
B A N T A MC O M P U T E RB O OK S

^ r - THE P R O G R A M M I N G P E R F O R M A N C E L IBRARY

ATARI ST APPLICATION
PROGRAMMING

LAWRENCE J. POLLACK a n d ERIC J.T. WEBER
DATATECH PUBLICATIONS

Atari ST
Application Programming

Atari ST
Application
Programming

Lawrence J. Pollack
Eric J.T. Weber
Datatech Publications

%
BANTAM BOOKS

TORONTO • NEW YORK • LONDON • SYDNEY • AUCKLAND

Atari, 520 ST, ST, and TOS are trademarks of Atari Corporation.
GEM is trademark of Digital Research, Inc. IBM is a registered

trademark of International Business Machines. Lisa is a trademark
of Apple Computer, Inc. Macintosh is a trademark licensed to

Apple Computer, Inc.

Atari ST Application Programming
A Bantam Book / Sept 1987

All rights reserved.
Copyright ® 1987 by Lawrence J. Pollack and Eric J.T. Weber

Datatech Publications.
Cover Illustration ® 1987 by Pat Alexander.

This book may not be reproduced in whole or in part by
mimeograph or any other means, without permission.

For information address: Bantam Books, Inc.
ISBN 0-553*34397-1

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc.
Its trademark, consisting of the words “Bantam
Books” and the portrayal of a rooster, is Registered in
U.S. Patent and Trademark Office and in other coun
tries. Marca Registrada. Bantam Books, Inc.. 666 Fifth
Avenue, New York, New York 10103.

PRINTED IN THE UNITED STATES OF AMERICA
FG 0 9 8 7 6 5 4 3 2 1

Table of Contents

CHAPTER ONE

A Map of TOS 1

GEM 2
Introduction 2 • The Facets oj GEM 4
The Line A Handler 6
The XBIOS 6
What To Use 6
Using GEM 7
Writing a C Program 9

CHAPTER TWO

Picture This—An Introduction to Computer Graphics 11

Background 11
The Pixel 11 • Display Technology 12 • Using a Bit Map 13
Making Pictures 13
Uses of a Bit Map 14
Logic Operators 18
Writing Modes 19
Bit Map Representation 20
Output Devices 21

vi Table of Contents

Device Coordinates 22
Monochrome Versus Color Screens 23
Input Devices 25
Implementing Logical Devices 26
The Ideal Graphics Device 26
The GEM Workstation 27

CHAPTER THREE

Preparing to Use GEM 29

Workstation Usage 31
The GEM Skeleton Program 33

Organizing the Outline 33 • Header Files 33
GEM Application Overhead 37 * Application-Specific Data 38
GEM-Related Functions 38 • Application Function 40
The Main Program 40
Kinetic Line Art 42

CHAPTER FOUR

VDI Output and Friends 53

The Workstation Workout 53
Line ’Em Up: Function draw_line() 65 • Boxed In: Function
draw_redf) 69 • Going in Circles: Function draw_circ() 72
Type Casting: Function draw_text() 73 • Changing GRAFDEMO 77
Designing Your Own Patterns 78
Designer Lines 78 • Finding a Pattern 85 • Changing USERTYPE 86

Multiple Workstations 86

CHAPTER FIVE

Treasure Maps 94

Implementing a Bit Map 94
The Bit Map in Memory 95 • Mapping the Bits 97

Table of Contents vii

Program BITMAP 98
Allocating a Bit Map 103 • Using the New Bit Map 104
Program ANIMATE 106

CHAPTER SIX

Colors of the Rainbow 115

Color Display Implementation 115
Monochrome Bit Maps 116 • The Color Palette 116 • Planes 118

Color Versus Monochrome 120
Resolution 121
Program COLOR 121
Program BOXES 131

CHAPTER SEVEN

Moving Targets 139

The Raster 139
Using a Raster 140 • The Memory Form Definition Block 141
Raster Formats 141 • Color 153

Using the Rasters in a Program 153
Opaque Copy Raster Function 153 • Transparent Copy Raster
Function 155 • Raster Conversion 156
Program RASTER 156
Results from Program RASTER 163 • Playing with Program RASTER 165

Putting It All Together Program BOUNCE 165
Operation of Program BOUNCE 168 • Say "Good-bye ” to the VDI 182

CHAPTER EIGHT

Sound Off! 183

What Is Sound? 183
Making the Circuit 185

viii Table of Contents

Setting the Voice Period Registers 185 • Noise Period 188
Envelope Generation 188 • Volume Control 190 • Sound Output 190
Program SOUNDEMO 191

Protected Memory Access 203 • PSG Access 205 • Using the PSG 206
The Sound Stage 207 • The Dosoundf) Function 208

CHAPTER NINE

Application Environment Services: The AES 212

Introduction to the AES 212

AES Components 212 • AES Definitions 214 • Libraries 217
Program Resources 218

Object Trees 218 • Object Structures 220 • The BITBLK Structure 228
The APPLBLK and PARMBLK Structures 229
The Resource Construction Program 231
The AES Review 240

CHAPTER TEN

Resourceful Programming 242

Program FORM 242
AES Naming Conventions 254
Using Menus 255
Program MENU1 257
Program MENU2 265
Program LISTER 274

CHAPTER ELEVEN

Building a Better Mouse Trap 290

Program MOUSE 293
The Resource File for Program MOUSE 2 9 3 • The Listingfor
Program MOUSE 295

Table of Contents

CHAPTER TWELVE

Windows on the World 313

Window Rules 313
The Window Manager 314
Window Procedures 315 • Window Manager Routines 316
Window Messages 317
Redrawing a Window 318
The WINDOW Structure 320
Program WINDOW1 321
The WINDOW1 Resource File 321 • Overview of WINDOW1 321
Using WINDOW1 346
Program WINDOW2 347
Program WINDOW2 Resource File 347 • WINDOW2 Layout 348

Appendix A C Function Reference G uide 376
Appendix B H eader File 481
Appendix C Keycode Values 499
Appendix D System Variables 505
Appendix E Predefined Message Events 513
Appendix F GEM BIOS an d DOS E rro r Codes 517
Appendix G Listing for File EXTRA.C 519
Index 521

C H A P T E R O N E

A Map of TOS

The disk drive(s), screen, keyboard, circuitiy, and other components
of a computer do nothing without instructions. The software instruc
tions tha t permit the different hardware parts of a computer to
interact are known as operating systems. Operating systems control
the hardware functions that a computer must perform: system tim
ing, program initiation, command interpretation, video display,
keyboard interpretation, communication with external devices (such
as printers, disk drives, and modems), and memory management

Designing an operating system tha t works is not a trivial task
because of the complexity of the functions involved. To facilitate this
task, an operating system is usually broken into modules. Most
operating systems are configured in modules that generally include a
Disk Operating System (DOS), a Basic Input/Output System (BIOS),
and some extended functions for providing easy access to the special
hardware features built into the computer. DOS usually handles
routines for manipulating data on disks, i.e., reading, writing, delet
ing, and organizing files. BIOS provides routines for primaiy com
munication with the keyboard, screen, and other external devices. The
extended functions can include graphics, sound, and memory manage
m ent

The operating system for the Atari ST computer is called TOS. Like
most other operating systems, TOS is modularly designed and con
sists of several components. This chapter explains what is included
in TOS, the function of each component of the operating system, and
the relationships between the components. TOS includes all of the
basic parts, or modules, of an operating system listed above. However,
it organizes them into three basic components: GEM, XBIOS, and the

2 Atari ST

Line A handler. Each of these components governs different functions
of the system, bu t in some cases there is an overlap in function. The
component with the most obvious difference is the Graphics Environ
ment Manager (GEM); therefore, it is the first module examined.

GEM

Introduction
A graphics environment is exactly what it sounds like: one that uses
pictures rather than text to represent specific tasks the computer can
perform. Examples indude a filing cabinet representing the floppy
disk drives that store files and a trash can representing the place to
put data no longer needed. In general, an environment manager keeps
track of what is shown on the screen. A graphics environment man
ager, therefore, keeps in order the special features the graphics envi
ronment uses: icons, windows, and other functions.

Using a picture language for communication dates back to the
ancient Egyptians, bu t its use in the electronic communications
world is a far more recent development In fact most computers still
use a text-based system where the user m ust type commands on the
keyboard rather than pointing with a mouse. Obviously, a graphics-
based computer program is much easier for a beginning computer
user to interact with.

If it is such a user-friendly way of doing business with a computer,
why don’t all computers utilize a graphics environment? It’s a matter
of convenience and economics. The hardware and software required
to run a text environment cost much less and are much simpler to
develop than that needed for a graphics environment The cost savings
occur primarily in the software end of things because of the time in
volved in development Writing a program for a text environment
merely requires sending text to a display and reading text from a key
board, which is a relatively simple interface. A graphics environment
on the other hand, m ust be able to accept text and manipulate many
complex images. It has to handle menus, windows, mouse movement
and input—clicks and drags, icons, and other images. Each of these
also contains several complex structures, such as a size box and title
bar for a window, which m ust also be addressed by the environment
manager.

The Xerox Palo Alto Research Center (PARC) first developed a
graphics environment using a mouse, menus, windows, and icons.
Unfortunately, a t that time, the hardware allowing graphics displays
was still quite expensive; this prevented the graphics environment
from being pursued commercially.

A Map of TOS 3

Apple Computer designed the Lisa and then the Macintosh to use
a graphics-based interface—one with the ability to store the various
components of the graphics environment in libraries for easy access
by outside programs. This heralded a new beginning for user-com-
puter communications.

The best design aspect of the Macintosh was that its environment
routines were built into the computer. This allowed programmers to
access the routines from their programs rather than having to write
thousands of lines of code to handle windows, menus, the mouse, and
so on.

GEM and the Macintosh environments are similar in that they both
provide graphics environments in which to program. However, GEM
goes beyond the Macintosh environment in an important aspect:
GEM is a portable environment

Digital Research designed GEM for implementation on many dif
ferent types of computers, for example, the Atari ST, IBM PC, and IBM
PC compatibles. This means that a program written for one computer
using GEM can be moved to a different computer without changing
the logic of the program. If the program were initially written in a
portable language such as C, virtually no changes would be needed.
You could simply transfer the source code to the desired computer
system and then recompile the program.

GEM not only affords portability among different computers but
also provides hardware independence for ou tpu t Basically, a com
puter communicates to the user by providing feedback through some
output device, usually a video screen or printer. Each output device
has different characteristics for its display, including line width, dot
size, and graphics capabilities. To translate a display from the screen
onto paper, the data in the display must be reformatted to accom
modate the differing characteristics of the paper device. Without GEM
a programmer would need to write an output routine for each device
to account for these differences. However, GEM supplies generic
routines that take care of this translation. These routines utilize
pieces of software called device drivers.

Each device driver contains a description of the device’s specific
characteristics. When a programmer runs a program written using
GEM, the GEM routines access the appropriate device drivers. These
convert the generic GEM routine information into device-specific
o u tp u t This means tha t you can write a single function to draw a
series of circles using GEM routines. That function can then be used
to display the circles on a screen, a graphics printer, or a plotter
without changes to the program. The usefulness of device indepen
dence should be fairly obvious. This function of the ST is examined
further in this chapter when the GEM VDI is discussed.

The GEM interface has a two-fold function. First, GEM is an inter-

4 Atari ST

face between the user and the computer. It can make computer
operations much easier, particularly for a novice, by providing win
dows, menus, and simple icons in place of tex t Second, GEM is an
interface between the programmer and the available hardware. With
GEM, the time it takes to write user interfaces for the variety of hard
ware currently available greatly decreases, and productivity increases
with the availability of a standardized interface such as GEM.

The Facets of GEM
GEM, like most operating systems, is written in modules. In fact GEM
could actually be used in place of TOS as the basic operating system
for a computer. It supports a Disk Operating System (GEMDOS), a
Virtual Device Interface (VDI), and an Application Environment Ser
vices (AES), which collectively contain all the information necessary to
drive the computer. TOS contains functions and routines specific to
the Atari STs special features. This is why TOS is used with GEM.

GEMDOS
The Graphics Environment Manager Disk Operating System (GEM
DOS) is the first module. GEMDOS consists of a Basic Input/Output
System (BIOS), a disk file handler, and some useful system functions.
The BIOS provides routines for disk access and primary communica
tion with the keyboard, screen, and other external devices. The disk
file handler keeps data organized on disks. GEM supports a hierar
chical file structure using a primary (root) directory and folders
(subdirectories) much like UNIX and MS-DOS. The system functions
provided under GEMDOS include disk access, date and time setting,
memory management and process initiation and termination.

The VDI
The second module of GEM is the Virtual Device Interface, referred
to as the VDI. The VDI is a standard graphics environment in which
to write a graphics application. This means that the same VDI func
tions can be used with a video display, graphics printer, plotter, or
any other graphic device. This happens through a combination of
operations the VDI performs. The VDI consists of two parts: the
Graphics Device Operating System (GDOS) and the device drivers and
face files. These two parts work together to make possible the device
independent operations of GEM.

A Map of TOS 5

The GDOS provides the device-independent interface tha t allows
you to use a standard set of functions for generating graphic images
without being concerned about what device the image will be drawn
on. The GDOS describes your programmed image to a coordinate
system that corresponds to the “ideal” graphic device. This ideal
device is simply a standard set of plotting points that can be used to
correspond to the actual plotting points of a specific device. When you
wish to output the image to an actual device, the image description
is mapped onto the device’s coordinate system through the device
drivers. The device driver takes care of producing the proper image
using the device’s capabilities. If a particular feature is not provided
by a device, the device driver will try to emulate tha t feature as closely
as possible. For instance, some printers cannot provide italicized
letters and underline the desired text instead. The face files contain
a description of a particular alphabet font th a t can be easily
translated to any device. The VDI maintains GEM’s device-indepen-
dent capability by allowing the same VDI functions to be used with
any graphic device and still produce approximately the same image.

The AES
The Application Environment Services (AES) is a collection of
libraries that allow a programmer to utilize the various graphic
images to provide a standard user interface. A library is a set of
commands tha t have been grouped together. The AES manages
graphics input in much the same way as the VDI manages graphics
o u tp u t In other words, the libraries of the AES contain functions for
icons, drop-down menus, dialog boxes, alert messages, windows, and
mouse control from a user. The GEM desktop, the workspace provided
by the computer after boot up, is an example of a GEM application
that uses the AES.

In addition to the subroutine libraries, the AES contains a limited
multitasking kernel and dispatcher, a shell, a desk accessory buffer,
and a menu/alert buffer. The subroutine libraries contain the func
tions for windowing, controlling the mouse, displaying system and
error messages, and drawing AES objects on the screen. These func
tions are the elements of the AES most useful to a programmer;
therefore, they are the focus of discussion of the AES.

Briefly then, the three portions of GEM are GEMDOS, VDI, and AES.
These three components interact to manage the graphics-based en
vironment the Atari uses and to make it device-independent Before
you learn to use GEM in applications programming, two additional
parts of the operating system need to be explained.

6 Atari ST

The Line A Handler

The second component of TOS to be examined is the Line A Handler.
This is a set of sixteen functions tha t provide primitive routines for
graphics output to the video display. These functions include screen
initialization, pu t and get pixels, line drawing, rectangle fill, polygon
fill, b it map block transfers, show and hide mouse, sprite manipula
tion, and other miscellaneous functions. The Line A routines provide
extremely fast execution of basic graphic primitives. In fact the VDI
uses the Line A functions to draw on the screen. Unfortunately, the
Line A routines are only accessible from the assembly language level.
Because this book deals primarily with programming the ST in C,
only a brief coverage of these routines is given in Chapter 2.

Hie XBIOS

The basic input/output functions of the Atari ST could be handled
by GEM through GEMDOS. However, the operating system provided
by GEM is designed to provide hardware independence. This means
tha t the operating system has to be a generic one tha t does not
include special features of a given machine, such as sound and MIDI
(musical instrum ent device interface). Also, because GEM uses device
drivers to translate its generic routines into device-specific informa
tion, it is slower and less efficient than writing a routine to directly
manipulate a device. To overcome this slight drawback, Atari has
written the extended Basic Input/Output System (XBIOS). Written
specifically for use with Atari hardware, XBIOS provides access to the
special features of the machine. Of course, GEM and XBIOS oc
casionally overlap in functionality. For example, you can set the date
and time with either GEM or XBIOS. In general, XBIOS provides
access to machine-specific functions like sound, keyboard translation
tables, MIDI, and color settings.

What To Use
Atari has supplied a very basic operating system, TOS, for a program
mer to use in accessing the ST’s hardware. GEM, on the other hand,
is a generic operating system with graphic support that allows access
to many different hardware systems. Either of these systems could be
used to write a program for the ST. TOS and XBIOS programs are

A Map of TOS 7

very text-oriented and their operations (for example, character in
put/output and reading/writing to disk by sectors) work at a relatively
low level. Working at a much higher level, GEM software provides a
more natural view of how a program needs to be organized. The
drawback to GEM is tha t it does not provide access to all of the ST’s
features such as sound and disk formatting. The question you are
probably asking is "Which routines do I use?”

The answer is “It depends.” GEM is a well-documented, consistent
system that provides an excellent user interface. Throughout this
book, GEM is used whenever possible. However, for some functions
you need to use the less flexible TOS to access special ST hardware.
For instances where you need to use Atari XBIOS functions, a note
is made that these routines are not included in GEM.

Using GEM

Programs that use a graphics-based environment are far easier for a
first-time user to interact with. Thanks to the advances of PARC,
Apple, and Atari, they are also simpler for a programmer to produce.
The ability to include library graphics routines that provide easy user
interaction can save you literally hundreds of hours of work. Addi
tionally, GEM’s device-independent capabilities allow you to port
programs intact from system to system and reproduce images on a
variety of output devices without providing individual device instruc
tions.

In order to be device-independent GEM’s VDI is divided into two
distinct sections, the GEM interface and the device drivers. The
interface takes a program’s output and converts it to a generic
internal representation. The device drivers can then take this internal
representation and convert it to instructions for a specific output
device. The same internal representation is used for all devices; saving
this representation in a file frees you from having to recreate the
Image each time it is to be outpu t Saving is done through the use
of metafiles discussed in Appendix A

The GEM interface can be accessed in two ways: through assembly
language or through C function calls. Access through assembly
language is quite low level and would be used to program device
dependent functions. This book is concerned with programs that
utilize the flexibility provided by the ST; therefore, the C function calls
are used.

The GEM VDI can be thought of as one routine. This routine knows
how to represent all the graphic images produced by GEM; it also
performs a wide variety of different graphics functions. To tell the

8 Atari ST

routine what you want done, use an operation code (opcode, for
short), which is then passed to the routine.

Besides the opcode, most functions require a set of parameters that
define the operation. To draw a circle, for example, you need to tell
the machine where to pu t the center point and how long to make the
radius. You supply these variables using x and y coordinates to plot
the center point and the length of the radius along the x axis. The
parameters are passed to the VDI function through a set of global
arrays (values assigned throughout the system). Then the VDI plots
your graphics display.

There are five global arrays of integers used by the VDI functions
that m ust be defined by your C program. These arrays include control
values, input and output integers, and input and output vertices (see
Table 1-1). The control values contain a variety of information such
as the opcode, the number of elements contained in the other four
arrays, and the output device number. The input and output integer
arrays are used to pass integer values between the VDI routine and
the program that uses them. The input and output vertices arrays
hold the points to be plotted by the VDI to create the desired graphics
display.

Table 1-1: Global Parameter Arrays Used
intbe VDI

Variable Name • Description
Number

of Elements

contrl Control values 12
intin Input integers 128
ptsin Input vertices 128
intout Output integers 128
ptsout Output vertices 128

Because the arrays are linear (one-dimensional) and a vertex (a
point) requires two coordinates, GEM has adopted a standard format
for storing points in the array. For each po in t the x coordinate is
given first followed by its corresponding y coordinate. Since all arrays
in C start with element zero (0), the x and y coordinates of the first in
put point are placed in elements intin[0] and intin[l], respectively.
Those of the second input point are placed in elements intin[2] and
intin[3].

It is very time-consuming and inefficient to have to fill in every
parameter array and call each routine by number. However, there is
no need to do this. C provides a set of C “bindings” that provide easy
access to GEM as well as Atari functions. Each binding is merely a C

A Map of TOS 9

function call interface tha t allows you to call up an entire VDI opera
tion without filling in the opcode and array elements. Suppose you
want to draw a circle. The function call for a circle in C is named
v _ d rc le (). You would only need to supply the parameters for the x
and y coordinates of the center and the length of the radius. The
function fills in the appropriate elements in the control and point
arrays for you. The Megamax compiler defines many of the function
names in header files used in the programs in this book (see Appen
dix B, Header Files).

The primary reason for mentioning these arrays is tha t they
m ust be defined somewhere in your program. Chapter 3 discusses
precisely how to do this. Also, if you plan to do any assembly language
programming with GEM, these parameter arrays will be the primary
form of communication between your program and GEM. Throughout
the rest of th is book, parameter arrays are merely mentioned for
completeness. Little emphasis is given to them unless required.

The AES operates in a manner similar to the VDI. There are seven
parameter arrays for the AES: global values, parameter blocks, control
values, input and output integers, and input and output addresses
(see Table 1-2). Since these arrays are already defined in the AES
libraries, you don’t need to define them within your program like the
VDI arrays. In general, you don’t need to access the AES arrays for
your function calls. The size of these arrays depends on the im
plementation of the AES. Since you don’t need to declare the arrays,
you don’t need to know their size. However, they are global variables.
If you want to access them, simply declare them as external variables
within your program.

Table 1-2: Global Parameter Arrays
Used in the AEB

Variable Name Description

control Control values
global Current status values
int_in Input integers
int-out Output integers
addr-in Input addresses
addr-out Output addresses

Writing a C Program__________________________________

There are many good compilers available for the C language on the
Atari ST; we use the Megamax. Whichever compiler you use, you
should familiarize yourself with how to create simple programs with

10 Atari ST

a compiler before you attem pt the programs in this book. The
Megamax compiler for the Atari ST comes with an application
program called SHELL. PRG. This application provides a more con
venient programming environment than the desktop.

When writing a C program, you first need an editor capable of
writing the program source files (the code that you write) in a
nonformatted file. Source files should not contain special word
processing characteristics but only plain tex t You may name your
source file anything you wish within normal file-naming parameters
as long as it has the letter “C” as its file extension (for example,
programs, source.c, or myfile.c.

The next thing you need is a compiler. Since different compilers
operate differently, refer to the compiler manual to determine proper
operating procedures. With the Megamax compiler, you first initiate
the compiler program and then enter the source file’s name. If you
are using the shell, you execute the compiler and select the source
file from the file selection box. The source file is processed (compiled)
into an object file, which is an intermediate form of your program.
The object file has the same name as your source file, bu t with the
letter “O” as its extension such as program.o, source.o, or myfile.o.

Finally, you need a linker. A linker, as its name implies, links files
together. In C, you can create separate object files that contain
different discrete functions of your program. A linker combines these
object files into one program file. Also called a binder, a linker binds
your program’s references to the operating system with a code that
interfaces with the system. As this code is supplied by the compiler
manufacturer, you need not be overly concerned with i t For the
Megamax compiler, you initiate the linker and enter in all the object
files to be linked. Since the order may be important, check the
compiler manual. If you are using the Megamax shell, execute the
linker, move the appropriate object files to the link list, and select “OK”
to begin linking. All the programs in this book use only one source
file and one object file; the interface code is automatically included by
the Megamax linker.

One other useful program is a resource construction program. This
program creates resource files for application programs. Resource
files contain data for dialog boxes, alert boxes, and menus used by
the program. Resources and the resource construction program are
discussed later with the AES.

Take time now to read the compiler manual. Write and compile some
very simple C programs. Once you know how your compiler works,
writing more elaborate programs becomes easier.

C H A P T E R T W O

Picture This—An
Introduction to
Computer Graphics

“A picture is worth a thousand words.” If this were not the case,
computer graphics might never have become a reality. However, the
adage is true, and computer graphics has become an industry unto
itself. This chapter shows how computer graphics are created and,
more specifically, how the Atari ST generates graphics displays. This
chapter also introduces various kinds of input devices commonly
used with interactive graphics systems and explains how these
devices work. All of this is a preface to the concepts and terminology
used by GEM to implement a graphic interface that is easy for both
the computer operator and programmer to use.

Background___

The realm of computer graphics covers a wide variety of devices and
techniques. Ju s t explaining the various graphic devices now available
would take a book by itself. The discussion of computer graphics in
this chapter limits itself to the Atari ST and its GEM environment

The Pixel
Look closely a t the Atari ST screen after you tu rn it on. From a
distance you can see the GEM desktop, but up close you can see dots.
Each dot is called a picture element or p ixe l Your entire screen is
really a grid or matrix of these pixels. Pixels are more visible on a
color monitor than on a monochrome monitor because the pixels are

12 Atari ST

closer together on a monochrome monitor. The closer together the
pixels are, the better the quality of the picture created. This difference
in pixel placement and picture quality is called resolution. An
example of veiy low resolution would be 10 dots per inch. In this
mode, the output device would have only 10 dots to draw a line one
inch long. Naturally, a picture tha t uses 10 dots for a line would be
less well defined than one that uses 50 dots for the same line. Most
dot-matrix printers provide a resolution of 70 to 150 dots per inch.
Laser printers, known for their excellent resolution, can have as many
as 300 dots per inch.

A display on a monochrome monitor is created using the two
different colors a pixel can display. These colors are usually black and
white, black and amber, or black and green. Every pixel on the screen
can display either color, depending on whether it is turned on or off.
On the Atari ST, an “on” pixel shows black and an “off' pixel shows
white. This “on/off’ terminology probably reminds you of the yes/no
configuration for bits in computer memory. In fact the two are closely
related. Creating the range of hues available on a color monitor is a
little more complex, bu t it builds on the techniques used for mono
chrome monitors. Color monitors are covered later in this chapter.

Display Technology
The first step toward understanding how screen displays (and other
types of displays) work is to see how a computer monitor physically
creates the light for a white pixel (the “ofT designation in the case of
the Atari). The inside of the monitor’s glass screen is coated with
phosphor, a substance that glows when an electron (an electric par
ticle) hits i t Screen monitors are equipped with electron guns which
project electrons onto the screen. When an electron hits a point on
the screen, a white dot shows. The phosphor glows for only a fraction
of a second; to keep a dot glowing continuously, the gun creates a
beam of electrons. There are, of course, many dots on a screen that
m ust be lit to create a single display. Since it would be impractical to
have an electron gun corresponding to every pixel on your screen, the
gun’s beam scans across the screen line by line. When the beam
reaches the bottom comer, it moves back to the opposite comer on
top and starts the process all over again. This happens very quickly;
scanning the entire screen takes about one sixtieth of a second.

As the beam scans the screen, it tu rns on for each dot tha t should
be glowing and off for each dot tha t should be dark. The question
now arises, “How does the computer know which pixels are on and
which are off, and how does it remember from one pass to the next?”
It’s rather simple, really. The computer uses its memory. Actually, it
uses a portion of its memory to create a map of each pixel’s position

Picture This—An Introduction to Computer Graphics 13

on the screen. For each bit in memory set to 1, the corresponding
pixel is considered in the “on” state. For each bit set to 0, the pixel
is considered off. As the electron beam scans the screen, the display
hardware reads the memory and controls the beam output. This type
of display architecture is called a bit-mapped display because the
individual pixels are mapped to bits in memory.

Using a Bit Map
The portion of memory labeled the bit map is reserved for use by the
display processor. The bit map may actually be located anywhere in
memory as long as the display processor knows where the bit map
begins. To facilitate this, the base address of the bit map must be
loaded into the display processor. The Atari ST XBIOS provides
routines to load the display processor with the bit map’s base address.
These functions are covered later.

To use the display bit map to create graphics, place a bit within the
map. The corresponding pixel will immediately be plotted on the
screen. This is a very direct approach to generating graphics, and it
is not usually used. The advantages of this approach are that it is a
very fast access method and it gives the programmer direct control
over what is displayed on the screen. The disadvantages include the
fact tha t the programmer is responsible for much additional process
ing overhead and that the bit map display is only practical for the
screen. This method is completely device-dependent.

Making Pictures

Instead of directly accessing the b it map, a set of commands can be
used to draw graphic objects such as a po in t a line, or a rectangle.
These routines do not usually include very complex objects like
circles, ellipses, or houses. Instead, the basic objects are used as
foundations to build more complex images. These images are then
implemented in the output hardware or through some extremely
efficient software. If this were not the case, the job of drawing more
complex objects would be terribly slow and extremely tedious because
you would need to place every dot in its exact place.

One set of graphics routines available on the Atari ST is called the
Line A Handler. Atari engineers have utilized the Motorola 68000
microprocessor’s unimplemented instructions to provide “quick-and-
dirty” access to assembler-level graphics routines. The Atari ST
documentation states that “if an application only needs a few primi
tive graphics functions (and wants maximum performance), then

14 Atari ST

Line ‘A’ is sufficient (and optimal).” In case you’re wondering about
the name Line A, it comes from the fact that the 68000’s unimple
mented instructions all begin with the hexadecimal digit “A”. The
GEM VDI provides most of the functions found in the Line A Handler.
In fact the VDI uses Line A for many of its routines and VDI routines
are easily accessible using most programming languages. Because
direct access to the Line A routines is available only through assembly
language, we do not discuss the Line A Handler beyond what has been
presented here. If you are interested in directly accessing the Line A
routines, you need a book on 68000 assembly programming and the
Atari documentation for the Line A routines.

GEM VDI provides a programmer with a wide variety of high-level
graphics operations. For instance, you can draw circles, ellipses, rec
tangles, polygons, and arcs. You can also fill any closed polygon you
draw, not ju s t with black dots bu t with any type of pattern you
specify. You can even draw lines and text in various patterns simply
by specifying the pattern you want and using the proper VDI func
tions.

The bit map and the VDI are two separate entities. The VDI uses a
b it map to generate a graphics display. The VDI provides the interface
between the program and the bit map. The VDI also provides the
interface from the bit map to graphics devices that may or may not
use bit maps. For example, a plotter or dot-matrix printer does not
have the same capabilities as a video monitor. A plotter or printer
cannot place a dot on paper and then remove i t Once a dot is placed
on the page, it is there to stay. For these devices, you would use the
VDI to draw an image and then tell the VDI to output the image to
the device. Unlike the b it map for the Atari ST screen, you do not have
access to the internal VDI representation for other devices.

Uses of a Bit Map _______________________________
The concept of a bit map is a quite powerful one. First consider that
a b it map can be any size to accommodate various tasks. If the bit
map is being used as the storage representation for a monitor, the
map will contain enough bits to represent each pixel. However, there
are also smaller bit maps available from the Atari system. Suppose
you had a small bit map tha t was 16-by-16 bits in size. What would
you use such a bit map for? One possibility is illustrated in Figure
2-1. In this bit map, each 1 bit is a black pixel and each 0 bit is a
white pixel. (The Atari inverts the usual l-on/0-off representation
because it uses black images on a white background.) The configura
tion in the illustration forms a checkerboard pattern (Figure 2-1). If

Picture This—An Introduction to Computer Graphics 15

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Figure 2-1 16-by-16 Bit Map for Checketboard Pattern

you store a small b it map like this in memory, you can use it to fill
a rectangle or other closed polygon by copying it over and over until
the shape is filled. Transferring data from one place in memory (the
pattern bit map) to another place in memory (the screen bit map) is
much faster than calculating how to fill in the rectangle with a
complex pattern. Therefore, one use for small bit maps is pattern
definition for area fill.

Now look a t Figure 2-2 where dots have been used in place of zeros
to make the image more visible. Does the image look familiar? This
bit map is a representation of the icon used by the desktop to
represent a data file. A 32-by-32 bit map is used to store icon images
(Figure 2-2). Instead of redrawing the icon each time it is needed, a
program can simply copy the icon’s b it image into the screen’s bit
map.

A third use for bit maps is text appearance. Every character on the
keyboard can be stored in an array of bits called a character cell. If
you are familiar with word processing or typesetting, you are probably
aware that text has some characteristics unique to its representation
such as fonts or typefaces, type styles, and type size. The terms fo n t
and typeface are synonymous and refer to the look of the letters. Some
examples of fonts or typefaces are Reman, Script, and Futum. The
type style refers to modifications on the typeface. These include
options such as italicizatlon, underlining, and boldface.
The type size, as the term implies, indicates how large the letters are.
GEM VDI allows you to set the type size in coordinate units (using
pixel-to-pixel distance such as 20 units high) or in points (using
the printer’s measurement of 1/72 of an inch).

16 Atari ST

l l l l l l
1 1
1 . . . 1 1

.. 1 . . 1 1 .

... 1 . 1 1 . .

................................ i l l . . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2-2 32-by-32 Bit Map for Data File Icon

For each character in a font which generally includes all characters
on the keyboard, a character cell needs to be defined. Each type style
m ust also be defined in individual character cells for every font that
will use that style. In addition, for each different type size a new set
of character cells for each font and style needs to be created. Although
software algorithms exist to enlarge typefaces and change type styles
given a base font the characters never look as good as those created
from character cells. This means tha t an ambitious person needs to
program the cells for each font style, and size needed.

There are a number of variables that can be set for each character
cell. These have to do with the width and height of the individual
characters and the cells that contain them. Each character is as
signed a cell which determines how much space a character occupies

Picture This—An Introduction to Computer Graphics 17

and how much space is left around It (between it and other charac
ters). Vertically, each cell is divided by six lines. These lines tha t start
a t the top and go down are called the top line, the ascent line, the
half line, the base line, the descent line, and the bottom line (see
Figure 2-3). Bottom and top lines define the vertical limits of a single
cell, or the cell height The bottom line of one cell in a block of text
is usually defined as the top line of the cell directly below i t The
characters in most cases do not use the total available cell height
Rather, they extend up to the ascent line if they are full-sized letters
(upper-case or tall lower-case letters) down to the descent line if
they m ust extend below the base line (as with lower-case letters such
as “g” and “j ”). The half line defines the maximum height for most
lower-case letters and small characters, and the base line defines the
bottom of a character.

Le
Character

ft Alignment Right
Delta I Top Line

Cell
Height

iBBBim nn:

Character
Height

1

'S

558■■■■■■■■■S*«■■■■■■is:gsa

■■■

■■■■■■■■r
SSL■■■■■■■■■■■

■■■ ■■
i n

Ascent
Line

Half Line

Base Line
■■■■■■■■■■■■

Cell
Width

Figure 2-3 Character Cell

Character
‘ Width

Descent
Line

Bottom
Line

Defining the width of characters and character cells is somewhat
similar to defining the height where the character width is usually
less than the cell width. This allows for space between characters. The

18 Atari ST

actual commands used to define typefaces, type styles, and type sizes
are discussed later in this book. For now, it is important to realize
that each character cell is a small bit map that can be called up
instantly from memory for use in a display.

Logic Operators

Basic logic operations performed in memory are used to change pixel
values. Logic operations act on the values true and fa lse . In computers,
these values m ust be translated into the binary values 1 and 0. For the
purposes of this discussion, let true have the value of 1 and fa ls e have
the value of 0. Logic operators work in much the same way as mathe
matical operators. The operator takes two operands (values), performs
an operation on them, and produces a result The four logic operators
commonly used with computers are OR AND, XOR, and NOT.

The first operator, OR, tests if either of its two operands is true
(equal to 1). If that condition is m et the operation gives a result of
true. If both operands are false (equal to 0), the operation gives a
result o f fa lse . Table 2-1 is the logic table for OR The x and y columns
refer to the two operands. The result is listed in the x OR y column.

Table 2-1: Logic
Table for OR

x y x OR y

T T T
T F T
F T T
F F F

The next operator, AND, tests if both of two operands are true (equal
to 1). If this condition is met, the operation gives a result of true. How
ever, if either operand has a value of false (equal to 0), the entire opera
tion gives a result offa lse . Table 2-2 shows the logic table for AND.

Table 2-2: Logic
Table for AND

x y xANDy

T T T
T F F
F T F
F F F

Picture This—An Introduction to Computer Graphics 19

The third operator, XOR, is quite useful when dealing with graphics.
The XOR operator produces a true result if the two operands have
different values. In other words, if x and y are different values, the
operation tests true. If they are the same value, the operation tests
false (see Table 2-3). The interesting aspect about XOR is tha t it acts
like a toggle. If you have a value and XOR it with some arbitrary value,
you get some result. If you XOR this result with your original value,
you get the original arbitrary value back. For example, if you have the
value 1 and XOR it with 0, the result will be 1. If you XOR this result
of 1 with your original value of 1, you get back 0. An example of how
this is useful is given soon.

Table 2-3: Logic
Table for XOR

x y x XOR y

T T F
T F T
F T T
F F F

The last operator, NOT, is a unary operator. This means that it
only uses one operand. NOT inverts the value of the given operand so
that NOT true yields fa lse and NOT fa lse gives a true result

The logical operators are essential to the creation of graphics
displays. They are used, in some aspect, in every graphics operation.

Writing Modes
In the initial discussion of b it maps and the VDI, it was stated that
certain writing modes available with the bit maps would have mini
mal effect on a program output to the screen. This section explains
the four writing modes available from the Atari for use with bit map
displays. Writing modes are methods of taking bit maps from memory
and plotting them onto the bit map for the screen display. The four
modes available from the Atari are replace, transparent, XOR and
reverse transparent Like the examples given above, the writing modes
use two bit maps: a source bit map held in memory and a target bit
map that is normally the screen.

The simplest of the writing modes to understand is replacement In
this mode, each bit in the source map has a corresponding bit in the
target map. The bits are simply transferred from the source to the

20 Atari ST

target map. Thus, if you have a 0 bit in the first position of the source
map, the first position in the target map also becomes a 0.

For the remaining modes, the source bit map and the target bit
map go through a logic operation with the result placed in the target
bit map. For example, in transparent mode the pixels set to 1 in the
source bit map are copied to the corresponding bit in the target bit
map. Those pixels tha t are 0 in the source bit map have no effect on
the target bit map.

In XOR mode, each bit in the source map and the corresponding
pixel in the target bit map go through the logical operation XOR
explained above. If you have a 1 bit in the source map and a 1 b it in
the target b it map, the pixel in target b it map is set to 0. If you have
a 1 in the source bit map and a 0 in the target bit map, the resulting
pixel in the target bit map is a 1.

The final writing mode available from the Atari ST is reverse
transparent mode. This mode, as its name suggests, works in a
manner exactly opposite from the transparent mode. In other words,
when a bit has the value 0 in the source b it map, the corresponding
pixel in the target bit map is set to 1. The descriptions given here for
bit maps and writing modes apply primarily to monochrome monitors.
The use of these writing modes is explored shortly.

Bit Map Representation

The use of b it maps for icons and text representation assumes that
the source and target bit maps are the same size. In reality, the VDI
and most graphics applications use this function by having two
different sizes of bit maps. For example, an icon bit map tha t consists
of a 32-by-32 bit square is not the same size as a monochrome screen,
which consists of 640-by-400 bits. The bit map is memory for the icon
is used as a mask on top of the bit map for the screen. By locating the
upper left-hand comer pixel on the screen, the b it map of the icon
can be overlayed onto the bit map of the screen.

This sounds quite simple, bu t the actual representation of a bit
map is a little more complex. Memory itself is linear: one bit follows
another bit and thus creates bytes (eight consecutive bits), words, and
so on. A bit map is more of an array with height as well as width. As
in memory, each bit in the b it map is contained in a byte. These bytes
are arranged in lines along the map. When the computer reaches the
end of a line in the bit map, as it is recording the map in memory, it
simply continues to the next line in the map. All this is handled by
the VDI and is discussed in more detail later in the book.

Picture This—An Introduction to Computer Graphics 21

Output Devices_____________________________________ _

Obviously, not all output devices are the same. Differences between a
screen and a printer have already been demonstrated through the
single example of the use of the bit map. Output devices also vary
within the same category. For instance, a color monitor has very
different needs and capabilities from a monochrome monitor. Even a
monochrome monitor can come in a variety of display modes: bit map
display, vector display, and storage tube display. Devices that produce
so-called hard copy also differ widely in their capabilities. Plotters,
laser printers, and dot-matrix printers all use different modes to
produce o u tp u t and there is a great deal of variety within each of
these different types. Plotters can use a bit map, a pen, or a drum to
place an image on paper. In some cases when preparing a graphics
operation, the programmer needs to consider how the image is
produced. For example, a pen plotter that uses a pen to draw lines
does not use a bit map to coordinate the lines, A bit-mapped screen,
however, does use a bit map. A dot-matrix printer can translate a bit
map from memoiy to output on paper; however, it m ust go through
some changes because a dot-matrix printer prints seven or more dots
vertically a t one time, while the bit map is arranged horizontally.
Although GEM does quite well in eliminating these problems, some
consideration still has to be given to ou tpu t especially for programs
that are more complex.

There are some advantages and disadvantages to the capabilities of
the different devices. The bit-mapped screen’s great advantage comes
from the writing modes. These make it possible for a program to erase
or show any pixel in any position on the screen virtually a t any time.
This capability allows a programmer to create representational
graphics such as those used in design and animation. Disadvantages
include the fact that the resolution of the screen is limited to the
number of pixels the screen can display. For example, if you connected
the Atari to a television s e t the characters are far less readable than
those on the monochrome monitor.

A vector display creates output with an electron gun, ju s t like the
bit-mapped display. However, with the vector display the gun draws
lines rather than points. To obtain a line, you specify the start point
and endpoint This creates superb lines that can be used together to
produce high quality graphics. The disadvantage is the amount of
time it takes to create the lines. The overhead with this type of
graphics display is such that the number of lines you can include for
any one image is limited.

Storage tube displays work in a manner almost identical to vector
displays. The exception is tha t once a line is drawn to the screen, it
remains visible until the entire screen is erased. Therefore, if you

22 Atari ST

draw something, the only way to get rid of it is to get rid of your entire
display. This has some obvious disadvantages in terms of the flexibil
ity of the display. If you want to change a single line, you have to erase
the display and redraw it without that line. However, if you are ready
for final output, this type of device can provide extremely fine images.

Plotters have problems similar to those found with the vector and
storage tube displays. A pen plotter acts like a vector display in that
you pu t the pen down where you want to start drawing a line and lift
it a t the end. While pen plotters have very good resolution, they
require much time overhead to create images. Also, once a line is
drawn, the only way to get rid of it is to use a new sheet of paper.

Printer types can basically be split into two groups: impact and
nonimpact printers. The impact printers include letter-quality (such
as a daisy wheel) and dot-matrix printers. Nonimpact printers include
ink-jet thermal, and laser printers. Printers that produce only letter
fonts, such as daisy wheels, are almost useless in terms of graphics
o u tp u t unless you’re interested in making pictures of the Mona Lisa
using Xs. Most people using this book have a dot-matrix printer.
Dot-matrix printers use a set of seven or more pins to place patterns
of dots that create graphics displays on paper. Laser printers work on
much the same principle as a bit-mapped display. The image is
created by tiny beams of light that are projected in patterns as defined
in a bit map; these form the graphics display.

Device Coordinates

When you graph an image on a piece of graph paper, you place points
on a grid according to their coordinates. On a computer you m ust
also specify where you want your points placed. This is done on a
two-dimensional surface called a drawing plane. The drawing plane
is simply a concept that provides an imaginary surface to draw on.
Ju s t as with graph paper, the drawing plane can have any type of
coordinate system you choose. For example, you can use the standard
Cartesian coordinate system. In this system, the point (0,0) is placed
in the center; positive values increase as you go up and to the righ t
and negative values increase as you go down and to the left You can
choose a system where the point (0,0) is in the lower left comer and
use only positive coordinates. You can also place the point (0,0) in the
upper left comer and have positive values increase as you go down
and to the rig h t This last coordinate system is the one most com
monly found on computer displays, particularly bit-mapped displays.
The reason for this is tha t the electron gun scans from top to bottom

and from left to right; thus the b it map should follow this order for
efficiency.

The device coordinates you use are dependent on how high the
resolution is on the output device you are using. Most of the time,
device coordinates are represented with whole numbers (for example,
1, 2, or 3). These numbers specify some position on the page or
screen, and the range varies according to the device you are writing
to (for example, 0-400 or 0-4000). Every device has its own set of
coordinates, most of which start a t zero (0). Some devices, such as
screens and plotters, allow you to access any point a t any time. Other
devices are able to move in only one direction; for example, since most
printers can only move down the page, your image m ust be drawn
line by line. Thus, on a printer your device coordinates consist of the
line number on a page and the dot number on a line. On a screen or
plotter the coordinates consist of the actual horizontal and vertical
positions. These coordinates will, of course, vary from output device
to output device.

Picture This—An Introduction to Computer Graphics 23

Monochrome Versus Color Screens

When you are dealing with monochrome graphics, you can either have
black or white; this corresponds quite nicely to the yes/no or 0/1 logic
computers use. When you use color graphics, you encounter a whole
new range of problems.

All colors can be created using the three primary colors of light:
blue, green, and magenta (red). The presence of all three colors a t once
gives you white and the absence of any color gives you black. If you
add green and magenta, you get amber (yellow/orange). If you add
green and blue, you get aquamarine. If you add blue and magenta,
you get purple. Other shadings and nuances are achieved by vaiying
the intensities of the light colors being mixed.

The technical aspects of color representation include the use of
three electron guns instead of the single gun used in monochrome
display. Each gun activates a different color of phosphor: magenta,
green, or blue. Combining the output from the three guns creates
color displays on your color monitor. To control which colors are
activated, you m ust have a t least three bits where one is for magenta,
the second is for blue, and the third is for green. You can then have
eight different color representations ranging from black to white sim
ply by combining these three bits in different combinations. To allow
an even greater range of color, a fourth bit can be added to adjust the

24 Atari ST

intensity of the color. This gives you eight low-intensity and eight
high-intensity colors.

Another way of handling color is to allow the individual colors to
vary their intensity. To do this, you use one byte in memory to
determine the intensity of a particular gun for a particular pixel.
Thus, if you have an 8-bit byte, you can have 256 intensities. If you
have three bytes of magenta, blue, and green each with 256 inten
sities, you have a range of over 16 million different color represen
tations per pixel However, to represent this range you m ust have
three bytes of memory per pixel. For the Atari ST, this means that
in medium resolution (320 by 400 pixels), you m ust have over
350,000 bytes (350KB) ju s t to take care of the color representation.
That’s not a very efficient or logical use of memory.

To reduce this memory requirement the Atari uses color planes. In
essence, each of these planes is the bit map for a color. In low
resolution mode there are four planes; in medium resolution there
are two planes; and in high resolution (used only in monochrome)
there is only one plane because the only colors represented are black
and white (0 or 1). In the color modes, the computer combines
corresponding pixels in each plane to obtain a binary number which
is then mapped to a color. The Atari is capable of displaying 512
different colors. However, because in low resolution the maximum
num ber of bits available is four (one for each of the four planes), the
maximum number of colors available for display at any one time is
sixteen. There are ways around this limitation that use advanced
graphic techniques. For most uses, though, sixteen colors should be
enough.

If you go into your control panel accessory in the desktop, you see
three slide bars on the left On a color monitor each bar represents
one of the three colors: magenta, blue, or green. By moving the slide
bar to the top, you get maximum intensity. Moving the slide bar to
the bottom gets you zero intensity in the particular color. There are
eight different intensities for each color. If you multiply the eight red
intensities by the eight blue intensities by the eight green intensities,
you get a total of 512 color combinations available. On the bottom of
the control panel are 16 squares. On a monochrome monitor there
is one white and 15 black squares. On a color monitor each square
shows one of the available colors. This is your color palette, which
the system uses by default There is a table in memory that maps the
values 0 through 15 (the 16 colors in your palette) to 16 of the 512
available colors. You can have any combination of colors you desire,
and you always have 16 colors available.

H ie use of color in a program requires a full understanding of the
color palette and its construction. Further discussion of color graphics
is in Chapter 6.

Picture This—An Introduction to Computer Graphics 25

Input Devices ____________________________________
Ju s t as there are many different types of output devices, so there are
a variety of input devices available for use with computers. These can
be generally broken down into four basic categories: keyboards,
locators, valuators, and buttons. Probably the most familiar is the
keyboard, a device for entering tex t A locator is a device for pointing
to an object or line of text shown on a screen. The most common
locator is a cursor, which can be controlled by various physical
devices. The third input device, a valuator, is a logical device that
provides a range of numeric inputs, for instance, a dial or a slide bar.
Finally, a button is a device for selecting from a number of different
displayed options. These are the logical, or conceptual, input devices.
The physical implementations of these are explained below.

The function of the keyboard as an input device has come to be
taken for granted. It is a layout of letters and specialized characters
produced on the screen by pressing the character's corresponding
key. It is almost identical to the function of a typewriter’s keyboard.
Another way a keyboard can be implemented is to represent the
keyboard on the screen and use a locator to identify the key to be
entered.

Locators are relatively new input devices for personal computers.
The most widely used physical locator is the mouse, which usually
consists of a small box containing a roller ball. The mouse controls
cursor movement on the screen. Other locators include devices such
as light pens, which physically point a t an object on the screen.
Joysticks are a third type of locator; like a mouse, they move the
cursor on the screen.

The valuator is usually implemented as a dial or a slider. The user
can change the position of the valuator and cause a new value to be
produced. This value can represent anything from sound volume to
one coordinate of the cursor’s position.

The last logical input device, the button, is usually ju s t a button. A
button is often found in combination with locators. For instance, in
addition to the tracking ball the mouse box usually has a t least one
button, which can be used to select information on the screen.
Joysticks also usually have buttons that provide some type of input
to the screen, depending on the software being implemented. Func
tion keys are yet another type of button. They are most often included
on the keyboard bu t may be physically located away from the usual
character set. They are identified by the letter F followed by a number,
usually 1 through 10. These buttons are quite special, as they change
their function depending upon what program you are running and
where in tha t program you are. They are, therefore, referred to as
programmable function keys.

26 Atari ST

Implementing Logical Devices

On the Atari ST, a mouse is used as the locator. Valuators can be
taken from the keyboard or from an object on the screen (for example,
the slide bars on the windows). Buttons on the Atari include the
function keys a t the top of the keyboard, the buttons on the mouse,
and particular keys on the keyboard (depending on how they have
been programmed for application). The keyboard, of course, acts like
a normal keyboard unless you program it otherwise.

The Ideal Graphics Device
A concept much referred to in computer graphics is the ideal
graphic device. This is not an actual physical output device. Rather,
it is a concept that provides the user with anything required a t the
time the user calls on a graphics routine. This ideal graphics device
provides a bridge between the actual output device and the program.

The ideal graphics device uses what is called a normalized device
coordinate (NDC). This means that the coordinates on the ideal
graphics device are consistent Most ideal device systems have a
coordinate system where the x values range between 0 and 1 and the
y values range between 0 and 1. This is a true set of normalized
coordinates. In practice, the actual range is irrelevant as long as it is
consistent GEM uses a range of 0 to 32,767 for both the x and y
coordinates. The origin of this system varies with the implementation
of the ideal device. For GEM the origin coordinate (0,0) is located in
the lower left comer. Another feature of NDC is tha t the distance
between pixels is the same in both directions. This means tha t the
grid is made up of squares such as those on graph paper. Also, the
coordinate values increase from left to right and bottom to top.

The alternative to normalized device coordinates is actual device
coordinates—called raster coordinates (RC) in GEM. There are several
differences between NDC and RC. F irst the RC origin may vary. As
mentioned earlier, most computer displays have the origin in the
upper left comer. Another difference is that the range of coordinate
values depends on the resolution of the device. Also, the direction in
which coordinate values increase can vary. Finally, the distance be
tween pixels may not be the same in both directions. The problem
with this attribute is that a circle on one device may appear as an
ellipse on another device. When you work in raster coordinates, your
program becomes device-specific.

Ideally, you want your program to remain as device-independent as

possible. Therefore, you want to use NDC for your graphic ou tpu t
GEM allows you to use NDC for your programs. Your program draws
its images using NDC, and GEM uses its device drivers to output the
image using the raster coordinates. The device driver takes into
consideration all of the device’s attributes such as resolution and
pixel distance. The device driver converts the image so that if you
draw a circle and output it to a screen, plotter, printer, or other output
device, it looks like a circle. It has the same shape and size (relative
to the other objects in the image) on each device.

Picture This—An Introduction to Computer Graphics 27

The GEM Workstation

The workstation is GEM’s implementation of the ideal graphics
device. It contains all capabilities of the ideal graphics device such as
using NDC. The GEM workstation contains a large number of graphic
attributes that you can s e t These attributes tell GEM how objects
such as lines should be drawn. For example, a line can be drawn solid,
dotted, dashed, dot-dashed, or in some other fashion. Once you set
the particular attribute, you don’t need to worry about i t If you want
to change i t simply set it to a new value. The graphics attributes
provide you with a wide range of tools to help you create spectacular
graphic images.

Other workstation attributes include fill settings, line settings, text
settings, writing modes, and clipping. Fill settings correspond to
commands that cause areas of the screen to be filled, like drawing a
filled shape. Fill settings cover the color to be used, type of fill (hollow,
solid, pattern, hatch, or user-defined), and pattern or hatch selection.
Line settings include line width, color, type (as mentioned above), and
end point styles. Text settings include font selection, size, special
effects, color, and rotation. The writing modes (replace, transparent
XOR, and reverse transparent) have already been introduced. All of
these attributes are defined for the workstation. Any VDI output
function uses some combination of these attributes when it produces
its image. The current attribute setting may be changed a t any time.
Any output following the change uses the new attribute value. Table
2-4 shows the default values for some of the workstation attributes.
All these attributes are explained and demonstrated in greater detail
in Chapter 4.

The last attribute listed in Table 2-4, clipping, is actually a function
done by GEM. The program can specify a rectangle on the workstation
which outlines the area to be visible. Any point a program tries to
draw outside of the rectangle is not drawn. Lines drawn from within

28 Atari ST

Table 2-4: GEM Workstation Attribute Defaults

Attribute Default Setting

Character height Nominal character height
Character base line rotation 0 degrees rotation
Text alignment Left base line
Text style Normal intensity
Line width Nominal line width
Marker height Nominal marker height
Poly-line end styles Squared
Writing mode Replace
Input mode Attempts to use all types of input
Fill area perimeter visibility Edges will be drawn
Line style Solid
Fill pattern Solid
Cursor Hidden
Clipping Disabled

the rectangle to the outside show only that portion of the line that
falls within the rectangle. Clipping is also demonstrated in Chapter 4.

You now have a basic understanding of the GEM VDI and its
capabilities. All output for the GEM VDI is done on a workstation.
The next chapter develops the basic routines needed to get an ap
plication running on the Atari S t

C H A P T E R T H R E E

Preparing to Use GEM

GEM, as its name implies, is an environment manager. From the
programmer’s perspective, it provides the tools that help produce
graphics-based programs. In addition to the sophisticated graphic
images that can be produced, GEM provides independence from
output devices and portability to many host computers.

All these features do not come free. GEM places the small bu t
important restriction tha t you follow certain sequences of procedures
while your program is executing. These procedures tell GEM what
your program wants done, how it is to be done, and what attributes
are to be used. The most basic program would perform the following
sequence of operations:

Initialize the application for GEM;
Locate the physical input/output device for the system;
Obtain an input/output device for the program;
Do the application’s procedures;
Release the program’s input/output device;
Terminate the application from GEM.
Initializing the application for GEM performs two steps. F irst it

identifies the program to GEM, and second, it allocates memory for
the program to use. Identifying the program to GEM allows GEM to
track input to and output from the program. GEM is designed to be
a multitasking environment which means that more than one ap
plication may be active a t any given time. This condition is best

30 Atari ST

demonstrated on the Atari ST by having a program running (an
editor, for example) and accessing one of the desk accessories. When
you request the desk accessoiy, it becomes available on the desktop.
The editor is still active and you can switch from the accessoiy to the
editor and back again. GEM must know which application—the editor
or the accessoiy—is currently running so tha t when the user provides
in p u t GEM can direct the input to the proper program.

When a program is running, it needs memoiy to perform its
processing. The second part of initialization tells GEM to allocate
memoiy for this program. If your program does not perform this
initialization step, you will undoubtedly interfere with GEM’s opera
tion. This can result in improper program execution, loss of a device
such as the disk drive or mouse, or a system crash (also known as a
bomb).

The next two steps your program m ust perform locate the in
put/output devices used by the system and your program. A true Atari
ST application causes all output to be written onto the program's
output device or to a window. If you are ju s t writing a quick little
program that uses only the C/UNIX-compatible text output com
mands such as printf(), you won’t need to access these devices. You
also won’t be able to access any of GEM’s graphic and text output
capabilities.

The system and program input/output device is implemented using
the workstation concept introduced in Chapter 2. The use of a
workstation and the reason a system and program workstation is
required are discussed in more detail in the next section.

The next step in your program is for it to do its processing. This
can be anything you program your application to do. Once your
program has finished its processing, it m ust return its resources to
GEM. The first resource the program returns is the workstation.
Returning the workstation to GEM releases the memoiy allocated to
it and makes it available to other programs.

The final step is telling GEM tha t the program is ready to terminate.
This allows GEM to get the second resource used by the program—its
memoiy workspace. GEM terminates the program and returns its
memoiy to the available pool. The program termination also removes
the program from GEM’s list of active processes so tha t it no longer
receives input from the system.

These six steps provide the veiy basic outline of a GEM application.
The next few chapters focus strictly on the VDI. This means that the
programs do not use menus, windows, dialog boxes, or mouse in p u t
When the AES is introduced, a few more steps need to be added. In
the meantime, the above list of steps is the basis for the application
skeleton developed in the remainder of this chapter.

Preparing to Use GEM 31

Workstation Usage

Chapter 2 introduced the concept of a workstation. A workstation is
a mechanism through which a program can develop a graphic output
environment The workstation keeps track of the attributes currently
being used for graphic ou tpu t However, this is not the only informa
tion the workstation uses. The workstation also identifies the location
of the graphic device, its output capabilities, its input capabilities,
and its physical attributes. For a full list of workstation data, see the
VDI functions v_opnwk() and vq_extnd() in Appendix A.

When your application begins its execution, it requests from GEM
the workstation used by the system. This workstation corresponds to
the video display, keyboard, and mouse (collectively known as the
console) of the Atari ST. GEM identifies the workstation by returning
a number called a handle. A handle is simply a data item (in this case,
a number) used to uniquely identify some object For example, the C
function fopenO returns a pointer to a FILE object The pointer is a
handle. The C function openO returns an integer identifier to the file.
This integer is also considered a handle. Once you know the handle of
a workstation, you always use that handle when you want to use that
workstation.

After you obtain the handle to the system workstation, you need to
create a workstation for use by your program. This is done through
a process called opening a workstation. When your program opens its
workstation, you often want to use the screen and the keyboard as
well. Unfortunately, GEM is already using the console for the system
workstation. Fortunately, GEM provides a way around this problem.

GEM uses two types of workstations: a physical workstation and a
virtual workstation. A physical workstation is a workstation attached
to a physical device such as a console, printer, or plotter. Each device
has a unique device identification number and a corresponding
device driver (see Table 3-1). The devices available to the system, their
ID numbers, and their device drivers are listed in a file called
ASSIGN.SYS. This file is read when GEM first loads into the system.
Device drivers and alterations to the ASSIGN.SYS file are beyond the
scope of this book. They have been presented here to clarify worksta
tion usage. For further information, look in a book that discusses the
implementation of GEM on a computer. When you open a physical
workstation, you specify the physical device ID. GEM locates the device
and creates a workstation for it. Only one physical workstation may
be allocated to each physical device. As long as the GEM desktop is in
use, it has a physical workstation open for the console. You can use
this physical workstation as your program’s workstation. However, if

32 Atari ST

you change any attributes, these changes remain in use when your
program exits and GEM returns to the desktop. To use the system
workstation, your program has to remember the setting for each at
tribute and restore these settings before exiting back to the desktop.
This is quite cumbersome so GEM provides an easier method.

Table 3-1: Device Identification
Number

Device Range of ID Numbers

Monitor 1-10
Plotter 11-20
Printer 21-30
Metafile 31-40
Camera 41-50
Tablet 51-60

The virtual workstation is similar to the physical workstation in
appearance. The only difference between the two is that a virtual
workstation is attached to a physical workstation instead of a physi
cal device. Any number of virtual workstations may be associated with
a physical workstation. This means that your application can open a
virtual workstation attached to the system workstation, change the
program’s workstation as required, and exit back to GEM without
affecting the desktop’s workstation attributes a t all. Even though
both workstations output to the same screen, the program’s worksta
tion defines an environment completely independent of the system
workstation’s environment

Your program can open two or more virtual workstations to provide
for different types of o u tpu t For example, in a computer-aided design
program, you use three workstations. The first workstation might be
for graphic output and use small letters, th in lines, and the color
black The second workstation might be for command and status
output and use larger letters and the color blue. The third worksta
tion might be for error messages and use the color red and perhaps
a different font altogether. While your program runs, it would choose
the appropriate workstation depending upon the type of output being
produced. An example of multiple workstations is given in Chapter 4.

When your program has finished, it m ust relinquish its worksta
tions before it returns to the desktop. This allows GEM to reclaim the
memoiy used by the workstations and to make any physical devices
available to other programs. For each workstation opened by your
program, you m ust have a corresponding close workstation command.
The system workstation remains open because it was opened by the

Preparing to Use GEM 33

desktop before your program was initiated. If you were to dose the
system workstation, the desktop would not have an output device and
the system would bomb.

The GEM Skeleton Program____________________________
As mentioned at the beginning of this chapter, use of GEM does not
come without a price. Your first programming task is to enter text,
compile, and link a file that performs all the overhead routines used
in a GEM application. Entering and debugging this file a t this time
saves much time in later programming exercises and in your own
applications. This outline program file is used for all the program
ming exercises and can be used as the basis for any GEM program
you write.

Organizing the Outline
In every GEM program there is a minimum amount of overhead. In
Chapter 1 the global VDI arrays are listed. At the beginning of this
chapter, the basic GEM interface procedures are listed. To make
programming somewhat easier, several more global variables are
added. All this information in a program can produce a very confusing
source code file. To avoid this, the outline program has been divided
into six major sections: system header files and constants, GEM
application overhead, application-specific data, GEM-related func
tions, application functions, and the main program.

When you are writing a GEM application, it is extremely important
to keep your program organized Because all programs in this book
use this outline form at we suggest that you stick with this format
for now. If you decide on a different format for your own programs,
try it later. Remember that organization is the key. If you don’t
organize your programs, you spend more time looking through your
files than you do programming.

The outline program referred to in this section, called OUTLINE.C,
is shown in Listing 3-1.

Header Flies
The section titled “System Header Files & Constants” lists the four
files stdio.h, osbind.h, gemdefsli, and obdefs.h. These are standard
header files for the VDI used on most compilers and are used in all
programs in this book. This section also defines the constant values

34 Atari ST

Listing 3-1 Program OUTUNE.C

/'a***
OUTLINE.C Outlins for GEM application C program

Use this outline to organize your C programs.
X /

/X X

System Header Files & Constants
X K X X X X X X X X X X X X X X X X X K X X X X X X X X X X X /

II include
ttinclude

ttinclude

11 include

<stdio.h>
<osbind.h>

<gemdefs.h>
<obdafs.h>

<'* Standard 10
' * GEMDOS routines *s

/ * GEM RES
/ * GEM constants

tide fine
tide fine

FALSE
TRUE

0
•FALSE

/xx

GEM Application Overhead
X /

✓x Declare global arrays for VDI. * /

typedef int WORD;

WORD contrl[12],

intout[12B], intin[12B],

ptsin[12B], ptsout[128];

WORD screen_vhandle,

screen_phandle,
screen_rez,

color_screen,
x_jnax,

y_max;

' * WORD is 1G bits

VDI control array *s

VDI input arrays

VDI output arrays

virtual screen workstation *s

/ * physical screen workstation
/ * screen resolution 0,1, or 2 **

/ * flag if color monitor * /

max x screen coord *s

** max y screen coord

/X X

Application Specific Data
X /

/xx

GEM-related Functions
X /

Preparing to Use GEM 35

WORD open_vwork(phys_handle)
WORD phys_handle;
/a***##*###*********##**###**####*****##***********
Function: This function opens a virtual workstation.
Input: phys-handle = physical workstation handle
Output: Returns handle of workstation.

<
WORD work_ln[ll],

workjout[57],
new_handle; ' * handle of workstation * /

int i;

for (1 = 0; 1 < 10; i++) set for default values *s

work_in[i] = 1 ;

work_in[10] = 2; use raster coords
new_handle = phys_handle; / * use currently open ukstation *s

v_opnvwk(work-in, &new_handle, uorl<_out);

re tu rn(new_hand1e);

>
set_screen_attr()
/***«#*»»*»**»»***»»»»#*»#***»*»**»****************
Function: Set global values about screen.

Input: None. Uses screen—vhandle.
Output: Sets x_max, y_max, color_screen, and screen_rez.
* *

{
WORD work_out[57];

vq_axtnd(screen—vhandle, 0, worl<_out);

x_max = work_out[0];

y_max = work-out[1];
screen—rez = Getrez(); /* 0 = low, 1 = med, 2 = high

color_screen = (screen_rez < 2); mono 2, color 0 or 1 */

Listing 3-1 (continued)

/a**###**#*##*##****#****##********#*#***###*******
Application Functions

a#********************************#***************/”

/*****»**»*»*******»*»****»»***»***»******»********
Main Program

»#**#»»»*»»***»**»**#********»*»»»***********«****✓

main()

<
lnt ap_id; application init verify */

36 Atari ST

WORD gr-uchar, gr_hchar, s* values for VDI handle *s

gr_ubox, gr_hbox;

/xx

Initialize GEM Access
x x x x x x x x x k x /

ap_id = appl_Jtnlt(); /* Initialize RES routines
if (ap_id < 0) ' * no calls can be made to RES **

{ ' * use GEMDOS *✓
Cconus(■***> Initialization Error. <***Nn1);
Cconus('Press any key to continue.V>*);
Craucin();

exit(-l); s* set exit value to shou error *s

>

acreen_phandle = ' * Get handle for screen

graf_handle(&gr_uchar, &gr_hchar, &gr_jubox, &gr_hbox);

8creen_vhandle = open_vuork(screen_phandle);
set_screen_jattr(); s* Get screen attributes * /

✓xxx

Rppllcation Specific Routines
X /

Listing 3-1 (continued)

/X X X X X X X X X X X X X X X X X X X K K X X K X X X X X X X X X X X X K X X X X X K X X X X X X X X

Program Clean-up and Exit
X X X X X X X K X K X X X X X X X X X K X /

/* Wait for keyboard before exiting program

CrauclnO; /* GEMDOS character input

v_clsvuk(screen_vhandle); ' * close workstation *s

appl_axit(); end program

>

TRUE and FALSE. These constants are defined for the sake of con
venience and to make your code more readable.

The first header file included in this section, stdio.h, controls
standard input and ou tpu t It includes some C definitions for func
tions, external declarations specifying function types, and some sys
tem constants. File stdio.h may vary from compiler to compiler. This
means tha t you may need to include some other declarations to get
your Atari program to run. If this is the case, you may add these
declarations to the stdio.h file or you may put them in this section of
the outline program.

The second header file, osbindLh, declares the function bios(),

Preparing to Use GEM 37

jd>ios(), and gemdos(), which actually Interface with the operating
system. Additionally, osbind.h defines the functions names for the
particular BIOS, XBIOS, and GEMDOS calls using the #define
precompiler directive. For example, the function Settime() is actually
an XBIOS call and is defined as this:

#define Settime(a) xbios(22 , a)
The function xbios() calls XBIOS routine number 22 with the
parameter a. The purpose of this #define statement is to make your
program more readable and easier to write because you don’t have to
remember what number to use for the set time function. A complete
listing of the header flies is included in Appendix B.

The last two header files, gemdefs.h and obdefs.h, primarily contain
definitions for constant values used by GEM. For example, some GEM
functions use one of their parameters to define the type of operation
to perform. The writing modes are a good example of this. As ex
plained earlier, the writing mode you use can be replace, transparent,
XOR or reverse transparen t As a parameter in the set writing mode,
these modes have numerical values of 0, 1, 2, or 3, respectively.
Instead of having to remember these values, you can use the constant
names MD-REPLACE, MD_TRANS, MD-XOR, and MD_ERASE. This
makes your programs much easier to read, write, and understand.

GEM Application Overhead
The second major section of the outline program contains informa
tion for GEM’s application overhead. Included in this section are
declarations for the variables used by the VDI and some variables you
use to describe the environment the program is running in.

The first line in this section is a typedef operation. This line
defines a new variable type called WORD to be equivalent to an
integer. A type definition tells the computer what kind of data it is
processing. All GEM documentation uses the type WORD for data
processing. On the 68000 microprocessor, the length of a word is the
same size as an integer, tha t is, 16 bits. To remain consistent with
the GEM documentation, the type WORD is used throughout this
book for all GEM parameters. This definition also allows for easy
portability of your programs. If you move the program to another
computer with a different word size, you can simply redefine WORD
and recompile the program.

The first use of type WORD is to declare the global arrays used by
GEM, which include contrl[12], intout[128], intin[128], ptsin[128],
and ptsout[128]. These arrays are discussed in detail in Chapter 1.

The next set of lines under GEM Application Overhead are declara
tions for variables used by the programs in this book The first of

38 Atari ST

these variables, screen—handle, is a handle to the virtual workstation
for the console. The second variable, screen_phandle, is a handle to
the physical workstation of the console. Screen-rez is the resolution
and is either 0, 1, or 2 (low resolution, medium resolution, or high
resolution, respectively). Color_screen is a flag that is TRUE if the
program is running on a color monitor; otherwise it is FALSE.
and y_max are the values of the maximum coordinates in the x and
y directions on the current screen.

AppUcatlon-Speclfic Data
Because this is an outline program, it does not perform an applica
tion. Therefore, th is section does not require any information.
However, when you begin to write applications, this section will hold
the global variables, structure definitions, and constant definitions
used specifically by your application.

GEtM-Related Functions
For now, this section provides a general-purpose open virtual worksta
tion function and initialization function. Function open_vwork()
opens a new virtual workstation. Its input parameter is the handle to
the physical workstation to which this virtual workstation is at
tached. Function open_vwork() returns the handle of the new virtual
workstation.

Here is the first use of the VDI function ▼_opnvwk(). This function
opens a virtual workstation and has three parameters: an input array
of eleven elements, the address of the handle to a physical worksta
tion, and an output array of 57 elements. The input array specifies
the settings for several of the workstation attributes. The last element
specifies the coordinate system to use. The output array contains
information about the new workstation such as pixel size and various
output capabilities. V_opnvwk() returns the handle of the new virtual
workstation in place of the physical workstation handle. For example,
in open_vwork() in the outline program, the input array w ork-in[]
is set to specify the default values except for the coordinate system.
Here the raster coordinates are used. Open_vwork() calls v_opnvwk()
with the input array, the physical handle passed in phys-handle, and
the output array. Open_vwork() then returns the value of the new
handle. If the value of the handle is 0, the v_opnvwk() function is
unsuccessful.

All GEM and Atari functions are listed in the appendices of this
book. For this reason, whenever a new GEM or Atari function is
introduced, its purpose and usage in the application program is given
a detailed explanation. However, details of parameters and values

Preparing to Use GEM 39

returned can be found in the appendices. In most cases, such descrip
tions are useless as in the case of the v_opnvwk() function, because
all default attributes can be set using a clearly labelled VDI function
(see Chapter 4). Many of the returned values are of little use for most
applications. Some of these values are used in the next function listed
in program OUTLINE.C.

You may wonder why the RC system is used as a default for the
screen. This is because the virtual workstation m ust inherit the
physical workstation’s coordinate system. The GEM desktop opens
the screen’s physical workstation using raster coordinates because
the AES works with raster coordinates. Therefore, any programs you
write that use the system monitor or the AES, must work in raster
coordinates. If you have another monitor attached to your computer
with its appropriate device driver, you can open a physical worksta
tion for it using NDC. If you tiy to open a virtual workstation for the
system screen with NDC, GEM automatically overrides your setting
and changes it to RC.

The second function defined in the section for GEM-related func
tions is called set_screen_attr(). This function sets the global vari
ables x_max, y-m ax, screen_rez, and color_screen. To obtain the
values, a call to VDI function vq_extnd() is made. The vq_extnd()
function exemplifies the standard format for all VDI function
parameter lists. All VDI function parameter lists have as their first
parameter the handle to a workstation. The only functions that vary
from this format are v_opnwk() and v_opnvwk(). As stated earlier,
all VDI input and output is associated with a particular workstation.
Thus, any VDI function must have a workstation handle (either
physical or virtual) as its first parameter.

The vq_esrtnd() function also has a second and third parameter.
The second parameter determines the set of attribute values to be
returned. If the parameter is a 0, the same values returned by the
v_opnw k() function are returned. If the parameter is a 1, an extended
set of values is returned. The third parameter is an array of 57
elements, which holds the returned values.

In set_screen_attr(), vq_extnd() is called so that it returns the
same values as the v_opnwk() function. Then the appropriate global
variables are s e t These values might have been set in function
open_vwork() above. However, this would only allow open_vwork()
to be used once and only for the screen. By moving the initialization
of these global variables to a separate function, you can use
open_vwork() to open as many virtual workstations as needed for
any type of device.

The XBIOS function G etrez() is used to retrieve the current screen
resolution. Because of the way Atari designed the ST, low or medium
resolution implies a color monitor or at least color representation in

40 Atari ST

the b it map. High resolution is available only with the monochrome
monitor. Thus, if screen_rez is 0 or 1, color, screen is set to TRUE;
otherwise it is set to FALSE.

Application Function
Similar to the section for application-specific data, this section holds
the functions used in application programs. Because OUTLINE.C
performs no action, there are no functions listed here.

The Main Program
All C programs must have a function called main() where program
execution begins. In the GEM programs presented throughout this
book, main() is used as the flow control module. It executes the list
of procedures given a t the beginning of this chapter. Function main()
is divided into three subsections: GEM access initialization, ap
plication-specific routines, and program dean-up and exit

GEM Access Initialization
Function main() begins by identifying itself to GEM through the AES
function appl_init(), which initializes GEM to accept the application
as an active process. The AES responds by returning a positive
Integer value. If a negative value is returned, the AES has a problem
initializing GEM. In this case, main() reports the error to the user
and aborts the program. The GEMDOS function Cconws() writes a
string to the console. A GEMDOS function is used because the
program has not been properly initialized and you do not know if you
have access to the VDI or AES. The GEMDOS function Crawcin()
waits for input from the console. It returns the keycode value pressed
without echoing the character to the screen. When this function is
called, the program simply pauses and waits for the user to press
a key.

If GEM application initialization goes well, main() continues by
initializing the program’s global variables. First the handle of the
console’s physical workstation is requested using another AES func
tion, grafL_handle(). This function returns the handle of the physical
workstation. It also sets its four parameters to the width and height
of the system font character cell (in pixds) and the width and height
of a box laige enough to hold a system font character (in pixds),
respectively. Because the function requires these addresses as
parameters, they have been induded. For most programs in this book,
these values are ignored.

The last two steps of GEM access initialization are to get a virtual

Preparing to Use GEM 41

workstation using open_vwoik() (defined earlier) and to set the
remaining global values through set_screen_attr() (also defined ear
lier). This completes the first three steps a GEM application m ust
perform.

Application-Specific Routines
This section contains calls to the application functions defined under
the section for application-specific functions. Generally these include
an initialization function and several functions to process your
program.

Program Clean-up and Exit
This section covers the last two steps a program m ust perform. First,
function Crawcin() is called to pause the program before it exits. The
first few programs you write display some output on the screen and
then exit. If your program doesn’t pause before it exits, you do not
see what was drawn because the first thing the desktop does is erase
the screen when the program returns to the desktop. To give you time
to see what the program produced, a pause is placed here before the
program ends.

The next function, v_clsvwk(), closes the virtual workstation
opened earlier. I t too, uses the workstation handle as its first and
only parameter. Note tha t for each workstation you open, you m ust
have a corresponding close. You should first close all of your virtual
workstations using v_clsvwk(). Then close all physical workstations
you opened using v-d8w k(). Remember not to close the desktop’s
physical workstation or you will have problems.

Finally, function appl_exit() tells GEM that the application has
terminated. This returns all program memoiy to the available pool
and causes the desktop to be restarted.

This is basically the minimum programming you need to run a
program using GEM on the Atari ST. If you want to write a quick C
program using the standard input and o u tpu t you can provided you
do not use any GEM VDI or AES function calls. You can use GEM
BIOS or XBIOS calls freely in your C programming and you can use
any standard C functions. However, the screen may act a little oddly
because your program does not exactly match the GEM interface.

In reference to function origin, note that all VDI functions begin
with letter “v.” All GEMDOS and XBIOS functions begin with a capital
letter. Standard C function and functions written specifically for this
book all begin with lower-case letters. This should help you identify
the origin of a function in programs presented here or elsewhere.

Now, you should enter this outline program, compile i t link i t and

42 Atari ST

run i t Nothing happens except tha t the program runs and the screen
freezes because it is waiting for you to press something on the
keyboard. When you strike a key, the desktop returns. Get the outline
program working so that it compiles, links, and executes without any
problems.

Kinetic Line Art

LINES.C (see Listing 3-2) is an example of programming using the
outline program. This is a kinetic line art program that draws what
appears to be a moving set of lines on the screen.

Listing 3-2 Program LINES
✓ X

LINES.C Drau kinetic line art

This program demonstrates the use of the polyline functions by

drawing lines between two pairs of moving points on the screen.
X K X X X X K X X X X K X X X X X X X X X X X X X K X X X X K X K X X X K X K X X X X X X X X X X X X X X K X X K X X X X X X X X X X X X X /

✓ X X X X X X f c X

System Header Files & Constants
X K X X X K X / r

8include

((include
Uinclude

ttinclude

<stdio.h>

<osbind.h>

<gemdefs.h>
<obdefs.h>

Standard 10 **

/ * GEMDOS routines
/ * GEM RES * '

** GEM constants

ttdef ine
ttdef ine

FRLSE
TRUE

0
!FRLSE

/ X X X X X « X X X K X K X « X X X X * X * X X K X

GEM Rpplication Overhead
X /

Declare global arrays for VDI.
typedef int WORD;
WORD contrl[12],

intout[120], intln[12B]

ptsin[128], ptsout[128]

WORD screen_vhandle,
screen_phandle,

screen_rBZ,
color_screen,

x_max,
y_<nax;

x/

' * WORD is 16 bits
** VDI control array

VDI input arrays * '

/ * VDI output arrays

/* virtual screen workstation *s

/ * physical screen workstation * /

/ * screen resolution 0,1, or 2 *'
s* flag if color monitor * /

max x screen coord
max y screen coord

Preparing to Use GEM 43

Listing 3-2 (continued)
/'a#*#####*#**#*****######*#*****#***##*#*#******#*#

Application Specific Data
xxy

/ * Constant values for drawing area * /

int x_lower, lowest x value
y_lower, lowest y value *s

x_upper, s* highest x value */

y_upper; highest y value

/xx

GEM-related Functions
xx/

WORD open—vwork(phys_handle)

WORD phys_handle;
/xx

Function: This function opens a virtual workstation.
Input: phys-handle = physical workstation handle

Output: Returns handle of workstation.
X /

<
WORD work_in[ll],

work-out[57],
new-handle; handle of workstation

int 1;

for (1 = 0 ; i < 10; 1++)

work_in[l] = 1 ;
work_in[10] = 2;
new_handle = phys-handle;

v_jopnvwk(work-in, &new_handle,
v_clrwk(new_handle);

return(new_handle);

>

set^screen_attr()
✓xx

Function: Set global values about screen.

Input: None. Uses screen_vhandle.
Output: Sets x_max, y_max, color_screen, and screen—rez.
X /

K
WORD work_out[57];

vq_ex tnd(sc reen_vhand1e , 0, wo rk_ou t);
x_max = work_out[0];

y_max = uork_out[l];
screen—rez = Getrez(); ' * 0 = low, 1 = med, 2 = high
color_screen = (screen—rez < 2); mono 2, color 0 or 1 **

>

/ * use currently open wkstation

worl<_out);
clear workstation

4 4 Atari ST

Listing 3-2 (continued)
/a#***#***#*#****##*##*#***#*#*#*##**#****##******#

Application Functions
xx/

long Rnd_rng(lou, hi)
long low, hi;
/**
Function: Generate a random number between low and hi, inclusive.
Input: low = lowest value in range.

hi = highest value in range.
Output: Returns random number.
xx/

<
hi++; s* include hi value in range

return((Random() * (hi - low)) + low);

>

lnchl<(x,dx, lb,ub)
int x,dx,lb,ub;
/***
Function: This function tests whether a number (x) will be outside

a given range if a move (dx) is added to it. If the test is
true, the direction of movement is reversed.

Input: x number to test
dx delta to add to x
lb lower bound
ub upper bound

Output: Returns new dx value.
X /

<
if (x+dx <= lb || x+dx >= ub)

dx*=-l;
return(dx);

>

draw_frame()
/X X X X X X X X X X X X X X X X X X K K X

Function: Draw a rounded rectangle border.

Input: None.
Output: None.
X /

<
WORD pts[4]; array to hold corner vertices *s

/ * Set boundaries for border rectangle * /

pts[0] = x_lower; s* Upper left *s

pts[l] = y_lower;

pts[2] = x_upper; ✓x Lower right
pts[3) = y_upper;

v_rbox(screen_vhandle, pts); Draw a rounded box
return;

Preparing to Use GEM 45

drau_llnes()
✓a**##****#***#**#**##**####**##*#*#******#*********
Function: Do kinetic line art

Input: None.

Output: None.
#*#************************»***#************#/
<
int llne_number, loop control **

k;

WORD pxl, pyl, / * endpoint 1 for line p
px2, py2, ' * endpoint 2 for line p

pdxl, pdx2, s* delta x for endpoints * /

pdyl, pdy2; / * delta y for endpoints

WORD rxl, ryl, variables for line r * /

rx2, ry2,
rdxl, rdx2,
rdyl, rdy2;

WORD pxy[100], rxy[100]; ' * arrays to hold 2 sets of 25 lines

do <'* begin screen control loop

<
v-jclruk(screen_vhandle); clear screen

draw_frame(); ' * draw border *s

s* Initialize line endpoints
/ * Line P endpoints

pxl = Rnd_rng((long)x_lower, (long)x_upper);

pyl = Rnd_rng((long)y_lower, (long)y_upper);

px2 = Rnd_rng((long)x_lower, (long)x_upper);
py2 = Rnd—rng((long)y_lower, (lcng)y_upper);

pdxl = Rnd_rng(-10L, 10L);
pdyl = Rnd_rng(-10L, 10L);

pdx2 = Rnd_rng(-10L, 10L);
pdy2 = Rnd_rng(-10L, 10L);
rxl = Rnd_rng((long)x_lower, (long)x_jjpper);
ryl = Rnd_rng((long)y_lower, (long)y_jupper);

rx2 = Rnd_rng((long)x_lower, (long)x_Jupper);

ry2 = Rnd_rng((long)y_lower, (long)y_upper);

rdxl = Rnd_rng(-10L, 10L);
rdyl = Rnd_rng(-10L, 10L);

rdx2 = Rnd_rng(-10L, 10L);
rdy2 = Rnd_rng(-10L, 10L);

Each point requires 4 elements in the pxy or rxy array. The current

line drawn is held in elements S6, 97, 9B, and 99 for the x and y
coordinates of the first endpoint and the x and y coordinates of
the second endpoint, respectively. The next line to be erased is

in elements 0, 1, 2, and 3.
*/

Listing 3-2 (continued)

46 Atari ST

for(k=0; k<100; k++)

pxy[k] = rxy[k] = 0 ; s* clear arrays

vsl_color(screer_vhandle,l); ' * Set color to black */
/ * Line drawing loop begins here

t* Change loop end value to draw any number of lines * '

Listing 3-2 (continued)

do

<
rxy[96] = rxl; rxy[97] = ryl; s* Set next line to * /

rxy[9B] = rx2; rxy[99] = ry2; be drawn * /

pxy[9S] = pxl; pxy[97] = pyl;

pxy[9B] = px2; pxy[99] = py2;

v_plin8(screen_vhandle, 2, &pxy+96); Draw polyline using */’
v_pllne(screen_vhandle, 2, &rxy+9B); 2 vertices (one line) »/

v_pllne(screen_vhandle, 2, &pxy); Redraw first line * /

v_pllne(screen_vhandle, 2, &rxy); to erase it

for(l<=0; k<9G; k++) Shift endpoints in arrays

<
pxy[k] = pxy[k+4];

rxy[k] = rxy[k+4];

)

/* Calculate endpoints of next lines * '

pxl += pdxl; pyl += pdyl;

px2 += pdx2; py2 += pdy2;
rxl += rdxl; ryl += rdyl;

rx2 += rdx2; ry2 += rdy2;

rdxl = inchk(rxl. rdxl. x_lower. x_upper);

rdx2 = lnchk(rx2. rdx2, x_lower. x_upper);

rdyl = lnchk(ryl. rdyl. y_lower. y_upper);

rdy2 = lnchk(ry2. rdy2. y_ lower. y_upper);

pdxl = lnchk(pxl. pdxl. x_lower. x-jupper);

pdx2 = inchk(px2. pdx2. x_louier. xjupper);
pdyl = inchk(pyl. pdyl. y_lower. y_upper);

pdy2 = lnchk(py2. pdy2. y-Jower, y_upper);

) while (!Cconis()); /* check if key pressed
) while ((Crawcin() & 0x7F) != 27]i; ' * escape key exits

return;

/ ’X x k x x k x x x x * * x x x x x * * « * * * x x x x x x x x x « * x x x x x * * * * x x x x x x x

Main Program
X X X K X X X X K X X X X X X X X X X X X K X X X X X K X /

main()

<
int ap_id; application init verify * /

WORD gr_jwchar, gr_hchar,
gr_ubox, gr_hbox;

' * values for VDI handle

Preparing to Use GEM 47

Listing 3-2 (continued)
/»##«#*##»*»*»»*»****»»**»»*»****«##«»*#**»*»»**»»*

Initialize GEM Access

ap—ld = appl—init(); Initialize RES routines *s

If (ap_ld < 0) ' * no calls can be made to RES * '

{ y* use GEMDOS * '

Cconws(****> Initialization Error. <*#*Vi*);

Cconws('Press any key to continue.\n*);
Craucin();
exit(-l); ' * set exit value to show error

>
screen_phandle = Get handle for screen

graf_handle(&gr_wchar, &gr_hchar, &gr_jubox, &gr_hbox);

screen_vhandle = open_vwork(screen_phandle);

set^BcreerLjattr(); Get screen attributes *s

/'a**#*#*####**##***##*********#*#**#############*###
Rppllcatlon Specific Routines

vsl_type(screen_vhandle, 1); Set polyline pattern to solid

vsl_uidth(screen_vhandle, 1); Set line width * /

vsf_color(screen_vhandle, 0); / * Set fill color to 0 (white) * /

vsf_perimeter(screen_vhandle, TRUE); /* Turn on perimeter * /

vswr_mode(screen_vhandle, MD-XOR);
✓x set boundaries

x_lower = 10;

y_lower = 10;

x-jupper = x_max - 10;
y-jupper = y_max - 10;

start program

draw_lines(); / * Do line art

/xxx

Program Clean-up and Exit
xxx/

v_clsvwk(screen_vhandle); close workstation * /

appl_exit(); end program * '

>

Each line consists of two endpoints. Each endpoint has an x and
a y coordinate. To make kinetic line art, the program draws a line
between the two endpoints and then moves the two endpoints.
Another line is drawn and the endpoints are moved again. Then
another line is drawn and another moved. After a specified number
of lines are drawn (in the case of th is program, 25), the first line is
erased before another line is drawn. Then another line is erased and

48 Atari ST

another line drawn. This process continues until the user presses the
Escape key.

The important aspects to look for in this program are its organiza
tion and the use of the writing mode XOR The program builds on
the OUTLINE.C file following its intended flow quite carefully. The use
of the XOR writing mode is used in many programs throughout this
book.

As an example of the efficiency of using the XOR writing mode,
assume that you have a blank monochrome screen where all bits are
0. Now, by drawing a line, you are writing 1 b its onto 0 bits. Under
the XOR operator, this results in a 1 bit a t each location under the
line in the b it map. Therefore, a line is displayed on the screen. Now
draw another line directly on top of the first line. Each 1 b it on the
line is XORed with the 1 bit in the b it map. At each location in the
bit map, a 0 results. The end result is that you have erased the first
line. By drawing a line on a blank screen, you get a line to appear. By
drawing the same line in the same place, you get the line to disappear.
This is the unique feature of the XOR operator: if you apply the same
XOR operation twice in a row, you wind up where you started.

This fact about the XOR writing mode is used in program LINES.
The program simply stores the endpoints for the 25 lines shown on
the screen. Before the next line is drawn, the first line is redrawn to
erase i t Then the next line is drawn and erased before a new line is
drawn. This process can go on and on. The application-specific data of
Listing 3-2 holds four variables: x_lower, y_lower, x-ttpper, and
y-upper. The variables hold the lowest and highest x and y coordinate
values that can be used. These values set the range over which the
lines can travel.

Function main() gives an overview of the program's flow. As ex
pected, the first thing the program does is initialize GEM access. After
this is done, the application begins its processing.

Under the application-specific routines, the first five lines set the
workstation attributes to be used by the program. The first function,
vsl-type(), sets the line pattern to be a continuous or solid line.
Function vsl_width() sets the line width to 1 unit (in this case a
pixel). The vs£_color() function sets the fill color to the background
color (white). The fill color is the color used when a polygon is filled.
The next function, vsf_perimeter(), tells the VDI to draw a perimeter
when it draws a predefined shape. The last attribute function,
VBwr_mode(), sets the writing mode to XOR Note the use of the
defined constant MD-XOR from the osbind.h file. Do not worry about
fully understanding how these attribute functions work. The program
in Chapter 4 fully uses the workstation output and attributes.

The next step after getting the workstation attributes is setting the

Preparing to Use GEM 49

boundaries of the line-drawing routine. The program arbitrarily
defines the boundaries to fall within 10 pixels from each edge. Since
the lowest coordinate value is already known to be 0, the program
sets zJow er and y_lower to the value 10. Because the upper coor
dinate values are not known until the program is running, the
program uses the global values from x-max and y_max to determine
the upper limits. These values depend on the type of monitor and
resolution used. Once the boundary values have been se t the program
begins by calling function draw_lines().

Function draw_lines() returns when the Escape key has been
pressed. Because the user has requested the program exit it is safe
to assume that the images have been drawn on the screen. Therefore,
the Crawcln() pause has been removed from this program and nor
mal program exiting is performed.

Function draw_lines() controls the program flow while lines are
being drawn on the screen. The program listed here actually keeps
track of two sets of lines moving independently on the screen. The
flow of draw_lines() follows this outline:

do begin the line drawing function
clear the screen
draw a border
randomly select the endpoints for lines P and R
randomly select the movement for each endpoint
dear the storage arrays for each set of lines
set the line drawing color to black
do begin the line drawing output

save the next lines to be drawn in the storage arrays
draw lines P and R
redraw the first lines in the storage arrays for P and R
move each endpoint

until a key is pressed
until the key pressed is the Escape key

Starting a t the top of this outline, the entire draw_lines() function
is one do-while loop, which iterates each time a key is pressed. If the
key is not the Escape key, the loop repeats. Thus, by pressing any key
other than the Escape key, the user can dear the screen and start
the line-drawing sequence over again.

The remainder of draw_lines() consists of line-drawing initializa
tion and a line-drawing loop. The initialization process begins by
dearing the screen using the v_clrwk() function. A border is drawn
by the application function draw_frame(). Looking at draw_frame(),
you see an array being initialized and the VDI function v_rbox().

50 Atari ST

When drawing a rectangle, you only need to specify the coordinates
of the upper left comer and lower right comer. This is done in array
pts[]. As discussed in Chapter 1, pts[] follows the point array format
where the first x coordinate is placed in element 0 followed by its
corresponding y coordinate in element 1. The next point’s x and y
coordinates are stored in elements 2 and 3, respectively. The function
v_rbox() draws a filled rectangle with rounded comers.

Back in draw_lines() after the call to draw_frame(), the next step
is to initialize the endpoints of the two lines and each endpoint’s
movement. The initial values are chosen through the application
function Rnd_m g(). Function Rnd_rng() is the first function defined
in the application function section of program LINES. This function
returns a long integer value within the range specified by parameter
low and hi. The range includes the values low and hi. Rnd_rng() uses
the XBIOS function Random(). Function Random() returns a 24-bit
random value. Function RndLrng() takes this value and performs a
modulo operation to get a value between 0 and the difference between
hi and low. By adding the value low to the modulo resu lt RncL_mg()
produces a random number within the range requested. The XBIOS
function Random () is different from the C function ran d () in that
you cannot set the seed for Random () to specify a sequence.

Once draw_lines() has set the initial values for the endpoints and
their movement it clears the arrays that keep track of the lines on
the screen. Each line requires two endpoints and each endpoint uses
two values. Thus, one line is defined by four elements in the array.
To store 25 different lines, 100 elements are required for each array.
After clearing the arrays, the line color is set and the line-drawing
loop begins.

The VDI function to draw a line, v_pline(), is actually a polyline-
drawing routine. Given a set of points, v_pline() draws a line from
the first point to the second point to the third point and so on until
the number of specified points has been reached. The points are
passed to v_pline() in an array using the standard VDI point format
For this program, only two points are specified because only one line
is being drawn a t a time.

The next line to be drawn is stored in elements 96, 97, 98, and 99
of the line storage arrays. Using the fact that the array name is the
base address of the array, the v_pline() function calls in draw_line()
pass the address of the 96th element in the array. Thus, the newest
lines P and R are drawn.

The oldest line showing on the screen is stored in elements 0, 1, 2,
and 3. By passing the base address of the array to v_pline(), the
program redraws the oldest lines on the screen. By redrawing these
lines in the XOR writing mode, the program effectively erases the

Preparing to Use GEM 51

oldest lines. Note that until 25 lines are drawn, the values in elements
0, 1, 2, and 3 are all 0. Therefore, when v_pline() tries to draw a line
from (0,0) to (0,0) it simply draws a point (a line with no length) a t
coordinate (0,0).

The next step for draw_line() is to shift the position of the
endpoints in the arrays. Because each line takes four points, each
point m ust be shifted down by four elements. This is done in the
for-loop shown in the listing.

The final step for draw_line() is to calculate the endpoints for the
next pair of lines. This is done by adding the appropriate movement
value to each coordinate value. After the movement values are added,
the coordinate values are checked using application function inchk().
Function inchk() tests if the next addition of the movement value
causes the coordinate to move beyond the specified range. Function
inchk() is passed the current coordinate, the current movement
value, the lowest range value, and the highest range value. If the next
coordinate value remains within the range, the inchk() returns the
current movement value. If the next coordinate value exceeds one of
the range limits, inchk() returns the negative movement value. This
makes it appear tha t the endpoints are “bouncing off’ the walls of
the border. For example, suppose the x coordinate limits are 10 and
630 (as on a monochrome monitor). If pxl has the value of 150 and
pdxl has the value of —4, the next value of pxl is 144, which is within
the range, so inchk() returns the value of —4. If pxl has the value of
12, the next value of pxl is 8, which is too low. In this case, inchk()
returns 4, so that the next time pxl is changed, it is changed by 4
instead of —4.

The end of the inside do-while loop uses the GEMDOS function
Cconis() to test if the console has a character waiting to be read (that
is, the user has pressed a key). If the function returns FALSE, no key
has been pressed and another line is drawn. If the function returns
TRUE, the user has pressed a key and the inner loop exits.

The outer do-while loop checks which key has been pressed by
using the value returned from function C raw dn(). Function Craw-
c in () reads the current character waiting to be read from the console
and returns the corresponding keycode. The keycode on the Atari ST
consists of a 16-bit value. For ASCII characters (the first 128 charac
ters), the lower 7 bits contain the ASCII value. By performing a
bit-wise AND operation on the value returned from C raw dn(), the
program gets the ASCII value of the key pressed. Since the ASCII value
of Escape is 27, the loop begins again if the value returned is not 27. If
Escape is pressed, the function draw_lines() exits and returns to
m ain(). A listing of the full keycodes is given in Appendix C.

This completes the description of program LINES. Enter and com

52 Atari ST

pile th is program to practice using the OUTLINE program and to get a
feel for programming in GEM. When you have LINES running, make
some changes to i t First try changing some of the range values for the
endpoint initialization. Then tiy using the replace writing mode in
stead of the XOR writing mode. To do this, draw the new line using
line color 1 (black) and the old line using line color 0 (background).
This means tha t you need to use vs 1-color() to set the line-drawing
color before each v_pline() call.

C H A P T E R F O U R

VDI Output
and Friends

All VDI functions produce output on a workstation. A workstation has
a logical bit map on which all output is produced. Whether or not a
physical bit map is used is irrelevant, since the output is always the
same no m atter which device is used to produce the picture. That’s
the principle behind using VDI.

The general procedure used in a GEM program is to open a
workstation (either physical or virtual) and output the graphic draw
ings to i t All VDI functions (including in p u t ou tpu t and workstation
attributes) use a workstation handle as their first parameter.

The Workstation Workout

How do you go about using all these functions? Program GRAFDEMO
exercises the various functions used to produce output and set the
workstation attributes. Go directly to function m ain() in Listing 4-1
to see the general flow of the GRAFDEMO program. The preliminary
setup is the same as in the two previous programs, OUTLINE and
LINES. First a virtual workstation is opened, and then the global
system variables are se t

There are four primary application functions used to demonstrate
the various w orkstation attribu tes: d raw _line(), d raw _rect(),
draw_circ(), and draw_text(). Each works with a different type of
o u tp u t Function draw_line() demonstrates various line-drawing
capabilities and routines and attributes related to drawing lines. The
function draw_rect() demonstrates drawing rectangles and their as-

54 Atari ST

✓ X

GRRFDEMO.C Demonstrate VDI graphics routines.

VDI graphics routines are explained in the text. Change this
program to test different combinations of graphic attribute
settings.

X /

sxx

System Header Files & Constants
X /

Listing 4-1 Program GRAFDEMO

ttinclude <stdlo.h>

ttinclude <osbind.h>

ttinclude <gemdefs.h>

ttinclude <obdefs.h>

Standard 10 */

GEMDOS routines
y* GEM RES

/ * GEM constants

ttdefine FRLSE 0

ttdef ine TRUE 'FALSE

/ X

GEM Application Overhead
X /

/ * Declare global arrays for VDI. * /

typedef int WORD; ' * WORD is 16 bits * /

WORD contrl[12], /* VDI control array
intout[128], lntin[12B], / * VDI input arrays **

ptsin[12Q], ptsout[12B]; VDI output arrays

WORD sc reen_vhand1e ,
screen_phandle,

screen_rez,
color_screen,
x_max,

y_max;

s* virtual screen workstation *s

' * physical screen workstation
/ * screen resolution 0 ,1 , or 2
** flag if color monitor

max x screen coord *s

** max y screen coord

/ " X

Application-Specific Data
X /

/ X X X X X X X K X X X X X X X X X X X X X X X X X X K X

GEM-related Functions
X /

WORD open—vwork(phys-handle)

WORD phys_handle;
X X X X X X X X X X X X X X X X X X X K X X X X X K X X X X X X X X X X X X X X X X X X K X X X X K X

Function: This function opens a virtual workstation.

Input: phys-handle = physical workstation handle
Output: Returns handle of workstation.
X / r

VDI Output and Friends 55

<
WORD work-in[11],

work_out[57],
neu_handle; ' * handle of workstation * /

int 1;

for (1 = 0 ; 1 < 10; 1++) set for default values

work—ln[i] = 1 ;
work—ln[10] = 2 ; ** use raster coords
new_handle = phys_handle; use currently open ukstation * /

v_jopnvwk(work-in, &new_handle, work—out);
return(new_handle);

>

set_BcrQBn_attr()
/a#*#**#**#*##***#*#*************#**#*************#
Function: Set global values about screen.
Input: None. Uses screen—vhandle.

Output: Sets x_max, y_max, color_screen, and screen_rez.
»»*»**»**»*»*******«»*#*********»***********✓

i
WORD work-jout[57];

vq_extnd(screen—vhandle, 0, work_out);

x_/nax = worl<_cut(0];
y_max = uorl<_Dut[l];

screen_rez = Getrez(); /* 0 = low, l = med, 2 = high
color_screen = (screen_rez < 2); mono 2 , color 0 or 1 *s

>

Listing 4-1 (continued)

/’****»****«******»*************»*»#*«**************
Application Functions

»*»*##**#**********#*»**»*****«*»*»*»**«#«********✓

calc_shape(num_pts, a)

WORD *num_pts, a[];
/a***
Function: Used by draw_llne() to calculate an arrow given

the leftmost vertex.
Input: a[0] = x-coord of point.

a[l] = y-coord of point.
Output: Returns array a filled with points for v_pline

function to draw an arrow with six line segments.
Num_pts contains the number of points in the shape,

a*#**********************#*****#*##***************/'
i
s* SHRPE^SIZE determines thB size of the arrow
ttdef Ine SHRPEU5IZE 18

»num_pts = 7;

56 Atari ST

Listing 4-1 (continued)

' * The arrow is draw from the upper leftmost point.
a [2
a[3
a[4

a[5

a [6
a[7

= a[0] + SHRPE—SIZE;

= a[l];
= a[2];

= a [3] - SHRPEJSIZE;

SHRPE.J5IZE;

(SHRPE_SIZE'2);

= a[2] +
= a[l] +

a[12] = a[0];
a[13] = all] +

a[1 0] = a[2];
a[ll] = a[13];

a[B] = a[4];
a[9] = a[ll] +

return;

SHRPE-SIZE;

SHRPE_SIZE;

draw_lina()
/a***
Function: Demonstrate VDI line drawing functions.
Input: None.

□utput: None.
*«******«»»*****«**************»««*****«*•*«*»***«/'
<
I40RD count, pxy[32];

WORD x[16], y [16]; / * start points for shapes * /

int 1;

x[l] = 10; y[l] = 20 / * set start points 1st ine
x[2] = 70; y[2] = 20
x[3] = 130; y[3] = 20
x[4] = 190; y[4] = 20

x[5] = 10; y[5] = as / * set start points 2nd line
x[6] = 70; y[G] = 85
x[7] = 130; y[7] = 85
x[B] = 190; y[B] = 85

x[9] = 10; y[9] = 150; / * set start points 3rd line
x[10] = 70; y[i0] 150;
x[ll] = 130; y[ii] = 150;

x[12] = 180; y[12] = 1S0

/ * Show change in lin8 width * /

v-jclrwk(screen_vhandle); s * clear screen */

for (1 = 1; i <= 12; i++)

<
pxy[0] = x[l]; set start points
pxy[l] = y[i];
calc_shape(&count, pxy); s* set arrow **

VDI Output and Friends

vQl_uidth(screen_!vhandle, 1); / * sot linB width * /

u_pllne(screen_vhandle, count, pxy); s* draw line */

>
Craucin();

s* Show change in line type
v_clruk(screen_v/handle); clear screen *s

vsl_wldth(screen_vhandle, 1); ' * set default width

for (1 = 1; 1 <= 12; 1++)

<
pxy[0] = x[i]; set start points * /

pxy[l] = y[l];
calc_shape(&count, pxy); ' * set arrou * /

vsl_type(screen_vhandle, i); set line type
v_pline(screen_vhandle, count, pxy); s* draw line * /

)
Crawcin();

s* Show change in line end style

v_clruk(screen_vhandle); clear screen **

vsl_width(scr0Bn_vhandle, S); <'* eet medium width

pxy[0] = 50; pxy[l] = 20; ' * draw squared ends
pxy[2] = 150; pxy[3] = 20;
v/sl_ends(scre8n_vhandle, 0 , 0);

v/_pline(screen_vhandle, 2 , pxy);

pxy[0] = 50; pxy[l] = 60; ' * draw arrow ends * '

pxy[2] = 150; pxy[3] = 60;
vsljBnds(screen_vhandle, 1, 1);

v_pline(screen_vhandle, 2 , pxy);

pxy[0] = 5 0 ; pxy[l] = 100; ' * draw rounded ends *s

pxy[2] = 150; pxy[3] = 100;
vsl_Bnds(screen_vhandle, 2 , 2);

v/_pline(screen_vhandle, 2 , pxy);
Crawcin();

/* Show change in marker type

v/_clrwk(screen_v/handle); clear screen * /

For (1 = 1; 1 <= 12; 1++)

(
pxy[0] = x[l];

pxy[l) = y[i];
calc_shapa(&count, pxy);
vsm_type(screen_vhandlB, i);
u-pmarker(screen_v/handle, count, pxy);

>
Crawcin();

Listing 4-1 (continued)

return;

>

58 Atari ST

drau_boxes()
/xx

Function: Draus rectangles used VDI routines.
Input: None.
Output: None.
X X X X X X X X X X X X X X K X /

{
WORD pxy[4];

v_jclrul<(screen_vhandle);

vsf_perlmeter(screBn_vhandlB, FALSE);
pxy[l] = 30; pxy[3] = 90;

pxy[0] = 30; pxy[2] = 60;

vr_recfl(screen_vhandle, pxy);
pxy[0] += 50; pxy[2] += 50;
v/_rbox(screen_vhandle, pxy);

pxy[0] += 50; pxy[2] += 50;
w_r fbox(screen_vhand1e , pxy);
pxy[0] += 50; pxy[2] += 50;

v_bar(screen_vhandle, pxy);

wsf_perimeter(screen_whandle, TRUE);
pxy[l] = 130; pxy[3] = 190;
pxy[0] = 30; pxy[2] = 60;

vr_recfl(screen_vhandle, pxy);
pxy[0] += 50; pxy[2] += 50;
v_rbox(screen_v/handle, pxy);

pxy[0] += 50; pxy[2] += 50;
v_rfbox(screen_vhandle, pxy);
pxy[0] += 50; pxy[2] += 50;

v_bar(screen_vhandle, pxy);

return;

>

dratd_rect()
/ X

Function: Demonstrate VDI rectangle & area functions.

Input: None.
Output: None.
* » X K * * * * X * * X X X X X K X K * « X X X X X X X X » * * » X X * f t * X X X * K K » X X X * X /

{
WORD pxy[32];

int i;

This first drau_boxes() call uses the attribute v/alues
* previously set by drau_llne().
*/

drau_boxes();

Craucin();

Listing 4-1 (continued)

VDI Output and Friends 59

/* Reset to default values *s

v/sl^uldth(screen_v/handle, 1); set default width **

vsl_ends(screen_vhandle, 0 , 0); set squared ends
vsl_type(screen_uhandls, 1); '* set solid lines

drau_boxes();
Craucln();

Listing 4-1 (continued)

Fill attribute settings
vsf_interlor(screen_v/handle, 0); hollow (default) **

drau_boxes();

Crawcin();

vsf_lnterlor(screen_vhandle, 1); / * solid

draw_boxes();
Crawcln();

vsf_lnterior(screen_vhandle, 2); ■'* use patterns

draui_boxes();

Crawcln();

vsf_lnterlor(scresn_vhandle, 3); ' * use hatches

drau_boxes();
Crawcln();

/* Display patterns */

v_clrul<(screen_vhandl0);
vsf_lnterlor(screen_vhandle, 2);
for (1 = 0; 1 < 32; 1++)

{
v/sf.jstyle(screen_vhandle, 1+1);
pxy[0] = ((1*8) * 30) + 20;
pxy[l] = ((1^8) * 30) + 20;

pxy[2] = pxy[0] + 20;

pxy[3] = pxy[l] + 20;
vr_recfl(screen_vhandle, pxy);

>
Crawcinf);

/* Display hatches *s

v_c 1 rwl< (sc reen_vhand 1 e);
vsf_lnterlor(screen_vhandle, 3);
for (1 = 0; 1 < 32; 1++)

<
vsf^style(screen_vhandle, 1+1);
pxy[0] = ((1*8) * 30) + 20;
pxy[l] = ((1'8) » 30) + 20;
pxy[2] = pxy[0] + 20;

pxy[3j = pxy[l] + 20;
vr_recf1(screen_vhandle, pxy);

>
Craucln();

60 Atari ST

/ * Fill area fills complex polygons. The shape In pxy array
* Is a boutle.
*/

v/-jc 1 ruk (sc reerL-vhand 1 e);

vsf_perimeter(screen_vhandlB, TRUE); / * turn on perimeter * /

v/sf_interior(screen_vhandle, 2); / * use pattern fill * /

vsf_style(screen_vhandle, 9); brick pattern
pxy[0] = 30; pxyfl] = 30;

pxy[2] = 150; pxy[3] = 150;
pxy[4] = 150; pxy[S] = 30;

pxy[G] = 30; pxy[7] = 150;

pxy[8] = 30; pxy[9] = 30;
v_flllarea(screen_\/handle, 5, pxy);
Crawcin();

Listing 4-1 (continued)

Contour fill fills an area already shown on the display
v_clrwk(screen_vhandle);

vsf_interior(screBn_vhandle, 0);
vswr_xnode(screen_vhandle, MD—TRANS);
pxy[0] = 30; pxy[l] = 30;
pxy[2] = 100; pxy[3] = 100;
v/Jbar(screen_vhandle, pxy);
pxy[0] = 80; pxy[l] = 80;
pxy[2] = 150; pxy[3] = 150;
v_bar(screen_vhandle, pxy);

vsf_interior(screen_vhandle, 3);
vsf_style(screen_v/handle, 3);
v_ccrntourf ill (screen_vhandle, 90, 90,
Craucin();

/ * use hollou fill

transparent mode *s

draw overlapping * /

/ * rectangles * '

/ * use hatch fill

grid hatch

-i);

}

draw_circ()
/X X

Function: Demonstrate VDI circle, ellipse, & arc functions.
Input: None.

Output: None.
xx/

i

draw circle and ellipse »/
v/_clrwk(screen_vhandle);
wsf_interior(screen_whandle, 2); pattern fill

vsf_style(screen_v/handle, 17); s* use wavy pattern * '

v/_circle(screen_v/handle, 50, 100, 40);

v_ellipse(screen_vhandle, 150, 100, 40, 75);

Crawcin();

s* draw circle arc and ellipse arc
v_clruk(screen_vhandle);
v_arc(screen_vhandle, 50, 100, 40, 600, 1800);
v_Bllarc(screen_vhandle, 150, 100, 40, 75, 2000, 3500);
Crawcin();

VDI Output and Friends 61

/* draw circle pie and ellipse pie
v_jclrwl<(screen_vhandle);
w_pleslice(screBruwhandle, 50, 100, 40, 1800, 2100);
v/_Bllple(screen_vhandle, 150, 100, 40, 75, 3500, 500);

Craucln();

>

draw_text()
/a*##*#*****#**###*##****###*#*###*#*#*****##****#*
Function: Demonstrate VDI text drawing functions.

Input: None.
□utput: None.
*##*****»»*#*******#»»#****»#**##**»***#*****»****/
{
int 1;
WORD char_helght, char_wldth, cell_height, cell^wldth;

WORD hor^out, vert_out;

WORD attrlb[10];
char s[32];

s* show plain text output. Justified output, and rotation
v_jclruk(screen_vhandle);
v_gtext(screen_vhandle, 30, 40, 'This is v_gtext.');
v/_JustifiBd(screen_vhandlG, 30, 70, 'This is w_Justifled',

200, FRLSE, FALSE); ' * no spacing changes

v_Justified(screen_vhandle, 30, 100, 'This is v—Justifled*,
200, FRLSE, TRUE); ' * intercharacter spacing

v_Justlfied(screen_vhandle, 30, 130, 'This is v_Justifled',

200, TRUE, FRLSE); interword spacing
w_Justlfled(screen_vhandle, 30, 160, 'This is v_Justified',

200, TRUE, TRUE); ' * both adjustments
vst_rotation(screen_vhandle, 300);

u_gtext(screen_vhandle, 300, 180, 'Text on edge.');

vst_rotation(screen_vhandle, 1800);
v/_jgtext(screen_vhandle, 280, 180, 'Upsldedown text.');
vst_rotation(screen_vhandle, 0);
Crawcin();

/ * show current settings »/

v_c 1 rwk (sc reen—vhand 1 e);
vqt_attributes(screen_vhandle, attrib);

sprintf(s, 'Current text face: *d', attrib[0]);
v_gtext(screen_vhandle, 10, 20, s);
sprintf(s, 'Current height : fcd', attrib[7]);

u_gtext(screen_vhandle, 10, 50, s);
Craucln();

show character height in points and absolute mode

/ * 1 point & 1 pixel * /

v_clrul<(screen_vhandle);

Listing 4-1 (continued)

62 Atari ST

vst_point(screen—vhandle, 1 , &char_uidth, &char_helght,
&cell_uidth, &cel1-height);

v_jgtext(screen_vhandlB, 10, 100, "This is 1 point.*);

vst_helght(screen_vhandle, 1 , &char_uldth, &char_helght,
&cell_uidth, &cell_helght);

v_gtext(screen_vhandle, 10, 190, "This is 1 pixel.');
Craucin();

Default value In point and pixel * /

v_clruk(screen_vhandle);

vst_point(screen_vhandle, attrib[7], &char_uidth, &char_helght,
&CGll_jwidth, &cell_height);

v_jgtext(scrBen_vhandle, 10, 100, 'This is default point.*);

vst_hBlght(screen_vhandle, attrib[7], icharjwldth, &char_helght,
&cell-wldth, &cell_height);

v_gtext(screen_vhandle, 10, 190, 'This is default pixel.');

Crawcin();

/* 10 point & 10 pixel
v_c 1 rwl< (sc reen_vhand 1 e);
vst_polnt(screen_vhandle, 10, &char_uidth, &char_helght,

&cell_uidth, &cel1-height);
v_gtext(screen_vhandle, 10, 100, 'This is 10 point.');
vst_helght(screen_vhandlB, 10, &char_uidth, &char_helght,

&cell_uldth, &cel1-height);
v_gtext(screen—vhandle, 10, 190, 'This is 10 pixels.');
Crawcln();

/» 40 point & 40 pixel *s

v^clruk(screen_vhandle);

vst-polnt(screen—vhandle, 40, &char_uidth, &char_helght,
&cell_wldth, &cel1-height);

v_gtext(screen—1vhandle, 10, 100, 'This is 40 point.');
vst_hBlght(screen_vhandle, 40, &char.juidth, &char_height,

&cell_wldth, &cel1-height);
V—gtext(screen—vhandle, 10, 190, 'This is 40 pixels.');

Craucln();

/* 72 point & 72 pixel

v-jc1 ruk (screen—vhandle);
vst_polnt(screen—vhandle, 72, &char_uidth, &char_helght,

&celi_uldth, &cel1-height);
v_gtext(screen—vhandle, 10, 100, 'This is 72 point.');

vst_helght(screen_vhandle, 72, &char_Midth, &char_helght,
&cell_uidth, &cell_helght);

v_jgtext(screen—vhandle, 10, 190, 'This is 72 pixels.*);
vst_height(screen_vhandle, attrib[7], &char_uidth, &char_height,

&cell_uldth, &cell_helght);
Crawcln();

Listing 4-1 (continued)

VDI Output and Friends

Font variations
v_clrul<(screen_vhandle);

for (i = 0; i < 20; i++)

{
vst_font(screBn_vhandle, 1); sat font *s
vqt_name(scrBen_vhandle, i, s); '* get font name *^
v_gtext(screeriL_vhandle, (1̂ 10)*150+20, (i*10)*19+20, s);

>
vst_font(screen_vhandiB, attrib[0]); ''* return to system font

Craucin();

Listing 4-1 (continued)

s* Text alignment
v_cirwk(screen_vhandle);

'* standard
v-jgtBxt(screen_vhandle, 30, 20, "Ny__');

s* vertical half line
vst-.alignmBnttscreen-vhandle, 0 , 1 , &horj»ut, &vert_uut
v_jgtBxt(screen_vhandle, 80, 20, 'Hy__');

s* vetical ascent line
vst^alignment(screen_vhandle, 0 , 2 , &hor_out, &vert_out
v.jgtext(screen_vhandle, 130, 20, "Ply__");

/ * vertical bottom line
vst_alignm8nt(screen_vhandle, 0, 3, &hor_jout, &vert_jout
v_gtext(screen_vhandle, 180, 20, 'By__*);

s* vertical descent line * /

vst^allgnment(screen_vhandlB, 0, 4, &hor_out, &vert_out

v_gtext(screen_vhandle, 230, 20, *Dy__');

s* vertical top line
vst_alignment(screen_vhandle, 0, 5, &hor_out, &vert_out
v_gtext(8creen—vhandlB, 280, 20, "Ty__*);

/ * horizontal left
vst_alignment(screBn_vhandle, 0, 0, &hor_out, &vert_out

v_gtext(screen—vhandle, 100, 70, ■Hleft-jy’);

** horizontal center */
vst_alignment(screBn_vhandle, 1, 0, &hor_out, &vsrt_out
v_gtaxt(screen_vhand1e , 100, 100, "Hcenter_y");

' * horizontal right * /

vst^alignment(scrBBn_vhandle, 2, 0, &hor_cut, &vert—out
v_gtext(screen_vhandle, 100, 130, "Hright-jy*);

vst_alignment(screen—vhandle, 0 , 0 , &hor_out, &vart_out
Craucin();

s* Show text effects */
v^clrul<(screen_vhandle);
for (1 = 0; i < 64; i++)

<
vst_effects(screen_vhandle, i);
v_gtext(screen_vhandle, (i''8)*35+20, (i*8)*22+20, "fiby");

>
vst_jBffects(screen_vhandle,0); s * reset to normal *''
Crawcin();

64 Atari ST

/**»****»##**»***********»*»*»*#*****#***«**«*#»»**
Main Program

X /

Listing 4-1 (continued)

main()

<
int ap_id; / * application inlt verify *s

WORD gr_uchar, gr_hchar, </* values for VDI handle
gr^ubox, gr_hbox;

✓xx

Initialize GEM Access
xx/

ap_id = appl_init(); s* Initialize AES routines **

If (ap_id < 0) no calls can be made to RES **

{ ' * use GEMDOS */

Cconws("***> Initialization Error. <***Nn");
Cconus("Press any key to continue.Vi");
Crawcin();

exlt(-l); s* set exit value to show error */

>
screen_phandle = Get handle for screen */

graf_handle(&gr_uchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen_vhandle = open_vuork(screen_phandle);
set_screen_attr(); Set global screen values

/xxx

Application Specific Routines
X X X X X X X X K X K X X X X X X /

drau_line(); demonstrate line types *s

drau_rect(); s* rectangle, bar *s

draw_xlrc(); s* circle, ellipse, arc, pie * /

drau_text(); s* text functions *s

/ X

Program Clean-up and Exit
X /

Walt for keyboard before exiting program

v_jclsvuk(screen_vhandle); close workstation *s

appl_exlt(); ✓# end program

)
/ X K X X X X X X X X X X X X X X K X K X X X X /

VDI Output and Friends 65

sociated attributes. The draw_circ() function shows how to draw
circles, ellipses, arcs, and pies. Finally, draw_tezt() shows the various
text-drawing capabilities provided by the VDI.

Line ’Em Up: Function draw_line()
The draw_line() function is listed in the application functions sec
tion of GRAFDEMO. Basically, draw_line() uses v_pline() to draw a
series of lines that form an arrow (see Figure 4-1). To place the arrow
conveniently a t any location on the screen, draw_line() calls function
calc_sliape() to fill in the array of points that define the arrow.
Function calc_shape() has two parameters. The first is an address to
a variable tha t holds the total number of points. The second is an
array into which the points are placed. The first two elements of this
array are set to the coordinates of the first point of the shape. The
remaining points are calculated with respect to the location of the
initial po in t By passing new starting coordinates to calc_shape(), the
calling function (in this case, draw -line()) can place the shape a t any
location on the screen. The reason for having a parameter to hold the
total number of points is so tha t ca1c-ahapc() can be changed to
produce any shape. By changing the calc_shape() function, the
draw_line() function can draw any shape you desire. Of course the
points array m ust be large enough to hold the shape. The declared
constant SHAPE_SIZE determines the overall size of the shape
created in calc_shape().

Figure 4-1 Pointed Arrow Shape

In draw_line(), there are two arrays labelled x and y. These arrays
hold the starting x and y coordinates of the 12 arrows to be drawn.
To draw the arrows, the workstation is cleared using v_clrwk(). Then
for each of the 12 starting points, draw_line() sets the first two
elements in array pxy, calls calc_shape(), and passes it the addresses

66 Atari ST

of the variable count and the pxy array. Function draw-line() can
now output the arrow using the current workstation attributes.

In the section tha t shows the change in line width, the function
vsL_width() is used to set the line width to values 1 through 12. The
width of the line is set to i pixels wide. When the program is executed,
only odd values are accepted (see Figure 4-2). Even values of i are set
to the next lowest width available. When all 12 arrows have been
drawn to show the line-width setting, the program pauses to wait for
a key to be pressed a t function Crawcin().

Figure 4-2 Arrows Showing Different Line Widths

The next set of variations shows the different line styles (see Figure
4-3). First, the workstation is cleared and the line width is reset to the
default width (one pixel wide). The loop again produces 12 vsl_type()
arrow calls to set the line type to each of the 12 values. The line types
are indexed from 0 to a device-dependent value. This means that not
every output device can produce the same number of different line

VDI Output and Friends 67

/
I /
1 /

_ _ N
\
/

!/
■ r
i /
i >
• /

I / • /
1 /i/

Figure 4-3 Arrows Showing Different Line Styles

styles. However, all devices have at least six different line styles to
choose from (see Figure 4-4). Line type one on the screen, for instance,
is a solid line. Type two is a long dash; type three is a dotted line; type
four is a dash-dot line; type five is a dash; and line type six is a
dash-dot-dot There is also a seventh line style tha t may be defined
by the user. Some devices may have the ability to support even more
line styles. Any line styles above line index seven are strictly device
dependent

The line width is set back to one because a particular output device
may not be able to produce line styles with a width greater than one.
In particular, if you try to pu t a line style on the screen with a width
greater than one, only solid lines are produced. The screen driver does
not have the capability to produce thickened line styles. If you want
to draw a specific nonsolid line, it m ust have a width of one.

After another pause a t Crawcin(), draw_line() continues to show
the various line-end styles. The screen is cleared and the line width

-vj
cn

cn
4̂

w
m

68 Atari ST

Style

___ _solid
___long dash
____ dot
_____dash, dot
. _ dash
.... ... dash, dot, dot
__ user-defined

16 bits
Bit 15 Bit 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

8 - n Device dependent line styles
Figure 4-4 Line Styles for Atari ST

is set to 9. Three lines are then drawn to show the three line-
end styles: squared, arrowed, and rounded. Function vsl_ends() sets
the line-end style. Line-end style zero means tha t the end of the line
has a square edge. Line-end style one puts an arrow a t the end of the
line. Line-end style two means tha t the end of the line is rounded.
These are shown with three thickened lines in Figure 4-5.

0 - Squared (default)

1 - Arrow ►
2 - Rounded <

Figure 4-5 Line-End Styles

Function draw_line() again pauses before showing the different
marker types. A marker type is a symbol used a t a p o in t This is
especially useful when you need to draw several line graphs using the
same axes, for example, graphing the growth of product A versus
product B versus product C. A unique symbol (marker) is used to
denote the points on each of the three curves. A different marker type
is used for each line.

The section in draw_line() that shows the different marker types
works like the section for the line widths and line styles. Function
▼_pmarker() takes an array of points and places a marker a t each
point using the current marker type. Function draw_line() attempts
to output 12 different marker types. There are six different marker

VDI Output and Friends 69

types tha t are guaranteed for all devices. Type one is a d o t type two
is a plus sign, type three is an asterisk, type four is a square, type
five is an “x”, and type six is a diamond (see Figure 4-6). Types seven
and above are device-dependent if they do not exist marker type
three is used as a default

1 Dot
2 + Plus
3 * Asterisk
4 □ Square
5 X Diagonal cross
6 O Diamond
7 and up are device dependent

Figure 4-6 Marker Types

The markers can be scaled using the vsm -heightf) function. This
sets the height of the marker in terms of y-axis units. If the worksta
tion is using raster coordinates, a y-axis unit is simply a pixel. If on
the other hand the workstation uses the normalized device coor
dinates, a y-axis un it is simply the distance from one discrete point
to the next along the y-axis, which may be different than one pixel

. All VDI functions tha t refer to size, height or width use y-axis or
x-axis units. The vsm_height() function cannot be used to scale
marker type zero, which is always the smallest dot tha t VDI can
display on the device. After the various marker types are displayed,
function draw_line() returns to m ain().

Note that most of these output functions also have an associated
color attribute, which is ignored for the time being. You can set the
color for each output object (for example, line and marker) by using
the appropriate set color function. A more detailed discussion of color
is handled later in Chapter 6.

Boxed In: Function draw_rect()
The next function called from main is the draw_rect() function.
Draw_rect() uses the draw_bozes() function located directly above
draw_rect() in the application function section of GRAFDEMO.

The draw_boxes() function clears the screen and draws two rows
of four rectangles. The four rectangles are drawn using the four
different rectangle output functions supplied by VDI: vr_recfl(),
v_rbox(), v_rfbox(), and v_bar(). Function vr_recfl() draws a filled
rectangle. The v_rbax() function draws a rounded rectangle. The
function v_rfbox() produces a rounded, filled rectangle. Finally, func-

70 Atari ST

tion v_bar() draws another filled rectangle. Why not simply use
vr_recfl() to produce a filled rectangle? This Is because v_bar(),
designed to produce the bars in a bar graph, uses the perimeter
setting. The function vr_recfl() does not draw a perimeter regardless
of the perimeter attribute setting. Each of these functions has a
parameter tha t is an array of four elements, which defines the two
opposite comers of the rectangle to be drawn as in program LINES.

Function draw-boxesf) first clears the workstation and calls the
function vsfLperimeter(). This function works with most shape func
tions (circles, ellipses, rectangles) to turn on or off the outline
(perimeter) attribute. Outlined figures have a black line drawn around
their perimeters (only visible when the figures are filled with a color
other than black). For the first row of four boxes, the perimeter
attribute is off so these boxes are not outlined. For the second row,
the perimeter attribute is on so these boxes are outlined.

The first time draw_bozes() is called from draw_rect(), the at
tribute settings are still set from the call to draw_line(). Primarily,
the line width last set has a value of 9. Note that the perimeter drawn
uses the current line-width setting. After the first call to draw_boxes(),
function draw_jrect() resets the line-drawing attributes to their
default values. A common programming mistake is assuming that
attributes somehow reset themselves within a program; they don’t!

Function draw_bozes() is called four more times to show the
various interior J ill settings using the vsfLiiiterior() function. The
four interior-fill settings are 0 for hollow (no filling), 1 for solid (using
the current fill color), 2 for pattern fill, and 3 for hatch fill. There is a
fifth interior-fill setting using value 4, which allows the programmer
to specify a pattern as the fill pattern. As before, two sets of boxes are
drawn each time draw_boxes() is called: the top line with the perime
ter attribute turned off and the second line with the perimeter attri
bute turned on.

Note tha t the box produced by function vr_box() always has a
perimeter drawn independent of the value of the perimeter attribute;
this is ju s t the opposite of vr_recfl(). These two functions ignore the
current perimeter setting. This was not readily apparent before using
different fill styles.

The next section of draw_rect() displays the available fill patterns.
First the workstation is cleared and the interior fill style is set to style
2, pattern fill. Even though the program tries to display 32 different
patterns on the screen; however, after 24 defined patterns, the
remaining patterns default to pattern 1 (see Figure 4-7). They are
numbered from 1 to a device-dependent value. For the Atari ST
screen, only 24 fill patterns are available.

Function draw_rect() next displays the fill hatches. Again 32
hatches are tried, bu t only 12 different hatches are produced (see

VDI Output and Friends 71

KXasfl t f W W D G G O P s » l h f W I U k A J B 3 S 3

17 18 19 20 21 22 23 24
Figure 4-7 Fill Patterns

Figure 4-8). Hatches are also numbered from 1 to a device-dependent
maximum. For the Atari ST screen, only 12 hatches are defined.

m m b on m b
1 2 3 4 5 6

0 0 0 Q B Q
7 8 9 10 11 12

Figure 4-8 Fill Hatches

The VDI provides several functions to fill complex shapes, which are
demonstrated next in draw_rect(). F irst a bow-tie shape is drawn
and filled. The workstation is cleared; the perimeter is turned on so
that you can see what is being filled; the interior fill is set to a pattern
fill; and pattern style is set to the brick pattern. The function
v_fillarea() takes an array of points that define a polygon when
connected. The function starts a t the first point, draws a line to the
next po in t and so on until the last point is drawn. When VDI reaches
the last point in the array, it automatically connects the first point
to the last point so that a closed polygon is created. Then the polygon
is filled with the current fill settings (see Figure 4-9).

^ 1
i
TT
pdr

Figure 4-9 Filled Bow Tie

72 Atari ST

The final section of draw_rect() performs a contour fill. The contour
fill function starts a t a point on the display surface and continues to
fill the bounded area surrounding tha t p o in t It’s almost like pouring
cement into a mold—the area inside the mold (inside the bounded
area) is completely filled with the current fill setting. This section first
clears the workstation and sets the hollow fill so tha t the borders (the
mold) can be drawn. The writing mode is set to transparent so that
overlapping figures do not erase each other. Next function v_bar() is
used to draw two slightly overlapping rectangles.

To demonstrate the contour fill, the interior fill style is set to a
hatch fill, and the hatch style is set to 3. The contour fill is done by
calling v-contotufillC) specifying a point inside the area you want
filled (in this case, a point in the middle of the intersection of the two
rectangles). This function continues to fill until it reaches a point
having the color specified by the last parameter in the function call.
Thus, you can fill to the boundaries of a specific color. If the value —1
is used, the filling stops when a color is reached tha t is different from
the color a t the starting po in t Note tha t if the area to be filled is not
completely bounded, the fill color “spills out” until a boundary (or the
edge of the screen) is reached. After the contour fill, draw_rect()
returns to m ain().

Going in Circles: Function draw_circ()
The next segment of GRAFDEMO deals with drawing circles, ellipses,
arcs, and pie shapes of circles and ellipses. Function draw_circ() first
draws a circle and an ellipse. As always, the workstation is cleared
before drawing commences. The interior-flll style is set to a pattern
fill and the pattern style is selected as a “wavy” pattern. The functions
v_circle() and v_ellipse() draw the circle and ellipse. The two
parameters following the screen handle in the function calls define
the x and y coordinates of the center of the figures. The last parameter
of v_circle() (the number 40 in this program) determines the circle’s
radius. The radius is measured in x coordinate units. Likewise, the
last two parameters of v.eU ipse() determine the radius in the x and
y direction, respectively. The ellipse is calculated around those maxi
mum values.

Next a circle arc and an ellipse arc are drawn. The parameters of
v_arc() are the same as those for v_circle(), with the addition of two
more values representing the start angle and end angle of the arc.
The angle values are measured in tenths of a degree. Thus, the values
800 and 1800 cause an arc to be drawn from 80 degrees to 180
degrees. Zero degrees represents “east” or 3 o’clock, 90 degrees is
“north” or 12 o’clock, and so on. The reason that angles are given in
tenths of degrees is simple: time. Tenths of degrees can be represented

VDI Output and Friends 73

by Integers and still provide a relatively good amount of accuracy. To
have the same accuracy while measuring in degrees requires floating
point numbers. It takes a computer much longer to compute and
draw angles based on floating decimal point numbers than on in
tegers. With integers the angles can still be represented with a fair
degree of accuracy and the calculations can be performed much
faster. The elliptical arc function v_ellarc() also operates in much the
same way as v_ellipse(); again the last two parameters represent the
starting and ending angles of the arc.

The last part of draw_circ() draws circle and ellipse pie shapes. The
function v_pieslice() works the same as the v_arc() function except
tha t it fills in the pie. Likewise, v_ellpie() works similarly to v_ellarc()
and also fills in the pie. Note that the elliptical pie is drawn from 350
degrees to 50 degrees and goes through 0 degrees. Arcs and pies are
always drawn counterclockwise; a pie drawn with a starting angle of
1 degree and an ending angle of 359 degrees is an almost complete
circle. After you enter program GRAFDEMO, try changing the starting
and ending angles.

Type Casting: Function draw_text()
The next and final application function, draw_text(), demonstrates
the two VDI text output functions v_gtext() and v_justlfied(). The
function v_gtext() simply outputs a string a t the specified po in t
Justified text is created by v_justified(). Justified text has ju s t
enough space between each word and/or letter to make the string a
particular length. In this way, a paragraph can have a flush right
margin. Both these functions provide their output while in the VDI
graphics mode, which means tha t the text is literally drawn on the
screen. Note tha t graphic text is conceptually different from text
produced using the prin tf() function of C or any of the BIOS func
tions. Graphic text is drawn using the current screen and text at
tributes. Therefore, you can change text color, writing mode, drawing
angle, size, and alignment

The screen is cleared first and v_gtext() is called to write a string.
The two integer parameters are the x and y coordinates of the starting
point of the tex t The v_justified() function also specifies a starting
po in t a character string, and the length (in x-axis units) into which
the string m ust f it The last two parameters determine how the text
is to be justified. The first parameter specifies that VDI changes the
spacing between words to justify the tex t If this parameter is FALSE,
VDI is not allowed to change interword spacing. The second parame
ter determines whether VDI changes the spacing between characters
to justify the tex t If it is FALSE, VDI does not change intercharacter
spacing. The first call to v_justified() has both these parameters set

74 Atari ST

to FALSE; therefore VDI is not allowed to justify the text a t all. The
second call to v_justified() allows the VDI to change intercharacter
spacing. Since a space is also considered to be a character, the spaces
around each space are enlarged as well as the spaces between each
character. The third call to v_jusdfied() allows the VDI to change
interword bu t not intercharacter spacing. The last call to v_justified()
in this section allows VDI to change both types of spacing.

The section uses vst_rotation() to set the rotation angle for any
graphics text o u tpu t The angle is specified in tenths of a degree so
the first call rotates text 90 degrees (not 900). Zero degrees represents
level text. The function v_gtext() is used to output the tex t It prints
the text a t the angle specified by vst_rotatioii(). The next call to
vst_rotation() rotates the text to 180 degrees (upside down); finally,
the rotation is set back to zero. Note that not all devices can rotate
tex t In fact one of the many pieces of information returned by
vq_extend() is whether the workstation has text rotation capability
and whether text may be rotated a t any angle or only in 90-degree
increments. The Atari ST screen allows only 90-degree increments.

The next section shows the current settings used by the text font
The workstation is cleared and vqt_attributes() is called. Note that
functions beginning with “vq” are queiy functions; functions begin
ning with "vs” are “set” functions; and functions beginning with ju s t
Y are output functions. The vqt_attributes() function returns infor
mation about the current text attributes. These attributes include the
current text face, text color, angle of rotation, horizontal and vertical
alignment (which is soon discussed), the writing mode, character
width and height and character cell width and height Here ju s t the
current text face and height are shown by using v_gtext() to draw
a string.

The next section of draw_text() demonstrates the difference be
tween the various height settings. The height of the character is
measured in printer’s points. One point equals 1/72 of an inch and
measures from the base line of one line of text to the base line of the
next line of tex t The function vst_point() sets the point size to the
first parameter after the screen handle. The remaining parameters
are values returned by VDI that contain the character width and
height and cell width and height of the setting made by vst_point().
If VDI cannot find the specified character height, it automatically
picks the largest possible size smaller than the requested size. The
same parameters are used by vst_height(), which sets the character
height in y-axis units. The first calls in draw_tezt() set the height
to one pixel and one po in t You can see that this size really doesn’t
look like much. The rest of this section tries different point and pixel
sizes; default 10 pixels, 40 pixels, and 72 pixels. Note tha t 40 po in t
40 pixels, 72 po in t and 72 pixels all appear to be the same size. Be

VDI Output and Friends 75

cause these sizes don’t exist, the VDI chooses the largest type size it
can find.

Font variations are explored next. If you don’t have any fonts loaded
on your ST, you only see a 6-by-6 system font as the output of this
section. The screen is cleared and a loop is used to look a t the different
fonts. Inside the loop, the vst_font() function sets the font style. The
font index is set to the present value of the loop index. The inquiiy
function, vqt_nam e(), retrieves the name and style of the fon t This
function returns a 32-character string. The first 16 characters of the
string contain the font name (or the face name as the VDI refers to
it). The next 16 characters contain the font style. When this selection
has finished playing with the various fonts, draw_text() returns to
system font using the value in attrib [7] obtained from the
vqt_attributes() function called earlier.

Table 4-1: Face Names
and Styles

Face Names Styles

Swiss 721 Light
Swiss 721 Thin italic
Dutch 801 Roman
Dutch 801 Bold italic

GEM can access a wide variety of fonts if they are available on your
system disk and are available to the device you are using. The
ASSIGN.SYS file mentioned in Chapter 1 tells GEM which font files
are available to the device. Before your program can use the fonts, the
font file m ust be loaded into the workstation you are using through
the vst_loadfonts() function.

To continue with draw_text(), the next section adjusts the text
alignm ent Alignment can be performed on any of the lines specified
by the character cell. Vertical text alignment is the relationship be
tween the y value of the point a t which text is drawn and the vertical
placement of the text Vertical text alignment can be performed on
the base line (standard), half line, ascent line, bottom line, descent
line, or top line. For example, the first call to vst_alignm ent() causes
the base line of the text to be aligned on y value 20. The next call to
vst_alignm ent() causes the half line of the text to be aligned on y
value 20.

Horizontal text alignment can also be specified using vst-alignm ent().
Horizontal alignment is the relationship between the x coordinate of

76 Atari ST

the point a t which text is drawn and the actual horizontal position
of the tex t For example, horizontal left alignment will align the
furthest left point of the string with the x coordinate of the point
specified. Center alignment centers the string a t the x coordinate;
right alignment places the furthest right point of the string at the x
coordinate.

The first parameter for vst_alignment() after the screen handle
determines horizontal alignment (0 meaning left 1 meaning center,
and 2 meaning right). The next parameter is vertical alignment with
the value 0 for base line, 1 for half line, 2 for ascent line, 3 for bottom
line, 4 for descent line, and 5 for top line. The different values for
vertical alignment are shown first in the output of GRAFDEMO. Note
that a left horizontal alignment (the default) is maintained throughout
the various vertical changes and that the vertical alignment is not
changed by new values for the horizontal alignment. The last two
parameters of vst_alignm ent() simply return the new horizontal and
vertical alignment values selected, respectively.

The final workstation attributes shown in draw_text() are the text
effects available on the ST: thickened, light intensity, italicized, un
derlined, outlined, shadowed, or any combination. The vst_effects()
function sets the text effect to be used for all subsequent graphic text
output based upon the value of the parameter supplied. Each bit in
that value determines whether a particular attribute is set on or off.
As shown in Table 4-2, b it 0 corresponds to thickened text on or off;
b it 1 determines light intensity; bit 2 determines italicization; bit 3
determines underlined text; and so. If the b it has a 0 value, that effect
is not used. If the bit has a 1 value, that effect is active.

Table 4-2: Bit Values
for Test Effects

Bit Description

0 Thicken
1 Light intensity
2 Skew
3 Undeiiined
4 Outlined
5 Shadow

Since each bit can be set independently, you can combine various
effects. Bits are numbered from right to left; if you want thickened
text only, the value of the effect parameter is 1. If you want underlined
and thickened tex t bits 0 and 3 have to be on, giving the parameter
value of 9 (see Figure 4-10).

VDI Output and Friends 77

Normal
Thickened
Light In t en s i ty
Ske wed
Underl ined
Outlined
S h a d o w d

Figure 4-10 Text Effects

There are a total of 64 possible combinations. Depending upon the
screen and fonts you have, you may not see all the effects. For
example, all effects except shadowing are implemented if you use the
system font on a monochrome monitor.

Changing GRAFDEMO
This completes the GRAFDEMO program. If you have not already done
so, enter this program and run i t Once you have it running, make
any changes in it you desire. The program has been modularly
designed so tha t you can change and execute only those areas you
want to focus on. For example, try changing the line drawing func
tions. All you need to do is to call draw_line() from m ain() so you
can comment out the other function calls.

Now is an appropriate time to experiment with parameter values,
become familiar with the VDI functions and how they work, and learn
how to reference the appendices of this book. Some changes that you
can make to GRAFDEMO are playing with text point and height
values and changing calc_shape() to produce different shapes to see

78 Atari ST

how the array is filled and used. (If you try changing calc_8hape(),
make sure you return the proper number of points; otherwise VDI
gets confused and draws either too few or too many points.)

Designing Your Own Patterns

Giving the user the ability to specify a line style provides greater
variety to the output of your programs. Designing your own line or
fill patterns is much like filling in a small b it map. For a line, the
pattern consists of a linear set of 16 bits contained within one word
on the ST. Wherever a b it is set, a dot is said to be a t tha t point on
the line. If the b it is zero, no dot is a t that point on the line. Of course,
the actual output depends on the current writing mode. Figure 4-4
shows the default line styles available on the ST.

Designer Lines
To use your own line style, you m ust set the line style index to 7 (the
user-defined line style). The actual line style is set using the function
vsl_udsty(), the VDI Set Line User-Defined Style. Its parameters are
the screen handle followed by a 16-bit value (declared as WORD on
the Atari), which sets the bits for the line style.

Look a t program USERTYPE (see Listing 4-2). Function main()
shows that this program performs two basic tasks: setting a user-
defined line style and setting a user-defined fill pattern. Under the
application functions section, there is a function called set-line().
This function clears the workstation and sets the line type to the
user-defined style (style 7). The variable style (declared as WORD) is
set to hold the line style that will be the user-defined line style for
vsl_udsty(). Hexadecimal notation is used to set the variable style
because it is easier to convert from binary bits to hexadecimal than
to decimal. For example, the first line pattern used in set_line() is a
series of alternating on and off bits. This translates to a binary value
of 1010101010101010. This 16-bit pattern can be broken up into
four pieces of four bits each, that is, 1010 1010 1010 1010. Each
four-bit segment can represent 16 different values; hence the
hexadecimal (base 16) system. The four-bit pattern represents the
hexadecimal digit A. Therefore, the 16-bit pattern is equivalent to
AAAA base 16. Go through the other three line styles listed in
set_ line() and practice converting from binary to hexadecimal. This
skill is quite useful later on in this book.

After each call to vsl_udsty() with new line style, the function
draw_lines() is called. This function draws a series of lines based on

VDI Output and Friends

✓xx

USERTYPE.C User-defined styles program

This program shows the use of user-defined line styles

and user-defined fill patterns,
xx/

Listing 4-2 Program USERTYPE

/ X

System Header Files & Constants
X X X X K X K X K X X /

ttinclude

ttinclude

ttinclude

ttinclude

<stdio.h>

<osbind.h>
<gemdsfs.h>

<obdefs.h>

Standard ID

s* GEMDOS routines
/* GEM RES */

GEM constants

ttdafine FftLSE 0

ttdaflne TRUE IFRLSE

✓ X

GEM Rpplication Overhead
X X

'* Declare global arrays for VDI.
typedef int WORD; WORD is 16 bits
WORD contrl[12], VDI control array

lntout[128], intin[12B], VDI input arrays
ptsin[12B], ptsout[12B]; VDI output arrays

WORD screen_vhandle,
sc reeruphand1e ,

screen_re2 ,
color_screen,
x_max,

y_max;

virtual screen workstation *s
physical screen workstation

/* screen resolution 0,1, or 2 **
flag if color monitor *s

** max x screen coord *s
max y screen coord

/X X

Rpplication Specific Data
X X X X X X X X X K X K X X X X X K X X X X X X /

WORD pfill_pat[64] = {
0xFF00, 0xFF00, 0xFF00, 0xFF00, s* plane 1 * /
0XFF00, 0xFF00, 0xFF00, 0xFF00,
0X00FF, 0X00FF, 0X00FF, 0X00FF,
0X00FF, 0X00FF, 0X00FF, 0X00FF,

0X00FF, 0X00FF, 0X00FF, 0X00FF, plane 2 **
0X00FF, 0X00FF, 0X00FF, 0X00FF,
0xFF00, 0xFF00, 0xFF00, 0xFF00,
0xFF00, 0XFF00, 0xFF00, 0xFF00,

80 Atari ST

0xFF00, 0xFF00, 0xFF00, 0xFF00, plane 3 *s
0xFF00, 0xFF00, 0xFF00, 0xFF00,

0X00FF, 0X00FF, 0X00FF, 0X00FF,
0X00FF, 0X00FF, 0X00FF, 0X00FF,

0X00FF, 0X00FF, 0X00FF, 0X00FF, / * plans 4
0X00FF, 0X00FF, 0X00FF, 0X00FF,

0xFF00, 0xFF00, 0xFF00, 0xFF00,

0XFF00, 0xFF00, 0xFF00, 0xFF00

>;

/xx

GEM-related Functions
X /

Listing 4-2 (continued)

WORD open_vwork(phys_handle)

WORD phys_handle;
/ X X X X X X X X X K X X X X X K X K X

Function: This function opens a virtual workstation.

Input: phys_handle = physical workstation handle
Output: Returns handle of workstation.
X K X X X X K K X X K X K X X X X X X X X X X X X X X X X X /

i
WORD work_ln[ll],

work_out[57],

new_handle; handle of workstation *s
int 1;

for (i = 0; i < 10; i++)

work_ln[l) = 1 ;

work_in[10] = 2;
new_handle = phys_handle;
v_opnvwk(work_ln, &nsw_handle,

return(new_handle);

>

set_screen_attr()
✓ X

Function: Set global values about screen.
Input: None. Uses screen_vhandle.
Output: Sets x_max, y_max, color_screen, and screen_rez.
X /

{
WORD workuout[57];

set for default values

/* use raster coords
use currently open wkstation

work_cut);

vq_Bxtnd(screen_vhandle, 0, work_out);
x_/nax = work_jout[0];
y_max = worl<_out(l];

screen—roz = 6etrsz(); s* 0 = low, 1 = med, 2 = high
color_screen = (screen_rez < 2); s* mono 2, color 0 or 1 */

Listing 4-2 (continued)
/a############*#**#*##*#######**##*#***#****##*#*#*

Application Functions
♦a##****#*####**##**#*#####*#*#####****#********##/

/ VDI Output and Friends

drau—lines(x,y)

int x,y;
/**
Function: Drau an array of lines using the current line style.

Input: x = x coord to start array.

y = y coord to start array.
Output: None.
a*#*#*#**#*#**#****#*****#*###**##*#**#*#*******##/
<
WORD pxy[4];

int 1;

/* drau 8 horizontal lines *s
pxy[0] = x; pxy[l] = y;

pxy[2] = x + S0; pxy[3] = y;
for (1 = 0 ; 1 < B; 1++)

<
v_pllne(screen_vhandle, 2, pxy);
pxy[0]++; /* move start point right by 1

pxy[l] += 3; /* move start point down by 3 *s
pxy[2]++; /* move end points by same

pxy[3] = p*y[i];
>

drau 8 vertical lines
Pxy[0] = x; pxy[l] = y + 40;
pxy[2] = pxy[0]; pxy[3] = y + B0;
for (1 = 0 ; i < 8; 1++)

<
v_pline(screen_vhandle, 2, pxy);
pxy[0] += 3; /* move start point right by 3
pxy[l]++; /* move start point down by 1 * /
pxy(2] = pxy[0]; ✓* move end points by same */
pxy(3]++;

>

/* drau 8 diagonal lines
pxy[0] = x + 60; pxy(l) = y;
pxy[2] = x + 110; pxy(3] = y;
for (1 = 0 ; 1 < 8; 1++)

<
v_p11ne(sc reen_vhand1e ,
pxy[0]++;

pxy[l] += 3;
pxy(2]++;

pxy[3] += 10;

2, pxy);
s* movB start point right by 1 * /
/* move start point doun by 3 **
/* move end right by 1 */

move end point doun by 10 */

82 Atari ST

>

return;

>

Listing 4-2 (continued)

set-line()
/a#**#*#*#***#*#*#*#*****#*#*****#*#*#**#*#***#****
Function: Sets user defined line styles and draus them.

Input: None.

Output: None.

{
WORD style;

w_cl rul< (screen—vhandle);

vsl_type(screen_vhandle, 7); /* use user-defined line styles

style = 0xRflflfl; /* 1010101010101010 * /
vsl_udsty(screen—1vhandle, style);

drau_ lines(10,10);

style = 0xF00F; /* 1111000000001111
vsl_udsty(screen—vhandle, style);

drau_lines(10,110);

style = 0x8CEF; 1000110011101111 *✓
vsl_udsty(screen_vhandle, style);

drau_ lines(170,10);

style = 0xC0F0; 1100000011110000 *✓

vsl_udsty(screen_vhandle, style);
d raw_l 1nes(170,110);

return;

>

set_pattern()
/ K X X X K X X X X K X X X X X X K X X K X X * X X X » « X X X K X X X X K X X X X « X X X X * X X X

Function: Sets a user-defined pattern and draus it.

Input: None. Uses array pfill_pat.

Output: None.
a*******#*#***#***********************************/'
<
WORD pxy[4];

v_clruk(screen—vhandle);
vsf_interior(screen—vhandle, 4); ** use user pattern to fill **

VDI Output and Friends

/* use 1 plane *s
vsf_udpat(screen_vhandle, pfill_pat, 1);
pxy[0] = 10; pxy[l] = 10;

pxy[2] = 60; pxy[3] = 180;
vr_recf1(screen_vhandle, pxy);

uss 2 planes */
vsf_udpat(screen_vhandle, pflll_pat, 2);

pxy[0] = 90; pxy[l] = 10;
pxy[2] = 160; pxy[3] = 190;
vr_rscf1(screen—vhandla, pxy);

/* usb 4 planes */
vsf_udpat(screen_vhandle, pfill_pat, 4);
pxy[0] = 170; pxy[lj = 10;

pxy[2] = 240; pxy[3] = 190;
v r_tbcf 1 (sc reen_vhandla, pxy);

return;

Listing 4-2 (continued)

/ X X X X K X X X X X X X X X X X X X X X K X X K K X X X K X

Main Program
X /

main()

<
int ap_id; application init verify * /

WORD gr_wchar, gr_hchar, /* values for VDI handle
gr^uibox, gr_hbox;

/X X

Initialize GEM Access
X /

ap_id = appl_init(); /* Initialize RES routines */
if (ap_id < 0) /* no calls can be made to RES
{ /« use GEMDOS «✓

Cconus(**»*> Initialization Error. <#**Nn1);

Cconus(’Press any ksy to continue.^n');
Craucin();
exit(-l); sat sxlt value to show srror */

>
screen_phandle = Gat handle for screen

graf_handle(&gr_uchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen_vhandle - open_vuork(screen_phandle);
set_screen_attr(); s* Get scresn attributes *s

✓ X

Rpplication Specific Routines
X /

84 Atari ST

8Bt_line();

Craucin();
set_pattern();

✓a#*#*#######*###**##*********###*#***#***#*#*#*#*#*
Program Clean-up and Exit

s* Malt for keyboard before exiting program
Crawcln(); ✓* GEMDOS character Input * '
v_clsuuk(screen_vhandle); /* close workstation »/
appl_Bxlt(); /* end program */

>
/a##############*#****##***#********##*##***##*####/

Listing 4-2 (continued)

the given coordinates. Function draw_lines() outputs eight horizon
tal lines, eight vertical lines, and eight diagonal lines, with each line
in- each set offset slightly from the previous line. When you look a t
the ou tpu t note that the horizontal lines don’t start consistently.
Look a t the set of horizontal lines in the lower left section of the
o u tpu t for instance. The line style is set to FOOF in this function call
(four ones, eight zeroes, four ones). The first dash in each line is not
the same length; yet the remaining blanks and dashes are all lined
up. This does not happen with the vertical or diagonal lines because
the VDI tries to be extra efficient by copying the entire line style word
for horizontal line. Since every 16 bits in one line on the screen repre
sents one word in memory, a new word in memory starts every 16
pixels. Because the line style is stored in a word, the VDI copies the

One Word— _________________|______________ | Drawn As:

■ ■ ■ ■ ■ ■

I---
i k

Edge of I— Line Segment Drawn
screen

Figure 4-11 Horizontal Line Alignment

VDI Output and Friends 85

line style word to the screen words that contain the line. Any points
beyond the ends of the line are not changed. Figure 4-11 shows an
example of a line drawn on the screen. The brackets in the figure show
the start and endpoints of the line. Note that the line style is word-
aligned, which means that the start of the line style always corre
sponds with the start of a memory word. Word alignment is also ap
plied to the system line styles when drawn horizontally.

Having word-aligned horizontal lines poses a problem. If the line
has spaces in it, it may not appear to start where you expect. As an
example, look at the last line in Figure 4-11. The line should start at
pixel 23, but when it is drawn it appears to start at pixel 28.
Nonhorizontal lines do not have this problem because the VDI must
copy the line bit for bit to the output.

Finding a Pattern
Lines by themselves are fairly straightforward. You simply put down
a set of bits on the screen to form them. Patterns, on the other hand,
are somewhat more complicated. A pattern consists of sixteen 16-bit
words giving you a 16-by-16 matrix of bits (see Figure 4-12).

F F 0 0
F F 0 0
F F 0 0
F F 0 0
F F 0 0
F F 0 0
F F 0 0
F F 0 0
0 0 F F
0 0 F F
0 0 F F
0 0 F F
0 0 F F
0 0 F F
0 0 F F
0 0 F F

Figure 4-12 Checkerboard Pattern

The pattern in Figure 4-12 forms a checkerboard. The hexadecimal
code for this pattern is contained in the array p fill.p at listed in the
application-specific data section of USERTYPE. Each word (that is,
each element) represents one line of the pattern. Note that there are
four planes listed. Each plane is a fully defined pattern. Planes are a
concept used with color output and are discussed further when color

fit iA it: Vt SSc Ht >::: ■ ■ ■ ■ ■ ■ ■ ■
8 38.BE 8 & & 33£ ■■■■ ■■■■
W tt W W » V< * ■■■■■■■■
8 Stoto&■■■■■■■■
S * fit & H i '<■: O t ::x ■ ■ ■ ■ ■ ■ ■ ■

& ■■■■ ■■■■
3S W W Vf w : W W ■ ■ ■ ■ ■ ■ ■ ■

©8■■■■■■■■
■ ■■■■■■■ 'X
■■■■ ■■■■.« ^ ^ 5s * & & ^
■ ■ ■ ■ ■ ■ ■ ■ ii if -ft W Vi

■■■■ ■■■■ a © w 3d::s» to:»
■ ■ ■ ■ ■ ■ ■ ■ % if: if: SSt it:
■ ■■■ ■ ■■ ■ toK8 38 8 8 &
■ ■ ■ ■ ■ ■ ■ ■ St it W W M Vi Vi
■■■■■■■■s to to * s & toto

86 Atari ST

is covered. For now, program USERTYPE ju st demonstrates the fact
that the user-defined fill pattern has the capacity to account for color
output as well as monochrome output. Those of you using a
monochrome monitor see no difference. Those of you using a color
monitor may wish to return to this program after color output is
discussed and see how the planes affect the outpu t

The routine set_pattera() draws the pattern three times, each time
using a different number of planes. Function set_pattem () starts by
clearing the screen and setting the interior fill style to the user-
defined fill pattern. The function vsfLudpat() sets the user-defined
pattern to the pattern held in pfill_pat(). The last parameter of
us£_udpat() indicates the number of planes to use. When USERTYPE
draws the pattern, the pattern a t the edges of the rectangle is not
complete. Ju st as with horizontal lines, all patterns drawn by the VDI
are word-aligned. For the most p a r t word alignment doesn’t cause
any problems here as it does for horizontal lines.

Changing USERTYPE
Essentially that’s it for the user-defined lines and patterns. You may
want to tiy changing the user-defined pattern. Try to make the square
of the checkerboard smaller or create something completely different
You may also want to tiy emulating one of the predefined patterns.
Patterns can be a lot of fun to play with!

Multiple Workstations

Multiple workstations, the last part of this chapter, complete the
discussion of attributes and VDI ou tpu t You have already seen that
a workstation is a mechanism the VDI uses to output graphic images.
A workstation has a set of attributes associated with i t Look in
Appendix A for the functions v_opnwk() and v_opnvwk(), which
open physical and virtual workstations, respectively. Also look at the
workstation inquiry function vq_extnd() used in the GEM-related
function set_screen_attr() of the programs. Take particular notice of
the values returned by this function.

The open workstation functions returns “a slew” of information
about the workstation: the maximum addressable width in the x and
y directions; the width and height of the pixel, the number of line
types and widths available; the num ber of marker types and sizes; the
number of faces supported; the number of patterns; the number of
hatches; the number of predefined colors; color capability; text rota
tion; fill area capability; input device capability; character width and

VDI Output and Friends 87

height; maximum line width; and maximum and minimum marker
heights. The extended inquiry function vq_extnd() has two options:
it can return the same values as v_opnwk() or it can give extended
information such as the type of screen being used, the number of
background colors, whether text effects are supported, the number of
planes associated with the color, character rotation capability, and the
number of writing modes available.

The program MULWORK (see Listing 4-3) demonstrates the use of
multiple workstations. An example of the use of multiple workstations
given in Chapter 3 is the graphic design program in which each type
of output is given its own workstation.

Listing 4-3 Program MULWORK
/a*#**#**#**#####***###*#*******#*#*****##*#***#****#*##********#******

MULWORK.C Multiple workstations

This program demonstrates the use of multiple workstations

to Implement several sets of drawing attributes on the same
physical device. Also this program introduces thB use of

the clipping rectangle,
xx/

/xx

System Header Files & Constants
X X X X X X X X K K X K X K X X X /

((include <stdio.h>
ttinclude <osblnd.h>

8include <gemdefs.h>
ttinclude <obdefs.h>

Standard 10 * /

' * GEMDOS routines

s* GEM RES * /

/ * GEM constants */

((define FALSE 0

tide fine TRUE IFRLSE

/xx

GEM Rppllcatlon Overhead
X K X X X X X X X X X X X X X /

s* Declare global arrays for VDI. *s

typedef Int UORD; WORD is 16 bits *s

WORD contrl[12], VDI control array * /

intout[12B], intin[12B], / * VDI input arrays

ptsln[12B], ptsout[12B]; / * VDI output arrays

UORD screen_vhandle, sx virtual screen workstation

screen_phandle, / * physical screen workstation
screen_rez, s* screen resolution 0 ,1 , or 2 * '

color-screen, flag if color monitor *s

x_max, max x screen coord */
y_max; ' * max y screen coord

88 Atari ST

/X

Application Specific Data
K X X X X X X X X X X X K X / ’

WORD handlei, / * handles for virtual wkstations
handle2 ;

/ X K X X X X X X X X X X X X X X X X X

GEM-related Functions
X X X X X X X X X K X X X X X X X X X X X K X /

WORD open—vuork(phys_handle)
WORD phys-handle;
/X X

Function: This function opens a virtual workstation.

Input: phys_handle = physical workstation handle
Output: Returns handle of workstation.
X X X X X X X X X X X X X X X X X K X /

{
WORD work-in[11],

work-out[57],

nsu_handle; / * handle of workstation
int i;

for (1 = 0 ; 1 < 10; 1++)
work—ln[i] = 1 ;

work-in[10] = 2 ;
new-handle = phys_handle;

v_opnvwk(work—In, &new_handle,
return(new_handlB);

>

set_screen—attr()
/ K X X X X X X X X X X X X X X X X X K X

Function: Set global values about screen.
Input: None. Uses screen—vhandle.
Output: Sets x_jnax, y_max, color^screen, and screen—rez.
X S

<
WORD work_out[57];

vq_extnd(screen—vhandle, 0, work—out);
x_max = work_out[0];
y_max = workjout[l];
screen_rez = Getrez(); / * 0 = low, 1 = med, 2 = high * '

color—screen = (screen—rez < 2); mono 2 , color 0 or 1
>

✓ X

Application Functions
X K X X K X X X X X X X X X X X X X X X /

Listing 4-3 (continued)

set for default values

/ * use rastar coorcs **

/ * use currently open wkstation */
work_out);

VDI Output and Friends

satl_attrlb()
/***#»«*»»**#****»**»»«**»**««**********«»*********
Function: Set attributes for virtual workstation 1.
Input: None, handlel must be set.

Output: None. Ssts attributes.
**/
i

vswr_mode(handlel, MD_REPLflCE); /m replace writing mode

vs1—type(handlel, 3); dotted lines * '

vst^effeet(handlei, 8); / * underlined text

return;

>

Listing 4-3 (continued)

set2_attrib()
/ i t *

Function: Set attributes for virtual workstation 2.
Input: None. handle2 must be set.

Output: None. Sets attributes.

(
vswr_mode(handle2, MD_TRflNS);
vsl_width(handle2, 5);
vst_rotation(handle2, 2700);
vsf_lnterior(handle2, 2);
vsf^Btyle(handle2, 5);
return;

>

transparent writing mode * '

/ * use thicker lines *s

text at 270 degrees *s

/* uss pattern fill »/

/ * set pattern to uss

draw_rect()
✓a*****###******#***#*##*#*###**#*#**#*##*#*#**###*
Function: Draw rectangles on both workstations.
Input: None, handlel and handle2 must be set.
Output: None.

<
WORD pxy[4];

pxy[0] = 10; pxy[l] = 10;
pxy[2] = 75; pxy[3] = 125;

vr_recfl(handlel, pxy); /» draw filled rectangle * '

pxy[0J = 100; pxy[l] = 10;
pxy[2] = 1S5; pxy(3] = 125;
vr_recfl(handle2 , pxy);

return;

90 Atari ST

draw_taxt()

sxx

Function: Drau text on both workstations.

Input: None, handel and handle2 must be set.
Output: None.
*xxx/

i
v_jg text (handlei, 50, 50, "This text is draun on uorkstation 1.');

v/-gtext(handle2, 120, 70, ’This text is draun on uorkstation 2.’);
return;

>

Listing 4-3 (continued)

cllpjdemo()
/xx

Function: Demonstrate clipping rectangles.
Input: None, handlei and handle2 must bB set.
Output: None.
X /

<
WORD pxy[4];

pxy(0] = 20; pxy[l] = 20;
pxy[2] - 100; pxy[3] = 100;
us_jclip(handlel, TRUE, pxy); set clipping rect on 1

pxy[0] = 100; pxy[l] = 20;
pxy[2] = 160; pxy[3] = 100;
vs_cllp(handle2, TRUE, pxy); set clipping rect on 2 * '

v.jclruk(screen_v/handle); clear screen

pxy[0] = 100; pxy[l] = 2 0;
pxy[2] = 100; pxy[3] = 100;
w_plinB(screen_whandle, 2 , pxy); drau line to shou edge

pxy[0] = 00; pxy[l] = 30;
pxy[2] = 150; pxy[3] = 50;
vr_recf1(handlel, pxy); draw rect on 1 over clip edge

pxy[0] = 50; pxy[l] = S0;
pxy[2] = 120; pxy[3] = 80;
wr_TBcfl(handle2 , pxy); drau rect on 2 over clip edge * '

/* drau circle

v_circle(handle2, 180, 120, 50);

return;

VDI Output and Friends

/a *

Main Program
xx/

Listing 4-3 (continued)

main()

{
int ap_id; application lnit verify

WORD grjwchar, gr_hchar, ■'* values for VDI handle * /

gr_wbox, gr_hbox;

WORD worl<_in[ll], workJUJt[57];
✓xx

Initialize GEM Rccess
xx/

ap_id = appl_init(); / * Initialize RES routines

if (ap_id < 0) / * no calls can be made to RES

< /* use GEMDOS
Cccnws("*#*> Initialization Error. <*#*Nn");

Cconws("Press any key to continue.Vi");

Crawcin();
exlt(-l); set exit value to show error */

>
screen_phandle = Get handle for screen */

graf_handle(&gr_wchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen_vhandle = open_vwork(screen_phandle);
set_screen_jattr(); Get screen attributes * /

/xxx

Application Specific Routines
X y

/ * open two virtual workstations * /

handlel = open_vwork(scrssn_phandle);

handle2 = open—vwork(screen_phandle);

setl_attrib();
set2_attrib();

/ * set attributes for each */

draw—rect();
draw—text();
Crawcin();

draw rectangles in both
/ * draw text in both * /

s* pause **

clip^demo();
Crawcin();

' * show clipping rectangle

92 Atari ST

v_clsvuk(handle2); /* close all workstations #/
v_clsvuk(handlei);

/xxx

Program Clean-up and Exit
X X X X X X K X /

' * Wait for keyboard before exiting program * /

Crawcin(); / * GEMDOS character input */
v_clsvuk(screen_vhandle); /* close workstation »/

appl_axit(); /* end program *s

>
/ X /

/ X X /

MULWORK also shows the use of the clipping rectangle. The d ip
ping rectangle is a device used by graphic programs to prevent
drawing outside a specific area. In other words, the clipping rectangle
clips (ignores) any output that goes beyond the region of the rec
tangle. The clipping rectangle itself is not visible on the screen. It’s
analogous to looking out a window: you can’t see through the walls,
bu t you can see through the window. Each workstation can have its
own clipping rectangle. One use for the clipping rectangle is when the
graphic design program is made. The workstation for the drawing
area has a clipping rectangle that encloses ju s t the work area. In this
way, any output written outside the work area is not written into its
neighboring areas. The same goes for error messages and settings
areas.

In the MULWORK program, the only application-specific data used
are the variables to hold the handles of the two workstations manipu
lated throughout the program. Look a t m aiii(). The general flow of
MULWORK first opens two workstations, sets the attributes for each
workstation, and puts output to both workstations. Finally, the clip
ping rectangle is demonstrated.

The application-specific routines begin by opening two virtual
workstations using the open_vwork() function. This function can be
called for as many virtual workstations as the VDI allows, depending
on the version of the VDI, the type of machine used, and the amount
of memoiy available. Usually four or eight virtual workstations can be
open simultaneously. In MULWORK, there are three virtual worksta
tions and a physical workstation open.

Once the workstations are open, the first thing to do is to set the
attributes of each workstation using the routines se tl_ a ttrib () and
set2_attrib(). Workstation one uses the replace writing mode. The
width of the lines used is default (one), the line type is a dotted line,
and the text effect is underlined tex t Workstation two uses a
transparent writing mode. The line width is set slightly thicker (five),

Listing 4-3 (continued)

VDI Output and Friends 93

the text is rotated a t 270 degrees, and the interior is filled with fill
pattern five.

Functions draw_rect() and draw_text() draw rectangles and text
on both workstations, respectively. H ie output on workstation one
uses a solid fill (the default); the text is drawn right-side up and
underlined; and whatever is drawn replaces what was on the screen.
The output on workstation two, a lattice fill pattern, appears to be
laid over what was on the screen before i t That’s why it is called the
“transparent” writing mode. The tex t drawn a t 270 degrees, is also
transparent and so the background shows through blank areas of the
character cells. The text is not underlined on this workstation.

After the pause in main(), the clip_demo() routine is called to
create the clipping rectangles. The use of a dipping rectangle can be
turned on or off. Off is the default value when a workstation is
opened. Setting a clipping rectangle is done in much the same way
as drawing a rectangle. The array pxy contains the points tha t define
two opposite comers of the rectangle. The function vs_d ip () is called
to set the clipping rectangle. The first parameter to vs_clip() is the
workstation handle. The second parameter tu rns clipping on or off
with TRUE on and FALSE off. The third parameter defines the
clipping rectangle itself. Function vs_clip() is called twice to create a
clipping rectangle on each workstation. The two clipping rectangles
lie next to one another bu t on different workstations. The screen is
cleared and a line is drawn on the edge between the two clipping
rectangles so tha t you can see the boundary. This line is drawn on
the default screen virtual workstation so that it is not affected by the
clipping rectangles.

With two adjacent clipping rectangles on the screen, clip_demo()
tries to draw beyond the boundaries of each rectangle. F irst it draws
a rectangle on workstation one that goes beyond the right edge of the
clipping rectangle. The program’s output shows that the rectangle
stops right a t the boundary. Another rectangle is drawn on worksta
tion two so tha t it exceeds the left edge. Again the output shows that
the rectangle stops right a t the boundary. Finally, a circle is drawn
on workstation two with an origin completely outside of the worksta
tion’s boundaiy. However, its radius causes some of the circle to fall
within the clipping rectangle. Only tha t portion of the circle falling
within the clipping rectangle is shown.

MULWORK ends by closing all virtual workstations used by the
program. Try creating some functions that draw lines, text, or arcs,
for example, to experiment with the attributes on different worksta
tions. Go into the set attributes function to change some of the
attributes and see how they affect the outpu t

C H A P T E R F I V E

Treasure Maps

This chapter discusses bit maps and their use in displaying informa
tion on the screen. A b it map is an extremely important concept You
have already seen what a bit map does and basically how it works. It
should be stressed that a bit map is used primarily for screen outpu t
The Atari machine sets aside 32,000 bytes of memory for screen use.
The hardware that produces the screen images looks a t this memory
block to produce the images shown on the screen.

Implementing a Bit Map

Computer memory on most machines such as the Atari is broken
down into units called bytes. A byte consists of eight bits with each
bit set to a value of zero or one. The central processing unit of most
computers can access memory as a single byte, a word, or some larger
u n it On the Atari ST, a word consists of two bytes with the second
byte following the first in memory. A larger unit that might be
available is called a page. On the ST, a page is a block of 512 bytes.
Each byte in a computer’s memory has an address, which is a
number ranging from zero to the total number of bytes available in
the system. When accessing a particular byte, your program may
specify any address within this range. When accessing a particular
word, the address m ust be an even value. Thus, the first word in
memory consists of the two bytes a t addresses 0 and 1. The second
word in memory is the two bytes a t addresses 2 and 3. When you
program in a language like C, the compiler handles the restrictions

Treasure Maps 95

for accessing bytes and words in most cases. However, when working
with the ST’s graphics display, you need to account for certain
memory restrictions, for example, the location of the bit map when it
is accessed by the display hardware.

A final aspect of the bit map that you need to know is how bits are
numbered. In a byte, the furthest right bit is called bit number 0 and
the furthest left bit is bit 7. In a word, the two bytes are taken to be
one long string of bits, so the furthest right bit is bit 0 and the
furthest left bit is bit 15.

The Bit Map in Memory
The graphic subsystem of the ST allocates 32,000 contiguous bytes
in memoiy for the bit map. For each of the 32,000 bytes, one byte
follows the next with no spaces in between. Figure 5-1 shows that the
32,000-byte screen memoiy block can reside anywhere in memoiy. For
processing efficiency, the address of the first word in this block must
lie on a half-page boundary. This is an address evenly divisible by
256. Because the central processing unit on the ST is more efficient
when processing words than bytes, all accesses to the bit map are in
terms of words.

Address:

0

256x

'. •' \ •' \ •’ •. •' '. •' \ •' .

. • •. • *. .* * ,•. .* •. .* •. .* •„: • .; • .• • :

Start of
memory

32,000 bytes
reserved for
screen bit map

End of

Figure 5-1 Bit Map in Random-Access Memoiy

96 Atari ST

When the graphics hardware reads this section of memory, each
word is mapped to the screen. Each pixel on the screen is represented
by one of the bits in the b it map. The value of the b it is either 1 or
0, which determines whether the pixel is “on” or “off.” Figure 5-2
demonstrates how this is done.

Address:
(in by Us)

Base
Base + 2

Base + 80
Base + 82

Base + 31998

Bit 15 BttO

0000011111100000
1111100000111000

0001100000011000
1110011100011000

0000000000000000

Bit Map in Memory

Word 0

Row 399

Screen Image

Figure 5-2 Mapping of Memory to Screen in Monochrome Mode

The beginning of a b it map has an address called the base
address, noted by the name B ase in Figure 5-2. The next word is a t
address base plus two (two bytes per word); the word after that is at
address B ase plus 4; and so on. A video display has a fixed number
of rows. A monochrome monitor has 400 rows, numbered zero
through 399. Within each row is a set number of pixels. In the case
of a monochrome monitor, there are 640 pixels represented in 40
words (16 bits per word times 40 words equals 640 bits or pixels).
Each word in a row is numbered from zero through 40. Thus, the
screen is laid out as a matrix where each pixel has a y coordinate (the
row it is in) and an x coordinate (the word and then particular bit
within that word).

However, memory is not stored as a matrix. Memory is stored in a
linear m anner with one byte following the next from start to finish.
To transfer the data in memory into an image on the screen, the
graphics hardware is designed to m ap the linear representation in
memory onto the two-dimensional matrix of the screen. The mapping
process starts a t the first address in the b it map and the upper left
com er of the screen. The first word in the bit map is placed onto the
first 16 bits in the first row; each word contains 16 bits. The next
word is placed in the next 16 bits and so on. This process continues
from left to right until the end of the row is reached; this is

Treasure Maps 97

represented by the word with the address Base plus 39. Then the
graphics hardware moves down one row to the next line on the
screen. This line is filled using the next 40 words in memory again
going from left to right. The mapping process continues until all the
lines have been mapped (representing 40 words per row times 400
rows, or 32,000 bytes).

Chapter 1 shows how the screen works. The inside of the screen is
coated with a phosphor that glows momentarily when struck by an
electron. The time required for the glow to fade depends upon the
type of phosphor used bu t is generally about 1/30 of a second.
Therefore, the entire screen m ust be rewritten, or refreshed, before
the pixels fade. If the pixels fade and are then redrawn, the screen
appears to flicker.

The time between the start of one refresh cycle and the start of the
next cycle is called the refresh rate. The refresh rate on most screens
is 1/30 of a second (30 Hz). Thus, the graphics hardware m ust map
the entire memory to the screen within this time so that it can start
the process over. The Atari color monitors work at this rate. The Atari
monochrome monitor works a t a slightly faster rate (35.6 Hz). The
refresh rate is significant in animation programs because you need
to know how much time there is between one frame and the next

Note that the process of drawing on the screen actually consists of
changing the value of a bit w ithin the bit map. Therefore, if you set
a b it to 1, the next time the graphics hardware maps that bit to the
screen tha t pixel is displayed. To the user it looks as though the dot
is drawn on the screen.

Mapping the Bits
Each time your program draws a pixel on the screen, the graphics
routine in the computer performs a calculation to convert an (x,y)
coordinate into a memory address and a bit number within a word.
This occurs for every pixel your program draws, such as when a
circle or rectangle is drawn, a figure is filled, and a single pixel is
drawn.

Given a coordinate pair (with x ranging from 0 to 639 and y ranging
from 0 to 399 for the monochrome screen), the address that contains
th is pixel equals the following: the base address of the bit map plus
y times 40 (to account for the number of words in the previous rows)
plus the integer value of x divided by 16 (since x represents the pixel
position). This is shown in Equation 1. To find the exact bit that
represents the (x,y) pair, take the remainder of x divided by 16 and
subtract this value from 15 as shown in Equation 2. This subtraction
is used because bits are numbered from right to left and from 0

98 Atari ST

through 15. This is the operation performed by the graphics hardware
each time a point is drawn on the screen.

Equation 1 address = base + (y * 40) 4- int(x / 16)
Equation 2 bit = 15 — (x / 16)

Program BITMAP

Look at the program BITMAP shown in Listing 5-1. This program
shows how you can manipulate the screen bit map itself. Screen bit
map manipulation must be done through the extended BIOS (XBIOS)
routines. The XBIOS is used because the bit map is a hardware-
dependent feature and not accessible through GEM.

There are two addresses used by the display hardware. One is the
physical base address, which is the address used by the display
hardware when it needs to read from the bit map to put data onto
the display. The other is the logical base address, which is used when
the VDI (or some part of your software) is writing to the bit map.
Program BITMAP uses both of these addresses.

Program
Output

Physical Screen Base

Memory

32,000
bytes

32,000
bytes

Logical Screen Base

Display
Hardware ^ D i s p l a y %

m m m

Figure 5-3 Use of Logical and Physical Screen Base Addresses

Figure 5-3 shows what happens in program BITMAP. Program
output is placed into memory wherever the logical screen address is
pointing. The display hardware outputs the bit map pointed to by the

Treasure Maps 99

physical screen base address. By taking advantage of this situation,
a program can draw a complex image in the logical b it map.'When
the image is complete, the physical address can be set to point to the
logical b it map, causing it to be displayed on the screen. The end
result is that the user perceives an instantaneous image.

In the program under the application-specific data, there are three
character pointers. The first, old_bitmap, contains the logical base
address of the screen currently being used. The variable new_.bitmap
contains the address of a second b it map to be set up within the
program. Finally, the variable old-pbase contains the physical base
address of the screen currently being used.

In m ain(), functions set_base(), te s tl(), and test2(), demonstrate
some of the uses and variations of the screen bit map. Hie next
function, Mfiree(), is like the £ree() function in C except that it is
defined under GEMDOS. The GEMDOS function is preferred because
it is consistent with the Atari machine and any other hardware
environments tha t use GEM.

Listing 5-1 Program BITMAP
/************#»#»**#********#******#»*#»#***********#***#*#«###*«##*###

BITMAP.C Demonstrate bitmaps

This program shous how a bitmap is used for screen display.

✓a*******#*****####**#**##*#*##*#**#*******##******
System Header Files & Constants

**/

ttincluds <stdio.h> /* Standard 10

ttinclude <osbind.h> ✓* GEMDOS routines

ttinclude <gemdefs.h> ✓* GEM flES

ttinclude <obdefs.h> /* GEM constants

ttdefine FALSE 0
tide fine TRUE !FRLSE

✓♦a*****#**#*#****#*#*#****##***##*#*##******##***#
GEM Application Overhead

******#**#«#»«*########*#*##****##****»*********##/'

Declare global arrays for VDI. *s

typedef int WORD; '* WORD is IS bits »/
WORD contrl[12], ' * VDI control array »/

intout[128], intin[128], VDI input arrays
ptsin[128], ptsout[128]; VDI output arrays

100 Atari ST

WORD screen_vhandle,
sc reen_phand1b,
screen_rez,
color_screen,

x_max,
y_max;

Listing 5-1 (continued)
/ * virtual screen uarkstatlon

s* physical screen workstation * /

' * screen resolution 0 ,1 , or 2 *s

flag if color monitor

/ * max x screen coord *s

s* max y screen coord * /

Application Specific Data
X K X X K X X X X /

char »oldJbltmap,

*nsw_bitmap,
*old_pbase;

logical base of current screen **

logical base of new screen * /

s* physical base of curr. screen * '

/xx

GEM-related Functions
K X * X X X « X X X » X X X X X X X X X X * X X /

WORD open_vwork(phys_handle)

WORD phys-handle;
✓xx

Function: This function opens a virtual workstation.

Input: phys-handle = physical workstation handle
Output: Returns handle of workstation.
X /

{
WORD work_ln[ll],

work-out[57],

new_handle; / * handle of workstation
Int i;

for (1 = 0 ; 1 < 10; i++)

work_ln[i] = 1;
work_in[10] = 2;
new_handle = phys_handle;
v_jopnvwk(work-in, &new_handle,

return(new_handle);

>

set_screen_attr()
✓xx

Function: Set global values about screen.

Input: None. Uses screen_vhandle.
Output: Sets x_max, y_max, color_screen, and screen—rez.
xx/

<
WORD work_out[57];

vq_sxtnd(screen_vhandle, 0 , work_out);
x_max = work_out[0];

set for default values *s

/ * use raster coords * /

/ * use currently open wkstation * /

work-out);

Treasure Maps 101

y_max = work_out[l];

screen_rez = Getrez(); ** 0 = low, 1 = med, 2 = high
color_screen = (screen_rez < 2); mono 2« color 0 or 1

>
✓xx

Rpplication Functions
xx/

set-base()
/xx

Function: fillocate memory for nsu screen bitmap.

Input: None.
Output: Sets oldLbitmap, neu-bitmap, and oldLpbase.
xx/

<
ttdef Ine BOUNDRRY 256
long x;

allocate neu screen bitmap

x = (long)Malloc(322S6L);
if (!(x * BOUNDARY))

neu_bitmap = (char *) x;

else
neu_bltmap = (char *)(x +

get current values
oldLbitmap = (char *)Logbase();

oldLpbase = (char *)Physbase();

return;

>

testl()
/xx

Function: Shou access to second bitmap.

Input: None.
Output: None.
X /

{
Int i;

prlntf(* ViViloglcal = ftlx.Vtphysical = *lx,Vinew = Slx^n*,
old-bitmap, old_pbase(neu-bitmap;

printf("vnPress any key to see neu bitmap^n*);
Craucin();
Setscreen(neu-bitmap, neu_bitmap, -1);

for (1 = 0; 1 < 32767; 1++)
*(neu_bitmap+l) = 1;

Craucln();
5etscreen(old_bitmap, oloLbitmap, -1);
return;

}

Listing 5-1 (continued)

/ * get 32 kbytes */

s* on half page boundary

/ * move to boundary * /

(BOUNDARY - (x X BOUNDRRY)));

102 Atari ST

test2 ()
/xx

Function: Shou hidden drauing on second bitmap.
Input: Nona.

Output: Nona.
X /

<
WORD pxarray[4];

int i;

printf("ViViClearlng new bitmapVi');
Set5creen(new_bitmap, -1L, -1);

v/_cl rwk(screen—1vhandle);
Setscreen(oldLbltmap, -1L, -1);

printf ('ViPress any key to see^n*);

Crawcin();

Setscreen(-1L, neu-bitmap, -1);
Crawcin();

Setscreen(old_bltmap, olcLbltmap, -1);

printf("VtDrauing In new bitmapVi');

Craucin();
Setscreen(nBw_bltmap, -1L, -1);

for (i = 10; i <= 150; 1 += 15)
{

pxarray[0] = i; pxarray[l] = i;

pxarray[2] = 1+10; pxarray[3] = i+10;
vr_recfl(screen_vhandle, pxarray);

>
Sb tscreen(oldLbitmap, -1L, -1);

printf('ViNeu screen readyVi');
Crawcln();

Setscreen(neu_bitmap, nau-bltmap, -1);

Craucin();
Setscreen(old_bitmap, old-bltmap, -1);

return;

>

/ X

Main Program
X /

main()

{
Int ap_id; ' * application init verify

WORD gr^uchar, gr_hchar, values for VDI handle
gr_ubox, gr_hbox;

/ X K X K X X X X X X X X X X X X X

Initialize GEM Access
X X « * X * X X X X X * X * X X K X » X X X * X * X X X X X X X * X X X X X X X X X * X X X X « X X /

Listing 5-1 (continued)

Treasure Maps 103

ap_ld = appl_inlt(); / * Initialize RES routines *s

if (ap_id < 0) no calls can bB made to RES

{ S* USB GEMDOS «/

Cconws("***> Initialization Error. <***\n");

Cconus("Press any key to continue.Vi");

Crawcln();
exit(-l); set exit value to show srror #/

>

screen_phandle = Get handlB for screen
graf_handle(&gr_uchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen_vhandle = open_vuork(scraen_phandle);
set_scroBrLjattr(); Get scresn attributes

Rpplication 5pBdfic Routines

***/

v_curhoma(screen_vhandle);

set_base();

testl();

tast2 ();

/***
Program Clean-up and Exit

***/

Mfrea(neu_bitmap); return memory

Walt for keyboard before exiting program
Craucin(); GEMDOS character input

v_clsvuk(scraen_vhandle); /* close uorkstation
appl_exlt(); end program

>

Listing 5-1 (continued)

locating a Bit Map
The routine set_base() allocates 32,000 bytes of memoiy for a new,
secondary screen bit map. There is no input to this routine and the
only output is th a t the function sets the values of variables
old-bitmap, new-bitmap, and old-pbase mentioned above. The
routine first allocates 32,000 bytes of memoiy using the MallocO
function. Note tha t the function name is capitalized; this means that
it is a GEMDOS function and not a C-deflned function. MallocO
returns a value of type long (representing an address in memoiy)
indicated by our (redundant) long type cast operator. On the Atari
machine, longs and pointers are both 32 bits wide. A pointer is not

104 Atari ST

used because GEM does not know what type of pointer is required.
Therefore, a type cast is probably necessary in any case. Note that the
argument used in the call to Blalloc() is 32,256, even though the
program only needs 32,000 bytes. The reason is tha t the base address
of the screen bit map m ust be on a half-page boundary (divisible by
256). By adding on an extra 256 bytes, the program has enough room
to shift the base address upward so that it is divisible by 256 and
still has 32,000 bytes of memory allocated. Thus, after allocating the
memory space, set_base() tests the address of the memory block to
see if it falls on a half-page boundary. If it does, new-bitmap is set to
tha t address; otherwise, new_bitmap is set to the next highest
half-page boundary. The set_base() routine next sets the variable
old_bitmap to the value of the logical base address returned by the
Logbase() function and then sets the variable olcL-pbase to the value
of the physical base address returned by Physbase(). The function
Logbase() and Physbase() are XBIOS functions because they are
hardware-dependent values set by the ST when it is turned on.
Function set_base() has now set all the base addresses needed for
this program.

Using the New Bit Map
The routine t e s t l () demonstrates how to access a second bit map.
Function t e s t l () first prints the values of the logical and physical bit
map base addresses. After the user presses a key, function Setscreen()
is called. This function has three arguments. The first is the address
of the logical screen bit map; the second is the address of the physical
screen bit map; and the third is a value to set the screen resolution.
This last value is analogous to the value returned by Getrez() in
routine set_screen_attr() where 0 indicates low resolution, 1 indi
cates medium resolution, and 2 indicates high resolution. Any of the
arguments of Setscreen() may be negative values. The use of a
negative value indicates that no action is to be taken on that
parameter. For example, the first call to Setscreen() sets the logical
and physical screen base addresses bu t does not change the screen
resolution. The end result of function Setecreenf) changes the logical
address, the physical address, or the screen resolution. When this
occurs, the new bit map will be displayed on the screen.

For demonstration purposes, te s t l () performs a loop that simply
puts a number (the value of the index) into all locations of the bit
map one byte a t a time. Because the program directly affects the
screen’s bit map, the result of this loop appears on the screen. Note
how the screen reflects the binary values of each location. For ex
ample, in row 0 byte 0 (set to 0 in the loop) contains eight white
pixels. The next byte (set to a value of one) contains seven white pixels

Treasure Maps 105

and one black pixel. The next bytes continue this pattern. To end the
test, Setscreen() is called a second time to restore the old screen bit
map, which remains unaffected by the manipulations with the new
bit map.

The next routine, te s t2 (), shows how to set the logical and physical
bit maps independently. This is done so that you can have one image
displayed while your program is drawing another image on the
second bit map. The image displayed is in the bit map pointed to by
the physical base address; the image drawn is pointed to by the logical
base address.

The first step in te s t2 () is to tell the user tha t the other bit map
is being cleared. Function Setscreen() is called to set the logical base
address of the bit map to new-bitmap, but no changes are made to
the physical base or the resolution. The VDI function v_drw k() is
used to clear the bit map. Note tha t in drawing the VDI uses the
logical base address, not the physical base address. Thus, the physical
b it map (the one displayed to the user) shows no change. This follows
the division of puipose for each bit map where the logical bit map
holds the output from the software and the physical bit map produces
the image on the screen. When the second bit map is cleared, you see
no effect on the first bit map (the one displayed). After the bit map
is cleared, function Setscreen() is called to restore the logical base
address so the output of the prin t statement appears on the screen.
After the user presses a key, the physical base address is set without
changing the logical base address or the resolution. This shows the
newly cleared bit map. After another key is pressed, tex t2() returns
the display to the original b it map old-bitmap.

Note tha t in the calls to Setscreen(), a constant of type long is used
for the values of —1. Because Setscreen() expects an address, the
parameter m ust fill all 32 bits of information. If an in t was used, only
16 bits of data would be passed, causing the parameters to be read
incorrectly.

The next section of te s t2 () draws in the new bit map while the old
bit map is displayed. The image drawn is a set of filled rectangles
along a diagonal. While the drawing takes place, the user sees no
changes to the screen. Once the boxes have been drawn, the user
presses a key to see them. When another key is pressed, the original
b it map is displayed again.

Note tha t all printift) calls start and end with the newline character.
For some reason, printfO, a C output function, does not work
precisely with changes made by Setecreen(). If there is no newline
before text is printed o u t the text may either appear on the new or
the old bit map.

As an operational side note, the logical screen base address is set
immediately by Setscreen() because your program wants to output to

106 Atari ST

the new bit map setting as soon as possible. The physical base
address, however, is set only when the screen has finished a refresh
cycle (that is, when the last word of the screen has been drawn).
During the time between refresh cycles, the physical base address is
se t If this were not the case and the physical base address was set
in the middle of the refresh cycle, the top half of the screen would
show the old b it map and the bottom half of the screen the new
bit map.

Program BITMAP shows that you can set and use a logical bit map
while looking at a physical bit map. This is a very important feature
in animation. Try changing the defined boundary value of 256 in
set_b ase() to a value of 127. This causes some rather interesting re
sults when the bit map is changed from the old bit map to the new
bit map.

Program ANIMATE

Program ANIMATE is an application of the techniques learned in
program BITMAP. Starting with the application-specific data in the
program listing (see Listing 5-2), the constant SQSIZE determines the
size of the squares that are drawn. The pointer variables screen l and
screen2 hold the address of the two screen bit maps. Variable screen l
holds the address for the current screen bit map (the one used by the
system) and screen2 is the b it map created for the program.

Listing 5-2 Program ANIMATE

ANIMATE.C Demonstrate animation techniques

This program shous hou a tuo bitmaps are used for
animation.

/a**#####**#***##***#*##*#******#**#**##*****#***#*
System Header Files & Constants

* X t t * * » * X « K X * X * « t t * X X « K » * X * * X * * * « * X K * * * X « » * * * « X * * « « « /

ttinclude <stdio.h>
((include <osblnd.h>
ttInclude <gemdefs.h>

((Include <obdefs.h>

/* Standard 10
GEMDOS routines

/ * GEM AES

GEM constants

((define FALSE 0
((define TRUE 'FALSE

/xx

GEM Application Overhead
k x x x x x x x x x k x x x x x x x x x x x x k x x k x x x x k x x x x x x x x x x x x k x x x x x /

Treasure Maps

Declare global arrays for VDI.
typedef int WORD; / * WORD is IS bits * /

WORD contrl[12], VDI control array
intout[128], intin[12B], VDI input arrays *s

ptsln[128], ptsout[12B]; VDI output arrays

Listing 5-2 (continued)

WORD screen—vhandle,

screen_phandle,
screen_rez,
color_screen,

x_max,

y_max;

s* virtual screen uorkstation

' * physical screen uorkstation
s* screen resolution 0 ,1 , or 2

flag if color monitor *s

max x screen coord *s

/ * max y screen coord

/xx

Application-Specific Data
X /

ttdefine SQSIZE 10 ' * size of a square * '

char *screenl,

*screen2 ;
logical base of current screen

/ * logical base of neu screen

✓ X

GEM-related Functions
X K X X X X X X X K X X X X X X X X X X X X X X X X X X X /

WORD open—vuork(phys-handle)

WORD phys-handle;
/ X X X K X X X X X X X X X X X X K X X X K X X X X X K X X X X X X X K X K X X X X X X X X X X X X X

Function: This function opens a virtual workstation.

Input: phys-handle = physical workstation handle
Output: Returns handle of uorkstation.
X /

<
WORD uork_ln[ll],

work_out[57],
new_handle; handlB of uorkstation *s

Int i;

for (1 = 0 ; i < 10; 1++) / * set for default values

uorl<_ in [i) = 1 ;
uork_ln[10] = 2; use raster coords
neu_handle = phys-handle; s* use currently open ukstation

v_jopnvuk(work_in, &neu_handle, work—out);

return(neu-handle);

>
set_jscreen_attr()
✓ X

Function: Set global values about screen.
Input: None. Uses screen—vhandle.
Output: Sets x_max, y_max, color_screen, and screen_rez.
X X X X K X X X X X X X K X K X X X X X X X X X K X X X X X X X X K X X X X X X X X X X X X X X X X /

<
WORD uork_jDut[57];

108 Atari ST

vq_extnd(screen_vhandle, 0 , uork_out);
x_/nax = uork_jout(0];

y_max = uork_out[l];

screen_r0Z = Getrez(); s* 0 = leu, 1 = med, 2 = high
color_screen = (screen_rez < 2); mono 2, color 0 or 1

>

/xx

Application Functions
X /

set-base()
/ X

Function: Allocate memory for neu screen bitmap.
Input: None.
Output: Sets screenl, screen2.
X

{
ttdeflne BOUNDARY
long x;

s* allocate neu screen bitmap
x = (long)Malloc(32256L);

if (!(x * BOUNDRRY))
screen2 = (char *) x;

else
screen2 = (char *)(x +

get current screen
screenl = (char *)Logbase();

return;

)

drau_box(al, a2)
WORD al[], a2[];
/ X X X X X X X X X K X X K X K X X X X X X X K X X X X K X X X X X X X X K X X X X X X X X X X X X X

Function: Drau two vertical lines of boxes.
Input: al = array for first line of boxes.

a2 = array for second line of boxes.
Output: None.
xx/

<
for (al[l] = a2[l] = 10, al[3] = a2[3] = al[l] + SQSIZE;

al[l] < y_jnax - 20;
al[l]+=30, a2[l]+=30, al[3]+=30, a2[3]+=30)

{
vr_recfl (screen_v/handle, al);
vr_recf1(screen_vhandle, a2);

>
return;

>

Listing 5-2 (continued)

get 32 kbytes
on half page boundary

movB to boundary
(BOUNDRRY - (x X BOUNDRRY))];

Treasure Maps 109

animatel()
✓xx

Function: Use single bitmap to animate boxes

Input: None.
□utput: None.
xx/

i
WORD pll[4], pl2[4]; / * squares x coord * /

pll[0] = SQSIZE * 2; ' * square 1 on screen 1 start

pll[2] = pll[0] + SQSIZE;

pl2[0] = x_max - (SQSIZE * 2); square 2 on screen 1 start

pl2[2] = pl2[0] + SQSIZE;

v_clrwl<(screBn_vhandle); '* clear screen
s* set XOR drawing mode

usur_mcde(scrBBn_vhandle, KD-XOR);

draw_box(pll, pl2); draw initial squares *s

while (pl2[0] > SQSIZE+5)

{
draw_box(pll, pl2);
pll[0]++; pll[2]++; ' * move along x values

pl2 [0]~ ; P12[2]--;

draw_box(pll, pl2);
Vsync();

>
>
animate2 ()
/ X X X X X X X X X X X X X X X X X X K X X K X X X X K K X X X X X X K X X X X X X X X K X X X X X X

Function: Use multiple bitmaps to animate boxes

Input: None. Uses screenl and screen2.
Output: None.
X /

Listing 5-2 (continued)

pll[4] . Pl2[4], / * screen 1 squares x coord *s

P21[4] . P22[4]; / * screen 2 squares x coord

pll[0] = SQSIZE * 2; / * square 1 on screen 1 start *■''
pll[2J = pll[0] + SQSIZE;

p!2[0] = x_max - (SQSIZE * 2); / * square 2 on screen 1 start * /

p!2[2] = pl2[0] + SQSIZE;

P21[0] = (SQSIZE * 2 + 1) ; / * square 1 on screen 2 start * /

P21[2J = p21[0] + SQSIZE;

p22[0] = x_/nax - (SQSIZE * 2 + 1); square 2 on screen 2 start * /

p22[2] = p22[0] + SQSIZE;

110 Atari ST

Setscreen(screenl, screenl, -1);

v_clrwk(screen_vhandle); clear screen * '

Setscreen(screen2, screen2, -1);

v_clrwk (screen—1vhandle); s* clear screen

set XOR drawing mode »/
vswr_mode(screen—vhandle, MD-XCR);

/ * draw Initial squares
Setscre8n(scrsenl, -1L, -1);
drau_box(pll, pl2);

Setscreen(screen2, -1L, -1);
draw_box(p21, p22);

while (pl2(0J > SQSIZE+5)

{ / * show new and draw on old

Setscreen(screenl, screen2, -1);
Vsync();

draw—box(pll, pl2); / * erase * '

pll[0]+=2; pll[2]+=2; / * move along x axis * /

pl2(0]-=2; pl2[2]-=2;

draw_box(pll, pl2); ' * draw

show old and draw on new * '

Setscreen(screen2, screenl, -1);
Vsync();

draw_box(p21, p22); erase *s

p21[0]+=2; p21[2]+=2; move along x axis »/
p22(0J-=2; p22(2]-=2;

draw_box(p21, p22); f* draw

>
S0tscreen(screenl, screenl, -1);

Listing 5-2 (continued)

/a****#*********###*#***##*****##*###***#**##*#####
Main Program

main()

i
Int ap_id; ' * application init verify

WORD gr_jwchar, gr_hchar, / * values for VDI handle
gr_ubox, gr_hbox;

✓a********###**#*#**#****#*#**##******##*##*##*##**
Initialize GEM Access

a#************###*******#**##********####**#####*#/

ap_id = appl—init(); ' * Initialize RES routines
if (ap_id < 0) no calls can be made to RES
{ ' * use GEMDOS * /

Cconws(’***> Initialization Error. <***\n’);
Cconws("Press any key to continue.Vi*);

Treasure Maps 111

Craucln();
exit(-l); set exit value to show error * /

>

screen_phandle = Bet handle for screen
graf_handle(&gr_uchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen_vhandle = open_v/uork(screen_phandle);
set—Bcreen_attr(); Get screen attributes * /

✓a#####**###*######*#**#***#****##********#*********
Application Specific Routines

#*#»»»*»»»»»**»«#**»»******»****»****»**##***»*✓

8Qt_bas0 ();
anlmatel();
Cratjcln();

anlmate2();

✓a***##*####**#*######*#*#*#####*####*##************
Program Clean-up and Exit

a*###*###**#####*#*#*#*###****###*********#*#***#**/

Mfree(screen2); return memory

Malt for keyboard before exiting program
Craucln(); GEMDOS character input

v^cl8vuk(screen_vhandle); /* cIosb workstation */
appl_exlt(); s* end program

>
/***«*»»*##»**»**«»##********#*****#*#»**#********#/
/»#***»#*#*/

Listing 5-2 (continued)

In animation speed is the key. All changes made to the screen
images m ust be made fast enough that the eye does not detect
individual images. This is the principle behind television and motion
pictures. For example, motion pictures are composed of frames that
contain still images. When they are projected fast enough (about 24
frames per second), the Illusion of motion is created. The same is true
in computer animation. While one image is displayed, the computer
m ust draw the next image before it is displayed. This represents one
of the most difficult aspects of computer animation, especially in
applications such as flight simulators where very complex Images
m ust be generated within a very brief time.

ANIMATE animates two columns of small boxes tha t s tart a t each
edge of the screen and move past each other to the opposite edge. The
program draws each column of boxes a t both edges, changes their

112 Atari ST

horizontal coordinates a small amount, and draws them again repeat
ing this loop until the columns reach the opposite edge. Of course,
the previous set of boxes m ust be erased when the new column is
drawn; therefore, ANIMATE uses the XOR writing mode ju s t as
program LINES.

In function m ain(), the first call is to set_base() to set the base
values. Function set_base() is the same function used in program
BITMAP except that in this program the function sets the variables
sc reen l and screen2. Next the two animation functions, an im a te l()
and anim ate2(), are called. The routine an lm ate l() shows the use of
a single bit map to animate the boxes. Function anim ate2() uses two
bit maps.

The application function draw_boz() is used by both anim ate 1 ()
and anim ate2() to draw the two vertical columns of boxes. This
function takes the coordinates of the top box and draws all the boxes
in the column. Function draw_boz() draws enough boxes to fill the
entire vertical height of the screen as determined by the variable
y_m ax set in set_screcn^attr(). Having this dynamic drawing routine
allows the program to be run on either a monochrome or color
monitor.

The function an im atel() starts by setting the initial coordinates of
box columns one and two in arrays p l l and p l2 , respectively. Next
the workstation is cleared, the writing mode is set to XOR and the
initial set of squares is drawn. In the loop, the current boxes are
redrawn first (to erase them). Then the x coordinates for the new
columns are set by incrementing the x value of column 1 (which
moves from left to right) and decrementing the x value of column 2
(which moves from right to left). When the new x values have been
se t the columns are drawn. The loop is terminated when the second
column comes within five plus one square width pixels of the left edge
of the screen.

The function Vsync() is called to help give the animation a
smoother look. The Vsync() function is an XBIOS function and
causes the program to pause until the next refresh cycle begins (called
a vertical interrupt). The V8ync() function allows time for the current
refresh cycle to complete so tha t all the boxes are shown on the screen
before they are moved. If you take out the Vsync() function, you see
a noticeable flickering effect as the boxes are drawn.

The anim ate2() function is similar to an im atel() except that two
bit maps are used. Each bit map has two columns of squares as
before. However, instead of redrawing the columns each time on the
sam e screen as the columns move from one side to the other, this
function displays one bit map while drawing the next image on the
second bit map. When the second bit map is complete, the purposes
of the bit maps are inverted: the second bit map becomes the dis

Treasure Maps 113

played bit map (physical b it map) and the first bit map becomes the
drawing bit map (logical b it map). The b it maps keep switching back
and forth until the boxes have completed their journey. The boxes
appear to move in the same manner as produced by anim atel().

In animate2(), the variables screenl and screen2 each point to the
base of a different bit map- The arrays p l l and p l2 contain the x
coordinates of the columns on screen one; the arrays p21 and p22
contain the x coordinates of the columns on screen two. As in the
previous function, the initial coordinates of the boxes are s e t Screen
one uses the first position of the boxes while screen two uses the
next position of the boxes as the starting coordinates. The next
position is one pixel closer to the center of the screen. Both screens
are cleared, the drawing mode is set to XOR and the first columns
are drawn on each screen.

To start the drawing process, the base addresses need to be se t
Since screen one is already visible, the first step in the loop is to
switch screens. The logical base address is set to screenl and the
physical base address is set to screen2. Now screen two is visible and
screen one is used for graphic o u tpu t The Vsync() function pauses
the program so tha t the display hardware has time to show the new
image.

While screen two is displayed, draw_box() is called to erase the
current columns on screen one and the new* positions of these
columns are calculated. These new positions are the next position
after the image shown on screen two. Therefore, the x coordinates
m ust be moved by two and not ju s t one. Function draw_box() is
called to draw the new columns on screen one using the coordinates
stored in p l l and p i2. Now screen one is displayed again and
drawing is done on screen two. The procedure for drawing on screen
two is exactly the same as the one for drawing on screen one. This
flip-flop between display screens continues until the columns have
made their trek across the screen. At this point, the screen addresses
are set to their original state (that is, the logical and physical base
addresses are both set to scieen l and the function returns to main().

The last section of main() calls the M2ree() function to free up the
memory that was allocated for the second screen (referenced by
variable screen2). You should always free allocated space or GEM
might not be able to use this memory again. Also, be sure to use the
corresponding allocation and de-allocation functions (both should be
from either C or GEMDOS). The GEMDOS functions are preferred
here because of their guaranteed portability.

The output of anim atel() shows the boxes moving toward and then
past each other. Even though the Vsync() function is in use, the
screen still flickers. This is because the user is actually watching the
boxes being drawn, erased, and redrawn at each location. Since the

114 Atari ST

entire process is visible on the screen, a flickering effect occurs. If only
one or two boxes are drawn instead of an entire column, the time
required to draw and erase the images is reduced to the point where
the screen does not flicker. However, if you are creating a game, it is
most likely th a t there are 20 or 30 objects to be moved between
images. The more objects to be moved, the more noticeable the
drawing procedure becomes.

The output of animate2(), on the other hand, is much smoother
and does not flicker. The time required for the boxes to traverse the
screen is exactly the same as in anim atel(), bu t animate2() is much
more pleasant to view. You may notice that the boxes tend to jump
a t certain places. This is because the boxes are not drawn fast enough
to be placed on the screen during the next available refresh cycle. In
other words, sometimes the new bit map has to wait an additional
refresh cycle before it can be placed on the screen. The bit maps are
always forced to wait for the right time by the Vsync() function.

ANIMATE is quite straightforward. It basically demonstrates the
important technique of swapping bit maps. This technique is used
later in this book in a more elaborate animation program.

Bit maps provide an extremely powerful tool in the realm of com
puter graphics. In this chapter, you saw how a bit map is transferred
from memory to the screen. You also saw that the display hardware
uses two addresses when dealing with a bit map. The logical bit map
address points to the base of the b it map to be used for program
graphic o u tpu t The physical bit map address points to the bit map
used by the display hardware when it is transferring an image to the
screen. If the logical and physical b it maps point to the same location,
the program graphic output is immediately displayed on the screen.
If the logical and physical bit map addresses are different the
program can create complex images in the background and have
these images displayed instantaneously on the screen.

The bit maps covered in this chapter deal specifically with mono
chrome bit maps. The introduction of color adds a new dimension to
both your program output and the layout of the bit map. Chapter 6
deals with the use of colors and specifically looks a t the color imple
mentation on the Atari ST.

C H A P T E R S I X

Colors of the Rainbow

This chapter shows how the Atari machine produces color graphics
from a bit map, how color is represented in memory and converted
to a screen image, and how the VDI and extended BIOS functions
alter the color display. This chapter also includes a demonstration
program showing some of the capabilities of the color display.

Color Display Implementation

A monochrome screen is coated with a phosphor on the inside that
glows when struck with an electron. Because only one type of phos
phor is used, only two colors can be displayed: either black (no color)
or white/green/amber (depending upon the phosphor used). A color
screen uses the three primary colors of ligh t which can be com
bined to create other colors as described in Chapter 2. On the Atari
ST, the intensity of each color can range from 0 (meaning the color
is not used, that is, off) to 7 (indicating the highest intensity). This
gives eight different intensity levels for each color. Therefore, the Atari
ST is capable of displaying 512 different colors: 8 X 8 X 8 .

Because there are eight intensity levels for a color, each pixel would
require a t least three bits to store the intensity level of one color.
Since there are three colors with three bits for each color, the com
puter system would need to store nine bits of information for every
pixel on the screen, which would use too much memory. Even at the
low resolution setting of 320-by-200 pixels, the system would need
72,000 bytes to store a screen image: 320 pixels X 200 pixels X 9 bits

116 Atari ST

-s- 8 bits per byte. In other words, the system would need over twice
as much memory space to represent one-fourth the resolution of a
monochrome screen, which uses only 32,000 bytes in high resolution
mode. In addition to this, a group of nine bits cannot be stored
efficiently because bytes are only 8 bits long whereas words are 16
bits long.

Monochrome Bit Maps
Atari has devised a mechanism to get around this problem. The
monochrome bit map is quite straightforward. Figure 6-1 depicts this.

Figure 6-1 Planes Used in Monochrome Bit Map

In high resolution mode, the system requires exactly 32,000 bytes
to represent the entire screen in a b it map. The memory allocated for
this b it map is shown in Figure 6-2. There is a base address for the
s tart of the bit map and the words within the bit map are contiguous.
The first 40 words represent the first row on the screen; the next 40
the second row; and so on.

The Color Palette
On the Atari ST, the color monitor would require over twice the
amount of memory needed for the monochrome monitor to represent
512 different colors a t one-quarter of the resolution. To keep the bit
map for the display within 32,000 bytes, Atari chose a method that
allows only 16 colors to be accessible for display a t any one time.
These 16 colors are placed in what is called a color palette.

Row 0
Row 1

Plane 0

Screen

Colors of the Rainbow 117

Plane Row Word
0 0 0
0 0 1
0 0 2

0 1 0

0 110 010 1 1 0 0 0 1 1 1 0

Address
(in bytes)

Base
Base + 2

Base + 80

Figure 6-2 Memory Layout of a Monochrome Bit Map

The color palette is a block of 16 words in memory. Each word
represents a different color entry. The colors are numbered from 0 to
15. Each entiy in the color palette contains the intensity levels for
each of the three primary colors used to create this color entry (see
Figure 6-3).

In each word, the first four bits represent the blue intensity, the
next four bits represent the green intensity, and the next four bits
represent the red intensity. Since only three bits are required to
describe the eight different levels of intensity, the last bit in each
four-bit group is not used. The last four bits of the word are also
unused. For example, the color black has a palette entry that is all
zeros (0x0000 in hexadecimal). The color white has the full intensity
for each of the three colors (0x0777 in hexadecimal).

The color palette shown in Figure 6-3 is actually the default color
palette of the au thors computer. Colors 0 and 15 should always be
set so that color 0 has the highest intensity (white) and color 15 uses
no colors (black). The entries in the palette can be modified by a
program, which is demonstrated shortly.

How does using a color palette reduce the memory requirements of
the bit map? Since the palette has only 16 colors, you don’t need 9
bits to represent each pixel on the screen. To represent 16 different
colors, you need only 4 bits to represent a number between 0 and 15.
On the low resolution screen, the system uses 32,000 bytes: 320 pixels
X 200 pixels X 4 bits per pixel -J- 8 bits per byte. This is the same
amount of memory needed for the high resolution monochrome dis
play.

118 Atari ST

Bit

9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1 0 1 1 1

0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 1 0 1 1 1
0 0 0 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1
0 1 1 1 0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0

Red Green Blue

Intensities
Figure 6-3 Color Palette

0
1
2
3
4
5
6
7
8
9

10
1 1
12

13
14
15

Color
Index

Planes
There are different ways to represent the four-bit color palette index
in the bit map. The Atari ST uses a rather interesting method called
planes.

The color bit map can be thought of as a simple extension of the
monochrome bit map shown in Figure 6-1. Since it takes four bits to
describe the color of a single pixel, the color bit map uses four planes
(see Figure 6-4). Each plane is a bit map representation of the screen.
Thus, the furthest left bit in the first byte of each plane corresponds
to the upper left pixel on the screen. By combining bit settings in
each of the four planes for that particular pixel, a palette entry index
can be constructed. For example, in Figure 6-4, the first pixel has a
palette index of 0 because bit 15 of the first word in each plane is set
to 0. The seventh pixel has a palette entry index of 7 because of the
bit settings in each plane.

Similar to the monochrome bit map, the color bit map is laid out
in a contiguous block of memory. The first word in each plane
describes the first 16 pixels on the screen, the next word in each
plane describes the next 16 pixels, and so on. The planes are arranged

Colors of the Rainbow 119

Color Index 0

Color Index 01 1 12 =

Plane 1

Plane 2

Plane 3

Figure 6-4 Planes Used in a Color Bit Map

Row 0
Row 1

7

ane 0

in an interleaved fashion. This means that the first word of plane 0
is followed by the first word of plane 1, the first word of plane 2, and
then the first word of plane 3. The next word in memory corresponds
to the second word of plane 0, followed by the second word of plane
1, and so on (see Figure 6-5).

Plane Row Word

0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 Base
1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 Base + 2

2 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0
0 0 1
1 0 1

Address
(i n bytes)

Base + 320

Figure 6-5 Memory Layout of a Color Bit Map

120 Atari ST

The mapping of bits from a row and word position to pixels on the
screen is analogous to the procedure used for a monochrome bit map.
It proceeds from left to right on the screen and from top to bottom.
The low resolution color screen is 320 pixels wide and has 200 rows.
Taking the interleaving of planes into consideration, row 0 occupies
the first 160 bytes in the bit map: 20 words per row per plane X 4
planes. Row 1 occupies the next 160 bytes, and so on.

Figure 6-6 shows an example of how color output is produced. First,
the appropriate bit is extracted from each plane in the bit map. These
bits are placed together to obtain the color palette index. Note that
plane 3 is the most significant bit of the color index and plane 0 the
least significant bit. In Figure 6-6, the value 0111 references color
index 7 in the palette. The value taken from the palette determines
the red, green, and blue intensities to be output. This mix of colors
is then placed at the corresponding pixel on the screen.

Color
Index

Plane 0
Plane 1
Plane 2
Plane 3

01 IOC
01001
01111
0 0 0 0 C

1 H-H)001 1 10
H \ \ 10000
-t-eeeoooo 1

o -h o i hooo

0 1 1 1

Blue Intensity—
Green Intensity-
Red Intensity —

Color Palette

Figure 6-6 Converting Bit Map Planes to Color Output

To Display
Hardware

Color Versus Monochrome

In the programs used so far, there has been no distinction between
color and monochrome screens. However, there is a difference. If you
tiy to write color images to a monochrome screen using the VDI, it
will map any nonwhite colors as black. Thus, portions of your image
using different colors are not distinguishable from one another. This
is why it is important to use the inquiry functions as used in
set_screen_attr() to determine the type of screen in use. If you are
not using the VDI, the value of bit 0 in the color palette entry is used

Colors of the Rainbow 121

to determine if the pixel is on or off when output to a monochrome
screen.

If you output an image designed for a monochrome monitor to a
color screen, the result really won’t be too much different except that
the colors are white and some other color. For example, if you use
colors 0 and 1 the image includes white and whatever color entry 1
is set to be. If you want to be sure black and white are output whether
or not you use a color monitor, specify color 0 for white and color 15
for black. As default values, color 0 is the background color (generally
white) and color 15 is black. Using this combination you get black-
and-white images on all types of monitors. Of course, if your program
is using the VDI for output, you may use color 0 and any other color
because the VDI converts any nonwhite color to black.

Resolution
Another variable on the video display of the ST is the resolution of
the image. There are three resolution values: high, medium, and low.
In high resolution, the screen has 640 pixels across and 400 pixels
down. Medium resolution has 640 pixels across and 200 pixels down,
and low resolution has 320 pixels across and 200 pixels down. High
resolution is only available on the monochrome monitor for two
reasons. F irst a color monitor with this resolution is very expensive
to produce. Second, the b it map required would consume too much
memory. The low resolution mode uses four planes to allow the
display of any of 16 colors a t one time. Medium resolution has twice
the number of pixels as low resolution. However, to fit the bit map
into 32,000 bytes, only half the number of planes can be used. This
means that only four colors are available in medium resolution. These
colors are the first four palette entries.

Program COLOR_____________________________________
Program COLOR is a demonstration program that uses most of the
GEM and XBIOS functions for altering the colors displayed on the
screen. Listing 6-1 shows the usual header files and GEM application
overhead. In the section for application-specific data, there are three
constants: RED, GREEN, and BLUE, which are used to reference the
array elements of the parameter array for the VDI set_color() func
tion.

122 Atari ST

/ X X X X K X

COLOR.C Color demonstration program

This program shows the use of the color palette.
X f t X X /

Listing 6-1 Program COLOR

ttinclude <stdio.h>
ttinclude <osbind.h>

ttinclude <gsmdefs.h>

ttincluds <obdefs.h>

Standard 10
/ * GEMDOS routines *s

** GEM structures
GEM write modes

ttdBfine FRLSE 0

ttdefine TRUE !FALSE

✓ X

GEM Application Overhead
xx/

** Declare global arrays for VDI.
typedef int WORD; WORD is IS bits * '

WORD contrl[12], ' * VDI control array */

intout[128], intin[12B], VDI input arrays *'
ptsin[12B], ptsout[12B]; VDI output arrays

WORD screen_vhandle,
screen_phandle,

screen_rez,
color^screen,
x_max,

y_max;

virtual screen uorkstation *s

/ * physical screen workstation »/

s* screen resolution 0,1, or 2 * /

/ * flag if color monitor * /

s* max x screen coord
** max y screen coord

/xx

Application Specific Data
X /

define colors * /

ttdefine RED 0

ttdefine GREEN 1
ttdefine BLUE 2

** rotating paletts
WORD pal_wheel[] = {

0x000, 0x007, 0x070, 0x700, 0x077, 0x707, 0x770, 0x777,

0x000, 0x111, 0x222, 0x333, 0x444, 0x555, 0x6G6, 0x777,

0x000, 0x007, 0x070, 0x700, 0x077, 0x707, 0x770, 0x777,
0x000, 0x111, 0x222, 0x333, 0x444, 0x555, 0x666, 0x777

>;

/x current palette */

WORD save-pa1(16];

Colors of the Rainbow 123

/••••a***
GEM-related Functions

X /

WORD open—vwork(phys-handle)

WORD phys-handle;
✓xx

Function: This function opens a virtual workstation.

Input: phys_handle = physical workstation handle
Output: Returns handle of workstation,
xx/

{
WORD work-in[11],

work_out[57],
new_handle; handle of workstation * /

Int i;

for (1 = 0; i < 10; 1++)

work_in[i] = 1;

work-in[10] = 2;
naw_handls = phys_handle;

vjjpnvwk(work-in, &new_handle,

return(new_handle);

>

8Bt_scrBBn_attr()
/xx

Function: Set global values about screen.
Input: None. Uses screen_vhandle.
Output: Sets x_max, y_max, color_screen, and screen_rez.
xx/

<
WORD work_out[57];

vq_jBxtnd(screen—vhandle, 0, workjout);
x_max = work-out[0];
y_ntax = work_jout[l];

screen_rez = Getrez(); ** 0 = low, 1 = med, 2 = high
color_screen = (screen—rez < 2); ' * mono 2, color 0 or 1

>

✓xxxxxx»xxxxxxxxx»xxxxxxxxx*xxxx*xxxxxxxxxxxxxxxxxx

Application Functions
xx/

check—table(handle)

WORD handle;
/ X

Function: Check If color lookup table is supported.
Input: handle = handle of device to check.

Listing 6-1 (continued)

/ * set for default values * '

/ * use raster coords * '

/ * use currently open wkstatlon *s

worl<-out);

124 Atari ST

Output: 0 = table supported.
1 = not supported.

<
WORD uork_out[S7];

vq_extnd(handle, 1, work_cut); do extended inquire * '

return(uork_out[5]); return flag

>

show_palette()

Function: Drau a set of squares to shou current color settings.
Input: None.

Output: None.

<
register 1;

WORD pxy[4];

for (1 = 0 ; 1 < 1G; 1++) ST supports up to 1G colors * '

K
pxy[0] = (1 X 4) * 40 + 20;
pxy[l] = (1 / 4) * 40 + 20;
pxy[2] = pxy[0] + 3S;
pxy[3] = pxy[l] + 35;

vsf_color(screen—vhandle, 1); ' * set fill color * /

vr_recfl(screen—vhandle, pxy);

>
>

change_palette()
/xx

Function: Change palette index 3 using VDI function.
Input: None.
Output: None.
X /

<
WORD rgb[3], / * mew settings

srgb[3]; / * saved settings *s

long delta; s* use long to slow down * /

Inquire current value for index 3 *s

vq_jcolor(screBn_vhandle, 3, 0, srgb);

«'* initialize
rgb(RED) = 0;
rgb[GREEN] = 0;
rgb[BLUE] = 0;
delta = 1;

Listing 6-1 (continued)

Colors of the Rainbow

Listing 6-1 (continued)
/ * loop around colors * '

for (rgb[BLUE] = 0; rgb[BLUE] < 1000; rgb[BLUE] += delta)
vs_color(screen_vhandle, 3, rgb);

for (rgb[RED] = 0, rgb[GREEN] - 0; rgb[RED] < 1000;
rgb[RED] += delta, rgb[GREEN] += dBlta)

vs_color(screen_vhandle, 3, rgb);

for (; rgb[BLUE] > 0; rgb[BLUEJ -= delta, rgb[GREEN] -= delta)

vs^colar(screen_vhandle, 3, rgb);

for (; rgb[RED] > 0; rgb[RED] -= delta)

vs_color(screen_vhandle, 3, rgb);

Craucin();

vs_color(screen_vhandle, 3, srgb); restore color

rot_palette()
/xx

Function: Use Xbois call to set entire palette.
Input: None. Uses array pal_uheel[].

Output: None.
X /

>

{
register i;

/ * save current palette

for (1 = 0; i < 1G; i++)

save_pal[i] = Setcolor(l, -1); / * read current value *s

for (i = 0; i < 1G; 1++)

<
Setpalette(&pal_juheel [i]);

shou_palette();
Craucin();

set base of palette

>

Setpalette(save_pal); restore original

}
/xx

Main Program
X K X X X X X X X X X X X X X X X /

main()

<
int ap_id; ✓x application inlt verify *s

WORD grjuchar, gr_hchar,
gr_wbox, gr_hbox;

z'* values for VDI handle * /

126 Atari ST

/a#####*#*****#****##****#*###*##*#*#**
Initialize GEM Rccees

a#****###*#********#***######*#####**#*##**#*#**#*/

ap_ld = appl_init(); / * Initialize RES routines *s

if (ap_id < 0) / * no calls can be made to fiES *s

< ✓* use GEMDOS * '

Cconws('***> Initialization Error.
Cconws("Press any key to c o n t i n u e .);
Craucin();

exit(-l); s* set exit value to show error *✓

>

screen_phandle = /* Get handle for screen * /

graf_handle(&gr_uchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen_vhandle = open_vwork(screen_phandle);
setLjscreen_attr(); s* Get screen attributes

✓»»*#***#*#»***********#»##«#»####«******#*****#»»»#
Rpplication Specific Routines

a****##****#****#****#***#**####*##*#*******####***/

Listing 6-1 (continued)

v_clrwk(screen_vhandle);

If (!check_table(screen_vhandle)) s* check for color table

<
printf(■*»*> Color look-up table not supported <***Vi");

printf("Color palette function will have no effectin');

printf("Press any keyVi");
Craucin();

>

vsf_interior(screen_vhandle, 1);

show_palette();
Crawcin();

change_palette();
Craucin();
rot_palette();

✓a**
Program Clean-up and Exit

a********************#***********#*****************/

/ * Wait for keyboard before exiting program

Craucln(); / * GEMDOS character input * /

v.jclsvwk(screen_vhandle); / * close workstation
appl_exit(); s* end program *s

)
/’a*##****************#*###*************************/

set solid fill

/ * show current palette *s

/ * reset values

Colors of the Rainbow 127

The array pal-w heel is used as a set of palette entries. Each line of
the initialization contains eight hexadecimal numbers. Each number
determines a particular color for tha t color index. For example, the
first entry has a value of zero, which means tha t the red, green, and
blue intensities are all zero and yield the color black. The second entry
has a hexadecimal value 0x007, which means tha t red and green have
an intensity of zero and blue has an intensity of 7 (the highest
intensity available) producing the color bright blue. The value 0x070
represents green, 0x700 represents red, 0x077 represents a green and
blue mixture, and so on. The last entry in the first row, 0x777,
represents white. In the next row, the values go through a simple
pattern from 0x000, 0x111, 0x222, to 0x777; this represents eight
different shades of gray from black to white. The last two lines repeat
the first two lines.

The last application-specific data variable is the array save_pal.
This array is used to save the current palette a t the start of the
program.

Under the application-specific routines in function m ain(), the
workstation is cleared using v_clrw k(). Next function check_table()
is called. This function checks to see if a color table is supported by
the VDI for this device. A color table is a VDI concept tha t provides a
device-independent method for determining the color settings. There
are two different levels of color manipulation in the ST. One is the
VDI and the other is direct changes to the color palette. The VDI
handles converting a color requested by the program to the best-
matched color on the device. For example, on the Atari color display,
the VDI uses a table to convert the VDI colors to the palette colors
used by the display hardware. However, on a color slide producer, the
VDI uses the lookup table to find the color set by the user and outputs
this color to the device (slide producers generally have an extremely
large range of colors). The other level of color graphics manipulation
is through the Atari display hardware. This is done by actually
accessing the color palette itself. By changing the color palette, you
can alter the palette as a whole or set an individual color.

The check_table() routine uses the vq_extnd() function to do an
extended inquiry. Note tha t the second parameter is a 1 for the
vq_extnd() function. This requests the extended values to be returned
rather than simply the open workstation values. Compare this usage
to the way the vq_extnd() function is used in set_screen-attr(). The
returned values of the extended inquiry are put into the array ele
ments. Element 5 contains the flag as to whether or not the color
table is supported. Element 5 contains TRUE if a color table exists,
FALSE otherwise. If the table is not supported, the VDI function
set_color() has no effect

After checking the color table support, m ain() continues by setting

128 Atari ST

the interior-flll mode to a solid fill using vsf_ in teiior(). Then function
show _paIette() is used to draw a set of 16 rectangles with each
rectangle drawn in a different VDI color.

The next function called by m ain() is change_palette(). This uses
the VDI set color function, vs_color(), to change a particular color of
the palette. The vs_color() function has three parameters. The first
parameter is, as usual, the handle of the workstation. The second
parameter is the color number to be changed. The last parameter is
an array of three elements. The first element in the array is the red
intensity, the second is the green intensity, and the third is the blue
intensity.

The VDI color table is somewhat different than the Atari color
palette. The VDI color table is as large as necessary for the VDI to
support all of the colors available for tha t device. Each color has a red,
green, and blue intensity; however, the intensity levels range from 0
to 1000 with 0 the lowest and 1000 the highest intensity. The
intensity levels are relative to the actual levels that can be produced.
For example, on the Atari color display, a VDI intensity of 1000
equates to an intensity level of 7 in the color palette. A palette
intensity level of 5 is equivalent to a VDI intensity of 714. Thus, the
VDI can support a device tha t has coarse intensity settings such as
the color display, as well as a device with very fine intensity settings
such as a color slide producer.

In change_palette(), the first step is to inquire about color table
entry number 3 using the vq_color() function. The parameters of
vq_color() are the workstation handle, the color number, and a
number which tells the function what values to return. A parameter
of 0 (as used here) indicates tha t the set values of the color are to be
returned. If the parameter is a 1, the “realized” values are returned.
These are the values that are seen on the device, since the device
probably does not have 1000 levels of intensities. The realized value
shows what intensity value is actually shown on the screen. The last
parameter of the function is a three-element array, which holds the
intensity levels for each of the three colors.

The next step is to initialize the intensity levels for the red, green,
and blue colors. After th is initialization, change_palette() loops
through a series of color changes. These changes correspond to
traveling around the color cube shown in Figure 6-7. Starting a t the
lower left comer, the first loop in change_palette() increases the blue
intensity, which is equivalent to moving up the left edge of the cube.
The next loop moves diagonally across the top by increasing the red
and green intensity levels. The third loop moves diagonally across the
right face by decreasing the blue and green intensity levels. The final
loop decreases the red intensity level to return to the starting posi
tion. Figure 6-7 shows eight intensity levels because these are the

Colors of the Rainbow 129

realized intensity levels. When this program runs, a black rectangle
goes through these color transformations. The last statement in
change_palette() restores color 3 to its original setting.

Blue
Intensity

Figure 6-7 Color Cube

The next function called from main() is the rot_palette() function.
This rotates colors within the palette by using XBIOS routines. The
first thing to do is to save the current palette settings by calling the
Setcolor() function for each of the 16 color entries. The first parame
ter of Setcolor() is the color index. The second is the intensity combi
nation to place a t tha t color entxy. Setcolor() returns the intensity
value of the palette entiy before it changes anything. If a negative value
is used for the color intensity, no change is made. The negative
parameter is used to read the current values and store them in the
save-pal array. The next step is to rotate the palette colors. This is
done through the Setpalette() function. Function SetpaletteO has
only one parameter: the address of a 16-word block of memory.
Setpalette() actually sets the 16 palette entries by placing those 16
words into the palette. The palette for the ST is actually a reserved
portion of memory used by the display hardware.

130 Atari ST

To rotate the palette, a loop is used. The loop calls Setpalette() with
the address of the next element In array pal_wheeL Then function
show _palette() is called to draw the set of 16 squares. Actually, the
Setpalette() function affects the current display so the show _palette()
call is unnecessary. The reason the new palette colors take effect
immediately is that the graphics hardware needs to access the palette
to refresh the screen. Therefore, if you change the palette colors, the
displayed colors also change on the next refresh cycle.

Now it’s obvious why the p al-w h eel array has 32 entries.
S et_palette() is called with the address of each of the first 16 ele
ments in array pal-w heel. This address is used as the “base address"
of a 16-word block in memory. Thus, for each address, there m ust be
a t least 16 entries defined following that address. The first call to
Set_palette() assigns the first through sixteenth elements in the
array to the palette; the second call assigns the second through
seventeenth elements in the array; and so on until the sixteenth call
assigns the sixteenth through thirty-second elements in the array. At
the end of rot_paletfce(). Set_palette() is called once more to restore
the original palette colors.

When the program is running, notice that rot_palette() does not
display the colors in the order they are listed in the array. Prom the
program listing where the pal_wheel array is defined, you would
think: the first line of boxes displayed would be black, blue, green,
and red; the second line cyan, magenta, yellow, and white; the next
two lines various shades of gray. Instead of this predicted pattern, you
see a mix of the various colors that are supposed to be shown. The
reason is tha t program COLOR mixes the use of VDI output and
XBIOS changes. The VDI is used in show _palette() to draw the
display and XBIOS is used to set the colors of the display. The VDI
color indices are not the same as the palette color indices. The
matching of the VDI and palette color indices is shown in Figure 6-8.

VDI

Palette

VDI

Palette
Figure 6-8 Map of VDI Color Index to Hardware Palette Index

Colors of the Rainbow 131

The VDI indexes numbered 0 to 15 reference the actual palette
numbers shown in the lower half of the boxes. Note that the back
ground color (always color 0) does change in accordance with the
sequence of colors in the paL-wheel array. This is to be expected
because VDI color 0 and palette color 0 use the same color. Remember
that color 0 is always used as the background color because objects
are most easily erased by redrawing them with the background color.
This is seen on the palette display where the box drawn in color 0 is
not visible on the screen.

An interesting exercise is to take out the show _palette() call in
rot_palette(). You see tha t the Setpalette() call replaces the palette in
between refresh cycles. You can also try adding a function that allows
the user to enter a color index and a value, so that the user can
manually change the color shown on the screen. See how the values
entered affect the display. Remember to restore the original color
palette; otherwise, you may not be able to read the desktop!

Program BOXES
The program BOXES produces colorful kinetic box art somewhat like
program LINES1. It moves a box around the screen and the box
appears to bounce off the edges. The size of the box cyclically grows
and shrinks. As each new box is drawn, the palette is rotated to give
an interesting psychedelic effect

The program structure should look familiar (see Listing 6-2). Under
the application-specific data, variables are defined to contain the
lowest and highest x and y values of the drawing area. There are two
16-element arrays to hold the two palettes; the rotated palette and the
original palette. The variable m ax-color holds the maximum number
of palette entries. If you run the program in the medium resolution
mode, you m ust set this number to 4.

In the application functions, the function Rnd_rng() is the random
number generator from an earlier program. The change_color() func
tion rotates the colors within the palette. The draw_boxes() routine
is the primary function in the program. To make the box appear to
move in a straight line while it changes size, the center of the box is
used as the reference point from which it is drawn. From the center
of each box the coordinates of its opposite comers are calculated. The
array box holds the comers of the box, bcx and bey are the center x
and y coordinates, bsize is the current size of the box (in pixels), bdz
and bdy describe how the center coordinates of the box are going to
move, and bdsize determines how the size of the box will change. The
cur_coIor variable is the current drawing color.

132 Atari ST

/••a*##*####***##*###****#******#****#****#***#*#*#***###*######*###*#*#
BOXES.C Drau kinetic box art

This program is similar to LINES1.C. This program draws

boxes in color and changes the color palette to create
visual effects.

X K X X X X X X X X X X X X X K X K X X X X X X X X X X X X X S

/xx

System Header Piles & Constants
X /

Listing 6-2 Program BOXES

ttlnclude <stdio.h>

ttinclude <osblnd.h>
8include <gemdefs.h>

ttlnclude <obdefs.h>

** Standard 10
GEMDOS routines **

' * GEM RES * /

GEM constants

ttdeflne FALSE 0

ttdeflne TRUE IFRLSE

/ X K X

GEM Rpplication Overhead
X K X X X X X X X X X /

<'# Declare global arrays for VDI.
typedef Int WORD; WORD is 1G bits * '

WORD contrl[12], s* VDI control array * /

lntout[12B], intln[126], VDI input arrays
ptsin[128], ptsout[120]; /* VDI output arrays * '

WORD screen_vhandle,

screen_phandle,

screen_rez,
color_screen,

x_max,
y_max;

virtual screen workstation

'* physical screen workstation */
/ * screen resolution 0,1, or 2 »/

s* flag if color monitor * '

s* max x screen coord * /

max y screen coord * /

/ X X X X X X X X X X X X K X

Rpplication Specific Data
X K X X X X X X X X X X /

/ * Constant values for drawing area

Int x_lowsr, / * lowest x value
y_lower, lowest y value * '

x_upper, / * highest x value * '

y-jupper; /* highest y value

WORD pal^save[16], ' * current palette * /

pal^uheel[IS]; s* rotating palette

WORD max_£olor =16; max colors dlsplayable

Colors of the Rainbow 133

St***
GEM-related Functions

ft***/

WORD open—vuork(phys-handle)
WORD phys-handle;
✓xx

Function: This function opens a virtual uorkstation.

Input: phys-handle = physical uorkstation handle
Output: Returns handle of uorkstation.
X /

<
WORD uork—ln[ll],

uork_out[57),

nou-handle; ' * handle of workstation * s

Int 1 ;

for (1 = 0; 1 < 10; i++)
uork—in[l] = 1 ;

uork—ln[10] = 2;
neu-handle = phys-handle; ' * use currently open ukstation
v_opnvuk(uork_ln, &nsu_handle, uorkjout);
v.jclruk(neu_handle); clear uorkstation * /

return(neu-handle);

>

set_screeruattr()
✓xx

Function: Set global values about screen.
Input: None. Uses screen—vhandle.
Output: Sets x_max, y_max, color_screen, and screen—rez.
xxx

i
WORD uorl<_jsut [57];

vq_jQxtnd(screen—vhandle, 0, uork_out);
x-max = uorl<_out[0];

y_max = uork_jout[l];
screen—rez = Getrez(); /* 0 = lou, 1 = med, 2 = high * '

color_screen = (screen—rez < 2); mono 2, color 0 or 1 * s

vq_extnd(screen—vhandle, 1 , uork_jout); <'* get more info
/* max-color = uorl<_jout[4] * uork_out[4];*✓ planes * 2 * *

if (maxucolor < 2) ' * must have 2 colors
max_color - 2;

>

/X X X X X X X X X K X K X X X X X X X X X X X X X

Rpplicatlon Functions
X /

long Rnd—rng(lou, hi)
long lou, hi;

Listing 6-2 (continued)

134 Atari ST

Function: Generate a random number between low and hi, inclusive.
Input: low = lowest value in range.

hi = highest value in range.
Output: Returns random number.

<
hi++; include hi value In rangB
return((Random() % (hi - low)) + low);

>

Listing 6-2 (continued)

change_color()
✓a**
Function: Rotates color palette.

Input: None. Uses pal_uheel[].
Output: None.

Notes: Color Index 0 is not changed. Generally you do not

change this index because it is used as the
background color.

{
register 1;

register WORD temp;

temp = pal_wheel[l]; / * save first entry */

for(i = 2; i < max-jcolor; 1++) shift all entries down *s

pal_uheel[i-l] = pal^uheel[i];
pal_wheel[max_color-l] = temp; s* put first into last

Setpalette(pal^uheel); / * change palette */
return;

draw_boxes()
/a#****#*#***##***#*#*##****#**#*###***##*******##**
Function: Do kinetic box art
Input: None.

Output: None.

tide fine BOX_MRX 40
tide fine BOX_MN 4

WORD box[4],

bcx, bey,
bsize,
bdx, bdy,

bdsize;

/ * array for box corners

center coords * '

/ * current box size
' * deltas for box

** delta for size

WORD cur_color; current drawing color

Colors of the Rainbow 135

do ** begin screen control loop

<
v_clruk(screBn_yhandle); clear screen

s* Initialize line corners
bsize = BOX_MIN;

bdsize = 4 ;
bcx = Rnd_rng((long)(x_lower+bsize), (long)(x_upper-bslze));
bey = Rnd_rng((long)(y_lower+bslze), (long)(yjupper-bsize));
bdx = Rnd_rng(-10L, 10L);

bdy = Rnd_rng(-10L, 10L);

cur_color = 1 ; start color index

** Box drauing loop begins here **

do

{
box[0] = bcx - bsize; set corner coords

box[l] = bey - bsize;

box[2] = bcx + bsize;
box[3] = bey + bsize;

s* set color to draw *s

v/sf_Jcolor(screen_vhandle, cur^color);
cur_color++; /* set new color *s

if (cur_color >= max_color)

cur_jcolor = 1;
wr_recf 1 (screen_whandle, box); s* Drau box * /

/ * Calculate neu size

bsize += bdsize;

** check ranges */
if (bsize < BQX_MIN)

{
bsize = BOX_MIN;

bdsize = -bdsize;

>
if (bsize > BOX_MflX)

<
bsize = BOX_MflX;
bdsize = -bdsize;

>

/ * calculate neu corners *s

bcx += bdx;
bey += bdy;

If ((bcx - bsize) <= x_louer)

<
bcx = x_louer + bsize;
bdx = -bdx;

Listing 6-2 (continued)

136 Atari ST

>
if ((bcx + bsize) >= x_upper)

(
bcx = x_upper - bsize;

bdx = -bdx;

>

if ((bey - bsize) <= y_louer)

<
bey = y_louer + bsize;
bdy = -bdy;

>
if ((bey + bsize) >= y_upper)

<
bey = y_juppsr - bsize;

bdy = -bdy;

>

/ * change colors
change_color();

} while (!Cconis()); /* check if key pressed */
) while ((Craucin() & 0x7F) != 27); s* escape key exits

return;

>

/a#####*#**#**###*##****######*#**#***##**#***###*#
Main Program

**/

Listing 6-2 (continued)

main()

<
int ap_id; application inlt verify
int i;

WORD gr_uchar, gr_hchar, values for VDI handle «/
gr_ubox, gr_hbox;

/***»»*»»****#»**»##****»*#*»»#*»#**##*##**#*»#»##*
Initialize GEM Access

ap_id = appl_init(); / * Initialize RES routines

if (ap_id < 0) / * no calls can be made to RES
{ ' * use GEMDOS * '

Cconws('***> Initialization Error. <***^n11);
Cconus(■Press any key to continue.Vi");
Craucln();
exit(-l); s* set exit value to shou error

Colors of the Rainbow 137

screen-phandle = Get handle for screen
graf_handle(&gr_uchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen—vhandle = open_vuorl<(6creen_phandle);

set_screen__attr(); / * Gat screen attributes

/«*»**»#«*****»#»#»#»*####»»#»»*»****»**»»»*»*******
Application Specific Routines

' * replace used for multicolors *s
vsur_mod8(screen_vhandle, MD-REPLRCE);

/* set boundaries
x_louer = 1 0 ;

y_lower = 10;
x^upper = x_max - 10;
y_jupper = y_jnax - 10;

* * load palettes

for (1 = 0; i < 1G; 1++)

<
pal_save[l] = Setcolor(l, -1);
pal_wheel[l] = pal_sav/e[i];

>

start program
drau_boxQs(); / * Do box art

Setpalette(pal-save); restore palette

/a**#*####*##*###*##**###*#**#*###*##*#*#***##**#***
Program Clean-up and Exit

##**###»#####»#*#»*#»##*#*###*##***********####***#✓

v_clsvul<(screen_uhandlB); / * close uorkstation */
appl_sxlt(); / * end program

)

listing 6-2 (continued)

The flow in program BOXES is the same as the flow for program
LINES. An outer loop initializes the screen and starting variables. The
inner loop continually produces the kinetic image until a key is
pressed. The keypress causes the inner loop to ex it The outer loop
checks if the key was the ESC key. If n o t the outer loop repeats and
a new kinetic image is produced. If the ESC key was pressed, the
function draw_bozes() exits back to m ain() and the program ends.

In dfaw_boaws(), the outer loop starts by clearing the screen and
initializing the first box. The variable bsize is set to the minimum
box size: 4 pixels as defined in the program. This measurement
represents the distance from the center to the edge of the box so that

138 Atari ST

the box is actually 8 pixels wide and 8 pixels tall. The change in box
size, bdsize, is set to 4. The center x and y coordinates and the changes
in those coordinates are randomly selected. The current color is set
a t 1. The inner loop now begins.

The first step inside th is loop is to set the coordinates of the box
comers. The color is set to the current drawing color and then
incremented so that the next time through the loop a different color
is used. After incrementing the color index, a test is made to ensure
that the color index is always less than or equal to the maximum
number of colors available. Once the box is drawn, the new box size
is determined and checked to be sure it does not exceed the size
limits. The new box center is calculated and checked to see if the new
box fits within the limits of the screen. Next the colors displayed on
the screen are changed by calling change_color(). The loop ends by
checking if any keys have been pressed.

Looking a t the application-specific functions of main(), the first
instructions are to set the writing mode to replace and set the
boundaries of the screen. Note tha t the writing mode XOR is not used
as it was in LINES. When using color ou tpu t the writing modes have
a slightly different effect than in monochrome output because the
XOR mode has a strange effect on the colors: they all come out the
same! The replace mode simply draws over whatever is on the screen.
The transparent mode changes all colors except the background color
to whatever color is currently set. The reverse transparent mode
changes only the background color to the current color.

After the mode is set, the palettes are loaded and draw_boxes() is
called. When draw_boxes() returns, the original palette is restored
and the program exits.

Tiy using the different writing modes in program BOXES.

C H A P T E R S E V E N

Moving Targets

This chapter covers the VDI concept called a raster and how and
where it is used. Once you are familiarized with the raster, you can
use it and many other VDI features to create an example animation
program.

The Raster

What is a raster? A raster is a more generalized form of the bit map.
It is a “rectangular” block of memoiy used to represent a graphic
image. A raster, being rectangular, has a width and a height The
width is measured in two ways: in pixels that correspond to in
dividual bits in memoiy and in words. The width m ust be a whole
integral of the word size. For example, a raster may be 1, 2, 3, or more
words in width. This means tha t the width m ust be 16, 32, 48, or
more pixels in size. The width in pixels m ust be a multiple of 16,
which is an integral word size. The height is measured strictly in rows
of pixels. For color rasters, a third measurement the number of
planes is also used. Look a t Figure 7-1 to see how the raster measure
ments are made.

The raster is similar to a screen bit map. The first word in memoiy
contains the first 16 bits in the first row from the left side. The words
continue across and down the raster ju s t as in the bit map. The raster
also has a coordinate system like the b it map. The upper left comer
is considered the origin with a coordinate pair (0,0). The x coor-

140 Atari ST

Width In Words

First Word in Second Word
Memory in M«moru

\ i ^ — \V
• • •

Height in
Pixels

#
Screen
Layout

TTTTIITT11111111111111111 f 111111111111111 TTmT̂ \ \^ 111H11111H1111

Width in Pixels

Figure 7-1 Raster Measurements

dinates increase as you move from left to rig h t and the y coordinates
increase as you move from top to bottom.

Primarily, the raster is a bit map which can have a user-specified
size. You may wonder why a raster is needed. A raster can provide a
rapid means for transferring a graphics image from one place in
memory to another. For example, if you want to draw the floppy disk
icon on the screen, you can simply define the icon in a raster and
copy that image to any location on the screen. This is much faster
than redrawing the rectangles, lines, and letters to the screen each
time you want to display a floppy disk icon; redrawing could take
several seconds. Another way the raster is used is to store a portion
of the screen in memoiy, use tha t area of the screen, and then replace
the original image. This is the general procedure used to display a
menu lis t When the menu drops down, the area under the menu is
saved in a raster-type portion of memory. When the user has finished
the menu selection, the old screen image is copied to the screen over
the area covered by the menu. Thus, the screen is restored to its
original state.

Using a Raster
You need two things to use a raster: a portion of memory to be used
for the raster contents and a Memory Form Definition Block (MFDB).
This MFDB describes the various attributes associated with the
raster. These attributes are the width and height of the raster, a

Moving Targets 141

pointer to the raster location in memory, the number of planes used
by the raster, and a flag telling the program what format the raster
uses.

The Memory Form Definition Block
For this book’s programming purposes, the MFDB is defined as a
structure. In the listing of the program RASTER under the GEM
application overhead, the type definition for structure mfdbstr con
tains the necessary elements. There is also a structure type definition
in header file gemdefs.h called FDB. This is exactly the same struc
ture as MFDB in RASTER but the member names of FDB arc
abbreviated and not as easy to understand.

typedef struct mfdbstr

{
char *addr;

WORD wide;

WORD high;

WORD uord-juidth;

WORD format;

WORD planes;

WORD reservl,

rsserv/2,

reservS;

} MFDB;

The address is a pointer to the location in memory where the raster
resides. Element w ide is the width of the raster in pixels; element
high is the height of the raster in rows (that is, pixels); and element
word-width is the width of the raster in words. (Remember that the
raster m ust have a width that is an even multiple of one word.) The
element fo rm a t determines the layout of the raster. If format is 0, the
layout of the raster is in device-specified format. If format is 1, the
layout is in standard form at The element planes determines the
number of planes held in the raster.

Raster Formats
A raster format determines how the planes of the raster are stored in
memory. The VDI uses two methods for storing planes. In the first
method, which you have already seen, the first word of plane 0 is
followed by the first word of plane 1 and so on. This is known as an

address of the raster area

uidth of the raster in pixels

height of the raster in pixels

uidth of the raster In words

standard or device-specific

number of planes in raster * /

s* reserved for future use * /

142 Atari ST

RASTER.C Raster exercising program

This program demonstrates raster operations. Use this program
to experiment uith the raster operations.

/a***#*#*#***#*****#*#*#*#*##*##*#*##*##******##***
System Header Files & Constants

***********»*«*********«******«»*»**«*«*******»*««/’

Listing 7-1 Program RASTER

ttinclude <stdlo.h>

ttinclude <osbind.h>
ttinclude <gemdefs.h>
ttinclude <obdefs.h>

Standard IQ

** GEMDOS routines
GEM AES

/ * GEM constants

ttdef ine FRLSE 0

ttdef ine TRUE ! FRLSE

GEM Rpplication Overhead
X X X X X X X X X X X X X X X X X K X X X X X X X X X X K X X X X X X X X X X X X X X K X X X X X X /

' * Declare global arrays for VDI. *s

typedef Int WORD; / * WORD is 16 bits

WORD contrl[12], VDI control array «/

intout[120], intin[12B], VDI input arrays

ptsin[12B], ptscut[128]; / * VDI output arrays

WORD screen_vhandle,
screen_phandle,

screen_rez,
color_screen,

x_max,

y_/nax;

f* virtual screen uorkstation
physical screen uorkstation **

** screen resolution 0,1, or 2
flag if color monitor

/ * max x screen coord

/ * max y screen coord

typedef struct mfdbstr

<
char *addr;

WORD wide;

WORD high;

WORD uord-juidth;

WORD format;

WORD planes;

WORD rese rvl, rese rv2
> MFDB;

✓* address of raster area

uidth of raster In pixels

/ * height of raster in pixels
s* uidth of raster in uords

/ * standard or device specific
number of planBS In raster * /

/ * reserved for future use **

reserv3;

/ X

Rpplication-Specif1c Data
K X K X K X X X X /

Moving Targets 143

MFDB chexMFDB,
strlpeMFDB,
blockMFDB,

scrMFDB,
tempMFDB;

WORD block[IS] = { 0xFFFF,
0xFFFF,
0xFFFF,
0xFFFF,

0xFFFF,

0xFFFF,
0xFFFF,
0xFFFF,

0xFFFF,

0xFFFF,
0xFFFF,

0xFFFF,

0xFFFF,
0xFFFF,

0xFFFF,

0xFFFF,

>;

WORD stripe(lG) = < 0xRRRR,

0xRRRR,
0xRRRR,

0xRRRR,

0XRRRR,

0xRRRR,
0xRRRR,

0XRRRR,

0XRRRR,
0xRRRR,

0xRRRR,

0xRRRR,
0xRRRR,

0xflRRfl,
OxRRRR,
0xRRRR,

Listing 7-1 (continued)

WORD chax[32] = < 0xCCCC,
0xCCCC,
0x3333,
0x3333,

0xCCCC,
0xCCCC,
0x3333,
0x3333,
0xCCCC,
0xCCCC,

s* planB 0

144 Atari ST

0x3333,

0x3333,

0XCCCC,
0xCCCC,

0x3333,
0x3333

V; / * plane 1 will be set to 0s

WORD temp[16][4]; / * allou for 4 planes * /

/•a*#**#*#**#*#**************#*######**#*#*********
GEM-related Functions

****##*####*##*#*****#*********###*#*«***#********✓

Listing 7-1 (continued)

WORD open—vuork(phys-handle)
WORD phys-handle;
/♦a**
Function: This function opens a virtual uorkstation.
Input: phys-handle = physical uorkstation handle
Output: Returns handle of uorkstation.
*****#***#»**#**#*************»»*#**#*##***»»##*##✓
<
WORD uork—in[ll],

uork_out[57],

neu-handle; / * handle of uorkstation * /

int 1;

for (i = 0 ; i < 10; i++)
uork_in[l] = 1 ;

uork_in[10] = 2;
neu_handle = phys-handle; ' * use currently open ukstation */

v_jopnvuk(uork_in, &neu_handle, uork_out);

return(neu-handle);

>

set—scr0en_attr()
/•if*#*#***##*******##****#**#**##*##*#***#*#******#
Function: Set global values about screen.
Input: None. Uses screen—vhandle.
Output: Sets x_max, y_max, color_screen, and screen—rez.
**/
<
WORD uork—out[57];

vq_jBxtnd(screen—vhandle, 0 , uork—out);
x_max = uork_out[0];
y_max = uork_jout[l];
screen—rez = Getrez(); / * 0 = lou, 1 = med, 2 = high
color_screen = (screen—rez < 2); ' * mono 2 , color 0 or 1

>

Moving Targets

Listing 7-1 (continued)
/*****»*****»#»*#»*»***»»**##»#**##*#«»«»»»»»#**##»

Rpplication Functions

rastBr_form()
✓a####**#**#*####*#***##*###***#**###*###*#***###**
Function: Demonstrates different raster formats.

Input: None. Uses global MFDBs and rasters listed above.
Output: Sets fields in MFDBs uhlch should be reset before

doing anything else.

i
Int i;

Checkerboard raster * /

chexMFDB.addr =
chexMFDB.wide =

chexMFDB.high =
chexMFDB.uord_uldth =

chexMFDB.format =
chexMFDB.planes =

** Temporary raster area
tempMFDB.addr =

tempMFDB.ulde =
tempMFDB.hlgh =
tempMFDB.uord-Juldth =

tempMFDB.format =
tempMFDB.planes =

(char *)chex;

1G;
1G;

Is
1; standard format

2 ;

(char *)temp;

1G;

1G;

1;
0; s* will be set by vr_trnfm()
2; / * must be same as source *s

vr_trnfm(screen_vhandle, &chexMFDB, &tempMFDB);
printf("Transform from Standard to Device-specif IcVi");

for (1 = 0 ; i < 32; i++)

printf("*2d: Standard *6x Device *6x\n",
1, chex[l], temp[l]);

Craucln();

chexMFDB.format = 0; set to device-specific **

vr_trnfm(screen_vhandle, &chexMFDB, & tempMFDB);
prlntf("Transform form Device-specific to Standards");

for (1 = 0; 1 < 32; 1++)

printf(**2d: Device X6x Standard *6xVn",

1, chex[i], temp[i]);
Craucln();

set_jjp_rasters()
✓****#**##»*#»»*»»«#»*»#»*#*####*########***»**»*#*
Function: Sets up global MFDBs to point to rasters.
Input: None. Uses global MFDBs and rasters listed above.
Output: Sets appropriate fields In MFDBs.

146 Atari ST

Listing 7-1 (continued)
Checkerboard raster *s

chexMFDB.addr = (char

chexMFDB.uide = 16;
chexMFDB.hlgh - 16;
chexMFDB.word_wi dth = 1;
chexMFDB.format = 0;
chexMFDB.p1anes = 1;

/ * must be device-specific

monochrome has 1 plane

Stripe raster * /

strlpeMFDB.addr

stripeMFDB.uide
strlpeMFDB.high

strlpeMFDB.uordLuidth
stripeMFDB.format

stripeMFDB.planes

(char *)stripe;

IS;
16;
1;
0 ;
1; / * monochrome has 1 plans

Block raster
blockMFDB.addr

blockMFDB.uide
blockMFDB.high
blockMFDB.uord_uidth

blockMFDB.forma t
b 1 ocktlFDB. planes

(char *)block;

IS;

16;
1;
0 ;
1; ' * monochrome has 1 plane

Screen raster area **

scrMFDB.addr =

scrMFDB.wide =
scrMFDB.high =
scrMFDB.uord_uldth =

scrMFDB.format =
scrMFDB.planes =
if (screen_rez == 0)

i
scrMFDB.wide =

scrMFDB.high =

(cha r *)Logbase();

640;

400;
40;

0 ;
l;

320;
200;

scrMFDB.uord_uidth = 20;

scrMFDB.planes = 4;

>
else if (screen_rez == 1)

<
scrMFDB.high = 200;

scrMFDB.planes = 2;

>

monochrome has 1 plane
/ * low resolution * '

* * medium resolution

•''* Temporary raster area * /

tempMFDB.addr =

tempMFDB.wide =
tempMFDB.hlgh =
tempMFDB.uord_uidth =

tempMFDB.forma t =
tempMFDB.planes =

>

(char *)temp;

16;
16;
1;
0 ;
scrMFDB.planes; / * same as screen

Moving Targets 147

raster_test()
✓a*#*#***#**##*#****#***####*#****#*#***##******###
Function: Orau patterns using rasters.

Input: None. Uses MFDBs and rasters defined above.
Output: None. No changes to MFDBs and rasters except temp.
»*«»«»»*******#»*»»****»**»*»**#*»*****»****/
<
WORD pxy[8],

coior_index[2];

int pass;

color_index[0] = 1;

color_lndex[l] = 0;

Listing 7-1 (continued)

for (pass = 0 ; pass < 2 ; pass++)

<

v_jclruk(screen_vhandle);
vsf_lnterior(screen_vhandle, 2);

vsf_style(screen_vhandle, 2);
pxy[0] = pxy[l] = 10;

Pxy[2] = pxy[3] = 150;

vr_recfl(screen_vhandle, pxy);

Save portion of screen in temp

pxy[0] = 100; /* source xl coord *'
pxyflj = 100; / * source yl coord *s

pxy[2] = 115; / * source x2 coord
pxy[3] = 115; / * source y2 coord *s

pxy[4] = 0; / * dest xl coord
pxy(5] = 0; / * dest yl coord * /

pxy(G] = 15; / * dest x2 coord
pxy(7] = 15; / * dest y2 coord *s

vroj:pyfm(screen_vhandle, SJONLY, pxy,

&scrMFDB, &tempMFDB);

/* Draw checkerboard pattern in saved area * /

pxy[0] = pxy[l] = 0;
Pxy[2] = pxy[3] = 15;
pxy[4] = pxy[5] = 100;
pxy(G] = pxy[7] = 115;
if (pass)

vro_cpyfm(screen_vhandle, SJONLY, pxy,
&chexMFDB, &scrMFDB);

else
vrt^cpyfm(screen_vhandle, MD-REPLRCE, pxy,

&chexMFDB, &scrNFDB, color_lndex);

Crawcln();

use to loop tulce

' * Foreground color value

Background color value *s

/ * first pass uses vrtjcpyfm
* * second pass uses vreLjepyfm

set background pattern *s

148 Atari ST

' * Draw stripe pattern over part of checkerboard * /

pxy[0] = pxy[l] = 0;
pxy[2] = pxy[3] = 15;

pxy[4] = pxy[5] = 110;
Pxy[S] = pxy[7] = 125;
if (pass)

vro_jcpyfm(screen_vhandle, SJDNLY, pxy,
&stripeMFDB, &scrMFDB);

else

v;rt-jcpyfm(screen_whandle, MD-REPLRCE, pxy,
&stripeMFDB, &scrMFDB, color_index);

Crawcln();

Draw block pattern

pxy[0] = pxy[l] = 0;

pxy[2] = pxy[3] = 15;

pxy[4] = pxy[5] = 132;

pxy[G] = pxy[7] = 147;
if (pass)

vro_cpyfm(screen_vhandle, SJDNLY, pxy,
&block(1FDB, &scrMFDB);

else
vrt^cpyfm(screen_uhandle, MD_REPLRCE, pxy,

&blockHFDB, &scrMFDB, color_index);
Crawcln();

Demonstrate different rectangle sizes with block pattern *s

pxy[0] = pxy[l] = 0; / * destination wider than source * '

Pxy[2] = pxy[3] = 10;
pxy[4] = pxy[5] = 10;

pxy[G] = 50;
pxy[7] = 20;

if (pass)

vro_cpyfm(screen_vhandle, SJDNLY, pxy,
&blockMFDB, &scrMFDB);

else
v/rt_cpyfm(scrB8n_vhandle, MD-REPLRCE, pxy,

&blockMFDB, &scrMFDB, color_index);
Crawcin();

pxy[0] = pxy[l] = 0; destination longer than source * /

pxy(2] = pxy[3] = 10;

pxy[4] = G0;
pxy[5] = 10;

Pxy[G) = 70;
pxy[7] = 50;

1f (pass)

vro_cpyfm(8creen_vhandle, SJQNLY, pxy,
&blockMFDB, &scrMFDB);

else

vrt_cpyfm(screen_vhandle, MD-REPLRCE, pxy,
&blockMFDB, &scrMFDB, color_index);

Listing 7-1 (continued)

Crawcln();

Moving Taigets 149

s* Replace saved portion of screen from temp * '

P*yf0] = pxy[i] = 0;
pxy[2] = pxy[3] = 15;

pxy[4] = pxy[S] = 100;

pxy[6] = pxy[7] = 115;
vro_cpyfm(screen_vhandle, SJONLY, pxy,

& tempMFDB, &sc rMFDB);
Crawcin();

} s* end pass loop

Listing 7-1 (continued)

color_test()L U t U I - b O S b l)
/**
Function: Shou use of raster copy and uriting modes ulth color.

Input: None. Uses chex[], chexMFDB, and scrMFDB.

Output: None.
*»********«*******»•**************«*«*«***********/
i
WORD Pxy[B],

color_index[2];

v_clrul<(scrBan_vhandle);

pxy[0] - 10; pxy[l] = 10;
pxy[2] = 300; pxy[3] = 150;

vsf_interior(screen_v/handle, 1);
vsf^color(screen_vhandle, 4);

vr_recf1(screen_vhandle, pxy);

** clear screen

solid fill */

/ * use color 4 to fill */

s* draw rectangle

/ * use replace mode

pxy[0] = 0; pxy[l] = 0;
pxy[2] = 15; pxy(3] = 15
pxy(4] = 50; pxy[5] = 20
pxy[6] = 65; pxy[7] = 35
if (color_screen)

color_index[0] = 2; / * color for 1 bits
color_lndex[l] = 3; /* color for 0 bits **

else

color_index[0] = 1;
color_indexfl] = 0;

vrt_jcpyfm(screen_vhandle, MD_REPLRCE, pxy,
&chexMFDB, &scrMFDB, color_index);

use transparent mode

pxy[4] = 100; pxy[5] = 20;
pxy[6] = 115; pxy[7] = 35;
vrt_cpyfm(screen_vhandle, MD—TRRNS, pxy,

&chexMFDB, &scrMFDB, color_index);

150 Atari ST

/* use XOR mode «/

pxy[4] = 150; pxy[5] = 20;

pxy[G] = 1G5; pxy[7] = 35;
vrt_cpyfm(screen_vhandle, MD-XOR, pxy,

fcchexMFDB, iscrMFDB, color—lndex);

/ * use reverse transparent mode

pxy[4] = 200; pxy[5] = 20;
pxy[6] = 215; pxy[7] = 35;
vrtucpyfm(screen_vhandle, MD-ERASE, pxy,

&chexMFDB, &scrMFDB, color_index);

return;

>

/’xx

Main Program
X X X X X X X X X X X X X X X X K X X X X X X K X X X X X X X X X X K X X X X X X X X X X X X X X X /

Listing 7-1 (continued)

main()

<
int ap_id; application lnit verify */

WORD gr_uchar, gr_hchar, values for VDI handle »/
grjubox, gr_hbox;

/xx

Initialize GEM Access
xx/

ap_id = appl_inlt(); s* Initialize AES routines * '

if (ap_id < 0) no calls can be made to AES * '

{ s* use GEMDOS * /

Cconus("***> Initialization Error. <***\n*);

Cconus('Press any key to continue.^n1);
Crawcln();

exit(-l); set exit value to shou error

>
screen-phandle = Get handle for screen

graf_handle(&gr.juchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen_vhandle = open—vuork(screen_phandle);
set_screen_attr(); /* Get screen attributes

/xxx

Application Specific Routines
X /

v_clruk(screen_vhandle); / * clear uorkstation
raster—form();
set_up_rasters();

Moving Targets 151

raster_test();

color_test();

/***
Program Clean-up and Exit

***/

Listing 7-1 (continued)

Wait for keyboard before exiting program

Crawcin(); / * GEMDOS character input * f

v_clsvuk(screen_vhandle); / * close workstation */

appl_jexit(); s * end program */

}
/***/

interleaved format, which the VDI has termed the device-specific
format (see Figure 7-2). The second format has all the words for plane
0 set consecutively in memory. This is followed by all the words for
plane 1, all the words for plane 2, and so on until all planes have been
listed. This is a contiguous format and is called the standard format
in the VDI (see Figure 7-3).

Memory

Figure 7-2 Device-Specific Format Plane Layout for Atari ST

Plane 0
Word n

Plane n
Word n

152 Atari ST

Plane 0

Height in
Pixel s

Word 0

Word n+ 1

Word 1

Word n+2
Word n

Word 2n

Plane 1

Width in Words

Figure 7-3 Standard Format Plane Layout

The device-specific format is said to be device-specific because this
format may be different on another computer system. The format
shown here is the one used on the Atari ST. Also note that a
monochrome (monoplane) raster is the same in either device-specific
or standard format. The program RASTER will demonstrate the dif
ference between standard and device-specific formats and how to use
a transformation function that can convert from standard to device
specific format and vice versa.

Moving Targets 153

Color
The implementation of color in a raster is the same as in the screen
bit map. Each plane contributes one bit toward an index in the VDI
color table for tha t particular pixel. The default color indices are listed
in Table 7-1.

Table 7-1: Pixel Value to
Color Index Mapping

Pixel Value Color Index

0000 0
0001 2
0010 3
0011 6
0100 4
0101 7
0110 5
0111 8
1000 9
1001 10
1010 11
1011 14
1100 12
1101 15
1110 13
1111 1

Using the Rasters in a Program

To use a raster in a program, you m ust set up the raster and its
MFDB. You m ust also use one of the two raster copying functions to
get the image to show on the screen. Essentially you are copying the
raster from its original location to the screen raster (bit map). The
first copying function is called an opaque raster copy. The second is
a transparent raster copy. The opaque copy function transfers the
image from a source raster to a destination raster pixel for pixel
Thus, it overwrites the destination raster with the source raster. The
overwriting result is governed by the writing mode used for the copy
function.

Opaque Copy Raster Function
The opaque copy raster function is called from a C program as follows:

vro_cpyfm(handle, wr_mode, pxyaxray, psrcMFDB, pdesMFDB)

154 Atari ST

The parameters in the opaque copy function start with the worksta
tion handle. This parameter does not have any effect on the raster
copy bu t is included for consistency with all other VDI function calls.
The second parameter is the writing mode, which determines how the
raster is copied. The third parameter is an array describing the area
to copy from and the area to copy to. The last two parameters of the
function are the addresses of the source MFDB and the destination
MFDB, respectively.

There are 16 different copy modes that perform a variety of logic
operations between the source bit and destination b i t Table 7-2
shows the logic operation associated with each mode. In the table, “S”
stands for the source bit and “D” stands for the destination b it The
result of the operation is placed in the destination raster. Several
modes are worth special note. Mode 0 is the clear mode. It turns all
bits in the destination raster to 0. Mode 3 is the replace mode, which
exactly copies the contents of the source raster into the contents of
the destination raster without regard to the contents of the destina
tion raster. Mode 4 maps the destination bits to 1 if the source bit
has a value of 0 and the destination bit has a value of 1; otherwise,
the destination bit is set to 0. Mode 5 leaves the destination raster
unchanged. Mode 10 inverts the existing destination raster. Mode 12
inverts the source raster. Mode 15 sets all b its in the destination
raster to 1. Clearly, the writing mode is very significant Since the
opaque copy makes copies pixel by pixel, changing the writing mode
can produce some rather interesting results, such as changing the
color of the image (when working with planes) or changing the image
itself.

Table 7-2: Opaque Raster Copy
Logic Operations

Mode Operation Mode Operation

0 set to 0 8 ~(S | D)
1 S&D 9 ~(S “ D)
8 S& -D 10 ~D
3 S 11 S | ~D
4 -S & D 12 ~S
5 D 13 ~S 1 D
6 S " D 14 ~ (S & D)
7 S | D 15 set to 1

The third parameter of vro_cpyfm() is an array that holds the
coordinates of two rectangles. The first four elements locate a rectan
gular area within the source raster. This denotes the area from which

Moving Targets 155

the pixels are copied, and allows you to copy all or only part of a raster.
The last four elements of the array outline a rectangular area in the
destination raster where the source pixels are to be copied. With this
option, you may locate your raster image anywhere within the des
tination raster. In the earlier example of copying a floppy disk icon to
the screen, the destination raster (the screen) is obviously much
bigger than the source raster. By specifying the coordinates of the
rectangular area in the destination raster, you can map the icon
anywhere on the screen.

Note that since the source and destination rasters may be the same
(for example, copying from one portion of the screen to another), you
may wind up in a situation where the source and destination rec
tangles overlap. This situation has been accounted for by the VDI so
that you don’t wind up changing a portion of the source raster before
it has been copied. The VDI guarantees that any area in the source
raster is not changed until it has been copied to the destination
raster. In other words, the source raster is not “drawn over” until the
corresponding area in the destination raster has already been copied.

A few other notes about the opaque copy function. The opaque
raster copy function does not perform any transformations or rota
tions. Thus, if you have a source raster in device-specific format the
destination raster m ust also be in device-specific form at Also, all
copying is done strictly pixel by p ixe l Finally, if the source and
destination rectangles are not the same size, the VDI manual states
that the VDI uses the destination for a pointer and the source
rectangle for the resulting size. In program RASTER, the results of
this operation are seen. It is left to the reader to determine how well
this option works. On the author’s version of GEM, this feature was
apparently not working properly.

Transparent Copy Raster Function
The other copy function, transparent copy raster, is used to create a
color image from a monochrome raster. The function call from a C
program is as follows:

vrt_cpyfm(handle, wr_mode, pxyarray,
psrcMFDB, pdesMFDB, color_index)

The parameters are similar to the opaque copy function. The first
parameter is the workstation handle. The second parameter is the
writing mode. The third parameter is the source and destination
rectangle array. The next two parameters are pointers to the source
and destination MFDBs, respectively. The last parameter is a two-ele
ment array that determines the color output.

The writing mode for the transparent copy is different from the

156 Atari ST

writing mode for the opaque copy function. The writing modes are
the same used for standard VDI functions: replace, transparent XOR,
and reverse transparent These modes are used in conjunction with
the color index array to produce color output. Color index array
element 0 is used to determine the color of the foreground, and
element 1 is used to determine the background color. The value of
the array element is the color index in the VDI color table.

In replace mode, all pixels with a value of 1 in the source raster
yield a pixel with color color_index[0] in the destination, and all
pixels with a 0 value have color color_index[l] at the destination. In
transparent mode, a 1 b it in the source produces a pixel of
color_index[0] in the destination. Source bits with a 0 value have no
effect on the destination pixel. In XOR mode, an XOR operation is
performed between each pixel of the source raster and each bit in
each of the destination planes. The color index array is not used
a t all with this mode. Reverse transparent mode is the reverse of
transparent mode: wherever the source raster has a pixel set to 0,
color_index[l] is output to the destination. Source pixels set to 1
have no effect on the destination.

Raster Conversion
To convert a raster from device-specific format to standard format (or
vice-versa), VDI provides a transform form function:

vr_trnfm(handle, psrcMFDB, pdesMFDB)

The parameters are the workstation handle, the address of the source
MFDB, and the address of the destination MFDB. The values held in
the source MFDB determine how the function operates. The source
MFDB contains the number of planes to be transformed and the
format to be used for the destination. If the source raster is in
standard form at the destination is converted to device-specific for
m a t otherwise, the destination is converted to standard form at The
destination MFDB has its format field set to the resulting format by
the transform function, bu t all other parameters of the destination
MFDB m ust be manually set before the function call because they are
not altered.

Program RASTER____________________________________

Program RASTER demonstrates the use of rasters and raster copy
functions. In the GEM-application overhead in Listing 7-1, there is
the usual overhead plus the type definition for the MFDB. As men-

Moving Targets 157

tioned earlier, our own structure is used because it is much easier to
read and understand than the one included in the GEM header file
gemdefs.h.

Under the application-specific data, there are five different MFDBs
defined. This program demonstrates how to create and copy raster
images and the effects of various copying and writing modes. There
are three defined rasters: a checkerboard, a stripe, and a solid block.
The other two MFDBs are used for the screen and for temporary
storage of screen contents, respectively.

Four arrays are used to hold the raster images. The block and stripe
rasters are 16-by-16 pixels. The checkerboard raster contains two
planes of that size. Therefore, the array to hold the block and stripe
patterns is 16 words long because the rasters are 16 pixels (1 word)
wide by 16 pixels high. The array to hold the checkerboard raster is
32 words long (2 planes of 16 rows each). The temporary raster must
be able to hold four planes so that it can store low resolution color
images from the screen. The numbers used to initialize the arrays
represent the raster images held by arrays. The process for converting
from a pixel image to a hexadecimal value is shown in Figures 7-4
through 7-6.

1 I I
Figure 7-4 Block Pattern

In these figures, the three different rasters have been drawn in
16-by-16 grids. The block pattern consists of filling in every bit. The
stripe pattern consists of vertical lines, and the checkerboard pattern
is a checkerboard. Since C does not have binary constants, you need
to represent the bit images in either decimal, octal, or hexadecimal
numbers. The easiest conversion is to hexadecimal numbers. To do
this, the “on” bits of the image are given a value of 1 and the “off’
bits a value of 0. Each row in the image is divided into 4-bit groups,
and each 4-bit group is converted into its hexadecimal code. This

158 Atari ST

H» 1010 1010 1010 1010 -> AAAA
1010 1010 1010 1010-* AAAA

Figure 7-5 Stripe Pattern

1100 1100 1100 1100-*CCCC
1100 1100 1100 1100-*CCCC
0011 0011 0011 0011 -► 3333
0011 0011 0011 0011 -> 3333
1100 1100 1100 1100 -»CCCC

Figure 7-6 Checkerboard Pattern

transformation from pixels to bits to hexadecimal is shown in each
of the figures. For each array elem ent then, simply fill in the ap
propriate hexadecimal value. Notice that the checkerboard array,
which is supposed to hold 32 elements, has only 16 elements defined
(representing one plane out of a possible two). The remaining ele
ments are automatically set to 0 by the C compiler.

In m ain(), the program performs the usual initialization and clears
the workstation. Four application routines are then called. The first,
raster_form (), demonstrates the differences between the standard
ra s te r form at and th e device-specific form at. The ro u tin e
set-.up_rasters() initializes all the MFDBs used in the program. The
third function, raster_test(), provides a comparison between the
opaque and transparent raster copy functions and an outline for the
user to experiment with these copy functions. The final function,
co lor_test(), shows how the different writing modes affect the
transparent copy raster function.

Moving Targets 159

The routine raster_form () uses the checkerboard raster to go be
tween the standard format and the device-specific format This func
tion first sets up the MFDBs. The variable chesMFDB is set to point
to the start of the chex array, which holds the checkerboard image
raster. Its width and height are 16 pixels, the word width is 1, and
the format is set to the standard format denoted by the value 1. For
this te s t the program uses the two planes of the checkerboard raster.
The temporary raster MFDB is set up with the same attributes except
tha t it points to the temporary array. The vr_tm fm () function takes
the raster pointed at by chexMFDB and places it into the raster
pointed a t by tempMFDB. The 32 elements (rows) of the chex and
tem p arrays are then printed out to show the difference between the
standard and device-specific format of the two rasters. Note that the
numbers in the prin tfl) statements are printed in hexadecimal nota
tion so they can easily be compared to their initial settings a t the top
of the program.

Standard Format Address D e v ice -sp e cific Format
PI an* Word Va] ue (in bytes> Plane Word Val ue
o 0 CCCC Base 0 0 CCCC
e 1 CCCC Baae-t-a 1 0 0000
0 a 3333 Base-t-4 0 1 CCCC
0 3 3333 BaB0+£ 1 1 0000
0 4 CCCC Base+6 0 a 3333
0 S CCCC Base-*-10 1 a 0000
0 6 3333 Base 0 3 3333
0 7 3333 Base-*-14 1 3 0000
0 a CCCC Base-t-16 0 4 CCCC
0 9 CCCC Base+10 1 4 0000
0 10 3333 Base-«-20 0 S CCCC
0 11 3333 Baae+sa 1 s 0000
0 IS CCCC Base+24 0 & 3333
0 13 CCCC Baos^Sfi 1 6 0000
0 14 3333 Base+28 0 7 3333
0 IS 3333 Baae+30 1 7 0000
1 0 0000 Base+32 0 a CCCC
1 1 0000 Base*34 1 a 0000
1 a O000 Base+36 0 9 CCCC
1 3 0000 Bas*+3B 1 9 0000
1 4 0000 Base+40 0 10 3333
1 s 0000 Baae+42 1 10 0000
1 6 0000 Base+44 0 n 3333
1 7 0000 Base+4& 1 n 0000
1 a 0000 Base+4S 0 la CCCC
1 9 0000 Base-»-50 1 la 0000
1 10 0000 Base+58 0 13 CCCC
1 11 0000 Base+54 1 13 0000
1 la 0000 Base+56 0 14 3333
1 13 0000 Bamr+5B 1 14 0000
1 14 0000 Base+60 0 13 3333
1 IS 0000 Baoe+6£ 1 IS 0000

Figure 7-7 Transforming a Raster from Standard to Device-Specific Format

The transformation occurs as shown in Figure 7-7. The transfor
mation involves taking the contiguous words in discrete planes (stan
dard format) and converting them into interleaved planes (device-
specific format). The chex array starts in standard format with all

160 Atari ST

words of plane 0 coining first followed by all words for plane 1. The
tem p array holds the checkerboard pattern in device-specific format
with word 0 of plane 0, followed by word 0 of plane 0, then word 1 of
plane 0, and so on.

After printing the results of this first transformation, function
raster_form () waits for the user to press a key and then performs the
opposite transformation. The format field of chexMFDB is set to
indicate tha t the chex raster is in device-specific format Although the
actual data has not been changed, you are telling the VDI tha t the
data is in device-specific form at The transformation function is called
to convert the raster from device-specific format to standard format
The results are shown in Figure 7-8.

D * v ic» —sp a c i f i e F orn at M d n » s Standard Format
PI a m Word V alua <in b y t s t) PI ana Word Val ue
a a CCCC B ase 0 0 CCCC
1 a CCCC Bb m +S a 1 3333
0 i 3333 Baas+4 0 8 CCCC
1 i 3333 Bas«+& 0 3 3333
0 e CCCC Baav+B 0 4 CCCC
1 a CCCC B a se* 10 0 5 3333
e 3 3333 Baaa+lS 0 6 CCCC
i 3 3333 BamH-14 0 7 3333
0 4 CCCC Bas»-M6 0 a 0000
i 4 CCCC Baa»+IB 0 9 0000
e S 3333 B asr^Sa 0 10 0000
i S 3333 Bmmm*3S 0 11 0000
a 6 CCCC Baav+84 0 18 0000
i 6 CCCC Bawr+Sfi 0 13 0000
a 7 3333 Bai«+SB 0 14 0000
i 7 3333 Baa*+30 0 IS 0000
a a aaa a BaM +38 1 0 CCCC
i a aaaa Baaa+34 1 1 3333
a 9 e a a a Baaa+36 1 8 CCCC
i 9 a a a e Baur+38 1 3 3333
a i a aaaa Baaa+40 1 4 CCCC
1 l a a ea a BaM +42 1 S 3333
a n a a ea Baaa+44 1 6 CCCC
i l i aaa a BaBa+46 1 7 3333
a 18 a ea a BaM+4fi 1 a 0000
i 12 0000 BaM +50 1 9 0000
a 13 aaaa BaM +58 1 10 0000
i 13 a ea a Baaa+34 1 i i 0000
a 14 aaaa Baa«+56 1 18 0000
l 14 aa a a Basv+58 1 13 0000
a IS aaaa Baav+60 1 14 0000
l IS aaaa Baa»+63 1 IS 0000

Figure 7-8 Transforming a Raster from Device-Specific to Standard Format

Remember tha t the Atari ST screen bit map uses the device-specific
form at If you do any copying to and from the screen, be sure to set
the format field of the MFDB properly.

After the raster transformations have been demonstrated, the
8et-up_rasterB() function is called next This function sets up the
—MFDBs for the checkerboard, stripe, and block rasters to be used
by the other functions in this program. The addresses, width, height
form at and number of planes are set for each MFDB. Note in

Moving Targets 161

chexMFDB tha t only one plane is being used a t this time. The pro
gram simply ignores the second plane. Its only purpose is demonstrat
ing the transformations.

Next the structure screenMFDB is set up. The address of the raster
(bit map) is obtained by using the Logbase() function, as it was in
the BITMAP program. The width and height are initially set to the
number of pixels on a high resolution monochrome monitor, and the
number of planes is set to one. The screen resolution is tested: the
variable screen_rez is set in set_screen_attr(). If it is 0, a low resolu
tion screen is being used and the width, height, word width, and
number of planes are set appropriately. If a medium resolution screen
is being used, the width, height and number of planes are changed.
The word width does not need to be reset under medium resolution
because it is the same as for high resolution.

Finally, the temporary MFDB, tempMFDB, is set up. The device
specific format is used. The number of planes is set to the same
number of planes used by the screen because the temporary raster
will store a portion of the screen. Now that all of the MFDBs have
been s e t the raster test function can be performed.

In raster_test(), the pxy array holds the coordinates of the source
and destination rectangles. The color_index array is used for the
transparent copy raster function. The variable pass is used to loop
through the function twice. The first time the transparent copy raster
function is used; the second time the opaque copy raster function is
used.

The function begins by setting the two color_index array elements
to the foreground color (black) and the background color (white).
Inside the loop, the workstation is cleared. A background pattern is
drawn by setting the interior fill mode to pattern fill using pattern
num ber 2. Then a filled rectangle is drawn from coordinates (10,10)
to (150,150).

The function continues by preparing the pay array to store a por
tion of the screen into the temporary raster. A 16-by-16 pixel square
will be stored from coordinates (100,100) to (115,115). This square is
placed in the temporary raster from location (0,0) to (15,15). Remem
ber tha t the first coordinate of the raster, (0,0), is a t the upper left
com er of the raster. When saving a portion of the screen, the opaque
copy raster function m ust be used because the transparent copy
raster function is only for use with a monochrome source raster and
a color destination raster. Since you do not know whether your
program runs on a system with a monochrome or color screen, it is
easiest to use the opaque copy raster function. In this way, if the
screen has one, two, or four planes, the opaque copy is able to handle
i t The opaque copy raster function is used to copy pixel for pixel from
the screen to the temporary raster area. Notice that the second

162 Atari ST

parameter is the defined constant S-ONLY. This constant the other
15 logical writing modes for opaque copies, and the four writing
modes used by the VDI are defined in the header file obdefs.h. The
use of these constants is strongly recommended because they make
the program much easier to understand.

At this po in t a 16-by-16 square has been copied from the screen
into the temporary raster area. Now the checkerboard pattern is
drawn into the area on the screen ju s t saved. To do this, the coor
dinates in the pxy array are reversed because the program is copying
the image from the checkerboard raster to the screen. Since the whole
checkerboard raster is copied, the coordinates are from (0,0) to
(15,15). The raster is placed on the screen a t screen coordinates
(100,100) to (115,115). On the first pass through the loop, the
transparent copy raster function with replace mode is used. The
program pauses and waits for a key to be pressed. Then the stripe
pattern is drawn overlapping the checkerboard pattern slightly. The
block pattern is then drawn on the screen at another location.

After another key press, the use of different source and destination
rectangle sizes is demonstrated. A 10-by-10 pixel square is taken from
the block raster and placed on the screen in a rectangle 40 pixels wide
and 10 pixels high. Next the block raster is placed on the screen in
a 10-by-40 pixel rectangle.

At the end of the loop after a key press, the program restores the
portion of the screen saved earlier. The opaque copy raster function
is used to replace that area of the screen pixel for pixel. A pattern was
placed on the screen earlier to enable you to see that the image is ac
tually being replaced. If a white background were used, the program
would look pretty dull.

On the second pass through the loop, the opaque copy raster
function is used instead of the transparent copy raster function.
There is a difference between using one type of function or the other
depending upon the type of screen you are using. This difference is
detailed below.

The next function, color-test(), demonstrates the four writing
modes in conjunction with the color index array and the transparent
copy raster function. The first thing done is clearing the screen and
drawing a colored, filled rectangle. The checkerboard raster is then
placed on top of this rectangle using the various writing modes.

Replace mode is used firs t The pxy coordinate array and the color
index array are se t If a color screen is used, color indices 2 and 3 are
used for the foreground and background, respectively; otherwise,
black (1) and white (0) are used. The checkerboard raster is copied
onto the rectangle using the replace mode. It is then copied using the
transparent mode, XOR mode, and reverse transparent mode. When
color_test() has finished, the program terminates.

Moving Targets 163

The output from program RASTER should be studied carefully. This
program provides you with a vast amount of information about the
way the Atari ST stores and displays screen images.

The first function executed, xaster_form(), produces output similar
to tha t shown in Figures 7-7 and 7-8. The figures detail the process
of transforming from standard format to device-specific format and
from device-specific format to standard format Remember that stan
dard format consists of contiguous planes with all of one plane
followed by all of the next plane. Device-specific format has the words
of each plane interleaved.

Results from Program RASTER

Monochrome Output

The copy raster functions produce different output depending on the
type of display in use. The results presented below refer to output on
a monochrome monitor.

The raster_test() function draws a pattern-filled square. Since sav
ing a portion of the screen to memoiy produces no visible results, the
first thing you see is a checkerboard pattern drawn within the
pattern-filled square. After you press a key, a stripe pattern is drawn
that overlaps the checkerboard slightly. Then the block pattern is
shown. After the next key press, you see a rather unusual pattern that
is the result of the copying between rectangles of different sizes.
Another key press produces another strange pattern. If you get two
completely filled rectangles instead of these strange patterns, your
version of GEM is working property. On the author’s computer, these
copy operations did not work as described in the VDI manual. After
another key press, the portion of the screen saved in the temporary
raster is restored to the screen.

At this po in t the loop repeats and the copy operations use the
opaque copy raster function instead of the transparent copy raster
function. For a monochrome display, the output of these two func
tions appears the same.

In the co lor_ test() function, there is only one plane in the
monochrome mode, and therefore, only one bit on which the logic
operations can be performed. First the black rectangle is drawn. Then
the checkerboard raster is drawn using the four writing modes. The
replace mode simply places the checkerboard pattern on the screen.
The transparent mode makes white areas appear transparent Thus,
the checkerboard is a black and “clear” image on a black background
and nothing shows on the screen. The XOR mode gives the reverse
image of the pattern. The reverse transparent mode sets all 0 bits to

164 Atari ST

the background color (white) and has no effect on the 1 bits; the
result is the checkerboard pattern itself.

Color Output

The results of the color display are somewhat more interesting. The
first function, the raster_form () function, produces the same results
as before (see Figures 7-7 and 7-8). In the raster_test() function, the
pattern-filled background square is drawn. Then the checkerboard
pattern appears, followed by the striped pattern and block pattern.
When the program copies rasters with rectangles of different sizes,
the results again look similar to the monochrome output. Finally, the
area of the screen saved in the temporary raster is restored. So far
everything looks the same as the monochrome outpu t The transparent
copy raster function works the same with monochrome or color
ou tpu t

If you have a monochrome monitor and a color monitor (or televi
sion), you may notice tha t the pattern used to fill the background
square looks different on a color monitor. This is probably due to the
lower resolution of the color monitor (or television) and not due to the
copy raster function.

At th is po in t the program is ready for the second pass through the
loop. Now the program uses the opaque copy raster function. After
the pattern-filled square is drawn, you see no changes. Press a key;
still there are no results. In fact nothing shows on the screen during
this pass through the loop. The opaque copy function does not work
when copying from a monochrome raster to a color raster. In this
case, the program is trying to copy a one-plane monochrome image
onto a four-plane color image. Basically, the VDI does not perform an
opaque copy between rasters that have a different number of planes.
This makes sense because an opaque copy is done pixel for pixel; if
there aren’t enough pixels to supply the number of planes being
copied to or from, this type of operation doesn’t make sense. The VDI
recognizes this situation and ignores the function call.

After the raster_test() function is completed, the program moves
on to the color_test() function. On the color monitor, it is again a
little more interesting than on the monochrome monitor. The func
tion draws a colored background rectangle and places the four check
erboard patterns on the rectangle. The actual colors shown on the
screen vary depending on how the color palette is set on your com
puter. Four different colors are shown based upon the four different
writing modes used. As an exercise, you should work out the logic
operations of the four writing modes between the color of the back
ground rectangle and the color used in the color_index array. You
should then be able to predict which colors will be shown for each
writing mode.

Moving Targets 165

If you are using a color monitor, you should set up a raster with four
planes and test the opaque copy function. This should give you some
results on the second pass through raster_test(). Another exercise
would be to change the function to store the portion of the screen
into the temporary raster area from opaque to a transparent copy
raster. In this case, the screen is not restored because the transparent
copy raster function is designed to copy from a monochrome raster
to a color raster. Unless a monochrome screen is used, the VDI ignores
the function call.

Go ahead and make some of the changes suggested. Try other
experiments such as different sized rasters, making rasters with more
planes, and so on. Remember that the opaque raster function m ust
use the device-specific format. If it is easier for you to design the
raster in standard format, go ahead and do that and then use the
transformation function to transform the raster into device-specific
format

Playing ivith Program RASTER

Putting It All Together: Program BOUNCE

The program BOUNCE is a culmination of all of the VDI routines and
extended BIOS routines you’ve seen so far. It uses rasters and the
screen bit map techniques to show four small "balls” bouncing up
and down and across the screen.

The balls s tart in the upper left com er of the screen. Each is given
an initial horizontal velocity and falls under a constant acceleration
(gravity). When a ball h its the bottom of the screen, it bounces back
up. When a ball h its the side of the screen it bounces off the side and
heads in the opposite direction.

Putting first things first as always, we take a look a t the data and
data structures to be used in the program. There is the usual GEM
application overhead including the MFDB structure declaration. Un
der the application-specific data there are three defined constants:
W-BALL, H JBALL, and NUM-BALLS. W_BALL and H_BALL define the
width and height in pixels of the ball raster to be used. NUM-BALLS
determines the number of balls to appear on the screen.

Because each ball is allowed to move independently, it is in a
unique state a t any given time. In particular, each ball can have a
different position on the screen and a different vertical and horizontal
velocity. To keep track of this information in an organized fashion,
the structure BALL-REC is declared in the application-specific data
section. In this structure, there are two x coordinates, two y coor
dinates, an x velocity, a y velocity, and a delay. There are two sets of

166 Atari ST

coordinates because this is going to be an animated program like
ANIMATE. Therefore, two different bit maps are used to display the
moving objects. With two bit maps, there must be two sets of coor
dinates—one for each bit map. The integer element delay is used to
determine when each ball is released. This allows the balls to start
moving independently.

Two pointers to the screen bit maps, bitmapO and bitmap 1, are
declared next. These are followed by two integers, draw_screen and
show_screen. Variable draw_screen indicates which screen (0 or 1)
is currendy being drawn on. Variable show_screen indicates which
screen is currently visible. If draw_screen is 1, then show_screen
must be 0; if draw_screen is 0, show_screen must be 1. The array ball
is declared to have as many elements as there are balls (as specified by
NUM_BALLS). The float variable gravity determines how the balls are
to be accelerated.

1 1 1 1 1 1 1 1 * 1 1 1 1 1 1 1 1 1 1 1 1 [1 1 *
Figure 7-9 Ball Raster

Moving Targets 167

There are four memory form definition blocks (MFDBs) declared:
one for the ball, one for its mask, and one for each screen. Figure
7-9 shows the raster for the ball. The grid in the figure is 48 boxes
by 48 boxes, corresponding to a 48-by-48 pixel raster. Ju s t as with
the pattern rasters in program RASTER the image is divided into
4-pixel horizontal groups, which are translated into hexadecimal
notation (see Figure 7-9). Another advantage of using rasters is that
the raster image can be changed quite easily. You may want to change
the ball to have a different pattern on its face or look like something
completely different such as a pogo stick.

Once the hexadecimal codes for the ball raster have been deter
mined, they m ust be stored in memory so that the VDI can use them
as a raster. The raster is held in array ball-shape. Note that the
array’s dimensions are 48 by 3. Looking at Figure 7-9, you can see
two heavy vertical lines that divide the raster into three 16-bit groups
and tha t there are 48 lines (rows) vertically. These physical dimen
sions determine the dimensions of the array. The raster is three words
wide (16 bits per word) and 48 rows high.

Consider the following animation technique. The ball is drawn at a
certain point on the screen with all dark areas of the ball denoted by
bits with a value of 1 and all white areas denoted by bits with a value
of 0. To make the ball appear to move, it is first redrawn in the same
location using the XOR writing mode, which in effect erases the
image. The ball is then drawn in its new position using the normal
replace mode (or XOR mode again). The new image is erased and the
next image is drawn in a new location. By repeating this quickly
enough, the ball appears to move.

This program, however, uses not one but four balls on the screen
a t one time. Since the balls will cross paths, the program m ust be
able to draw the balls so tha t they appear to be on top of each other.
Whenever one ball is drawn on top of the other, it should appear as
if that ball is in front of the other. In other words, the top ball should
partially or totally mask the other ball or balls it covers. You can’t use
replace mode because the raster is square; the portion of the raster
around the ball would also be drawn on the screen and you would get
a shadow around the ball. You can’t use transparent mode because
anything beneath the ball would show through the white stripe.
Reverse transparent mode would draw the ball incorrectly. If the XOR
writing mode were used, a “checkerboard” pattern would appear
where the balls overlap. This means tha t any place a black portion is
drawn over a black portion appears white and any place a white
portion is drawn over white appears black. Therefore, this would not
give the proper image.

A method is needed that erases the portion of the screen under the
topmost ball so nothing shows through the topmost ball. This is

168 Atari ST

accomplished through the use of a m ask. A mask is a raster that has
all its bits set to 1 wherever the image should appear solid. If you use
a mask, you can draw over anything using transparent mode so that
the square edges do not show and erase the area around the image.
Then draw the actual image. The mask for the ball in this program
covers any area of the raster covered by the ball. Thus, the mask is ju st
a filled circle (essentially the ball itself without the white stripe in the
middle). The mask raster is initialized in the array balL-mask. With
the help of graph paper, you can verify that the values in balL-mask
correspond to such a fllled-in circle. The area in the mask not covered
by the ball has its bits set to 0.

Other examples of a mask are readily apparent On the desktop, for
example, the disk icons and the trash can icons are held in memoiy
as rasters and have corresponding masks. The masks look like
shadows of the icons. The mouse cursor also has a mask, which is
most noticeable when it looks like a finger. The finger is filled with
white so a mask is used to make the inside of the hand appear solid.

Operation of Program BOUNCE

Program BOUNCE contains most of the graphic techniques shown in
the preceding chapters. Rasters, multiple screens, and masks are used
to show the bouncing balls. At the top of the program, the usual GEM
routines initialize access to the workstation. In the application-
specific routines, the set_bitm ap() function is a modified version of
the set-b ase() function used in ANIMATE. This routine returns the
address of the current screen bit map and sets the parameter to the
address of a new screen b it map. This allows any future programs to
use any variable name you want for the bit map addresses. The
function set-up_rasters() sets up the rasters for the ball, the mask,
and both screens.

In the general control flow of the program in m ain(), the ap
plication-specific functions start by initializing the bit map addresses
and the raster MFDBs (see Listing 7-2). The program then enters a
loop that controls the execution of the program from this point on.
First, the display screen and drawing screen are set and cleared. Then
the ball array is initialized in in it_ball() and function bounce_ball()
is called to start the animation sequence. Function bounce_ball()
returns when a key has been pressed. Upon its return, the loop in
m ain() checks if the key pressed is the ESC key. If the ESC key is
pressed, the program is exited; otherwise, the program starts the balls
bouncing again. On exiting, the program makes sure the screen is set
to the original bit map, the secondary bit map memoiy is released,
and the virtual workstation is closed.

Moving Targets

Listing 7-2 Program BOUNCE
✓ X

BOUNCE.C Drau bouncing balls

This program demonstrates an animation technique using

raster operations.
X /

/X X X X X X X X X X X X X X X X X X K X

System Header Files & Constants
X /

ttinclude <stdio.h>

ttinclude <osbind.h>

ttinclude <gemdefs.h>
ttinclude <obdefs.h>

/ * Standard 10 * '

GEMDOS routines

/* GEM RES */
s* GEM constants

ttdefine FRLSE 0
ttdefine TRUE 'FALSE

/ X X X X X X X X X X X X X X X X K X X X X X X X X X X X X X X X X K X X X X X X X X X X X X X X X X

GEM Application Overhead
X /

Declare global arrays for VDI.
typedef int WORD; WORD is 1G bits
WORD contrl[12], VDI control array

intout[12B], lntin[12B], VDI input arrays
ptsin[128], ptsout[12B]; VDI output arrays

WORD screen_vhandle,
sc reen_phand1e ,

screen_rez,
color_screen,
x_max,

y_max;

s* virtual screen uorkstation
>'* physical screen uorkstation *s

/ * screen resolution 0,1, or 2
s* flag if color monitor * /

max x screen coord

s* max y screen coord

typedef

<
char

WORD
WORD
WORD
WORD
WORD
WORD

} MFDB;

struct mfdbstr / * GEM data structure * '

/ * address of raster area *s

** uidth of raster in pixels
s* height of raster in pixels #/
/ * uidth of raster in uords
/ * standard or device specific

s* number of planes in raster

*addr;
uide;

high;
uord-juldth;
format;

planes;
reservl, reserv2, reserv3;

/ X K X X K X X K X X X X X X X X X X X X X X X X K X X X X X

Application Specific Data
X / r

170 Atari ST

tide fine 14_BRLL 46
ttdefine HJBRLL 48
ttdefine NUM-BRLLS 4

typedef struct

<

Listing 7-2 (continued)

int *[2];
int y[2J;
float dx;

float dy;
int delay

> BRLI_REC;

char *bitmap0,
*bitmapl;

int drau_screen,
shou_screen;

BRLI_REC ba11[NUM_BRLLS];

float gravity;

MFDB ballMFDB,

maskMFDB,

scrMFDB[2];

define shapes *s

int ball^shape[48][3] = {
0X0000, 0X0000, 0X0000
0x0000, 0X0f f0, 0X0000
0X0000, 0xffff, 0X0000
0x0003, 0xffff, 0XC000

0x0007, 0xffff, 0X8000
0X001f. 0xffff, 0xf800
0x007f, 0xffff, 0xfe00
0X00ff, 0xffff, 0xff00
0X01ff, 0xffff, 0xff80
0x03ff, 0xffff, 0xffc0

0x07ff, 0xffff, 0xffe0
0x07ff, 0xffff, 0xffe0
0x0f f f, 0xffff, 0xfff0
0X0fff, 0xffff, 0xfff0
0xlfff, 0xffff, 0xfff8
0xlf f f, 0xffff, 0xfffB
0x3fff, 0xffff, 0xfffc
0x3fff, 0xffff, 0xf f fc
0x3fff, 0xffff, 0xfffc
0x3fff, 0xffff, 0xfffc
0x4fff, 0xf f f f, 0xfff2
0x43ff, 0xffff, 0xffc2

uidth of ball raster
height of ball raster *s

number of balls to drau

** x coord for each screen * /

/ * y coord for each screen * '

** x velocity * /

y velocity * /

' * release delay timer * /

/ * screen bitmaps *s

/* 0 or 1; determines uhlch

/ * screen to use for drauing

/ * a record for each ball * /

/ * acceleration

raster descriptors *s

one for each screen */

/ * Line
/* 0 *✓

/* B **

/ * 16 *✓

Moving Targets 171

Listing 7-2 (continued)
0x40ff, 0xffff, 0xff02

0 x 4 0 1 f. 0Xffff, 0xfB02

0x4001, 0 x f f f f , 0x8002

0x4000, 0x07e0, 0x0002

0x4000, 0X0000, 0x0002

0x4000, 0X0000, 0x0002

0x2000, 0x0000, 0x0004

0x3800, 0X0000, 0x001c

0 x 3q 00, 0X0000, 0x007c

0 x 3 f00, 0X0000, 0 x 0 1 fc

0xlff0, 0X0000, 0X0ff8

0x l f f f , 0x0000, 0xfff8

0 X 0 f f f , 0xffff, 0xfff0

0 x 0 f f f , 0x f f f f , 0xfff0

0x07ff , 0 x f f f f , 0xffB0

0x07ff, 0Xffff, 0xffe0

0 x 0 3 f f , 0 x f f f f , 0xf fc0

0X 0 1 f f , 0 x f f f f , 0xffB0

0X00f f , 0 x f f f f , 0xff00

0X0 0 7 f. 0x f f f f , 0xfe00

0X0 0 1 f. 0 x f f f f , 0xf800

0x0007, 0 x f f f f , 0XB000

0x0003, 0xffff, 0XC000

0X0000, 0 x f f f f , 0X0000
0X0000, 0X0ff0, 0X0000

0X0000, 0x0000, 0X0000

Int ball_masl<[48] [3] = {
0X0000, 0X0000, 0X0000
0X0000, 0X0ff0, 0x0000

0X0000, 0 x f f f f , 0X0000
0x0003, 0 x f f f f , 0XC000
0x0007, 0xf f f f , 0XB000
0x001f. 0 x f f f f , 0xf800
0x007f. 0 x f f f f , 0xfa00
0X00ff, 0 x f f f f , 0xff00
0x01ff , 0 x ff f f , 0xff80
0x03ff, 0 x f f f f , 0xffc0
0x07ff , 0 x f f f f , 0XffB0
0x07ff , 0 x f f f f , 0xffa0
0X0fff, 0xf f f f , 0Xfff0
0X0fff, 0 x f f f f , 0xfff0
0 x l f f f , 0 x f f f f , 0xfffB
0x1ff f , 0xf f f f , 0xfff8
0 x 3 fff , 0 x ff f f , 0 x fffc
0 x 3 fff , 0 x f f f f , 0 x fffc
0 x 3 fff , 0 x f f f f , 0xf f fc
0 x 3 fff , 0 x f f f f , 0 x fffc
0 x 7 fff , 0xf f f f , 0xfffe
0 x 7 fff, 0 x f f f f , 0XfffQ
0 x 7 fff, 0 X ffff , 0xfffB

24 * /

32 * '

40 * /

Line
0 */

0 */

1G * /

172 Atari ST

0x7fff, 0xffff, 0xfffe,

0x7fff, 0xffff, 0xfffe, /* 24 */
0x7fff, 0xffff, ©xfffe,

0x7fff, 0xffff, 0xfffe,
0x7fff, 0xffff, 0xfffe,

0x3fff, 0xffff, 0xfffe,

0x3fff, 0xffff, 0xfffc,
0x3fff, 0xffff, 0xfffc,
0x3fff, 0xffff, 0xfffc,

Oxlfff, Oxffff, 0xfff0, / * 32 * /

0xlfff, 0xffff, 0xfff8,
0x0fff, 0xffff, 0xfff0,
0X0fff, 0Xffff, 0xfff0,

0x07ff, 0xffff, 0xffe0,
0x07ff» 0xffff, 0xffe0,

0x03ff, 0xffff, 0xffc0,
0X01ff, 0xffff, 0xff00,

0x00fft 0xffff, 0xff00, 40 */

0X007f, 0xffff, 0xfB00,
0X001f, 0xffff, 0Xf800,

0x0007, 0xffff, 0X8000,

0x0003, 0xffff, 0xc000,
0X0000, 0xffff, 0X0000,

0X0000, 0x0ff0, 0X0000,

0X0000, 0X0000, 0X0000

>;

/'a***
GEM-related Functions

a****#*******#***#*****************#************#*/

Listing 7-2 (continued)

WORD open_vuork(phys_handle)

WORD phys-handle;

Function: This function opens a virtual uorkstation.

Input: phys_handle = physical uorkstation handle
Output: Returns handle of uorkstation.
** /

i
WORD uork_in[ll],

uorl<_out[57],

neu-handle; ✓* handle of uorkstation
Int i;

for (i = 0; i < 10; 1++)
uork_in[i] = 1;

uork_in[10] = 2;
neu_handle = phys_handle;
v_jopnvuk(uork_in, &neu_handle, uorl<_out);
return(nQU_handle);

/ * set for default values * '

/ * use raster coords
✓* use currently open ukstatlon

Moving Targets 173

88t_screen_attr()
✓a*#*##********#**#****#*#*#***#*#*******##*#######
Function: Set global values about screen.
Input: None. Uses screen_v/handle.
Output: Sets x_max, y_max, color_screen, and screen_rez.
»#********#*********«#*##***#*»#***»****«##»#»»***✓
<
WORD uork_out[57];

vq_extnd(screerv_vhandlet 0, uork_out);
x_max = uork_out[0];

y_max = uork_out[l];
screen_rez = 6etrez(); /* 0 = low, 1 = med, 2 = high

color_screBn = (screen_rez < 2); mono 2, color 0 or 1

>

/********#****»*#*»#*****««********##**»»#»*#***»#»
Rpplication Functions

•a*######***#*****#**####*#*#****#*******####*##*#/

long Rnd_rng(lou, hi)

long lou, hi;
/«s»***KK***x***»***«*«*««tt*«******xxx**K«**«tt*«***

Function: Generate a random number betueen lou and hi, inclusive.

Input: lou = lowest value in range.
hi = highest value in range.

Output: Returns random number.
X X X X X X X X X X X X X X X X K X K X X X /

{
hl++; ' * Include hi value in range
return((Random() % (hi - lou)) + lou);

>

char *sBt_bitmap(neu_map)
char **neu_map;
/xx

Function: Rllocate memory for neu screen bitmap.

Input: neu_map = pointer to a pointer for the neu bitmap.

Output: Returns current bitmap address and sets neuLjnap
to address of neu bitmap location.

X /

<
long x;

allocate neu screen bitmap * '

x = (long)Malloc(3225GL); ✓« get 32 kbytes *s

if (!(x % 25G)) on half page boundary * /

*nsu_map = (char *) x;
else move to boundary *s

*neu_map = (char *)(x + (25G - (x % 256)));

Listing 7-2 (continued)

174 Atari ST

return current bitmap
return((char *)Logbase());

>

set_up_rasters()
/a#*###*####*#**##*#****#*##*#*#####*###*##****##**
Function: Sets up global MFDB to point to rasters.

Input: None. Uses global FOBs and rasters listed above.
Output: Sets appropriate fields in FDBs.
a**#*#*######**#*##************###***#*####*#**#*#/
<

Listing 7-2 (continued)

Ball raster * /

ballMFDB.addr

ballMFDB.uidB
ballMFDB.high

ballMFDB.word_width
ballMFDB.format

ballMFDB.planes

(char *)bal1-shape;

U-BRLL; ' * width in pixels * '

HJBRLL; s* height in pixels

3; width in UORDs

monochrome has 1 plane

/* Mask raster * /

maskMFDB.addr = (char *)ball-mask;
maskMFDB.wide = 14-BRLL; ** width in pixels **

maskMFDB.hlgh = H-BRLL; / * height in pixels
maskMFDB.word_wi d th = 3; width in MORDs */
maskMFDB.format = 0;
maskMFDB.p 1anes = 1; /* monochrome has 1 plane

s* Screen raster area *s

scrMFDB(0].wide

scrMFDB[0].high
scrMFDB(0].word_width

scrMFDB[0].format

scrMFDB[0].planes
if (screen_rez == 0)

<
scrMFDB[0]-wide

scrMFDB(0].high

840;

400;

40;

0;
1;

320;
200;

>
else

<

t* monochrome has 1 plane
✓* low resolution

scrMFDB(0].word_width = 20;

scrMFDB[0].planes = 4;

if (screen_rez == 1)

scrMFDB[0].wide = 640;

scrMFDB[0].high = 200;
scrMFDB[0].planes = 2;

medium resolution * /

/* second bitmap sams as first
scrMFDB(l].wide = scrMFDB[0].wide;
scrMFDB[l].high = scrMFDB[0J.high;

Moving Targets

Listing 7-2 (continued)
scrMFDB[l].uord_uidth
scrMFDB[l].format

sc rMFDB[1J.p1anes

scrMFDB[0].addr =
scrMFDB[l].addr =

return;

)

= scrMFDB[0].uord—uidth;
= scrMFDB[0].format;

= scrMFDB[0].planes;

bitmap©;

bitmapl;

lnit_ball()
/xx

Function: Initialize ball variables.
Input: None.
Output: Set ball position, movement, and speed.
X /

i
int 1;
WORD uork^out[57];

/* get distance between pixels
vq_axtnd(screen_vhandle, 0, uork_out);

determine acceleration factor * /
gravity = 9800000 ' (3600 * (float)uork_out[4]);

for (1 = 0; 1 < NUM_BRLLS; i++)

<
ballf1].x [0] = ball[l].x[l] = 0;

ball[i]-y 10] = ball[i].y[l] = 0;
ball[i].dx = Rnd_rng(lL, 10L); '* x movement * /
ball[i].dy = 0; start at top of arc * '
ball[1].delay = Rnd_rng(lL, 100L);

>

draw_ball(x, y)

WORD x, y;
✓ X

Function: Drau a ball at the specified coordinates.

Input: x = x coord of upper left corner.
y = y coord of upper left corner.

Raster must be set.
Output: None.
X K X X X X X X X X K X /

<
WORD pxy[8],

color_lndex[2];

color_index[0] = 1; f* Foreground color value **
color_index[l] = 0; Background color value * '

176 Atari ST

Listing 7-2 (continued)
Set coordinate array * /

pxy[0] = 0; /* source xl coord
pxy[l] = 0; / * source yl coord * /

P*y[2] = W_BRLL - 1; / * source x2 coord
pxyI3] = H_BRLL - 1; / * source y2 coord * /

pxy[4] = x; / * dBst xl coord *s

pxy[5] = y; / * dest yl coord * '

pxy[S] = x + pxy[2]; /* dest x2 coord

pxy[7] - y + pxy[3]; / * dest y2 coord

use mask to erase area under ball

color_index[0] = 0 ; s* 1 bits set to background color
vrt_cpyfm(screen_vhandle, MD_TRflNS, pxy,

&maskMFDB, &scrMFDB(drau_screen], color_index);

/ * draw ball *«'

color_indsx[0] = 1 ; 1 bits set to foreground color
vrt_cpyfm(scresn_vhandle, MD_TRftNS, pxy,

&ballMFDB, &scrMFDB[drau.jscreen], color_index);

)

erase_ball(x, y)
WORD x, y;
/it***
Function: Draw a ball at the specified coordinates.
Input: x = x coord of upper left corner.

y = y coord of upper left corner.

Rasters must be set.
Output: None.
**/
{
WORD pxy[8],

color_index[2];

color_lndex[0] = 0;

color_lndex[l] = 0;

s* Foreground color value *s

/ * Background color value * /

/* Set coordinate array

pxy[0] = 0; / * source xl coord

pxy[l] = 0; / * source yl coord * /

pxy[2] = W-BRLL - 1; / * source x2 coord
pxy[3] = H_BRLL - 1; / * source y2 coord
pxy[4] = x; /* dest xl coord * '

pxy[5] = y; /* dest yl coord

pxy[G] = x + pxy[2]; / * dest x2 coord * /

pxy[7] = y + pxy[3]; / * dest y2 coord *s

use mask to erase area under ball
color_lndex(0] = 0 ; 1 bits set to background color
vrt_cpyfm(screen_vhandle, MD—TRRNS, pxy,

&maskMFDB, &scrMFDB[drau_screen], color_index);

Moving Targets 177

calc.ball()
✓•a*######****#*****#*********#**#*#*##**##*#******
Function: Calculate neu position for balls.
Input: Uses ball position variables.

Output: New ball position, acceleration, and direction,
tt**/

(
int 1;

Listing 7-2 (continued)

for (1 = 0 ; i < NUCLBRLLS; 1++)

<
ball[ij.delay--;

if (ball[i].delay > 0)
continue;

ball[i].dy += gravity;
change position

ball[l].y[draw_screen] =
ball[l].x[draw_screen] =

** check range

left edge
if (ball[l].x[draw_screan] < 0]

(
ball[i].x[draw^screan] = 0;
ball[i].dx = -ball[i].dx;

>
s* right edge less width of ball
if (ball[l].x[draw_jscreen] > (x_max - U-BRLL))

<
ball[i].x[drauLJ5creen] = x_max - U-BRLL;
ball[i].dx = -ball[i].dx;

>

✓* top of screen *s

if (ball[l].y[draw_screen] < 0)

<
ball[i].y[draw_screen] = 0;

ball[i].dy = 0;

>
/* bottom of screen
if (ball[i].y[draw_screen] > (y_max - H-BRLL))
{ / * at bottom of arc ball bounces losing energy **

ball[i].y[draw_screen] = y_max - H-fiRLL;
ball[i].dy = -ball[i].dy * 0.975;

>
>
return;

>

/ * count down * /

/ * do not release ball

/ * change velocity

ball[1].y[show_screen] + ball[i].dy;
ball[i].x[show^screen] + ball[l].dx;

178 Atari ST

Listing 7-2 (continued)
bounce_ball()
/a*####******#**##**#*#**#**##**##**#*##**#*#####*#
Function: Bounce balls on screen.
Input: None.
Output: None.

<
int i;

do

{ /» draw balls on hidden screen

for (i a 0! 1 < NUfLBflLLS; i++)
drau_ball(ball[iJ.x[drau^screen], ball[i].y[drau_screen]);

switch screens
if (drau_jscreen)

(
drau-jBcreen = 0;
shou_screen = 1;

)
else

i
draw_screen = 1 ;

shou_screen = 0;

>
Se tscreen(scrMFDB[drau_screen].addr,

scrMFDB[shew-screen].addr, -1L);
Vsync();

/ * erase balls
for (1 = 0; 1 < NUM-BRLLS; i++)

erase_ball(ball[l].x[draw_screQn], ball[1] ,y[drau_jscreen]);
calc neu ball positions

calc_ball();

} uhlle (!Cconis());

/***###**»#**#*»#»##*»##*»»»***##*#*»*###»»*###«##»
Main Program

Ktt**/

maln()

<
Int ap_id; application init verify

WORD gnjuchar, gr_hchar, values for VDI handle
gr_wbox, gr_hbox;

✓»**********#***#****»****»»*»*»******»»»**»**»»##*
Initialize GEM Rccess

#»#*#*#####**»****#####**»*#«#**##»**######****«**✓

Moving Targets 179

ap_ld = appl_init(); ' * Initialize RES routines * /

if (ap_id < 0) •/* no calls can be made to RES
< use GEMDOS **

Cconws("***> Initialization Error. <***V>*);
Cconws('Press any key to continue.Vi*);

Craucin();
exit(-l); ' * set exit value to show error */

>

screen_phandle = </* Get handle for screen * /

graf_handle(&gr_uchar, &gr_hchar, &gr_wbox, &gr_hbox);

screeruvhandle = open_vuork(screen_phandle);

set_screen_attr(); Get screen attributes *s

/»***********»*»*»**#**#*»«*»»»*#*»##*«****###*****#
Rpplication Specific Routines

»*****##*»*#*****»»**#»*«»»***#####»#*#*#*«*»******✓

Listing 7-2 (continued)

bitmap0 = set_bitmap(&bitmapl);
set_up_rasters();
do

<
shou_screen = 0 ; / * set to current screen

draw_screen = 1 ; set to background screen «/
Setscreen(bltmapl, -1L, -1L); clear screens * /

v_cl ruk (screen_vhandle);
Setscreen(bitmap0, -1L, -1L);
v_clrul<(screBn_vhandle);
init_ball();

bounce_ball(); s* exits on keypress

) while ((Crawcin() & 0x7F) != 27);

✓a*****************#*#*#**#*##*####***#*#*####*#****
Program Clean-up and Exit

a*#*#*******#****##***#**#*#***##########********#*/

Setscreen(bltmap0, bitmap0, -1L);
Mfree(bitmapl); ' * return secondary bitmap
v_clsvuk(screen_vhandle); close workstation * /

appl_exit(); / * end program

>
/••a*************##*#***#**##**###*###**#***#******/

As for the application-specific functions of the program, the
Rnd_rng() range function and the set_bitm ap() function have each
been seen before. The set_up_rasters() function sets the MFDBs of a
monochrome raster in device-specific format for the ball and mask.
These are both three words wide. An MFDB for each display screen

180 Atari ST

is also set up. The only difference between the display screens is their
address.

Function in it_ball() performs an initialization of the ball records.
The first thing the function does is to make an extended inquiiy
requesting the open workstation values. Element 4 of the array
w ork-out is a value tha t indicates the distance between the top of one
pixel and the top of the next pixel. This distance is measured in
microns (1 micrometer = 1/1,000,000 meter) and is used to determine
the value for gravity. Gravity is computed in terms of pixels per frame.
A frame is considered to be 1/60 of a second—the refresh cycle time.
After gravity has been calculated, each ball record is then set to its
initial values. All balls start in the upper left comer. An x velocity is
selected randomly, and the y velocity is set a t 0. The delay is also
randomly chosen so that the balls are released a t different times.

Function draw_ball() draws a ball a t the given x and y coordinates.
These coordinates specify the upper left comer of the source raster
on the destination raster. As usual, the arrays co lo r , index and pxy
are required. The color 1 is used as a foreground color and the back
ground color is set to 0. The pxy array has its first four coordinates
set to the size of the source raster, which has opposite comers a t (0,0)
and (47,47). The destination coordinates are then se t The upper
left coordinates are set a t (x,y) and the lower right coordinates are
determined and set by adding on the size of the source raster.

Since the area under the ball m ust be erased, the mask is drawn
firs t The foreground color is set to the background color and the
transparent copy raster function is used. Remember tha t the trans
parent copy raster function works with both color and monochrome
screens. The function draws with the transparent mode to copy the
mask to the screen. The transparent mode is used because any place
there is a 0 in the mask raster, the screen is not changed. Any place
there is a 1 in the mask raster, the background color is drawn.

Once the mask has been drawn, the color is set back to the
foreground color and the ball raster is drawn on the area ju s t erased.
Again the transparent mode is used: where there is a 0 in the raster,
no action takes place.

The next function, erase_ball(), erases the ball from the screen at
coordinate (x,y). This function is the same as the draw_ball() func
tion except tha t the erase_ball() function stops after erasing the
screen.

C alc_ball() calculates the new position of each ball in a loop. This
function is called for each new frame (refresh cycle). The delay value
for each ball is decremented and tested. If the value is still positive,
the delay has not been completed and the loop continues. If the ball
is ready to be released or has already been released, the y velocity is
increased. The new position is calculated based upon the velocity and

Moving Targets 181

the x and y values of the ball’s current position (the position on the
screen now being shown). The new x and y positions are held in the
x and y values for the screen used for drawing. If the ball Is to be
drawn a t the next position, the calculation must obviously take into
account the present position and the present velocity.

Once the new position of the ball is determined, the final step is to
check if the ball has gone beyond the edges of the screen. If the ball
has gone past the left edge, the x position is set to 0 and the x velocity
of the ball is reversed. If the ball goes past the right edge (adjusted
for the width of the ball), the position is set to the right edge (minus
the ball’s width) and the x velocity is reversed. If the ball goes above
the top of the screen (which should not occur but should be tested
for safety), the y position is set to the top of the screen and the y
velocity becomes 0 (the top of the arc). When the ball hits the bottom
of the screen, it should bounce. The y value is set to the bottom of
the screen (adjusted for the height of the ball) and the ball’s y velocity
is reversed and decreased slightly. In nature, a rubber ball does not
continue to bounce forever. When a ball strikes the ground, it bounces
up a t a slightly slower velocity than when it hit. In this program, the
upward speed is set to 97.5% of the downward speed.

Function b ou nce-b all() is simply a loop. First it draws all balls on
the drawing screen. Next the screens are swapped and a pause for
vertical synchronization is made. Then the balls are erased from the
new drawing screen (the one that has ju s t been swapped from being
visible) and the new ball positions are calculated. When the user
presses a key, the loop ends and botm ce_ball() returns to function
m ain().

Note that the screen is always drawn in its entirety. In other words,
the four balls are erased from the screen by erase_ball(), which
makes the screen blank. Then four new balls are drawn on the screen.
This is the basic flow for almost any type of animation program even
if you want to have a complex background on the screen. The primary
objective when writing an animation program is to do all drawing as
fast as possible to reduce the amount of flicker. When you have a
background—even a simple one, it is time-consuming to erase the
screen, redraw the background, and then draw the shapes (in
BOUNCE the shapes are the balls). To solve this problem, you start
with the background. Now assume you are drawing balls on the
background. Each time you draw new balls, you first save the area
under each ball to be drawn in a temporary raster, similar to the
procedure used in program RASTER Draw the balls using the mask
and shape raster.

To erase the shapes, instead of erasing the balls from the screen,
simply replace the saved portion of the screen. This writes over the
shape and restores the background at the same time. You m ust save

182 Atari ST

the rasters before anything is drawn on the screen; otherwise, only
part of a ball may be saved. In other words, the rasters are saved first
the balls are drawn, and then the rasters are replaced. If you want to
try this, fill in the background of the screen and make the necessary
changes to the program. Enter program BOUNCE into your system,
and check it o u t

Say “Good-bye" to the VDI

At this po in t most of the VDI functions have been covered. In this
chapter, you learned about one of the more complex and powerful
concepts of the VDI—the raster. With the raster, you are able to
efficiently write anim ated program s and provide fast graphic
responses within your programs through the use of icons and pic
tures.

The next chapter deals with one of the interesting features of the
Atari ST: sound. After exploring the sound capabilities of the ST, the
book moves on to the AES, the second portion of GEM. From this
point on, the programs you see will have very few VDI functions in
them. You should understand the VDI and how it works. Now move on
to making some noise.

C H A P T E R E I G H T

Sound Off!

So far you have gone through the VDI and looked a t all its features.
Now we pause from GEM and look at some of the features of the Atari
computer itself. The primary focus of this chapter is the sound output
capabilities of the Atari. The chapter starts with some background on
sound and how it is generated. Then some sound circuitry and
machine capabilities are discussed. Next you look at some com
ponents used to create sound on the Atari. Finally, you develop a
sound program that demonstrates the various capabilities of the
machine.

What Is Sound?

Sound is a wave. From the physics point of view, it is called a
m echanical wave, which means that some physical object is vibrat
ing. For example, sound waves cause small pulsations in the air. When
the pulsations move through the air and reach your ear, they cause
your eardrum to vibrate as well. The brain receives the signals from
the ear and interprets them as sound.

A waveform looks very much like the waves on the open ocean.
Figure 8-1 depicts a sample waveform with the vertical axis measur
ing the am plitude of the wave and the horizontal axis measuring
time; Note tha t several attributes of the wave have been labeled. The
period, or cycle, is the time it takes for the wave to complete one
repetition. The period measured in Figure 8-1 shows the wave start
ing at amplitude 0 with a positive slope (that is, a slope tha t moves

184 Atari ST

upward). The wave goes up and then down back to amplitude 0 (but
now with a negative slope) and goes down and back up to complete
the cycle.

1 ptrfod or eyelr

Figure 8-1 Waveform Components

Amplitude measures how high the wave travels above the center
line. In general, waves with greater amplitude contain a greater
amount of power. We all know that large ocean waves can certainly
do more damage than small ones! In relation to sound, the same rule
applies: loud noises have a greater amplitude than soft noises.

Frequency is another important component of the wave. It is
usually measured in cycles per second (also called hertz, abbreviated
as Hz). The frequency measures the number of cycles completed in a
given time. In the waveform shown in Figure 8-1, the wave goes
through two cycles in one second. Therefore, its frequency is two
hertz. Note the relationship between the period and the frequency,
the period is the number of seconds per cycle while the frequency is
the number of cycles per second. As the units suggest the period is
simply the inverse of the frequency and vice-versa. Thus, if the
frequency is veiy high, you know tha t there m ust be many periods
each second, which means tha t the period is veiy small. In the case
of a wave with a frequency of 1000 hertz, for example, each cycle has
a period of one 1 /1000th of a second.

How does this relate to sound on the Atari ST? The only way the
Atari can produce sound is through a speaker, which produces sound
by vibrating. The rate a t which the speaker vibrates determines the
frequency of the sound. Increased frequency corresponds to increased
pitch. For example, the note A above middle C has a frequency of 440
hertz. This is the note used by concert orchestras for tuning the

Sound Off) 185

instruments. The next octave above occurs a t double that frequency,
or 880 hertz. The computer needs some mechanism to drive the
speaker a t whatever frequency is desired.

Making the Circuit___________________________________
The electric sound circuitry in the Atari ST is based on the AY-3-8910
Programmable Sound Generator (PSG) made by the General Instru
ment Corporation. This microchip interfaces with the rest of the
computer and allows you to specify frequencies and volume in a pro
gram, and generates the output to vibrate the speaker. The PSG can
produce a different sound on three independent voices. It is capable of
producing either noise (like static) or a tone (like musical notes). You
can select any voice and any tone-noise combination you desire. You
can have any one voice producing a tone, or noise, or both. Each voice
has independent volume control, which can either be set a t a constant
level or fluctuate in a pattern.

The PSG has 16 registers numbered 0 through 15. Each register
controls a particular sound-producing attribute (see Figure 8-2).
Registers 0 and 1 control the frequency of voice A, registers 2 and 3
control the frequency for voice B, and registers 4 and 5 control the
frequency for voice C. Register 6 is the noise period. Register 7 is the
voice enable register, which selects which voices are on and the type
of output for each voice. Registers 8, 9, and 10 control the volumes
for voices A, B, and C, respectively. Registers 11, 12, and 13 control
the envelope period and type of envelope for the volume pattern.
Registers 14 and 15 are input and output ports between the PSG and
other components of the system. Since the Atari ST uses these ports
for sensitive system operations, we do not deal with them.

Setting the Voice Period Registers
The first six registers control the frequency of the output for the three
voices. Each voice requires two registers to hold the value that selects
a frequency. The actual value held in these registers is not the
frequency but rather the period of the tone. The period consists of a
12-bit value, where the four high bits numbered 8 through 11 go in
the coarse tune register for the voice, and the eight low bits go into
the Jln e tune register (see Figure 8-2). (Remember tha t b it num
bering starts a t 0 and goes from right to left) To determine the period
of a frequency, convert the frequency into a period, and then split the
period into the two register values. You know from the discussion
above tha t the period is the inverse of the frequency. That’s fine for

186 Atari ST

Register Use Bit Number
b7|b6lb5 lb4lb3lb2!b1|bo

Voice A Tone Period Fine Tune

Coarse Tune

Voice B Tone Period Fi ne T une

Coarse Tune

Voice C Tone Period Fine Tune

:;:̂s Jiililliliii Coarse Tune

Noise Period 5 - bit value

Voice Enable In/Out
IOBIOA

Noise
B

Tone
A C B A

Voice A Volume Env 4 - bit val ue

Voice B Volume Env 4 - bit val ue

10 Voice C Volume Env 4 - bit value

11
12

Envelope Period Fine Period Value

Coarse Period Value

13 Envelope Shape/Cucle Hi::::::::::
::::::::::::::::
khhh 4 - bit Cycle

14 I/O Port A Data 8 - bit data value
15 I/O Port B Data 8 - bit data value

Figure 8-2 General Instrument AY-3-8910 Registers

humans, bu t the PSG needs an adjusted period value because the
timing of the chip is driven by an electrical signal called the clock
inpu t The dock input is supplied a t a constant frequency, and the
output frequency you want heard m ust be adjusted by the frequency
of tha t dock in p u t The frequency of the dock input is 2 MHz, or 2
million cydes per second. This frequency is used to synchronize all the
components in the system. The sound chip uses 1/16 of the dock
input so that you m ust divide 2 MHz by 16.

Given a particular output frequency (f), you can determine the
period (p) for this frequency by the following equation:

p = l / f (1)

To determine the tone period (TP) used by the PSG, simply multiply
the period from equation 1 by the dock adjustm ent

TP = p * (2 MHz / 16) (2)

Sound Off! 187

By combining the two preceding equations you get a single equation
tha t given the frequency yields the tone period for the PSG tone
registers to use. This equation is as follows:

TP = 2 MHz / (16 * f) (3)

For example, if you want the PSG to produce the tone for A above
middle C, plug the frequency of 440 Hz into equation 3.

TP = 2000000 Hz / (16 * 440 Hz) = 284.09091

Because the PSG does not accept fractional values, the tone period
for a frequency of 440 Hz is 284.

At this po in t you have a value that can be represented as a 12-bit
binary number. Now you need to split this value into the coarse and
fine tune registers. From a mathematical standpoint the coarse tune
register represents increments of 256 because in the binary number
ing system bit 8 represents values of 28 or 256. Therefore, the coarse
tune register value (CT) is the tone period divided by 256 (to get
increments of 256), and the fine tune register value (FT) is the
remainder. The equation for this is:

TP = 256 CT + FT

From this equation, you can write C statements to calculate the
coarse and fine tune register values as follows:

CT = TP / 256;
FT = TP % 256;

where all variables are of an integer type. In the interest of efficiency,
the C statements to use in your programs would look like this:

CT = (TP > > 8) & OxOF;
FT = TP & OxFF.

The first statement shifts the tone period bits to the right by eight bits.
This eliminates the fine tune portion of the tone period. The bit-wise
AND (&) with OxOF ensures that only the low four bits of the coarse
tune value are used. In the second statem ent only the low eight bits
are needed; therefore, a bit-wise AND (&) with OxFF is used.

Continuing with the example above, you have a tone period of 284
to place into the coarse and fine tune registers. The value for the
coarse tune register is the integer result of 284 divided by 256, which
is 1. The fine tune register holds the remainder of this division here

188 Atari ST

equal to 28. Therefore, to get a tone of 440 Hz output by the sound
chip, the value 28 m ust be placed in the fine tune register and the
value 1 in the coarse tune register. Once you have set the tone period,
you are ready to produce the sound.

Noise Period
Register 6 determines the period of the noise. Since this register uses
only five of the eight bits available to i t there are 32 different noise
frequencies available. Note that because this register stores the period
of the wave, a higher value means a lower frequency. For the PSG on
the Atari ST, the frequency output ranges from 4 kHz to 125 kHz.

Envelope Generation
What is the envelope? An envelope can be used to control the volume
of a voice. The PSG has an envelope generator tha t does this. There
are two attributes to an envelope: shape and period. The envelope
shape control register, register 13, uses the lower 4 bits to determine
the shape of the envelope. Figure 8-3 shows the various values that
can be placed in this register and the resulting waveform.

The top of the waveform represents maximum volume and the
bottom no volume. For example, the first waveform shown in Figure
8-3 starts a t the highest volume and decreases to the lowest volume.
The time required for this single iteration of the waveform is called
the envelope period. The envelope period is set using registers 11
and 12. Register 12 is an eight-bit coarse period value for the envelope,
and register 11 is an eight-bit fine period value.

The process of determining the envelope period value is similar to
the process used for calculating the tone period. F irst you m ust
decide how long you want the envelope to last (measured in seconds).
This will be the basic period (ep). The actual envelope period (EP) used
in the registers must also be adjusted for the timing rate ju s t as the
tone period is adjusted. However, the envelope period uses a timing
adjustment value of 2 Mhz divided by 256. Therefore, the equation
for calculating the envelope period is this:

EP = (2 Mhz / 256) * ep

For example, if the envelope period is to be 1/2 of a second, the
envelope period is as follows:

EP = (2000000 cycles/sec / 256) * 0.5 sec = 3906.25

Since the coarse tune register measures increments of 256, the
value for the coarse tune register is 3906 divided by 256, which is 15.

Sound Off! 189

Values for
Envelope
Shape/Cycle

Shape * Waveform Shape Register

1 \ 0 through 3

2 /I 4 through 7

3 \N\N\N\NN\N 8

4 \ 9

5 10

6 N 11

7 AAAAAAAAAAA, 12

8
/ - - - ■

13

9 /N /N /N /N /S /' 14

10 A_........... 15

h
 Envelope Period
(duration of one cycle)

Figure 8-3 Envelope Waveform Shapes

The fine tune register is the remainder of this division, which is 66.
Therefore, to get an envelope period of 1/2 of a second, you place 15
into register 12 and 66 into register 11.

Note tha t in Figure 8-3 waveforms 1, 2, 4, 6, 8, and 10 are only
active for one period. After that the volume value is either all on or
all off. The other waves are cyclic and keep repeating a t one envelope
period cycles. The waveforms shown in the figure are the only
waveforms available based upon the bit settings in register 13. The
actual function of each bit is not important because all combinations
are shown here.

190 Atari ST

Volume Control
Registers 8, 9, and 10 control the volume levels for voices A, B, and
C, respectively. The low four bits (bits 0 through 3) control the
constant volume level for the associated voice. Because there are four
bits, there are 16 different volume levels. The value 15 is the highest
volume, and value 0 is the lowest (off). Bit 4 in these registers
activates the envelope volume control. If b it 4 is set to 1, the volume
for that voice is controlled by the current envelope settings. If bit 4
is 0, the volume is controlled by the value in the volume control
register. Therefore, to activate the envelope control, place the value 16
into the volume control register.

Sound Output
To activate the speaker, you m ust do two steps. F irst enable the voice
or voices to be ou tpu t Then set the volume for the voice or voices.
Enabling the voice output is done through register 7, aptly called the
voice enable register. This register is designed as an inverse regis
ter, which means that the b it values have the reverse interpretation
to usual. Thus, a bit set to 1 is said to be “off,” and a bit set to 0 is
said to be “on.”

Looking at Figure 8-2, you see tha t the voice enable register has
three parts: the tone enable, the noise enable, and the input/output
control. The input/output control is associated with bits 6 and 7.
These bits control data flow in to and out of registers 14 and 15. As
mentioned earlier, these registers are not used in this book. The tone
enable portion of register 7 is located in bits 0, 1, and 2. These bits
tu rn on tone output for voices A, B, and C, respectively. Bits 3, 4, and
5 are the noise enable bits for voice A, B, and C, respectively.

If the tone enable b it is set to 0 (this is an inverse register), the
tone specified in the coarse and fine tune register for that voice is
o u tpu t For example, if bit 0 is set to 0, the tone for voice A is output
a t the volume indicated in register 8. If bit 0 and bit 2 are both 0,
the tones for voice A and for voice C are output at their correspond
ing volume levels.

The noise enable bits work in the same manner. If b it 3 is 0, noise
is output on voice A at the indicated volume. The noise used for the
voice is specified in register 6. This is the only register used for noise
output. Therefore, all voices always have the same noise output a t any
given time.

Note that any channel or combination of voices can produce both
noise and a tone at the same time. For example, if you want to output
a tone a t 440 hertz, the value 28 m ust be placed in register 0 and the
value 1 in register 1. The register 8 m ust be set to a nonzero value
(15 is the loudest), and register 7 m ust have the value 62 (binary

Sound Off! 191

111110). This enables voice A to produce the tone. If you put the
value 54 (binary 110110) into register 7, noise and tone are output
on voice A

Program SOUNDEMO_________________________________

The program SOUNDEMO demonstrates the use of the PSG. This is
a menu-driven program tha t allows the user to choose from a variety
of sound effects and also allows direct access to the PSG registers so
that the user can experiment with different sounds. SOUNDEMO also
demonstrates several other features, such as the alpha mode of the
VDI, which has not yet been covered. The VDI is primarily designed
for graphics ou tpu t However, since many programs use much tex t it
would be very inefficient for the program to format text strings and
output them as graphic tex t The alpha mode of the VDI is used so
that the Atari screen can emulate a standard text-based terminal.
Alpha mode provides many of the terminal-type functions such as
cursor positioning, screen clearing to the end of the line or to the end
of the screen, line insert and delete and cursor positioning.

SOUNDEMO also shows how to access restricted portions of
memory. For the program to work properly, it must ensure that the
keydick feature is disabled. This is done by checking one of the
reserved system memoiy locations, disabling the keydick bit in that
value, and replacing the value in the memoiy location. When the
program finishes, the keydick is restored to its initial state (either on
or off). This system variable is located in a restricted portion of
memoiy and m ust be accessed with a special procedure.

Looking at m ain(), you can see the control flow of the program (see
Listing 8-1). After performing the usual initialization, the program
tu rns off the keyclick by using the set_keyclick() routine. The next
step sets the workstation to alpha mode using the v_enter_cur()
command. The program then enters a do-loop that controls the
display of the menu. F irst v_curhom e() is called to send the cursor
to the home position, which is the upper left comer of the screen.
The v_eeos() function dears from the current cursor position to the
end of the screen. The menu is then displayed. There are seven sound
effects, an option for custom sounds, and a selection tha t uses the
D osound() function. Finally, there is an exit option. A second do-loop
is entered to allow the user to make and verify a selection. If the
selection is 0 (exit selection), the program breaks out of the inner loop
and goes back to the outer loop. If the selection is not 0, the program
calls the appropriate function. If the selection is not valid, the selec
tion is set to —1 (using the default option of the C sw itch com-

192 Atari ST

Listing 8-1 Program SOUNDEMO
/a***#*##*######*#*#*#**#*##***#*#****#**#****#,*#*###*#*#*####,***#***

SOUNDEMO.C Sound testing program

This program demonstrates the uses of the sound chip.

/**#********#****«*#»**#***#****»#*#**»*#####**####
System Header Files & Constants

ttinclude
ttinclude

ttlnclude

ttinclude

<stdlo.h>

<osbind.h>
<gemdefs.h>

<obdefs.h>

** Standard 10

GEMDOS routines
GEM structures

/ * GEM write modes

ttinclude <ctype.h> s* character macros **

tide fine FALSE
ttdeflne TRUE IFRLSE

✓***»**»**#**#***«*»■»***#***»#«***************»»«*
GEM Rpplication Overhead

**/

/ * Declare global arrays for VDI.
typedef int WORD; / * WORD is 16 bits */

WORD contrl[12], VDI control array
intout[12B], intin[128], ' * VDI input arrays **

ptsin[12B], ptsout[128]; ' * VDI output arrays **

WORD screen_vhandle, virtual screen workstation * /

screen_phandle, physical screen workstation * '

screen_rez, ' * screen resolution 0,1, or 2
color_screen, flag if color monitor
x_max, max x screen coord **

y_max; max y screen coord * /

char conterm; console status byte

✓*******»#*»#*#***«**#***********#**#*****«********
Rpplication Specific Data

tt***/

** Sound register names *■'

char *reg_name[] = {
•Voice fl Fine Tune",

•Voice fl Coarse Tuna*,
‘Voice B Fine Tune1,
’Voice B Coarse Tune*,
■Voice C Fine Tune*,

Sound Off! 193

"Voice C Coarse Tune",
"Noise Period",
"Mixer Selection",
"Voice R Volume",

"Voice B Volume",
"Voice C Volume",

"Envelope Period Fine Tune",
"Envelope Period Coarse Tune",
"Envelope Shape/'Cycle" };

✓* Sound chip instructions. To urlte data into a sound register, use

* function Glaccess(dat, reg_num | 0x60) uhere dat is the data
* to urlte and reg_num is the register number. The following

* defines set the urite bit for use uith Giaccess() (i.e. RFINE
« puts data into register 0). Note: DO NOT urlte directly into
* the mixer register, use function mixer() (see text for the
* explanation.
*/

Listing 8-1 (continued)

ttdeflne RFINE 0 | 0x80
ttdBfine RCORRSE 1 | 0x80
ttdeflne BFINE 2 | 0x80

ltdefine BCORRSE 3 1 0xB0

ttdeflne CFINE 4 1 0x80
ttdef ine CCORRSE 5 I 0x80

ttdefins NOISEPER G | 0x80
ttdefine MIXER 7 | 0x80
ttdefine RVOL 8 I 0x60

ttdefine BVOL 9 I 0x80

ttdeflne CVOL 10 | 0x60
tide fine ENVFINE 11 | 0x80
ttdeflne ENVCOflRSE 12 | 0x80
ttdeflne ENVCYCLE 13 | 0x80

s* Channel output selection (in octal). Use bitwise RNO (&) to
combine channels, then use the mlxer() function. * '

ttdeflne TONER 076
ttdefine T0NE6 075

ttdeflne TONEC 073

ttdeflne NOISER 067
ttdefine NOISEB 057

tide fine NOISEC 037
ttdeflne RLLOFF 077

char sound_jdemo[] = {
/« play note fl (440 Hz) for 2 seconds
0, 28, 1, 1, 7, 62, 8, 8, 130, 100, 7, 63,

/ * play chord of fl, CIS. E for 2 seconds
0, 28, 1, 1, 2, 194, 3, 1, 4, 123, S, 1, 7, 56,

8, 6, 9, 8, 10, 8, 130, 100, 7, 63,

194 Atari ST

"Ramping" sound effect

0, 0, 1, 1, 7, G2, 0, 0, 120, 1, 129, 0, 1, 255, 7, G3, 255, 0
>:

/•a**##****************##*#*##**###*#*##******#****
GEM-related Functions

Listing 8-1 (continued)

WORD open—vuork(phys-handle)

WORD phys_handle;
/a***
Function: This function opens a virtual uorkstation.

Input: phys-handle = physical uorkstation handle
Output: Returns handle of uorkstation.
* * « * « * « » « « « * K * * » * » * * « « * X * X « » « t t « * * X « « t t » X * * X * « » * « » X K / ’

<
WORD uork—in[11],

uork_out[57],

neu_handle; s* handle of uorkstation
int i;

for (1 = 0; i < 10; i++)
uork_in[i] = 1;

uork_in[10] = 2;

neu_handle = phys-handle;

v_opnvuk(uork_in, &neu_handle,
v_c 1 ruk (neu_handle);

return(neu-handle);

>

set_screen_attr()
/a***
Function: Set global values about screen.
Input: None. Uses screen_vhandle.
Output: Sets x_max, y_max, color_screen, and screen—rez.
**/
i
WORD uo rk_jou t [57];

vc^jBxtnd(screen—vhandle, 0, uork—out);

x_/nax = uork_out[0];

y_/nax = uork_out[l];
screen—rez = Getrez(); /* 0 = lou, 1 = med, 2 = high
color^screen = (screen—rez < 2); ' * mono 2, color 0 or 1 */

}

/a*#*#*#*#**#*#***####*****#**#*###*#*******#******
Application Functions

**/

' * set for default values

/ * use raster coords *s

/* use currently open ukstation * /

uork_out);

'* clear uorkstation

Sound Of!! 195

set^conterni()
/a###*##****##*#*#*###*#***#****####*#*#****#**#***
Function: Sets Atari ST global variable location 0x484
Input: Variable conterm must be set to neu value

Output: None.
Notes: This function MUST be called using supervisor mode,

e.g., Supexec(set_jconterm)
##»«»»##«###»*»#***«»**«#*#*«*»*»«#*»«#*«*«*»»**»/
<

»(char *)0x484 = conterm;

return;

>

Listing 8-1 (continued)

get_conterm()
✓a**
Function: Gets value of Rtarl ST global variable location 0x484

Input: None.
Output: None. Sets variable conterm.
Notes: This function MUST be called using supervisor mode,

e.g., Supexec(get_conterm)
#*»»###*»#***#*»#«»**##»***«**»###**»**#»*»**»*/
<

conterm = *(char *)0x484;
return;

>

set_J<eyc lick (setting)

int setting;

Function: Provide access to key click setting.

Input: setting = TRUE to turn on
FRLSE to turn off

Output: Returns current setting of key click.
Notes: Uses functions set_ccnterm() and get^conterm()
a###*###*######**####*#########*##**#***###*******/
<
char save.jcon;

Supexec(get^conterm);

save-xon = conterm; s* Bave current settings * /

if (setting)

content) = saveucon | 1; / * key click on
else

conterm = save_con & 0xfe; key click off * '

Supexec(set_conterm);
return(save_con & 1); bit 0 is key click setting

>

196 Atari ST

uait(ms)

long ms;
/xx

Function: Provide delay for sound effects routines.
Input: ms = delay in milliseconds.
Output: None.

Notes: Because the routine is implemented in C. The delay
is only approximate. The inner loop takes 1 ms.

xx/

<
long 1;

for(; ms > 0; ms--)
for (i = 125; i > 0; i--)

return;

>

mixer(ch)

Int ch;
/ X X X X X X X X X X X X X X X X X K X X X X X X X X X X X X X X K K X X X X X X K X X X X X X X X X

Function: Sets mixer register in sound chip.
Input: ch = integer value to put in register.
Output: None. Register 7 set.
xxxxxxxxxxxxxxxxxxxxxsxxxxxxxxxx

{
register temp;

temp = Glaccess(0,7);
temp = temp | 077;
ch = ch | 0300;

Giaccess(temp & ch, MIXER);
return;

>

clear_sound()
✓xx

Function: Sets sound registers to 0.

Input: None.
Output: None. Turns off all sound generation,
xx/

<
register 1;

for(l = 0 ; i < 7; i++)
G1access(0, 1 | 0x80);

mixer(RLLOFF); handle rBg 7 separately

G i access(0, RVOL);
Giaccess(0, BVOL);
Glaccess(0, CVOL);
return;

Listing 8-1 (continued)

>

t X X X X K X X X X X K X K K X X X X /

/ * read current value

s * turn off current mixer setting *s
/ * set bits G,7 to prevent *s

s* changing of I'O bits
s * writB new setting

Sound Offl 197

enter_notes()
✓a***##**###***##*#***#*#**********#*#****#**#***#*
Function: flllous user to enter sound registers from the keyboard.

Input: None.

□utput: None,
it*##***##********#****##**##**********##**###***#*/
{
Int reg, / * input register * /

dat; register data * '

Listing 8-1 (continued)

/ * loops until neg reg entered * '

' * display registers «/

clear_sound();

for(;;)

i
v_cu rhome(screen_vhand1e);

v-jbbos (screen_vhandle);

printf('Current values:^*);

for(reg = 0; reg <= 13; reg++)
printf (*3f2d> *-30s *4o'n',

reg, reg_name[reg], (Giaccess(0, reg) & 0377));

printf(*Vi');

printf('Enter register number to changeVi');

printf('or a negative value to end: ');
scanf('*d', ®);

if (reg < 0)

<
clear_sound();

return;

>
prlntf('Enter data to store: ');
scanf('*o', &dat);

neg reg ends function

if (reg == 7)

mixer(dat);
else if (reg <= 13)

Giaccess(dat, reg
Ignore all else *s

' * get data */

s* if mixer, user mlxer()

' * else urite data
0x60);

siren()
/a##***#*#****#*###******###*****###***###****#**##
Function: Sound effect for European siren.

Input: None.
Output: None.
##«****#***###*#**#*#*»#»##»»******#****»*********✓
i

printf("ViPress any key to stop:Nn');
clear_sound();
mixer(TONEA); ' * set tone output on channel fl
Glaccess(15, flVGL); ' * set max volume on A * '

do

{

198 Atari ST

Glaccess(254, RFINE);
G i access(0, RCORRSE);
uait(350L);

Giaccess(8G, RFINE);
Giaccess(l, RCORRSE);

ualt(350L);
) while (!Cconls());

clear_scund();

Craucin();
return;

>

Listing 8-1 (continued)
s* set higher tone on fl

' * uait 350 ms */

** set louer tone on R

uait 350 ms * /

** check if any key pressed
turn off sound *<"'
capture key pressed

gunshot()
✓if***
Function: Sound effect for gunshot.

Input: None.

Output: None.

{
clearesound();
Giaccess(15, NOISEPER); /* set max noise period
mixer(NOISER & NOISEB & NOISEC); ✓* set noise on all channels * /

Giaccess(16, RVOL); ✓* set volume to be *s

Giaccess(16, BVOL); / * controlled by envelope * /

Giaccess(lG, CVOL); /* generator * /

Giaccess(16, ENVCORRSE); / * set envelope period

Giaccess(0, ENVCYCLE); / * set cycle type

return;

>
explosion()
✓a***
Function: Sound effect for explosion.
Input: None.

Output: None.
« * * * * * * « * « * * « * * « * X » * « « * * « X X * * « « X * * « X * * * * * X » X t t * f t « » X /

<
claar_sound();

Giaccess(B, NOISEPER); / * set noise period
mixer(NOISER & NOISEB & NOISEC); / * noise on all channels
Giaccess(16, RVOL); / * envelope control on
Giaccess(l£, BVOL); / * all channels
Giaccess(16, CVOL);

Giaccess(56, ENVCORRSE); ✓* envelope period
Giaccess(0, ENVCYCLE); ✓* cycle type
return;

>
laser()

Function: Sound effect for laser.
Input: None.
Output: None.
a***/

Sound Off! 199

<
register sueep;

printf(■NnPress any key to stop.^n1);
clear_sound();
mixer(TONEA); use channel A tone only «/

Giaccess(15, AVOL); set max volume **

do

i
for (sueep = 48; sueep <= 70; sweep++)
{ «'# decreasing tone sueep

61access(sueep, AFINE); on channel A

ualt(3L); 3 ms delay

>
> while (!Cconis()); check for keypress *s

Giaccess(0, AVOL); turn off sound *s

Crawcin(); / * capture key

return;

Listing 8-1 (continued)

bomb()
/X X

Function: Sound effect for bomb.
Input: None.
Output: None.
X K X X X X X X X X X X X X X X X X K X X X X X X X X K X X X X X X X K X X X X X X X X K X X X X X /

<
register sweep;

clear_sound();

mixer(TONEA); / * tone on channel A * '

Giaccess(15, AVOL); max volume *s

for (sweep = 48; sweep <= 1G0; sweep++)
{ / * decreasing tone sueep * /

Giaccess(sweep, AFINE);
wait(25L);

>
explosion(); / * end effect

return;

>

uhistle()
/ X X * X * * X X * X X * X X X X X X X * * X

Function: Sound effect for whistle.

Input: None.
Output: None.
X X X X X X X X X X X X X X X X X X X K X ^

<
register sweep;

200 Atari ST

clear_jsound();

Giaccess(l, NOISEPER); set noise period
mixer(TONEA & NOISEB); ** set channel output *✓

Glaccess(15, AVOL); /» max vol on ft

Giaccess(9, BVOL); / * lesser vol on B */

for(sweep = 64; sweep >= 32; sweep--)

{ ** increasing tone sueep
G 1access(sweep, AFINE);
wait(20L);

>
Giaccess(0, AVOL); ** stop tone sound
wait(150L); s* wait

Giaccess(15, AVQL); restart tone sound
for(sueep = 6 0 ; sweep >= 46; sweep--)

{ increasing tone sueep
Giaccess(sweep, AFINE);

wait(35L);

>
for(sweep = 4B; sueep <= 104; sweep++)

{ decreasing tone sueep **

Giaccess(sweep, AFINE);

wait(15L);

>
clear_sound(); end sound
return;

>

race_car()
/a**##*#*####******##******#*##*##******#******#*#*
Function: Sound effect for race car.

Input: None.
□utput: None.
**/
{
register sueepf, fine register sweep

sweepc; coarse register sweep **

clear_sound();

Giaccess(6, BCOARSE); set B tone value */
Giaccess(15, BFINE);

mixer(TONEA & TONEB); f* tones on A and B *s

Giaccess(15, AVOL); ' * max volume on A */
Giaccess(10, BVOL); ' * lower volume on B

for(sweepc = 10; sweepc >= 5; sweepc--)

{ increasing tone on A
G i access(sweepc, ACOARSE);
for(sweepf = 255; sweepf >= 0; sweepf--)

<
Giaccess(sueepf, AFINE);

wait(2L);

Listing 8-1 (continued)

>

Sound Offl 201

Listing 8-1 (continued)
>
for(sueepc = Q; sueepc >= 3; sweepc--)
{ / * increasing on A at higher tone

Giaccess(sweepc, RCORRSE);

for(sweepf = 255; sweepf >= 0; sweepf--)

<
Giaccess(sueepf, RFINE);
wait(4L);

>
>
for(sweepc = G; sweepc >=2 ; sweepc--)
(increasing on fl higher still

G1access(sweepc, RCORRSE);
for(sweepf = 255; sweepf >= 0; sweepf--)

<
Glaccess(sweepf, RFINE);
walt(6L);

>
>
clear_sound(); / * end sound effect
return;

Main Program

main()

<
int ap_id;
int select;

s* application inlt verify
s* menu selection

WORD gr_wchar, gr_hchar,
gr_wbox, gr_hbox;

/ * values for VDI handle

Int key_jclick; / * save key click setting

✓xx

Initialize GEM Rccess
xx/

ap_ld = appl_inlt(); / * Initialize RES routines * '

if (ap_id < 0) ' * no calls can be made to RES
< y* use GEMDOS »/

Cconws(■***> Initialization Error. <**^n*);
Cconws(‘Press any key to continuB.VT);
Crawcin();

exlt(-l); set exit value to show error

>

202 Atari ST

screen_phandle = /# Get handle for screen

graf_handle(&gr_jwchar, &gr_hchar, &gr.jwbox, &gr_hbox);

screen_vhandle = apen_vuork(screen_phandle);
set_screen_attr(); / * Get screen attributes

sxxx

Rpplicatlon Specific Routines
X /

' * turn off key click
key-click = se t_keyc llcl< (FRLSE);

Listing 8-1 (continued)

w^Bnterjcur(screen_vhandle);
do

use alpha mode

y_curhome(screen_vhandle);
v_eeos
printf
printf

printf
printf

printf

printf
printf

printf
printf
printf

printf

screen_vhandle); ■'* clear screen
■ ViVi^n^nSound Demonstration ProgramViSnNn");

■ 1> European SlrenNn*);

■ 2> GunshotVi*);
■ 3> ExploslonVi*);

’ 4> Laser^n");

■ 5> Falling Bombin');
* 6> Whlstle^n");
■ 7> Race CarVi");
" 0> Enter Your Ownin’);
" 9> Dosound() DemoNn*);
■ 0> Exit ProgramVAn*);

do

{
printf("Enter your selection: ’);

scanf(aXd*, &select);

if (select == 0)

break; / * exit loop

switch

i

(select)

case 1: siren();

break;

case 2: gunshot();

break;
case 3: exploslon();

break;
case 4: laser();

break;
case 5: bomb();

break;
case 6: uhlstle();

break;

Sound Offi 203

case 7: race_car();
break;

case 8: enter_notes();
break;

case 9: Dosound(sound-demo);
break;

default: select = -1;
break;

}
} while (select < 0);

) while (select != 0); end do loop

Program Clean-up and Exit
If**###*********#*###***#*####*************#####****/

Listing 8-1 (continued)

s* Wait for keyboard before exiting program * /

set_keyc11ck(key_c11ck);

v_jBxit_cur(screen_vhandle);
v_clsvwk(screen_v/handle);
appl_exit();

restore key click */

s* exit alpha mode
close workstation */

s* end program

mand) and the loop is repeated requesting another selection. When
the sound functions return, the inner loop is exited and the outer
loop displays the menu again. When the exit selection is requested,
the outer loop exits, the keydick state is restored, and v_exit_cur()
is called to exit the alpha text mode of the workstation. Then the
workstation is closed and the program is finished.

Protected Memory Access
In the application functions section of the program, look at the
se t-k ey d ick () routine. Its one parameter determines whether the
keyclick is turned on or off. If the parameter is TRUE, the keyclick is
turned on. If it is FALSE, the keyclick is turned off. The set_keyclick()
function returns the setting of the keyclick before it is changed. The
first statement in set_keyclick() is a function that provides the
special access mentioned above. This is needed because the current
setting of the keyclick is located in a protected section of memory. A
standard program does not have access to this location in memory
so an error would occur if the program tried to read i t To gain access
to this memory, the program needs to set the microprocessor into
what is called supervisor mode. This allows the program to access
virtually any location in memory. The Supexec() function is one of
two functions tha t can be used to pu t the processor into supervisor

204 Atari ST

mode. Supexec() is an extended BIOS function that places the proces
sor into tha t mode and executes the code starting a t the address
specified by its parameter. In set_keydick(), the parameter is the
address of the function get_conterm (). When Supexec() is called, the
processor is set to supervisor mode and get_conterm () is executed.
When get_conterm () is done, the processor Is reset to user mode and
set_keyclick() continues. Another function can be used to set the
processor to supervisor mode called Super(). This is a GEMDOS
function tha t also has one parameter: the address for the stack
location. Once Super() is called, the processor stays in supervisor
mode until another call to Super() is made. The difference between
the two functions is that Supexec() does not allow BIOS or GEMDOS
calls. It is simply a quick means to allow access to protected locations
without worrying about stacks and modes.

Function get_conterm () simply reads memoiy location hexadecimal
0x484 into the global variable conterm. Location 0x484 contains the
console settings. Appendix D shows a set of addresses tha t are “cast
in stone” in the memoiy. Specified by the Atari ST designers these
locations are guaranteed not to change through future revisions to
the ST. Your programs can obtain and change the information
regarding the ST itself by reading and writing to these locations in
supervisor mode. Many of these values are better left unchanged,
however.

In set_keyclick(), once the current console settings are retrieved,
the keyclick setting is saved in the variable save.con. If the requested
new setting is TRUE, the program wants the keyclick setting turned
on. The previous console settings are bit-wise ORed with the value 1
because bit 0 contains the keyclick setting. By using the bit-wise OR
with the value 1, b it 0 is set to 1 regardless of its previous value. On
the other hand, if the keyclick is to be turned off, the current value
in save_con is bit-wise ANDed with hexadecimal FE. This sets b it 0
to 0 and leaves all other bits unchanged. After the new console setting
has been determined, Supexec() is called again to set the new setting.
Function set_conterm () stores the value in variable conterm a t the
appropriate location. When set-con term () is finished, control returns
to set_keyclick(), which returns the previous setting of the keyclick.

The reason the keyclick must be turned off for this program is that
the keyclick feature also uses the sound chip to produce the clicking
sounds. This would interfere with the use of the chip by the program.

Now look a t function w ait(). This function simply provides a delay
when it is called. The loop in the function provides an approximate
one millisecond (1/1000 second) delay. The parameter determines the
approximate number of milliseconds. Wait() is used in several loca
tions to produce some of the sound effects.

Sound Off! 205

PSG Access

Access to the sound chip is provided through the XBIOS function
G iaccess(), which has two parameters. The first is the value to be put
in the register, the second is the register to use. If the register
parameter has a value between 0 and 15, G iaccess() performs a read
of tha t register and returns the current value. If the register number
is bit-wise ORed with the value 0x80 hexadecimal (that is, has its
high bit set), G iaccess() writes the value of the first parameter into
the register. In the application-specific data section of SOUNDEMO,
there is a set of defined constants tha t list the 14 registers to be used
(AFINE, ACOARSE, BFINE, BCOARSE, and so on). These constants
specify the writing mode for function G iaccessO and are used to
provide more readable code.

The next set of defined constants, TONEA, TONEB, TONEC, NOISEA,
NOISEB, NOISEC, and ALLOFF, are the bit setting for register 7, the
voice enable register. Note tha t these constants are octal values. Use
the bit-wise AND to create any combination of tone and noise on any
of the voices. For example, if you want tone on voice A and noise on
voice C, use the value TONEA & NOISEC. Remember that register 7
is an inverse register so the bit-wise AND is used instead of the
bit-wise OR

Register 7 controls the mix of sounds produced by the sound chip.
This register also controls the input and output through registers 14
and 15. When setting the bits in the voice enable register, also called
the mixer register, you do not want to alter the settings of bits 6 and
7. Therefore, when changing the voice enable bits, you m ust first read
the current setting in register 7, change the voice enable bits while
retaining the settings for bits 6 and 7, and place the new value into
register 7. If you do not do this, you may alter the data flow through
the PSG and cause the system to stop working.

To facilitate the protection of bits 6 and 7 in the mixer register,
function m ixer() is provided in SOUNDEMO. This function has one
parameter, which is the voice selection value to be placed in the mixer
register. Function m ixer() first reads the current value in register 7
into variable temp. All voices are turned off by setting the low six bits
to 1 through the bit-wise OR with octal value 077. Next the parameter
ch has its high bits set to 1. Then the variables temp and ch are
bit-wise ANDed together. Variable temp holds the current bit settings
for the I/O ports and ch holds the bit settings for the voice mix. When
ANDed together, the result is a single value with the proper I/O port
and mixer b it settings. For example, tem p is set to the binary value
ab l 11111, where a and b are the bit settings for bits 6 and 7. The
variable ch is set to the binary value lluvwxyz, where the letters

206 Atari ST

stand for the voice mix bit settings. When ANDed together, you get

a b l l l l l l
& lluvwxyz

abuvwxyz

so that the port settings are not changed and the mixer settings are
set to their new values.

The next function in SOUNDEMO, clear_sound(), simply clears the
sound registers so that all sound generation is stopped. The function
goes through registers 0 through 6 and sets them to 0. It sets the
mixer register to ALLOFF. The volume for each channel is then set to
0. Technically, to tu rn off a channel, its volume m ust be set to 0.
According to the PSG documentation, simply disabling the voice
using the mixer register does not actually tu rn that channel off.
Although no sound may be coming o u t the channel is still active and
the PSG is still processing i t

Using the PSG
Function enter_notes() corresponds to selection number 8 on the
menu, entitled “Enter Your Own.” This function clears the screen and
displays the current values for registers 0 through 13. The user is
then allowed to enter a register number and a value to place in that
register. If a negative register number is requested, the function exits.

The first step in enter_notes() is to dear the sound registers using
the dear_sound() function. Next an infinite loop is entered, which
has the same purpose as the outer control loop in function m ain().
Within this loop, the function dears the screen, displays the current
values, and requests a register number. If the register number is
negative, the sound registers are cleared again and the function
returns to the calling procedure. If the register number is not negative,
data is requested. Once the data is entered, the function checks if the
register number requested is register 7. If so, function m ixer() is used
to store the data. Otherwise, G iaccess() is used to store the new value.
If a register number greater than 13 is entered, the data is ignored.
The infinite loop keeps repeating this procedure until a negative
register number is entered. The current sound register values are
listed in octal because octal is easier to use in this case, particularly
for register 7. The scanft) function requests the register number as
a decimal value and the data as an octal value.

Sound Off! 207

The Sound Stage

The next set of functions is the sound effect functions listed in the
menu. The first function is function siren (). This function emulates
the European emergency vehicle siren, which is a high tone followed
by a low tone. This sequence repeats over and over. The first step for
s iren () is to d ear the sound registers using clear_sound(). Only one
voice, voice A, will be used for this effect so tha t the mixer is set to
output a tone on voice A and the voice is set for maximum volume.
A do-loop is used to produce the repeating sequence of tones. First
the tone period of the higher note is set and the function waits for
350 milliseconds (about 1/3 of a second). While the program is wait
ing, the sound chip is producing the specified sound. After the waiting
period, the lower tone is set and another 350-millisecond wait occurs.
The loop then repeats until a key is pressed. When a key is pressed,
the sound chip is cleared and the value of the key press is captured
using the CrawdnO call. The function then returns to the calling
procedure. It is important to capture the key press; otherwise it
remains in the keyboard buffer and appears on the selection line
for the main menu.

Since the PSG is constantly processing the current register set
tings, the sound chip works independently of your program. Once the
sound registers have been set, tha t sound is continually produced
until the sound register is changed or the volume for the voices is
turned off. For example, in siren () the tone continues for 350 mil
liseconds while the program is in the w ait() function. The tone
changes by resetting the tone period values. All other registers are
unaffected. In the case of an envelope setting, as soon as a new
envelope shape is selected that envelope begins to cycle. You may
change tone periods, noise periods, volumes, envelope periods, and
envelope shapes a t any time. Any change you make affects only that
register. This relieves your program of having to reset the sound
registers for each new sound you want to create.

Function gunahotO provides a reasonable facsimile of a gunshot
sound effect This function utilizes the envelope available on the
sound chip. F irst gtm shot() uses clear_sound() to clear the sound
chip. Then the noise period is set to 15 and the mixer is set to output
noise on all three voices. To allow the envelope shape to control the
volume, the volume registers for the three voices are set to the value
16. Next the envelope coarse period value is set and the envelope
shape is chosen. As soon as the envelope shape is chosen, the PSG
begins cycling through the envelope (in this case there is only one
cycle). Thus a gunshot effect is heard.

There are two reasons why all voices are used to output noise for

208 Atari ST

the gunshot. First, the more voices used, the louder the sound
becomes. Second, the noise is generated by very short random tones.
If you separate the noise from each voice, the noise from each voice
may sound alike bu t it is not exactly the same. This gives the gunshot
its piercing texture.

Function explosion() is very similar to gunshot(). The noise has a
period of 8 instead of 15, which means that the frequency is higher.
The coarse envelope period for exp losion() is longer, so the sound is
of longer duration.

Function laser() uses a sweep effect. This is a constantly increasing
or decreasing tone, which causes a continuous changing, or “sweep
ing," effect Function la ser() uses voice A a t its maximum volume. The
fine tune register for tha t voice A is swept from a value of 48 to a
value of 70 with a three-millisecond delay between each change. This
gives quick bursts of decreasing tone chirps. Laser continues until a
key is pressed. The function ends by turning off voice A.

Function bom b() uses a combination of sound effects. First is a
long sweep of a decreasing-frequency sound (the whistling sound of
a falling bomb) that ends with the sound of an explosion created by
function explosion().

The w histle() function produces the “wolf’ whistle that a macho
man makes toward a pretty female. Function w histle() uses a com
bination of tone and noise since a real whistle has a slight rushing
air sound. The tone on channel A is set to the maximum volume. The
noise on channel B is set a t a lower volume. Then the function goes
through two increasing-frequency tone sweeps and then a decreasing-
frequency tone sweep.

The race_car() function emulates the sound of a race car that is
accelerating and shifting gears. It uses two different tones on two
different channels, A and B. Channel B contains the low, grumbling
sound and channel A contains the increasing-frequency sound. Chan
nel A has a higher volume than channel B. The function goes through
three different sweeps representing the three different gears. Each
loop starts channel A at a higher frequency than the previous loop.

The D osound() Function
The last function to be discussed is an XBIOS function called
D osound(). It is called in case 9 of the switch statem ent Function
D osound() provides and processes a sequence of sound operations
tha t run concurrently with your program. Thus, while D osound() is
generating a sequence of sounds, your program can do something
else.

The parameter for D osoim d() is a pointer to a sequence of bytes
that represent the settings of the PSG registers and time delays to be

Sound Off! 209

executed between each byte in the lis t Under the application-specific
data in the program the last variable declared is the character array
sound-dem o. Function D osound() uses pairs of bytes to set the
registers of the PSG. The first byte is a command and the second a
data value (see Table 8-1). Command numbers from 0 through 15 are
register commands. These take the next value in the list as the data
to be stored in tha t register. For example, the first two elements in
the sound-dem o array are 0 and 28. This places the value 28 into
register 0. The next two values, 1 and 62, indicate that the value 62
is to be placed in register 1. Then the value 62 is placed in register
7 and the value 8 into register 8. As calculated earlier, the value 28
in the fine register and 1 in the coarse register corresponds to a tone
at 440 Hz. Placing 62 into register 7 turns on tone generation for
voice A, and placing 8 into register 8 turns the volume on half way.

Table 8-1: Dosound() Process Commands

Command Number Function

0 through 15 Place next byte into register.
128 Place next byte into temporary register.
129 Use next 3 bytes for sweep effect

Byte 1: register to use.
Byte 2: increment value.
Byte 3: termination value.
Take value in temporary register and put it into

register specified.
Increment register by increment value until it equals

the termination value.
130 through 254 Use next byte for timing delay measured in 1/50

second.
255 If next byte is 0, terminate the Dosound() process.

Otherwise, use value for timing delay.

Commands 130 through 255 take the next value in the list as the
argument and use this value as a wait period before moving to the
next command. The value specifies the number of cycles to wait based
upon a 50-Hz clock rate. Therefore, an argument of 50 causes a delay
of one second, an argument of 25 causes a delay of 1/2 second, and
so on. Commands 128 and 129 are used together to produce a sweep
effect. Command 128 takes the next value in the list and places it in
a temporary register, the documentation does not state where this
register is located. Command 129 uses the next three values as
arguments to the function. The first argument is the register number
to use, the second argument is used as the increment value, and the

210 Atari ST

third argument is the termination value. Command 129 takes the
value in the temporary register (set by command 128) and places it
into the register specified by the first argum ent This register is
incremented by the increment value of the second argum ent The
sweep stops when the register value equals the termination value of
the third aigum ent

The contents of the sound-dem o array play the following sequence
of sounds: first the note A is played for two seconds, then a chord is
played for two seconds, and a sweep is produced. Toward the end of
the first line in the sound-dem o array, command 130 is followed by
100. This causes the note A (440 Hz) to be played for two seconds. The
last command on the first line, 7 with a data value of 63, turns the
sound off. The channel is not turned off, ju s t the sound ou tpu t The
next set of commands plays a chord. Note A is stored in the voice A
tone period registers, the note C-sharp is stored into the voice B tone
period registers, and note E is stored into the tone period registers
for voice C. The value 56 is placed into register 7, which turns on
tone output for all three voices. The value 8 is used as the volume for
each voice and is placed into registers 8, 9, and 10. The command
130 is again followed by the value 100 to create a two second sound.
Then sound generation is turned off.

The last section produces the sweeping, or “ramping,” effect to
demonstrate commands 128 and 129. First a 0 is put into register 0
and 1 is pu t into register 1. Then voice A is enabled, and the volume
is s e t Command 128 places the value 1 into the temporary register.
Command 129 has three arguments: 0, 1, and 255. When command
129 begins, the value 1 (from the temporary register) is placed into
register 0. This register is incremented from 1 to 255. At this po in t
D osound() continues with the next instruction in the lis t The next
command, 7 with the data 63, disables the voices. The last command,
255 0, is the termination command to tell D osound() tha t no more
commands are to be processed. This causes the sound output to stop
and the end of the D osound() function.

When you run the SOUNDEMO program, you may notice that when
you execute the falling bomb, whistle, and race car sounds, the
program control does not return to the menu until the sound effect
has been completed. With the Dosound() demo, Dosound() plays its
note, chord, and the sweeping effect bu t the menu is redisplayed while
these sounds are being ou tpu t Thus, with the Dosoimd() function,
you can have your program playing a song while it is calculating or
displaying something on the screen. The Dosound() function is effec
tive only if you want to play a sequence of tones and noises. For any
type of sound effect especially an effect that requires control over the
sweep time, you m ust write a function for the sound effect that uses
the Giaccess() function.

Sound Off! 211

Play around with SOUNDEMO by entering your own values into the
sound chip. You should also tiy to make your own sound effects. It
can be fun!

The other special option tha t might be of general interest to you is
MIDI capability. MIDI stands for Musical Instrument Digital Interface.
The use of this port requires an understanding of the MIDI protocol
and hardware interfacing. Because of the length of this topic, it is not
covered here. However, if you are interested in communicating with
MIDI, you should obtain the MIDI specifications document Check
with your local music store about this.

The remainder of this book discusses the use of the AES. The AES
provides your program with access to menus, windows, the mouse,
and dialog boxes.

C H A P T E R N I N E

Application
Environment
Services: The AES

Until now this book has covered one of the major components of GEM
called the Virtual Device Interface (VDI). The VDI is a device-indepen
dent method for producing graphic output from a program to any
device. In this chapter, another important section of GEM is intro
duced—the Application Environment Services (AES). You can see how
the AES works, what it contains, and how it is used.

Introduction to the AES
By now, you should have encountered many of the features provided
by GEM such as windows, icons, and dialog boxes. The AES is the
portion of GEM that allows your program, the application, to interact
with the Graphics Environment Manager (GEM). The AES is designed
to handle all user interaction with the desktop and desktop objects
in selecting an item, resizing or moving a window, moving the sliders
of a window, or choosing a new window. All these operations are
handled by the AES, and the result of these user actions is reported
to the current application program.

AES Components
In Chapter 1, you saw that the AES consists of five main pieces: the
menu/alert buffer, desk accessory buffer, the shell, the limited multi
tasking kernel and dispatcher, and subroutine libraries. The
menu/alert buffer is simply an area in memory that the AES uses

Application Environment Services: The AES 213

when handling menus and alert boxes. When a menu or alert box is
placed on the screen, it may cover some object on the screen. To keep
the screen neat and tidy, the image under the m enu or alert box must
be replaced when the user has finished with the menu or alert box.
This gives the illusion that the desktop is a three-dimensional sur
face. However, since the screen is a two-dimensional b it map, once
the menu or alert box is written on this b it map the previous contents
are lo s t Therefore, to m aintain the illusion, the AES saves the portion
of the screen tha t is covered in the menu/alert buffer. Then when the
menu or alert box is no longer needed, the content of the buffer is
copied back to the screen bit map, which restores the original image.
Since the size of this buffer is one-fourth the size of the screen
memoiy alert boxes and menus may not be bigger than this.

The desk accessoiy buffer is a portion of memoiy that contains the
accessory programs listed under the DESK menu. When the system
is booted (turned on or reset), any flies on the disk with a file type
of “.ACC” are considered to be desk accessories. These files are loaded
into the desk accessoiy buffer and can be accessed through the Desk
menu.

The shell is the segment of the AES that handles the execution and
termination of application programs. Any time a program is initiated,
the shell takes care of the system initialization to start running the
program. When the program is finished, the shell handles any clean
up and termination procedures.

The limited multitasking kernel and dispatcher consists of three
different parts: the desk accessories, the screen manager, and the
dispatcher. M ultitasking simply means that the system can run more
than one task a t a time. GEM is a multitasking system. The dis
patcher divides the CPU time among the currently executing tasks:
the application, the desk accessories, and the screen manager. The
dispatcher ensures that no one task hogs the central processor and
tha t all tasks are able to be processed. The screen manager handles
user Interaction with the desktop. Desktop areas include the border
portion of an active window, menu selection, and any portion of the
desktop not inside the current active window (such as icons or
selecting another window). After such an interaction is completed, the
screen manager informs the currently running application of the
result of the user actions. The currently running application is the
application tha t owns the currently active window (the topmost win
dow). The last part of the kernel is the desk accessories. A desk
accessoiy is an application that supplies some handy function for the
user and usually performs ju s t one function. Accessories generally
don’t use the menu bar and require only a small portion of the screen,
while full applications use the entire screen. The control panel is an
example of a desk accessoiy. GEM loads up to six accessories when

214 Atari ST

it is booted. The dispatcher allows only three accessories to be active
(running) a t any one time. The actual number of desk accessories
loaded into your system depends on the am ount of memoiy you have
and the size of the accessories themselves.

AES Definitions
One of the great benefits of using GEM is that it provides a standard
interface for all programs. Users can quickly learn a new program
because most of the operational functions such as selecting menus,
moving the cursor with the mouse, and using windows are the same for
all programs. Programmers don’t have to worry about interfacing with
the user because this is done by GEM. To fully utilize the GEM user
interface, you need to understand the terminology and concepts used
in the rest of this book. The section below provides you with the
definitions you need.

Menus
At the top of the screen, there is a line of tex t called the m enu bar
which provides the user with a set of operations the program can
perform. For example, the desktop has a menu bar tha t lists the items
Desk, File, View, and Options. These names are called m enu titles.
Each title refers to a set of menu selections that perform a particular
function. Under the Desk title, the first item is an information func
tion tha t provides information to the user about the program cur
rently running. The second item is a dashed line. The remaining
items are the desk accessories available to the user. The File menu
provides the user with file activities such as creating, opening, saving,
and possibly deleting files on the disk. The File menu also contains
the Quit option so the user can exit the program. The format for the
Desk and File menus should always follow the format listed here. This
enables the user to find these basic options. Do not worry about the
names of the desk accessories to include in the Desk menu. GEM
handles this aspect of the menu when your program is executed. Any
other menu titles on the menu bar are application-dependent You
may create as many menus as can fit across the screen. Ju st make
sure that the titles accurately describe the functions contained in the
menu.

The entries in the menu are called m enu items. Menu items have
a particular format that you should follow. The menu item is a brief
one- or two-word command indicating the function to be performed.
Optionally, there may be a character to the left of the menu item
description, which represents the key on the keyboard that performs
the same function. Usually this refers to a control code where the user

Application Environment Services: The AES 215

presses the Control key and a letter key a t the same time. For example,
your program might have a Q next to the Quit menu item, meaning
tha t the user can press Control-Q to exit the program instead of using
the mouse to select the Quit option.

Menu items can have a number of attributes. When a menu item
is shown in its normal state, it is said to be enabled. When it is
displayed at only half intensity, it is disabled. The AES does not allow
you to select a disabled item. A menu item may be checked. When an
item is checked, there is a check mark in the leftmost character
position next to that item. A checked item usually indicates an active
toggle. For instance, a text editor might use a checked item for text
justification. When justification is on, the check mark is displayed.
When it is off, the check is not displayed. If this item is selected, the
check mark toggles to its opposite state, that is, if it is on, it goes off
and vice-versa.

Boxes
GEM uses three types of boxes: an error box, a dialog box, and an
alert box. An error box is used by a program when a system error has
occurred and the program can’t perform its operation. The error box
has a predefined format that says an error has occurred and provides
the number of the error.

A dialog box is a rectangular box on the screen that requests
information from the user. The information requested can be a file
name or a complex data entry screen as might be used in an inventory
program. The actual contents of a dialog box is determined by the
programmer. An example of a dialog box occurs in the Options menu
of the desktop. The Set Preferences selection causes a dialog box to
be displayed so that the desktop options may be se t

An alert box is a special form of dialog box. It advises the user of
some pertinent condition and allows the user to verify a particular
operation. For example, if you are editing a program and try to read
in a file that is too large for the editor to handle, an alert box appears
to indicate the problem. The box may have options to choose to
alleviate the problem.

Windows
A w indow is something that m ust be very familiar by now. It is an
area of the desktop tha t provides communication between the ap
plication and the user. The window consists of several components.
These are the title bar, the information line, close box, full box, move
bar, size box, up arrow, down arrow, left arrow, right arrow, vertical
scroll bar and vertical slider, horizontal scroll bar and horizontal

216 Atari ST

slider, and the work area. When you are a t the desktop, the directories
for your disks are held in windows. You can look a t these for examples
of the window components. The title bar is the area of the window
that holds the directory currently being shown. This will usually be
something like “A.*\” or “A:\” followed by a subdirectory name. The
information line is the area of the window that shows the number of
bytes used and the number of items displayed in that directory. Both
the title bar and the information line can hold up to 80 text charac
ters. The close box is located a t the left end of the title bar and
contains the small black box with the white X on it. When the user
clicks the mouse inside the close box the AES tells the application
tha t the user has requested tha t the window be closed. The full box
is a t the right side of the title bar. It has a white diamond on a black
background. When the window is a t its “normal” size and the full box
is clicked, the window expands to its maximum size as specified by
the application. If the full box is clicked again the window returns to
its original size. The move bar occupies the same area as the title bar.
When the user presses and holds the mouse button on the move bar,
the AES provides a half-intensity outline of the window and allows
the user to drag this outline to any location on the screen. When the
button is released, the AES tells the application of the new requested
window location. The size box is located in the lower right comer of
the window and has a white slash on a black square. When the mouse
button is pressed on the size box, the AES displays a half-intensity
outline of the window and allows the user to change the size and
shape of the window by dragging the outline. When the button is
released, the AES indicates to the application the new requested size
of the window.

The up arrow and down arrow are located on the right border of
the window and are indicated by corresponding up and down arrow
figures. When either arrow is clicked, the AES informs the application
of this event The application redraws the window as appropriate. For
example, consider the desktop display of your directories in the text
mode (set in the View menu). When you press the up arrow, the listing
moves up by one line. The down arrow moves the listing down one
line. In the icon mode, the up and down arrows move the icons up
and down one row of icons. Since one row of icons is taller than one
row of tex t the application m ust consider what is being displayed.
The left and right arrows work analogously and move the window to
the left and right over the contents. The vertical scroll bar and slider
are in the area located between the up and down arrows. The slider
represents the relative location in the entire file of the contents
currently shown in the window and the relative size of the window
to the total size of the data. For instance, if the slider is at the bottom
of the scroll bar, the information in the window is the very end of the

Application Environment Services: The AES 217

data. If the size of the slider is two-thirds of the total length of the
scroll bar, two-thirds of the total am ount of data is being displayed
in the window. When the user clicks the colored area of the scroll bar,
the window moves one page either up or down depending on whether
the user clicks the area above or below the slider, respectively. When
the user presses the mouse button while located on the slider itself,
the user can drag the slider anywhere within the scroll bar. When the
button is released, the appropriate section data is displayed. The
horizontal scroll bar and slider work in the same way as the vertical
scroll bar and slider.

The work area is the area of the window where the data is displayed.
It is essentially the part of the window not covered by any of the
components listed above. The work area is the only required portion
of the window. All other components are optional When a window is
created, the application tells the AES what components are to be
included in the window. Whenever the AES draws the window, it
draws only those components tha t have been included in the window.

M essages and Events

All user interactions with the border components of the window are
handled by the AES. When the user interaction is complete, the AES
reports the results to the application using a mechanism called a
m essage pipe. A message pipe is simply a means for communication
between one program and another. For example, when the user
requests a window closed by clicking the close box, the screen
manager sends an appropriate message to the application owning
that window. When a message is sent to an application, it is called
an even t An event controls the flow of the application programs.
There are keyboard events, mouse events, mouse button events, mes
sage events, and timer events. Any one of these can occur a t any time.
As you can see, the application essentially ju s t sits around, waits for
one of these events to occur, and then acts upon it. For example, an
application such as the desktop waits for an event. When it receives
the message that the window is to be closed, the screen manager
sends a message to the desktop. The desktop receives the event
determines what type of event it is, gets the data regarding the event
and performs the appropriate action—namely, closing the window.

Libraries
The AES provides routines to handle all the objects described above:
menus, dialog boxes, alert boxes, windows, events, and so on. These
routines are held in libraries that are included as part of the AES
in memoiy. They are accessible to all applications. Since each applica

218 Atari ST

tion does not need its own copy of these routines, memory is con
served and the applications require less space on the disk.

The routines are divided into library groups such as an event
library, an application library, a menu library, an object library, a form
library, a graphics library, and a scrap library. Other libraries are file
selector, window, resource, and shell. The remainder of this book
looks a t how these routines are used within an application.

Program Resources

Files with a file type of “.PRG” are program files. This is how GEM
knows that this file can be executed. You may have noticed files with
a file type of “.RSC” that have the same file name as a program file.
This companion file is called a resource file . A resource file contains
such items as the program’s menu, dialog and alert boxes, icons, and
any other graphic images that the program uses. Each item in a
resource file is called an object The term object is used quite loosely
in the GEM documentation. The word object is a vague reference to
anything from a simple string of text to an inventory entry form. For
example, the menu title Desk, the menu title File, the Quit option
under the File menu, and the icons on the desktop are objects and
can be held in the resource file. The resource file holds these objects
in an organized fashion to make them accessible to your application
program.

Object Trees
The objects are organized in what is called a tree data structure. A
tree consists of one object linked to several other objects, called the
children. Any child may have children of its own, and the children’s
children can have children. The basic premise of the tree is that any
item in the tree can have 0 or more children and 0 or 1 paren t This
is the structure of the tree used in the resource file. Other tree
structures exist but do not concern us here.

Figure 9-1 shows a tree for the basic menu used in a program.
Notice that only one object has no paren t This object “Main Menu,”
is called the root The root is used as the starting point for the
entire tree. In the figure, the root has two children, “Desk” and “File,”
which are titles in the menu bar. Object File has one child, the option
“Q uit” Object Desk has eight children: six desk accessories, a place for
your information message, and a disable dashed line. All boxes shown
in the figure are considered to be individual objects. In this tree, the
objects are ju s t text. In general, any mix of object types may be in
cluded in a single tree.

Application Environment Services: The AES 219

jMAINMENLM

[Desk Accessory 21 [Desk Accessory 3|

Figure 9-1 Sample Menu Object Tree

Figure 9-2 shows an example of a more complex resource tree. At
the desktop, the Options menu has a Set Preferences item. When this
item is selected, a dialog box appears. The resource tree of Figure 9-2
shows the tree associated with this dialog box. The root of the tree is
the Set Preferences dialog box itself. In other words, the root object
contains information that informs the AES tha t the tree is to draw a
dialog box. Each of the text lines, “SET PREFERENCES,” “Confirm
Deletes:,” "Confirm Copies:,” and “Set Screen Resolution” are text
objects. The “OK” and "Cancel” objects are exit buttons. You can press
these buttons by placing the mouse over either one and pressing the
mouse button. They are called exit buttons because when you press
either one, you signal tha t you want to exit the dialog box and
continue with the program. The OK and Cancel buttons are children
of the dialog box.

Three invisible boxes are children of the dialog box. The resource
tree can hold many different types of objects. Invisible box 1 is the
parent to the top yes/no button combination (see the dialog box on
your desktop), invisible box 2 is the parent to the bottom yes/no
button combination, and the third invisible box surrounds the

1SET PRE

iConf

[Invisible Box 2J |Set Screen Resolution:!

Figure 9-2 Set Preferences Dialog Box Object Tree

220 Atari ST

low/medium/high button selections. Each button in these sets of
buttons is called a radio button. Much like the mechanical buttons
on a car radio, only one button from each set may be selected a t a
time. For example, the screen resolution may be set only to low,
medium, or high. You could not have a low-medium resolution s e t
ju s t as you could not have yes and no confirmation of file deletions.
When you press one button, the AES automatically deselects any
other button. The AES knows which buttons belong to the same set
because radio buttons of the same set have the same paren t Hence
the need for the invisible boxes; each set of radio buttons has its own
paren t

Object Structures
The OBJECT Structure
Figures 9-1 and 9-2 show the logical arrangement of a tree. This is
how a hum an would visualize the tree. In a program, the tree’s layout
and information about each object must be represented in memoiy.
In GEM this is done through the use of several C structures. Each
entry in the tree is called an object and is represented by a structure
called OBJECT (see Figure 9-3).

typedef struct object {

WORD ob_next;

WORD ob_head;

WORD ob_tail;

WORD ob_type;

WORD ob_flags;

WORD ob_state;

CHAR *ob_spec;

WORD ob_x;

WORD ob_y;

WORD ob-uidth;

WORD ob_height;

} OBJECT;

Figure 9-3 The OBJECT Structure

To represent the tree in memoiy, all the objects are placed in an
array. The OBJECT structure field ob-next holds the index of the
object’s next sibling. Therefore, the obunext field of the SET PREF
ERENCES object in Figure 9-2 has the array index for the Confirm
Deletes: object The field ob-head has the index to the object’s first
child. Thus, the ob-head field of the Set Screen Resolution: object has
the index for the Low radio button object The ob-tail field for the Set

Application Environment Services: The AES 221

Screen Resolution: object has the array index for the High radio
button object which is the last child of the paren t Therefore, one
array is used to hold all the objects for a particular tree. By retrieving
the array index for the children or siblings, your program can traverse
through all objects in the tree.

The field oh_x, ob_y, ob-width, and oh-hright determine the place
ment and size of the object on the screen. All values are measured in
pixels. The x and y coordinates are relative to the object’s parents. If
the object is the root the coordinates are screen coordinates. For
example, if the root object of the dialog box has x and y coordinates of
(200, 100), the upper left comer of the dialog box is placed a t screen
coordinates of (200, 100). Now assume that the SET PREFERENCES
object has x and y coordinates of (20, 20). The string “SET PREFER
ENCES” is placed 20 pixels to the right and 20 pixels down from the
upper left comer of the dialog box. This corresponds to screen co
ordinates of (220,120). This allows you to move the root object to any
point on the screen and have all its contents move accordingly.

The ob-state field contains the current state of the object The state
of the object determines how the object is drawn and what functions
it can perform depending upon what the object represents. The states
are shown in Table 9-1 as they are defined in header file obde&JL

Table 9-1: Object
State Definitions

Constant Name Value

NORMAL 0X00
SELECTED 0X01
CROSSED 0X02
CHECKED 0X04
DISABLED 0X08
OUTLINED 0X10
SHADOWED 0X20

The NORMAL state indicates that the object is drawn using the
normal foreground and background colors. The SELECTED state
indicates that the object is drawn with the foreground and background
colors reversed. CROSSED tells the AES that an “X” is to be drawn
over the entire object as if it were crossed o u t CHECKED says that a
check mark is drawn at the leftmost edge (usually used for text-based
objects). An object is DISABLED means that the object is drawn in a
half-intensity mode. OUTLINED specified tha t an outline is to appear
around a boxed object (only for objects in boxes). SHADOWED indi

222 Atari ST

cates that the object (again usually a box) Is drawn with a dropped
shadow, meaning that the right and bottom edges are slightly thicker.

As you can see in Table 9-1, each object state indicates a particular
b it setting. Therefore, various states can be combined such as
CHECKED and SELECTED. NORMAL is when all bits are 0 or no
states are active. Of course, some combinations such as SELECTED
and DISABLED do not make sense and should not be set together. A
bit is considered set when that particular bit has a value of 1.

The ob_flag field of the OBJECT structure is similar to the ob_state
field. The various flags indicate the particular attribute(s) set for the
object Table 9-2 lists the object flag definitions.

Table 9-2: Object Flags

Constant Name Value

NONE 0X000
SELECTABLE 0X001
DEFAULT 0X002
EXIT 0X004
EDITABLE 0X008
RBUTTON 0X010
LASTOB 0X020
TOUCHEXIT 0X040
HIDETREE 0X080
INDIRECT 0X100

The NONE flag indicates that there are special attributes for this
object. SELECTABLE says that the object may be selected, usually
indicating some kind of button or a box. DEFAULT is a flag for the
Form library. Usually in the case of a dialog box, the DEFAULT flag
is attached to one of the exit buttons. When the user enters a carriage
return, this object is automatically selected as the exit object Only
one DEFAULT object is available in any one dialog box. The EXIT flag
indicates to the Form library tha t when the user clicks the mouse on
this object the exit condition has been achieved and the Form library
exits the dialog box. EDITABLE means tha t the user can edit the
object in some way as specified within the application. RBUTTON
specifies that the object is a radio button. LASTOB is a flag that
indicates the last object is the object tree. If you build your own trees,
you should use this flag. If you use another program to build your
resource files (as is done for the programs in this book), you don’t
need to woriy about setting this flag. TOUCHEXIT tells the Form
library that when the user clicks this object the form is completed
and can be exited. HIDETREE makes this object and all its children

Application Environment Services: The AES 223

“invisible.” There are a number of AES routines tha t locate or draw
objects. If the HIDETREE flag is set, these functions are not able to
draw or locate the object or any of its children. INDIRECT indicates
tha t the value of the ob-spec field is a pointer to the actual ob-spec.
This lets you change the ob -sp ec field by changing the pointer
instead of constructing a new ob_spec field.

The objtype field of the OBJECT structure provides the type of the
object The AES routines use this type information when processing
the object For example, if the type indicates a box, the AES draws a
rectangle. If the type is a boxed string, the AES draws the text and
encloses it in a box. Table 9-3 lists the defined object types and their
values.

Table 9-3: Object Types

Constant Name Value

GJBOX 20
G-TEXT 21
G-BOXTEXT 22
G-IMAGE 23
G-PROGDEF 24
G-IBOX 25
G-BUTTON 26
G-BOXCHAR 27
G-STRING 28
G-FTEXT 29
G-FBOXTEXT 30
G_ICON 31
G-TITLE 32

The type of the object also determines the contents of the ob_spec
field. The ob_spec field may contain either the data layout shown in
Figure 9-4 or a pointer to an additional information structure. Object
types G_BOX, G.JBOX, and GJBOXCHAR all use the ob-spec layout
shown in Figure 9-4. The high byte of the high word contains a
character. The low byte of the high word contains a border thickness.
The low word contains the color, writing mode, and fill pattern for the
box.

The character portion of the ob_spec field is used only by type
GJBOXCHAR, which is a single character enclosed in a box. The
character portion contains the ASCII value (see Appendix C) of the
character to be displayed. The border thickness applies to all boxes.
If the border thickness is 0, the thickness is 0 and the box is invisible.
If the border thickness is a positive value from 1 through 127, the
thickness is measured from the edge of the box inward. Thus the

2 2 4 Atari ST

Character Border
Thickness

Text
Color

Fill
Pattern

Border Text Inside
Color W rit ing Color

Mode

Figure 9-4 The ob_spec Field Data Layout

outside dimensions of the box remain the same and the border grows
toward the center of the box. If the border thickness is a negative
value from —1 through —127, the thickness is measured outward
from the object’s edge. Although it is not mentioned in the documen
tation, it is assumed that these values are measured in pixel units.
The colors for a particular box use four bits.

The writing mode of the ob-spec field is a single bit. If it is set to
0, text is written in transparent mode. If the bit is set to 1, text is
written in replace mode. The last section of the ob_spec field is the
fill pattern. The fill pattern is a 3-bit value. If the three bits are all 0,
the fill is hollow. If three bits are all 1 (evaluating to 7), the fill pattern
is a solid fill. Values 1 through 6 indicate patterns of increasing
darkness. The actual patterns used depend on the output device but
the increase in density is guaranteed.

Object type G_BOX simply indicates a graphic box that may have
the attributes indicated by the fields in the object structure. Object
G_BOXCHAR is a box that contains one character of text. Object type
G_IBOX is considered an invisible box. The fill pattern and internal
color are ignored. The color and border thickness may be used. A
border thickness of 0 makes the box invisible. One purpose of an
invisible box is to provide a parent for a set of radio buttons.

Object type G_BUTTON is a graphic text object centered in a box.
Type G_STRING (no comments from the back row, please) is simply
a string of graphic text. Type G-TITLE is a text string used in menu
titles. Each of these three types uses the ob-spec field as a pointer to
a text string.

The remaining objects require more information than can be stored
in the OBJECT structure. In these cases, the ob_spec field is used as
a pointer to a secondary structure. The layout of the secondary

Application Environment Services: The AES 225

structure depends upon the type of object described. These additional
structures are called TEDINFO, ICONBLK, BITBLK, APPLBLK, and
PARMBLK.

H ie TEDINFO Structure
Types G_TEXT, G-BOXTEXT, G_FTEXT, and G-FBOXTEXT all use
the ob_spec field as a pointer to a TEDINFO structure (see Figure
9-5). The TEDINFO structure is used with objects that have editable
text. This is text tha t can be altered by the user during the course of
the program. The AES routines use the TEDINFO structure to relieve
the user of many of the tasks associated with data entiy. The
TEDINFO structure used in conjunction with the AES routines can
provide automatic data entiy, data validation, default values, and
format templates.

typedef struct text^Bdlnfo {

char *te_ptext;

char *te_ptmplt;

char *te_pvalid;

WORD te_font;

WORD te_Junl<l;

WORD te_just;

WORD te-jcolor;

WORD ta_junl<2;

WORD te_thickness;

WORD te_ txtlen;

WORD te_templen;

} TEDINFO;

Figure 9-5 The TEDINFO Structure

The field te-ptext is a pointer to the storage location for the entered
tex t If th is storage location already has a string in it, th is string is
displayed as the default value. The GEM documentation states that if
the first character in the string is the “<s>” symbol, the field is con
sidered to be blank. Any remaining characters in this string are
merely used as placeholders. For example, the string “<s>xyzpdq” would
show seven blank spaces. However, this feature did not work properly
on the author’s sytem.

The te_ptmplt field is used for those object types tha t allow the user
to enter data. These objects are indicated by the EDITABLE object flag
setting. This TEDINFO field is used as a pointer to a text string
template. The template contains the format of tex t Any underscores

226 Atari ST

in the template are displayed as blanks and represent the editable
characters of the field. For example, consider this template:

Date:__/ __/__

This template indicates that there are three areas for data to be
entered for a total of six characters. When this template is drawn on
the screen, the user is only able to change the characters where the
underscores are located. All other characters are shown as indicated.

The field te-pvalid is also a pointer to a text string. This string is
used to validate any entered tex t The characters contained in the
validation string evaluate as follows:

the digit “9” allows only the digits 0 through 9 to occur at this
location.

an “A” allows only spaces and upper-case letters to be entered.
an “a” allows upper- and lower-case letters and the space.
an “N” allows 0-9, A-Z, and the space.
an “n” allows 0-9, A-Z, a-z, and the space.
an “F” allows all valid filename characters plus “?”, and “:”.

This type of validation is used when a filename with a drive name
and wildcard characters should be entered.

a “P” allows any pathname characters plus “?”, and
This is used to locate files in other directories.

a “p” allows all valid pathname characters, plus “\ ” and This
allows the user to enter a specific file name but not the wildcard
characters.

and an “X” allows any character to be entered.
By using the te.pvalid field, the AES routines can automatically

perform some preliminary data verification. For example, the valida
tion string for the date entry from above is “999999”. This allows any
six-digit entry to be placed in the te-p text string. From this string,
you can verify that a valid date has been entered. The advantage of
using the validation string is tha t you do not have to worry about
improper characters being entered. Note that the nonunderscore
characters of the template field are not included in the validation
string.

The field te -fo n t indicates the font to be used for drawing the tex t
The value 3 means the system font is to be used (the font used for
menus and dialog boxes). The value 5 indicates tha t the smaller font
is to be used (as in icons). Field te-ju n k l (may also be called
te-resvd l) is a reserved space. The te_just field is a word that
indicates the type of text justification to be used when displaying the
string. This justification occurs within the object as specified by the
ob-w idfh field in the OBJECT structure. A value of 0 is left-justified

Application Environment Services: The AES 227

text, 1 is right-justified, and 2 is centered. These values have defined
constants labelled TE-LEFT, TEX-RIGHT, and TE-CNTR respectively.

The field teucolor indicates the color and the pattern of objects in
boxes, specifically GJBOXTEXT and GJFBOXTEXT. The value is di
vided into the various subfields as shown in the low word of Figure
9-4. The te_junk2 (or te_resvd2) field is reserved. The field
te-th ick n ess indicates the thickness in pixels of the border of a box.
The border thickness is computed in the same way as in the high
word of Figure 9-4. Field te_txtlen is the length of the string pointed
to by te-ptext, and field tc -tmplen is the length of the string pointed
to by te-p tm p lt

The AES uses the TEDINFO structure with the object types
G_TEXT, G-BOXTEXT, GJFTEXT, and GJFBOXTEXT. Object type
G_TEXT is simply graphic tex t which is a string tha t can have the
various attributes supplied in the TEDINFO structure. For a G_TEXT
object the ob-8pec field of the OBJECT structure points to a
TEDINFO structure. The field te-p text of the TEDINFO structure
points to the text string to be displayed. The G-BOXTEXT object is
a rectangle containing graphic text. Again, the ob-spec field points
to a TEDINFO structure that contains a pointer in the te-p text field
to the text string. The TEDINFO structure also contains the attributes
for the box. The G-FTEXT object is formatted graphic tex t Its
ob_spec field points to a TEDINPO structure. The TEDINFO structure
has a pointer to a text string in the te-p tex t field and uses the
template pointed to by te-ptm plt to format the tex t The GJFBOXTEXT
object is similar to the G-FTEXT object with the addition of a
rectangle surrounding the tex t

The ICONBLK Structure

Object type G-ICON indicates tha t the object describes an icon. An
icon is a graphics figure used to represent some item in the computer
system such as the disk drive for trash can on the desktop. The
ob -sp ec field for a G-ICON object contains a pointer to the ICONBLK
structure (see Figure 9-6. The ICONBLK structure holds data that
defines an icon. The ib-pm ask field is a pointer to an array of words
representing the m ask bit im age of the icon. This is similar to the
masking concept used in program BOUNCE. The Ib-pdata field is a
pointer to an array of words representing the data bit image of the
icon itself (like the ball array in BOUNCE). Field ib -p text is a pointer
to the icon’s text, such as the word “TRASH" under the trash can.
The ib-char field is a word containing the character to be drawn on
the icon, like the drive letter on the floppy disk. The text and character
fields may be empty and are not required. The field ib-xchar is the x

228 Atari ST

typsdef s tru c t lcon_blacl< {
WORD *ib_pmasl<;
WORD *ib_pdata;
char *ib_ptex t;
WORD ib_jchar;
WORD ib_xchar;
WORD ib_ychar;
WORD lb_xicon;
WORD ib_yicon;
WORD ib_wicon;
WORD lb_hicon;
WORD ib—xtext;
WORD ib_ytext;
WORD ib_wtext;
WORD ib_htext;

} ICONBLK;

Figure 9-6 The ICONBLK Structure

coordinate in pixels of the character, and field ib_ychar is the y
coordinate of the character. Again, the coordinates are relative to the
upper left comer of the icon. The ib_xfcon and ib -yicon fields are
the x and y source coordinates of the icon, used as in the raster copy
functions of the VDI. Field ib .w icon contains the width of the icon.
As with the rasters, this width value must be divisible by 16 (an
integral word width). The ib -h icon field contains the height of the
icon. The ib -x tex t and ib_ytext fields are the x and y coordinates of
the icons's tex t The ib -w text and ib -h tex t are the width and height
of a rectangle for the icon tex t The text is centered within this
rectangle. All size and position values are measured in pixels.

The BITBLK Structure

Object type G-IMAGE is a bit image object ju s t like a raster. The
oh -spec field for a G_IMAGE object points to a BITBLK structure as
shown in Figure 9-7. The bL-pdata field of this structure points to an
array of words containing the bit image (that is, raster). Field bi_wb
is the width of the bi-pdata array in bytes. Because the bL.pdata
array is made of words, the width m ust be an even-numbered value
because there are two bytes per word. The b i-h l field is a word
containing the height of the bit block in pixels. The bL.x is the source
x coordinate relative to the bi-pdata array, and bi_y is the y source
coordinate relative to tha t array. These values have the same use as
the source coordinates used in the raster copy functions of the VDI.
The field b i-co lor is a word containing the color tha t the AES uses
to display the image. The color index values are shown in Table 9-4.

Application Environment Services: The AES 229

typedef struct bit_blocl< {

WORD *bi_pdata;

WORD bi-juib;

UORD bi_hl;

UORD bi_x;

UORD bi_y;

UORD bi_color;

} BITBLK;

Figure 9-7 llie BFTBLK Structure

Table 9-4: Object Color
Index Values

Constant Name Value

WHITE 0
BLACK 1
RED 2
GREEN 3
BLUE 4
CYAN 5
YELLOW 6
MAGENTA 7
LWHITE 8
LBLACK 9
LRED 10
LGREEN 11
LBLUE 12
LCYAN 13
LYELLOW 14
LMAGENTA 15

The APPLBLK and PARMBLK Structures

Object type G_PROGDEF is a programmer-defined object. When a
program tells the AES to draw an object or object tree, the AES
traverses through the tree and draws each object and its children (if
they are not flagged as being hidden). For each object type, the AES
has a routine to draw that particular object on the screen. For
example, object type G JBOXTEXT has a routine that draws a box and
then draws text within the box. Object type G_PROGDEF tells the
AES that this object is not one of the standard object types and
requires a special handling routine. The location of this custom
routine is provided in the ab-code field of the APPLBLK structure (see
Figure 9-8). This field contains the pointer to the custom routine. The
other field in the APPLBLK structure, called ah-parm, is a value of

230 Atari ST

typedef struct appl_bll< {

int (*ab_code) ();

long ab_parm;

} flPPLBLK;

Figure 9-8 Hie APPLBLK Structure

type long. This is used as a four-byte parameter to the custom
routine. A program can divide these four bytes in any combination:
four characters (one byte each), two integers (two bytes each), one
integer and two characters, a long integer (four bytes), or a pointer
(four bytes).

When the AES draws or changes an object it needs much more
information than can be supplied in ju st four bytes. This information
includes the location of the object tree, the index of the object being
drawn or changed, the location of the object and so on. When the
AES encounters a custom object it calls the routine specified by the
ab .cod e field and provides this routine (as a parameter) with the
additional information in a PARMBLK structure (see Figure 9-9). In
this structure, the pb-tree field is a pointer to the object tree tha t
contains the object to be operated upon. The pb_obj field contains
the index of that object within the tree. Since object trees are stored
as arrays, the index is the element number of the object. The
pb-.prevstate field is the previous state of the object to be changed,
and the pb_currstate field is the new state of the object When
pb-prevstate and pb-currstate are the same, the application draws
the object and does not change it. Fields pb_z and pb_y are the x and
y coordinates of the upper left comer of a rectangle defining the
location of the object Fields pb_w and pb_h are the width and height
of the rectangle. The next four fields, pb_xc, p b .yc, pb_wc, and pb-hc,
determine the location and size of the clipping rectangle. The x and
y coordinates are the upper left com er of the rectangle and are given
by pb_xc and pb_yc. The width and height are given by pb_wc and

typedef struct parm_blk {

OBJECT *pb_tree;

WORD pb_job j ;

WORD pb_prevstate;

UORD pb_currstate;

WORD pb_x, pb_y, pb_w, pb_h;

WORD pb_xc, pb_yc, pb_uc, pb_hc;

long pb_parm;

} PflRMBLK;

Figure 9-9 The PARMBLK Structure

Application Environment Services: The AES 231

pb-hc. The clipping rectangle is used here ju s t as in the VDI. Any
thing outside of the clipping rectangle is not drawn. The pb_parm
field is set to the same value as the ab-parm field in the APPLBLK
structure. All coordinate values for this structure refer to the physical
screen. In other words, the x and y coordinates for the object and
the clipping rectangle are the x and y coordinates on the screen. They
are not relative to the parent object

The information about objects and their related structures is a very
powerful tool in the program; this is done by defining an object tree for
a dialog box, menu, icon, or other object you want displayed on the
screen. Pass this tree to the appropriate AES routine, and it appears
on the screen. Don’t be overwhelmed by the complexity of creating an
image on the screen, even an image as simple as a dialog box. The AES
contains many routines tha t assist you in handling object tree
management like adding, deleting, reordering, and changing objects.
Other AES routines perform the drawing of objects, data entry, data
verification, as well as the user interaction involved with the selection
of boxes and icons.

The Resource Construction Program

The use of objects in a GEM application is a very basic requirement
However, even with assistance from the AES routines, the creation of
object trees is a quite cumbersome task. To relieve your program of
the tedium of creating the data and making sure that is correct there
is a program provided that creates the resource file to be used by the
program. The Megamax compiler comes with a program called
MMRCP, which allows you to create a resource file. The Atari
developer’s k it also comes with a program called RCS that performs
the same task. The two programs produce a resource file. Since the
objects have a predefined format you may use either program to
create the same resource file.

At the time of this writing, the version of the Megamax MMRCP
program had a problem when writing out the resource file. The
discussion of the resource program therefore concerns the Atari/Digital
Research RCS program. The concepts discussed here are the same for
both programs. However, the operation of each program is slightly
different

To do the remaining programs in th is book, you need a resource
editor program or some method of creating the resource files to be
used by the programs. Therefore, a t this point, a brief tutorial for the
RCS resource construction program is provided.

F irst read through the manual for the resource editing program

232 Atari ST

you are using. Familiarize yourself with its features and general
operation. Then load this program on your Atari system, and execute
it. For the RCS program, you see a menu bar, a window called
“RESOURCE PARTBOX,” a window called “RESOURCE CONSTRUC
TION SET,” a clipboard, and a trash can. The RESOURCE PARTBOX
window contains icons for the various types of objects trees that you
can create. These are a menu, a dialog box, an alert box, a free tree,
and a tree of unknown type. A free tree is simply a tree that contains
a set of objects. A tree of this type is usually ju s t to format a display
screen. The unknown tree type is used when the resource editor
program is changing an existing resource file and does not know
what type of tree to use. For example, if you read in the resource file
for the resource editor (file RCS.RSC for the RCS program), you see
a bunch of trees of unknown type. If you are not using the RCS
program, your screen should have a menu bar, some portion of the
screen containing the tree type icons, and a portion of the screen that
is used for editing the resource file.

You are now going to create a dialog box. To begin, use the File
menu to open a new file. For the RCS program, selecting the New
option causes the workspace to be cleared. Any program may contain
any number of object trees (memory space permitting). For example,
the RCS program has a tree for the menu bar and many dialog boxes
such as a dialog box for the Program Information option in the Desk
menu, and a dialog box to name an object Each of these trees is given
a root To “plant” (create) a tree, drag the appropriate tree icon from
the part box to the work area. For the dialog box example used here,
drag a dialog tree to the work area. At this po in t the RCS program
displays its own dialog box requesting the name of the tree with a
default name of TREE 1. xChange this name to ENTRYBOX If your
resource editor did not request a name, select this tree by clicking on
it once. Then use the Name option in the menu (or something
equivalent) to set the name of this dialog box object tree.

Now that you have set the root of the tree, you need to define what
the contents of the dialog box will look like. This is done by placing
objects into the dialog box. Double-dick the ENTRYBOX icon. This
opens a window for the dialog box and sets the parts box to contain
the objects tha t you may want to use. The contents of the parts box
vary from program to program. In general, it contains such objects as
a button, a string, formatted tex t editable fldds, and boxed tex t Ju st
as in planting a tree, you place objects in the dialog box by dragging
them from the parts box to the work area. The dialog box you are now
creating is a sample survey form that demonstrates how to use
editable fldds, templates, data validation, buttons, radio buttons, and
default exit conditions (see Figure 9-10).

Application Environment Services: The AES 233

PERSONAL DATA SHEET

Last Name:.
F ir s t Name:.

Date of B ir th :— /— /.
* of Years at

Current Address:—

Vearly Income
Under $14,999
$15,000 - $24,999
$25,000 - $49,999
$50,000 and over

Check One Hobbies
Sk iin g
Tennis
Nusic
Swimming

Check R lI
That Rpply

I 0K I Quit Clear Form

Figure 9-10 ENTKYBOX Dialog Box

The title of the dialog box, “PERSONAL DATA SHEET," is just a
string object. To create the title, take a string object from the dialog
part box and place it at the location of the dialog box title. You now
have a text string that says “STRING” at this position. Double-dick
this object and the resource editor program opens up another of its
own dialog boxes. This dialog box allows you to set the various object
flags and states for this object At the bottom of the box is a line that
says:

TEXT: STRING____________________________
Whatever you enter in this field becomes the text that is displayed for
this object Press the Escape key to clear the text field and enter the
words “PERSONAL DATA SHEET.” Click the OK button. The dialog
box disappears and the new text of the title is shown on the box you
are creating.

To create the editable text fields for the first and last name data,
use the unboxed edit object This is the object that says “EDIT:_____ ”
Drag this object onto your dialog box, and place it at the location of
the last name entry field (refer to Figure 9-10). Double-click this new
object and another dialog box appears. This box has object flag and
state selections, background color and intensity, border color and size,
character color, font, justification, writing mode (called Rule in the
RCS), and text fields. Because this particular object is not a boxed
object the background and border selections have no effect on how
this object is displayed. These options are included here because this
dialog box is also used for the boxed EDIT:_____object

Note that the object flag button labeled “EDITABLE” is selected
(shown in reverse colors). This is the default flag setting for the

234 Atari ST

EDIT:------- object and indicates that this object is editable. If this
flag is not set when your program activates this dialog box, the AES
does not let the user edit this field. For the dialog box you are
creating, change the PTMPLT line at the bottom to show:

Last Name:------------ -—------------
Use the up, down, left, and right arrows on the keyboard to move the
text cursor. When used in the resource editor program, the tilde
character (~) indicates an underscore. This is done because the
underscore is already used to show what portions of the field may be
edited. If you enter the underscore, there is no way of knowing what
portion of the field is your entiy and what portion is displayed by the
program.

The FVALID line is the validation text. This line must match the
format of PTMPLT line in that you must place the validation charac
ters at the exact position of the entiy. In other words, wherever you
do not want data to be entered, place a tilde. Wherever you want data
to be entered, place the appropriate data validation character (see the
TEDINFO structure above). For this dialog box, place tildes under the
“Last Name” portion of the PTMPLT line. Then put a capital X under
each tilde in the PTMPLT line. The format of these fields may vary
slightly among resource editor programs; however, the general layout
remains the same.

The PTEXT field is the default text to be displayed when the
program is run. When the AES displays this dialog box, the string
shown on this line appears as the current value of the entered date.
The PTEXT field also determines the maximum number of characters
the user may enter. This field is formatted with tildes used for places
where no text is entered and underscores (_) where text will be
entered. When the AES draws this dialog box, it draws the PTMPLT
field replacing the tildes with the text from the PTEXT field. In this
example dialog box, you need 11 tildes followed by 15 underscores to
match the format of the PTMPLT field. Enter these values for the
PTMPLT, FVALID, and PTEXT fields.

PTMPLT>Last Name:-----------------------------
PVALID>------------- XXXXXXXXXXXXXXXX
PTEXT>------------- -----------------------------

Click OK and when the object’s dialog box disappears, you see:
Last Name:____________
which is what is shown when the AES draws this object

Logically, you might think that the PTMPLT field should control the
format of the object the FVALID field should have only the valida
tion portion of the string, and the PTEXT field should have only

Application Environment Services: The AES 235

the default text In the RCS program, this is not the case. The PVALID
and PTEXT fields must match the format of the PTMPLT field. Other
resource editor programs may have different requirements.

Take another edit field and create a first name entry field in the
same manner you created the last name entry field. The first name
entry field has the following values:

PTMPLT>First Name:-----------------------------
PVALID>---------------'XXXXXXXXXXXXXXXX
PTEXT>--------------- ----------------------------

For the date of birth entry, the values are these:
PTMPLT>Date of Birth:— / — / —
PVALID>------------------- 99-99-99
PTEXT>----------------- --- ~__~__

Notice that tildes are placeholders for noneditable characters and that
the validation string uses the character “9” to allow only numeric
values.

The text “# of Years at” is a STRING object like the box title. Create
this string in the same manner as before, then make the “Current
Address" entry field with these values:

PTMPLT>Current Address:—
PVALID>-------------------------99
PTEXT>-------------------------_

This field allows a two-digit value to be entered.
The remaining objects in this dialog box are strings and buttons.

The yearly income items are all STRING objects as are the hobby
items. Create the STRING objects for the yearly income selections and
the hobby selections including the headings "Yearly Income” and
“Hobbles”

The small objects that say “Check One” and “Check All That Apply”
are TEXT, not STRING, objects. A STRING object allows you only to
enter a string and set some of the object flags and states. A TEXT
object in addition to setting the text, flags, and states, also allows you
to set the font size, text justification, colors, and writing mode.
Because small lettering is used in the ENTRYBOX dialog box, the
TEXT object is required. Three TEXT objects are needed: one for
“Check One,” one for “Check All,” and one for “That Apply.” Because
“Check All That Apply” is split across two lines, two TEXT objects are
required. Drag three TEXT objects from the parts box to the work area
and place them at the appropriate locations. Double-dick the TEXT
object for the “Check One” object and a dialog box is displayed. This
is the same dialog box used for the editable text fidds. With a TEXT
object however, the PTMPLT and PVALID fidds have no effect Only

236 Atari ST

the PTEXT field is used, and it should be set to read “Check One.”
Next select the small font and dick OK. Repeat this procedure for the
other two TEXT objects, “Check All” and “That Apply.”

By now you may have noticed that whenever you place an object in
your dialog box, it appears to line up on an invisible grid. When you
are editing a dialog box, all objects contained in it are character-
aligned. This means that the dialog box is divided into character cells.
The start of an object must lie in one of these cells. You cannot place
an object half-way between cells, and the length of an object must be
a whole number of cells. This relieves you of having to align the text
by hand. If you want more control over where you can place an object
use the free type tree.

At this point, you now have a form that has all the text in i t You
now need to create the four boxes for yearly income, the four boxes
for hobbies, and the three buttons at the bottom of the form. The
yearly income selection uses radio buttons because only one income
level at a time is allowed. As mentioned earlier, radio buttons require
a common parent In other words, all radio buttons in a set must be
children of the same parent To create a common parent drag the
single outlined box from the parts box to the area under the “Check
One” object and next to the “Under $14,999” object You now have a
horizontal box where you want a vertical box.vTherefore, you need to
resize this object To do this, sdect the box object by clicking on it
once. This causes the object to be shown in reverse colors. Now place
the tip of the mouse arrow cursor at the bottom right comer. When
you press the mouse button, the arrow cursor changes to the finger
cursor. This may take a few attempts to hit the exact spot on the
object for sizing. With the finger cursor, you can resize the object just
as you would resize a window. Rdeasing the mouse button sets the
new object size. You can move an object by placing the arrow cursor
at the center of the object and pressing the mouse button. The arrow
cursor changes to the open hand cursor, and you can drag the object
to its new location. Resize the common parent box so that it is about
three characters wide and four lines tall under the “Check One” object
(see the shaded area Figure 9-10). Move the box if required.

You now have the box to be used as the common parent You now
need to add the four children. An object is considered the child of
another object if the parent object completdy endoses the child. For
example, all the objects you have placed in the dialog box so far are
children of the dialog box because the dialog box contains these
objects. To create a small box, take a single outlined box from the
parts box and place it in an empty area of the dialog box such as the
upper left comer. Resize the new box so that it is one line high and
one character wide. Drag this box so that it is under the “Check One”
object on the same line as the “Under $14,999” object and fully

Application Environment Services: The AES 237

enclosed by the parent box you just created. If you are using the RCS
program, you receive an alert box saying that this move rearranges
the tree. What is happening is that you are taking a child of the dialog
box (because it was contained only by the dialog box) and making it
a child of the parent box. This changes how the tree looks. To verify
that you want to complete this action, the RCS program warns you
of the situation and allows you to cancel the move. In creating
ENTRYBOX, you want to change the order of the tree. Create three
more boxes for the remaining three income levels.

In the final form of the dialog box, you do not want the parent box
to be visible. Therefore, double-click this box and change the border
to be invisible (that is, no border). Click OK, and when ENTRYBOX is
redisplayed, the parent box will be invisible.

You now have four small boxes surrounded by an invisible parent
box. These four boxes must be turned into radio buttons. Double-click
the top box. This causes a dialog box to be displayed. This dialog box
allows you to set the flags, states, and text of a box. Click the
SELECTABLE flag. This turns the box into a button the user can
select with the mouse. Also dick the RADIO BUTN flag to make the
button into a radio button. The TEXT fidd remains blank because
there is no text for this button. Click OK and that’s all there is to
making a radio button. Repeat this procedure for the other three
boxes. The radio buttons are now ready.

The hobby sdection also requires four sdection or check boxes.
These are not radio buttons because a person may have more than
one hobby. Create four small boxes and place them in a column. For
each box, double-dick it and choose the SELECTABLE flag only.
These boxes are now buttons. Altemativdy, instead of using the single
outlined boxes, you can use the BUTTON object that already has its
SELECTABLE flag set

The top portion of the form is now completely set. The next step is
to set the three buttons at the bottom of the form. Take three
BUTTON objects from the parts box, and put one in place for each
button. At this point you are probably running out of room on the
screen. Click the full box (at the right end of the title bar) to change
the size of the window. You can now resize the dialog box itself and
move the buttons to their appropriate locations.

The OK button is an exit button. If the user sdects this button, the
AES stops processing the dialog box and returns control to the
application program. Every dialog box must have some form of exit
object otherwise, the user can never get back to the program. The OK
button is also the default exit sdection so that if the user presses the
RETURN key, the OK button is automatically sdected. Double-dick
the button that becomes the OK button. Given the above parameters,
the SELECTABLE, DEFAULT, and EXIT flags should be set in the

238 Atari ST

dialog box (SELECTABLE is already set for a BUTTON object). The
TEXT field should be set to read “OK." Upon return to the ENTRYBOX
dialog box that you are creating, you will notice that the OK button
has a thicker outline than the other buttons on the form. The thick
border indicates that the OK button is the default exit value.

Double-dick the button that is used to quit Change its text to read
“QUIT” and select the EXIT flag (the SELECTABLE flag is already set).
When ENTRYBOX is redisplayed, this button says QUIT and its border
has a medium thickness. A button with medium thickness indicates
an exit button that is not the default

Finally, double-dick the last button. Choose the EXIT flag, and
change its text to read “Clear Form.” This button is used if the person
wishes to dear the form without further processing.

You have now created all the objects used by the ENTRYBOX dialog
box. You could save this in a resource file and use the resource file
in a program. However, there is one small problem. Many AES func
tions require that you know the index number of the objects you need
to access. Depending upon the order in which you created the
resource file, these index numbers vary. Therefore, if you edit the
resource file and add or ddete objects, the index numbers change.
How do you know what index numbers to use?

Fortunatdy, the RCS program and the MMRCP program allow you
to name the objects. For example, ENTRYBOX is the name of the tree
used for the dialog box. The name of the object is then used as a
defined constant within your program. When you save the resource
file, the resource editor program writes the resource file and a C
header file containing the names of the objects (objects not named
are not induded in the header file). If you save ENTRYBOX in its
current state, you would get a resource file and a header file contain
ing the statement

^define ENTRYBOX 0
The name ENTRYBOX is associated with the root of the dialog box
(the box itself) and its index in the tree is dement 0. By using the
defined constant names and induding the header file in your C
program, you need not concern yourself with the actual index values
when writing the program. Also, if you want to add more objects,
simply do so and then recompile your program. The header file will
contain the new index values for the constant names used by your
program.

To name an object click it once to select i t Then choose the Name
selection from the Options menu (or whatever is appropriate for your
resource editor program). For example, sdect the last name entiy fidd
and choose the Name sdection. You get a dialog box that allows you
to enter the name of the object and change the object type. Generally,

Application Environment Services: The AES 239

it is not a good idea to change the object type unless you really m ust
The Name field is blank. Enter LNAME. Object names should be in
capital letters (which is a good idea since these names will be used
for the defined constant names) and are limited to eight characters.
The RCS program does not allow the underscore to be used in an
object name; actually, entering an underscore caused the program to
exit abnormally. This is probably a bug in the program. After entering
the object name, dick the OK button. That is all there is to naming
an object Now when the header file is written, there is also a state
ment defining the constant name LNAME. Repeat this naming
procedure for the other objects in the dialog box as shown in Table
9-5. Note that not all the objects are named. Only those objects that
are accessed by a program are named. The first name fldd should be
called FNAME. Date of Birth should be called Birthday. Current ad
dress should be called HOMEAGE. Sdect the box associated with an
income of less than $14,999. Name it INC1. Name the next in order,
INC2, INC3, and INC4. For the hobbies, name the box next to “skiing”
as HOB1. The others are HOB2, HOB3, and HOB4. All the data items
are now named. Finally, name the “OK” button OK. Name the Quit
button QUIT and the Clear Form button CLEAR

Table 9-5: Object Name for the
ENTRYBOX Dialog Box

Object Field on Form Object Name

Last Name LNAME
First Name FNAME
Date of Birth BIRTHDAY
Current Address HOMEAGE
Radio button for

Under $14,999 INC1
$15,000-$24,999 INC2
$25,000-$49,999 INC3
$50,000 and over INC4

Selection button for
Skiing HOB1
Tennis HOB2
Music HOB3
Swimming HOB4

OK button OK
QUIT button QUIT
Clear Form button CLEAR

After naming the objects, press the full box again to restore the win
dow to its normal size. Then dose the window for the ENTRYBOX
dialog box. The program returns to the main window, which shows
the dialog box icon for ENTRYBOX.

240 Atari ST

In the File menu, use the Save or Save As... option to save this
resource file. Use the filename FORM.RSC. Exit from the resource
editor program. When you return to the desktop, you see the file
FORM.RSC in the directoiy, and two other new files: FORM.DEF and
FORM.H. FORM.DEF is a definition file that is used by the resource
editor program. It contains the names and basic layout of the
resource file. If a .DEF file does not exist for a .RSC file, then when
you try to edit the resource file, you get trees with the unknown tree
type because the resource editor program does not know the layout
of the file. File FORM.H is the header file to be included in your
program. Double-click this file. GEM gives you a dialog box that says
you can only print or display this document Select the Show option
to display the contents of the header file on the screen. You see a set
of #define statements that list all the object names you entered. The
number following the #define name is the index for that object in the
tree.

The AES Review

With this introduction to the AES, you have learned all the basic
concepts associated with writing programs for a GEM application.
Because of the amount of information presented here, we are includ
ing a quick review of the more complex and necessary concepts.

You should intuitively understand how to use menus and windows.
These are basic elements to using the Atari computer, so it is as
sumed that you have a working knowledge of these units. The first
important concept to understand is the object An object is simply a
graphics unit that the AES can draw and possibly edit Objects are
logically grouped into units called trees. A tree describes a particular
AES aspect such as a menu bar, a dialog box, or an alert box. A tree
has a root object that generally describes the type of tree. Each object
in a tree has one parent (except the root which has no parents) and
any number of children. The AES implements the tree data structure
as an array. To access a particular object in an array, you must know
the index number of the object in the tree.

Information about a particular object is held in an OBJECT struc
ture. This structure contains data such as indices to the object’s
sibling, first child, last child, object type, state, flags, relative location
on the screen, and a specification field. If more information is re
quired by the particular object type, an additional structure is used.
Of these additional structures, the one used most is the TEDINFO
structure. This structure is used with objects that have editable text

To relieve the program from the tedium of having to create object
trees, a GEM development system usually comes with a resource file

Application Environment Services: The AES 241

editor program. This program allows the programmer to create and
edit resource files which hold the object trees for a specific applica
tion. Most resource editor programs produce three output files. One
file has a file type of .DEF and is used only by the resource editor pro
gram only to describe the layout of the resource file. The second file has
the file type of .RSC and is the actual resource file. The last file is a C
header file (file type .H), which contains defined constant names for
the index of each named object

At this point you should experiment with the resource editor
program. Try the various flag and state options for the different object
types. Create a free tree, and place all of the objects in i t Then
compare similar objects to see what makes them different For ex
ample, the TEXT and STRING objects have different capabilities. Also
play with the PTMPLT, PVALID, and PTEXT fields of an EDIT object
You will notice immediate changes with the PTMPLT and PVALID
fields. The PTEXT field has no effect until you use the resource file
in a program.

The set of sample programs in the next chapter should clarify how
these objects are used and how the resource editor program interfaces
with your application program. The first sample program, FORM, uses
the dialog box just created. Then, we move on to the use of menus
and interacting with the mouse to select objects in the menu. Finally,
you create a program that allows you to display files on the screen.

C H A P T E R T E N

Resourceful
Programming

Previous chapters have covered what the AES does, its primary data
structures (the object and object trees), and the resource editor
program. How to create a dialog box, one of the several types of object
trees that can be created with the resource editor program, has been
demonstrated. This chapter shows how to use this information in an
actual application.

Program FORM

Program FORM is a demonstration program, that utilizes the dialog
box created in the last chapter. With this program, you are able to
experiment with some of the topics mentioned in Chapter 9. A few
new overhead procedures Eire required by the AES. Take a look at
function m ain() in program FORM (see Listing 10-1). The initialize
GEM Access section is the same as that of all other programs covered
thus far. The application-specific routines start with a call to the
function rsrc_load(). This is an AES function that causes the AES
to load a resource file into memoiy and keep track of the objects
loaded. The basic process for an application using a resource file is
to load the resource file into the AES memoiy, locate the tree (array)
you want to use, and use the rsrcL_free() function to have the AES
release the memoiy used for the resource file when the program ends.
The rsrc_load() function returns 1 if the load was successful or 0 if
there was an error during loading. The system can crash if you try to
access your resources without having the resource file loaded. In

Resourceful Programming

/ i t *

FORM.C Dialog box and form demonstration program

This program demonstrates the use of a dialog box to

request information from the user.
X /

Listing 10-1 Program FORM

✓ X

System Header Files & Constants
X /

ttinclude <stdlo.h>

ttinclude <osbind.h>
ttinclude <gemdefs.h>

ttinclude <obdefs.h>

Standard 10

'* GEMDOS routines

/* GEM flES
'* GEM constants *s

ttdefine FftLSE 0

ttdefine TRUE ! FRLSE

✓xx

GEM Rpplication Overhead
xx/

Declare global arrays for VDI.
typedef Int UORD; sx word is 16 bits */

WORD contrl[12], '* VDI control array

intout[12B], intin[128], VDI input arrays */

ptsln[12B], ptsout[128]; VDI output arrays

UORD sc reen_vhand1e ,
sc reen_phand1e ,

screen_rez,
color_jscreen,
x_max,

y_max;

virtual screen uorkstation

physical screen uorkstation *s

s* screen resolution 0,1, or 2
flag If color monitor *s
max x screen coord **

'* max y screen coord

/ X

Rpplication Specific Data
X X X X X X X X X X K X K X K X K X X X X X X /

ttinclude "form.h* / * resource header file *s

char last_name[16],
flrst_name[11],
birth_riate[7],
homQ_age[3];

X Xxxxx

GEM-related Functions
X /

244 Atari ST

WORD open_vwork(phys_handle)
WORD phys-handle;
/k x k x x x x x x x x x x x x x x k x x x x x x k x k x x x x x x x k xxxxxxxxxxxxxxx

Function: This function opens a virtual workstation.

Input: phys_handle = physical workstation handle
Output: Returns handle of workstation.
X /

<
WORD work_in[ll],

work_jout[S7],

new_handle; / * handle of workstation *s
int 1;

for (1 = 0; i < 10; 1++)
worl<_in[i] = 1;

work_in[10] = 2;

nsw_handle = phys_handle;
v_cpnvwk(work-in, &new_handle,
return(new-handle);

>

BBt_screen_attr()
/ X K X X X X K X X X X X X X K X X X X X X X K X X

Function: Set global values about screen.

Input: None. Uses screen_vhandle.
Output: Sets x_max, y_max, color_screBn, and screen_rez.
xx/

<
WORD work_out[57];

vq_Bxtnd(screen_vhandle, 0, work_out);
x_max = work_jout[0];

y_max = work_out[l];

screen_rez = Getrez(); s* 0 = low, 1 = med, 2 = high

color_screen = (screen_rez < 2); mono 2, color 0 or 1 */

>

/ X K X X X X K X X K X K X X X X X X X X K X X X X X X X K X

Rpplication Functions
X K X X K X X X X K X X X X X X X X X X X X X K X X X X X X X X K X X X X X X X X X X X K K X X X X X

lnlt_form()
/ X X X X X X X X K K X

Function: Initialize text pointers for entry form.

Input: None. Resource file must be loaded.
Output: Sets form pointers.
K X X X X X X K X K X X X X X X X X X X K X K X X X X X X X X X K X X X X K X X X X X X K K X X X X / ’

<
OBJECT *box_addr;

Listing 10-1 (continued)

set for default values

/ * use raster coords

' * use currently open wkstation **
work_jout);

Resourceful Programming 245

/ * get address of dialog box
rsrc_gaddr(0, ENTRYBOX, &box_addr);

/* set addresses and lengths of text input
((TEDINFO *)box_addr(LNAME].ob_spec) - >te_ptext = last_name;

((TEDINFO #)box_addr[LNRME].ob_spec)->te_txtlen = 1G;

((TEDINFO *)box—addr[FNAME].ob_spec)->te_ptext = first_name;

((TEDINFO *)box-jaddr[FNAME].ob-spec)->te_txtlen = 11;

((TEDINFO *)box^addr[BIRTHDAY]-ob_spec)->te_ptext = blrth_date;
((TEDINFO #)box_jaddr [BIRTHDAY] .ob_spec) ->te_txtlen = 7;

((TEDINFO *)box_addr[HOMEAGE].ob—spec)->te_ptext = homa_age;
((TEDINFO *)box.jaddr[HOMEAGE].ob^spec)->te_txtlen = 3;

return;

>

get_form()
/xx

Function: Display dialog box to gat data from user.

Input: None. Resource file must be loaded.
Output: Returns index of object used for exit.

Dialog box objects selected and filled.
X / -

<
WORD xbox, ybox, hbox, ubox;
WORD smallx, smally, smallu, smallh;

WORD exit_object;
OBJECT *box_addr;

get address of dialog box
rsrc_gaddr(0, ENTRYBOX, &box^addr);

show Initial text entry values
printf(’̂nLast Name - Address: %Blx, Length: 3s2dVi",

((TEDINFO *)box_addr[LNAME].ob_spec)->te_ptext,

((TEDINFO *)box—addr[LNAME],ob_jspec) ->te_txtlen);
printf("First Name - Address: XBlx, Length: X2dVia,

((TEDINFO *)box_addr[FNfiME].ob_spec)->te_ptext,

((TEDINFO *)box_addr[FNfiME].ob_spec)-> te_tx 11en);
printf("Birthdate - Address: *81x. Length: *2dVia,

((TEDINFO *)box—addr[BIRTHDAY].ob_spec)->te_ptext,

((TEDINFO *)box^addr[BIRTHDAY].ob^spec)->te_txtlen);
printf("Years - Address: %81x. Length: 3S2dVia,

((TEDINFO *)box_addr[HOMEfiGE].ob_spec)-> te_p tex t,
((TEDINFO *)box—addr[HOMEfiGE].ob-spec)->te_txtlen);

Craucln();

Listing 10-1 (continued)

246 Atari ST

clear entry screen **

*(((TEDINFO *)box_addr[LNAME].ob_spec)->te_ptext) = 0;
*(((TEDINFO *)boxjddr[FNAME] .ob_spec)->te_ptext) = 0;
*(((TEDINFO *)box_addr[BIRTHDAY].ob_spec)->te_ptext) = 0;
*(((TEDINFO *)box_addr[HOMEAGE].ob_spec)->te_ptext) = 0;
box_addr[INCl].ob_state = NORMAL;
box_addr[INC2].ob_state = NORMAL;

box^addr[INC3] .ob_jstate = NORMAL;
box-jaddr[INC4].ob^state = NORMAL;

box_addr[HOBl].ob_state = NORMAL;

box_addr[H0B2].ob_state = NORMAL;
box—addr[H0B3].ob_state = NORMAL;
box—addr[H0B4].ob_state = NORMAL;

s* get size and location of a box centered on screen */
form_£Bnter(box_addr, &xbox, &ybox, &ubox, &hbox);
smallx = xbox + (ubox ✓ 2);
smally = ybox + (hbox / 2);
smallu = 0;

smallh = 0;

✓* reserve area on screen for box display
formjJial (FMD.J5TART,

smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

/* drau an expanding box
forrrudial (FMD-GROW,

smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

s* drau dialog box *s
objc_jdrau(box_addr, ENTRYBOX, 10, xbox, ybox, ubox, hbox):

handle dialog input
exit_object = form_do(box^addr, LNAME);

/* drau a shrinking box
form_d1a1(FMD-SHRINK,

smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

/* reserve area on screen for box display

form_jdlal(FMD_FINISH,
smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

Listing 10-1 (continued)

/* unselect exit object for next time *s
box_addr[exi t.jobJect] .ob_state = NORMAL;

Resourceful Programming 247

return(exit_object);

Listing 10-1 (continued)

shou_lnfo()
/**
Function: Shou information entered into dialog box.
Input: None. The dialog box objects must be selected.

Output: None.

<
OBJECT *form_addr;

get base address of dialog box */
rsrc_gaddr(0, ENTRYBOX, &form_addr);

display settings *'
v_clruk(screen—vhandle);

v_jcurhome(screen—vhandle);

printf ("Name : Xs Stavi",

((TEDINFO *)form_addr[FNRME],ob_spec)->tB_ptext,
((TEDINFO *)form_addr[LNRME].cb_spec)->te_ptext);

printf("Date of Birth : fcsVi’,

((TEDINFO *)for<tLjaddr [BIRTHDAY].ob_spec)->te_ptext);

printf ("Years at Current Address: SSs^n*,
((TEDINFO *)form_addr[HOMEftGE].ob_spec)->te_ptext);

printf('Income Level : *);
if (form_addr[INC1].ob_state & SELECTED)

printf("Under $15,000');
else if (form_addr[INC2].ob_state & SELECTED)

printf("$15,000 - $24,9991);

else if (form_addr[INC3].Db_state & SELECTED)

printf("$25,000 - $49,999");
else if (form_jaddr[INC4].ob_state & SELECTED)

printf("$50,000 and over");

printf("^nHobbles : *);
if (form_addr[HOBl].ob_state & SELECTED)

printf("Skiing ");
if (form_addr[H0B2].ob^state & SELECTED)

printf("Tennis ");
if (form—addr[H0B3] .ob-jstatB & SELECTED)

printf("Music *);
if (form_jaddr(H0B4] .ob_state & SELECTED)

prlntf("Swimming ");

printf ("NnNnPress any key to continue Vi");
Craucln();

248 Atari ST

Listing 10-1 (continued)
return;

>

S * * * X * * K X « X X X X X X * X X X X X X

HaIn Program
* # # * # # » » * # * # * X * * X X X X X * # # X X * X X X X X X X X X X X * * * * * * * * » * * * / ’

maln()

{
Int ap_id; / * application lnit verify *'

WORD gr_wchar, gr_hchar, s* values for VDI handle
gr_ubox, gr_hbox;

WORD ret_code; form exit code *'

✓#*#*x**«**xxxxxxxxxx*#*xx*xxxxxxxxxxxxxx**»*xxxxxx

Initialize GEM Access
**/

ap_id = appl_init(); ✓* Initialize AES routines

if (ap_ld < 0) /* no calls can be made to AES

{ use GEMDOS
Cconus("***> Initialization Error. <***^n*);

Cconus("Press any key to continue.Vi");
Craucln();

exlt(-l); set exit value to show error */

>

screen_phandle = Get handle for screen */
graf_handle(&gr.juchar, &gr_hchar, &gr_jwbox, &gr_hbox);

screen_vhandle = open_vuork(screen_phandle);
set_screen_attr(); s * Get screen attributes

/ X * * K X * * * * * « » * * « * « « * * * * * * * * * K * * * X X * X X X X X X * * * X X X X X X X X

Application Specific Routines
X * * * * X * X » * » * * # * * # # » * X

if (!rsrc_load("FORM.RSC")) /* trouble loading resource file */

i
form_alBrt(l, *[0][Could not load file FORM.RSC|Program terminating...][OK]");
exit(l);

>

'* allou user to skip form initialization */
printf("'nViPress 'I' to initialize formin');
if ((CrauicinO & 0x7f) == 'I')

lnlt_form();

Resourceful Programming 249

while ((ret_code = get_form()) != QUIT)

{
if (ret-jcode ! = CLEAR)

shcu_info();

}
/»****#*#####***»*#***#####**#*»*»*»«»*#*»****»»#**#

Program Clean-up and Exit
***/

rsrc_free(); release memory for resources
v_jclswuk(screen_vhandle); s * close uorkstation

appl_axit(); end program */

>/a****####**#**#*#*##*####*###*###**#**##*#*##****#/
/**************/

Listing 10-1 (continued)

FORM, the program uses the rarc_load() function to load the
resource file. The result of this function is tested. If the resource file
has not been loaded properly, the form _alert() function is called to
tell the user an error has occurred.

The form _alert() function causes an alert box to be displayed. This
function has two parameters. The first parameter indicates the
default exit button for the form. A value of 0 means no default button.
A value of 1, 2, or 3 indicates the first second, or third button,
respectively. The second parameter is a string defining the format of
the alert box. This string is divided into three fields with each field
surrounded by square brackets. The first field contains a digit for the
icon type to use. T^pe 0 means no icon. Type 1 means the Note
icon, which is an exclamation point Type 2 is the Wait icon, which
is a question mark. Type 3 is a stop sign called the Stop icon. The
second field is the message text The alert box can have up to five text
lines, each with up to 40 characters. In this field, a vertical bar
indicates the separation of one line from the next In the program,
the text “Could not load file PORM.RSC” forms the first line, and
“Program terminating.. .” forms the second line. The third field of this
second parameter indicates the text used in the exit buttons. The text
for each button is separated by a vertical bar. The text for each button
may contain no more than 20 characters. In FORM, there is only one
exit button labeled “OK.” The user has no choice but to end the
program.

Once the resource file has been loaded, the program can begin its
processing. The first process in FORM is to initialize the default
values used in the dialog box. To assist you in experimenting with

250 Atari ST

the resource file and objects, FORM gives you the option of initializing
the dialog box or skipping the initialization. Initialization can be used
to set the storage size and location of the data to be entered. The
TEDINFO structure has the te-p text field, which points to the entered
data and field te-txtlen , which contains the length of this data. In
the resource editor program, the PTEXT field of an editable object was
filled with underscores to set the length of the editable text (te_txtlen).
In addition to setting the length, the underscores also allocate the
memory space required to store the text string. The te_ptext field is
only a pointer and does not know if that location is reserved for the
entered string. If the space is not reserved, the AES starts to write
over other data in memory. One method of avoiding this problem is
to use the underscore in the resource editor program. The other
method is to override the values created by the resource file by simply
resetting the appropriate fields in the TEDINFO structure. For ex
ample, a program can set the te_.txtlen field to whatever string length
is required and can set the te_ptext field to point to a string or space
allocated through M alloc(). A word of warning: the te-p text field
must point to a memory location reserved for the entered string and
the te-tx tlen must have a value less than or equal to the amount of
space reserved. If these two conditions are not met, you may alter
portions of your program that should not be changed.

After the initialization is a loop that displays the dialog box and
has the user enter the information. If the OK Exit button is used, the
data entered is shown and the loop continues. If the Clear Form
button is used, the form is reset and the loop continues. If the Quit
button is used, the loop exits and the program ends. The end of the
program uses the rsrc_free() function to release the memory used by
the resource file.

Function init_form () simply starts the addresses and lengths of the
text strings to be entered through the dialog box. The function
init_form () in the application functions is an example of how to
access objects within a tree. Because all object trees are stored as
arrays, the program needs the base address of the array. The base
address of the tree is obtained through the rsrc_gaddr() function.
This function has three parameters. The first parameter indicates the
object type to be located (see Table 10-1). The second parameter is the
index number of this structure. The last parameter is an address of
a pointer. The address of the located structure is placed in this
parameter upon return. In FORM the type of data structure searched
for is a tree. It has an index number ENTRYBOX defined in the header
file for the program. The address of the tree is put into variable
box, addr. Note: Make sure that the header file FORM.H is included
in the program. If it is not included, the program does not know the
index values of the object arrays.

Resourceful Programming 251

Table 10-1: Function rsrc_gaddrf) Data Structure Types

Parameter Value Type of Data Structure

0 Tree
1 OBJECT
2 TEDINPO
3 ICONBLK
4 BITBLK
5 String
6 Image data
7 ob_spec
8 te_ptext
9 te-ptmplt
10 te_pvalid
11 ib-pmask
12 ib-pdata
13 ib_ptext
14 bLpdata
15 ad-frstr—address of a pointer to a free string
16 ad-frimg—address of a pointer to a free image

Once rsrc_gaddr() returns the value, box_addr will have the base
address to an array that contains the objects In the ENTRYBOX tree.
Therefore, all the objects in the ENTRYBOX tree can be accessed
using the index values defined in the header file. The next eight lines
initialize the form to make sure that the length and initial text are
set properly. Each of the text entry fields is of type G-FTEXT. In
Chapter 9, an object of this type has an OBJECT structure and a
TEDINFO structure. In init_form (), the variable box_addr[LNAME].
ob_spec refers to the ob_spec field of the OBJECT structure in the
array for the last name entry. For a G-FTEXT object, the ob-spec field
points to a TEDINFO structure, so that a type cast of a TEDINFO
pointer is used for the ob-spec field. Within the TEDINFO structure,
the te-p text field is initialized to point to an empty string. This is an
example of how to get quite confused if you don’t keep the objects and
their types organized. With the liberal use of object names and good
comments in the program, you should be able to keep track of your
program’s flow.

The next function listed, get_form (), provides the series of routines
required to display a dialog box, get data from the user, and remove
the dialog box from the screen. Displaying a dialog box through the
AES follows a neat and orderly procedure. First, rsrc_gaddr() is called
to get the address of the object tree. Function form .cen ter() is called
to center the dialog box on the screen. The dialog box does not have
to be centered and can be placed anywhere you like. However, a

252 Atari ST

centered dialog box looks better. The form_dial() routine is called to
perform several utility functions. The first time it is called, it reserves
the part of the physical screen where the dialog box is to appear. This
simply prevents anything else from appearing on that portion of the
screen until the dialog box is completed. A second call to form_dial()
draws an expanding box, much like the one displayed when a floppy
disk is opened to display the directoiy. Function objc_draw() is called
to draw the dialog box and its contents. Function form_do() turns
control over to the AES, which then allows the user to interact with
the dialog box. When the user satisfies one of the exit conditions (by
pressing the Exit button or the Return key if a default button was
chosen), fbrm_do() returns and fonn_dial() are called a third time to
draw a shrinking box. Function form_dial() is called one more time
to free the screen area and redraw the screen at that location.

In get_form (), the first thing needed is the address of the dialog
box. Next for demonstration purposes, the current values in the text
fields are shown. These values are then cleared from the entry form.
The states of the selection boxes for income level and hobbies are all
set to NORMAL so that no buttons are shown as selected. It is
important to initialize the values of entry fields before displaying
forms such as this.

The function form_center() is then called. It is given the address
of the dialog box and returns the x and y coordinates and width and
height of the box. The coordinates are screen coordinates measured
in pixels. Once the program knows where the dialog box is located,
the first call to form _dial() can be made. The first parameter for
form _dial() determines what type of action is to be performed (see
Table 10-2). The values smallx, sm ally, smallw, and sm allh are not
used in this call. They are provided here as placeholders and are used
in other calls to fonn_dial(). The variables xbox, ybox, wbox, and hbox
determine the size and location of the dialog box. These values are
used to reserve screen space for the dialog box.

Table 10-2: Function form_jdial() Action Flags

Constant Name Value Action

FMD_START 0 Reserve screen space
FMD-GROW 1 Draw expanding box
FMD_SHRINK 2 Draw shrinking box
FMD_FINISH 3 Release screen space

The next call to form -dial () actually draws the expanding box using
the defined value FMD-GROW as the first parameter. The variables
smallx, smally, smallw, and smallh contain the size and location of

Resourceful Programming 253

the starting box size. Function form -dial() draws the image of a box
expanding from its small size and location to its large size and
location. The size and location of the small and large boxes are
completely arbitrary, and you may use any values that are appropriate
to your program. In FORM, the small box is located at the center of
the screen with no height or width.

The next step is to draw the dialog box on the screen using
objc_draw(). Given a tree address and the index to the first object to
draw (the first two parameters), objc_draw() will draw the object and
any number of levels of children (the third parameter) for that object.
The last four parameters Indicate the clipping rectangle to use. The
clipping rectangle in this case is the same size as the dialog box. An
object’s level in a tree is the distance from the root to the object For
example, the root itself is at level 0. The children of the root are at
level 1. The children of those objects are at level 2, and so forth. Given
a starting index value (here the start is the root but it can be
anywhere), objc_draw() draws the specified number of levels from
that point on. The value 10, used in FORM, is a relatively large value
and should cover most dialog boxes created. However, any value can
be used. A value of 32 or 64 should be sufficient to cover any tree you
would create. Function objc_draw() is quite flexible in what it draws.
By passing the address of a tree, it can draw the entire tree, the first
few levels, only one object or a few objects in the middle of the tree.

Once the dialog box is displayed on the screen, the program is ready
to accept data from the user. The AES function fbrm _do() causes the
AES to take control of the system and handles user interaction with
the dialog box. The AES controls what can be changed, edited, or
selected based upon the flags and states for each object When the
user selects the Exit button, function form _do() ends. The index of
the exit object selected is the value returned by form _do(). If the user
pressed the Return key to exit the index of the default exit object is
returned. In get_form (), the index of the exit object is saved in
variable earit_object

When the user has completed entering the information in the dialog
box, the application should remove the box from the screen. In this
case, form _dial() is called to draw a shrinking box and then called
again to release the area on the screen used by the dialog box.

The final action performed in routine get-form () is to reset the
state of the exit object When function form _do() returns control to
the program, all the object states, flags, and data are left unchanged
to allow the program to examine the exit condition and state of the
dialog box. When a user selects an exit object that object is put into
its selected state (reverse colors). The next time the dialog box is
displayed, this exit object appears selected. To avoid this confusion,
the exit object must be set back to its normal state. In get_form (),

254 Atari ST

once the dialog box is removed from the screen, the state of the exit
object is restored to NORMAL. After resetting the state of the exit
object, get_form () returns the index of the exit object to the calling
function.

Function 8how -info() displays the values selected by the user.
Primarily, the function demonstrates accessing the various fields of
the objects in the dialog box and how to interpret this information.

Program FORM is relatively simple compared to some of the
programs presented later.1 It is important to understand the field
access method and how an index is used to access a particular object
All these features are used in the remaining programs. Experiment
with program FORM. First investigate the fields of the OBJECT and
TEDINFO structures. Then change the template, validation, and text
strings through FORM and through the resource editor. Finally, try
changing the objects in the dialog box or even creating dialog boxes
of your own. FORM is a sample program to familiarize you about how
objects are related between the program and the resource file.

AES Naming Conventions

There is a certain pattern in the AES function names. The AES has
a large number of functions that are divided into libraries, or group
ings of functions that have something in common. The applications
manager deals with communications between applications and with
initializing and exiting applications. All applications manager routines
begin with “appl_”. The event manager, or event library, contains
functions to handle events that occur during the processing of a
program. Events control the flow of all programs. Event manager
routines begin with “evnt_”. The Jlle selector manager provides a file
selector dialog box and controls its activities. The file selector
manager consists of one routine, feel_input() discussed at the end of
this chapter. The Jorm manager controls forms: dialog boxes, alert
boxes, and error boxes. All of its routines begin with “form .”. The
graphics manager handles basic graphic output used by the AES. It
contains the actual routines that draw growing and shrinking boxes.
It also allows the application to make changes in how the mouse
cursor is displayed. All these routines begin with “grafL”. The menu
manager controls the menu bar, the menu item appearance, and
registers desk accessories in the menu. Its routines begin with
Um enu_”. The object manager allows an application to find objects,
draw objects, change and reorder an object tree, and add or delete
objects. All of its routines begin with “objc_”. The resource manager
handles loading and freeing of resource space in memory and deter

Resourceful Programming 255

mines addresses of resource objects. All of its routines begin with
“rare-”. The scrap manager is used to write information out to a
scrap file. It contains two functions: scrp—read() and scrp_w rite().
Finally, the window manager handles the creation, deletion, opening,
and closing of windows, as well as window maintenance. Its routines
begin with “w ind-”.

Using Menus___

The next two programs use a resource file called MENU.RSC. This
resource file contains two trees, a menu, and a dialog box. A menu is
also based on an object tree. The menu bar is the root Each menu
title is a child of the root The entries in each menu are children of
the menu title.

Load the resource editor program, and drag a menu icon into your
work area. Name this tree MAINMENU. Double-click this menu icon
to open i t As mentioned in Chapter 9, the menu bar should always
have the two titles Desk and File. Click the Desk option to display
this menu. On the first line, the option is labeled “Your message here."
The second entry is a line of disabled dashes. The next six entries list
“Desk Accessory 1” through “Desk Accessory 6.” The six desk acces
sory entries are used by the AES menu manager. When a desk
accessory is in the system, the menu manager changes one of the
entries in the Desk menu to the title of the accessory. This is done
without any action from your program. The first entry in the Desk
menu is usually changed to read “About Program...” This entry is used
to initiate a dialog box that provides information about the applica
tion. Under the File title, there is only one option called Quit The
menu part box should contain at least four items: a title object an
entry object a disabled dash, and a box.

For the MENU.RSC file, you need to change some of the existing
menu entries and create a new menu (see Figure 10-1). To create a

R | About HENU

Desk Accessory 1
Desk Accessory 2
Desk Accessory 3
Desk Accessory 4
Desk Accessory 5
Desk Accessory 6

Q I Qult|
S oap Ie

Door Bel I
Disable Door

y/ Uncheck I tea
Bel I

Figure 10-1 Menu Bar from MENU.RSC

256 Atari ST

new menu, drag a TITLE object from the parts box to the menu bar
and place it to the right of the File title. Double-click it, and change
the text to read “Sample.” Make sure you include the space before the
word so that it doesn’t run into the File title. Click OK and the new
menu title is displayed.

Click the Sample title once to select it. The title Is displayed in
reverse colors and has an empty entry box underneath it. This box
holds all entries for the menu, so it must be long enough and wide
enough for these entries. Resize the Sample entry box so that it
contains about three lines. The exact size is not that important right
now since you can resize the box again later.

To make an entry in a menu, drag an ENTRY object from the parts
box to the first line of the menu’s entry box. The left edge of the
ENTRY object should be just inside the left edge of the entry box.
Repeat this procedure two more times on the next two lines for the
Sample menu. You now have a menu with three titles called Desk,
File, and Sample. Under the Sample menu there is an entry box with
its first three lines reading “ENTRY.”

To change the text of an entry, double-click it, and change the text
line. Double-click the top entry, and label it “Door Bell.” For aesthetic
purposes, most menu entries have at least two spaces before the text
The first space is used to hold a check mark (if necessary), and the
second space is used to allow room between the check mark and the
text Change the text of the second entry to “Disable Door Bell,” and
change the text of the third entry to “Uncheck Item.” For the third
entry, also select the CHECKED flag to turn on the check mark.

Return to the Desk menu. Change the first entry line to read “ A |
About MENU”. The letter “A” at the start of the entry signals the user
that the Control-A keyboard entry performs the same function as
selecting this item from the Desk menu. Go to the File menu and
change the Quit option to read “ Q | Quit.” The user is able to press
Control-Q instead of clicking the Quit option. You now have the
completed menu (see Figure 10-1).

Close the menu to return to the main window. Drag a dialog box
to the work area and call it INFOBOX. This is the dialog box displayed
in response to the About MENU entry in the Desk menu. Create the
text using STRING objects as shown in Figure 10-2. Add a button
with the OK text. Make sure the button is set as SELECTABLE,
DEFAULT, and EXIT.

The final step in creating this resource file is to name the objects
used in the program. The only objects of concern in this file are in
the menu. Return to the menu window and select the About MENU
entry in the Desk menu. Name this object INFO. Go to the File menu,
select QUIT, and name it QUIT. Select the title for the Desk menu and
name it DESK. Name the File menu title FILE. The Sample menu title

Resourceful Programming 257

Program F1EHU

This program demonstrates the use of a
menu within an app lication .

Figure 10-2 Dialog Box INFOBOX from MENU.RSC

is to be named SAMPLE. Finally, name the Door Bell entiy as
SAMPLE 1, the Disable Door Bell entiy as SAMPLE2, and the Uncheck
Item as SAMPLE3.

This completes the resource file for programs MENU1 and MENU2.
Save this resource file in the file called MENU.RSC.

Program MBNU1

Program MENU1 provides an introduction to using a menu in your
program. The menu bar is one portion of the screen image handled
by the AES. A program can request a new menu bar to be displayed
and can change how the items in the menu are displayed. However,
any user interaction with the menu is handled by the AES. Whenever
the mouse touches one of the menu titles, the AES immediately takes
control and displays the drop-down menu. The AES retains control of
the system until the mouse button is pressed. Pressing the mouse
button can signal a menu selection if the mouse is located on an
active menu item. Once the mouse button is pressed the screen image
beneath the drop-down menu is restored. If a menu item is selected,
the AES communicates the selection to the application by sending it a
message as described in Chapter 9.

Receiving a message is an event. To receive the message, the
program has to wait for a message event to occur. Only when a
message event is received should the program try to read a message.
Waiting for a message event is done through the evnt_m esag() func
tion from the event manager. This function has one parameter—a
pointer to an array of eight WORDs. In essence, this array provides a

258 Atari ST

16-byte buffer for the message. The message buffer has a predefined
format depending upon the type of message sent Element 0 of the
array contains the type of message sent Element 1 is the ID number
of the application that originates the message. Element 2 contains
the message length in excess of 16 bytes. If this value is 0, the
message is less than or equal to the basic 16 bytes. If the message is
larger than 16 bytes, the value in element 2 is equal to the message
length minus 16. In any case, the first three elements of the 16-byte
message buffer are always used. Any excess bytes must be read using
the appLread() function described in Appendix A. The meaning of
the remainder of the message buffer depends upon the type of mes
sage sent (see Appendix B for description of messages).

Program MENU1 is only interested in one type of message—a menu-
selected message. The predefined constant MN_SELECTED is the
message type used to indicate that a menu item has been selected by
the user. For this type of message, element 3 of the message buffer
array contains the index number of the menu title object Element 4
contains the index number of the menu item selected. For example,
if the user selects Disable Door Bell, element 3 has the index number
of title Sample, and element 4 has the index number of the entry
Disable Door Bell.

Look at program MENU1 in Listing 10-2. In function m ain(), the
initialization is the same as in program FORM except that the
resource file loaded is MENU.RSC. The address of the menu tree is
retrieved and function m enu_bar() is called to display the new menu.
Function m enu-bar() has two parameters. The first is the address of
the menu. The second is whether the menu is to be displayed. In some
cases, you may want to make the menu bar invisible until the user
performs some action like changing disks.

UwHng 10-2 Program MENU

/ X

MENU1.C ClBnu demonstration program

This program shows the use of menus in an application.
X X X X X X X X X X K X K X X X X X X K X X X X X X X X X X X X X X X X X X /

/X X X X X X X K X X X X X X X X X X X X X X X X K X K X X X

System Header Files & Constants
X / "

ttinclude <stdio.h>
ttinclude <osbind.h>
ttinclude <gemdefs.h>
ttinclude <obdefs.h>

Standard TO
* * GEMDOS routines * /

y* GEM AES
GEM constants

Resourceful Programming 259

((define FALSE 0
((define TRUE !FRLSE

Listing 10-2 (continued)

/xx

GEM Application Gv/erhead
xx/

Declare global arrays for VDI.
typedef int WORD; ' * WORD is 16 bits */
WORD contrl[12], '* VDI control array *'

intout(12B], intln[12B], /* VDI input arrays
ptsin(12Q], ptsout[128]; VDI output arrays

WORD screen_vhandle,
screen_phandle,

screen_rez,
color_screen,

x_max,

y_max;

** virtual screen workstation
/ * physical screen workstation

screen resolution 0,1, or 2 *'

s* flag if color monitor #/

/ * max x screen coord */
max y screen coord #/

✓xx

Application Specific Data
X /

((Include 'menu.h*

char dlng_dong[] = { /* array for Dosound *'

0, 239, 1, 0, 7, 62, 8, 0, 130, 2S,

0, 63, 1, 1, 130, 40, 7, 63, 0, 0, 255, 0

>;

xxx

GEM-related Functions
X /

WORD open—vwork(phys_handle)

WORD phys-handle;
✓xx

Function: This function opens a virtual workstation.

Input: phys-handle = physical workstation handle
Output: Returns handle of workstation,
xx/

{
WORD work-in[11],

work_jout[57],
new_handle; handle of workstation

Int i;

260 Atari ST

for (1 = 0 ; i < 10; 1++) /* sat for default values
uork_in[i] = 1;

work_ln[10] = 2; /* use raster coords

neu_hartdle = phys_handle; / * use currently open ukstation »/
v_jopnvuk(work_in, &neuiL_handle, uork_out);
return(neu_handle);

}

set_screen_attr()
/xx

Function: Set global values about screen.

Input: None. Uses screen-vhandle.
Output: Sets x_max, y_max, color^Bcreen, and screen_rez.
xx/

<
UORD uork_jout[57];

vq_extnd(screen_vhandle, 0, uork_out);
x_max = uork_jout[0];
y_max = work_outfl];

screen_rez = 6etrez(); s* 0 = lou, 1 = med, 2 = high
color_screen = (screen_rez < 2); mono 2, color 0 or 1 */

)
/xx

Rpplication Functions
X /

do_di a 1og(box_l ndex)
UORD box_index;
/ ■ X X X X X X X X X X X X X X X X X X X K X X X X X X X X X X X X X X X X X K X X X X X X X X X X X X

Function: Display a dialog box.

Input: box_addr = index of dialog box
Output: Returns index of object used for exit.
X /

<
UORD xbox, ybox, hbox, ubox;

UORD smallx, smally, smallu, smallh;

UORD exlt_object;
OBJECT *box_addr;

'* get address of box */’
rsrc_gaddr(0, box_index, &box_addr);

<'* get size and location of a box centered on screen *'
form_center(box_addr, &xbox, &ybox, &ubox, &hbox);

smallx = xbox + (ubox '2) ;
smally = ybox + (hbox / 2);

smallu = 0;
smallh = 0;

Listing 10-2 (continued)

Resourceful Programming 261

/* reserve area on screen for box display

f orm_di a 1 (FMD—START,
smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

drau an expanding box *'

form_di a1(FMDJGROM *
smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

/* draw dialog box *'
obJc_drau(box_addr, 0, 10, xbox, ybox, ubox, hbox);

f* handle dialog input */
exit_obJect = form_do(box—addr, 0);

s* drau a shrinking box
form_dlal(FMD_SHRINK,

smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

/ * reserve area on screen for box display *s

form_dial(FMD-FINISH,
smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

/ * reset exit object state to unselected */

box—addr[exit_obJect].ob-state = NORMAL;

return(exit_object);

>

Listing 10-2 (continued)

/xx

Main Program
X K X X X X X X X X X X X X X X X X X X X /1

main()

<
Int ap_id; application init verify *s

WORD gr_wchar, gr_hchar
gr_ubox, gr_hbox;

values for VDI handle *•'

/ * neu data variables
OBJECT *menu_addr;

WORD msg-Jauf [8];

✓x address for menu
message buffer */

262 Atari ST

Initialize GEN Access
a****#****#*##*#*###**#***###****########*#*****##/

Listing 10-2 (continued)

ap_id = appl_init(); /* Initialize RES routines

if (ap_id < 0) * * no calls can be made to RES

{ /* use GEMDOS */
Cconws(*»**) Initialization Error. <***\n');
Cconus("Press any key to continue.\n*);
Craucin();

exit(-l); ' * set exit value to show error */

)

screen_phandie = Get handle for screen

graf_handle(&gr_uchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen_vhandle = open_vuork(screen_phandle);

set_screen_attr(); Get screen attributes

y***
Rpplication Specific Routines

***/

if (!rsrc_load(*MENU.RSC*))

<
form_jalert(l» '[0][Cannot file MENU.RSC file|Exiting __][0K]");
exit(l);
exit(l);

>

get address of menu
rsrc_gaddr(0, MRINMENU, &menu_addr);

s* display menu bar
menuJbar(menu^addr, TRUE);

/* wait for a message indicating a menu selection *s
for(;;) continue loop until quit */

<
ev/nt-mesag(msg buf);
if (msg_buf[0) != MNJSELECTED) not a menu message

continue; /* then ignore */
if (msg_buf[4] == QUIT)

break; '* exit loop
suitch(msg_buf[4]) / * find object index

(
case SRMPLE1: ring bell

Dosound(ding-dong);
break;

Resourceful Programming 263

case SRMPLE2: change item 1 state
if (menu_addr[SRMPLEl].ob_state == DISRBLED)

<
menu_addr[SRMPLEl].ob_state = NORMRL;

s trcpy(menu_addr[SRMPLE2].cb—spec,

' Disable Door Bell*);

>
else

i
menu_addr[SRMPLEl].ob_state = DISRBLED;
strcpy(menu-jaddr[SRMPLE2] .ob-jspec,

‘ Enable Door Bell*);

>
break;

case SRMPLE3: ' * check or uncheck Item
if (menu_addr[SRMPLE3].ob-jstate == CHECKED)

<
menu_addr[5RNPLE3].ob—state = NORMRL;

strcpy(menu_addr[SRMPLE3].ob_spBC,
■ Check item');

>
else

<
menu_addr[SRMPLE3].ob_state = CHECKED;

s t rcpy(meniLjaddr[SRMPLE3].ob_spec,
* Uncheck item’);

>
break;

case INFO: display program info *s
do_dialog(INFOBOX);

break;

default:
break;

>
✓x reset title state

menu_addr[msgJbuf[3]].ob_state = NQRMRL;
menu_bar (menu-jaddr, TRUE);

) end infinite loop

/xxx

Program Clean-up and Exit
X /

/ * Walt for keyboard before exiting program
rsrc_free();
v_clsvwk(screen_vhandle); s * close workstation #/
appl_exit(); /* end program

Listing 10-2 (continued)

264 Atari ST

After displaying the new menu bar, MENU1 enters an infinite loop.
From this point on, all program flow is controlled by events. When an
event occurs, the program responds with the appropriate action and
waits for the next event. Only when an event indicating an exit
condition occurs (such as selecting the Quit option from the menu)
does the program exit this infinite loop.

The first function call within the loop is a call to evnt_m esag().
When the program reaches this statement during execution, it waits
until any message event occurs. Any other type of event (such as a
button pressed down or a mouse movement) is ignored because the
program is only waiting for a message to be received. When a message
is received, the message buffer is filled and the program continues.
In program MENU1, if the message is not a menu selection message
(that is, msg_buf[0] is not equal to MN-SELECTED), the program
waits for another message event

If a menu-selected message is received, element 4 of the message
buffer array is checked to see which menu item is selected. If the
menu item Quit is selected, the program breaks out of the loop and
exits to the desktop. Otherwise, a switch statement on this message
array element selects the appropriate action. If the selection is item
SAMPLE 1 (Door Bell) the do_sound() function gives the common two-
tone door bell sound.

If the item is SAMPLE2 (Disable Door Bell), the program checks the
current state of the Door Bell entry. If the door bell is currently
disabled, it is enabled and item SAMPLE2 is set to read “Disable Door
Bell” so that it can be disabled the next time through. If the door bell
is currently enabled, it is disabled and item SAMPLE2 is set to read
“Enable Door Bell.”

In case SAMPLE3, a similar toggle situation occurs. If the item is
currently checked, the item is unchecked. If the item is currently
unchecked, the item is checked. The text of the selection is changed
accordingly.

In case INFO, the user is requesting information about the menu
program. Function do_dialog() in the application functions section
of MENU1 is called with parameter INFOBOX. This function is simply
a generalized version of the get_info() function used in program
FORM.

If the item selected does not match any of the cases, the default
case ignores i t The last two statements in the loop reset the title of
the selected menu item. When a menu item is selected, the AES
removes the drop-down menu from the screen and leaves the menu
title in its selected state (that is, reverse colors). For example, if you
touch the File menu with the mouse at the desktop, the title “File” is
placed in a selected mode and stays that way until the operation has
been completed. When the AES reports the message to your applica-

tion, the title is already in its selected state. When your program has
completed the selected operation, it must reset the menu title state
back to the normal state. When the menu object state is changed, the
menu bar must be redisplayed to show the title in its normal state.
Element 3 in the message array contains the index to the title of the
menu item selected.

MENU1 does not wait for any keyboard events so nothing happens
when keys are pressed. Your program must handle the special
shortcut key codes set up in the resource file such as the Control-A
to get program information and Control-Q to quit Program MENU2
adds this feature to MENU1. Look through MENU1 before continuing.
Make sure that you understand the concept of receiving messages
and how the elements of the message array are used. Then continue
to the next program.

Resourceful Programming 265

Program MENU2

Program MENU2 is an enhanced version of MENU1. MENU2 even
uses the same resource file as MENU1. MENU2, however, handles
more events. Specifically, MENU2 handles both message and keyboard
events.

In function main() in MENU2 (see Listing 10-3), the initialization
and cleanup are the same as in MENU1. The primary enhancement
over MENU1 is that the control loop for event processing has been
moved out of main() and into its own function called control().
Function control() is used throughout the rest of this book.

Listing 10-3 Program MENU2
✓a***

MENU2.C Menu demonstration program (version 2)

This program shous the use of menus in an application

with multiple events,
i t * * * * * * # * # * # * # * * * * * * * /

/ « » * K * * * X » « X * * * * * * * » * * * * * * * * * « * * * * * * » * * * * * * * * * * * * * «

System Header Tiles & Constants
»***»»»##»***»»»*»*»»***»***###«*»#**»**»«********✓
((include <stdio.h> '* Standard 10
((include <osblnd.h> GEMDOS routines
((include <gamdefs.h> '* GEM RES
((include <obdefs.h> / * GEM constants

((define FRLSE 0
((define TRUE 'FALSE

266 Atari ST

✓xx

GEM Application Overhead
xx/

Listing 10-3 (continued)

'* Declare global arrays for VDI.
typedef int WORD; WORD is 16 bits */

WORD contrl[12], s* VDI control array */
lntout[126], lntin[120], s * VDI input arrays
ptsln[12B], ptsout[12B]; /* VDI output arrays

WORD screen_vhandle,

sc reen_phand1e,

screen_rez,
color^screen,

x_max,
y_max;

'* virtual screen uorkstation */
'* physical screen uorkstation */

y* screen resolution 0,1, or 2 *■'

s* flag if color monitor */

s* max x screen coord
s* max y screen coord

✓xx

Application Specific Data
X /

ttinclude 'menu.h*

ttdefine QUIT_KEY 0x1011 ■'* control-Q to quit *s
ttdefine INFO_KEY 0xle01 s* control-A for about Info

char ding_jdang[] = { s* array for Dosound
0, 238, 1, 0, 7, 62, 8, 8, 130, 25,

0, 63, 1, 1, 130, 40, 7, 63, B, 0, 255, 0

>;

/ X X X X X X X X X X X X X K X

GEM-related Functions
X X X K X X X X X X X X X X X K X X X X X X X X X X X X X X X X K X X X X X X X X X X X X X X X X X /

WORD open_vuork(phys_handle)
WORD phys-handle;
✓ X

Function: This function opens a virtual uorkstation.

Input: phys-handle = physical uorkstation handle
Output: Returns handle of uorkstation.
X /

i
WORD uork_in[ll],

ujork_out[57],

nsw_handle; handle of uorkstation #/
int i;

for (i = 0; 1 < 10; i++)
uork_ln[i] = 1;

uork_in[10] = 2;

/* set for default values

/ * use raster coords

Resourceful Programming 267

neu—handle = phys_handle; / * use currently open ukstatlon

v_Dpnvuk(uork_in, &neu_handle, uork_out);

return(neu_handle);

>

set_screen_attr()
✓ X

Function: Set global values about screen.

Input: None. Uses scrBen_vhandle.
Output: Sets x_max, y_max, color^screen, and screen_rez.
**/
i
WORD uork_jout[57];

vq_0xtnd(screen_vhandle, 0, uorl<_out);
x_max = uork_out[0];

y_max = uork_out[l];
screen_rez = Getrez(); ✓* 0 = low, 1 = mpd, 2 = high */
color_screen = (screen_rez < 2); mono 2, color 0 or 1 */

>

/**
Application Functions

* /

do.jd i a 1 og (box_l ndex)

UORD box_index;/**
Function: Display a dialog box.
Input: box-jaddr = index of dialog box

Output: Returns index of object used for exit.
X /

<
UORD xbox, ybox, hbox, ubox;

UORD smallx, smally, smallw, smallh;

WORD exlt^jobject;

OBJECT *box_jaddr;

get address of box
rsrc_gaddr(0, box_index, &box_addr);

get size and location of a box centered on screen
form_jcenter(box_jaddr, &xbox, &ybox, &ubox, &hbox);
smallx = xbox + (ubox ''2);

smally = ybox + (hbox ^ 2) ; „
smallu = 0;
smallh = 0;

s* reserve area on screen for box display */
form_jdial (FMD—STRRT,

Listing 10-3 (continued)

268 Atari ST

Listing 10-3 (continued)
smallx, smally, smallu, smallh
xbox, ybox, ubox, hbox);

/ * draw an expanding box

form_dial(FMDJBRDW,
smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

/* drau dialog box

objc_drau(box_addr, 0, 10, xbox, ybox, ubox, hbox);

s * handle dialog input
exit_object = form_do(box_addr, 0);

✓* draw a shrinking box

fornujdial (FMD_SHRINK,
smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

/* reserve area on screen for box display *s

form_dial(FMD-FINISH,
smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

/* reset exit abject state to unselected
box_addr[exit_object].ob—state = NORMRL;

control()
/************»******************##*#***************
Function: Master control function.

Input: None. Program initialization must be done before

Output: None. Returns for normal program termination.
**/

return(exit_object);

>

entering this function.

{
OBJECT *menu addr;
WORD mevx, msvy,

/* address for menu

/* evnt_multi parameters *s
mevbut,
keystate,
keycode,

mbreturn,

msg-buf[8]; /* message buffer *s

/* evnt_multl result */
/* keyboard menu title selected

WORD event,
menu_index;

get address of menu */
rsrc_gaddr(0, MRINMENU, &menu_addr);

Resourceful Programming 269

✓* display menu bar
menu_bar(menu—addr, TRUE);

uait for a message indicating a menu selection
for(;;) '* continue loop until quit

<
event = evnt_multi((MLLKEYBD | MU_MESRG),

Listing 10-3 (continued)

0. /* tt mouse clicks

0. ✓* mouse buttons of interest *s

0. ✓* button state

0. /* first rectangle flags

0, 0, /* x,y of 1st rectangle

0, 0, /* height, uldht of 1st rect

0, /* second rBctand flags */

0, 0, /* x,y of 2nd rect **

0, 0. /* u,h of 2nd rect

msg_buf, /* message buffer */

0, 0, /* lou, high uords for timer *s

&mevx, &mevy. /* x,y of mouse event

&mevbut. '* button state at event

&keystate. /* status of keyboard at event

&keycode. /* keyboard code for key pressed
&mbreturn); /* tt times mouse key enter state

if (event & MU_MESRG)

<
if (msg_buf[0] != MN_SELECTED)

continue;
if (msg_buf[4] == QUIT)

break; /* exit

suitch(msg_buf[4]) / * find

<
case SRMPLE1; s* ring

Dosound(ding-dong);

break;

case SRMPLE2: change Item 1 state */

if (menu.-addr [SRMPLEl].ob-State == OISRBLED)

<
menu_lenable(menu_addr, SRMPLE1, 1);

menu—text(menu—addr, SRMPLE2,

" Disable Door Bell');

>
else

<
menu_lenable(menu_addr, SRMPLE1, 0);
menu_text(menu_addr, SRMPLE2,

‘ Enable Door Bell’);

>
break;

not a menu message «/

then ignore

loop *s

object index

bell */

270 Atari ST

Listing 10-3 (continued)
case 5AMPLE3: check or uncheck Item *s

If (menu—addr[SAMPLES].ob-state == CHECKED)

i
menu_i check(menu—addr, SAMPLES, 0);

menu—text (menuuaddr, SRMPLE3, ' Check Item1);

>
else

<
menu—1 check(menu-addr, SAMPLES, 1);
menu—text(menu-jaddr, SAMPLE3, ’ Uncheck item'];

>
break;

case INFO: display program info
do_dialog(INF0B0X);

break;

default:
break;

>
✓* reset title state

menu—tnormal(menu—addr, msg_huf[3], 1);
} s* end message handler *s

if (event & MLLKEYBD)

<
if (keycode == QUIT-KEY)

<
menu—index = FILE;

menu.tnormal(menu_addr, menu—index, 0);
break;

}

sultch(keycode)

<
case INF0_KEY:

menu—index = DESK;

menu—tnormal(menu_addr, menu_index, 0);
do-jdlalog(INFOBOX);
break;

default:
break;

>
menu—tnormal(menu-addr, menu—index, 1);

} end keyboard handler */
} s * end infinite loop

return;

) end function

Resourceful Programming

/**
Main Program

xx/

maln()

<
int ap_ld;

WORD gr_uchar, gr_hchar,

gr_ubox, gr_hbox;

✓xx

Initialize GEM Access
K K X X X X X X X K t t K X . /

ap_ld = appl_inlt(); /* Initialize AES routines

if (ap_id < 0) '* no calls can be made to AES * '
{ /* use GEMDOS */

Cconus("***> Initialization Error. <***sn‘);
Cconu8('Press any key to continue.Vi');
Crawcln();

exit(-l); s* set exit valuB to shou error *s

>

screen_phandle = Get handle for screen */
graf_handle(&gr_uchar, &gr_hchar, &gr_ubox, &gr_hbox);

screen_vhandle = open_vuork(screen_phandle);
set_screen_attr(); Get screen attributes */

/xxx

Application Specific Routines
X X

if (!rsrc_load(,MENU.RSC'1))

<
form_alert(l, '[0][Cannot file MENU.RSC flle|Exiting ...][0K]

exit(l);

}

control();

/xxx

Program Clean-up and Exit
X /

</* Malt for keyboard before exiting program *s
rsrc_free();
v_jclsvuk(screen_vhandle); close workstation
appl_exit(); s * end program **

>
/ X /

Listing 10-3 (continued)

/ * application init verify *s

* * values for VDI handle *s

272 Atari ST

Function control() is basically the same set of procedures used in
MENU1. First, the address of the menu is obtained and the menu is
displayed. Then an infinite loop is used for event processing. The first
statement in the loop is a call to even t_m u lti() rather than
event_m esg(). Function event_m ulti() waits for a specified event or
combination of events. There are button events, keyboard events,
message events, mouse events, and timer events. Button events indi
cate that one or more of the mouse buttons have been pressed.
Keyboard events indicate that a key on the keyboard has been
pressed. Message events are sent from the AES to the application or
from one application to another. Mouse events occur when the mouse
enters or leaves a particular area on the screen. A rectangle is used
as a parameter to specify the sensitive area. Timer events let a certain
amount of time pass before an event happens.

It is not possible to use individual event functions when a program
must be ready to accept any of a set of events to occur. For example,
a program must wait for a button, a keypress, or a message event
These events may occur in any order. If the program uses an
evnt_button() function to wait for the mouse button, followed by an
evnt_keybd() function to accept the keypress, and then an
evnt__mesag() function, only one event is accepted at a time. When
this program executes, it reaches the evnt-button() function and
waits for a mouse button to be pressed. Regardless of the number of
keypresses or messages that occur, program execution ceases until
a mouse button is pressed. To avoid this single event situation, a
program must use the evnt_multi() function.

The evnt_m ulti() function waits for any of a set of events. By
specifying the types of events to wait for, a program can accept the
first event that comes along and process i t Take a look at the
evnt_m iilti() call in function control(). Note that it has quite a
number of parameters: 23 to be precise. The first parameter is a flag
indicating which types of events to wait for and accept The event
types are defined as constants in the GEMDEFSJH file (see Table
10-3). Each event type is associated with a different bit in this

Table 10-3: Event Type for Function
evnt_multi()

Constant Name Value Event

MUJKEYBD 0X01 Keyboard
MUJBUTTON 0X02 Mouse button
MU_M1 0X04 Mouse event 1
MUJM2 0X08 Mouse event 2
MU-MESAG 0X10 Message
MU-TIMER 0X20 Timer

Resourceful Programming 273

parameter. By ORing the event types together you can wait for any
combination of events.

The next parameter in the evnt_m ulti() function is the number of
mouse clicks that cause a button event. The value of this parameter
determines the number of clicks necessary to initiate the event The
time interval allowed between the clicks is determined by the control
panel accessory. The third parameter lists the mouse buttons of
interest The least significant bit (bit 0) corresponds to the furthest
left mouse button. The next bit corresponds to the next button to the
right and so on. If a bit for a particular button is not set that button
is ignored. The fourth parameter is the button state. It is constructed
in the same manner as the previous parameter. If the bit is set to 0
for the button state, the event is looking for an “up” condition on the
button. If the bit is set to 1, the event looks for a “down” condition
on the button.

A mouse event occurs when the mouse cursor enters or leaves a
specified area on the screen. Two different areas may be listed,
corresponding to a mouse event 1 or a mouse event 2. The fifth
parameter of evnt_m ulti() is a flag for the first rectangle. If this value
is 0, the mouse event 1 is generated upon entry of the mouse into
the rectangle. If the value is 1, the event occurs upon exit of the
rectangle. The next two parameters give the x and y values for the
upper left comer of the first rectangle (in screen coordinates). The
following two parameters are the height and width (also in screen
coordinates) of the first rectangle. Hie next five parameters are the
flag, the x and y coordinates, and the width and height of the second
rectangle.

The next parameter in evnt_m ulti() is a pointer to the message
buffer array. In the case of a message event this buffer is filled with
the message.

The next two parameters contain the number of milliseconds to
wait for a timer event The number of milliseconds is essentially a
long value. A long value can be divided into two words: a high word
and a low word. The first parameter listed for evnt_m ulti() contains
the low word value and the second parameter the high word value.

The next two parameters hold the returned values of the x and y
coordinates (in screen coordinates) of the mouse when a mouse event
has occurred. The next parameter holds the button states at the time
of a button event This value has the same format as the button-state
parameter mentioned above.

The parameter keystate holds the status of the keyboard, specifi
cally the right shift, left shift, Control, and Alternate keys. These
correspond to bits 0 through 3, respectively. The bits are set to 1 if
the particular key is depressed at the time of the event The keycode
variable returns the keyboard code for the key pressed in a keyboard

274 Atari ST

event. The keycodes are listed in Appendix C. The last parameter
holds a value returned. This value indicates the number of times the
mouse button was clicked.

The evnt_m ulti() function also returns a value. This value cor
responds to the event that occurs. In program MENU2, this value is
stored in variable event.

When evnt_m ulti() is called, the application waits for the specified
events to occur. MENU2 waits for a keyboard event and a message
event The message event is needed because the user can select a
menu item. The keyboard event is used to collect any possible
keyboard shortcut commands.

If a message event occurs, processing proceeds exactly as in
MENU1. However, this program uses menu manager functions to set
the text and state of the menu selections; for example, m enu_ienable()
is used to enable a menu item and m enu_text() is used to set the
text of an item. Function m enu_icheck() is used in case SAMPLE3
is used to set the checked status of the menu item. At the end of the
switch statement the function m enu_tnorm al() is used to reset the
menu title to its normal state. Note that the menu bar does not have
to be redrawn in this case.

If a keyboard event occurs, the program checks if the Quit key is
selected. If not the program checks if the Info key is selected. Even
though there is only one condition to accept a switch statement is
used in con trol() to make it a more generalized control function. In
a keyboard event that provides for quick menu access, the menu title
is not highlighted. To remain consistent with the operation of the
GEM user interface, the program should highlight the menu title of
the item selected. Use m enu_tnorm al() to set the highlight The
variable m enu_index keeps track of which menu title index is high
lighted. When event processing is completed, the menu title can be
reset to its normal state.

MENU2 demonstrates how to use the evnt_m ulti() function as well
as some menu manager functions. Work with MENU2, and add some
more keyboard shortcuts. At this point you are ready to create a basic
GEM application.

Program LISTER

Now that you have created programs that use forms, menus, and
events, you are ready to write a small application program. Some of
the points you should look at in program LISTER are the consistency
of the user interface, the organization of the control() function, the
modularity of design, and the use of the file selector function,
fseL_input().

Resourceful Programming 275

Program LISTER is a program that displays the contents of a disk
file. Most programmers use two different formats for the file display.
One format simply lists the contents of the file on the screen. This
format is useful for files that contain text only (characters with ASCII
values from 32 through 127). For other types of files such as program
or resource files, this format would be meaningless because the
display would be a series of random characters. In this case, the
second display format, called a dump format, is used. A dump of a file
consists of a sequence of lines divided into two parts. Each line
displays 16 bytes of the file. On the left side of the line is the
hexadecimal representation of the byte values. On the right side of
the line is the character (also called graphics) representation of each.

Program LISTER allows the user to display a file in either format
To operate this program, the user selects one display format from the
menu. The program displays the file selector dialog box provided by
the fseL-input() function so that the user can choose the file to be
displayed. LISTER then displays the selected file in the appropriate
format If the file display spans across more than one screen, the
program pauses and waits for the user to press a key. When the file
display finishes, the program returns to the menu bar.

The resource file for LISTER is similar to the resource file used for
programs MENU1 and MENU2. The LISTER resource file contains one
menu and one dialog box. Figure 10-3 shows the menu bar for
program LISTER The menu icon is called MAINMENU. Create this
menu as shown in the figure. Name the About LISTER selection in
the Desk menu desk object INFO. For the File menu, give the title File
the name FILE, label the Text Display selection TEXTFILE, label the
Dump File selection DUMPFILE, and label the Quit selection QUIT.

The dialog box for LISTER is shown in Figure 10-4. This box simply
contains a brief information statement about the program. The box
is named INFOBOX.

^ __________________
About LISTER

Desk Rccessory 1
Desk Rccessory 2
Desk Rccessory 3
Desk Rccessory 4
Desk Rccessory 5
Desk Rccessory 6

| Fi 1m
T 1 Text Display
D 1 Duap Fi le
Q 1 Quit

Figure 10-3 Menu Bar MAINMENU for Program LISTER

276 Atari ST

Rbout LISTER

This program mi l l d isplay a f i l e on the
screen in e ither text format or using
a hexadecimal dump format.

Figure 10-4 Dialog Box INFOBOX for Program LISTER

Program LISTER has a new GEM application overhead variable (see
Listing 10-4). The variable mJbidden, initially set to FALSE, keeps
track of the current visibility status of the mouse cursor. The mouse
cursor can be either visible (shown on the screen) or invisible. To
change the status of the mouse cursor, two new functions have been
added to the GEM-related functions: hide_m ouse() and show_m ouse().
In hide_mot2s e (), if m -hidden is FALSE (meaning the mouse cursor
is currently visible), a call is made to the AES graf_m ouse() function
to hide the mouse cursor and mJhldden is set accordingly. Function
show _m ouse() performs the opposite task to make the mouse cursor
visible. It is possible to call the graf_m ouse() function directly to hide
and show the mouse cursor. However, the graf_m ouse() function can
be nested. If you make three consecutive calls to gra£_mouse() to
make the mouse cursor invisible, you need three consecutive calls to
gra£_mouse() to make the mouse cursor visible again. Trying to keep
the calls to gra£_mouse() balanced can be confusing in a lai*ge
program. To avoid this problem, the functions hide_m ouse() and
show_m oii8e() and the global variable m -hidden have been added to
the GEM sections of the program. If the mouse cursor is already
hidden, a call to hideL-inouse() does nothing. If the mouse cursor
is already visible, a call to show_m ouse() does nothing. Only if the
mouse cursor is in the opposite state do the functions change the
visibility state. Further discussion of the gra£_xnouse() function is
presented in Chapter 11.

Resourceful Programming

LISTER.C File display program

This program uill display a disk file in text or hexadecimal

format.
**/
✓xxxxxx**»»*******xxx#****xxxxxxxx»**»x«»**»*«»##**

System Header Files & Constants
X * X * « * X X X X X X X X X * X * X X * X * K * * t t * * » * X * X * « K X * * * * * * * * » * « * /

Listing 10-4 Program LISTER

ttinclude <stdio.h>

ttinclude <osbind.h>
ttinclude <gemdefs.h>

ttinclude <obdefs.h>
ttinclude <errno.h>

Standard ID
/* GEMDOS routines #/
'* GEM RES «/

' * GEM constants
s * errno declaration

ttdefine FRLSE 0
ttdefine TRUE ! FRLSE

'* The Megamax compiler uas giving an error uhen the FILE
type definition uas used. To avoid this problem, the
FILE type uas redefined as type FP. This error occurred

in this program ONLY.
*✓
typedef FILE FP;

/ X X X X X X X X X X X X X * * X X X X X X X X X X X X X * * * « * t t X X X X X X X * X « X X X X X X

GEM Rpplication Overhead
X /

s * Declare global arrays for VDI. */
typedef int WO R D ; * * WORD is 16 bits

WORD contrl[12], VDI control array **
intout[12B], intin[12B], VDI input arrays
ptsin[128], ptsout[128]; VDI output arrays *'

WORD sc reen_vhand1e ,

sc reen_phand1e ,

screen_rez,

color_screen,
x_max,
y_max,
m_hldden = FRLSE;

/* virtual screen uorkstation */
physical screen uorkstation

/* screen resolution 0,1, or 2

flag if color monitor #/
* * max x screen coord

max y screen coord
mouse visibility status

✓ X

Rpplication Specific Data
X /

ttinclude * lister.h*
ttdefine QUIT_KEY 0x1011 control-Q to quit

278 Atari ST

ttdefine DUMP-KEY 0x2004

ttdefine TEXT-KEY 0x1414

Listing 10-4 (continued)
control-D for dump file */

control-T for text file */

ttdefine LINE-FEED 0x0a
ttdefine ESCAPE 27
ttdeflne CR 13

int max_llnes = 23;

char def^search[32] =
■A:*.*',

sel_file[16],

file_name[64];

number of lines to print

before pausing **

/* default search path **

file selected
'* full file name to open */

/xx

GEM-related Functions
xx/

UORD open—vuork(phys-handle)
UORD phys-handle;
/xx

Function: This function opens a virtual workstation.
Input: phys-handle = physical workstation handle

Output: Returns handle of uorkstation.
X K X X X X X X X K K X /

<
UORD work-in[11],

work—out[57],

new_handle; handle of uorkstation */
int i;

for (i = 0; 1 < 10; i++)
uork_in[l] = 1;

uork—in[10] = 2;

neu_handle = phys_handle;

v_opnvwk(work_in, &new_handle, work_out);
return(new_handle);

'* set for default values */’

s * use raster coords

/* use currently open wkstation * /

set_screen_^attr()
/X X

Function: Set global values about screen.
Input: None. Uses screen_vhandle.

Output: Sets x_max, y_max, color^screen, and screen_rez.
X X X X X X X X K X K X X X X X X X X X X K X X X K X /

<
UORD uork—out[57];

vq_extnd(screen_vhandle, 0, uork_out);
x_max = work_jout[0];
y_max = work_jout[l];

Resourceful Programming 279

screen_rez = Getrez(); / * 0 = low, 1 = med, 2 = high */

color_jscreen = (screen—rez < 2); mono 2, color 0 or 1 */

>

hlde_jnouse()
/xx

Function: Make mouse invisible if currently visible.

Input: None. Uses variable m_hidden.
Output: Sets nuhidden to TRUE.
X /

<
if (!m_hldden)

(
graf-mouse(MJOFF, 0x0L);
mJnldden = TRUE;

>
>

shou_mouse()
✓xx

Function: flake mouse visible if currently invisible.
Input: None. Uses m_hldden.
Output: None. Sets m_hldden to FRLSE.
xxx

<
if (m_hldden)

<
graf—mouse(MUON, 0x0L);
m_hidden = FRLSE;

>
>

Listing 10-4 (continued)

/xx

Rpplication Functions
X /

do_dialog(box_lndex)
WORD box—index;
/X X X X X X X X K X X K X X X X X X X X X X X X X X X K X

Function: Display a dialog box.

Input: box_addr = index of dialog box
Output: Returns index of object used for exit.
X K X X K X X X X X X X X X X X X X X /

<
WORD xbox, ybox, hbox, ubox;
WORD smallx, smally, smallu, smallh;

WORD exit_object;
OBJECT *box_^addr;

/ * get address of box */
rsrc_gaddr(0, box_index, &box_addr);

280 Atari ST

get size and location of a box centered on screen */

form_center(box_jaddr, &xbox, &ybox, &ubox, &hbox);
smallx = xbox + (ubox ' 2);

smally = ybox + (hbox ✓ 2);
smallu = 0;

smallh = 0;

✓* reserve area on screen for box display * s
fornLjdial (FMD-START,

smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

drau an expanding box * /
fornLjdial (FMDJGROW,

smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

drau dialog box *s

obJc_drau(box_addr, 0, 10, xbox, ybox, ubox, hbox);

s * handle dialog input */

exit_object = form_do(box_addr, 0);

drau a shrinking box **

foriiLjdial (FMD—SHRINK,
smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

reserve area on screen for box display **
fornLjdial(FMD-FINISH,

smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

reset Bxit object state to unselected
box_addr[exit_jobJect] .ob_state = NORMAL;

return(exit_obJect);

>

get_flle()
/**
Function: Get a file name using file selector.
Input: None. Uses def^search[] and sel_flle[].

Output: FALSE if cancelled, TRUE otheruise.
Sets default file search, file selected,
and file_name[] to contain the full file name.

{
WORD exlt_button;
char *temp;
’int 1;

Listing 10-4 (continued)

Resourceful Programming 281

fsel_input(def_search, SBl_file, &exlt_button);
IF (!axit-buttcn)

return(exlt_button);

strcpy(flle_name, def—search);

i = strlen(flle_name);
temp = file_name + (1 - 1);
while ((*temp != ’W)

&& (*temp != ':')
&& (temp >= flle_name)

temp--;

temp++;
strcpy(temp, sel—file);

return(exlt_buttcn);

>

FP *open_flle(xx)

Int xx;
/a*##*#**##*###***#**#*###*#****##***#**##**#**#***
Function: Open file specified In flle_name[] for read only.

Input: None. Uses flle_name[].
Output: Returns file descriptor or NULL.
* /

i
FP *flln,jdes;

flle-des = fopen(flle_name, abra);

If (flle-des == NULL)
form_arror(-errno); s * errors are negative values

return(flle-des);

>

end_page()
✓a#**#####*#************####*#####*#######*##*****#
Function: Handle end of page condition.
Input: None.

Output: FRLSE if abort requested.
TRUE otherwise,

a#***#***##***#*##*###*#**##*#*###*#*###********##/
<

Cconws("Press any key to
if ((Craucin() & 0x7f)

return(FftLSE);
Cconout(CR);
v_eeol(screen_vhandle);

return(TRUE);

>

text_display()
✓a#**#**************#*##*#****#*##*#*#*#####**#*###
Function: Display a file in text format.

Listing 10-4 (continued)

continue or ESC to abort: *);

== ESCAPE)

return to start of line
/* erase to end of line *'

s* cancelled

set path

s* point to last character
/* search for path end

s * drive id
) ' * or start of string

/* move to next position */

add file name *'

282 Atari ST

Input: None.
Output: None.

<
int line_num, / * It of lines printed *s

ln_char, /* char from file */

i;
FP *file_num; file descriptor *s

Listing 10-4 (continued)

'* have user select a file *s

if (!get_file()) s* file selection canceled *'
return;

s* open file for reading *s

file-num = open_file();

if (file_num == NULL) s* error opening file *s
return;

s* initialize for reading */
hide-mouse();
v_clrul<(screen_vhandle);
v_Eurhoma(sc reen_vhand1e);

llne_num = 0;
while ((in_char = getc(file_num)) != EOF)

i
printf("fcc", in_char);

if (in-jchar == LINE_FEED)

(y* next line *s
printf("Nr"); ' * insure at start of nBW line *s
line_num++;

)
if (llne_num == max_lines)

{ s * Bnd of page *s

if (!end_page()) /* listing aborted *'
break;

else
llne_num = 0;

>
} y* end while loop *s
fclose(file_num);

Cconws(‘END OF FILE*);
Crawcin();

v/_jclrwk(screen_uhandle);
show_mouse();

dump_display()
/*#**»*******#***»***»***#*************************

Function: Display a file in hexadecimal format.

Input: None.

Resourceful Programming 283

Output: None,
i f * * # * * # # * /

<
int line_num, ' * tt of lines printed

count, number of chars read

i;
FP *flle_num; file descriptor

char ln_char[lG], ' * char from file *'

temp[80]; ' * temporary format string */

/* have user select a file
If (!get_file()) filB selection canceled */

return;

Listing 10-4 (continued)

/ * open file for reading */
file_num = open_file();
if (flle_num == NULL) error opening file

return;

/* initialize for reading

hlde_mouse();
v_jclruk(screen_vhandle);

v^curhome(screen_vhandle);

line_num = 0;
while ((count = frBad(in_jchar, sizeof(char), IS, file_num)) != 0)

i
for (1 = 0; 1 < count; i++) format hexadecimal area

sprlntf(&temp[1*3], ■ %02xa, in_char[i]);
temp[count*3] = 0; put null at end */

printf(*af-60s*, temp); output left justified
for (1 = 0 ; i < count; i++) * * output character area

if (ln_char[i] < 1 1 || in_char[i] > ’"')

printf(".*); / * non-printable char
else

printf("fcc1, in_char[i]);

printf(’Vn"); ** next line */
llne_num++;

if (line_num == max_lines) end of page

if (!end_page())
break; listing aborted

else
1lne_num = 0 ;

} /* end uhile loop
fclosefflle_num);

Cconus('END OF FILE*);
Crawcln();
v_jclrwk(screen_vhandle);
shou_mouse();

284 Atari ST

Listing 10-4 (continued)
control()
/xxxxxxxxxxxxxxsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Function: Master control function.

Input: None. Program initialization must be done before

entering this function.

Output: None. Returns for normal program termination.
X X X X X X X X X X X « X X X X X X X X X X X X X X X X X X X K X X X X X X « » * * * X X X X X X X S

<
OBJECT

WORD

WORD

*msnu-jaddr;
mevx, (navy,

mevbut,
keystate,
keycods,

mbreturn,
msg_buf[8];

event,
menu_index;

/* address for menu **

'* evnt_multl parameters

s* message buffer *s

evnt_multi result
/* keyboard menu title selected

/* get address of menu *s
rsrc_gaddr(0, MRINMENU, &menu_addr);

✓* display menu bar *s

menu_bar(menu_addr, TRUE);

wait for a message indicating a menu selection *'
for(;;) s* continue loop until quit

<
event = evnt_multi((MLLKEYBD | MU-MESRG),

0. /* tt mouse clicks

0, /* mouse buttons of interest * s

0, /* button state

0. /* first rectangle flags **

0, 0, /* x,y of 1st rectangla

0, 0, /* height, uidht of 1st rect

0, /* second rectand flags **

0, 0. /* x,y of 2nd rect */

0, 0, /* ui,h of 2nd rect */
msg_buf, /* messaga buffer

0, 0, /* low, high words for timer */
&mevx, &mevy. /* x,y of mouse event
&mBvbut, /* button state at event
&keystate. /* status of keyboard at event * /
&keycode, /« keyboard code for key pressed
&mbreturn); /* 8 times mouse key enter state

if (event & MU_MESflG)

<
if (msg_buf[0] != MN_5ELECTED) not a menu message

continue; s* then Ignore
if (msg_buf[4] == QUIT)

break; / * exit loop

Resourceful Programming 285

Listing 10-4 (continued)
sui tch(msg_buf[4])

<
case TEXTFILE:

s* find object index */

'* display file as text

text_display();
menu_bar(menuuaddr, FRLSE);
break;

case DUMPFILE: display file in dump

dump_jdisplay();
menu_bar(menu_addr, FRLSE);

break;

case INFO: display program info

do_jdialog(INFOBOX);

break;

default:

break;

>
/* reset title state */

menu_tnormal(menu_addr, msg_buf[3], 1);

menu_ba r(menu_addr, TRUE);
) end message handler */

if (event & MLLKEYBD)

<
if (keycode == QUIT-KEY)

<
menu—index = FILE;

menu—tnormal(menuuaddr, menu_index, 0);

break;

>

sui tch(keycode)

<
case TEXT_KEY:

menu_index = FILE;
menu_tnormal(menLL_addr, menu—index, 0);
text—display();
menuJbar(menu_addr, FRLSE);

break;

case DUMP-KEY:
menu—index = FILE;
menu—tnormal(menu_addr, menu—index, 0);

dump-display();
menu_bar(menu_addr, FRLSE);
break;

default:
break;

286 Atari ST

>
menu_tnormal(menu_addr, menu_index, 1);
mBnu_bar(mQnu_addr, TRUE);

Listing 10-4 (continued)

} s * end keyboard handler */

) /* end infinite loop *s
return;

} ✓* end function

/ x x k x k x x x x x x * » * * k x x x « * * * * * * « * * * * » * * * » x x x x x x x x x x x x x x

Main Program

maln()

<
int ap_ld; application init verify *s

WORD gr_wchar, gr_hchar, values for VDI handle
gr_ubox, gr_hbox;

/a*********#***#***#***##***##***#***##*###******##
Initialize GEM Access

X X * * * * * * X X X X * * * « X X X X * * * » * * t t * * X X X * « K X * X X X X * « » * « X X X X /

ap_id = appl_lnlt(); /* Initialize AES routines
if (ap_id < 0) /* no calls can be made to AES */

{ /* use GEMDOS
Cconus(•**#> Initialization Error. <***VT);
Cccnus('Press any key to continue.Vt*);
Craucin();

exlt(-l); /# set exit value to show error *s

)

screen_phandle = '* Get handle for screen *'
graf_handle(&grjwchar, &gr_hchar, &gr_wbox, &gr_hbox);

screen—vhandle = open_vwork(screen_phandle);
set_screan_attr(); ✓* Get screen attributes

/I f* * # # # # * # * * * * * * * * * * # * * * # * * * * * * * # # * * * * * * * # * * * * * * * * * *

Application Specific Routines
f t * * » * » * * * * X » * * * » * X X X « » * » X X X X * * * * X X X X X X * * * * » * K » * « * X X / '

if (!rsrc-load("LISTER.RSC"))

<
form_alert(l, '[0][Cannot file LISTER.RSC file|Exiting ...] [OK]');
exit(l);

>

control();

Resourceful Programming 287

/a***###**#****##*#*#*#*##*****#####****###***##**##
Program Clean-up and Exit

»*#***##*#****»******#»#**#»#**#****##»*#*#****/

Walt for keyboard before exiting program *•'
rsrc_free();
v_clsvwk(scrBen_vhandle); close workstation */

appluBxlt(); end program

>/■***##**»**#**##*******»****#***#»«*»»*»«»**»*#*#«#/

Listing 10-4 (continued)

With regard to the various overhead used by LISTER note that the
LISTERH header file is included in the application-specific data
section of the program. The constants QUIT_KEY, DUMP_KEY, and
TEXT-KEY represent the keyboard key codes for the menu shortcuts.
The key code values are in Appendix C. The constants LINE_FEED,
ESCAPE, and CR represent the line feed, escape, and carriage return
characters. These characters are used to format the display. A line
feed-carriage return combination indicates the end of a line in a file.

The global variable m ax-lines is set to the number of display lines
per “page.” As shown in Listing 10-4, LISTER only outputs the display
to the screen. However, you can modify the program to output to the
printer or another disk file. For screen output the number of lines
that can be displayed before the program must pause is 23. For
printer output the number of lines printed before a new page is
required is 60 (assuming an 11-inch page length at six lines per
inch). For disk output there is no limit on the number of lines. If
these alternate output destinations are implemented, the maximum
line value must be able to change. Therefore, max-Hnes is a global
variable rather than a preset constant

The last bit of application-specific data consists of three character
arrays called def-search, sel-flle , and file_nam e. These arrays are
used in conjunction with the fseL input() function. The defLsearch
string contains the default search path to use when fsel_input() is
initiated. The se l-file string contains the default file name to be
selected. When £seLJnput() returns to the calling program, se l-file
contains the name of the selected file. To open a file, the complete
path- and filename must be used. However, the pathname is con
tained in de£_search and the filename is held in sel-file . These two
strings are combined into a single filename in string filen a m e.

Function m ain() is the same as in the last three programs. The
resource file loaded for this program is LISTERRSC. In the control()
function, evnt-m ulti() waits for a keyboard or message event Each
type of event has its own section for processing. In the message event

288 Atari ST

section, only a menu selection is processed. Otherwise the message is
ignored. A QUIT selection causes an exit from the infinite loop.
Selection of the TEXTF1LE display calls function text_display() and
then turns the menu bar off. The menu bar is turned off because the
display function uses the entire screen, including the area for the
menu bar. When the display is completed, the entire screen is cleared
and the menu bar must be redisplayed. To ensure that the menu bar
is displayed properly, it is turned off and then turned back on. The
DUMPF1LE selection calls function dum p_display() and turns the
menu bar off. Case INFO is a request for more information, so
do_dialog() is called with the index to INFOBOX.

The keyboard event handler works similarly to the message event
handler. Note that the keyboard event handler must explicitly change
the menu title to its inverse state before processing.

Functions text_display() and dump-displayt) follow the same
basic program flow. They get a selected filename from the user
through function get_file(). Next the selected file is opened in func
tion open_file(). Once the file is open, the display process can begin.
Functions text_display() and dump_display() then hide the mouse,
clear the screen, and perform their display functions in the ap
propriate format. When the end of the file is encountered, the file is
closed, the screen is cleared again, and the mouse is turned back on.
The two routines both pause the output display when the screen has
been filled. The function end_page() handles this condition.

The get_file() routine uses the file selector manager. A call to
fsel_input() provides the user with a dialog box that allows the user
to select a disk drive, a directory, and a particular file. The first
parameter in fiset_input() is the default search path. The second
parameter is the default file to be selected. The default file and default
directory are initialized in variables defLsearch and seL-file already
mentioned above. Upon returning, fsel_input() sets all three of its
parameters. The parameter exit-button is set to a value indicating
that the Exit button is selected. If exit-button is set to 0, the “Cancel”
button is selected. Otherwise exit-button is set to 1 to indicate the
OK button. The default search string and the default file selection
string are set to the new values entered by the user.

After the file has been selected, a full filename specification needs
to be created. Function get_file() combines the returned search direc
tory and selected filename so that a complete file and path descrip
tion is se t The search path- and filename are combined into variable
file-nam e so that a full file specification is available to the rest of the
program.

Function open_£Qe() uses fopen() to open the file. If an error
occurs, open_file() calls the AES function form _enor(). Function
form _error() displays an error box. The parameter to form _enor()

Resourceful Programming 289

determines the error message displayed. This parameter must be a
positive value. However, the variable ermo, the global error variable
used by the C compiler (see file ERRNO.H), contains the error number
as a negative value. Therefore, the sign of the parameter to
form_error() is inverted.

Program LISTER has been written so that you can see how the file
selector dialog box works and how an application is written to utilize
events and the menu bar. As indicated earlier, you may want to add
an option to have the output printed on the printer. You can imple
ment this as a toggled menu selection using the CHECKED state to
turn on and off the printer output Other menu selections can also
be added to set page length and page width of the printer output
Since program LISTER is relatively modular, you should be able to
install these enhancements with little difficulty.

C H A P T E R E L E V E N

Building a Better
Mouse Trap

Dialog boxes, menus, and the file selector have all been handled by
AES routines. This chapter provides a basic understanding of how
the AES handles these user interactions. With the routines in the
AES graphics library, you can emulate many of the interface features
provided by GEM. For example, you can make slide bars, buttons, and
dragging and sizing boxes. From this basis, you can then create your
own interface features to customize your programs. To provide a
graphics-based user interface, a program must have graphics routines
and mouse access, both of which are provided by the graphics library.

Most of the routines in the graphics library control boxes in the
GEM environment A box is simply a rectangular image drawn on the
screen. An outlined box is a lighter rectangular image drawn in
half-intensity. The outline is used to indicate that some change can
now occur on the selected box. For example, when you resize a
window, an outlined image of the window is used to show the new
window size. When you move a ̂ window, the outline of the window
shows the new window location. When using the AES, a rectangular
area is identified by the coordinates of its upper left comer, its width,
and its height All AES routines refer to rectangles in these terms.
This is different from the VDI, which uses the coordinates of the
upper left and lower right comers. This difference becomes important
when you are programming with both the AES and the VDI.

There are ten graphics routines in the graphics manager:
graf_dragbox(), graf_grow box(), g ra f-h a n d le(), graf_m b ox(),
graf_m kstate(), graf_m ouse(), gra£_rubberbox(), gra£-shrinkbox(),
graf_slidebox(), and graf-w atchbox(). Brief descriptions of each are
provided below; for complete operational descriptions, see Appendix A

Building a Better Mouse Trap 291

The graf_dragbox() function lets a user drag an outline within an
application-defined boundary rectangle. For example, when you want
to move an object in the resource editor program, you simply press
the mouse button while on that object A hand appears and you can
drag the outline around. When you release the button, the object
moves to the position of the outline. Function gra£_dragbox() controls
the process of moving the outline under mouse control. When the
user releases the mouse button, the function returns the x and y
coordinates on the screen of the upper left comer of the box.

The gra£_growbox() function draws an expanding box outline. This
is the function used by form -dial() to show the expanding box. The
function is given the size and position of the small box outline. This
outline is drawn and then expands to the size and position of the
large outline.

Function graf-handle() has been used in all programs presented
thus far and will continue to be used. This routine returns the handle
to the current open screen workstation being used by GEM.

The graf_mbox() function shows a box outline moving from one
position to another. This function takes the initial size and location
of the rectangle and the final location of the rectangle. The size of the
box is not changed at all. The GEM documentation lists the name of
this function as gra£_movebax(). The Megamax compiler has imple
mented this function with the name graf_m box(). Check your com
piler manual to see which name is used for this function.

Function graf_m kstate() returns the current mouse position, the
state of the mouse buttons, and the state of the keyboard. Button and
keyboard state values are returned in the same bit format as for the
evnt_m ulti() function described in Chapter 10.

The gra£-m ouse() function lets the application change the mouse
form to one of a predefined set of forms or to an application-defined
form. This function also allows the application to hide and show the
mouse, as done in program LISTER The header file gem defs.h
defines the constant names for the different mouse forms (see Table
1- 1).

The graf_m ouse() function has two parameters. The first parameter
is one of the constant values identifying the mouse form to use. If the
constant used is USER-DEF, the second parameter is used as a
pointer to a mouse form definition block defined as structure MFORM
in file gem defs.h (see Figure 11-1). The MFORM structure has
fields m f-m ask and mfLdata which are 16-by-16 bit arrays. The
m f-m ask array contains the mask bit map of the mouse image. The
mfLdata array defines the data bit map of the image. The mask and
data bit maps are used to move the mouse around the screen in the
same way the ball moves in program BOUNCE. The fields m f-xhot
and mfLyhot determine the hot spot of the mouse. The hot spot is

292 Atari ST

Tabic 11-1: Moiuse Form Constant Names

Constant Name Value Form Image
ARROW 0 Arrow

1 Text cursor (vertical bar)
2 Bumble bee
3 Hand with pointing finger
4 Open hand
5 Thin crosshair
6 Thick crosshair
7 Outlined crosshair
255 User-defined image
256 Turn off mouse cursor
257 Turn on mouse cursor

TEXT-CRSR
HOURGLASS
POINT_HAND
FLAT-HAND
THIN-CROSS
THICK-CROSS
OUTLN_CROSS
USER-DEF
Mj OFF
M_ON

the point on the mouse image used to locate the mouse on the screen.
For example, the hot spot for the arrow image would be at the tip of
the arrow; the hot spot for the cross hair would be at the center of
the cross; and the hot spot for a pointing hand would be at the tip
of the finger. The x and y coordinates of the hot spot are measured
in pixels relative to the upper left comer of the image. The mfLnplanes
field indicates the number of planes in the bit map. The mfLfjg and
mL.bg fields specify the color index for the foreground and back
ground colors respectively.

typedef s tru c t m fstr {
WORD mf_xhot;
WORD mf_yhot;
WORD mf-jyhot;
WORD mf_nplanes;
WORD mf_fg;
WORD mf_bg;
WORD m f_jnasl< [1G];
WORD m f_date[16];

} MFORM;

Figure 11-1 Hie BIFORM Structure

The graf_rubberbox() function draws a rectangle that can expand
and contract with mouse movement This is the routine that controls
the outline when a window is resized. The upper left comer of the
outline rectangle remains fixed, while the lower comer moves to
determine the new size of the window.

The graf_8h rin k b ox() performs the opposite function of
grafLgrowbox(). It draws a shrinking outline.

Building a Better Mouse Trap 293

Function graJLslidebox() keeps a sliding box object within its
parent box. This is the routine used for the slide bars. The
grafLslidebox() function requires that the two boxes be objects and
that the parent box contain the sliding box. Function gra£_slidebax()
makes sure that the sliding box stays within the boundaries of the
parent box.

The last graphics library routine, gra£_watchbox(), watches a rec
tangle while the user presses a button on the mouse. For example,
move the mouse to the close box of a window. Press the left mouse
button, and hold it down. As long as the button remains depressed
and the mouse stays within the dose box, the close box will be shown
as sdected. Now while holding the mouse button down, move the
mouse outside the dose box. As soon as the mouse exits the dose
box, the dose box returns to its normal state. Function graf-watchbox()
is used to perform this action. When the mouse button is released,
grafLwatchbox() returns a value indicating whether the mouse was
inside or outside the box watched.

Program MOUSE

Program MOUSE demonstrates the graphics library functions, mouse
events, and the use of a free-type tree in the resource file. The
graphics library routines can be divided into five different categories.
The first category deals with box movement such as growing, shrink
ing, moving, and sizing. The next category handles the sliding boxes.
The third category is for the gFaf_watchbox() routine. The fourth
category indudes mouse-handling functions. Finally, the fifth category
is for the graf-handle() routine. Each of the first four categories is
demonstrated in a different area on the screen in program MOUSE.
When the program is running, the user sees a box divided into four
boxes (see Figure 11-2). The upper left area demonstrates moving and
sizing boxes. The upper right area is for sliding boxes. The lower left
area has a box that is watched. The lower right area shows the results
of a mouse event

The Resource FOe fo r Program MOUSE
The easiest way to create a screen layout is through the resource file.
Therefore, the first thing to do is to create a resource file for program
MOUSE. This resource file contains a menu bar and a free tree. The
menu bar, named MAINMENU, is the default menu bar. In other
words, it indudes the Desk and File menus only. Under the Desk
menu, the first entry should be changed to read “MOUSE Tester” and

294 Atari ST

IIFlexible
Box r

lUflTCHI
Off

Change
House
Form

Figure 11-2 Program MOUSE Screen Layout

named INFO. The File menu has only the Quit selection, which should
be named QUIT. Although there is no information dialog box for this
program, the INFO menu selection m ust be named because if it is
selected by the user, the program m ust be able to handle the selection
(even if nothing is done).

The next tree to create for program MOUSE is a free tree. A free
tree is used here because a dialog box causes all objects to be
character-aligned. This restriction is not desired for MOUSE. To
create a free tree, drag the free tree icon to the work area of the main
window and name it MAINTREE. Open this free tree. You should have
a box tha t is the root object in MAINTREE. Resize this box so that it
fits within one-quarter of the screen. MAINTREE consists of a large
box (the root) containing four smaller boxes. To create the four
smaller boxes, drag a box from the parts box to the free tree box. Size
and position this box to correspond with the upper left box shown in
Figure 11-2; the exact size and position of the first box is not
important. It would be rather cumbersome to try to make three more
boxes exactly the same size as the firs t As a shortcu t simply copy
the first box. Place the mouse cursor over the box you ju s t created.
Hold down the Shift key, and press the mouse button. Now drag the
box to the right so that it is next to the first box. When the copy is
in position, release the mouse button. If you didn’t position the new
box exactly rig h t you can move it again. The Shift-Click combination
causes the resource editor program to make a copy of the object Both
the RCS and MMRCP programs allow the user to copy objects in this
manner. Repeat this procedure for the two lower boxes. When you
have the four boxes, name the upper left box BOXO, the upper right
box BOX1, the lower left box BOX2, and the lower right box BOX3.

Building a Better Mouse Trap 295

BOXO contains a box named FLEXBOX. Inside FLEXBOX are two
STRING objects and a smaller box. The first string says “Flexible” and
is named FLEXBOX1. The other string “Box” is named FLEXBOX2.
The small box is named SIZEBOX. As you might guess, the objects in
BOXO are going to be used to demonstrate moving and sizing a
rectangle.

In BOX1 are two slide bars. The horizontal large box is named
HSLIDEIN, and the slider contained within is named HSLIDE. Note
tha t the slider itself is filled with a pattern. The vertical slide bar is
named VSLIDEIN; its slider is named VSLIDE. Make sure that the
sliders fit inside the slide bars. The slider object must be a child of
its slide bar. The objects in BOX1 are going to be used to demonstrate
the gra£_slidebox() function.

BOX2 contains a button with the text "WATCH." This button is
named WATCHBOX. Below it is a STRING object with text that says
“Off.” This string is named WATCHTXT.

BOX3 defines the area used for a mouse event Inside BOX3 are
three STRING objects for the text “Change,” “Mouse,” and “Form.”
These strings do not have any names.

The menu bar and the free tree alone make up this resource file.
Figure 11-3 shows the object tree layout for the free tree. Once you
have named all the objects, save this resource in file MOUSE.RSC.

^ /
IFLEXBOXII

A
ISIZEBOXI IHSLIDEI IVSLIDEI

IF o r ml

Iflousel

1FLEXB0X2I

Figure 11-3 MOUSE.RSC Free Tree Layout

The Listing fo r Program MOUSE
In the application-specific data section of program MOUSE, the first
statement includes the MOUSE.H file. Variable tree_addr holds the
address of the free tree. The structure GRECT is the AES format for
a rectangle. It contains field g-x, g_y, g_w, and for the x and y
coordinates and the width and height of a rectangle. The box array
in program MOUSE holds the dimensions of boxes BOXO, BOX1,
BOX2, and BOX3. This is why the exact position and size of these
objects is not important in the resource file. Program MOUSE looks

296 Atari ST

in the OBJECT structure of these boxes and finds their sizes and
positions on the screen.

In the GEM-related function section, the new routine load_re-
source() has been added. This function is simply a generalized rou
tine to load a resource file. If you want to provide for a more robust
error-handling scheme, you can change load_resource() instead of
fiddling with function main(). This separation of tasks holds to the
modular design philosophy.

In function main(), the program initialization and resource load is
basically the same as in previous programs. The first application
function is initialize!), which initializes the global variables, the box
array, and the tree address. Once the initialization is completed, the
program moves to function control().

Function initialize!) first calls hide_mouse() to hide the mouse
cursor. Next tree-addr is set to the address of MAINTREE and the
screen is cleared. The position of MAINTREE is changed to coor
dinates (10,20). When the resource editor creates a tree, the root is
located at (0,0). If the root is left a t this position, the image would
conflict with the menu bar. Therefore, the coordinates of the root are
moved down past the menu bar. Since the coordinates of all children
of the root are placed with respect to the root simply moving the root
coordinates moves all of its children accordingly. This is a rather
convenient feature.

Listing 11-1 Program MOUSE
/ X

MOUSE.C Mouse demonstration program

This program shous how to use the mouse, event manager,
object library, and graphics library.

K X X X X X X X K X X K X X X X K X X X X X X X X X X X X X X X X K X X X K X /

/ X

System Header Flies & Constants
X /

ttinclude <stdlo.h> / * Standard 10
ttinclude <osblnd.h> / * GEMDOS routines
ttinclude <gemdefs.h> ✓X GEM AES */

ttinclude <obdefs.h> ✓X GEM constants
ttinclude <errno.h> / * errno declaration */

ttdeflne FALSE 0
ttdeflne TRUE !FALSE

/ X X X X X K X

GEM Application Overhead
X /

Building a Better Mouse Trap 297

Declare global arrays for VDI.
typedef Int WORD; WORD Is 1G bits
WORD contrl[12], ' * VDI control array

intout[128], intln[120], /* VDI Input arrays
ptsin[120], ptsout[128]; VDI output arrays

Listing 11-1 (continued)

WORD screen_vhandle,
screen_phandle,

screen_rez,
color_screen,
x_max,

y_jnax,
m_hldden = FRLSE;

/* virtual screen uorkstation */
s * physical s c r e e n uorkstation */

* * screen resolution 0,1, or 2 * *
s * flag if color monitor

max x screen coord
/ * max y screen coord
s * mouse visibility status *s

✓a##**#####*###*########*#####**#***********####***
Rpplication Specific Data

*»***»»»»*###«**####**»***«*******#**#*#*********#/’

11 include 'mouse.h*

O0JECT »tree_addr; /* address of screen tree

GRECT box[4]; '* A rectangles on screen */

✓a*####*#**####**###*#*#*##**#*#*##*##**#****#**#**
GEM-related Functions

###*#**#*»#»##*«»»■*»##»#«****************#**»»***✓

WORD open_vuork(phys_handle)
WORD phys-handle;
✓a#######*##**###*#***##***##**#*##*####*********#*
Function: This function opens a virtual uorkstation.

Input: phys-handle = physical uorkstation handle
Output: Returns handle of uorkstation.
a*#**#*####****#*#**#*#**#*##*#*#**###'#***********/
<
WORD uork_ln[ll],

uork_out[57],
neu_handle; s* handle of uorkstation */

int 1;

for (1 = 0; i < 10; i++)
uork_in[i] = 1;

uorl<_in[10] = 2;
neu_handle = phys_handle;
v_jopnvuk(uork_ln, &neu_handle, uorl<_out);
return(neu_handle);

set for default values

✓* use raster coords *s
/ * use currently open ukstation */

set_screerLjattr()
/•a**##*##*#####*##*#*#**#**#*#********#*#*********
Function: Set global values about screen.

298 Atari ST

Input: None. Uses screen_vhandle.

Output: Sets x_max, y_max, color_screen, and screen_rez.
x x x x x x x x x x x k x k x x x x k x x x x x x x k x x x x k x x x x x x x x x k x x x x x x x x /

{
WORD uo rl<j o u t [57];

vq_Bxtnd(screen_vhandle, 0, uork_out);
x_max = uorl<_out[0];
y_max = uork_out[l];

screen_rez = Getrez(); 0 = lou, 1 = med, 2 = high
color_screen = (screen_rez < 2); /* mono 2, color 0 or 1 *s

>

hlda_mouse()
/xx

Function: Make mouse Invisible if currently visible.
Input: None. Uses variable m_hldden.
Output: Sets m_hidden to TRUE.
xx/

<
if (!m_hidden)

i
graf_mouse(MJDFF, 0x0L);
m_hiddan = TRUE;

)
)

shou_mouse()
✓xx

Function: Make mouse visible if currently invisible.
Input: None. Uses m_hidden.

Output: None. Sets m_hidden to FALSE.
X /

<
if (m_hidden)

i
graf_Atouse(M_ON, 0x0L);

m_hidden = FALSE;

>
>

load—resource(rfile)
char *rflle;
/xx

Function: Load resource file.
Input: rfile = string uith resource file name.

Output: Returns TRUE if file loaded, else FALSE.
X X X X X X K X K X X K X X X X X X K X X K K X M X / '

<
char temp[128];

Listing 11-1 (continued)

Building a Better Mouse Trap 299

if (!rsrc_load(rfile))

<
sprintf(temp, *[0J[Cannot load file Xs |Exiting ...] [OK]’, rfile)

form_alert(l, temp);

return(FALSE);

>
return(TRUE);

Listing 11-1 (continued)

✓xx

Application Functions
xx/

initiallze()
/ X X X X X X X X X K X X K X

Function: Drau program screen.

Input: Resource file must be loaded.
Output: None.
xx/

<
hide_/nouse();
rsrc_gaddr(0, MAINTREE, &trea_addr);
v_clruk(screen_vhandle);
tree_addr[MAINTREE].ob_y = 20;/* move down past menu bar *s

tree—addr[MAINTREE].ob_x = 10;
objc_drau(tree_addr, 0, 10, 0, 0, x_max, y_max);

/ * load rectangle coords
box[0].g_u = tree_addr[BOX0].ob_uidth;
box[0].g_h tree_addr[BOX0].ob_height;

objc_joffset(tree_addr, BOX0, &box[0].g_x, &box[0] .g_jy);

box[l].g_u = tree_addr[BOXl].ob_uidth;
box[l].g_h = tree_addr[BOXl].ob_height;
obJc_offsst(tree_addr, B0X1, &box[l].g_x, &box[l].g_y);

box[2].g_w = tree_addr[B0X2].ob_Midth;
box[2].g_h = tree_addr[B0X2].ob-height;

objc-jpffset(tree-addr, B0X2, &box[2].g_x, &box[2].g_y);

box[3].g_bj = tree_addr[B0X3] .ob_uidth;
box[3].g_h = tree_addr[B0X3].ob_height;
objc^offset(tree_addr, B0X3, &box[3].g_x, &box[3].g_y);

shou_mouse();
return;

>

300 Atari ST

move_box()
/»#**#»«»*********#*«»****#*#»*#»*#»#»***#*»*»*#***
Function: Move a box.

Input: None. Uses MAINTREE and global variables.
Output: None. Moves box.
**,
{
WORD sx, sy, y* starting coords */

fx, fy; /* final coords of box * '

graf_mouse(FLAT_HAND, 0x0L); / * change mouse form */
objc_offset(tree_addr, FLEXBOX, &sx, &sy);
graf_dragbox(tree_addr[FLEXBOX],ob_jwidth,

tree_addr[FLEXBOX].ob_height,
sx, sy,

box[0].g_x, box[0].g_y, box[0].g_u, box[0].g_h,

&fx, &fy);
graf_mouse(ARROW, 0x0L); restore form * /

/ * redraw parent box only to erase current position
obJc_drau(tree—addr, BOX0, 0, 0, 0, x_max, y_max);
graf_mbox(tree_addr[FLEXBOX].ob_wldth,

tree_addr[FLEXBOX] .ob-height,
sx, sy, fx, fy);

set neu location relative to parent
tree—addr[FLEXBOX].ob_x += (fx - ex);

tree_addr[FLEXBOX].ob_y += (fy - sy);

* * redraw object
obJc_drau(tree_addr, FLEXBOX, 10, 0, 0, x_max, y_max);
return;

)

slze_box()
/a##**********#*###**##*#**###*******#*##***###*#**
Function: Change size of box.
Input: None. Uses MAINTREE and global variables.
Output: None. Moves box.
#**##»«#******#*####*#**#*#**##«*##***###*#*✓

i
WORD sx, sy, s* starting x,y

neu_uidth, neu-helght; ending size *s
static WORD min_u = 0 , / * smallest size of box *'

min_h = 0;

set minimum values on first time through */
/* minimum values are initial values of FLEXBOX

if (min_u == 0 && min_h == 0)

<

Listing 11-1 (continued)

Building a Better Mouse Trap 301

mln_w = tree_addr[FLEXBOX].ob-width;

mln_h = trea_addr[FLEXBOX].ob_height;

>

graf_mouse(POINT_HfiND, 0X0L); changa mouse form *s
obJc_offsot(tr80_addr, FLEXBOX, &sx, &sy);
graf_rubberbox(sx, sy, min_w, min_h, &new_width, &neu_height);

graf_mouse(ARROW, 0x0L); restore form */

/ * redraw parent box only */
obJc_draw(tree_addr, BOX0, 0, 0, 0, x_max, y_max);

test If new size is greater than enclosing box
if ((new_uldth + trea_addr[FLEXBOX].ob_x) >

tree—addr[BOX0].ob_width)

i
new-uldth = if so, set to box edge

tree—addr[BOX0].ob_width - tree_addr[FLEXBOX].ob_x;

>
if ((newL-helght + trea_addr[FLEXBOX].ob_y) >

tree_addr[BOX0].ob_helght)

i
new-height = If so, sat to box edge */

tree—addr[BOX0].ob_halght - tree—addr[FLEXBOX].ob_y;

>

set new width
tree_addr[FLEXBOX].ob_width = new_jwldth;
tree_jaddr[FLEXBOX] .ob_height = new_height;

/* move size box
tree—addr[5IZEB0X].ob_x =

tree—addr[FLEXBOX].ob^wldth - tree—addr[SIZEBOX].ob_width;
trae_addr[SIZEBOX].ob_y =

tree—addr[FLEXBOX].ob-haight - tree_addr[SIZEBOX].ob_height;

/* redraw object *'
obJc_drau(tree—addr, FLEXBOX, 10, 0, 0, x_max, y_max);

return;

>

Listing 11-1 (continued)

h_sllde()
✓a*#*####**###**##*#*#**#****#**#*#****************
Function: Change horizontal slider.
Input: None. Uses MAINTREE and global variables.
Output: None. Moves box.
#»»«#*##»»#»*##»##»**********»»«*******#**»*****✓
<
register long val; ' * long needed for large widths

302 Atari ST

val = graf_s11debox(tree_jaddr, HSLIDEIN, HSLIDE, 0);
find neu x based on ratio: x = uidth * val ' 1000

val »= (tree-jaddr[HSLIDEIN].ob_uidth -
tree_addr[HSLIDE].ob_uidth);

tree_addr[HSLIDE].ob_x = val ' 1000;

obJcjdrau(tree.jaddr, HSLIDEIN, 10, 0, 0, x_max, y_max);
return;

>

v_slide()

Function: Change vertical slider.
Input: None. Uses MAINTREE and global variables.
Output: None. Moves box.
* /

i
register long val; long needed for large heights

val = graf_slidebox(tree_addr, VSLIDEIN, VSLIDE, 1);
find neu y based on ratio: y = height * val s 1000

val *= (tree_addr[VSLIDEIN].ob_height -
tree_addr[VSLIDE].oh_helght);

tree_addr[VSLIDE].ob_y = (val ' 1000);
objc_jdrau(tree_jaddr, VSLIDEIN, 10, 0, 0, x_max, y_tnax);
return;

>

watch-box()
/****«******««*****«****«****«***«****«************
Function: Change uatch box.

Input: None. Uses MAINTREE and global variables.
Output: None. Moves box.

i
/* if mouse released in box then change text

if (graf-jwatchb0x(tree-jaddr. MATCHBOX, SELECTED, NORMAL))
<

if (strcmp(tree^addr[WATCHTXT].ob_spec, 'Off') == 0)
strcpy(tree_addr[WATCHTXT].ob_spec, "On ’);

else

strcpy(tree^addr[WATCHTXT].ob_spec, "Off");

}

tree_addr[MATCHBOX].ob_state = NORMAL;
obJc_drau(tree_jaddr, B0X2, 10, 0, 0, x_jnax, y_max);
return;

>

control()
✓ X

Function: Master control function.

Listing 11-1 (continued)

Building a Better Mouse Trap 303

Input: None. Program initialization must be done before
entering this function.

Output: None. Returns for normal program termination,
•a#****#***#**#*#**#*#*#*********####*#*****#**##*/

Listing 11-1 (continued)

<
OBJECT *mentLjaddr;

WORD mevx, mevy,
mevbut,
keystate,

keycode,
mbreturn,
msg_buf[8];

WORD event,
event_f lag,

ml_flag = 0,

ml_x, ml_y, ml_jw, ml_h, /*

menu—index; s*

address for menu

evnt_multi parameters

message buffer */

evnt_multl result »/
events to look for

0 for entry to rectangle,

1 for exit to rectangle */
rectangle for Ml event
keyboard menu title selected

s * get address of menu
rsrc_jgaddr(0, MAINMENU, &menuuaddr);

s * display menu bar «/
menu-bar(menu_addr, TRUE);

wait for a message indicating a menu selection *'
event_flag = (MUJBUTTON | MLLM1

for(;;)

<
event = evnt_multi(event_flag.

0 ,
01, ' *

1, '«
ml_flag,

box[3].g_x, box[3].g_y,
box[3].g_M, box[3].g_h, '*

0, / *

0, 0, ' *

0, 0, ' *

msg_buf,

0 , 0 ,
&mevx, &mevy,

&mevbut,
&keystate, **

&keycode, / *

&mbreturn); s*

| KU-MESRG);
continue loop until quit

It mouse clicks */
mouse buttons of interest
button state
first rectangle flags *'
x,y of 1st rectangle */
height, uldth of 1st rect */
second rectangle flags *'

x,y of 2nd rect *'
w,h of 2nd rect **

message buffer
low, high uords for timer * /
x,y of mouse event *s
button state at event
status of keyboard at event
keyboard code for key pressed **
tt times mouse key enter state

if (event & MULMESRG)

<
if (msg_iiuf[0] != MN_SELECTED) not a menu message **

continue; * * then ignore

304 Atari ST

Listing 11-1 (continued)
if (msgJbuf[4] == QUIT)

break; /* exit loop *s

switch(msgJbuf[4]) s * find object index *s

i
case INFO: info selected

break; Ignore
default:

break;

>
/* reset title state *>

m8nu_tnormal(manu_addr, msg_buf[3], 1);

menu_bar(menu_addr, TRUE);

) end message handler */

if (event & MU-BUTTON)

{
if (mevbut & 01) /* button pressed doun *'

{ find uhere event occurred
suitch (obJc_f ind(tree .addr, CtRINTREE, 10, mevx, mevy))

<
case FLEXBOX: ' * the box itself *'
case FLEXB0X1: s * 1st text line in box

case FLEXB0X2: 2nd text line in box */
move_box();
break;

case SIZEBOX:
size_box();

break;

case H5LI0E:
h_slide();

break;

case V5LI0E:
v_slide();

break;

case WflTCHBOX:

uatch_box();

break;

default:
break;

>
}

) ** end button handler

if (event & MU_M1)

<

Building a Better Mouse Trap 305

if (!ml_flag) / * entered rectangle
(/* set to alternate mouse

graf_mouse(HOURGLASS, 0x0L);
ml_flag = 1 ; wait to exit

event—flag = MU_M1; only event */

>
else

i
gra f_/nouse (ARROW, 0x0L);

ml—flag = 0; /* wait for entry
event_flag = (MUJBUTTON | MU_M1 | MU_J«IESAG);

>
>

} end infinite loop *'

return;
) s * end function * /

a**
Main Program

**/

main()

<
int ap_id; application init verify *s

WORD gr.jwchar, gr_hchar, values for VDI handle
gr_wbox, gr_hbox;

/**
Initialize GEM Access

ap_id = appl—lnit(); Initialize AES routines
if (ap_id < 0> >’* no calls can be made to AES */
{ /* use GEMDOS «/

Cconws(’***> Initialization Error. (***\n“);
Cconws("Press any key to continue.Vi");
Craucln();

exit(-l); set exit value to show error

>
screeruphandle = ' * Get handle for screen *s

graf_handle(&gr_jwchar, &gr_hchar, &gr_ubox, &gr_hbox);
screeriL-vhandle = open_vwork(screen_phandle);
set_screen_attr(); ' * Get screen attributes */”

/***
Application Specific Routines

***/

Listing 11-1 (continued)

if (!load_resource("MOUSE.RSC")) s * no resource file loaded **

exlt(l);

306 Atari ST

lnltlalize();
control();

✓xxx

Program Clean-up and Exit
X /

Malt for keyboard before exiting program */

rsrc_free();
v.jclsv/uk(screen_v/handle); / * close uorkstation */
appl_exlt(); /* end program **

)
/ X /

✓ X X X X X X X X X X X X X X /

Once the new root coordinates are s e t the screen can be drawn.
The objc_draw() function draws an object tree as seen earlier. In
in itialize!), objc_draw() starts a t the root of MAINTREE and goes ten
levels deep. The clipping rectangle used is the entire screen from (0,0)
to (xmax,ymax). After the tree coordinates are set, the box coordinates
can be determined. To use with the event library routines, these
values m ust be in screen coordinates. However, the objects’ coor
dinates are relative to their parents. The x and y coordinates of the
object need to be converted to screen coordinates. Function
objc_ofXset() of the object library provides this feature. Given the tree
address and the object index, objc_of&et() returns the x and y
screen coordinates. The width and height remain the same because
they are not affected by the position of the object. The coordinates of
each of the four boxes is loaded into the array box. This completes the
initialization and the mouse is turned back on.

Function control() starts by locating the menu and displaying the
menu bar. The parameters of evnt_m ulti() warrant some closer ex
amination. The event-flag variable holds the events tha t the program
wants. When the mouse button is pressed, the user m ust be trying
to select something on the screen. Therefore, a button event is re
quired. When the mouse enters BOX3, the mouse form should change
so a mouse event is also required. Finally, the user may select a menu
item, which means a message event must also be included. The
reason for using a variable as the event flag holder is that during
normal processing, the application may want to look for different sets
of events. By using a variable, the events accepted can be set while
the program is running. This contributes to a more dynamic and
modular design. For example, when the mouse enters BOX3, it can
do nothing until it exits the box. Therefore, when the mouse leaves
the box, the only event that m ust be waited on is a mouse event

Listing 11-1 (continued)

Building a Better Mouse Trap 307

After the event flag has been set, the next three parameters for
evnt_m ulti() control the button event The number of mouse clicks
Is 0 because a single press is all tha t is required. Since the mouse
button of interest is the left button only, the value 1 (bit 1 is set) is
used for this parameter. The button state parameter indicates that
the left button down is the state of interest (bit 1 is again set).

The next five parameters control the first mouse event The variable
m l.f la g is initialized to 0 to indicate that a mouse event will occur
when the mouse enters the area. The rectangle position and size are
in element 3 of the box array. Since there is no second box of in terest
the next five parameters are set to 0. You have already seen and used
the remaining parameters in the previous programs.

Each event type is handled separately. If the event is a message,
only menu messages are processed. All other types of messages are
ignored. If the menu selection corresponds to QUIT, the infinite loop
is exited. If the message corresponds to INFO, the message is ignored
and the menu title is reset If an information dialog box does exist, it
can be displayed here. These are the only two menu selections that
the program m ust look for.

A button event indicates that the user wants to manipulate some
thing on the screen. When a button event occurs, the program checks
which button is pressed. Actually, only button 1 should cause an
event based upon the parameters for evnt_m ulti(). After the button
number is checked, the program needs to find where the mouse was
located when the button was pressed. It obviously was not pressed in
the menu bar, because the AES would already have handled th a t It
could have been pressed somewhere in the work area. To find if the
mouse was over an object function objc_find() is used. Function
objc_find() searches through a tree to see if any objects are located
a t the button down event position. This function can start searching
from any object in the tree (not ju st the root) and can continue for
any number of levels. If objc_find() finds an object a t the given
location, it returns the index of the object If no objects in the tree
are located under the coordinates given, objc_find() returns —1. In
MOUSE, objc_find() is used as the control variable for a switch
statem ent The various cases are selected based upon the object index.

If the user wants to move the box in BOXO, the mouse must be
located on object FLEXBOX. However, FLEXBOX 1 and FLEXBOX2
cover part of FLEXBOX so these two objects also cause a move
condition to be activated. To move the box, application function
move_box() is called. If the user wants to resize this box in BOXO,
the mouse m ust be located inside SIZEBOX. To change the size of
the box, application function size_bax() is called.

To move the horizontal slider, the user places the mouse over the
HSLIDE object and presses the mouse button. In this case, applica
tion function h_slide() is called. If the mouse is located on the vertical

308 Atari ST

slider, v_slide() is called. If the mouse is in object WATCHBOX,
watch_box() is called. Any other objects or —1 is processed through
the default case and ignored.

The final event accepted by event_m ulti() is a mouse event. This
occurs when the mouse enters BOX3. If m l_flag is 0, the event
occurred when the mouse entered the rectangle. Therefore, the
program changes the mouse form to an alternate mouse form (here,
to the HOURGLASS, which is actually the bumble bee on the Atari
ST). The graf-m ouse() function changes the image. The program now
waits until the mouse exits this box; all other events are ignored.
Therefore the event_flag is set to MU_M1 only and m l-flag is set to
1 (to wait for an exit). When the mouse exits the box, another mouse
event occurs. In this case, m l-flag is set to 1. The program changes
the mouse back to the arrow form, the m l-fla g is set to 0, and the
event-flag has the button, mouse, and message events.

Now that all the events have been handled, look at the application
functions. Start with function move_box(). When a box is going to
be moved, the GEM interface requires the program to change the
mouse form to indicate the function being performed. While moving
a box, the mouse form should be the open hand. The first statement
in m ove-box() changes the mouse form to a FLAT_HAND. While the
user is positioning the box, your program should display an outline.
The graf_dragbox() function is used to drag an outline of the box
around on the screen. Function gra£_dragbox() needs to know the
starting coordinates of the box in screen coordinates. Thus,
objc_oflset() is used to get the starting screen coordinates (the box’s
cu rren t position). Function graf-dragbox() is then called. Its
parameters are the width and height of the box, the starting coor
dinates, a boundary rectangle, and two variables to hold the final
coordinates. The boundary rectangle limits the area in which the
outline may travel. In MOUSE, the box should not move outside of
BOXO. When the user releases the mouse button, gra£_dragbox()
returns with its last two parameters containing the final coordinates
of the box. At this point, the mouse form m ust be restored to the
arrow form and the program needs to update the screen.

There are two methods for updating the screen. The first method
redraws just the area affected. First, the program redraws BOXO. This
causes all the contents of BOXO to be erased (actually written over).
Next, it draws a box moving from the old position to the new position.
Then it redraws the moved box at its new location. Program MOUSE
uses this first method. To redraw ju st BOXO, function objc-draw() is
used. The drawing starts a t BOXO and continues for 0 levels, which
causes ju s t BOXO to be drawn. Then function gra£_mbox() is used to
show a moving outline. Next the new object coordinates are set. Since
there is no function to go from screen to relative coordinates, the

Building a Better Mouse Trap 309

easiest way to handle the problem is to change the object’s coordinate
by the distance moved. Finally, objc_draw() is called again to draw
the FLEXBOX and all its children a t the new location.

The other method would be to calculate the object’s new relative x
and y position. Use gra£_mbox() to show a moving box, and then call
objc_draw() to draw BOXO and all of its children. Because BOXO is
drawn first (parents are drawn before their children), it erases the
area. Then FLEXBOX is drawn at its new location. It is a matter of
convenience and preference to go one way or another.

When changing the size of an object the user places the mouse at
the lower right com er of the object and presses the mouse button.
The mouse form changes to a pointing hand, a rubber-box outline
appears, and the user can change the size of the object A program
may place restrictions on the minimum and maximum size of the
box. In MOUSE, the minimum size of the box is the height of the two
text lines and the width of the two lines. The maximum size is set so
tha t the box does not exceed the limits of BOXO. Once the new size
has been set and verified, a growing box outline is drawn and the
object is redrawn with its new size.

In function size_box(), the first statements determine the mini
mum size of the box. The program could use the width and height
values of the text strings to calculate the minimum size. However,
MOUSE assumes that the original size of FLEXBOX is the minimum
size to use. You can go back and change the resource file to set
FLEXBOX to any minimum size you desire. To set the minimum size,
size_box() uses the static variables min_w and min_h. On the first
time through size_box(), these variables are set a t 0 and FLEXBOX
is still a t its original size. If this is the case, m in-w and min_h are
set to the original width and height of FLEXBOX- Once the minimum
values are s e t the mouse form is changed to the pointing hand.
Function objc_ofiset() is used to get the screen coordinates of FLEX
BOX. Then gra£_rubberbox() is called to allow the user to set the new
size. Function grafLrubbeitoox uses the minimum width and height
values bu t does not have any parameters for a maximum width and
height The maximum size m ust be calculated manually, which is
done a few statements later. When the user releases the mouse
button, graf_rubberbox() returns and function size_box() resets the
mouse form to the arrow.

The same general redrawing method is used here that is used in
move_box(). F irs t BOXO only is redrawn to erase the area. Then the
new size is tested to see if it exceeds the maximum boundaries. If the
new size does exceed the limits,- the value is truncated at the edge of
the boundary. For example, if the right edge of FLEXBOX extends past
the right edge of BOXO, the right edge of FLEXBOX is set to stop at
the right edge of BOXO. Note how the relative object coordinates are

310 Atari ST

used for this calculation. The relative x coordinate of FLEXBOX plus
its new width m ust be less than the width of BOXO. A similar test is
done with the relative y and new height

Once the new width and height are se t the relative coordinates of
SIZEBOX (the small box in FLEXBOX) m ust be changed. Otherwise,
it will appear in the same relative position as before. The size box
should always be in the lower right comer. When a box is resized, the
relative position of the lower right comer changes. Therefore, the new
relative x and y coordinates of SIZEBOX are calculated. Now that all
the children of FLEXBOX are s e t objc_draw() is called once again to
draw FLEXBOX in its new size.

For the slide bars, the user places the mouse on the slider and
presses the mouse button. The slider can then be moved to any
position within the slide bar. Control of the slider is handled by
function graf_slidebox(). The tree address, the index of the slide bar
object, and the index of the slider object are passed to gra£_slidebox().
The last parameter determines whether the box moves in the vertical
or horizontal direction. 0 indicates horizontal movement and 1 indi
cates vertical control. The gra£_slidebox() function automatically
keeps the object inside its parent When the user releases the mouse
button, the function returns a value between 0 and 1000. This
indicates the relative position of the center of the slider inside the
slide bar. A 0 is the furthest left and 1000 is the furthest right position
on a horizontal slide bar and the top and bottom of a vertical slide
bar, respectively. On a horizontal slide bar, once the new relative
position is known, the new x position m ust be calculated. Since the
x position is relative to the paren t a ratio can be set up as this:

new x _ value returned
slide bar width 1000

Solving this equation for the new x coordinate gives this:

new x = (value returned * slide bar width) / 1000

For a vertical slide bar, the new y coordinate is calculated with the
following equation:

new y = (value returned * slide bar height) / 1000

After calculating the new x or y coordinate of the slider, the value
m ust be set in the OBJECT structure for the slider. Then the slide
bar is redrawn.

Function h_slide() handles the request for change to the horizontal
slider. Function graf_slidebox() is used to control the slider move

Building a Better Mouse Trap 311

ment. When gra£_slidebox() returns, variable val has the relative
position of the slider in the slide bar. Variable val is declared as a
long integer because the multiplication may exceed the range of a
standard integer. Note tha t the width of the slide bar is adjusted by
su b trac tin g the w idth of the slider. The value re tu rned by
graf_slidebox() is the relative position of the center of the slider. The
center of the slider never reaches the edge of the slide bar. At best,
the center of the slider gets to within one-half slider width of the end
of the slide bar. One-half width a t the left edge and one-half width a t
the right edge means tha t there is one slider’s width of area on the
slide bar that the center of the slider cannot reach. Therefore, the
width of the slider m ust be taken out because this width is a “dead
zone” in which the slider cannot move. After calculating the new x
coordinate, the slide bar (and its child, the slider) can be redrawn
using objc_draw(). Function v_slide() is much the same except that
it uses the y coordinate and the object’s height It also adjusts the
total height of the slide bar by subtracting the height of the slider
itself.

The last application function is watch_bax(). This function uses
the graf_watchbox() function to see if an object button is selected.
The parameters of gra£_watchbox() provide the address of the tree,
the index of the object being watched, and the state of the object when
the mouse is in and out of the box. The graf_watchbox() function
returns TRUE when the mouse button is released while the mouse is
inside the box and FALSE otherwise. The result of releasing the
button inside the box here is that the text is toggled from “On” to
“Off’ or vice versa When graf_watchbox() returns, it leaves the
watched box in its last state. Thus, if you are emulating a button as
done in MOUSE, then when gra£_watchbox() returns the box needs
to be set back to its original state.

This completes program MOUSE. There are quite a few changes you
can make to this program. First, you might tiy adding an information
dialog box as used in the previous four programs. Also, function
size_box() did not use the graf_growbox() function to show the
change of size for the box. Use the move_box() function as an
example of where to insert the gra£_growbox() function. Another area
to investigate is the mouse form. After you have worked with the
predefined mouse forms, create one of your own using the MFORM
structure. Look back a t the raster programs for examples of creating
bit maps and masks.

If your program changes the mouse form, it is responsible for
restoring the mouse form to the arrow when the mouse leaves your
work area. For example, a word processing program uses the
TEXT-CRSR mouse form. If the user moves the mouse to one of the
window control areas, the desktop, or the menu bar, the word proces
sor is responsible for changing the mouse form back to the arrow.

312 Atari ST

The easiest way to handle this In a program is to set up a mouse
event. When the mouse leaves the work area, the mouse event occurs
and your program can change the mouse form. While the mouse is
outside the work area, your program waits for the mouse to enter the
work area (the reverse procedure as shown in program MOUSE for
BOX3). When the mouse returns to the work area, the mouse form
can be set to whatever form is required. This should be done to
remain consistent with the GEM interface.

In this chapter, you have seen some more events, particularly mouse
and button events, and some of the basic routines used by the AES
in its graphics interface. These routines are useful when you want to
provide graphic tools for the user to set such as the control panel
accessoiy. The next chapter shows the use of windows, which is the
primary use of many of these graphic routines.

C H A P T E R T W E L V E

By now, you have probably noticed tha t the programs written so far
lack one primary aspect of the GEM environment: the use of windows.
Most programs have used ju s t the desktop window, which is the
default location for most output functions accessed by the programs.

The use of windows in a program provides a more natural working
environment. A window allows the user to separate tasks and or
ganize them on the screen in any order. For example, a word proces
sor may allow two or three different windows to be open with each
window editing a different file. When the user is working on one file
and needs information from another file, it is then a simple matter
to take the information needed from one window and transfer it to
the original window.

There are a number of different situations that the program must
deal with when using a window. This chapter covers the use of
windows in a program, how a program can create and provide a
window for the user, and how the program m ust communicate with
the AES to handle window operations. Finally, two demonstration
programs show the use of the many window concepts that are dis
cussed.

Window Rules
Chapter 9 introduced the components of a window. These com
ponents are shown again in Figure 12-1. The components include the
close box, full box, title bar and move bar, scroll bars, sliders, arrows,

Windows on
World

3 1 4 Atari ST

.Vertical
S lide r

.Vertical

— I

Close Box

\
Title & Move Bar Full Box

Inform ation.
Li ne

Uindoui Components;

For Vour Information

' • i mm* • • 5 3
• Up A rrow

w o rk

Scro ll Bar

A rrow

S lide r

Down A rrow

Horizontal
Scro ll Bar

Right
A rrow

Figure 12-1 Window Components

size box, and work area. The title bar and work area are the only
required components for a GEM window. All other components may
or may not appear depending on the application that creates the
window. To quickly review the components, the user selects the close
box to indicate to the application that the window is to be closed and
removed from the screen. The full box toggles the size of the window
between the largest possible size and the normal size of the win
dow. The size box allows the user to change the dimensions of the
window. The move bar allows the user to move the window on the
desktop. The scroll bar, sliders, and arrows move the window over the
data being displayed. The arrows move the window up and down or
left and right. The size of the slider relative to the scroll bar is propor
tional to the size of the window relative to the total size of the file.

When an application is running, it is responsible for the contents
of the work area. All user interactions with the remaining com
ponents of the window are handled by the AES. As mentioned earlier,
when the user interacts with one of these components, called window
control areas, the AES sends a message to the application indicating
that the user has changed the window environment in some way.

The W indow M anager

Using a window in a program requires the use of the functions
contained in the window library of the AES. This library contains the
routines that create windows, manipulate them, and set their at
tributes. Accessing a window is similar to using a workstation. Each
window has a window handle that identifies the window to the AES.
GEM cam handle up to eight different windows at one time.

The desktop itself is a window even though it doesn’t look or work

Windows on the World 315

like a normal window. The menu bar can be thought of as the
information line and the gray desktop as the work area The desktop
window always has a handle with the value 0 (window handles are
always integers). The desktop uses one window so there are seven
windows available for applications and desk accessories. Most ap
plications use no more than four windows at one time. Otherwise, if
the application were to use all seven remaining windows, there would
be no windows for the desk accessories to use. Even the desktop
limits the number of windows that can be open at one time. For
example, by double-clicking the floppy disk icon you can open a
window to show the disk’s directory. You can keep opening windows
for the same floppy disk. However, if you try to open another window
once you have opened four windows, the desktop gives you a message
saying that no more windows are available.

Window Procedures
When a window is opened, the AES m ust reserve space in memory
for this window to keep track of the window’s attributes. Therefore,
when you want to use a window, you m ust follow a particular se
quence of function calls to initiate and use the window. These calls
create the window, open the window, close i t and finally delete it
when it is no longer needed. Creating the window tells the AES to
reserve memory space for a new window. The creation process also
defines the size and components of the window. Opening the window
causes the AES to draw the window on the screen. The AES takes
care of drawing the control areas. The work area is left blank to be
filled in by the application. When the window is no longer needed on
the screen, the program m ust dose the window. This removes the
window from the screen. Any data underneath the window is then
displayed. If the window is no longer needed, it is ddeted from the
AES so that another window is available for a program or desk
accessory.

In GEM, the window tha t is completdy visible is called the top
m ost or active, window. This is the window currently being accessed
by the user. Other windows are partially or completely hidden by the
active window. These other windows remain inactive until the topmost
window is dosed or the user sdects one of the inactive windows. If the
topmost window is dosed or removed from the screen, the window just
bdow it becomes the active window. If the user clicks another window,
tha t window becomes the topmost window.

Because of the number of different conditions that might occur,
programs with windows m ust be event-driven. Once the program has
created and opened a window, it waits for messages from the AES.

316 Atari ST

When the user interacts with a window control area, the AES sends a
message informing the program of the request The program then
updates the window according to the user’s requests. The program is
responsible for any user interaction with the work area.

Window Manager Routines
The window manager (window library) consists of a set of routines
tha t allow an application to manipulate a window. These routines
include wincL_create(), wind_open(), wind_close(), wind_delete(),
wind_calc(), wind_get(), wind_set(), wind_find(), and wind-up-
date().

Function wind_create() allocates space for a window and returns
a handle to that window. The wind_open() function opens a window
on the desktop to a specified size. In addition, this function generates
an event that causes the application to draw the work area. The
win<L.close() function simply closes a window and removes it from
the screen. This function also causes the appropriate events to occur
so that the images underneath the window (which are now visible)
can be redrawn. Function wind_delete() removes a window from the
AES and allows the handle to be reused by another application.

There are two rectangles associated with a window that are of
interest to an application. The first rectangle is the work area. The
work area rectangle is simply the part of the window labeled as the
work area (see Figure 12-1). As the window is moved and sized, the
work area rectangle changes its size and position. The second rec
tangle, the border area is the total area of the window including the
work area and all the control areas. Function wind_calc() calculates
the border area given the work area of the window and vice versa.

Functions wind_get() and wind_set() allow an application to get
and change information about a specific window. Function wind_get()
returns such information as the position and size of the work area
or the border area, the size of a full window (that is, when the full
box is selected), the position of the sliders, the size of the sliders, and
the handle to the active window. Function wind_set() is the opposite
of wind_get(). It allows the application to change the window’s ap
pearance such as changing its title, changing the contents of the
information line, setting the position and size of the entire window,
and setting the sliders and slider sizes.

Function wind_find() returns the handle of a window under the
coordinates given as its parameters. Function wind_update() tells the
AES that the application is about to update a window or has com
pleted the update. This function is used so that when the program is
updating a window, the program does not receive any other events
that would change the window’s appearance. This stops all window

Windows on the World 317

processing until the application has completed redrawing the win
dow. W lnd-update() also allows an application to take control of the
mouse functions or return control to the AES. Taking control of the
mouse functions means that the application program m ust handle
the processes normally performed by the screen manager such as
following the mouse, controlling the menus, and controlling the win
dow components.

The sample programs presented in this chapter utilize most of
these functions. The first program, WINDOW1, is a general introduc
tion to using windows in a program. The second program, WINDOW2,
shows how an application handles the remaining components. Each
program is designed to allow you to experiment with the window
functions.

Window Messages
As mentioned above, a program manages its windows on an event
basis; tha t is, an event determines the next process that needs to be
performed. The AES communicates to the application through mes
sage events. These messages are generated when the application’s
window becomes the new top window, the application’s window has
been closed, the full box is selected, and so forth. Essentially, a
message is sent in response to any user interaction with a window
control area or when the work area needs to be redrawn. The contents
of the message simply inform the application of what the user has
requested. For example, for the application to make a new top window,
the application must set that window as the top window using
w ind_set(). The AES then responds by redrawing tha t window’s
control areas as the top window and issuing a redraw message to the
application owning the window (that is, the application tha t created
the window).

A close message requires the application to dose the window.
Opening or dosing a window may also require other aspects to be
changed. For example, when the last window is dosed in an editor
program, the Save or Save As., options should be disabled because
there is no more data to save.

The full box selection requires the application to determine whether
the window is a t its full size or n o t If it is a t its full size, the
application m ust use w ind_set() to reset the size of the window to
its original smaller size. If the window is a t its smaller size, the
application m ust reset the window to its full size. If sliders are used
on the window, changing the size of the window also requires that
the relative size of the sliders be changed. As the window’s size

318 Atari ST

increases or decreases, the size of the scroll bar also increases or
decreases. The slider size m ust be changed to maintain the correct
proportions.

An arrow message indicates that the user has selected one of the
directional arrows at the ends of the scroll bars. When an arrow
message is received, the application m ust move the window one unit
in the direction of the arrow. For a text screen, this would be one line
up or down or one character left or righ t For a spreadsheet applica
tion, this would be one row up or down or one column left or righ t
If the scroll bar is clicked (this is also indicated by an arrow message),
the window should move one screen width a t a time. If the sliders are
moved, the application needs to calculate what portion of the data to
display.

Moving or resizing a window such as the rubber-box and drag-box
outlines is handled by the AES for the graphic display. When the user
releases the mouse button, the move or resize message is sent to the
application. The message contains the new position or size of the
window. The application should check that the window has not
become too small. The w ind_set() function is also used here to set
the new position or size. If the size of the window is changed, the size
of the sliders m ust be checked.

Finally, a redraw message indicates that a portion of the window
work area has now become visible. The application is responsible for
filling this newly visible area.

Redrawing a Window

A window on the screen may have a visible portion. Any such visible
portion of a window can be represented by a set of nonintersecting
rectangles. Figure 12-2 shows a set of five rectangles that represent
the visible portion of window B. The AES maintains a list of nonin
tersecting rectangles that cover the visible portion of an open window.
A redraw message will be issued for each window. A redraw message
contains the area of the screen to be redrawn and the handle of the
window to redraw. For example, if the top window in Figure 12-2 is
closed, there would be a rectangular area (the area previously covered
by the window) to be redrawn. Closing the window causes the AES to
issue a redraw message to the application(s) owning windows A and B.
The same application may own both windows A and B bu t not
necessarily. It is the responsibility of the application program to then
redraw the work area portion of the window.

When the top window is closed, the visible area for window B
increases. Therefore, the AES changes the visible rectangle list (see

Windows on the World 319

Figure 12-2 Window B’s Visible Rectangle List

Figure 12-3) and sends a redraw message to the application owning
this window. To draw a window, only those visible portions should be
output to the screen. This can be accomplished by setting the clipping
rectangle to one of the visible rectangles in the rectangle lis t Anything
outside of the clipping rectangle would not be drawn. By going
through each rectangle in the list, the entire visible portion of a
window can be drawn. However, it could become quite time-consum
ing for an application to redraw an entire window when only a small
portion needs to be redrawn as in Figure 12-3. To speed the process
of redrawing a window, the clipping rectangle is set to the intersec
tion of the redraw area and the visible rectangle. In the figure,
rectangle 1 intersects with the redraw area in the lower right comer.
The clipping rectangle is set to this intersection. When the window
is redrawn, only the image in this intersection is ou tpu t Rectangles
2,3, and 4 do not intersect with the redraw area a t all so no redrawing
is done. The left half of rectangle 5 intersects with the redraw area

Figure 12-3 Window B’s Visible Rectangle List and the Redraw Area

320 Atari ST

so this portion of the window is o u tpu t Therefore, the redraw
procedure consists of intersecting each visible rectangle with the
redraw area. If an intersection exists, the clipping rectangle is set to
the intersection area and the window is drawn. If no intersection
exists, the next visible rectangle is used. When all visible rectangles
in the list have been checked, the window is redrawn.

An application usually has ju s t one function used to redraw the
window. This one function may consist of many other functions; yet
it provides a single entry point to the window-drawing process. By
having a single drawing function, the redraw sequence can make ju st
one call when the window needs to be redrawn. Otherwise, the redraw
process becomes cluttered with too many function calls and the flow
of the program becomes obscured. As you can see, dealing with
windows is not the simplest of tasks and having a clear program flow
aids you tremendously when changing or debugging.

The WINDOW Structure

The AES maintains an internal data structure to handle window
displays. Through the wind_get() function, you can retrieve various
values such as the position and size of the work or border area, the
position and size of the full size window, the position and size of the
horizontal and vertical sliders, the handle of the top window, the first
rectangle in a window’s visible rectangle lis t and the next rectangle
in the window’s visible rectangle lis t However, neither wind_get() nor
any other window functions provides any further access to window
values needed for the processing of the program. Specifically, once the
window is created, you cannot retrieve information about which
control areas are visible, whether the window is visible or not (that
is, opened or closed), and whether the window is at its full size or n o t
All these values must be maintained by the application.

To help keep track of these window values, the programs in this
book use a structure called WINDOW. (See Figure 12-4.) The WINDOW
structure is provided by the application. It is not a part of GEM.
The WINDOW structure holds information about a window not readily
accessible through an AES function. In addition to the WINDOW
structure, there is an array of WINDOW structures called windows.
This array holds up to the maximum number of windows specified
by the application. For the programs in this book, the maximum
number of windows is four. When a window is created by the applica
tion, the window’s information m ust be stored in the array. When a
window is deleted by the application, it m ust also be deleted from the
windows array. Handling the windows array requires some additional

Windows on the World 321

typedef struct wind_type {

UORD handle;

UORD mf_type;

UORD mf_visible;

UORD mf—fullsize;

} WINDOW;

Figure 12-4 The WINDOW Structure

overhead. However, once you see the convenience of having this array,
you will agree that it is necessary.

The handle field contains the handle of the window. The type field
contains the components available for this window. Each bit in the
field represents a different component The bit layout is discussed
later. The visible field keeps track of whether the window is open or
closed. If visible is TRUE, the window is open. The field fullsize is
TRUE if the window is a t its full size.

Program WINDOW!___________________________________

You should now be ready to create a window-exercising application.
Program WINDOW1 is the first step toward creating an application
outline file much like OUTLINE.C for the VDI. Of course, before
creating a complete application, you need a resource file.

The WINDOW1 Resource FUe
The resource file for program WINDOW! is shown in Figure 12-5. It
contains two trees. There is a menu named MAINMENU and a dialog
box called INFOBOX. The dialog box, as shown in the figure, is much
like the dialog boxes shown earlier. The menu contains the Desk and
File titles and a Windows title. Under the Desk menu, the first entry
should be changed to read “About WINDOW1.” Name this selection as
INFO. Under the File menu, there is the option Quit to be named
QUIT. The Windows menu has four entries, each to open one of four
windows. The entries are named WIND1, WIND2, WIND3, and WIND4.
Once you have created this resource file, save it under the name
WINDOW1.RSC.

Overview ofWINDOWl
Program WINDOW1 demonstrates how an application handles win
dows. This program allows the user to open up to four windows at

322 Atari ST

HHB1_______
About UIND0U1

Desk Accessory 1
Desk Accessory 2
Desk Accessory 3
Desk Accessory 1
Desk Accessory 5
Desk Accessory 6

About UIHD0U1

This is the first program which
demonstrates the use of (Hindoos.

ED
Figure 12-5 Program WINDOW! Resource File

any one time. The contents of the windows are filled ovals with each
window using a different fill pattern. The user may move, resize, close,
reopen, and full size any of the windows. When the user quits the
program, any open windows are closed and all windows are deleted.

The WINDOW1 program is shown in Listing 12-1. Do not be
alarmed by the length of this program. You have already seen most
of the functions and procedures in previous programs. Next is a
description of some of the organization changes made to this
program.

Listing 12-1 Program W1NDOW1
✓ X

WIND0W1.C Sample uindoui application

This program demonstrates the use of uindous uithln

an application.
X /

/ X X X X X X X X X K X X X X X X K X K X X X X X

System Header Files & Constants
X X X X X X X X X X X X X K X f tX /

Quit
U i n d o u s

Open Uindou 1
Open Uindoui 2
Open Uindou 3
Open Uindou 4

ttinclude <stdlo.h>
ttincludB <osblnd.h>
ttinclude <gemdefs.h>

' * Standard 10
GEMDOS routines
GEM RES */

Windows on the World 323

ttinclude <obdefs.h> GEM constants
ttinclude <errno.h> errno declaration

ttdafine FRLSE 0
ttdefine TRUE ! FALSE

✓xx

GEM Application Overhead
X /

Listing 12-1 (continued)

Oeclare global arrays for VDI.
typedef Int UORD; WORD is 1G bits
WORD contrl[12], ' * VDI control array *'

lntout[128], intin[128], VDI input arrays *s

ptsln[12B], ptsout[12B]; VDI output arrays *'

UORD screen_vhandle,
screen_phandle,
screen_rez,

color_screen,
x_max,
y_max,

nuhidden = FALSE;

virtual screen uorkstation

physical screen uorkstation
screen resolution 0,1, or 2

flag if color monitor */
s* max x screen coord *s

max y screen coord

mouse visibility status *'

WORD gr_wchar, gr_hchar,
gr_ubox, gr_hbox;

values for system sizes

tide fine UMIN_WIDTH
ttdeflne WMIN_HEIGHT

set min uindou size

(2*gr_ubox)
(3*gr_hbox)

WORD ap_ld; / * application ID

WORD
UORD

num_uindous;
cur_ulndou;

number of uindous open */
/ * index for current uindou

typedef struct uind_type {
UORD
WORD

WORD
UORD

> UINDOU;

handle;
type;

visible;
fullslze;

/ * uindou record *'
/* AES uindou handle
s* uindou attribute bits

flag if visible
flag if full size *'

ttdeflne MAX_UINDOW 4
UINDOU ui ndous[MAX_WINDOW];
UINDOU desktop;
UORD xdssk, ydesk,

udesk, hdesk;

allou for 4 uindous */
array of uindou records

s* desktop record
'* desktop area

✓ X

Application Specific Data
X X X K X K X X X X X X X X X X X X X K X K X K X X X X X /

324 Atari ST

ttinclude "uindoul.h" resource header file **

WORD ulndl, uind2, /» uindou indices
uind3, uind4;

GEM-related Functions
xx/

UORD open_vuork(phys_handle)

UORD phys-handle;
y**
Function: This function opens a virtual uorkstation.

Input: phys_handle = physical uorkstation handle
Output: Returns handle of uorkstation.
* /

i
WORD uork_in[ll],

uork_jout[57],

neu_handle; handle of uorkstation */
int i;

for (i = 0; i < 10; i++)
uork_ln[i] = 1;

work_inll0] = 2;

neu_handle = phys_handle;
v^Dpnvuk(uork_in, &neu_handle,

return(nBU_handle);

>

set^screen_attr()
y *

Function: Set global values about screen.

Input: None. Uses screen_vhandle.
Output: Sets x_max, y_/nax, color^screen, and screen_rez.
**/
{
WORD uork_out[57];

vq_fixtnd(screen_vhandle, 0, uork_out);
x_max = uork_jout[0];
y_max = uorl<_out[l];

screen_rez = Getrez(); /* 0 = lou, 1 = med, 2 = high *s

color^screen = (screen_rez < 2); mono 2, color 0 or 1

>

hide_fflouse()
/**
Function: Make mouse invisible if currently visible.
Input: None. Uses variable m_hidden.

Listing 12-1 (continued)

set for default values

/ * use raster coords

/* use currently open ukstation *s
uork-jout);

Windows on the World 325

Output: SBts m-hldden to TRUE.
xx/

<
if (!m_hidden)

<
g ra f-mouse (MJOFF, 0x0L);
m_hldden = TRUE;

>
>

shou_jnouse()
✓xx

Function: Make mouse visible if currently invisible.
Input: None. Uses m_hidden.
Output: None. Sets m_hldden to FRLSE.
X X

(
if (m_hidden)

{
graf_mouse(MJDN, 0X0L);
m_hidden = FRLSE;

>
>

load—resource(rfile)
char *rfile;
/xx

Function: Load resource file.
Input: rfile = string ulth resource filename.

Output: Returns TRUE if file loaded, else FRLSE.
X /

<
char temp[128];

if (!rsrc_load(rfile)) ' * error loading file */

{ s* set alert format */

sprintf(temp, 1[0][Cannot load file %s |Exiting ...] [OK]*, rfile);

foniLjalert(l, temp); '* show alert box *'

return(FRLSE);

>
return(TRUE);

>
do dialog(box_index)
UORO box_index;
✓xx

Function: Display a dialog box centered on the screen.
Input: box_addr = index of dialog box
Output: Returns index of object used for exit.
X W X X X X X X X X X X K X X X X f f X X X /

{

Listing 12-1 (continued)

326 Atari ST

WORD xbox, ybox, hbox, ubox;
UORD smallx, smally, smallu, smallh;
UORD exit^object;
OBJECT *box_addr;

/* get address of box *s

rsrc_gaddr(0, box_lndax, &box_addr);

/ * get size and location of a box centered on screen *s

form_center(box^addr, &xbox, &ybox, &ubox, ihbox);
smallx = xbox + (ubox -'2);
smally = ybox + (hbox / 2);
smallu = 0;

smallh = 0;

/* reserve area on screen for box display

form_jdial (FMD—5TART,
smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox];

drau an expanding box */

form_dia1(FMDJGROU,

smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

/* drau dialog box

objc_drau(box_^addr, 0, 10, xbox, ybox, ubox, hbox);

handle dialog input *s

exit-object = form_jdo(box_addr, 0);

/ * drau a shrinking box *s
form^dial (FMD_J5HRINK,

smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

/* reserve area on screen for box display

form_jdial (FMD-FINISH,

smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

/* reset exit object state to unselected **

box_jaddr[exit_object] .ob_state = NORMAL;

rBturn(exit_object);

>

set_clip(x, y, u, h)

UORD x, y, u, h;

Listing 12-1 (continued)

Windows on the World 327

✓**
Function: Set the clipping rectangle.

Input: x = x coord of clip rect
y = y coord of clip rect

u = uidth (in pixels) of clip rect
h = height (in pixels) of clip rect

Output: None. Sets neu clipping rectangle.
X X X X X X X X X X X X X X X X X X X * » * * » * * * * * * * * * » * * * * * * * * * » * * * * * * X

{
WORD cllp[4];

cllp[0] = x;

c l i p [l] = y;
clip[2] = x + u - 1;

cllp[3] = y + h - 1;
vs^clip(screen_vhandle, TRUE, clip);

Listing 12-1 (continued)

inlt_uindous()
/ X * * X X * K X X * K K X X X X X « » t t * * K t t * * X X K X K * * * * t t * * * X * X * « * X * * * *

Function: Initialize global uindou values.
Input: None.

Output: None. Sets global uindou values.
« X X « X X K X X X X X X X X X K X K X X * * X X X X X X X X X X X X K X X X X X X X X X X X X X X /

<
Int 1;

num_ulndous = 0; no uindous open
for (1 = 0; i < MfiX_WINDOW; i++)

ulndous[1].handle = -1; ** set records to unused
desktop.handle = 0; desktop is aluays 0

** get desktop work arBa *'
u 1 nd_ge t(desktop.handle, I4F_W0RKX YWH,

&xdesk, &ydesk, &udesk, &hdesk);

return;

>
create_ulndou(neukind, utitle)
WORD neuklnd;

char *utitle;
/ X X X X X X X X X X X X X X # X X X X X * « » X X X X X # » X X X X X X X X X X * # * X X X X X X X

Function: Open a neu uindou.
Input: neuklnd = uindou attributes to include

utitle = string for uindou title
Output: Returns index if uindou created, else -1
Notes: Info line, and slider values are NOT set

by this function. Full uindou size is set to
desktop uork area.

X /

<
WORD neu;

328 Atari ST

y* check if uindous are available */

if (num_uindous >= MRX_WINDOW) max uindous In use * /

<
foriTL-alert(l, " [0] [Maximum number of uindous reached.] [OK]1);
return(-1);

>

find uindou record to use */’
for(neu = 0; new < MRX_WINDOW; neu++)

if (uindou[neu].handle < 0> /* record found t
break;

if <nBu >= MRX_MINDQM) no records available

{
form_alert(l, *[0][No uindou records found available.][O K] ;
return(-1);

>

/ * create uindou for RES

ulndous[neu].handle =
uind_create(neuklnd, xdesk, ydesk, udssk, hdesk);

if (uindous[neu].handle < 0) RES could not make uindou

<
form_alert(l, "[0][RES error opening a uindou.|Cannot continue.][OK]a);
return(-l);

>

fill uindou record

u i ndous[new].type = neuk1nd;
uindous[neu].fullslze = FRLSE;

uindous[new].visible = FRLSE;

s * set uindou title

uind_set(uindous[neu].handle, WF_NRME, utitle, 0, 0);

num_uindous++; s * add uindou to count * /

return(neu); s * return index

>

open_uindou(ul_lndex)
/ X X X X X X X X X X X X X X X X X K X X X X X X K X X X X X X X X X X K X X X X X X X X X X X X X X

Function: Make a uindou visible.

Input: ui_index = index to uindou
Output: None. Sets uork area and visibility flag in uindou record.
X X X X X X X X K X X K X X K X K X X K X X X X X /

<
WORD xsize, ysize, uslze, hsize;

Listing 12-1 (continued)

s* check if already open */
If (uindous[ui_index].visible)

return;

Windows on the World 329

** get current ulndcu size *s
uind_get(uindous[ul_lndex].handle, UF—PREVXYUH,

&xsize, &yslze, &uslze, &helze);

If no size, then must be first time opened */
If (!(xslze || yslze || uslze || hslze))

(
xslze = xdesk; '* default to desktop uork area

yslze = ydesk;

uslze = udesk;
hslze = hdesk;

>

/* open uindou

hlde_mouse();
graf.jgroubox((xsize + uslze/2), (yslze + hsize'2),

gr_ubox, gr_hbox, xslze, yslze, uslze, hslze);

ulndLjopen(uindous[ul_lndex].handle, xslze, yslze, uslze, hslze);
uindous[ul—lndex].visible = TRUE; ' * flag uindou is open * s

shou_mouse();

)
close_uindou(ui_index)
/a#*******#*****************##*#*#**#*####*#####***
Function: Close a uindou.

Input: ui_index = index to uindou to close

Output: None. Closes uindou and set visibility flag.
X * « * * * « X X X * t t X * * X « « S * S * X X * * * * X * X * * * * « * * « * « » » * * K * X » * /

i
UORD xslze, yslze, usize, hsize;

* * check if already closed
if (!uindous[ui_index].visible)

return;

get current uindou area **

uincLjget(uindous[ui_index].handle, UFJCURRXYUH,
&xsize, &ysize, &usize, &hsize);

close uindou */

hide_mouse();
uind_close(uindous[ul_index].handle);

graf_jshrlnkbox((xslze + uslze'2), (yslze + hslze'2),
gr_ubox, gr_hbox, xsize, yslze, usize, hslze);

ulndous[ul_index].visible = FALSE; f* flag uindou as closed

shou_mcuse();

>

del_uindou(ul_index)
UORD ui_index;
/ X

Function: Delete uindou from AES

Listing 12-1 (continued)

330 Atari ST

Input: ul_index = index of uindou to delete
Output: None. Uindou deleted from RES and uindous.
X X

<
if (uindous[ul_index].visible) s* still on screen

close_uindou(ui_index); so close it

delete from RES
uind_jdelete(uindous[ui—index].handle);

set record as available
uindous[ui_index].handle = -1;

remove uindou from count

num_uindous--;

>

flnd-ui ndou(u1-handle)
UORD ui-handla;
/xx

Function: Find index for uindou record uith given handle.
Input: ui_handle = handle of uindou to search for

Output: Returns index or -1 if not found.
X X X X X X X X K K X X X X X X K X K X X X X X X /

<
register Int 1;

for (1 = 0; i < MRX_UINDOU; 1++)

if (ulndous[l].handle == ul_handle)
return(1);

return(-1);

>

do_redrau(ui_index, ui_redrau, x, y, u, h)

UORD ui_lndex,
(*ui_redrau)(),

x, y, u, h;
/ K X X X X X X X X X X X X X X K X K X

Function: Redrau all clipping rectangles.

Input: ui_lndex = index to uindou being updated

ui_redrau = address of function used to drau uindou
x, y = redrau area X,Y coord
u, h = redrau area uidth and height

Output: None. Screen is updated.
NotBs: ul_redraw cannot use any parameters or return any values.

You may create a do_redrau function for each uindou,
or pass the parameters through global variables.

X X X X X X X X K X /

{
6RECT redrau, redrau area

clip; s* current clip area

hide_mouse();

uind_update(TRUE); freeze uindou status

Listing 12-1 (continued)

Windows on the World 331

redraw.g_x = x; set redrau area **

redrau.g_y = y;
redrau.g_u = u;

redrau.g_h = h;

s* get first clip rectangle *s
uind_get(uindous[ui_index].handle, UF-FIRSTXYUH,

&clip.g_x, &clip.g_y, &clip.g_u, &clip.g_h);

begin redrau loop until no more clip rectangles
uhile (cllp.g-u && cllp.gJi)

<
if (rc_intersect(&redrau, &clip))

<
set_cllp(cllp.g_x, cllp.g_y, clip.g_u, clip.g_h);
(*ui_redrau)(); particular redrau function

>
uind_get(uindous[ui_index].handle, UF-NEXTXYUH,

&cllp.g_x, &clip.g_y, &clip.g_u, &clip.g_h);

>
ulnd-iipdate(FfiLSE); /* screen is ready */

shou_mouse();

>

/ X

Rpplication Functions
X /

drau_function()
✓ X

Function: Drau in current uindou.

Input: None. cur_uindou is index to current uindou to drau in.
Output: None. Draus in uindou.
X X X X X X X X X X X X X X X K X X X X K X K X X K X /

<
UORD temp[4];

UORD xuork, yuork, uuork, huork;

uind_get(uindous[cur_uindou].handle, WF—WORKXYUH,

&xuork, &yuork, &uuork, &huork);

vsf_interior(screen_vhandle, 2);
vsf_style(screen_vhandle, 8);
vsf_color(screen_vhandle, 0);

temp[0] = xuork;
temp[l] = yuork;

temp[2] = temp[0] + uuork - 1;
temp[3] = temp[l] + huork - 1;
v_bar(screen—vhandle, temp); s* clear uork area

if (cur_ulndou -- uindl)
vsf_style(screen_vhartdle, 9);

Listing 12-1 (continued)

332 Atari ST

else if (cur_uindou == uind2)

vsf_style(screen_vhandle, 10);
else if (cur_uindou == uind3)

vsf_style(screen_vhandle, 11);

else if (cur.juindou == ulnd4)

vsf_style(screen_v/handle, 12);
vsf_color(screen_vhandle, 1);

v_Blllpse(screen_vhandle, xuork + uwork^2, ywork + huork^2,
uuork/2, huork^2);

return;

>

Listing 12-1 (continued)

control()
/a*##*********#******#****####*##***#####*******##*
Function: Master control function.
Input: None. Program initialization must be done before

entering this function.
Output: None. Returns for normal program termination.
*****#*#*****************##»#»****#*#»##»***»***##/
<
OBJECT *menu_addr;

WORD end_program = FALSE;
WORD mevx, mavy,

butstate,
mevbut,
keystato,

keycode,
mbreturn,

msg_buf[8];
WORD event,

menu_index;
WORD drau_function();

address for menu

/ * exit flag */
** evnt_multi parameters */

/ * message buffer */
evnt_multi result

/ * keyboard menu title selected *'
/ * screen draulng function

/ * initialize uindou indices
ulndl = -1;

ulnd2 = -1;
uind3 = -1;
uind4 = -1;

get address of menu **

rsrc_gaddr(0, MAINMENU, &menu_addr);

/ * display menu bar **
menu_ba r(menu_addr, TRUE);

initial button status to uait for #/
butstate = TRUE; button doun

uait for a message Indicating a menu selection *'

do continue loop until quit */

i

Windows on the World 333

event = evnt_fl>ulti((MU—KEYBD

Listing 12-1 (continued)

0, /*

0. /*

butstate. /*

0, /*

0, 0, /*

0, 0, /*

0, /*

0. 0, /*

0. 0. /*

msg_buf, /*

0. 0, /*

&mevx, &mevy. /*

&mevbut. /*

&keystate. /*

&keycode. /*

&mbreturn); /*

MLLMESftG | MLLBUTTON),

tt mouse clicks *'

tt times mouse key enter state

Mlnd_update(TRUE); hold uindou processing */

if (event & MILMESRG)

{
suitch(msg_buf[0])

<
case MN-5ELECTED:

suitch(msg_buf[4])

<
case QUIT:

menu chosen

</* exit program
end-program = TRUE; set exit flag */
break;

case INFO:

do_dlalog(INFOBOX);
break;

display program info

case MIN01: open^close uindou 1 */

if (uindl < 0) /* uindou must be created

i
ulndl = create_uindou(

(NRME | CLOSER | FULLER | (10VER | SIZER),
* Uindou 1 *);

if (ulndl < 0) /» error creating uindou

<
end-program = TRUE;
break;

>
>
if (uindous[uindl].visible)
{ s* uindou is open so close it

close_uindou(ulndl);
menu_text(menu_addr, UIND1, ' Open Uindou l a);

>

334 Atari ST

else

{ s* uindou is closed so open it *'
cpen_julndou(uindl);

menu—text(menu_addr, UIND1, ' Close Uindou 1');
>
break;

case UIN02: /* open^close uindou 2
if (uind2 < 0) s* uindou must be created

{
ulnd2 = create_wlndou(

(NRME|CLOSER|FULLER|MOVER|SIZER),
* Uindou 2 ");

If (ulnd2 < 0) /* error creating uindou * /

i
encLprogram = TRUE;
break;

>
>
if (uindous[ulnd2].visible)

{ s* uindou is open so close it
close_ulndou(ulnd2);
menu_text(menu_addr, UIND2, ' Open Uindou 2 a);

>
else

{ s* uindou is closed so open It

operuujindou(uind2);

menu_text(menu_addr, UIND2, * Close Uindou 2');

)
break;

case UIND3: s* open/close uindou 3
if (ulnd3 < 0) uindou must be created * /

<
uind3 = create_ulndou(

(NAME|CLOSER|FULLER|MOVER|SIZER),
* Uindou 3 ■);

if (ulnd3 < 0) /» error creating uindou */

<
end-program = TRUE;
break;

)
}
if (uindous[uind3].visible)

{ s* uindou is open so close it
close_wlndou(ulnd3);

menu_text(menu_3ddr, WIND3, " Open Uindou 3a);

>
else

{ /* uindou is closed so open it */
open_uindou(uind3);

menu—text(menu-addr, UIND3, a Close Uindou 3 a);

>
break;

Listing 12-1 (continued)

Windows on the World 335

case UIND4: s* opsiVclose uindou 1

if (ulnd4 < 0) uindou must be created

<
uind4 = create_jwindou(

(NOME|CLOSER|FULLER|MOVER|SIZER),
* Uindou 4 1);

if (ulnd4 < 0) / * error creating uindou

<
endLprogram = TRUE;
break;

>
>
if (ulndous[uind4].visible)
{ s* uindou is open so close it

closs_uindou(uind4);

(nenu_text(menu_addr, WIND4, ' Open Uindou 4');

>
else
{ /* uindou is closed so open it */

open_ulndou(ulnd4);

menu_text(menu_addr, UIND4, ’ Close Uindou 4');

>
break;

default:
break;

>
/ * reset menu title

fflenu_tnormal(menu_addr, msg_buf[3], 1);
m8nu_bar(menu_addr, TRUE);

break; /* end MN_SELECTED *'

case UM_REDRRU: redraw ulndous * s
if ((curuulndou = fin(±juindou(msg_buf[3])) < 0)

break; / * no uindou listed
do_redrau (cur-juindou, drau_function,

msg_buf[4], msg_buf[5], msg_buf[6], msg_buf[7]);
break;

case UM_NEUTOP: / * neu uindou is on top **

case WM—TOPPED:

if ((cur_uindou = find_uindou(msg_buf[3])) < 0)
break; no uindou listed

ulnd-jset(ulndous[cur_Mlndou].handle, UF_TOP, 0, 0, 0, 0);
break;

case UMJCLOSED: s* close box pressed *'
if ((cur_uindcu = flnd_ulndou(msg_buf[3])) < 0)

break; / * no uindou listed■*'

closa_uindou(cur_ulndou);

if (cur_ulndou == uindl) / * set appropriate menu item * s
menu_text(menuuaddr, UIN01, ' Open Uindow 1");

else if (cur^ulndou == ulnd2)

Listing 12-1 (continued)

336 Atari ST

Listing 12-1 (continued)
menu_text(menuL_addr, WIND2, * Open Windou 2*);

else if (cur-juindou == uind3)

menu_text(menLLjaddr, WIND3, " Open Uindou 3‘);
b Isb if (cur_ulndou == uind4)

menu_text(menu_addr, UIND4, 11 Open Uindou 4 a);
break;

case UM—FULLED: s* full box pressed
if ((cur_uindou = find_uindou(msg_buf[3])) < 0)

break; no uindou listed
if (uindous[cunjulndou].fullsize)

{ full to regular size
UORD neux, neuy, neuu, neuh;

/* get previous uindou size *s
uind_jget(uindous[cur_windou].handle, WF-PREVXYUH,

&neux, &neuy, &neuu, &neuh);
uind_set(windous[cur_uindou].handle, UFJCURRXYWH,

neux, neuy, neuu, neuh);

>
else

{ regular to full size
UORD xfull, yfull, ufull, hfull;

get full uindou s Izb
uind_get(uindous[cur_wlndou].handle, WF-FULLXYUH,

&xfull, &yfull, &ufull, &hfull);
uind_set(uindous[cur_uindou].handle, MFJCURRXYUH,

xfull, yfull, ufull, hfull);

>
ulndous[cur_uindou].fullsize “= TRUE;
break;

case WM_RRROWED: arrou and slide bars not used

case UM_H5LID:
case UM-VSLID:

break;

case UMJ5IZED: ✓#. uindou resized or moved
case UM-MOVED:

if ((cur_uindou = f ind_juindou(msg_buf [3])) < 0)
break; uindou not listed *s

if (msg_buf[6] < WMIN-WIDTH)
msg_buf[6] = WMIN—WIDTH;

if (msg_buf[7] < WMIN_HEIGHT)

msg_buf[7] = UMIN_HEIGHT;

uind_set(uindous[cur_uindou].handle, WFJCURRXYUH,
msg_buf[4], msg_buf[5], msg_buf[6], msg_buf[7]);

break;

default:
break;

} /* end message suitch *s
} end message handler

Windows on the World 337

if (awent & MILKEYBD)

{
eu1tch(keycode)

i
/ * case QUIT-KEY:

menu—lndex = FILE;

menu_tnormal(menLL^addr, menu_index, 0);

encLprogram = TRUE;
break;

*/
default:

break;

>
menu_tnormal(menu_addr, menu_index, 1);
menu_bar(menu_addr, TRUE);

) s * end keyboard handler */

If (event & MILBUTTON) button handler */

i
butstate = !(butstate);

) /* end button handler

If (end_program) c Iosb open windows *s
{ and delete all windows
Int 1;

for (1 = 0; 1 < MRX_MINDOW; i++)
If (wlndows[1].handle >= 0)

del_wlndow(1);

>

uind_update(FRLSE); /* resume processing */

) while (!end_program); program control loop */

return;
} s* end function *s

/xx

Main Program
xx^

maln()

<

✓xxxxxxxxxxxxxxxxxxxxxxx*xxxxxxxx*»**xxx*xx*x***xx*

Initialize GEM Access
X X X X X X X X X K X X X X X X X X X X X X X K X X X X X X X X X X X X X X X X X X X K X X X X X X . /

Listing 12-1 (continued)

ap-ld = appl_inlt();

if (ap_id < 0)
Initialize RES routines *s

' * no calls can be made to RES

338 Atari ST

< use GEMDOS
Cconws(****> Initialization Error. <***Nn*);

Cconus('Press any key to continue.Mi*);
Craucin();

exit(-l); ** set exit value to show error */
>

screen_phandle = Get handle for screen * '
graf—handle(&gr_uichar, &gr_hchar, &gr_jubox, &gr_hbox);

screen_vhandle = open—vuork(screen_phandle);
set—screensttr(); Get screen attributes

/***
Rpplication Specific Routines

If (!load_resource(" WIND0W1.RSC*)r)o resource file loaded
exit(l);

lnit_uindous();
gra f-mouse(RRROU, 0x0L);
control();

✓a**
Program Clean-up and Exit

■ j u t * * * * * * * # * # * * * * * * * * * * * * * * * * * /

rsrc_free();

v_clsvuk(screen—1vhandle); /* close workstation *s
appl^sxit(); s* end program

>
/»#***»**#************************»***************#/
✓*****»✓

The sj^stem header files have not changed. The GEM application
overhead contains the usual VDI declarations. Note that the variables
gr_wchar, gr_hchar, gr-wbox, and gr_hbox have been moved from
function main() to this section of the program. The variable gr_wchar
has the value of the width of one character cell in pixels. The variable
gr.hchar contains the height of one character cell in pixels. These
values are used in the next two #define statements for the minimum
window width, WMIN-WIDTH, and m inim um window height,
WMIN-HEIGHT. The minimum width will be a t least two characters
and the minimum height will be a t least three characters. Variable
ap -id has also been moved to the GEM application overhead because
if the program needs to send a message, element 1 of the message
buffer must contain the ID number of the application originating the
message. The remainder of the GEM application overhead is used to
facilitate the windows array mentioned above.

Listing 12-1 (continued)

Windows on the World 339

The use of the windows array in your application program is
optional. It is used here because it is one of the most straightforward
and simplest methods for maintaining multiple windows in an ap
plication. These declarations have been placed under the GEM ap
plication overhead section in case you decide to use WINDOW1 or
WINDOW2 as an outline for your own applications.

The variable num-windows keeps track of how many windows have
been opened by the application. Variable cur.window is the index
into the array windows for the currently open window. Next comes
the definition of the WINDOW structure. The constant MAX-WINDOW
determines the maximum number of windows that may be created
by this program at any one time. GEM provides for only eight win
dows. This program allows up to four windows to be created. The
array windows is then declared as an array of WINDOW structures.
Variable desktop is a WINDOW structure tha t keeps track of the
desktop window. This is done so that accessing the desktop window
remains consistent with accessing the other windows within the
program. The four variables xdesk, ydesk, wdesk, and hdesk hold the
work area of the desktop window. The desktop work area is the gray
portion of the screen below the menu bar. In general, windows should
not be placed outside of the desktop work area and their size should
not exceed the size of this area.

Moving to the GEM-related functions, the first several functions have
already been discussed. These are: open_vwork(), set_screen-attr(),
hide_mouse(), show_mouse(), load_resource(), and do_dialog(). The
next function, set_clip(), provides an interface between the AES
rectangle and the VDI rectangle. To set the clipping rectangle, the VDI
vs_clip() function m ust be used. However, most of the coordinates for
rectangular areas are in the AES format consisting of the coordinates
for the upper left comer, the width, and the height. These values need
to be converted to the VDI rectangle format consisting of the coordi
nates for opposite comers. Function set_d ip() provides this interface
and sets the clipping rectangle.

The function init_windows() initializes the windows array and gets
the values of the desktop window. Function init_windows() should
be called during the initialization process of the program as in the
call to set_screen_attr() in function main(). The init_windows()
function sets the number of windows in use to 0 (since no windows
have been created yet) and sets the handle for each window in the
windows array to —1. Any window created by the AES has a positive
handle. Setting the handle to —1 indicates tha t this element in the
windows array is not being used. The desktop window handle is
initialized to 0. To set the remaining desktop window values,
init_windows() makes a call to wind_get(). The first parameter of
w ind_get() is the handle of the window being queried. H ie second

340 Atari ST

parameter is a constant value that indicates the type of information
being requested. The constant names and values are listed in Appen
dix A. The next four parameters are used to hold the returned values.
In this call to wind_get(), the program is requesting the size and
location of the desktop work area.

The next four functions in th is section of the program are
create_window(), open_window(), close_window(), and del_window().
These functions maintain the windows array and provide the ap
propriate procedures for doing the described action. Much like access
ing an object in a tree , array, your program is accessing windows
through the windows array. Function create_window() creates a
window in the AES if there is room. If n o t an alert box is issued to
the user and the function returns. The create_window() function
returns the index of the array element for the window created. If the
window is not created, a —1 is returned. Ju s t as an object is accessed
through an index, a window is also accessed through an index.

The create_window() function first checks if the maximum num
ber of windows are in use. Then the function tries to locate an
element in the windows array not currently in use. An element not in
use is indicated by a handle element less than 0 (usually —1). Variable
new is set to the index of the array tha t holds the new window. If new
exceeds the value MAX_WINDOW, there is a problem in the windows
array and an alert message is given. If new contains the proper
index, a window can be created. Function wind_create() is called and
returns a handle to the newly created window. The first parameter to
w ind_create() specifies the control areas to include in the window.
The next four parameters define the largest size that the window may
assume. Because a window’s size may not exceed the desktop work
area, the largest size assumed in this program is the entire desktop
work area. If the calling program needs a smaller full-size window, the
full-size window area can be set through the w ind_set() function. The
values used for wind_create() only limit the absolute maximum size
tha t the window may achieve. Function wind_create() returns the
handle of the new window. If the handle returned is less than 0, the
AES had a problem creating the window and an alert box indicates
the situation.

The element in the windows array is then filled. The type field is
set to the attributes of the window. The full-size field starts a t FALSE.
The visible field is also set to FALSE because creating a window does
not open the window. Opening a window m ust be done explicitly. Next
function w ind_set() is called to set the title bar of the window. Finally,
variable num_windows is incremented by 1 so that the window count
is accurate. The index to the newly created window is returned to the
calling program.

Function open_window() takes the index of a window and opens

Windows on the World 341

tha t window. The process of opening a window simply requires a call
to function wind_open(). However, to make a program look more
sophisticated, opening a window should consist of hiding the mouse
(to avoid any screen drawing conflicts), drawing a growing box out
line, opening the window, and showing the mouse. Function
open_window() can be called a t any time after a window has been
created bu t should not be called when the window is already open.
Therefore, the first statement in open_window() tests if the window
is visible. If it is, the function ju s t returns. If n o t open_window()
continues the opening process.

Two conditions can occur when a window is opened. Either the
window has never been opened before or it is being reopened. In the
latter case, it would make sense tha t the window be opened to the
same size it was when it was closed. A program can request the
previous size of a window through the wind_get() function shown in
open_window(). The constant WF_PREVXYWH indicates that the
previous position and size of the window are desired. The information
is returned into variables xsize, ysize, wsize, and hsize. If the window
has never been opened before, these variables all have the value of 0.
The next statement in open_window() tests for this condition. If the
window has never been opened before, its default starting size is the
size of the desktop work area. If a previous size is available, these
values are used. To actually open the window, function hide_mouse()
is called followed by the graf_growbox() function. Next the window is
opened through wind_open() and the mouse is redisplayed with
ahow_moiise().

Function hide_m ouse() is called before processing the screen to
avoid conflicts with the screen manager. When the mouse is drawn,
the image under the mouse is saved in memory. When the mouse is
moved, the screen manager replaces this image. If hide_m ouse() is
not called, when the mouse is moved, the screen manager replaces the
contents of the screen under the mouse before the window was
drawn. You have probably noticed this situation in some of the earlier
programs where the screen was cleared to a white background, and
when the mouse was moved a small rectangular patch of gray was
drawn in its place. Turning off the mouse causes the screen manager
to reset the saved image.

The next function, close_window(), closes a window. If the window
is already closed, the function returns. The first function call is to
wind_get() to get the current position and size of the window (using
the constant WF_CURRXYWH). These values are used by the
gra£_shrinkbox() function. To close the window, hide_m ouse() is
called firs t the shrinking outline box is drawn, the window is closed,
the visible flag is set to FALSE, and show_mouse() is called.

Deleting a window in del_window() is even easier than closing a

342 Atari ST

window. The first statement here checks if the window is currently
visible on the screen. If it is, the window needs to be closed before it
can be deleted from the AES. If the window were deleted from the AES
before being erased from the screen, the only way to remove the
window’s image would be to erase the entire screen and redraw all
the open windows. To avoid this problem, if the window is still visible
del_window() calls close_window() before continuing. Once the win
dow is closed, it can be removed from the AES with the wind_delete()
function. Next the handle for the element in the windows array is set
to —1 to indicate tha t this array element is now available again.
Finally, the number of windows in use is decremented by 1.

There is one other function needed to utilize the windows array.
The AES refers to a window by its handle. When using the windows
array, a window is referenced by its index. Therefore, an application
needs a function to find which element in the windows array has the
specified handle. Function find_windows() does this search. Given
the handle for a window, it searches through the windows array and
returns the index to the windows array for the element that has that
handle. If the handle is not found, —1 is returned.

The last function discussed in this section is do_redraw(). This
function is called whenever the program receives a window redraw
message. Essentially, do_redraw() implements the redrawing process
discussed earlier. The parameters of the do_redraw() function are the
index of the window to redraw, the address of the function that
redraws the window, and the redraw area. No values are returned. Two
rectangles, called redraw and dip , are used in function do_redraw().
Rectangle redraw corresponds to the redraw area, passed in the
parameters x, y, w, and h. Rectangle clip is set to the intersection of
the visible rectangle and the redraw rectangle.

Function do_redraw() starts with a call to hide_m ouse() for the
same reason hide_m ouse() is called when opening and closing a
window. Next wind_update() is called with a parameter of TRUE.
This tells the AES that the application is updating its windows and
that it should not process any user interactions with the screen. This
prevents a backlog of events from occurring and ensures that the
screen remains current. Next the redraw rectangle is initialized.

The redraw process loops through all visible rectangles in a win
dows rectangle lis t The first rectangle on the visible rectangle list is
retrieved using wind_get() with constant WFJFIRSTXYWH in its
parameter lis t The first rectangle is then returned into the next four
parameters. A while loop processes each visible rectangle. If the width
and height for a visible rectangle are both 0, all rectangles have been
processed and the loop can terminate.

Within the loop, the first call is to function rc_intersect(). This
function returns TRUE if the two rectangles in its parameter list

Windows on the World 343

intersect with one another. Otherwise FALSE is returned. If the
rectangles do intersect, the function calculates the intersection rec
tangle and returns its position and size in the second parameter.
Thus, the second parameter is changed by rc_intersect() to describe
the intersection rectangle.

If the visible rectangle and the redraw area do intersect the clipping
rectangle is set to the intersection and the window is redrawn. The
while loop continues by using wind_get() to retrieve the next rec
tangle in the window’s visible rectangle lis t This call to w ind-get()
uses the constant WF_NEXTXYWH.

W hen all visible rectangles have been examined, function
wind_update() is called with a parameter FALSE. This indicates to
the AES that the screen has been processed and that it should
continue its window processing. Finally, show_mouse() is called to
return the mouse to the screen.

The do_redraw() function is designed to handle a single entiy point
for redrawing a window. However, the redraw function used cannot
accept any parameters from do_redraw() function and any returned
values are ignored. In most cases, this is not a problem as can be seen
in this program and the next If parameters are needed, they must be
used as global variables.

The window-drawing function is located in the application function
section of WINDOW1. Function draw_fimction() draws an ellipse
inside a window. For the function to know the window size and shape,
it calls function wind_get() to get the work area position and size.
F irst the window is cleared by using a solid white pattern fill with
function v_bar() called to clear the work area. The next step is to
select the fill pattern to use. The global variable cur_window contains
the index of the current window being updated. The four global
variables w indl, wind2, wind3, and wind4 contain the index for
window 1, window 2, window 3, and window 4, respectively. These
values are set when the window is created. The window currently
being updated selects the fill pattern to use. Once the pattern is
selected, the color is set to 1 and the ellipse is drawn to fill the entire
work area.

The program flow for WINDOW1 handles more events than before
bu t is basically in the same form at Starting with function m ain(),
the initialize GEM access section is the same it has always been. The
application-specific routines load the resource file using function
load-resource(). Then init_windows() is called to initialize the win
dows array and the desktop window structure. Function graf_mouse()
is called to set the mouse form to the arrow. When an application is
initiated from the desktop, GEM converts the mouse form to a bumble
bee while the program is loading. Once the program is loaded, GEM
passes control to the application bu t does not return the mouse form

344 Atari ST

to the arrow image. Therefore, the application should set the mouse
form to whatever image is required. The next step in m ain() is to call
function control(). When control() returns to main(), the usual
clean-up and exit procedures are followed.

The first thing that function control() does is set the variables
w indl, wind2, wind3, and wind4 to the value — 1. These four variables
hold the indices for the four possible windows. They are global and
used by the drawing function. Next control() finds the address of the
menu and displays the menu bar. The variable butstate is set to
TRUE. This is simply used to teach button events. Although button
events are not actually used in this program, they are included here
to give you an idea as to how buttons are handled. Function
evnt_m ulti() is called to wait for a keyboard, message, or button
event. When an event occurs, it may indicate that some kind of
window processing needs to be done. Thus, wind_update() is called
so tha t no further window events occur until this event has been
processed.

If the event is a message event the type of message is tested. For
menu selection messages, the menu item is tested. Case QUIT means
that the Quit option is selected, so variable end_program is set to
TRUE. Because the program is inside two switch statements and a
loop, a single break statem ent does not exit the loop. Thus the
variable end_program is used as a flag a t the end of the loop. If INFO
is selected, the INFOBOX dialog box is drawn. The other menu selec
tions correspond to the opening or closing of a window. If the window
is not visible, the menu selection reads “Open Window 1” or whatever
window number is appropriate. If the window is visible, the menu
selection reads “Close Window 1.”

The procedure to open or close a window is the same for each of
the four windows. The first test in this case checks if the window has
been created. If the window has an index, it must exist in the
windows array. If the window’s index is —1 (the initialized value), the
window m ust be created. Function create_window() is called specify
ing the control areas to include and the window title. If the index
returned is less than 0, an error m ust have occurred and the program
will exit

If the window is visible, it should be closed. A call to close_window()
closes the window. Then the menu text is changed to read “Open
Window 1,” or 2, 3, or 4. If the window is not visible (either it was
previously closed or has ju st been created), the window m ust be
opened. Function open_window() opens the appropriate window, and
the menu text is changed to indicate that the window can be closed.
At the end of the menu selection switch statem ent the menu title is
reset and the title is redrawn.

The next message case, WM-REDRAW, is for a redraw event The

Windows on the World 345

redraw event Indicates that part of a window work area m ust be
redrawn due to some user action. The message buffer contains the
following information. Element 3 contains the window handle to be
redrawn. Element 4 contains the x position of the upper left comer
of the redraw area. Element 5 contains the y position of the upper
left com er of the redraw area. Elements 6 and 7 contain the width
and height of the redraw area. All coordinates are measured in screen
coordinates.

To handle a redraw event the program m ust first get the index of
the window being processed. Variable cur_window is set to the index
returned by find_window(). If cur-window is less than 0, the window
is not listed in the windows array and the redraw process should not
continue. If the current window is found, the do_redraw() function
is called. The parameters to the do_redraw() function include the
address of the window drawing function and the position and size of
the redraw area.

Messages WM_NEWTOP and WMTOPPED indicate tha t a window
belonging to this application has become the new top window. The
current window is located and the wind_set() function is called with
parameter WF_TOP to set the window as the top window. The
wind_set() call causes the AES to issue a redraw command for the
new top window. Here, as in all of the messages associated with the
window, element 3 of the message buffer contains the handle of the
window to be acted upon.

Case WM_CLOSED indicates tha t the close box has been pressed.
The index for the window to be closed is located and close_window()
is called. Because the window has been closed, the menu entry must
be changed to allow the user to reopen this particular window. By
testing the current window index against the values in w indl, wind2,
winds, and wind4f the program determines which menu entry needs
to be changed.

Case WM-FULLED is a message sent when the full box is pressed.
The cur.window value is set and the window size is checked. If the
window is already at its full size, the program gets the previous
window size and changes the window to that size. A call to wind_get()
with parameter WF_PREVXYWH gets the previous window size. Func
tion win<L_set() is called with parameter WF-CURRXYWH to change
the window size. If the window is in its regular size, the program must
make the window its full size. This is done by calling wind_get() with
parameter WF_FULLXYWH to get the position and size of a full-size
window. The current window size is set to the full-window size by
calling wind_set() with the parameter WF_CURRXYWH. The full-size
field in the window structure is then toggled using the A= operator.
This operator does a bit-wise XOR between the current value of field
full-size and TRUE. If full-size is TRUE, TRUE XOR TRUE yields

346 Atari ST

FALSE so the value of full-size is toggled. If full-size is FALSE, FALSE
XOR TRUE yields TRUE, which also toggles full-size.

Cases WM-ARROWED, WM_HSLID, and WM_VSLID are used for
the arrow and slide bars. However, this program does not provide the
sliders or arrows. These messages should not occur in this program
so they are ignored.

Cases WM-SIZED and WM-MOVED indicate that the window has
been resized or moved. Once the current window has been found,
elements 6 and 7 contain the requested width and height of the
window. These dimensions are tested against the minimum values.
Function wind_set() is then called to set the current position, width,
and height of the window. This is the last window message event

The next portion of control() handles a keyboard event. This
program has no keyboard events that it should accept so all keyboard
events are ignored. The QUIT_KEY case has been commented out so
that it no longer functions as it did in MENU2. You can use this case
as a model for any other keyboard events your program needs to
process. Remember that for menu shortcuts your application must
change the menu title state to SELECTED during processing and
NORMAL when processing is complete.

The last event handled is a button event In WINDOW1, the button
handler is rather primitive. If a button down event occurs, the
program waits for a button up event. When the button up event
occurs, the program goes back to waiting for a button down event.
This part of the program is included ju st for demonstration purposes.

The last part of control() checks the end_program flag. If
end-program is TRUE (that is, the end of the program has been
requested), all active windows are deleted. If a window has a handle
(meaning that it is still active), del_window() is called for the index
of tha t window. Finally, wind_update() is called with parameter
FALSE to indicate that window updating may proceed. If end-program
is not TRUE, the while loop repeats to wait for another event.

Using WINDOW1_____________________________________
WINDOWl lets you play with various window events. The Windows
menu allows you to open or dose any one of four windows. The
windows can be opened and dosed in any order. If you have windows
open on the screen, you can dose them using either the dose boxes
or the menu. If there are open windows on the screen and you press
the Quit option, the windows are automatically dosed before the
program exits. Try using the full box, size box, and dose box. Try
using the move bar to move the windows around.

One interesting experiment is to open window 1 and window 2. Size
each window down to about one-quarter of the work area. Place

Windows on the World 347

window 1 slightly below the top of the work area and slightly in from
the edge. Move window 2 so tha t it covers the lower right quarter of
window 1. Now move window 2 so tha t It uncovers window 1. The
uncovered portion of window 1 is then redrawn. Note that the area
tha t is uncovered is redrawn with the correct pattern, bu t tha t the
pattern does not line up with the rest of the window contents. This
demonstrates another problem with having w ord-aligned patterns on
the screen. Moving a window copies the content of the work area. In
this experiment the content of the work area is copied so tha t the
pattern is no longer word-aligned. To avoid this problem, you can
force the window to be redrawn when it is moved or not allow the
window to move if it contains a pattern.

Another condition to test is resizing the window. When a window
is resized to a smaller width and height, the content of the work area
is not redrawn. Only when a window is resized to a larger work area
is a redraw message issued.

Look over WINDOW1. WINDOW2 adds a few more control areas and
shows you how to handle the data display in the work area. As for
WINDOW1, try adding a few enhancements. One would be to change
open_window() to allow the application to specify an initial open size.
Another would be to specify the full size of the window rather than
defaulting to the desktop work area. When you have made some
changes to WINDOW1, move on to WINDOW2.

Program WINDOW2___________________________________

Program WINDOW2 is a text file viewing program. The user opens a
text file. This file is loaded into memoiy and displayed through the
window. By using the sliders and scroll bars, the user can view any
portion of the file. Closing the window clears the file from memoiy
and allows the user to open another file.

This program combines the operation of program LISTER and
program WINDOW1. Program LISTER provides some of the file-access
ing routines. Program WINDOW1 supplies the outline for a window-
based application. The first thing needed before continuing is a
resource file.

Program WINDOW2 Resource File
WINDOW1 uses two object trees (see Figure 12-6): one for the dialog
box and one for the menu. The dialog box is named INFOBOX. Set
the menu entries as shown in the figure. Again, name the first entry
in the Desk menu as INFO. The File menu contains two entries, Open
and Q uit Entry Open is named OPENFILE and entry Quit is named
QUIT.

348 Atari ST

About UIND0U2

Desk Accessory t
Desk Accessory 2
Desk Accessory 3
Desk Accessory 4
Desk Accessory 5
Desk Accessory 6

About UIND0U2

This is the second program which
demonstrates the use of uindous.

DO
Figure 12-6 Program WINDOW2 Resource File

WINDOW2 Layout
The basic layout of program WINDOW2 is veiy similar to WINDOW1.
The application-specific data section is somewhat different Take a
look a t this section as shown in Listing 12-2.

Listing 12-2 Program WINDOW2
✓•a#*#*****####***#####*******#***###*#**********##*#*#*###****#*####**

UIND0W2.C Sample uindou application'82

This program demonstrates the use of the slider and arrous
on a uindou.

System Header Files & Constants

ttinclude <stdio.h>
ttinclude <osbind.h>

ttinclude <gemdefs.h>

ttinclude <obdefs.h>
ttinclude <errno.h>

•''* Standard 10

* * GEMDOS routines *s
GEM RES */

GEM constants *'
' * errno declaration

ttdefine FRLSE 0
ttdefine TRUE ! FRLSE

Windows on the World 349

/'«************««»*«««**«***************************
GEM Application Overhead

#*#»#*»*»#»«***»#**«*#»»***********»****#***/

s* Declare global arrays for VDI.
typedef Int WORD; WORD Is 1G bits

WORD contrl(12], '* VDI control array
lntout[128], lntln[12B], VDI Input arrays */

ptsln[128], ptsout[12B]; VDI output arrays */

Listing 12-2 (continued)

WORD screen_vhandle,

sc reen_phand1e ,
screen_rez,
color-screen,

x_max,
y_/nax,
nuhldden = FALSE;

WORD gr_uchar, gr_hchar,
gr_ubox, gr_hbox;

tide fine WMIN-WIDTH
((define WMIN_HEIGHT

WORD ap-ld;

WORD num_uindous;
WORD cur.juindou;

typedef struct ulnd_type {

WORD handle;

WORD type;

WORD visible;
WORD fullsize;

> WINDOW;

virtual screen uorkstation **
' * physical screen uorkstation */
s * screen resolution 0,1, or 2 *s

'* flag if color monitor

/ * max x screen coord

max y screen coord */
'* mouse visibility status */

/* values for system sizes */

set min uindou size **

' * application ID »/

number of uindous open */

* * index for current uindou *s

uindou record
AES uindou handle

** uindou attribute bits */
' * flag if visible
/* flag if full size **

(2#gr_ubox)
(3*gr_hbox)

ttdeflne MAX-WINDOW 4
WINDOW ulndous[KAX_WINDOW];
WINDOW desktop;
WORD xdesk, ydesk,

udesk, hdesk;

•'* allou for 4 uindous *s

/ * array of uindou records
✓* desktop record
/ * desktop area

/a***#*#*###*###*####**#*###***###********#*####***
Application Specific Data

*********»*»***»«*»»**«####***********«**»*»#*»»»#✓

ttinclude *ulndou2.h* ** resource header file *'

WORD fileuln; file uindou index

350 Atari ST

Listing 12-2 (continued)
WORD max_column, max_line,

vis_column, vis_line,

cur_column, cur_lina.

II of cols, lines In file */

U of cols, line visible in uindou
start col, line in uindou

lastcur_line, lastcur_column, previous values

hdelta, vdelta; / * size of slider movement

WORD xchar, ychar; size of char cell in pixels

ttdefine MfiX_C0LUMNS 25S
ttdefine MflX_LINES 1000

char *buf_llne[MflX_LINES];
char *blank = "S0i;

hold 2SG chars-' line */

hold up to 1000 lines
s* lines in buffer */

blank line

char def_search[32] =

sel_f ileflG],
file_name[64];

/* default search path

file selected
'* full file name to open */

/if***
GEM-related Functions

**/

UORD open_vuork(phys_handle)
UORD phys-handle;
/a***
Function: This function opens a virtual uorkstation.

Input: phys-handle = physical uorkstation handle
Output: Returns handle of uorkstation.

<
UORD uork_in[ll],

uork_out[57],

neu_handle; handle of uorkstation **
int 1;

for (i = 0; i < 10; i++)
uork_in[i] = 1;

uork_in[10] = 2;
neu_handle = phys-handle;
v.jopnvuk(uork_in, &neu_handle,

return(neu-handle);

>

set_screen_attr()
✓a***********##*#***##*#**#*#*###***#*#*#**##*#*#**
Function: Set global values about scresn.
Input: None. Uses screen_vhandle.
Output: Sets x_max, y_/nax, color—screen, and screen_rez.
**/
i
UORD uork_out[57];

set for default values

/ * use raster coords *s

' * use currently open ukstatlon
uorl<_jout);

Windows on the World 351

vq_extnd(screerL.vhandle, 0, uork_out);
x_max = uork_out[0];
y_max = uork_jout[l];
scrB0n_rez = Getrez(); / * 0 = lou, 1 = med, 2 = high
color_screen = (scrBBn_raz < 2); mono 2, color 0 or 1

>

hide_mouse()
✓a***
Function: Make mouse invisiblB If currsntly visible.

Input: Nona. Uses variable m_hidden.

Output: Ssts m_hldden to TRUE.
a*#*#*****#*********#***********#*##*#**********#*/
<

if (!m_hidden)

<
graf_/nousa(M_DFF, 0X0L);
m_hidden = TRUE;

>
>

shou_mousa()
/’****«****#**»»***»*#********************»*»*****»*
Function: Make mouse visible if currently invisible.

Input: Nona. Uses m_hidden.
Output: Nona. Sets m_hiddan to FRLSE.
if*#**###*#*##*************************************/
<

if (m_hidden)

{
graf_mouse(MJON, 0x0L);
m_hidden = FRLSE;

>
>

load_resource(rfile)
char *rfila;

Function: Load rssourcB file.
Input: rflla = string uith resource flla name.
Output: Returns TRUE if file loaded, else FRLSE.

<
char temp[12B];

if (!rsrc_load(rfils)) arror loading fils
{ /* set alert format *'

sprintf(temp, '[0][Cannot load file % s |Exiting __] [OK]', rfila);
form_jalBrt(l, temp); '* shou alsrt box *s

raturn(FRLSE);

TJaflng 12-2 (continued)

>

352 Atari ST

return(TRUE);

>

do_dia1og(box_i ndex)
WORD box_lndex;

Function: Display a dialog box centered on the screen.

Input: box-addr = index of dialog box

Output: Returns index of object used for exit.

<
WORD xbox, ybox, hbox, ubox;
WORD smallx, smally, smallu, smallh;

WORD exit_object;

OBJECT *box_addr;

get address of box */
rsrc_gaddr(0, box_index, &box_addr);

get size and location of a box centered on screen *'
form_jcenter(box—addr, &xbox, &ybox, &ubox, &hbox);

smallx = xbox + (ubox / 2);
smally = ybox (hbox ' 2);
smallu = 0;

smallh = 0;

✓* reserve area on screen for box display */

fornLjdial (FMD-STflRT,
smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

/* drau an expanding box

form_dial(FMDJGROW,

smallx, smally, smallu, smallh,

xbox, ybox, ubox, hbox);

drau dialog box *'
objc_drau(box_jaddr, 0, 10, xbox, ybox, ubox, hbox);

handle dialog input *'

exit_object = form_do(box_addr, 0);

/* drau a shrinking box
form_dial(FMD_SHRINK,

smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

/» reserve area on screen for box display
form_dial(FMD-FINISH,

smallx, smally, smallu, smallh,
xbox, ybox, ubox, hbox);

Listing 12-2 (continued)

Windows on the World 353

Listing 12-2 (continued)
/ * reset exit object state to unselected */

box_addr[exit_obJect].ob_state = NORMAL;

return(exit_object);

sBt_clip(x, y, u, h)
UORD x, y, u, h;
/ *

Function: Set the clipping rectangle.

Input: x = x coord of clip rect

y = y coord of clip rect
u = uidth (In pixels) of clip rect

h = height (in pixels) of clip rect
Output: None. Sets neu clipping rectangle.
**/
i
UORD cllp[4];

clip[0] = x;

cllp[l] = y;

clip[2] = x + u - 1;
clip[3] = y + h - 1;
vs_cllp(screen_vhandle, TRUE, clip);

init^uindous()
/a*###*##***#*#***#*#**#******####**#*##*##**##*#*#
Function: Initialize global uindou values.

Input: None.
Output: None. Sets global uindou values.

(
Int 1;

num_uindous = 0 ; s* no uindous open

for (1 = 0; i < MAXJdlNDOU; 1++)
uindous[i].handle = -1; /* set records to unused

desktop.handle = 0 ; desktop is aluays 0

s * get desktop uork area
uind-jget (desk top. handl e , WF_WORKXYWH,

&xdesk, &ydesk, &udesk, &hdesk);
return;

>

create_windou(newkind, utitle)

UORD neukind;
char *utitle;
✓it***
Function: Open a neu uindou.

354 Atari ST

Input: neukind = uindou attributes to include
utltle = string for uindou title

Output: Returns index if uindou created, else -1
Notes: Info line, and slider values are NOT set

by this function. Full uindou size is set to

desktop uork area.

{
UORD neu;

check if uindous are available

if (num_uindous >= MAX_WINDOW) max uindous in use

i
form_alert(l, ■[0][Maximum number of uindous reached.][O K] ;
return(-l);

>

find uindou record to use
for(neu = 0; neu < MAX_WINDOW; neu++)

if (uindous[neu].handle < 0) /* record found
break;

if (neu >= MAX—WINDOU) no records available

<
form_alert(l, a[0][No uindou records found available.][OK]");
return(-1);

>

/* create uindou for AES

uindous[neu].handle =
uind_create(neuklnd, xdesk, ydesk, udesk, hdesk);

if (uindous[neu].handle < 0) AES could not make uindou */

i
form_alert(l, "[0][AE5 error opening a uindou. |Cannot continue.] [OK]')
return(-l);

>

/ * fill uindou record

u i ndous[neu].type = neuk i nd;
uindous[neu].fullsize = FALSE;

uindou5[neu].visible = FALSE;

/ * set uindou title

uind_set(uindous[neu].handle, WF_NAME, utitle, 0, 0);

num_Juindous++; ✓# add uindou to count * *

return(neu); return index *>'

>

open_u indou(ui—index)
/xx

Function: Make a uindou visible.

Listing 12-2 (continued)

Windows on the World 355

Input: ui_index = index to uindou
Output: Nona. Sets uorl< area and visibility flag in uindou record,
xx/

<
WORD xslze, yslze, usize, hsize;

' * check if already open
if (uindous[ui_index].visible)

return;

get current uindou size
ulnd_jget(uindous[ui_index].handle, WF_PREVXYWH,

&xslze, &ysize, &uslze, &hsize);

/ * if no size, then must be first time opened
if (!(xsize || ysize || uslze || hslze))

<
xsize = xdesk; default to desktop uork area
yslze = ydesk;

usize = udesk;
hsize = hdesk;

>

s* open uindou

hide-mouse();
graf_groubox((xsize + usize/2), (yslze + hsize/2),

gr_wbox, gr_hbox, xslze, ysize, usize, hsize);

uind_jopen(uindous[ui_index].handle, xsize, ysize, usize, hsize);

ulndous[ui_index].visible = TRtJE;flag uindou is open
shou_mouse();

>

close_uindou(ui_index)
✓xx

Function: Close a uindou.
Input: ul_index = index to uindou to close

Output: None. Closes uindou and set visibility flag.
X /

<
WORD xslze, ysize, usize, hslze;

check if already closed * '

if (!uindous[ui_index].visible)
return;

get current uindou area
ulnd_get(uindous[ui_index].handle, WFJCURRXYWH,

&xsize, &ysize, &usize, &hslze);

close uindou * /

hlde_/nouse();
ulncLjclose(uindous[ui_lndex].handle);

Listing 12-2 (continued)

356 Atari ST

graf-jshrinkbox((xsiZB + usize/2), (ysize + hslze'2),
gr_ubox, gr_hbox, xsize, yslze, uslze, hsize);

uindous[ui_index].visible = FRLSE; / * flag uindou as closed * '

shou_/nouse();
>

del_u1ndou(u i_index)
UORD ui_lndex;
/xx

Function: Delete uindou from RES
Input: ui_index = index of uindou to delete

Output: None. Uindou deleted from RES and uindous.
X K X X X X X X /

<
if (uindous[ui_index].visible)/* still on screen #/

close_uindow(ui_index); / * so close it * /

' * delete from RES *s

ulnd_delete(uindous[ui_i ndex].handle);
set record as available * /

ulndous[ui_index].handle = -1;
remove uindou from count * /

num_julndous--;

>

f ind-Mlndou(ui_handle)
UORD ui_handle;
/X X X X X X X K X X X X K X K X X X X X

Function: Find index for uindou record ulth given handle.

Input: ui-handle = handle of uindou to search for
Output: Returns index or -1 if not found.
X /

<
register int i;

for (1 = 0; 1 < MRX-WINDOW; i++)

if (uindous[i].handle == ui_handle)

rBturn(i);
return(-1);

>

do_redrau(ui—lndex, ul_redrau, x, y, u, h)
UORD ul_index,

(*ui_redrau)(),
x, y, u, h;

✓ X

Function: Redrau all clipping rectangles.
Input: ul_indsx = index to uindou being updated

ul_redrau = address of function used to drau uindou
x, y = redrau area X,Y coord
u, h = redrau area uidth and height

listing 12-2 (continued)

Windows on the World 357

Output: NonB. Screen Is updated.
Notes: ui_redraw cannot use any parameters or return any values.

You may create a do_redrau function for each uindou,

or pass the parameters through global variables.
X /1
i
GRECT redrau, redrau area

clip; <'* current clip area

hide_mouse();
uincLjupdate(TRUE); / * freeze uindou status
redrau.g_x = x; '* set redrau area

redrau.g_y = y;
redrau.g^u = u;
redrau.g_h = h;

get first clip rectangle
ulndLjget(ulndous[ul—index].handle, WF-FIRSTXYWH,

&clip.g_x, &clip.g_y, &clip.g_w, &clip.g_h);

<'* begin redrau loop until no more clip rectangles
while (clip.g_u && clip.g_h)

{
if (rc_lntersect(&redrau, &cllp))

(
set_cllp(clip.g_x, cllp.g_y, clip.g^w, cllp.g_h);

(*ul_redrau)(); s* particular redrau function * /

>
ulnd_get(uindous[ui_index].handle, WF-NEXTXYWH,

&cllp.g_x, &clip.g_y, &cllp.g_ju, &clip.g_h);

>
windjupda te(FRLSE); / * screen is ready

shou_mouse();

>

/xx

Rpplication Functions
X /

Listing 12-2 (continued)

get—file()
/X X

Function: Get a filename using file selector.
Input': None. Uses def_search[] and sel_flle[].
Output: Exit button used in fsel dialog box.

Sets default file search, file selected,
and file_name[] to contain the full filename.

X /

<
WORD exit_button;
char *temp;
Int 1;

358 Atari ST

fsel_lnput(def^search, sel_file, &exit_button);
if (!exit_button)

return(exlt-button);

strcpy(file_name, dsf-ssarch);

i = strlen(file_name);
tamp = file_name + (i - 1);

while ((*tsmp != ’w 1)
&& (*temp •= 1:1)

&& (temp >= file_name)
temp--;

temp++;

strcpy(temp, sel—file);

return(exlt_button);

>

get_line(s, fp, maxchar)
char s[];

FILE *fp;
WORD maxchar;
/xx

Function: Get a line of text from a file.
Input: s = string to store line

fp = stream file to receive data from
maxchar = max tt of characters to read

Output: Returns number of characters read.
Notes: File fp must be open. Line does NOT contain newline.

From K&R p.G7.
X / -

i
int c, i;

1 = 0 ;
while (--maxchar > 0 && (c=getc(fp)) != EOF && c •= 'vn')

s(i++] = c;

if (c == '\n')

s[i++] = c;
s[i] = '^0';

return(i);

>

load_file()
✓ X

Function: Load a file into the buffer.

Input: None. Uses flle_name[] and buf_line[]
Output: Returns TRUE if error occurred, else FRLSE.

Sets buf_llnef],
X /

<
FILE *fp;
char line[MRXJC0LUMN5], *temp;
int numchar;

Listing 12-2 (continued)

set path * /

s* point to last character
/* search for path end *s

s* drive id * /

) or start of string * /

/ * move to next position

add file name

Windows on the World 359

open file *s

fp = fopen(file_name, ' r*);

if (fp == NULL) s* error opening file *s

i
form_alert(0,‘(0](Cannot open file requested.][OK]');

return(TRUE);

>

/* read a line at a time (from K&R p.107) #/
max_line = 0;
max_jcolumn = 0;

while ((numchar = get_line(line, fp, MAXJCOLUMNS)) > 0)

{
if (max_line >= MflX_LINES)

(
form_jalert(0,*[0][Maximum number of lines read.|No more data uill be read.][OK]1);

return(FALSE);

>
else if ((temp = malloc(numchar)) == NULL)

<
form_alert(0,■[0][Out of memory.|No more data uill be read.][OK]');
return(FALSE);

>
else

<
strcpy(temp, line);

buf_line[max_line++] = temp;

>
if (numchar > max_column) check for max uidth * /

max_column = numchar;

>
return(FALSE);

>

se t_s1i de rs(wi_lndex)

Function: Set slider size and position.

Input: None. Uses global file sizes.
Output: None. Sets neu slider size and position.

<
WORD xuork, yuork, uuork, huork; uindou uork area
WORD hsize, vsize, hpos, vpos; slider size and position

wind_get(uindous[ui_lndex].handle, WF_WORKXYWH,
&xuork, &yuork, &uuork, &huorl<);

vis_line = huork / ychar;
vis_column = uuork ^ xchar;

find size of slider
hsize = ((long)vis_column * 1000L) ' (long)max_column;
vsize = ((long)vis_line * 1000L) f (long)max_llne;

if (v/size > 1000) vsize = 1000;

Listing 12-2 (continued)

360 Atari ST

if (hsize > 1000) hsize = 1000;
hpos = ((long)cur_column * 1000L) '

(long)(max^column - vls-jcolumn);
if (hpos < 0) hpos = 0;
vpos = ((iong)cur_line * 1000L) /

(long)(max_lins - vis_line);
if (vpos < 0) vpos = 0;

uind_SBt(ulndous(ui_indBx].handle, WF-H5LIDE, hpos);
uind-jset(uindous[ul_indBx].handle, WF_HSLSIZE, hsizs);

uind_set(uindous[wl_lndex].handle, UF_VSLIDE, vpos);

uind_jset(uindous[ui_index].handle, WF_V5L5IZE, vsize);
raturn;

>

drau_function()
/X X

Function: Orau in current uindou.

Input: Nona. cur_uindou is indBX to current uindou to drau in.
Output: None. Oraus in uindou.
X X X X X X X X X K X /

{
WORD llne_pos, col_pos; '* line & column positions **
WORD xuork, yuork, uuork, huork; uindou arsa
WORD box[4]; clear screen array
char *temp; max chars^line *s

WORD xpos, ypos; line position on screen *✓

WORD hal, val; dummy return values */'

/* get uindou position on scresn
uind_get(uindows[cur_window].handle, WF_WORKXYWH,

&xuork, &yuork, &uuork, &huorl<);

/ * clear screen
vsf_interlor(screen_vhandle, 2);
vsf_style(scrBen_vhandle, 8);

vsf_color(scrsBn_vhandle, 0);
box[0] = xuork;

box[l] = yuork;
box[2] = xuork + uwork - 1;
box[3] = yuork + huork - 1;

v_bar(scrBBn_vhandlB, box);
vst_alignment(screBn_vhandlB, 0, 5, &hal, &val);

/ * output *s

xpos = xuork;

ypos = yuork;
for (line-pos = 0; llne_pos <= vis_line; line_pos++)

<
if (cur_lin8+lin8_pos < max_llne) / * check if lins in rangs **

temp = buf_llne[cur_llne+llne pos];
else

temp = blank;

Listing 12-2 (continued)

Windows on the World 361

if (strlen(temp) <= cur_column) nothing will be seen */

temp += strlen(temp);

else
temp += cur^column; adjust to proper start * /

v_justified(screen_vhandle, xpos, ypos,
temp, uuork, FALSE, FfiLSE);

ypos += ychar;

Listing 12-2 (continued)

return;

>

control()
/ X

Function: Master control function.

Input: None. Program initialization must be done before
entering this function.

Output: None. Returns for normal program termination.
xx/

<
OBJECT *menu-jaddr;
WORD end_program = FALSE;
WORD mevx, mev/y,

butstate,

mevbut,

keystate,
keycode,
mbreturn,
msg_buf[B];

WORD event.

/* address for menu

exit flag */
evnt_multi parameters

menu_lndex;
WORD drau_function();

message buffer *s

** evnt_multl result

s* keyboard menu title selected *s

/ * screen drauing function * /

' * get address of menu
rsrc.jgaddr(0, MAINMENU, &menu_addr);

✓x display menu bar **

menu_bar(menu_addr, TRUE);

initial button status to uait for *s

butstate = TRUE; button doun *s

uait for a message indicating a menu selection * '

do / * continue loop until quit *s

<
event = evnt_multi((MU—KEYBD | MILMESAG | MUJBUTTON),

0, / * It mouse clicks
0, s* mouse buttons of interest *s

butstate, button state

0, s* first rectangle flags
0, 0, x,y of 1st rectangle

362 Atari ST

Listing 12-2 (continued)
0 , 0 ,
0 ,
0, 0.
0. 0,
msg_buf,

0, 0 ,
&mevx, imevy,

imevbut,

&keystate,
&keycode,
&mbreturn);

'* height, uldht of 1st rBct *s
/* second rectand flags

x,y of 2nd rect **
s* w,h of 2nd rect *s
'* message buffer */

low, high uords for timer * /

' * x,y of mouse event */
button state at event * /

** status of keyboard at event * /

' * keyboard code for key pressed * '

/* 8 times mouse key enter state *s

uindjupdate(TRUE); hold uindou processing **

if (event & MU-MESAG)

(
suitch(msg_buf[0])

{
case MN_SELECTED:

suitch(msg_buf[4])

(
case QUIT:

menu chosen *•'

exit program *s

end_program = TRUE; set exit flag
break;

case INFO: display program info
do.jdialog(INFOBOX);
break;

case OPENFILE:
if (!get_file())

break;
if (load_file())

break;

if (max_line == 0
break;

open a file

•'* get a file name * /

/ * cancelled *s

/ * get data * /

/ * error *s

|| max_column == 0)
✓* bad data

fileuin = create_uindou(

(NAME|CLOSER|FULLER|MOVER|SIZER|
UPARROW | DNARROM | VSLIOE |

LFRRROU|RTARROW|HSLIOE),
file_name);

if (fileuin < 0) error creating uindou

<
end-program = TRUE;
break;

>
open_uindou(fileuin);
msnu_lenable(menu_addr, OPENFILE, FALSE);
lastcur_line = cur_line = 0;
lastcur_column = cur_column = 0;

cur_julndou = fileuin;
sot^sliders(fileuin);
break;

Windows on the World 363

default:
break;

>
** reset menu title

menu_tnormal(menu_addr, msg_buf[3], 1);
menu_bar(menu_addr, TRUE);
break; / * end MN_SELECTED

case MM_REDRAW: /* redrau uindous *s

If ((cur_julndou = flnd_uindou(msg_buf [3])) < 0)
break; no uindou listed

do_redrau(cur_ulndou, drau_functlon,
msg_buf[4], msg_buf[5], msg_buf[G], msg_buf[7]);

break;

case WfLNEWTOP: s* neu uindou is on top *■/

case WM_TOPPED:

if ((cur_uindou = find_uindou(msg_buf[3])) < 0)
break; / * no uindou listed *s

uind_set(uindous[curjuindou].handle, WF_TOP, 0, 0, 0, 0);
break;

case UMJCLOSED: close box pressed

if ((cur_uindou = find_uindou(msg_buf[3])) < 0)
break; no uindou listed

del_uindou(cur_uindou);
msnu_ienable(menu_addr, OPENFILE, TRUE);
break;

case WM-FULLED: / * full box pressed
If ((cur^uindou = flnd_uindou(msg_buf [3])) < 0)

break; no uindou listed

if (uindous [cur^uiindou]. fullsize)
{ s* full to regular size **

WORD neux, neuy, neuu, neuh;

get previous uindou size **

uindLjget(uindous[cur_juindou] .handle, WF_PREVXYWH,
&neux, &neuy, &neuu, &neuh);

uind_set(ulndous[cur^uindou].handle, WF_CURRXYWH,
neux, neuy, neuu, neuh);

set_sllders(cur_ulndou);

>
else

{ regular to full size *•/
WORD xfull, yfull, ufull, hfull;

get full uindou size *s

uind_get(ulndous[cur^uindou].handle, WF_FULLXYWH,
&xfull, &yfull, &ufull, &hfull);

uind_set(uindous[cur_uindou]-handle, UF_CURRXYWH,
xfull, yfull, ufull, hfull);

set_jsliders(cur_uindou);

>
uindous[cur_uindou].fullsize “= TRUE;
break;

Listing 12-2 (continued)

364 Atari ST

case WM_flRR0WED:

if ((cur_uindou = flnd_uindou(msg_buf[3])) < 0)
break; / * no window listed

switch(msgJauf[4])

{
case 0: / * page up *s

cur_line -= vis_llne;
break;

case 1: page down
cur_llne += vis_line;
break;

case 2: row up *s

cur_line--;
break;

case 3: / * row doun
cur_llne++;
break;

case 4; s* page left
cur_column -= vis^column;
break;

case 5: page right
cur_column += vls_column;

break;

case 6: column left **

cur_jcolumn--;
break;

case 7: column right * /

cur^column++;
break;

default:
break;

>
s* check if values are in range *>’

if (cur_line >= max_line-vls_line)
cur_linB = max_lln9 - vis_line;

if (cur_colutnn >= max_column'Vls_column)
cur_column = max_column - vis_column;

if (cur_line < 0) cur_line = 0;
If (cunjcolumn < 0) cur_column = 0;

if (lastcur_line != cur_llne || lastcur_column != curjcolumn)

{
set_sliders(cur_window);
lastcur_line = cur_llne;
lastcur_column = cur_column;

msg_buf [0] = WCLPEDRRW;
msg_buf[l] = ap_id;

msg_buf[2] = 0;
msg_buf[3] = uindous[cur_uindou].handle;
ulnd_get(uindous[cur^windou] .handle, UF_WORKXYWH,

&msg_buf[4], &cnsg_buf [5], &msg_buf[6], &msg_buf[7]);
appl_urlte(ap_id, 16, msg_buf);

>
break;

listing 12-2 (continued)

Windows on the World 365

case WM_HSLID:
if ((cur_uindou = find_uindou(msg_buf[3])) < 0)

break; s* no uindou listed

cur^column =
((long)(max_column - vis^column) * (long)msg_buf[4]) ^

1000L;

if (cur^column < 0) cur^column = 0;
if (cur_column >= max_column)

cur_column = max_column - 1;

if (lastcur_coluffln != cur_column)

<
UORD xtemp, ytemp, wtemp, htemp;

set_sliders(cur_uindou);

lastcur_line = cur_line;

uind_get(uindous[curjuindou].handle, WF_WORKXYUH,
ixtemp, &ytemp, &utemp, &htemp);

do_redraw(cur_uindou, drau_function,

xtemp, ytemp, utemp, htemp);

>
break;

case WM_V5LID:

if ((cur_ulndou = f ind_juindou(msg_buf [3])) < 0)
break; no uindou listed */

cur_line =
((long)(max_line - vis_line) * (long)msg_buf[4]) /

1000L;
if (cur.line < 0) cur_line = 0;

if (cur_line >= max_line)
cur_line = max_line - 1;

if (lastcur_llne != cur_line)

<
UORD xtemp, ytemp, utemp, htemp;

set^sliders(cur_uindou);

lastcur_line = cur_line;
uind_get(uindous[cur^uindou].handle, WF_WORKXYH,

&xtemp, &ytemp, &utemp, &htemp);

do_redrau(cur_wi ndou, drau_funct i on,
xtemp, ytemp, utemp, htemp);

>
break;

case UM-J5IZED: uindou resized or moved
case WM—MOVED:

if ((cur^ulndou = fincLjuindou(msg_buf[3])) < 0)
break; no uindou listed #/"

if (msg_buf[6] < UMIKLWIDTH) msg_buf[6] = UMIN_WIDTH;
if (msg_buf[7] < UMIN_HEIGHT) msg_buf[7] = WMIN_HEIGHT;
wind_set(uindows[cur_window].handle, UFJCURRXYUH,

msg_buf[4], msg_buf[5], msg_buf[G], msg_buf[7]);

set_sllders(curjulndou);
break;

Listing 12-2 (continued)

366 Atari ST

default:

break;
} s* end message switch

} end message handler * /

if (event & MILKEYBD)

<
su i tch(keycode)

{
/ * case QUIT_KEY:

menu—index = FILE;
menu—tnormal(menuuaddr, menu_lndex, 0);

endLprogram = TRUE;
break;

*/
default:

break;

>
menu—tnormal(menu-jaddr, menu—indax, 1);

menu_bar(menu_jaddr, TRUE);
} ' * end keyboard handler * /

if (event & MLLBUTTQN) button handler

<
butstate = !(butstate);

} /# end button handler *s

if (endLprogram) close open windows */

{ and delete all windows

int i;

for (i = 0; i < MflX_HINDOM; i++)

if (wlndows[i].handle >= 0)
del-uindow(i);

>

wind_update(FfiLSE); resume processing * /

} while (!end_program); program control loop

return;

} end function

/xx

Main Program
X /

Listing 12-2 (continued)

main()

(
int i, J;
UORD attr[10];

Windows on the World 367

/ X

Initialize GEM Rccess
X S

ap_id = appl—init(); ' * Initialize AES routines
if (ap_id < 0) no calls can be made to AES

{ / * use GEMDOS * '

Cconus("***> Initialization Error. <***Nn");

Cconws("Press any key to continue.Nn");
Crawcln();

exit(-l); set exit value to show error *s

>
screen-phandle = Get handle for screen

graf_handle(&gr_wchar, &gr_hchar, &gr_ubox, &gr_hbox);
screerL-vhandle = open_vuork(screen_phandle);
set_screen_attr(); s* Get screen attributes *s

/xxx

Application Specific Routines
X /

if (!load_resource("WIND0W2.RSC")) /* no resource file loaded
exlt(l);

initJwindows();

graf_mcuse(ARROW, 0x0L);

vqt_attributes(screen_vhandle, attr);
xchar = attr[8];
ychar = attr[9];

control();

/xxx

Program Clean-up and Exit
X X

rsrc_free();

v_clsuuk(screen_vhandls); /* close workstation
appl_exit(); s* end program

>
/ X /

/ X X X X X X X X X X X X X /

Listing 12-2 (continued)

First comes the header file WINDOW2.H for the resources followed
by the variable filew in. This variable contains the window index for
the file being used. The next set of variables is used to determine the
size of the file and the size of the display. The m ax-colum n and
m ax-line variables have the maximum number of columns and max
imum number of lines contained in the file. Variables vis-colum n

368 Atari ST

and vis-line count the number of visible columns and visible lines
in the window. Because the window can change size, it is important
to know how much data is visible. Variables cur-column and cur-line
keep track of the starting column number and line number currently
shown in the window. As the user moves through the data in the file,
knowing the starting position of the data being displayed is neces-
sary. Variables lastcur_llne and lastcur-column hold the previous
values of cur_column and cur_line. The xchar and ychar variables
are used to store the width and height respectively, of the character
cell in pixels. Constants MAX_COLUMNS and MAX-LINES define the
maximum allowable number of characters per line and of lines in the
file. Array bufLline is an array of pointers to strings. As the lines are
read in, the bufJine array keeps track of them. The string blank is
simply a blank line. Finally, there are the default search path, selected
file, and file name variables as used in program LISTER

Using WINDOW1 as an outline, the GEM-related functions remain
the same. Moving to the application functions of WINDOW2, the first
function encountered is function get_file(). This function is exactly
the same as in program LISTER The next function, get_line(), is a
more generalized version of the getline() function by Kemighan &
Ritchie (Kemighan, Brian & Ritchie, Dennis, The C Programming
Language, Prentice-Hall, 1978, p. 67). The get_line() function
presented here reads a line from a file. A line consists of a series of
bytes terminated by a newline character C\n’). The bytes, read from
file fp in the parameter lis t are placed into string parameter s. If the
num ber of bytes reaches the value of parameter maxchar, reading
stops and the function returns. So, either a newline or the maximum
number of characters will terminate a line. This function returns the
number of characters read for this line.

Function load_file() opens the file named in fllc-namc and reads
the contents of the file into memoiy using get_line(). If an error
occurs during opening or reading the file, an alert box is given and
the function returns a FALSE value. While reading the file, load_file()
sets the maximum line length in max-column and the total number
of lines read in max-line.

Function set_slideis() sets the slider size and position in the scroll
bar. The size and position of the slider are measured like the
grafLslidebox() function. The size of the slider can range from 0 for
a slider of no size, to 1000 for a slider covering the entire scroll bar.
The first bit of information set_slider() needs is the size of the
window display in characters. Function wind_get() retrieves the size
of the work area in pixels. The size of the file is measured in
characters so that the size of the work area m ust be converted from
pixels to characters. The number of lines visible in the work area
(vis-line) is equal to the height of the work area in pixels (bwork)

Windows on the World 369

divided by the number of pixels per character height (ychar). Simi
larly, the width of the work area in characters (vis-jcolumn) is found
by dividing the width of the work area (wwork) by the number of
pixels per character width (xchar). The ratio of the slider size to the
size of the scroll bar (1000) is equal to the ratio of the size of the
window display to the size of the total data to display. Therefore, the
ratio for the horizontal slider can be written as this.

hsize _ vis-col"*""
1000 max-column

To solve for the relative slider size (hsize), the following equation is
used in set_slider().

hsize = (vis-column * 1000) / max-column

For the vertical slider, the equation is this,

vsize = (vis-line * 1000) / max-line

Long integers are used to allow the multiplication, which may exceed
the range of standard integers, to occur first Since all values are
integers, serious truncation errors may occur if the division occurred
first and the results would not be accurate. Once the slider sizes have
been calculated, a test ensures tha t they do not exceed the size of the
scroll bar.

In program MOUSE, you saw that the position of a slider in a slide
bar using gra£_slidebox() is measured a t the center of the slider itself.
The position of the slider in the window scroll box is with respect to
the position of one end of the slider or the other. For WINDOW2, the
position of the slider is with respect to the bottom of the slider (see
Figure 12-7). For example, when the slider is all the way a t the top,
it is considered to be a t position 0; a t the bottom it is considered to
be a t position 1000.

In function set_sliders(), variables hpos and vpos are used for the
horizontal and vertical positions of the sliders. The position of the
slider in the scroll box is relative to the position of the displayed data
in the file. The ratio for the horizontal scroll bar is this:

hpos _ ______ vis_colmnn______
1000 maxjcohum — vis_column

If you recall from program MOUSE, the actual range in which the
slider can be moved is the size of the slide bar m inus the size of the

370 Atari ST

Pos i t i on 0—♦ m

Unused Space =
Size of Si ider

SIi der” Current
-SI ider
Posi tion

Position 1000-*

Figure 12-7 Slide Bar Measurements

slider. As shown in the ratio to calculate the size of the slider, the
size of the slider is equivalent to the number of visible columns and
the size of the scroll bar is equivalent to the total number of columns.
Therefore, the entire range of the scroll bar (1000) is equivalent to
the total num ber of columns (the size of the scroll bar) minus the
number of visible columns (the size of the slider). In effect the size
of the scroll bar has been reduced by the size of the slider. To calculate
the relative horizontal position, set_slider() uses this:

hpos = (cuT-xolmnn * 1000)

(max_colimm — vis_cohunn)

The vertical position is calculated using this:

(cnrJine * 1000) vpos = ---------------------------
(max line — via-line)

In function set_slider(), the long integer values are used for the same
reason mentioned above.

After the slider sizes and positions are calculated, they need to be
set in the window. Function wind_set() sets each value.

The draw- function() routine draws the visible range of data in the
current window. The routine first gets the position and size of the
work area on the screen. The window is cleared with a call to the

Windows on the World 371

v_bar() VDI function. Variable line-pos is used to count the line
number in the window. The top line is line 0, and the bottom line
has the value vis-line. The top line corresponds to the string in the
buf-line array with index cur_line. Thus, each line in the buffer is
indexed by line_pos plus cur-line.

To draw text on the screen, a VDI text output routine m ust be used
for two reasons. F irst the AES coordinates measure the upper left
comer of rectangles. This corresponds to the top of a character cell.
Therefore, the vst. alignm ent) function is used to set top vertical text
alignment. The second reason for using a VDI text output function is
that other text output routines do not recognize the clipping rectangle.
Because the clipping rectangle is an important aspect of the window
redraw process, all window output routines m ust recognize the clip
ping rectangle. The VDI text output routines, v_gtext{) and v_justi-
fied(), both require a starting x and y coordinate. The variable xpos
and ypos keep track of the current line position in screen coordinates.

A for loop is used to output the lines on the screen. Since the
number of lines to be output is vis-line + 1, the loop control variable,
line-pos, starts a t index 0 and goes to vis-line. For each line on the
screen, the line index is tested to see if it is less than the maximum
number of lines. If the index is valid, the pointer temp is set to point
to this line in the buffer. If the index is greater than or equal to
max-line, the index has exceeded the maximum number of lines in
the buffer (that is, the window extends past the end of the data). In
this case, temp is set to point to the blank line defined a t the top of
the program.

The next step in displaying the line determines the starting column
within the string. If the length of the line is less than the starting
column, the left edge of the window starts beyond the end of this line
so nothing should be visible. Pointer temp is moved to the null
character a t the end of the string so that when the string is output
nothing is displayed. If the length of the line is greater than the
current starting column, pointer temp is moved to start a t the proper
position in the string. The text is printed using v_justified(). Unjus
tified text mode is used here. If you want to output justified text, you
can make the appropriate changes. Once the line has been displayed,
the y position, ypos, is incremented by the height of a character cell.

As a note, this particular draw function relies on the activation of
the clipping rectangle before the text is drawn because v_justified()
does not stop output based upon the parameter for the length of the
string (wwork). Function v_justified() uses this value as a minimum
length of the string. If the string exceeds this length, v-jixstified()
continues to prin t until the end of the string is reached. By setting
the clipping rectangle, v-justified() is prevented from printing beyond
the right edge of the screen. Another reason the clipping rectangle

372 Atari ST

m ust be set beforehand is tha t the number of lines printed is one
more than vis-line. Therefore, the last line in the window exceeds the
window height and needs to be clipped. In general, the user would not
set the window height to hold an exact number of lines. The program
can either not prin t the partial last line and leave extra space or d ip
the last line as done here. Another alternative would be to test the size
of the work area whenever the window is resized and adjust the new
size to an exact number of lines. This same explanation also applies to
the width of the work area.

Function control() follows the same structure as the control()
function from WINDOW1. In the menu sdections, the OPENFILE case
opens a disk file and displays it in the window. F irst get_file() is
called to allow the user to sdect a file. A FALSE returned value
indicates tha t the user has cancelled the open request and the case
is exited. Otherwise, the requested file is opened and loaded through
load_file(). If the loading is successful, max-line and max-coltmm
should have values other than 0. If they don’t either the data was not
read in properly or the data cannot be read in as text. In either case,
the function is cancelled.

With the data in memoiy, a window m ust be opened and the data
displayed. The create_window() function is used to create the win
dow with all control areas except the information line. These areas
are the name box, dose box, full box, move box, size box, the up and
down arrow, the vertical slider, the left and right arrow, and the
horizontal slider. The title of the window is the filename. Variable
file-win is set to the index of the window used for the file. If the
window was created properly, file-win has a value of 0 or greater. The
window is then opened, and the menu sdection to open a file is
disabled. The variables lastcnr-line, car-line, lastcur_column, and
cur.coluznn are set to 0 so that the display in the window starts at
the first line and the first column. Variable cur-window is set to
file-win and the sliders are set.

Because a window is created each time a file is open, when a window
is dosed, it m ust be ddeted from the system; otherwise the program
runs out of windows to use. Therefore, the WM-CLOSED case ddetes
the window instead of ju s t dosing i t

Not every window interaction with the user generates a redraw
message. Only in cases where displayable area of the window in
creases is a redraw message issued. For example, when the window
becomes the new top window, the work area increases in size or
another window is moved to show more of th is program’s window.
Closing a window naturally does not issue a redraw message because
the window is no longer visible. Moving a window does not generate
a redraw message because the AES is responsible for copying the
entire window contents from its first location to its final location.

Windows on the World 373

The arrows, scroll boxes, and sliders do not automatically cause a
redraw message to be issued. The AES does not know what data is
being represented in the window. It does not know what reaction
would be appropriate. For example, it does not know the number of
lines the window should move or whether the display is a t the end of
the data. Therefore, in the case of arrow selection, scroll bar selection,
or slider movement the redraw process m ust be handled by the ap
plication. The redraw process can be handled either by performing the
redraw function or issuing a redraw message.

The WM_ARROWED message is used whenever the user interacts
with the scroll bar or the arrows. Element 4 of the message buffer
contains a value indicating the control area requested (see Table
12-1). The page up, page down, row up, or row down requests cor
respond to a dick above the slider, a click bdow the slider, or clicking
the up or down arrows, respectively. Page left, page right, column left
and column right correspond to the horizontal scroll bar and arrows.

Table 12-1: Message
WM-ARROWED
Border Selections

Value Selection

0 Page up
1 Page down
2 Row up
3 Row down
4 Page left
5 Page right
6 Column left
7 Column right

Depending upon the request, the appropriate action upon cur-line
or cur-column is taken in each event. If the event is a page up or
down, the current line is decreased or increased by the number of
visible lines (for example, one page). An up or down arrow causes the
current line to be decreased or increased by one line. Similar actions
are taken for the horizontal movements.

After the current line or column is changed, the new value m ust be
tested to see if it remains within the range of the data. WINDOW2
does not allow the user to move the window past the end of the file.
The tests keep the starting line and column greater than or equal to
0 and within one screen size of the end of the data. Now that the new
starting line or column is known, the window m ust be redrawn to
show the new area of data. If the new starting line or column is the

374 Atari ST

same as the old starting line or column, the user’s request causes no
changes to the display and the redrawing is skipped.

The WM_ARROWED case sends a message to initiate the redraw
process. First the new slider positions are s e t Then the current value
becomes the previous value. To send a message, the message buffer
m ust be filled with the proper values. Element 0 is the message type,
so it is filled with the WM-REDRAW constant value. Element 1 is the
ID number of the application sending the message. Since this mes
sage fits w ithin the 16 bytes allowed, element 2 is 0. For a redraw
message, element 3 m ust contain the handle of the window to redraw
and elements 4, 5, 6, and 7 define the redraw area. Since this is the
top window, the entire work area is visible and needs to be redrawn.
The function appl_write() sends the message to the AES, which, in
turn, routes the message to the appropriate application. In this case,
WINDOW2 is writing a message to itself. This technique is shown here
to demonstrate the process of sending a message to an application.
Generally, an application would not send a message to itself.

Cases WM_HSLID and WM_VSLID respond to the new slider posi
tions requested by the user. In these messages, element 4 of the
message buffer contains the new position of the slider. From this new
position, a new current line is calculated based upon the equations
discussed above. In the equation used in these cases, msg_bufI4]
represents hpos or vpos in WM_HSLID or WM-VSLID, respectively. If
a new current line or column has been requested, the do_redraw()
function is called to redraw the window. Calling the do_redraw()
function directly is much more efficient than having the program
send a message to itself.

Finally, in function main() all initialization procedures are the
same as in WINDOW1. The global variables xchar and ychar are set
with the values returned by the vqt_attributes() function. Then func
tion control() is called.

That about does it for this program. As for testing the program,
read in some of the source code files you have created for this book.
If you entered program WINDOW2 as shown in Listing 12-2, your
source file should have over 1000 lines. If you try to read this source
file with the WINDOW2 program, the alert box indicates that the
maximum num ber of lines has been reached. To enhance the
program, add another window so the user can open more than one
file a t a time. To do this, you need to keep track of which window
belongs to which file. You might want to create your own data struc
ture to keep track of this relationship.

You have seen and used most of the GEM and Atari functions
accessible through the C programming language. A complete opera
tional listing of all functions is given in Appendix A. The appendices
also include constant definitions, standard header files, and useful
tables.

Windows on the World 375

Enjoy programming your Atari ST. Remember to keep your
programs organized and modular. To use WINDOW1 or WINDOW2 as
an outline file, simply delete the statements in the sections Ap
plication-Specific Data, Application Functions, and Application-
Specific Routines in function m ain(). Study the programs presented
in this book and don’t be afraid to experiment with them, especially
the AES programs. Menus, windows, and the graphic interface change
the way a program looks. Full utilization of GEM and Atari routines
can give a program professional elegance and sophistication.

A P P E N D I X A

C Function
Reference Guide

This appendix is a reference guide to all functions defined in the Atari
system developer’s documentation. The function names and parame
ter lists given here are in accordance with Atari documentation. The
exact syntax of a function name (for example, upper- or lower-case
letters) may vaiy depending upon the compiler used. If you get a syn
tax error or undefined reference with respect to a function name,
check your compiler manual to see if the function is implemented and
to check the syntax.

The various portions of the operating system have some standard
features tha t apply to the function usage. First of all, the GEMDOS,
BIOS, and XBIOS functions are all defined as macros in the header file
OSBIND.H (see Appendix B). Therefore, any program that uses these
functions m ust include OSBIND.H at the start of the program.

The VDI function parameters follow a specific format All parameter
lists for VDI functions start with a handle parameter. This handle
refers to the workstation on which the function has an effect The
only functions that do not follow this format are v_opnwk() and
v_opnvwk(), as they create workstations.

All VDI function names begin with “v_” characters. Whenever a
point is required by a VDI function, it is passed in an array. The x
coordinate is always followed by the y coordinate. For example, in an
array called sample, element sample[0] would be the first x coordinate
and sample[1] its corresponding y coordinate. Subsequent points are
placed sequentially in the array. Whenever a rectangle is required, it is
passed as a pair of points in an array (i.e., four elements). The first
point defines the location of the upper left comer of the rectangle, and
the second point provides the coordinates for the lower right comer.

C Function Reference Guide 377

The last comment with respect for the VDI refers to the Input
modes. The VDI allows two input modes for the input devices: request
and sample. A request function waits until input is available from the
device. A sample function tests the device to see if data is available. If it
is n o t the program continues and the function indicates that no data
was found. If data is available, it is acted upon and this status condi
tion is returned by the function.

The AES uses a different method of specifying a rectangular area
than the VDI. The AES uses four values providing the coordinates of
the upper left com er of the rectangle and its width and height Unlike
VDI coordinates, AES coordinates always refer to screen pixels and are
device-dependent Therefore, the width and height of a rectangle ex
tend to the right and down from the coordinates given. A rectangular
area required by an AES function will be supplied through four indi
vidual parameters.

The functions are listed alphabetically below. In cases where the
function name includes the underscore character (_), the name is
alphabetized as if the underscore did not exist Following the function
descriptions is a list of the function grouped by usage.

WORD appL-ttdt ()

Remove an application from the AES. When this function is called, the
calling application is removed from GEM AES and the AES cleans up
the environment variables and arrays. A positive integer is returned if
successful; otherwise 0 is returned.

WORD appL-find (apJpname)
char *ap_fpname;

Find the application ID of another application in the system. Parame
ter ap-fpname points to a string of eight characters containing the
filename of the application to locate. The string m ust contain eight
characters. If the filename is less than eight characters, the pro
grammer m ust fill the remaining characters with blank spaces. A — 1
returned value means tha t the application could not be located by the
AES.

WORD appl_init{)

Initialize the internal arrays used by the GEM AES. An application ID
number is returned. If the ID is — 1, the function call was unsuccessful.

378 Atari ST

WORD appL-read (ap-rid, ap-rlength, ap_rpbuff)
WORD ap-rid,

ap_rlength;
char *ap_rpbuff;

Read a message waiting for an application. When a message event
occurs, the event function fills a 16-byte message buffer. If more than
16 bytes are in the message, this function is used to read the remain
ing data. Parameter ap_rid is the ID number of the application tha t
sent the message, and ap_rlength is the number of bytes to read. The
ap-ipbuff string is a buffer to hold the data being read. A returned
value of 0 indicates an error.

WORD appL-tplay (ap_tpmen, ap-tpnum, ap-tpscale)
rhnr *np jp n w m ;

WORD ap-tpnum,
ap-tpscale;

Play a portion of pre-recorded GEM AES user actions. After a user’s
actions have been recorded, this function can be used to replay them.
The parameter ap-tpmem points to the user events to be played.
Parameter ap-tpnum indicates the number of actions to be played.
Parameter ap-tpscale sets the replay speed ranging in value from 1 to
10,000. A value of 50 is half speed, 100 is full speed, and 200 is twice
speed. The returned value always equals 1.

WORD appL-trecord (ap-trmen, ap-trcount)
char *ap-trmem;
WORD ap-trcount;

Record a specified number of user actions. As the user interacts with
the application, this function records the user’s actions. Parameter
ap-trmem points to a segment of memory where the actions will be
stored, and ap-trcount is the number of actions to record. The func
tion returns the number of actions actually recorded.

Each action is stored as a two-part data item. The first part consists
of two bytes (16 bits) to indicate the event code as follows:

0 timer event
1 button event
2 mouse event
3 keyboard event

The next four bytes contain information regarding the event in the
following format:

C Function Reference Guide 379

timer event the number of milliseconds elapsed
button event low word: button state as defined in the text

high word: number of clicks
mouse event low word: mouse x coordinate

high word: mouse y coordinate
keyboard event low word: keyboard character code
_______________high word: keyboard state (see text)______

WORD appL-write (ap-wid, ap-wlength, ap.wpbuff)
WORD ap-wid,

ap-length;
char *ap_wpbuff;

Write a message to the AES. This function writes a message to an
application in the system. The message is in the buffer ap_wpbui£ The
number of bytes is specified by ap-wlength and the application ID to
write to is ap-wid. A returned value of 0 indicates an error.

long Bconin(dev)
WORD dev;

Wait for a character to be returned from the device specified by dev.
The character is returned in the low WORD of the long value. If bit 3 of
the system variable conterm is se t the high WORD contains the value
of the system variable kbshift when the key was pressed (see Appendix
D, System Addresses).

VOID Bconout (dev, c)
WORD dev, c;

Walt until the character c has been written to device dev.

WORD Bconstat (dev)
WORD dev;

Get the input status of a character device. The function returns —1 if
characters are available, or 0 if n o t The device numbers are:

Number Device
0 PRT: — parallel printer port
1 AUX: — auxiliary RS-232 port
2 CON: — console/keyboard
3 MIDI port
4 Keyboard port (Atari extension)
5 Raw console output

380 Atari ST

For these devices, the legal BIOS operations are:

Operation PRT: AUX- CON: MIDI Kbd Raw
BconstatO no yes yes yes no no
Bconin() yes yes yes yes no no
Bconout() yes yes yes yes yes yes
Bcostat() yes yes yes yes yes no

The MIDI device has an interrupt-driven input buffer of 80 characters.
The keyboard device (4) is output only and can be used to configure
the intelligent keyboard (see Atari documentation for further details).
The raw console device outputs characters to the screen without
interpretation of control or escape sequences.

long Bcostat (dev)
WORD dev;

Return — 1 if device dev is ready for ou tpu t or 0 if n o t See function
Bconstat() for values of dev.

VOID Bioskeys ()

Restore the initial system settings for the keyboard translation tables
(see the Keytbl() function).

WORD Caturin ()

Read a character from the auxiliaiy port (handle 1). This port is nor
mally the serial p o rt

WORD Cauzis ()

Check the status of the AUX: in p u t If a character is ready to be read,
OxFFFF is returned. Otherwise 0 is returned.

WORD Cauxos ()

Check'the status of the AUX: ou tpu t If it is ready to receive a charac
ter, OxFFFF is returned. Otherwise 0 is returned.

VOID Cauxout (c)
WORD c;

C Function Reference Guide 381

Write the character c to AUX:, the auxiliary port (handle 1). The high
eight bits are reserved and m ust be 0. This port is usually the serial
port

long Cconin()

Read and echo a character from the standard in p u t If the standard
input device is the console, the long value returned contains both the
ASCII and the console scan codes in the following format:

Bits Contents
0-7 ASCII character code
8-15 A110
16-23 Scan code or 0 if not console
24 Right shift key
25 Left shift key
26 Control key
27 Alternate key
28 Caps Lock key
29 Right mouse button or Clr/Home key
30 Left mouse button or Insert key
31 Reserved

For bits 24-31, if the bit is set to 1, the key is depressed.

WORD Cconis ()

Check the status of the standard in p u t If a character is available, the
function returns QxFFFF. Otherwise 0 is returned.

WORD Cconos ()

Check the status of the standard ou tpu t If the standard output is
ready to receive a character, this function returns QxFFFF. Otherwise
0 is returned.

VOID Cconout (c)
WORD c;

Write the character with ASCII value in c to the standard ou tpu t The
high eight bits are reserved and m ust be 0.

VOID Cconrs (buf)
char *buf;

382 Atari ST

Read a string from the standard in p u t Common line editing charac
ters are interpreted:

Character Function
Return or Ctrl-J End of line
Ctri-H or Delete Remove last character
Ctrl-U or Ctrl-X Erase entire line
Ctrl-R Retype the line
Ctrl-C Terminate the process

The element buf [0] contains the number of characters typed. Ele
ment buf [1] contains the number of character read on exit. Element
buf [2] is the first character of the string entered. The string may or
may not be null-terminated.

VOID Cconws (str)
char *str;

Write the null-terminated string str to the standard output

long Cnedn ()

Read a character from the standard input. If the input device is CON:,
no echoing is done and control characters are interpreted.

WORD Cpraos ()

Check the status of the PRN: ou tpu t If it is ready to receive a char
acter, QxFFFF is returned. Otherwise 0 is returned.

VOID Cpraout (c)
WORD c;

Write the character c to PRN; the printer port (handle 2). The high
eight bits are reserved and m ust be 0.

long Crawdn ()

Read a character from the standard input (CON:, handle 0) without
echo.

long Crawio (w)
WORD w;

C Function Reference Guide 383

Read or write to the standard input/output If w is QxOOFF, a character
is read. If no character is available, 0 is returned. If w is not OxOOFF,
the character w is written to the standard ou tpu t

WORD Cursconf (op, data)
WORD op, data;

Configure the VT52 emulator cursor. The configuration function to
perform depends on the value of op as follows:

op Function
0 Hide cursor
1 Show cursor
2 Set blinking cursor
3 Set nonblinking cursor
4 Set blink rate according to value in data
5 Return current cursor blink rate

The cursor blink rate is based on the vertical blank interrupt rate. On
the monochrome monitor, this occurs a t 70 Hz. On the color monitor,
this occurs a t 60 Hz in NTSC mode or 50 Hz in PAL mode. The time
for the cursor to turn off and back on again is twice the value of data
divided by the vertical blank rate.

WORD Dcreate (pathname)
char "pathname;

Create a directory specified by the string pointed to by pathname. The
string gives the complete path for the new directory. 0 is returned if
successful, otherwise an error value is returned.

WORD Ddelete (pathname)
char "pathname;

Delete the directory specified by the path name pointed to by path
name. The directory must be empty and may not be the the or “..”
special directories. 0 value is returned on success, or an error value is
returned.

VOID Dfree (buf, driveno)
struct diflfc-info *bufc
WORD driveno;

384 Atari ST

Get the allocation information about the drive specified in diiveno.
Drive 0 is the default drive, 1 is drive A, 2 is drive B, etc. The
disk-infb-buf structure is filled by the function and is defined:

struct disk-info {
long b_free; /* * of free clusters on drive */
long b-total; /* total * of clusters on drive */
long b-secsiz; /* # of bytes in a sector */
long b-dsiz; /* # of sectors in a duster */

}

With this information, the application can determine the amount of
available space on the drive.

WORD Dgetdrv ()

Returns the number of the current drive with 0 = A, 1 = B, etc.

VOID Dgetpath (buf, driveno)
char *buf;
WORD driveno;

Get the current directory path for a drive. The path is placed into buf.
The drive num ber is 0 for the default drive, 1 for drive A, 2 for drive B,
etc. The application m ust supply enough space in buf to hold the path
name.

VOID Dosound (ptr)
char *ptr;

Initiate the sound daemon’s “program counter” to the address con
tained in ptr. A daemon is an independent process. The series of bytes
pointed to by ptr contain instructions and data for the sound daemon.
The instructions are:

Instruction________________________Function____________________
QxOO-OxOF Put the next byte into the sound register. 0x00 puts the data

into register 0,0x01 puts it into register 1, etc.
0x80 Put the next byte into the temporary register (temp.reg)
0x81 Uses the next three bytes, calling them reg_no, bytel, and

byte2, where reg_.no is the register to use, bytel is the
increment value, and byte2 is the termination value. The
following procedure is performed:

Until value in temp_reg = byte2
Put value from temp_reg into reg_no
Add bytel to temp_reg

Repeat

C Function Reference Guide 385

Instruction_______________________ Function_____________________
Qx82-0xFE The next byte contains the number of 1/50 second time units

to wait before continuing
OxFF If the next byte is 0, the second daemon stops. Otherwise the

value is used like instructions 0x82 to OxFE

long Drvmap()

Return a value with bit settings indicating which drives are available.
If the b it is set to 1, the drive is available a t that location. Bit 0 corre
sponds to drive A, bit 1 for drive B, etc.

long Dsetdrv (drv)
WORD drv;

Set the default drive. The value in drv determines the new default
drive with 0 = A, 1 = B, . . . , 15 = P. The value returned has its low 16
bits set to 1 for each drive available (bit 0 = A, bit 1 = B, etc.). A drive is
available if its directory has been used. Only 16 drives are available.

WORD Dsetpath (path)
char "path;

Set the current directory path to the path name pointed to by path. 0
is returned if successful; otherwise an error value is returned.

WORD evnt-button (ev_bclicks, ev-bmask, ev-bstate,
ev_bmx, ev-bmy, ev-bbutton, ev.bkstate)

WORD ev-bclicks,
ev_bmask,
ev.bstate,
*ev_bmx, *ev_bmy,
*ev_bbutton,
*ev_bkstate;

Wait until a mouse button is clicked. Depending upon the input
parameters, th is function responds only to a certain combination of
mouse buttons and a certain number of clicks. The returned value is
the number of times the specified state had been achieved. The
parmeter are used as follows:

ev_bclicks the number of dicks needed for the event
ev-bmask the mask for the buttons of interest GEM AES can handle up

to 16 buttons where bit 0 refers to the furthest left button.
When the bit is set to 1, that button is used.

386 Atari ST

ev_bstate the state to detect for each button. The bits are In the same
order as ev_bmask and have the following meaning:
0 = button up
1 = button down

ev_bmx the x coordinate of the mouse pointer when the event
occurred

ev_bmy the y coordinate of the mouse pointer when the event
occurred

ev_button the state of the mouse buttons upon exit from the routine.
The bit settings are the same as ev-bstate.

ev-bkstate the keyboard state when the function returned. The bits in
this value have the following meaning:
Bit 1 right shift
Bit 2 left shift
Bit 3 Control key
Bit 4 Alternate key

____________If the bit is set the key has been pressed.___________

The returned value of the function is the number of times the but
tons) actually entered the desired state. This value is never less than 1
or greater than ev.bclicks.

WORD evnt_dclick (ev-dnew, ev-dgetset)
WORD ev-dnewt

ev_dgeteet;

Set or read the double-dick speed for the mouse button. When ev_dget-
set is 1, the double-click speed is set to the value in ev-dnew and this
value is returned by the function. Otherwise, the current double-click
speed is returned by the function. The speed can range from 0 as
slowest to 4 as fastest

WORD evnt-keybd ()

Wait for a keyboard event The application processing stops until a
keyboard event for the application is reported by the AES. The re
turned value is the keyboard code (see Appendix C) for the character
typed.

WORD evnt-mesag (ev_mgpbuff)
char *ev_mgpbu£f;

Wait for a message event When a message is sent to an application,
the AES issues a message event to the receiving application. This
function acknowledges the message event and reads a standard 16-
byte message from the AES. The 16 bytes are placed in the buffer

C Function Reference Guide 387

pointed to by ev_mgpbu£f. The formats for the pre-defined AES mes
sages are given in Appendix E.

WORD evnt_mouse (ev_moflags,
ev-mox, ev_moy, ev_mowidth, ev_moheight
ev-momx, ev_momy, ev-mobutton, mv-mokstate)

WORD ev moflags,
ev-xnox, ev_moy,
ev_mowidth, ev_moheight,
*ev_momx, *ev_momy,
*ev_mobutton,
*ev_mokstate;

Wait for the mouse to enter or leave a specified rectangle. The parame
ters are as follows:

ev-moflags a value of 0 means to wait for the mouse to enter the
rectangle. A value of 1 means to wait for the mouse to
exit

ev_mox the x coordinate of the upper left comer of the rectangle in
screen coordinates.

ev_moy the y coordinate of the upper left comer
ev_mowidth the width of the rectangle in pixels
ev-moheight the height of the rectangle in pixels
ev_momx the x coordinate of the point where the mouse event

occurred
ev_momy the y coordinate of the point where the mouse event

occurred
ev_mobutton the state of the mouse buttons when the event occurred.

Bit 0 corresponds to the furthest left button. A 1 value
means the button was pressed,

ev-mokstate the status of the keyboard special function keys. If a bit
is 1, the key was pressed. The bits are used as follows:
Bit 0 right shift
Bit 1 left shift
Bit 2 Control key

___ Bit 3 Alternate key_____________________ _____

The function always returns the value 1.

WORD evnt_multi (ev-mflags, ev_mbclicks, ev-mbmask,
ev_mbstate, ev_mmlflags, ev-mm lx, ev_mmly,
ev_mmlwidthf ev_mmlheight, ev_mm2flags,
ev_mm2x, ev_mm2y, ev_mm2width, ev_mm2height
ev_mmgpbii£f, ev-mtlocount ev-mthicount, ev-mmox,
ev-mmoyt ev-mmobutton, cv-mmohstate,
ev_mkretum(ev_mbretum)

388 Atari ST

WORD

char

ev-mmflags,
ev-mbclicks, ev-mhmash, evjnbstate,
ev_mmlflags, evjnm lx, evjnm ly,
ev-mm l width, evjnm lheight,
ev-.mm2flags, ev-mm2x, ev_mm2y,
ev_mm2width, ev_mm2height,
ev_mtlocount, ev-mthicount,
*ev-mmox, *ev_mmoy,
*ev_mmobutton, *ev_mmokstate,
*ev_mkretum, *ev_mbretum;
*ev_mmgpbuff;

Walt for any one of six possible events. This function combines evnt_
button(), evnt_keybd(), evnt_mesag(), evnt_mouse(), and evnt_
timer() into one function call. The event(s) to wait for are specified by
the bits in ev-mflags. Any combination of events is valid. The param
eters are basically the same as those used for the various independent
event functions, and are used as follows:

ev_mmflags a set of bits indicating the event(s) to accept If the bit is
set to 1, the function responds to that event The bits
are specified as follows and have the associated defined
constants:

Bit Constant Value Event
0 MU-KEYBD 0x0001 keyboard
1 MU-BUTTON 0x0002 mouse button
2 MU-Ml 0x0004 first mouse rectangle
3 MU-M2 0x0008 second mouse rectangle
4 MU-MESAG 0x0010 message
5 MU-TIMER 0x0020 timer

ev_mbclicks the number of clicks for a button event
ev_mbmask the mouse buttons of interest Bit 0 corresponds to the

furthest left button. A bit set to 1 means that button
was used.

ev_mbstate the state of the mouse buttons. A bit set to 1 means the
button is down.

ev_mml flags first rectangle event flag. A value of 0 causes an event
when the mouse enters the rectangle

ev_mmlx, ev_mmly, ev_mmlwidth, and ev_mmlheight
these parameters define the location and size of the first

mouse event rectangle
ev_mm2flags second rectangle event flag
ev_mm2x, ev_mm2y, ev_mm2width, and ev_mm2height

these parameters define the location and size of the
second mouse event rectangle

C Function Reference Guide 389

ev_mgpbuff a pointer to a 16-byte buffer to hold the message in the
case of a message event

ev-mtlocount and ev_mthicount
the low and high words of a long integer used to set the

number of milliseconds to wait for a timer event
ev_mmox and ev_mmoy

the x and y coordinates of the mouse pointer when the
mouse event occurred

ev_mmobutton the state of the mouse buttons when the event occurred
ev_mokstate the state of the keyboard when the event occurred. The

bits have the following meaning:

Bit 0 right shift
Bit 1 left shift
Bit 2 Control key
Bit 3 Alternate key

ev_mkretum keycode for the key pressed in a keyboard event
ev_mbretum the number of times the mouse buttons entered the

desired state

The function returns a value with the bit set to indicate the event
that had occurred. The bit representations are the same as for param
eter ev_mflags.

WORD evnt-timer (ev-tlocount, ev_thlcount)
unsigned WORD ev-tlocount,

ev_thicount;

Wait for a specified amount of time to pass. The amount of time is
given as a long integer value to indicate length of the time interval in
milliseconds. The long integer (four bytes) is divided into the unsigned
WORD (i.e., int) values of two bytes each. The low word is passed in
parameter ev-tlocount and the high word is in ev-tbicount The
function always returns a value of 1.

WORD Fattrib (fhame, wflag, attribs)
char *fhame;
WORD wflag;
WORD attribs;

Get or set the file attribute bits. The file is specified by the name given
by fhame. If wflag is 0, the file’s current attributes are returned. If

390 Atari ST

wflag is 1, the file’s attributes are set to b it settings of attribs as
follows:

Bit Attribute
0 Read only
1 Hidden
2 System
3 11 byte volume label
4 Subdirectory
5 File has been written to and closed

WORD Fclose (fhandle)
WORD fhandle;

Close the file associated with fhandle. 0 is returned if successful;
otherwise an error value is returned.

WORD Fcreate (fhame, attribs)
char *fhame;
WORD attribs;

Create a file with the filename fhame and the attributes given by
attribs. The bits of attribs have the following meaning:

Bit Description
0 File set to read only
1 File hidden from directory search
2 File set to SYSTEM
3 File contains 11 byte volume label

If the bit is set to 1, the file has that attribute.
The function returns a write only nonstandard handle to the file,

which is a positive number. If an error occurred, a negative error value
is returned.

VOID Fdattme (fhandle, timeptr, wflag)
WORD fhandle;
long *timeptr;
WORD wflag;

Get or set the date and time stamp for a file. The file is referred by its
handle given in fhandle. If the parameter wflag is 0, the time stamp is

C Function Reference Guide 391

read Into timeptr. If wflag is 1, the time stamp is set from timeptr.
The high WORD of the value a t timeptr is the time and the low WORD
is the date. See the Tgetdate() and TgettimeO functions for the
format of the date and time WORDs.

WORD Fdelete (fhame)
char *fhame;

Delete the file named by fhame. A returned value of 0 indicates suc
cess; otherwise a negative error number is returned.

WORD Fdup (fhandle)
WORD fhandle;

Duplicates a standard handle. A standard handle has a value from 0
through 5. The handle to duplicate is given by parameter fhandle. The
function returns a nonstandard handle or a negative error number.

WORD Fforce (stdh, nonstdh)
WORD stdh,

nonstdh;

Force the standard handle stdh to point to the same file or device as
the nonstandard handle nonstdh. The returned value is 0 if success
ful; otherwise an error number is returned.

long Fgetdta ()

Returns the address of the current Disk Transfer Area (DTA) used by
function Fsfirst() and Fsnext().

WORD Flopfmt (buf, filler, drvno, spt, trackno, sideno,
interlv, magic, virgin)

WORD *buf;
long filler;
WORD drvno, spt, trackno, sideno,

interlv, virgin;
long magic;

Format one track on a floppy disk. The buffer pointed to by buf m ust be
large enough to hold an entire track image (8K for nine sectors per
track). Parameters drvno, spt, trackno, and sideno give the drive
number (0 or 1), the number of sectors per track (usually nine), the
track number (0 through 79), and the side number (0 or 1), respectively.
The parameter filler is unused. The sector interleave factor (usually 1) is

392 Atari ST

given as interlv. The value for magic is the special number 0x87654321.
The data in the sectors is filled with the value in virgin. The high bit of
virgin m ust not be set, and the value 0 should be avoided. The recom
mended virgin value is 0xE5E5.

The function returns 0 if successful, or a negative error value if n o t
A null-terminated list of bad sector numbers (one WORD each) is
returned in the buffer. The list is not necessarily in numerical order. If
no bad sectors were found, the first WORD will be 0.

WORD Floprd (bu£ filler, drvno, sectno, tracbno, sideno, count)
WORD *bufj
long filler;
WORD drvno, sectno, trackno, sideno, count;

Read sectors from a floppy disk. The function reads count number of
sectors into the word-aligned buffer pointed to by bu£ Parameters
drvno, sectno, trackno, and sideno give the drive number (0 or 1), the
sector number (1 through 9), the track number (0 through 79), and the
side number (0 or 1), respectively. The parameter filler is unused. The
function returns 0 if successful, or a negative error value if n o t

WORD Flopver (bu& filler, drvno, sectno, trackno, sideno, count)
WORD *buf;
long filler;
WORD drvno, sectno, trackno, sideno, count;

Verify a floppy disk. The function reads count number of sectors from
the word-aligned buffer pointed to by b u t The buffer m ust be 1,024
bytes in length. Parameters drvno, sectno, trackno, and sideno give the
drive number (0 or 1), the sector number (1 through 9), the track
number (0 through 79), and the side number (0 or 1), respectively. The
parameter filler is unused.

The function returns 0 if successful, or an negative error value if n o t
A null-terminated list of bad sector numbers (one WORD each) is
returned in the buffer. The list is not necessarily in numerical order. If
no bad sectors were found, the first WORD will be 0.

WORD Flopwr (buf, filler, drvno, sectno, trackno, sideno, count)
WORD *buf;
long filler;
WORD drvno, sectno, trackno, sideno, count;

Write sectors to a floppy disk. The function writes count number of
sectors from the word-aligned buffer pointed to by buf. Parameters
drvno, sectno. trackno, and sideno give the drive number (0 or 1), the

C Function Reference Guide 393

sector number (1 through 9), the track number (0 through 79), and
the side number (0 or 1), respectively. The parameter filler is unused.
The function returns 0 if successful, or an negative error value if n o t

WORD Fopen (£oame, mode)
char *£aaxne;
WORD mode;

Open the file named fhame with the access set to mode. The access may
be 0 for read only, 1 for write only, or 2 for read or write. The function
returns a positive nonstandard handle to the file. A negative returned
error value is returned on an error.

WORD form-alert (fo_adefbttn, fb-astring)
WORD fo-adefbttn;
char *fo_astring;

Display an alert box. This function handles the drawing and interac
tion required to initialize the screen, draw the alert box, allow user
interaction, restore the screen, and report the exit button selected to
the application. Parameter fo_adefbttn specifies the default exit but
ton as follows:

0 No default exit button
1 First exit button
2 Second exit button
3 Third exit button

Parameter fo-astring points to a string defining the format for the
alert box. The string consists of three sections. Each section is sur
rounded by a set of square brackets (11). The first section specifies the
icon to use where:

0 No icon,
1 The NOTE icon,
2 The WAIT icon, and
3 The STOP icon.

The second portion of the string contains the message text. The text
may consist of up to four lines of 32 characters per line. To signal the
end of a line in the message tex t use the vertical bar (|) character.

The last portion of the string contains the text for up to three exit
buttons with 20 characters each. The vertical bar (|) is again used to

394 Atari ST

separate the text for each button. The format for the fo-astring
parameter is given below:

“[(icon #)] ((message test)] [(exit buttons)]”
The function returns the number of the button used to exit the alert

box.

WORD form_center (fo.ctree, fo-cx, fo_cy, fo_cw, fo.ch)
OBJECT *fo_ctree;
WORD *fo_cx, *fb_cy, *fo_cw» *fo_ch;

Determine the coordinates to center a dialog box on the screen. The
object tree for the dialog box is pointed to by fb-ctree. Upon return,
fo_cx, fo_cy, fo_.cw, and fo-ch define the position and size of a
rectangle, centered on the screen, for the dialog box. The function
always returns the value 1.

WORD form-dial (fo.diflag,
fo-dilittlx, fo-dilittly, fodilittlw, fo.dilittlh,
fb-dibigx, fb-dibixy, fo-dibigw, fo_dibigh)

WORD fo-diflag,
fo-dilittlx, fo-dllitUy, fo_dilittlw, fo_dilittlhf
fo.dibigx, fo-dibigy, fo-dibigw, fo_dibigh;

Dialog box display function. This function performs four distinct
operations associated with displaying a dialog box. F irst the function
can reserve space for the dialog box. Second, the function can draw an
expanding box. Third, the function can draw a shrinking box. And
finally, the function can release the space reserved for the dialog box.
Only the first and last of these operations m ust be done before display
ing the dialog box.

The smallest size for the dialog box is defined by fo-dilittlx, fo-di-
littly, fo-dilittlw, and fo_dilittlh, which give the x and y coordinates,
width, and height respectively. The largest size (and the size used to
reserve screen space) is given by fo.dibigx, fo-dibigy, fo_dlblgw, and
fo-dibigh for the x and y coordinates, width, and height respectively.
All coordinates are relative to the screen.

The actual operation performed is specified by the value for fo-diflag
using the defined constants:

Constant Value Function
FMD-START 0 Reserve screen space for dialog box
FMD-GROW 1 Draw expanding box
FMD-SHRINK 2 Draw shrinking box
FMD-FINISH 3 Release reserved space and cause application to

redraw screen

C Function Reference Guide 395

A returned value of 0 indicates an error.

WORD form-do (fo-dotree, fo-dostartob)
OBJECT *fo_dotree;
WORD fo-dostartob;

Cause the Form Manager to monitor the user’s interactions with a
form. Parameter fb-dotree points to the object tree containing the
form. Paramenter fo-dostartob is the object index of the starting
object which will be active when the form appears. This object m ust be
an editable text field. A value of —1 indicates that the form does not
contain an editable text field. When form_do() is called, control is
passed to the AES until the user creates an exit condition (see text).
The function returns the object index of the object that caused the
exit condition.

WORD form-error (fo-enum)
WORD fo-enum;

Display an error box. This is a pre-deflned dialog box that displays a
message based upon the error number specified in fo-enum. GEMDOS
has predefined numbers representing system errors. However, these
values are usually returned by the DOS functions as negative values so
the application must use the absolute value of the returned error
value.

The value returned by this function is the number of the exit button
selected. On the Atari, only one exit button is displayed in the error
box.

long Fread (fhandle, count, buf)
WORD fhandle;
long count;
char "buf;

Read from the file indicated by lhandle. The number of bytes to read is
given by count, and the data is placed in the buffer pointed to by buf.
The actual number of bytes read is the return value. A value of 0 indi
cates the end of file, and a negative value is an error value.

WORD Frename (zero, oldname, newname)
WORD zero;
char "oldname,

"newname;

Rename a file from oldname to newname. The new name of the file
m ust not exist on the disk. The new file may be in another directory.

396 Atari ST

The parameter zero is always 0. A value of 0 is returned if successful;
otherwise an error number is returned.

long Fseek (offset, fhandle, seekmode)
long offset;
WORD fhandle;
WORD seekmode;

Set the current file pointer position with the file specified by fhandle.
The offset is the number of bytes to move. The seekmode is the posi
tion from which to count the offset. The seekmode has the following
values:

Seekmode Offset Start Position
0 From the beginning of the file
1 From the current position
2 From the end of the file

The new, absolute pointer position is returned.

WORD fseLJnput (fs_iinpath, fs-iinsel, feJesbutton)
char *fs_i inpath,

*fs_iinsel;
WORD #fs-iexbutton;

Display the file selector dialog box and allow the user to select a file.
This function handles all procedures and data required to display and
manage the file selector dialog box. The application supplies the
default search path in string fis-iinpath, and the default filename in
string fs-iinseL Upon return, fs-iinpath contains the search path set
by the user, and fs-ilnsel contains the filename selected by the user.
Parameter fs-iexbutton is set to the exit button used, where 0 is the
Cancel button and 1 is the OK button. A value of 0 indicates an error
has occurred.

VOID Fsetdta (addr)
char *addr;

Set the Disk Transfer Area (DTA) to the memoiy pointed to by addr.
The DTA is used only by function Fsfixst() and Fsnext()).

WORD Fsfirst (fspec, attribs)
char *fspec;
WORD attxibs;

C Function Reference Guide 397

Search for the first occurrence of the file given by £spec. The file speci
fication may contain wildcard characters (? and *) in the filename,
bu t not in the pathname. The bit settings of attribs determine which
files are located. If attribs is 0, only "normal” files are found. The bit
settings are:

Bit Attribute
0 Read only
1 Hidden
2 System
3 11-byte volume label
4 Subdirectory
5 File has been written to and dosed

When the file is located, the function fills the Disk Transfer Area
(DTA) with information about the file. The DTA is a 44-byte data
structure with the following format:

Byte Length Contents
0 20 bytes Reserved for OS
21 1 byte File attributes (as above)
22 2 bytes File time stamp
24 2 bytes File date stamp
26 4 bytes File size
30 14 bytes File name and extension

The function returns 0 if a file was found; otherwise a negative error
number is returned.

WORD Fsnext ()

Search for the next occurrence of a file. The search parameters
are initially set by Fsfirst(). If a file is found, the DTA is filled as in
Fsfirst(). The function returns 0 if a file is found; otherwise an error
number is returned.

long Fwrite (fhandle, count, buf)
WORD thandle;
long count;
char *bufj

Write the data from the memory location pointed to by buf to the file
specified by fhandle. The number of bytes to write is given by count. A

398 Atari ST

positive value returned gives the number of bytes actually written. A
negative value is an error number.

BPB *Getbpb (drv)
drv;

Get the BIOS Parameter Block (BPB) of the drive given by drv. The
drive numbers are: 0 is A, 1 is B, etc. The function returns a pointer to
the BPB, or NULL if the BPB could not be determined. The BPB is
defined:

typedef strubt bios-pb {
WORD recsiz, /* physical sector size in bytes (512) */

clsiz, /* cluster size in sectors (2) */
clsizb, /* cluster size in bytes (1024) */
rdlen, /* root directoiy length in sectors */
fsize, /* PAT size in sectors */
fatrec, /* sector * of 1st sector of 2nd PAT */
datrec, /* sector # of 1st data sector */
numcl, /* # of data clusters on disk */
bflags; /* flags */

} BPB;

The usage of the BPB and its contents extend beyond the scope of this
book. Refer to the GEMDOS documentation for more details.

VOID Getmpb (p_mpb)
struct mpb *p_mpb;

Get a Memoiy Parameter Block (MPB). See Appendix D, System Ad
dresses, for information on the mpb structure.

WORD Getrez()

Return the screen’s current resolution as:

0 Low resolution (320 X 200)
1 Medium resolution (640 X 200)
2 High resolution (640 X 400)

long Gettime()

Return the current date and time. The bits in the long value returned

C Function Reference Guide 399

have the following interpretation:

Bits Meaning
0-4 Seconds divided by 2 (0-29)
5-10 Minutes (0-59)
11-15 Hours (0-23)
16-20 Day in month (1-31)
21-24 Month (1-12)
25-31 Years since 1980 (0-119)

char Giaccess (data, regno)
char data;
WORD regno;

Access the registers on the AY-3-8910 sound chip. The register to
access is given by regno. If regno has its high b it set (logically ORed
with 0x80), the function writes the value in data into the register.
Otherwise the function returns the current value in the register. See
Chapter 6 for details regarding sound generation.

The sound chip is used by the operating system for other functions.
Therefore a program accessing the sound chip m ust perform its
changes uninterrupted. This function provides that facility and should
be used.

WORD graf-dxagbox (gr_dwidth, gr-dheight,
gr-dstartx, gr-dstarty,
gr-dboundx, gr_dboundy, gr-dboundw, gr_dboundh,
gr-dfinishz, gr—dfinishy)

WORD gr-dwidth, gr-dheight,
gr-dstartx, gr-dstarty,
gr_dbounx, gr-dboundy,
gr-dboundw, gr-dboundh,
*gr KflnkhT, *gr ttflnlaliy;

Allow the user to drag a box outline on the screen. When this func
tion is called, the AES places a rectangle outline on the screen with
the width gr-dwidth and height gr-dheight. The upper left comer of
the outline starts a t coordinates gr-dstartx and gr-dstarty. The appli
cation can limit the movement of the drag box by specifying the
boundary rectangle in gr-dboundx, gr-dboundy, gr-dboundw, and
gr-dboundh. When the user releases the mouse button, the func
tion puts the coordinates of the upper left comer into parameters
gr-dfinishx and gr_dfinishy. A returned value of 0 indicates an error.

WORD graf-growbox (gr_gstx, gr_gsty, gr_gstwidth, gr_gstheight,
gr-gflnx, gr_gfiny, £r_£finwidth, tfr_i£finheiizht)

WORD gr_gstx, gr_gsty, gr_gstwidth, gr-gstheight,
gr-gfinx, gr_gfiny, gr_gfinwidth, gr_gfinheight;

Draw an expanding box outline. This routine places a box outline
on the screen at the location and size given by gr_gstx, gr_sty,
gr_gstwidth, and gr-gsfheight. The box then expands to its final size
and location given by gr_gfinx, gr_gfiny, gr_gfinwidth, and gr_gfin-
height. A returned value of 0 indicates an error.

WORD grafLhandle (gr_hwchar, gr-hhchar, gr-hwbox, gr_hhbox)
WORD *gr Jxwdiar, *gr_hhchar,

•gr-hwbox, *gr_hhbox;

Request the handle of the currently open physical workstation for the
screen being used by the VDI. The parameters to the function are filled
with the size of the system font characters as follows:

400 Atari ST

gr_hwchar the width of the character cell
grJhhchar the height of the character cell
gr_hwbox the width of a box large enough to hold a system font

character
gr_hhbox the height of a box large enough to hold a system font

character

All of the above values are measured in screen pixels.

WORD graf-mbox (gr_mwidth, gr_mheight, gr_msourcex,
gr_msourceyf gr-mdestx, gr_mdesty)

WORD gr-jnwidth, gr_mheight,
gr-msourcex, gr_msourcey,
gr-mdestx, gr_mdesty;

Display a box outline moving from one location to another on the
screen. The box has a set size given by gr_mwidth and gr_mhelght
which does not change. The starting location (of the upper left comer)
is given by gr_msourcex and gr-msourcey. The final location is given
by gr_mdests and gr_mdesty. A returned value of 0 indicates an error.

WORD grafLmkstate (gr-mkmx, gr_mkmy, gr-mkmstate,
gr-mkkstate)

WORD *gr_mkmx, *gr_mkniyf
*gr_mkmstate, *gr_mkkstate;

C Function Reference Guide 401

Obtain the current mouse location, mouse button state, and keyboard
state. The current mouse location is returned through parameters
gr_mkmx and gr_mkmy. The button state is returned through pa
rameter gr_mkmstate. The bits of this value indicate the position of
the button and its state. If the b it is set to 1, the button is currently
down. Bit 0 corresponds to the furthest left button, b it 1 is the second
button from the left, and so on.

The keyboard state is returned through parameter gr_mkkstate.
The bit settings for this value are:

Bit Key
0 Right shift
1 Left shift
2 Control
3 Alternate

If the b it is set to 1, the key is currently being pressed.
This function always returns the value 1.

WORD grafLmonse (gr_monumber, gr_mofaddr)
WORD gr-momimfter;
MFORM *gr_mofaddr;

Change the mouse form. This function tells the AES which mouse
form to use. The mouse form is given by the value in gr_monumber
based upon the following constants:

Constant Value Shape
ARROW 0 Arrow
TEXT-CRSR 1 Text cursor
HOURGLASS 2 Bumble bee
POINT-HAND 3 Hand with pointing finger
FLAT-HAND 4 Open hand
THIN_CROSS 5 Thin cross hairs
THICK-CROSS 6 Thick cross hairs
OUTLN-CROSS 7 Outlined cross hairs
USER-DEF 255 Form defined by gr_mofaddr
M-OFF 256 Turn off mouse display
M_ON 257 Turn on mouse display

402 Atari ST

Calls to tu rn the mouse display on or off may be nested. Therefore
each call to turn the mouse off m ust be balanced by a call to turn the
mouse on before it will reappear, and vice versa.

If the mouse form selected is USER_DEF, the function refers to the
mouse form definition block pointed to by gr_mofaddr. The structure
of the mouse form definition block is:

typedef struct mfstr {
WORD mf-xhot;
WORD mfLyhot;
WORD mfLnplanes;
WORD mf-fjg;
WORD mf-.bg;
WORD mfLmask[16];
WORD mfLdata[16];

} MFORM;

The fields mfLxhot and mfLyhot define the hot spot of the mouse
form. The hot spot is the point the AES uses as the mouse location.
The coordinates are measured from (0,0) being the upper left comer.
The field mfLnplanes indicates the number of planes in the form.
Fields mf_fg and mfLbg define the foreground and background colors
to use when the mouse is drawn (see raster copy functions in the text).
The mf-mask array is the raster for the mouse form mask and the
mf_data array is the raster to the mouse form itself.

An application may use any mouse form required while the mouse is
located within the top window’s work area. However, once the mouse
leaves this work area, it is the application’s responsibility to restore
the mouse form to the ARROW or HOURGLASS as appropriate. The
application should use the evnt_multi() function to detect when the
mouse enters or leaves the window’s work area.

A returned value of 0 indicates an error.

WORD graf-rubberbox (gr_rx, gr_iy, gr_rminwidth, gr-rminheight,
gr_rlastwidth, gr_rlastheight)

WORD gr_rx, gr_iy,
gr_rmiiisidth, gr-rminheight,
*gr_rlastwidth, *gr_lastheight;

Maintain a “rubber box” on the screen. A rubber box is a rectangular
outline that has its upper left comer a t a fixed location (given by gr_ix
and gr_iy), and the lower right comer dragged by the user. While the
user keeps the mouse button depressed, the AES continues to track
the mouse and draw the rubber box. When the user releases the
mouse button, this function returns to calling application. The width

C Function Reference Guide 403

and height of the rubber box when the user releases the mouse button
are returns through parameters gr_rlastwidth and gr_rlastheight,
respectively. The minimum width and height that the box may have is
passed through gr_rminwidth and gr-nninheight. A returned value of
0 indicates an error.

WORD graf-fthrinkbox (gr_sfinx, gr_sfiny, gr_sfinwidth,
gr-sfinheigfrt, gr_sstx, gr_ssty, gr_sstwidth, gr_sstheight)

WORD gr-sfinx, gr_sfiny, gr_sfinwidth, gr-wflnheight,
gr_sstx, gr_ssty, gr_sstwidth, gr-sstheight;

Draw a shrinking box outline. This routine places a box outline on the
screen at the location and size given by gr-sfinx, gr_sfiny, gr_sfin-
width, and gr-sfinheight The box then shrinks to its final size and
location given by gr-sstx, gr_ssty, gr_sstwidth, and gr-sstheight A
returned value of 0 indicates an error.

WORD graf-slidebow (gr_slptree, gr_slparent, gr_slobject, gr_slvh)
OBJECT *gr_slptree;
WORD gr_slparent,

gr_slobject,
gr_slvh;

Track a sliding box within its parent box. When the user selects a slide
box, the application calls this function to track the user’s interactions.
When the user releases the mouse button, the function reports the
relative position of the slide box within its paren t The slide box and
its slide bar m ust be objects in the tree pointed to by gr_slptree. The
slide bar, with object index gr_slparent, m ust be the parent of the
slide box, object index gr_s!object. The direction of tracking is set by
gr-slvh:

0 Horizontal
1 Vertical

The value returned indicates the relative position of the slider
within its parent box. This value will range from 0 to 1000. For hori
zontal sliders, 0 is the left edge, and for vertical sliders, 0 is the top
edge.

WORD gra£_watchbox (gr.wptree, gr_wobject» gr.winstate,
gr.woutstate)

OBJECT *gr_wptree;
WORD gr.wobject,

gr-winstate, gr.woutstate;

404 Atari ST

Track the mouse pointer in and out of a predefined box. The box is
the rectangle associated with a particular object The object tree is
pointed to by gr_wptree and the object’s index is given by gr_wobject
The state of the object while the mouse pointer is inside the box is
specified by gr-winstate. A returned value of 0 indicates an error.

The state of the object when the mouse pointer is outside of the box
is specified by gr.woutstate. The states are:

Bit Constant Value
None NORMAL 0x0000
0 SELECTED 0x0001
1 CROSSED 0x0002
2 CHECKED 0x0004
3 DISABLED 0x0008
4 OUTLINED 0x0010
5 SHADOWED 0x0020

When the bit is s e t the associated state is active. The states may be
combined. The NORMAL state indicates no bits are se t

VOID Ikbdws (cnt, ptr)
WORD cnt;
char *ptr;

Write cnt bytes from the string a t ptr to the intelligent keyboard pro
cessor. The cnt is the number of characters to write minus one.

VOID Initmous (type, paramp, vec)
type;

struct param *paramp;
int (*vec) ();

Initialize the mouse packet handler of the intelligent keyboard device.
This function interfaces to the intelligent keyboard, which is beyond
the scope of this book. See Atari documentation for further details.
The function is presented here for reference. The parameter usage is:

Type_____ Is the Type of Operation to be Performed as:
0 Disable mouse
1 Enable mouse in relative mode
2 Enable mouse in absolute mode
3 Unused
4 Enable mouse in keycode mode

C Function Reference Guide 405

paramp Points to a param structure (see below)
vcc Points to a mouse interrupt handler (see kbdvbase()).

The param structure contains:
struct param {

char topmode;
char buttons;
char xparam;
char yparam;
WORD xmax, ymax;
WORD xinitial, yinitial;

}
where:

topmode determines position of 0 y coordinate
0 = bottom of screen
1 = top of screen

button parameter for intelligent keyboard’s “set mouse
buttons” command

xparam and yparam have the following meanings
depending on the mode:

Mode____ Meaning of xparam and xparam
Relative x and y interrupt threshold values
Absolute x and y scale factors
Keycode x and y delta factors

The remaining members of the param structure are used in absolute
mode only, and give the maximum and initial x and y coordinates.

long Iorec (devno)
WORD devno;

Get the serial device input buffer descripter, which is:

struct iorec {
char *buf;
WORD ibufsize,

ibufhd,
ibuftl,
ibuflow,
ibufhigh;

}

/* pointer to queue */
/* size of queue in bytes */
/* head index of queue */
/* tail index of queue */
/* low data mark */
/* high data mark */

406 Atari ST

The function returns a pointer to the input buffer descriptor imme
diately followed by the output buffer descriptor (of the same format).

The member ibuftl is the index of the last character to be placed in
the queue, and ibuflid is the index of the last character to be removed
from the queue. The queue is empty if ibufhd equals ibuftL The ST
requests that the sender stop transmitting when the number of char
acters in the queue equals ibufhigh. A request to the sender to resume
transmitting is given when the number of characters falls below
ibuflow. The output buffer is handled in a similar manner.

VOID Jdisint (intno)
WORD intro;

Disable interrupt number intno on the 68901. See function Mfpint{)
for further details.

VOID Jenabint (intno)
WORD intno;

Enable interrupt number intno on the 68901. See function Mfpint()
for further details.

long Kbdvbase ()

Get the list of the system vectors. The function returns a pointer to a
structure of the following format:

struct kbdvecs {
WORD (*midivec) (), /* MIDI input */

(*vkbderr) (), /* keyboard error */
(*vmiderr) (), /* MIDI error */
(*vstatvec) (), /* ikbd status packet */
(*mousevec) (), /* mouse packet */
(*clockvec) (), /* dock packet */
(*joyvec) ()t /* joystick packet */
(*midisys) (), /* system MIDI vector */
(*lkbdsys) (); /* system Ikbd vector */

}

The midivec vector is initialized to a buffering routine in the BIOS.
The vkbderr and vmiderr routines are called whenever an overrun
condition is detected on the keyboard or MIDI. The statvec, mousevec,
dockvec, and joyvec point to the ikbd (intelligent keyboard) status,
mouse, real-time clock, and joystick packet handlers. The midisys and
ikbdsys routines are called when characters are available.

C Function Reference Guide 407

WORD Kbrate (init, zpt)
WORD init, rpt;

Get or set the keyboard repeat rate. The number of 50 Hz ticks to wait
before repeating is given by init. The number of 50 Hz ticks to wait
between repeated characters is given by rpt. If either parameter is — 1,
that value is not changed.

The function returns the previous init and rpt values as a WORD
with the high byte containing the init value and the low byte contain
ing the rpt value.

long Kbshift (mode)
WORD mode;

Get or set the keyboard shift bits. If mode is negative, the current set
tings are returned. If mode is 0 or greater, the shift bits are set to the
low 8 bits of mode. The shift bit assignments are as follows:

Bit Key
0 Right shift
1 Left shift
2 Control
3 Alternate
4 Caps Lock
5 Clr/Home (right mouse button)
6 Insert (left mouse button)
7 Reserved

long Keytbl (unshft, shft, capslock)
char unshft[], shft[], capslock[];

Set the keyboard translation tables. Each parameter is a pointer to the
base of an array of 128 characters. These tables are used to translate
the keystrokes under the respective conditions. The function returns a
pointer to a structure containing the three parameters:

struct keytab {
r»Tinr
chflT "shift;
char "capslock;

}

long Logbase()

408 Atari ST

Returns the address of the screen’s logical location in memory imme
diately.

long Malloc (amtmem)
long amtmem;

Allocate amtmem bytes of memory. The function returns a pointer to a
block of memory containing the requested number of bytes. A returned
value of NULL indicates that there is no free block large enough to
meet the request

If amtmem is — 1L, the function returns the size of the largest free
block in the system.

A process may not have more than 20 blocks allocated by Malloc() a t
any given time.

long Mediach (drv)
WORD drv;

Check for a media change on a disk. If the floppy disk has been
replaced, the media change will be true. The values returned indicate
the following:

0 Media definitely has not changed
1 Media might have changed
2 Media definitely has changed

The value of drv provides the drive number where 1 is A, 2 is B, etc.

WORD menu-bar (me-betree, me_bshow)
OBJECT *me_btree;
WORD me-bshow;

Displays a menu bar if me.bshow is TRUE and erases the menu bar if
me-bshow is FALSE. The menu bar is the object tree pointed to by
me-btree. An application should always erase the menu bar before
exiting through appl_eadt(). A returned value of 0 indicates an error.

WORD menu_icheck (me-ctree, me-dtem, mc-ccheck)
OBJECT *me_ctree;
WORD me-citem,

me.ccheck;

Check or uncheck a menu item. If mc-check is 1, the check mark is
displayed in the first position of the menu item. If mc-check is 0, the

C Function Reference Guide 409

check mark is removed. Parameter me_ctree points to the object tree
for the menu and me_citem is the object index in tha t tree. A
returned value of 0 indicates an error.

WORD menu-ienable (me_etree, me_eitem, me_eenable)
OBJECT *me_etree;
WORD me_eitem,

me.eenable;

Enable or disable a menu item. If me_eenable is 0, the menu item is
disabled and is displayed using dimmed characters. If me_eenable is
1, the menu item is enabled. Parameter me_etree points to the object
tree for the menu and me-eitem is the object index of the menu item.
A returned value of 0 indicates an error.

WORD menu-register (me_repid, me_rpstring)
WORD me_repid;
char *me_repstring;

Register a desk accessoiy with the AES. When a desk accessoiy is first
executed, it m ust register with the AES to be shown in the Desk
menu. The accessoiy uses this function to notify the AES that the
application with ID number me_repid (from the appl_init() function)
is to be placed in the Desk menu with the name given in me_rpstring.
The menu_register() function returns a menu item ID number or — 1.
A — 1 value indicates an error, usually meaning that six accessories
are already in the Desk menu.

WORD menu_text (me-ttree, me.titem, me-ttext)
OBJECT *me_ttree;
WORD me-titem;
char *me_ttext;

Change the text of a menu item. Parameter me-ttree points to the
object tree for the menu and me-titem is the object index of the menu
item. The next text is pointed to by m e-ttext The new text m ust be no
longer than the length of the original text in the menu. A 0 returned
value indicates an error.

WORD menu-tnormal (me_ntree, me_ntitle, me-nnormal)
OBJECT *me_ntree;
WORD me_ntitle,

me-nnormal;

Set a menu title to normal or reverse video display. If me-normal is 0,

410 Atari ST

the menu title is displayed in reverse video. If me_imormal is 1, the
menu title is shown in normal video. Parameter me_ntree points to
the object tree for the menu and me_ntitle is the object index of the
menu title. A returned value of 0 indicates an error.

VOID Mfpint (intemo, vecptr)
WORD intemo,

(♦vecptr) ();

Set the 68901 MFP (Multi-Function Peripheral) interrupt number
intem o to the new vector vecptr. The old routine vector is written over
and unrecoverable. The interrupt numbers are:

Interrupt Function
0 Parallel port (Initially disabled)
1 RS232 carrier detect (initially disabled)
2 RS232 clear to send (initially disabled)
3 Unused, disabled
4 Unused, disabled
5 200 Hz system dock
6 Keyboard/MIDI (6850)
7 Polled floppy/hard disk controllers (initially disabled)
8 Hsync (initially disabled)
9 RS232 transmit error
10 RS232 transmit buffer empty
11 RS232 receive error
12 RS232 receive buffer empty
13 Unused, disabled
14 RS232 ring detect (initially disabled)
15 Polled monitor type (initially disabled)

WORD Mfiree (saddr)
long saddr;

Free the block of memory starting a t address saddr. The block of
memory m ust have been previously allocated by Malloc(). A value of 0
is returned if successful; otherwise an error number is returned.

VOID Midiws (cnt, ptr)
WORD cnt;
char *ptr;

Write a string to the MIDI port. Parameter cnt gives the number of
characters to write, minus one. The string to write is pointed to by ptr.

WORD Mshrink (zero, baddr, newsiz)
WORD zero;
long baddr,

newsiz;

Shrink the size of an allocated block of memoiy. The address of the
block is given by baddr. The new size is specified by newsiz. The new
size m ust be less than the current allocation. The parameter zero
must have the value 0. The function returns 0 if successful, or an error
number if n o t

WORD objc-add (ob-atree, ob_aparent, ob_achild)
OBJECT *ob_atree;
WORD ob_aparent,

ob-achild;

Add an object to an object tree. All object trees in the AES are stored
as arrays. Each object in the tree is placed in an element in the array.
The tree is created by linking the objects together. This function adds
the object at index ob-achild to the list of children for the object a t
ob-apaxent The parameter ob_atree points to the object tree (base of
the array). A 0 value returned indicates an error.

WORD objc-change (ob-ctree, ob-cobject, ob-cresvd,
ob-cxclip, ob_cyclip, ob-cwclip, ob-chclip,
ob_cnewstate, ob-credraw)

OBJECT *ob_ctree;
WORD ob-colgect,

ob-cresvd,
ob-cxclip, ob.cyclip, ob-cwclip, ob-chclip,
ob-cnewstate, ob-credraw;

Change an object’s ob_state field in the OBJECT structure (see text
for object structures). The object index ob-cobject in the tree pointed
to by ob-ctree has its ob_state field changed to the value in ob_cnew-
state. The object is redrawn if ob.credraw is 1. If ob.credraw is 0, the
object is not redrawn. The redraw operation is limited by the clipping
rectangle indicated by ob-cxclip, ob_cyclip, ob_cwclip, and ob-chclip
for the x and y coordinates, width, and height respectively. A returned
value of 0 indicates an error.

C Function Reference Guide 411

WORD objc-delete (ob.dltree, ob-dlobject)
OBJECT *ob_dltree;
WORD ob-dlobject;

412 Atari ST

Delete (unlink) an object from a tree. The tree is pointed to by
ob-dltree. The starting object index is given by ob-drstartob. The
number of objects to draw is given by ob-dlobject A returned value of
0 indicates an error.

WORD objc-draw (ob-drtree, ob-drstartob, ob-drdepth,
ob-drxclip, ob_drydip, ob-drwclip, ob_drhdip)
OBJECT *ob_drtree;
WORD ob-drstartob,

ob-drdepth,
ob_drxdip, ob_dryclip,
ob_drwdipt ob-drhclip;

Draw any object or objects in an object tree. The object tree containing
the object(s) is pointed to by ob-drtree. The starting object index is
given by ob-drstartob. The number of objects to draw is given by
b-drdepth, which specifies the depth of levels to cover. Level 0 is the
starting object level 1 is the starting object's children, and so on. The
depth specified may exceed the depth of the tree without incident

All objects are drawn within a clipping rectangle. The upper left
comer of clipping rectangle is given by ob-drxclip and ob-dryclip.
The width and height are given by ob-drwdip and ob-dihdip. All
coordinates are given as screen coordinates.

A returned value of 0 indicates an error.

WORD objc-edit (ob-edtree, ob_edobject, ob-edchar, ob-edidx,
ob-edkind, ob_ednewidx)

OBJECT *ob_edtree;
WORD ob-edobject,

ob-edchar,
ob-edidx,
ob-edkind,
*ob_ednewidx;

Let the user edit the text of an object The object index is ob.edobject
in the tree pointed to by ob_edtree. The object m ust be of type
G_TEXT or G JBOXTEXT (see text for descriptions of object types and
object structures). The character entered is in ob-edchar. The posi
tion (index) of the next character in the text string is in ob_edidx. The
edit function to perform is given by ob-edkind using the following
codes:

0 Reserved
1 Combined values in the te-ptext and te_ptmplt fields into a formatted

string and turn on the text cursor

C Function Reference Guide 413

2 Validate typed characters against the te_pvalid field, update the te_ptext
field, and display the string

3 Turn off the text c u r s o r __________________ _______

When the function is finished, ob-ednewidx contains the next
character position in the text string after the edit function is com
plete. A returned value of 0 Indicates an error.

WORD objc-find (obJftree, ob-fstartob, ob_fdepth, ob_fmx, ob_fmy)
OBJECT *ob_ftree;

ob_fstartob,
ob_fdepth,
obJmx, ob-fmy;

Locate an object a t a given x and y coordinate. The x and y coordinates
are passed in obJEmx and ob-fmy, and are screen coordinates. The
tree to search is pointed to by ob-ftree. The object index to start
searching from is given by ob-fstartob, and ob_fdepth limits the
depth of the search. The function returns the object index of the object
located a t the specified position, or — 1 if no object was found.

WORD objc-ofEset (ob_oftree, ob-ofobject, ob-ofxoff, ob_ofyoff)
OBJECT *ob_oftree;
WORD ob-ofobject,

*ob_ofxoflf, *ob_ofyofif;

Convert an object’s relative coordinates to screen coordinates. The
object index is passed in ob-ofobject and the tree is pointed to by
ob-oftree. The screen coordinates are returned in ob-o&off and
ob-ofyofE, A returned value of 0 indicates an error.

WORD objc-order (ob-ortree, ob-orobject, ob_omewpos)
OBJECT *ob_ortree;
WORD ob.orobject,

ob.omewpos;

Change the order of an object within its parent’s list of children.
Parameter ob-ortree points to the object tree and ob-orobject is the
index of the object to change. The new position is specified in ob_
omewpos. The value for the new position is:

— 1 On the top
0 On the bottom (at the end)
1 One from the bottom
2 Two from the bottom
etc.

414 Atari ST

VOID Oflfeibit (bitno)
WORD bitno;

Turn off b it number bitno in the Port A register of the sound chip.
This action is done without interruption by the operating system.

VOID Ongibit (bitno)
WORD bitno;

Turn off b it number bitno in the Port A register of the sound chip.
This action is done without interruption by the operating system.

long Pexec (mode, path, cmdtail, environ)
WORD mode;

long char #path, * cmdtail, *environ;

This function performs several operations based upon the following
value in mode:

Mode Operation
0 Load and execute
3 Just load
4 Just execute
5 Create the base page

The path is the filename of the program to load. The cmdtail is the
command line to be used by the program. The environ is the environ
ment string to placed in the base page. If environ is OL, the parent
program’s environment string is used.

If mode is 0, the file is loaded, the base page is created, and the
program is executed. The function returns the exit status of the child
process.

If mode is 3, the file is loaded and the base page is created. The
function returns the address to the base page.

If mode is 4, path is the address of the base page and the program
begins executing.

If mode is 5, the function allocates the laigest free block of memoiy
for the child process and creates most of the base page. The tex t data,
and bss size and the base values are not setup. The parent process is
responsible for maintaining these values.

The child process will inherit the parent’s standard file descriptors.
Any Fdup() or Fforce() calls will be carried over to the child process.

C Function Reference Guide 415

long PhysbaseQ

Returns the address of the screen’s physical location in memoiy at the
next vertical blank in terrupt

VOID Protobt (buf, serialno, disktype, execflag)
char *bufj
long serialno;
WORD disktype, execflag;

Create a prototype boot sector. The boot sector to be created is placed
in the 512 byte buffer pointed to by buf. The serial number stamped
into the boot sector is given by serialno. If serialno is - 1 , the previous
serial number is used. If serialno is greater than 0x01000000, a ran
dom serial number is used.

The disk type is given by disktype having the following interpreta
tion:

0 One side, 180K, 40 tracks
1 Two sides, 360K, 40 tracks
2 One side, 360K, 80 tracks
3 Two sides, 720K, 80 tracks

If disktype is — 1 and buf points to an existing boot sector, the disk
type information remains unchanged.

The executable status of the boot sector is given by execflag. A 0
value means nonexecutable and a 1 value means executable. A — 1
value with a valid boot sector in buf causes no change to the execut
able status.

VOID Pterin (retcode)
WORD retcode;

Terminate the current process, dose all open files, and release any
allocated memoiy. The parameter retcode is the process’s exit code
that is returned to the parent process.

VOID PtermOO

Terminate the current process with an exit status of 0, dose all open
files, and release all memoiy allocated to i t Source file m ust indude
OSBIND.H.

416 Atari ST

VOID Ptermres (keepcnt, retcode)
long keepcnt;
WORD retcode;

Terminate the current process and keep it in memoiy. The value in
keepcnt determines the amount of the program to retain in memoiy.
An memoiy requested and allocated by the program is not released.
The value of retcode is the exit code returned to the parent process.

VOID Puntaes ()

This function causes the system to reboot without loading the AES or
the GEM Desktop. If the system is in ROM (Read Only Memoiy), this
function does not work. If this function had already been called, it
simply returns to the calling program.

long Random ()

Return a 24-bit random number. The following algorithm is used:

S = (S * C) + K

where K is 1, C is 3141592621, and S is the seed. The initial value for
S is taken from the system variable -frclock.

WORD rc_intersect(p 1, p2)
GRECT *pl, *p2;

Find the intersection of two rectangles. Each parameter refers to a
GRECT structure which holds the values for an AES rectangle (x, y,
width, and height). H ie function calculates the rectangle formed by
the intersection of p i and p2. The intersecting rectangle is returned
through p2. The function returns TRUE if the rectangles intersect*
otherwise FALSE is returned.

VOID Rsconf (speed, flowctl, ucr, rsr, tsr, scr)
WORD speed, flowctl, ucr, rsr, tsr, scr;

Configure the RS232 p o rt The baud rate is set by speed as follows:

Speed Baud Rate
0 19200
1 9600
2 4800

(continued)

C Function Reference Guide 417

Speed Baud Rate
3 3600
4 2400
5 2000
6 1800
7 1200
8 600
9 300
10 200
11 150
12 134
13 110
14 75
15 50

The flow control is determined by flowed as follows:

Flowctl_______Type of Flow Control
0 No flow control used (default)
1 XON/XOFF
2 RTS/CTS
3 Both XON/XOFF and RTS/CTS

The remaining parameters set the hardware registers for the 68901
MFP (multifunction peripheral). Any parameter may be — 1 to avoid
setting the hardware register. Only the ucr parameter is useful. Its bits
have the following meanings:

Bit in ucr_______________________ Meaning
0 Not used
1 Parity:

0 = odd
1 = even

2 Parity enable:
0 = off
1 = on

3 and 4 Number of start/stop bits:
Bit 4 Bit 3 S tart Stop Format

0 0 0 0 Synchronous
0 1 1 1 Asynchronous
1 0 1 1.5 Asynchronous
1 1 1 2 Asynchronous

(continued)

418 Atari ST

Bit in u c r ____________________ Meaning
5 and 6 Word length:

Bit 6 Bit 5 Word length
0 0 8 bits
0 1 7 bits
1 0 6 bits
1 1 5 bits

7 Clock mode:
0 = full speed
1 = 1/16 rate (recommended)

WORD rsrc-free ()

Free the memoiy space allocated to the resource file of an application.
This function should be called prior to exiting the application. A
returned value of 0 indicates an error.

WORD rsrc_gaddr (re_gtype, re_gindex, re_gaddr)
WORD re_gtype,

re-gindex;
char **re_gaddr;

Locate the address of the data structure requested. The address of the
data structure is returned through parameter re_gaddr, which is a
pointer to a pointer that references the appropriate data structure.
The index of the data structure within the object tree is given by
re-gindex. The type of structure to search for is given by re_gtype
using the following predefined constants:

Constant Value Structure
R_TREE 0 tree
R-OBJECT 1 OBJECT
R-TEDINFO 2 TEDINFO
R_ICONBLK 3 ICONBLK
R_BITBLK 4 BITBLK
R_STRING 5 string
R_IMAGEDATA 6 image data
R-OBSPEC 7 ob-spec field of OBJECT
R_TEPTEXT 8 te_ptext field of TEDINPO
R_TEPTMPLT 9 te_ptm plt field of TEDINPO
R_TEPVALID 10 te-pvalid field of TEDINFO
R-IBPMASK 11 ib-pm ask field of ICONBLK
R-JBPDATA 12 ib .pdata field of ICONBLK
R_IBPTEXT 13 ib_ptext field of ICONBLK
R-BIPDATA 14 bi-pdata field of BITBLK
R-FRSTR 15 address of pointer to a free string
F-FRIMG 16 address of pointer to a free image

C Function Reference Guide 419

The function returns a 0 if an error has occurred.

WORD rsrc-load (re_lpfhame)
char #re-Jpfhame

Load a resource file into memory. This function loads the resource file
named by re_lpfhame into memory. The function allocates the
memory, loads the file, adjusts the data to link all pointers, and makes
the data available to the application. A returned value of 0 indicates an
error.

WORD rsrc-obfix (re_otree, re_oobJect)
OBJECT *re_otree;
WORD re-oobject;

Convert an object’s location and size from character coordinates to
pixel coordinates. The character coordinates are defined as the object’s
x, y, width, and height values. Each value is stored as a WORD which
has a Least Significant Byte and a Most Significant Byte. The Least
Significant Byte contains the character position of the value. The Most
Significant Byte contains the positive or negative pixel offset from that
character position.

The index of the object is given by re_oobject in the tree pointed to
by re.otree. The function always returns the value 1.

WORD rsrc-saddr (re_stypel, re-sindex, re_saddr)
WORD re-stype,

re-sindex;
char *re_saddr;

Set the address of a data structure. The address of the data structure
is given by re_saddr which may be a pointer to the data structure
itself. The index a t which the address is stored is given by re_sindex.
The type of structure to store is given by re_gtype using the following
predefined constants:

Constant Value Structure
R-TREE 0 tree
R-OBJECT 1 OBJECT
R-TEDINFO 2 TEDINFO
R—ICONBLK 3 ICONBLK
R—BITBLK 4 BITBLK
R-STRING 5 string
R-JMAGEDATA 6 image data
R-OBSPEC 7 ob-spec field of OBJECT
R-TEPTEXT 8 te_ptext field of TEDINFO

(continued)

420 Atari ST

Constant Value
R.TEPTMPLT 9
R-TEPVALID 10
RJBPMASK 11
RJBPDATA 12
RJBPTEXT 13
R-BIPDATA 14
RJFRSTR 15
F_F*RIMG 16

__________ Structure__________
te-ptm plt field of TEDINFO
te-pvalid Add of TEDINFO
ib-pm ask field of ICONBLK
ib-pdata field of ICONBLK
ib-ptext field of ICONBLK
b i-pdata field of BITBLK
address of pointer to a free string
address of pointer to a free image

The function returns a 0 if an error has occurred.

long Rwabs (rwflag, buf, count, recno, drv)
WORD rwflag;
char *bufj
WORD count, recno, drv;

Read or write a logical sector on a device. This function returns 0 if
successful; otherwise a negative error value is returned. The parame
ters are used as follows:

rwflag determines the read/write mode as:
0 Read
1 Write
2 Read, bu t do not affect media change
3 Write, bu t do not affect media change

buf points to the buffer to read or write (buf may be an odd
address, bu t it will be slow)

count is the num ber of sectors to transfer
recno is the starting logical sector number
drv is the drive device num ber where:

0 Floppy drive A
1 Floppy drive B
> 1 Hard disks, networks, or other devices

VOID Scrdmp ()

Transfer the screen image to the printer. This function only works
with the monochrome monitor and Atari-compatible printers.

WORD scrp-read (sc_rpscrap)
char *sc_xpscrap;

Read the current scrap directory on the clipboard. This function reads
the scrap directoiy and places the data found into the buffer pointed
to by sc-rpscrap. This function returns a 0 if an error has occurred.

C Function Reference Guide 421

WORD scrp_write (sc-wpscrap)
char *sc_wpscrap;

Write to the current scrap directory. This function writes the data
from the buffer pointed to by sc-wpscrap into the current scrap direc
tory. Only one scrap directory file is available; therefore, writing to the
scrap directory writes over an previous data located there. This func
tion returns a 0 if an error condition exists.

long Setexc (vecnum, vec)
WORD vecnum;
WORD (*vec) ();

Change one of the exception vectors. The vector to change is given by
vecnum and the address of the new routine is given by vec. If vec
equals — 1L, no change is made to the vector. The function returns the
previous vector routine address, or — 1 if the vector could not be set.

The vectors used by the ST are:

0x0000 to OxOOFF Reserved for the 68000
0x0100
0x0101
0x0102
0x0103 to 0x0107
0x0200 and above

GEMDOS system tim er interrupt
GEMDOS critical error handler
GEMDOS process term ination
GEMDOS reserved
Reserved for OEM usage______

Refer to the GEMDOS and Motorola 68000 documentation for further
information about interrupts and vectors.

WORD Setcolor (colomum, colorset)
WORD colomum, colorset;

Change the color of a single color palette entry. The palette entry to
change is given by colornum. The new color is determined by the bit
settings in colorset (see text). If colorset is negative, the entry is not
changed. The function returns the previous color setting for the entry.

VOID Setpalette (newpalette)
WORD "newpalette;

Set the Atari ST color palette. The parameter newpalette points to an
array of 16 WORDs containing the 16 entries for the new color palette.
The new palette is set a t the next vertical blank in terrupt

WORD Setprt (config)
WORD config;

Sets the printer configuration to the bit settings in config. If config is
— 1, the settings are not changed. The function returns the previous
printer configuration.

The bit settings have the following interpretation:

422 Atari ST

Bit When = 0 When = 1
0 Dot m atrix Daisy wheel
1 Color Monochrome
2 Atari printer “Epson" printer
3 Draft mode Final mode
4 Parallel port RS232 port
5 Continuous form Single sheet
6-14 Reserved
15 Must always be 0

VOID Setscreen (log-loc, phys-loc, rez)
char *log_loc, *phys_loc;

WORD rez;

Set the logical screen address, the physical screen address, and the
physical screen resolution. Parameter log-loc contains the address of
the new logical screen location, and phys-loc has the address of the
new physical screen location. The resolution is set to the value in rez.

The logical screen location is set immediately, whereas the physical
screen location does not change until the next vertical blank in terrupt
When the resolution is changed, the screen is cleared, the cursor is
pu t a t the home position (upper left), and the VT52 terminal emulator
is reset

If any parameter has a negative value, that parameter is ignored.
Therefore, it is possible to set any one or two values with this function.

VOID Settime (datetime)
long datetime;

Set the current date and time. The bits in datetime have the following
interpretation:

Bits___________Meaning
0-4 Seconds divided by 2 (0-29)
5-10 M inutes (0-59)
11-15 Hours (0-23)

(continued)

C Function Reference Guide 423

Bits Meaning
16-20 Day in m onth (1-31)
21-24 Month (1-12)
25-31 Years since 1980 (0-119)

WORD shel-envra (sh_spvalue, sh_eparm)
char **sh_spvalue, *sh_eparm;

Search in the environment settings for the occurrence of an environ
ment parameter string. The string to search for is pointed to by
sh-eparm (this includes the "= ” character). The address of the byte
immediately following the parameter string is returned through
sh_spvalue. This function always returns the value 1.

WORD shel-find (sh-fpbuff)
char *sh_fpbuflf;

Search for a filename in the current directory and in each directory in
the search path. The filename to search for is given by sh-fpbufl If
the file is found, sh-fpbuff is returned with the full GEMDOS file spec
ification. The buffer used to hold the file name must be a t least 80
characters long. The returned value of 0 indicates an error.

WORD shel_read (sh_rpcmd, sh-xptail)
char *sh_rpcmd, *sh_rptail;

Let an application identify the command that invoked i t The com
mand used to invoke the application is pointed to by sh-ipcmd. The
command tail buffer is pointed to by sh_rptail. The command tail
buffer has the following format:

WORD Address of environment string
pointer To command line
pointer To default File Control Block
pointer To second default File Control Block

The function returns a 0 if an error occurred.

WORD sheL-write (sh-wdoex, sh-wisgr, sh_wiscr,
sh-wpcmd, sh_wptail)

WORD sh-wdoex, slL-wisgr, sh-wiscr;
char *sh_wpcmd, *sh_wptail;

424 Atari ST

Tell GEM AES whether to run another application. The parameter
sh-wdoex instructs the AES to exit to the Desktop or run another
application when the user exits the current application. The following
flags are used:

0 = exit to Desktop
1 = run another application

Parameter sh-wisgr tells the AES whether the next application is a
graphic application as follows:

0 = not graphic application
1 — graphic application

Parameter sh-wiscr tells the AES whether the next application is a
GEM application as follows:

0 = not GEM application
1 = GEM application

The parameters sh-wpcmd and sh-wptail provide the name of the
next application and its command tail, respectively.

The function returns a 0 if an error has occurred.

long Super (stackptr)
WORD "stackptr;

Change the supervisor mode of the 68000 processoiy. If stackptr
equals — 1L, the function is inquiring about the status of the proces
sor. A returned value of 0 means the processor is in user mode, and a
value of 1 means the processor is in supervisor mode.

Otherwise the function toggles the processor between user and
supervisor modes. If the processor is in user mode, the processor is
pu t into supervisor mode and the new stack is a t the address in
parameter stackptr. If stack equals 0, the supervisor stack location
remains the same.

If the processor is in supervisor mode, it is placed into user mode
and the stack location changes to the address held in parameter
stackptr (or remains the same if stack equal 0). When returning to
user mode, the stack location should be reset to the location used
prior to entering supervisor mode. The stack location m ust be restored
to its original location before the process terminates.

VOID Supexec (codeptr)
WORD (*codeptr) ();

C Function Reference Guide 425

Quick entry to supervisor mode. The function places the 68000 into
supervisor mode and begins executing the code at location codeptr.
When the routine a t codeptr returns, the 68000 is pu t back to user
mode, and the program continues from the Supexec() call.

Note: the code a t codeptr cannot perform BIOS or GEMDOS calls.
This function is useful for quick changes to protected memory loca
tions and hardware functions.

WORD Sversion ()

Get the version number of GEMDOS. The high byte contains the
minor version number and the low byte the major version number.

WORD Tgetdate ()

Return the current date in the following format:

Bits Data
0-4 The day ranging from 1 to 31
5-8 The m onth ranging from 1 to 12
9-15 The year since 1980 ranging from 0 to 119

WORD Tgettime ()

Return the current time of day in the following format:

Bits Data
0-4 Seconds divided by 2 ranging from 0 to 29
5-10 Minutes ranging from 0 to 59
11-15 Hours ranging from 0 to 23

long Tickcal()

Return the system timer calibration value to the nearest millisecond.
Generally a useful function because the number of elapsed millisec
onds is passed on the stack when a system timer exception occurs.

WORD Tsetdate (newdate)
WORD newdate;

426 Atari ST

Set the current date. The value returned is 0 if GEMDOS accepted the
date (although Februaiy 31 may be accepted); otherwise an error value
is returned. The parameter newdate follows the format described in
function Tgetdate().

WORD Tsettime (newtime)
WORD newtime;

Set the current time. A value of 0 is returned if GEMDOS accepted the
time; otherwise an error value is returned. The format of parameter
newtime is the same as that described in Tgettime().

WORD v_arc (handle, x, y, radius, begang, endang)
WORD handle,

x ,y , rad,
begang, endang;

Draw a circular arc. The center of the circle is placed a t coordinates
(x,y) and the radius, rad, is measured along the x axis. The arc starts
at the angle begang and proceeds counterclockwise to angle endang.
The parameters measure angles in tenths of a degree and can range
from 0 through 3600.

WORD v_bar (handle, pxyarray)
WORD handle,

pxyarray[4];

Draw a filled rectangular area. The rectangle is given by array pxyarray.
The current fill area attributes are used. As opposed to the vr_recfl()
function, the perimeter is drawn based upon its current setting.

WORD v-bit-image (handle, filename, paspect, x-scale, y_scale,
h-align, v_align, xyarray)

WORD handle;
char "filename;
WORD paspect,

x-scale, y-scale,
h align, v_align,
xyarray;

Output bit image file. This function allows an application to print a bit
image file (file type . IMG) on the printer. The file to prin t is specified
by its file name in string filename.

The bit image file contains the pixel sizes, and the printer driver is
able to calculate a pixel aspect ratio. Using the aspect ratio means that

C Function Reference Guide 427

images retain the vertical and horizontal relationship tha t appeared
on the original device. For example, a circle on the original device
appears as a circle on the printer. If the aspect ratio is not used, the
relationship may not be retained. Parameter paspect controls the use
of the aspect ratio, where a value of 1 means retain the ratio, and 0
means ignore the ratio.

The size of the x and y axes are probably not the same on the printer
as they were on the original device. This function allows the applica
tion to specify whether fractional or integral scaling are used. Frac
tional scaling ensures that the corresponding axis fits exactly within
the scaling rectangle. Integral scaling does not guarantee this, bu t is
generally faster. The parameters x-scale and v_scale determine the
type of scaling for each axis. A value of 1 indicates integral and 0
indicates fractional scaling.

Parameters h-»Hgn and v_align determine horizontal and vertical
alignment as follows:

h_align = 0: left
1: center
2: right

v_align = 0: top
1: middle
2: bottom

The scaling rectangle is optional. It is specified through array xyar-
ray. The scaled bit image always resides within the scaling rectangle. If
a combination of preserved pixel aspect ratio, scaling, or alignment
causes the scaled bit image to extend beyond the edge of the scaling
rectangle, the VDI clips the bit image to that edge.

WORD v_cellarray (handle, pxyarray, row-length, el-used,
num_rows, wrt-mode, colarray)

WORD handle,
pxyarray[4],
row-length, eL-used, num-rows, wrt-mode,
colarray[num_rows * eL-used];

Draw a cell array. The function draws a rectangular array within
the rectangle given by pxyarray. The rectangle is divided into cells
based upon the number of rows, num_rows, and number of columns,
row_length. The color index array, colarray, determines the color of
each cell. The parameter el-used determines the number of elements
per row in colarray.

If the device does not support cell arrays, the device outlines the area
with a solid line. This function is not required and may not be avail
able on all devices.

428 Atari ST

WORD v-circle (handle, x, y, rad)
WORD handle,

x, y, rad;

Draw a circle. The center of the circle is a coordinate (x,y). The radius,
rad, of the circle is measured along the x axis. Fill area attributes are
used.

WORD v_clear_disp_list (handle)
WORD handle;

Clear display lis t This function clears the output display list for the
printer. It is similar to the v_clrwk() function except that a form
advance is not incurred.

WORD v-drwk (handle)
WORD handle;

Clear the workstation specified by handle.

WORD v-dsvwk (handle)
WORD handle;

Close the virtual workstation specified by the device handle in parame
ter handle.

WORD v_clswk (handle)
WORD handle;

Close a physical workstation with the handle specified in parameter
handle. This function performs all necessary actions to complete out
put to the device. For example, a printer device is updated, a metafile is
closed, and a screen is put into alpha mode. Remember to close all
open workstations associated with the physical workstation before
closing the physical workstation.

WORD v-contourfill (handle, x, y, Index)
WORD handle,

x, y.
Index;

Fill an area on the display. Beginning at the starting point (x,y), the
function fills the area using the current fill attributes. The fill pro
ceeds to the edge of the display surface, or to a pixel with the color
index given by index. If index is negative, any color other than color of

C Function Reference Guide 429

the pixel a t (x,y) becomes a boundary of the fill This function is not
required and may not be available on all devices.

WORD v-curdown (handle)
WORD handle;

Alpha cursor down. Move the alpha cursor down one row without
changing its horizontal position. If the cursor is a t the bottom row,
nothing happens.

WORD v-cuxhome (handle)
WORD handle;

Home alpha cursor. Move the alpha cursor to its home position, usu
ally the upper left comer.

WORD v-curleft (handle)
WORD handle;

Alpha cursor left. Move the alpha cursor one column to the left with
out changing its vertical position. If the cursor is a t the furthest left
column, nothing happens.

WORD v-curright (handle)
WORD handle;

Alpha cursor rig h t Move the alpha cursor one column to the right
without changing its vertical position. If the cursor is a t the furthest
right column, nothing happens.

WORD v-.curtext (handle, str)
WORD handle;
char *str;

Output cursor addressable alpha tex t This function writes the string
in str starting at the current alpha cursor position. The alpha text
attributes currently in effect are used for the ou tpu t

WORD v-curup (handle)
WORD handle;

Alpha cursor up. Move the alpha cursor up one row without changing
its horizontal position. If the cursor is a t the top row, nothing
happens.

430 Atari ST

WORD v_dspcur (handle, x, 7)
WORD handle,

x, y;

Place graphic cursor. The graphic cursor is placed at the location spec
ified by x and y.

WORD v-eeol (handle)
WORD handle;

Erase to end of alpha text line. This function erases all alpha cells from
the current alpha cursor position to the end of the current line. The
cell a t the current alpha cursor position is not changed.

WORD v_eeos (handle)
WORD handle;

Erase to end of alpha screen. This function erases all alpha cells from
the current alpha cursor position to the end of the screen. The cell at
the current alpha cursor position is not changed.

WORD v-ellarc (handle, x, y, xrad, yrad, begang, endang)
WORD handle,

x, y,
xrad, yrad,
begang, endang;

Draw an ellipse. The center of the ellipse is placed at coordinate (x,y).
The x radius is given by xrad and is measured along the x axis from the
center. The y radius is measured along the y axis from the center and
is given by yrad. The arc starts a t angle begang and moves counter
clockwise to endang. The angles measure tenths of degrees and range
from 0 to 3600.

WORD v-ellipse (handle, x, y, xrad, yrad)
WORD handle,

x, y,
xrad, yrad;

Draw an ellipse. The center of the ellipse is placed a t coordinate (x,y).
The x radius is given by xrad and is measured along the x axis from
the center. The y radius is measured along the y axis from the center
and is given by yrad. Pill area attributes are used.

C Function Reference Guide 431

WORD v_ellpie (handle, x, y, xrad, yrad, begang, endang)
WORD handle,

x ,y ,
xrad, yrad,
begang, endang;

Draw an ellipse. The center of the ellipse is placed a t coordinate (x,y).
The x radius is given by xrad and is measured along the x axis from
the center. The y radius is measured along the y axis from the center
and is given by yrad. The arc starts a t angle begang and moves coun
terclockwise to endang. The angles measure tenths of degrees and
range from 0 to 3600. After the arc is drawn, each end is connected to
the center to complete the pie shape. Fill area attributes are used.

WORD v_enter_cur (handle)
WORD handle;

Enter alpha mode. This function causes the device to enter alpha
mode if alpha mode is different from graphics mode. Using this func
tion allows cursor address and ensures that the device makes the
transition from graphics mode to alpha mode property.

WORD vex_butv (handle, pusrcode, psavcode)
WORD handle,

"pusrcode,
* "psavcode;

Exchange mouse button change vector. This function allows the appli
cation to specify a routine to be executed each time the state of the
mouse button changes. The application routine receives control after
the button state is determined and before the mouse button driver is
activated. The application code address is given by pusrcode. The
previous address is returned through psavcode.

When the application code is invoked, interrupts are disabled and
should not be enabled. It is the responsibility of the application code to
save and restore any registers it uses. The application code is started
using the JSR instruction, and the routine should exit using the RTS
instruction.

When the application routine is called, register DO.w contains the
mouse button state. Each bit set to 1 indicates the button is pressed.
Bit 0 corresponds to the furthest left button, b it 1 to the next button
to the righ t and so on. The application routine may change DO.w to
force certain buttons to be down or up.

432 Atari ST

WORD vex_curv (handle, pusrcode, psavcode)
WORD handle,

"pusrcode,
* "psavcode;

Exchange cursor change vector. This function allows the application
to specify a routine to be executed each time the cursor is drawn. The
application routine receives control whenever the cursor position
should be updated. The application routine can take over drawing the
cursor or can perform some action and have the VDI draw the cursor.
The application code address is given by pusrcode. The previous
address is returned through psavcode.

When the application code is invoked, interrupts are disabled and
should not be enabled. It is the responsibility of the application code to
save and restore any registers it uses. The application code is started
using the JSR instruction, and the routine should exit using the RTS
instruction.

When the application routine is called, register DO.w contains the
new x coordinate and Dl.w contains the new y coordinate. The appli
cation routine may change DO.w and Dl.w to change the location of
the cursor on the screen. If the application routine does not draw the
cursor, it should issue a JSR instruction to the address in psavcode to
draw the cursor.

WORD v-exit-cur (handle)
WORD handle;

Exit alpha mode. This function causes the device to enter graphics
mode if graphics mode is different than alpha mode. Using this func
tion ensures that the device makes the transition from alpha mode to
graphics mode property.

WORD vex_motv (handle, pusrcode, psavcode)
WORD handle,

"pusrcode,
""psavcode;

Exchange mouse movement vector. This function allows the applica
tion to specify a routine to be executed each time the mouse moves to
a new location. The application routine receives control after the x and
y coordinates are determined and before the mouse driver is updated
or the mouse form is redrawn on the screen. The application code
address is given by pusrcode. The previous address is returned
through psavcode.

When the application code is invoked, interrupts are disabled and

C Function Reference Guide 433

should not be enabled. It is the responsibility of the application code to
save and restore any registers it uses. The application code is started
using the JSR instruction, and the routine should exit using the RTS
instruction.

When the application routine is called, register DO.w contains the
new x coordinate and Dl.w contains the new y coordinate. The appli
cation routine may change DO.w and Dl.w to change the location of
the mouse on the screen.

WORD vex-timv (handle, tim_addr, otim_addr, tim_conv)
WORD handle,

*tim_addr,
**otim_addr,
*tim_conv;

Exchange the timer interrupt vector. This function allows the applica
tion to execute a routine each time a timer tick occurs. The routine to
be executed is given by tim_addr. The previous timer interrupt vector
address is returned in otim-addr. The number of milliseconds per
timer tick is returned in tim_conv.

When the application code is invoked, interrupts are disabled and
should not be enabled. It is the responsibility of the application code to
save and restore any registers it uses. The application code is started
using the JSR instruction, and the routine should exit using the RTS
instruction.

WORD v-fillarea (handle, count, pxyarray)
WORD handle,

count,
psyarray[2 * count];

Fill a complex polygon. The number of vertices in the polygon is given
by count, and the coordinate of the vertices are in pxyarray. The area
is outlined with a solid line if the fill perimeter visibility is on (see
vsL.perimeter()). The area is filled using the attributes fill area color,
interior style, writing mode, and style index.

If the device does not have area fill capability, the VDI draws the
outline of the polygon using the current fill area color. The device drive
ensures that the fill area is closed by connecting the last point to the
first point.

A polygon with zero area is displayed as a dot if the perimeter visibil
ity is on; otherwise nothing is drawn. A polygon with only one end
point is ignored.

434 Atari ST

WORD v_form_adv (handle)
WORD handle;

Form advance. The printer advances to the next page. This function
could be used instead of the v_clrwk() function so tha t the current
printer display list is retained.

WORD v-get-pixel (handle, x, y, pel, cindex)
WORD handle,

x,y ,
"pel, "cindex;

Get the pixel value and color index. This function returns the pixel
value and color index for the pixel a t location (x,y). The pixel value is
returned in pel and the color index is returned in cindex.

Note that color index 0 is the background color. The VDI may return
0, or may return the index of the current color used for the back
ground.

WORD v-gtext (handle, x, y, str)
WORD handle,

x ,y ,
char "str;

Write graphic text a t the coordinates given by x and y. The text for
the string to draw is pointed to by str. The text alignment is set by
vst_alignment().

WORD v_hardcopy (handle)
WORD handle;

Hard copy. This function causes the image on the physical screen to
be copied to a printer or other attached hard copy device. This func
tion is device-specific and may not be available.

WORD v-hide-c (handle)
WORD handle;

Hide cursor. This function hides the current cursor form. The v_
show_c() and v_hide_c() functions are nested. The v_show_c() func
tion m ust be called as many times as the v_hide_c() function was
called since the cursor disappeared for the cursor to become visible
again. For example, if the cursor is visible and v_hide_c() is called five
times, v_show_c() m ust be called five times before the cursor re
appears. This nesting can be overridden through the v_show_c() func
tion.

C Function Reference Guide 435

WORD v-justifled (handle, x, y, str, len, word_space, char_space)
WORD handle;

x,y;
char *str;
WORD len, word-space, char_space;

Output justified tex t The string to output is pointed to by str. The
position of output is a t coordinate (x,y). The length in which the
justification is to take place is given by len, measured in the current
coordinate system. If word_space is TRUE, inter-word spacing modifica
tion is used. If char-space is TRUE, inter-character spacing modifica
tion is used. The function uses the current text attributes.

WORD v-meta_extents (handle, min_xf min_y, max-x, max-y)
WORD handle,

nrin^r, min_y,
max-x, max_y;

Update metafile extents. This function writes the minimum and max
imum x and y values to the metafile header. These extents provide an
application with a quick indication of the minimum rectangle that
will bound all primitives output to the metafile. If this function is not
used when outputting to a metafile, the extents will be 0.

WORD vm-filename (handle, filename)
WORD handle;
char "filename;

Change the GEM VDI file name. The default file name for a metafile is
GEMFILE.GEM. The new file name to be used is given by string file
name. Only the filename portion of the string is used. The file type
.GEM is always used. This function m ust be called immediately after
opening the metafile with the v_opnwk() function; otherwise the file
name is not changed. The function also doses any open metafiles.

WORD v-opnvwk (work-in, handle, work-out)
WORD work-in[],

"handle,
work-out;

Open a virtual workstation. The values for arrays work_in[] and work
out!] are the same as for v.opnwk(). The parameter handle has the
device handle of the physical workstation when the function is called.
Upon return, handle contains the new device handle for the virtual
workstation. A returned device handle of 0 indicates a failure to open
the virtual workstation.

436 Atari ST

Note: Not all input devices associated with the virtual workstation
work.

WORD v-opnwk (work-in, handle, work-out)
WORD work_in[],

"handle,
work_out[];

Open a physical workstation for use by a program. This function uses
the parameters in array work_in[] to set the initial workstation at
tributes. The new workstation handle is returned in parameter handle,
and various workstation attributes are returned in array work_out[].
The function returns 0 as the device handle if a workstation could not
be opened. The work_in[] array is defined:

Element Description
0 Device id num ber indicating the device driver to be loaded as

specified in file ASSIGN.SYS
1 Line type
2 Poly-line color index
3 Marker type
4 Poly-marker color index
5 Text face
6 Text color index
7 Fill interior style
8 Fill style index
9 Fill color index
10 Coordinate system selection

0 = Map fuU NDC to full RC
1 = Reserved
2 = Use RC system

T he work_out() a rray is defined:

Element Description
0 Maximum addressable width in rasters or steps (that is, 640

means addressable area is from 0 through 639)
1 Addressable height in raster or steps
2 Device Coordinate units flag

0 = device is capable of precise scaling (usually a plotter or
printer)
1 = device is not capable of precise scaling

3 Width of one pixel (or output unit) in microns
4 Height of one pixel in microns

C Function Reference Guide 437

Element_______________________ Description___________________
5 Number of character heights; 0 means continuous scaling
6 Number of line types
7 Number of line widths; 0 means continuous scaling
8 Number of m arker types
9 Number of m arker sizes; 0 means continuous scaling
10 Number of faces supported (not the highest face num ber index)
11 Number of patterns
12 Number of hatch styles
13 The num ber of predefined colors th at can be simultaneously

displayed on the device
14 Number of generalized drawing prim itives (GDPs)
15-24 These 10 elements indicate which GDPs are supported. Each GDP

is given a value in the table below. If fewer than 10 GDPs are
available, the value — 1 is used to fill the rem aining elements.
1 Bar
2 Arc
3 Pie slice
4 Circle
5 Ellipse
6 Elliptical arc
7 Elliptical pie
8 Rounded rectangle
9 Filled, rounded rectangle
10 Justified graphics text

25-34 For each GDP listed above, the corresponding element in th is list
indicates the attribute set for that particular GDP. The attribute
values are:

0 Poly-line
1 Poly-marker
2 Text
3 Fill area
4 None

35 Color capability flag
0 = No; 1 = Yes

36 Text rotation capability flag
0 = No; 1 = Yes

37 Fill area capability flag
0 = No; 1 = Yes

38 Cell array operation capability flag
0 = No; 1 = Yes

39 Number of available colors (total num ber of colors in the color
palette)
0 = Continuous (more than 32,767 colors)
2 = Monochrome (black and white)
> 2 = Number of colors

40 Number of locator devices
1 = Keyboard only
2 = Keyboard plus other devices

41 Number of valuator devices
1 = Keyboard only
2 = Other device available

438 Atari ST

Element________________________Description___________________
42 Number of choice (button) devices

1 = Keyboard only
2 = Other device available

43 Number of string devices available
1 = Keyboard
2 = Other device available

44 W orkstation type
0 = Output only
1 = Input only
2 = Input and output
3 = Reserved
4 = Metafile output

45 Minimum character w idth (not cell width) in current x coordinates
46 Minimum character character height in current y coordinates
47 Maximum character width in current x coordinates
48 Maximum charcter height in current y coordinates
49 Minimum line width in current x coordinates
50 0
51 Maximum line width in current x coordinates
52 0
53 Minimum m arker width in current x coordinates
54 Minimum m arker height in current y coordinates
55 Maximum m arker width in current x coordinates
56 Minimum m arker height in current y coordinates

WORD v-output_window (handle, xyarray)
WORD handle;

xyarrayf4];

Output window. Output the rectangular area specified in xyarray to
the printer. This function is similar to the v_iipdwk() function except
that the output rectangle must be specified.

WORD v-pieslice (handle, z, y, rad, begang, endang)
WORD handle,

x, y, rad,
begang, endang;

Draw a circular pie slice. The center of the circle is placed a t coordi
nates (x,y) and the radius, rad, is measured along the x axis. The arc
starts a t the angle begang and proceeds counterclockwise to angle
endang. The parameters measure angles in tenths of a degree and can
range from 0 through 3600. The arc is drawn and each end is con
nected to the center to complete the slice. Fill area attributes are used.

C Function Reference Guide 439

WORD v.pline (handle, count, pxyarray)
WORD handle,

count,
pay array [2 * count];

Draw multiple line segments. The number of points in the pxyarray is
given by count The function starts drawing from the first point in the
pxyarray and continues to connect points with line segments. The VDI
displays a zero length line as a po in t The attributes of color, line type,
line width, end style, and current writing mode are all used.

WORD v.pmarker (handle, count, pxyarray)
WORD handle,

count,
pxyarray [2 * count];

Draw a set of markers a t the points given in the pxyarray. The number
of points to draw is given by count The markers use the attributes
color, scale, type, and writing mode.

WORD vq_cellarray (handle, pxyarray, row_length, num_rows,
el_used, rows-used, stat, colarray)

WORD handle,
psyanay(41,
row-length, num_rows,
*eL.used, *rows_used,
*stat,
colarrayt row-length * num_rows];

Inquire cell array. This function returns the cell array definition of the
pixels contained in the rectangle specified in pxyarray. Color indices
are returned one row at a time in colarray, starting from the top of the
rectangular area and proceeding downward. Parameter row_length is
the length of each row in colarray, and num_rows is the number of
rows in colarray.

The number of elements used in each row of colarray is returned
in eL-used, and the number of rows used in colarray is returned in
rows-used. If an invalid value is found, stat is set to 1; otherwise stat
returns as 0.

WORD vq_chcells (handle, num-rows, num-columns)
WORD handle,

*num_rows, *num_columns;

440 Atari ST

Inquire addressable alpha character cells. This function returns the
number of vertical (num_rows) and horizontal (num_columns) posi
tions a t which the alpha cursor can be positioned. If such addressing
is not possible, the value is — 1.

WORD vq-color (handle, color_index, set-flag, rgb)
WORD handle,

color-index, set-flag,
rgb[3];

Inquire color representation. This function returns the color output
for color index color-index. The intensity for each color is returned in
igb where rgb[0] is red, rgb[l] is green, and rgb[2] is blue. The inten
sity ranges from 0 to 1000. The function can return the set or realized
color intensities. The set color intensities are the intensities in the
lookup table. The realized color intensities are the intensities used by
the device (since a device may not have 1000 levels of intensity). The
set values are returned when set-flag is 0. If set_flag is 1, the realized
values are returned.

WORD vq-curaddress (handle, row-num, coL_num)
WORD handle,

*row_num, *col_num;

Inquire current alpha cursor address. The current row and column
position of the alpha cursor is returned in row_num and coL-num,
respectively.

WORD vq-extnd (handle, owflag, work-out)
WORD handle,

owflag,
work_out[57];

Extended inquire. This function returns device-specific information
regarding a workstation. This function has two output options. When
owflag is 0, the work-out array contains the same values returned by
the v-opnwk() function. When owflag is 1, the work-out array ele
ments are defined:

Element_______________________Description_______________
0 Screen type:

0 = not screen
1 = separate alpha and graphic controllers; separate video

screens
2 = separate alpha and graphic controllers; common video

screen

C Function Reference Guide 441

Element Description

1

3 = common alpha and graphic controllers; separate image
memoiy

4 = common alpha and graphic controllers; common image
memoiy

Number of background colors available
2 Number of text effects (see vst_effects())
3 Scaling of rasters: 0 = no, 1 = yes
4 Number of planes
5 Lookup table: 0 = not supported, 1 = supported
6 Number of 16-by-16 pixel raster operations per second
7 Contour fill capability
8 Character rotation:

9

0 = none
1 = 90 degree increments only
2 = arbitrary angles
Number of writing modes available

10 Input modes available:

11

0 = none
1 = request only
2 = sample and request
Text alignm ent capability: 0 = no, 1 = yes

12 Inking capability: 0 = no, 1 = yes
13 Rubberbanding:

14

0 = none
1 = rubberband lines
2 = rubberband lines and rectangles
Maximum num ber of vertices for poly-lines, poly-markers, or

15
filled areas, — 1 if there is no lim it

Maximum integer inputs to VDI, or — 1 if there is no lim it
16 Number of available mouse keys
17 Line style capability for wide lines: 0 = no, 1 = yes
18 W riting modes for side lines
19-56 Reserved, all Os

WORD vqfLattributes (handle, attrib)
WORD handle,

atnib[4];

Inquire current fill area attributes. The function returns the current
attribute settings for fill area operations in attrib. The elements of
attrib are defined:

Element_______ Description
0 Fill interior style
1 Fill area color index
2 Fill area style index
3 Current writing mode

442 Atari ST

See also vs£_color(), vsf_inferior(), vsf_perimeter(), vs£_style(), and
vswr_mode().

WORD vqin_mode (handle, dev_type, input-mode)
WORD handle,

dev_type,
*input_mode;

Inquire input mode. This function returns the current input mode
(through input-mode) for the specified device type (dev-type). Valid
device types are:

1 = locator
2 = valuator
3 = choice
4 = string

The input mode value returned is 1 for request mode and 2 for sample
mode.

WORD vq_key_s (handle, pstatus)
WORD handle,

"pstatus;

Sample keyboard state information. The function returns the current
state of the keyboard’s Control, Shift, and Alternate keys. The state of
each key is returned as a bit setting in pstatus. If the bit is 1, the key
is down. The bits are defined:

Bit Key
0 Right shift
1 Left shift
2 Control
3 Alternate

WORD ▼qL-attributes (handle, attrib)
WORD handle,

attrib[4];

Inquire current poly-line attributes. The function returns the current
attribute settings for poly-line operations in attrib. The elements of
attrib are defined:

C Function Reference Guide 443

Element Description
0 Current poly-line line type
1 Current poly-line color index
2 C urrent writing mode
3 Current line width

See also vsl_color(), vsl_ends(), vsl_type(), vsl_width{), and vswr_
mode().

WORD vqm_attributes (handle, attrib)
WORD handle,

attrib[4];

Inquire current poly-marker attributes. The function returns the cur
rent attribute settings for poly-marker operations in attrib. The ele
ments of attrib are defined:

Element Description
0 Current poly-marker type
1 Current poly-marker color index
2 C urrent writing mode
3 C urrent m arker height

See also vsm_color(), vsm_height(), vsm_type(), and vwsr_mode().

WORD vq-mouse (handle, pstatus, x, y)
WORD handle,

*pstatus,
*x, *y;

Sample mouse button state. The status of the mouse button is re
turned in b it settings of pstatus. If the b it is 1, the button is down. Bit
0 corresponds to the furthest left button, bit 1 to the next button to
the righ t and so on. The function also returns the current coordinates
of the cursor in x and y.

WORD vq-tabstatus (handle)
WORD handle;

Inquire tablet status. This function returns the availability status of a
graphics tablet mouse, joystick, or similar device. If the function
returns 0, no tablet is available. If it returns 1, a tablet is available.

444 Atari ST

WORD vqt_attributes (handle, attrib)
WORD handle,

attcib[0];

Inquire current graphic text attributes. The function returns the cur
rent attribute settings for graphic text operations in attrib. The ele
ments of attrib are defined:

Element Description
0 Graphic text face
1 Graphic tact color index
2 Angle of text baseline rotation (0-3600)
3 Horizontal alignment
4 Vertical alignment
5 W riting mode
6 Character width In coordinate units
7 Character height in coordinate units
8 Cell width in coordinate units
9 Cell height in coordinate units

See also vst_alignm ent(), vst_color(), vst_font(), vst_height(), vst_
rotation(), and vswr_m ode().

WORD vqt_extent (handle, str, extent)
WORD handle,

extent[8],
char *str;

Inquire text extent Given the string in str, the function returns four
points describing a rectangle tha t encloses the tex t The first point
(extent[0] and extent[l]) corresponds to the lower left comer. The
second point is the lower right comer. The third point is the upper
right comer. The fourth point is the upper left comer. All text a ttri
butes, including effects and baseline rotation, affect the calculation.

WORD vqt-fontinfb (handle, minADE, maxADE,
distances, maxwidth, fx)

WORD handle,
*minADE, *maxADE,
distances! 5],
"maxwidth,

C Function Reference Guide 445

Inquire current face information. This function obtains size informa
tion regarding the current type face, taking into account the current
height and effects. The ASCII Decimal Equivalent of the first and last
characters in the font are returned in minADE and maxADE, respec
tively. The maximum cell width, not including effects, is returned
through maxwidth. The distances array is defined:

Element Description
0 Bottom line distance relative to baseline
1 Descent line distance relative to baseline
2 Half line distance relative to baseline
3 Ascent line distance relative to baseline
4 Top line distance relative to baseline

The fs a rray is defined:

Element Description
0 Increase in character width due to effects
1 Left offset
2 Right offset

WORD vqt-name (handle, element—num, face_name)
WORD handle,

element-num;
char face_name[32];

Inquire face name and index. The function obtains the description
data regarding face element element-num. The string face name is
set by the function and consists of two parts. The first 16 characters
are the face name (e.g., Swiss 721 or Dutch 801), and the next 16
characters are the face style (e.g., Bold, Italic, Roman, etc.). The func
tion returns the ID number of the current type face.

WORD vqt_width (handle, char, cell_width, left-delta, right-delta)
WORD handle,

char,
*cell_width, *left_delta, *right_delta;

Inquire character cell width. This function returns the character cell
values for a particular character. The ASCII character code is given by

446 Atari ST

char. The cell width and left and right delta alignment are returned in
cell-widht, left-delta, and iight_delta, respectively (see Figure A-l).
The function returns the value of char, or — 1 if an invalid rfinr value
was used.

WORD v_rbox (handle, pxyarray)
WORD handle,

pxyarray [4];

Draw a rectangle with rounded comers. The rectangle is given by the
points in pxyarray.

WORD v_rfbox (handle, pxyarray)
WORD handle,

pxyarray(4];

Le
Character

t Alignment
Delta

Right

i Top Line

Cell
Height

MM
158III!___n r a i

ESSBaa
Si

■ ■■■ ■i ■■■■■■■

Character
Height

■ in
< J r

■■■■■■i i r
illmi

1

■H■■■■■
58S8 m
Ml

Si'

I I IL■s-

Ascent
Line

Half Line

Base Line

Cell
Width

Character
Width

Descent
Line

Bottom
Line

Figure A -l Character Cell

C Function Reference Guide 447

Draw a filled rectangle with rounded comers. The rectangle is speci
fied by the points in pxyarray. All fill area attributes are used.

WORD v-rmcur (handle)
WORD handle;

Remove last graphic cursor. This function removes the last graphic
cursor placed on the screen.

WORD vro-cpyfin (handle, wr_mode, pxyarray, psrcMFDB,
pdesMFDB)

WORD handle,
wrjnode,
p*yunay[81;

FDB "psrcMFDB, "pdesMFDB;

Perform opaque copy raster operation. This function copies a rectan
gular raster from a source form to a destination form using the writ
ing mode specified. The writing mode is given by wr_mode and may be
one of the following values:

Constant Value Operation
ALLJWHITE 0 R = 0
S-AND_D 1 R = SAND D
S_AND_NOTD 2 R = S AND (NOT D)
S-ONLY 3 R = S
NOTS_AND_D 4 R = (NOT S) AND D
D_ONLY 5 R = D
S-XOR-D 6 R = S XOR D
S_OR_D 7 R = S OR D
NOT_SORD 8 R = NOT (S OR D)
NOT_SXORD 9 R = NOT (S XOR D)
NOT_D 10 R = NOT D
S_OR_NOTD 11 R = S OR (NOT D)
NOT_S 12 R = NOT S
NOTS-ORJD 13 R = (NOT S) OR D
NOT_SANDD 14 R = NOT (S AND D)
ALL_BLACK 15 R = 1

where S is the source pixel value, D is the destination pixel value, and
R is the destination pixel value after the operation. (NOTE: Constant
names for modes 10, 11, and 12 may need to be corrected in file
OBDEFS.H.)

The pxyarray gives the rectangle in the source form to copy from in
elements 0 through 3, and the rectangle in the destination to copy to

448 Atari ST

in elements 4 through 7. If the source and destination rasters are the
same, and the source and destination rectangles overlap, the VDI
ensures that the source area is copied before it is changed (that is,
when it becomes the destination area). The function performs the
copy operation pixel for pixel.

If the source and destination rectangles are not the same size, the
VDI uses the destination as a pointer and uses the source for the size.

The raster is defined by the FDB structures pointed to by psrcMFDB
and pdesMFDB. The FDB structure is defined in GEMDEFS.H as:

typedef struct fdbstr {
WORD *fd_addr,

fd_w,
fd_h,
fd_wdwidth,
fd-stand,
fd-nplanes,
fd_rl,
fd_r2,
fd_r3;

} FDB;

Refer to Chapter 7 for further details regarding bit maps and rasters.
Note that the source and destination rasters m ust be in the same for
mat specified in fd-stand.

WORD vrq.choice (handle, ch-in, ch-out)
WORD handle,

ch-in,
*ch_out;

Input choice, request mode. This function waits until input from the
choice device is available. The choice key index is returned through
ch-_out as a number from 1 to a device-dependent value. If the key
pressed is not a valid choice key, the value in ch-in is returned as the
selection.

This function is not required and may not be available on all
devices.

WORD vrq-locator (handle, z, y, xout, yout, term)
WORD handle,

x ,y ,
*xout, *yout, *tenn;

Input locator, request mode. This function returns the position of the
locator device. When the function is called, it places a cursor a t the

/* raster bit map */
/* width of raster in pixels *1
/* height of raster in pixels */
/* width of raster in words */
/* 0= standard, 1= device format */
/* number of planes */
/* reserved */

C Function Reference Guide 449

initial coordinates given by x and y. The function then tracks the cur
sor based on the input from the locator. When a terminating event
such as pressing the mouse button or a key, occurs, the cursor is
removed and the function returns. The terminating event is indicated
in the value of term and the cursor coordinates are returned through
xout and yout

If both the keyboard and another locator device are available, the
cursor is tracked by input from either. To determine the type of termi
nating event the parameter term is divided into its two bytes. The low
byte contains the ASCII value of the character entered, if a keypress
was the terminating event Otherwise, the high byte contains a value,
offset by 0x20, indicating the locator button that was pressed. For
example, on the mouse, the left button has the value 0x20, the next
button to the right is 0x21, etc.

WORD vrq_string (handle, max-length, echo-mode, echo-xy, str)
WORD handle,

max_length,
echo-mode, echo-xy [2];

char str[max_length + 1];

Input string, request mode. This function accepts characters from the
string input device until max.length characters have been entered or
a carriage return is encountered. If echo-mode is TRUE, the charac
ters are echoed to the screen a t the coordinates in echo-xy using the
current text attributes. Otherwise, echoing to the screen is disabled
(echoing of input is not required and may not be available on all
devices). The characters are returned in str as a null-terminated
string.

If max-length is a negative value, the absolute value is used as
above, and the character codes will be the standard keyboard defined
in Appendix C. Otherwise, the keycodes may be device-dependent

WORD vrq_valuator (handle, val-in, val-out, term)
WORD handle,

vaLJn,
*val_out,
*term;

Input valuator, request mode. This function sets the initial value of
the valuator to val-in. The final value is returned through vaL-out. The
terminating event is returned in term (see vrq_locator() for a descrip
tion of term).

In general, the valuator is the up and down arrow keys on the key
board. Pressing the up arrow increases the value by ten; pressing the
down arrow decreases the value by ten. Pressing these keys with the

450 Atari ST

shift key increments or decrements the value by one. The range of the
valuator is from 1 through 100.

This function is not required and may not be available on all
devices.

WORD vr_reefl (handle, pxyarray)
WORD handle,

pxyarray [41;

Draw a filled rectangular area. The rectangle is given by array pxyar
ray. The current fill area attributes are used, except the perimeter
which is not drawn.

WORD vrt-cpy£m (handle, wr_mode, pxyarray,
psrcMFDB, pdesMFDB, color_index)

WORD handle,
wr_mode,
psyarray[8);

FDB "psrcMFDB, "pdesMFDB;
WORD color_index[2];

Transparent copy raster operation. This function takes a monochrome
raster and copies it to a color raster using the writing mode specified
by wr_mode. The same writing mode constant names are used for this
function as for function vswr_mode(). The effect of each mode is
slightly different

In Replace mode, the destination pixels are replaced. The foreground
color index is specified in color_index[0] and is output for any source
pixel with a value of 1. The background color is specified in color-
index[l] and is output for any source pixel with a value of 0.

In Transparent mode, the foreground color in color_index[0] is out
put for source pixels with the value of 1. Source pixels with the value 0
have no effect and color_index[l] is not used.

In XOR mode, the monochrome raster pixels are logically XORed
with each plane of the destination raster. The values in colorJLndex
are not used.

In Reverse Transparent mode, source pixels with the value 0 cause
the background color in color_index[l] to be output to the destina
tion. Source pixels with the value 1 have no effect, and color_lndex[0]
is not used.

The parameters pxyarray, psrcMFDB, and pdesMFDB are used in
the same manner as in function vro_cpy£m().

WORD vr-trafm (handle, psrcMFDB, pdesMFDB)
WORD handle;
FDB "pscrMFDB, "pdesMFDB;

C Function Reference Guide 451

Transform the format of a raster. This function converts a raster from
standard format to device-specific format or vice versa. The raster to
transform is defined by the FDB structure pointed to by psrcMFDB.
The result of the transformation is placed in pdesMFDB.

The type of transformation performed is based on the current value
of the fd-stand field of the FDB structure. If the raster is in standard
form at it is converted to device-specific form at If the raster is in
device-specific form at it is converted to standard form at In either
case, the fd-stand field of pdesMFDB is set to the resulting format It
is the user’s responsibility to set all other fields of the source and des
tination FDBs.

See Chapter 7 for further discussion about raster and formats. Refer
to function vro_cpyfm() for the definition of the FDB structure.

WORD v-rvoff (handle)
WORD handle;

Reverse video off. All subsequent alpha text output is done in normal
video.

WORD v_rvon (handle)
WORD handle;

Reverse video on. All subsequent alpha text output is done in reverse
video.

WORD vscJform (handle, pcur_fozm)
WORD handle,

pcur_form[37];

Redefine cursor. The cursor is displayed when the vrq_locator() or
v_show_c() function is called. The array pcur-form has the following
structure:

Element__________Description______
0 x coordinate of hot spot
1 y coordinate of hot spot
2 Reserved; m ust be 1
3 Mask color index (usually 0)
4 Data color index (usually 1)

5-20 16-by-16 b it cursor mask
21-36 16-by-16 bit cursor data

The hot spot is the location of the pixel (relative to the upper left
comer of the mouse form) used as the current mouse position.

452 Atari ST

The mouse form is drawn using the following procedure:

1. The data under the mouse form is saved so tha t it can be re
stored when the cursor moves.

2. Bits set to 1 in the mask cause the corresponding pixels to be set
to the color index in pcur_form[3].

3. Bits set to 1 in the data cause the corresponding pixels to be set
to the color index in pcur_form[4].

WORD vs-.clip (handle, clip-flag, pxyarray)
WORD handle,

clip-flag,
pxyarray[4];

Set the clipping rectangle for workstation handle. If clip-flag is FALSE,
clipping by the VDI is turned off. If clip-flag is TRUE, clipping is
turned on and the clipping rectangle is set to the rectangle in pxyarray
given in the current coordinate system. The default when a worksta
tion is opened is for clipping to be disabled.

WORD vs-color (handle, dndex, rgb-in)
WORD handle,

rgb_in[3];

Set the color in the color lookup table. The color index range is device
dependent On the Atari ST, the indices range from 0 to 15. The color
index is given by cindex. The color is specified by mixing various
intensities of red (rgb_in[0]), green (rgb_in[l])t and blue (rgb_in[2]).
The intensity can range from 0, meaning no color, to 1000 for the
highest intensity.

If no color lookup table exists, this function performs no operation.
On a monochrome device, the VDI maps any percentage of color to
white.

WORD vs-curaddress (handle, row-num, coL-num)
WORD handle,

row-num, col_num;

Direct alpha cursor address. This function moves the alpha cursor to
the alpha cell specified by coordinates row-num and col-num. Row
and column numbers start a t 1. Addresses beyond the displayable
range of the screen are set to the nearest value within the displayable
area.

C Function Reference Guide 453

WORD vsfLcolor (handle, color-index)
WORD handle,

color-index;

Set the color index for subsequent fiU polygon operations. The color
index specified by color-index refers to an index in the color lookup
table of the VDI. At least two colors, 0 and 1, are supported. The total
number of colors available is device-dependent If a color index is out
of range, the VDI defaults to index 1. The function returns the selected
color index.

WORD vsfLinterior (handle, fetyle)
WORD handle,

fistyle;

Set the fill interior style used in subsequent polygon fill operations.
The fill style is specified by fstyle. Valid style indices are:

0 = hollow
1 = solid
2 = pattern
3 = hatch
4 = user-defined

If an unavailable style index is selected, the VDI defaults to hollow fill.
A hollow style fills the interior with the current background color
(index 0). Solid style fills the area with the current fill color. Pattern
and hatch styles require a further selection through VBf_styie(). The
user-defined style is set by vBf_udpat().

The function returns the selected interior-fill style.

WORD vsfLperimeter (handle, per.vis)
WORD handle,

per-vis;

Set the fill perimeter visibility. When per-vis is FALSE, the perimeter
visibility is set to off. When per-vis is TRUE, it is set to on. Certain
polygon drawing operations use the perimeter visibility setting. If the
setting is on, a solid perimeter is drawn; otherwise no perimeter is
drawn. The function returns the current perimeter visibility setting.

WORD vsf-style (handle, fstyie-index)
WORD handle,

fstyie-Index;

454 Atari ST

Set the fill style for interior-fill styles of pattern or hatch. If other
interior-fill styles are selected, this function has no effect on them. The
style index is specified in fistyle-index. Valid indices are shown in
Figure A-2 and A-3. The total number of patterns and hatches is
device-dependent However, those shown in the figures are always
supported. If a requested index is not available, the VDI defaults to
index 1. The function returns the index selected.

WORD vsf-udpat (handle, pfilL-pat, nplanes)
WORD handle,

pfill_pat[16 * nplanes],
nplanes;

Set the user-defined fill pattern. A pattern consists of a 16-by-16 bit
array where bits set to 1 indicate the pixel is on. Bit 15 of the first
WORD is the first pixel in the pattern. The bit array is pointed to by
pfilL-pat

The number of planes for multiple-plane patterns is specified by
nplanes. Plane 1 of the pattern is held in pfilL.pat elements 0 through

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

Figure A-2 Fill Patterns

% %
1 2

I I
3 4 5 6

□ □ a
8 9 10 11 12

Figure A-3 Fill Hatches

C Function Reference Guide 455

15; plane 2 of the pattern is in elements 16 through 31; etc. Note that
the writing mode m ust be Replace when using multiple-plane pat
terns.

WORD v_show_c (handle, reset)
WORD handle,

reset;

Show cursor. This function displays the current cursor form. The
v_show_c() and v_hide_c() functions are nested. The v_show_c()
function m ust be called as many times as the v_hide_c() function was
called since the cursor disappeared for the cursor to become visible
again. For example, if the cursor is visible and v_hide_c() is called five
times, v_show_c() m ust be called five times before the cursor re
appears. This nesting can be overridden by setting parameter reset to
0. When parameter reset is 0, the number of v_hide_c() calls is ignored
and the cursor is made visible. If reset is nonzero, v_show_c() retains
its normal functionality.

WORD vsin_mode (handle, dev_type, in_mode)
WORD handle,

dev_type,
in_mode;

Set the input mode for logical input devices. The input device to set is
given by dev_type. Valid logical devices are:

1 = locator
2 = valuator
3 = choice
4 = string

The input mode to use is set by in_mode where 1 is request mode and
2 is sample mode.

WORD vsLxolor (handle, color_index)
WORD handle,

color-index;

Set the color index for subsequent poly-line operations. The color
index specified by color-index refers to an index in the color lookup
table of the VDI. At least two colors, 0 and 1, are supported. The total
number of colors available is device-dependent. If a color index is out
of range, the VDI defaults to index 1. The function returns the selected
color index.

456 Atari ST

WORD v&dLends (handle, beg-style, end_style)
WORD handle,

beg-style,
encLstyle;

Select the line end style for subsequent poly-line operations. The start
of the line has style beg-style and the end of the line has style
end-style. The style may be any one of the following:

0 = squared (default)
1 = arrow
2 = rounded

The squared and arrow ends stop at the endpoint of the line. The
rounded end is drawn so that the center of the rounding is a t the
endpoint of the line.

WORD vsl_type (handle, lstyle)
WORD handle,

lstyle;

Set the line type for subsequent poly-line operations. The line style is
set by the index given in lstyle. The function returns the line style
selected. The total number of line styles is device-dependent All devices
support a t least six lines styles and one user-defined line style (see
Figure A-4).

Style 16 bits
Bit 15 Bit 0

2
3
4
5
6
7

solid
long dash
dot
dash, dot
dash
dash, dot, dot
user-defined

111111111111111

111111111110000
110000011100000
111111000111000
111111100000000
111000110011000
111000000001111

8 - n Device dependent line styles

Figure A-4 Line Styles

C Function Reference Guide 457

The lines are defined by 16 bits, where 1 means the pixel is on and 0
means the pixel is off. If a nondefault line width is used, the device
may not thicken the line styles and use only a thickened solid line.

WORD vsL-udsty (handle, lpattem)
WORD handle,

lpattem;

Set the user-defined line style. When line style index 7 is in use, the
line style provided in lpattem is used. The pattern consists of 16 bits
where the most significant b it is the first pixel in the line.

WORD vsL-width (handle, Iwidth)
WORD handle,

lwidth;

Set the line width for subsequent poly-line operations. Line widths are
always odd numbers. The line width requested is given by lwidth. If a
line width selected is not available, the closest line width not greater
than the one requested is chosen. This function is not required and
may not be available on all devices. The function returns the line
width selected.

WORD vsm-choice (handle, ch-out)
WORD handle,

*ch_out;

Input choice, sample mode. This function samples the choice in p u t If
input is available, the function returns 1 and the choice selection is
returned through ch-out. If no input is available, or if an invalid key
was pressed, the function returns 0. The choice numbers range from 1
to a device-dependent value.

This function is not required and may not be available on all devices.

WORD vsm-color (handle, color-index)
WORD handle,

color-index;

Set the color index for subsequent poly-marker operations. The color
index specified by color-index refers to an index in the color lookup
table of the VDI. At least two colors, 0 and 1, are supported. The total
number of colors available is device-dependent If a color index is out
of range, the VDI defaults to index 1. The function returns the selected
color index.

458 Atari ST

WORD vsm_height (handle, mheight)
WORD handle,

mheight;

Set the height of the markers used in subsequent poly-marker opera
tions. The height is given by mheight If the height for the current
marker does not exist the VDI uses the closest height not larger than
the height requested. The function returns the actual height selected.

WORD vsmulocator (handle, x, y, xout, yout, term)
WORD handle,

x,y ,
*xout, *yout, "term;

Input locator, sample mode. This function samples the input from the
locator device. No cursor is automatically displayed when this function
is called (use the v_show_c() function). The locator starts a t the posi
tion specified by x and y. The new coordinates of the locator are
returned by xout and yout. The terminating event, if any, is returned
through term (see vrq_locator() for a description of term). Input is
taken from both the keyboard and another locator device if they are
available.

The function returns a value of b it 0 set to 1 if the locator coordi
nates have changed and bit 1 set to 1 if a terminating event had
occurred.

WORD vsm-string (handle, max-length, echo_mode, echo-xy, str)
WORD handle,

max. length,
echo-mode, echo-xy [2];

char str[max_lengCh + X];

Input string, sample mode. This function samples the character input
and accepts characters until one of the following events occurs:

data is no longer available,
a carriage return is encountered, or
max-length characters have been read.

If echo_mode is TRUE, the characters are echoed to the screen at
the coordinates in echo-xy using the current text attributes. Other
wise, echoing to the screen is disabled (echoing of input is not
required and may not be available on all devices). The characters are
returned in str as a null-terminated string.

C Function Reference Guide 459

If max-length is a negative value, the absolute value is used as
above, and the character codes are the standard keyboard as defined
in Appendix C. Otherwise, the keycodes may be device-dependent

The function returns a 0 if no characters were available, or a posi
tive value if characters were available.

WORD vsm-type (handle, msymbol)
WORD handle,

msymbol;

Select the marker type for subsequent poly-marker operations. The
marker selected is given by msymbol. The marker index ranges from 1
to a device-dependent value. At least six markers are always defined by
the VDI (see Figure A-5). If a marker index is out of range, the VDI
defaults to the asterisk (index 3). The function returns the index of
the marker selected.

WORD vsm-valuator (handle, vaLJn, val_out term, status)
WORD handle,

vaLJn,
"val_out,
"term, "status;

Input valuator, sample mode. This function tests for any changes to
the valuator. If changes have been made, the value of the valuator is
altered accordingly. The initial valuator value is given by vaLJn. The
resulting value is returned through vaL_out. The terminating event if
any, is returned through term (see vrq_iocator). The status parameter
returns 0 if nothing happened, 1 if the valuator has changed, and 2 if
a terminating event occurred.

This function is not required and may not be available on all
devices.

1 Dot
2 + Plus
3 * Asterisk
4 □ Square
5 X Diagonal cross
6 O Diamond
7 and up are device dependent
Figure A-5 Poly-marker Types

460 Atari ST

WORD vst-alignment (handle, hor_in, vert-ln, hor-out, vert-out)
WORD handle,

hor-in, vert-in,
*hor_out, vert-out;

Set the graphics text alignment for subsequent graphics text opera
tions. Graphics text alignment is referenced on the (x,y) point selected
in the output functions v_gtext() and v-justified(). Horizontal align
ment has three options:

0 = left justified where the string starts at (x,y)
1 = center justified where the length of the string is centered about (x,y)
2 = right justified where the string ends at (x,y); left justification is the

default value.

Vertical alignment has 6 options:

0 = baseline (default)
1 = half line
2 = ascent line
3 = bottom line
4 = descent line
5 = top line

For vertical alignment the line chosen passes through the point (x,y)
(see Figure A-6 for line placement).

Horizontal and vertical alignment are selected separately by setting
hor-in and vert-in, respectively. The actual alignment values being
used by the VDI are returned through hor-out and vert-out If an
invalid alignment value is requested, the VDI chooses the default
value.

WORD vst-color (handle, color-index)
WORD handle,

color-index;

Set the color index for subsequent graphic text operations. The color
index specified by color-index refers to an index in the color lookup
table of the VDI. At least two colors, 0 and 1, are supported. The total
number of colors available is device-dependent If a color index is out
of range, the VDI defaults to index 1. The function returns the selected
color index.

WORD vst-efiects (handle, teffect)
WORD handle,

teffect;

C Function Reference Guide 461

Le
Character

t Alignment Right
Delta

i Top Line

Cell
Height

UIIUUIIUI

5SS
■58

■■■ Ascent
Line

■■■
S5S■■■

■■■■■■■■■■
■88 "*■■■■■■

■■■■■■■■■■■■

— ■----- m ------
.58 ■■“ ■558b

■555" "88
■■

Half Line

Character
Height

■■■■■■■■■

■■■ ■■■ ■■■_ ■■■ ■■■■■■■

S8S!■■!■■■■■
551

si
Base Line

Descent
Line

Cell
Width

Character
’ Width

Bottom
Line

Figure A-6 Character Cell

Set the text special effects for subsequent graphic text operations. The
bit settings of tdffect determine which effects are active. The bit des
criptions are:

Bit Description
0 Thicken
1 Light intensity
2 Skew (like italic)
3 Underline
4 Outline
5 Shadow

When the bit is s e t the text output has that attribute. Any combina
tion of text effects is allowed.

462 Atari ST

The function returns the effect setting selected.

WORD vst_font (handle, tfont)
WORD handle;

tfont;

Select the graphic character face for subsequent graphic text opera
tions. The face index to use is specified by tfont. Some face names and
indices are:

Index Name
1 System face
2 Swiss 721
3 Swiss 721 Thin
4 Swiss 721 Thin Italic
5 Swiss 721 Light
6 Swiss 721 Light Italic
7 Swiss 721 Italic
8 Swiss 721 Bold
9 Swiss 721 Bold Italic
10 Swiss 721 Heavy
11 Swiss 721 Heavy Italic
12 Swiss 721 Black
13 Swiss 721 Black Italic
14 Dutch 801 Roman
15 Dutch 801 Italic
16 Dutch 801 Bold
17 Dutch 801 Bold Italic

Only face 1 is built into the VDI. All other faces m ust be loaded from
face files using the vst_loacLfonts() function.

The function returns the index of the font selected.

WORD vst-height (handle, theight, char.width, char_height,
cell_width, cell-height)

WORD handle,
thelght,
*char_width, *char_height,
*celL_width, *cell-height;

Set the current text height in coordinate units. The height, specified
in theight, is the distance from the character baseline to the top of the
character cell (see Figure A-7).

The function sets char_width and char_height to the character
width and height, respectively. The cell width and cell height are

C Function Reference Guide 463

Le
Character

ft Alignment
Delta

Right

i Top Line

Cell
Height ■■■

Character
Height

ill

■■■
Ascent
Line

■■■■■■
■■■■■■■■■>■■■

nr

S ' n i i n n i i
■■■■■■■■■

■I ■III
■■ ■

Half Line

■■■

I

sa aa ■■

IUL
;aa. ■

■8'
H I■■■

Base Line

u i
mi
inUU1L

Descent
Line

Cell
Width

Character
Width

Bottom
Line

Figure A-7 Character Cell

placed into cell_width and cell_height, respectively. For proportionally
spaced fonts, the VDI returns the width of the widest character.

If the requested size does not exist, the VDI uses the closest charac
ter size that does not exceed the requested size.

WORD vst_load_fonts (handle, select)
WORD handle, select;

Load the fonts associated with a particular driver. The fonts are linked
to the driver through the ASSIGN.SYS file. Once the file is loaded, the
fonts are available to the workstation specified by handle.

The function returns the number of newly generated font identi
fiers. If the fonts were already available to the workstation, no action
occurs and the function returns 0. The select parameter is reserved
and should always be 0.

WORD vst-point (handle, tpoint, char_width, char-height,
cell-width, cell-height)

464 Atari ST

WORD handle,
tpolnt,
*char_width, *char_height,
"celL.wid.tli, * cell-height;

Set the current text height in points. One point is 1/72 of an inch. The
point size, specified in tpoint, is the distance from the baseline of one
line of text to the baseline of the next line of text (see Figure A-8).

The function sets char_width and char-heigftt to the character
width and height respectively. The cell width and cell height are
placed into cell-width and celL-height, respectively. For proportionally
spaced fonts, the VDI returns the width of the widest character. These
values are given in current coordinate units.

If the requested size does not ex ist the VDI uses the closest charac
ter size that does not exceed the requested size.

Le
Character

t Alignment Right
Delta ^ Top Line

Cell
Height

■■Minimi

Character
Height

■I

mi

BIS1■MB ■■■■■„ _____:■■■■■ ■■■■■■
■■

. ! " ! s k
» ■ 8
Ml

■■■

_(■■■■■■■■■■■■■
BE

IS1

m
: : :

Ascent
Line

Half Line

Base Line

u i

Cell
Width

Character
‘ Width

Descent
Line

Bottom
Line

Figure A-8 Character Cell

C Function Reference Guide 465

WORD vst-rotation (handle, triangle)
WORD handle,

txtangle;

Set the angle of rotation of the character baseline. The angle of rota
tion, given in triangle, measures tenths of a degree and ranges from 0
to 3600. The angle 0 is the default text rotation and increasing angles
continue counterclockwise.

The baseline angle used is a best-fit value. Some devices do not
support text rotation, and other devices allow only quarter-tum rota
tions (0,90, and 270 degrees). The function returns the actual angle of
rotation selected.

WORD vBt_unload-fbnts (handle, select)
WORD handle, select;

Remove the fonts from a workstation. This function makes the fonts
loaded through the vst_load-fontB() function unavailable to the work
station given by handle. If the fonts are being used by more than one
workstation with the same physical device handle, the fonts are not
unloaded from memoiy until one of two conditions exists. Either all
workstations tha t share the fonts are closed, or all workstations that
share the fonts request tha t the fonts be unloaded. The default system
fonts for the workstation always remain loaded and available. The
parameter select is reserved and should always be 0.

WORD vswr_mode (handle, wmode)
WORD handle,

wmode;

Set the writing mode for the workstation to the value of wmode. Valid
writing modes are:

Constant Value Mode
MD_REPLACE 1 Replace
MD_TRANS 2 Transparent
MD.XOR 3 XOR
MDJERASE 4 Reverse transparent

The resulting output on the display is determined by the output
pixel value (source) and the current pixel value (destination). The
following definitions are used:

466 Atari ST

Term Definition
Mask Output pixel value of the image
Fore Selected output color pixel chosen
Back Background color pixel in use (color 0)
Old Current pixel value
New Resulting pixel value

Replace mode simply outputs the image regardless of the current
contents of the display:

new = (fore AND mask) OR (back AND NOT mask)

Transparent mode affects those pixels where the image is to appear:

new = (fore AND mask) OR (old AND NOT mask)

XOR mode reverses the bits representing the color:

new = mask XOR old

Reverse Transparent mode affects those pixels where the image does
not appear:

new = (old AND mask) OR (fore AND NOT mask)

The function returns the writing mode selected. The writing mode
stays in effect until it is explicitly changed. The default writing mode
is Replace.

VOID Vsync ()

Halt program execution until the next vertical blank in terrupt This
function is useful for synchronizing graphic outpu t

WORD v.updwk (handle)
WORD handle;

Update the workstation. This function causes all pending graphic
commands for the workstation given by handle to be executed imme
diately. The commands are executed in the order in which they were
placed in the buffer. For printer or plotter devices, this function causes
the device drive to begin output to the device. For a metafile, GEM VDI
outputs the opcode to update the workstation. This function has no
effect on screen devices.

C Function Reference Guide 467

WORD wind-calc (wi-ctype, wi-ckind,
wi_cinx, wi_ciny, wi_cinw, wi-cinh,
wi_coutx, wi-couty, wi_coutw, wJLcouth)

WORD wi_ctypet wi_ckind,
wi_cinx, wi_ciny, wi_cinw, wi-cinh,
*wi_coutx, *wi_couty, *wi_coutw, *wi_couth;

Calculate the size and position of a window’s border area or work area.
When given the work area, the function calculates the border area.
When given the border area, the function calculates the work area. The
type of information returned is determined by wi_ctype, where:

0 = return border area data
1 = return work area data

The bits of parameter wi-ckind indicate the window control areas to
include in the calculation. See wi-crkind of function wind_create() for
the bit settings.

The input area is passed through parameters wi-dnx, wi_ciny,
wi_cinw, and wi-cinh. The calculated area is returned through param
eters wL-coutx, wi_couty, wi-coutw, and wi-couth.

A returned value of 0 indicates an error.

WORD wind-close (wi-clhandle)
WORD wi-dhandle;

Close a window to remove it from the screen. The window specified by
wi-dhandle is removed from the screen. This function only removes
the window from visibility. The window is still kept in the AES. A
returned value of 0 indicates an error.

WORD wind-create (wi-crkind, wLcrwx, w i-crwy, wi_crww,
vL C iV rll]

WORD wi-crkind,
wi-crwx, wi_crwy, wi_crww, wLcnA;

Allocate the application’s full-size window and return the window
handle. This function requests allocation of a window from the AES.
GEM on the Atari ST allows up to eight windows to be allocated at any
given time. The bits of parameter wL.crkind determine the window
components to be displayed as follows:

468 Atari ST

Constant Value_______ Component
NAME
CLOSER
FULLER
MOVER
INFO
SIZER
UPARROW
DNARROW
VSLIDE
LFARROW
RTARROW
HSLIDE

0x0001 Title bar with name
0x0002 Close box
0x0004 Full box
0x0008 Move box
0x0010 Information line
0x0020 Size box
0x0040 Up arrow
0x0080 Down arrow
0x0100 Vertical slider
0x0200 Left arrow
0x0400 Right arrow
0x0800 Horizontal slider

If the bit is set to 1, the window displays tha t component For a des
cription of the components, see the tex t

The parameters wi-crwx, wi_crwy, wi_crww, and wi-crwh define
the window’s position and size when at its largest size.

The returned value ranges from 0 to an environment-specific value
(8 on the ST). This value is the window handle used by the other Win
dow Manager functions. If a negative value is returned, the GEM AES
has no more windows available.

WORD wind_delete (wi_dhandle)
WORD wi-dhandle;

Delete a window from the AES. When an application no longer requires
the use of a window (e.g., prior to exiting to the Desktop), the applica
tion should release the allocated portion of the AES being used to
maintain the window. The window should also be closed before it is
deleted. A returned value of 0 indicates an error.

WORD wind-find (wi-fmx, wLJmy)
WORD wi-fmz, wL-finy;

Get the handle of the first window under the location given. This func
tion locates the window being displayed at the location specified by
wi-fmx and wi-fmy and returns the handle to the window found, or 0
if it is the Desktop.

WORD wind-get (wi ghandle, wL_gfield,
wi_gwl, wi_gw2, wL_gw3, wi_gw4)

WORD wL-ghandle, wi_gfleld,
*wL_gwl, *wL_gw2, *wL_gw3, *wi_gw4;

C Function Reference Guide 469

Obtain information regarding a window. This is a multi-purpose func
tion. The window handle is given by wi-ghandle. The information is
returned through parameters wL_gwl, wL_gw2, wL_gw3, and wi_gw4.
The type of information to return is specified with wi-gfield. The pre
defined constant names and values and the usage of the return
parameter are given below:

WF_WORKXYWH 4
request the size and position of the window’s work area

wi_gwl: x coordinate of upper left comer
wi_gw2: y coordinate of upper left comer
wi_gw3: width of work area
wi_gw4: height of work area

WF_CURRXYWH 5
request the size and position of the entire current window
including control areas

wL_gwl: x coordinate of upper left comer
wi_gw2: y coordinate of upper left comer
wi_gw3: width of current window
wi_gw4: height of current window

WFJPREVXYWH 6
request the window’s previous size and position

wi_gwl: x coordinate of upper left comer
wi_gw2: y coordinate of upper left comer
wL_gw3: width of previous window
wi_gw4: height of previous window

WF_FULLXYWH 7
request the full window’s size and position

w i-gwl: x coordinate of upper left comer
wL_gw2: y coordinate of upper left comer
wi_gw3: width of full window
wi_gw4: height of full window

WF_HSLIDE 8
request relative position of horizontal slider

wi_gwl: value from 0 (furthest left) to 100 (furthest
right)

WF.VSLIDE 9
request relative position of vertical slider

wi_gwl: value from 0 (top) to 1000 (bottom)
WF_TOP 10

request the handle of the active (topmost) window
wi_gwl: handle of active window

WF_FIRSTXYWH 11
request position and size of the first rectangle in the
window’s visible rectangle list (see text)

470 Atari ST

wi_gwl: x coordinate of upper left comer
wi_gw2: y coordinate of upper left comer
wL_gw3: width
wL_gw4: height

WF-NEXTXYWH 12
request position and size of the next rectangle in the
window’s visible rectangle list (see text)

wi_gwl: x coordinate of upper left comer
wL_gw2: y coordinate of upper left comer
wi_gw3: width
wi_gw4: height

WF-HSLSIZE 15
request size of the horizontal slider

wL-gwl: 1 to 1000 = size relative to scroll bar
— 1 = default minimum size (square box)

WF-VSLSIZE 16
request size of the vertical slider

wi_gwl: 1 to 1000 = size relative to scroll her
— 1 = default minimum size (square box)

WF-SCREEN 17
request address and length of the internal menu/alert
buffers

wi_gwl: low WORD of address
wL_gw2: high WORD of address
wi_gw3: low WORD of length
wi_gw4: high WORD of length

A returned value of 0 indicates an error.

WORD wind-open (wi-ohandle, vLowz, wi_owy, wLoww, wi_owh)
WORD wi-ohandley

wLowx, wL_owy, wi_oww, wi_owh;

Open a window to make it visible on the screen. The window to open is
specified by its handle given in wi_ohandle. The initial position and
size of the window are given by wi_owx, wi_owy, wi_oww, and
vLovA . A returned value of 0 indicates an error.

WORD wind-set (wi-shandle, wi-sfield,
wi_swl, wi_sw2, wi-sw3, wL_sw4)

WORD wi-shandle, wi-sfield,
wi_sw l, wL_sw2, wi—sw3» wi—sw4;

Change the values in a window’s field that determine how the window
is displayed. The window is specified by the handle in wi-shandle. The

C Function Reference Guide 471

field to change is given by wi-sfield using the predefined constants
given below. The remaining parameters hold the new values for the
field to change. These parameters are defined as WORDs bu t may also
be used to pass address pointers. Because an address requires two
WORDs, a program may simply use the address in the parameter list
in place of two WORD parameters (either wi_swl and wi-sw2 or
wL_sw3 and wi-sw4). For example, to set the information line, the call

wind-set (wi-shandle, WF-INFO, info-line);

could be used where parameter info-line is a pointer to a string. The
predefined constants and parameter usage are:

WFJKIND 1
set the components of the window

wi_swl: see wi_crkind in the wind_create() function for
the appropriate bit settings

WF_NAME 2
set the name in the title bar

wi_swl and wi_sw2: pointer to a string
WF_INFO 3

set the information line
wi_swl and wi_sw2: pointer to a string

WF.CURRXYWH 5
set the size and position of the entire current window
including control areas

wi_swl: x coordinate of upper left comer
wi_sw2: y coordinate of upper left comer
wi_sw3: width of current window
wi_sw4: height of current window

WFJHSLIDE 8
set the relative position of horizontal slider

wi_swl: value from 0 (furthest left) to 1000 (furthest
right)

WFJVSLIDE 9
set the relative position of vertical slider

wi_swl: value from 0 (top) to 1000 (bottom)
WF_TOP 10

set a new active (topmost) window
wi_swl: handle of active window

WF_FIRSTXYWH 14
set the address of a new default GEM Desktop for the GEM
AES to draw

wi_swl and wi_sw2: address of the object tree
wi_sw3: index of starting object to draw

472 Atari ST

WF_HSLSIZE 15
set the size of the horizontal slider

wi_swl: 1 to 1000 = size relative to scroll bar
- 1 = default minimum size (square box)

WF-VSLSIZE 16
set the size of the vertical slider

wi_swl: 1 to 1000 = size relative to scroll bar
— 1 = default minimum size (square box)

A returned value of 0 indicates an error.
I

WORD wind-update (wL-iibegend)
WORD wL.ubegend;

Communicate with the AES about the application’s current process
ing. This function informs the AES of four specific conditions.
The condition is identified by the pre-defined constant given in
wi-ubegend. The constants and conditions are defined:

END_UPDATE 0
Notify the AES that the application has completed updating
a window. The AES again allows the user to interact with
the screen.

BEGJUPDATE 1
Notify the AES that the application is about to update a
window. During the update, the AES does not allow the
user to interact with the windows.

END-MCTRL 2
Notify the AES that the application is returning control of
all mouse functions to the AES.

BEG-MCTRL 3
Notify the AES that the application is taking control of all
mouse functions. While the application has control of the
mouse functions, the Screen Manager does not respond to
mouse in p u t and menus and window control are not
active unless handled by the application.

The function returns 0 if an error condition exists.

VOID Xbtimer (timerset, ctrlreg, data, vec)
WORD timerset, ctrlreg, data;
WORD (*vec)();

Set the timers on the 68901 MFP (multi-function peripheral). The
timer to set is given by timerset. An 8-bit value for the timer control

C Function Reference Guide 473

register is given by ctrlreg. The 8 bit data value for the timer data
register is given by data. The new interrupt vector is given by vec.
Refer to the 68901 for details of its operation.

GEM DOS Functions
Cauxin Read character from AUX;
Cauxis Check status of AUX: input
Cauxos Check status of AUX: output
Cauxout Write character to AUX:
Cconin Read character standard input
Cconls Check status of standard input
Cconos Check status of standard output
Cconout Write character to standard output
Cconrs Read edited string from standard input
Cconws Write string to standard input
Cnecin Read character from standard in p u t no echo
Cpmos Check status of PRN:
Cpmout Write character to PRN:
Crawcin Raw input from standard input
Crawio Raw I/O with standard input/output
Dcreate Create directory
Ddelete Delete directory
Dfree Get drive free space
Dgerdrv Get default drive
Dgetpath Get current directory
Dstdrv Set default drive
Dsetpath Set current path
Fattrib Get or set file attributes
Fclose Close file
Fcreate Create file
Fdatlme Get or set file time stamp
Fdelete Delete file
Fdup Duplicate file handle
Fforce Force file handle
Fgetdta Get disk transfer address (DTA)
Fopen Open file
Fread Read from file
Frename Rename file
Fseek Seek file pointer
Fsetdta Set DTA
Fsflrst Search for first file
Fsnext Search for next file
Fwrite Write to file
Malloc Allocate memory

474 Atari ST

Mfree Release memoiy
Mshrink Shrink size of allocated block
Pexec Load and execute process
Pterm Terminate process with exit code
PtermO Terminate process with exit code 0
Ptermres Terminate and stay resident
Super Get s e t or inquire supervisor mode
Sversion Get GEM version number
Tgetdate Get date
Tgettime Get time
Tsetdate Set date
Tsettime Set time

GEM BIOS Functions
Bconin Input from character device
Bconout Output to character device
Bconstat Get character device input status
Bcostat Get status of output device
Drvmap Get map of active drives
Getbpb Get BIOS parameter block
Getmpb Get memoiy parameter block
Kbshift Get or set keyboard shift bits
Mediach Check for media change
Rwabs Read or write block on a device
Setexc Set exception vector
Tickcal Get system timer calibration

Atari ST Extended BIOS (XBIOS) Functions
Bioskeys Restore keyboard translation tables
Cursconf Configure terminal cursor
Dosound Set sound daemon program counter
Flopfmt Format track on floppy drive
Floprd Read from floppy drive
Flopver Verify sectors on floppy drive
Flopwr Write to floppy drive
Getrez Get screen’s current resolution
Gettime Get time and date
Giaccess Read or write registers on sound chip
Ikbdws Write string to intelligent keyboard
Initmous Initialize mouse packet handler
Iorec Get address of serial device buffer records
Jdisint Disable interrupt on MFP
Jenabint Enable interrupt on MFP
Kbrate Get or set keyboard’s repeat rate

C Function Reference Guide 475

Kbdvbase Get keyboard device packet vectors
Keytbl Set keyboard translation tables
Logbase Get screen’s logical base address
Mfpint Set MFP interrupt number
Midiws Write string to MIDI port
Offgibit Clear Port A b it on sound chip
Ongibit Set Port A bit on sound chip
Physbase Get screen’s physical base address
Protobt Prototype a boot sector
Puntaes Throw away AES
Random Generate a random number
Rsconf Configure RS232 port
Scrdmp Dump screen to printer
Setcolor Set color register in palette
Setpalette Set hardware color palette
Setprt Set or get printer configuration byte
Setscreen Set screen addresses and resolution
Settlme Set time and date
Supexec Execute code In supervisor mode
Vsync Walt for vertical blank interrupt
Xbtlmer Set MFP timer control

AES Application Manager Functions
appl_exit Exit application from AES
appl_flnd Locate the ID of another application
appl_init Initialize application to AES
appl-read Read from the message pipe
appl-tplay Play GEM AES recording of user’s actions
appl_trecord Record user’s actions
appl_write Write to the message pipe

AES Event Manager Functions
evnt_button Wait for mouse button event
evnt_dclick Get or set double-dick speed
evnt_keybd Walt for keyboard event
evnt_mesag Walt for message event
evnt_mouse Walt for mouse event
evnt_multi Walt for multiple events
evnt_tlmer Walt for timer event

AES File Selector Manager Function
fsd-input Display file sdector dialog box

476 Atari ST

AES Form Manager Functions
form_alert Display alert box
fonn_center Center dialog box on screen
form_dial Prepare screen for dialog box
form_do Monitor user interactions with form
form_error Display error box

AES Graphics Manager Functions
graf_dragbox
graf_growbox
graf-handle
graf_mbox
graf-mkstate
graf-mouse
graf_rubberbox
graf-shrinkbox
graf_slidebox
graf-watchbox

Draw and track moving box
Draw an expanding box
Get VDI handle for screen workstation
Draw a moving box
Return current mouse state
Change mouse form
Draw and track rubber box
Draw a shrinking box
Track sliding box in its parent
Track a watch box

AES Menu Manager Functions
m enu-bar
menu_icheck
menu-ienable
menu_register
menu_text
menu_tnormal

Display or erase the menu bar
Display or erase check mark in menu item
Display menu item as enabled or disabled
Register desk accessory with AES
Change text of menu item
Display menu title in reverse or normal video

AES Object Manager
objc_add Add object to an object tree
objc-change Change an object’s state
objc_delete Delete an object from an object tree
objc_draw Draw an object or object tree
objc_edit Let user edit text object
objc_flnd Locate object under mouse
objc_offset Compute object’s location relative to the screen
objc_order Change the order of an object within the tree

AES Resource Manager
rsrc_free
rsrc_gaddr

Remove resource file from memory
Get the address of a data structure in memory

C Function Reference Guide 477

rsrc-load Load a resource file into memoiy
rsrc_obflx Convert object’s x and y coordinates
rsrc_saddr Store the address of a data structure

AES Scrap Manager
scrp_read Read the scrap directory in the clipboard
scrp_write Write the scrap directory to the clipboard

AES Shell Manager
shel_envron Search environment for parameter
shel_flnd Locate a filename
shel-read Identify the command that invoked the

application
shel_write Exit AES or run another application

AES Window Manager
wind_calc Calculate window area
wind_close Close an open window
wlnd-create Allocate window and obtain handle
wlnd_delete Remove window from AES
wlnd-flnd Locate window under given coordinates
wind-get Get window values
wlnd_open Open a created window
wind_set Set window values
wlnd-update Notify AES about window updating

VDI Control Functions
v_clrwk Clear workstation
v_clsvwk Close virtual workstation
v-dswk Close workstation
v_opnvwk Open virtual workstation
v-opnwk Open workstation
v.updwk Update workstation
vst-load-fonts Load fonts for device
vst-unload-fonts Remove fonts for device
vs_clip Set clipping rectangle

VDI Output Functions
v_arc Arc
v_bar Bar

478 Atari ST

v_cirde Circle
v_cellarray Cell array
v_contourfiIl Contour fill
v_ellarc Elliptical arc
v_ellipse Ellipse
v_eUpie Elliptical pie
v_fillarea Fill area
v_gtext Graphics text
v_justifled Justified graphics text
v_pieslice Pie
v_pllne Poly-lines
v_pmarker Poly-markers
v_rbox Rounded rectangle
v_rfbox Filled rounded rectangle
vr_recfl Filled rectangle

VDI Attribute Functions
vs_color Set color representation
vsf_color Set fill color
vsf_interior Set interior-flll style
vsf_perimeter Set fill perimeter visibility
vsf_styie Set fill style index
vsf_udpat Set user-defined fill pattern
vsl_color Set poly-line color index
vsl_ends Set poly-line end styles
vsl_type Set poly-line line type
vsl_udsty Set user-defined line style pattern
vsl-width Set poly-line line width
vsm_color Set poly-marker color index
vsm_height Set poly-marker height
vsm_type Set poly-marker type
vst_alignment Set graphics text alignment
vst_color Set graphics text color index
vst_effects Set graphics text effects
vst_font Set text face
vst_height Set character height absolute
vst_point Set character height points
vst_rotation Set character baseline rotation
vswr_mode Set writing mode

VDI Raster Functions
v_get_pixel Get pixel
vro_cpyfm Copy raster, opaque

C Function Reference Guide 479

vrt_cpyfm Copy raster, transparent
vr_tmfm Transform form

VDI Input Functions
vex_butv Exchange button change vector
vex_curv Exchange cursor change vector
vex_motv Exchange mouse movement vector
vex_timv Exchange timer interrupt vector
v_hide_c Hide cursor
vq_mouse Sample mouse button state
vq_key_s Sample keyboard state information
vrq_choice Input choice, request mode
vrq_locator Input locator, request mode
vrq_string Input string, request mode
vrq_valuator Input valuator, request mode
vsc_form Set mouse form
v_show_c Show cursor
vsin_mode Set input mode
vsm_choice Input choice, sample mode
vsm_locator Input locator, sample mode
vsm_string Input string, sample mode
vsm_valuator Input valuator, sample mode

VDI Inquire Functions
vq_cellarray
vq_color
vq_extnd
vqf_attributes
vqin_mode
vql_attributes
vqm_attributes
vqt_attrlbutes
vqt_extent
vqt_fontinfo
vqt_name
vqt_wldth

Inquire cell array
Inquire color representation
Extended inquire
Inquire fill area attributes
Inquire input mode
Inquire poly-line attributes
Inquire poly-marker attributes
Inquire current graphics text attributes
Inquire text extent
Inquire current face information
Inquire face name and index
Inquire character cell width

VDI Escape Functions
V_bit_image Output b it image file
v_clear_disp_list Clear display list
v_curdown Alpha cursor down

480 Atari ST

v_curhome
v_curieft
v_curright
v_curtext
v_curup
v_dspcur
v_eeol
v_eeos
v_enter_cur
v_exit_cur
v_form_adv
v_hardcopy
v_meta_extents
vm-filename
v_output window
vq_chcells
vq_curaddress
vq.tabstatus
v_rmcur
v_rvoff
v_rvon
vs_curaddress

Home Alpha cursor
Alpha cursor left
Alpha cursor right
Output cursor addressable alpha text
Alpha cursor up
Place graphics cursor a t location
Erase to end of alpha text line
Erase to end of alpha screen
Exit alpha mode
Enter alpha mode
Form advance
Hard copy
Update metafile extents
Change GEM VDI file name
Output window
Inquire addressable alpha character cells
Inquire current alpha cursor address
Inquire tablet status
Remove last graphics cursor
Reverse video off
Reverse video on
Direct alpha cursor address

A P P E N D I X B

Header Files

This appendix contains the source code listings for the header files
mentioned in this book. These files are used by the Megamax C
compiler and the Atari development system. Depending upon the
compiler and the version of GEM you are using, you may find a few
changes to these header files. When using the programs in this book,
if you get compiler errors indicating undefined constants or function
names, you should compare the header files you are using with the
ones listed here. Then make the appropriate changes to your header
files or the program files.
GEMBIND.H
/a # * # # * * # * * # * * * # * * * * * # * * * * * * * # # * * * * * # # * # * * * * # * * # # # * * # * * * * # # * # * * * * # # # * # * * # /

** GEMBIND.H Do-It-Yourself GEM binding kit. * '

** Copyright 1985 Atari Corp.
/ * * /

s* WRRNING: This file Is not supported! **

Ue reccomend you use the supplied binding libraries **
✓*»##**#»»#*##»»*»#******#***#»*###»###»#*#»*#****»*******#***##****##*#*✓

Application Manager
ttdeflne APPL_INIT 10

ttdeflne APPL-READ 11
ttdefine APPI_URITE 12
ttdBfine APPL-FIND 13
ttdefine RPPI_TPLAY 14
ttdeflne APPI_TRECORD 15
ttdBfine APPL-EXIT 19

** Event Manager
ttdeflne EVNT_KEYBD 20

tide fine EVNT_BUTTON 21
ttdefine EVNT-MOUSE 22
ttdBfine EVNT-MESAG 23

ttdefine EVNT_TIMER 24
ttdefine EVNT_MULTI 25
ttdefine EVNT-DCLICK 2G

ttdeflne MENLLBAR 30
ttdefine MENU—ICHECK 31
ttdefine MENU—I ENABLE 32
ttdefine MENU-TNORMAL 33
ttdefinB MENU—TEXT 34
tide f in e MENLLREGISTER 35

ttdefine OBJC-ADO 40

ttdefine OBJC-DELETE 41
ttdefine OBJC-DRAU 42
tide fine OBJC-FIND 43

Mdefine OBJCJOFFSET 44

ttdefine O0JCJDRDER 45
ttdefine OBJC-EDIT 46

ttdefine OBJCJCHANGE 4?

ttdefine FORM-DO 50

ttdefine FORM-DIRL 51
ttdefine FORM_ALERT 52

ttdefine FORM_ERROR 53

ttdefine FORMJCENTER 54
ttdefine FQRM_KEYBD 55
ttdefine FORM-BUTTON 56

ttdefine GRAF_RUBBOX 70

ttdefine GRAF_DRAGBOX 71
ttdefine GRAF-MBOX 72

Hdefine GRRFJGROUBOX 73

ttdefine GRAF-SHRINKBOX 74
ttdefine GRAF_WATCHBDX 75
ttdefine GRRF-SLIDEBOX 76

tide fine GRAF-HANDLE 77
ttdefine GRAF_J>10USE 70
ttdefine GRAF—MK5TATE 79

ttdefine SCRP-RERD 80

ttdefine SCRP-WRITE 01

ttdefine FSEL-INPUT 90

ttdefine UINDJCREATE 100
ttdefine UINDJQPEN 101
ttdefine UINDJCLOSE 102
ttdefine UIND-DELETE 103
ttdefine WIND-GET 104
ttdefine UIND-SET 105
ttdefine WIND-FIND 106
ttdefine UINDJUPDATE 107
ttdefinB UINDJCALC 100

** Menu Manager

Object Manager

Form Manager

/ * Graphics Manager

s* Scrap Manager

s* File Selector Manager

/ * Uindou Manager

'* Resource Manager

Header File 483

ttdefine RSRC-LORD 110
tide fine RSRC-FREE 111
ttdefine RSRCJSRDDR 112

ttdefine RSRCJSRDDR 113
ttdefine RSRC-OBFIX 114

ttdefine SHEL-RERD 120
ttdefine SHEI_WRITE 121
ttdefine SHEI_GET 122

ttdefine SHEL-PUT 123

ttdefine SHEI—FIND 124

ttdefine SHEI_ENVRN 125

ttdefine C-JSIZE 4
ttdefine GJSIZE 15
ttdefine I-SIZE 16
ttdefina 0-SIZE 7

ttdefine RIJSIZE 2

ttdefine RDJSIZE 1

ttdefine QPJCODE control[0]
ttdefine IN-LEN control[1]
ttdeflne OUT-LEN control[2]

ttdefine RIN_LEN control[3]

ttdeflne RETJCQDE int^out[0]

ttdeflne RP-VERSION global[0]

ttdeflne RP_C0UNT global[1]

ttdeflne RP-ID global[2]
ttdeflne RP_LOPRIVRTE global[3]
ttdefine RPJUPRIVRTE global[4]

ttdefine RPJLOPNRME global[5]
ttdeflne RP-HIPNRME global[6]
ttdefine RP_L01RESV global[7]

ttdeflne RP-HI1RESV global[0]
ttdefine RP—L02RESV global[9]

ttdeflne RP_HI2RESV global[10]

ttdefine RP_L03RESV global[11]
ttdefine RP-HI3RESV global[12]
ttdefine RP-L04RESV global[13]
tide fine RP-HI4RESV global [14]

ttdefine RPJBLSIZE int_out[l]

Odefine RP_RWID int_in[0]

ttdeflne RP_LENGTH lnt_ln[l]
ttdefine RP_PBUFF addr_in[0]

ttdefine RP_PNRME addr_in[0]

ttdeflne RP-TBUFFER addr_ln[0]
ttdefine RP-TLENGTH lnt_ln[0]

ttdefine RP—TSCRLE int_in[l]

/* Shell Manager

max sizes for arrays

Crystal funtion op code * /

s* application lib parameters

>'* long ptr. to tree base in rsc*'

long address of memory alloc.

length of msmory allocated * /

s* colors available on screen

484 Atari ST

ttdefina SCR_MGR 0x0001 /* pld of the screen manager*^

ttdeflne RP_MSG 0

ttdefine MN_SELECTED 10

ttdefine WM_REDRAW 20

ttdefine WM-TOPPED 21

ttdefine WMJCLOSED 22
ttdefine WM_FULLED 23
ttdefine UM_ARROWED 24

ttdefine WM_HSLID 25
ttdBfine UM-VSLID 2S

ttdefine UfLSIZED 27

ttdBfine UM-MOVED 28

ttdefins UfLNEWTOP 29

ttdefine AC_OPEN 40
ttdefine ACJCLOSE 41

ttdefine CT_UPDATE 50

ttdefine CT_MOVE 51
ttdefine CT_NEUTOP 52

* * event lib parameters

ttdefine IN_FLAGS lnt_ln[0]

ttdefine BJCLICKS int_in[0]
ttdefine B-MASK int_in[l]
ttdefine B—STATE int_in[2]

ttdefine M0LFLAG5 int_in[0]
ttdefine MO_X int_in[l]

ttdefine MO_Y int_in[2]
ttdefine MO_WIDTH int_in[3]

ttdefinB MD_HEIGHT int_in[4]

ttdeflne ME-PBUFF addr_in[0]

ttdBfine T-LOCOUNT int_in[0]

ttdafine T_HICOUNT int_in[l]

ttdefine MLLFLAGS int_in[0]
ttdefine EV_MX int_outtl]

ttdefine EV_MY int_out[2]

ttdafine EV_MB int_out[3]
ttdefine EV_KS int_out[4]

ttdafine EV_KRET int_out[5]
ttdBfine EV_BRET int^outfG]

ttdefinB MB-CLICKS int_in[l]
ttdefine MB_MASK int_in[2]
ttdBfine MB_STATE int_in[3]

Header File 485

ttdefine MM01_FLRG5 int_ln[4]
ttdefine MMOl-X lnt_in[5]

ttdefine MM01-Y lnt_ln[G]
ttdefine MM01_WIDTH lnt_ln[7]
ttdefine MM01-HEIGHT lnt_ln[B]

tide fine MM02_FLRGS lnt_ln[9]

ttdefine MM02-X int_in[10]
ttdefine MM02_Y lnt_in[ll]

ttdefine MM02_WIDTH int_ln[12]
ttdefine MM02-HEIGHT lnt_in[13]

ttdefine MME-PBUFF addr_in[0]

ttdefine MT_LOCOUNT lnt_in[14]

ttdefine MT_HICOUNT lnt_in[15]

ttdefine MLLKEYBD 0x0001

ttdefine MLLBUTTON 0x0002

ttdefine MU_M1 0x0004
ttdefine MILJ12 0x0008

ttdefine MU-MESRG 0x0010
ttdefine MU—TIMER 0x0020

ttdefine EV_DCRRTE int_ln[0]
ttdefine EV_DCSETIT int_ln[l]

ttdefine MM—ITREE

ttdefine MM_PSTR

addr_in[0]

addr_ln[0]

mu—flags

/ * menu library parameters

ienable,1check,tnorm *s

ttdefine MM_PTEXT addr_in[l]

ttdefine SHOW_IT lnt_in[0] /» bar

ttdefine ITEfLNUM

ttdefine IWLPID
ttdBfine CHECK—IT
ttdefine ENRBLE—IT

lnt_ln[0]

lnt_int0]
lnt_in[l]
int_ln(l]

icheck, lenable

register
/* icheck

s* ienable

* /

* /

* /

* /

ttdefine TITLE_NUM

ttdefine NORMRI__IT

lnt_in[0]
int_in[l]

tnorm

s* tnormal

*/

ttdefine FM_FORM addr_in[0]
ttdefine FM_STRRT int_in[0]

s* form library parameters

ttdefine FM_TYPE int_in[0]

ttdefine FM-ERRNUM lnt_in[0]

486 Atari ST

tide fine FCLDEFBUT int_in[0]
Odefine FM_flSTRING addr_in[0]

ttdefine FM_IX lnt_in[l]
ttdeflne FM_IY int_ln[2]

ttdefine FM—IW int_in[3]
ttdefine FM_IH lnt_ln[4]
ttdefine FM_X int_in[S]

ttdefine FM_Y int_in[G]
ttdefine FM_W int_in[7J
ttdefine FM_H int_in[B]

ttdeflne FM_XC int_out[l]

tide fine FM—YC int_out[2]
ttdefine FCLWC int_cut[3]
ttdBfine FM-HC int_out[4]

ttdefine FMDJSTftRT 0
ttdefine FMDJBROW 1

ttdefine FMDJ5HRINK 2

ttdeflne FMD-FINISH 3

•'# abject library parameters **

ttdefine QB—TREE addr_in[0]

ttdefine OBJDELOB int—in[0]

ttdefine OB-DRRUOB int_in[0]
ttdeflne OBJDEPTH int_in[l]

ttdefine OB-XCLIP int_in[2]
ttdefine OB—YCLIP int_ln[3]
ttdefine OB-MCLIP int_in[4]
ttdefine QB-HCLIP lnt_ln[5]

ttdeflne QB_STflRTOB int—in[0]

ttdefine OBJDEPTH int_in[l]

ttdefine OB_MX int_in[2]
ttdefine OB_MY int_in[3]

ttdefine OB-PflRENT int_in[0]
ttdefine OBJCHILD int_ln[l]
ttdefine OBJDBJ int_in[0]
ttdefine OB_XOFF int_out[l]
ttdefine OB—YOFF int_uut[2]

ttdefine OB-NEWPOS int_in[l]

ttdefine OBJCHRR int_in[l]
ttdefine OB_IDX int_in[2]
ttdefine OBJ<IND int_in[3]
ttdefine QBJDDX int—out[l]

all ob procedures

/ * ob_delete

/ * ob^drau, ob_change

* /

ob_find

✓* ob_add

/* ob^offset, ob_order

✓* ob_order

/* ob^adit

Header File 487

ttdeflne 0B_NEU5TATE lnt_in[G]
ttdafine QB-REDRAU lnt_ln[7]

ttdefine GR_I1 lnt_in[0]
ttdafine GR_I2 int_ln[l]
ttdefina GR_I3 int_in[2]
ttdafina GR_I4 lnt_in[3]

ttdefine GR_IS lnt_in[4]
ttdefine GR_IG int_in[5]

ttdefine GR_I7 int_in[G]
ttdefine GR_IB int_in[7]

ttdefine GR_01 int_out[l]
ttdefine GRJ02 int_out[2]

ttdefine GR-TREE addr_in[0]

ttdefine GR-PARENT int_in[0]
ttdefine GR-OBJ int_in[l]

ttdeflne GR—INSTATE int_ln[2]
ttdefine GR_DUTSTATE int_in[3]

ttdefine GR—ISVERT int_in[2]

ttdafine MJDFF 25G
ttdBfine MJDN 257

ttdafina GR-MNUMBER int_in[0]
ttdefine GR-MAODR addr_in[0]

ttdeflne GR-UCHAR int_out[l]

ttdefine GR-HCHAR int^out[2]

ttdefine GR-UBQX int^jout[3]
ttdefina GR—HBOX int_out[4]

ttdeflne GR-J1X int_out[l]

ttdeflne GR_J1Y int^Dut[2]
ttdefine GR-J1STATE int_out[3]

ttdefina GR-KSTATE lntjut[4]

ttdefine SC-PATH addr_ln[0]

ttdefine FS-IPATH addr_in[0]

ttdeflne FS_ISEL addr_in[l]

ttdafina FS_BUTTON int_out[l]

ttdefine XFULL 0
ttdefine YFULL gl_hbox
ttdeflne UFULL gl_wldth
ttdeflne HFULL (gl_helght - gl_hbox)

/ * ob_jchange * /

' * graphics library parameters */

/ * scrap library parameters

** file selector library parms

/ * uindou library parameters */

488 Atari ST

ttdefine NRME 0x0001

ttdefine CLOSER 0x0002
ttdefine FULLER 0x0004

ttdefine MOVER 0x0008

ttdefine INFO 0x0010

ttdefine SIZER 0x0020

ttdefine UPRRROW 0x0040

ttdefine DNRRROM 0x0080
ttdefine VSLIDE 0x0100

ttdefine LFRRROW 0x0200
ttdefine RTRRROM 0x0400

ttdefine HSLIOE 0x0800

ttdefine
ttdefine

ttdefine

ttdefine
ttdefine

ttdefine

ttdefine

ttdefine

ttdefine
ttdefine
ttdefine

ttdefine
ttdefine
ttdefine

ttdefine
ttdefine

ttdefine

ttdefine

ttdefine
ttdefine
ttdefine

ttdefine

ttdefine
ttdeflne

WF_KIND 1
WF-NRME 2

WF—INFO 3

UF_WXYUH 4
WF_CXYWH S
WF_PXYWH G

UF-FXYWH 7

WF_HSLIDE 8

WF-VSLIDE 9
WF_TOP 10
UF_FIRSTXYWH 11

WF_NEXTXYWH 12
UF-IGNORE 13
UF_NEWDESK 14

UF_HSLSIZ IS
WF_VSLSIZ 1G

WRJUPPRGE 0

/* arrou message *✓

UR-DNPRGE

WRJUPLINE

URJDNLINE
Wfl_LFPRGE
UR_RTPRGE
WR_LFLINE
UR_RTLINE

ttdefine UM-KIND int_in[0]

ttdefine UM-HRNDLE int_ln[0]

ttdefine WM_WX int_in[l]

ttdefine WM_WY int_in[2]
ttdefine UM_WU int_in[3]

ttdefine UM_MH int_in(4]

ttdefine UM_MX lnt_in[0]
ttdefine WM—MY int_in[l]

ttdefine UC_B0RDER 0
Hdefine UC-MORK 1

ttdefine WM_WCTYPE lnt_in(0]

* * unucreate

/ * unLJopen, close , del

/# um-jopen, um_create

um_find

/ * um_calc

*✓

Header File 489

ttdefine WfLWCKIND lnt_ln[l]

ttdefine WCLWCIX int_ln[2]
ttdeflne WM-WCIV int_ln[3]
ttdefine WM_WCIU lnt_ln[4]
ttdefine WM-WCIH int_in[5]
ttdefins UM_WCOX int_jout[l]
ttdsflne WM-WCOY int^out[2]

ttdeflne HM-MCOM int_out[3]
ttdeflne UM-WCOH lnt_cut[4]

ttdeflne WM_BEGUP int_in[0]

ttdefine UM_14FIELD int_ln[l]

ttdeflne WM_IPRIVflTE int_ln[2J

/ * um_update *✓

ttdeflne WM-IKIND lnt_in[2]

ttdeflne UM_IOTITLE addr_ln[0]

for name and Info

ttdeflne WM_IX int_in[2]

ttdeflne WM_IY lnt_in[3]
ttdeflne WM_IW int_in[4]

ttdefine WM_IH int_in[5]

ttdefine MM_OX int_out[l]

ttdefine UMJDY lnt_jout[2]
ttdeflne UMJQU lnt_out[3]
ttdefine WMJDH lnt_jDUt[4J

ttdefine WM_ISLIDE int_ln[2]

ttdefine WIURECTNUM lnt_in(6]
reeource library parameters

ttdeflne RS_PFNRME addr_in[0] rs_init,
ttdeflne RS—TYPE lnt_in[0]
ttdefine RS-INDEX int_in[l]

ttdefine RS—INRDDR addr_ln[0]
ttdeflne R5JDUTRDDR addr_out[0]

tide fine RS_TREE addr_ln[0]

ttdeflne RSJDBJ int_ln[0]

ttdefine R—TREE 0
ttdefine RJDBJECT 1
ttdeflne R_TEOINFO 2

ttdefine R_ICONBLK 3
ttdefine RJBITBLK 4
ttdeflne RJ5TRING 5
ttdefine R_IMRGEDRTR 6

ttdefine R_DBSPEC ?

490 Atari ST

ttdefine R-TEPTEXT 8 / * sub ptrs in TEDINFO * /

ttdefine R—TEPTMPLT 9
ttdefine R-TEPVflLID 10
ttdafine R—IBPMASK 11 /* sub ptrs in ICONBLK * /

ttdefina R—IBPDATA 12

ttdefine R—IBPTEXT 13
ttdefine R-BIPDATA 14 / * sub ptrs in BITBLK * /

ttdefine R—FR5TR 15 /* gets addr of ptr to free strings * /

ttdefine R-FRIMG 1G /* gets addr of ptr to free images * /

/ * shell library parametsrs * /

ttdefina SH—DOEX int_in[0]

ttdefina SH_ISGR int_in[l]

ttdefina SH_ISCR int_in[2]
ttdafina SH—PCMD addr_in[0]
ttdafine 5H_PTAIL addr_in[l]

ttdefine SH_PDATA addr_in(0]

ttdefine SH—PBUFFER addr_in[0]

ttdefine SH_LEN int_in[0]

ttdefine SH-PATH addr_in[0]
ttdefine SH_SRCH addr_in[l]

GEMDEFS.H
/a * # * # * # # * # * # * /

GEMDEFS.H Common GEM definitions and miscellaneous structures. *s

/ * Copyright 1SB5 Atari Corp.
/*************«*****************#*****»****####**##***#****#»***»********/

EVENT Manager Definitions */
/* multiflags */

ttdeflne MU_KEYBD 0x0001

ttdefine MU_BUTT0N 0x0002
ttdefine MU-fll 0x0004

ttdefine MU-M2 0x0008

ttdefina MU-MESAG 0x0010

ttdeflne MU-TIMER 0x0020

keyboard states
ttdBfine K-RSHIFT 0x0001
ttdefins KJLSHIFT 0x0002
ttdafine K-CTRL 0x0004

ttdeflne K_ALT 0x0008

' * message values * /

ttdefine MNJ5ELECTED 10

ttdefine WM_REDRAW 20

ttdeflne WM_T0PPED 21
ttdafine UMJCL05ED 22
ttdeflns WM-FULLED 23
ttdafine WM_ARROWED 24
ttdefine WM_HSLID 25
ttdefine WM_VSLID 26
ttdeflne UM_SIZED 27
ttdef ins WM-J10VED 28

Header File 491

ttdefine WM-NEWTOP 29
ttdefine RCJDPEN 40

ttdefine RCJCLOSE 41

/* FORM Manager Definitions **

/ * Form flags

ttdefine FMD-STRRT 0

ttdefine FMDJGROU 1

ttdefine FMD_SHRINK 2
ttdefine FMD-FINISH 3

✓* RESOURCE Manager Definitions
data structure types *✓

ttdefine R-TREE 0

ttdefine RJDBJECT 1
ttdefine R—TEDINFO 2

ttdefine R—ICONBLK 3

ttdefine R-BITBLK 4

ttdefine RJSTRING 5 / * gets pointer to free strings

ttdefine R-IMRGEDRTR G gets pointer to free images * /

ttdefine RJOBSPEC 7

ttdefine R-TEPTEXT 8 / * sub ptrs in TEDINFO

ttdefine R—TEPTMPLT 9

ttdefine R-TEPVRLID 10

ttdefine R—IBPMRSK 11 /* sub ptrs in ICONBLK

ttdefine R_IBPDRTR 12

ttdefine R_IBPTEXT 13

ttdefine R_BIPDflTfl 14 / * sub ptrs in BITBLK **

ttdefine R_FRSTR IS ** gets addr of ptr to free strings *✓

ttdefine R-FRIMG 16 s* gets addr of ptr to free images */

/ * used in RSCRERTE.C * /

typedef
/

struct rshdr

Int rsh_vrsn;
int rsh-jobject;

int rsh_tedinfo;
int rsh_iconblk; list of ICONBLKS * /

Int rsh_bitblk;

int rsh_frstr;

int rsh_string;
int rsh_imdata; ' * image data * /

int rsh_frlmg;
int rsh_trindex;
Int rsh_nobs; / * counts of various structs * /

int rsh_ntree;
int rsh_nted;

Int rsh_nib;
int rsh_nbb;
int rsh_nstring;
int rsh_nimages;
int rsh_rssize; / * total bytes in resource * /

> RSHDR;
ttdefine F_fiTTR file attr for dos_create

492 Atari ST

' * UINDOU Manager Definitions */

Uindou Rttrlbutes * /

((define NAME 0x0001

((define CLOSER 0x0002
((define FULLER 0x0004

((define MOVER 0x0008
((define INFO 0x0010
((define SIZER 0x0020

ttdefine UPRRROU 0x0040
((define DNRRROU 0x0080
ttdefine VSLIDE 0x0100

((define LFRRROU 0x0200

((define RTRRROU 0x0400

((define HSLIDE 0x0800

uindLxreate flags */
((define UC_B0RDER 0
((define UC_W0RK 1

** uind_get flags
((define WF_KIND 1
((define UF-NRME 2

ttdeflne UF_INFO 3

((define UF_MORKXYUH 4
tt da fine UF_£URRXYUH 5

ttdefine UF-PREVXYUH 6

((define UF_FULLXYUH 7
((define WF_HSLIDE 8

((define UF_VSLIDE 9
ttdefine UF_T0P 10

ttdefine UF_FIRSTXYUH 11

((define UF_NEXTXYUH 12
((define UF_RESVD 13
((define UF_NEWDESK 14

((define UF_HSLSIZE IS
((define UF_VSLSIZE 16
((define UFJ5CREEN 17

/ * update flags */

((define END_UPDRTE 0

((define BEGJUPDRTE 1

((define ENDJ1CTRL 2
ttdefine BEG_MCTRL 3

/ * GRRPHICS Manager Definitions *s

/ * Mouse Forms **

ttdefine RRROU 0

ttdefine TEXTJCRSR 1

ttdefine HOURGLRSS 2

ttdefine POINT_HRND 3
ttdeflne FLRT-HRND 4
ttdeflne THINJCROSS 5
ttdefinB THICKJCROSS 6
ttdeflne OUTLNJCROSS 7
ttdefine USER—DEF 255

((define MJOFF 256
((define MJDN 257

Header File 493

MISCELLANEOUS Structures

typedef struct fdbstr

<
long
Int

Int

int
Int

Int

Int
int

Int

fd_addr;

> FDB;

fd-ju;

fd_h;

fd_uduidth;
fd-stand;

fd_nplanes;

fd_rl;
fd_r2;

fd_r3;

typedef struct mfstr

<
Int

int
int
int

int
int
int

> MFORM;

mf_xhot;

mf_yhot;
mf_nplanes;

mf_fg;

mf-bg;
mf_masl<[lG];
mf_data[16];

OBDEFS.H
ttdefine ROOT 0

ttdefine MAX_LEN 81

ttdefine MAX_DEPTH 8

ttdefine IP-HOLLOU 0
ttdefine IP-1PATT 1

ttdeflne IP-2PATT 2
ttdefine IP_3PATT 3
ttdeflne IP—4PATT 4
ttdefine IP-5PATT 5

ttdeflne IP_£PATT 6
ttdefine IP.JSOLID 7

s* Memory Form Definition Block * /

/ * Mouse Form Definition Block */

max string length

** max depth of search or drau *s

/ * Inside patterns *■'

ttdefine MD-REPLACE 1 gsx modes
ttdefine MD-TRRNS 2

ttdefine MD-XOR 3
ttdefine MD-ERRSE 4

ttdefine RLI_WHITE 0 bit bit rules
ttdefine S_AND_D 1
ttdeflne S_AND_NOTD 2
ttdefine SJONLY 3
ttdefine NOTS_AND_D 4
ttdeflne DJDNLY 5
ttdefine S_X0R_D 6

494 Atari ST

ttdeflne S_OR_D 7

ttdeflne NOT—SORD 8
ttdeflne NOT—SXORD 9

ttdeflne D—INVERT 10

ttdeflne N0T_D 11

ttdeflne S-OR—NOTD 12
ttdeflne NOTSJDR-D 13
ttdeflne NOT—SANDD 14

ttdeflne RLI_BLACK 15

ttdeflne IBM 3

ttdeflne SMALL S

ttdeflne G-BOX 20
ttdeflne G_TEXT 21
ttdeflne G-BOXTEXT 22

ttdeflne G-IMAGE 23
ttdeflne G-PROGDEF 24

ttdeflne G—IBOX 25

ttdeflne G-BUTTON 2G
ttdef Ine G-BOXCHAR 27

ttdeflne G_STRING 28
ttdeflne G_FTEXT 29

ttdeflne G-FBOXTEXT 30

ttdeflne G_ICON 31

ttdeflne G—TITLE 32

ttdeflne NONE 0X0

ttdeflns SELECTABLE 0x1

ttdeflne DEFAULT 0x2

ttdeflne EXIT 0x4

ttdeflne EDITABLE 0xB

ttdeflne RBUTTON 0x10

ttdeflne LASTOB 0x20
ttdeflne TOUCHEXIT 0x40

tide fine HIDETREE 0x80

ttdeflne INDIRECT 0x100

ttdeflne NORMAL 0X0

ttdeflne SELECTED 0x1
tide fine CROSSED 0x2

ttdeflne CHECKED 0x4

ttdeflne DISABLED 0x8

ttdeflne OUTLINED 0x10

ttdeflne SHRDOUED 0x20

ttdefine WHITE 0

ttdeflne BLACK 1
ttdeflne RED 2
ttdeflne GREEN 3

ttdeflne BLUE 4
ttdeflne CYRN 5
ttdeflne YELLOW 6

font types * /

Graphic types of obs * '

Object flags */

Object states **

/ * Object colors

Header File 495

ttdefine MflGENTfl 7
ttdefine LWHITE B

ttdefine LBLACK 9
ttdefine LRED 10
ttdefine LGREEN 11

ttdefine LBLUE 12
ttdefinB LCYflN 13
ttdefine LYELLOU 14
ttdefine LMfiGENTA 15

ttdefine EDSTART 0
ltdeflne EDINIT 1
ttdefine EDCHflR 2
ttdefine EDEND 3

ttdefine TEJLEFT 0

ttdefine TE-RIGHT 1
ttdefine TEJCNTR 2

editable text field definitions

editable text justification

✓* Structure Definitions **

typedef struct object

<
Int ob-next;

int ob_head;
int ob_tail;
unsigned int ob_type;

unsigned Int ob_flags;
unsigned Int cb^state; ' *

char *olxjspec; /*

int ob_x;

int ob_y;
Int ob_uidth;

Int ob_height;
> OBJECT;

' * -> object's next sibling * /

** -> head of object's children * /

/ * -> tail of object's children
type of object- BOX, CHRR,... »/
flags

state- SELECTED, OPEN,
"out1- -> anything else **

upper left corner of object
✓* upper left corner of object

s* uidth of obj

/ * height of obj *s

} ORECT;

> GRECT;

struct orect

struct orect
int o_x;
Int o_y;
int o_u;
int o_h;

struct greet

int g-x;
Int g-y;
int g-u;
Int g_h;

496 Atari ST

typedef struct textuBdinfo

<
char *te_ptext;

char *te_ptmplt;
char *te_pvalid;

int te_font;

int te_Junkl;
int te-Just;
int te-color;

int te_Junk2;

int te_thickness;
int te_txtlen;

int te_tmplen;
> TEDINFO;

typedef struct lcon_block

<
int *ib_pmask;

int *ib_pdata;
char *ib_ptext;
Int lb^char;

Int lb_xchar;

int ib_ychar;

int ib_xicon;
Int ib_yicon;

Int lb-juicon;

int ib-hlcon;
int lb-xtext;
Int lb_ytext;

Int ib_jutext;
Int ib_htext;

> ICONBLK;

typedef struct bit_block

<
int *bi_pdata;

int bl^ub;

int bi_hl;

int bi_x;
int bi_y;

int bl^color;
} BITBLK;

typedef struct appl-blk

<
int (*ub.jcode) ();
long ub_parm;

> flPPLBLK;

typedef struct parmJblk

<
OBJECT *pb_tree;
int pb^obj;

** ptr to text (must be 1st)

/ * ptr to template #/

ptr to validation chrs.
/ * font */

s* junk word
/ * justification- left, right__

color information word
/ * Junk uord
/ * border thickness */’

y* length of text string *<'

s* length of template string *s

s* ptr to bit forms data
s* uidth of form in bytes

** height in lines
✓* source x in bit form
✓* source y in bit form *s

/* fg color of bit * /

Header File 497

int pb_pravstate;

int pb_currstate;
int pb_x, pb_y, pb_u, pb_h;
int pb_xc, pb^yc, pb_uc, pb_hc;
long pb_parm;

> PARMBLK;

STDIO.H
ttifndef _BUFSIZE

ttdeflne JBUFSIZE S12
tide fine _NFILE 73

typedef struct —lobuf {
char *_ptr;

int -jcnt;
char *_base;
int _flag;

Int _fd;
long -mark; / * position relative to start of file of -base
int -bufsize; s* buffer size for this file *s

> FILE;
extern FILE _ lob[_NFILE);

ttdefine stdln (&_iob[0])
ttdefine stdout (&_lob[l])
ttdefine stderr (&_lob[2])

ttdefine -READ 01

ttdefine -WRITE 02
ttdefine -APPEND 04

ttdefine JUNBUF 010

ttdefine -BIGBUF 020
ttdefine -LINBUF 0400

ttdefine -EOF 040

ttdefine -ERR 0100
ttdefina -DIRTY 0200 buffer uas changed

ttdefine NULL 0L must be long since it can be passed as a parameter
ttdeflne EOF (-1)

ttdefine gatc(p) ((p)->_cnt >= 0 ? *(p)->_ptr++ & 0377 : _fillbuf(p))

ttdefine getchar() getc(stdln)
ttdefine putc(x,p) (--(p)->_cnt >= 0 ? (*(p)->_ptr++ = (x)) & 0377 : n

_ flushbuf((x),p))
ttdefina putchar(x) putc(x,stdout)

ttdeflne feof(p) ((p)->_flag&_EOF)
ttdeflne ferror(p) ((p)->_flag&_ERR)
ttdefine claarerr(p) ((p)->_flag &= "(_ERR | -EOF))
ttdefine flleno(p) ((p) ->_fd)
ttdefine abs(x) ((x)<0?-(x) : (x))

ttdefine rand() (lnt)(_seed = —seed * G907 + 130253)

ttdefine srand(x) —seed = x;

498 Atari ST

extern FILE *fopen();

extern long ftell();

extern char *gets();
extern char *fgets();

extern char *malloc(), *calloc();
extern long _aeed;

typedef long jmp_buf[9j;

ttendlf

CTYPE.H
ttifndBf —tolouer

ttdefine _tolower(c) c+32
ttdefine _ toupper(c) c-32

ttdefine isalpha(c) c>=1fl1 && c<= 'Z' || c>='a
ttdefine isupper(c) c>=1fl1 && c<= ■Z')
ttdefine islouer(c) c>='a' && c<= •z*)
ttdefine isdigit(c) c>='0' && c<= •9*)
ttdefine isalnum(c) isalpha(c) || isdigit(c))
ttdef ins isspace(c) c==* 1 II C== •Nt* || C==‘
ttdefine Ispunct(c) c>=' 1 && !lsalnum(c))
ttdefine isprint(c) c>=040 && c<=0176)
ttdefine iscntrl(c) c>=0 && (c==0177 || c<' '
ttdefine isascii(c) c>=0 && c<0200)

ttendif

c=='Nf*)

ERRNO.H
extern int errno; /* defined In exlt.c *s

A P P E N D I X C

Keycode Values

In text-based computer environments, the computer and operating sys
tem would encode each alphanumeric character with a particular
value. Whether in a data file, on a communication line, or from the
keyboard, a particular value could be interpreted as the appropriate
character. The most popular mapping of numbers to characters for
personal computers is called ASCII (American Standard Code for
Information Interchange). ASCII uses 7 of the 8 bits in a byte. This
defines 128 characters for use by the computer.

Recently, many personal computers (including the Atari) have de
fined graphic characters to the remaining 128 characters that can be
represented by one byte (one byte can represent 256 different values).
Unfortunately, these characters are generally a hodge-podge of pic
tures like smiling faces, Greek or Hebrew letters, and so on, and they
are hardly standardized from one computer to the next On top of this,
there are now more than 256 possible keystrokes that can be pressed
by the user, such as combinations with the Control, Shift, and Alter
nate keys with the rest of the keyboard.

To alleviate this problem of understanding the data from the user,
the GEM VDI defines a set of 16-bit values to represent the keystrokes
entered by the user. The 16 bits are divided into two bytes. If the char
acter is part of the ASCII set, the low byte contains the ASCII value.
Otherwise it has the value of 0. For example, the letter “A” has an
ASCII value of 65, so its low byte has the value of 65. The high byte
contains an arbitrary value assigned by the VDI to differentiate the
various keys on the keyboard. Below is a table containing the high and
low byte values and the keystrokes required to create this keycode. The
values shown are in hexadecimal.

500 Atari ST

GEM VDI Standard Keycode
Values

High
Byte

Low
Byte Keystroke

03 00 Control 2
IE 01 Control A
30 02 Control B
2E 03 Control C
20 04 Control D
12 05 Control E
21 06 Control F
22 07 Control G
23 08 Control H
17 09 Control I
24 OA Control J
25 OB Control K
26 OC Control L
32 OD Control M
31 OE Control N
18 OF Control 0
19 10 Control P
10 11 Control 0
13 12 Control R
IF 13 Control S
14 14 Control T
16 15 Control U
2F 16 Control V
11 17 Control W
2D 18 Control X
15 19 Control Y
2C 1A Control Z
1A IB Control [
2B 1C Control \
IB ID Control]
07 IE Control 6
00 IF Control —
39 20 Space
02 21 !
28 22 n
04 23 #
05 24 $
06 25 %
08 26 &
28 27 *
OA 28 (
OB 29)
09 2A •
OD 2B <
33 2C t

OC 2D >
34 2E
35 2F /

Keycode Values 501

[continued)

High
Byte

Low
Byte Keystroke

OB 30 0
02 31 1
03 32 2
04 33 3
05 34 4
06 35 5
07 36 6
08 37 7
09 38 8
OA 39 9
27 3A :
27 3B J

33 3C I
OD 3D
34 3E }
35 3F ?
03 40 0
IE 41 A
30 42 B
2E 43 C
20 44 D
12 45 E
21 46 F
22 47 G
23 48 H
17 49 I
24 4A J
25 4B K
26 4C L
32 4D M
31 4E N
18 4F 0
19 50 P
10 51 9
13 52 R
IF 53 S
14 54 T
16 55 U
2F 56 V
11 57 W
2D 58 X
15 59 Y
2C 5A Z
1A 5B [
2B 5C \
IB 5D 1
07 5E -

OC 5F _ (Underscore)
29 60 t

502 Atari ST

(continued)

High Low
Byte_____Byte_________Keystroke

IE 61 a
30 62 b
2E 63 c
20 64 d
12 65 e
21 66 f
22 67 g
23 68 h
17 69 i
24 6A j
25 6B k
26 6C 1
32 6D m
31 6E n
18 6F o
19 70 p
10 71 q
13 72 r
IF 73 s
14 74 t
16 75 u
2F 76 v
11 77 w
2D 78 x
15 79 y
2C 7A z
1A 7B {
2B 7C |
IB 7D }
29 7E ~
OE 7F Delete
81 00 Alternate 0
78 00 Alternate 1
79 00 Alternate 2
7A 00 Alternate 3
7B 00 Alternate 4
7B 00 Alternate 5
7D 00 Alternate 6
7E 00 Alternate 7
7F 00 Alternate 8
80 00 Alternate 9
IE 00 Alternate A
30 00 Alternate B
2E 00 Alternate C
20 00 Alternate D
12 00 Alternate E
21 00 Alternate F
22 00 Alternate G
23 00 Alternate H

Keycode Values 503

(continued)

High Low
Byte Byte___________Keystroke

17 00 Alternate I
24 00 Alternate J
25 00 Alternate K
26 00 Alternate L
32 00 Alternate M
31 00 Alternate N
18 00 Alternate 0
19 00 Alternate P
10 00 Alternate Q
13 00 Alternate R
IF 00 Alternate S
14 00 Alternate T
16 00 Alternate U
2F 00 Alternate V
11 00 Alternate W
2D 00 Alternate X
15 00 Alternate Y
2C 00 Alternate Z
3B 00 FI
3C 00 F2
3D 00 F3
3E 00 F4
3F 00 F5
40 00 F6
41 00 F7
42 00 F8
43 00 F9
44 00 F10
54 00 F ll
55 00 F12
56 00 F13
57 00 F14
58 00 F15
59 00 F16
5A 00 F17
5B 00 F18
5C 00 F19
5D 00 F20
5E 00 F21
5F 00 F22
60 00 F23
61 00 F24
62 00 F25
63 00 F26
64 00 F27
65 00 F28
66 00 F29
67 00 F30
68 00 F31

504 Atari ST

(continued)

High
Byte

Low
Byte Keystroke

69 00 F32
6A 00 F33
6B 00 F34
6C 00 F35
6D 00 F36
6E 00 F37
6F 00 F38
70 00 F39
71 00 F40
73 00 Control left arrow
4D 00 Right arrow
4D 36 Shift right arrow
74 00 Control right arrow
50 00 Down arrow
50 32 Shift down arrow
48 00 Up arrow
48 38 Shift up arrow
51 00 Page down
51 33 Shfit page down
76 00 Control page down
49 00 Page up
49 39 Shift page up
84 00 Control page up
77 00 Control home
47 00 Home
47 37 Shift home
52 00 Insert
52 30 Shift insert
53 00 Delete
53 2E Shift delete
72 00 Control prin t screen
37 2A Print screen
01 IB Escape
OE 08 Backspace
82 00 Alternate —
83 00 Alternate +
1C OD Carriage return
1C OA Control carriage return
4C 35 Shift num eric pad 5
4A 2B Numeric pad —
4E 2B Numeric pad +
OF 09 Tab
OF 00 Backtab
4B 00 Left arrow
4B 34 Shift left arrow
4F 00 End
4F 31 Shift end
75 00 Control end

A P P E N D I X D

System Variables

The Atari ST Basic Input/Output System (BIOS) uses a set of variables
that define various characteristics of the computer. These variables
reside at specific locations in memoiy. Atari has guaranteed that these
memoiy locations will not change with future revisions to the ST
BIOS. Therefore, if a program needs to access this information, it will
always be able to find it at the same location on any ST machine. In
order to read to or write from these addresses, the program m ust be in
Supervisor mode.

The list below gives the address, length, name, and description of
each location. The name is the common variable name used to refer
ence this location. For convenience, most programmers use the vari
able names given here when working with the particular location.

NOTE: The information presented here is for completeness and
general reference. Those readers who do not have experience in work
ing with operating systems should avoid changing any of these values.
If you want to use any of these variables, you should obtain the com
plete Atari ST documentation before continuing.

System Variables
etv-tim er long 0x400

System Timer interrupt vector. Every 50 Hz, the routine pointed to
by this value is called to m aintain the system’s date and time of day.
This is the same vector as the GEMDOS logical vector 0x100, Timer
Tick.
etv.critic long 0x404

506 Atari ST

Critical Error Handler vector. This location points to an error han
dling routine for certain error (e.g., disk errors and media changes).
This is the same vector as the GEMDOS logical vector 0x101, Critical
Error Handler.
eta-term long 0x408

Process Terminate vector. The routine pointed to by this value is
called when a process terminates. This is the same vector as the
GEMDOS logical vector 0x102, Terminate Handler.
etv-xtra 5 long 0x40C

Each long value is a pointer to a routine corresponding to the
GEMDOS logical vectors 0x103 through 0x107. These vectors are
reserved for use by later versions of GEMDOS.
memvalid long 0x420

This location holds the value 0x752019F3. This value is used in con
junction with location memval2 to verify a successful cold start (that
is, power on or pushing the reset button).
memcntlr byte 0x424

The value at this address contains the value used to configure the
memoiy controller. The low four bits at this location specify the
memoiy layout Some common values are:

Memory size Value
128K 0
512K 4
256K (2 banks) 0
1MB (2 banks) 5

resvalid long 0x426
If this location contains the number 0x31415926 on a system

RESET, system execution jumps to the location in resvector.
resvector long 0x42A

System RESET trap vector. See description for resvalid.
phystop long 0x42E

The value here is the address of the physical end of RAM. This is the
address of the first unusable byte (e.g., 0x80000 on a 512K machine).
-membot long 0x432

System Variables 507

This location contains the address of the bottom of available
memory. The GEM BIOS Getmpb() function uses this value as the
start of the transient program areas (TPA).
_memtop long 0x436

Top of available memory. The GEM BIOS Getmpb() function uses
this value as the end of the TPA.
memval2 long 0x43A

This location contains the number 0x237698AA. See memvalid.
flock WORD 0x43E

Locks usage of the direct memory access (DMA) chip. A nonzero
value indicates that the DMA is in use.
seekrate WORD 0x440

Default floppy disk seek rate. Only bits 0 and 1 are used. They have
the following meanings:

Bits Time
00 6 ms
01 12 ms
10 2 ms
11 3 ms (default)

_timer_ms WORD 0x442
System timer calibration in milliseconds (ms). This value is usually

set a 0x14 (20 decimal). The value is returned by the GEM BIOS func
tion tickcal().
-fverify WORD 0x444

Floppy disk verify flag. A zero value here means that no verification
is done for writing operations. A nonzero value means that all write
operations to floppy disks are verified through a read. Verification on
is the default
-bootdev WORD 0x446

The number of the device used to boot the system.
palinode WORD 0x448

Video mode flag. A nonzero value indicates that the PAL mode (50
Hz video) is in use. A zero value means that the NTSC mode (60 Hz
video) is in use.
defshiftmd byte 0x44A

508 Atari ST

This value indicates the color resolution to use if the system is
forced to switch from a monochrome monitor to a color monitor.
sshiftm d WORD 0x440

This value is equal to the current setting for the screen resolution
hardware register. The values have the following inteipretations:

0 320 x 200 x 4 (low resolution color)
1 640 x 200 x 2 (medium resolution color)
2 640 x 400 x 1 (high resolution monochrome)

_v_base_ad long 0x44E
Address of the physical screen memoiy. This value points to a

continuous block of 32,000 bytes that starts on a half-page (256 byte)
boundary.
vblsem WORD 0x452

A semaphore (mutual exclusion flag) to ensure that only one process
at a time uses the vertical-blank interrupt handler. A value of one
allows vertical blank processing.
nvbls WORD 0x454

Number of pointers in the vertical-blank queue. This value is set to 8
on system RESET.
-vblqueue long 0x456

This variable points to a list of pointers to routines used as vertical-
retrace handlers. All of the handlers are executed at each vertical
retract interrupt.
coloiptr long 0x45A

A pointer to a color palette. This variable points to an array of 16
WORDs that define the color palette. The array is loaded during the
next vertical retrace. If colorptr contains the NULL value, no palette is
loaded. A NULL is placed into colorptr after the palette is loaded.
screenptr long 0x45E

The address of the new physical screen memoiy. During the next
vertical retrace, the address in screenpt is loaded into -v-bas-ad, then
a NULL is placed into screenpt. A NULL value indicates no change to
-▼-bas-ad.
-vbclock long 0x462

A count of the number of vertical-blank interrupts that have oc
curred since the last system RESET.

\

System Variables 509

_frclock long 0x466
The number of vertical retrace interrupts that were processed (i.e.,

not blocked by vblsem).
hdv-Jnit long 0x46A

A pointer to the hard disk initialization routine. This will be NULL if
it is not used.
swv_vec long 0x46E

The address of a routine that is executed when the monitor is phys
ically changed (i.e., when the monochrome monitor is plugged or
unplugged). Default address is the system RESET routine.
hdv-bpb long 0x472

The address of a routine that returns the BIOS parameter block
(BPB) for a hard disk. A NULL value indicates that this location is
unused. This routine uses the same parameters and return values as
the GEM BIOS function Gefbpb().
hdv_rw long 0x476

The address to the routine that reads from and writes to the hard
disk. A NULL indicates unused. The parameters and return values are
the same as the Rwabs() GEM BIOS function.
hdv-boot long 0x47A

The address of the routine to boot from the hard disk (NULL if
unused).
hdv_mediach long 0x47E

The address of the routine to detect if a change in the hard disk’s
media See GEM BIOS function Mediach().
-.cmdload WORD 0x482

A nonzero value tells the system to try to load and execute the pro
gram COMMAND.PRG from the boot device. The boot sector can set
this location to nonzero so that an application may be loaded instead
of the GEM Desktop.
conterm byte 0x484

The bits in this location determine the console attributes as follows:

Bit____________________ Function_________________
0 1 = enable audible key dick
1 1 = enable auto key repeat
2 1 = ring bell when ASCII value 7 is sent to CON:
3 1 = return the current value of kbshift in bits

510 Atari ST

24-31 when Bconin() is called. See GEM BIOS function Kbshiftf).
themd long 0x48E

Address of a memoiy descriptor structure (struct MD). The memoiy
descriptor defines the GEMDOS TPA limits which are set by a call to
the GEM BIOS function Getmpb(). Once GEMDOS has been initiated,
the structure values may not be changed. See Getmpb() for details on
the memoiy descriptor structure.
savptr long 0x4A2

A pointer to an area in memoiy used to save the CPU registers dur
ing BIOS function calls.
_nflop8 WORD Qx4A6

The number of floppy disks physically attached to the system (0, 1,
or 2).
sav-context long 0x4AE

Address of a memoiy location used to save the processor context
state when a catastrophic error occurs (e.g.t an odd address trap or
divide by zero).
-butt. 2 longs 0x4B4

Two buffer control block (BCB) pointers. The first BCB contains
information about the data sectors on the disk. The second BCB
defines the sectors for the file allocation table (FAT) and the directoiy.
A BCB has the following format:

struct BCB {
struct BCB *b_link; /* next BCB */
WORD b_bufdrv; /* drive # or — 1 */
WORD b_buftyp; /* buffer type */
WORD b_bufrec; /* record# cached here */
WORD b_dirty; /* dirty flag */
DMD *b_dm; /* Drive Media Descriptor */
char *b_bufr; /* the buffer itself */

}:

The DMD structure is not defined in the GEM documentation.
_hz_200 long 0x4BC

This is the number of ticks from the 200 Hz timer. This value is
divided by four to obtain the 50 Hz system timer.
the_env byte[4] 0x4BE

The default environment string initially set to four NULL characters.
-drvbits long 0x4C2

\

System Variables 511

This Is the value returned by the Drvmap() GEM BIOS function.
-dskbufjp long 0x4C6

The address of a 1,024-byte disk buffer.
_prt-cnt WORD 0x4EE

The number of times the Altemate-Help key combination has been
pressed. This value is initially set at —1. A value of 0 initiates the
screen dump routine to output the screen display to the printer. A
value greater than 0 causes the screen dump routine to abort and
resets -prt-cnt to — 1.
-sysbase long 0x4F2

The address of the base of TOS. TOS may reside in ROM or RAM. If
.sysbase is greater than phystop, TOS is in ROM.
-shell-p long 0x4F6

The address of data used by a shell.
encL.os long 0x4FA

The address of the byte immediately following the last by used by
TOS. This is the start of the TPA
exec_os long 0x4FE

The address of a shell program. The shell program is executed by the
BIOS once system initialization has completed. This address normally
points to the AES.

Alphabetical Listing o f Atari ST System Variables
-bootdev WORD 0x446
_bufl 2 longs 0x4B4
-cmdload WORD 0x482
colorptr long 0x45A
conterm byte 0x484
defshiftmd byte 0x44A
-drvbits long 0x4C2
-dskbufp long 0x4C6
end_os long 0x4FA
etv_critic long 0x404
etv_term long 0x408
etv_timer long 0x400
etv_xtra longs 0x40C
exec_os long 0x4FE
flock WORD 0x43E
-frclock long 0x466

512 Atari ST

-fverify WORD 0x444
hdv_boot long 0x47A
hdv_bpb long 0x472
hdv_lnit long 0x46A
hdv_mediach long 0x47E
hdv_rw long 0x476
_hz_200 long 0x4BC
_membot long 0x432
memcntlr byte 0x424
_memtop long 0x436
memval2 long 0x43A
memvalid WORD 0x420
_nflops WORD 0x4A6
nvbls WORD 0x454
palmode long 0x448
phystop long 0x42E
_prt_cnt WORD 0x4EE
resvalid long 0x426
resvector long 0x42A
sav_context long 0x4AE
savptr long 0x4A2
screenpt long 0x45E
seekrate WORD 0x440
_shell_p long 0x4F6
sshiftmd WORD 0x44C
swv_vec long 0x46E
-sysbase long 0x4F2
the_env byte(4] 0x4BE
themd long 0x4BE
_timr_ms WORD 0x442
_v_base_ad long 0x44E
_vbclock long 0x462
_vblqueue long 0x456
vblsem WORD 0x452

\

A P P E N D I X B

Predefined Message
Events

Because GEM is a multitasking operating environment several appli
cations are executing at any given time. Among these applications are
routines contained in the Application Environment Services (AES)
such as the dispatcher and screen manager. In a m ultitasking situa
tion, a mechanism m ust be provided to allow for interaction between
applications and between the user and the system. GEM provides this
mechanism through messages.

An application may send a message to any other application. The
receiving application is issued a message event to indicate that a mes
sage has arrived. When the receiving application acknowledges the
message event a 16-byte message buffer is sent to the receiving pro
gram. The message buffer consists of an eight WORD array and has
the following format:

Element Use
0 Message type
1 ID num ber of sending application
2 Message length in excess of 16 bytes
3-7 Data dependent upon message type

If a message has more than 16 bytes, the number of bytes remaining
to be read is the value in element 2 of the message buffer. The remain
ing bytes m ust be read with a call to the AES function appl_read().

The AES has several predefined message types. Below is a list of
these message types along with its defined constant name, a descrip
tion, and the usage of the remaining message buffer elements.

514 Atari ST

AES Predefined Messages
TVpe Constant
10 MN_SELECTED

This message is sent when a user selects an active menu item.
Element 3—the object index of the menu title selected.
Element 4—the object index of the menu item selected.

20 WM JREDRAW
This message indicates that some portion of the window’s work area

needs to be redrawn
Element 3—handle of the window to be redrawn
Element 4—x coordinate of the redraw area
Element 5—y coordinate of the redraw area
Element 6—width of the redraw area
Element 7—height of the redraw area

21 WM_TOPPED
This message tells an application that a window is to be moved to

the top and made active.
Element 3—the handle of the window

22 WM_CLOSED
This message is sent when the user has requested the window to be

closed.
Element 3—the handle of the window to dose

23 WM-FULLED
When the user clicks the mouse inside a window’s full box, this

message is sent to the application owning the window.
Element 3—the handle of the window

24 WM-ARROWED
This message informs the application when a user has clicked the

mouse in the arrow or scroll bar areas of the window.
Element 3—the handle of the window
Element 4—the control area used, as follows:

0 = page up
1 = page down
2 = row up
3 = row down
4 = page left
5 = page right
6 = column left
7 = column right

Predefined Message Events 515

Page actions are caused by interactions with the scroll bars. Row and
column actions are caused by the arrows.
25 WM_HSLID

This message informs the application of a new position requested
for the horizontal slider.

Element 3—the handle of the window
Element 4—requested slider position (0-1000)

26 WM_VSLID
This message informs the application of a new position requested

for the vertical slider.
Element 3—the handle of the window
Element 4—requested slider position (0-1000)

27 WM-SIZED
This message indicates that the user has requested a new window

size. The coordinates given by this message include the border control
areas for the window.

Element 3—the handle of the window
Element 4—the x coordinate of the window (usually the current

coordinate)
Element 5—the y coordinate of the window (usually the current

coordinate)
Element 6—the requested width
Element 7—the requested height

28 WM.MOVED
This message tells the application that the user has requested a new

location for the window. The coordinates given by this message include
the border control areas for the window.

Element 3—the handle of the window
Element 4—the requested x coordinate
Element 5—the requested y coordinate
Element 6—the requested width (should remain the same)
Element 7—the requested height (should remain the same)

29 WM_NEWTOP
This message indicates that one of the application’s windows has

been placed on top and is the new active window.
Element 3—the handle of the window

30 AC_OPEN
This message is sent to a desk accessory when the user has selected

it from the Desk menu.
Element 3—the ID as returned by the menu_register() call

516 Atari ST

31 AC-CLOSE
This message is sent to a desk accessoiy in any one of the following

conditions:
the current application has ju st terminated
the screen is about to be cleared
the window manager structure are about to be reinitialized

The desk accessoiy should delete any window it owns from the AES.
Element 3—the ID as returned by the menu_regisfcer() call

A P P E N D I X F

GEM BIOS and
DOS Error Codes

All error numbers are negative and fall Into two categories. The num
bers ranging from — 1 to —31 are BIOS errors, and numbers ranging
from —32 to —127 are DOS errors.

BIOS Error Codes

Number Description
0 OK (no error)
- 1 Error (general)
- 2 Drive not ready
- 3 Unknown command
- 4 CRC error
- 5 Bad request
- 6 Seek error
- 7 Unknown media
- 8 Sector not found
- 9 Out of paper
-1 0 Write fault
-1 1 Read fault
-1 3 Write on write-protected media
-1 4 Media change detected
-1 5 Unknown device
-1 6 Bad sectors on format
-1 7 Insert other disk (request)

Error —17 is actually a request from the BIOS for another disk to be
inserted into drive A. This allows GEMDOS to think it has two drives
on a single drive system.

518 Atari ST

GEMDOS Error Codes

Number Description
-32 Invalid function number
-33 File not found
-34 Path not found
-35 Handle pool exhausted
-36 Access denied
-37 Invalid handle
-39 Insufficient memory
-40 Invalid memory blodt address
-46 Invalid drive specification
-47 No more files
-64 Range error
-65 GEMDOS internal error
-66 Invalid executable file format
-67 Memory block growth failure

A P P E N D I X G

Listing for
File EXTRA.C

The function rc_intersect() is not part of the GEM system. Therefore it
is not documented as part of GEM. However, it is used in the example
programs for both the Megamax and the Atari development system. In
case your C programming system does not include this function in its
libraries, the source code is provided below. The file shown is the file
used by the Megamax system. For a description of the function’s
usage, see Appendix A or Chapter 12.

ttlnclude <obdafs.h>
ttlnclude <gemdBfs.h>
ttlnclude <osblnd.h>

ttdeflne UORD Int

UORD mln(a, b)

UORD a, b;

<
return ((a < b) ? a : b);

>

UORD max(a, b)
UORD a, b;

{
return ((a > b) ? a : b);

>

UORD rc_lntersect(pl, p2)

GRECT *pl, *p2;

<
UORD tx, ty, tu, th;

520 Atari ST

tu = tnln (p2->g_x + p2->g_w, pl->g_x + pl->g_u);
th = mln (p2->g_y + p2->g_h, pl->g_y + pl->g_h);

tx = max (p2->g_x, pl->g_x);

ty = max (p2->g^y, pl->gjy);
p2->g_x = tx;

p2->g_y = ty;

p2->g_jw = tw - tx;
p2->g_h = th - ty;

return ((tu > tx) && (th > ty));

Index

A
AES. 5. 9. 212-241

boxes, 215
alert box, 215
dialog box, 215
error box, 215

components of, 212-214
desk accessoiy buffer, 213
limited multitasking kernel and

dispatcher, 213
menu/alert buffer, 212-213
shell. 213
subroutine libraries, 212,217-218

events, 217
function names, naming conventions,

254-255
global arrays, 9
menus, 214-215

menu bar, 214
menu items, 214
menu titles, 214-215
program MENU1, 257-265
program MENU2,265-274
program MENU RSC, 255-257

message pipe, 217
object structures, 220-231

APPLBLK structure, 229-230
BITBLK structure, 228-229
ICONBLK structure, 227-228
object flags, 222-223
object state definitions, 221
object types, 223-225
PARMBLK structure, 230-231
structure/arrangement of tree,

220-225

TEDINFO structure, 225-227
object trees, 218-220

children in, 218
dialog box object tree, 219
radio button, 220
root In. 218

program LISTER. 274-289
windows, 215-217

components of, 215-217
work area, 217

Alert box, 215
Alignment of text 75-76

center text alignment 76
horizontal text alignment 75-76
vertical text alignment 75,76

AND operator, logic operations, 18
And program-writing, XBIOS, 6-7
Angles, 72-73

measurement method. 72-73
tenths of degrees, 72-73

rotation angle, setting for text output
74

Animation
animating columns, 111-112
base values, 112, 113
freeing memory for second screen,

113
output 113-114
program BOUNCE, 165-182
program writing, primaiy objective,

181
refresh cycle, 112
size of squares, 106
smoother look for, 112
speed. I l l
with two bit maps. 112-113,114

522 Atari ST

Animation
vertical boxes, 112
vertical interrupt 112
See also Raster, program BOUNCE.

APPLBLK structure, 229-230
Application Environment Services, See

AES.
Applications manager, 254
Arc, 72, 73

counterclockwise drawing of, 73
elliptical arc, 73

Arrow shape
holding total number of points, 65
line-end styles, 67-68
line styles, 66-67
location of, 65
marker types, 68-69
scaling of markers, 69
size of, 65
width of, 66,67

Assembly language, 7, 9
Attributes, resetting of, 70

B
Bios(), 36
BITBLK structure, 228-229
Bit map. 13, 14-18,94-114

allocating bit map, 103-104
allocation of memoiy, 103-104
long type cast operator, 103-104
setting base addresses, 104

animation, 106-114
animating columns, 111-112
base values, setting, 112,113
freeing memoiy for second screen,

113
output nature of, 113-114
refresh cycle, 112
size of squares, 106
smoother look for, 112
speed. Illusion of motion. I l l
with two bit maps, 112-113, 114
vertical boxes drawing, 112
vertical interrupt 112

character pointers, 99
half-page boundary, 95.104
implementation of, 94-95
location of. 13
logical base address. 98
mapping bits, equation for, 97-98
memory, 95-97

allocation of bytes, 95,103-104
base address. 96
linear storage. 96
mapping process. 95-96
refresh rate, 97
rows on video display, 96
words as access to. 95

physical base address, 98

quick method of creating graphics, 13
raster as, 139-140
representation. 20
second bit map. 104-106

logical screen base address, setting,
105-106

physical base address setting, 106
replacing old bit map, 105
setting screen, 104

and text appearance, 15-18
use of, 15-18
uses for, 14-18

Bit values, text effect 76
BOX, 223, 224
Box art program

flow for program, 137-138
primary function, 131
replace mode, 138
size of box, 131
transparent mode, 138
writing modes, 138

BOXCHAR, 223. 224
Boxes

alert box. 215
dialog box. 215
error box, 215

BOXTEXT, 223, 224
BUTTON. 224
Button events. 273
Buttons, on input devices, 25
Bytes, 94

C
Cell height 17
Center text alignment 76
C function call interface, VDI, 8-9
C function calls, GEM, 7
Character cell, 15.16-18

cell height 17
variables for, 16

Character pointers, bit map, 99
Characters, intercharacter spacing,

73-74
CHECKED state. 221, 222
Circles

VDI, 72-73
angle values, 72-73
arc. 72.73
counterclockwise drawing,

arcs/pies, 73
ellipse, 72
elliptical arc, 73
elliptical pie, 73
radius of, 72

C language
program-writing, 10

compiler, 10
editor, 10

Index 523

linker, 10
resource construction program, 10

Clipping, 27-28
Clipping rectangle

multiple workstations, 92
use of, 92

Clipping rectangles, creating, 93
Closing a workstation, 32-33
Coarse tune register, 188
Color graphics, 115-138

box art program, 131-138
flow for program, 137-138
primary function, 131
replace mode, 138
size of box. 131
transparent mode, 138
writing modes, 138

color, intensity levels, 115
color limitation, 24
color palette, 24,116-117

bits used, 117
memory needed, 117

color planes, 24
color versus monochrome, 120-121
control of colors, 23-24
electron guns in, 23
memory requirement 24
monochrome bit maps, 116
planes, 118-120

interleaving, 119
program COLOR 121-131

base address, 130
changing colors of palette. 128
color table, checking support by

VDI, 127
extended inquiry. 127
fill interior, 128
hexadecimal values, use of, 127
initializing intensity levels, 128-129
palette entries, setting, 127
replacing palette. 131
rotating palette colors, 129-130
VDI color indices, 130-131

resolution of image, 121
varying intensity. 24

Color output program RASTER 164
Combination of effects, text effect 76-77
Compiler, 94-95

C programming. 10
Computer graphics, 11-28

bit map, 13,14-18
location of, 13
quick method of creating graphics,

13
representation, 20
and text appearance, 15-18
uses for, 14-18

color graphics, 23-24
color limitation, 24
color palette, 24

color planes, 24
control of colors, 23-24
electron guns in, 23
memory requirement 24
varying intensity, 24

device coordinates, 2-23
Cartesian coordinate system, 22
and drawing plane, 22
most commonly used. 22-23
and resolution of output device, 23

display, technology of, 12-13
graphics routines, 13-14

Line A Handler, 13-14
ideal graphics device, 26-27

normalized device coordinate (NDC),
26-27

raster coordinates (RC), 26
workstation, 27-28

input devices, 25-26
buttons, 25
keyboard, 25
mouse. 25

logic operations. 18-19
AND operator, 18
NOT operator, 19
OR operator. 18
XOR operator, 19

output devices, 21-22
impact printers, 22
nonimpact printers, 22
plotters, 21, 22
storage tube display, 21-22
vector display, 21

pixel. 11-12
pixels, monochrome monitors. 12
writing mode, 19-20

replacement 19-20
reverse transparent mode, 20
XOR mode, 20

Contiguous format raster, 151
Contour fill, 72
CROSSED state, 221

D
DEFAULT flag, 222
Desk accessories, 213-214
Desk accessory buffer, 213

AES. 213
Device coordinates

Cartesian coordinate system, 22
and drawing plane, 22
most commonly used, 22-23
and resolution of output device, 23

Device-dependent value, line types, 66
Device drivers, 3, 4,31
Device-independence, GEM, 7
Device-specific format raster, 151, 152
Dialog box, 215

See also FORM program, 242-254

524 Atari ST

DISABLED state. 221. 222
Dispatcher, 213
Dosound function, program

SOUNDEMO. 208-210
Dot-matrix printer, 21, 22

E
EDITABLE flag, 222
Editor, C programming, 10
Effects

text
bit values, 76
combination of effects, 76-77
italicized, 76
light intensity, 76
outlined, 76
shadowed, 76
thickened, 76
underlined, 76

Ellipse, 72
Elliptical arc, 73
Elliptical pie, 73
Envelope generation, 188-189

coarse tune register, 188
envelope period calculation, 188
fine tune register, 189

Error box, 215
Event manager, 254
Events, 217
EXIT flag. 222
Explosion, 208

P

Face flies, 4
File selector manager. 254
Filled shapes

contour fill. 72
fill hatches. 70-71
filling complex shapes, 71
fill patterns, 70
interior-fill settings, 70
rectangles, 69, 70
rounded/filled rectangles. 69-70

Filling shapes, color graphics, fill
interior, 128

Fill settings, 27
Fine tune register, 189
Font 15-16
Fonts

text 75
setting index, 75
and workstation, 75

Format Memoiy Form Definition Block,
141

Form manager, 254
FORM program, 242-254

displaying dialog box, 251-252, 253
drawing box, 252-253
drawing dialog box, 253

exit object resetting, 253-254
initializing dialog box, 250
loading resource file, 249
processing, 249
screen coordinates, 252

Function control, 272
G

GEM, 1-6, 7-9, 29-52
application steps

implementing input/output device,
30

Initializing application, 29-30
locating input/output devices, 30
processing program, 30
releasing input/output device, 30
terminate program, 30

and assembly language. 7,9
C function calls, 7
computers used with, 3
device drivers and, 3 ,4
device-independence, 7
interface, 3-4

accessing, 7
modules of, 4-5

AES, 5 .9
GEMDOS. 4
VDI, 4. 7-8

workstation, 31-33
closing a workstation, 32-33
device drivers, 31
opening several workstations, 32
opening a workstation. 31
physical workstation, 31
virtual workstation, 31, 32

Gemdos (), 37
GEMDOS. 4
GEM outline program, 33-42

application function, 40
application overhead, 37-38

declarations for variables, 37-38
type definition, 37

application-specific data, 38
GEM related functions

retrieving screen resolution, 39-40
setting global variables, 39

GEM-related functions
virtual workstation function, 38

header files, 33,36-37
defining constant values, 37
defining functions, 36-37
input/output control, 36

kinetic line art 42-52
defining boundaries, 49
do-while loop, 51
flow of program, 49
line-drawing initialization, 49-51

XOR writing mode, 48
main program, 40-42

application-specific routines, 41

Index 525

dean-up/exit 41-42
GEM access initialization, 40-41

organizing outline, 33
Global arrays

AES, 9
VDI, 8-9

Graphics Device Operating System
(GDOS). 4-5

Graphics Environment Manager, See
GEM.

Graphics library routines. 290-312
box outline, moving. 291
changing mouse form. 291-292
dragging outline, 291
expanding box outline, 291
expanding/contracting rectangle. 292
mouse position, restoring. 291
program Mouse. 293-312

application-specific data. 295-311
changing program, 311-312
free tree, 294.306
menu bar. 293-294.306
mouse events, 307-308
redrawing method. 309-310
size of objects. 309
slide bars, equation used, 310
updating screen. 308-309

returning handle, 291
shrinking box outline, 292
sliding box, 293
watching rectangle. 293

Graphics manager. 254
Graphics routines. 13-14

Line A Handler. 13-14
Graphic text versus regular text 73
Gravity, calculation for. program

BOUNCE. 180
Gunshot 207-208

H
Hatches, fill hatches. 70-71
Header files

defining constant values. 37
defining functions, 36-37
input/output control 36

Height
measurement in points. 73
of text 74-75

pixd sizes. 74-75
point size, 74-75

Hexadecimal notation, use of. line
styles, 78

HIDETREE flag, 222-223
High, Memoiy Form Definition Block,

141
Horizontal lines, word-aligned. 84
Horizontal text alignment 75-76

IBOX, 223. 224
ICONBLK structure, 227-228
Ideal graphics device

normalized device coordinate (NDC),
26-27

raster coordinates (RC). 26
workstation. 27-28

Impact printers, 22
Implementing input/output device,

GEM. 30
INDIRECT flag. 223
Initializing application, GEM. 29-30
Input devices

buttons, 25
keyboard, 25
mouse. 25

Input/output control, sound, 190
Intercharacter spacing, 73-74
Interface, GEM, accessing, 7
Interior-flll settings, 70
Interleaved format raster, 151
Italicized, text effect 76

J
Justified text 73-74

K
Keyboard. 25
Key dick, setting, program SOUNDEMO,

203,204
Kinetic line art

defining boundaries, 49
do-while loop, 51
flow of program. 49
line-drawing initialization, 49-51
XOR writing mode, 48

L
Laser printers, 22
Laser sound. 208
LASTOB flag. 222
Libraries. AES. 212. 217-218. 254-255
Light intensity, text effect 76
Limited multitasking kemd and

dispatcher, AES, 213
Line A Handler, 13-14
Line A handler. 2.6
Line drawing

arrow shape. 65-69
holding total number of points, 65
line-end styles, 67-68
line styles, 66-67
location of, 65
marker types. 68-69
scaling of markers. 69
size of, 65
width of, 66. 67

I

526 Atari ST

Llne-end styles, 67-68
types of, 68

Line settings, 27
Line styles

types of, 67
VDI

changing program for, 86
function for drawing lines, 78,84
hexadecimal notation, use of, 78
setting index, 78
user-defined line style, 78
user-defined fill pattern, 78
variable style, 78
word-aligned horizontal lines, 84

Linker, C programming, 10
LISTER program, 274-289
Locating input/output devices, GEM, 30
Logical base address

bit map, 98
second bit map, 105-106

Logic operations
AND operator, 18
NOT operator, 19
OR operator, 18
XOR operator, 19

Long type cast operator, bit map,
103-104

M
Marker types. 68-69

devicfrdependence, 69
scaling of markers, 69
types of, 69

Mask raster, use of. 168,180
Memoiy

bit map
allocation of bytes, 95, 103-104
base address, 96
linear storage, 96
mapping process, 95-96
refresh rate, 97
rows on video display, 96
words as access to, 95

components of. 94
Memoiy Form Definition Block

format 141
high. 141
planes, 141
wide. 141

Menu/alert buffer, 212-213
AES, 212-213

Menu manager, 254
Menus

menu bar, 214
menu items, 214
menu titles, 214-215

Message pipe, 217

Messages
menu-selected message. 258, 264
receiving, 257-258

MFDBs
program BOUNCE. 167
program RASTER 157

Microprocessor, supervisor mode.
203-204

Monochrome monitor, versus color,
120-121

Monochrome monitors, pixels, 12
Monochrome output program RASTER

163-164
Motion

illusion of, 111
program BOUNCE. 165-182
See also Animation.

Mouse. 25
hot spot of. 291-292
See also Graphics library routines.

Mouse events, 273
program Mouse. 307-308

Multiple workstations
VDI

application-specific routines, 92
clipping rectangle, 92.93
closing workstations. 93
MULWORK, 87-93
setting attributes of each, 92-93
transparent writing mode, 92-93
virtual workstations, opening, 92

Multitasking, limited multitasking
kernel and dispatcher, 213

N
Noise enable b it sound, 190
Noise period, 188
NONE flag. 222
Nonimpact printers. 22
Normalized device coordinate (NDC),

26-27
Normalized device coordinates, y-axis

unit 69
NORMAL state. 221.222
NOT operator, logic operations, 19

O

Object manager, 254
Object structures

APPLBLK structure, 229-230
BITBLK structure, 228-229
ICONBLK structure, 227-228
object flags, 222-223
object state definitions, 221
object types, 223-225
PARMBLK structure, 230-231
structure/arrangement of tree,

220-225
TEDINFO structure. 225-227

Index 527

Object trees
children in, 218
dialog box object tree, 219
radio button, 220
root in, 218

Opaque copy raster function, 153-155,
161, 162

copy modes, 154
function call from C, 153
logic operations. 154
parameters of, 154
pixel by pixel copying, 155
rectangular area, 154-155
writing mode, 154

Opcode, VDI, 8 ,9
Opening several workstations, 32
Opening a workstation, 31
Operating system, TOS, 1-2
OR operator, logic operations. 18
Outline attribute, 70
Outlined, text effect 76
OUTLINED state. 221
Output devices

impact printers, 22
and line styles, 66-67
nonimpact printers, 22
plotters, 21,22
storage tube display. 21-22
vector display, 21

Output functions, “V," 74

P
Page, 94
Palette, See Color graphics.
PARMBLK structure, 230-231
Patterns

VDI
changing program for, 86
checkerboard pattern, 85
components of, 85
planes in, 85-86
user-defined fill pattern. 86
word-aligned, 86

Pen plotters, 21,22
Period, determining, 186
Physical base address

bit map, 98
second bit map, 106

Physical workstation, 31
Pies, 72-73

counterclockwise drawing. 73
elliptical pie. 73

Pixel 11-12
Pixel by pixel copying, opaque copy

raster function, 155
Pixels

erasing from screen, 21
mapping bits, 97-98

equation for, 97-98

monochrome monitors, 12
Pixel sizes, text 74-75
Planes

color graphics, interleaving, 119
Memoiy Form Definition Block, 141
and patterns, 85-86
storing, raster formats, 141,151

Plotters, 21,22
Points, height measurement 73
Point size, text 74-75
Printers

impact printers, 22
nonimpact printers, 22

Processing program, GEM, 30
Programmable Sound Generator (PSG),

185,191
Program-writing, C language, 10
Protected memoiy access, program

SOUNDEMO. 203-204
PSG, program SOUNDEMO, 206
PSG access, program SOUNDEMO.

205-206

9
Queiy functions, “VQ,” 74

R
Race car sound. 208
Radius, of circle, 72
Raster

Memoiy Form Definition Block, 141
format 141
high, 141
planes, 141
wide, 141

opaque copy raster function, 153-155
copy modes, variety of, 154
function call from C, 153
logic operations, 154
parameters of, 154
pixel by pixel copying, 155
rectangular area, specifying

coordinates, 154-155
writing mode, 154

program BOUNCE, 165-182
animation technique, 167, 181
application specific functions,

179-181
bit maps used, 166
drawing of ball. 180
erasing ball, 180.181-182
gravity, calculation for, 180
mask raster use of, 168, 180
MFDBs, defined, 167
operation of, 168,179-182
position of ball 180-181

program RASTER 156-165
application routines, 158-159
changing program, 165

528 Atari ST

Raster
color output 164
holding raster Images, 157
MFDBs, defined, 157
monochrome output 163-164
replace mode, 162
screen, setting up, 161
setting up rasters, 160-161
temporary raster area, 161-162
transformation function, 159-160
writing mode, 162

raster conversion, 156
raster formats, 141, 151-153

color in, 153
contiguous format, 151
device-specific format 151, 152
interleaved format 151
standard format 151, 152
storing planes, 141, 151

requirements for use, 140-141
transparent copy raster function,

155-156
color index array, 156
function call from C, 153
parameters of, 155
replace mode, 156
writing mode, 156
XOR mode, 156

use in programs, 153
Raster coordinates, y-axis unit 69
Raster coordinates, (RC), 26
RBUTTON flag, 222
Rectangles

VDI, 69-72
attributes, resetting of, 70
contour fill, 72
filled rectangles, 69, 70
fill hatches, 70-71
filling complex shapes, 71
fill patterns, 70
interior-fill settings, 70
outiine attribute, 70
rounded/filled rectangles, 69-70
rounded rectangles, 69

Refresh cycle, animation, 112
Refresh rate, bit map, 97
Releasing input/output device, GEM, 30
Replacement writing mode, 19-20
Replace mode

box art program, 138
program RASTER, 162
transparent copy raster function, 156

Resolution of image, color graphics, 121
Resource construction

program, C
programming, 10

Resource manager, 254-255
Reverse transparent mode, writing

mode, 20

Rotating text and workstation
capability. 74

Rotation angle, setting for text output
74

Rotation of color palette, 129-130
Rotation text and workstation

capability, 74
Rounded/filled rectangles, 69-70
Rounded rectangles, 69

S
Scaling of markers, 69
Scrap manager, 255
Screen manager, 213
SELECTABLE flag, 222
SELECTED state, 221, 222
Set functions, “VS,” 74
Shadowed, text effect 76
SHADOWED state, 221-222
Shell, 213

AES, 213
Size, line size, arrow shape, 65
Sound, 183-211

envelope generation, 188-189
coarse tune register, 188
envelope period calculation, 188
fine tune register, 189

generation of (physical view), 183-184
frequency, 184
waveform, 183-184

noise period, 188
output 190-191

activation of speaker, 190
input/output control, 190
noise enable b it 190
tone enable bit 190

Programmable Sound Generator
(PSG). 185,191

program SOUNDEMO, 191-211
changing program, 211
clearing sound registers, 206-207
defined constants, 205
Dosound function, 208-210
explosion, 208
gunshot 207-208
key dick, setting. 203. 204
laser sound. 208
mix of sounds. 205
protected memory access, 203-204
PSG, use of, 206
PSG access, 205-206
race car sound, 208
sound chip, access to, 205
sound-demo array, 209,210
sound effect functions, 207-208
whistle, 208

voice period registers
parts of, 190
period, determining, 186

Index 529

setting of, 185-188
tone period, determining, 186-187

volume control, 190
Speed, illusion of motion. 111
Standard format raster, 151,152
Storage tube display, 21-22
STRING, 224
Subroutine libraries, 212, 217-218,

254-255
AES, 212, 217-218, 254-255

Supervisor mode, microprocessor,
203-204

T
TEDINFO structure, 225-227
Terminate program, GEM, 30
TEXT, 223, 224
Text

VDI, 73-77
alignment of text 75-76
font variations, 75
graphics text 73
height settings, 74-75
Intercharacter spacing, 73-74
justified text 73-74
justufled text 73-74
setting rotation angle, 74
text attributes, 74
text effects, 76-77
writing initial string, 73

Text appearance
bit map, use of, 15-18
cell height 17
font 15-16
typeface, 15-16
typesize, 15-16

Text settings, 27
Thickened, text effect 76
TITLE, 224
TOCHEXT flag, 222
Tone enable b it sound, 190
Tone period, determining, 186-187
TOS, 1-2 '

GEM, 1-6, 7-9, 29-52
Line A handler, 2,6
XBIOS. 1,6

Transparent copy raster function,
155-156

color index array, 156
function call from C. 153
parameters of. 155
replace mode, 156
writing mode, 156
XOR mode. 156

Transparent mode, box art program.
138

Transparent writing mode, writing
mode, 93

Typeface, 15-16
Typesize, 15-16

U
Underlined, text effect 76

V
“V." output functions, 74
VDI. 4

application functions, 53-77
changes to program, 77-78
circles, 72-73
line drawing, 65-69
rectangles, 69-72
text settings, 73-77

C function call interface, 8-9
face files. 4
global arrays, 8-9
Graphics Device Operating System

(GDOS), 4-5
line styles, 78-85

variable style, 78
multiple workstations, 86-93

application-specific routines, 92
clipping rectangles, 92,93
closing workstations. 93
MULWORK, 87-93
setting attributes of each. 92-93
transparent writing mode, 92-93
virtual workstations, opening, 92

opcode, use of, 8 ,9
opening a workstation, 53
patterns, 85-86

planes in, 85-86
word-aligned, 86

plotting, technique for, 8
raster, 139-182

explanation of, 139-140
Memoiy Form Definition Block, 141
opaque copy raster function.

153-155. 161, 162
program BOUNCE, 165-182
program RASTER, 156-165
raster conversion, 156
raster formats, 141,151-153
transparent copy raster function,

155-156
Vector display, 21
Vertical interrupt animation, 112
Vertical text alignment 75. 76
Virtual Device Interface, See VDI.
Virtual workstation, 31, 32
Virtual workstations, opening, multiple

workstations, 92
Voice period registers

parts of, 190
period, 186
setting of, 185-188
tone period, 186-187

530 Atari ST

Volume control, sound, 190
“VQ,” query functions, 74
"VS,” set functions, 74

W
Whistle. 208
Wide, Memoiy Form Definition Block,

141
Width, line width, arrow shape, 66,67
Window manager, 255
Windows, 313-375

components of, 215-217, 313-314
messages, 317-318
procedures used, 315-316
programs, event driven, 315-316
program WINDOW1, 321-346
program WINDOW1, closing a

window, 341,344,345
program WINDOW1, creating window,

340
program WINDOW1

deleting a window, 341-342
handle of window, 342,345

program WINDOW1
initialization process, 339
message event, 344
opening four windows, 321
opening a window, 341,344
organization changes made to, 338

program flow, 343-344
program WINDOW1, redrawing of

window, 342-343
program WINDOW1, resource file,

??????
program WINDOW1

turning mouse off, 341
using program, 346-347

program WINDOW2,347
creating window, 372
drawing text, 371-372
redrawing of window, 372-374
resource file, 347-348
scroll bar, ratio for, 369-370
slider, size/position, 368-369
WM ARROWED message, 373-374

redrawing a window, 318-320
topmost/active window, 315
window handler, 314-315

window manager routines, 316-317
changes to. 316
opening window, 316
removing window, 316
returning handle to, 316
updating window, 316-317

WINDOW structure, 320-321
work area, 217

Word-aligned horizontal lines, 84
Words, 94
Workstation, 27-28

clipping, 27-28
fill settings, 27
GEM

closing a workstation, 32-33
device drivers, 31
opening several workstations, 32
opening a workstation, 31
physical workstation, 31
virtual workstation, 31, 32

graphics attributes, 27
line settings, 27
opening a workstation, information

supplied by, 86-87
text settings, 27
writing modes, 27

Writing mode
program RASTER 162
replacement 19-20
reverse transparent mode, 20
transparent copy raster function, 156
transparent writing mode, 93
XOR mode, 20

Writing modes, 27
box art program, 138
header files, 37

X
XBIOS, 1, 6
Xbios (), 37
XBIOS, and program writing, 6-7
XOR mode

transparent copy raster function, 156
writing mode, 20

XOR operator, logic operations, 19

Y
Y-axis unit

normalized device coordinates, 69
raster coordinates. 69

The Modem Book Co.

Atari ST Application Programming is: ——-------
the combination of Atari ST and Digital Research’s Graphics Environment
Manager (GEM) which provides everyone with a personal computer that is easy
and intuitive to use. Now you can learn to write complete software programs
for this dynamic duo of the computer world. With Atari ST Application
Programming you will learn and understand the varied concepts associated
with a graphics based user interface.

Not just a reference guide, this book takes you deep into the minds of the
software engineers who built this system. You will see the basic building blocks
from the Virtual Device Interface to the Application Environment Services to
the multi-voiced sound effects. The book presents detailed sample programs
that you can experiment with and learn from.

With Atari ST Application Programming, you can:

See how to create complex graphic images.

Work with windows and menus to make your program easier to use.

Find out how to create lavish sound effects.

Use the mouse to select, move, and size objects.

Create resource files for elegant screen designs.

Write a program that shows you the secrets of animation.

Have an instant library of over a dozen fun and useful programs.

In clear, concise, and understandable language, this book gets your imagination
working in high gear. Once you have finished reading this book, you’ll be ready to
write sophisticated and robust applications that rival even the commercial packages.

“We started with the very basics that a programmer must know in order to program this
computer. On top o f this, we built a set o f tools that can help programmers reach beyond
the limit o f their abilities.” — l a w r e n c e j . p o l l a c k a n d e r i c j .t . w e b e r

Lawrence J. Pollack, author of two other books: Programming in C on the IBM
PC and Programming the Macintosh in C; a computerized medical management
package; and a database management system. Eric J.T. Weber is an independent
computer consultant who has written numerous programs and users
documentation.

5 2 4 9 5

9 780553 343977

N 0 -5 5 3 -3 4 3 ^ 7 -l» 2 4 ^ S 34397-1 ■ IN U.S. $24.95 (IN CANADA $29.95) ■ BANTAM COMPUTER BOOKS

	Front Cover
	Contents
	1: A Map of TOS
	GEM
	Introduction
	The Facets of GEM

	The Line A Handler
	The XBIOS
	What To Use
	Using GEM
	Writing a C Program

	2: Picture This - An Introduction to Computer Graphics
	Background
	The Pixel
	Display Technology
	Using a Bit Map

	Making Pictures
	Uses of a Bit Map
	Logic Operators
	Writing Modes
	Bit Map Representations
	Output Devices
	Device Coordinates
	Monochrome Versus Color Screens
	Input Devices
	Implementing Logical Devices
	The Ideal Graphics Device
	The GEM Workstation

	3: Preparing to Use GEM
	Workstation Usage
	The GEM Skeleton Program
	Organizing the Outline
	Header Files
	GEM Application Overhead
	Application-Specific Data
	GEM-Related Functions
	Application Function
	The Main Program

	Kinetic Line Art

	4: VDI Output and Friends
	The Workstation Workout
	Line 'Em Up: Function draw_line()
	Boxed In: Function draw_rect()
	Going in Circles: Function draw_circ()
	Type Casting: Function draw_text()
	Changing GRAFDEMO

	Designing Your Own Patterns
	Designer Lines
	Finding a Pattern
	Changing USERTYPE

	Multiple Workstations

	5: Treasure Maps
	Implementing a Bit Map
	The Bit Map in Memory
	Mapping the Bits

	Program BITMAP
	Allocating a Bit Map
	Using a New Bit Map

	Program ANIMATE

	6: Colors of the Rainbow
	Color Display Implementation
	Monochrome Bit Maps
	The Color Palette
	Planes

	Color Versus Monochrome
	Resolution
	Program COLOR
	Program BOXES

	7: Moving Targets
	The Raster
	Using a Raster
	The Memory Form Definition Block
	Raster Formats
	Color

	Using the Rasters in a Program
	Opaque Copy Raster Function
	Transparent Copy Raster Function
	Raster Conversion

	Program RASTER
	Results from Program RASTER
	Playing with Program RASTER

	Putting It All Together: Program BOUNCE
	Operation of Program BOUNCE
	Say "Good-bye" to the VDI

	8: Sound Off!
	What Is Sound?
	Making the Circuit
	Setting the Voice Period Registers
	Noise Period
	Envelope Generation
	Volume Control
	Sound Output

	Program SOUNDEMO
	Protected Memory Access
	Using the PSG
	The Sound Stage
	The Dosound() Function

	9: Application Environment Services: The AES
	Introduction to the AES
	AES Components
	AES Definitions
	Libraries

	Program Resources
	Object Trees
	Object Structures

	The Resource Construction Program
	The AES Review

	10: Resourceful Programming
	Program FORM
	AES Naming Conventions
	Using Menus
	Program MENU1
	Program MENU2
	Program LISTER

	11: Building a Better Mouse Trap
	Program MOUSE
	The Resource File for Program MOUSE
	The Listing for Program MOUSE

	12: Windows on the World
	Window Rules
	The Window Manager
	Window Procedures
	Window Manager Routines

	Window Messages
	Redrawing a Window
	The WINDOW Structure
	Program WINDOW1
	The Window1 Resource File
	Overview of WINDOW1
	Using WINDOW1

	Program WINDOW2
	Program WINDOW2 Resource File
	WINDOW2 Layout

	A: C Function Reference Guide
	B: Header Files
	GEMBIND.H
	GEMDEFS.H
	OBDEFS.H
	STDIO.H
	CTYPE.H
	ERRNO.H

	C: Keycode Values
	D: System Variables
	E: Predefined Message Events
	F: GEM BIOS and DOS Error Codes
	G: Listing for File EXTRA.C
	Index
	A
	BC
	D
	EFG
	HIJKL
	MNO
	PQR
	S
	TUV
	WXY

	Back Cover

