JOHN WAGNER

=T AT

COMRFUTER EZF41'F1LJF§ESZ[ESWFEsu
oF COLWLIMMMBUOS, O I C
MEWSILETTER

June 11, 1984

THE aARCaDE MacCcHIME
Strollimng throwuagh MeaaFDRTH

ATARITI COL O~ GRaFrPHICsS

Fublishad by ,
Atari Computer Enthuasists of Culumbus. Bhio

for ACE of Columbus membership. Dues are on an annual basis
and entitle the members to all club benefits (Newsletter,
Disk or Tape of the month, group discounts, etc.). Monthly
meetings, in the basement of State Savings, 6895 N. High
Street, Worthington, Ohio are open to nonmembers.

Upcoming meeting dates at 7:30 pm are
DATE

June 11

July 9
August 13
September 10
October 8
November 12
December 4

FRESIDENT VICE FRESIDENT

Rill Eckert

64632 Lisamarie Road
Columbus, Ohio 43229
614-891-9785

MEMBERSHIF CHAIRMAN

Tim Adcock

7544 Satterfield Road
Warthington, Chioc 43885
614-764-9492

DISKE LIEBRARIAN
Sheldon Wesson

444 Nor-th Pearl Street
Granville, Ohio 43823
614-387-2716

NEWSLETTER EDRITOR
Norman Enapp

222 Morton Avenue
Columbus, Ohio 43212
614-291-2849

Donald Noble ;

733536 Northfield Court
Reynoldsburg, Ohio 43868
614-866-4537 :

TREASURER _
Mike Compton
1342 Gumwood
Columbus, Ohio 43229
614-895-3757

CASSETTE LIERARIAN

Larry Fletcher

2388 0al: Driwe
Orient, Ohio 43146 .
614-877-95=8 :

ADDRESS ALL MAIL TO

ACE of Columbus

F.0. Box 849
Worthington, Ohio 43085

THE a&a~RCalDiE MalHINE
Dist version by Chris Jochumsom, Doug Carlston, and Louis Ewens
Broderbund Software

17 Paul Drive, San Rafael, CA 94903

In my opinion, the Arcade Maching is one of the best games ever
made. The reason for this is that it is not just & game but a game
generator. Not only can vyou play games with this program, but you
can actually make yowr very own games.

.The number or variety of games vou can make is almost umlimited.
You do not have to have any programming knowledge. Although the
Arcade Machine is a complicated program, once you understand it, it
is simple to use. If I can figure it out, almost anybody can.

There are several parts to this program and I will attempt to
highlight them. The first thing to do is to design with a joy stick
vour enemy creatuwes, called aliens. Each alien vyou create is
designed in fow different positions. It rotates through these four
designs when it moves diagonally or horizontally. Animation effects,
like opening and closing its eyes, make the alien look like it's
alive; & bird with moving wings looks like it's +flying across the
screen. You may also design your own player, known as a tank, and
explosions.

The aliens can be on a maximum of four rows. Dependent on their
size, there may be from two to six aliens per horizontal row with a
maximum of 24 in all the rows.

Aftter the aliens have been designed, the Fath Generator is used
to create up to ten different paths that your aliens can move about
on. The path generator is a complicated procedure which permits youwr
aliensg to move in a circle, horizontally, vertically, or in any
direction you may -choosed . each.of the ten paths may be designed step
by step with many extra options such as speeding the aliens up,
slowing them down, or even changing their shapes.

In designing yow game, there are five levels. Asyou-progress-
through the levels, conditions may be made easier or hardersi the -
choice is yours. :

. The major flaw in the 6Arcade Maching is that your tank can®>t

fire horizontally, just up or down or diagonally.

I highly recommend the Arcade Maching. Mot only is it fun to
play, but it is fun to make and play vow own game. The Aracde
Machime is also educaticonal since vyou can learn about asnimation and
the other features that make up a game. '

The Aracde Maching not only gives you the inspiration to come up

with new thoughts and ideas, but it also gives vou a peek at how
powerful ouw little computers really are.

Feviewed by Charles W. Brown

. first, let's define a few more helper words.

Strolling through MesaFORTH

Eoot Side 1 of DOM 20b3 get the ready message
fig—-FORTH 1.0D

Let’s inspect the NOISES.4TH file with the screen editor, then load and
run it. Enter

" D1:NOISES.4TH" SI1EDIT

to view screen 1. (See Chapter S5 of the documentation for editor
commands.) The purpose of NOISES.4TH is to demonstrate the central
concept of FORTH programming, which is the use of small ‘"words"
{subroutines) to define larger words that are used +to define still - larger
words. FORTH programs are therefore written ‘"backwards", with the
simplest words defined first. The most fundamental word defined in this
file is

: SOUND (pitch chan# —--3»)
SWAF 10 10 80. 3

A definition is contained between a colon and. semicolon. The

parenthetical expression is a comment that lists the input and output

parameters. This word is the FORTH egivalent of the BASIC command v {
SO0UND chan#,pitch,10,10

The words

: SOUNDD (pitch ——>* pitch chan®)
O SOUND 3

: S0UNMDL (pitch —=>* pitch chanl)
1 SOUND 3

call SOUND and pass to it the channel number. (Fress ESC » to view screen

2.)

: LOWER.FITCH (pitch =-> pitch)
SOUNDO 3

accepts a value for pitch from a higher level word and calls SOUNDO.

: RAISE.FITCH (pitch ——3 pitch)
255 SWAF — SOUNDL 3

accepts a pitch value, subtracts it from 255, and calls SOUND1. We can

put these words into DO loops to make whooping and whistling noises: but
. i

: BEATS (n ——3>)
S0 % 0O DO LOOP 3

accepts a number, multiplies it by S50 and uses the product as the limit of
an empty DO loop. n BEATS provides n time intervals between events, and
iz used in exactly the same way as empty FOR/NEXT loops in BASIC.

» OFF (chan# ——>)

O 0 0 S0. 3
turns off the sound on the designated channel. { Press ESC » to view
screen 3.) Until now we have defined words that don®t do anything by

themselves, but are used in sequence by higher level words. This part of
FORTH programming is like making a neat pile of bricks on the ground, in
preparation for building a wall. Let’s now lay a section of wall:

: CHIRF
50 0
DO I LOWER.FITCH LOOP
O OFF 3

passes the index of a DO loop to LOWER.FITCH, making a brief whistle, then
turns channel O off. We want to define a word that will generate a random.
number of chirps, so let®s build a number generator:

: OJRND<8 (——3* n)
DzZoA Ce& 7 /MOD DROF
DUP 0= IF 7 + ENDIF 3

Notice that a word name can consist of any combination of letters, numbers
and characters. O<RND<8 generates a number between 1 and 7 by collecting
a random byte from address D20A, dividing the number by 7, obtaining the
remainder and adding 7 to the remainder if it is zero. We are now
prrepared to build

: CHIRPS
O<RND-8
O DO CHIRF 8 BEATS LOOF :

which produces n chirps, each separated by an interval of 8 beats. Notice
that CHIRFS calls all of the preceeding words except SOUNDIL. { Screen 4,
please.) :

zn

SIREN
180 100
DO
I LOWER.FITCH 2 EBEATS
LLOOF
O OFF 3

Nothing new here, except that we can make an entirely different sound by
tinkering with CHIRP. ;

)

Screen 9 contains

' + CROSS
250 50
DO
I RAISE.FITCH
I LOWER.PITCH
LOar
O OFF 1 OFF ;

which produces two tones, one ascending and the other decending. We now
have thiree NOISEMAKER words: CHIRFS, SIREN and CROSS. What®'s needed is a
single word that chirps, wails and whoops. But first we bake more bricks
in screens &6 and 7:

START? (- 0/1)
DOLF Ce & = 3

CURSOR. OFF
1 2FO C' 3

. CLEAN. SCREEN
0 GR. " ok" QUIT j;

WAIT
80 REATS i

SET.SCREEN (col row ——3)
0 GR.

20 4SE. 4 0 8 SE.

FOS. CURSOR.DFF 3

START looks to see if the console key is held down. CURSOR.OFF places 1
in the appropriate address: CLEAN.SCREEN calls GRAFHICS O and does some
housekeeping. SET.SCREEN calls GR. 0, SETCOLORs the screen and border,
positions the cwsor to write a line of text and then hides the cursor.
Screen 8 contains a nice neat section of wall:

: NOISES
19 10 SET.SCREEN
" Hold START to exit"
BEGIN
SIREN
WAIT
CHIRFS
WAIT
CROSS
WAIT
START? UNTIL 3

NOISES prints a prompt onscreen, then enters a BEGIN/UNTIL loop, makine
- each noise in sequence until the the console key is held down. Next, th
payoffi a menu from which we can choose SIREN, EHIRFS, CROSS, or all three
in sequence (NOISES).

But first, two more bricks on screens 9 and 10:

i ENTER.CHOICE (n =—> m)
KEY DUF EMIT
48 - 3

ze

TEST.CHOICE (m ——>)
DUF 1 = IF SIREN ELSE
DUF 2 = IF CHIRPS ELSE
DUF I = IF CROSS ELSE
h DUF 4 = IF NOISES ELSE
" DUF © = IF DROF
CLLEAN. SEREEN
QUIT
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF DROF 3.

ENTER.CHOICE is a menu builder word that takes a number from the keyboard,
prints it onscreen, and subtracts 48 to change the internal representation
of the keystroke from ATASCII to its numerical value. TEST.CHOICE is a set
of nested IF/ELSE/THEN structures that calls the selected noisemaker word,
quits the program on input of zero, and rejects input that is out of
range. And now, the word we’ve all been waiting for (screen 11):

1 MENU
BEGIN
? S BET.SCREEN
«" The L%&F NDISEMAKER"
15 7 POS. ." 1 SIREN"
15 8 FOS. ." 2 CHIRFS"
15 2 POS. ." 3 CROSS"
13 10 POS. ." 4 NOISES"
15 11 POS. ." O @UIT"
12 14 POS. ." Enter choice: "
ENTER.CHOICE TEST.CHOICE
AGAIN 3

MENU

BEGIN/AGAIN is an endless loop that prints the prompts, takes a cue from
the keyboard and sends it off +to be processed by TEST.CHOICE. Note the
word MENU at the bottom of the screen. Words not encased by : and 3 are
excecuted when the program is compiled. MENU thus serves as an awtostart,
executing the last definition as soon as it is compiled into the
dictionary.

The L&F NOISEMAKER is an example of FORTH programming that illustrates
some important points: (1) write short words (2) make them general, so
that the same function can be performed in different situations {3
define a word to do anything that is done more than once (4) use the -
parameter stack to pass numbers between words (5) leave the stack clean
at the end of words that dont pass parameters (&) document stack input
and output in words to aid debugging (7)) use descriptive names that make

the higher—lével words readable (8) format the code, grouping partslf~
words together according to function. There is no penalty in RAM usal,
for spacing and commenting in FORTH files, as there is in BASIC.

Mow let’s compile and run the NOISEMAKER. Fress ESC a to leave the editor
without changing the file. (ESC x updates the disk on leaving, for
creating or editing code.) When you get the prompt

Ok
enter
1 LOAD

to load screen 1. The arrows in the lower right corner of each screen
link the screens for successive loading. Words enclosed by ¢ and § are
compiled, while words listed in the immediate mode (such as HEX and
DECIMAL) are excecuted. When MENU is excecuted the NOISEMAKER program
begins.

Turn up the volume on youw TV and play with the menu options. Notice that
any keystroke that is out of range falls through TEST.CHOICE, passing
control to the bottom of the endless loop in MENU.

Fress O to quit. All of the words defined in the file are now compiled
and available for use in the immediate mode. Enter

{
SIREN CHIRFS SIREN SIREN CROSS MENU
to make the point. Leave the menu, and enter
80 1 SOUND
then
1 OFF

to demonstrate parameter passing in the immediate mode. Be sure to
provide parameters to words that require them, or the computer may hang.

It’s time to clear NOISES.4TH from RAM to make space for another program.
The first word in the file is

: TASKE 3
a dummy word that serves as a "bookmark" in the dictisnary. Enter -
FORGET TASE
to delete all NOISES.4TH words from RAM starting with MENU, and proceeding
back to and including TASK. (Use TASK at the begining of each file €

that you can compile and FORGET successive versions of the program withou.
filling up RAM during debugging.)

Let”s run the snowflake algorithm. Enter
" D1:FLAKES.4TH" $LOAD

and follow the prompt. Fress any key to exit the
FLAKES.4TH are small programs and could coexist

that the word MENU is wused in both, and assumes

recently compiled version. Enter

FREE .

to monitor free RAM in the course of a program or

Now we want to create a new file DOODLE.4TH on

SCreens. Enter
10 " D1:DOODLE.4TH"
CREATE.FILE was

: 51 { filespec —-4$>)
$SETDR1 DR1 3

DOS.FILE (filespec -$%>)
#3 8 0 $FILE OFENM
#3 CLOSE 3

CREATE.FILE {(n —=>*»)

DOS.FILE (filespec -%x
S1 ‘ /
1 SWAF ADDELES

sDROF 3

along with another useful word

appended to the DISE.4TH file on Side 2

program. NOISES.4TH and
in RAM together, except
the function of the most

during debugging.

the disk with 10 blank

CREATE.FILE

and is defined as

}

Oks begin shut off the

: S1EDIT (filespec -$r)
51 :
1 EDIT 3
Unfortunately, a bug in ADDBLKES causes the computer to hang, but not until
after it does its good work. When the endless
computer and reboot, then enter
" D1:DOCDLE.4TH" SI1EDIT

in preparation for writing a new program.
1 TASBK 3

: FOSITIOM.TEXT
CrR CR &S SPACES 3

GREETINGS
FOSITION. TEXT
" Hello from Screen 1." 3

When screen 1 comes up,

enter

?

in which the arrow is written "minus minus greater—than". Froceed to
screen & by entering ESC » . Enter

SALUTATIONS
FOSITION.TEXT
." Aloha from Screen 2." i

Z LOAD

Notice that we can chain with LOAD as well as ——> . Fress ESC > to edit

-r

scrreen = and enter

WAIT
20000 O DO LOOF 3

I
WaIT
20 0 8E. 3

GOODBYE!

WAIT

FOSITION. TEXT

." Screen I over and ocut."
WAIT

0 GR. 3

Froceed to screen 4 and write the word that puts it all tegether:

r TALK.TO.ME
GREETINGS % SALUTATIONS
GOODRYE! 3

Close out the file with ESC % and enter
1 LOAD TALK.TO.ME

Wowie zowie, your first FORTH program is online. Go back to the editor,
improve it and load it again. Don’t forget to FORGET TASE between loads.

Side 2 of DOM #20b contains the kernel and souwrce files that were combhined
to make the AUTORUN.SYS file on Side 1. Side 2 boots up and loads
INTRFACE. INO,MX80. IN1,FORTHDIE. IN2Z2,BOOTEDIT. 4TH,EDITOR. 4TH, SYSTEM. 4TH and

TURNEEY.4TH. I appended a few screens to DISK.4TH, LOADed it, and created
the AUTORUN.SYS file for Side 1 using TURNEEY, as described in the
documentation. You can customize a larger or smaller boot file in the
same way. Happy computing, and

May the FORTH be with vou.
l
e el T S S e I S S A T . T, e St U I
e S T P S .

FPublished by Sheldon P. Wesson, ACEC Disk Librarian -—-— 444 North Fearl

]

Street, Granville, Ohio FOAI

