
J
J
J
J
I
I
J
I
J
J
J
J
J
t
I
t
J
J
t

Refsrqrt ce IVI g,? u tdql

$sem#!+r
An d L I tt ke il'y*. {,trc Atffiri

Six Florks Softn'arc . 11009 llarness Circle o Raleish, I.{C 2161,4

o1985

Table of Contents

rapter 1 Introduction 1

Get,ting Started 1

Terminology i
The Big Pi.cture 1

The Linker 3

The Dislribution DlsketteChapler 2

Preparing the Assembler and Linker for Use

Chapfer 3 Six Forks Assembler Language

Comparison with Atari t s Assembler/Editor
The Source File 7
Stafements 7
Numbers B

Strings B

Labels 8
VIRTUAL Labels 9
Restrictions on the Use of Virtuals 9
ENTRY labels 9
Reserving Object Program MemorY 9
The Location Counter 10
Reloeatable Code 10
Setting the Location Counter 10

The Initial Location Counter Value 11

Expressions 1 1

At,lributes 11

The Current Location Counter Value 1'l
Expression Evaluation 12

Signed Versus Unsigned Values 13

Byle Selection on an Expression Resu1t 13

Two-byle Operands 14
One-bybe Operands 14
Automatic Selection of Zero-Page Instructions
VIRTS Virtuals 15
The Conment Stalement 15
The .BYTE Statement 15
The .CFE Statement 16
The .DBYTE Statement 16

The .ENTRY Statement 17

The .OUTPI Statement 17
The .VIRT8 Statement 17

The tr=rr Statement 17
The rr*=fr Stalement 18
Insbructions wilh no Operand Fie1d 18

Relative Branch Inslructions 1B

JMP and JSR Instructions 19

ald 1

t)

Table of Contents

Instructions wibh Several Addressing Modes

Using the Assembler 21

Labelled Packs 21
Assembler Capacity 21
Pass 1 21
Pass 2A 22
Pass 28 22
Starting an Assembly 22
Mid-Assembly Choices 22
Print Mode 22
View Mode 23
Error Reporting 23
The Assembly Listing 23

Linker Concepts 26

The Linker Control File 26
Example 1: Illustrates all Linker Concepts
Example 2: Techniques to be Aware of 29

Using the Linker 32

Linker Capacity 32
Instructions and Constants 32
The Internal Workarea 32
Starting a Build 33
Control File Reading 34
Eror Handling 34
Inpub File Reading 34
Output File Building 34
The Load Map 34

Multi-Group Programs 36

Memory Assignment for each Group 36
The Conrnunication Vector 37
The .EOUT Statement 39
The Transparent Jump StatemenL
Executing a Multi-Group Program

The Sanple Program 42

Files on the Distribution Diskette 42
Assembling and Linking the Smple Program
Executing the Sample Program 43

Programming Suggestions 45

Error Codes 47

Specifications 51

1g

Chapter 4

Chapter 5

Ghapter 6

Chapter 7

Chapter 8

27

39
41

:

I
:

t
I
;

42

Chapter

Appendix

Appendix

ii

9

A

Table of Contents

Terminology

n
:

:

lr
h
h
h
h
h
b
h
FI
h,!
hI
It
t
i."

a1d24

containing the software. you supply the
suggest that, you get started by doing the

1. copy the distribution diskette lo a backup. Make bool packs asexplained in chapter 2.

2. Assemble and run the sample program. chapter g tel1s how to do lhat.
3. Read over lhe programming suggestions in chapter 9.

4. As a first progranming effort using this package, you might make amodification to the sample prograrn.

Chapter 1

lntrcduction

Getting Started
ne supply this manual and a diskette
-;.:ngs mentioned in Appendix B. We
:-:ilowing:

A SOURCE FILE is ASSEMBLED to produce a RELOCATABLE FILE. Relocatable filesare combined by !!S_ti{.:r to produce an OBJECT FILE. An object, file is alsoca11ed an EXECUTABLE FrLE, an ABSOLUTE FrLE, and a BTNARy rire.
The process of running the linker to create an object file is called a BUILD.chap_ter 7 uses the term "GROUFT to denote an objeet file thal is only part of atotal objecl program.

A UNIT has two forms: a source file and its corresponding relocatable file.Thus, the term TTUNIT'' refers to a logical piece of'a pro[ram without regard toits form. An ASSEMBLY is a unit, whose source code is asJembler languag6.

A relocatable file can contain both relocatable code and absolute code.

The Big Picturc
Our Assembler/Linker package provides a method of soflware development that
al1ows a program to grow very large without becoming unmanageable. The method,which is based upon the linker, is the industry standard mel,hod for developingsofti^rare. Commercially developed programs tend to be large for two reason!: -

1. Cornputers, even sma1l ones by todayts standards, can conlain large
programs.

Chapter 1: Introduction

t
IIIIIII

iI
I

II
I
t
I
;

I
T
;

;

Now,
in to

2. Srnall programs tend to grow, and for good reason. Building on top of
what's already there is the most producllve and profitable of
programrning activi ties.

ffrese reasons are applicable to Atari users, whether prograrnning for enjoyment
or profit. Hardware capacity is ample. For example, lhe built-in operating
system, which occupies only 8k of memory, is a 11O-page assembler language
program. Al that rate, a 40k program would have over 600 pages of source code.

Donrt think in terms of how large a program you can or want to develop. Just
be aware that the most powerful and exciting progranrning ideas usually lnvolve
adding to whatrs already there, and that it, is nothing less than a tragedy when
this incremental growth process becomes impossible for reasons that eould have
been avoided.

Be aware also that with the proper prograrnning strategy and development tools,
a program can grow almost indefinltely in size without becoming unmanageable.
Herets how iL?s done:

The progran is constructed as a set of subroutines. The programner is able lo
forget how a subroutine works and remember only how to use it. Detail is
conlained, and a program can grow witiout becoming }ess comprehensible. The
souree code is divided into multiple souree files, each sma1l enough to be
conveniently edited and reassembled. Each source file contains a logical
rrunitrr of software, typically a single subroutine or smal1 group of them. An
assembler language source file seldom contains more than 50 instructions.
Complete with commentary, it is seldom longer than 4 or 5 pages"

To assist in debugging, the units often contain internal consistency checks.
Data sLructures often contain rrcheckbytes't that can be verified by the units.
With such measures, the object program can become to a great extent its own
debugger.

how can source code thal is spread over many source files be converted
an exe "itable program?

Let us first consi.der the single-stage process that is exemplified by Atarirs
present assembler products. This process translates source code directly to
executable form. To aLlow for multiple sources, the assernblers typically allow
multiple source files to berrincludedrf in a single assembly. However, even if
the assernbler could handle the total amount of source code, the time to
reassemble and the size of the resulting listing make this approach unworkable"

The other possibilily with the single-stage process is to have each unit be a
separate assembly, yielding a separate executable file. That eliminates the
problems of a single large source, but it puts two housekeeping chores on the
prograT[ner I s shoulders :

'1. The object code for each unit must be assigned a place in memory. The
exact place seldom matters as long as the units do not fal1 on top of
each other.

Chapter 1 : Introduclion

2. The units must be linked together. For instance, a subroutine defined
in one unit musl be called from another unit.

ll :one manuaIly, these chores become the most time consuming and discouraging
;"ar'. of the progranuming effort. The memory assignment for each unit must be
:':ne r*ith anrrabsolute originrr statement in the source file. Thus, to move a
ini1E, if must be ediled and reassembled. Linkages between the units require
t,at, the source files contain absolute addresses of points within other units.

Il is easy to see that even a minor logic change to a single source file can

-ead to much additional source code modification that is unrelated to the logic
:hange. To postpone these labors, error prone shortcuts such as machine

-anguage patches are employed.

lhe sofbvare industry came lo grips with these problems in the early 1960ts.
lhat was when the linker was developed.

The Linker
illhough unfamiliar to many home computer prograrmers, all major computer
systems, including the mainframes, the IBM PC, Applers Macintosh, UNIX-based,
and CPM-based systems, have linker-based development packages.

The Iinker combines software units called rrrelocatable filesrr into an
executable object program. A relocatable file, which is the result of
assembling a source file, can be thought of as the source filers equivalent,
but compacted. Ccnmentary is rernoved. Instructions and data are represented
in machine language form but not yet in executable form because relocation and
handling of exbernal 1abels have yet to be done by the linker.

RELOCATION

A unit can be programmed wi.thout indicating where its object code is to go in
memory. The linker assigns memory to these units so that they 1ie one after
another with no wasted space in beb^reen. This process is calledrrrelocationrr.

EXTERNAL LABELS

They are the means for linking units together. Labels are defined in the
source code in the normal manner. A 1abe1 that is to be visible to other units
is declared to be an ENTRY. When another unil references an ENTRY label, the
linker places the proper absolute value into the reference.

For example, to define a subroutine in one unit and call it from another, the
following is done in the source code:

1. The subroutine is programmed in the normal manner with a label
designating its name (its enbry point).

2. In the subroutiners source fi1e, that 1abel is declared to be an ENTRY.

Chapter 1 : lntroduction

3. Calling fhe subroutine from the other unit, is done as bhough the
subroutine were defined loca11y. In assembler language, the call
consists of a JSR instruction with the subroutinets name in the operand
fie1d.

The linker processes our example as follows (assuning both units are made
relocatable, which is normally the case):

1. Il relocates the unit containing the subroutine. Thus, the absolute
address of the subroutine's entry point is not known until the linker
is run.

2. It relocates the ';nit containing the subroutine ca11.

3. It puts the absolute address of the subroutine into the operand field
of the subroutine ca1l.

In addition to creating the object file, the linker prints a rrload maprt showing
each ENTRY labe1 and its associated value. The load map is essential for
:ebugging.

.llthough our assembler is currently the only language processor that feeds into
the linker, the linker itself is language independent. A relocatable file
could, for examille, come from a Basic compiler. For those wishing to develop
their own language processors, documentation of our relocatable file format
will soon be available.

I
t
t
F
h
h
h
Ft
I
t
t
I
t
T
I
t
t
ilrI

Chapter 1 : Introduction

:

t
t
I
t
I
t
I
t
t!!
!
h!!t
It
F

ll is an 810-compatible disketle that is not bootable because
eontain DOS or DUP. It contains the following files:

Chapter 2

The Distribution Diskette

it does not

a1d25
SFAST The assembler, a load-and-run fi1e.

SFLINK The linker, a load-and-run file.

PACKID The pack label file. Pack labe1s are explained in chapter 4.
distribut,i.on diskette's pack ID is ALPAK1. It is needed to
assemble and link the sample program.

SSOUA-Q These 17 files are the sources for the sample program. See
chapter 8.

LNKSP1 Control file for linking the sample program.

Prcparing the Assembler and Linker for Use
They can be executed directly from the distribution disketle using the xLil

comnand, but that is a clumsy process since the distribution diskette ls not
bootable.

We recornmend that arrboot packrr be created for each of the programs. Two
diskettes are needed, or you can use the two sides of a single diskette. To
make the assembler boot pack, do the following:

1. Format a paek and put DOS and DUP onto it,.

2. Copy SFASM from the distribution diskette onto the boot pack.

3. On the boot pack, change the name of SFASM lo AUTORUN.SYS.

Using SFLINK on the disfribution diskette, make the linker boot pack. To starL
either program, simply boot lhe computer from the boot pack. Make sure no
cartridge is inserted, and on the XL and XE models, hold dor"nr the Option key
when booting.

Chapter 2: The Distribution Diskette

Chapter3

Six Forks Assembler Language

comparison with Atari's Assembler/Editor a1d3

OursourcelanguageismodeledafterthatofAtari'sAssembler/Editor.To
assist those al-ready familiar wiirr ltari's language, here are the differences:

'1 . Our statements do not have line numbers"

2. We support ENTRYs and virtuals. ENTRY labels must be explicitly
declared with the .ENTRY "iatem"nt.

Expressions containing virtuals

have restrictions on their form'

3.WedonotsupporbtheTITLE'PAGE,TA.B-,andlFstatements.Theyarefor
making a large file more managaule. when a linker is available' source

files can be kept small. we Ilso do not support the END statement'

4"!.lehaveandirectmeansofselectingtheloworhighbyteofan
expressionresult.Forexample,*re1lgtement''LDA#.L0.TABADR||does
the same thing as I'LDA Tffi6"R:iABADR/256*256tt ' Byte selection can be

done on a virtual'

!. using our .cFE declaration, a self-describing character constant can be

defined.

6. we alrow an immediate instruction operand to be stated as a one-byte

string.

T.StatementslhatwesupportcomparewithAtari'sasfollows:
STATEMENT COMPARISON WITH ATARI

instructions ident'ical
conment identical
.BYTE idenbical
.CFE not in Atari
.DBYTE identical
.ENTRY not in Atari
.EOUT not in Atari' Explained in chapter 7'

.OUTPI not in Atari

.VIRT8 not in Atari

.WORD idenlicaln= i::::i::l

Chapter 3: Six Forks Assembler Language

The Source File

It mst' be on a Iabel1ed pack. Pack 1abel1ing is explained in chapter 4.

lbe f,iLe name can be up to 8 bytes long. The first byte must be a letter.
fl'emaining bytes can be letters or digits. An extension (an rr.xxxil) is not
per.:m.itted.

Ile relocatable file created by the assembler is gryen the name of the source
flie with an extension of rt.Rrt. For example, if souree file trSFILAtt is
assabled, the relocatable file is named tt SFILA. Rn .

l:e source file is in the conventional DOS form. Each record ends with an
!fi[-. Each record contains one source statement.

ieeords can be up to 130 bytes long, but they are normally kept short enough to
re eontained in one line of the assernbly listing.
lJrere is no special rrlast'r statement such as an END statement. The END
staternent is not supported.

Following is a sample source file, shown as it is likely to be entered:

PROGRAM; THIS IS OUR.SAMPLE

,
.OUTPI RELOCl

,
.ENTRY ABC

ABC LDA #2 ENTRY POINT.
STA XYZ+1

,
RTS RETURN TO CALLER.

The remainder of this chapter is in
Ianguage are described. Then, each

Statements
If a statement begins with a semicolon, it is a conrnent. Otherwise, the
statement is organized into four fields: Iabel, operation, operand and comment.

The fields are separated by one or more blanks. To signify a labe1 fie1d,
start it in fhe first record byte. If the first byte is blank, that, means
there is no label field, and the first nonblank byte is the start of the
operation field.

Most statements have an operand field. Followlng it is the conrnent field,
which is always optional. In the statements that have no operand field (e.g.
TXA), any material followlng the operation field is treated as corrnentary.

two parts. First, the
statement is described

elemenls of the
individually.

Chapter 3: Six Forks Assembler Language

Here i.s the assembly llsting that would be produced by the above example:

; THIS IS OUR SAMPLE PROCRAM

,
.OUTPI RELOCl

,
.EI'ITRY ABC

,
0000R A902 ABC

OOO2R SDVWV
,

0005R 60

LDA #2
STA X'{Z+l

EI.ITRY POINT.

RTS RETURN TO CALLER.

The fields are tabbed to fixed columns to improve readability. The only
statement that, must always be present is the .OUTPI statement. It, tel1s the
assembler where to write the relocatable file. The assembly listing is fully
described in chaPter 4.

Numbers
A number can be given in decimal or hex form. Hex is indicated by beginning
the number with rt$rt. In addition to Lhe decimal digits, hex numbers can
contain the lefters rrArr through rf Ffr.

The value of a number can range from 0 through 65535 in decimal, or 0 through
$FFFF in hex.

Strings
A string is a sequence of characters enclosed in quotes. The sequence cannot
contain the quote character used to enclose the string. Both the single and

double quote can be used to enclose a string. The maxinum string length is 100

byles. Following are examples:

I'THIS IS A STRINGII

'THIS IS ALSO A STRINGI
II DON ' T TYPE TOO FASTI
rrrt (empty string, usable in .CFE statement)

Labels
A 1abe1 is up lo 6 bytes long. It begins with a letter. Rgnaining bytes, if
any, are letters or digits. A label cannot be rrArr because that notation is
used in the shift and rotate instructions to denote the A-register.

A label denotes a 16-bit value. A label is defined (assigned a value) when it
appears in the label field of a statement.

Chapter 3: Six Forks Assembler Language

h
h
h

l

h
fr.
h
{it

h
h
n
:t
:rr
ll
ht
h
F
F

WRT'LAL Labels
ri0riler a l-abel is used in a given source flle but not defined in that sourcej'-€, lt, is said to be a|tvirlualf in that source file. In the above example,II'II :.s a virtual.

dr'el'a statement contains a virtual, the assembler cannot translate itlsmF-etely to machlne language because it does not know the value of the
',i:r:;'a1. These virtual references are encoded into the relocatable fite anda:e "resorvedrr (converted to machine ranguage) by the linker.

Reslrictions on the Use of Virtuals
I -abel, whether it is locally defined or a virtual, is used in the operandi:eid, where it is part of an expression (described later). Compared with
-:'eai1y defined labe1s, vlrtuals have the following restrictions on their use:

1. The expression containing a virtual must reduce at assembly time torrvirtual plus or minus a constanttt. The constant value can be any 16-bit value.

2. A vlrtual cannot be used in the operand field of the rr*=n statement. In
other words, the location counler cannot be set to an expression
conLaining a virtual.

3. A virtual cannot be used in the operand field of therr=tr statement. trn
other wordsr a local label cannot berfequatedil to a virtual.

ENTRY Labels
Any label that, is defined in a given source can be declared to be an ENTRy inthal source. That makes the label and its associated value visible to the
linker and capabre of resolving virtuals in other assemblies.

Declaring a label to be an ENTRY in a given source has no effect on its use
within that source.

Reserying Object Program Memory ald5

Most statements reserve object program memory. For instance,

LDA II2

generates a 2-byLe instruction. Two byfes of memory are reserved, and the
machine language form of the instruclion is placed in them. The statement

Ir= *+20

reserves 20 bytes of memory, bul does not place data into the bytes. Memory
reservations always occur at the trnext available bytett.

Chapter 3: Six Forks Assembler Language

The Location Counter
The assembler keeps track of therrnext available byte" with its location
:ounter. A block offtxrr byLes of memory is reserved as follows:

a. The curent location counter value is the address of the first byte of
the reserved block

b. The location counter is incremented by rf xrr.

In the assembly listing, the address field printed at the left of each memory-
reserving statemenb is the location counter value in effect when that statement
was encountered.

Relocatable Code
The location counter can be absolute or relocatable. When an absolute location
counter is in effect, memory is reserved at the indicated absolute memory
locations.

I'lhen a relocatable location counter is in effect, memory is reserved at
locations relative to the'rload poinUr of the assembly, which is not known
until the linker relocates it.

Setting the Location Counter
programmer sets il, and lhereby controls where memory is reserved. It is
with therr*=il statement. Following are examples:

*: $4000 The location counter is set to an absolute
address. Subsequent memory-reserving
statements (unti1

"no;5ut^
tt*-tt is encountered)

reserve memory in consecutive, ascending bytes
beginning at, location $4000.

Assuming ABSADR denotes an absolute address,
the location counter is set fo that address.
The definition of ABSADR must precsds thg tt*-tt
statement in the source file. The XX labe1 is
defined to denote the locatlon counter value
just before if is set to the new value.

Assuniing RELADR denotes a relocatable address,
the location counter is set to that address.
The RELADR definltion must precede this
statement.

The location counter is set to its former value
plus 20. The effect, of such incrementing of

XX *= ABSADR

*= RELADR

ARRAY ll: *+20

The
set

10 Chapter 3: Six Forks Assembler Language

Attributes

*r
h
{irr
h,
h
h
h
#.
ttrh
;

rr
lr
F
Ft
h
It
F

the location counter is to reserve memory
wlthout initializing it. The ARRAy label is
defined just as was XX earlier. Thus, we see
that ARRAY denotes the address of the first
byte of fhe 2O-byte area.

The lnitial Location Counter Value

An expression is used whenever a nurneric
field. The expression is made up of one
nmber, a 1-byte string, or the current
l1Iil).

}e assembler initializes it totfO, relocatablerf . With that initial va1ue, the
-::ker relocates memory-reserving statements so that lhey fall immediately
ei'.er the previous assembly.

irrhen possible, an assembly should contain no location counter settings except
i::' therf*=*+xil variety that reserves a block of memory. Such assemblies arexe simplest to incorporate into programs because they are fu11y relocatable
and occupy only one contiguous chunk of memory.

F.:rprcssions a1d4

value is called for in an operand
or more rr termsrr. A term is a IabeI,

location counter value (indicated by

Terms can be combined by addition, subtraction, multiplication or division.
Either the low or high byte of the result can be selected.

An expression value is a two-byte (16-bil) quantity. When a one-byte value is
called for, as in the innnediate operand of an instruction, the high order byte
of the expression result must be zero, which is to say bhat the value of the
expression must be between 0 and 255.

Within the assembler, a term or expression result has one of three attributes:

Absolute

Relocatable

Vir tual

The absolute value (a number between 0 and $FFFF) is known
at assernbly ti.me.

The value known to the assembler (also between 0 and $FFFF)
is relabive to the trload addressrr of the assembly.

Since a virtual label is presenl, the value eannot be
computed by the assembler. The linker computes the final
va1ue. Expressions containing a virtual are also known as
rr virtual referencesff .

The Currcnt Location Counter Value

Chapter 3: Six Forks Assemblei Language 11

The symbol ''*tt denotes the location counter value that is in effect when the
assembler starts processing a stabement containing an n*tr. That value can be
absolute or relocatable.

Exprcssion Evaluation
Expression evaluation is carried out in a simple left-to-right manner. To some
users this might seem peculiar, as lt differs from the standard practice of
doing multiplications and divisions before additions and subtraetions, but it
is commonly used in assernblers including those from Atari.

When terms other than absolute ones are combined, there are restrictions on the
arithmetic operations that are permitted. To explain the restrictions, we
first look at how expressions are evaluated by the assembler.

Expression evaluation is centered around an rraccumulatorft. As the expression
is evaluated from left to right, each term is combined into the accumulator
according to the operator that precedes it. For example, the expression

LABA*2+LABR

where

LABA = $24, absolute
LABR : $11, relocatable

is evaluated in the following steps:

1. The accumulator is initialized to rr0, absoluterf .

2. LABA is added into lt. The accumulator beeornes tt$24, absolutetf .

3. The aceumulator is multiplied by "2, absolutert. It becomes "$48,
absolutefr .

4. LABR is added into the accumulator. This is a valid operation because
a relocatable value can be added to an absolute one. The accumulator
becomes tt $59, relocatablerf .

The rules governing expression evaluation are:

1. The accumulator is initialized to rtO, absolutert.

?. An expression can begin with a minus sign. An absolute term musl
follow the minus sign. It is subtracted from the initial accumulator.

3. If the accumulator is absolute, the nexL operator and term can have the
following forms:

a. If the next term is absolute, then any of the four arithmetic
operations are permitted. The aceumulator remains absolute.

Chapter 3: Six Forks Assembler Language12

Signed Vercus Unsigned Values

ht
f,t
hI
t
I

b. If lhe next term is relocatable, the operator must be rr+rr. The
accumulator becomes relocatable.

c. If the next term is virtual, the operator must be il+tt. The
accumulator becomes virbual.

4" If the accumulator is relocatable, two forrns of the next operator and
term are permitted:

a. The next operator is rr+rr or rr-r' and the next term is absolute. The
accunulator remains relocatable.

b. The next operator is tr-tr and the next term is relocatable. Here we
are taking the difference between two relocatable values. The
accumulator becomes absolute.

5. If the accumulator ls virtual, the next operator must be rt+rr or tr-rr and
the next, term must be absolute. The accumulator remains virtual.

6. Division by zero results in an error message. Overflows from other
operations are ignored.

Terms and expression results are 16-bit v:lues. Whether a given value is a

signed or unsigned quantity is largely a matter of user interpretation. For
example, $FFFF can also be thought of as -1 or as 65535, or as any other
pattern of bits.

Addition, subtraction and multiplication operations yield rrcorectrf results
regardless of the interpretation, albhough you must be aware of overflows.
There are two operations where a single result cannot satisfy both
interpretations. In these operations, the assembler supports the unsigned
interpretation. The operations are:

1. Division. Forlunately, division is infrequenfly used in assembler
statements. In any event, division consists of a simple, integer,
unsigned, 16-bit divlde. We do exactly what Atari does.

2. Overflow check on expression results that must fit into one byte. The
assembler and linker require that the hlgh order bvte of the expression
result be zero. This interpretation prohibits negalive values that can
be correctly represented in one byte. For instance, the statementrfABC
.BYTE -1tt is unacceplable. As you will see, bhough, the statementrfABC
.BYTE .L0.-1'r is acceptable.

Byte Selection on an Exprcssion Result

An expression can begin wibh attbyte selection'r prefix. Examp1es are:

.L0.LABA+2

Chapter 3: Six Forks Assembler Language 13

.Hl.LABV

This prefix is syntactically part of the expression. To aid in explaining its
effect, we call the portion of the expression following the prefix therfinner
expresslonrf .

There are no restrictlons on use of the prefix. The inner expression can be
absolute, relocatable, or virtual. When relocatable or virtual, the final
result is determined by the linkage editor.

The attribute of an expression is not changed by adding the prefix. Byte
selection is applied to the result of the inner expression in the following way:

.L0. The high order byte of the result is zeroed.

.HI. The value in the high order byte is moved to the low order byte and
then the high order byte zeroed.

Byte selection is useful in
example, to put the address
can be used:

LDA /I.L0.LAB1+1 A

LDY /l.HI.LAB1+1 Y

setting up addresses at
rrlABl+ltr into the A and

= LOW ORDER BYTE.

= HIGH ORDER BYTE.

execution time. For
Y registers, the following

Two-byte Operands ald6

a two-
An instruction lhat contains an absolute memory address has a two-byte
operand. Also, a statement that, defines a two-byte numerlc constant has
byte operand. Here are examples:

J}4P LOOP

LSR ACCUI4+2
BIT FLAG
LDY ELEMENT,X
.l'lORD XIZ+1 (LO,HI) ORDER.

.DBYTE XYZ-22 (HI,LO) ORDER.

One-byte Operands
An immediate inslruction has a one-byte operand. The zero-page form of an
instruetion has a one-byte operand. The statement lhat defines a one-byte
nurneric constant has a one-Uyte operand. Following are examples:

LDA II47 IMMEDIATE INSTRUCTION.
LDA $17 ZERO-PAGE FORM OF INSTRUCTION
.BYTE PAGSIZ-4 ONE-BYTE NUMERIC CONSTANT.

Note: the BYTE statement is also used to define character constants.

The value of an expression used in a one-byte operand must lie between 0 and

14 Chapter 3: Six Forks Assembler Language

ir':-ained earlier. Violalions of this rule are reported as soon as the,:-;e cf the expression is knou'n.

fu$omatic Selection of ZervPage lnstructions
*r --:-- irstructions have both an absolute-address form and a zero-page form.

.": :-3::ase, the assembler automatically chooses the zero-page form if the
+ :':ss:rn in the operand field has any of the following properties:

It yields an absolute value during pass 1 of r-he assembly process, and
Lhat value is between 0 and 255. Chapter 4 explains ilpass 'ln.

2. It has a byte selection prefix (.L0. or .HI.).

3. It contains a VIRTS virtual.

VIRTS Virtuals
: ''':lTB virh:al is a virtual whose name has been used in a .VIRT8 declaration
:-',-enent. The assembler makes the following assumption about VIRTS virtuals:

any expression containing a VIRTS virtual will have a
result that is between 0 and 255.

l:e only effect of a VIRTS virtual is to cause the zero-page form of an
:rstruction to be generated when thaf form exists.

il is your responsibility to
1ie1ds a result between 0 and
iinker will report the error.

see lhat an expression containing a VIRTS virtual
255. If an out-of-range result occurs, the

If the first character in a statement is
blank line is also treated as a conment.
assembly listing.

The usefulness of the VIRT8 fealure is that it a1lows zero-page locations to be
referenced symbolieally using virtual labels. Olherwise, each source file
referencing a zero-page location would have to contain the absolute address of
that locatlon.

The Comment Statement aldT

a semicolon then it is a cornnent. A
It appears as a blank line in the

The .BYTE Statement
Following are examples showing all forms:

TEN .BYTE 10
xyz .BYTE 10,20,$30,.HI.A-2
HEAD .BYTE IITHIS IS A HEADINGII

Chapter 3: Six Forks Assembler Language 15

I

MES1 .BYTE 'THE MAN SAID ''I AM HEREII I

MES2 .BYTE IIDONIT SHARPEN THE PENCILII

STUFF .BYTE 2,"ABCDI,3rrfEFGHrl

one or more subfields are gi.ven with a co|lrna (but no blanks) beb'leen each'

Each subfield is either "n "*p."rrion
o. a character string. Expression values

must lie between O-and 255' if li'"-"*pression contains a virtual' the final

u.iu" is computed and cheeked by the linker'

The .CFE Statement

It creates a self-describing character constant' The operand field consists of

;"";;;r;-"r,ar""tL" string' Following are examples:

TITLE .CFE I'LAST VALUE PRINTEDI

EMPCFE.CFE IIII

The format of the assembled bytes are:

(empty string)

1st byte number of data bytes plus 1 ' The data

between the quotes.

next bYtes the data bYtes'

last byte always $98' This is a eheckbyte'

The examples above are equivalent to:

TITLE .BYTE 19'''LAST VALUE PRINTED'
'$98

El4PcFE 'BYTE 1'$98

The CFE is useful for defining a character field that is

subroutines. Given the address of the CFE' a subroutine

1. Check that the address points to the CFE rather

checkbYte is used here'

2. Find the number of data bYtes'

3. Find the data bYtes themselves'

bytes are those

to be Processed bY

can:

than garbage. The

The .DBYTE Statement

Following are examples showing all forms:

ABC .DBYTE X

DEF .DBYTE X,Y+1

This statement defines a two-byte constant in.which the high order byte is

olaced firsb in the machine r"nei"i""li"1t1",9,1ii' Such constants are not often

used, as the 6502 proeessor ""q'.iirE"
thab 2-byte addresses have their low order

16 Chapter 3: Six Forks Assembler Language

'-i- The .WORD statement produces constants of that form.

'l*-::*ttg are examples showing all forms:

.ENTRY SORTIP

.ENTRY AL1 ,AL2

.ENTRY IIALLII

:r::. lisled 1abeI is made an ENTRY, meaning that it is capable of resolving
-'::als in other assemblies. Each labeI that is made an ENTRY must also be:*i::ed within the souree where il is so deelared.

-: -.he operand field consists of rrALL" (quotes included) then al1 1abels
::::ned in the source file are made ENTRYs.

':i1 'ENTRY statement can appear anywhere in Lhe source file, but it is normally
:-aced near the top.

The .OUTPI Statement
-: has only one form:

.OUTPI paekid

;nererrpackidfr is a 6-byte pack ID that indieates the pack (diskette) on which
ihe assembler is to write the relocatable file. A pack ID is identical in
syntax to a labeI, but there is no interaction between lhe two.

This is the only statement that is mandatory in all source files. It can be
placed anywhere but is normally put near the top.

The .V|RT8 Statement
Examples showing alI forms:

.VIRTB WALL

.VIRT8 ABC,LINK,VERS

The VIRTB virtual was explained earlier in lhis chapter.

The '3 -" Statement
This staternent is sometj.mes called the rrequale'r statement. Following are
examples:

llltrc .ENTRY Statement

LFEED =
LFDP1 =

t
I
t
t
t

$9B
LFEED+'l

Chapter 3: Six Forks Assembler Language 17

The label is defined to be fhe value of the expression in bhe operand field. A

labe1 in the labe1 field is not mandatory, but without, a label the statement is
useless.

The expression must yield an absolute or
assembly process. Thus, a label used in
and it must have been defined before the

relocatable value during pass 1 of the
the operand field cannol be a virtual
rr-rr statement is encountered.

$462c
x+2
ABC

OLDORG

When an instruction
operation field is

0009R A8
0010R 60

lnstructions with no Operand Field

Relative Branch lnstructions
They are BCC, BCS, BEQ, BMI, BNE, BPL, BVC and BVS. In machine language, the
operand is a 1-byte field that gives therrdistancetr lo branch, which can range
from -128 through 127. The distance is measured from the byte immediately
after the branch instrucfion. For instance, a value of -2 (FE) would cause the
instruction to branch to itself.

a1d17

has no operand fieldr ahV source material following the
considered to be the cormnent field. Following are examples:

LAB1 TAY
RTS RETURN FRO4 READCS.

The 3''t - " Statement
Following are examples:

t:
BINVAL *=

OLDORG *=
*-

The locatlon counter is set to the value of the expression in the operand
field, which must yield an absolute or relocatable value during pass 1 of the
assembly process.

If a label is used in the label field, il is defined to be the localion counter
value in effect when the assembler began processing the tt*=tt statement.

Thetr*=rr must appear in the operation field with no blanks separatin8 the tt*tt
from the rt=tr. In an exception to the general rule for separating fields,
blanks need not separate the tr*-rr from the operand or labe1 field. These
exceptions apply to the rr-rr statemenl as welI.

The setting of the location counter is sometimes called'rselting an originrr.
More information on the tt*-rr statement was given earlier in this chapter.

18 Chapter 3: Six Forks Assembler Language

:::?::.er language, the operand field is an expression giving the
:-cn of lhe branch. The assembler computes the propertfdistancett value
:.'.o lhe machine language instruction. The destination must be within
i lhe branch, and it must be within the same source file. Thus, a
:annot be used in a relative branch instruclion (but nole that virtuals

.;sed in the JMP and JSR instructions). A1so, the expression resul-l musl
,i - ::e same attribute (absolute or relocatable) a the current location
:-::€.. Here is how the relative branch operand field is processed by the

r" The operand field, a single expression, is evaluated.

2. The nesult must have the same attribute (absolute or relocatable) as
the location counter.

3. The valuefrlocation counter + 2tr is subtracted from the expression
result. Recall that the location counter points fo the start of the
branch instruction.

4. The result of the subtraction must be between -128 and 127.

5. This one-byte result becomes the value of the assembled operand field.
It can be seen in the compiled-code field in lhe assembler listing.

l:-iowing are relative branch examples:

OO25R A8 BACKW TAY
OO26R FOO2 BEQ FORW

OO2BR 3OFB BMI BACKW

OO2AR AA FORW TAX

A FORWARD BRANCH.
A BACKWARD BRANCH.

SORT THE ARRAY.
NOT USED OFTEN.

JSR SORT

JMP (ABC)

single instruction
allowabIe for a

#25LDA

JMP and JSR lnstructions
The machine language form of these instructions has a 2-byte operand field that
is the absolute address of the destination. In assembler language, the operand
field i.s an expression. In case of the JMP, the expression can be enclosed in
parentheses to indicate an indirect JMP. Following are examples:

OO44R 2OVVVV
0047R 6CAB20

Instructions not already mentioned faIl
has all modes. Consult a 6502 hardware
particular instruction. Possible modes

SYNTAX OF

OPERAND FIELD

/fexp'lm

inlo this group. No

manual- for the modes
are:

EXAMPLE

lnstructions with Several Addressing Modes

ADDRESSING

MODE

immediate

Chapter 3: Sj.x Forks Assembler Language 1g

absolule
zero-page

absoluterX
zero-page rx

absolute, Y

zero-page, Y

(ind,X)
(ind),Y

A-register

expr
expla

expr, x
expla,X

expr rY
expla,Y

(exp 1m,X)
(exp1m),Y

A

LDA ABC+3
LDA ZPAGV+1

LDA ABC,X
LDA ZPAGV,X

LDA ABC+1 ,Y
LDA ZPAGV,Y

LDA (ZPAGV,X)
LDA (ZPAGV),Y

ASL A (only ASL, LSR, ROL, ROR)

where

expr is any valid expression, or, if both absolute and zero page forms of
the instuction exist, then rrexprtr is an expression that, during pass
1, does not qualify as an rrexplafr.

expla is an.expresslon that yields a 1-byte result, during pass 1.

explm is an expression thaf must ulfimately yield a 1-byte result because
there is no form of the instruction with a 2-byte operand. If the
expression contains a virtual then the value is cornputed and checked
by the linker.

20 Chapter 3: Six Forks Assembler Language

Chapter4

Using the Assembler

[ahellled Packs

:- :ie source file (specifieally, the .OUTpI statement) the::::i strltax as that of a label. The first byle is a letteri.':'r 3 to 5 of thern) are letters or digits.

-'": :s::nbler and linker require 1abelled packs. Each time a file is read or.--::.::.. ihe pack 1abeI is first checked. rf it is missing or incorrect, you:-: -:.:::ned of fhe problem and given a chance to mount anolher.

' l:l:i ls labelled by creating a file on it called PACKID lhat has one record--.-:-- :cirr"ains, beginning in the first byte, the desired pack rD. rf shorter:-.-. : bytes, the pack rD can be ended wi.th an EOL or blank padding to 6:.,:.:s. Bytes following the sixth are ignored.

a1d8

pack ID has the
and remaining bytes

Assembler Capacity
Maximum source file size: 140 sectors (.17,500 bytes)

Maximum number of differenl labe1s: 200

lhe limit on source file slze is because the source file is read into memory inits enfirety. Because source records vary in length, it is not possible to
3ive a maximum number of records, but 140 sectors is typically more than 12
1:daevgbv v.

l'iole that lhe limit of 200 labe1s is only for a single assembly. The linker
allows up to 512 in a build.

Pass 1

After reading the source fi1e, the assembl-er makes a total of three passes
through it. During pass 1 it determines which labels are locally deiined and
which are virluals, and it determines the value of the locaIIy defined ones..

Since 1oca11y defined vari.ables can be be defined in terms of the current
loeation counter value, the location counter musl remain defined lhroughout
pass 1. That is why the operand field of the rr*-rr statement must always yietd
a knovrn (absoLute or relocatable) value during pass 'l .

Since an instruction causes the location counter to be incremented by its

ll.

Chapter 4: Using the Assembler 21

length, the length of each instruction must be determined during pass 1. Thus,autbmatic seleclion of zero-page inslructions is done during pals t, and fhoseselections are remembered so that, during subsequent passes,-tfre locationcounler is incremented exaclly as lt was during pass 1.

Pass 2A
It' is a trdry runrr of pass 28 whose sole purpose is to find out whether the
source file has errors. see'tMid-Assembly choicesrf below.

Pass 28
During this pass, the relocatable file and assembly listing are produced.

Starting an Assembly
Chapter 2 explains how lo start the assembler. The first thing it does is to
ask for the source file name. Enter it and press Return. Nexl, the assembler
asks for the pack ID of the pack containing the source flIe. enrcr that andpress Return.

Note: After an assembly is finished, the
When the file name and pack ID are
values are displayed. They can be
left unchanged.

The assembler then reads the source file and

assembler prepares to do another.
again asked for, the previous
partially or wholely retyped or

performs passes 1 and 24.

tells you whether or not
to do with the assernbly
the screen.

the printer, meaning thab just
are skipped by printing blank

I-ength. Before printing is begun,
After each assembly, the printei is

their operating system code that

Assembler

by

Mid-r\ssembly Choices
After passes 1 and 2A are
there are errors and asks
listing. You can have.it

If the source file has errors,
source file is error free, you
holding the Option key down at
your choice for the assembler

Print Mode
0n1y data characters and the EOL are sent to
about any printer should work. perforations
lines. Pages are assurned Lo be 66 lines in
the printer should be set on top-of-form.
left at top-of-form"

The XL and XE computers have a minor bug in

complete, the assembler
you what you would like
printed or displayed on

the relocatable file is not built. If the
can suppress building of the relocatable file
the same time you type lhe letter indicating

Iisting output device.

22 Chapter 4: Using lhe

fi
*

#t
t
t

tsuses the prinler to occasionally stop for approximately a minute. Do not do
m,*itxing, as il will restart on ifs own. Whenever the assernbler or linker is
ffi::ing on lhe printer, the boltom sereen line has a message saying so.

WeYY Mode

-r:ly the leffunosl 40 bytes of the assembly list,ing are shown. This partial
::splay includes everylhing but some of the commentary, and it is easier to
i:sual1y scan than would be the case if longer lines were wrapped to a second
-:ne. View mode serves l-vuo purposes:

1. Errors can be seen and corrected before hardcopy is made. Note that
source changes musl be made using your word processor.

2. When a small change is made, lhe assembly listing need need not be
reprinted in order to confirm the change.

I'iew mode begins by filling the screen with Lhe firsl 22 lines of the assembly
iisting. The screen (and the entire assembly process) is lhen advanced by
using the keyboard. The bottom screen line surnnarizes the available functions,
one of which is a rrhelprf display. Each function is invoked by a single,
unshifted letter. The functions are:

L - advance the display by one line.

S - advance the display by one screen (22 lines).

F - finish the assembly.

E - advance the display until an error message appears on the bottom
display 1ine. Error messages begin with B asterisks. If there are no
more errors in the assembly, the display continues until lheftoutcomerl
message appears. The initial screen must be manually scanned for
errors.

H - show the rrhelprt display. To return from lhat, display, press Return.

Errcr Reporting
Following are examples of the two error message formats:

******** ERROR 14,25

lt**l(xxxxxx: ERROR 22

The first form normally applies to the statement preceding it. The second form
applies to the glven label. Error codes are tabulafed in Appendix A.

The Assembly Listing

Chapter 4: Using the Assembler

ald18

23

&lBi|bt':u*'

Il shows each source statement along with its machine language translation (tothe exlent that is
fields are tabbed
source fi1e, these

possible). The 1abel, operation, operand, and commentto fixed colurnrs to improve readabiritv. Recall that infield-s need only be separared by one or more blanks.
sample lines:Following are a few

The leftmost field
which shows up to
extent possible).

0029R CggB

O02BR

1000 AB

0024R 8D3143
a027R BD2D00
OO2AR 2OVWV

002DR 3412
433 1

#$98 IMMEDIATE OPERAND.

$1OOO SET AN ABSOLUTE ORIGIN"

NO-OPERAND INSTRUCTION.

; COI"IMENT STATEMENTS ARE PRINTED
,

4024R 8D3412 LABEL LDA XYABC CO4MENT

EXACTLY AS ENTERED

FIELD.

ABSOLUTE OPERAND FIELD.
RELOCATABLE OPERAND FIELD.
VIRTUAL OPERAND FIELD.

absolute operands. Relocatable
of the assembly. Note that in
low order byte appears first.

is therfaddresstt fierd. Next, is.therfcompiled code" field,the first three bytes of the machine language code (to u1;-'Remaining fields are Lhose of lhe source statement.

The address field is shown when it is relevant. In state+nents that reservememory' if gives lhe address of the first byte of the reserved memory, which isalso the location counter value in effect, at *re start of the statetenl. Inthe'r=rf statement, it gives the value of the expression in the operand field.
The following lines illustrate the address field for relocatable and absolutelocation counters:

CMP

, *-
,

TAY

The trRrr in the address field indicates that the CMp instruction is at arelocatable address. Theft*:tt statement changes the location counter torr$1000, absolutefr. The address field in the'i*=tr statement shows the locafioncounter before it is changed. The new value is not seen until the following
statement.

The compiled-code field shows as much as possible. The following linesillustrate 2-byte operand field values:

STA ABS
STA RELOC

JSR SUBR

i
RELOC .WORD $1234 A RELOCATABLE LABEL.ABS = $4331 AN ABSOLLTTE LABEL.

The final machine language value is given for
operand values are relative to the load point
tie instruetions and the .WORD statement, the
For virtual operands, ilWV\Ir is shovrn.

The following lines illustrate 1-byte operand values:

.VIRT8 ZPAGA

24 Ci':pter 4: Using the Assembler

n
fl
:l
llr
:l
rt
II
I
t
t
t
t

::24R A531
CO26R A5RR

:028R A5W

302AR 00
003 1

LDA

LDA
LDA

,
RELOC .BYTE O

ABS =

ABSS ABSOLUTE 1-BYTER.
.LO.RELOC RELOCATABLE 1-BYTER.
ZPAGA+1 ZERO-PAGE INSTR. SELECTED.

A RELOCATABLE LABEL.
$31 ABS. LABEL <255.

- '-3yte relocatable operand is permitted by the assembler only if the defining
:r:rression has a byte selection prefix. For such operands, rf RRtt is shown
:esause the final value is computed by the linker.

Chapter 4: Using the Assembler 25

Chapter5

Linker Concepts

The linker combines rel-ocatable files into an object file that can be loaded
and executed by DOS. An execution of the linker is calIed a ftbuildn. A build
proceeds in the following steps, which are further explained in chapLer 6:

j
J
r'l

II
t
I
t
t
t
I
I

A build is defined by giv, .g the name and pack ID of each input (relocatable)
file and the name and pack rD of the object file to be created. This
information is not typed directly into lhe linker. Ralher, 3 "control fllerf is
created that contains the data. Following is a sample control file:

(I OBJECT FILE *)

(* MAIN PROGRAM *)

ald9
1. You enter options Lo control lhe amount of prlntout.

2. You enler the name and paek ID of the control file.
3. The control file is read and ttrememberedtt.

4. Relocatable files are nead as directed by the conlrol file.
5. The output file is created from the information in memory.

6. The load map is printed.

The Linker Contrcl File

(* SAMPLE CONTROL FILE *)

/BINOUT 0N TEST1: COPY.O

/INPUTS ON RPAK1: XASA.R
XASC.R XASD.R (* CHARACTER MANIPULATION n)

/INPUTS 0N RPAK2: YASA.R YASB.R (* FILE HANDLERS *)

Physically, the conlrof file is composed of records, each ending with an EOL.
A record cannol be longer than 120 bytes. They are normally kept short enough
to fil on one print line.

Logically, the control file is composed of statements that can be arranged in attfreeformrr manner wibhin the records. A statemenl can occupy multiple records
as long as a single word does not cross over from one record to the nexl.
Blanks ane ignored except that lhey cannot appear within a word. A sequence
beginning with rt (*rr and ending with rt*)tt is a conrnent. It can appear anywhere
except in fhe middle of a word.

26 Chapter 5: Linker Concepts

li.e INPUTS statement gives a pack ID and then one or more files that are to be
--':3 from that pack. The file names are separated by blanks. A complebe DOS
-a:e must be given. Thus, thefr.Rrf must be given for fhe relocatables.

l:.ere is no specific limil ;o the number of INPUTS statements or the number of
::-e names given in a singLe INPUTS statement. Files are read in the order
--ney are given in the control file.

lle BINOUT statement is required to give the name and pack ID of the output

ald11

4000 Agzc
1002 8D0540

4005 00

0000R AD0600
OOO3R SEVWV

0006R 00

source file S0UR2 -------
.OUTPI RPACKl

,
.ENTRY S2STAR

,

S2STAR LDA XYZ
STA SlSTAR+5

tXYZ .BYTE O

linker control file ----
/BINOUT 0N OBJPAK: OBJFIL

/INPUTS 0N RPACK1: S0UR1.R S0UR2.R

400D = FINAL

linker printout

LOCATION COUNTER VALUE

Example 1: lllustrates all Linker Concepts

source fi.le S0UR1

.OUTPI

i
*=

t
. ENTRY

,
SlSTAR LDA

STA

t
XYZ .BYTE

RPACKl

$4000

S1 STAR

#44
xyz

0

Chapter 5: Linker Concepts 27

SlSTAR 4OOO S2STAR 4006 R N (1oad map)

Illusfrated Here Are:

1. The linker has a location counter that para1le1s that of the assembler.
The linkerts location counter is always absolute. The first input filesets the llnker's location counler to an absolute value ($4000)'and Lhen
advances it in step with the memory-reserving slatements in SOUR1.

such an absolute setting is required before any memory-reserving
statements are encountered, because the linkerts location counter isrrundefinedfr at the start of a build.

2. The linkerrs location counter carries over from one inpulnext. The value after S0UR1.R is finished is $4006. That
file to the
value remains
is processedin effect when processing of s0uR2.R starts. Thus, souR2.R

as though it began with the statement

3. The label xYZ is a local label in both sources. The rlnker does
about eibher of these labe1s.

4. The Iabels slsrAR and s2srAR are each declared to be an ENTRY.
are seen in the load map.

*= $4006.

This is relocation. rt results from the carryover of the linker's
locat,ion counter from one input file to the next. Evidence of the
relocation of sOuR2.R is seen in the load map. The linker assigned a
value of $4006 to the label S2STAR.

not know

ENTRYS

5. The final location counter value is printed immediately before the load
map. }rlith appropriate ordering of the input files, this value can be
made lo show the highest+1 location used by the object program.

6. In lhe load map' S1STAR does not have'R" beside it because it was not
reloeated by the linker. S2STAR, which was relocated, has the 'rRr.

7. rn the load map, s2srAR has rtNtt beside j.t, meaning lhat it is nob
referenced by another relocatable file. The linker doe^ not know whether
or not an ENTRY is referenced from within the file defining ib.

8. S1STAR is a virtual in SOUR2.R beeause it is used in thal assembly but
not defined in it. The linker ttresolvesft the virtual reference and
inserts the value $4005 (S1STAR+5) into thefrSTA" operand.

To see the rt$4005" r vou could load the objeet program (OBJFIL) into
memory and look at the two locations beginning at 9400A. They will
contain $0540. Recall thal in therrabsolute addresstt form of an
instruction, the low order address byte is given first.

28 Chapler 5: Linker Concepts

Example 2: Techniques to be Awarc of

ll'I
I
I
I

,ilt
t
#I
t
il
t
;l
t
T
T
t
+
*

ald19

source file S0UR2 -------
.OUTPI RPACKl

;

0000R *= $4000
;

.ENTRY START,FLoCS2

;
4OOO START - * PROGRAM START.

;
4OOO 2OWW JSR INIT DO INITIALIZATION.

;
4OO3 ADWW LDA A
4006 ACVVW LDY A+'l
4OO9 2OWW JSR MOVCHR

;

4OOC 2OVWV JSR PROCES

i
4OOF FLOCS2 - *

source file S0UR3 -------

; CAUSES PRORAM TO BE AUTO-RUN

,

; CAUSES NO NET CHANGE TO LOCATION COUNTER.

;
.OUTPI RPACKl

,

.ENTRY FLOCS3

,
ORGSAV *= $2E0
;

.WORD START

,

6000
6003
6006
6009
6008
600D

0000R

O2EO VVW

source file SOURl

.OUTPI

,
. ENTRY

t
INIT =
MOVCHR =
READRC :
n-
f,

B=

RPACK 1

il ALLil

$6000
$6003
$6006
$6009
$600B
$600D

SAVE AND SET LOCCTR.

PLANT START ADDRESS.

Chapter 5: Linker Concepts 29

a2E2

0000R

*:
,
FLOCS3 =

source file S0UR4

.OWPI
,

.ENTRY

t
FLOCS4 :

ORGSAV

i

RESTORE LOCCTR.

RPACKl

PRocgs, FLocs4

* ENTRY POINT.

c
#$7F
READRC

*

c 600D
FLOCS4 4017
PROCES 4OOF

0000R

OOOOR ADVWV

0003R 297F
0005R 20ww

0008R

,
PROCES =

LDA
AND
JSR

linker control file ----

/BINOUT ON OBJPAK: OBJFIL

/INPUIS ON RPACKI: SOURI 'R (t EQUATES *)
SOUR2.R (* MAIN PROGRAM *)
souR3.R (* AUro-RUN CAUSER n)

SOUR4.R (* PROCES *)

4017 = FINAL

A 6009
FL0C9 400F
INIT 6000
READRC 6006

Iinker Printout

LOCATION COUNTER VALUE

B 6008 N

N FLOCS3 4OOF RN

MovcHR 6003
START 4OOO

RN

R

Note the Following:

l.SoURlcontainsnothingbut''equaF"''.]tdoesnotusethelocation
eounter at all. Thus, the fodation counter remains undefined after

Processing of SOUR1 is cornPlete'

2. The FLOCS2, FLOCS3 and FLOCS4 labels are included to show the location

counter value at the end oi-each file. Note that' S0UR1 cannot have a

rp16gg1 : *rr since tfre location "ount"r
is not defined within S0UR1 '

3. SOUR3 causes the oulput file to be ilauto-runtt
' meaning that after it is

loaded by DOS, control is'automaficatly transierred to ttSTARTI' See

SSOUq in the sample p"og""i-io;-more information on this feature of

30 Chapter 5: Linker ConcePts

Atari rs DOS.

SOUR3 also has sfatements that save and restore the location counter.
I{ithoub those statements, S0UR3 could not be placed before S0UR4, as it
would cause S0UR4 to be loaded beginning at $282 rather than following
SOUR2 as was intended.

4, The control file contains informative eonrnentary.

31Chapter 5: Linker Concepts

Chapter6

Using the Linker

aLd12

1.

2.

3.

4.

Linker CaPacitY
Maximum number of different ENTRY and virlual names in a single
assembly is 256.

Maximum number of different ENTRY and virtual names in an entire set
linker inpuls is 512.

Maximum number of input files is in excess of 100.

Maximum object program size is approximately 8,000 bytes of
instructions and constants, as explained next.

lnstructions and Constants
Instructions and constants represent memory that is reserved and initialized
when the program is loaded into memory. Statements that do this are the 6502

instructions, .hlORD, .BYTE and .CFE.

Memory that is reserved but not initialized does not faIl in the category
ttinstructions and constantsrt. Such reservations are done using the tt*=rt

statement in the following manner:

ARRAY *: *+100 1OO-BYTE ARRAY.

Consider the followin[group of instructions:

ABC LDA DATA

STA ARRAY

DATA .BYTE 22
ARRAY *= *+1000

It has 7 bytes of instrucrions and constants and reserves a tobal of 1007 bytes
of tn*o"y.' The 1000-byte reservalion does not use up linker capacity.

The lnternal Workarca

Most of each relocatable file is held in the linkelts trinternal workarearr.

workarea size is fixed at approximately 14'000 bytes. For every byte of
instructions and constants,- lpproximately 1.7 bytes of workarea space is
required. The limit given'aObve of 8,000 bytes of instructions and data was

32 Chapter 6: Using the Linker

::{:ruted by dividing 14,000 by 1.7.

-: lhe end of each build, the internal
: j"--.es used by the build are displayed.
:: ccming to the linkerrs capacity.

workareats capaeity and
Thus, you can gauge how

the number of
close a build

Starting a Build
l:apler 2 explains how to start exeeution of the
;--lr the following display:

ald1O

Iinker. The linker begins

LINKER

(C) Copyright 1985 by
Six Forks Soflware
A11 Rights Reserved

- DON'T USE PRINTER. USE SCREEN.

- DON|T SHOr,'l ALL 0F CONTROL FILE.
- DONIT SHOW NUMERICALLY SORTED LOAD MAP.
- DON'T SHOW UNREFERENCED NAMES.

PRESS IOPTION' TO SUPPRESS OUTPUT FILE

TYPE 1 OR MORE (OR NONE)

(cursor appears on this line)

Type the desired letters and press Return. If the OPTION key is held down when
Return Ls pressed, the output file is not written. That is a convenience if,
for instance, the build is being re-run to get more of the printout. If the
oulpub file is suppressed, a line saying so is printed following the load
maps.

When finished with a build, lhe linker prepares to do another. As with the
assembler, previously typed input is displayed and can be changed or left
unchanged as desired. Output file suppression does not carry over from one
build to the next.

Here is what the opfion letters mean:

V - if present, output is directed to lhe screen in exactly the same
manner as in the assembler. Refer to thefrPrint Modert andrrView Modeft
sections in chapter 4.

C - If present, only lhe first 5 lines of the control file are printed,
followed by a message sayingrrREMAININDER 0F CONTROL FILE NOT
PRINTEDf. This option and other printout reduction oplions are useful
because as a program is being developed, the same (or almost the same)
build is re-run many times.

N - if presenl, the numerically sorted load map is NOT prinled. The

V

N

U

Chapter 6: Using the Linker 33

alphabetically sorted one is always printed unless errors are detected.

u - if presenl, unreferenced ENTRYs are omit,ted from the load map.

Contrcl File Reading
The control file is completely read, checked, and remembered before relocatablefile reading begins. If errors are found then the build is terminated after
control file reading is done.

Error Handling
Errors are checked for during all phases. If an error is detected before
output file building begins, the output file is not built. Also, if any errors
are detected, the load map is not printed since it would not be of assistence
in correcting lhe errors.

Eror codes are taburated in Appendix A. when an error pertains to a
particular relocatable file, the file name ls included in the message. When an
error pertains to a particular label, the label is included in the message.

lnput File Reading
Input files are read in the order they are given in the control file. You are
prompted to mount the necessary ^acks as they are needed.

Output File Building
A11 external labels must be defined when input file reading is eomplete. If
not, undefined ones are listed and processing terminated.

One-byte field overflow errors are detected during this phase. They are errors
in which the result of an expression eontai.ning a virtual is greater Lhan255,
and the result is being used in a one-byte fie1d.

The Load Map
It is a list of all external labeIs and the lnformation associate with each.
The following information is shown for each label:

The 6-byte nane.

The 16-bit absolute value lt denotes, shown in hex.

If the value was relocated by fhe linker, rritr is printed.

d. If the value was not referenced by a relocatable file other than lhe
one in which it, was defined then rf lfr is printed.

a.

b.

c.

34 Chapter 6: Using the Linker

fr
fr
fr
fi
t
trl
n
tt
n
t
t

NOTE: unreferenced labeIs occur for various reasons, especially in
multi-group programs. They are normally not errors and should
not be eliminated just because they are unreferenced.

l:e load map is required for debugging, as it shows where the linker placed the
:elocatable code in memory. Actually, the load map shows this clearly only if
--he beginning of each assembly has an ENTRY 1abel on it, but that is normally
:he case because a memory-reserving assembly is likely to be either:

a. A subroutine (or several subroutines). The entry point of the first
subrout,ine is normally at the start of the assembly.

b. Global data. A11 of these data items are 1ike1y to be ENTRYS.

lhe load map is printed twiee: alphabetically sorted and, unless suppressed
with theItNrr oplion, numerically sorted. The numerically sorted map is useful
because it gives a quick means of determining the ENTRY labels that a given
absolute address is near. That is sometimes useful during debugging.

Chapter 6: Using the Linker 35

ChapterT

lVlulti-Grcup Prcgrams

It is sometimes useful or necessary to divide a progran into multiple builds.
In such a program, each build is referred to as a GROUP. The complete program
consists of all of the groups loaded into memory at once. Note that to DOS and
the linker, a group is not different than any other object file.

ald13
Division of a program into multiple groups is necessary if its si e (the amount
of instructions and constants, as explained in Chapter 6) exceeds the linkerrs
capacity. Whether or not necessary, it is often beneficial for the following
reasons:

i. When a change is made, only the affected groups need be rebuilt. As a

program grows, a growing number of asse-rnblies become fully debugged and
stable. Those can be collected into separate groups and thus not have
to be run through the linker time and time again.

2. A group can be used in more than one program. You are likely to create
a group fhat contains routines useful to practically every program you
develop. Such a group could be thought of as a'rfoundationrr.
Functionally speaking, Atarits operating system in ROM and the DOS

routines in low memory are foundation groups.

When developing a multi-group programr Vou have the following responsibilities:

1. Memory assignment for each group"

2. Communication between the groups.

3. Loading each group into memory prior to execution of the program.

Memory Assignment for each GtouP

As with any object file, the memory usage of a group is controlled by the
source code. To simplify your responsibilities, a group should have the
following struclure when possible:

1. The first assembly in the linker control file begins with an absolube
r*-r statement. That statement defines the starbing address of the
group.

Z. Remaining assemblies in the group contain only relocatable code. Thus,
the linker places them in ascending memory locations following bhe

first assemblY.

t
;

;

;

;
36 Chapter 7:. MuIti-GrouP Programs

il
t
;r
;l
;l
;t
I
rf
t
r;
t;
:t
n

It ls useful to define an ENTRY label at the end of the last assembly
in the group. In the load map, that 1abel shows the highest location
(acluaIly the ithighest+1rr locatlon) used by the group. Some
might prefer to put this labe1 definition in an assembly by itself.
Il might also be noted that, with appropriate ordering of the linker
j.nput, files, the final location counter value printed by the linker can
be made to show thefrhighest+ilf address.

You must manually arrange the groups in memory so bhat they do not fa11 on top
of each other, but in pracbice that, is not difflcult,, especially if the
suggestions in this chapter are followed. Here are some reasons that it is not
di fficul t:

1. There are seldom more than 3 or 4 groups, and some of them will seldom
require modification.

2. Because of the small number of groups, it is not difficult to manually
insure that the groups dontt overlap. It is not unreasonable to leave
several hundred byles between each group to a1Iow for future
expansion. Given that amount of spaee following arrstablett group,
minor changes should seldom require groups to be moved.

3. Moving a group is easy. A1I that is necessary is to change the initial
rr*=rr statement, reassemble thal source, and rebuild the group. A1so,
cther groups referencing thal group must be rebuilt.

4. Here is an easy way to inibially arrange groups in memory:

a. Initially place each group so i.t begins at location 0. Build the
groups like this. The assemblies and builds can be done using vlew
mode, thus avoiding hardcopy.

b. The length of each group is simply its'rhighest+lrr address.

c. Based on the lengths and desired separations, decide where each
group should start. $sf fftg tt*=tt statemenls, reassemble those
sources, and rebuild each group.

5. To establish conrnunication between the groups, use the techniques
described in the remainder of this chapter.

The Communication Vector
A group typically contains certain subroutines and data areas that must be
acccessed by other groups. Collect those entry points and data areas into the
first assembly in the group, just after the rt*-rt statement defining tJre grouprs
origin. Make that assembly contain nothing but these items. This assembly is
called the rrcorrnunicalion vectorrt .

Other groups reference those entry points and data areas by simply using their

Chapler 7: Multi-Group Programs 37

naTres as 'i:r^tuais. l:e i'i:- --uals are rescL','e: bi' a :'e,oca';bie l:-e ca--ed an
rrentry cefinitions fiier? ihat contains nc'*ing bur rr-rr st€te.nenis cefi:ring tle
names. The use of a I'cqrmunicalion vector'r and an "enLry definilj.ons fiie'r has
fhe following benefils:

1. Changes can be made to the non-first assemblies in the group wilhout
altering the addresses of the exlernally-referenced entry points and
data areas. Thus, bugs can be fixed or changes made to fhe ttbodytt ot
the group with requiring other groups to be rebuilt.

2. The entry definitions file can be automatically produced when the
cornmunications vector is assembled. Thaf is done using the .EOUT
statement, explained below.

l. The'rtransparent jumprr feature in the assembler prevents a problem that,
would otherwise accompany the placement of subroutine entry points in
the cornmunication vector. This feature is also explained beIow.

Here i.s an example of a communlcation vector that does not use the .EOUT or
transparen t jump features :

l

I

I
I

I

0000R

4430 4CWW
4433 4CWW

4430 00
4437 0000

NBYTES .BYTE OO

ENDADR .WORD OO

GLOBAL DATA AREA.
GLOBAL DATA AREA.

.OUTPI RPACKl

,
.ENTRY IIALLII

, *_ $4430
;
FNGET JMP FNG FNGET ENTRY POINT.
DOPAS'I JMP DOP1 DOPAS1 ENTRY POII'IT"

t

This group has two subroutines and Lwo data areas Lhat are to be visible to
olher groups. In the linker control file that builds the group, the
consnunication vector is given first. Remaining assemblies contain the body of
the group. They define lhe labels FNG and D0P1.

Note that FNGET, DOPAS1, NBYTES and ENDADR are visible to other assemblies
within the group because they are ENTRYS in the rr.Rrr file. To make these
labels visible tp other groups, an entry derinitions file such as the following
is created:

.OUTPI RPACK'I

.ENTRY IIALLII

= $4430
= 94433
= 94436
= $4437

4430
4433
4430
4437

This assembly is

3B

i

,
FNGET
DOPASl
NBYTES
ENDADR

used in fhe builds of the other groups.

Chapter 7: Multi-Group Prograrns

ril

The .EOUT Statement
This statement causes the entry definitions file (relocatable version only) to
5e created automatically when the communications veetor source is assembled.
Thus, when the .EOUT statement is pre.;ent, two relocatable files are produced.
:ere are characleristics of the .EOUT statement:

'1. It can appear anywhere in the source fi1e, bul is normally placed near
the top.

It, does not affect the contents of the rf .Rrf file.

The enbry definitions file is created on the same pack as the rr.Rrf

file, The name of the entry definitions file is formed by adding tr.Err

to the source file name.

The enlry definitions file is a relocatable file. No corresponding
souree file is created.

The entry definitions file has the following contents (equivalent
source code shown):

.OUTPI rpack

.ENTRY IIALLII

same pack ID as rr.Rrr file.

2.

3.

4.

5.

labell :
labe12 =

:

labeln =

$vaI 1

$va12

$vaIn

For each ENTRY label, the equivalent of a tr-'r statement is generated

that defines the label so that it denotes the same value as in the rr.Rrl

file. Nole that the il.Ert file contains only ENTRY definitions. It
reserves no memory and does not use the locati.on counter.

The Transparcnt JumP Statement
In the above example, the subroutines callable through the corrnunicarion vector
have two names. To iufly comprehend this nuisance, consider the likeIy history
of subroutine FNGET. It is created without vectored calling in mind. Thus'
the initial version of the source file contains FNGET as an ENTRY. As the
amount of source code grows, it, becornes beneficial to put' FNGET into a group

and put its entry point, into the communicabions veetor.

To do that, the name FNGET must be defined in the cormunications vector,
meaning that another name (FNG in our exampte) must be u^ed in the subroutiners
source file. That in turn necessitates changing the FNGET source' which in

39Chapter 7: Multi-GrouP Programs

h:rn means that it will no longer work in earlier builds since it now has the
ttwrongrr name.

This problem is eliminated wifh the transoarent jump fealure. Here is our
corrununications vector written to use transparent jumping:

1

0000R

4430 4CVWV
4433 4cWW

4436 00
4437 o00o

,

,

,

,

=
,
NBYTES

ENDADR

,

.OUTPI RPACKl

.EI'ITRY rrALLrr

.EOLTT CREATE THE ENT. DEFS. FILE.

*= $4430 STARTING POINT FOR GROUP.

JMP FNGET A TRANSPARENT JUMP.

JMP DOPAS1 A TRANSPARENT JUMP.

.BYTE OO GLOBAL DATA AREA.

.WORD OO GLOBAL DATA AREA.

An n-rt has been added to the labe1 field of the JMP instructions. The .EOUT

has been added.

A transparent jump is i.ndicated by putting ":n into t'he label of a JMP

instruction. iransparent jumping has the following charaeteristics:

1. It can be used only in a file eontaining a .EOUT statement. That' is
because its only eifect is in the entry definitions file" It has no

effect on the rr.Rrr file.

2. The operand field of a transparent JMP instruction can consist of only
a single label that must be a virlual.

3. Lhe result of the lransparent jump is:

a. An ENTRY label deflnition with the following properties is placed in
the rr.Err file :

label: label in the oPerand field

the labe1 denotes: address of the JMP instruction

b. The JMP instruction, ignoring the rr='r in the 1abe] field' is
assembled in U'e rr.Rtr file in the normal manner'

Here is how transparent jumping affects subroutine FNGET in our example:

1. The source file containing subroutine FNGET can use the name FNGET for
its dntrY Point.

2. The address in the operand field of thetf= JMP FNGETT instruction
points to tf," entry point within the source file containing subroutine

1

40 Chapter 7: Multi-GrouP Programs

FNGET.

3. In therfR.rr file produced by the assembly of the communications vectpr
source, FNGET is a virtual.

4. In therrE.rr file produced by that assembly, FNGET is an ENTRY that
denoles the rr= JMP FNGETT instrucrion.

5. The net result is that callers fo FNGET, both inside and outside of the
group where it is defined, ean use the name FNGET. From inside fhe
group, control is transferred directly lo the subroutine. From cutside
the group, control goes through the communications vector.,

t

Executing a Multi-Grcup Ptogram
)ring debugging if is normally easiest to load the groups individually and
;hen manually braneh to lhe programfs starting point.

'rll^ren development is complete, the program can be packaged into a single object
file by concatenaling all of the groups into a single file. Atari discusses
Lhis process under the topics rrappendingrf and rtcornpound filesrr.

Be aware of the flaw in Atarirs Assembler/Editor cartridge which causes it to
not accept files concatenated by thertappendrr opti.on of Copy. However, those
files are accepted by the Load ')nmand.

The problern is that the cartridge expects 'rpiecesrr after the first to not have
the initial pattern of $FF,$FF. Thefrappendrr option of the Save corunand
produces acceptable fi1es. It is easy to write a Basic program to do the
combining. Simply concatenate the riles, excluding the first, two bytes of
those aften the first.

t
I
!
T

Chapter 7: MuIti-Group Programs 41

ChapterS

The Sample Prcgram

Files on the Distribution Diskette

0n1y the source files and linker control file are supplied. They are:

LNKSPl linker control file to build the object program.
SSOUA Main program
SSOUB SUBTR' C0LDIS. Trigger input, set color'
isgaa SU3FW, SUBBK, elUOtS. Forward, baekward. Set background coIor.
SSOUD SUBLF, SUenti FLUDIS. Left, right. Set foreground coIor.
SSOUE DISHB. DisPlaY bYte in hex.
SSOUF CFEFSF. Move CFE to screen'
SSOUG Global areas
SSOUH Page 0 variables, system equates
SSOUI Screen and disPlaY list
SSOUJ Defines origin for Progran'
SSOUK TERROR' RTSJMP. Terminal errors' AII RTS'

SSOIIL DISCRN. Set up display list and screen"
SSOI-i{ GETAR, AWSGAR. Get subroutine arguments'
SSOUN AWSIS, AWnfS. Save and restore AL' AWD1-4'

ssouo ATAV]D, VIDATA. Convert atascii Lo/from video.
ssouP cv1B2H. Convert byte lo two atascii hex digits.
SSOUQ Makes Program auto-run

Assembling and Linking the Sample Prcgram

It takes approximately 14 minutes to do the assemblj'es (assuming no hardcopy is
made) and less than a minute to do the build'

stepl:Makeascratchpack.forreceiving-theoutputs
and build. Format it and put on DOq and DUP'

pack ID of SCRAT. That is done by creating a

i'lCffO that has one record whose contents are
excluded) followed bY an EOL'

a1d16

of the assemblies
Make it have a
file called
I'SCRATIT (quotes

step 2: Assemble each of the 17 source files. To assernble SSQUA'

proceed as follows:

a. Start lhe assembler as explained in Chapter 2'

b. Inserf the distribution diskette. Ifs Pack ID is 'rALPMllr.
If you fail to do this now, you will be instructed to do so

when lhe Pack is actuallY needed'

42 Chapter B: The SanPle Program

c. Type SSOUA followed by Return.

d. Type ALPAK1 followed by Return.

e. When the next typein is requested, first insert your SCRAT
pack.

f. Type the letler B. This causes the assembly listing to be
displayed on the screen rather than printed. Chapter 4
explains how Lo print, lhe assembly listings, but be aware
that they occupy approximately 50 pages.

g. Shortly, the boftom screen line w111 display TTTYPE DISPLAY
CONTROL 0R H (HELP)". Type F to cause the assembly process
to complete without further pauses for viewing the assembly
listing

f. This assembly is now done. Press Relurn as instructed. The
assembler lhen prepares lo do another. Repeat steps b
through this step unlil you have done all 17 sources. When
the pack ID is asked for, and the value trALPAKlrr is showing,
just press Return to use that value again,

The SCMT pack now has all 17 relocalables, named SSOUA.R
through SSOUQ.R.

step 3: Use the linker to build lhe object program. Proceed as follows:

a. Start lhe linker.

b. Mount the dislribution diskette (the ALPAK1 pack).

c. Type V foi-owed by Return. This causes the printout to be
directed to the screen instead of lhe printer.

d. Type LNKSP'I followed by Return.

e. Type AL,PAKI followed by Return.

f. Shortly, the bottom screen line will display 'TTYPE DISPLAY
CONTROL 0R H (HELP)'i as it did during the assemblies. Type
F lo allow the build to complete without further pauses for
viewing.

g. Mount the SCMT pack as inslructed.
of the pack mount dlsplay.

The object program, called SAMP1.0, is
pack.

Choose the trArr option

now built on the SCRAT

Executing the Sample Prcgram

Chapter B: The Sanple Program 43

il
fil-
ill

I

I

I

i

rlght/left

trigger

Reboot from the SCRAT pack. On XL ard XE models, hold down the Option key.
Start the progra bY tYPing:

L followed bY Return
SAMP1.0 followed by Return

That is, do a normal DOS load. Since the progran is auto-run, it starts
autornatically.

The progran creates a mode O screen display of all 256 eharacter values and

altows iou to vary the color and intensities through all possible values. The

varying is done with the joystick as follows:

forward/backward increments/decrements the background intensity. The current
intensity value is shown on the screen.

increments/decrements the character (foreground) intenslty.
The curent intensity value is shown on tlte screen.

Circularly advances the eolor. The numeric color code along
with the color name is shown on the sereen.

44 Chapter 8: The SanPle Progran

Chapter9

Program mi ng Suggestions

t'Big Picturetr section of chapter
logic into a subroutine even if

aId26

2. Use cornmentary as illustrated by the sample program. 9t" the corrnent'

statement freiuenlly, and space out the listing witfi trblankrt comnents'

Don't try to ""y "u!.ything
in the comment field in each statement, as

tJrerers not enough room.

j. Write assembler language instrucbions in smal1 groups that-are comparable

to high levei-f"ngrlge statements. Set these groups off with commentary.

term use. Donrt hesitate to store a register in memory and bring it back

when needed. Don't worry about using an extra instruction or two' Exeept

in loops that are criticit to performance' never worry about an instruction
or two.

i, At the front of each subroutine, describe its calling sequence' Subroutine

entry points should be clearly indicated'

6. The BIT instruction and the (ind,X) addressing mode are not often useful'

7, Think about ways of making a program easier to debug and understand' Make

that a design objective'

B. Dontt use assembler language in complex ways unless therets a good reason'

Donft use the stack for much more than JSR/RTS operation and saving X and

Y. A subroutine should save x and Y unless those registers are used to

pass an outPut value.

g.Becomeanexpertateomparesofoneandtwo-bytenumbers.

Structure your program as explained in the
1. Donrt hesitate to package a portion of
it is caIled onl" once.

I
il

I
I

10. Put internal checks into the program and have-a-trterminal errortrroutine to

call when one faits. That routine should tthalflr fhe program in such a

waythat you can a) tell that it was called, b) tell where it was called

from, and c) start uP Your oebugger'

Have all subroutine returns branch to a cornnon label (a virtual) that does

lfre nfs (as is done in the sample program). That RTS routine becomes a

pi""" that control passes through irequently. It can be a useful place to
put debug code.

I
n

11.

Chapter 9: Progranning Sugge^lions 45

12.

13.

12.

14.

Save critical values in local areas if it would assist !n debugging'

use no absolute addresses in instruction operands. Define ENTRY labels for
those addresses ;il ;;; the definitlons in separate sources' Donft forget
to-rse t|re VIRTS deciaration for zero-page labels'

Make most of your assemblies contain nothing but relocatable code' Put

absolute code and hardware-related definitions into separate assemblies.

Keep source files on one set of packs and relocatables on another' This

has turo benefits:

a. Many relocatables can be put onto a slngle pack, Lhus minimizing the
--

n,onLe" of pack mounts required when the linker is run.

b. The source packs arenrt written on each time an assembly is done'

15. As you accumulate source files, look for opportunities to form groups as

explained in chaPter 7.

46 Chapter 9: Progranming Suggestions

AppendixA

Errcr Codes

-:is list is for both assembler and linker. Some codes can occur in both.
aId14

'3 Identifier (Iabel or pack ID) longer than 6 bytes.
'l Missing close quote on string.
'2 Excessively long sbring. Maximum is 100 bytes.
') Bad number. No digi ts af ter r'$rr .

'5 Hex number has more than 4 digits afler the il$'r.
''7 Decimal number too 1arge. Maximum value i-s 65535.
19 Bad 1abel field. It must be a label ep rr-rt. Possibly, you have started

the operation field in the first record byte'
20
lt

24
2q
26
II

t6
)Q

30
31
32
33
34
35
36
JI

<X

39
40
41

42
43
i{4
46

47

49

Label is longer than 6 bYtes.
Label defined more than once.
Value of 1abe1 is not comPutable.
rr*tr in operation field must be first byte of 11|-rr.

Operand'fiefO of rr*-rr statement must be an absolute or relocatable va1ue.

Operand field of rr*-tr statement cannof have a byte selection prefix.
Operand field of of tt*=rt statement must be an absolute or relocatable
value during pass 1 of the assembly process.
Syntax error in expression in operand field.
Label too long in an exPression.
Mis-formed byte selection prefix. I+ can be .L0. or .HI'
Sane as /i30.
Non-allowable addition in an

Non-allowable subtraction in
Non-allowable mul tiPl ication
Non-allowable division in an

Attempt to divide bY 0.
Expression result is uncomputable.
Oniy an absolule or relocatable value can be assigned to a label'
Ending rt.f in byte selection prefix is missing.
Unrecognizable oPerand field
In the-instructibns of lhe form I'LDA (expr,X)" orrtLDA (expr),Y', the
expression is not followed by a comma or close parenthesis respectively"
In the instructions mentioned in 1i41, only rtxrr or ItTt can foIlow lhe corma.

In lnstructions of the form ttLDA (expr,?), the rr?rr must be rrxrr.

In instructions of the formITLDA (expr),?tr, therr?rrmust berr}nr.
ifris statement has a mandatory one-byte operand fie1d, and the expression
result is an absolute val-ue bhal is greater Lhan 255. That is, it will
not fif into one bYle
This staternent has a mandatory one-byte operand field, and the expressj-on

is relocatable with no byte selection prefix. Relocatable values can be

used in one-byte ooerand fields only if byte selection is specified'
Operation field is not recognizable.

expression. See chapter 3.
an expressj.on. See chaPter 3.
i.n an expression. See chaPler 3.
expression. See :haPter 3.

I
I
I
I
I
t

Appendix A: Error Codes

:
I

l

i
I

50 Openation field is undefined.
51 A character constant in an expression can be only one byte 1ong. For

example, trLDA /ltA'rr is va1id.
52 The forrn of the instruclion you have written is not, valid for that

instructlon. For example, ttDEC ABC,Y-lr is nof permitted because the DEC' instruction does not al1ow indexing by Y.
53 In this indirect, form of the JMP instruction, the close parenthesis is

missing.
55 Problem writing oubput file. It was successfully opened. The problem

occurred after that. Could be that t e drive wenl off-line.
56 Operand field has unrecognizable material following it,. That material is

shown in bhe comment fleld in the assembly listing.
57 Too many different labels in this assembly. Assembler capacity is 200.
58 The operand field of this branch instruction has an unknown va1ue.
59 The operand field of a branch instruction cannot contain a virtual.
60 Operand field cannot be computed because location counter is undefined.
61 Branch instruction has invalid operand fie1d. Location counter is

relocatable, but the result of the expression is absolute
62 Branch instruction has invalid operand fie1d. Location counter is

absolute, but the result of the expression is relocatable.
63 Branch destination is out of range. The valuetrexpr-loccEr-Ztt must' be

between -128 and 127.
64 The given 1abe1 has a value assLgned to it, but the value is unknown.
65 The given labe1 is declared to be an ENTRY, but it ha' no value assigned

to it. That is, it has not appeared in a labe1 field.
66 The given label is declareri to be an ENTRY, and it has a value assigned to

it, but the value is unknown.
67 The given label appears in a VIRTB statement, but it has a value assigned,

meaning it is no+ a virLual.
70 Error in .0UTPI statement. The operand field must be the output pack ID,

which must be a name that has the same svn+ax as a label.
71 Error in .OUTPI statement. Pack ID is longer than 6 bytes.
72 Error in .VIRT8 statement. The operand field must be a list of labels

separated by connnas.
73 Error in .VIRT8 statement. Labels mus! be no longer than 6 bytes.
74 Assembly contains more than one t .ENTRY rrALLril statement.
76 Syntax error in lhe '.ENTRY

rtALLrrr statement.
77 The t.ENTRY rrALL'r I statement cannot appear along wilh any other .ENTRY

s ta temen ts.
78 Multiply defined transparent jump label. For example, in the sequence

: JMP ABC

= JMP ABC

tLre 2nd JMP will generate the error because in thetr.Err fi1e, ABC would be
muttiply defined. See Chapter 7.
The location co'nter is undefined for this lransparent jump conrnand.
Invalid operand fietd in transparent JMP (a JMP that has rt=rr in the 1abel
field). The operand field must be a single label that is a virtual.
Error in .CFE statement. Its operand fleld musl be a single character
string from zero to 100 bytes in length.
Assembly has more than one .EOUT statemenl.
Assembly contains too many labels. Maximum n''mber is 200.
A transparent jump is not oermit+ed unless an .EOUT statement is present.
A transparent jump is a JMP instruction that has rr-rr in the label field.

rf
t
T
T
I

79
80

81

82
83
84

4B Appendix A: Error Codes

:

: See chapt er T.
85 A rr-'t is permitted in lhe labe1 field of only the JMP instuction.

|l
86

::i:3:'J:":1,::":?:"";,"i:3'il"*,:il['":iJ:.a bvre sele*ion prefix

100 Problem reading control file from disk. It was successfully opened. The: rgr ![::#";'x!"!::iili ;Hi*:*il a1d15

103 Undefined statement name after the rrlrr.

: 13; Iil3i:3:ill i:ifi:: iii: l#:: ff"''?i:,?"fr::#11,""1ili"'i:;::":;l;1''
bytes.

I
106

l:t:;?il11"1"i:ii";i}; tffi' There is a period arter the rirst part' but

" 107 Improperly formed file nane. The extension must not be longer than 3

tl tl8 iilff:r;::J:.i:t tit",rffi
110 A pack ID must follow rrONr.

; 1l fii::,:: *:*':??:i ;::l ?':'S';rn"" problem in ,,0N pack rD, consrrucrion.
113 Bad file name.

r il; H::",,;il1"11i,3'f3:1,:rs*;ii# SiiiSfii;,.E- 116 Bad file nane in BINOUT statement.
120 Control file does not contain a BINOUT statement.

Il w E::::?'J:1".:i:gili,l",ll:yT.:;:ff?"ili;,"" i, cou,d nor be round.
Remember that in the linker control fl1e, the rf.Rrf must be ineluded in

t e3 ;:l::":::li"ltl:r:3T?i;r" rile. rr was opened successrurly. rhe problem
occurred in the read itself.l',:: iifrHi"i!;-i?i:il::: "::"':::',1";""i,:,;:":::";.::;"'il:: :I",,
not a relocatable file.

Il 13tr il:"t':::,l3l"l"ii".:lf':|'.::;::*iee nore 1.
128 Error in one-byte constant (.BYTE) containing a virtual reference. The

reference. The final value is greater than 255, and thus will not fit
into one byte.

131 Too many different labels. The linker capacity is 5'12.
132 Same as 11131 .
133 Sane as 11131 .
134 Hit EOF at a bad time while processing relocatable file. See note 1.
135 Could not open output file.
136 Internal workarea is fulI. See chapter 6.
137 Bad ROP. See note 1.
138 Relocatable locabion counter setting (the t'*=rt statement) was encountered

before an absolute location counter setting was encountered.
139 An absolute localion counter setting (the "*=fr statement) must precede

LI
il
tt
*

rl

final value is greater lhan 255, and lhus will nol fit into one byte.
129 Error in inslruction with one-byte operand field that contains a virtual

Appendix A: Error Codes 49

'140

'l 41
142
143
144
146
147
148
149
16n

memory-reserving statemen ts.
An ENTRY label having a relocatable value occurred before an absolute
location counter setting. Similiar to 11139.
Hit EOF in reloeatable file al a bad time. See note 1.
Same as 11141 .
Bad ROP. See nole 1.
Same as #143.
Bad 1oeal ordinal va1ue. See note 1.
This label is an undefined virtual.
Local ordinal value is oul of rang€. See note 1.
Same as 11141.
one-byte field (either in .BYTE or instruction with one-byte operand
field) is a relocatable va1ue, and the final value is grealer than 255.
This error cannot occur with the present assembler because it does not
al1ow a one-byte field to be relocatable unless it contains a byte
selection prefix.

Note 1: The relocatable file has an error in it, which can be due to:

a. The file is not a relocatable file.

b. The file was damaged after it was created by the assembler.

c. The assembler malfunctioned.

d. The relocatable file came from a language processor other than the
assembler, and that malfunctioned.

50 Appendix A: Error Codes

Appendix B

Specifications

Hardware requirements: 48k' disk, prinlen

0ther requi.rements:

I
I
I
I
t
t
I
I
t
;

I
t
t
n

il
il
t
t
ll

1.

2

aId27

?

4.

q

6.

1

a. Word processor for creating and ediling source fi1es.

b. General knowledge of assembler language programming of the Alari

c. Debugger. We recommend lhe one in Atarits Assembler/Editor carfridge.

The delivered product includes: Assembler, Linker, Sample program and

Reference manual. The software is supplied on disk.

Relocatable code and external labels are supported. Expressions eontaining
a virtual must reduce to "virtuaf plus or minus a eonstanflt and cannot be
used in the rr*-rt or rt:rr statements.

Labeled packs are required, which insures that the correct packs ar mounted
during the assembly and linking processes. A pack is labelled by creating a

file on it called PACKID lhat contains the desired pack ID.

Souree statements are modelled after Atari's Assembler/Editor. Statements
do not have line numbers. The maximum source program size is approximately
'140 sectors ('17,500 bytes). The maximum number of differenl labe1s that can
appear in a source file is 200.

The assembly listing can be directed lo either the printer or lhe screen.
Before the use makes this choice, the assembler indlcales whelher or not
lhere are errors. Thus, source errors can be correcled before hardcopy is
made.

B. parameters for the linker (file names and pack IDs) are given in atrcontrol
filert. When the li.nker is run, only the control file name and pack ID need

be fyped

9. The linker can handle over 100 input files, up to 512 external labels, and

up to 8,000 bytes of instructions and constanls. Features are provided for
crealing larger programs by using multiple executions of the Iinker.

10. The linker produces an alphabefically sorted load map and, optionally, a

numerically sorted one.

11. Linker printout can also be directed to the screen.

Appendi-x B: Specifications 51

12. Performance data:

During assembly, source files are read at maximum disk speed. The

remainder of the assembly is unlikely to take more than 15 seconds
(excluding time to print hardcopy, which is optional).

Linker performance can be illustrated by citing the sample,program that we

supply. It takes the linker 25 seconds to read tLre control file and 17

reibcitaOle files and write the object file. The sample program contains
approximately 500 instructions, 48 external labels, and '140 references to
tirbse labels. The source files, which contain a large amount of
cormentary, require 50 pages to list.

The assernbly and linking process is fast enough to eliminate the need for
machine language Patch fi1es.

13. The assembler and linker have been tested on:

a. 800 and 1J0XE comPuters.

b. 810 and 1050 disk drives.

c. DOS release 2.0. Only standard entry points are used, so the prograns

should run on newer releases as well '

d. Okidata B2A printer. onty data characters and the EOL are sent to the
printerr so no printer dependence should exist''

52 Appendix B: SPecificatlons

