNTEN] SUBR tiiviecevsroossceconcssossssoss 10.18
COﬂtt‘Ol-H e s s e e © 2 e 0 0 POV OEBTBEEOIIIOIOIENGEOIOEOPPOIEOIEOEOEES 10017
CONtrol=5S ...vvtiveoencvosassonvenscescsocssssesss 10.16
DCHCON[X;SCRATCHLIST;FLG] .cccvecrevvrvevovcccass 10.4
DUNPACKI X;SCRATCHLIST;FLG] ..cveeevcevcescosoessass 10.3
ELT[A;N] SUBR tecevesecssrevsesssens veseses 10.13
ELTD[A;:N] SUBR ..ivvveeeveescaoocssessvoencneecsss 10.14
FCHARACTER[N] SUBR ..cvcevenssoccssascnssssnasses 10.4
garbage collectioncoevcos000000000reseeses 10.13-18
GC: (typed by System) ...cceeeevccecccacosenssess 10.15
GC: .1 (typed by system)ceceeeecccccccocssssss 10.13
GC: 8 (typed by SyStem)eevevoceccccccnsesss 10.14
GCGAG[MESSAGE] SUBRcecovesvavsecccocccesssss 10.15
GCTRP[N] SUBR D R R R N N N N NN 10-17
GENNUM (system variable/parameter)cec.... 10.5
GENSYM[CHAR] ...icceivecvcossccsossooconsscccneee 10.4-5
GLC[X] SUBR lllllllll LI B IR I B B I R I I I R B 10.7’12
GNCIX] SUBR v.veeeeeeeioveocossssssosscnesssscase 10.6,12
input buffercceceee cevsassssecssssresesesses 10.16
INTERRUPTL INTFN; INTARGS; INTYPE] ..cevveceveceesss 10.17
literal atoms 5 6006000 00PN OO OEICEIEROEIOEOOEOEDIETOEE 10.11
MAKEBITTABLE[L;NEG;A] .ecceeevcovonnsronoarsnvass 10.10
MAPATOMS{FN] SUBR cevsesesevosssescssssvesses 10.5
MINFSIN;TYP] SUBR ..ccvievovococsssvsssannsansases 10.16
MKATOMIX] SUBR tiveeevavencsnvcccsooscssssssasens 10.7
MKSTRINGIX] SUBR ..iceececovecnsssocosasevsasenss 10.5,11
NCHARS[X] SUBR .tvcveeossvcosocrssrsrossonsssssee 10.3
NTHCHAR[X;N] SUBR ...cvvvececovecsssaccanssssssss 10.3
NTYPIX] SUBR tecevveccececovesovosncovssssssesess 10.14
null string eesesessersvesservrcessessesse 10.6-7
OPENR[A] SUBR tivecveosescnonssscssacsccssesssesees 10.18
PACKIX] SUBR +eveevceosvessasccsscosonssensesases 10.2
PACKCEX] SUBR ceceeevecosvocsosnsosncsasncosssnceas 10,4
PRAMES ..ccoecoorsosssosassscsssssoscsssossscsnces 10.1-4,11
PrinZ-pnamescecococccsscscesssvcscscscsccases 10.1,3-4
Print Nameccecesccsassoccssocccsssienssecnses 10.1
RADIX[N] SUBR .cveeeves evessesescssecssvsesnceves 10,1
RECLAIMIN] SUBR +ucieecveoovoccccosssssasssncesss 10.14

INDEX.10.1

RPLSTRINGLX;N;Y] SUBR ..
RSTRING[] SUBR

searching Stringscieiviieeeoeeoncnenronnnns

SETA[A;N;V] ceerecanea

SETD[A;N;V] ...ovvien...

string characters
string functions
string pointers

STRINGP[X] SUBR

Pe e LL s eN IR CEIBIOECERONILIIOLEEOES

STORAGE[FLG] .DO.'O..l.'.'.'.0".0.....".."'...
STREQUALLX;Y]Y

LA AL B AR AN A A I I U I B B I N B R S N RN
LR A R I I R R A I I A N BN N)

string storage

------- LEC LB I N A A A A N A)

STRPOS[X;Y;START ; SKIP;ANCHOR ; TAIL]

STRPOSL[A;STR;START;NEG]

SUBSTRING[X;N;M] SUBR ...

type numbers ereene

(followed by a number)

Ses o0 v s 000

S+ 0 P ELLLOELIEBLOIOIEOIOROIBNEOCESIOGEOELEDITES

TYPEP[X;N] ooooooooooo SO LEP OV IPIOEOLILOLEIEIOIEOLILPOIEOEONOIOCEOIEOLIETOITOETDS
unboxed numbers (in arrays)
UNPACK[X;FLG] SUBR0.0.'0.‘.‘.0..'.0"0.".

L LA I LI R U A I A A I A A A Y

INDEX.10.2

LA R R I I I R N N R A A S Y

LR A A I N)

LA AL LR A I I AR A Y SN B I AT NP Y

@00 ecesosevev e

e 00 a0 e LRI R)

s orececonssossertes e

Page
Numbers

10.7,12
10.5
10.8-10
10.13
10.14
10.16
10.5
10.11
10.5-10
10.6,11
10.11-12
10.5
10.8-9
10.9-10
10.6,11
10.14
10.15
10.12
10.2-3
10.13

SECTION 11
FUNCTIONS WITH FUNCTIONAL ARGUMENTS

As in all LISP 1.5 Systems, arguments can be passed which can then be used as
functions. However, since car of a form is never evaluated, apply or apply*
must be used to call the function specified by the value of the functional

argument.

Functidns which use functional arguments should use variables with obscure
names to avoid possible conflict with variables that are used by the functional
argument. For example, all system functions standardly use variable names
consisting of the function name concatenated with 5'or fn, e.g. mapx. Note
that by specifying the free variables used in a functional argument as the
second argument to function, thereby using the INTERLISP FUNARG feature, the

user can be sure of no clash.

function[x;y] is an nlambda function. If y=NIL, the value of
function is identical to quote, for example,
(MAPC LST (FUNCTION PRINT)) will cause mapc to be
called with two arguments the value of 1st and
PRINT. Similarly,
(MAPCAR LST (FUNCTION(LAMBDA(Z) (LIST (CAR Z)))))
will cause mapcar to be called with the value of
1st and (LAMBDA (Z) (LIST (CAR Z))). When
compiled, function will cause code to be compiled

for x; quote will not. Thus

11.1

map[mapx;mapfni;mapfn2]

§oTTTTITeTo e meeeeecceen

i.e., becomes a non-list.

(MAPCAR LST (QUOTE (LAMBDA --))) will cause mapcar
to be called with the value of 1st and the
expression (LAMBDA --). The functional argument
will therefore still be interpreted. The
corresponding expression using function will cause
a dummy function to be created with definition
(LAMBDA --), and then compiled. mapcar would then
be called with the value of 1lst and the name of

the dummy function. See Section 18.

If y is not NIL, it is a list of variables'that
are (presumably) used freely by X. In.this case,
the value of function is an expression of the form
(FUNARG x array), where égggx contains | the
variable bindings for those variables on y.

Funarg is described on page 11.5-7.

If mapfn2 is NIL, map applies the function mapfni
to successive tails of the list mapx. That is,
first it computes mapfni[mapx], and then
mapfni[cdr{mapx]], etc., until mapx is exhausted.l
If mapfn2 is provided, mapfn2[{mapx] is used
instead of cdr(mapx] for the next call for mapfni,
e.g., if mapfn2 were cddr, alternate elements of
the 1list would be skipped.

The value of map is NIL. map compiles open.

11.2

mapc[mapx;mapfni;mapfn2] Identical to map, except that mapfni[car[mapx]] is
computed at each iteration instead of
mapfni[mapx], i.e., mapc works on elements, map on
tails. The value of mapc is NIL. mapc compiles

open.

maplist{mapx;mapfni;mapfn2] successively computes the same values that map
would compute; and returns a list consisting of

those values. maplist compiles open.

mapcar[mapx;mapfni;mapfn2] computes the same values that mapc would compute,
and returns a list consistihg of those values,
0.g. mapcar[x;FNTYP] is a list of fntyps for each

element on X. mapcar compiles open.

mapcon[mapx;mapfni;mapfn2] Computes the same values as map and maplist but

nconcs these values to form a list which it

returns. mapcon compiles open.

mapconc[mapx;mapfni;mapfn2] Computes the same values as mapc and mapcar, but

nconcs the values to form a list which it returns.

mapconc compiles open.

Note that mapcar creates a new list which is a mapping of the old list in that
each element of the new list is the result of applying a function to the
corresponding element on the original list. mapconc is used when there are a
variable number of elements (including none) to be inserted at each iteration,
e.g. mapconc[X;(LAMBDA (Y) (AND Y (LIST Y)))] will make a 1ist consisting of X
with all NILs removed, mapconc[X;(LAMBDA (Y) (AND (LISTP Y) Y))] will make a

linear 1ist consisting of all the 1lists on x, e.g. if applied to

11.3

((AB) C(DEF)(G) HI)will yield (ABDEF G);z

subset[mapx;mapfni;mapfn2] applies mapfni to elements of mapx and returns a
list of those elements for which this application
is non-NIL, e.g.,
subset[(A B 3 C 4);NUMBERP] = (3 4).
mapfnZ plays the same role as with map, mapc, et

al. subset compiles open.

map2c[mapx;mapy;mapfni;mapfn2] Identical to mapc except mapfni is a function
of two arguments, and mapfni[car[mapx]:car[mapy]]
is computed at each interation.3 Terminates when

either mapx or mapy are exhausted.

map2car[mapx;mapy;mapfni;mapfn2] Identical to mapcar except mapfni is a
function of two arguments and
mapfni[car[mapx];car[mapy]] is used to assemble

the new list..ATarminates when either mapx or mapy

is exhausted.

Note: CLISP (Section 23) provides a more general and complete facility for
expressing iterative statements, e.g. (FOR X IN Y COLLECT (CADR X) WHEN
(NUMBERP (CAR X)) UNTIL (NULL X)).

Note that since mapconc uses nconc to string the corresponding 1lists
together, in this example, the original list will be clobbered, i.e. it
would now be ((ABDEF G) C (DEF G) (G) H I). If this is an undesirable
side effect, the functional argument to mapconc should return instead a top
level copy, e.g. in this case, use (AND (LISTP Y) (APPEND Y)).

- mapfn2 is still a function of one argument, and is applied twice on each
iteration; mapfn2[mapx] gives the new mapx, mapfn2[mapy] the new mapy. cdr
is used if mapfn2 is not supplied, i.e., is NIL.

11.4

maprint[1lst;file;left;right;sep;pfn;lispxprintflg]

is a general printing function. It cycles through
;gg apﬁlying pfn (or prini if pfn not given) to
each élement of lg&Q Between each application,
maprint performs pgiﬂl'of sep, or " * if sep=NIL.
If left is given, it is printed (using print)
initiall&; if right is given it is printed (using
prinl) at the end.

Fo; example, maprint{x;NIL;%(;%)] is equivalent to
print for 1lists. To print a list with commas
between each element and a final '.' one could use

maprint[x;T;NIL;%.:%,].

If lispxprintflg = ¥, lispxprinl is used for prinl
(see Section 22).

Mapdl, searchpdl See Section 12.
mapatoms See Section 5.
‘every, some, notevery, notany See Section §.
Funarg

function is a function of

variables used freely by x.

two arguments, x, a function, and y a 1list of

If y is not NIL, the value of function is an

expression of the form (FUNARG x array), where array contains the bindings of

the variables on y at the time the call to function was evaluated. funarg is

not a function itself. Like LAMBDA and NLAMBDA, it has meaning and is

specially recognized by INTERLISP only in the context of applying a function to

arguments. In other words,

the expression (FUNARG x array) is used exactly

11.5

like a function.4

When a fuparg is applied, the stack is modified so that the
bindings contained in the array will be in force when x, the function, is

called.®

For example, suppose a program wished to compute (FOO X (FUNCTION FIE)), and
fie used y and z as free variables. If foo rebound y and z, fie would obtain
the rebound values when it was applied from inside of foo. . By evaluating
instead (FOO X (FUNCTION FIE (Y Z))), foo would be called with
(FUNARG FIE array) as its second ardument. where array contained the bindings
of y and z (at the time foo was called). Thus when fie was applied from inside

of foo, it would 'see' the original values of y and z.

However, funarg is more than Just a way of circumventing the clashing of
variables. For example, a funarg expression can be returned as the value of a
computation, and then used ‘'higher up', e.g., when the bindings of the
variables contained in array were no longer on the stack. Furthermore, if the
function in a funarg expression sets any of the variables contained in the
array, the array itself (and only the array) will be changed. For example,
suppose foo is defined as

(LAMBDA (LST FN) (PROG (Y Z) (SETQ Y &) (SETQ Z &) ... (MAPC LIST FN) ...))

and (FOO X (FUNCTION FIE (Y Z))) is evaluated. If one application of fie (by
the mapc in foo) changes y and 2z, then the next application of fie will obtain
the changed values of y and z resulting from the previous application of fie,
since both applications of fie come from the exact same funarg object, and
hence use the exact same array. The bindings of y and 2 bound inside of foo,

and the bindings of y and z above foo would not be affected. In other words,

4 LAMBDA, NLAMBDA, and FUNARG expressions are sometimes called 'function
objects' to distinguish them from functions, i.e., literal atoms which have
function definitions.

5

The implementation of funarg is described in Section 12.

the variable bindings contained in array are a part of the function object,

i.e., the funarg carries its environment with it.

Thus by creating a funarg expression with functibn. a program can create a
function object which has updateable binding(s) associated with the object
which last between calls to it, bdt are only accessible through that instance
of the functibn. For example, us;ng the funarg device, a program could
maintain two different instances of the same random number generator in

different states, and run them independently.

Example

If foo is defined as (LAMBDA (X) (COND ((ZEROP A) X) (T (MINUS X))) and fie as
(LAMBDA NIL (PROG (A) (SETQ A 2) (RETURN (FUNCTION-FOO)))). then if we perform
(SETQ A 0), (SETQ FUM (FIE)), the value of fum is FOO, and the value of
(APPLY* FUM 3) is 3, because the value of A at the time foo is called is 0.

However if fie were defined instead as

(LAMBDA NIL (PROG (A) (SETQ A 2) (RETURN (FUNCTION FOO (A))))), the value of
fum would be (FUNARG FOO array) and so the value‘of (APPLY® FUM 3) would be -3,
because the value of A seen by foo is the value A had when the funarg was

created inside of fie, i.e. 2.

11.7

Index for Secfion 11

~ Page
Numbers

APPLY[FN;ARGS] SUBR ® 8 000N e OL L RN RNEREESOELEOENIOEOEOEPINOEOOON 1101
APPLY*[FN;ARG1;...;ARGN] SUBR*00000ee... 11.1

CLISP . iiiiiiiiiiternnnnns B &
FUNARG cereaas terteretssesarsansssassees 11,1-2,5-7
FUNCTIONLEXP;VLIST] NL vvvrvvevnnennscononcensens 11.1-2,5,7
function objects cecsreas esesssnse 11.6
functional arguments ceevassssessensssees 11.1
MAPLMAPX ;MAPFNT;MAPFN2] ...vitivnnrvennnnnnnnnees 11.2

MAP2CLMAPX;MAPY ;MAPFN1;MAPFN2]e0vvvvevees. 11.4
MAPZCAR[MAPX;MAPY;MAPFNl;MAPFNZ] LR R R A I SR Y 1104

MAPC[MAPX ;MAPFN1;MAPFN2] ereerersessese 11.3
MAPCAR[MAPX;MAPFN1;MAPFN2]v.vvvnvnnnnnnnnnnss 11.3
MAPCON[MAPX;MAPFN1;MAPFN2] Ceeeseacanen ... 11.3
MAPCONCLMAPX;MAPFN1;MAPFN2Z]ovevevevennneeas 11.3
MAPLIST[MAPX;MAPFN1;MAPFN2] P .. 11.3
MAPRINT[LST;FILE;LEFT;RIGHT;SEP;PFN;LSPXPRNTFL6].. 11.5
SUBSET[MAPX;MAPFN1;MAPFN2] creseavesacsaes 11.4

Vﬂl“iable bindings L N N N N N N R R) 11.5-7

INDEX.11.1

SECTION 12
VARIABLE BINDINGS AND PUSH DOWN LIST FUNCTIONS

A number of schemes haye been used in different implementations of LISP for

storing the values of variables. These include:
1. Storing values on an association list paired with the variable names.

2. Storing values on the property list of the atom which is the name of

the variable.

3. Storing values in a special value cell associated with the atom name,
putting old values on a pushdown list, and restoring these values when

exiting from a function.
4. Storing values on a pushdown list.

The first three schemes all have the property that values are scattered
throughout 1list structure space, and, in general, in a paging environment would
require references to many pages to determine the value of a variable. This
would be very undesirable in our system. In order to avoid this scattering,
and possibly excessive drum references, we utilize a variation on the fourth
standard scheme, usually only used for transmitting values of arguments to

compiled functions; that is, we place these values on the pushdown list.! But

1 Also called the stack.

12.1

since we use an interpreter as well as a compiler, the variable names must also
be kept. The pushdown list thus contains pairs, each consisting of a variable
name and 1its value. Each pair occupies one word or 'slot’' on the pushdown
list, with the name in the left half, i.e. cdr, and the value in the right
half, i.e. car. The interpreter gets the value of a variable by searching back
up the pushdown 1ist looking for a. 'slot' for which cdr is the name of the

variable. car is then its value.

One advantage of this scheme is that the current top of the pushdown stack is
usually in core, and thus drum references are rarely required to find the value
of a variable. Free variables work automatically in a way similar to the

association list scheme.

An additional advantage of this scheme is that it is combletely compatible with
compiled functions which pick up their arguments on the bushdown list from
known positions, instead of doing a search. To keep complete compatibility,
our compiled functions put the names of their arguménts on the pushdown list,
although they do not use them to reference variables. Thus, free variables can
be used between compiled and interpreted functions wiih no special declarations
necessary. The names on the pushdown list are also very useful in debugging,
for they make possible a complete symbolic backtrace in case of error. Thus
this technique, for a small extra overhead, minimizes drum references, provides

symbolic debugging information, and allows completely free mixing of compiled

and interpreted routines.

There are three pushdown lists used in INTERLISP: the first is called the
parameter pushdown liSt. and contains pairs of variable names and values, and
temporary storége of pointers; the second is called the control pushdown Iist.
and contains function feturns and other control information; and the third is

called the number stack and is used for storing temporary partial results of

numeric operations.

12.2

However, it is more convenient for the use¢ to consider the push-down list as a
single "list" containing the names of funckions that have been entered but not
yet exited, and the names and values of the corresponding variables. The
multiplicity of pushdown lists in the actual implementation is for efficiency

of operation only.

The Push-Down List and the Interpreter

In addition to the names and values of arguments for functions, information
regarding partially-evaluated expressions is kept on the push-down list. For
example, consider the following definition of the function fact (intentionally
Taulty):

(FACT
[LAMBDA (N)
(COND
((ZEROP N)
L

)
(T (ITIMES N (FACT (SuB1 NJ)

In evaluating the form (FACT 1), as soon as fact is entered, the interpreterv
begins evaluating the implicit progn followinﬁ the LAMBDA (see Section 4). The
first function entered in this process is cond. cond begins to process its
list of clauses. After calling zerop and getting a NIL value, cond proceeds to
the next clause and evaluates T. Since T is true, the evaluation of the
implicit progn that is the consequent of the T clause is begun (see Section 4).
This requires calling the function itimes. However before itimes can be
called, its arguments must be evaluated. The first argument is evaluated by
searching the stack for the last binding of N; the second involves a recursive

call to fact, and another implicit progn, etc.

Note that at each stage of this process, some portion of an expression has been

evaluated, and another is awaiting evaluation. The output below illustrates

12.3

this by showing the state of the push-down list at the point in the computation

of (FACT 1) when the unbound atom L is repched.

«FACT(1)
U.B.A.

(L BROKEN)
:BTV!

FORM (BREAK1 L T L NIL #34047)
#0 (L)

#0 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))) 1
COND

*FORM® (COND ((ZEROP N; %

(ITIMES N (FACT (SUB1 N
#0 ((COND ((ZEROP N) L)

) (T))))
T (ITIMES N (FACT (SUB1 N))))))

N

NO
FACT

FORM (FACT (SUB1 N))

#2 ITIMES

#0 ((FACT (sSuB1 N)))

70 1

FORM (ITIMES N (FACT (SUB1 N)))
#0 ((ITIMES N (FACT (SUB1 N))))

#0 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND

@ G &w

FORM (COND ((ZEROP N)
#0 ((COND ((ZEROP N) L)

N 1
FACT

))

L) (T (ITIMES N (FACT (SUB1 N)
(T (1))

TIMES N (FACT (SuB1 N))

—-
~

)
)
XATOPR®

Internal calls to eval, e.g., from cond and the interpreter, are marked on the
push-down list by a special mark called an eval-blip. eval-blips are indicated
by the appearance of (VAG 64) in the 1left-half, i.e. the variable name
position, for that slot. They are printed by the backtrace as =*FORMX. The
genealogy of *FORM*'s is thus a history of the computation. Other temporary
information is frequently recorded on the push-down list in slots for which the
‘variable name' 1is (VAG 0), which prints as #0. In this example, this
information consists of (1) the tail of a list of cond clauses, (2) the tail of

an implicit progn, i.e., the definition of fact, (3) the tail of an argument

12.4

list, (4) the value of a previously evaluated argument, (5) the tail of a cond

clause whose predicate evaluated to true, and (6) and (7) same as (1) and (2).

Note that a function is not actually entered and does not appear on the stack,
until its arguments have been evaluated.Z Also note that the #0 'bindings’
comprise the actual working storage. In other words, in the above example, if
a (lower) function changed the value of the binding at (1) (not recommended)
the cond would continue interpreting the new binding as a list of cond élauses.
Similarly, if (4) were changed, the new value would be given to itimes as its
first argument after its second argument had been evaluated, and itimes was

actually called.

The Pushdown List and Compiled Functions

Calls to compiled functions, and the bindings of their arguments, i.e. names
and values, are handled in the same way as for interpreted functions (hence the
compatibility between interpreted and compiled functions). However, compiled
functions treat free variables in a Special way that interpreted functions do
not. Interpreted functions "look up® free variables when the variable is
encountered, and may look up the same variable many times. However, compiled
functions look up each free variable only once.3 Whenever a compiled function
is entered, the pushdown list is scanned and the most recent binding for each
free variable used in the function is found (or if there is no binding, the
value cell is obtained) and stored in the right half of a slot on the staék (an
unboxed 0 is stored in the left half to distinguish this 'binding' from

2 except for functions which do not have their arguments evaluated (although

they themselves may call eval, e.g. cond).

8 A list of all free variables is generated at compile time, and is in fact

obtainable from the compiled definition. See Section 18.

12.5

ordinary bindings)._ Thus, following the bindings of their arguments, compiled
functions store on the pushdown list pointers to the bindings for each free

variable used in the function.

In addition to the pointers to free variable bindings, compiled functions
differ from interpreted fuﬁctions in the way they treat 1locally bound '
variables, i.e. progs and open lambdas. Whereas in interpreted functions progs
and open lambdas are called in the ordinary way as functions, in compilation,
progs and open lambdas disappear, although the variables bound by them are
stored on the stack in the conventional manner so that function; called from
inside them can reference the variables. These variables appear on the stack
following the arguments to the compiled function (if any) and the free variable
pointers (if any). The only way to determine dynamically what variables are
bound locally by a compiled function is to search the stack from the first slot
beyond the last argument to the function (which can be found with stknargs and
stkarg described below), to the slot corresponding to the first argument of the
next function. Any slots encountered that contain literal atoms in their left

half are local bindings.

Pushdown List Functions

NOTE: Unless otherwise stated, for all pushdown 1list functions, pos is a
position on the control stack. If pos is a literal atom other than NIL,
(STKPOS pos 1) is used. In this case, if pos is not found, i.e., stkpos
returns NIL, an ILLEGAL STACK ARG error is generated.

stkpos[fn;n;pos] Searches the control stack starting at pos for the

nth occurrence of fn. Returns control stack

12.6

stknthn;pos]

fstknth{n;pos]

stkname[pos]}

position of that fn if found,‘ else NIL. If n 1is
positive, searches backward (normal usage). If pn
is negative, searches forward, 1i.e., down the
control stuck.’ For example, stkpos[F00;-2;FIE]
finds second call to FOO after (below) the last
call to FIE. If n is NIL, 1 is used. 'If pos is
NIL, the search starts at the current position.

stkpos[] gives the current position.

Value is the stack position (control stack) of the
nth function call relative to position pos. If
pos is NIL, the top of stack is assumed for n > 0,
and the current position is assumed for n < 0,
i.e., stknth[-1] is the call before stknth,
stknth{1] is the call to evalgt at the top level.
Value of stknth is NIL if there is no such call -
e.g., stknth[10000] or stknth[-10;stknth[5]].

version of stknth that compiles open.

Value is the name of the function at control stack

position pos. In this case, pos must be a real

stack position, not an atom.

In summary, stkpos converts function names to stack positions, stknth converts

numbers to stack positions, and stkname converts positions to function names.

parameter stack,

P D G R D D D D S D D S TP N R D R S N OE OY E EE E ES Ee e e

A stack position is a pointer to the corresponding slot on the control or
i.e., the address of that cell. It prints as an unboxed

number, e.g., #32002, and its type is 2 (Section 10).

12.7

Information about the variables bound at a particular function call can be

obtained using the following functions:

stknargs[pos] | Value is the number of arguments bound by the

function at position pos.

stkarg{n;pos] Value is a pointer to the nth argument (named or
not)® of the function at position pos, i.e., the
value is a parameter stack position. car of this
pointer gives the value of the binding, cdr the
name. n=1 corresponds to the first argument at
Pos. n can be 0 or negative, i.e., stkarg[0;FO00]
is a pointer to the slot immediately before the
first argument to FOO, stkarg[-1;F00] _the one

before that, etc.
fstkarg[n;pos] version of stkarg that compiles open.

Note that the user can change (set) the value of a particular binding by

performing an rplaca on the valua of stkarg. Similarly, rplacd changes (sets)

the name.

The value of stkarg is a position (slot) on the parameter stack. There is
currently no analogue to stknth for the parameter stack. However, the
parametef stack is a contiguous block of memory, so to obtain the slot previous
to a given slot, perform vag[subif[loc[slot]]]; to obtain the nexf slot perform

vagladdi[loc[slot]]], i.e.

Subrs do not store the names of their arguments.

12.8

stkarg(2;pos] = vag[addl[loc[stkarg[l;pos]]]].o
As an example of the use of stknargs and stkarg:
variables[pos] returns list of variables bound at pos.
can be defined by:

(VARIABLES
[LAMBDA (POS)
(PROG (N L)
(SETQ N (STKNARGS POS))
LP (COND
((ZEROP N)
(RETURN L)))
(SETQ L (CONS (COR (STKARG N POS))

L))
(SETQ N (SuB1 N))
(60 LP])

The counterpart of variables is also available.

stkargs[pos] Returns 1list of values of variables bound at pos.

The next three functions, stkscan, evalv, and stkeval all involve searching the

parameter pushdown stack. For all three functions, pos may be a position on

the control stack, i.e., a value of stkpos or stknth.” In this case, the search

starts at stkarg(stknargs[pos];pos] i.e., it will include the arguments to the
function at pos but not any locally bound. variables. pos may also be a
position on the parameter stack, in which case the search starts with, and
includes that position. Finally, pos can be NIL, in which case the search

starts with the current position on the parameter stack.
See Section 13 for discussion of vag and loc.

or' a function name, which is equivalent to stkpos[pos;1] as described
earlier.

12.9

stkscan[var;pos]

evalv[var;pos]

stkeval[pos;form]

Searches backward on the parameter stack from pgs
for a binding of var. Value is the slot for that
binding if found, 1i.e., Qa parameter stack
position, otherwise var itself (so that in the
case of literal atoms, car of stkscan is always

the value of var).

car| stkscan[var;pos]],i.e., returns the value of

the atom var as of position pos.

is a more general evalv. It 1is equivalent to
eval[form] at position pos, i.e., all vartables

evaluated in form, will be evaluated as of 22__3

Finally, we have two functions which clear the stacks:

retfrom| pos;value]

retevall pos;form]

[

clears the stack back to the function at position
os, and effects a return from that function with

value as its value.

clears the stack back to the function at position
hggn then evaluates form and returns with 1its
value to the next higher function. In other
words, retevallpos,form] is equivalent to

retfrom[pos;stkeval[pos;form]].9

R Ge U WD SR M W R TR ED D D S R R R D R R WD e e SR G R P W D R) R D D R R R T R S T R S SR P SR SR D e D G e s Ge eGP N G AR S A P Bn D G e Y TR S - - -

stkpos, stknth,

retfrom,

However, any functions in form that specifically reference the stack, e.g.

etc., 'see’' the stack as it currently is. (See

page 12.11-13 for descripgti n of how stkeval is implemented.)

footnote 8.

Provided form does not involve any stack functions, as explained in

12.10

We also have:

mapdl[mapdlfn;mapdlpos] starts at position mapdlpos (current if NIL), and
applies mapdifn to the function name at each
pushdown position, 1i.e., to stkname[mapdlpos]
until the top of stack is reached. Value is NIL.

mapdipos is updated at each iteration.

For example, mapd1[(LAMBDA (X) (AND (EXPRP X) (PRINT X)))] will print all exprs
on the push-down list.
mapdl[(LAMBDA (X) (COND ((GREATERP (STKNARG MAPDLPOS) 2) (PRINT X] will print

all functions of more than two arguments.

searchpdl[srchfn;srchpos] searches the pushdown list starting at position
srchpos (current if NIL) until it finds a position
for which srchfn applied to the pame of the
function called at that position is not NIL. Value
is (NAME . position) if such a position is found,
otherwise NIL. srchpos 1s wupdated at each

iteration.

The Pushdown List and Funarg

The 1linear scan up the parameter stack for a variable binding can be
interrupted by a special mark called a skip-blip appearin§ on the stack in a
name position (See Figure 12-1). In the value position is a pointer to the
position on the stack where the search is to be continued. This is what is
used to make stkeval, page 12.10 work. It is also used by the funarg device
(Section 11).

When a funarg is applied, INTERLISP puts a skip-blip on the parameter stack

12.11

with a pointer to the funarg array, and another skip-blip at the top of the
funarg array pointing back to the stack. The effect is to make the stack look
like it has a patch. The names and values stored in the funarg array will thus
be seen before those higher on the stack. Similarly, setting a variable whose
binding is contained in the funarg afray will change only the array. Note
howevef that as a consequence of this implementation, the same instance of a

Junarg object cannot be used recursively.

12.12

USE OF 'SKIPBLIPS'

PARAMETER PARAMETER
STACK STACK
¢ []
e L]
hd (.4
NM | VAL NM | VAL
NM [VAL | NM_| VAL |
. SKIP[—
° NM VAL
. NM | VAL
NM_| VAL |«| ARGUMENTS .
NM | VAL TO STKEVAL .
SKIP| — .
NM_| VAL |e— BEGIN
NM_| VAL EVALUATION OF
. FORM
o
[]
[]
STKEVAL FUNARG
FIGURE 12~

12.13

SKIP \

NM VA

N VAL]

NM VAL |

NM VAL
FUNARG
ARRAY

association l1list .

backtrace

debugging
eval-blip

control pushdown list

EVALV[VAR;POS]
free variables
free variables and compiled functions

FSTKARG[N;POS] SUBR
FSTKNTHLN;POS] SUBR

FUNARG

number stack
parameter pushdown list
pushdown 1list

Index for Section 12

ooooooooooo

ooooooooooo

oooooooooooooooooooooooooo

ILLEGAL STACK ARG (error me&sage)
locally bound variables
MAPDL[MAPDLFN;MAPDLPOS]

seessess0e

P ecsoevcnsn

Pe 000060000
30 0000co00 e
tee oo .a

" e e

e 0 es 0o

S es s 000 e

sr e e re0 e

ss e e e

Te e

LR A A I I S B]

evs s o0 e 000

LRI

ses o o000

ses 000 e0 00

e e s eeerso0 e

LRI A A)

oooooooooo

PP e eN LB eI IVENIEOEOLIEGOGETLTS

oooooo

LR A A A N]

e e e e

se s es s e

ooooooo

SEARCHPDL[SRCHFN ; SRCHPOS]

skip-blip

s s v s 000 e

~stack position

- STKARG[N;POS] SUBR
STKARGS[POS]
STKEVAL[POS;FORM] SUBR
STKNAME[POS] SUBR
STKNARGS[POS] SUBR
STKNTHLN;POS] SUBR
STKPOS[FN;N;POS]

STKSCAN[VAR;POS] SUBR

value cell

variable bindings

VARIABLES[POS]

sesnrsensoe
LI R A A)
oooooo L)

“esevsses e

2o e

e e e e s t0ss0 0000

INDEX.12.1

pushdown list functions
RETEVAL[POS;FORM] SUBR
RETFROM[POS;VALUE] SUBR ...
searching the pushdown list

sSecs e e

S8 800NN IEBILIBIOIIPNINIIPNINOEOIEEIELIOIESONTDS

slot (on pushdown list) -

OB EERN NI IICOIPILIEEIPIREOOIRNOEOESITOEES

es o s 0000

S s e s P9 P LGOI RNELOELIOIOEGCEEIEVYOEEOCEOIOLONEOEEOLES

se0s 000

€ e 000 00sesss000s0s000000
Se v s es s NB GG OLIOETETTTE LAY
St e0esevesoonssasoer e s s

Page
Numbers

12.1-2
12.2,4
12.2
12.2
12.4
12.10
12.2,5
12.5
12.8
12.7
12.11-12
12.6
12.6
12.11
12.2 ’
12.2,8-9,11
12.1-13
12.6-11
12.10
12.10
12.6,9

12.11

12.11
12.2,6,8,10
12.6-7,9-10
12.8-9
12.9

SECTION 13
NUMBERS AND ARITHMETIC FUNCTIONS

13.0 General Comments

There are three different'types of numbers in INTERLISP: small integers, large
integers, and floating point numbers.’ Since a large integer or floating point
number can be (in value) any 36 bit quantity (and vice versa), it is necessary
to distinguish between those 36 bit quantities that represent large integers or
floating point numbers, and other INTERLISP pointers. We do this by "boxing"
the number, which is sort of like a special "cons®: when & large integer or
floating point number is created (via an arithmetic operation or by read),
INTERLISP gets a new word from "number storage" and puts the large integer or
floating point number into that word. INTERLISP then passes around the pointer
to that word, i.e., the "boxed number®, rather than the actual 36 bit quantity
itself. Then when a numeric functlon needs the actual numeric quantity, it
performs the extra level of addressing to obtain the "value® of the number.
This latter process is called "unboxing”. Note that unboxing does not use any
storage, but that each boxing operation uses one new word of number storage.
Thus, if a computation creates many large integers or floating point numbers,
l.e., does lots of boxes, it may cause a garbage collection of large integer

space, GC: 18, or of floating point number space, GC: 16.

T T T N G N W Y R e e e e T R T R W A Y e e Y S D S e S WD S R W D R R W S e

Floating point numbers are created by the read program when a . or an E
appears in a number, e.g. 1000 is an integer, 1000. a floating point
number, as are 1E3 and 1.E3. Note that 10000, 1000F, and 1E3D are perfectly
legal literal atoms.

13.1

13.1 Integer Arithmetic

Small Integers

Small integers are those integers for which smallp is true, currently integers -
whose absolute value is less than 1536. Small integers are boxed by offsetting
them by a constant so that they overlay an area of INTERLISP's address space
that does not correspond to any INTERLISP data type. Thus boxing small numbers
does not use any storage, and furthermore, each small number has a unique
representation, so that eq may be used to check equality. Note that eq should
not be used for large integers or floating point numbers, e.g.,

eq[2000;add1[1999]] is NIL! eqp or equal must be used instead.

Ihteger Functions

All of the functions described below work on integers. Unless specified
otherwise, if given a floating point number, they first convert the number to
an 1nteger by truncating the fractional bits, e.g., iplus[2.3;3.8]=5; if given

a non-numeric argument, they generate an error, NON-NUMERIC ARG.

It is important to use the integer arithmetic functions, whenever possible, in
place of the more general arithmetic functions which allow mixed floating point

and integer arithmetic, e.g., iplus vs plus, igreaterp vs greaterp, because the

integer functions compile open, and therefore run faster than the general
arithmetic functions, and because the compiler is "smart®™ about eliminating
unnecessary boxing and unboxing. Thus, the expression

(IPLUS (IQUOTIENT (ITIMES N 100) M) (ITIMES X Y)) will compile to perform only
one box, the outer one, and the expression

(IGREATERP (IPLUS X Y) (IDIFFERENCE A B)) will compile to do no boxing at all.

13.2

Note that the PDP-10 is a 36 bit machine, so that all integers are between
-2t35 and 2'35-1.2 Adding two integers which produce a result outside this

range causes overflow, e.g., 2134 + 2134.

The procedure on overflow is to return the largest possible integer, 1i.e.

2135 - 1.9

1p1us[x1;xa;...;xn] Xg + Xy + ... ¢ X,

iminus[x] - X

idifference{x;:y] X -y

addi[x] x+1

subi[x] x -1

itimes[xl;xz;...;xn]- the product of X{sXp000.XN

iquotient{x;y] x/y truncated, e.g., iquotient[3;2]=1,
iquotient[-3,2])=-1

iremainder{x;y] : the remainder when X 1is divided by Yy, e.g.,

iremainder [3;2]=1

igreaterp[x;y) T if x > y; NIL otherwise

Approximately 34 billion

If the overflow occurs by trying to create a negative number of too large a
magnitude, -2t35 is used instead of 2¢35-1.

13.3

ilessplx;y]

zerop[x]

T is x < y; NIL otherwise

defined as eq[x;0].

Note that zerop should not be used for floating point numbers because it uses

eq. Use eqp[x:0] instead.

minusp{x]

eqpln;m]

smallp[n]

fixp[x]

fix[x]

T if x is negative; NIL otherwise. Does not
convert x to an integer, but simply checks sign

bit.

T if n and m are eq, or equal numbers, NIL
otherwise. (eq may be used if n and m are known
to be small integers.) eqp does not convert n and
m to integers, e.g., eqp[2000;2000.3]=NIL, but it
can be used to compare an integer and a floating
point number, e.g., eqp[ZOOb;2000.0]=T. eqp does

not generate an error if n or m are not numbers.

T if n is a small integer, else NIL. smallp does

not generate an error if n is not a number.

x if x is an integer, else NIL. Does not generate

an error if x is not a number.

Converts x to an integer by truncating fractional
bits, e.g., fix[2.3] = 2, fix[-1.7] = -1. If x is
already an integer, fix[x]=x and doesn't use any

storage.4

Since FIX is also a lispx command (Section 22), typing FIX directly to

1ispx will not cause the function fix to be called.

13.4

logand[x,;ix,i...;X,]

logor(x,;Xy;...iX,]

logxor[xl;xz;...;xn]

1shin;m]

rshin;m]

11sh{n;m]

1rsh[n;m]

lambda no-spread, value is logical and of all its

arguments, as an integer, e.g., logand[7;5;6]=4.

lambda no-spread, value is the logical or of all
its = arguments, as an integer, e.g.,

logor(1;3;9]=11.

lambda no-spread, value is tﬁe logical exclusive
or of 1its arguments, as an integer, we.g.,
logxor{11;5] = 14,

logxor{11;5:9] = logxor{14;9] = 7.

(arithmetic) left shift, value is n*2tm,i.e., n is
shifted left m places. n can be positive or
negative. If m is negative, n is shifted right -m

places.
(arithmetic) right shift, value is n*2¢-m, i.e., n
is shifted right m places. n can be positive or

negative. If m is negative, n is left -m places.

logical left shift. On PDP-10, 1llsh is equivalent
to 1sh.

logical right shift.

The difference between a logical and arithmetic right shift 1lies in the

treatment of the sign bit for negative numbers. For arithmetic right shifting

of negative numbers, the sign bit is propagated, i.e., the value is a negative

number. For logical right shift, zeroes are propagated. Note that shifting

(arithmetic) a negative number ‘'all the way' to the right yields -1, not 0.

13.5

13.2 Floating Point Arithmetic

All of the functions described below work on floating point numbers. Unless

specified otherwise, if given an integer, they first convert the number to a

floating point number, e.g., fplus[1;2.3] = fplus(1.0;2.3] = 3.3; if given a

non-numeric argument, they generate an error, NON-NUMERIC ARG.

The largest floating point number is 1.7014118E38, the smallgst positive (non-

zero) floating point number is 1.4693679E-39. The procedure on overflow is the

same as for integer arithmetic. For underflow, i.e. trying to create a number

of too small a magnitude, the value will be 0.

fplus[xl;xz;...xn]

fminus[x]

ftimes[xl;xz;..-;xn]

fquotient[x;y]

fremainder{x;y]

minusp[x]

eqplx;y]

fatplx;y]

x14>xz+...+xn

Xy & X, LI X,

x/y

the remainder when X 1is divided by y, e.g.,
fremainder[1.0;3.0])= 3.72529E-9.

T if x is negative; NIL otherwise. Wdrks for both

integers and floating point numbers.

T if x and y are eq, or equal numbers. See

discussion page 13.4.

T if x > y, NIL otherwise.

13.6

floatp[x] is x if x is a floating point number; NIL

otherwise. Does not give an error if x is not a

number.
Note that if numberp[x] is true, then either fixp[x] or floatp[x] is true.

float[x] Converts x to a floating point number, e.g.,

float[0] = 0.0.

13.3 Mixed Arithmetic

The functions in this section are ‘contagious floating point arithmetic'
functions, i.e., if ény of the arguments are floating point numbers, they act
exactly like floating point functions, and float all arguments, and return a
floating point number as their value. Otherwise, they act like the integer
functions. If given a non-numeric argument, they generate an aerror,

NON-NUMERIC ARG.

plus[xiaxz;...;xn] Xy # X3 ¢ .00+ X

minus{x] - X

difference{x;y] X-y

times[xl;xz;...;xn] Xy ® Xy L X,

quotient{x;y] if x and y are both integers, value is

iquotient[x;y], otherwise fquotient[x;y].

remainder[x;y] "if x and y are both integers, value 1is

iremainder[x;y], otherwise fremainder{x;y].

13.7

greaterp{x;y]

lessplx;y]

abs[x]

13.4 Special Functions

T if x > y, NIL otherwise.

T if x < y, NIL otherwise.

X if x > 0, otherwise -x. abs uses greaterp and

minus, (not igreaterp and iminus).

These functions are all "borrowad" from the FORTRAN library and handcoded in

INTERLISP via ASSEMBLE by J. W. Goodwin. They utilize a power series expansion

and their values are (supposed to be) 27 bits accurate, e.g., sin{30]=.5

exactly.

exptim;n]

sqrtin]

log[x]

antilog{x]

value is mtn. If m is an integer and n is a
positive integer, value 'is an integer, e.g,
expt[3;4]=81, otherwise the value is a floating
point number. If m is negative and n fractional,

an error is generated.

value is a square root of n as a floating point
number. n may be fixed or floating point.
Generates an error if n is negative. sqrt{n] is

about twice as fast as expt[n;.5]

value is natural logarithm of X as a floating

point number. x can be integer or floating point.
value is floating point number whose logarithm is

X. X can -be integer or floating point, e.g.,

antilog{1] = e = 2,71828...

13.8

sin{x;radiansflg]

cos[x;radiansflg]

tan[x;radiansflg]

arcsin[x;radiansflg]

arccos[x;radlansfig]

arctan[x;radiansflg]

rand[lower ;upper]

]

in degrees unless radiansflg=T. Value is sine of

x as a floating point number.

Similar to sin.

Similar to sin.

X is a number between -1 and 1 (or an error is
generated). The value of arcsin is a floating
point number, and is in degrees unless
radiansflg=T. In other words, if
arcsin[x;radiansflg]sz then sin[z;radiansflg]=x.
The réngo of the value of arcsin is -90 to +90 for

degrees, ~n/2 to n/2 for radians.
Similar to arcsin. Range is 0 to 180, 0 to n.
Similar to arcsin. Range is 0 to 180, 0 to wm.

Value, is a pseudo-random number between lower and_é
upper inclusive, i.e. rand can be used to generate
a sequence of random numbers. If both limits are
integers, the value of rand is aﬁ integer,
otherwise it is a floating point number. The
algorithm is completely deterministic, i.e. given
the same initial state, rand produces the same
sequence of values. The internal state of rand is
initialized’using the function randset described
below, and is stored on the free variable

randstate.

13.9

randset[x] Value is internal state of rand after randset has
finished operating, as a dotted pair of two
integers. If x=NIL, value is current state. If
x=T, randstate is initialized using the clocks.
Otherwise, x is interpreted as a previous internal
state, i.e. a value of randset, and is used to
reset randstate. For example,
1. (SETQ OLDSTATE (RANDSET))
2. Use rand to generate some random numbers.
3. (RANDSET OLDSTATE)

4, rand will generate same sequence as in 2.

13.5 Reusing Boxed Numbers - SETN

rplaca and rplacd provide a way of cannibalizing list structure for reuse in
order to avoid making new structure and causing garbage éollectiéﬁs.s This
section describes an analogous function for large integers and floating point
numbers, setn. setn is used like setq, i.e., its first argument is cbnsidebéd.
as quoted, its second is evaluated. If the current value of the variable being
set is a large integer or floating point number, the new value is deposited
into that word in number storage, i1.e., no new storage is used.a If the current
value is not a large integer or floating point number, e.g., it can be NIL,
setn operates exactly like setq, i.e., the large integer or floating point
number is boxed, and the variable is set. This eliminates initialization of

the variable.

- e R R R R B o R iy —

This technique is frowned upon except in well-defined, localized situations
where efficiency is paramount.

The second argument to setn must always be a number or a NON-NUMERIC ARG
error is generated.

13.10

setn will work interpretively, i.e., reuse a word in number storage, but will
not yield any savings of storage because the boxing of the second argument will
still take place, when it is evaluated. The elimination of a box is achieved
only when the call to setn is compiled, since setn compiles open, and does not

perform the box if the old value of the variable can be reused.

Caveats concerning use of SETN

There are three situations to watch out for when using setn. The first occurs
when the same variable is being used for floating point numbers and large
integers. If the current value of thq variable is a floating point number, and
it is reset to a large integer, via setn, the large integer is simply deposited
into a word in floating point number storage, and hence will be interpreted as
a floating point number. Thus,

«(SETQ FOO 2.3)

2.3 :

«(SETN FOO 10000)

2.189529E-43
Similarly, if the current value is a large integer, and the new value is a

floating point number, equally strange results occur.

The second situation occurs when algggg variable is reset from a large integer
to a small integer. In this case, the small integer is simply deposited into
large integer storage. It will then print correctly, and function
arithmetically correctly, but it is not a small integer, and hence will not be

eq to another integer of the same value, eo.g.,

13.11

«(SETQ FOO 10000)

10000

«(SETN FOO 1)

1 .

«(IPLUS FOQ §)

6

«~(EQ FOO 1)

NIL

«(SMALLP FOO)

NIL
In particular, note that zerop will return NIL even if the variable is equal to
0. Thus a program which begins with FOO set to a large integer aﬁd counts it

down by (SETN FOO (SUB1 FOO)) must terminate with (EQP FOO 0), not (ZEROP FO00).

Finally, the third situation to watch out for occurs when you want to save the
current value of a setn variable for later use. For example, if FOO is being
used by setn, and the user wants to save its current value on FIE,
(SETQ FOO FIE) is not sufficent, since the next setn on FOO will also change
FIE, because its changes the word in number stdrage pointed to by FO0O0, and
hence pointed to by FIE. The number must be copied, e.g.,
(SETQ FIE (IPLUS FOO)), which sets FIE to a new word in number storage.

setn[var;x] nlambda function like setq. var is quoted, x is
evaluated, and its value must be a number. var
will be set to this number. If the current value
of var is a large integer or floating point
number, that word in number storage is
cannibalized. The value of setn is the (new)

value of var.

13.6 Box and Unbox

Some applications may require that a user program explicitly perform the boxing

and unboxing operations that are usually implicit (and invisible) to most

13.12

programs. The functions that perform these operations are loc and vag
respectively. For example, if a user program executes a TENEX JSYS using the
ASSEMBLE directive, the value of the ASSEMBLE expression will have to be boxed
to be used arithmetically, e.g., (IPLUS X (LOC (ASSEMBLE --))). It must be
emphasized that | ’

Arbitrary unboxed numbers should not bde passed around as ordinary values
because they can cause trouble for the garbage collector.

For example, supposé the value of X were 150000, and you created (VA6 X), and
this just happened to be an address on the free storage list] The next garbage
collection could be disastrous. For this reason, the function vag must be used

with extreme caution when its argument's range is not known.

One place where vag is safe to use is for performing computations on stack
positions, which are simply addresses of the corresponding positions (cells) on
the sfack. To treat these addresses as;numbcrs, the program must first box
them. Conversely, to convert numbers to corresponding stack positions, the
program must unbox them. Thus, suppose x were the value of stkarg, i.e., X
corresponds to a position on the barameter stack. To obtain the next position
on the stack, the program must compute (VAG (ADD1 (LOC X))). Thus if Xx were
#32002.7 (LOC X) - would Dbe 320020,8 (ADD1 (LOC X)) would be 32003Q,
and (VAG (ADD1 (LOC X))) would be #32003.

Note that rather than starting with a number, and unboxing it to obtain its

numeric quantity, here we started with an address, i.e., a 36 bit quantity, and

7 An INTERLISP pointer (address) which does not correspond to the address of
a list structure, or an atom, or a number, or a string, is printed as #n, n
given in octal.

8

Q following a number means the numeric quantity is expressed in octal.

13.13

wishing to treat it as a number, boxed it. For example, loc of an atom, e.g.,
(LOC (QUOTE FO00)), treats the atom as a 36 bit quantity, and makes a number out
of it. If the address of the atom FOO were 125000, (LOC (QUOTE FO0)) would be
125000, i.e. the location of FOO. It is for this reason that the box operation

is called loc, which is short for location.?

Note that FOO does not print as #364110 (125000 in octal) because the print
routine recognizes that it is an atom, and therefore prints it in a special
way, 1i.e. by printing the individual characters that comprise it. Thus
(VAG 125000) would print as FOO, and would be in fact FO0O.

loc[x] Makes a number out of x, i.e., returns the

location of x.

vag[x] The inverse of loc. x must be a number; the value

of vag is the unbox of x.

The compiler eliminates extra vag's and loc's for example

(IPLUS X (LOC (ASSEMBLE ==))) will not box the value of the ASSEMBLE, and then
unbox it for the addition.

—---------_---------------------------------—-------------------------------—-.—

vag is an abbreviation of value get.

13.14

Index for Section 13

Page
Numbers -

ABS[X] D O L I I R e I I I N I R A A N N N NN NN NN 13.8
ADDI[X] ..eeevennnn eesssersecserensnacsrsvsevevese 13.3
ANTILOGL[X] ervesvssvesensasesesesssesss 13.8
ARCCOS[X;RADIANSFLG] tevsescseseacsssssessee 13.9
ARCCOS: ARG NOT IN RANGE (error message) 13.9
ARCSIN[X;RADIANSFLG] .veveeeveovsccnaccssacsesasss 13.9
ARCSIN: ARG NOT IN RANGE (error message) 13.9
ARCTANL X;RADIANSFLG] +.eeveeevsnonvasscossnssarses 13.9
arithmetic functionsceveeccvevvccccscssosss 13.2-10
ASSEMBLE L2 I I I I I I I I I I I I Y I U R I B B B AN 13013
DOX i ittt iiiee i ecerercasevsacrevrcaserscsseeresss 13.14
boxed numbers P I |
DOXINg ...ttt ctreersrtntenttovorccncsecnerss 13.1-2,10-12
COS[X;RADIANSFLEG] .vivveeeevsscascasscssnsssensss 13.9
DIFFERENCELX:Y] cevveeececvescncsoccacsncocssnoee 13.7
EQP[X;Y] SUBR LR I R R N A R A I A I I N N B 1302.4'6
EQUALIX;Y] +evervencescsenvoanososooncscvssassvses 13.2
EXPT[M;N] LR R N I I I R A A B I A I R B I K I A S Y N] 1308
FGTPEX;Y] SUBR ..veievesrvvesasncccsncnsensencsss 13.6
FIX[X] PP < Y
FIXP[X] -oo-;oo¢~~o0‘1lo'onouol!tooc.0'-!.'00000‘00 1304
FLOATIX] . iiiiiitnenvesvrossorsvosnoososossensessaes 13.7
floating point arithmeticcvevevecvevvcccenes 13.6=7
floating point numbersccceececececoccceccsaess 13.1-2,4,10
FLOATPLX] SUBR ...cecevecvaescsscsoencsconnssnsss 13.7
FMINUS[X] .ocieiinnnnnnnns cesssarssssssrecsessees 13.6
FPLUS[X1:X2;...:Xn] SUBR® ..iieveeocsscscscasenees 13.6
FQUOTIENTIX;Y] SUBR ..vivveececvercoscsossosennee 13.6
FREMAINDER[X;Y] SUBR .vvvevecnveesecscsveccaseonse 13.6
FTIMES[X1:;X2;...:Xn]) SUBRY ..ccvevveccoceccsoaeee 13.6
GC: 16 (typed by system) ...eveecrcecccesossessss 13.1
GC: 18 (typed by system) ..veecevevesvsocosaenses 13.1
GREATERPLX;Y] SUBR ..vveeesveosorsvcscossvssnsses 13.8
IDIFFERENCELX;Y] +cceeceecncooscovonssoncnssonses 13.3
IGREATERP[X:Y] SUBR ..viececccscsonssvonsovsnnnes 13.3
TLESSPEX;Y) vieeecenne T Y|
ILLEGAL EXPONENTIATION: (error message)