
COMPUTERS
Technical Reference Guide

ATARI ST
V O L U M E O N E

Sheldon Leemon
A practical tutorial and reference to the Virtual

Device Interface, the ST's graphics routines.
Includes practical program examples written
in C, machine language, and BASIC. For the

intermediate-to-advanced-level Atari ST
programmer.

A COMPUTE! Books Publication

COMPUTE!̂
Technical Reference Guide

ATARI ST
VOLUME ONE: VDI

Sheldon Leemon

C O M P U T E ! ' P u b l i c a t i o n s j n c . ®
Part of ABC Consumer Magazines. Inc.
One of the ABC Publishing Companies

Greensboro, North Carolina

Copyright 1987, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-87455-093-9

The author and publisher have made every effort in the preparation of this book to insure the ac
curacy of the programs and information. However, the information and programs in this book are
sold without warranty, either express or implied. Neither the author nor COMPUTE! Publications,
Inc. will be liable for any damages caused or alleged to be caused directly, indirectly, incidentally,
or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of
COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Com
panies, and is not associated with any manufacturer of personal computers. Atari, ST,
ST BASIC, 520ST, 1040ST, and TOS are trademarks or registered trademarks of Atari
Corporation. GEM is a trademark of Digital Research, Inc.

Contents
Foreword ... v

1. VDI and the GEM Graphics Environment 1
2. Setting Up the Graphics Environment 11
3. Drawing Points and Lines .. 39
4. Color and Other Graphics Settings 67
5. Filled S h a p es ... 91
6. Drawing and Manipulating Image B locks..................... 117
7. Text ... 141
8. Input Functions... 173

Appendices
A. VDI Function Reference .. .193
B. Extended Keyboard Codes ..317
C. VDI Font Files ...323
D. System Characters.. 329

Index by Function Name .. 337
Index by O pcode... 339

Index 341

Foreword
The Atari ST is a powerful personal computer. So powerful, in
fact, that using it to best effect can be a difficult task—even if
you have all the available Atari documentation. That's why
youTl find COMPUTERS Technical Reference Guide, Atari ST
Volume One: The VDI so valuable. Clear and concise, with pro
gram examples at every turn, it's the most complete guide to
programming graphics on the Atari ST.

Filled with programs written in C, machine language, and
BASIC, this reference guide and tutorial covers everything you
need to access program the advanced graphics capabilities of
the ST's Virtual Device Interface, or VDI.

The first sections explain—in plain English, not jargon-
filled computerspeak—VDI and GEM and how to set up a
graphics environment using VDI functions. Later chapters il
lustrate how to use VDI functions to draw points and lines, fill
areas, and move shapes around the screen.

Program after program shows you how to get your own
ST creations to do what you want them to do. You'll see how
to read the mouse pointer and other input devices with VDI
functions.

COMPUTEl's Technical Reference Guide, Atari ST Volume
One: The VDI devotes an entire chapter to text on the ST—
after all, text on this computer is just another form of graphics.
Demonstration programs show how to align and rotate
graphic text strings and discussions on how letters are formed.

The latter half of this book is a complete reference to VDI
functions. You will find everything you need to know about
each function in one place—a summary of each function, its
opcode, C binding, and more. We've even included two indi
ces to the VDI functions, so finding the right function is easier
and faster.

COMPUTE! Books is the leading publisher of programs
and information for the Atari ST. COMPUTEl's Technical Refer
ence Guide, Atari ST Volume One: The VDI is yet another ex
ample of the high quality you've come to expect in any guide
to personal computing from COMPUTE!.

v

Chapter 1

DI and the GEM
Graphics

Environment

When we think of the Graphics Environment Man
ager (GEM) operating system, the first thing that comes to
mind is the mouse-driven user interface, with its drop-down
menus and icons. But there is another side to GEM which is of
considerable interest to programmers. This part of GEM is
known as the Virtual Device Interface, or VDI.

The function of the VDI, as its name suggests, is to pro
vide a uniform, device-independent graphics interface that al
lows a programmer to design graphics output for a program
without necessarily knowing the operational details about the
computer on which the program is run, or about the hardware
device (screen, printer, plotter, and so on) used to produce the
output. This interface is based on previous graphics software
interfaces and on the work of a computer industry standards
committee. If you keep in mind that it was written as an at
tempt to be a generalized standard for all kinds of computers,
and was not written specifically to support the graphics ca
pabilities of the ST, you may better understand the reasoning
behind its implementation.

The VDI implements this device-independent interface in
two ways. First, it supplies a wide array of basic graphics func
tions. These functions include drawing primitives (the funda
mental commands used to draw line figures and filled shapes);
attribute settings that control aspects of the figures such as the
color, size, and shape; and inquiry commands that enable the
program to determine specific information about the graphics
environment. They even include input functions that enable
the programmer to accept input from the user via the mouse
pointer, alphanumeric keys, cursor keys, and function keys.

The VDI also provides the means by which device-specific
driver programs may be added to the system. These device
driver programs act as translators. The VDI routes the general
ized output commands to the device driver, and the device
driver converts these commands into the hardware-specific
codes used to create the appropriate output on that particular
device.

3

CHAPTER 1

On the Atari ST computers, the part of the VDI that im
plements the basic graphic functions on the display screen is
included in the Tramiel Operating System (TOS) ROMs. The part
of the VDI that enables the use of disk-loaded fonts and de
vice drivers, however, is not included as part of the current
TOS ROMs and must itself be loaded from disk before these
functions can be accessed. This part, known as the GDOS
(Graphics Device Operating System), is contained in a file
called GDOS.PRG, which must be included in the AUTO
folder on the system disk used to start the computer if device
drivers or software-loaded fonts are to be used. In addition,
that disk should contain a text file called ASSIGN.SYS, which
provides information about the location of the various device
driver and text-font files that are available.

This books deals with only the VDI portion of GEM, but
the reader should be cautioned that the VDI does not operate
in isolation from the AES, the Application Environment Services
which form the other half of GEM. Unless you take the appro
priate precautions, for example, the graphics functions pre
sented here are quite capable of writing over the menu bar
and window borders that are managed by the AES. Also, there
is a certain amount of overlap between the two, particularly in
the area of the VDI input functions. In a program where you
use the AES input functions, you should be careful not to mix
in VDI calls that will confuse them.

Using the VDI
You can think of the VDI as a collection of subroutines that you
call from your program. In order to pass data to these subrou
tines and receive data from them, you must allocate storage
space in memory for a number of data arrays. The VDI uses
information from five different arrays, each of which is made
up of a number of 16-bit (two-byte) values. These arrays are:
Array name Size Function
contrl 12 words Control parameters
intin 0-256 words Input parameters
ptsin 0-256 words Input coordinates
intout 0-256 words Output parameters
ptsout 0-256 words Output coordinates

VDI and the GEM Graphics Environment

The array contrl consists of 12 elements, each two bytes in
length. The information stored in each of the first seven of
these elements is as follows:
Address Element Control parameter
contrl contrl(O) Command Opcode (operation code)
contrl+2 contrl(l) Number of coordinate points in ptsin array
contrl+4 contrl(2) Number of coordinate points in ptsout array
contrl+6 contrl(3) Number of input parameters in intin array
contrl+8 contrl(4) Number of output parameters in intout array
contrl+10 contrl(5) Sub-function ID number
contrl+12 contrl(6) Device handle (identification number)

The first element of the contrl array is used to pass the
opcode. Since all of the VDI routines have a common entry
point, there has to be some way to let the VDI know what
command you want executed. Therefore, each command is
given an identification number called an opcode. A few com
mands are further broken down into several sub-functions. In
order to specify which of these sub-functions you wish to use,
a sub-function ID number can be passed in contrl(5). Since the
VDI can send output to several devices, you must also identify
the device you wish to use by placing its handle in contrl(6).
The handle is a device identification number which the system
assigns when you successfully open the device. (Opening a
graphics device like the screen for output will be covered later.)

The remaining four elements are used to indicate what
portion of the other parameter arrays are used by a particular
call. Of these, two are set aside for the input arrays ptsin and
intin, in which you pass information to the function, and two
are used for ptsout and intout, in which the function passes
information back to you.

The reason you must specify the size of these arrays is
that the number of values passed varies from function to func
tion and can even vary from different calls to the same func
tion. The line drawing command, for example, can draw lines
between a number of points at once. Therefore, in order to
communicate how many lines are to be drawn, you must spec
ify the number of coordinate pairs that you have placed in the
ptsin array before calling that command. The number of points
is placed in contrl(l). This number is equal to half the length
of the array, since each point must be described by both a hor
izontal and a vertical coordinate. In a similar fashion, the
number of points passed back in the ptsout array from the

5

n
CHAPTER 1 _

n
n
n

VDI command itself is stored in contrl(2). Contrl(3) and
Contrl(4) are used to store the length of the intin and intout
arrays, respectively.

Elements contrl(7)-contrl(ll) aren't used for every com
mand, but, when they are, they pass information that is spe
cific to the command.

Assembly Language VDI Calls
If you're programming at the machine language level, you
must explicitly reserve memory space for each of these arrays,
and put the proper values in each of the memory locations
before calling the command. The first step is reserving space
for each of the data arrays:
contrl: .ds.w 12
intin: .ds.w 128
ptsin: .ds.w 128
intout: .ds.w 128
ptsout: .ds.w 128

Since all of the arrays but contrl use a variable number of
elements, depending on the particular call, it's best to allocate
128 words to each of them, which should be sufficient for
most purposes. If you find that you need more elements, you
may, of course, allocate additional space.

In addition to allocating data-array space, you must also
define a VDI parameter block. This parameter block contains
the beginning address of each of the five data arrays:
vpb: .dc.l contrlsintinsptsin^ntout,ptsout

Next, you must place any input parameters into their cor
rect place in the data arrays. For example, to execute the Clear ,—■
Workstation command that clears the screen, you would trans- I I
fer the following values:
move #3, contrl ;Move the Clear Workstation

;opcode (3) to contrl(O).
move #0, contrl+2 ;Move the length of ptsin

;array (0) to contrl(l).
move #0, contrl+6 ;Move the length of intin

;array (0) to contrl(3).
move gh, contrl+12 ;Move the graphics handle

;to contrl(6). |]

n
n

6 n

VDI and the GEM Graphics Environment

Now you're ready to call the VDI. First, place the address
of the VDI parameter block into register d l. Next, move the
VDI identifier code (115 or $78) into register dO. Finally, call
the VDI with a trap 2 instruction. This initiates a software
generated exception (similar to a hardware interrupt) that
causes execution of an exception-handier routine. In this case,
the routine executed is the one whose address is pointed to by
the long word beginning at location 136 ($88). This routine is
the one used to handle all GEM VDI and AES calls. (AES calls
are identified by placing a value of 200 or $C8 into register
dO.) The sequence for making a VDI call looks like this:
move.l #vpb,dl ;Move address of VDI

parameter block to dl.
moveq.l #73, dO ;Move VDI identifier

;($73) into dO
trap #2 ;Call GEM entry point.

Please note that the procedures outlined above just cover
the steps required to make the VDI call itself. Before you get
to that stage, you must take some preparatory steps to set up
both the program environment (for example, allocating stack
space) and the graphics environment (for example, opening a
GEM output workstation). These steps will be outlined in the
next chapter and illustrated in an example program.

ST BASIC VDI Calls
The fundamental strategy for making VDI calls from ST
BASIC is similar to that used when making such calls from as
sembly language programs, with the exception that BASIC
takes care of much of the preparatory work.

Since the BASIC interpreter program must use VDI calls,
it already has set aside memory for the data arrays contrl,
ptsin, intin, ptsout, and intout. BASIC assigns the starting ad
dress of each of these arrays to a reserved variable of the same
name. Thus, the starting address of the contrl array is found in
the variable named contrl, the starting address of ptsin in the
variable ptsin, and so on. By using the PEEK and POKE com
mands, you may access the various elements of these data ar
rays. Remember that each element is two bytes long, so you
must multiply the element number by two to get the proper
offset for the POKE statement. The following short program
shows how to clear the screen with the the Clear Workstation

7

n
CHAPTER 1

Calling the VDI Routines from C
It's much easier to make VDI function calls from C than from
either assembly language or BASIC. That's because C compiler
packages for the ST include one or more function libraries

8

i)

ncall from BASIC. If you type it in and run it, you'll see that
Clear Workstation erases everything on the screen, including
window borders and the menu title bar.
10 REM POKE contrl(O) with Clear Workstation opcode (3) -]
15 POKE contrl,3 ' '
20 REM POKE contrl(l) with length of ptsin array (0)
25 POKE contrl+2,0 | j
30 REM POKE contri(3) with length of intin array (0)
35 POKE contrl+6,0
40 VDISYS(l)

Although this program is similar to the assembly language
version shown above, you'll notice a couple of differences.
First, we didn't have to POKE a value for the graphics handle
into contrl(6) (contrl+12). That's because we're using the
same display device as BASIC, and BASIC has already put the
graphics handle there for us. The second difference is the use
of the VDISYS call. The BASIC statement VDISYS(l)—the one
being a dummy value that could be any number—performs
the same tasks as the three lines of assembly code that place
the address of the parameter block into register d l and the
VDI identifier code into proper values in the dO register, and
then execute the TRAP #2 statement.

The original version of ST BASIC contains several built-in
commands that perform the same functions as VDI calls with
out the hassle of POKEs. Although not released at the time of
this writing, the revised MCC BASIC promises to include even
more graphics commands. Nevertheless, BASIC programmers
can still benefit from learning about the VDI. A familiarity
with the structure and function of the VDI calls gives a better __
understanding of how the BASIC graphics commands work J j
and how they interact. Even the enhanced version of BASIC
does not include keywords for all of the VDI functions. Learn
ing how to access VDI calls directly from ST BASIC provides j 1
the means for using all of the tools provided by the GEM VDI,
not just those that have been implemented by BASIC.

n
n

VDI and the GEM Graphics Environment

known as GEM bindings. These bindings are object-code library
files that define a separate, named function for each VDI call.
When the C program is linked to the proper library files, it can
call VDI functions as if they were part of the C language.

You still must allocate storage space for the data arrays,
by making the following global array declarations at the be
ginning of this program:
int contrl[12],

intin[128],
ptsin[128],
intout[128],
ptsout[128];

But you're not responsible for placing data directly into
these arrays. Instead, input parameters are passed to the bind
ing functions as part of the function call. For example, you
could execute the Clear Workstation call from C with the fol
lowing call:
v_clrwk(handle);

The function defined as v_clrwk in the library takes the
parameter handle that is passed to it and puts it in contrl(6). It
also puts a zero in contrl(l) and (3), and places the command
opcode (3) in control(O). It then loads registers dO and d l with
the proper values, and executes a TRAP #2 instruction. In
short, it takes over all of the repetitive steps associated with
making VDI calls, allowing the programmer to concentrate on
the essential aspects of the function.

Because it's easy to make GEM calls from C, and because
the language produces programs that are relatively small in
size and quick in execution for a high-level language, it has
become the language of choice for software development on
the ST. Therefore, most of the examples in this book will be
written in C. On occasion, however, we will include assembly
language and BASIC examples as well, to show how the C ex
amples may be translated to these other environments. We
will use the C function names as they appear in the official
Digital Research GEM bindings, since they have been adopted
by the manufacturers of other C compilers as well.

The C programs in this book are designed to work specifi
cally with the Alcyon C compiler (the one officially supported
by Atari) and with Megamax C, which also provides a very

CHAPTER 1

complete development environment. For these compilers, the
int data type refers to a 16-bit word of data. Some other com
pilers, such as the Lattice C compiler, use a 32-bit integer as
the default data type. You should substitute "short" for each
reference to "int" when compiling the programs in this book
with such compilers. For the sake of simplicity, we have not
used the portability macros such as WORD, which use the C
preprocessor to define a 16-bit data type that will be valid for
any compiler, but you're free to do so if you find it more
convenient.

Chapter 2

Setting Up the
Graphics

Environment

O

Li

LI

Li

LI

U

Li

U

Li

Before you can begin using VDI calls, you must
first prepare a graphics output environment by opening a
GEM workstation. When you open a workstation, the GDOS
loads a device driver file (if necessary), initializes the output
device, reserves environment space for storing graphics
settings associated with that workstation, and returns a device
identification number, or handle, which is used to identify the
output device when making VDI calls. For graphics output de
vices other than the display screen, the call to use is Open
Workstation, which opens a physical device workstation. The
C format for this call is
int input[12];
int output[57]
int handle;
v_openwk(input, &handle, output)

The array, input, consists of twelve words of data that
you pass to the VDI. The first of these, the Device ID number,
is used to let the GDOS know what device driver file it must
load from disk. As explained in the previous chapter, the
ROM part of the VDI doesn't know how to talk to any graph
ics output device except the computer's own display screen. In
order to communicate with any other device, the GDOS must
first load a device driver file to translate its graphics com
mands into a format that the output device recognizes.

Loading the device driver is the job of the Open Work
station command, but in order for it to successfully perform
that task, several conditions must be satisfied. First, the GDOS
extensions must have been loaded into computer memory by
running the GDOS.PRG program. This should be done by in
cluding that file in the AUTO folder on the boot disk. At the
time the GDOS.PRG program is run, there must be a file
called ASSIGN-SYS in the root directory of that disk. This is a
text file that tells the GDOS what drivers' IDs are available,
what the driver files are called, and what text-font files are

13

CHAPTER 2

available for that graphics device. The format for each entry in
the assign.sys file is
ID_number(flag) filename
(fontfilename)
where ID—number is the device ID number, flag is an optional
letter that can be added to the ID number to give special load
ing instructions for the driver, filename is the name of the ac
tual file containing the device driver, and fontfilename is the
name of an optional font file that the device can load with the
vst_load_font call. If there is more than one font file available
for the device, additional font files may be listed below the ID
line, one filename per line.

Although technically you're free to assign any ID number
from 0 to 32767 to any device, it's recommended that you use
numbers in the following ranges for these devices:
Device ID Range
Display Screen 01-10
Plotter 11-20
Printer 21-30
Metafile 31-40
Camera 41-50
Tablet 51-60

The two flags that can be added to the device number are
the letters r and p. An r indicates that the driver is resident,
which means that it's loaded at the time the GDOS is booted
and stays in RAM until the computer is reset. A p signifies
that the driver is maintained permanently in ROM, like the
screen driver that is contained in the Operating System ROM.
If neither of the flags follows the ID number, it is assumed
that the device driver file will be loaded when the physical
workstation is opened. A typical entry in the assign.sys file
looks like this:
21 fx80.sys
EPSHSS14.FNT

This describes a device driver file for the Epson FX-80
printer. The printer ID number is 21, the driver itself is con
tained in a file called fx80.sys, and there is one text font avail
able for use by this driver, in a file called epshssl4.fnt (a
single-height, single-width font 14 points high).

When opening a workstation for this device, the device

Setting Up the Graphics Environment

number would be given as the first input parameter (intin(O)).
The rest of the input array parameters are used to specify the
initial default graphics settings for the workstation, and will be
discussed more fully later on.

The other two parameters associated with the Open
Workstation call, handle and output, are used by the function
to return information about the workstation that was just
opened. The most important item is the workstation ID num
ber, or handle, that is returned in the variable handle. This ID
must be included as part of the input to all of the other VDI
functions, to indicate the device to which graphics output is to
be sent. If the VDI can't open the device, it returns a handle
number of zero. Up to 16 workstations may be open at one
time, and it is possible to open more than one physical work
station for devices other than the display screen.

In addition to supplying the handle, v_opnwk fills the ar
ray output with 57 items of information about the workstation
that was just opened. All of the input and output parameters
will be covered in the discussion of virtual workstations, below.

Virtual Workstations
The Open Workstation call is used for all devices except the
display screen. The display device has a unique role in the
GEM system. It's the primary means of communicating with
the user, so it's the one graphics device that has to be open al
most all the time.

The display device is the only device for which there is a
device driver built into the TOS ROMs. And since it has to be
shared by the Desktop, application programs, and desk acces
sories, it's the only graphics device that must display infor
mation from more than one program at a time.

In order to allow multiple users to access a single display,
GEM uses pseudo-devices called virtual screen workstations.
Once a physical workstation has been opened, the physical
device can be subdivided into one or more virtual workstations,
each of which has complete access to the display screen. Each
virtual workstation maintains its own set of graphics settings,
so that if one application makes a change that affects how its
drawing takes place, that change will not affect the other
workstations as well. In fact, a single application can open
more than one virtual screen workstation at a time.

n
CHAPTER 2

The format of the Open Virtual Screen Workstation func
tion is identical to that of the Open Workstation function:
int input[12];
int output[57]
int handle;
v_openvwk(input, &handle, output)

Input array. The input array consists of twelve words of
data that you pass to the VDI to specify the initial default
graphics settings for the workstation. It should be noted that
unless you load the GDOS extensions with the GDOS.PRG
program, or have a version of the TOS ROMs with the GDOS
built in, none of these input values will affect the initial work
station settings, which will always be set to their default val
ues. Well only briefly mention these settings here, since most
duplicate the function of individual graphics setting commands
that will be discussed at length in the chapters on line draw
ing, filled shapes, and color. They are
Element Contents Comparable
input[0] Device ID number
inputflj Line drawing pattern vsl_type
input[2] Line pen number vsl_color
input[3] Marker type vsm_type
input[4] Marker pen number vsl_color
input[5] Text font vst_font
input[6] Text pen number vst_color
input[7] Fill pattern type vsf_interior
input[8] Fill pattern index vsf_style
input[9] Fill pen number vsf_color
input[10] NDC to RC transforma

tion flag
The first and last of these parameters require a little further

explanation. The first, Device ID number, is used somewhat
differently for virtual screen workstations. That's because on
the ST there isn't one standard type of screen display device
that's always used. Instead, the user is allowed to choose from
three different types of displays. The monochrome screen offers
a resolution of 640 X 400 pixels, but only two colors (black
and white). The color monitor uses either a medium resolution
mode of 640 X 200 pixels, with a maximum of 4 colors on
screen at once, or a low-resolution mode of 320 X 200 pixels,

n
n

n

n
i \

n
n

16 n

u

Setting Up the Graphics Environment

Li

LJ

'J
\ i

LJ

LI

U

with a maximum of 16 colors. In either color mode, each color
may be selected from any of the 512 available.

While your program cannot dictate which of the three dis
plays is to be used, it should be able to load a set of text fonts
that is appropriate for the current display. Therefore, in the
assign.sys file, there are several IDs assigned to the screen de
vice. These assignments, which are specific to the Atari ver
sion of GEM only, are
Device Number
01
02
03
04
05-10

Screen Type
Default
Lo-res color
Medium-res color
Hi-res monochrome
Reserved for Atari expansion

Therefore, a typical assign.sys file is shown in Program 2-1.

Program 2-1. Typical assign.sys
path = c: \ drivers

/
Olp screen.sys

02p screen.sys
LOWRESIO.FNT
LOWRES14.FNT
LOWRES18.FNT
r
03p screen.sys
MEDRES10.FNT
MEDRES14.FNT
MEDRES18.FNT
/
04p screen.sys
HIRES10.FNT
HIRES14.FNT
HIRES18.FNT
21 fx80.sys
EPSHSS10.FNT
EPSHSS20.FNT
EPSHSS28.FNT
/
31 meta.sys

;Optional path designation for
;device driver and font files

;The default setting, provided
;for compatibility with pre-GDOS
applications

;Using device ID 2 makes available
;these lo-res fonts only

;Using device ID 3 makes available
;these medium-res fonts only

;Using device ID 4 makes available
;these hi-res fonts only

;Epson printer driver and fonts

;Meta-file driver
17

CHAPTER 2

As you can see, an optional path statement may be used
to designate a path name for the device drive and text-font
files. This path specification must be given at the beginning of
the file, before any device ID assignments are made. The path
name can only be 64 characters long. It doesn't matter
whether the names are entered in upper- or lowercase letters.
Next come the device IDs for the screen drivers. A filename of
screen.sys is given for each entry so it will conform to the
standard format, but the GDOS doesn't try to read in a device
driver file of that name because the p flag after the device
number tells it that this driver is permanently installed in
ROM. A device number of 1 is used to specify the default
screen driver. This indicates that you don't care about match
ing the disk-based text fonts to the screen resolution. Device
numbers 2, 3, and 4 are used for the low, medium, and high-
resolution screens, respectively. In order to open the virtual
workstation with the proper ID, however, you first must deter
mine what display is in use. You can use the XBIOS (Extended
Basic Input/Output System) command 4 to determine the cur
rent screen resolution. From C, you can use getrez, a macro
defined in the file "osbinds.h", to call this function. To find
the proper ID number, use the statement
ID = getrez() + 2;

Since getrez returns the number 0 for lo-res, 1 for medium-
res, and 2 for hi-res, all you have to do is add 2 to the value
returned to get the right ID number. Assembly language pro
grammers can perform the getrez call using the following code:
move.w #4,—(sp) * push command number on the stack
trap #14 * call XBIOS
addq.l #2,sp * pop command number off the stack
The resolution will be returned in register dO.

The last Open Virtual Workstation input parameter, the
Normalized Device Coordinate (NDC) to Raster Coordinate
(RC) transformation flag, allows you to specify which coordi
nate system you'll use for drawing. The RC system is the one
used most commonly on microcomputers. Under this system,
the screen is divided into rows and columns of dots, which
represent every point that can be plotted on the display
screen. The dots in the top row have a vertical, or y, coordi
nate of zero.The vertical coordinate number increases as you

u

! I Setting Up the Graphics Environment

) j move toward the bottom row of the screen, which has a y co
ordinate of 199 on the color screen and 399 on the mono
chrome display. Likewise, the leftmost column has a

) f horizontal or x coordinate of zero, which increases as you
w> move toward the rightmost column, where the x coordinate is

639 on medium- or high-resolution displays, and/or 319 on
) 1 low-resolution displays. (See Figure 2-1.)

But the GDOS also supports another system known as
Normalized Device Coordinates (NDC). Since almost every
graphics output device has a different maximum horizontal
and vertical resolution, it's difficult to write a single program
that will work with many different types of devices. That's
where the NDC system comes in. It attempts to offer the pro
grammer a system in which graphics drawn on one computer
screen or printer will look the same when drawn on other
computers screens or printers of varying resolutions. When
you use NDC coordinates, you send all of your graphics out
put to an imaginary display that is 32,768 pixels wide by
32,768 pixels high. These pixels are grouped differently than
they are under the Raster Coordinate system, since the vertical
axis starts at the bottom of the screen (0) and moves up to the
top row (32767). As in the RC system, the left-hand column is
zero, and x coordinate numbers increase as you move the
rightmost column (32767). (See Figure 2-2.)

Figure 2-1.
Raster Coordinate (RC) System

Figure 2-2.
Normalized Device Coordinate
(NDC) System

0,8 639,8 8,32767 32767,32767

I II__1

\ / W

U

U

i i

19

CHAPTER 2

The GDOS takes the graphics output that you send to this
enormous display and scales it down in proportion to the
more modest dimensions of your actual output device. For ex
ample, let's say that you order the VDI to draw a box whose
upper left comer is at point 8192,24576 and whose lower right
comer is at point 24576,8192 in the NDC system. This box
follows the outline of the display, a quarter of the way in from
each edge. If you're using the ST's medium-res color screen
for your display, GDOS transforms the normalized coordinates
to raster coordinates, and draws a box from 160,50 to 480,150.
But if you're using the lo-res screen, the box would go from
80,50 to 240,150, and in hi-res it would go from 160,100 to
480,300. This means that with one command, you can create
the same size box on each of the ST's three display screens.

You may find, however, that normalized coordinates may
not be as useful as they may seem at first. For one thing, they
slow down all of the graphics operations. Even though the ST
computers are fast, they still aren't so fast that the extra step
of translating normalized coordinates to raster coordinates
can't cause some appreciable delay in complex drawing opera
tions. Secondly, the disparity between the resolution of the
normalized display and that of real-world graphics devices is
so great that something is bound to be lost in the translation.
With only 1 RC pixel for every 8000 NDC pixels, there is no
way that very complex drawings can be accurately reproduced
on screens of varying resolutions. Realistically, most ST pro
grammers will want to write applications specifically for the
ST and will want to know exactly where every pixel will be
drawn. So while NDCs are a nice idea, the RC system will
probably still be the one used most often, at least until that
computer with the 32,768 X 32,768-pixel display comes along.

The handle. Handles pass a lot of information when they
are called. The most important item is the workstation ID
number, or handle, that is returned in the variable handle.
This ID is included as part of the input to all of the other VDI
functions, to indicate the device to which the graphics output
is to be sent. For v_opnvwk only, handle is used as both an
input and an output parameter. In order to get back the new
handle for your virtual workstation, you should first pass the
handle of the screen device that GEM has already opened.

20

Setting Up the Graphics Environment

You can get this handle by using the call
int handle,

charw, charh,
boxw, boxh;

handle = graf_handle(&charw, &charh, &boxw, &boxh);
Again, note that unless you load the GDOS extension by

running the GDOS.PRG program, this step really doesn't
accomplish anything, since it appears that the input value
placed in handle is ignored by the TOS ROMs. But even if you
aren't running GDOS.PRG from the AUTO folder of your boot
disk, it pays to follow the GEM guidelines, since, otherwise,
your program will not work on computers that do have the
GDOS resident. Besides, this call returns some interesting
information about the size of the default text font. The width
and height of the actual characters are returned in charw and
charh, while the width and height of the text box, the cell in
which each character is placed, are returned in boxw and
boxh. We'll go deeper into the formation of text characters in
the chapter that deals with text.

Output array. In addition to supplying a handle for your
new workstation, the v_opnwk and v_opnvwk calls fill the
array output with 57 varieties of information about the work
station that was just opened. This information is really pro
vided to aid in creating more portable GEM programs that
may be run on other types of computers and on all kinds of
output devices, but it is still of interest to the programmer who
works exclusively with the ST screen device. Information
given about the workstation includes:
output[0] Maximum horizontal coordinate value (in points or

pixels)
output[l] Maximum vertical coordinate value (in points or pixels)
output[2] Device Coordinate units flag

(1 = device doesn't support precise scaling)
output[3] Width of one pixel in microns (1/1000 millimeter)

For display screens, horizontal component of aspect ratio
output[4] Height of one pixel in microns (1/1000 millimeter)

For display screens, vertical component of aspect ratio
output[5] Number of text font heights

(0 = continuous scaling)
output[6] Number of line patterns
output[7] Number of line widths

(0 = continuous scaling)

21

n
CHAPTER 2

output[8]
output[9]

output[10]
outputfll]
output[12]
output[13]

output[14]

output[15]
to

output[24]

output[25]
to

output[34]

output[35]

output[36]

output[37]

22

Number of marker patterns
Number of marker sizes
(0 = continuous scaling)
Number of text fonts supported by the device
Number of pattern fill styles
Number of crosshatch fill styles
Number of drawing-pen colors available
(the number of colors that can be displayed by the de
vice at the same time)
Number of Generalized Drawing Primitives (GDPs)
(how many of the 10 basic drawing commands are
supported)
This part of the array holds a sequential list of code
numbers for the first 10 GDPs supported.
Each element holds one of the following code numbers:

1 = Filled Rectangle or Bar (v_bar)
2 = Circle Segment or Arc (v_arc)
3 = Filled Pie Slice (v_pieslice)
4 = Filled Circle (v_circle)
5 = Filled Ellipse (v_ellipse)
6 = Elliptical Arc (v_ellarc)
7 = Filled Elliptical Pie Slice (v_ellpie)
8 = Rounded Rectangle (v_rbox)
9 = Filled Rounded Rectangle (v_rfbox)

10 = Justified Graphics Text (v_justified)
— 1 = End of list

This part of the array holds a sequential list of code
numbers showing what category of graphics operation is
performed by of each of the supported GDPs. This indi
cates what kind of graphics settings affects each of the
supported commands. Each element holds one of the fol
lowing code numbers:

0 = Line drawing
1 = Marker drawing
2 = Graphics text
3 = Filled area
4 = no setting

Color availability flag
0 = device is not capable of color output
1 = device is capable of color output

Text rotation availability flag
0 = device is not capable of text rotation
1 = device is capable of text rotation

Area fill availability flag
0 = device is not capable of area fill operations
1 = device is capable of area fill operations

n
i i

n

r~i

n
n
n
n

Setting Up the Graphics Environment

output[38

output[39

output[40

output[41

output[42

output[43

output[44

output[45
output[46
output[47
output[48
output[49
output[50
output[51
output[52
output[53
output[54
output[55
output[56

Cell array function availability flag
0 = device can not perform the cell array function
1 = device can perform the cell array function

Total number of color choices available in the palette
0 = more than 32,767 colors available
1 = monochrome
2-32767 = actual number of colors available

Input devices available for the locator function
1 = keyboard only
2 = keyboard and other device (such as mouse)

Input devices available for the valuator function
1 = keyboard
2 = other device

Input devices available for the choice function
1 = function keys on keyboard
2 = some other keypad

Input devices available for the string input function
1 = keyboard

Workstation type
0 = output only
1 = input only
2 = input and output
3 = reserved for future use
4 = metafile output

Minimum
Minimum
Maximum
Maximum
Minimum
0
Maximum
0
Minimum
Minimum
Maximum
Maximum

character width
character height
character width
character height
line width

line width

marker width
marker height
marker width
marker height

The first two elements of the array give the maximum
horizontal and vertical coordinates, assuming that the coordi
nates start at point 0,0. For the ST monochrome screen the
horizontal value is 639 and the vertical value is 399, indicating
a resolution of 640 X 400 pixels. The horizontal value for the
color medium-res screen is 639, and for the lo-res screen it's
319. The vertical value for both color screens is 199. Element 2

CHAPTER 2

contains a flag indicating whether the device is capable of pre
cise scaling or only approximate values like a film recorder.
This flag is set to 0, indicating precise scaling, for all ST
screens.

The next two elements contain the width and height of
one pixel in microns (a micron equals 1/1000 millimeter).
While such measurements are more accurate for printers and
plotters than display screens which vary considerably from
unit to unit and model to model, they can be used to deter
mine the aspect ratio, which is the ratio of the width to the
height. For the hi-res screen the pixel width value is 372. The
medium-res width is 169, while the lo-res width is twice that,
or 338. The pixel height is 372 in all three modes. Thus, while
the hi-res pixels are square, and the lo-res ones almost so, the
medium-res pixels are less than half as wide as they are tall.
The aspect ratio comes in handy when you try to draw boxes
that look square and circles that look round on the screen.
Since each pixel in medium-res is tall and skinny, a box that is
100 pixels wide by 100 pixels high will appear to be tall and
skinny as well. In order to get the box to look square, you
must multiply the width by the aspect ratio (work_out[3]/
work_out[4]) to get the height. In medium-res mode, a box
that is 100 pixels wide should only be 45 pixels high if it is to
appear square. The VDI does this kind of scaling for you auto
matically when it draws a circle using one of the circle
functions.

The next 9 values and the last 12 give some information
about the kinds of graphics settings available. The VDI is ca
pable of drawing text in a number of different sizes (or
heights, to be more precise), and element 5 tells exactly how
many are available (on the ST the default number is 3 in all
resolution modes).

Elements 45 and 46 give the minimum text character size
(5 pixels wide by 4 pixels high on the ST), and elements 47
and 48 give the maximum text character size (7 pixels wide by
13 pixels high).

Element 6 tells how many types of patterned lines can be
drawn. (On the ST this value is 7.) Lines can be drawn one
pixel wide or several pixels wide, and the number of available
line widths are stored in element 7. On the ST, this value is 0,
indicating that line widths may be continuously scaled from
the minimum value to the maximum (though even numbers

Setting Up the Graphics Environment

will be rounded down to the next lower odd value). Element
49 gives the minimum line width (1 pixel), while element 51
holds the maximum line width (40 pixels on the ST).

The next two values give the number of marker types and
sizes. Markers are graphics objects that can look like a dot, a
diamond, an asterisk, or other shapes, and the number of
marker types indicates the number of shapes available. (On
the ST, the standard set of six shapes can be used.) On the ST,
these markers can be drawn in any of eight sizes. Elements 53
and 54 give the minimum marker size (15 pixels wide by 11
pixels tall), and elements 55 and 56 hold the maximum marker
size (120 pixels wide by 88 pixels tall).

Element 10 shows the number of text fonts that are resi
dent. On the ST, only one system font is available unless you
load additional fonts from disk.

The next two values show the number of pattern types
available for filling shapes with colored patterns. On the ST
there are 24 pattern fill types and 12 crosshatch styles.

Finally, element 13 shows the number of drawing pens
that are available. This number corresponds with the number
of hardware color registers used for a particular mode and de
termines the maximum number of different colors that can be
displayed on screen at one time. On the ST this value is 2 for
the monochrome screen, 4 for the medium-res color screen,
and 16 for the lo-res color screen. Since each of the ST's three
display screens has a different maximum number of colors that
it can display, the value found in element 13 can be used to
determine what display mode is in use. Element 13 should not
be confused with element 39, which holds the total number of
colors available. For both of the color modes, this value is 512,
which means that any of the drawing pens (color registers)
can hold any of 512 possible values at one time. For the
monochrome screen, this value is 2, since only black and
white are displayed.

Next comes information about the types of basic drawing
operations that may be performed. For historical reasons hav
ing to do with the older graphics systems from which the VDI
evolved, these operations are known as Generalized Drawing
Primitives (GDPs). Element 14 shows how many of the ten
GDPs are supported. (On the ST, all ten are supported.) Ele
ments 15-24 contain a list of the code numbers for the sup
ported operations. Since the ST supports all ten, these elements

25

CHAPTER 2

hold the numbers 1 through 10. Elements 25 to 34 contain a
list of code numbers showing the type of drawing operation
(line drawing, area fill, text, and so on) performed by each of
the ten operations. The operation type of a graphics output
function determines which group of graphics settings will af
fect it. On the ST, the values for these elements are
Element Code Function Element Code Type

15 1 Filled Bar 25 3 Fill
16 2 Arc 26 0 Line
17 3 Filled Pie 27 3 Fill
18 4 Filled Circle 28 3 Fill
19 5 Filled Ellipse 29 3 Fill
20 6 Elliptical Arc 30 0 Line
21 7 Filled Elliptical Pie 31 3 Fill
22 8 Rounded Rectangle 32 0 Line
23 9 Filled Rounded Rectangle 33 3 Fill
24 10 Justified Text 34 2 Text

The next four values are flags that indicate whether the
device supports a certain VDI function or not. Zero in one of
these elements means that the device doesn't support the
function, while 1 indicates that it does. The flag in element 35
indicates whether the device supports color output. This flag
shows a 1 for either resolution of color display, and a 0 for the
monochrome screen. The next flag shows whether text rota
tion is available. (It is on the ST, though we will see later on
that text characters may only be turned in 90 degree incre
ments.) The flag in element 37 shows whether the device sup
ports area filling. (All ST screens do.) Finally, element 38
indicates whether the device supports the Cell Array function,
in which a rectangular area of the drawing surface may be
broken down into smaller rectangular color zones. The ST
screens do not support this function.

In addition to all of the output functions, the VDI sup
ports a number of input functions as well, which allow a pro
gram to receive feedback from the user. You can tell whether a
particular device supports these functions by looking at the
value in element 44, which tells whether it supports input
and/or output functions. On the ST, the virtual screen work
station includes the keyboard and mouse as well as the screen,
and therefore supports both input and output.

Elements 40-43 give information about the hardware de
vices used for the input functions. Element 40 specifies the in
put devices available for the locator function, which allows the

Setting Up the Graphics Environment

user to choose a point on the screen. On the ST, the value
here is 2, which indicates that either the keyboard or the
mouse may be used for this function. Element 41 shows the
input devices available for the valuator function, which allows
the user to move a value setting higher or lower within the
range of 1-100. On the ST, this value is 1, which means that
the keyboard (and more specifically, the arrow and shift keys)
are used for this function. Element 42 deals with the hardware
device used for the choice function, which lets the user select
from a number of options. The value here on the ST is 1,
which indicates that the ten function keys are used to return a
number from 1 to 10, indicating the choice that was selected.
Element 43 indicates what device is available for text character
string input. On the ST the value here is 1, indicating the key
board (the only choice, actually) as the device used.

Extended Inquire
The VDI includes another function that can supply your pro
gram with all of the same information that is returned by the
Open Workstation calls, plus a number of additional facts
about the graphics environment. This function is called Ex
tended Inquire, and it uses the following format:
int handle, flag, output[57];
vq_extnd(handle, flag, output);
where handle is the workstation ID number, output is a pointer
to the array where the information is returned, and flag indi
cates whether you want the function to return the same output
values as the Open Workstation calls (flag = 0), or the ex
tended information (flag = 1). When you request the extended
information, the values returned in the output array have the
following meanings:
output [0] Screen type

0 = no screen
1 = separate character and graphics controllers
using separate screens
2 = separate character and graphics controllers
sharing a common screen
3 = common character and graphics controller
using separate graphics memory storage
4 = common character and graphics controller
using common graphics memory storage

27

CHAPTER 2

output [1]
output [2]
output [3]

output [4]

output [5]

output [6]
output [7]

output [8]

output [9]
output [10]

output [11]

output [12]

output [13]

output [14]

output [15]
output [16]
output [17]

output [18]
output[19]-[56]

Number of available background colors
Number of graphics text special effects
Raster scaling flag

0 = scaling not supported
1 = scaling supported

Number of color planes used for raster (number of
bits per pixel)
Color register lookup table flag

0 = lookup table not supported
1 = lookup table supported

Number of 16 X 16 raster operations per second
Contour fill flag

0 = contour fill not supported
1 = contour fill supported

Text rotation flag
0 = text rotation not supported
1 = text may be rotated in 90 degree steps
2 = text may be rotated any angle

Number of drawing modes
Input modes flag

0 = no input modes supported
1 = request mode supported
2 = sample and request modes supported

Text alignment flag
0 = text alignment not supported
1 = text alignment supported

Inking flag (for plotters)
0 = device cannot ink
1 = device can ink

Rubberbanding flag
0 = no rubberbanding
1 = rubberband lines only
2 = rubberband lines and rectangles

Maximum vertices in ptsin (for Polyline, Polymarker,
and Area Fill)
Maximum size of intin
Number of mouse buttons
Is line pattern used for wide lines?

0 = no patterned drawing of wide lines
1 = wide lines can be drawn with patterns

Drawing modes for wide lines
Reserved for future use

On the ST, output [0] always shows the screen type to be
4, since graphics and text are bitmapped on the same screen in
both color and monochrome modes. The number of available

Setting.Up the Graphics Environment

background colors shown in output [1] is 1 for monochrome
systems and 512 for color systems. The number of graphics
text special effects reported in output [2] on the ST is 31. Out-
put[3] shows that raster scaling is not supported. Output [4]
shows that there is one color plane in monochrome mode, two
color planes in medium-res mode, and four color planes in lo
res mode; this means that the monchrome screen can only dis
play 2 colors at one time, while medium-res can display 4,
and lo-res 16. Output [5] shows that a color-lookup table is
not supported in monochome mode, but is supported in the
color modes. (The color lookup table, which assigns VDI color
index numbers to hardware color registers, is discussed in
Chapter 3.)

The performance factor in output [6] shows that 1000
16 X 16 pixel raster operations can be performed in one sec
ond on the ST. Output [7] shows that the ST has flood-fill
capability. Text characters may be rotated in 90 degree incre
ments, according to the value in output [8]. There are four
drawing modes available on the ST, as shown by output [9].
The GEM input pseudodevices work in both sample and re
quest mode on the ST, per output [10]. Output [11] shows that
text may be aligned. Output [12] shows that the screen device
cannot ink, and output [13] shows that it cannot draw rubber
band lines.

The maximum number of vertices for the Polyline, Poly
mark, or Area Fill functions is 128 on the ST, according to out
put [14]. (This means that the maximum size of the ptsin array
should be 256.) There is no maximum size for the intin array,
though, according to output [15]. Output [16] shows that the
ST mouse has two buttons. Output [17] and output [18] show
that wide lines cannot be drawn with line patterns and that
they have no special writing modes.

Other Workstation Functions
The Clear Workstation function initializes the device to a state
in which there is no graphics output. For the screen, this means
setting every pixel to the background color. For a printer or
plotter, the print buffer is cleared and a form feed is sent to
advance to a new page. This function is performed automati
cally whenever a physical (but not a virtual) workstation is

29

CHAPTER 2

opened. The format for the C version of this function is
v_clrwk(handle);
where handle is the graphics handle for the workstation.

Another function, Update Workstation, can be used with
devices like printers, which don't execute graphics commands
as soon as the program sends them, but accumulates data in a
buffer first. This function is used to immediately execute any
commands that are waiting in the buffer. It has no effect on a
device like the screen, which always executes output com
mands immediately. The C command looks like this:
v_updwk(handle)

The final two workstation commands are Close Workstation
and Close Virtual Screen Workstation. These de-allocate the
workspace used to keep track of the device settings, and pre
vent further output to the device. You should always remem
ber to close any devices that you have opened before exiting
your program. The syntax for these functions is
v_ clswk(handle);
and
v_clsvwk(handle);

A C Program Shell
Since most of the subsequent example programs use virtually
the same program code to initialize the graphics environment,
it would be repetitive to include the text of that code in every
example. Instead, we include the steps necessary to open the
screen device and get its identification handle below, in the
form of a short program shell, Program 2-3. All Program 2-3
does is open the virtual workstation, call a function named
demo, wait for somebody to press a mouse button (to give the
viewer time to see the graphics display), and close the work
station. Since the function demo is not defined in this pro
gram, it will not link properly unless you add that function
yourself. The way we'll do that in our examples is to use the C
#include operator to include the file work.c at the beginning of
most of our sample programs, and name the main function of
the sample program dem o(). For example, to create a program
that does absolutely nothing but wait for a mouse button

Setting Up the Graphics Environment

press, you could define an empty function for demo(), as
shown in Program 2-2.

Program 2-2. dummy.c
•include "work.c"
demoO O

Keeping the initialization code in a reusable file will
shorten our sample listings substantially, and will save you a
lot of retyping. But be sure that the file work.c is stored where
your compiler can find it, either in the same disk and directory
as your standard header files or in the same disk and directory
as the source code file.

Program 2-3. shell.c
/* Global variables — For VDI bindings, etc. */
int contrlC123,

intinC12B3,
ptsinC1283,
intoutC1283,
ptsoutC1263j

int handlai
int work_inC123,

wor k_out C 57 D|

/* Initialization starts here */
mainO
C

int x(nul, button-0|
/* Initialize the GEM application */

appl_init<)|
/* Initialize input array, get the physical workstation handle,

and open the Virtual Gcreen Workstation */
•for (x»0, work_intl03-2j x<10j work_inCx++3»l> |
handle ■ graf_handle(lcnul, &nul, Stnul, Scnul>|
v_opnvwk (work.in, Sthandle, work_out>}
v_clrwk(handle)y

/* perform the graphics demos 9/
demo()|

/* Wait until the mouse button is pushed, then close the virtual
workstation, and exit from the application %/
while (button»s0) vq_mouse(handle,Scbutton, &nul,&nul) |
v_clsvwk(handle)|
appl_exit()|

>

31

CHAPTER 2

Program 2-3 has a few function calls that haven't been
discussed yet. For example, the first and last commands used
are appl_init() and appL_exit(). These are non-VDI GEM
functions that are used at the beginning and end of every
GEM program, the former to initialize the application and the
latter to exit from it. Also, we used the vq_mouse function to
check for a mouse button press. This is a VDI input function,
and we will discuss it in more detail in Chapter 8. The rest of
the program, however, should be familiar from the material
covered above.

After you compile and link the sample programs (and use
the relmod utility if you are using Alcyon C), you'll end up
with a GEM program whose name ends in .PRG. When you
run this program, the mouse pointer will be visible, and may
disrupt part of the drawing when you move it. To avoid this,
you can either be careful not to move the pointer, and just
click a button when you wish to exit, or you can rename the
program with the extender .TOS. When you run a TOS pro
gram, the mouse pointer becomes invisible, and the screen is
cleared automatically. Later, in the chapter on input com
mands, you'll see how to make the mouse pointer invisible
before using graphics commands. You can then modify the
shell program to incorporate this feature.

An Assembly Language Program Shell
Setting up a bare-bones assembly language program is more
involved than just translating the corresponding shell.c pro
gram. For one thing, C programs usually link in a startup file
at the beginning of the program to take care of such mainte
nance chores as allocating a chunk of RAM for a program stack,
setting the stack pointer to the address of that stack, and re
turning any unused RAM to the pool of free memory. Programs
written in Alcyon C link in the file appstart.o or gemstart.o at
the beginning to take care of these tasks.Megamax C programs
get the necessary code from a library module called init.o, the
source code for which is supplied in a file called init.c (which
uses the inline assembly commands). But assembly language
programmers must provide the equivalent functions for each
of their programs themselves.

The other problem is that not all assemblers have a .in
clude directive, so we won't be able to include the text of our

u

Setting Up the Graphics Environment

! I shell program in each of our demo programs. Instead, we'll as-
'~mm> semble the shell program separately, and link the resulting ob

ject file with the demo program object files. Since our shell
! ' program refers to the demo subroutine in the demo program
*** file, and the demo programs refer to the VDI data arrays de

fined in the shell program, we'll use the .xdef and .xref
I | directives to help resolve these external references. The .xref

directive tells the assembler that the symbol is defined in an
other object file, while the .xdef tells it that this symbol will be
used by another object file. All of the assembly language ex
amples in this book have been created with the assembler that
comes as part of the Alcyon C compiler, so bear in mind that
the assembler directives used may be slightly different than
those of other assemblers.

Program 2-4 is the assembler shell program, shell.s.

Program 2-4. shell.s

$ Shel1
*

program to be linked with all assembly language programs.

ttt Program equates
bpadr s 4 * Stack offset to base page address
codelen a 12 * Base page offset to Code segment length
datalen a 20 * Base page offset to Data segment length
bsslen = 28 * Base page offset to BSS segment length
stk a 4400 * size of our stack <1K)
bp B *100 * size of base page
setblk s *4a * command number of SETBLOCK function
aescode a *c8 * command number for AE8 call
vdicode = *73 * command number of vdi call
*** External references

Li .xref
.xdef
.xdef
.xdef
.xdef
.xdef
.xdaf
.xdo-f
.xdef
.xdaf
.xdaf
.xdaf
.xdaf
.xdaf
.xdaf
.xdaf
.xdaf
.xdaf
.xdaf

damo
vdi
vwkhnd
contrl0
contrl1
contrl2
contrl3
contrl4
contrl5
contrl6
contrl7
contrie
contrl9
contrl10
contrl11
int in
lntout
ptsin
ptsout

* import tha external damo subroutini
* export the vdi subroutine call,
* the virtual workstation handle,
* and all of the VDI data arrays

33

CHAPTER 2

Gat base paga address in aS
• text
nova.1 a7,aS
mova.l bpadr(aS)ta5

* save a7 so mb can gat tha base paga address
* aS " basepage address

ttt Calculate the total amount of memory used by
tkt our program (including stack space) in d0

move.1
add.l
add. 1
add. 1

codelen(a5), d0
datalen(aS),d0
bsslen(aS),d0
#stk+bp,d0

* total memory used =
t length of code segment
* + length of data segment
t + length of uninitialized storage segment
* + (size of the base page + our stack)

*** Calculate the address of our stack
ttt and move it to the stack pointer (a7)
t * stack address ■

move.l d0,dl * size of program memory
add.l a5,dl * + program’s base address,
and.l #-2,dl * pick off odd bit to make sure that the

> t stack starts on a word boundary (it must),
move.l dl,a7 * set stack pointer to our stack

t * which is stk bytes above end of B88
»** Use the GEMDOS SETBLOCK call to reserve the area of memory
* M actually used for the program and stack, and release the
i t * rest back to the free memory pool.

move.1 d0,-(sp) * push the size of program memory
* * (first SETBLOCK parameter) on the stack.

move.1 a5,-(sp) * push the beginning address of the
* « program memory area (2nd SETBLOCK parameter)

clr. w -(sp) * clear a dummy place-holder word
move #*4a,-(sp) * finally, push the GEMDOS command number

* * for the SETBLOCK function
trap Ml « call GEMDOS
add. 1 #12,sp * and clear our arguments off the stack.

Initialize the application with appl.init
move.1 #0,resvl * clear global variables
move.1 #0,resv2
move.1 #0,resv3
move.1 #0,resv4
move #10,contrl0 * command ■ appl_init
move #0,contrl1 * no integer input parameters
move #1,contrl2 * 1 integer output parameter
move #0,contrl3 * no address input parameters
move #0,contrl4 * no address output parameters
Jsr aes * do the call

t** Get the physical screen device handle from graf.handle
move #77,contrl0 « command *» graf.handle
move #0,contrll * no integer input parameters
move #5,contrl2 * S integer output parameters
move #0,contrl3 * no address input parameters
move #0,contrl4 * no address output parameters
Jsr aes * do the call

*** Open the Virtual Screen Workstation (v_opnvwk)
move
move

#100,contrl0
#0,contrl1

* opcode to contrl(0)
$ no points in ptsin

34

Setting Up the Graphics Environment

move
move

initloops
move.w
dbra
move

#11,contrl3 * 11 integers in intin
intout,contrl6 * physical workstation handle to contrl(6)

movea.l #intin,a0
move #9,d0

•1,(a0) +
d0,initloop
#2,intin+20

* intin (0)-intin <9) = 1

* intin (10) ■> 2 (Raster Coordinates)

jsr
move

vdi
contrl6,vwkhnd * save virtual workstation handle

t t t Clear Virtual Workstation
move
move
move
Jsr

#3,contrl0
#0,contrl1
#0,contrl3
vdi

* clear work opcode
t nothing in ptsin
t nothing in intin

t t t Do our demo program
Jsr demo

t t t Wait for a mouse button push (vq.mouse)
wait i

move #124,contrl0 t opcode for Query Mouse Button (vq_<
move #0,contrl1
move #1,contrl2 t x,y coordinates of mouse returned :
move #0,contrl3
move #l,contrl4 t button status returned in intout
move vwkhnd,contr16
Jsr vdi t check the button
cmpi #0,intout t if ** 0, no button pushed
beq wait t b o try again

t t t Close Virtual Screen Workstation (v_clsvwk)
move #101,contrl0 t opcode to contrl(0)
move #0,contrl1 t no points in ptsin
move #0,contrl3 t no integers in intin
move vwkhnd,contr16 t virtual workstation handle
Jsr vdi

t t t Finish the application (appl_exit)
move #19,contrl0 t opcode to contrl(0)
move #1,contr12 t 1 integer returned in inout
move #0,contrl1
move #0,contrl3
move #0,contrl4
Jsr aes

ttt Exit back to D08
move.l #0,(a7)
trap #1

t Push command number for terminate program
t call BEMDOS. Dye bye!

35

CHAPTER 2

t t t Hake AES function call
t t t (after setting parameters)
aes i

move.l #apb,dl
move.w #aescode,d0
trap #2
rts

t t t Hake VOI function call
t t t (after setting parameters)
vdi i

move.l #vpb,dl
move.w ttvdicode,d0
trap #2
rts

t t t Storage space for AES and VDI call parameters
.data
.even

contrlt
contrl0t .ds. w 1
contrl1 .ds.w 1
contrl2t .ds. w 1
contrl3i .ds.w 1
contrl4i .ds.w 1
contrlSi .ds. w 1
contr16i .ds.w 1
contrl7« .ds. w 1
contr18i .ds.w 1
contrl9i .ds. w 1
contrl10t .ds.w 1
contrl11i .ds. w 1

globals
versions .ds.w 1
count t .ds.w 1
ids .ds.w 1
private: .ds. 1 1
tree t .ds. 1 1
resvli .ds.l 1
resv2* .ds. 1 1
resv3< .ds. 1 1
resv4t .ds. 1 1
intini .ds.w 128
intouti .ds.w 128
addrint .ds.w 128
addrouti .ds.w 128
ptsin> .ds. w 128
ptsoutI .ds.w 128
vwkhnd .ds.w 1

t intin and intout UBed by both also

t t t The AES and VDI parameter blocks hold pointers
t t t to the starting address of each of the data arrays
apb: .dc.l contrl,global,intin,intout,addrin,addrout
vpbt .dc.l contrl,intin,ptsin,intouttptsout
. end

36

Setting Up the Graphics Environment

The first part of Program 2-4 requires a bit of explanation.
When GEM starts an application program (but not a desk ac
cessory), it allocates all of the system memory to that program.
Therefore, if the program wishes to use the system memory-
management calls, or any of the AES calls that themselves al
locate memory, it must first de-allocate all of the memory it
isn't actually using at startup time. The way to do this is with
the XBIOS function, SETBLOCK. SETBLOCK is used to reserve
a specific area of memory for the program, and return the re
maining RAM area to the Operating System's free memory
pool. In order to execute this command, you must pass the
starting address of the area that you wish to reserve and the
size of the area. Please remember that it's only necessary to
free memory when you start an application program, not a
desk accessory.

Finding the starting address of program memory isn't too
difficult, since when you start the program, the second word
on the stack points to that location. Finding the size of the
program requires a little more knowledge of how program
storage space is allocated. The memory area in which a pro
gram resides is known as the Transient Program Area (TPA).

At the beginning of the TPA is a 256-byte segment
known as the basepage. The basepage contains information
about the size and address of each program segment, as well
as the command line that is passed to the program. (These are
the extra characters you type in when you run a Tos Takes Pa
rameters program whose name ends in .TTP.) After the
basepage comes the actual program code, followed by the data
area, and then the BSS (Block Storage Segment), which is used
to store uninitialized data. So to find the total size of the pro
gram area, we take a look in the basepage to find the size of
file code, and add that to the size of the data and BSS seg
ments, along with the size of the basepage itself. Since we
need a stack area for the program, it makes sense to add the
size of the stack to the end of the program and reserve the
combined program and stack area together. Once we calculate
this area, we can set the stack pointer to the top of program
memory and make the SETBLOCK call. Once that's done, we
can get on with whatever it is that our program does.

In order to assemble the shell.s program with the Alcyon
assembler, we invoke the as68 assembler with the following
command:

37

CHAPTER 2

as68 -u -1 shell.s
This creates an object file called shell.o. Since this pro

gram does not contain the demo subroutine, it won't link and
run properly. In order to get it to function, the least you must
do is to create another object module that contains that sub
routine. An example of this is Program 2-5, dummy.s.

Program 2-5. dummy.s

* Dummy.s — a do-nothing damo

.xdef demo

.text
demos

rts
.end

Assemble this file in the same way to create the dummy.o
file. Next, use the linker to join the two object modules. The
command line to use is
link68 [u] dummy.68k= shell,dummy

This creates the dummy. 68k, a relocatable program mod
ule that must be modified to run under GEMDOS, using the
relmod program:
relmod dummy

This produces the dummy.prg program file that can be ex
ecuted from the desktop. This program just waits until the
user presses a mouse button, and then ends. When you substi
tute the graphics demo subroutines from the programs in sub
sequent chapters for the dummy demo routine, the program
will draw the graphics demonstration, and then waits for the
user to press the mouse button.

As with the C example programs, you may find that the
mouse pointer image disrupts the picture when you move it
for the first time, because it saves and restores the original
background image that appeared before your drawing was dis
played. The solution is to either rename the program with a
.TOS extender or modify the shell program to turn off the
mouse pointer before drawing, as we will demonstrate in a
later chapter.

38

Chapter 3

Drawing Points
and Lines

□

0
nV. '
n

n

n
n
n
n

a

kind of drawing that you can do
is to color in one spot on the screen at a time. The GEM VDI
provides an extremely flexible graphics type called a marker
which is used to perform this function. At its simplest, the
marker function does just what its name suggests—it marks a
single dot. But the extent of this function doesn't stop there.
The basic marker routine, Polymarker, can be used to mark a
number of points at once. The C language format for this
function is
int handle, count, points[COUNT*2];
v_pmarker(handle, count, points);
where handle is the ID number for the graphics workstation,
count is the number of points to mark, and points is an array
of integers which holds the x and y coordinates for each of
those points. Since each point has two coordinates, there are
twice as many elements in the points array as there are actual
points to mark. Program 3-1 is a brief program that uses the
Polymarker function to draw 64 dots in an 8 X 8 grid.

Program 3-1. pmarkl.c

include "shell.c"
m o d

nt points CI283| /* max o-f 64 points */
nt x,yj
■for <y*0jy<8jy++> /* for Bach row */

■for <x«0ix<8|x++) /* for aach column */

PMARK1.C — Demonstrates use of the
Polymarker function to draw a series
of points on the screen.

*/
//
*/
//
»/

<
pointsC<16ty)+(2Sx)3= 100 + <x*4)j t% set points %t
pointsC(16ty)+(2tx)+13 - 100 +<y*4>|>

41

CHAPTER 3

v_pmarker(handle, 64, points)| /* draw all of points >/
>
/* End of Rraarkl.c */

In addition to drawing dots, the Polymarker function can
be used to draw several other marker shapes as well. In our
example program, single points were drawn on the screen be
cause when we opened the virtual screen workstation, we
specified marker type 1 (a single point) as our default marker
type in work_in[3]. But, as we saw from the information re
turned by the v_openvwk call in work_out[8], there are six
marker types available for use on the ST screen. These are as
follows.
Marker Shape
Number

1 Point
2 Plus sign
3 Star
4 Square
5 Diagonal Cross
6 Diamond
To change the type of marker currently used for drawing,

we use the Set Polymarker Type command. In C, the format
for this command is
int handle, markerno, type-set;
type_set = vsm_type(handle, markerno);
where handle is the workstation ID number, markemo is the
marker shape number of the symbol you want to use, and
ty p e se t is the marker shape number of the symbol that was
actually set. If you request a marker type that isn't available
(for example, a number greater than 6 when using the screen
device), the VDI sets the star symbol as the current marker
type.

In addition to using a number of different marker shapes,
you may also specify the size, or to be more specific, the
height, of the marker you wish to use. The only exception to
this is the point marker type, which is always exactly one
pixel in size. As we have seen from the values returned by
v_openvwk in work__out[9] and work_out[53]-[56], the ST
screen offers eight different marker sizes, ranging from 15
pixels wide by 11 high to 120 pixels wide by 88 high. Since

Drawing Points and Lines

the biggest marker size is eight times as large as the smallest,
it stands to reason that each larger marker size is 15 pixels
wider and 11 pixels taller than the last. The C language format
of the Set Polymarker Height command is
int handle, height;
height-set = vsm_height(handle, height);
where height is the marker height that you're requesting, and
height—set is the height of the marker that is actually set. If we
request a marker height that isn't available, the VDI sets the
height to the next smaller height that's supported. Since we
know the exact sizes of markers that are available on the ST
screen, we know that the height requested should be an even
multiple of 11 no greater than 88. If we did not know the size
of the markers available on another device, however, they
could be determined by repeatedly trying a height that is 1
less than the tallest known height, and seeing what value is
returned in height_set.

The final marker attribute that can be changed is the color
in which it is drawn, assuming, of course, that the program is
being run on a color monitor. With a monochrome monitor,
the background is usually all white, and all drawing is done in
black. But on the color monitor, you can have up to four dif
ferent colors on screen at one time in medium-resolution mode,
and up to sixteen different colors in low-resolution mode.
Color selection is controlled by sixteen hardware registers. You
may think of these as pens, each filled with a different color of
ink. By default, you draw with pen 1, which, unless you change
it, contains black "ink." That default drawing pen was set by
placing a 1 in work_in[4] at the time the virtual workstation
was opened. To draw in another color, you must choose an
other pen with the Set Polymarker Color Index command,
int color—set/handle, pen;
pen-set = vsm_color(handle, pen);
where pen is the number of the drawing pen (hardware color
register) that you wish to use, and P e n se t shows the actual
drawing pen that was selected—which may differ from the
one you requested if you asked for an invalid pen number.
We'll discuss the default colors of the drawing pens, as well as
how to change those colors, in the next chapter.

Program 3-2 shows the five sizable marker types in five

43

CHAPTER 3

different sizes. If you have a color monitor, some of them will
appear in different colors as well:

Program 3*2. pmark2.c

/* */
/* */
/* PMARK2.C — Demonstrates use of */
/% different sizes and shapes %/
/* of markers.
/* */
/* */

•include "shell.c"
demo()
int points C23;
int x,y»

for <y*0,pointBC13“3jy<5jy++) /* -for each row */
i
vsm_height(handle, ll+(ytll)>; /* set marker height */
vsm_color(handle,y+1)| /* set color t/
pointsC 13-t-adity) | /* set points */
■for (x=0,pointsC03=>(8+(y*B)) /2|x<5|x++)

€
vsm_type(handle, 2+x)j /* change marker shape */
if (x>0)pointBC03+">(12*(y+l>)|
v_pmarker(handle, 1, points); /% draw marker */
y~

>

>
ft End of Pmark2.c */

You may have noticed something peculiar about the size
and positioning of the markers on the display. In order to line
them up with the left edge of the screen, it was necessary to
offset them a number of pixels from the left. That's because
the x,y coordinate given for a marker that's bigger than a single
point specifies the center point of that marker, not its upper
left comer. Therefore, a marker placed at 0,0 would have both
its top half and its left half cut off by the edge of the screen.

Another thing you may have noticed is that we didn't
have to horizontally space the markers an even multiple of 15
pixels apart. That's because the marker size measurement is
for the marker's cell, which includes not only the actual area
filled by the marker, but also some blank space around the

Drawing Points and Lines

border of the marker. For example, in the 11-pixel-high plus-
sign marker (number 2), the horizontal line is actually only 9
pixels long, not 15, and the vertical line is 7 pixels high, not
11 (Figure 3-1). The rest of the cell is taken up by blank
pixels, distributed evenly on all four sides of the marker. To
find the actual drawing width of any marker, divide the height
by 11; multiply the result by 8; then add 1. To find the draw
ing height, divide the height by 11; multiply that result by 6;
then add 1. The mathematical formulas are:
Drawing width = ((height / 11) * 8) + 1
Drawing height = ((height / 11) * 6) + 1

Figure 3-1. Polymarker 2, 11 Pixels High

..

■

■ ■ ■ ■ ■ ■
- !

■

If you need to know during the course of a program just
w hat the current Polymarker settings are, you can use the VDI
function called Inquire Current Polymarker Attributes. The
format of the C command is:
int handle,

settings[4];

vqm_attributes(handle, settings);

The function returns the current polymarker settings in
the four elements of the settings array. Element 0 contains the
current marker type, elem ent 1 contains the pen number, ele
m ent 2 holds the drawing mode (we'll explain that one in the

45

n
CHAPTER 3

n

next chapter as well), and element 3 contains the current n
polymarker height. 1 '

Lines j !
The next step up in complexity from marking points on the
screen is drawing straight lines. As with markers, the principal
VDI line-drawing command allows you to draw several of {]
these at the same time. For that reason, it's called Polyline.
The C syntax for this call is
int handle, count, points[COUNT*2]; wktrc- - COUhlT
v—pline(handle, count, points);
where count is the number of endpoints that will be joined,
and points is an array that contains the x and y coordinates for
each of these points (in the format x,y,xltyl,x2,y2, and so on).
Since each point is described by two coordinates, there are
twice as many elements in the points array as there are points.
Although it takes two points to describe a line, the endpoint of
one line is always the beginning point of the next, except for
the first line. Therefore, the number of lines drawn by a Poly
line command is always one less than the number of points.

Anytime you use the Polyline command to draw a closed
polygon, the first point and the last point will be the same. So,
in order to draw a square with Polyline, you need five coordi
nate pairs in the points array, with the first and last pair being
exactly the same.

Program 3-3 is a sample program that demonstrates use
of the Polyline command.

Program 3-3. plinel.c
ft tf (|
ft tf
ft PLXNE1.C — Demonstrates use of the */
ft Polyline function to draw a series tf
ft of connected lines. */
/* tf
ft tf

•include "shell.c"
•define REPS 15 ft number of spirals tf
•define NEXT pointsC index 3 /* set next point */
•define STEP 12 ft Bpace between lines tf-
demoO
t

46

n
n
n
n

Drawing Points and Lines

int index»0,
«:»x,y,xstep,ystep,dx,dy,
pointsCB*REPS+23|
if <work_outC03 «*» 639>dx*»STEP| /* set -full horiz step */

else dx “ 8TEP/2} /* except -for lo-res */
i-f (work_outC13 — 399)dy=STEP; /* set full vert step */

else dy = STEP/2; /* except for color */
xstep “ work_outC03-dx; /* set horiz line length >/
ystep ° work_outC13-dy; /* set vert line length %/
NEXT = x = dx/2| /* set first point */
NEXT o y a dy/2;

ft For each repetition of the Bpiral... */
for (cs0;c<REP8;c++)

<
NEXT ” (x+oxstep); /* set four x,y coords */
NEXT = y|
NEXT = x|
NEXT = (y+=>ystep)j
NEXT “ <x-™<xstep-“dx))|
NEXT = y|
NEXT = X)
NEXT » <y-=<ystep-“dy))|
ystep -ndyj /$ & change the line lengths */
xstep —i=dxj
>

/* draw all of the lines */
v_plins(handle, 4*REP8+1, points);

>
/« End of Plinel.c */

As you can see, Program 3-3 adapts itself to any type of
monitor by reading the horizontal and vertical resolution from
work_out[0] and work_out[l], and scaling the length of the
lines and the size of the space between lines accordingly. No
tice also how the use of macro definitions like NEXT, STEP,
and REPS saves a lot of typing and allows us to easily vary
the size between the "squirals" and repetitions (though if you
want more than 15 repetitions you will have to increase the
size of the ptsin array in the shell program). These macro defi
nitions also have value as program documentation.

Patterned Lines
In addition to solid lines, the VDI also lets you draw patterned
lines composed of dots and/or dashes. In order to draw these,
we must set the line-drawing pattern with the Set Polyline

47

CHAPTER 3

Line Type command. The C syntax for this routine is
int handle, pattern;
pattern—set «= vsl_type(handle, pattern—no);
where pattern—no is the number of any of the seven available
line-drawing patterns. The number of the pattern that was ac
tually set is returned in the variable pa ttem se t.

The line-drawing pattern is composed of 16 pixels lined up
in a row. Each pixel is either colored in with the line-drawing
color (on), or colored in with the background color (off). These
patterns can be represented by a single 16-bit binary (base 2)
number. For example, a pattern in which an "on" pixel alter
nates with an "off" pixel can be represented by the binary
number 1010101010101010, which has a decimal value of
43690. The Atari ST screen driver supports seven types of
line-drawing patterns (as we saw from the value returned in
work_out[6] when we opened the virtual screen workstation).
These are (see Figure 3-2)
Pattern
Number Binary value Pattern

1 1111111111111111 Solid line
2 1111111111110000 Long dash
3 1110000011100000 Dotted line
4 1111111000111000 Dash-dot
5 1111111110000000 Dashed line
6 1111000110011000 Dash-dot-dot
7 User-defined style (must be set with vsl_udsty call

before vsl_type call)
The reason that we get a solid line as our default pattern

is because we placed a 1 representing pattern number 1 in
work_in[3] when we opened our virtual workstation, thus re
questing the solid line as our default. As long as the GDOS
extension is installed, however, it's possible to specify another
value as the default. If the GDOS extension is not installed,
the default line type will be the solid line, regardless of the
value you put in work_in[3]. Another point to note about
these line-drawing patterns is that the VDI makes no attempt
to scale them according to the screen display used, so the pat
tern may look fatter or thinner depending on whether you are
in lo-res, medium-res, or hi-res mode. And, since the horizon
tal resolution varies significantly from the vertical resolution,
the pattern of a dotted line that is drawn horizontally looks
quite different from that of the same line drawn vertically.
48

Drawing Points and Lines

Figure 3-2. The Six GEM VDI Line-Drawing Patterns

Although the VDI supplies six preset line patterns for the
sake of convenience, it also provides for a user-defined style,
which allows you to choose any of the 65,536 possible com
binations of lit and unlit pixels for the line-drawing pattern.
Before we select pattern 7, however, we should first tell the
VDI which pattern it represents. We do this by calling the Set
User-Defined Line Pattern function. In C, this function appears
in the following format:
int handle, pattern;
vsl—udsty (handle, pattern);
where pattern is a 16-bit number representing the 16 pixels of
the line-drawing pattern. As stated above, the way to translate
the on/off patterns into a 16-digit base-2 number is by writing
a 1 for every lit pixel and a 0 for every unlit pixel. In binary
math, the rightmost digit has a value of 1, and each subsequent
digit has a value that is twice that of the digit to its right.
Therefore, the binary number 1010 has a decimal value of 10:
Binary digits 1010
Decimal value of each digit 8020

8+ 0+ 2+0 = 10

49

I)

CHAPTER 3 n--------- f i

x*y»x max,x mi n,ymax f ymin, dx,dy,
pointBC183;
i-f <work_outC03 »= 639)dx » STEP*2; /* -full horiz step */

else dx = STEP) /* except lo-res •/
i-f (work_outC13 =*» 399)dy «» STEP*3; /* full vert step */

else dy ° (STEP$3)/2| /* except for color */

I \Line Color
On ST systems that have a color monitor, you can specify
which drawing pen will be used for line drawing, and thus
control the color of the line that is drawn. On the mono- / \
chrome system, you're limited to pen 0 (white) or pen 1
(black). The VDI command for selecting the pen is Set -
Polyline Color Index, which corresponds to the following C f N
function:
int handle, pen_number
set_color = vsl_color(handle, pen_number);
where pen—number is the number of the drawing pen to use.
The pen number is referred to in the GEM literature as the
color index, since it represents an offset from the beginning of
the color lookup table. Pen 0 is the background color, and pen
1 is the default foreground color (black), which we set with
work_in[2] when we opened the virtual workstation. If you se
lect a color higher than the number of colors available, pen 1
will be set. We'll discuss the other color defaults and how to
change them in the next chapter.

Program 3-4 demonstrates the use of the line-drawing
pattern settings and the color settings with the Polyline
command.

Program 3-4. pline2.c

/* */
/* */
/* PLINE2.C — Demonstrates patterned tf
ft line drawing and color selection */
/* tf
ft tf
ft tf

•include "shell.c"
•define REP8 4 /* number of polygons to draw tf
•define STEP IS /* distance between them */ (’
demoO€
int indexes, p “"j

I \

n

50 (s

Drawing Points and Lines

xmax ° work_outC03-(3*dx); /* sot initial margins */
xmin =* 3tdx;
ycnax = work_outC 13;
ymin n 0|

/* Set user-defined line drawing pattern */
/* 0xAAAA » 1010101010101010 binary tf

vsl_udsty(handle, 0xAAAA>|
for (c=0;c<REPS;c++> ft for each polygon */C
pointsC123«pointsC143 = xmin; ft set points tf
pointsC03opointsC103BpointsC163 = < xcnin+“dx);
paintBC13<=>pointBC33cpointsC173 «* ymin;
pointsCS3opointsC153 = (ymin+“dy);
pointsC43spointsC63 = xmax;
pointsC23°pointsC83 = (xmax-=dx);
pointBC93B>pointsC113 = ymax;
pointsC73<=>pointsC133 = (ymax-“dy) |
xinin+Bdx; ft shorten offsets */
xmax—=dx;
vsl.color(handle, 1+c); ft change colors */
vsl.type(handle,l+(c*2)); ft change line pattern */
v_pline(handle, 9, points); ft draw the polygon */JJ

ft End of Pline2.c tf

Line Width
In Program 3-4, the lines that were drawn were all 1 pixel wide.
But as you can see by the values returned in work_out[7],
work_out[49]/ and work_out[51] when we opened the virtual
workstation, the ST display driver can draw lines in any width
from 1 pixel to 40 pixels. The function used to specify the
width of the lines that the VDI draws is Set Polyline Line
Width, which in C looks like this:
width_8et = vsl_width(handle, width)
where width is the line width in pixels. In order to keep every
thing symmetrical, the VDI only uses odd-numbered line
widths. If you request a line width that's unavailable, either
because it's larger than the maximum width or because it's an
even number, the VDI will set the width to the next lower
available width. The actual line width that was set by the call
is returned in the variable w id thset.

Although most of the line-drawing settings can be used
together, patterned lines cannot be drawn on the ST screen if
their width is set to a value greater than one pixel. Whenever

CHAPTER 3

you use thicker lines, they are drawn as solid lines, regardless
of the current line-pattem setting.

Line End Styles
The final line-drawing setting is a fairly obscure function that
allows you to designate the end style for the line. By default,
the ends of a line are squared off, but by using the Set
Polyline End Styles command, you may instruct the VDI to
round off either end of the line, or to place an arrow head at
either end of the line. The arrow head is positioned so that its
tip is placed at the last point of the line. Although the GEM
literature states that the rounded end is drawn so that the cen
ter of the rounded line is positioned at the end of the line,
experience on the ST shows otherwise. The rounding is added
on to the end of the line, increasing its length by about half its
thickness. While arrows can be used with any width of line,
the rounding is not really noticeable unless you are drawing a
line that is thicker than five pixels. The syntax of the C com
mand used to set the end styles is
int handle, begin—style, end—style;
vsL_endsdtandle, begin—style, end—style);
where begirt—style and end—style contain a number code from
0 to 2, indicating what style will be used to draw the begin
ning and end of the line. The number 0 represents a squared-
off end, 1 indicates that an arrow is to be drawn, and a 2
means that the end should be rounded off. If an invalid num
ber is given for either of these, the squared-end style is se
lected by default.

Program 3-5 shows the use of thickened lines, and of the
two stylized types of endpoints.

Program 3-5. pline3.c

/* */
/t %/
ft PLINE3.C — Demonstrates drawing %t
/t lines of various widths and and styles */
/* *//* »//* */

^include "shell.c"
#define REPS S f% number of wide lines to draw */

Drawing Points and Lines

demo()
{
int index=0,

e,xmax,xmin,ymax,dy,
pointsC63|

polntsCll ** 12} /* set margins and offsets tt
dy “ 31|
xmax •* work_outC03+16j
ymax n work_outC13+10;
xmin = (-2tdy);

/* make beginning of line rounded, end w/arrowhead */
vsl.ends(handle, 2,1);
■for (c=0jc<REPSjc++) /* for each line */C
pointsC03 b pointsC23 a <xmax-=<dy+4)); /% set points %/
pointsC43 = (x<nin+=(2*dy+10))j
pointsC33 a pointsC53a (ymax-=(dy+18))>
vsl_Midth(handle, (dy-=6)) j /* change width t/
vBl_color(handle,c+1); /% change colors */
v_pline(handle, 3, points)) /< draw it t/>

>
/* End of Pline3.c %/

If you ever need to find out from your program what the
current line-drawing settings are, you can use the function In
quire Current Polyline Attributes (though this is fairly inef
ficient, as you should be able to keep track of the settings in
the program without having to inquire). The C format for this
call is
int handle, settings[4];
vql_attributesfliandle, settings);
where settings is the address of the array in which the function
stores the current line-drawing settings. After the call has been
successfully completed, the following information can be
found in the various elements of the array:
Element Setting

[0] Line pattern
[1] Line-drawing pen
[2] Draw mode
[3] Line width

The function also returns the beginning end style and the
ending end style in intout[3] and intout[4], respectively. These

53

CHAPTER 3

values are not transferred to the settings array by the C func
tion bindings.

Line-Drawing GDPs
There are some other VDI functions that draw figures using
lines, and these functions share the same line-drawing settings
as Polyline. For reasons having to do with the older graphics
systems from which they evolved, they're referred to as Gen
eralized Drawing Primitives, or GDPs, for short. The only
practical programming difference between GDPs and any
other drawing function is that they all have the same opcode,
so assembly language and BASIC programmers will have to
remember to set both the opcode in contrl(O) and the sub
function ID in contrl(5) before calling one of these functions. C
programmers will not have to worry about this, since the
bindings take care of this detail for them. The line-drawing
GDPs allow you to draw circles, or any part of a circle; ellip
ses, or any part of an ellipse; and rounded rectangles.

The first of these functions is called Arc, and it allows you
to draw any segment of a circle. The C function call is
int handle, x, y, radius, begin—angle, end_angle;
v_arc(handle, x, y, radius, begin_angle, end—angle);
where x and y are the coordinates for the center point of the
circle, radius is its radius, and begirt—angle and end—angle give
the starting and ending points of the arc.

In order to know which beginning and ending angles to
specify to draw a particular segment of the circle, we have to
understand how the VDI refers to angles. The interior angles
of a circle add up to 360 degrees, and since the VDI thinks in
tenths of a degree, the points on a circle go from 0 to 3600.
The VDI designates the rightmost point on the circle (the three
o'clock position) as 0 or as 3600, depending on whether it's
used as the starting angle or ending angle. All drawing pro
ceeds in a counterclockwise direction, so the topmost point is
designated 900, the leftmost as 1800, and the bottom-most as
2700 (Figure 3-3).

Drawing Points and Lines

Figure 3-3. Drawing Angles

1800
0

3600

2700

Thus, to draw the top right quarter of a circle whose cen
ter point is at 100,100, and whose radius is 50 pixels, you use
the command:
v_arc(handle, 100, 100, 50, 0, 900);
To draw a complete circle, you need only to specify 0 as the
starting angle, and 3600 as the ending angle.

Keep in mind that the VDI adjusts the vertical radius of
the circle for the aspect ratio of the display screen (the ratio of
the width of each pixel to its height), so it always appears to
be round. If it did not make this kind of adjustment, a circle
that appears round on the low-resolution screen would look
tall and thin on the medium-resolution screen. To find the ef
fective vertical radius of the circle, multiply the radius by the
value that was in output[3] after you opened the workstation,
and divide the result by the value that was in output[4]. Thus,
the box that contains a circle with radius r is r units wide and
(r * work_out[3] / work_out[4]) units high. An almost identi
cal function allows you to draw any segment of an ellipse. The
only difference between a circle and an ellipse is that the verti
cal radius of a circle is automatically calculated to scale from

CHAPTER 3

the horizontal radius that you supply, so that it always ap
pears to be round, while you supply both the horizontal and
vertical radius values for the ellipse, so that it may be oval in
shape. The C call for the Elliptical Arc function is:
int x, y, xradius, yradius, begin_angle, end_angle;
v_ellarc(handle, x, y, xradius, yradius, begin—angle, end_angle);
All of the parameters for this call are the same as those used
by Arc, except, instead of a single radius, there are variables
for both the horizontal (xradius) and vertical (yradius) radii.

The final line-drawing function is called Rounded Rectan
gle. As its name suggests, it's used to draw rectangles whose
comers are rounded. GEM applications often use rounded
boxes in dialogs as push buttons, as they give the program a
more polished look than do boxes with square comers. Since
you cannot control the amount of rounding, however, you'll
find that some of the smaller rounded boxes look more like
circles.

One thing to note about rounded rectangles is that they're
affected by line-drawing settings like line width and pattern,
but not by end styles, since, properly speaking, they have nei
ther beginning nor ending points. The C syntax for the
rounded rectangle function is
int handle, sides[4]
v_rbox(handle, sides);
where sides is an array that gives the coordinates for the four
sides of the box. The elements of this array are:
Element Position

[0] Left Edge
[1] Top Edge
[3] Right Edge
[4] Bottom Edge

Program 3-6 demonstrates the use of the line-drawing
GDPs, and shows how they are affected by the various line-
drawing settings.

Drawing Points and Lines

Program 3-6. gdplinel.c

/*/*
/* GDPPLINE1.C — Demonstrates u h of thi
/* line-drawing GDP functions, and how
/* they are affected by line settings.
/*
ft

•include "shell.c"
•define STEP 10
int dx, dyj
demoO
C

/* space between lines t/

if <work_outC03 — 639>dx«STEPj /« set full horiz step «/
else dx - 8TEP/2| /* except for lo-res */

if <work_outC!3 — 399>dy-STEP) /* set full vert step */
else dy “ 8TEP/2| /* except for color %/

showarcO) /* do circle demo */
showel1arc()| /* do ellipse demo */
showrbox<)| /< do rounded rectangle demo */
>

showarc < >C
int c|

vsl.width(handle,dx)| /* set wide line */
for <c“l|c<8|c++)<

vsl_color(handle,c)| /* change color */
/t draw concentric semi—circles */

v_arc(handle, 17*dx,20tdy,ct(dx+dy)+dx+dy,0,1800) |
>

BhowellarcO
{.
int c)

vsl_width(handle,1)j /* line width to 1 •/
vsl_udsty(handle,0xASA5)| /* define line pattern 7 */
for <CBi|c<10|C't'+)

I
vsl_color(handle,c)| /* change color •/
vsl_type(handle,c)| /* change line pattern */

/* give last ellipse arrow heads 1/
if (c>8) v«l_ends(handle,1,1)|
v el 1 arc (handle,48*dx,20tdy,dxtc, dytc*2,0,3600) |>

showrbox()<
int c,pointsC43|

57

CHAPTER 3

vsl_type(handle,3);
•for (c«0|c<5|c++>

C
vsl_width(handle,c*2)| /* set width */
vsl_color(handle,c)| /* and color t/
pointsC03«(c+l)tdx+(3tc) |
pointsC13"(c+22)tdy+c|
pointsC23*work_outC0D-(c+26)*dx-(3*c)|
pointsC 33«*wcrk_out C13- (c+i) *dy-c|
v_rbox(handle,points)|
>

/* End of Plinel.c »/

Assembly Language Example
Though the principles of using the VDI line-drawing functions
are the same in assembly language as in C, the assembly lan
guage programmer does have to move the input parameters
directly into the VDI data arrays. In order to illustrate this pro
cess, compare the assembly language version of the GDP lines
program (Program 3-7) with Program 3-6. By comparing the
two versions, assembly language programmers should get a
better idea of how to translate the other C sample programs to
assembly language.

You may notice that in some of the assembly language
VDI calls, we didn't bother to set all of the contrl and intin
values if we knew that they were set correctly during previous
calls. Generally speaking, the VDI will not disturb your input
parameter arrays, so once you put the workstation id handle in
contrl6, for example, you can assume that it will still be there
for subsequent VDI calls. Keep in mind, though, that as we
have set things up here, the VDI and AES share the contrl ar
ray, so if your program uses AES calls, you should be aware of
the possibility for interference from that quarter. Also, since
the process of calling the VDI uses registers dO and d l, you
must preserve the contents of those registers if you want them
to survive between GEM calls. In general, you should assume
that the ST system will use the first couple of data and ad
dress registers, and not place values that you wish to preserve
between system calls in those registers.

Drawing Points and Lines

Program 3-7. gdplines.s

«
*
* SDPLINES.8 — assembly version of
* GDP line drawing demo
«
**

.xdef demo

.xref vwkhnd

.xref contrl0

.xref contrl1

.xref contrl2

.xref contrl3

.xref contrl4

.xref contrl5

.xref contrl6

.xref contrl7

.xref contrl8

.xref contrl9

.xref contrl10

.xref contrl11

.xref intin

.xref intout

.xref ptsin

.xref ptsout

.text
demat

move dx,d0
move dy,dl
cmp #639,intout
bne skipi
add d0,d0
move d0,dx

skipli
cmp #399,intout+2 t if high-res

bne skip2
add dl,dl
move dl,dy

skip2i
Jsr showarc
jsr showell
jmp showrbox

*** Showarc subroutine
showarct
*$t Set line width

move #16,contrl0
move #1,contrl1
move #0,contrl3
move dx,ptsin
move #0,ptsin+2
Jsr vdi
move #6,d4

* double dy

* do arc demo
* do ellipse demo
* do rounded rectangle demo

* opcode for line width
* 1 point in ptsin
* no integer parameters in intin

* set width to dx

t loop counter

* if high-res or ated-res
* double dx

59

CHAPTER 3

«rci
IM 8et line color

move #17,contrl0 * opcode -for line color
move #0,contrl1 * no points in ptsin
move #l,contrl3 * 1 integer parameter in intin
move d4,intin * line color
jsr vdi

*** Draw arc
move #U,contrl0 * opcode for GDP
move #4,contrl1 * 4 points in ptsin
move #2,contrl3 * 2 integer parameters in intin
move #2,contrl5 * GDP ZD for arc
move #0,intin * starting & ending angle
move #1800,intin+2
lea ptsin(PC),a0 * zero out ptsin<0)-<7)
move #7,d0

iloopi
move #0,(a0>+
dbra d0,iloop
move dx,d0 t get dx and save a copy
move d0,dl
move dy,d2
mulu #17,d0
move d0,ptsin * x coord of circle center
add cl2,dl * dl *»dx+dy
move d4,d0
addq #2,d0 * d0 - d4+2
mulu d0,dl
move dl,ptsin+12 * radius of circle to dl
mulu *20,d2
move d2,ptsin+2 * y coord of circle center
jsr vdi
dbra d4,arc
rts

•tt Showell subroutine
showel1i
tit Bet line width

move #16,contrl0 * opcode for line width
move #l,contrll I 1 point in ptsin
move #0,contrl3 t no integer parameters in intin
move #l,ptsin
move #0,ptsin+2 t set width back to 1
Jsr vdi

ttt Set user-defined line pattern
move #113,contrl0 t opcode for line width
move #0,contrl1 * no point in ptsin
move #1,contrl3 * 1 integer parameter in intinmove ##A5A9,intin * dotted line
jsr vdi
move #8,d4 * loop counter

60

Drawing Points and Lines

ell i
t t t Set line color

move #17,contr10 t opcode for line color
t contrl1 and contr13 set by last vdi call

move d4,intin t line color
jsr vdi

t t t Set line type
move #15,contrl0 t opcode for line pattern

t contrllf contr13 and intin are still set correctly
Jsr vdi
cmp «l,d4
bne skips
move #108,contrl0 t opcode for set end styles
move #0,contrl1 t no points in ptsin
move #2,contrl3 t 2 into in intsin
move #1,intin
move #1,intin+2 t arrows at both ends
jsr vdi

skip3>
t t t Draw ellarc

move #ll,contrl0 t opcode for GDP
move •2,contrl1 t 2 points in ptsin

t 2 integer parameters in intin, same as last call
move #6,contrl3 t GDP ID for ellarc
move #0,intin t starting & ending angle
move #3600,intin+2
move dx,d0 t get dx and save a copy
move d0,dl
move dy,d2 t get dy and save a copy
move d2,d3
mulu #48,d0
move d0,ptsin t x coord of ellipse
move d4,d0
addq #l,d0 t d0 - d4+l
mulu d0,dl t times dx
move dl,ptsin+4 t xradius of ellipse
mulu d0,d3
add d3,d3
move d3,ptsin+6 t yradius of ellipse

mulu #20,d2
move d2,ptsin+2 t y coord of ellipse centi
jsr vdi

dbra
rts

d4,ell

t t t Rounded rectangle demo

61

CHAPTER 3

showrboxi

t Set line type
move #15,contrl0 * opcode for line pattern
move #0,contrl1 * no points in ptsin
move #l,contrl3 * 1 integer parameter in intin
move •3,intin t line pattern 3
jar vdi
move #4,d4 * Bet counter

rboxi
U t Set line color

move •17,contrl0 * opcode for line color
• move #0,contrl1 • no points in ptsin
* move «l,contrl3 1 1 integer parameter in intin

move d4,intin * line color
iar vdi

ttt Set line width
move #16,contrl0 * opcode for line width
move #l,contrl1 * 1 point in ptsin
move #0,contrl3 * no integer parameters in intii
move d4,dS
add dS,dS
move d5,ptsin
move #0,ptsin+2 * set width to 2 *c
jsr vdi

ttt Draw rounded rectangle
move «ll,contrl0 * opcode for QDP
move #2,contrl1 * 2 points in ptsin

• move #0,contrl3 • 0 integer parameters in intii
move #8,contrl5 * GDP ID for rounded rectangle
move dx,d0 * get dx and save a copy
move d0,dl
move dy,d2 * get dy and save a copy
move d2,d3
move d4,d5 * copy the counter
addq #l,d5 * c+l
mulu d5,d0 * <c+l)tdx
subq #l,d5
mulu #3,d5 * dS » 3*c
add d5,d0
move d0,ptsin * first x of box
move d4,d0
add #22,d0 « d0 - c + 22
mulu d0,d2 * times dy
add d4,d2
move d2,ptsin+2 * first y of box
move dl,d2 * put dx in d2
addq #4,d0 * d0 = c+26
mulu d0,dl * times dx
add dl,d5 * ♦ 3*c
mulu #64,d2 * screen max
sub dS,d2 * - offset
move d2,ptsin+4 * second x point

62

Drawing Points and Lines

move d4,d0 * d0 ** c
addq #l,d0 *
mulu d3,d0 * times dy
add d4,d0 * + c
mulu #40,d3 * max y
sub d0,d3 t -offset
move d3,ptsin+6 * second y coord
jar vdi
dbra d4,rbox
rte

**** data Beetion

.data

.even
dxi • dc. w 5
dyi .dc.M 5

.end

Line-Drawing VDI Calls and BASIC
ST BASIC doesn't support VDI Marker commands, and it sup
ports some, but not all, of the line-drawing functions. It is
quite possible, however, to access the remaining functions
with VDISYS(l) calls. Of the line-drawing functions that we
have discussed, ST BASIC fully supports arcs and elliptical
arcs. The syntax for these commands is very similar to that of
the C functions:
CIRCLE x, y, radius [,start angle, end angle]
ELLIPSE x, y, xradius, yradius [,start angle, end angle]
where the input parameter values are the same used by
v_arc() and v_ellarc(). ST Basic does not support the
rounded rectangle function with its own keyword.

Of the line-drawing settings, ST BASIC supports the set
line-drawing color function:
COLOR text color, fill color, line drawing color, fill style, fill

index
The third input parameter of this command is used to set the
line-drawing color. ST BASIC does not contain commands for
setting line width or end styles. While the first ST BASIC does

63

CHAPTER 3

not allow you to set the line-drawing pattern, it appears that
the upgraded BASIC will contain a LINEPAT command:
LINEPAT pattern number, user-defined style
where pattern number is the pattern chosen, and user-defined
style is the 16-bit pattern value that is set with vsL_udsty().
Likewise, though the first ST BASIC only allows you to draw
one line at a time using the LINEF command, the new BASIC
will probably offer the MAT DRAW or MAT LINEF command:
MAT LINEF points, array
where points is the number of vertices, and array is the name
of a data array holding the x and y coordinates for those
vertices.

Program 3-8 shows the use of the VDISYS() command to
make direct calls to the VDI functions from BASIC. Note par
ticularly that the settings you make using these functions, such
as line width and drawing pattern, do have an effect on the
output of keyword commands such as LINEF and CIRCLE.

Program 3-8. lines.bas
100 fullw 2i clearw 2
110 r«B ■ peek(eystab)
111 if (res<4) then xmax “ 639 else xmax " 319
112 if (ras>l) then ymax ° 199 else ymax ■ 399
120 REM Set polymarker Height
130 poke contrl,19 » REM opcode for set pmarker height
140 poke contrl+2, 1 iREM number of points in ptsin
150 poke contrl+6, 0 «REM nothing in intin array
160 poke ptBin,0
170 poke ptsin+2,77 iREM height of marker
180 vdisys(l)
190 REM
200 for x“0 to 4
210 REM
220 REH Set Polymarker color
230 poke contrl,20 iREM opcode
240 poke contrl+2,0
250 poke contr1+6,1
260 poke intin,x+1
270 vdisys(l)
280 REM 8et Polymarker type
290 poke contrl,IB
300 poke contrl+2,0
310 poke contrl+6,1
320 poke intin,2+x
330 vdisys(l)
340 REM Draw Polymarker
350 poke contr1,7
360 poke contrl+2,1
370 poke contrl+6,0
380 poke ptsin,61*x+30
390 poke ptsin+2,ymax/4
400 vdisys(l)
410 REM

64

420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690700
710
720
730
740
750
760
770
780
790
800
810
820
825
827
830
840
850

Drawing Points and Lines

next
REM
■for m “ 0 to 5
REM
REM 8et line drawing pattern
poke contrl,15
poke contrl+2,0
poke contrl+6,1
poke intin,x+2
vdisye(l)
REM
REM Draw Rbox
poke contrl,11
poke contrl+2,2
poke contr1+6,0
poke contrl+10,8
poke ptei n,10+(10tx)
poke ptsin+2,ymax/2+<7tx)
poke ptsin+4, (xcnax/2)-(10tx)
poke ptsin+6,ynax-20-(7tM)
vdieys(l)
REM
next x
REM
REM Set End Stylee
poke contrl,108
poke contr1+2,0
poke contrl+6,2
poke intin,1
poke intin+2,2
vdisys(l)
REM
for x ■ 0 to 3
REM Set Line Width
poke contrl,16
poke contrl+2,1
poke contrl+6,0
poke ptsin,15-(x*5)
poke ptsin+2,0
vdisys(0)
REM
color 1,0,x+2
REM
linef xatax— 60— <40tx) ,50,x<nax—50-<20tx) ,ymax-70
rem
next x

65

n

rt
n

n
n

n
n

n
n
n

Color and Other
Graphics Settings

' f

i I

Now that you've had a little experience using some
of the output functions, let's take a look at some of the settings
that can affect graphics output, regardless of the output func
tion used. These include color settings, drawing modes, and
clipping rectangles.

Color Settings
In the previous chapter, we discussed how to change the color
of the line or marker being drawn, but we didn't explain how
you could select a particular color like red or green. In order to
do so, we must examine the way in which different colored
dots are displayed on the ST's color screen.

On the monochrome ST, the display system is very sim
ple. Each dot on the screen is represented by a single binary
digit (bit) of memory. Screen memory is organized in such a
way that the first byte represents the 8 dots in the top left cor
ner of the screen, and each succeeding byte represents the
next 8 dots to the right. Since each line contains 640 dots
across, the first 80 bytes fill up the top line, and the next byte
is used to represent the first 8 dots on the second line. There
are 400 lines of 80 bytes each on the monochrome screen,
which means that 32,000 bytes of screen memory are used to
represent the 256,000 dots on screen. (See Figure 4-1.)

Figure 4-1. Monochrome Screen Memory

u

Li

u

69

01118101

CHAPTER 4

Each bit of screen memory can hold either the number 0
or 1. On a monochrome system, only one bit is needed to rep
resent a screen dot or pixel (picture element), because each dot
on the screen is either white (off) or black (on). But with a
color ST system, things are somewhat different. In medium-res
mode, any dot can be one of four colors. Two binary digits are
used to yield four possible combinations:
00 = 0
01 = 1
10 = 2
11 = 3

In lo-res mode, any dot can be 1 of 16 colors, so four bits
are required to describe a single pixel. Color screen memory is
organized in much the same way as monochrome screen mem
ory, except, instead of single bits, groups of bits are used to
represent each screen dot. Thus, in medium resolution the first
byte of screen memory is used to depict the four pixels at the
top left comer of the screen. The two high-order bits specify
the color in the first dot, the next two the color in the follow
ing dot, and so on. Since there are 640 dots per row, each row
requires 160 bytes of screen memory. But since there are only
200 rows of dots, 32,000 bytes of screen memory are still suf
ficient to display all of the dots on the screen. In low resolu
tion, each byte describes only two dots of color. There are only
320 dots per line in this mode, however, so 160 bytes describe
all of the dots in each line in this mode also. (See Figure 4-2.)

Figure 4-2. Low-Resolution Screen Memory

0111 0101

Haribiare c o lo r re giste rs

Color and Other Graphics Settings

In monochrome mode, each bit pattern can represent a
specific color, because there are only a total of two colors
available. But the ST is capable of displaying 512 different col
ors on an RGB color monitor or television set. Clearly, in color
mode each set of bits cannot represent a particular color, using
a code where 0 represents white, 1 stands for black, and so
on. Instead, the number stored in the memory location that
corresponds to a screen dot location refers to a hardware color
register.

Color Registers
The color registers may be thought of as a set of 16 pens, each
of which may be filled with ink that is colored in any of the
512 shades supported by the ST. Register 0 always holds the
color we think of as the background color (which defaults to
white on the ST). When you wish to use another color to draw
a line or a point, you specify the pen (color register) that will
be used to draw it. Whatever color "ink" it currently contains
is the color that the pen will draw onscreen.

Unlike ink, however, the color of a dot that you have
drawn onscreen can change after you have drawn it. When
the display memory for a screen dot holds the number of a
particular pen, that dot is displayed in whatever color is in the
pen at any given moment, not in the color that was in the pen
at the time the dot was drawn. This means that if you use pen
1 to draw a line, and that pen contains the default color black,
the line will be black. But if you change the color in pen 1 to
green after you've drawn the line, the line you drew and every
thing else on the screen that was drawn with pen 1 will in
stantly become green.

The two factors that determine which colors are assigned
to the figures that you draw on the screen, therefore, are the
pen you used for the drawing and the color currently con
tained in that pen.

As we've seen above, you can choose a different pen for
drawing markers and lines by using the vsm_color and
vsl_color calls. And we will see later that you may also select
another pen for graphic text with the vst_color call, and one
for filled shapes with vsf_color.

In BASIC, all but the marker pen are set with the same
command, COLOR. If you do not specify a pen before draw
ing, you'll get the default drawing pen that is specified in the

71

CHAPTER 4

work-in array at the time that the virtual screen workstation
was opened (usually color 1, which has a default value of
black). You should be aware that the GEM VDI drawing pens
(referred to in the GEM literature as the color index) do not
correspond numerically to the ST color registers. GEM uses a
complex scheme for mapping drawing pens to hardware regis
ters, so that drawing pen 1 corresponds to color register 15,
pens 3, 4, and 5 correspond to registers 2, 4, and 6; pens 6, 7,
and 8 correspond to registers 3, 5, and 7, and so forth. GEM
uses a lookup table to match color index values to hardware
registers. The complete correspondence is mapped out in Ta
ble 4-2.

In addition to determining which color register will be
used for drawing, we must also determine the color that the
register contains. Colors are chosen by mixing various levels of
the colors red, green, and blue. Each color register holds one
of eight color levels for each of these colors, which means that
there are 512 (8 X 8 X 8) possible colors to choose from.

The VDI call to set a color register to a particular shade is
Set Color Representation. The C language syntax for this call
is
int handle, pen, rgb[3];
vs_color(handle, pen, rgb);
where pen is the number of the drawing pen whose color you
wish to change, and rgb is a pointer to an array holding color
levels for red, green, and blue. The first element of this array
(rgb[0]) holds the red value; the second holds the green value;
and the third holds the blue value. Since GEM is written to be
non-computer-specific, these color values are expressed in
tenths of a percent of color saturation, meaning the color level
values range from 0 to 1000. With only eight color levels sup
ported by the hardware, it should be obvious that many rgb
values will display in the same color. Table 4-1 shows the
relationships between the color value that you request (with
the vs_color call), the actual value that is set, and the hard
ware color register level to which that value corresponds.

Color and Other Graphics Settings

Table 4-1. Color Values and Register Values

Requested Actual Hardware Register
Value Value Color Level

0-70 0 0
71-213 142 1

214-356 285 2
357-499 428 3
500-642 571 4
643-785 714 5
786-928 857 6
929 and up 1000 7

Since there are 512 possible combinations,
possible to describe each one or to explain exactly how to find
a particular shade. In general, however, the higher the color
level, the brighter the color; the lower the level, the darker the
color. Whether the color displayed by a register tends toward
red, green, or blue depends on which value has the highest
brightness level. If all three values are equal, the color will be
black, white, or a shade of gray.

Mixing Colors
Thus, if rgb contains all zeros, the pen will be set to black,
while a setting of straight 1000s will set it to white. You can
lighten a shade by increasing the value of the two other colors
in equal proportions. A setting of 1000,0,0 selects bright red as
the pen color, while 1000,428,428 sets a much paler red. To
darken the original red color, you can lower the red setting to
714 while keeping the other two at 0.

When you're unsure of what colors to mix, it may help to
start with the nearest primary color mixture and experiment
from there. These are the red, green, and blue values for these
mixtures:
Color Red Green Blue
Black 0 0 0
Blue 0 0 1000
Green 0 1000 0
Cyan 0 1000 1000
Red 1000 0 0
Purple 1000 0 1000
Yellow 1000 1000 0
White 1000 1000 1000

73

n
CHAPTER 4 n

Pen [Reg] Red Green Blue Color
0 [0] 1000 [7] 1000 [7] 1000 [7] White
1 [15] 0 [0] 0 [0] 0 [0] Black
2 [1] 1000 [7] 0 [0] 0 [0] Red
3 [2] 0 [0] 1000 [7] 0 [0] Green
4 [4] 0 [0] 0 [0] 1000 [7] Blue
5 [6] 0[0] 1000 [7] 1000 [7] Cyan
6 [3] 1000 [7] 1000 [7] 0 [0] Yellow
7 [5] 1000 [7] 0 [0] 1000 [7] Magenta
8 [7] 714 [5] 714 [5] 714 [5] Low White
9 [8] 428 [3] 428 [3] 428 [3] Gray

10 [9] 1000 [7] 428 [3] 428 [3] Light Red
11 [10] 428 [3] 1000 [7] 428 [3] Light Green
12 [12] 428 [3] 428 [3] 1000 [7] Light Blue
13 [14] 428 [3] 1000 [7] 1000 [7] Light Cyan
14 [11] 1000 [7] 1000 [7] 428 [3] Light Yellow
15 [13] 1000 [7] 428 [3] 1000 [7] Light Magenta
The VDI pen numbers are followed by the corresponding hardware color register
numbers, in square brackets. The VDI color levels are followed by the corresponding
hardware register color levels, shown in square brackets.

Locating Color Information
It is often useful to be able to find out which color is con
tained in a particular color register. For one thing, GEM does
not reset the color palette when your application ends and the

74

! I

You can use the Control Panel desk accessory to get instant J !
feedback on what color levels to use for a particular color.
When you use it to mix colors using different levels of red,
green, and blue, the panel displays these color levels as num- j I
bers from 0 to 7. Using Table 4-1, you can translate these hard- 1
ware levels into the corresponding numbers used by the VDI.

If you do not change the colors of any of the color regis-
ters, the default VDI color palette will be used. Table 4-2 gives
the default values for each of the VDI color pens. Next to each
pen number in square brackets is the number of the correspond
ing hardware color register. In square brackets, next to the VDI
red, green, and blue color values for each of the registers, are
the corresponding hardware color levels. The table illustrates
the 16-color low-resolution mode, but the 4-color mode is sim
ilar, with the exception that pen 1 maps to color register 3 in
medium-resolution mode.

Table 4-2. Default Values of VDI Color Pens

n< t

n

n

Color and Other Graphics Settings

user returns to the Desktop. So, in order to restore the user's
color preferences when you end your application, you've got
to have some way of knowing what those settings were when
your program started. The VDI call used to learn the settings
for a particular register is Inquire Color Representation, whose
C language format is
int handle, pen, flag, rgb[3];
vq_color(handle, pen, flag, rgb);
where pen is the color register number, and rgb is an array
where the red, green, and blue color levels will be returned (in
elements 0, 1, and 2, respectively). The flag setting allows you
to select whether you wish to learn the setting that was re
quested when the vs_color call was made or the actual value
that was set.

As we stated above, there are 1000 different VDI settings,
but only eight possible hardware settings, so a wide range of
VDI settings correspond to the same hardware setting. For ex
ample, if you set all the values in rgb[0]-[3] to 650 and call
vs—color, then a color level of 714 (corresponding to a hard
ware level of 5) will be set for each. If you request a value of
700 or 750, you'll still get a setting of 714. The flag setting de
termines whether the color level values that you get are the
values that were requested or the values that were actually set.
If you set the flag to 1 before calling vq_color, you get the ac
tual color settings (714 in each case). But if you set the flag to
0, you get the value that was requested, not the one that was
set (650, 700, or 750). You should also note that if an invalid
pen number is requested, a — 1 is returned in rgb[0].

Another handy bit of information to have is the pen color
used to draw a given dot on the screen. The function Get Pixel
returns not only that information, but the color register that
corresponds to that pen setting as well. The C language ver
sion of this call is
int handle, x, y, pixel, pen;
v_get—pixel(handle, x, y, &pixel, &pen);
where x and y are the coordinates of the point, pixel is the
variable in which the hardware color register number is re
turned, and pen is the variable in which the pen number is
returned.

75

CHAPTER 4

Program 4-1 shows how to change the color that is con
tained in each of the drawing pens. This program works cor
rectly only on a color monitor, since the principles it illustrates
are not applicable to the monochrome screen.

In Program 4-1 each of the bars initially appears in the
color gray; each set of three bars, though, is drawn using a
different drawing pen. When we change the color of each of
the pens in turn, the colored line appears to move. Note how
we saved the initial color values before we changed the pen
colors, and restored them after we were done. This insures
that when the program ends, you will find the desktop colors
just as you set them.

Program 4-1. colorl.c

/* «/
f t */
f t Colorl.C — Demonstrates drawing In */
/% di-ffarent pan colors, and changing tha */
/* colors contained in thosa pans */
/* */
/* */

•include “shall.c"
•define REPS 3 /* numbar of wide linas to draw */
demoO
i
int index=0,

b,c,xmax,dx,raid,
pointsC43,
rgbC33,
nawcolE33,
palC33C33|

long d|
rgbC03«rgbC13«rgbC23»571| f t gray valuas */

f t 8ava original color palatta */
for <c"0jc<3jc++>vq_color (handle,c+i, l,pal+c))
xtnax “ work_outC03|
dx “ xmax/20| /* scala linas to horizontal raaolution */
mid *» xmax/-21 f t find midpoint of scraan */
pointsC33 “ work_outC13- 12)
pointsC13 ■ 12| /* sat top and bottom of linaa */
vsl_width(handla, dx)) /* changa width */
for (c“0|c<REP8|c++> /* draw horizontal linas llna */
€
vsl_color(handle,c+1); /I change pans t f
va_color(handla,c+l,rgb)| f t set pen color to grey t f

76

Color and Other Graphics Settings

pointsC03 “ pointsC23 ■ (xMK-a<dxt2>)| /* u t points */
v_plins(handle, 2, points)) /* draw it */
pointsC03 “ pointsC23 ■ (mid+-(dx*2)) | /* sat points */
v pline(handle, 2, points)) /* draw it t/>“

for (b“0jb<7|b++) /* for each primary color mixture... */
t
newcol C03 - 1000 * <bScl)|
newcol C13 - 300 * (b&2) |
nawcol C23 « 250 * (b&4) |
for (c«0)c<3>c++) ft cycle color through 3 sets of bars %t

C
if (cX3»b0) vs_color(handle,3,rgb)|
else vs_color(handle,c%3,rgb)) /* old bar back to grey */
vs_color(handle,cX3+l,newcol)) /% set new bar */
for (d«0)d<80000)d++)) t% waste some time S/>

>
/> Restore original color pallete 1/

for (c«0)c<3)c++)vs_color(handle,c+1,pal+c)|
>
/% End of Colorl.c */

Drawing Modes
We've seen that when we draw a dot of color on the screen,
what actually happens is that the screen memory representing
that dot is changed to reflect the number of the color register
that produces that color. In effect, the new drawing replaces
whatever had previously appeared in that spot on the screen.

It's also possible for drawing operations to interact with
existing screen graphics, rather than to replace them. For ex
ample, a dotted line is partly made up of 1 bits (the graphics
object), and partly of 0 bits (the color mask). The line part is
normally drawn in whatever color is in the line drawing pen.
But how are the spaces between the lines drawn? Will they be
drawn using the background color, or will they not be drawn
at all, so that whatever display was on the screen before the
line was drawn will show through?

The VDI allows you to select from four different drawing
modes that determine how the graphics object (the 1 bits in
the pattern) and the color mask (the 0 bits in the pattern) will
affect the existing display. The drawing mode (or writing
mode, as it is sometimes called) is significant because many
GEM graphics types are made up of bit patterns containing
both 0 and 1 bits. Patterned lines, large markers, filled shapes,

77

CHAPTER 4

and graphics text all consist of graphics patterns that are partly
colored images and partly space surrounding those images.
The VDI writing mode affects all of these different types of
graphics renderings. Once you set a new writing mode, it
stays in effect until you explicitly change it again.

Replace mode. The default writing mode is called the Re
place mode. In Replace mode, the part of the image that con
sists of 1 bits is drawn with whatever color is in the relevant
drawing pen (the line drawing pen, the marker pen, the text
pen, or the fill pen). The part of the image that consists of 0
bits (the color mask) is drawn in the background color, found
in pen 0. As its name suggests, Replace mode replaces what
ever color was already there with the drawing color and the
background color.

Transparent mode. The second mode is called Transpar
ent mode. As with Replace mode, drawings that are made in
this mode depict the graphics object (1 bits) in the color of the
current drawing pen. But Transparent mode drawings leave
the color mask portion (0 bits) alone, so that whatever color
was there previously still shows through in the blank spaces
around the image. Patterned images drawn in Transparent
mode look different from those drawn in Replace mode, with
the former looking as if they had been stenciled onto the exist
ing image. Solid images look the same when drawn in either
mode, however, since they are made up entirely of 1 bits.

Reverse Transparent mode. The opposite of Transparent
mode is Reverse Transparent. In this mode, only the color
mask portion (made up of 0 bits) is drawn, using the current
drawing pen. The part of the screen which corresponds to the
object portion of the image (the 1 bits) is left alone. Reverse
Transparent mode can be used to draw graphics text in inverse
video, where the space surrounding the letters, rather than the
letters themselves, are rendered in the color of the current text
drawing pen.

XOR mode. In the final drawing mode, neither the cur
rent foreground drawing pen nor the background pen (pen 0)
is used to color the object or its color mask. This mode is known
as XOR mode. It's name comes from the logical operation
exclusive OR, by which the colors on screen are complemented.

To complement the color of a pixel, you invert the bits of
its color register number, changing all of the ones to zeros,
and all of the zeros to ones. For example, if a dot was drawn

Color and Other Graphics Settings

with the color in register 3, and you were in 16-color mode,
the binary representation for that dot would be 0011. The
complement of that number would be 1100, or 12 decimal.
Therefore, when drawing in XOR mode, every time the object
part of the image (the 1 bits) coincided with a portion on the
screen that had been drawn with color register 3, that part of
the display would be changed to the color in register 12.

For those of you who don't normally think in binary
numbers, another way of looking at the process is to take the
highest possible color register number and subtract the color
register number of the existing color. What you're left with is
the register number of the new color. In the above example,
the highest number is 15 (since the 16-color mode counts from
0 to 15). If you subtract 3 from 15, you are left with 12. If
you're using the 4-color mode, 3 would be the highest register
number, so 3 minus 3 would leave you with color register 0.

Remember, the XOR mode complements the hardware
color register number, not the VDI drawing pen number. You
may use Table 4-2 to match the VDI pen numbers to their
hardware register equivalents, which appear next to them in
square brackets.

Like Transparent mode, XOR mode only affects the area
of the screen display corresponding to the 1 bits of the object
image. But XOR mode has some unique properties all its own.
For example, if you use the Transparent mode to draw a green
line on a portion of the screen that is already colored green,
your line changes nothing, and it will not show up at all. By
its very nature, however, a line drawn in XOR will always
show up, since it changes whatever was on screen to another
color.

Another interesting property of XOR mode is that while
using it once always changes the picture, using it twice in a
row restores the original colors. This makes XOR mode handy
for drawing lines that will have to be erased later. It also lends
itself to use in animation, where the background must be re
stored after the object is moved.

Set Writing Mode. The VDI function call that is used to
set one of these drawing modes is called Set Writing Mode.
The C format for this function is
int handle, mode, mode__set
mode—set = vswr_mode(handle, mode);

79

CHAPTER 4

where mode is the drawing mode that you're requesting, and
mode—set contains the number of the drawing mode that was
actually set. The numbers assigned to the different writing
modes are
Number Mode

1 Replace
2 Transparent
3 XOR
4 Reverse Transparent

Drawmode Demonstration
Program 4-2 demonstrates the different writing modes by
drawing dotted lines and text in each of the four modes.

In order to show the full effect of the different modes,
half of the background screen is left as background color, and
half is changed to the color in pen 3 (green). On that back
ground, we draw black patterned lines using line pattern 5
(dashed), and graphics text. Though the text commands will
not be covered until a later chapter, we included text in this
example because it clearly illustrates the differences between
the drawing modes.

In Replace mode, the line appears in black (the drawing
pen color) and white (the background color). The Replace
mode text appears as black letters on a white background.

In Transparent mode, the line appears in black, but the
spaces between the lines are left alone, so they appear in
white on the white background and green in that part of the
screen. Only the black letters of the text are drawn.

In XOR mode, the part of the line that is drawn in black
in the other two modes is drawn in the complement of what
ever color it's drawn on. The complement of white is always
black, but the complement of green in lo-res mode is different
from what it is in medium-res mode. In medium-res, red
(color register 1) is the complement of green (color register 2).
But in lo-res, light cyan (color register 13) is its complement.
As in transparent mode, the background is left alone in the
spaces between the image patterns, or around the letters. Fi
nally, in Reverse Transparent mode, the spaces that were ordi
narily blank in the dotted line are drawn in, in black, while
the line itself is left in the background color. Similarly, the

80

Color and Other Graphics Settings

"frame" around the letters is colored in, in black, while the
letter shapes themselves are filled with whatever color hap
pened to be there already.

Program 4-2. drawmode.c

tt
tt
/* Drawmode.C — Demonstrates drawing
/* mode for patterned lines and graphics
/* text./*
tt

•include "shell.c"
demo()<
int c,

xmax,ymax,dx,dy,
pointsC43;

xmax “ work_outC03;
ymax ■ work_outE13;
dx ■ xmax/20; /* set x offset as fraction of screen width t/
dy " ymax/20| /* set y offset as fraction of screen height •/
pointsC33 “ (ymax -» 12)j
pointsC13 *■ 12; ft y values of lines */
vsl_width(handle, dx)j /* use wide lines */
vbI.color(handle,3); /* lines are green t/
for (c>0;c<12;c++) /* draw a block of green lines */(
pointsC03 " pointsE23 " (xmax->dx)| /> set points */
v_pline(handle, 2, points); tt draw it */>

vsl_type(handle,5); it dotted line tf
vsl_width(handle,1); ft of normal width tt
vsl_color(handle,2); /* color is red */
pointsC03 ■ 16; /* x for line left tt
pointsC23 ■ work_outC03-16; /* for line right tf
for (c*ljc<3;c++) tt draw lines and text in each mode t/<
pointsC13 m pointsC33 “ (ymax -= dy); tt set points */
vswr_mode(handle,c);
v_pline(handle, 2, points); ft draw it tt
switch(c) tt pick appropriate text, and print it */<

case li
v_gtext (handle, work_outC03/7, (ymax— dy),
"This is the Replace drawing mode");
break;

case 2i
v_gtext(handle, work_outC03/7, (ym«x-“dy),
"This is the Transparent mode");
break;

case 3t
v_gtext(handle, work_outC03/7, (ymax-«dy),

81

CHAPTER 4

"This is the XOR drawing mode”)}
break)
case 4i
v_gtext(handle, work_outC0]/7, <ymax— dy),
"This is Reverse Transparent mode"))>

yroax-=(2*dy>» /» space between lines */>>
/* End of Drawmode.c %t

Program 4-3 is the same Drawmode program written in
assembly language.

Program 4-3. drawmode.s

DRAWMODE.8 — assembly version of
drawing mode program

.xdef deno

.xref vwkhnd

.xref contrl0

.xref contrl1

.xref contrl2

.xref contrl3

.xref contrl4

.xref contrlS

.xref contrl6

.xref contrl7

.xref contrl8

.xref contrl9

.xref contrl10

.xref contrl11

.xref intin

.xref intout

.xref ptsin

.xref ptsout

.text
dernoi

move intout,xmax
move intout+2,ymax
move dx,d0
move dy,dlcmp #639,xmax
bne skipl
add d0,d0
move d0,dx

skiplicmp #399,ymax
bne skip2add dl,dlmove dl,dy

* if high-res or med-res
* double dx

* if high-res

* double dy

82

Color and Other Graphics Settings

skip2t
*** Sat line width

move #16,contr10 *
move #1,contrl1 t
move #0,contr13 *
move dx,ptsin
move #0,ptsin+2 *
Jsr vdi

S*« Set line color
move #17,contrl0 «
move •0,contrl1 *
move #1,contr13 *
move #3,intin *
Jsr vdi

* mat width to dx

t line color green

*** sat points t t t
move #12,ptsin+2
move ymax,d0
sub #12,d0
move d0,ptsln+6
move d0,ymax
move xmax,d5
move #11,d4

blockt
sub dx,d3
move d5,ptsin
move d5,ptsin+4

*** Draw the lines
move #6,contr10
move #2,contrl1
move #0,contr13
Jsr vdi
dbra d4,block

*** Set line type
move #19,contrl0
move #0,contrl1
move #l,contrl3
move #3,intin
jar vdi

*** Set line color
move #17,contr10
move #2,intin
Jar vdi

*** Set line width
move #16,contrl0
move #1,contr11
move #0,contrl3
move #l,ptsin
move #0,ptsin+2

* sat top and bottom of block

t loop counter
* decrement xposition of line

topcode for polyline
tnumber of points in ptsin
* no integer parameters in intin

* opcode for line pattern
* no points in ptsin
* 1 integer parameter in intin
* line pattern 5 — dotted line

* opcode for line color
t line color is red

* opcode for line width
* 1 point in ptsin
* no integer parameters in intin

* set width to 1

83

CHAPTER 4

ttt sat points ***
move xmax,d0 * sat left and right for dotted line
move d0,d6
divu #7,d6
sub «16,d0
move d0,ptsin+4
move yoax,d5

move #3,d4 * loop counter
modest
ttt Change drawing modes ***

move «32vcontrl0 »
move #0,contrl1
move •1,contrl3
move d4*d0
addq #l,d0
move d0,intin
Jar vdi
mova #16(ptsin
sub dy,d3 * decrement y of dotted line
sub dy, dS
mova d5,ptsin+2
move d5,ptsin+6

ttt Draw dotted lines
move *6,contrl0 (opcode for polyline
mova #2,contrl1 (number of points in ptsin
mova #0,contrl3 « no integer parameters in intin
jsr vdi

[** Print graphics text
move #8,contrl0 * opcode for gtext
move #l,contrll * 1 point in ptsin
move *33,contrl3 * 33 characters in string, including
sub dy,d3
move d5,ptsin+2 * Qet position for text
move 6,ptsin
move *32,d0 * 33 characters
movea.1 *intin,al * address of destination
movea.l *tl,a0 t calc address of source string
move d4,dl
mulu #33,dl
add dl,a0

:exti
clr.w dl
move.b <a0)+,dl * move a letter from source...
move.w dl, (al)-<- * to word-aligned destination...
dbra d0,taxt * until all done.
Jar vdi * print text
dbra d4,modes * next drawing mode
rts

tttt data section

.data

.even

84

Color and Other Graphics Settings

dxi .de.M 16
dyt .dc.w 10
<32 characters
tli .dc.b 'This is tha Replace Drawing Mode',0
t2* .dc.b ‘This is the Transparent Mode *,0
t3i .dc.b 'This is the XOR Drawing Mode ’,0
t4 .dc.b 'This is Reverse Transparent ',0

• bss
xmaxi .ds.w 1
ymax .ds.w 1
.end

Clipping
Another function that affects all types of graphics output is
known as clipping. Clipping is used to confine graphics output
to a designated rectangular portion of the screen. If part of the
graphics output you're trying to draw lies inside of the clip
ping rectangle and part lies outside the rectangle, the part that
is inside will be drawn, while the part that is outside won't.

By setting a clipping rectangle that is as large as the entire
display, you can insure that no part of your graphics output
will be "drawn" on memory that does not belong to the
screen display. This can prevent nasty system crashes, since
when drawing operations affect program memory, unpredict
able (and usually unpleasant) results occur. Clipping is also
extremely helpful for updating GEM windows. Not only can it
insure that you confine your drawing to the interior of the
window, it can also enable you to redraw only the portion of
the window that has been uncovered after having been cov
ered by another window.

Like all good things, clipping has its price. When clipping
is on, the VDI must examine every point before it's drawn, in
order to make sure that it lies within the rectangle. This extra
burden can slow down graphics output. For this reason, when
a workstation is first opened, clipping is turned off. To turn it
on, you must use the Set Clipping Rectangle function, the C
version of which looks like this:
int handle, flag, points[4J;
vs_clip(handle, flag, points);
where flag is used to indicate whether you want to turn clip
ping on (flag = 1 or greater) or to turn clipping off (flag = 0).
Points is a pointer to an array that holds the x and y coordi
nates of the four sides of the clipping rectangle. Points[0]

85

CHAPTER 4

holds the coordinate of the left side, points[l] the top,
points[2] the right side, and points[3] the bottom.

The sample program (Program 4-4) demonstrates the use
of clipping. It draws a series of concentric circles, the first of
which lies within the clipping rectangle. The remaining circles
are clipped at the top and bottom.

Program 4-4. clip.c

tt/*
/* CLIP.C — Demonstrates use of the
/* clipping rectangle.
/*/*

•include "shell.c"
•define 8TEP 10
demo <)C
int c,

dXpdy,
cy,r,
pointsC43;
if (work_outC03 “= 639)dx=STEPj /* set full horiz step */

else dx ■> 8TEP/2) /* except for lo-res */
if (work_outC13 == 399)dy*»STEP; /* set full vert step */

else dy *» STEP/2; /* except for color */
vsl_width(handle,dx); /% set wide line */
cy a 20tdy; /* set a clipping rectangle tt
r ■ 2 *(dx+dy>; /* that's as wide as the screen */
pointsC03°0; ft but not very tall t/
pointsC23°work_outC03;
pointed13=cy-r;
pointsC33<*cy+r;
vs_clip(handle,1,points); tt draw concentric circles */ ,
for (c«*ljc<14;c++>€

vsl_color(handle,c); /* change drawing pen t/
v arc(handle,32tdx,20tdy,(c+1)*(dx+dy),0,3600); /* draw 'em t/>

)
tt End of Clip.c */

86

Color and Other Graphics Settings

NDC Example
So far, all of our sample programs have used the ST's own
Raster Coordinate system. But as we saw in Chapter 2, the
GEM VDI also supports a non-device-specific format called
Normalized Device Coordinates. The type of coordinate sys
tem you choose, Raster or Normalized, is another setting deci
sion that affects all subsequent drawing functions. Sample
Program 4-5 opens two workstations, one using Raster Co
ordinates and the other using Normalized Device Coordinates.
It then draws a box containing a circle, using each type of co
ordinate system. Note that several workstations can be open at
once, each with its own set of graphics settings.

By looking at the functions showrc and shownorm, we
can examine some of the differences between the two coordi
nate systems. In the raster coordinate system, we have to scale
the horizontal and vertical coordinates for the center point of
the circle, and the radius value, according to the maximum
screen resolution.

In NDC mode, we use the same fixed values regardless of
the screen resolution, and the VDI does the scaling for us. No
tice how we must scale the vertical height of the box accord
ing to the aspect ratio of each pixel. That's because the VDI
scales the circle in order to make it appear round. We use the
values in work_out[3]-[4] to find the aspect ratio. Interestingly
enough, we not only have to scale the vertical dimension of
the NDC box according to the aspect ratio of each pixel, but
we also have to scale it according to the aspect ratio of the
screen. That's because in NDC mode, the VDI not only com
pensates for the fact that each pixel may not be as wide as it is
tall, but also for the fact that there may not be an even num
ber of rows and columns. Another point worth mentioning is
that we did not have to change the line drawing pen to get
the second figure to appear in black, since the NDC work
station uses its own line drawing pen which is separate from
the one used by the RC workstation. This program also dem
onstrates the rounding error that can occur when we use Nor
malized coordinates. In the color modes, the circle on the right
extends one dot past the border of the box.

As discussed earlier Program 4-5 requires that GDOS be
in the AUTO folder of the disk used when starting your system.

87

CHAPTER 4

Program 4-5. ndc.c

NOC.C — Demonstrates usa of thi
normalized coordinate system
along with raster coordinates

include "shell.c"
define 8TEP 10
nt dx, dy,handlel,pointsC143j
emo()

if (work_outC03 “** 639) dx-STEP | ft set full horiz step */
else dx ■* BTEP/2j /* except for lo-res */

if <work_outC13 “ 399)dy=STEPj ft set full vert step */
else dy ** STEP/2| ft except for color tf

showrc <)|
showndc(); >

/* do rc circle demo tf
ft do ndc demo tf

showrc()
{
int cx,cy,r;
long rl|

cx « 16tdx; /* horiz coordinate of circle center */
cy “ 20tdy| ft vertical coordinate of center tf
r ■ r1 » 12 I dxj ft circle radius tf
vsl_Hidth(handle,dx)| /* set wide line tf
vsl_color(handle,2); ft change color tf
v_arc(handle,cx,cy,r,0,3600)| ft draw circle */
pointsC03»pointsC6]-IpointsCB3»cx-r| /* x for box left tf
pointsC2]»pointBC43spointBC103«cx+r| /* x for box right tf
rl ■» (rltwork_outC33/work_outC43)| /* scale box height tf
pointsC533pointBC73>*pointsC113»cy+rl j /* y for box bottom tf
pointsC13spointsC33«pointsC93Bcy-rl| ft y for box top */
v_pline(handle,6,points)| /* draw box tf

showndc()
t
int nul,x;
ft Initialize input array, get the physical workstation handle,

and open the Virtual 8creen Workstation with normalized ceerdat/
for <x= work_int 103«0| x<10| work_intx++3**l> |
handlel « graf.handle(&nul, &nul, &nul, 8cnul) |
v_opnvwk (work_in, &handlel, work_out)|

/* perform the graphics demos tf
shownorm O j

Color and Other Graphics Settings

/* clob* the NDC virtual screen workstation %/
v_clsvwk(handlel)|>
shownorm()
C
int cx(cy,r|
long rl|

cx “ 24S7S) /% x for center */
cy ■ 16383| ft y for center */
r ■ rl ** 6144| /* radius tf
vsl_width(handlel,912)t /* set wide line */
v_arc(handlel,cx,cy,r,0,3600>| ft draw circle */
pointsC0]opointsC6]>pointsC8]«cx-r| /* x for box left */
pointsE23°pointsC4]>pointsC10]-cx+r|/* x for box right */
rl - (rl*dx*64)/(dy*40)| ft scale for width/height tf
rl » (rl>work_outC33/work_outC43)| ft scale for aspect ratio tf
pointsC5]BpointsC7]BpointsC113>cy-rl| ft y for box bottom */
polnts[lDopointsC3]°pointBC9]»cy-frly ft y for box top */
v_plinB(handlel,6,points)|

ft End of NDC.c tf

BASIC Graphics Settings
None of the generalized graphics settings that we have been
talking about in this chapter have keyword support in the first
version of ST BASIC. Although the revised version has not ap
peared at the time of this writing, there are indications that
this version will include the command DRAWMODE to set the
drawing mode. The form for this command is
DRAWMODE mode
where mode is the mode number from 1 to 4 (these correspond
to the mode numbers used by vswr__mode). It may also in
clude the commands RGB to set the color registers, and ASK
RGB to read them. The syntax for these are
RGB register, red, green, blue
ASK RGB register, red, green, blue
where register is the color register number, and red, green, and
blue are either the values for the new settings (RGB) or vari
ables to hold the existing settings (ASK RGB). Note that these
settings reflect the hardware registers, not the VDI pens. This
means that the register numbers will differ from the pen num
bers used in the COLOR command, and that the red, green,
and blue values will be in the range 0-7, not 0-1000.

CHAPTER 4

Even without these new commands, however, it is still
possible to use the VDI setting commands with the old POKE,
VDISYS(O) method. Program 4-6 demonstrates the BASIC
translation of the Drawmode program.

Program 4-6. drawmode.bas
10 fullw 2i clearw 2
20 res ■ paak(syetab)
30 if (ra><4) then xnax “ 639 alaa xnax * 319
40 if (raa>l) then ymax ■ 199 else ymax ** 399
50 dx ■ xmax/20i dy “ ymax/20
52 REH Initialize text atrings
54 text*(l)>"This im the Replace Drawing Mode”
55 text*<2>“"This is the Transparent Node"
56 text*(3)-"This is the XOR Drawing Mode-
57 textt<4)»”This is Reverse Transparent
60 REM Set Line Midth
70 poke contrl,16
80 poke contr1+2,1
90 poke contrl+6,0
100 poke ptsin,dxi REM width " dx
110 poke ptsin+2,0
120 vdisys(0)
130 REM Set line color
140 color 1,0,3
150 REM
160 for x » 3 to 14
170 linef xmax-(xtdx),12,xnax-(x*dx),ymax-<4*dy>
180 next x
190 REM Set line drawing pattern
200 poke contrl,15
210 poke contrl+2,0
220 poke contrl+6,1
230 poke intin,5
240 vdisys(l)
250 REM 8et drawing color
260 color 1,0,2
270 REM Set Line Midth
280 poke contrl,16
290 poke contrl+2,1
300 poke contrl+6,0
310 poke ptsin,li REM width - 1
320 poke ptsin+2,0
330 vdisys<0>
340 REM
350 for x-1 to 4
360 REM change drawing nodes
370 poke contr1,32
380 poke contrl+2,0
390 poke contrl+6,1
400 poke intin,x
410 vdisys(0)
420 REM
430 linef 16,ytnax-(<x+l)*3*dy) ,xmax-(2tdx),ymax-<<x+l)*3tdy)
440 gotoxy ' (xmax/319)*5 ,18-(x*4)
450 print text«(x)
460 next x

Chapter 5

Filled Shapes

n

n

n

n

n

In addition to line drawing routines that create
the outlines of a figure, the GEM VDI also provides a group of
output routines that create shapes whose interiors are filled
with a solid color or with a pattern of colors. Patterned fills
provide a means of distinguishing the interior of one shape
from another on monochrome systems. For example, if you're
drawing a pie chart on a monchrome screen, all of the wedges
will look the same if you try to fill them with different solid
colors. By filling them with different crosshatch patterns you
can make them visually distinct on both monochrome and
color systems. Like the line drawing routines, the fill routines
share a number of common graphics settings that can be used
to select the color, the fill pattern, and whether or not the fig
ure is outlined in a solid color.

Filled Rectangle
The simplest of the filled figures is the rectangle. This shape is
created with the VDI command Fill Rectangle, whose function
is to quickly fill a rectangular area on the screen. (This com
mand may not work with other output devices.) The C lan
guage version of this function is
int handle, sides[4J;
vr_recfl(handle, sides);
where sides is an array that contains the coordinates for each
side of the box. The values for the left and right sides are held
in sides[0] and sides[2], and sides[l] and sides[3] contain the
location of the top and bottom.

Pattern Fills
Although drawing a filled box may seem a very straightforward
operation, the VDI provides a number of fill settings that allow
you to vary the results significantly. The first of these are the
fill pattern settings. GEM provides the ST screen display de
vice with five different general types of fill patterns, which are
referred to in the GEM literature as fill interior styles.

93

CHAPTER 5

The Hollow fill pattern fills the interior of the figure with
the current background color. The Solid style fills the shape
with the currently selected fill color. The Pattern style super
imposes one of a number of different drawing patterns on the
fill area. These include dot patterns of varying density, hori
zontal and diagonal checkerboards, and herringbone patterns.
The Hatch pattern fills the area with one of a number of dif
ferent crosshatch patterns. These are made up of horizontal,
vertical, or diagonal lines, either alone or in combination. Fi
nally, the user-defined style allows you to display a pattern
that you create yourself, using an array of 16 words to repre
sent a 16 X 16 pattern of dots.

When you open your virtual workstation, you specify a
default pattern type in the variable work_in[7]. (We've been
setting it to 1, Solid.) To change the pattern type from this de
fault, you must choose another with the command Set Fill In
terior Style. The syntax for this call is
int handle, pattern—type
type—set = vsf_interior(handle, pattern—type);
where pattern—type is a number that corresponds to one of the
five fill types:
0 Hollow
1 Solid
2 Pattern
3 Hatch
4 User-Defined

The number of the pattern type that the VDI actually sets is
returned in the variable type_set. If you choose a pattem_type
that isn't available, the type will be set to 0, Hollow.

As we mentioned above, two of these pattern types con
tain a number of different patterns with similar characterstics.
The Pattern style is made up of 24 different dot patterns, and
the Hatch type has 12 different type of crosshatch line pat
terns. Whenever you choose the Pattern or Hatch styles, the
actual fill pattern that is used will be determined by the set
ting of the Fill Style Index, that selects one of these sub-
patterns. When you open the virtual screen workstation, you
designate the default value for this index in the variable
work—in[8] (provided that the GDOS extension is loaded).
Thereafter, you can select a new subpattem with the function
Set Fill Style Index, which, in C, looks like this:

Filled Shapes

int handle, pattern—index;
index_set = vs£_style(handle, pattem_index);
where pattem-Jndex is the index number for the subpattern.
For Hatch patterns on the ST screen, index numbers from 1 to
12 produce different crosshatch designs, and for Pattern type
fills, index numbers from 1 to 24 produce unique results. The
number of the index that was actually set by the VDI is re
turned in the variable index^set. If the index requested is not
available, an index of 1 is set.

A few things should be noted about the fill patterns. First,
patterns always repeat at even 16-dot intervals, starting with
the top left comer of the screen. Thus, if you start a pattern fill
at column 8, the left side of your filled pattern will start with
the “middle" of the pattern, not with its leftmost side. Second,
the pattern index has no effect whatever on pattern types other
than Hatch or Pattern (that is Hollow, Solid, or User-Defined).
Finally, note that subpattem 8 of the Pattern style is a solid
color fill, just like that obtained by using the the Solid style.

Program 5-1 uses the Filled Bar function (which is very
similar to Rectangle Fill) to show each of the preset fill types,
and the subpattems for the Hatch and Pattern types.

In the output from Program 5-1, the top row of boxes are
filled with the Hollow, Solid, and user-defined fill patterns.
(Since we have not specified our own fill pattern, the default
user pattern, the Atari logo, is the one that appears.) The next
two rows contain boxes that are filled with the 24 different
Pattern style fills. The final row of boxes displays the 12
Hatch type fill patterns. For the benefit of assembly language
programmers, Program 5-2 is a translation of fillpat.c

Program 5-1. fillpat.c

/* */
/* */
/* FILLPAT.C — Shows the various -fill */
/* patterns that ara available */
/* *//* */

•include "shell.c"
demoO

int MBtep,dx,ystep,dy,scrh,scrw,c,dj

95

CHAPTER 5

int pointsC43|
scrw ” work_outC03y /* gat screen width t/
scrh “ work_outC13j /* gat scraan haight */
xstep » scrw/i2| /* each block 1/12 width */
ystep - scrh/4| /* and 1/4 height «/
dx “ xstep/5| /* with some space in between */
dy ■ ystep/9j
pointsC03« pointsC13-0|
pointsC23-xstep*4-dx|
pointsC33-ystep-dy)
vsf.interior(handle,0)|
v_bar(handle,points)| /% draw Hollow block */
pointsC23«xstept8-dx|
pointsC03°xstep*4)
vsf.interior(handle, 1) |
v_bar(handle,points)| /* draw 8olid block */
pointsC23~XBtep*12-dX|
poi n t s C 0 3«>x st ep *B |
vsf.interior(handle,4)s
v_bar(handle,points)| /* draw User-defined (atari) block*/
for (d«l|d<4|d++) /* for next three rows */

for (c>0|c<12|c++) /* 12 columns in each row */<
pointsC03«xsteptcj /* set block coordinates */
pointsC23>xstept(c+l)-dx|
pointsC13»ystep*d|
pointsC33»ystept(d+1)-dyj
if (d<3> vsf.interior(handle,2)| /* set Pattern style t/
else vsf.interior(handle,3)|
if (d«2) vsf.style(handle,c+13) |
else vsf.style(handle,c+1)| /• & sub-pattern */
v.bar(handle,points); /I draw block */

>
/* End of Fillpat.c */

Program 5-2. flllpats

*
*
* FILLPAT.8 — assembly version of
t the fil1-pattern demo
**
*

.xdef demo

.xref vwkhnd

.xref contrl0

.xref contrll

.xref contrl2

.xref cantrl3

.xref contrl4

.xref contrl9

96

Filled Shapes

.xref contrl6

.xref contrl7

.xref contrl8

.xref contrl9

.xref contrl10

.xref contrl11
•xraf intin
.xref intout
.xref ptsin
.xraf ptsout
.text
detnoi

cmp
bne
•ml
u l

lowxi
cmp
bn*•si
•■1

lowyi
ttt Bet Interior Fill 8tyle to HoIIom

move #23,contrl0 t opcode for interior style
move #0,contrll * no points in ptsin
move #1,contrl3 t fill style only in intin
nova #0,Intin t Hollow fill style
Jar vdi

ttt Draw filled box
sub d0,d0
mova d0,ptsin
mova d0,ptsin+2 t xl, yl - 0
move xstep,d0
move dx,dl
aal #2,d0
aub dl,d0
move d0,ptsin+4 t x2 ■ xstept4-dx
mova ystep,d0
move dy,dl
sub dl,d0
mova d0,ptsin+6 t y2 ■ ystep-dy
move #ll,contrl0 t opcoda for BDP
mova #1,contrl9 t subcode for Bar
mova #2,contrl1 t 2 corners of box in ptsin
move #0,contrl3 t no integer par•maters in i
Jsr vdi t draw filled box

ttt Set Interior Fill Style to 8olid
move #23,contrl0 t opcode for interior stylo
move #0,contrl1 t no pointa in ptain
move #l,contrl3 t fill style only in intln
move #1,Intin t Solid fill style
Jsr vdi

ttt Draw filled box
mova xstep,d0
mova dx,dl
•Si #2,d0

97

#639,intout t if high-res or med-res
Iomx
dx t double dx and xstep
xstep
#399,intout+2 * if high-ras
lowy
dy t double dx and ystep
ystap

CHAPTER 5

move d0,ptsin * sat xl ■ xstep*4
*■1 •l,d0
sub dl,d0
nova d0,ptsin+4 * sat m2 ■ xsteptB-dx
nova •11,contr10 * opcode for GDP
move •1,contr15 * subcode for Bar
nova •2,contr11 * 2 corners of box in ptain
nova •0,contrl3 t no integer parameters in intin
Jsr vdi * draw filled box

«** Sat Interior Fill 8tyla to User-defined
nova •23,contr10 * opcode for interior style
mova •0,contrll t no points in ptsin
nova •1,contr13 * fill style only in intin
mova •4,intin * User-defined fill style
J»r vdi

«t* Draw filled box
mova KBtep,d0
nova dx,dl
asl •2,d0
mova d0,d2
add d0,d0
mova d0,ptsin * set xl » xstep*8
add d2,d0
BUb dl,d0
mova d0,ptsin+4 * set m2 ■ xstep*12-dx
mova •11,contr10 * opcode for 0DP
mova •l,contrl5 * subcode for Bar
nova •2,contrl1 < 2 corners of box in ptsin
nova •0,contrl3 * no integer parameters in intin
Jar vdi * draw filled box
nova •2,d5 t loop counter d

rowi
nova •11,d4 * loop counter c
mova •4,d7
sub d5,d7 * d+1 is in d7
mova ystap,d0
mova dy,dl
mulu d7,d0
BUb dl,d0
nova d0,ptsin-«-6 * set y2 of box ■ ystept<d+l)-dy
subq •l,d7
nova ystap,d0
mulu d7,d0
mova d0,ptsin+2 * set yl ■ ysteptd

bar >
mova •12,d6
sub d4,d6 * c+1 is in d6*** Set Interior Fill Style to Pattern or Hatchmove •23,contr10 * opcode for interior stylemove •0,contrl1 * no points in ptsinmove •l,contrl3 * fill style only in intin
move •2,intin * Pattern fill stylecmp •0,d5
bne pattern!
move •3,intin * last row is Hatch'fill stylepattern:
Jar vdi

98

Filled Shapes

**t Set Fill Style Index
move #24,contrl0 t opcode for set index

t contrl 1 and contrlS set correctly 'from previous call
move d6,intin t use inner counter for index
cmp #1, d5 t add 12 to index for middle rowbne notmid
add #12,intin

notmidx
Jar vdi

ttt Draw filled box
move xstep,d0
mulu d6,d0
sub dx,d0
move d0,ptsin+4 * set x2
move xstep,d0
subq #l,d6
mulu d6,d0
move d0,ptsin « set xl
move •ll,contrl0 t opcode for GDP
move #1,contr13 * subcode for Bar
move #2,contrl1 * 2 corners of box in ptsin
move #0,contrl3 * no Integer parameters in intin
jsr vdi * draw filled box
dbra d4,bar
dbra
rts

d3,row

**** data section

.data
• even

dxi • dc.M 5 * 1/60 screen Midthdyi .dc.w 10 * 1/20 screen heightxstepi .dc.M 26 * 1/12 screen Hidthystepi .dc.M 49 * 1/4 screen height

• end

User-Defined Pattern Fill
The one pattern that we have not discussed so far is the user-
defined fill pattern. When the user-defined line pattern is se
lected, we must also tell the VDI what the pattern looks like.
This is done in much the same way as we set up the image for
the user-defined line pattern. Like the line pattern, each fill
pattern is 16 dots wide, which means that each line can be de
scribed with a single 16-bit number. While the line pattern is
only 1 line high, however, each fill pattern is 16 lines tall.

99

CHAPTER 5

This means that it takes the equivalent of 16 line pattern de
scriptions, stacked one on top of the other, to describe a fill
pattern. These sixteen 16-bit descriptions are placed in an ar
ray, and the address of the array is used to specify the pattern.

In order to determine the values to be placed in this array,
binary digits are used to represent each line of filled dots
(ones) and unfilled dots (zeros). Just writing out the pattern as
binary digits may help you visualize it. For example, let's look
at a pattern that draws the letters LOVE in a block, with the
first two letters on top of the last two.
0000000000000000 = 0 X 0000
0011000001111000 = 0 X 3078
0011000011001100 = 0 X 30CC
0011000011001100 = 0 X 30CC
0011000011001100 = 0 X 30CC
0011000011001100 = 0 X 30CC
0011111001111000 = 0 X 3E78
0000000000000000 = 0 X 0000
0110011011111100 = 0 X 66FC
0110011011000000 = 0 X 66C0
0110011011000000 = 0 X 66C0
0011001011111000 = 0 X 32F8
0001111011000000 = 0 X 1EC0
0000111011000000 = 0 X 0EC0
0000011011111100 = 0 X 06FC
0000000000000000 = 0 X 0000

By drawing the pattern using zeros and ones, and con-
verting those binary numbers to hexadecimal, we get the data
needed for setting up our user-defined fill pattern. Once we
have this data, we can use the VDI call. Set User-Defined Fill
Pattern, to establish it as the pattern to be used when we
choose fill style 4. The C language format for this call is
int handle, bit_planes, pattern[16*bit—planes];
vsf_udpat(handle, pattern, bit—planes);
where pattern is a pointer to our data array, and bit—planes is a
number used to indicate how may colors are in our pattern.
For plain two-color patterns such as the one in our example
above, there are 16 elements in the pattern array, and the
bit_planes variable should contain a one. A complete example
program showing the use of our LOVE fill pattern can be
found in the section discussing the Filled Rounded Rectangle
GDP, below.

100

Filled Shapes

If you forget to set a user-defined pattern before chosing
interior fill style 4 with the vsf_interior call, you will get the
default user-defined pattern, which on the ST just happens to
be the Atari logo. An example of this pattern can be seen in
the output of the fillpat.c program, above.

Multicolor Pattern Fill
It's also possible to set the user-defined fill pattern to produce
a multicolored pattern. Such a fill pattern is much more com
plex than the standard two-color ml.

In order to understand how multicolor fill patterns work,
we must first discuss the concept of color bit planes. When we
talked about color formation previously, we noted that when
each dot on the screen can only be displayed in one of 2 col
ors, you only need one binary digit (bit) to represent that dot,
since a one or a zero covers the whole range of possiblities.
But if you want to display that dot in any one of 4 colors, you
need two bits to represent it. Each time you double the num
ber of possible colors, you need one more bit to represent the
dot. Thus, in order to get 8 colors, you need three bits per dot,
and to get 16 colors you need four bits per dot.

When you know that you're going to have a fixed number
of colors, like the 4 or 16 colors provided on the ST, it's easy
to say that each byte of display memory will be interpreted as
four contiguous pairs of bits, or two 4-bit chunks.

GEM was not designed for a particular system, however,
so it had to be made as flexible as possible. If, for example, if
GEM was used as the operating system on a computer that
displays eight colors on screen at a time, it would be very
awkward to say that each byte of display memory holds the
information for 22/3 dots. Therefore, for the purpose of multi
color pattern fills, color bits are grouped by what are called bit
planes. In such a grouping, the color bits for a single dots are
split up so they aren't contiguous the way they are in ST dis
play memory. Instead, all of the least-significant bits are in
one block, followed by a block of the next most-significant
bits, and so on. To construct the group of bits necessary to
make up the dot in the top, left comer of the picture, you must
take the most-significant (leftmost) bit of the first byte of the
first block, and join it with the leftmost bits of the first byte of
each of the other blocks. Figure 5-1 shows how this works.

101

n
CHAPTERS

Figure 5-1. Arrangement of an Image by Bit-Planes
UPPER LEFT DOT TAKES COLOR FROM REGISTER 6

n
n
n

The color bit plane model is used when setting up data
arrays for multicolor pattern fills. Each time you wish to dou
ble the number of colors available in the fill pattern, you must
add another 16-word group onto the end of the pattern array.
The first 16-word group is bit plane zero, the second is bit-
plane one, and so on. The total number of 16-word bit planes
should be passed to the function in the variable bit_planes.
Take, for example, the case of the following fill pattern array:
int pattern []={
OxFFFF,
OxFFFF,
OxFFFF,
OxFFFF,
0x0000,
0x0000,
0x0000,
0x0000,

OxFFFF,
OxFFFF,
OxFFFF,
OxFFFF,
0x0000,
0x0000,
0x0000,
0x0000,

OxFFFF, OxFFFF,
OxFFFF, OxFFFF,
0x0000, 0x0000,
0x0000, 0x0000,
OxFFFF, OxFFFF,
OxFFFF, OxFFFF,
0x0000, 0x0000,
0x0000, 0x0000,
}
102

n
n
n
n

Filled Shapes

The top four words of each bit plane are made up of all
ones, so the first four lines will have a one in each bit position.
This corresponds to the binary number 11, or or decimal num
ber 3, which means that they will be drawn in with the color
in color register 3. The next four words have ones in the least
significant bit plane but a zero in the most significant bit, so
they're drawn by color register 1. The next four words have the
zero in the least significant bit and the one in the most signifi
cant bit, so they are in color register 2. And the last four words
have zeros in both bit places, so they are background color.

Please note that the numbers formed by joining together
the bit planes refer to color registers and not VDI pen num
bers. The correspondence between the color registers and the
VDI drawing pens (also known as the color index) can be
found in Table 4-2. Also note that when using multicolor pat
tern fills, your pattern array must have the same number of bit
planes as the display (for example, two for medium resolution
and four for low resolution). If the bit_planes value of your
vsf_udpat call does not agree with the actual number of bit
planes used by the display, the call will fail and your pattern
will not be installed. Finally, keep in mind that when you use
the multicolor fill capability of the VDI, each bit plane is com
bined with the existing picture according to the writing mode,
so if you use a mode other than the default Replace mode,
things can get extremely complicated.

Program 5-3 shows the use of a four-color fill pattern.
The program works on a monochrome monitor also, but you
won't get the multicolor effect. The program displays a fill pat
tern that is composed of squares of color 0, 1, 2, and 3. If you
run the program in low resolution, you'll notice that color 3 is
shown as yellow, whereas it is black in medium resolution.
That's because these colors refer to the hardware registers, not
to the VDI pen colors. Even though VDI pen 1 defaults to
black in both modes, lo-res uses color register 15 for black,
while medium-res uses color register 3. We used the vq_extnd
call to find out how may bit-planes our display uses. This
value is returned in work_out[4].

103

CHAPTER 5

Program 5-3. colorpat.c

/* */
/* tt
/I CQLORPAT.C — Shows the use of the ti
/* multicolor pattern fill t/
tt ti
ft t/

•include "shell.c"
int colpatC43C163 - <

0X00FF, 0X00FF, 0X00FF, 0X00FF, tt four-color fill pattern */
0X00FF, 0X00FF, 0X00FF, 0X00FF,
0X00FF, 0X00FF, 0X00FF, 0X00FF,
0X00FF, 0X00FF, 0X00FF, 0X00FF,
0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,
0XFFFF, 0XFFFF, 0XFFFF, 0XFFFF,
0XFFFF, 0xFFFF, 0xFFFF, 0XFFFF,
0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,

0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,
0X0000,
>1

0X0000, 0X0000, 0X0000,

b sides C43 » t 0 ,0 ,0 ,0 , >1

demo()
i
int xstep,ystep,scrh,scrw,c|
scrw » work_outC03j /* get screen width t/
scrh " work_outC13| it get screen height tt
xstep • scrw/3| ft each block 1/3 width tt
ystep ** scrh/3| /* and 1/3 height tt
vq_extnd(handle, 1, work_out)| it find number of bit planes tt
vsf_udpat(handle,colpat, work_outt43)y /* set our fill pattern tt
vsf.interior(handle,4)| tt and use it tt
for (c«0jc<3|c++)C

BidesC03E>sidesC23|
sidesC13 m sidesC33y
sidesC23+«xstep|
sidesC33+=ystap|
vr_recf1(handle,sides)| /* draw filled boxes tt>

>

/* End of Colorpat.c ti

104

Filled Shapes

Fill Color and Outlining
There are two more settings that affect fill operations. The first
changes the pen number of the foreground color drawn by
these operations. (As you may remember, the default fill color
was set to the value in work__in[9] at the time the virtual
workstation was opened.) This function is called Set Fill Color
Index, and its syntax should be familiar to you by now, be
cause it's virtually identical to that of the calls used to set the
marker and line colors:
int handle, pen;
pen—set = vsf_color(handle, pen)
where pen is the number of the drawing pen which you are
requesting as the fill color, and pen—set is the variable in
which the function returns the number of the pen that was ac
tually set.

The final setting is used to determine whether or not the
filled shapes created by the various VDI calls will be drawn
with a solid outline around them. The Set Fill Perimeter Visi
bility call is the one used to change this setting, and it can be
called like this:
int handle, visibility—flag;
visibility—set = vs£_perimeter(handle, visibility—flag);
where visibility-flag is a value used to indicate whether you
want a visible outline around the fill area, and visibility—set is
a variable in which the actual setting is returned. In both
cases, a zero value indicates no outlining, and a value of one
(or any other nonzero value) specifies that a visible outline
will be drawn. It should be noted that this particular setting
does not affect the Fill Rectangle (vr_recfl) function, which al
ways draws the rectangle without an outline.

Settings Inquiry
As with the marker and line settings, the current status of the
fill settings can be determined with a single VDI call. The
name of this function is Inquire Current Fill Area Attributes,
and it's called like this:
int handle, settings[4]
vqf_attributes(handle, settings);

CHAPTER 5

where settings is a pointer to the array in which the function
returns the information about the fill settings. The contents of
the array are interpreted as follows:
Element Setting
settings[0] fill pattern type
settings[l] fill color pen
settings[2] fill pattern index
settings[3] current draw mode

Filled Shape Generalized Drawing Primitives (GDPs)
The VDI supplies a number of GDPs which can be used to
create a wide variety of filled shapes. The simplest is Bar,
which is used to draw a rectangle. This may seem to be waste
ful redundancy, since a wide polyline or a rectangle fill each
produce a filled box, but Bar is just a little bit different. A wide
polyline, for example, can be used for a solid box, but it can
not be filled with a pattern, and it uses the line settings rather
than the fill settings. The rectangle fill function is designed to
speedily clear a rectangular area of the screen only (not other
graphics output devices), thus it doesn't use the outline set
ting. The bar function, however, can be used by any device,
and it does support outlining. (As its name suggests, it's very
handy for bar graphs.)

While we're on the subject of overlapping functions, you
should note that if you set the fill pattern to Hollow, the
drawing mode to Transparent, and turn on perimeter visibility,
then the Bar function can be used to draw just the frame of a
box, as you might do with Polyline.

The syntax for the C language version of Bar is
int handle, sides[4];
v_bar(handle, sides);
where sides is a pointer to an array that holds the location of
each of the four sides of the rectangle. The location of the left
and right sides are in side[0] and side[2], while the top and
bottom are in side[l] and side[3], respectively.

The filled shape equivalent of the line drawing Rounded
Rectangle function is called Filled Rounded Rectangle. As with
the bar function above, all you have to do to draw a filled
rounded rectangle is point to an array that contains the coordi
nates of the top left and bottom right comers of the rectangle:

Filled Shapes

int handle, sides[4];
v_rfbox(handle, sides);

Program 5-4 uses the Filled Rounded Rectangle function
to demonstrate the user-defined fill pattern option. The
rounded boxes are filled with the LOVE pattern discussed in
the section on user-defined fills, above.

Notice how laying new boxes on top of the existing ones
changes the color of the pattern, but not its placement. That's
because the pattern is always aligned starting with the top left
comer of the screen.

Program 5-4. userfill.c

USERFILL.C — Shows the use of the .
user— defined fill pattern

#include "shell.c"
int lovepatE163 = <

0x0000, 0x3078, 0x30CC, 0X30CC, /* "love" fill pattern */
0X30CC, 0X30CC, 0X3E78, 0X0000,
0X66FC, 0X66C0, 0X6&C0, 0X32F8,
0X1EC0, 0X0EC0, 0X06FC, 0X0000,
>1

int points C43 C43 ° i
3 ,3 ,1 8 ,1 8 , /t array of corners for boxes */
7 .1 .1 2 .2 0 ,
1 ,9 ,2 0 ,1 3 ,
14 .10 .13 .20 ,
>1

demo()

int xstep,ystep,scrh,scrw,c,d|
int sidesC43|
scrw “ work_outC03) /* get screen width */
scrh = work_outC13) /* get screen height */
xstep ” scrw/20) /% each block 1/20 width 9/
ystep ° scrh/20| /% and 1/20 height */
vsf_udpat(handle,lovepat, 1)) /* set out fill pattern */
vsf.interior(handle,4)) /* and use it */
for (d“0|d<4;d++) /* for 4 boxes */

for (c»0jc<2|c++> /* for 2 sets of corners %/
<
BidesCc*23BpointBCd3Cct23*xstep| /* set block coordinates •/
si desCct2+13**pointsCd3Cc$2+13$ystepj
>

107

CHAPTER 5

if <d*»=l) vsf.perimeter(handle,0)) /* outline only 1st box */
vsf.color(handle,d+1)| /* change fill color •/
v rfbox(handle,sides)| /• draw rounded rectangle t/>

/* End of Userfill.c */

The final four filled shape GDPs allow you draw filled
circles, ellipses, or pie-shaped wedges of either. The filled cir
cle and the circular pie functions correct the vertical radius for
the aspect ratio of the display screen, so the figures that they
draw appear to be round even on displays like the medium-
res color screen, which has tall, skinny pixels. The filled el
lipse and elliptical pie functions use whatever horiztonal and
vertical radius that you specify.

The calling sequence for the Circle function is
int handle, x, y, radius;
v_drcle(handle, x, y, radius);
where x and y describe the center point of the circle, and ra
dius is the radius measured horizontally. (The vertical radius is
adjusted—it automatically corrected to compensate for the as
pect ratio of the screen.)

The syntax of the C version of the Ellipse call is
int handle, x, y, xradius, yradius;
v_ellipse(handle, x, y, xradius, yradius);
where x and y specify the center point of the ellipse, and
xradius and yradius describe the horizontal and vertical radii.

The format for the Pie call is
int handle, x, y, radius, beginangle, endangle;
v_pieslice(handle, x, y, radius, beginangle, endangle);
where x and y are the coordinates for the midpoint of the cir
cle, radius is its radius measured horizontally (the vertical ra
dius is adjusted for the aspect ratio), and beginangle and
endangle mark the starting and ending points for the enclosed
arc. As with the v_arc call, these angles are measured in
1/1 Os of a degree, starting at the rightmost point of the circle
as zero degrees, and moving counterclockwise, so that the top
most point is at 900, the leftmost at 1800, and so on. The
function draws the arc of the circle described by beginangle
and endangle, connects each end of the arc to the midpoint,

Filled Shapes

and fills the resulting shape according to the current fill pat
tern, fill color, and writing mode.

The syntax for the Elliptical Pie function is very similar:
int handle, x, y, xradius, yradius, beginangle,endangle;
v_ellpie(handle, x, y, xradius, yradius, beginangle, endgangle);

The only difference is that you must supply values for both
the horizontal and vertical radii of the ellipse.

Program 5-5 uses the GDP Ellipse command. It also dem
onstrates a very important point to remember. Pattern fills are
drawn according to the current writing mode, just like pat
terned lines are. As you can see from the display created by
Program 5-5, the oval drawn in Replace mode (lower left) ob
scures its portion of the green block completely. The ellipses
drawn in Transparent and Reverse Transparent modes (top left
and top right) let the green block show through everywhere
the fill color was not drawn. And the ellipse drawn in XOR
mode is filled with a different color inside the block than it is
outside the block, since it merely complements the existing
colors.

Program 5-5. fillmode.c

/* */
/* tt
tt FZLLHODE.C — Demonstrates effect of tt
it tha writing node on filled shapes tf
it tt
tt tt

•include "shell.c"
demoO<

int c,CMpcy'hr(vr,scrh,scrw|
long rl|
int pointsC43|
scrw ■ wcrk_outC03y tt get screen width */
scrh » work_outC13y /* get screen height */
vr ■ pointsC13 - scrh/4| /• set box corners, tt
hr ■ points C03 ■ scrw/4| tt ovals midpoints */
pointsC23 ■ scrw-hry
pointsC33 ■ scrh-vry
vsf.color(handle,3)y tt green box */
v_bar(handle,points)y
vaf.color(handle,2)y /* fill in red tt
vsf_interior(handle,2)| tt Pattern style tt
vsf_style(handle,12)y tt sub-pattern 12 •/

109

CHAPTER 5

■for <c«0|c<4|c++)<
if <c<2> ex ■ hr| /I horiz coordinate of oval center */
else c m ■ »crw-hr|
if <c It 1) cy ■ vr| /• vertical coordinate of center 1/
else cy " scrh-vr)
vswr_aode(handle,c+1)) /% change writing node */
v_ellipse(handle,cm,cy,hr,vr,0,3600)| /* draw ellipse */>

/* E^d of Fillnode.c t/

Area Fill
The next function is the filled shape analog of the Polyline
function. The Filled Area call takes an arbitrary number of
points that you specify, connects them, and fills the resulting
figure using the current fill settings. The shape that you create
may cross over itself in one or more places, like a figure 8; the
function will fill some of the loops, but may leave some adja
cent loops unfilled.

The sytnax for the Filled Area call is
int handle, count, points[2*COUNT];
v_fillarea(handle, count, points);
where count holds the number of vertices to be connected, and
points is a pointer to an array of x and y coordinates for those
points. Since each point has a horizontal and vertical compo
nent, the array contains twice as many elements as there are
points. Note that in order to insure that the points describe an
enclosed shape, this function connects the last point in the list
to the first point. Thus, it only requires four points to describe
a filled rectangle, while Polyline requires five points to draw
the outline of that box. The function will not draw a figure
that only has one point. If the shape has no area to fill, it is
represented by a single dot if visible outlining is turned on,
and is not drawn at all if outlining is turned off.

Program 5-6 shows how to create a complex filled poly
gon using the v_fillarea command. Note that where the shape
crosses itself so that there are two or more adjacent enclosed
spaces, the interior ones are left unfilled so that they appear to
be "outside" the polygon.

110

Filled Shapes

Program 5-6. areaflll.c

/*/*
/* AREAFILL.C — Shows the us* of the
/* area fill command
/*
/»

•include "shall.c"
int points C163 ■ i

1,2,16,2,7,9,12,20, /* vertices for polygon */
6,0,0,10,18,14,20,16,
>»

dwnoO
<
int xstep,yetep,scrh,scrM,c,d)
int sidesC163|
scrM *■ work_outC03| /* gat scraan Midth */
scrh ■ work_outC13| /* gat scraan height »/
Mstep ■ scrw/20| /* each block 1/20 Midth */
ystap ■ scrh/20| /* and 1/20 haight (/
vsf.interior(handle,4)| /* Atari-fuji fill pattarn */

for (c-0|c<B|c++) /* for 7 sats of corners */
<
sidasCc*23-pointsCc*23*xstap| /I sat xScy coordinates %/
si das C c *2+13*poi ntsCc *2+13tystep|
>
vsf_color(handle,2)| t% rad fill color t/
v_fillarea(handle,B,sides)| /* draw filled polygon •/

>

tt End of Areafill.c •/

Flood Fill
The last of the shape filling commands is a general-purpose
flood fill. Unlike the previous commands that we've discussed,
a flood fill (or contour fill, as it is sometimes called) does not
first draw a shape and then fill it in. Rather, it colors in an ex
isting enclosed area. The color and pattern with which it fills
the area depend on the fill color and pattern settings.

I ll

CHAPTER 5

Flood filling operates in one of two modes. In outline
mode, the entire area enclosed by a border of the outline pen
color is filled. Filling begins at a point which you specify and
moves outward in all directions. As it does so, every horizon
tally and vertically adjacent pixel which is not colored with
the pen designated in the call as the outline color is filled ac
cording to the fill color and pattern. The fill pattern stops
spreading at each point where it encounters a pixel colored by
the outline or contour pen. If the area to be filled is not com
pletely surrounded by a border of that outline color, the fill
will "leak" out, and the entire display area (or clipping rectan
gle) will be filled.

In color mode, all adjacent pixels of the same color are
filled. You designate the point at which filling begins, and what
ever pen was used to color that point becomes the color which
the fill routine displaces. As the fill moves outward, every hor
izontally and vertically adjacent pixel which is colored with
the displacement pen is filled. The fill stops spreading at each
point where a pixel drawn in another pen color is encountered.

The syntax for the Contour Fill call is
int handle, x, y, pen;
v_contourfill(handle, x, y, pen);
where x and y specify the point at which filling begins, and
pen specifies the outline pen number for outline mode. If the
value for pen is negative, the color replace mode is used, and
the fill replaces adjacent pixels that are drawn in the same pen
color as the point x,y.

Program 5-7 demonstrates both modes of contour filling.
First, a frame is created out of two wide rounded boxes. Next,
the enclosed spaces are filled in outline mode. Finally, the
frame itself is filled using color mode.

Program 5-7. flood.c

«/
*/

FLOOD.C — Demonstrates two different */
kinds of flood fill using the */
v_contourfill command */*/

include "shell.c"
nt points C23 C43 » <

1,6,19,12, /* array of corners for boxes */

Filled Shapes

6,l,13,19p
>»

demo()
<
int xstep,ystep,Bcrh,scrw,c,d|
int sidesC4]|
scrw ■ work_outt03| /* gat screen width */
scrh ■ work_outC13| /* gat acraan haight */
xatap ■ scrw/20) /I a*ch step 1/20 width t/
ystap * scrh/20) /♦ and 1/20 height */
vsl.width(handle,9); /I wide lines for boxes */
vsf.color(handle,2)) /* fill color « red */
vsf.interior(handle,2>| /* use patterned fill */
vsf_style(handle,19))
for (d-0|d<2|d++) /* far 2 boxes */

<
for <c«0|c<2|c++) /* for 2 sets of corners */

C
sidesCc*2]-pointsCd3Cc*2]*XBtepi /* set box coordi
sidesCct2+13~paintsCd3Cc$2+13tystep|
>

v rbox(handle,sides)| /* draw rounded rectangle t/
>

for (dB0|d<2|d-M-)
/* for 2 boxes, fill at opposite corners */

C
v.contourf i11(handi e,poi ntsCd 3 C 0]tx step+10,
pointsCd3C13tystep+10,1) |
v_contourfill(handle,poi ntsCd 3 C23txstep-10,
pointsCd3C33*ystep-10,1)|

>
vsf_color(handle,3)| /* change fill color to green */
vsf_style(handle,16)|

/t change fill pattern for mono systems 1/
v_contourfill(handle,xstep,7tystep,-1)|

/* fill outline of boxes */
>
/t End of Flood.c */

BASIC Fill Commands
The first release of ST BASIC contains a number of keyword
commands that correspond to the filled shape commands that
we've covered in this chapter. The COLOR command can be
used to set not only the fill color but also the fill style and in
dex. There is also direct support for the GDPs that drew filled
circles, ellipses, pie slices, and elliptical pies. The BASIC com
mand PCIRCLE creates a filled circle or pie slice, while the
command PELLIPSE outputs a filled ellipse or elliptical pie
slice. Finally, the FILL command supports the contour fill
function.

113

CHAPTERS

Although not yet released at the time of this writing, the
planned revision of ST BASIC appears to offer even more sup
port for the filled shape functions. Area filling is supported in
two formats:
AREA x,y; xl,yl; x2,y2;....xn,yn
MAT AREA count, array()

In the first, the keyword AREA is followed by a minimum
of 3 coordinate pairs separated by semicolons. These coordi
nates specify the area to be filled. In the second format, you
place the coordinates in an array, and then specify the number
of points to be drawn and the name of the array.

The Bar command is supported by a variation of the
BOX command:
BOX FILL xl,yl;x2,y2
where the first set of coordinates specifies the upper left cor
ner of the box, and the second specifies the lower right comer.
Finally, the new ST BASIC supports the user-defined fill pat
tern with the command PATTERN:
PATTERN planes, array
where planes is the number of bit planes, and array is the
name of the array which holds that number of 16 two-byte
values.

Of course, you can still access all of these functions using
the POKE and VDISYS commands. Program 5-8 shows how
to use some of the unsupported functions, such as v__rfbox.

Program 5-8. fill.bas
100 ful 1 w 2i dsarH 2
110 res b peek(Bystab)
120 i-f (res<4) then scrw ■> 639 else scrw ° 319
130 if (res>l) then scrh ■> 199 else scrh ** 399
140 xstep ■ scrw/201 ystep ■ scrh/20
150 REM Set Usei— defined Fill Pattern
160 poke contrl>112 iREM opcode for udpat
170 poke contrl+2, 0 iREH no points in ptsin
180 poke contrl+6, 16 iREM 16 words of pattern data in intin array
190 for x«0 to 15
200 read di poke intin+(2tx),d
210 next x
220 vdisys(1)
230 REM
240 for d“0 to 3
250 if dOl then goto 3401 REM outline only first box
260 REM
270 REM 8et perimeter outline visibility
280 poke contrl,104 iREM opcode

114

290
300
310
320
330
340
330
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

Filled Shapes

poke contrl+2,0
poke contr1+6,1
poke intin,0
vdisys(l)
REM
REM Sat Fill Color and interior fill style
COLOR l,d+l,1,4
REM
REM Draw Filled Rounded Rectangle
poke contrl,11 iREM opcode for 8DP
poke contrl+10,9 iREM sub-opcode for rfbox
poke contrl+2,2 iREM 2 corners in ptsin
poke contr1+6,0
for c«0 to 1
read x,y
poke ptsin+(c*4),xtxstep
poke ptsin+(c*4+2),ytystep
next c
vdisys(l)
REM
next d
REM
DATA 0,12408,12492,12492,12492,12492,15992,0
DATA 26364,26304,26304,13048,7872,3776,1788,0
REM
DATA 4,5,16,16
DATA 7,3,12,18
DATA 1,9,18,13
DATA 14,10,13,18

,

Chapter 6

Drawing and
Manipulating
Image Blocks

n

n<*S
n

n
n

n
n
n
n
□

u U i d l 9 we've seen how the VDI provides functions to
draw images point by point or with lines and geometric
shapes. But perhaps the most powerful of the VDI drawing
functions are the raster functions that move and manipulate
an entire block of pixels at once. This type of operation, often
referred to as a Bit BUT (Bit BLock Transfer), allows you to
draw and animate images on the display screen. On the origi
nal ST models, the bit manipulation is performed entirely in
software. Atari has been working on hardware support, how
ever, in the form of a blitter chip, a device that greatly speeds
up such operations. By the time you read this, this hardware
upgrade and new TOS ROMs that support its use may already
be available.

The VDI raster operations are extremely flexible. The
blocks of memory that they move may be located in the
screen display area or in the program's data storage space.
They can copy images that have the same number of colors as
the current display mode or place two-color images into a
multicolor display. The images may be reproduced exactly, or
they may be combined in a number of different interesting
ways with existing images. All of the image or only a selected
portion of it may be moved.

The one thing that all raster operations have in common
is the format used to describe the bit image. Before the VDI
can perform the memory manipulation necessary to move im
ages on the screen, it needs several key pieces of information.
These include the starting memory location of the image data,
the width and height of the image in pixels, the number of
words of data necessary to store the image, the format of the
bit image, and the number of color planes used. Since in GEM
parlance a bit image is known as a raster form, the data struc
ture in which this information is stored is called a Memory
Form Definition Block (MFDB). It consists of ten, 16-bit words
of information, laid out as follows:

119

CHAPTER 6

Word Contents
1 High half of the beginning address of the image data
2 Low half of the beginning address of the image data
3 Raster image width in pixels
4 Raster image height in lines
5 Raster image width in words
6 Image format flag

0 = ST specific format
1 = Standard GEM format

7 Number of color bit planes
8 Reserved for future use
9 Reserved for future use

10 Reserved for future use
The C language definition for this data structure is

typedef struct fdbstr {
int *fd__addr; /* pointer to image data area */
int fd__w; /* image width in pixels */
int fd_h; /* image height in pixels */
int fd_wdwidth; /* image width in words */
int fd_stand; /* standard format flag */
int fd__nplanes; /* number of color bit planes */
int fd-jrl/ fd__r2, fd_r3; /* reserved for future use */

}FDB;
This definition may be found in some versions of the

header file Obdefs.h or in another header file that comes with
your C compiler. Our definition uses the variable type int to
describe a 16-bit value, but for compilers that use a 32-bit-
wide int, the variable type would have to be changed to short
(or WORD, if that term has been defined by a portability macro).

The first member of this structure, fd_addr, is a pointer to
the integer array that holds the actual shape data for the im
age. As an address pointer, it's a 32-bit value. Some versions
of the structure definition make the first element a pointer to a
char, but since the image data is always an even number of
words long, it's more convenient to use a pointer to int. We'll
discuss the size and format requirements of the image data
block that this value points to a little bit later on. If the value
stored in fcLaddr is zero, rather than an actual address, it's a
signal for the VDI to use screen display memory for the image
block. In such a case, the VDI ignores the rest of the values in
the memory form definition block. It uses the beginning ad
dress of screen memory for the first value, and the width,

120

Drawing and Manipulating Image Blocks

height, and number of bit-planes for the current display
screen. The format flag is set to show that the display is in ST-
specific format.

The next two members, fd_w and fd_h, specify the width
and height of the image in pixels. Though the actual image
data block is made up of word-length values, and thus must
be an even-multiple-of-16 pixels wide, the image itself does
not have to occupy all of that width. For example, you can de
scribe an image that's 26 pixels wide, even though you must
use 32 bits of data to do it. If the rightmost portion of the im
age only uses a part of the last word on each line, like the ex
ample above which only uses 10 bits of the last word, it's
known as a fringe. Images that are not an even-multiple-of-
16-bits wide tend to be drawn a bit more slowly than images
that are an even-number-of-words wide, since the VDI is al
ways forced to do bit manipulation on them to mask out the
unwanted bits.

The next member of the structure, fd_wdwidth, is used to
store the number of words of image data per line. If the width
is not an even multiple of 16 pixels, you've got to round it up
to the next highest even multiple and then divide by 16 to get
this value.

Next in the structure comes fd_stand, a flag that shows
whether the image data is arranged in standard GEM format,
or the machine-specific format of the host computer's display
circuitry. A value of 1 means that it is in the standard format,
while a value of 0 means that it is arranged in the format of
the ST display memory.

The last significant item in this data structure is
fd_nplanes. This item is used to store the number of color bit
planes used by the image. As we have explained earlier, one
bit plane is needed for a monochrome (actually, 2-color) im
age, two bit planes are needed for a 4-color image, and four
are required for a 16-color image. Since each of the ST's dis
play modes uses a different number of bit planes, your appli
cation should determine how many planes are in the current
screen and proceed accordingly. The vq_extnd function can be
used to determine the number of planes in the display; this
value is returned in work_out[4] when you use the call to re
trieve the Extended Inquire information.

The most important piece of information needed to draw
bit images, though, is the actual image shape data. GEM al-

121

CHAPTER 6

lows this image data to be stored in one of two different for
mats. The first, the machine-specific format, is the fastest and
easiest for the VDI to use, since it conforms to the internal
configuration of the ST's own display memory. The second,
the GEM standard format, is offered for purposes of portabil
ity. Since the VDI offers a function for converting an image
from one format to the other, you can create an image in the
GEM standard format, and then convert it to the machine-
specific format of the host computer, without having any idea
what the display memory layout of that computer is like. If
you plan to write software only for the ST, though, you'll
probably have no need for the standard format.

By now, both formats for image data storage should be
fairly familiar to you. We discussed the ST display memory
scheme, in Chapter 4, as an interleaved bit-map. This means
that color information is stored in adjacent bits in the same
byte of memory. In the 4-color mode, the first byte of each
line describes the four colored dots at the extreme left of that
line. Each adjacent bit pair stores a number from 0 to 3, indi
cating the color register used to color that dot. The most sig
nificant two bits describe the leftmost dot, and each less
significant bit pair describes the next dot to the right. In the
16-color mode, the first byte of each line describes first two
colored dots on the line. Each nybble (four-bit group) stores a
number from 0 to 15, indicating the color register used to
draw the dot. The high-order nybble describes the leftmost
dot, and the low order nybble holds the information for the
dot to its right.

Standard GEM image format is like the format used to
store multicolored fill patterns, that we described in Chapter 5.
In standard format, each bit of color information is in a sepa
rate data block called a bit-plane. A 4-color image has two
separate bit planes, and a 16-color image contains four bit
planes. Each plane contains a different bit of color data for the
same dot. For example, the most significant (leftmost) bit of
the first word of each line of data in each bit plane contains
information about the first dot in the top line of the picture.
The bit in plane 0, the first plane, contains the least significant
bit of information, and the bits in each succeeding plane con
tain the next most significant bit of information. Putting the

122

Drawing and Manipulating Image Blocks

bits from the various planes together forms the number that
gives the color data for that dot. (See Figure 5-1.)

Note that a two-color (monochrome) image has one bit
plane in standard format, just as it does in the ST-specific for
mat, since each dot has only one bit of associated color data.
This means that for monochrome images, the standard format
is exactly the same as the ST-specific format.

Copy Raster Opaque
The first of the VDI raster functions is called Copy Raster
Opaque. Its name comes from the fact that this function copies
the same number of bit planes from the source memory area
as there is in the destination area, so that the former can be
copied pixel by pixel to the latter. The source image can't be
rotated or scaled in size with this function, though you can
use this function to move the image data from the screen to
memory, where you can manipulate it more easily. The C syn
tax for this call is
int handle, mode, points[8];
struct fdbstr *srcMFDB, *destMFDB;
vro_cpyfm(handle, mode, points, srcMFDB, destMFDB);
where the value mode indicates the writing mode used for the
operation. Despite its name, this function does not necessarily
perform a straight copy of the source image. Rather, it can
combine an image with the existing destination image in a
number of interesting ways. These writing modes are similar
to the general drawing mode set by the vswr_mode() call, but
they are set separately and are more comprehensive. They in
clude the old standbys like Replace and XOR mode, and also
add new combinations, some more useful than others. The fol
lowing chart shows the 16 different combinations available
with the vro_copyfm() call. The logic operations are described
using the symbol S to refer to the source image, D to refer to
the starting destination image, and Dl to refer to the resulting
destination image. Some of the more useful modes also have a
plain-language description that explains more clearly what
they do.

123

CHAPTER 6

Mode Logic Operation Description
Number

0 Dl = 0 Clear destination block
1 Dl = S AND D
2 Dl = S AND (NOT D)
3 Dl = S Replace mode
4 Dl = (NOT S) AND D Erase mode
5 Dl = D Destination unchanged
6 Dl = S XOR D XOR mode
7 Dl = S OR D Transparent mode
8 Dl = NOT (S OR D)
9 Dl = NOT (S XOR D)

10 Dl = NOT D
11 Dl = S OR (NOT D)
12 Dl = NOT S
13 Dl = (NOT S) OR D Reverse transparent mode
14 Dl = NOT (S AND D)
15 Dl = 1 Fill destination block

As you can see, some of these operations are almost use-
less. For example, number 0 blanks the destination rectangle
to the background color, while number 15 fills it with all ones,
in effect changing it to pen color 1. Either of the operations
could be performed more effectively with vr_recfl(). Mode
number 5 literally does nothing, leaving the destination un
changed, while mode number 10 merely reverses every bit in
the destination, without regard to the source image.

The points parameter in the vro_copyfm() call is a
pointer to an array of coordinates that describe two rectangles.
Since the vro_copyfm() call can be used to move only a por
tion of the total image described in the MFDB, these rectangles
describe the portion of the source MFDB from which the im
age is copied and the portion of the destination MFDB to
which it is copied. The elements of the points array are
Element Description
points[0] Left edge of source rectangle
points} 1] Top edge of source rectangle
points[2] Right edge of source rectangle
points[3] Bottom edge of source rectangle
points[4] Left edge of destination rectangle
points[5] Top edge of destination rectangle
points[6] Right edge of destination rectangle
points[7] Bottom edge of destination rectangle

124

Drawing and Manipulating Image Blocks

These points describe an offset from the upper left comer
of the form. Though the entire source and destination forms
need not be the same size, the source and destination rectan
gles that you describe should be. If they are not, unpredictable
results may occur. (At best, the size of the source rectangle
will be used.) You should also take care to make sure that the
rectangles you describe do not exceed the width or height of
the form as a whole.

The final two parameters are pointers to the source and
destination MFDBs. Both of these MFDBs must use image data
that is in ST-specific format. Standard-format MFDBs should
be converted to ST-specific format prior to this call with the
Transform Form (vr_tmfm) call. It is possible for the source
and destination forms to be one and the same. For example,
you can define a form which uses the display screen for its
image data (by setting fd_addr to zero) and use this call to
move an image from one part of the display to another part.
It's even possible to move an image from a source rectangle
that overlaps with the destination rectangle. In such a case,
the VDI copies in whatever direction is necessary to preserve
the source image, so that the destination doesn't corrupt the
source before the copy is complete.

Program 6-1 demonstrates the use of the Copy Raster
Opaque function. It first draws a happy face, using the normal
VDI drawing commands. It then uses vfo_copyfm() to move
that image from the screen to a memory form. Finally, it fills
the screen with a patterned background, and then uses
vro_copyfm to move the image back to the screen, using each
of the 16 drawing modes.

Program 6-1 illustrates the various copy modes more
clearly than any description of them. The mode numbers
progress from the top left comer (0) to the bottom right comer
(15). The face in the top right comer, which was copied using
mode number 3, Replace, shows the image that was originally
drawn on the screen, as it appeared (briefly) before we filled
the screen with the pattern. If you have a color display, you
will notice that the results in lo-res mode are slightly different
from those in medium-res mode. If you add more colors to the
picture, the results get even harder to predict. That's because
the logical operations which combine the two images are per
formed separately on each bit plane.

CHAPTER 6

Program 6-1. copymodex

/*/*
/t COPYMODE.C — Demonstrates copying
t% modes offered by the Copy Raster
/* Opaque function./*
/*/**««*««**************************************
•include "shell.c"
•define WHITE 0
#define BLACK 1
♦define RED 2
•define SREEN 3

demo()
{

struct fdbstr
int timage; ft memory pointer */
int width; /t form width in pixels */
int height) /t form height */
int wordw; /t form width in wordB t/
int flag; /t form flag t/
int planes; /t number of color planes */
int rl, r2, r3;

>srcMFDB, destMFDB;
int icnagedatC10003; /* buffer for destMFBD image data %/
int pointsC83;
int xstep,ystep,

xres,yres,
scrh,scrwf
c»d,
modej

scrw =» work_outC0]; /* find screen width */
scrh a work_outC13; /t and height •/
xstep “ scrw/4; /* set x and y step increments */
ystep a scrh/4; /* to 1/4 screen width and height */

/* Draw a happy face with VDI drawing commands */
vsf.interior(handle,1);
v_ellipse(handle,(xstep-10)/2,(ystep-10)/2,(xstep-16)/2,
(ystep—16)/2,0,3600) |
vsf_color(handle,BREEN);
v_ellipse(handle,(xstep-10)/4,(ystep-10)/3,(xstep-12)/8,
(ystep-12)/8,0,3600) |
vsf_color(handle,WHITE);
v_ellipse(handle,(xstep-10)/4,(ystep-10)/3,(xstep-12)/16,
(ystep-12)/16,0,3600) ;
vsf_color(handle,RED)|
v_el1ipse(handle,3*(xstep-10)/4,(ystep-10)/3,(xstep-12)/8,
(ystep-12)/8,0,3600) |
vsf_color(handle,WHITE);
v_el1ipse(handle,3*(xstep-10)/4,(ystep-10)/3,
(xstep-12)/16,(ystep-12)/16,0,3600);
vsl_color(handle,WHITE) |
vsl_width(handle,5) |
v_ellarc(handle,(xstep-10)/2,(ystep-10)/2,
(xstep-12)/3,(ystep-12)/3,2100,3300);

Drawing and Manipulating Image Blocks

/* Use vq.extnd to find x and y resolution, # of bit pianos */
vq_extnd(handle,1,work.out);
if (work_outC43 == 4> xrea°l; else xres<»2)
if (work.outC43“= 1) yres“2j else yres**l;

/% Set up a source form using screen data,
and a destination form using a memory buffer */
srcMFDB.image = 0Lj /t use screen data for srcMFDB */
destMFDB.image a imagedat|
destMFDB.width a B0txres;
destMFDB.height ■= 50tyres;
destMFDB.wardw Stxres;
destMFDB.flag ■ 0) /* ST-specific form */
destKFDB.planes = work.outC43;
pointsC0]°pointsC4]°pointsC13°pointaC53=0;
pointBC23=pointsC63°xstep-10;
pointsC33“pointBC73=yotep-10|

/* Copy the happy face from the screen to the memory form */
vro_cpyfm(handle,3,points,ScsrcKFDB, fcdestMFDB);

/* Flood the whole screen with a cross-hatch pattern */
pointsC23= scrw;
pointsC33 = scrh;
vsf.interior(handle, 3);
vsf_style(handle,3);
vsf.color(handle, BLACK);
vr.recf1(handle,points)|

ft copy the form back from memory to the screen,
using each of the 16 copy modes tf
pointsC23 = xstep-10;
pointsC33 =* ystep-10)
pointsC43 13 xstep*3;
for (CBfflode<B0;c<4;+'«'c)

<
pointBC53°yBtep*c+5;
poi nt»C73=ystep* (c+1) -5;
for (d=,0;d<4;++d)

C
pointsC43=xsteptd+5;
pointsC63=xstep*(d+1)-5;
vro.cpyfm (handle, mode++, points, S<deBtMFDB, &srcMFDB);
>>

/* End of Copymode.c tf

There are many uses for the vro_copyfm() call. It can be
used to move around large areas of the screen display, as when
you scroll the contents of a window. It can be used for stamp
ing images on the screen, or for saving predrawn images from
the screen to a memory buffer, where they may be manipu-

CHAPTER 6

lated and redrawn. It can even be used for animating color
shapes, by drawing the shape, erasing it, and moving it.

The XOR mode is particularly useful for this type of ani
mation. As was mentioned in the discussion of the writing
modes, an XOR drawing operation is by definition reversible,
since reversing the bit patterns the first time changes the color,
while reversing them a second time restores them to their
original pattern. Therefore, to move an image that was drawn
with an XOR operation, you need only to draw it with an XOR
to the same spot to erase it, and then draw it with an XOR to
the new spot to make it move. While this course of action is
convenient, it isn't exactly without flaw. As we have seen, the
color that an XOR image takes depends on the color of the back
ground on which it's drawn, and, if the background is multi
colored, the image will be, too. If the image is moved over a
very complex colored background, therefore, it will change
color as it moves. And if there's more than one image moving
at the same time, these images will change colors yet again
when they pass over one another. Because of the complexity
of the combinations of the various bit-planes in a multicolor
image, these color changes can be unpredictable. Yet, despite
these limitations, the XOR drawing operation can be effective
for animation in many situations. An example of animation
using the XOR mode can be found at the end of this chapter,
in the section dealing with the vrt_copyfm() command.

Transform Form
The advantage of using the standard form for image data stor
age is that it allows you to render an image without knowing
the specifics of the display memory layout used by the target
computer. But since vro_cpyfm and vrt_copyfm both require
that the source and destination forms be in machine-specific
format, you've got to have a way of converting to that format.

Converting forms back and forth between standard and
machine-specific formats is the function of the VDI routine
named Transform Form. It moves the source form to the des
tination form, converting it to the opposite type (indicated by
the fd_stand flag of the source form) along the way. The func
tion may be called like this:

128

Drawing and Manipulating Image Blocks

int handle;
struct fdbstr *srcMFDB, * desMFDB;
vr_trn_fm(handle, srcMFDB, desMFDB);
where srcMFDB is a pointer to the source MFDB, and desMFDB
is a pointer to the destination MFDB. Note that the source and
destination form definition blocks may be the same. In such a
case, the form is said to be transformed in place. While this is
fine for small images, the process can be very slow for larger
ones on machines like the ST, where the machine-specific lay
out is very different from that of the standard format. So, if
speed is a consideration, it would pay to set up a destination
block separate from the source.

Program 6-2 uses a color image that's stored in the stan
dard format. In fact, it's almost the same image data that was
used in the Colorpat program for the four-color pattern fill.
The only real difference between the data format used by
color pattern fills and standard forms is that the former is only
one word (16 bits) wide by 16 lines high, while size of the lat
ter is not so restricted (our example is 32 bits wide). Since the
image is not very large, we performed the transformation to
the ST-specific form in place, before using the vro_copyfm()
command to draw the image.

Notice that by providing enough data for the largest num
ber of bit planes in use (4), we can use the same image data
for all three resolution modes. The modes that need less data
only use the number of planes that they need, and so have
roughly the same form as the lo-res image, if less color detail.
But because of the difference in the number and size of pixels
in each mode, the image will not appear in the same size and
aspect ratio in the various modes. Therefore, you'll probably
want to supply different image data for each of the three
modes, even if using the standard format. If not, your images
will turn out like the icons on the Desktop—tall and skinny in
medium resolution, and much larger in low resolution than in
high resolution.

129

CHAPTER 6

Program 6-2. stdform.c

tt
tt
it STDFORJ1.C — Demonstrates the use
it of standard image data format, and
it the Transform Form function.
tt
tt

•include "Bhell.c"
int imagedatC] “ C

0X00FF, 0X00FF, 0X00FF, 0x00FF,0x00FF, 0X00FF, 0X00FF, 0X00FF,
0X00FF, 0X00FF, 0X00FF, 0x00FF,0x00FF, 0X00FF, 0X00FF, 0X00FF,
0X00FF, 0X00FF, 0X00FF, 0X00FF,0X00FF, 0X00FF, 0X00FF, 0X00FF,
0X00FF, 0X00FF, 0X00FF, 0X00FF,0X00FF, 0X00FF, 0X00FF, 0X00FF,
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0x0000, 0X0000,
0xFFFF, 0XFFFF, 0xFFFF, 0xFFFF,0xFFFF, 0XFFFF, 0xFFFF, 0xFFFF,
0xFFFF, 0xFFFF, 0XFFFF, 0x FFFF,0XFFFF, 0XFFFF, 0xFFFF, 0XFFFF,
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0X0000, 0X0000|
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,0X0000, 0X0000, 0X0000, 0X0000,

>»

demo (){
struct fdbstr
C
int timagei it memory pointer */
Int width! tt form width in pixels tt
int height; tt form height tt
int wordw| /* form width in words tf
int flag; /* form flag tt
int planes! tt number of color planes tf
int rl, r2, r3»

>srcMFDB,screen;
int pointsCBl!
int step,scrh,scrw,c|
scrw “ work_outC03/32j /* find screen width */
scrh " work_outC13/16! /* *nd height */
step ■ (scrw < scrh) ? scrw i scrh|

/* Use vq_extnd to find # of bit planes tt
vq_extnd(handle,1,work_out>!

/* Set up a destination form using screen data,
and a source form using a memory buffer •/
screen.image ™ 0L| /* use screen data for srcKFDB tt

130

Drawing and Manipulating Image Blocks

srcHFDB.image " imagedat)
■rcKFDB.width - 321
srcMFDB.height " 16)
srcMFDB.wordw ■ 2)
srcMFDB.flag ■ 1 j ft standard form */
srcMFDB.pianaa “ work_outC43|

vr_trnf m < hand1e,tarcMFDB,tarcKFDB>| /t in place transform tt
/t sat up initial screen points for the image */
pointsC03«pointsC43«pointsC13-pointBC53«0|
pointsC23»pointsC63»31|
pointsC33«*pointsC73"15|

/* Copy the colored box from the memory form to the screen
repeatedly in a diagonal line t/
for <c«0|c<stepj C++){

vro_cpyfm(handle,3,points,tarcKFDB(tacreen))
pointsCS3+>16|
pointsC73+«16|
pointsC43+>32|
pointsC63+a32|>

>
tt End of stdform.c tt

Copy Raster Transparent
The last raster function is Copy Raster Transparent. This oper
ation copies a source form that only has one bit plane of im
age data into a destination form that can have several color
planes. Since a single bit plane image requires the least
amount of image data, this is a very economical way of plac
ing an image on the screen. In fact, it's the method used by
GEM for drawing icons on the screen. Since this call allows
you to specify the pen color that will be used to draw both the
foreground (one bits) and the background (zero bits), the im
age can be drawn in any color combination that you wish. The
C language syntax for this call is
int handle, mode, points[8],pens[2];
struct fdbstr *srcMFDB, *destMFDB;
vrt_cpyfm (handle, mode, points, srcMFDB, destMFDB, pens);

The mode value used for this call is the same as that
used by vswr_m ode(), not the more complex one used by
vro_cpyfm(). As you may recall, the four writing modes are:

131

CHAPTER 6

Mode Description
1 Replace
2 Transparent
3 XOR
4 Reverse Transparent

The parameters srcMFDB and destMFDB are pointers to
the source and destination forms. The source form must con
tain only a single bit plane, and it's irrelevant whether it's in
standard or ST-specific format, since both are the same for a
monochrome image. The destination format may contain 1, 2,
or 4 bit-planes, and should be in ST-specific format. A screen
form, the most common destination, is already in that format.

The points array is the same as that used by vro_cpyfm().
The first four elements describe size and position of the source
rectangle, and the last four describe the destination rectangle.
The rectangles are offset from the top left comer of the forms,
and the source and destination rectangles should be the same
size.

The value that pens points to is an array which holds two
pen numbers. The first, pens[0], contains the pen number of
the foreground color which will be drawn wherever there is a
one bit in the source image. The other, pens[l], contains the
pen number of the background color which is drawn wherever
there is a zero bit in the source image. Note that these are the
VDI pen numbers (color index), not the actual hardware regis
ter numbers formed by the various bit combinations. These
colors will be translated to the appropriate bit combinations
when the single plane image is expanded to the number of
planes used by the screen. The resulting expanded image is
then combined with the destination image, bit plane by bit
plane, according to the logic operation chosen.

Program 6-3 copies a predefined image to the screen,
using the XOR mode. It demonstrates a simple form of
animation.

Notice that in order to have the image appear in the same
size and aspect ratio in all three resolution modes, we had to
provide three different arrays of image data. This is admittedly
a lot of data to type in by hand. Fortunately, some of the
painting programs available for the ST, such as Neochrome
and DEGAS Elite, allow you first to create an image by draw
ing with the mouse and then to save that image to a text file
in the form of C source code. This source code file is in the

132

Drawing and Manipulating Image Blocks

form of an initialized array that can be merged into your pro
gram file.

You may have noticed the use of the XBIOS call Vsync.
This is used to combat the flickering that can occur when you
move an image on screen while the display is being redrawn.
The Vsync call pauses the program until the the vertical re
trace interval occurs. That's when the video beam reaches the
bottom of the picture and shuts off until it gets back up to the
top. This allows you to change the image in display memory
when the display is not being changed.

Program 6-3. copytran.c

COPYTRAN.C — Damonstrates the Copy
Tranparent -function, Including soot*
animation using the XOR copy mode.

•include "shell.c"
•include <osbind.h>
•de-Fine WHITE 0
•define BLACK 1
•define RED 2
•define BREEN 3

struct
r

fdbstr
V
int ftimage; /ft
int width; /ft
int height; /ft
int wordw; /ft
int flag; /ft
int planes; /ft
int rl, r2, r3;

>screen,viewC23; /ft

memory pointer ft/
form width in pixels ft/
form height ft/
form width in words ft/
form flag */
number of color planes ft/
forms for the screen,
and 2 views of the image ft/

int colorsC23=<BLACK,WHITE>; /ft XOR does use colors, but you
still must set up the array ft/

demo()
€

int pointsC83|
int scrh,scrw,

c,d,ej
scrw
scrh

work_outC03;
work_outC13;

/ft find screen width ft/
/ft and height ft/

/ft put a patterned block in mid-screen ft/
pointsC03 ■ scrw*3/8|
pointed! ■ scrhftS/8)

133

CHAPTER 6

pointsC23» scrw*5/8)
pointsC33 - scrht7/8)
vsf.interior(handle, 3))
VBf_»tyle(handle, 3) |
vsf_color(handle, GREEN)|
v_bar(handle,points)|

/» initialize bug creature forms according to resolution */
switch(wark_outC133) /* find out how many colors */C

case 2> inithiO) /* if 2 colors, use hi-res */
break)

case 4» initmedO) /* if 4 colors, use med-res */
break)

case 16i initloO) /* if 16 colors, use lo-res */
>

/* 8et up one form using screen data,
and 2 using image data from an array */
screen.image ■ 0L| /* use screen data for this form */
viewC03.flag = viewC13.flag “ 0) /% views are ST-specific form */
viewC03.planes “ viewC 13.planes *» 1) tt only 1 plane t/

/t set initial locations for source and dest. rectangles t/
pointsC03» pointsC43 ■ pointsCl} “ 0)
pointsC23= pointsC63 ■ viewC03.width-1)
pointsC33> viewC03.height-1)
pointsC53> scrh*3/4)
pointsC73« (scrh*3/4) + viewC03.height-1)

/* draw the first bug in XOR mode */
vrt_cpyfm(handle,3,points,8cviewC03, fcscreen,colors))

/* copy and erase the view forms to the screen,
alternately using XOR mode to animate them %/

for(c*0|c<scrw/7|c++) /* repeat across the screen */
i
for(d«0|d<2|d++) /* alternate image each time %/

<
for (e«0)e<10000)e++)) /% add a delay so we can see %/
VsyncO) /* sync with vertical retrace

to minimize flicker »/
/* erase the last one */
vrt_cpyfm(handle,3,points,&viewCd3, Stscreen,colors))
pointsC43+«3| /* move it horizontally tt
pointsC63+»3)
tt and draw the next one 1/
vrt_cpyf<n(handle,3,points,fcviewCd‘'13, fcscreen,colors))
> /* end of d loop 1/

> tt end of c loop */
> /* end of demoO */
ft 8upport routines to initialize form data,

depending on the resolution mode in effect */
initloO

€

Drawing and Manipulating Image Blocks

static int lo_l<nageC23C463 -<
0x0030, 0X0C00, 0X001C, 0x3800,
0x0006, 0x6000, 0x0006, 0x6000,
0X001F, 0XF800, 0X003F, 0xFC00,
0xC0FF, 0XFF03, 0XC0FF, 0xFF03,
0xE3E3, 0XC7C7, 0X7FEB, 0XD7FE,
0X3FE7, 0XCFFC, 0X03FF, 0xFFC0,
0X03FF, 0xFFC0, 0X00F8, 0X1F00,
0X00FC, 0X3F00, 0X00FF, 0xFF00,
0x0077, 0xEE00, 0x0030, 0X0C00,
0x0030, 0X0C00, 0x0030, 0X0C00,
0x0060, 0x0600, 0X00C0, 0x0300,
0x0380, 0X01C0,
0X0000, 0x0000, 0X001C, 0x3800,
0x0036, 0X6C00, 0x0006, 0x6000,
0X001F, 0XF800, 0X003F, 0xFC00,0X00FF, 0XFF00, 0X00FF, 0xFF00,
0X03E3, 0XC7C0, 0X3FEB, 0XD7FC,
0X7FE7, 0XCFFE, 0X63FF, 0XFFC6,
0xC3FF, 0XFFC3, 0XC0F8, 0x1F03,
0X00FC, 0X3F00, 0X00FF, 0xFF00,
0x0077, 0xEE00, 0x0030, 0X0C00,
0x0030, 0X0C00, 0x0030, 0X0C00,
0x0018, 0x1800, 0X000C, 0x3000,
0x0006, 0x6000
>»

viowC03.image “ lo_imageC03)
viewC13.image ™ lo_imageC13)
viewC03.width •* viewC13.width “ 321
viewC03.height “ viewC 13.height « 23 j
viewC03.wordw m viewC13.wordw “ 2j>

initmed(>
C
static int med_i<nageC23C923 *» C

0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0xF000
0xF000
0XFC0F
0X3FFF
0X0FFF
0X000F
0X000F
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0X0000
0X0000
0X000F

0x0000
0X0000
0X0000
0X0000

0X0F00
0X03F0
0X003C
0X003C
0X03FF
0X0FFF
0XFFFF
0xFFFF
0XFC0F
0XFCCF
0XFC3F
0XFFFF
0XFFFF
0XFFC0
0XFFF0
0XFFFF
0x3F3F
0X0F00
0X0F00
0X0F00
0X3C00
0XF000
0xC000

0x0000
0X03F0
0X0F3C
0X003C

0X00F0
0X0FC0
0X3C00
0X3C00
0XFFC0
0XFFF0
0XFFFF
0XFFFF
0xF03F
0XF33F
0XF0FF
0XFFFF
0XFFFF
0X03FF
0X0FFF
0XFFFF
0XFCFC
0X00F0
0X00F0
0X00F0
0X003C
0X000F
0x0003
0x0000
0X0FC0
0X3CF0
0X3C00

0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0X000F,
0X000F,
0XF03F,
0xFFFC,
0XFFF0,
0XF000,
0xF000,0x0000,
0x0000,
0X0000,
0X0000,
0X0000,
0X0000,
0X0000,
0X0000,0X0000,
0XF000,
0x0000,
0X0000,
0X0000,
0X0000,

135

CHAPTER 6

0X0000, 0X03FF, 0XFFC0, 0X0000,
0X0000, 0X0FFF, 0XFFF0, 0X0000,
0X0000, 0xFFFF, 0XFFFF, 0X0000,
0X0000, 0xFFFF, 0XFFFF, 0X0000,
0X000F, 0XFC0F, 0XF03F, 0XF000,
0X0FFF, 0XFCCF, 0XF33F, 0XFFF0,
0X3FFF, 0xFC3F, 0XF0FF, 0XFFFC,
0x3C0F, 0XFFFF, 0XFFFF, 0XF03C,
0xF00F, 0XFFFF, 0XFFFF, 0XF00F,
0xF000, 0xFFC0, 0X03FF, 0X000F,
0X0000, 0xFFF0, 0X0FFF, 0X0000,
0X0000, 0xFFFF, 0xFFFF, 0X0000,
0X0000, 0X3F3F, 0XFCFC, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0x0300, 0x0300, 0X0000,
0X0000, 0X00F0, 0X0F00, 0X0000,
0X0000, 0x0030, 0x3000, 0X0000
>1

viewC03.image » med_imageC03|
viewC13.image » med_imageC13|
viewt03.width = viewC13.width “ 641
viewC03. height ° viewC13.height “ 23j
viewC03.wordw » viewC13.wordw ■=■ 4)>
inithi <>C
static int hi_imageC23C0xB83
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0xF000
0xF000
0xF000
0xF000
0xFC0F
0XFC0F
0x3FFF
0X3FFF
0X0FFF
0X0FFF
0X000F
0X000F
0X000F
0X000F
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000

0X0F00
0X0F00
0X03F0
0X03F0
0X003C
0X003C
0X003C
0X003C
0X03FF
0X03FF
0X0FFF
0X0FFF
0XFFFF
0XFFFF
0XFFFF
0XFFFF
0xFC0F
0xFC0F
0XFCCF
0xFCCF
0XFC3F
0xFC3F
0XFFFF
0xFFFF
0XFFFF
0XFFFF
0xFFC0
0XFFC0
0XFFF0
0xFFF0
0XFFFF
0XFFFF
0X3F3F
0X3F3F
0X0F00
0X0F00

0X00F0
0X00F0
0X0FC0
0X0FC0
0X3C00
0x3C00
0x3000
0x3000
0XFFC0
0XFFC0
0XFFF0
0XFFF0
0XFFFF
0XFFFF
0XFFFF
0XFFFF
0XF03F
0XF03F
0XF33F
0XF33F
0XF0FF
0XF0FF
0XFFFF
0XFFFF
0XFFFF
0XFFFF
0X03FF
0X03FF
0X0FFF
0X0FFF
0XFFFF
0XFFFF
0XFCFC
0XFCFC
0X00F0
0X00F0

0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0X000F,
0X000F,
0X000F,
0X000F,
0XF03F,
0XF03F,
0XFFFC,
0XFFFC,
0XFFF0,
0xFFF0,
0XF000,
0xF000,
0XF000,
0xF000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,

136

Drawing and Manipulating Image Blocks

0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X3C00, 0X003C, 0X0000,
0X0000, 0x3C00, 0X003C, 0X0000,
0X0000, 0XF000, 0X000F, 0X0000,
0X0000, 0XF000, 0X000F, 0X0000,
0X000F, 0XC000, 0x0003, 0xF000,
0X000F, 0XC000, 0x0003, 0XF000,
0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X0000, 0X0000, 0X0000,
0X0000, 0X03F0, 0X0FC0, 0X0000,
0X0000, 0X03F0, 0X0FC0, 0X0000,
0X0000, 0X0F3C, 0X3CF0, 0X0000,
0X0000, 0X0F3C, 0x3CF0, 0X0000,
0X0000, 0X003C, 0x3C00, 0X0000,
0X0000, 0X003C, 0x3000, 0X0000,
0X0000, 0X03FF, 0xFFC0, 0X0000,
0X0000, 0X03FF, 0xFFC0, 0X0000,
0X0000, 0X0FFF, 0xFFF0, 0X0000,
0X0000, 0X0FFF, 0xFFF0, 0X0000,
0X0000, 0xFFFF, 0xFFFF, 0X0000,
0X0000, 0XFFFF, 0xFFFF, 0X0000,
0X0000, 0XFFFF, 0XFFFF, 0X0000,
0X0000, 0XFFFF, 0XFFFF, 0X0000,
0X000F, 0XFC0F, 0XF03F, 0XF000,
0X000F, 0XFC0F, 0XF03F, 0XF000,
0X0FFF, 0xFCCF, 0XF33F, 0XFFF0,
0X0FFF, 0XFCCF, 0XF33F, 0XFFF0,
0X3FFF, 0XFC3F, 0xF0FF, 0XFFFC,
0X3FFF, 0XFC3F, 0XF0FF, 0XFFFC,
0X3C0F, 0XFFFF, 0XFFFF, 0XF03C,
0X3C0F, 0XFFFF, 0XFFFF, 0XF03C,
0XF00F, 0XFFFF, 0xFFFF, 0XF00F,
0xF00F, 0XFFFF, 0XFFFF, 0xF00F,
0XF000, 0XFFC0, 0X03FF, 0X000F,
0XF000, 0XFFC0, 0X03FF, 0X000F,
0X0000, 0XFFF0, 0X0FFF, 0X0000,
0X0000, 0XFFF0, 0X0FFF, 0X0000,
0X0000, 0XFFFF, 0XFFFF, 0X0000,
0X0000, 0xFFFF, 0XFFFF, 0X0000,
0X0000, 0XFFFF, 0XFFFF, 0X0000,
0X0000, 0X3F3F, 0XFCFC, 0X0000,
0X0000, 0X3F3F, 0XFCFC, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X0F00, 0X00F0, 0X0000,
0X0000, 0X03C0, 0x0300, 0X0000,
0X0000, 0X03C0, 0x0300, 0X0000,
0X0000, 0X00F0, 0X0F00, 0X0000,
0X0000, 0X00F0, 0X0F00, 0X0000,
0X0000, 0X003C, 0x3000, 0X0000,
0x0000, 0X003C, 0x3000, 0X0000
>1

viewC03.image a hi_imageC03|
viewCl].image " hi_imageC13|
viewC03.width » viewC13.width “ 64)
viewC03.height ** viewC13.height “ 46)
viewC03.wordw = viewC13.wordw a 4)
>

/* End of Copytran.c */

137

CHAPTER 6

Raster Operations In BASIC
The original version of ST BASIC did not contain any key
word support for raster operations. The revised version is
slated to include the commands SSHAPE and GSHAPE. These
commands function much like the GET and PUT statements in
Microsoft BASIC. To move an image from the screen to a
memory array, you use the command SSHAPE, whose syntax is
SSHAPE xl,yl;x2,y2, array%()
where x l,y l, and x2,y2 are the coordinates for the top left and
bottom right comers of the image rectangle. The array°/o() pa
rameter is an integer array that has been DIMensioned so it is
large enough to contain the image information. For each bit
plane, you'll need one word of data for every 16 bits of width,
times the number of lines of height. Let's take the example of
a rectangle that goes from 32,56 to 194,98. Since this rectangle
is 163 pixels wide (194—32 + 1), the smallest number of words
that can hold a line of data is 11 (11*16 = 176). There are 43
lines of data (98—56+1), so each bit plane requires 473 words
of data. There are two bit planes in medium-res and four bit
planes in lo-res, so these modes require 946 or 1892 words of
data, respectively. To these size requirements you must add a
few words in which to store the layout of the image. (At the
time of this writing the exact number is not known, but 10
words should give you a comfortable margin.) Remember to
DIMension the array to the correct size before you use SSHAPE.

To copy the image that you've saved from the array to
the screen, you must use the GSHAPE command. The syntax
for this command is
GSHAPE xl,yl,array%()
where the point x l,y l describes the upper left comer of the
image, and array°/o() is the name of the array that's used to
store the image. The size of the image is also taken from the
array in which the data is stored.

As with the VDI raster commands, images that are copied
to the screen with GSHAPE may be combined with the exist
ing screen image in several ways. The command used to set
the drawing mode also determines the copy mode for the im
age. This command is DRAWMODE mode, where mode is a
number from 1 to 4:

138

Drawing and Manipulating Image Blocks

Mode Description
Number

1 Replace
2 Transparent
3 XOR
4 Reverse Transparent

n

n
n
n
n

n
n
n

n

n
n
q

o

n

n
n
0
□
a

We normally don't think of the text that ap
pears on a computer screen as graphics, but there is actually
very little difference between text and any other kind of
graphics that can be displayed on the ST computers. Since the
graphics display is bitmapped, text characters must be drawn
on the screen dot-by-dot, just like any other kind of image.
That's why the most common kind of text rendering under the
VDI is called graphics text.

You will find that graphics settings like the clipping rect
angle and the drawing mode, which apply to all graphics out
put, affect graphics text just as they do any other drawing
operation. In addition, there is a collection of settings that ap
ply only to graphics text. These allow you to control the color,
typeface, size, rotation, and positioning of graphics text.

There are many advantages to using this system of text
rendering on a computer. Characters may be placed anywhere
on the screen, graphics and text may be mixed freely, and dif
ferent sizes and styles of lettering may be used at the same
time. It's even possible to use some of the refinements com
mon to the printing world, like proportional fonts and micro
space justification.

There are performance tradeoffs, however, with using a
bitmapped screen for text, rather than a character display. Text
rendering is a bit slower than with a character display, and
may be noticeably slower when a whole screen full of text is
being scrolled, for instance. This is particularly true when the
characters are not positioned so that the image data for each
falls within even byte boundaries, as is the case with a propor
tional font. When the left half of a character falls within one
byte of screen memory, and the right half within another, the
VDI must shift the image data twice before writing it to the
screen.

Another drawback of the graphics text functions is that,
although they give you complete control over the placement
and appearance of text output, they require you to place each
line of text on the screen individually. Since such complete

143

CHAPTER 7

control is not always necessary (or even desirable, given the
performance penalty for text that does not fall within even
byte boundaries), the VDI also provides a more traditional text
mode called alphanumeric mode.

The alphanumeric mode behaves like a conventional text
terminal, in which characters, in a fixed type style and size,
are printed one after the other in fixed positions on the screen.
It allows you to output text conveniently, without worrying
you about all the details of its position and appearance. The
alphanumeric mode also supports many of the features of text
display terminals, such as cursor movement and absolute po
sitioning, reverse video, and selective erasure.

While this book deals only with the VDI functions of the
GEM operating system, you should be aware that other por
tions of the ST system software also offer text support. The
AES portion of GEM contains some functions that deal with
text manipulation and input, and GEMDOS and the ST BIOS
both contain support for a text console device. C programmers
should note that the standard C text functions such as printf()
may also be used.

Graphics Text and Text Alignment
The basic function for the display of text is called Text, and it's
used like this:
int handle, x, y;
char * string;
v__gtext(handle, x, y, string);
where x and y are the text placement coordinates, and string is
a pointer to a null-terminated character string. This is an array
of ASCII character values, ending with a character whose
ASCII value is 0.

Just saying that x and y are the text placement coordi
nates, however, doesn't really answer the question of where
the text will appear on the screen.

Since a line of text may cover an area containing thou
sands of pixels, we must have some way of determining which
point the placement coordinates describe. The GEM VDI rec
ognizes several parts of the text display as significant, and al
lows you to align your text display with any of these points.

In order to understand how text alignment works, you
must be familiar with the parts of the character display. Each

u
Text

□

U

text character occupies a space known as a cell. This includes
not only the image data for the character, but also some blank
space surrounding the character. The top and bottom of the
cell are delimited by imaginary lines called the top and bottom
lines. Toward the lower part of the cell, there's an imaginary
line called the baseline. This line marks the bottom of most
characters, such as the letter o. Some characters, like the letters
p and y, extend below the baseline, down to what is called the
descent line. The upper boundary for most of the lowercase let
ters is called the half line. The capital letters, and some lower
case letters like b, extend upwards past the half line, to what is
known as the ascent line. Note that there may or may not be
some blank space between the ascent line and top line, or de
scent line and bottom line, depending on the particular type
face. In the standard Atari system font, for example, characters
extend to the top and the bottom of the cell. The various verti
cal alignment points are illustrated in Figure 7-1.

Figure 7-1. Vertical Alignment of Text
Left
A1 igrment
Delta

Right
Allotment

Co
• i
iS

Left-
justified

Right-
Justified

Top Line
Ascent Line

Half Line

Base Line
Descent Line
Botton Line

□

u

I Iu

In addition to the vertical alignment points described
above, a string of text has three significant horizontal align
ment points. You may line up the string so that its left side,
right side, or center is even with the text placement point. The
VDI call used to select the horizontal and vertical alignment
points is Set Graphics Text Alignment. The C syntax for this
call is
int handle, halign, valign, hset, vset
vst_alignment(handle, halign, valign, &hset, &vset);

145

CHAPTER 7

where halign and valign show the horizontal and vertical
alignment points that you wish to set. Since every device does
not support this type of alignment, the actual alignment points
that were set by the call are returned in the variables hset and
vset. The values in these variables are a numeric code that
specifies the alignment points. For the vertical point, the possi
ble values are:
Number Description

0 Baseline (default)
1 Half line
2 Ascent line
3 Bottom line
4 Descent line
5 Top line
The possible horizontal alignment points are:

Number Description
0 Left justified (default)
1 Centered
2 Right justified
By default, when you specify an x and y position for text

in your v_gtext() call, that point defines the baseline position
for the left side of the first character in your string. If the
alignment is changed, however, that point can just as well
specify the top right corner of the last character in the string,
or the half line of the center of the string. Program 7-1 shows
the effect of the alignment settings on text placement. It draws
a horizontal and vertical line, and shows the possible place
ment of text strings whose placement coordinates are the same
as those of the lines.
Program 7-1. align.c

/*/*
/* ALIGN.C — Demonstrates alignment
/* of graphics text strings.
/*
/•
/*

•include "shell.c"
char *hstringC3-
{
"Left justified”,
“Centered",
"Right Justified"

146

Text

>i
char tvstringC3=
€
"Ban”,
"Half",
"Ascent”,
"Bottom",
"Descent",
"Top"

>1
demoO
{
int c,xmax,ymax,x,y,dx,dy,hset,vest,pointsC83y

xmax ” work_outC03y /* screen width */
ymax ** work_outC13y /* screen height */
dy«(ymax+l)/25*2y /% line haight */
y"32| x«By / t sat default x and y * /

for (c*0yc<3yc++) /* for aach horizontal position */
<

/* Change Koriz. alignment and print text tt
vst.alignment (handle,c,0,&haet,fcvset) |
v_gtext(handle,xmax/2,y+«dy,hstringCc3)y
>

for (c*0yc<6yc++) /* for each vertical position */
t

/* Change Vert, alignment and print text tt
vst_al ignment (handl e, 0, c, fchset, &vset) |
v_gtext(handle,x,ymax *3/4,vstringCc3 >y

/* add string length to x position tt
vqt_extent(handle,vstringCc3,points)y
x+"(pointsC23+8)y>

vsl_color(handle,2)y
ft Draw vertical alignment line tt

pointsC 13”point»C33»yniax*3/4y
pointsC03B0y
pointsC23«x+16y
v_pline(handle,2,points)y

/* Draw horizontal alignment line tt
paintsC03npointsC23«>xmax/2y
pointsC13>0y
pointsC33>y+16y
v_pline(handle,2,points)y

ft End of Align.c tf

Microspace Justification
Some word processors allow you to stretch out a line of text to
fill a certain line length on the paper by adding (or removing)
minute spaces between characters or words. This feature, often
referred to as microspace justification, is one of the more so
phisticated text functions offered by the VDI. The name of this

147

CHAPTER 7

function is Justified Graphics Text, and its calling sequence is
as follows:
int x, y, length, word—space, char.space;
char *space;
v_justified(handle, x, y, string, length, word—space, char—space);

The string parameter points to the null-terminated charac
ter string to be printed, and the x and y parameters specify the
display location, just as with the v_gtext() call. The length
value specifies the size of the screen area used to display the
text string (in whichever coordinate system, raster or normal
ized, that's currently in use). The final two parameters,
word—space and char—space, are flags that tell the function
how to manipulate the string to achieve the desired length.
The V—justified function can adjust the space between charac
ters in a word, the space between words in a line, or both.
Setting either of the flags to 1 tells the function to adjust the
spacing between the elements named, while setting either to 0
means that the spacing will not be affected for that element. If
both of these values are set to 0, no justification is performed,
and the text string is printed with the same spacing as would
be used by v_gtext().

An example of justified text can be found in Program 7-2,
rotext.c, in the section on rotated text, below.

Sizing a Text String
When printing graphics text, the programmer has total respon
sibility for the placement of the string. One of these duties in
cludes making sure that the text string fits on the display
screen. In order to do this, however, you must know how
much size the text will occupy on the display. With mono
spaced fonts (like the standard ST font), each character cell is
the same width, so you can multiply the width of each charac
ter by the number of characters to find out the total length of
the string.

But GEM provides for proportionally spaced fonts as well.
In a proportionally spaced font, a wide letter like the w occu
pies a wider cell than a narrow letter like the /, so there isn't a
lot of extra white space on either side of the narrow letter.
While this will make the text look more attractive, it makes it
much harder to keep track of the overall length of the string.

148

Li
Text

j ! The VDI does supply a function that lets you discover the
the width of a particular character. It's called Inquire Character
Cell Width, and its calling sequence goes like this:
int handle, char, cellw, ldelta, rdelta,status;
status = vqt_width(handle, char, &cellw, &ldelta, &rdelta);

) (where char is the ASCII value of the character in question, and
cellw is the variable in which the width of the character cell
(including spacing to the left and right of the character) is re
turned. The width of the blank space to the left and right of
the character within the cell is stored in the variables Idelta
and rdelta. Note that the width returned by this function does
not account for any space added to the character because of
special effects. Another function, vqt_fontinfo(), returns infor
mation about the change in character width caused by special
effects. Figure 7-1 shows the parts of the character cell.

Though it's possible to figure out the width of the line by
adding the widths of the individual characters, there's an eas
ier way to find it. The VDI provides a function which returns
the size that a given text string drawn in the current font
would occupy. This function is Inquire Text Extent. It's used
like this:
int handle, points[8];
char ’string;
vqt—extent(handle, string, points);
where string is a pointer to a null-terminated text string, and
points is a pointer to an array which holds the coordinates for
the four comer points of the smallest box that completely con
tains the text string. The first two elements give the x and y

\ i coordinates of the lower left comer of the text box.
The next two elements give the coordinates of the lower

right comer. The third pair gives the location of the upper
I right comer. The last two give the x and y position of the up-

>Krt per left comer of the text box. When we refer to the lower left
comer of the text box, we mean relative to a horizontal line of

I j text. The reason that the VDI specifies all four corner points
^ (instead of just two opposite comers, like most other graphics

functions using rectangular areas) is that GEM provides for the
j | display of text that has been rotated at angles other than right
lr — angles (though on the ST, only 90-degree rotation is supported).

149

CHAPTER 7

Regardless of whether the virtual workstation uses raster
or normalized coordinates, the points of the text box are given
in a coordinate system which, like the normalized coordinate
system, has it origin in the lower left corner. A text string that
has not been rotated has its lower left comer (point 1) at the
origin. One that has been rotated 90 degrees has its upper left
comer (point 4) at the origin. Figure 7-2 shows the reference
points described by the vqt_extent() function.

Figure 7-2. Rotating Text

u Degree^

saajsaa fiftH

With the first version of the TOS ROMs, when the text
string is rotated 270 degrees, the coordinates for the first point
(point[0] and point[l]) are not returned correctly by this func
tion. Since the text box is always at right angles on the ST,
however, you can use points 2 and 4 to describe the four sides
of the text box.

Character Rotation
As we've mentioned before, one of the text settings that the
VDI supports is character rotation. The full name of the VDI
function is Set Character Baseline Vector. Normally the base
line for a character is horizontal, and extends from left to right.
Another way of saying this is that the baseline vector is zero
degrees. But GEM provides for rotation of the baseline as well,

150

Text

In the case of the ST screen display, this rotation is in 90-
degree increments only. This means that besides displaying
the text normally, you can display text sideways or upside
down and backwards as well. The syntax for the call used to
make this setting is
int handle, angle, angle—set;
angle—set = vst_rotation(handle, angle);
where angle is the angle requested. Since not every angle is
supported (on the ST screen, only even multiples of 90 de
grees are available), the function returns the angle that was ac
tually set in the variable angle—set. Remember, the VDI
expresses angles in tenths of a degree (0-3600), starting with
the rightmost point on the circle and moving counterclockwise.

Program 7-2 displays four text strings, rotated at right an
gles to one another. It also shows an example of justified text.
Since pixels on the color screen tend to be taller than they are
wide, particularly in medium-resolution mode, somewhat nar
rower spacing makes the text look more natural when turned
sideways. The program also uses the vqt_extent function to
determine the normal length of the string in order to shorten it
somewhat.

Program 7-2. rotextc

/* *//* t t
f t ROTEXT.C — Demonstrate rotation */
/* of graphics tvxt strings. t f
f t t t
t t t t
f t t t

•includa "shsll.c"
dwnoO
<

int raidhpinidv,l«n,boxCB3|
midh “ Mork_outC03/2|
midv “ Mork_outC13/2|
v_gt«xt(handla,midh+8,midv,"0 Dsgra* Rotation")|
vst_color<handl»,4) |
vst_rotation(handla,1800))
v_gt*xt<handl«,midh-8,midv,"180 Dagrn Rotation") |
vst_color(handls,3)|
vst_rotation(handl«,900)|

151

CHAPTER 7

vqt_axtant (handla, "90 Dtgrn'',box> y
lan ■ boxC33—8y
v_justlfiad(h*ndla,cnldh,nidv-16, n90 Dagraa",lan, lf 1) y
vat_color(handla,2)y
vat_rotation(handla,2700)|
vqt_axtant(handla,"270 Dagraa",box)y
lan ■ boxC63-B|
v_Ju»tiflad (handla,<nidh,mldv+16, "2700 Dagraa",lan, 1,1) y

/« End of Rotext.c </

Text Color
Just as with lines, markers, and filled shapes, graphics text has
it own individually selectable color setting. The text color de
fault is determined by the value placed in work_in[6] when
the virtual workstation is open (which defaults to color 1,
black, if the GDOS extension is not loaded). Afterwards, you
may change the color index with the function Set Graphic
Text Color Index, whose format is
int handle, pen, pen-set;
pen_set = vst_color(handle, pen);
where pen is the VDI pen color (color index) requested. Since
each resolution mode has a different number of pens avail
able, not every pen can be selected from every mode. There
fore, the function returns the number of the pen that was
actually set in the variable pen—set.

Special Effects
Another feature that the VDI has borrowed from the word
processing and printing fields is called special effects. These
days, most word processing programs allow you to add em
phasis to certain parts of your text by making characters ap
pear in boldface, italics, or underlined type. In the same
manner, the VDI can alter the image data of text characters ac
cording to a mathematical formula in order to change their ap
pearance. The effects supported are Thickened characters
(boldface), Light text (such as you see in a menu item that's
been grayed out), Skewed text (italic), Underlined text, and
Outlined Characters. These effects may be used individually or
combined with one another. Since the new characters are al
tered versions of the originals, they may not always be as legi

152

Text

ble. Also, you should keep in mind that adding effects can
change the width spacing of characters. For this reason, you
should try to print a whole line of text at a time if you're
using special effects, so the VDI can adjust the spacing. Other
wise, you may find that the new text that you put down
erases part of the existing text.

The function used to make these changes to the standard
character set is called Set Graphic Text Special Effects. The C
syntax for this call is
int handle, effects, effects—set;
effects—set = vst_effects(handle, effects);
where effects is a flag byte showing which of five different ef
fects are set on or off. (GEM actually provides for six effects,
but only five are supported on the ST display.) Because not
every effect is available on every device, the function returns
the settings it actually puts into effect in the variable
effects—set.

The effects flag byte has six significant bits (five on the
ST), each of which controls a different effect. For example, the
first bit, Thickened, controls whether or not text will be
printed in boldface. The decimal value of the first bit (bit 0) is
1, so adding a 1 to the effects flag turns on bold printing.

Since each effect has a different bit, the effects can be eas
ily added to one another. For example, an effects value of 9
means that both underlining (8) and boldface (1) are turned
on. Of course, the VDI manipulates the character image each
time it adds an effect, so too many effects may detract from
the appearance of your text. The effects that are controlled by
the various flag bits are described in the chart below.
Bit Value Effect
0 1 Thickened (bold)
1 2 Light intensity (grayed or ghosted)
2 4 Skewed (italicized)
3 8 Underlined
4 16 Outlined
5 32 Shadowed (not available on ST)

As we mentioned above, adding special effects to a text
font can change the width of the characters. Most of the func
tions that give you information about the width of the charac
ters in the current font do not take special effects into account.
To find out how the width of the current font has been altered

153

CHAPTER 7

by special effects, use the vq_fontinfo function, which is de
tailed a bit later on in the chapter.

Program 7-3 demonstrates the use of special effects with
graphics text. It produces two columns of text, one of which
shows each effect separately, and one of which shows each
new effect added to the previous ones.

Program 7-3. effects.c

EFFECTS.C — Demonstrates graphics
text special effects.

•include "shell.c"
•define vqt_fontinfo vqt_font_info /* for Megamax only!!! •/
char tstringC3"

"Thickened",
"Lightened",
“Skewed",
"Underlined",
"Outlined"

>1
demoOi
int c,

maxc,minc,nul,height, y»24,effects«0,distancesC33|
/t find out default font height and double it tf

vqt_font info (handle, Semi nc,8ti»axc, distances, fcnul ,&nul) |
hei ght-2*distancesC43+ly
vst_height(handle, height, &nul, Scnul, &nul, &nul)j

/* Print two columns of plain text t/
v_gtext (handle, 16,y+=(height+=8) , "Plain") |
v.gtext(handle,180,y,"Plain”)|
for (c b 0|c <5|c ++) /* for each horizontal position */

<
/* show each effect separately */

vst.effects(handle, l«c) |
vst_color(handle,c+1)|
v_gtext (handle, 16,y+-height,stringCc3) |

/* show each effect added to the last */
vst_effeets(handle,effects+“(l<<c))|
vst.color(handle,c+1)|
v_gtext(handle,iB0,y,stringCc3)%>

>
/* End of Effects.c tt

154

Text

Setting Character Height
One of the most significant variables that you can change
through the text settings is the size of the text characters. The
default character set on the ST may be printed in any one of
six sizes, and additional disk-based fonts come in many sizes
as well. You'll find that the VDI scales up each character set,
so that it can print in both the original size and a version
that's twice as large.

The VDI function that is used to change the size of the
current text font measures font size in terms of the height of
each character. This height is determined in one of two ways.
The first is in absolute pixel height, as measured by the cur
rent raster or normalized coordinate system. The VDI function
used to set character size on this basis is called Set Character
Height, Absolute Mode. This function is called by a C pro
gram like this:
int handle, height, char—width, char_height,

cell—width, cell—height;
vst_height(handle, height, &char_width, &char_height,

&cell—width, &cell_height);
where height is the pixel height of the character set, as mea
sured from the baseline to the top of the character cell.

If the character height that you request isn't available, the
VDI sets the next smallest available height. The height of the
actual character font that was set is returned in the variable
char—height, and the height of the entire character cell for that
font is returned in the variable cell—height. Likewise, the width
of the font that was set is returned in char—width, and the
width of the character cell is returned in cell—width. For
monospaced fonts, the widths returned apply to every charac
ter in the set. For proportional fonts, the character and cell
widths returned are those of the widest character in the set.

The VDI also allows you to set the character height in
terms of printer points. The point is a common measurement
of the height of type fonts, and is equal to 1/72 inch. When
point sizes are used to set the character height, the height of
the entire cell is measured, not just that of the character. The
function used to set character height on the basis of point size
is called Set Character Cell Height, Points Mode. Its C syntax
looks like this:

155

CHAPTER 7

int handle, point, char_height, char_width,
cell—height, cell—width, point—set;

point—set = vst_point(handle, point, &char—width,
&char_height, &cell_width, &cell_height);

where point is the point size of the character font requested.
This function, like the absolute mode function, returns the size
of the character and the character cell in pixel units on the
correct coordinate scale. These measurements are returned in
the variables char—height, char—width, cell—height, and
cell—width. If the function is unable to set a font of the size re
quested, it sets the next smallest available font size. The point
size of the font that was actually set is returned in the variable
po in tse t.

On the ST, the default system font may be printed in the
following sizes:
Points Char—height Char_width Cell—height Cell—Width

20 27 14 32 16
18 13 14 16 16
16 9 10 12 12
10 13 7 16 8
9 6 7 8 8
8 4 5 6 6

The three larger fonts are just enlargements of the three
smaller fonts. The ten-point font (16 X 8 cell) is the default
font on the monochrome screen, while the nine-point font (8
X 8 cell) is the default for both color modes. The eight-point
font (6 X 6 cell) is used for the lettering that appears under
icons on the GEM Desktop.

Using Disk-Based Fonts
One of the most important features added by the GDOS ex
tensions that you load by running GDOS.PRG is the ability to
use disk-based fonts in addition to the normal system font. In
order to access these fonts, several requirements must be met.
First, the GDOS extensions must be loaded. (A message like
Atari GDOS ver. 1.1 resident will appear on the screen if the
GDOS has been successfully loaded.) Next, there must be one
or more font files on the disk from which you load the GDOS
(typically the disk that you boot up with runs this program
from the AUTO folder). These font files may be included with

Text

software that you have purchased, or you may create them
yourself with a font-creation program like the one supplied
with DEGAS Elite. Finally, your startup disk must have a file in
the root directory called assign.sys. This file lists the filename
of each font that's available for each screen resolution mode.
Complete details of the format of this assign.sys file appear in
Chapter 2.

Once these three conditions have been met, you may load
the additional fonts from disk with the call Load Fonts. Keep
in mind that fonts take up a certain amount of memory space,
and that if you load several sizes of a given font, particularly
large sizes, that font may occupy as much as 32K of memory
or more. You call Load Fonts like this:
int handle, select, fonts_added;
fonts—added = vst_load_fonts(handle, select);

The select parameter is reserved for future use, and should
be set to 0. Currently, it's not possible to select which fonts
you wish to load—it's an all-or-nothing proposition. When
you use the vst—load—fonts() function, all of the fonts that are
specified in the assign.sys file for use by the device pointed to
by handle are loaded in at once. The number of additional
fonts that have been made available to the system is returned
in the variable fonts—added. If fonts have already been loaded,
nothing will happen if you try to load them again during the
execution of the same application, and a 0 will be returned in
fonts_added.

Once you've loaded the disk-based fonts, you'll naturally
want to know which ones are available. The VDI function In
quire Face Name and Index returns information about a font's
name and ID number. The format for this function is
int handle, font—num, font_id;
char name[32];
font—id = vqt—name(handle, font—num, name);
where font—num is a number that's assigned to each font when
it is loaded into the system. Since the system font reserves for
itself font—num 1 (and font—id 1), numbering of disk-based
fonts begins with 2. The variable fonts—added contains the to
tal number of fonts loaded by the vst_load_fonts() call, so
the number that you pass in font—num should always be a
value between 1 and fonts—added + 1. Two items of infor
mation are returned by this function. The first is the name of

157

CHAPTER 7

the font, which is returned in the string pointed to by name.
This string contains a maximum of 32 ASCII characters, the
first 16 of which contain the name of the font, and the last 16
of which contain a modifier that describes the style and thick
ness of the characters. The other item is the font ID number.
This is an identifier which is contained in the first two bytes of
the font file, and which should be unique for every font
named in your assign.sys file. You will need to know this
number in order to set this font as the current typeface.

Set Text Face
Once you know the name and font IDs of all of the available
fonts, you may set one of them as the current text font. The
VDI call used for this function is Set Text Face, and it's called
like this:
int handle, font_id, font_set;
font_set = vst_font(handle, font—id);
where font—id is the unique number contained in the first two
bytes of the font file, which identifies this font. If the system
can't load the font number that you requested, you can find
out about it by checking the variable font—set, in which the
font__id number of the text font that was actually set is
returned.

Unload Fonts
If you've used the vst_load_fonts function to load in a num
ber of disk-based fonts, you should call the Unload Fonts
function before your program ends, to let the VDI know that
you are no longer using them. If you don't, the system may
crash when the next application tries to load them. It may also
be desirable at times to call this function before the program
ends, since if no other process (like a desk accessory) is using
the fonts, the VDI frees up the memory that the software fonts
occupied. The Unload Fonts function may be called like this:
int handle, select;
vst_unload_fonts(handle, select);
where the select parameter should be set to 0. At some point
in the future, this parameter may be used to selectively unload
fonts, but, for now, all fonts are unloaded at the same time,
just as they are all loaded at the same time.

158

Text

Program 7-4 shows all of the text fonts available in the
system, in all of the point sizes. (This program requires that
gdos.prog and assign.sys be present; see above and chapter 2
for more details.)

Program 7-4. diskfontc

/*/*
/* DIBKFONT.C — Demonstrates use of
/* additional text fonts loaded from
/* disk.
f t

•include <osbind.h>
/* Slobal variables — For VDI bindings, etc. */
int contrlC123,

intinC1283,
ptsinC1283,
intoutC12B3,
ptsoutC1283|

int handle}
int work_inC123,

work_outC573)

/* Initialization starts here t t

oainO
C

int x, nul, button<»0,
addfonts,c,d,id,askd,recd,y,
charh,charm ,cel1h,cel1m ,
pointsC43)
char nameC323, stringC803)

f t Initialize the OEM application t f

appl_init <)|
f t Initialize input array, get the physical workstation handle,

and open the Virtual Screen Workstation */
for (x=l, work_inC103*2) x<10) work_inCx++3»l)|
work_inC03«8etrez()+2)
handle ” graf .handle(Scnul, &nul, &nul, &nul)|
v_opnvwk (work_in, Sthandle, work_out))
v_clrwk(handle);

/* Set Clipping Rectangle t t

pointsC03BpointsC13*0)
pointsC23*wcrk_outC03)
pointsC33>work_outCl3)
vs_clip(handle,1,points))

/* Load fonts and display each point size t f

159

CHAPTER 7

addfonts = vst_load_fonts(handle,0);
for (cBl|c<addfonts+2jc++)<

id = vqt_name(handle,c,name)|
printf("\033E\033blXd system font(s), Xd disk fonts\n",
work_outC103,addfonto);
printf("\Font Xd, ’Xs», ID - Xd\033b3\n”,c,name,id)j
recd**999| askd°1000| y=24|
vst_font(handle,id);
whi 1 e (askd ><*r ecd)<

askd-rscd-11
r«cd-vBt_point (hand 1 o, askd, Sccharw, &charh, &cel 1 w, &cel 1 h); y+“(charh+B) |
■print-f (string, "Xd PTS. XdxXd CHAR XdxXd CELL",
reed, chart*, charh, cel 1m, cel lh) |
if (a»kd>-recd)v_gt»xt(handle,0,y,string) |>

/> wait until user clicks the mouse button %/
whi 1 e (button«0) vq_mouse (handl e, Scbutton, Senul, &nul);
for (da0|d<30000| d++)button*»0j}

/t Unload fonts, close the virtual
workstation, and exit from the application */
vst_unload_fonts(handle,0)(
v_clsvwk(handle)|
appl_exit()}

>
t% end of Diskfont.c %/

Text Face Information and Text Setting
A couple of inquiry functions round out the set of VDI text
functions. The first is called Inquire Current Face Information,
and it supplies information about the current text font, such as
the minimum and maximum values of the ASCII characters
for which there is image data, the maximum character width,
the number of pixels added to that width by special effects,
and the spacing between the various vertical alignment points
(bottom, descent line, baseline, half line, ascent line, and top).
The format for this call is
int handle, mine, maxc, maxwidth,

effects[3], distances[5J;
vqt_fontinfo(handle, &minc, &maxc, distances,

maxwidth, effects);

160

Text

Note that in early versions of the bindings, this function is
incorrecdy referred to as vqt_font_info(). In particular,
Megamax C owners may discover that the linker can't find the
function vqt_fontinfo(). If this is the case, you use the
statement
#define vqt—fontinfo vqt_font_info
at the beginning of the program, as was done in Program 7-3,
effects.c, above. Corrected versions of the bindings should be
available from Megamax, as well.

This call returns the ASCII value of the first character for
which there is image data in the character set in the variable
mine, and the ASCII value of the last character in maxc. The
variable maxwidth holds the maximum cell width, special ef
fects not included. The effects array contains information about
the adjustments that you must make to the character width to
compensate for the current special effects. The contents of this
array are interpreted as follows:
Element Description

0 Total increase in character width due to effects
1 Left offset
2 Right offset

Figure 7-3. Right and Left Offset of Characters with Effects

161

CHAPTER 7

The distances array contains information about the dis
tances of the various vertical alignment points from the base
line. The organization of this array is shown below.
Element Description

0 Bottom line to baseline
1 Descent line to baseline
2 Half line to baseline
3 Ascent line to baseline
4 Top line to baseline
The other inquiry function is called Inquire Current

Graphic Text Attributes. It returns a wide variety of infor
mation about the current graphics text settings. This function
is called as follows:
int handle, attributes[10];
vqt_attributes(handle, attributes);
where attributes is a pointer to an array of integers. The con
tents of that array is as follows:
Element Description

0 Current text face
1 Text pen color
2 Angle of rotation (0-2700)
3 Horizontal alignment
4 Vertical alignment
5 Writing mode
6 Character width (in pixels)
7 Character height (in pixels)
8 Cell width (in pixels)
9 Cell height (in pixels)

Escapes and Alphanumeric Mode
The Escape function is used to access those capabilities of an
output device which are peculiar to that device. In the case of
the screen device, one of these capabilities is to print text in
what is known as alphanumeric mode. This mode emulates
the old-fashioned alphanumeric terminal display by dividing
the screen into 25 imaginary rows and 80 imaginary columns
(40 in lo res). These rows and columns define cells into which
a text character may be placed. The alpha text functions ignore
all of the current graphics text settings, and print characters
only in the default size of the system text font, with no special
effects, and no baseline rotation.

Text

In alpha mode, a visible text cursor appears on the screen
as a solid blinking box which marks the cell in which the next
text character will be written. All of the normal rules of screen
display scrolling apply. When a character is written to the last
column in a row, the cursor moves down to the first column
of the next row. (This wrap-around feature does not work cor
rectly on 40-column screens.) When a character is written to
the last column in the bottom row, all of the lines are scrolled
up, and the cursor moves the first column of the blank line
that's inserted at the bottom of the page.

Some computers have separate graphics and character dis
play modes. If you wish to use alphanumeric mode output
with such computers, you must first switch their screen dis
plays to character mode. The VDI function call used for this
purpose is Enter Alpha Mode. The format for calling this func
tion is
int handle;
v_enter_cur (handle);

On the ST, there is only one display "mode"—bitmapped
graphics in varying resolutions. Therefore, graphics text and
alphanumeric text may be mixed on the same display, and you
aren't required to set alpha mode with the v_enter_cur() call
before using the alphanumeric output function. You may wish
to do so, however, because this call clears the screen and turns
on the text cursor, two functions which would otherwise have
to be performed separately. The VDI also provides an Exit Al
pha Mode command, whose syntax is
int handle;
v_exit_cur(handle);

On the ST, this call clears the screen and turns off the text
cursor. If you don't use this command before your program
exits, at least turn off the cursor, or else you'll see it flashing
on the Desktop.

The sole means of writing text to the screen in alphanu
meric mode is a function called Output Cursor Addressable
Text. The v_curtext() function outputs text relative to the cur
rent cursor position, and wraps text from the end of one line
to the beginning of the next. The format for this call is
int handle;
char *string;
v_curtext(handle, string);

163

CHAPTER 7

where string is a pointer to a null-terminated string of text
characters.

Cursor Movement Functions
Since alpha text is output relative to the current cursor posi
tion, the VDI provides a number of functions that may be
used to change this position. The most powerful of these is
Direct Cursor Address, which allows you to position the
cursor at an absolute row and column position on the screen.
The way you call this function is
int handle, row, column;
vs_curaddress(handle, row, column);
where row is a row number from 1 to 25, and column is a col
umn number from 1 to 80 (40 for low resolution). Any num
ber outside the range of the cursor will set the cursor at the
available position closest to that number. Setting the cursor to
the top left position on the screen is a special case that gets its
own function. It's called Home Cursor, and looks like this:
int handle;
v_curhome(handle);

In addition to absolute cursor positioning, you may move
the cursor relative to its current position in any direction with
the calls Cursor Up, Cursor Down, Cursor Right, and Cursor
Left. These calls look like the following:
int handle;
v_curup(handle);
v_curdown(handle);
v_curright(handle);
v_curleft(handle);

Finally, the VDI provides a call which your program can
use to discover the current cursor position. It's called Inquire
Current Alpha Cursor Address, and is called like this
int handle, row, column;
vq_curaddress(handle, &row, &column);
where row and column are the variables in which the cursor
position is returned.

164

Text

Other Alphanumeric Text Functions
In addition to cursor-positioning commands, the VDI provides
a few other miscellaneous alphanumeric text commands.
These include two commands to erase text from the current
cursor position to the end of the line, or to the end of the
screen. These calls are Erase to End of Line, and Erase to End
of Screen, and their syntax is
int handle;
v_eeol(handle);
v_eeos(handle);

The VDI also provides for inverse video, in which the
foreground and background colors of the text are reversed. To
start printing in inverse video, the call is Reverse Video On,
and to resume normal printing, the call is Reverse Video Off.
The functions look like this:
int handle;
v_rvon(handle);
v_rvoff(handle);

The last of the VDI alpha text functions is called Inquire
Addressable Character Cells. When GEM is used on systems
where the screen format is unknown, this function allows you
to find out how may rows and columns are available. Its C
syntax is
int handle, rows, columns;
vq_chcells(handle, &rows, &columns);

Terminal Emulation Functions
Unlike graphics text, which will output any character for
which there is image data, alphanumeric text emulates a dis
play terminal, and treats the ASCII characters from 0 to 31 as
nonprinting control characters. This means that it will interpret
the ASCII character 13 as a carriage return, an instruction to
move the cursor to the beginning of the line, rather than as a
character that should be printed. On the ST system, the BIOS
console device emulates a DEC VT-52 terminal. Since this is
the device that's used for alphanumeric mode text, you'll find
that the strings output by v_curtext() respond to VT-52 es
cape codes, as well as the VDI control functions. These escape

165

CHAPTER 7

sequences are codes that begin with the ASCII character 27
(ESC), followed by one or more text characters. The VT-52
codes to which v_curtext() responds are
ESC A Cursor Up
ESCB Cursor Down
ESC C Cursor Right
ESC D Cursor Left
ESCE Clear Screen and Home Cursor
ESCH Home Cursor
ESC I Cursor Up (scrolls screen down if at top line)
ESC J Clear to End of Screen
ESC K Clear to End of Line
ESC L Insert Line
ESC M Delete Line
ESC Y
(row + 32)
(column + 32) Position Cursor at Row, Column (starts with 0)
ESC b
(register) Select Foreground (Character) Color
ESC c
(register) Select Background Color
ESC d Clear to Beginning of Screen
ESCe Cursor On
ESC f Cursor Off
ESC j Save Cursor Position
ESC k Move Cursor to Saved Position
ESC 1 Clear line
ESCo Clear from Beginning of Line
ESC p Reverse Video On
ESC q Reverse Video Off
ESC v Line Wrap On
ESC w Line Wrap Off

In addition to the escape codes, the ST terminal emulatioi
also responds to the following ASCII control codes:

n

i {

n
08
09
1 0 - 1 2
13

166

Backspace
Tab
Linefeed
Carriage Return n

n

Program 7-5 shows the various features of alphanumeric
text mode.

Program 7-5. alphmode.c

tt
/% ALPHMODE.C — Demonstrates the alpha-
/* numeric "Escape" text mode.
/«
ft

•include "shell.c”
demo(><

int rows, columns, nul, button°0|
v_enter_cur(handle)) /* clear screen and turn on cursor tt
v_curtext (handle, "This is a test");

/* move cursor to 10,10, turn reverse video on, and print tt
vs_curaddress(handle,10,10))
v_rvon(handle)j
v_curtext (handle, "\This is inverse video\r\n")j
v_rvoff(handle);

tt Show how text wraps around to the next line tt
'v_curtext (handle, “This is the next line. It is a very long line.
Far too long to appear on one line. Don’t you think?")|

tt Mix in some graphic text to show that you can */
vst..rotation (handle, 1800))
v.gtext(handle,500,50,"This is gtext\n\033p")j

tt Show that v_gtext() doesn't move the cursor tt
v_curtext (handle, " The cursor doesn't move."))

tt Show VT-52 commands */
v_curtext(handle, "\033B\033BWe also obey VT—52 commands\r\n”))
v_curtext(handle, "Including\033b2foreground and
\033clbackground color\033b3S033c0”))

/* Show number of cells using C function printfO tf
vq_chcells(handle, &rows, Sccolumns);
printf ("\r\n\nRows=Xd, Columns>>Xd\n",rows,columns))
whi 1 e (button=*=0) vq_mouse (handl e, Scbutton, &nul, &nul))
v_exit_cur(handle))

tt End of Alphmode.c tt

167

CHAPTER 7

BASIC Text Functions
ST BASIC supports the traditional BASIC text output function,
PRINT. It also includes the command GOTOXY, which is used
to position text in the output window. The only one of the
VDI text commands that is supported directly by BASIC is
vst_color(). The text color is set by the first parameter of the
COLOR command.

It is possible to control the text settings by making direct
calls to the appropriate VDI functions. Since PRINT calls
v_gtext() to do the actual printing, these settings will affect
PRINTed text. You should note, however, that these settings
may not work properly with the PRINT function. Take the
case shown in Program 7-6.

Note that after the baseline has been rotated, the text
printed with v_gtext() is displayed upside down with charac
ters going from right to left. But the PRINTed text is upside
down, with the characters going from left to right as usual.
That's because PRINT outputs each character in the text string
separately with v_gtext(), as a one-character string, position
ing each one to the right of the previous one. Another result
of this can be seen in the part of the program that PRINTs a
text string after the character height has been increased. The
large characters are written so closely together that they par
tially cover each other. That's because BASIC writes out one
character at a time and spaces them as it would small charac
ters, since PRINT doesn't know about the size change. That's
why you'll most likely have to call Graphics Text directly with
VDISYS(). As Program 7-6 demonstrates, you must POKE
each character of the string to the intin array, which makes
this method of printing much more cumbersome than PRINT.
Still, in order to achieve some text effects, it may be necessary.

Please note that since PRINT uses v_gtext(), it prints all
ASCII characters from 0 to 255. This means that it does not
respond to any of the terminal emulation escape codes or
cursor-positioning codes, as do most BASIC PRINT statements.

Program 7-6. textbas
100 fullw 2« clear** 2
110 res = peek<systab)
120 if (res<4) then xoax ** 639 else xroax “ 319
130 if (res>l) then ymax « 199 else ymax « 399
140 REM Set Text Baseline Rotation
150 poke contrl,13 iREM opcode for set baseline vector

168

Text

160 poke contrl+2, 0 tREM no points in ptsin
170 poke contrl +6, 1 iREM angle in intin array
160 poke Intin,1800
190 vdiays<1)
200 REM
210 color 2 iREM red text
220 gotoxy 16,12
230 print "This is upside down."
240 color 3 iREM green text
250 REM graphics text
260 poke contrl,8 iREM opcode for graphics text
270 poke contrl+2,1 iREM alignment point for text in ptsin
280 a*="ThiB is also upside down."
290 poke contrl+6,len(a*> tREM length of string
300 poke ptsin, xmax*3/4
310 poke ptsin+2,ymax/2
320 for c°l to len(at)
330 poke intin-2+(2*c>,asc(mid*(at,c,1)>
340 next c
350 vdisys(l)
360 REM Reset Text Baseline Rotation
370 poke contrl,13 :REM opcode for set baseline vector
380 poke contrl+2, 0 iREM no points in ptsin
390 poke contrl+6, 1 tREM angle in intin array
400 poke intin,0
410 vdisys(l)
420 color 1 tREM back to black
430 REM set Text Height, Points mode
440 poke contrl,107 tREM opcode for set height
450 poke contrl+2,0 tREM no ptsin
460 poke contrl+6,1 tREM height in intin
470 poke intin,20
480 vdisys(l)
490 print "This is big"
500 REM set Text Height, Points mode
510 poke contrl,107 tREM opcode for set height
520 poke contr1+2,0 tREM no ptsin
530 poke contrl+6,1 iREM height in intin
540 if (reB«=l) then poke intin, 10 else poke intin,9
550 vdisys(l)
560 print "back to normal"

Using Graphic Text from Assembly Language
The conversion of the C function v_gtext() to assembly lan
guage is a little trickier. That's because the C language
bindings take care of the drudgery of moving each character of
the string into the intin array. When programming in assembly
language , you must take care of this detail yourself. In addi
tion, you must convert each 8-bit character to 16 bits, with the
character information in the low-order bits. Program 7-7 dem
onstrates printing strings with the Graphics Text function.

CHAPTER 7

Program 7-7. texts

*
*
* TEXT.S — assembly language
* graphics text demo
**
*

.xdef demo

.xref vwkhnd

.xref contrl0

.xref contrl1

.xref contr12

.xref contr13

.xref contrl4

.xref contrlS

.xref contr16

.xref contrl7

.xref contrl8

.xref contrl9

.xref contrl10

.xref contrl11

.xref intin

.xref i ntout

.xref ptsin

.xref ptsout

.text
demoi

move
move
cmp
bne
add
move

skipi
move
move
movea.1
move

nexti

intout+2,ymax
dy,dl
#399,ymax
skip
dl,dl
dl,dy

* if high-res

t double dy

•24,dS * starting vertical position
•24,d6 * starting horizontal position
•msg,a4 * save text pointer address in a4
•3,d4 t loop counter

t Set text color
move •22,contrl0 * opcode for text color
move •0,contrl1 * no points in ptsinmove •1,contr13 * 1 integer parameter in intin
move «4,dl
sub d4,dl
move dl,intin * set color from loop counter
jar vdi

*** Print graphics text
move *8,contr10
move *1,contr11
add dy,dS

• opcode for gtext
• 1 point in ptsin
• advance y

170

Text

move d5,ptsin+2 « set y text position
move d6,ptsin * set x text position
move *81,d0 t maximum no. of characters
move d0td2 * save a copy
movea.1 #intin,al * address of destination in al
fflovea.1
«ti
clr.M

<a4>+,a0
dl

* address of source in ad

move.b <a0)+,dl * move a letter from source...
move.w dl,<al)+ * to word-aligned destination...
dbeq d0ftext * until all done.
sub d0,d2 * how many characters..
move d2,contrl3 * # of characters in string
Jsr vdi * print text
dbra
rts

d4,next • next text string

**** data section

.data

.even
dyt .dc.w 16
* Text lines
til .dc.b 'This is the First Line of Text.',0
t2i .dc.b ’This is the Second Line of Text.’,0
t3i .dc.b 'This is the Third Line of Text.',0
t4 .dc.b 'This is the Last Line of Text. Over and out.*,0
msgi .dc.l tl(t2ft3,t4

.bBB
ymax .ds.w 1
.end

171

n ;

n :

n
n .

n

o .

n

S O we've concentrated on the output functions of
the VDI, those related to drawing on the screen. But the VDI
screen device encompasses the ST keyboard and mouse as
well, just as the GEMDOS console device includes both the
screen and keyboard. The VDI provides functions that directly
report the status of physical devices, like the mouse pointer
and mouse buttons, and some special keys on the keyboard. It
also implements several logical devices that return information
from the user to the program in a manner that's a little more
independent of the actual hardware on which the GEM op
erating system is running.

The VDI input functions provide only the bare-bones type
of input that you normally associate with computers that lack
the elaborate user interface that the ST provides. That's be
cause the AES portion of GEM provides much more sophisti
cated facilities for interacting with the user than we associate
with the ST.

An important point to remember is that the VDI input
functions may not be compatible with those of the AES. Most
of the time, you'll find that the VDI input functions don't
work properly when used in conjunction with the input func
tions of the AES. Therefore, if you want to use the AES input
facilities, which provide all of the power of the VDI functions
and much more, you'll have to abandon the VDI functions
presented below. You may find, however, that (at least in ear
lier versions of the ST Operating System), the AES functions
are somewhat slow to respond, and may not be as reliable as
those of the VDI. For some demanding applications, you may
find it desirable to substitute the more basic services of the
VDI for the AES input functions. And, for TOS programs that
don't need the windowing, icon, and menu services provided
by the AES, you may find the VDI input functions adequate
for your input needs, and simpler than writing a GEM type
program.

175

CHAPTER 8

Physical Devices
The physical devices to which the VDI gives the most direct
support is the mouse and its onscreen alter ego, the mouse
pointer. One important mouse function that we have already
encountered in the shell program is called Sample Mouse But
ton State. This function not only lets you know whether the
left and/or right mouse button is currently being pressed, but
also the exact location of the mouse pointer on screen. The C
language syntax for this function is
int handle, button, x, y;
vq_mouse(handle, &button, &x, &y);
where button is the variable in which the function returns the
current button status code, and x and y are the variables in
which the function returns the onscreen coordinates of the
mouse pointer (which usually looks like an arrow, or a busy
bee). The button status code uses the least significant bit to
record the status of the left mouse button, and next most sig
nificant bit for the right mouse button. These bits contain a 1
if the button is pressed, and a 0 if the button is up. Therefore,
the possible button codes are
Code Meaning

0 Neither button pressed
1 Left button only pressed
2 Right button only pressed
3 Both buttons pressed

If you only wait until the button code is no longer 0,
you'll never see a code of 3, since the user will always push
down one button a fraction of a second before the other, even
if he's certain that he's pushing them both down at the exact
same moment. Therefore, you'll have to test the button status
several times in a row after the initial push if you want to de
tect the condition where both butons are pressed at once.

The other point to note about this function is that the x
and y coordinates that are returned for the mouse pointer refer
to the hot spot or action point of the pointer. That's the part of
the pointer which is considered to be its location on the
screen, even when the pointer is considerably larger than a
single point. On the arrow shaped pointer, the hot spot is lo
cated at the very tip of the arrow, while the bee's hot spot is
at its very center.

176

Input Functions

The Pointer
While the mouse pointer is normally shaped like an arrow (or
a bee when they system is busy accessing a disk or the like),
the VDI allows you to change the pointer to any 16 X 16 im
age. The function provided for this purpose is called Set
Mouse Form, and it's called like this:
int handle, pointerdata[37];
vsc_form(handle, pointerdata);
where pointerdata is a pointer to an array of 37 integers that
provides information about the mouse pointer. This infor
mation includes the foreground and background colors for the
pointer, the coordinates of the hot spot, the shape of the
mouse pointer, and a mask which allows you to specify
whether the zero bits in the 16 X 16 block are transparent
(don't replace existing background with a new color), or
opaque (replace existing background with pointer background
color). The layout of this array is
Element Description

0 x coordinate of hot spot
1 y coordinate of hot spot
2 Reserved for future use (must be set to 1)
3 Background pen (usually 0)
4 Foreground pen (usually 1)

5-20 16 words of color mask data
21-36 16 words of image data

The x and y coordinates of the hot spot are measured from
the top, left comer of the 16 X 16 pixel block. The image data
block is arranged exactly the same way as the 16 X 16 pattern
fill block. Each line of the image is represented by one 16-bit
word, with the most significant bit of the word representing
the leftmost dot, and the least significant bit, the rightmost
dot. Each bit position that's filled with a 1 is colored with the
foreground pen, and each bit position that holds a 0 is colored
either in the background color, or whatever color is displayed
by the existing background, depending on the color mask.

The color mask is used to define the shape of the pointer,
without regard to color information. Those bit positions con
taining a 1 are considered to be "inside" the pointer, and
whether or not the image data contains a 1 bit, this part of the
pointer will be colored in, either by the foreground pen or the

177

CHAPTER 8

background pen. Those bit positions containing a 0 are consid
ered to be "outside" the pointer image, or transparent, and the
corresponding image data bit positions that contain 0 will be
represented on screen by whatever background data happens
to be there.

Having a two-color pointer is very important since you
want to make sure the pointer is always visible. Even though
the normal system pointers like the arrow appear to be black
only, there is actually a thin white line around the outside.
This makes it possible for you to see the arrow, even when it's
in front of a black background. The sample program mousebox.c
(Program 8-1) creates a custom two-color pointer that shows
up as red and green on a color monitor.

The vsc_form() function is very similar to the AES func
tion graf_mouse(). That function allows you to choose from
several default pointer shapes, such as the arrow, the bee, the
pointing hand, and open hand, the I-beam text cursor, and
crosshairs.

In addition to the ability to change the appearance of the
mouse pointer, the VDI provides functions that allow you to
determine whether it will be visible on screen or not. The
function used to turn the pointer off is called Hide Cursor, and
its C language syntax is
int handle;
v__hide_c(handle);

The reverse function, used to turn the pointer back on is
called Show Cursor, and it's called like this:
int handle, reset;
v__show_c(handle, reset);

In order to understand the reset flag of the Show Cursor
function, you must first understand the interaction between
this function and Hide Cursor. Every time you use the Hide
Cursor function, the VDI makes a note of it, and hides the
cursor down one level farther. So if you call Hide Cursor five
times in a row, you must call Show Cursor five times before it
becomes visible again—the first four times, Show Cursor just
decreases the level at which the pointer is hidden. It is possi
ble to override this system with the reset flag, however. If you
call Show Cursor with the reset flag set to 0, the number of
previous Hide Cursor calls is ignored, and the mouse pointer

178

Input Functions

is brought to the top, no matter how far down it was hidden.
If the reset flag is set to 1, however, the function behaves nor
mally, and depends on the number of Hide Cursor calls per
formed previously.

In our previous sample programs, we've seen just how
important it is to turn the mouse pointer off before you do any
drawing. In the shell program that forms the heart of most of
our demonstration programs, we didn't turn off the mouse
pointer before clearing the screen, and as a result, the old
background is saved behind the pointer. That means that
when you move the pointer, the old background is restored,
erasing our newly cleared screen in the area of the cursor
block along with anything that we drew on it as well. The so
lution to this problem is to hide the mouse pointer before un
dertaking any graphics operation, including one so simple as
clearing the screen, and restoring it only when you're certain
that graphics output has stopped. An example of this practice
may be seen in the drawline() function of mousebox.c, Pro
gram 8-1.

Special Keys
The final physical device function that the VDI provides is
used to check the status of some of the special keys on the ST
keyboard. The Sample Keyboard State Information function
returns information which lets you know whether the Control,
Alt, and/or Shift keys are currently pressed. The format for
this call is
int handle, key
vq_key_s(handle, &key);
where key is a flag indicating the status of the various keys. Bit
0 gives the status of the right Shift key; bit 1 gives that of the
left Shift key; bit 2 gives that of the Control key; and bit 3
gives that of the Alt key. If the key is pressed, there will be a
1 in the corresponding bit position, if not, there will be a 0.
The values of the various bit positions are as follows:
Bit Value Key
0 1 right Shift
1 2 left Shift
2 4 Control
3 8 Alt

179

CHAPTER 8

Logical Devices
In addition to the physical device functions, the VDI imple
ments some logical input devices. These logical devices pro
vide very specialized input facilities in a device-independent
manner. They are provided mostly for purposes of portability,
since there are much better ways to get input in an ST-specific
environment. The four logical devices are the Locator, Valu
ator, Choice, and String devices. The functions performed by
these devices will be detailed below.

The logical devices operate in one of two modes. In Re
quest mode, the functions do not return until a specific termi
nating input event occurs. In sample mode, the functions
return the current status of the device as soon as they are
called.

Before using any of the logical devices, you should specify
whether you want it to operate in sample mode or request
mode. Set Input Mode is the function used, its format looks
like this:
int handle, ldevice mode;
vsin_mode(handle, ldevice, mode);
where Idevice is the logical device code, and mode is a flag
showing whether that device should be set to request or sam
ple mode. The logical devices are
Number Device

1 Locator
2 Valuator
3 Choice
4 String
The possible modes are:

Number Mode
1 Request
2 Sample
You may discover the current mode status of any logical

device with the function Inquire Input Mode. The syntax for
this function is
int handle, ldevice, mode;
vqin_mode(handle, ldevice, &mode);

180

Input Functions

where idevice is the logical device number, and mode is the
variable in which the current operating mode is returned. With
the current version of the ST operating system, however, this
function actually returns the mode number minus one.

Locator Device
The locator device allows the user to specify a point on the
display screen. In the request mode, it turns the mouse pointer
on, allows the user to move it with the mouse, or with the
ALT-arrow key mouse substitutes, until a mouse button or the
appropriate key is pressed. The function returns the x and y
position of the mouse pointer, a code that indicates what the
terminating event was, and then turns off the mouse pointer.
The C syntax for the function Input Locator, Request Mode is
int handle, x, y, xl, yl, term;
vrq_locator(handle, x, y, &xl, &yl, &term);

where x and y specify the starting position for the mouse
pointer, xl and y l are the variables in which its ending posi
tion is recorded, and term is the variable in which the termi
nating event is returned. The termination code is 32 for the
left mouse button, 33 for the right mouse button, or the ASCII
value of the key that was pressed to end the function. Note
that with the current version of the operating system, this
function tends to return immediately as if the left mouse but
ton was pressed. The solution to this problem is to call it twice
in a row, and ignore the results of the first call.

When the locator device is used in sample mode, the
mouse pointer is not automatically turned on, so, if it isn't
showing, you should turn it on with v_show _c(). The C syn
tax for Input Locator, Sample Mode is
int handle, x, y, xl, yl, term, status;
status = vsm_llocator(handle, x, y, &xl, &yl, &term);

The status variable is used to return a status code that
tells whether a mouse button or key was pressed, and if the
position of the mouse pointer changed. The least significant
bit of this code tells whether there was a position change, and
the next bit tells whether a key was pressed. The possible
code values are:

181

CHAPTER 8

Status Description
0 No key pressed, no position change
1 No key pressed, position changed
2 Key pressed, no position change
3 Key pressed and position changed

String Device
The string device is used to input a string of text characters
from the user. In the request mode, this function collects char
acters until the Return key is pressed, or until the maximum
number of characters have filled the buffer. The syntax for In
put String, Request Mode is
int handle, max_len, echo, xy[2];
char string[max_len];
vrq_string(handle, max—len, echo, xy, &string);
where max—len is the maximum buffer length, echo is a code
that specifies whether or not the characters should be echoed
to the screen as they are typed in (l=yes, 0=no), xy is an ar
ray that holds the x and y coordinates for the echoed charac
ters, and string is a pointer to the string of characters that the
user enters. In the current version of the ST operating system,
echoing of characters (which is not a required feature of the
function), isn't supported.

It's also possible to use this device in sample mode. In
this mode, the function checks the keyboard once. If there are
no keystrokes waiting, the call simply returns. If there are key
strokes, the function keeps collecting them until there aren't
any more, the buffer is full, or a carriage return is entered. The
syntax for this call is
int handle, max—len, echo, status, xy[2];
char string[max_len];
status = vsm__string(handle, max—len, echo, xy, &string);

where status is the length of the string gathered.
The string function returns the ASCII code for each char

acter that's entered on the keyboard. Some key combinations,
however, have no ASCII value. The function keys, the ALT
key combinations, and the HELP keys are all examples of key
presses without ASCII equivalents. And in some cases, two or
more combinations have the same ASCII value. For example,
the numbers on the keypad are not distinguishable from the

Input Functions

numbers on the top row of the keyboard by ASCII value
alone. When you wish to get more information about the key
presses other than the ASCII character, you may use a nega
tive number of max_Jen. When you do so, the buffer size will
be set to the absolute value of the number specified, and the
values returned in the intout array will consist of two-byte
keycodes, based on the VDI standard keyboard definition. In
most cases, the first byte consists of a code that corresponds to
a particular key on the keyboard, and the second byte is the
ASCII code produced. The full set of keycodes may be found
in Appendix B. Since the C language bindings only copy the
second byte of each word to the string array, you must read
the intout[] array directly to find the full keycode value for
each character.

Program 8-1 uses the String device in sample mode to
check for the user pressing the ESC key, which ends the pro
gram. It also illustrates many of the other functions discussed
above. It displays a custom two-color mouse pointer (red and
green on color systems), it reads the mouse with vq_mouse(),
and it hides the mouse pointer before drawing.

Program 8-1. mousebox.c

/*
f%
ft H0U8EB0X.C — Demonstrates us* of th*
/* input functions./*
/*/•

•include "shell.c"
•define XOR 3
•define REPLACE 1
ft Data for our own custom two-color pointer tf
int pointerC373 **
0,8,1, ft x and y of hot apot tf
3,2, /* background and foreground pens */

ft 16 words of color mask data tf
0XFC7E, 0XFC7E, 0xCC66, 0xCC66, 0xCC66, 0xFC7E, 0xFC7E, 0x0000,
0XFC7E, 0XFC7E, 0xCC66, 0xCC66, 0xCC66, 0xFC7E, 0xFC7E, 0x0000,

/* 16 words of image data tf

183

CHAPTER 8

0XFC7E, 0XFC7E, 0xCC66, 0xCC66, 0xCC66, 0xFC7E, 0xFC7E, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0X0000, 0X0000,

damo()
«

int mousex, mousey, buttons«0, notdone™1|
int color, raaxcolor, filial, pointsC103y
ra»xcolor“colcrDwork_outC133y /I find highest available color 1/

/* make cursor visible in monochrome also */
if (work_outC13>200)pointerC33B0y
v_hide_c(handle)y ft hida the mousa */
puts("\33EDrag tha iboubb to draw boxes.\n”)y
puts("Press ’ESC* to quit.\n")|
vBC_form(handle,pointer)| /* install our new pointer */
v_show_c(handle)y /t show the mouse again t/
vsin_mode(handle,4,2)| /* Bet string device to sample node */
vsl_type(handle,3)y /* used dotted line */
vsf ..interior(handle,2)y /* Dotted patterns */
while(notdone)

<
while((button »“ 0) U notdone) /I wait for button push */

(
vq_mouse(handle, Scbuttons, Scmousex, Scmousey) |
notdone>testkeys()y /* and check for ESC tt>

vawr_node(handle,XOR)y ft drawmode to XOR for 'rubber band* */
polntsC03BpolntsC23>pointsC43«pointBC63BpointBCe3"(DOUBex)
pointsC13BpolntsC33>pointBC93BpolntsC73a>polntsC93«nousey|
drawline(points)| /t draw initial point */
while((buttons!=0) && notdone) tt while button is held tt {

vq_nous*(handle, febuttons, fcmousex, fcmousey)y
notdoneotestkeysOy /* is it moved, or ESC pushed? tt
if((roousex!*pointsC23) II (nousey!>pointsC73))

<
drawline(points)y ft erase old line tt
pointsC23«pointsC43~mousexy
polntBC53-pointsC73-mouBeyy
drawline(points)y tt and draw new one */
>/t end of if position changed*/

> /* end of while button is pressed*/
drawline(points)y tt erase last line tt
vswr_mode(handle, REPLACE) y tt set drawntode back tf
if (color»cnaxcalcr)colorBly /* advance color tf
vsf_color(handle,color++)y
if (fill— 29)fill-ly /* and fill style tf
vsf_Btyle (handl e,f ill*-*-) y
pointsC23-pointsC43y
poi ntsC33«poi ntsC53y
v_hide_c(handle)y
v_bar(handle,points)y it draw the filled box tt
v_show_c(handle)y

> tt end of main while */
puts("\33EThat’s it— Press a mouse button to exit.\n")y

184

Input Functions

> /* and of mainO */
int testkeysO ft check keyboard for ESC kay tf

char string C23)
int status}
■tatus"vsn_string (handle, -1,0,tetring,Ststring) |
if (intoutC03»0xlIB) return(0)| ft code for ESC tf
alsa return(1)|

>
drawlina(points)
int tpointsi

v_hide_c(handle)|
v_pline(handle,5,points)| ft draw initial point tf
v_show_c(handle)|>

tt End of Mousebo>c. c */

Choice and Valuator Devices
The two remaining logical devices, the Choice and Valuator
devices, are not required VDI functions and are not imple
mented for the screen device in the current version of the ST
operating system. We'll describe these functions briefly, for the
sake of completeness.

The choice device allows the user to choose one of several
options, usually by pressing one of the function keys. In re
quest mode, it waits for one of the keys to be pressed. If it's a
function key that's pressed, its value (1-10) is returned, and if
not, the default value is returned. The syntax of Input Choice,
Request Mode is
int handle, default, choice;
vrq_choice (handle, default, &choice);
where default is an initial choice value that you supply, and
choice is the variable in which the user's choice is returned. In
sample mode, the choice and a status value are returned. The
syntax for Input Choice, Sample Mode is
int handle, status, choice;
status = vsm__choice(handle, &choice);

If the user was pressing a function key during the call,
status will contain a 1 and choice will indicate the function key
pressed. If not, both contain a 0.

The valuator device allows the user to choose a number
between 1 and 100. Typically, the user strikes the up and

185

CHAPTER 8

down arrow keys to increase or decrease the default value. In
request mode, the function takes input until the terminating
character is struck. The syntax for this mode is
int handle, default, value, term;
vrq_valuator(handle, default, &value, &term);
where default is an initial value supplied by the programmer,
value is the variable in which the final value is returned, and
term is the variable in which the terminating character is
returned.

In sample mode, the function checks if the increment or
decrement conditions exist during the call, and if they are
present, it changes the value accordingly. The syntax for Input
Valuator, Sample Mode is
int handle, default, value, term, status;
vsm_valuator(handle, default, devalue, &term, &status);

The status variable will contain a 1 if the valuator
changed during the call, and the value variable will contain
the new value. Status will contain a 2 if another key was
pressed, and the term variable will contain the value of this
character. If neither event occurs, status will contain a 0.

Vector Exchange Routines
The fundamental GEM input functions are performed on an
interrupt basis. This means the operating system watches for
certain input events, and calls the appropriate service routine
when such an event occurs. For example, when the mouse is
moved, it calls a routine that updates the position of the
mouse pointer on the screen.

Since an application program sometimes wishes to per
form actions that are synchronized with one of these input
events, the VDI supplies a number of vector exchange routines.
These provide a means of "patching in" your own machine
language routines that will be called before the system inter
rupt service routine when the event occurs. For example, if
you wanted your program to do something every time the
user pushed the mouse button, you could point the mouse
button interrupt vector at your routine, and have your routine
call the normal mouse button routine when it was done.

The VDI provides interrupt-vector exchange routines for
four input events. These are

186

Input Functions

Mouse movement. The mouse movement routine is
called every time that the mouse moves to a new location. If
the application program grabs the mouse movement vector, it
gains control after the x and y address coordinates have been
calculated, but before the VDI is informed for the new posi
tion, and before the mouse pointer is actually redrawn on the
screen. At that point, the x coordinate of the mouse pointer is
in register dO, and the y coordinate is in d l.

Mouse pointer redraw (cursor change). This routine is
called each time the cursor needs to be redrawn. If this vector
points to an applications service routine, the application gains
control before the redraw actually occurs. This means that the
application can take over the task of drawing the cursor, or
just perform some action every time that a redraw is sched
uled. At the point the application gains control, the x coordi
nate of the mouse pointer is in register dO, and the y
coordinate in dl.

Mouse button press. The button press routine is called
each time the state of the mouse buttons change (that is, a
button is pressed or released). If this vector is diverted to the
application, it receives control after the button press has been
decoded, but before GEM learns of the press. At that point,
register dO contains a code that indicates the mouse button
status. This code is the same as that used by the Sample
Mouse Button State function:
Code Meaning

0 Neither button pressed
1 Left button only pressed
2 Right button only pressed
3 Both buttons pressed

Timer tick. This routine is called every time the system
clock advances one step (or tick). This allows the application
to take some action on a fixed, periodic basis. The frequency
of these tick events in milliseconds is returned by the vector
exchange routine.

The mechanics of intercepting a vector is fairly simple.
First, you must write a machine language routine that will be
called every time the event happens. This routine should pre
serve all registers in the state in which it found them. When
it's called, all interrupts are disabled, and the application code
should not enable interrupts. Since the service routines are

187

CHAPTER 8

called by GEM with a JSR instruction, your routine should end
with a RTS instruction (or JMP to the normal system routine,
which itself ends in a RTS).

Note that when your code is executed, the machine is in
supervisor mode, and its state is such that it's unlikely that
you can successfully make any OS calls from within your
code. Although the ST BIOS is supposed to be reentrant up to
three levels, you may find that this really isn't true. The up
shot is that you're limited in the kind of tasks that you may
perform by patching into these vectors. Nonetheless, you may
find some legitimate uses for the vector exchange routines. For
example, the mouse movement routines can be used to alter
the rate of change, so as to create a slow motion mode for a
drawing program. By monitoring the mouse buttons, you can
get a good fix on button activity if the higher-level routines
get confused, as they sometimes do. And using the vector ex
change to constantly update mouse x and y position variables
saves you from calling vq__mouse constantly from your code.

Once you've written the additional (or replacement) rou
tine, you need to point the system to your new routine. You
do this by calling one of the Vector Exchange routines. These
routines all have pretty much the same syntax:
int scr_handle;
unsigned int ticklen;
long oldv, newv;
/* Exchange Button Change Vector */
vex_butv(scr_handle, &newv, &oldv);
/* Exchange Mouse Movement Vector */
vex_motv(scr_handle, &newv, &oldv);
/* Exchange Cursor Change Vector */
vex_curv(8cr_handle, &newv, &oldv);
vex—timv(scr_handle, &newv, &oldv, &ticklen);
/* Exchange Timer Interrupt Vector */
where &newv is a pointer to your new machine language rou
tine, and oldv is a variable in which the address of the old sys
tem event routine is stored. You should save this address,
since in most cases your machine language routine will want
to call the old routine to perform the normal system function,
either with a JSR from your routine, or by ending your routine

Input Functions

with a JMP to the old one. You'll also need this address to re
store the vector when you are through with it. This can be
done with a call of the form:
int scr_handle;
long oldv, dummy;
vex_butv(scr_handle,oldv, &dummy);
where oldv is the variable in which you stored the old vector,
and dummy is a dummy variable that's used as a place-holder.

Practical experience has shown that in all of the above
routines, the handle to use the variable scr—handle is not the
VDI virtual workstation device handle that we've been using
all along. Instead, it's the physical screen device handle, the
value returned by the AES call graf_handle().

BASIC Input Functions
ST BASIC supports the common BASIC input functions, like
INPUT, and it also implements the INP command, which al
lows you input a byte stream though a TOS device. Using de
vice 2, the console device which consists of the keyboard and
the display screen, you can read individual keys, one at a
time. (Device 4, labeled keyboard, is used to send codes to the
intelligent keyboard controller.) This function is comparable to
the BIOS routines, however, not the VDI, and so the ASCII
codes for the keys are returned, not the VDI keycodes.

The first version of ST BASIC does not incorporate any of
the VDI functions for reading the keyboard, mouse pointer po
sition, or mouse buttons. The proposed revision to ST BASIC
includes functions such as ASK MOUSE, which returns the
position of the mouse pointer and the button status, just like
vq_mouse(). But with the original version of ST BASIC (and
to the extent the new one doesn't cover the full range of VDI
input commands), you will have to resort to making VDI calls
with VDISYS(l) for these functions.

Program 8-2 is a BASIC translation of the mousebox.c,
Program 8-1, which was discussed earlier in this chapter. It al
lows the user to draw filled boxes by dragging a mouse but
ton, and checks the keyboard for the ESC key, which ends the
program. You will note, however, that in this version you
have to wait for the mouse to stop moving before you see the
dotted outline of the box.

189

CHAPTER 8

Program 8-2. mousebox.bas
100 fullw 2: cl earw 2
110 res » peek(syetab)
120 max col or ■=■ restres
130 filltype«li fillcol=l
140 REM set string device to sample mode
150 poke contrl,33i REM opcode for set input mode
160 poke contrl+2,0x poke contrl+6,2
170 poke intin,4i poke intin+2,2
180 vdisys(l)
190 REM set line type
200 poke contrl,15i REM opcode for set line type
210 poke contrl+2,0>poke contrl+6 ,1
220 poke intin,3
230 vdisys(1)
240 done “ 0
250 gotoxy l,lt?"0rag mouse to draw boxes"
260 print " Press ESC to quit"
270 while (doneB0) iREM until escape key is pressed
280 while < (buttons»0) AND <done>0))
290 gosub MOUSEKEYS
300 wend
310 if <done*l) then goto LOOP
320 poke intin, 3i gosub MODE
330 for x**0 to 16 step 4
340 poke ptsin+x, mousex
350 poke ptsin+x+2,mousey
360 next
370 while(<buttons>0> AND <done«0)>
380 gosub MOUSEKEYS
390 if <done-l> then goto CHECK
400 gosub DRAWLINE
410 poke ptsin+4,atousext poke ptsin+8,mousex
420 poke ptsin+10,mouseyt poke ptsin+14,mousey
430 gosub DRAWLINE
440 CHECKi wend
450 if (doneM) then goto LOOP
460 gosub HIDE
470 gosub PLINE
480 poke intin,It gosub MODE
490 if (filltype-25) then filltype-1
500 if <fillcolBmaxcolor) then fillcol"!
510 color 1, fillcol, 1, filltype, 2
520 filltype-fi11type+1i fi1lcol-fi11col+1
530 poke ptsin+4,mousex
540 poke ptsin+6,mousey
550 REM do Bar
560 poke contrl, Hi poke contrl +10,1
570 poke contrl+2,2tpoke contrl+6 ,0
580 vdisys(l)
590 gosub SHOW
600 LOOPi wend
610 END
620 REM
630 8HOW1 poke contrl,122i goto CURSOR
640 HIDEt poke contrl,123
650 CURSOR1 poke contrl+2,0ipoke contrl+6,0
660 vdisys(l)
670 return
680 PLINEi poke contrl,6t REM pline opcode
690 poke contrl+2,5t poke contrl+6,0
700 vdisys(l)
710 return
720 REM
730 DRAWLINEi gosub HIDEt gosub PLINEt gosub SHOWs r

190

740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
B90
900
910

Input Functions

REM
MOU8EKEY81 poke contrl,124i REM mouse Inquiry
poke contrl+2,0ipoke contrl+6,0
vdi sys < 1)
mouse**peek(ptsout)1 tnousey>peek(ptsout+2)
buttons°peek(i ntout)
KEYS1 poke contrl,31
poke contrl+2,11poke contrl+6,2
poke intin,65533iREM -1
vdisys(l)
if (peek(intout)«283) then done*l
return
REM
KODEi poke contrl,32
poke contrl+2,0
poke contrl+6,1
vdisys(l)
return

191

VDI Function
Reference

n
n
n
n

n

n
n
n
n
o

u

(I v_opnwk

LI

SJ

U

U

v_opnwk()
Open Workstation

Opcode=1
This function opens a workstation that's used to communicate with a physi
cal output device and to keep track of its graphics settings. The VDI commu
nicates with the device by means of a device driver that translates the VDI
commands to device-specific commands. When the workstation is opened,
the device driver designated by the ASSIGN.SYS file is read in, so this
driver must be present and the GDOS must be loaded in order for this com
mand to work. The Open Workstation command allows you to make initial
settings for a number of graphics output functions. The function returns the
VDI device handle, along with a lot of information about the output capabil
ities of the device. The device is cleared upon opening.

Devices required for
All

C binding
int handle, work_in[12], work_out[57];
v_opnwk(work_in, &handle, workLout);

Inputs
contrl[0] = 1 Opcode
contrlflj = 0 Number of points in ptsin
contrl[3] = 11 Number of input integers in intin

The initial graphics output settings for the workstation are specified by
the contents of the intin array (which the bindings take from work_in[]).

work__in[0] intin[0] Device ID number (from ASSIGN.SYS
file)

work—in[l] intin[l] Line drawing pattern [vsl_type()]
work—in[2] intin[2] Line pen number [vsllcolor()]
work_in[3] intin[3] Marker type [vsm_type()]
work__in[4] intin[4] Marker pen number [vsm_color()]
work_in[5] intin[5] Text font [vst_font()]
work_in[6] intin[6] Text pen number [vst_color()]
work_Jn[7] intin[7] Fill pattern type [vsf_Jnterior()]
work_in[8] intin[8] Fill pattern index [vsfLstyle()]
work_in[9] intin[9] Fill pen number [vsf_color()]
work_in[10] intin[10] NDC to RC transformation flag

0 = Use Normalized Device
Coordinates

1 = Reserved for future use
2 = Use Raster Coordinate system

195

v_opnwk

Results

handle

contrl[2] = 6 Number of points in ptsout
contrl[4] = 45 Number of output integers in intout
contrl[6] = n The device handle for this device

(0 if device was not opened)
The results returned in the intout and ptsout arrays given a wide range

of information about the output capabilities of the device.
work_out[0] intout[0]

work_out[l]
work_out[2]

intout[l]
intout[2]

work_out[3] intout[3]

work_out[4] intout[4]

work_out[5] intout[5]

work_out[6]
work_out[7]

work_out[8]
work_out[9]

intout[6]
intout[7]

intout[8]
intout[9]

work_out[10] intout[10]

work_out[ll]
work_out[12]
work_out[13]

intout[ll]
intout[12]
intout[13]

work_out[14] intout[14]

work_out[15]
to

work_out[24]

intout[15]
to

intout[24]

1 = Filled
2 = Circle
3 = Filled

Max. horizontal coordinate value (in
pixels)
Max. vertical coordinate value (in pixels)
Device Coordinate units flag
(1 = device doesn't support precise
scaling)
Width of one pixel in microns
(1/1000's of a millimeter)
For display screens, horizontal compo
nent of
aspect ratio
Height of one pixel in microns
For display screens, vertical component of
aspect ratio
Number of text font heights
(0 = continuous scaling)
Number of line types.
Number of line widths
(0 = continuous scaling)
Number of marker patterns
Number of marker sizes
(0 = continuous scaling)
Number of text fonts supported by the
device
Number of pattern fill styles
Number of crosshatch fill styles
Number of drawing pen colors available
(the number of colors that can be dis
played by the device at the same time)
Number of Generalized Drawing
Primitives
(GDPs)—how many of the 10 basic draw
ing commands.are supported

This part of the array holds a sequential
list of code numbers for the first 10 GDPs
supported. Each element holds one of the
following code numbers:

rectangle or bar (v_bar)
segment or arc (v_arc)
pie slice (v_pieslice)

196

v_opnwk

work_out[25]
to

work_out[34]

work_out[35]

work_out[36]

work_out[37]

work_out[38]

work_out[39]

work_out[40]

work_out[41]

work_out[42]

4 = Filled circle (v_drde)
5 = Filled ellipse (v_ellipse)
6 = Elliptical arc (v_ellarc)
7 = Filled elliptical pie slice (v_ellpie)
8 = Rounded rectangle (v_rbox)
9 = Filled rounded rectangle (v_rfbox)

10 = Justified graphics text (v_justified)
— 1 = End of list

intout[25] This part of the array holds a sequential
to list of code numbers showing what cate-

intout[34] gory of graphics operation is performed
by each of the supported GDPs. This indi
cates what kind of graphics settings affects
each of the supported commands. Each el
ement holds one of the following code
numbers:

0 = Line drawing
1 = Marker drawing
2 = Graphics text
3 = Filled area
4 = No setting

intout[35] Color availability flag
0 = Device is not capable of color output
1 = Device is capable of color output

intout[36] Text rotation availability flag
0 = Device is not capable of text rotation
1 = Device is capable of text rotation

intout[37] Area fill availability flag
0 = Device is not capable of area fill operations
1 = Device is capable of area fill operations

intout[38] Cell array function availability flag
0 = Device cannot perform the cell array function
1 = Device can perform the cell array function

intout[39] Total number of color choices available in
the palette

0 = More than 32767 colors available
1 = Monochrome
2—32767 = Actual number of colors available

intout[40] Input devices available for the locator
function

1 = Keyboard only
2 = Keyboard and other device (such as mouse)

intout[41] Input devices available for the valuator
function

1 = Keyboard
2 = Other device

intout[42] Input devices available for the choice
function

1 = Function keys on keyboard
2 = Some other key pad

197

v_opnwk

work—out[43]

work—out[44]

work—out[45]
work_out[46]
work_out[47]
work—out[48]
work—out[49]
work_out[50j
work_out[5lj
work—out[52]
work_out[53]
work_out[54]
work—out[55]
work_out[56]

intout[43] Input devices available for the string input
function

1 = Keyboard
intout[44] Workstation type

0 = Output only
1 = Input only
2 = Input and output
3 = Reserved for future use
4 = Metafile output

ptsout[0] Minimum character width
ptsout[l] Minimum character height
ptsout[2] Maximum character width
ptsout[3] Maximum character height
ptsout[4] Minimum line width
ptsout[5] 0
ptsout[6] Maximum line width
ptsout[7] 0
ptsout[8] Minimum marker width
ptsout[9] Minimum marker height
ptsout[ll] Maximum marker width
ptsout[12] Maximum marker height

See also
v_dswk(), v_opnvwk(), v_dsvwk(), vq_extend

v-_clswk

Close Workstation
v_clswk() Opcode=2
This call is used to terminate output to the graphics device and to release its
environment space. If any information remains in a buffer (for a printer or
metafile), it's written out at the time the device is closed.

Devices required for
All

C binding
int handle;
v_clswk(handle);

Inputs

handle

contrl[0] = 2 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6] = n The workstation device handle

Results
contrl[2] = 0
Number of points in ptsout
contrl[4] = 0
Number of output integers in intout

See also
v_opnwk(), v_opnvwk(), v_clsvwk()

199

I---- V
I iI)

v_clrwk

Clear Workstation nv_clrwk() Opcode=3
This function performs device-specific initialization. For a screen, it clears
the screen; for a printer, it erases printer buffer data and sends a form feed,
and so forth. No graphics output occurs with any device. The functions pro
vided by this call are also performed by Open Workstation.

Devices required for
All

C binding
int handle;
v_drwk();

Inputs

handle

contrl[0]
contrlfl]
contrl[3]
contrl[6] n

3
0
0

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
v_opnwk();

n

n
i— i

n
200 n

v—updwk

Update Workstation
v_updwk() Opcode=4
This command is used to flush the output buffers of devices like printers,
plotters and the metafile, causing the preceding graphics commands to be
executed immediately. It has no effect on the screen device.

Devices required for
All

C binding
int handle;
v_updwk(handle);

Inputs

handle

Results

contrl[0] = 4
contrlfl] = 0
contrl[3] = 0
contrl[6] = n

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle

contrl[2] = 0
contrl[4] = 0

Number of points in ptsout
Number of output integers in intout

vq_chcells

ESC 1: Inquire Addressable Alpha Cells

This escape provides information about the number of horizontal and verti
cal character cell positions at which the alphanumeric cursor may be
positioned.

Devices required for
All

C binding
int handle, row, columns;
vq_chcells(handle, &row, &columns);

vq_chcells() Opcode=5
Function=1

Inputs

handle

contrl[0] = 5 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 1 Function ID
contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 2 Number of output integers in intout
intout[0] Number of rows on the screen

(—1 means no cursor addressing)
intout[l] Number of columns on the screen

(—1 means no cursor addressing)

vq—exit—cur

ESC 2: Exit Alpha Mode
vq_exit_cur() Opcode=5

Function=2
This escape would cause the screen device to exit alphanumeric mode and
enter graphics mode if the two modes were separate on the ST. Since they
are not, it clears the screen and turns off the visible cursor.

Devices required for
Screen, Metafile

C binding
int handle;
vq_exit_cur(handle);

Inputs

handle

contrl[0] = 5 Opcode
contrlflj = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 2 Function ID
contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4j = 0 Number of output integers in intout

203

v_enter_cur

ESC 3: Enter Alpha Mode
v_enter_cur() Opcode=5

Function=3
This escape would cause the screen device to exit graphics mode and enter
alphanumeric mode if the two modes were separate on the ST. Since they
are not, it clears the screen and turns on the visible cursor, which is posi
tioned in the top left comer.

Devices required for
Screen, Metafile

C binding
int handle;
v_enter_cur(handle);

Inputs

handle

contrl[0] = 5 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 3 Function ID
contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

204

v_curup

i : ESC 4: Alpha Cursor Up
w v_curup() Opcode=5

Function=4
1 (This escape moves the alpha cursor up one row, unless it's already at the

top row on the screen.

\ I Devices required for
u—̂ Screen

C binding
int handle;
v_curup(handle);

Inputs

handle

Results

contrl[0] = 5 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 4 Function ID
contrl[6] = n The (virtual) workstation device handle

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

U 205

n
v_curdown

ESC 5: Alpha Cursor Down
v_curdown() Opcode=5

Function=5
This escape moves the alpha cursor one row down, unless it's already at the
bottom row on the screen.

Devices required for
Screen

C binding
int handle;
v_curdown(handle);

Inputs

handle

Results

n
n

contrl[0] = 5 Opcode
contrlfl] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 5 Function ID
contrl[6] = n The (virtual) workstation device handle

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

206

n
n
n

v_curright

U

ESC 6: Alpha Cursor Right
v_curright() Opcode=5

Function=6
This escape moves the alpha cursor one column to the right, unless its al
ready at the rightmost column on the screen.

Devices required for
Screen

C binding
int handle;
v_curright(handle);

Inputs

handle

Results

contrl[0] = 5 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 6 Function ID
contrl[6] = n The (virtual) workstation device handle

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

U

U

u 207

v_curleft

ESC 7: Alpha Cursor Left
v_curleft() Opcode=5

Function=7
This escape moves the alpha cursor one column to the left, unless it's al
ready at the leftmost column on the screen.

Devices required for
Screen

C binding
int handle;
v_curleft(handle);

Inputs
contrl[0] = 5 Opcode
contrlflj = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 7 Function ID

handle contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

208

u

v_curhome

LJ

U

U

ESC 8: Home Alpha Cursor
v_curhome() Opcode=5

Function=8
This escape moves the alpha cursor to the top left position on the screen.

Devices required for
Screen

C binding
int handle;
v_curhome(handle);

Inputs

handle

Results

contrl[0] = 5
contrlfl] = 0
contrl[3] = 0
contrl[5] = 8
contrl[6] = n

contrl[2] = 0
contrl[4] = 0

Opcode
Number of points in ptsin
Number of input integers in intin
Function ID
The (virtual) workstation device handle

Number of points in ptsout
Number of output integers in intout

Li

U

Li

U 209

v_eeos

ESC 9: Erase To End of Screen
v_eeos() Opcode=5

Function=9
This escape clears the screen from the current cursor position to the end of
the screen without moving the cursor.

Devices required for
Screen

C binding
int handle;
v_eeos(handle);

Inputs
contrl[0] = 5 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 9 Function ID

handle contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout

9 contrl[4] = 0 Number of output integers in intout

u

v_eeol

U

U

ESC 10: Erase To End of Line
v_eeol() Opcode=5

Function=10
This escape clears the screen from the current cursor position to the end of
the line without moving the cursor.

Devices required for
Screen

C binding
int handle;
v_eeol(handle);

Inputs

handle

Results

contrl[0] = 5
contrl[l] = 0
contrl[3] = 0
contrl[5] = 10
contrl[6] = n

contrl[2] = 0
contrl[4] = 0

Opcode
Number of points in ptsin
Number of input integers in intin
Function ID
The (virtual) workstation device handle

Number of points in ptsout
Number of output integers in intout

L!

U

r i

u

u 211

vs_curaddress

ESC 11: Direct Cursor Address
vs—curaddress Opcode=5

Function=11
This escape moves the cursor directly to any position on the screen. If the
specified position is outside the range of the screen, the cursor moves to the
position on the screen closest to that specified.

Devices required for
Screen

C binding
int handle, row, column;
v_curaddress(handle, row, column);

Inputs

handle
row
column

contrl[0] = 5 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin
contrl[5] = 1 1 Function ID
contrl[6] = n The (virtual) workstation device handle
intin[0] Row number (1 to maximum of 80 or 40)
intin[l] Column number (1 to 25)

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

212

v_curtext

ESC 12: Output Alpha Text
v_curtext Opcode=5

Function=12
This escape displays a string of text at the current cursor position, and
moves the cursor to the character following the end of the string.

Devices required for
Screen

C binding
int handle;
char ‘string;
v_curtext(handle, string);

Inputs

handle
string

contrl[0] = 5 Opcode
contrlfl] = 0 Number of points in ptsin
contrl[3] = n Number of characters in string
contrl[5] = 12 Function ID
contrl[6] = n The (virtual) workstation device handle
intin[0]-[n] Text string, formatted as 8-bit ASCII char

acters, with each character set within a
16-bit word . The first byte of each word
is 0, and the second contains the character
code.

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

v_rvon

ESC 13: Reverse Video On
v_rvon() Opcode=5

Function=13
This escape causes all subsequent text output to be displayed in reverse
video.

Devices required for
Screen

C binding
int handle;
v_rvon(handle);

Inputs

handle

contrl[0] = 5 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 13 Function ID
contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

214

v_rvoff

ESC 14: Reverse Video On
V_TVO ff() Opcode=5

Function=14
This escape causes all subsequent text output to be displayed in normal
video.

Devices required for
Screen

C binding
int handle;
v__rvof(handle);

Inputs

handle

contrl[0] = 5 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 14 Function ID
contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

215

vq_curaddress

ESC 15: Inquire Cursor Address
vq—curaddress Opcode=5

Function=15
This escape returns the current row and column position of the cursor on
the screen.

Devices required for
Screen

C binding
int handle, row, column;
v_curaddress(handle, &row, &column);

Inputs
contrl[0] = 5 Opcode
contrlfl] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 15 Function ID

handle contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 2 Number of output integers in intout

row intout[0] Row number (1 to maximum of 80 or 40)
column intout[l] Column number (1 to 25)

216

vq_tabstatus

ESC 16: Inquire Tablet Status
vq_tabstatus() Opcode=5

Function=16
This escape returns the availability of a graphics tablet.

Devices required for
All

C binding
int handle, status;
status = vq_tabstatus(handle);

Inputs

handle

contrl[0]
contrl[l]
contrl[3]
contrl[5]
contrl[6] n

5
0
0
16

Opcode
Number of points in ptsin
Number of input integers in intin
Function ID
The (virtual) workstation device handle

Results

status

contrl[2] = 0 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout
intout[0] Tablet status

0 = tablet not available
1 = tablet available

217

v—hardcopy

ESC 17: Hard Copy
v_hardcopy() Opcode=5

Function=17
This escape copies the physical screen to a printer or other hardcopy device.

Devices required for
All

C binding
int handle;
v_hardcopy(handle);

Inputs

handle

Results

contrl[0] = 5 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 17 Function ID
contrl[6] = n The (virtual) workstation device handle

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

v—dspcur

ESC 18: Place Graphic Cursor
v_dspcur() Opcode=5

Function=18
This escape places a graphics cursor at the position indicated.

Devices required for
Screen

C binding
int handle, x, y;
v_dspcur(handle, x, y);

Inputs

handle
x

contrl[0]
contrlfl]
contrl[3]
contrl[5]
contrl[6]
ptsin[0]

n

5
1
0
18

Opcode
Number of points in ptsin
Number of input integers in intin
Function ID
The (virtual) workstation device handle
X coordinate of pixel location where
cursor is to be placed
Y coordinate of pixel location where
cursor is to be placed

y ptsin[l]

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

n
y_rmcur n

ESC 19: Remove Graphics Cursor
v_rmcur() Opcode=5

Function=19
This escape removes the graphics cursor placed on the screen by the last
Place Graphics Cursor call.

Devices required for
Screen

C binding
int handle;
v_rmcur(handle);

Inputs

handle

Results

contrl[0] = 5 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 19 Function ID
contrl[6] = n The (virtual) workstation device handle

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

n
n
n

nr i

n

n

220

n
n

v_form_adv

ESC 20: Form Advance
v_form_adv() Opcode=5

Function=20
Like the Clear Workstation command, this escape sends a form feed com
mand to the printer, but unlike that command, it does not discard the infor
mation stored in the print buffer.

Devices required for
Printer

C binding
int handle;
v_form_adv(handle);

Inputs

handle

contrl[0] = 5 Opcode
contrl[lj = 0 Number of points in ptsin
contrI[3] = 0 Number of input integers in intin
contrl[5] = 20 Function ID
contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

221

v_output_window

ESC 21: Output Window
v_output_window() Opcode=5

Function=21
This escape enables the application to send any designated rectangular
screen area to the printer.

Devices required for
Printer

C binding
int handle, points[4];
v_output_window(handle, points);

Inputs
contrl[0] = 5 Opcode
contrl[l] = 2 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 21 Function ID

handle contrl[6] = n The (virtual) workstation device handle
points[0] ptsin[0] X coordinate of left edge of rectangle
points[lj ptsin[l] Y coordinate of top edge of rectangle
points[2] ptsin[2] X coordinate of right edge of rectangle
points[3] ptsin[3] Y coordinate of bottom edge of rectangle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

222

v_clear_disp_list

ESC 22: Gear Display List
v_clear_disp_list Opcode=5

Function=22
This escape permits the application to request that the printer display list be
cleared.

Devices required for
Printer

C binding
int handle;
v_dear_disp_list(handle)

Inputs

handle

contrl[0] = 5 Opcode
contrl[lj = 0 Number of points in PTSIN
contrl[3] = 0 Length of INTIN array
contrl[5] = 22 Function ID
contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

i s

v—bit—image

ESC 23: Output Bit Image File
v_bit_image() Opcode=5

Function=23
This escape allows the application to print out a bit image file that is stored
in the special VDI screen file format. It provides several page placement and
image scaling options.

Devices required for
Printer

C binding
int handle, aspect, scaling, num_pts, points[];
char ‘filename;
v_bit_image(handle, filename, aspect, scaling, num_pts, points);

ni)

n

Inputs

handle
aspect

scaling

filename

points[0]
points[l]
points[2]
points[3]

Results

contrl[0] = 5
contrlfl] = 0

contrl[3] = n
contrl[5] = 23
contrl[6] = n
intin[0]

intin[l]

intin[2]—[n]

ptsin[0]
ptsin[l]
ptsin[2]
ptsin[3]

contrl[2] = 0
contrl[4] = 0

Opcode
No points in ptsin means take rectangle
information from the bit image file.
One point in ptsin means use this point as
the upper left comer, and calculate the
lower left from info in the file.
Use these points to define the rectangle.
Length of file name + 2
Function ID
The (virtual) workstation device handle
Aspect ratio flag:
0 = Ignore aspect ratio
1 = Preserve pixel aspect ratio
2 = Preserve page aspect ratio
Scaling flag:
0 = Uniform scaling
1 = Separate scaling
Filename character string, with one char
acter per 16-bit word.
X position of left edge (optional)
Y position of top edge (optional)
X position of right edge (optional)
Y position of bottom edge (optional)

Number of points in ptsout
Number of output integers in intout

ni \

n
224

v_pline()
Polyline

Opcode=6
This function is used to draw lines between two or more consecutive points.
The points may be the same, in which case a single point is drawn. The last
point is not automatically connected to the first, so in order to draw a box,
five points are required—the last of which should be same as the first.

The output of this function is affected by the general graphics settings
and the line settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Line color (vsL_color)
Line type (vsl—type)
Line width (vsl_width)
Line end style (vsl_ends)

Devices required for
All

C Binding
int handle, num_pts, points[];
v_pline(handle, num_pts, points);

Inputs
contrl[0] = 6 Opcode

num_pts contrlflj = n Number of pairs of x,y coordinate line

contrl[3] = 0
points to draw
Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
points[0] ptsin[0] X coordinate of the first point
points[l] ptsin[lj Y coordinate of the first point

points[2n—2] ptsin[2n—2] X coordinate of the last point
points[2n—1] ptsin[2n—1] Y coordinate of the last point

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_dip(), vsl_color(), Line type (vsl—type)
vsl_width(), vsl_ends()

n
v_pmarker

v_pmarker()
Polymarker

Opcode=7
This function draws marker, graphics shapes that range from a single point
to box, star and cross shapes.

The output of this function is affected by the general graphics settings
and the marker settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Marker color (vsm_color)
Marker type (vsm_type)
Marker height (vsm_height)

Devices required for
All

C Binding
int handle, num_pts, points[];
v_pmarker(handle, num_pts, points);

n
n
n

Inputs

num_pts

handle
points[0]
points[l]

contrl[0] = 7 Opcode
contrlfl] = n Number of pairs of x,y coordinate points

for marker points to draw
contrl[3] = 0 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
ptsin[0] X coordinate of the first point
ptsin[lj Y coordinate of the first point

points[2n—2] ptsin[2n—2]
points[2n—1] ptsin[2n—1]

Results

X coordinate of the last point
Y coordinate of the last point

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr__mode(), vs_dip(), vsm_color(), vsm_type(), vsm_height()

n
n

226

V—gtext

Text
v_gtext() Opcode=8
This function outputs graphics text. No escape characters are recognized by
this function, and even non-printing ASCII characters are drawn if there is
image data for them in the current character set. Text rendering is affected
by the general graphics settings and the text settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Text color (vst_color)
Text font (vst_font)
Text size (vst_height or vst_point)
Baseline rotation (vst_rotation)
Alignment (vst_alignment)
Special effects (vst_effects)

Devices required for
All

C Binding
int handle, x, y;
char ‘string
v_gtext(handle, x, y, string);

Inputs

handle
x
y
string[0]

contrl[0] = 8 Opcode
contrl[l] = 1 Number of points in ptsin
contrl[3] = n Number of characters in string
contrl[6j = n The (virtual) workstation device handle
ptsin[0] X coordinate of the text alignment point
ptsin[lj Y coordinate of the text alignment point
intin[0] First character of text string. Though each

character is an eight-bit value in the C
format, the bindings position each of
these bytes in a separate word in the intin
array. Each member of intin has a high
byte of 0 and a low byte that contains the
ASCII character.

string[n] intin[n]
ptsin[0]

ptsin[l]

Last character of text string.
X-coordinate (in NDC/RC units) of posi
tion where the text string is to be placed.
Y-coordinate (in NDC/RC units) of posi
tion where the text string is to be placed.

227

v—gtext

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_clip(), vst_color(), vst_font(), vst_height(),
vst_point(), vst_rotation(), vst_alignment(), vst_effects()

228

v_fillarea

Filled Area
v_fillarea() Opcode=9
This function draws a filled polygon whose shape is outlined by a series of
points. This polygon may be complex; its lines may cross each other, creat
ing a number of sub-polygons, some of which are filled, others of which are
not. In order to insure that the figure is enclosed, the last point is automati
cally connected to the first. If the points of the figure are the same, a single
point is displayed if fill outlining is turned on. The rendering of the filled
figure is affected by the general graphics settings and the fill settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Fill color (vsf_color)
Fill interior style (vsf_Jnterior)
Fill style index (vsf_style)
Fill perimeter outline (vsf_perimeter)

Devices required for
All

C Binding
int handle, num_pts, points[];
v_fillarea (handle, num_pts, points);

Inputs
contrl[0] = 9 Opcode

num_pts contrl[lj = n Number of pairs of x,y coordinate points
in ptsin for the polygon

contrl[3] = 0 Number of input integers in intin
handle contrl[6] = n The (virtual) workstation device handle
points[0] ptsin[0] X coordinate of the first point
pointsfl] ptsinflj Y coordinate of the first point

points[2n—2] ptsin[2n—2] X coordinate of the last point
points[2n—1] ptsin[2n—1] Y coordinate of the last point

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_clip(), vsf_color(), vsf_interior(),
vsf_style(), vsf_perimeter(), vq_extend() ()

229

n
v_bar

GDP 1: Bar
v_bar() Opcode=ll

Function=1
This function draws a filled rectangle. The rendering of the filled figure is af
fected by the general graphics settings and the fill settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_dip)
Fill color (vsfLcolor)
Fill interior style (vsf_interior)
Fill style index (vsf_style)
Fill perimeter outline (vsf_perimeter)

Devices required for
All

C Binding
int handle, points[4];
v_bar(handle, points);

Inputs

n

n
n

contrl[0] = 11 Opcode
contrlfl] = 2 Number of pairs of x,y coordinate points

contrl[3] = 0
in ptsin
Number of input integers in intin

contrl[5] = 1 Function ID
handle contrl[6] = n The (virtual) workstation device handle
points[0] ptsin[0] X Coordinate of the left edge
points[lj ptsinfl] Y Coordinate of the top edge
points[2] ptsin[2] X Coordinate of the right edge
points[3] ptsin[3] Y Coordinate of the bottom edge

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_dip(), vsf_color(), vsf_Jnterior(),
vsf_style(), vsf_perimeter() ()

230

n
n
n
n
n

v_arc

GDP 2: Arc
v_arc() Opcode=ll

Function=2
Arc draws an arc between any two points on a circle. Points on the circle are
measured in tenths of a degree, starting at the rightmost point on the circle
and moving counterclockwise. It's possible to draw an entire circle by speci
fying the same starting and ending points. This function takes the horizontal
radius parameter that's passed to it and scales the vertical radius according
to the aspect ratio of the monitor, so the circle looks round.

The output of this function is affected by the general graphics settings
and the line settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_dip)
Line color (vsl_color)
line type (vsl_type)
Line width (vsLwidth)
Line end style (vsl_ends)

Devices required for
All

C Binding
int handle, x, y, radius, beginangle, endangle;
v__arc(handle, x, y, radius, beginangle, endangle);

Inputs
contrl[0] = 1 1 Opcode
contrl[l] = 4 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin
contrl[5] = 2 Function ID

handle contrl[6] = n The (virtual) workstation device handle
beginangle intin[0] Starting angle of the arc (0-3600)
endangle intinjl] Ending angle of the arc (0-3600)
X ptsin[0] X coordinate of center point of arc
y ptsin[lj Y coordinate of center point of arc

ptsin[2] 0
ptsin[3] 0
ptsin[4] 0
ptsin[5] 0

radius ptsin[6] Horizontal radius of the arc (the vertical
radius is scaled)

ptsin[7] 0

231

v_arc

n

Results
contrl[2] = 0 Number of points in ptsout
contrl[4j = 0 Number of output integers in intout

See also
vswr_mode(), vs_clip(), vsl_color(), Line type (vsLtype)
vsl_width(), vsl_ends()

n

n

232

n
n

v_pie

GDP 3: Pie
v_pie() Opcode=11

Function=3
Pie is the filled equivalent of Arc. It draws an arc between any two points
on a circle, connects the endpoint of that arc to the center of the circle, and
fills the resulting pie wedge with the current fill color and pattern. Points on
the circle are measured in tenths of a degree, starting at the rightmost point
on the circle and moving counterclockwise. This function takes the horizon
tal radius parameter that's passed to it and scales the vertical radius accord
ing to the aspect ratio of the monitor, so the circle looks round.

The way in which the filled figure is drawn depends on the general
graphics settings and the fill settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Fill color (vsf_color)
Fill interior style (vsf_interior)
Fill style index (vsfLstyle)
Fill perimeter outline (vsfLperimeter)

Devices required for
All

C Binding
int handle, x, y, radius, beginangle, endangle;
v_pie(handle, x, y, radius, beginangle, endangle);

Inputs
contrl[0] = 11 Opcode
contrlfl] = 4 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin
contrl[5] = 3 Function ID

handle contrl[6] = n The (virtual) workstation device handle
beginangle intin[0] Starting angle of the arc (0-3600)
endangle intinfl] Ending angle of the arc (0-3600)
X ptsin[0] X coordinate of center point of arc
y ptsin[lj Y coordinate of center point of arc

ptsin[2] 0
ptsin[3] 0
ptsin[4] 0
ptsin[5] 0

radius ptsin[6] Horizontal radius of the arc
(the vertical radius is scaled)

ptsin[7] 0

233

v-Pie j~~j

Results j 1
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_clip(), vsf_color(), vsf_interior(),
vsf_style(), vsf_perimeter()

n

n

n
n

234

u

U

U

U

GDP 4: Circle
v_circle() Opcode= 11

Function= 4
The Cirde function draws a filled drde of a given horizontal radius and
center point. This function scales the vertical radius according to the aspect
ratio of the monitor, so the circle looks round.

The way in which the filled drde is drawn depends on the general
graphics settings and the fill settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Fill color (vsf_color)
Fill interior style (vsLinterior)
Fill style index (vsfLstyle)
Fill perimeter outline (vsL_perimeter)

Devices required for
All

C Binding
int handle, x, y, radius;
v_drcle(handle,, x, y, radius);

Inputs
contrl[0] = 11 Opcode
contrl[l] = 3 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 4 Function ID

handle contrl[6] = n The (virtual) workstation device handle
X ptsin[0] X coordinate of center point of circle
y ptsinflj Y coordinate of center point of cirde

ptsin[2] 0
ptsin[3] 0

radius ptsin[4] Horizontal radius of the cirde
(the vertical radius is scaled)

ptsin[5] 0

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_dip(), vsf_color(), vsf_interior(),
vsf_style(), vsf_perimeter() ()

235

v_ellipse

GDP 5: Ellipse
v—ellipse() Opcode= 11

Function= 5
The Ellipse function draws a filled ellipse of a given horizontal and vertical
radius and center point. The way in which the filled ellipse is drawn is af
fected by the general graphics settings and the fill settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_dip)
Fill color (vsf_color)
Fill interior style (vsf_interior)
Fill style index (vsf_style)
Fill perimeter outline (vsf_perimeter)

Devices required for
All

C Binding
int handle, x, y, xradius, yradius;
v__ellipse(handle, x, y, radius, yradius);

Inputs

handle
x
y
xradius
yradius

Results

See also
vsw r_m ode(), v s _ d ip (), v sf_co lo r(), v sf_ in te rio r(),
v sf_ sty le (), v sf_perim eter()

contrl[0]
contrl[l]
contrl[3]
contrl[5]
contrl[6]
ptsin[0]
ptsin[lj
ptsin[2]
ptsin[3]

= 11
= 2
= 0
= 5
= n

Opcode
Number of points in ptsin
Number of input integers in intin
Function ID
The (virtual) workstation device handle
X coordinate of center point of ellipse
Y coordinate of center point of ellipse
Horizontal radius of the ellipse
Vertical radius of the ellipse

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

236

v_ellarc

GDP 6: Elliptical Arc
v_ellarc() Opcode=11

Function=6
Elliptical Arc draws an arc between any two points on an ellipse. Points on
the ellipse are measured in tenths of a degree, starting at the rightmost point
on the circle and moving counterclockwise. It's possible to draw an entire el
lipse by specifying the same point for both the beginning and end. The out
put of this function is affected by the general graphics settings, and the line
settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_dip)
Line color (vsl_color)
Line type (vsl—type)
Line width (vsl_width)
Line end style (vsl_ends)

Devices required for
All

C Binding
int handle, x, y, xradius, yradius, beginangle, endangle;
v_arc(handle, x, y, xradius, yradius, beginangle, endangle);

Inputs
contrl[0] = 1 1 Opcode
contrl[l] = 2 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin
contrl[5] = 6 Function ID

handle contrl[6] = n The (virtual) workstation device handle
beginangle intin[0] Starting angle of the arc (0-3600)
endangle intin[l] Ending angle of the arc (0—3600)
X ptsin[0] X coordinate of center point of arc
y ptsin[l] Y coordinate of center point of arc
xradius ptsin[2] Horizontal radius of the arc
yradius ptsin[3] Vertical radius of the arc

Results
contrl[2] = 0 Number of points in ptsout

See also
contrl[4] = 0 Number of output integers in intout

vswr_mode(), vs_clip(), vsl_color(), Line type (vsl—type)
vsl_width(), vsl_ends()

237

n
v_ellpie

GDP 7: Elliptical Pie
v_ellpie() Opcode=11

Function=7
Elliptical Pie is the filled equivalent of Elliptical Arc. It draws an arc between
any two points on an ellipse, connects the endpoint of that arc to the center
of the ellipse, and fills the resulting pie wedge with the current fill color and
pattern. Points on the ellipse are measured in tenths of a degree, starting at
the rightmost point on the ellipse and moving counterclockwise. The way in
which the filled figure is drawn depends on the general graphics settings
and the fill settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Fill color (vsf_color)
Fill interior style (vsf_interior)
Fill style index (vsf_style)
Fill perimeter outline (vs£_perimeter)

Devices required for
All

C Binding
int handle, x, y, radius, yradius, beginangle, endangle;
v_pie(handle, x, y, radius, yradius, beginangle, endangle);

Inputs

n
n
n
n

contrl[0] = 11 Opcode
contrl[l] = 2 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin
contrl[5] = 7 Function ID

handle contrl[6] = n The (virtual) workstation device handle
beginangle intin[0] Starting angle of the arc (0-3600)
endangle intin[l] Ending angle of the arc (0-3600)
X ptsin[0] X coordinate of center point of arc
y ptsin[lj Y coordinate of center point of arc
xradius ptsin[2] Horizontal radius of the arc
yradius ptsin[3] Vertical radius of the arc

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_clip(), vsf_color(), vsf_interior(),
vsf_jstyle() ,1irsf_perimeter()

238

n
n
n
n

n

v—rbox

GDP 8: Rounded Rectangle
v_rbox() Opcode=11

Function=8
This function draws a rectangle with rounded comers. The output of this
function is affected by the general graphics settings and the line settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_dip)
Line color (vsl_color)
Line type (vsLtype)
Line width (vsl_width)
Line end style (vsl_ends)

Devices required for
All

C Binding
int handle, points[4];
v_rbox(handle, points);

Inputs

handle
points[0]
pointsflj
points[2]
points[3]

Results

contrl[0] = 11 Opcode
contrl|l] = 2 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 8 Function ID
contrl[6] = n The (virtual) workstation device handle
ptsin[0] X Coordinate of the left edge
ptsin[l] Y Coordinate of the top edge
ptsin[2] X Coordinate of the right edge
ptsin[3] Y Coordinate of the bottom edge

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_dip(), vsl_color(), Line type (vsl_type)
vsl_width(), vsl_ends()

239

n
v__rfbox

GDP 9: Filled Rounded Rectangle
v_rfbox() Opcode=ll

Function=9
This function draws a filled rectangle with rounded comers. The appearance
of the rectangle is affected by the general graphics settings and the fill
settings:

Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Fill color (vsf_color)
Fill interior style (vsf—interior)
Fill style index (vsf_style)
Fill perimeter outline (vsL_perimeter)

Devices required for
All

C Binding
int handle, points[4];

n
n
□

n

v_rfbox(handle, points);

Inputs
contrl[0] = 11 Opcode
contrlfl] = 2 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[5] = 9 Function ID

handle contrl[6] = n The (virtual) workstation device handle
points[0] ptsin[0] X Coordinate of the left edge
points[l] ptsinflj Y Coordinate of the top edge
points[2] ptsin[2] X Coordinate of the right edge
points[3] ptsin[3] Y Coordinate of the bottom edge

Results
contrl[2] = 0 Number of points in ptsout

See also

contrl[4] = 0 Number of output integers in intout

vswr_mode(), vs_clip(), vsf_color(), vsf_interior(),
vsL_style(), vsf_perimeter()

240

n
n
n
n
n

v_justified

GDP 10: Justified Graphics Text
v_justified() Opcode= 11

Function= 1 0
This function outputs a line of graphics text that is both right and left justi
fied. Pixel spaces are added or removed between characters and/or words,
causing the string to be printed in the specified width. No escape characters
are recognized by this function, and even non-printing ASCII characters are
drawn if there is image data for them in the current character set. Text ren
dering is affected by the general graphics settings and the text settings:
Writing mode (vswr_mode)
Clipping rectangle (vs_dip)
Text color (vst_color)
Text font (vst_font)
Text size (vst_height or vst_point)
Baseline rotation (vst_rotation)
Alignment (vst_alignment)
Special effects (vst_effects)

Devices required for
All

C Binding
int handle, x, y, length, word_space, char_space;
char ‘string
v_gtext(handle, x, y, string, length, word_space, char_space);

Inputs
contrl[0] = 11 Opcode
contrl[l] = 2 Number of points in ptsin
contrl[3] = n+ 2 Number of characters in string plus two
contrl[5] = 10 Function ID

handle contrl[6] = n The (virtual) workstation device handle
x ptsin[0] X coordinate of the text alignment point
y ptsinfl] Y coordinate of the text alignment point
length ptsin[2] Requested length of string

ptsin[3] 0
word_space intin[0] Interword spadng flag

0 = Don't modify spadng
1 = Modify spacing

char__space intin[l] Intercharacter spacing flag
0 = Don't modify spadng
1 = Modify spacing

string[0] intin[2] First character of text string. Though each
character is an eight-bit value in the C
format, the bindings position each of
these bytes in a separate word in the intin
array. Each member of intin has a high
byte of 0 and a low byte that contains the
ASCII character.

241

v—justified

string[n] intin[n+2] Last character of text string.

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_clip(), vst_color)), vst_font(), vst_height(),
vst_point(), vst_rotation(), vst_alignment(), vst_effects()

242

vst—height

Set Character Height, Absolute Mode
vst—height() Opcode=12
This function sets the graphics text character height, as measured from the
baseline to the top of die character cell, in terms of an absolute pixel value.
It returns information about the height and width of the characters and the
character cell. For proportional fonts, the width returned is that of the widest
character and character cell in the font. If the font height requested is not
available, the VDI selects the next smallest available font size.

Devices required for
All

C Binding
int handle, height, char_width, char_height, celLwidth, cell—height;
v_height (handle, height, char_width, char_height,

celL_width, cell—height);

Inputs
contrl[0] = 1 2 Opcode
contrl[l] = 1 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
ptsin[0] 0

height ptsin[l] Requested character height, in pixels

Results
contrl[2] = 2 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

char_width ptsout[0] Character width in pixels
char_height ptsout[0] Character height in pixels
cell—width ptsout[0] Cell width in pixels
cell—height ptsout[0] Cell height in pixels

See also
vst_points()

243

n
vst_rotation

Set Character Baseline Vector
vst—rotation() Opcode=13
This function rotates the baseline of graphics text so that subsequent text
characters are printed upside down or up and down rather than left to right.
The Atari ST computers only support rotation of text in increments of 90-
degree angles.

Devices required for
Metafiles

C Binding
int handle, angle, angle_set;
angle—set = vst_rotation(handle, angle);

n

n

n
n

Inputs

handle
angle

Results

angle_set

contrl[0] = 13
contrl[l] = 0
contrl[3] = 1
contrl[6] = n
intin[0] n

contrl[2] = 0
contrl[4] = 1
intout[0] n

See also
v_gtext(), v_justified()

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
The requested angle of rotation
(0, 900, 1800 and 2700 are valid)

Number of points in ptsout
Number of output integers in intout
Angle of rotation for baseline selected

n

n

244

n
n

vs—color

Set Color Representation
vs_color() Opcode=14
This function is used to change the color in the hardware color register
that's associated with VDI drawing pens (color index). It lets you assign a
Red, Blue, and Green color value to create a particular shade for any VDI
drawing pen (color index). Since the hi-res monitor only supports black and
white, this function does nothing when it is called on a monochrome system.

Devices required for
All

C Binding
int handle, pen, rgb[3];
vs_color(handle, pen, rgb);

Inputs
contrl[0] = 1 4
contrl[l] = 0
contrl[3] = 4

handle contrl[6] = n
pen intin[0]

Pen Register Default
Number Number Color

0 0 White
1 15 (*3M) Black
2 1 Red
3 2 Green
4 4 Blue
5 6 Cyan
6 3 Yellow
7 5 Low White
9 8 Gray

10 9 Light Red
11 10 Light Green
12 12 Light Blue
13 14 Light Cyan
14 11 Light Yellow
15 13 Light Magenta

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
The VDI pen (color index) number associ
ated with the hardware color register to
be changed. Note that pen numbers do
not correspond directly to color register
numbers (for example, pen 7 is not the
same as color register 7). The relationship
between the two is shown in the chart be
low. For medium-resolution mode, only
pens 0-3 are valid, and pen 1 corresponds
to register 3, as shown in parentheses.

245

vs_color

Requested Actual Value Hardware Register
Value Set Color Level
0-70 0 0

71-213 142 1
214-356 285 2
357-499 428 3
500-642 571 4
643-785 714 5
786-928 857 6
929 and up 1000 7

n
n

rgb[0] intin[l] The Red color-brightness value (0-1000) j I
rgb[l] intin[2] The Blue brightness value (0-1000) y
rgb[2] intin[3] The Green brightness value (0-1000)

Although the VDI uses color levels from
0-1000, currently, the ST hardware sup
ports eight brightness values for each
color, 0-7. So the VDI maps its values to
the actual hardware values as follows:

n
n

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vsl_color(), vsf_color(), vsm_color(), vst_color()

246

n
n
n

vsl_type

Set Polyline Linetype
vsL_type() Opcode=15
This function sets a line pattern that is used by subsequent line-drawing
routines. It can install one of six preset patterns or an arbitrary 16-bit pattern
set by the programmer. If the pattern number requested is unavailable, pat
tern 1, a solid line, will be set. Note that patterned lines are unavailable
when the vsl_width() function is used to set a line width greater than 1.
These thicker lines always appear as solid.

Devices required for
All

C Binding
int handle, type, type_set;
type_set = vsL-type(handle, type);

Inputs

handle
type

contrl[0]
contrl[l]
contrl[3]
contrl[6]
intin[0]

Results

type_set

See also
vsL_udsty()

contrl[2]
contrl[4]
intout[0]

= 15 Opcode
= 0 Number of points in ptsin
= 1 Number of input integers in intin
= n The (virtual) workstation device handle

Line pattern type
1 = Solid
2 = Long dash
3 = Dot
4 = Dash, dot
5 = Dash
6 = Dash, dot, dot
7 = User-defined

Pattern 7 installs the pattern that has been
set with the Set User-Defined Line Style
Pattern function (vsl_udsty). If no pattern
has been set, the function uses the default
style, a solid line. For an illustration of the
various bit patterns, see Figure 5-2.

0 Number of points in ptsout
1 Number of output integers in intout

247

vsL-width

Set Polyline Line Width
vsl_width() Opcode=16
This command sets the width of the lines produced by subsequent line-
drawing operations. On the ST, the line width may be any odd number
from 1 through 39. Requests for even numbers will cause the next-lowest
odd-numbered width to be set. Note that when lines wider than one pixel
are being used, the current line pattern will be ignored, and a solid line will
be drawn.

Devices required for
Metafiles

C Binding
int handle, width, width_set;
width_set = vsl_width(handle, width);

Inputs
contrl[0] = 16
contrl[l] = 1
contrl[3] = 0

handle contrl[6] = n
width ptsin[0]

ptsin[l]

Results
contrl[2] = 1
contrl[4] = 0

width_set ptsout[0]
ptsoutfl]

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
Requested line width in pixels
0

Number of points in ptsout
Number of output integers in intout
Line width that was actually set
0

248

vsl_color

Set Polyline Color Index
vsl_color() Opcode= 17
This function sets the hardware color register that will be used for future
line-drawing operations. Note that the color index (pen) number does not
correspond exactly to the color register number. The VDI uses a lookup table
to match the color index to a color register for the color screen. On the
monochrome screen, color 0 is white, the background color; and 1 is black,
the foreground color. If the color that was requested is not available, color
index 1 (black) will be selected.

Devices required for
All

C Binding
int handle, colot, color_set
color_set = vsl_color(handle, color);

Inputs
contrl[0] = 1 7 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
color intin[0] The requested color index (pen) number

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout

color_set intout[0] The color index that was actually set

249

vsm—type

vsm_type()
Set Polymarker Type

Opcode=18
This function sets the marker shape that will be used by subsequent poly
marker operations. There are six preset marker shapes. The first of these, the
dot, is always one pixel in size, and cannot be scaled the way the others
can. If the marker that is requested is unavailable, marker number 3, the as
terisk, is selected.
Devices required for
All

C Binding
int handle, shape, shape.set
shape_set = vsm_type(handle, shape);

Inputs

handle
shape

contrl[0] = 18 Opcode
contrl[l]
contrl[3] = 1
contrl[6] = n
intin[0]

Results

shape_set

contrl[2] = 0
contrl[4] = 1
intout[0]

Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
The marker shape that's requested

1 = Dot (.)
2 = Plus (+)
3 = Asterisk (*)
4 = Square ([])
5 = Diagonal Cross (X)
6 = Diamond (<>)

Number of points in ptsout
Number of output integers in intout
The marker shape that was actually set

vsm_height

u

u

u

u

U

Set Polymarker Height
vsm_height() Opcode=19
This function sets the size of the polymarker shapes 2-6 (shape 1 is always
one pixel in size). There are eight marker sizes available on the ST screen,
ranging from 15 X 11 to 120 X 88. Each of the marker heights set by this
function is an even multiple of 11 (11, 22, 33, and so on). If the requested
height is not available, the next smallest available height is set. Though the
function returns both the height and width of the marker that was actually
set, the C bindings only return the height.

Devices required for
Metafiles

C Binding
int handle, height, height_set;
height_set = vsm_height(handle, height);

Inputs
contrl[0] = 19 Opcode
contrl[l] = 1 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
ptsin[0] 0

height ptsin[l] The requested polymarker height

Results
contrl[2] = 1 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout
ptsout[0] Width of the selected polymarker

height_set ptsout[0] Height of the selected polymarker

U

U 251

n
vsm_color nr)

Set Polymarker G>lor Index
vsm—color() Opcode=20
This function sets the hardware color register that will be used for future
polymarker operations. Note that the color index (pen) number does not cor
respond exactly to the color register number. The VDI uses a lookup table to
match the color index to a color register for the color screen. On the mono
chrome screen, color 0 is white, the background color; and 1 is black, the
foreground color. If the color that was requested is not available, color index
1 (black) will be selected.

Devices required for
Metafiles

C Binding
int handle, color, color_set
color__set = vsm_color(handle, color);

n

Inputs

handle
color

Results

color_set

contrl[0] = 20 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] The requested color index (pen) number

contrl[2] = 0 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout
intout[0] The color index that was actually set

n

252

n

n

n
n

u
I f vst-font

Set Text Face
vst_font() Opcode=21
This function selects the font that will be used for subsequent graphics text
output. Font 1 is a built-in system font. All others are disk-based, and must
be loaded using the Load Face operation. The font that you request in this
function is identified by a font index number which you may determine by
using the Inquire Face Name function. Note that in order to use disk-based
fonts on the current version of the ST, the GDOS extension must first be
loaded.

Devices required for
All

C Binding
int handle, fontID, font-set;
font_set = vst_font(handle, fontID);

Inputs

handle
fontID

contrl[0] = 21 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] Font ID number of the font requested

(determined from call vqt_font)

Results

font_set

See also
vqt_name()

contrl[2] = 0 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout
intout[0] Font ID number that was actually set

U

t (u

LI

U 253

vst—color

Set Graphics Text Color Index
vst__color() Opcode=22
This function sets the hardware color register that will be used for future
graphics text operations. Note that the color index (pen) number does not
correspond exactly to the color register number. The VDI uses a lookup table
to match the color index to a color register for the color screen. On the
monochrome screen, color 0 is white, the background color; and 1 is black,
the foreground color. If the color that was requested is not available, color
index 1 (black) will be selected.

Devices required for
All

C Binding
int handle, color, color_set
color_set = vst_color(handle, color);

Inputs
contrl[0] = 20 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
color intin[0] The requested color index (pen) number

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout

color_set intout[0] The color index that was actually set

254

u
vsf_interior

U

Li
U

Set Fill Interior style

i i

U

U

Opcode=23vsf_interior()
This command determines the type of pattern used for filled-shape output
functions. If the pattern style requested is unavailable, fill style 0 (hollow)
is set.

Devices required for
All

C Binding
int handle, pattern, pattem_set;
pattem_set = vsf_interior(handle, pattern);

Inputs

handle
pattern

contrl[0]
contrl[l]
contrl[3]
contrl[6]
intin[0]

Results

pattem_set

See also
vsf_style()

contrl[2]
contrl[4]
intoutfO]

= 23 Opcode
= 0 Number of points in ptsin
= 1 Number of input integers in intin
= n The (virtual) workstation device handle

The style of fill pattern requested
0 = Hollow

(Background color, pen 0)
1 = Solid

(Foreground color, fill pen)
2 = Pattern (Dotted)
3 = Crosshatch
4 = User-defined style

User-defined fill style must first be set
with vsf_udpat(). If no user-defined pat
tern has been set the default Atari-logo
pattern is used.

Number of points in ptsout
Number of output integers in intout
The style of fill pattern actually set

U 255

vsfLstyle

n
n

vs£_style()
Set Fill Style Index

Opcode=24
This function is used to choose a particular till pattern from those available
for a given fill type. This fill pattern will be used for all subsequent fill oper
ations. Only the Pattern (Dotted) and Crosshatch fill styles offer a number of
patterns to choose from, so the general pattern style must be set to either of
those in order for this command to have any effect. On the ST screen, the
Pattern (Dotted) fill contains 24 different subpattems, while the Hatch fill
includes 12.

Devices required for
All

C Binding
int handle, index, index-set;
index—set = vsf_style(handle, index);

n

Inputs

handle
index

Results

index_set

contrl[0] = 24
contrlfl] = 0
contrl[3] = 1
contrl[6] = n
intin[0]

contrl[2] = 0
contrl[4] = 1
intout[0]

See also
vsf—interior, vsf_color

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
The requested fill index
1-24 for Pattern, 1-12 for Hatch

Number of points in ptsout
Number of output integers in intout
The fill index actually set

n

n
n
n

256

LJ
vsfLcolor

_ Set Fill Color Index
vs£_color() Opcode=25

l f This function sets the hardware color register that will be used for future fill
1 operations. Note that the color index (pen) number does not correspond ex

actly to the color register number. The VDI uses a lookup table to match the
color index to a color register for the color screen. On the monochrome L j screen, color 0 is white, the background color; and 1 is black, the foreground
color. If the color that was requested is not available, color index 1 (black)
will be selected.

Devices required for
All

C Binding
int handle, color, color_set
color_set = vsf_color(handle, color);

Inputs
contrl[0] = 25 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
color intin[0] The requested color index (pen) number

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout

color_set intout[0] The color index that was actually set

U

'J

u 257

vq_color

Inquire Color Representation
vq__color() Opcode=26
This function returns either the actual RGB values for a color index (pen), or
the value that was requested when the index was set by vs_color(). If an
invalid index is selected, a value of — 1 is returned in intout(O). This value is
not returned by the C binding.

Devices required for
Screen, Printer, Metafile

C Binding
int handle, color, flag, rgb[3];
vq_color(handle, color, flag, rgb);

Inputs
contrl[0] = 26 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
index intin[0] Color index requested
flag intin[l] Inquiry mode flag

0 = Return color value requested
1 = Return color value actually set

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 4 Number of output integers in intout
intout[0] Color index used

rgb[0] intout[l] Red level (0-1000)
*8111 intout[2] Green level (0-1000)
rgb[2] intout[3] Blue level (0-1000)

See also
vs_color()

vrq_locator

Input locator, request mode
vrq_locator() Opcode=28
This function waits for a terminating event, such as a keypress or mouse
button press, and returns the position of the mouse pointer. The mouse
pointer is shown at the beginning of this function; it remains visible and fol
lows the mouse until the terminating event, at which time it is hidden. The
ALT-arrow key combination may be used to move the mouse pointer. This
mode of the locator function is chosen by first setting the device to request
mode with the vsin_mode() function.

Devices required for
Screen

C Binding
int handle, x, y, xl, yl, term;
vrq_locator(handle, x, y, &xl, &yl, &term);

Inputs

handle
x
y
Results

term

xl
yi
See also
vsin_mode(), vsm_locator()

contrl[0] = 28 Opcode
contrl[lj = 1 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6] — n The (virtual) workstation device handle
ptsin[0] Starting x position of the mouse pointer
ptsin[l] Starting y position of the mouse pointer

contrl[2] = 1
contrl[4] = 1
intout[0]

ptsout[0]
ptsoutflj

Number of points in ptsout
Number of output integers in intout
Terminating event. If a keypress, the
ASCII value of the key pressed. If a but
ton press, 32 for the left button, 33 for the
right button.
Ending x position of the mouse pointer
Ending y position of the mouse pointer

vsm—locator

Input Locator, Sample Mode
vsm_locator() Opcode=28
This function returns the current position of the mouse pointer. The mouse
pointer is not shown by this function, so v_show_c() may be used to do so.
This mode of the locator function is chosen by first setting the device to
sample mode with the vsin_mode() function.

Devices required for
Screen

C Binding
int handle, x, y, xl, yl, term, status;
status = vsm_locator(handle, x, y, &xl, &yl, &term);

Inputs

handle
x
y
Results

contrl[0] = 28 Opcode
contrlfl] = 1 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
ptsin[0] Starting x position of the mouse pointer
ptsin[l] Starting y position of the mouse pointer

contrl[2]

contrl[4]

status

term

xl
yi

intout[0]

ptsout[0]
ptsout[l]

Number of points in ptsout
1 if mouse pointer coordinates changed
0 if coordinates didn't change

Number of output integers in intout
1 if terminating event occurred
0 if no mouse button- or keypress occurred

A value that shows if terminating event
occurred and/or if mouse moved. The
binding makes this value equal to contrl[2]
I (contrl[4] « 1), so that bit 0 is set if the
mouse moved, and bit 1 is set if a termi
nating event occurred.
Terminating event. If a keypress, the
ASCII value of the key pressed. If a but
ton press, 32 for the left button, 33 for the
right button.
Ending x position of the mouse pointer
Ending y position of the mouse pointer

See also
vsin_mode(), vrq_Jocator()

260

vrq_valuator

Input Valuator, Request Mode
vrq_valuator() Opcode=29
This function implements a logical device that allows the user to return a
numerical value from 1 to 100. In request mode, the up- and down-arrow
keys are used to increase or decrease the starting value until a terminating
key is pressed. This mode of the valuator function is chosen by first setting
the device to request mode with the vsin_mode() function. This function is
not implemented in the current version of the TOS ROMs.

Devices required for
None

C Binding
int handle, begin_value, end_value, term;
vrq_valuator(handle, begin_value, &end_value, &term);

Inputs

handle
begin_value

Results

end—value

term

contrl[0] = 29
contrl[l] = 0
contrl[3] = 1
contrl[6] = n
intin[0]

contrl[2] = 0
contrl[4] = 2
intout[0]

intout[l]

See also
vsin_mode(), vsm_valuator()

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
The starting valuator value

Number of points in ptsout
Number of output integers in intout
The value set by the user at time of
termination
The ASCII value of the terminating key

261

vsm—valuator

Input Valuator, Sample Mode
vsm_valuator() Opcode=29
This function implements a logical device that allows the user to return a
numerical value from 1 to 100. In sample mode, the function checks
whether the up- or down-arrow keys are currently pressed, thereby increas
ing or decreasing the starting value. This mode of the valuator function is
chosen by first setting the device to sample mode with the vsin_mode()
function. This function is not implemented in the current version of the TOS
ROMs.

Devices required for
None

C Binding
int handle, begin_value, end_value, term, status;
vsm_valuator(handle, begin_value, &end_value, &term, &status);

Inputs
contrl[0] = 29 Opcode
control] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
begin_value intin[0] The starting valuator value
Results

contrl[2] = 0 Number of points in ptsout
contrl[4] = Number of output integers in intout

0 if no value change and no terminator
1 if value changed
2 if terminating keypress occurred

end—value intout[0] The value set by the user (if changed)
term intout[l] The ASCII value of the terminating key,

if any

See also
vsin_mode(), vrq_valuator()

262

vrq_choice

Input Choice, Request Mode
vrq_choice() Opcode=30
This function implements a logical device that allows the user to choose a
number from 1 to 10 via the function keys. In request mode, this function
waits until a key is pressed, and, if a function key is pressed, it returns the
key number. If the terminating event is not a function keypress, the default
choice number is returned. This mode of the choice function is chosen by
first setting the device to request mode with the vsin_mode() function. This
function is not implemented in the current version of the TOS ROMs.

Devices required for
None

C Binding
int handle, begin_choice, end_choice;
vrq_choice(handle, begin_choice, &end_choice);

Inputs

handle

Results

end_value

contrl[0] = 30
contrl[l] — 0
contrl[3] = 1
contrl[6] = n

begin_choice intin[0]

contrl[2] = 0
contrl[4] = 1
intout[0]

See also
vsin_mode(), vsm_choice()

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
The default choice number

Number of points in ptsout
Number of output integers in intout
The choice number

263

vsm_choice

Input Choice, Sample Mode
vsm_choice() Opcode=30
This function implements a logical device that allows the user to choose a
number from 1 to 10 via the function keys. In sample mode, this function
checks the keyboard, and returns a choice number if one of the function
keys is pressed. This mode of the choice function is chosen by first setting
the device to sample mode with the vsin_mode() function. This function is
not implemented in the current version of the TOS ROMs.

Devices required for
None

C Binding
int handle, choice;
vsm_choice(handle, &choice);

Inputs

handle

contrl[0] = 30 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle

Results

choice intout[0]

contrl[2] = 0
contrl[4] =

0
1

Number of points in ptsout
Number of output integers in intout
if no function key is pressed
if function key is pressed
The function key pressed (if any)

See also
vsin_mode(), vrq_choice()

vrq_string

Input String, Request Mode
vrq_string() Opcode=31
This function allows the user to enter a string of text characters. In request
mode, each keypress adds an ASCII character (or a 16-bit key code value) to
the end of the string until the Return key is pressed or the maximum string
length is reached. This mode of the choice function is chosen by first setting
the device to request mode with the vsin_mode() function.

Devices required for
Screen

C Binding
int handle, max_length, echo—mode, echo_xy[2];
char string[max_length];
vrq_string(handle, max—length, echo_mode, echo_xy, &string);

Inputs

handle
max_length

echo_mode

echo_xy[0]
echo_xy[lj

Results

string[0]

contrl[0] = 31 Opcode
contrl[lj = 1 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] The maximum string length. If this length

is specified as a negative number, the ab
solute value of that number is used as the
length, and the 16-bit key code value for
each keypress is placed in the string, in
stead of its 8-bit ASCII value.

intin[l] Echo mode flag
0 = no echo
1 = echo characters to screen as they

are entered, starting at position echo_xy
(not supported on ST)

ptsin[0] X coordinate of start of echo text
ptsinflj Y coordinate of start of echo text

contrl[2] = 0 Number of points in ptsout
contrl[4] = n Number of string characters in intout
intout[0] First character of text string. Each 8-bit

ASCII value is positioned in the low byte
of a 16-bit intout word. (The high byte is
always zero.) If max—length is negative,
indicating that 16-bit keycodes are to be
used instead of 8-bit ASCII characters, the
C bindings still only copy the low byte of
each character to string. In order to read
the full 16-bit value of each character,
therefore, you must read each one directly
from the intout array:

265

vrq_string

string[n— 1] intout[n—1] Last character of text string

See also
vsin_mode(), vsm_string()

u
t i vsm_string

U

u

' I

Input String, Sample Mode
vsm_string() Opcode=31
This function allows the user to enter a string of text characters. In sample
mode, the function tests to see if any key is pressed. If any has been, each
keypress adds an ASCII character (or a 16-bit keycode value) to the end of
the string, until the Return key is pressed, the maximum string length is
reached, or no more keys are pressed. This mode of the choice function is
chosen by first setting the device to sample mode with the vsin_mode()
function.

Devices required for
Screen

C Binding
int handle, max_length, echo_mode, status, echo_xy[2];
char string[max_length];
status = vsm_string(handle, max_length, echo_mode, echo_xy, &string);

Inputs

handle
max_length

echo_mode intin[l]

echo_xy[0]
echo_xy[lj

Results

status

string[0]

contrl[0] = 31 Opcode
contrlfl] = 1 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] The maximum string length. If this length

is specified as a negative number, the ab
solute value of that number is used as the
length, and the 16-bit keycode value for
each keypress is placed in the string, in
stead of its 8-bit ASCII vlaue.
Echo mode flag

0 = no echo
1 = echo characters to screen as they

are entered, starting at position
echo_xy (not supported on ST)

ptsin[0] X coordinate of start of echo text
ptsin[l] Y coordinate of start of echo text

contrl[2] = 0 Number of points in ptsout
contrl[4] = n Number of string characters in intout

0 = keypress data is available
>0 = number of characters gathered

intout[0] First character of text string (if any). Each
8-bit ASCII value is positioned in the low
byte of a 16-bit in tout word. (The high
byte is always zero.) If max_Jength is neg
ative, indicating that 16-bit keycodes are
to be used instead of 8-bit ASCII charac
ters, the C bindings still only copy the

267

vsm—string

low byte of each character to string. In or
der to read the full 16-bit value of each
character, therefore, you must read each
one directly from the intout array

string[n—1] intout[n—1] Last character of text string

See also
vsin_mode(), vrq_string()

268

vswr_mode

vswr_mode()
Set Writing Mode

Opcode=32
This function sets the writing mode, which affects how all subsequent draw
ing operations will be performed. Not only may a VDI drawing operation re
place an existing background picture, but it may also be combined with that
background in various ways. Four drawing modes are supported: Replace,
Transparent, Exclusive OR (XOR), and Reverse Transparent. The writing
mode affects marker, line, fill, and graphics-text operations.

Devices required for
Screen, Printer, Metafile

C Binding
int handle, mode, mode—set;
mode_set = vswr_mode(handle, mode);

Inputs

handle
mode

contrl[0]
contrlfl]
contrl[3]
contrl[6]
intin[0]

Results

mode_set

contrl[2]
contrl[4]
intout[0]

32 Opcode
0 Number of points in ptsin
1 Number of input integers in intin
n The (virtual) workstation device handle

Writing mode requested
1 = Replace

Both the 1 and the 0 bits in the
graphics object replace the back
ground (l's with current foreground
color, 0's with color 0).

2 = Transparent
Only the 1 bits in the graphics object
replace the background (with current
foreground color)

3 = XOR
The 1 bits in the graphics object are
colored with the complement of the
current background color

4 = Reverse Transparent
Only the 0 bits in the graphics object
replace the background (with current
foreground color)

If number requested is out of range, num
ber 1 (Replace) is selected.

0 Number of points in ptsout
1 Number of output integers in intout

Writing mode actually selected

269

vsin_mode

Set Input Mode
vsin_mode() Opcode=33
This function is used to set any of the four logical input devices (string, val
uator, locator, or choice) to request or sample mode. The proper mode
should be set before using any of these devices. This function returns the
mode that was actually set in inout[0], but the C bindings do not make this
information available in a C variable.

Devices required for
Screen

C Binding
int handle, device, mode;
vsin_mode(handle, device, mode);

Inputs

handle
device

contrl[0] = 33 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] Logical input device

1 = Locator
2 = Valuator
3 = Choice
4 = String

mode intin[l] Input mode for that device
1 = Request
2 = Sample

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout
intout[0] Input mode selected

270

Ll
vqL_attributes

U

u

Inquire Current Polyline Attributes
vqL_attributes() Opcode=35
This function returns information about the settings that affect line-drawing
operations, including line-drawing pattern, line width, color, end styles and
writing mode. The C binding does not return the information about the end
styles (intout[3]-inout[4]) in a C variable.

Devices required for
All

C Binding
int handle, settings[4];
vql_attributes(handle/ settings);

Inputs
contrl[0] = 35 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 1 Number of points in ptsout
contrl[4] = 5 Number of output integers in intout

settings[0] intout[0] Line type setting
settings[l] intoutfl] Line-drawing pen (color index)
settings[2] intout[2] Writing mode

intout[3] End style of first point of line
intout[4] End style of last point of line

settings[3] ptsout[0] Line width setting

See also

ptsoutfl] 0

vsl_type(), vsl_width(), vsl_color(), vsl_ends(), vswr_mode()

< Iw

LJ

U

U 271

vqm_attributes

Inquire Current Polymarker Attribute
yqnL_attributes() Opcode=36
This function returns information about the settings that affect marker draw
ing operations, including marker type, marker height, marker width, marker
color, and writing mode. The C binding does not return the information
about the marker width (ptsout[0]) in a C variable.

Devices required for
All

C Binding
int handle, settings[4];
vqm_attributes(handle, settings);

Inputs
contrl[0] = 36
contrl[l] = 0
contrl[3] = 0

handle contrl[6] = n

Results
contrl[2] = 1
contrl[4] = 3

settings[0] intout[0]
settings[lj intoutfl]
settings[2] intout[2]
settings[3] ptsout[l]

See also

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle

Number of points in ptsout
Number of output integers in intout
Marker type setting
Marker drawing pen (color index)
Writing mode
Marker height setting (in pixels)

vsm_type(), vsm_height(), vsm_color(), vswr_mode()

272

u

u l

u

vqfLattributes

u

Inquire Current Fill Area Attributes
vqf—attributes() Opcode=37
This function returns information about the settings that affect area fill oper
ations, including interior style, fill style index, fill color, perimeter outlining,
and writing mode. The C binding does not return the information about pe
rimeter outlining (intout[4]) in a C variable.

Devices required for
All

C Binding
int handle, settings[4];
vqf_attributes(handle, settings);

Inputs

handle

Results

settings[0]
settings[l]
settings[2]
settings[3]

contrl[0] = 37 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle

contrl[2] = 0 Number of points in ptsout
contrl[4] = 5 Number of output integers in intout
intout[0] Area fill interior style setting
intout[l] Area fill drawing pen (color index)
intout[2] Area fill style index
intout[3] Writing mode
intout[4] Perimeter outlining status

See also
vsf_interior(), vsf_style(), vsf_color(), vsf_perimeter(), vswr_mode()

A I

U

Q

u

u 273

vqt—attributes

Inquire Current Graphics Text Attributes
yqt_attributes() Opcode=38
This function returns information about the settings that affect graphics-text
operations, including current text face, color, baseline rotation, alignment,
character and cell size, and writing mode.

Devices required for
All

C Binding
int handle, settings[10];
vqt_attributes(handle, settings);

Inputs
contrl[0] = 38 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 2 Number of points in ptsout
contrl[4] = 6 Number of output integers in intout

settings[0] intout[0] Current graphics-text face (font id)
settings[l] intout[l] Graphics-text pen (color index)
settings[2] intout[2] Angle of rotation of text baseline

settings[3] intout[3]
(in tenths of degrees, 0-3600)
Horizontal alignment setting

settings[4] intout[4] Vertical alignment setting
settings[5] intout[5] Writing mode
settings[6] ptsout[0] Character width
settings[7] ptsoutflj Character height
settings[8] ptsout[2] Character cell width
settings[9] ptsout[3] Character cell heigth

See also
vst_font(), vst_height(), vst_point(), vst_color(), vsLalignment,
vst_rotation, vswr_mode()

274

vst—alignment

Set Graphics Text Alignment
vst_alignment Opcode=39
This function controls the horizontal and vertical alignment points for
graphics text. The horizontal alignment determines whether the text string
will be centered or left- or right-justified. The vertical alignment determines
whether the y coordinate of the text placement point refers to the character
baseline, half line, ascent line, bottom line, descent line, or top line. The de
fault alignment makes the graphics-text position the baseline of the leftmost
character in the string.

Devices required for
All

C Binding
int handle, halign, valign, hresult, vresult;
vst_alignment(handle, halign, valign, &hresult, &vresult);

Inputs

handle
halign

valign

Results

hresult
vresult

contrl[0] = 39 Opcode
contrlfl] = 0 Number of points in ptsin
contrl[3] = 2 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] The horizontal alignment requested

0 = Left-justified (default)
1 = Centered
2 = Right-justified

intin[l] The vertical alignment requested
0 = Baseline (default)
1 = Half line
2 = Ascent line
3 = Bottom line
4 = Descent line
5 = Top line

contrl[2] = 0 Number of points in ptsout
contrl[4] = 2 Number of output integers in intout
intout[0] The horizontal alignment actually set
intout[l] The vertical alignment actually set

275

v-_opnvwk

Open Virtual Workstation
v_opnvwk() Opcode=100
This function opens a virtual workstation that allows the application to
share the physical screen device with other tasks. Each virtual workstation
has access to the full screen, but its graphics settings are maintained sepa
rately from all of the others. The screen device drivers are part of the TOS
ROMs, so they do not have to be loaded in from disk when a virtual work
station is opened. But if you wish to use disk-loaded fonts with your virtual
workstation, they must be properly identified in the ASSIGN.SYS file, and
the GDOS must be loaded. Like Open Workstation, this command allows
you to make initial settings for a number of graphics output functions. But
note that, unlike Open Workstation, the handle parameter does double duty
for this call. As an input, it should be set to the value of the current screen
device handle, which can be found by using the AES call graf_handle().
Upon return from this call, the handle parameter contains the virtual work
station's device handle.

Devices required for
Screen

C Binding
int handle, work_in[12], work_out[57];
v_opnwk(work_in, &handle, work_out);

Inputs

handle

contrl[0] = 100 Opcode
contrlfl] = 0 Number of points in ptsin
contrl[3] = 11 Number of input integers in intin
contrl[6] = n The physical screen device handle

(obtained from graf_handle() call)
The initial graphics output settings for the virtual workstation are speci

fied by the contents of the intin array (which the bindings take from
work_in[]).
work_in[0] intin[0]

work_in[l]
work_in[2]
work_in[3]
work_in[4]
work_in[5]
work_in[6]
work_in[7]
work_in[8j

intin[l]
intin[2]
intin[3]
intin[4]
intin[5]
intin[6]
intin[7]
intin[8]

Screen Device ID (from ASSIGN.SYS file)
01 Default screen
02 Lo-res color
03 Medium-res color
04 Hi-res monochrome
05-10 Reserved for Atari expansion

Line drawing pattern [vsl_type()]
Line pen number [vsl_color()]
Marker type [vsm_type()]
Marker pen number [vsm_color()]
Text font [vst_font()]
Text pen number [vst_color()]
Fill pattern type [vsf_interior()]
Fill pattern index [vsf_style()]

v_opnvwk

work_Jn[9] intin[9]
work_in[10] intin[10]

Results

handle

contrl[2] = 6
contrl[4] = 45
contrl[6] = n

Fill pen number [vsf_color()]
NDC to RC transformation flag

0 = Use Normalized Device
Coordinates
1 = Reserved for future use
2 = Use Raster Coordinate system

Number of points in ptsout
Number of output integers in intout
The device handle for this device
(0 if device was not opened)

The results returned in the intout and ptsout arrays give a wide range of
information about the output capabilities of the device.
work_out[0] intout[0]

work_out[l] intout[l]

work_out[2] intout[2]

work_out[3] intout[3]

work_out[4] intout[4]

work_out[5] intout[5]

work_out[6] intout[6]
work_out[7] intout[7]

work_out[8] intout[8]
work_out[9] intout[9]

work_out[10] intout[10]

Maximum horizontal coordinate value (in
pixels)
(medium-res & hi-res = 639, lo-res =
319)
Maximum Max. vertical coordinate value
(in pixels)
(hi-res = 399, medium-res & lo-res =
199)
Device Coordinate units flag
(1 = device doesn't support precise
scaling)
All ST screens return 0, showing that they
support precise scaling
Width of one pixel in microns
(1/1000's of a millimeter)
For display screens, horizontal component
of aspect ratio. The values returned are:
hi-res — 372, medium-res = 169, lo-res
= 338
Height of one pixel in microns
For display screens, vertical component of
aspect ratio. All screens return 372.
Number of text font heights
(0 = continuous scaling)
There are 3 text heights in the system
font, each of which can be printed double
high.
Number of line patterns (7)
Number of line widths
(All screens return 0—continuous scaling)
Number of marker patterns (6)
Number of marker sizes (8)
(0 = continuous scaling)
Number of text fonts supported by the
device
Only one system font is available in ROM

277

v_opnvwk

work_out[ll]
work_out[12]
work_out[13]

work_out[14]

work_out[15]
to

work_out[24]

work_out[25]
to

work_out[34]

work_out[35]

intout[ll]
intout[12]
intout[13]

intout[14]

intout[15]
to

intout[24]

intout[25j
to

intout[34]

intout[35]

Number of pattern fill styles (24)
Number of crosshatch fill styles (12)
Number of drawing pen colors available
(the number of colors that can be dis
played by the device at the same time)
hi-res = 2, medium-res = 4, lo-res = 16
Number of Generalized Drawing
Primitives
(GDPs)—how many of the 10 basic draw
ing commands are supported (all 10 on
the ST)

This part of the array holds a sequential
list of code numbers for the first 10 GDPs
supported. Each element holds one of the
following code numbers:
1 = Filled Rectangle or Bar (v_bar)—fill
2 = Circle Segment or Arc (v_arc)—line
3 = Filled Pie Slice (v_pieslice)—fill
4 = Filled Circle (v_circle)—fill
5 = Filled Ellipse (v_ellipse)fill
6 = Elliptical Arc (v_ellarc)—line
7 = Filled Elliptical Pie (v_ellpie)—fill
8 = Rounded Rectangle (v_rbox)—line
9 = Filled Rounded Rectangle

(v_rfbox)—fill
10 = Justified Text (v_justified)—text
-1 = End of list

This part of the array holds a sequential
list of code numbers showing what cate
gory of graphics operation is performed
by of each of the supported GDPs. This
indicates what kind of graphics settings
affects each of the supported commands.
Each element holds one of the following
code numbers:
0 = Line drawing
1 = Marker drawing
2 = Graphics text
3 = Filled area
4 = No setting
The graphics category for each function
on the ST can be found in the table of
functions, above, at the end of each entry.
Color availability flag
0 = Device is not capable of color output
1 = Device is capable of color output

ST shows 0 for mono screen, 1 for
color

278

u
j T

w

u

y
i t
u

U

work_out[36] intout[36]

work_out[37] intout[37]

work_out[38] intout[38]

work_out[39] intout[39]

work_out[40] intout[40]

work_out[41] intout[41]

work_out[42] intout[42]

work_out[43]

work_out[44]

intout[43]

intout[44]

work_out[45]
work_out[46]
work_out[47]

ptsout[0]
ptsout[lj
ptsout[2]

v_opnvwk

Text rotation availability flag
0 = Device is not capable of text rotation
1 «= Device is capable of text rotation

ST shows 1 for all res modes
Area fill availability flag
0 = Device isn't capable of area fill
1 = Device is capable of area fill

ST shows 1 for all res modes
Cell array function availability flag
0 = Device can't perform cell array
function
1 = Device can perform cell array
function

ST shows 0 for all res modes
Total number of color choices available in
the palette
0 = More than 32767 colors available
1 = Monochrome
2-32767 = Actual number of colors
available

ST hi-res = 2, medium-res & lo-res
= 512

Input devices available for the locator
function
1 = Keyboard only
2 = Keyboard and mouse

ST shows 2 for all res modes
Input devices available for the valuator
function
1 = Keyboard
2 = Other device

ST shows 1 for all res modes
Input devices available for the choice
function
1 = Function keys on keyboard
2 = Some other key pad

ST shows 1 for all res modes
Input devices available for the string input
function
1 = keyboard

ST shows 1 for all res modes
Workstation type
0 = Output only
1 = Input only
2 = Input and output
3 = Reserved for future use
4 = Metafile output

ST shows 2 for all res modes
Minimum character width (5)
Minimum character height (4)
Maximum character width (7)

279

v_opnvwk

work_out[48
work_out[49
work_out[50
work_out[51
work_out[52
work_out[53
work_out[54
work_out[55
work_out[56

See also
v_clswk(), v.

ptsout[3] Maximum character height (13)
ptsout[4] Minimum line width (1)
ptsout[5] 0
ptsout[6] Maximum line width (40)
ptsout[7] 0
ptsout[8] Minimum marker width (15)
ptsout[9] Minimum marker height (11)
ptsout[ll] Maximum marker width (120)
ptsout[12] Maximum marker height (88)

.opnwk(), v_clsvwk()

i I

LJ

U

u

u
r<

____________________ V—clsvwk____________________

Close Virtual Workstation
v_clsvwk() Opcode=101
This call is used to terminate output to a virtual workstation and release its
environment space.

Devices required for
Screen

C Binding
int handle;
v_clsvwk(handle);

Inputs

handle

Results

contrl[0] — 101
contrlfl] = 0
contrl[3]
contrl[6]

= 0
= n

contrl[2] = 0
contrl[4] = 0

Opcode
Number of points in ptsin
Number of input integers in intin
The workstation device handle

Number of points in ptsout
Number of output integers in intout

See also
v_opnvwk(), v_opnwk(), v_clswk()

U
t i
u

U 281

vq_extnd

vq_extnd()
Extended Inquire

Opcode=102
This function returns either the same information about about a graphics
output device as the Open Workstation and Open Virtual Workstation calls,
or some additional information about the device's output capabilities.

Devices required for
All

C Binding
int handle, info_flag, work_out[57];
v_opnwk(work_Jn, info_flag, work_out);

Inputs

info_flag

Results

contrl[0] = 102 Opcode
contrl[l] = 0
contrl[3] = 1
contrl[6] = n
intin[0]

contrl[2] = 6
contrl[4] = 45

Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
Type of information flag

0 = Open Workstation values
1 = Extended Inquire values

Number of points in ptsout
Number of output integers in intout

The results returned in the intout and ptsout arrays give a wide range of
information about the output capabilities of the device. If info_flag was set
to 0, these values are the same as those returned by the Open Workstation
or Open Virtual Workstation calls. (See v_opnwk() and v_opnvwk() for
more details.) If info_flag is set to 1, the following information is returned.
Note that 6 points and 45 integers are always returned, even though many
of these values are undefined when the information type flag is set for Ex
tended Inquire.
work_out[0] intout[0]

work_out[l] intout[l]

Type of screen display
0 = This device doesn't have a screen
1 = Separate alphanumeric and graphics

controllers, and separate display
screens

2 = Separate alpha and graphics control
lers, with a common display screen.

3 = Common alpha and graphics control
ler, with separate display memory.

4 = Common alpha and graphics control
ler, common display memory. (The
ST display is this type.)

Number of background colors available
(on the ST, the same as number of colors
in palette—512 in color, 1 in
monochrome.)

282

u
u

u

u

u

u

u

u

u

u

work_out[2] intout[2]

work_out[3] intout[3]

work_out[4] intout[4]

work_out[5] intout[5]

work_out[6] intout[6]

work_out[7] intout[7]

work_out[8] intout[8]

work_out[9] intout[9]
work_out[10] intout[10]

work_out[ll] intout[ll]

work_out[12] intout[12]

work_out[13] intout[13]

work_out[14] intout[14]

work_out[15] intout[15]

vq_extnd

Number of text special effects supported
(31 on the ST, since 5 effects can be com
bined in that many ways).
Raster scaling availability flag
0 = Scaling of rasters not supported

(as is the case on the ST)
1 = Raster scaling supported
Number of color bit planes
(monochrome=1, medium-res=2, lo
res =4)
Color palette lookup table flag
0 = Lookup table supported (as on color

screens, where VDI drawing pen in
dex numbers are different from hard
ware color register numbers)

1 = Lookup table not supported (as on ST
monchrome screen)

Performance factor, the number of 16 X
16 raster operations that can be performed
per second (1000 for machines without
blitter chip)
Contour fill capability flag
0 = Contour fill not supported
(All ST screens support contour fill, and
return a value of 1)
Character baseline rotation flag
0 = text characters cannot be rotated
1 = characters can be rotated in 90—de
gree increments only (all ST screens)
2 = Characters can be rotated at any
angle
Number of writing modes available (4)
Highest input mode available

0 = no input
1 = request mode
2 = sample mode (all ST screens)

Text alignment capability flag
(all ST screens = 1, text can be

aligned)
Inking capability flag

(all ST screens = 0, device can't ink)
Rubberband line capability flag

0 = no rubberband lines (all ST
screens)

1 = rubberband lines only
2 = rubberband lines and rectangles

Maximum number of points for Polyline,
Polymarker, or Filled Area (128)
Maximum number of integers in intin
(all ST screens = —1, no maximum)

283

n

work_out[16] intout[16]
work_out[17] intout[17]

work_out[18]
work_out[19]

to
work_out[44]
work_out[45]

to
work_out[56]

intout[18]
intout[19]

to
intout[44]
ptsout[0]

to
ptsout[ll]

See also
v_opnwk(), v__opnvwk()

vq_extnd

Number of mouse buttons (2)
Wide line pattern capability flag
0 = No patterns for wide lines

(all ST screens)
1 = wide lines can use line pattern
Drawing modes for wide lines (0)
Reserved for future use

Reserved for future use

n
n
n
n

n

n

n
n
n

v—contourfill

Contour Fill
v_contourfill Opcode=103
This function is used to fill an enclosed polygon with the current fill pattern
and color. Filling proceeds in one of two modes. In outline mode, the fill
spreads from an initial point in all directions, until it comes to an outline of a
given color. In color mode, the fill spreads from the initial point until it reaches
a color other than that contained in the initial point. The way in which the
polygon is filled is affected by the general graphics settings and the fill settings:

Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Fill color (vsL_color)
Fill interior style (vsf_interior)
Fill style index (vsf—style)

Devices required for
Metafiles

C Binding
int handle, x, y, pen;
v_contourfill(handle, x, y, pen)

Inputs
contrl[0] = 103 Opcode

* contrl[l] = 1 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
pen intm[0] Color index for polygon outline. If this

value is negative, color mode is used
rather than outline mode.

X ptsin[0] Horizontal coordinate of initial point
y ptsin[l] Vertical coordinate of initial point

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vswr_mode(), vs_clip(), vsf_color(), vsf_interior(), vsf_style()

/ 1

vsf_perimeter

Set Perimeter Fill Visibility
vsf—perimeter() Opcode=104
This funtion is used to turn fill outlining on or off. When perimeter visibility
is on, a filled-shape drawing operation outlines the filled shape with a solid
line drawn in the current fill color.

Devices required for
All

C Binding
int handle, vis_flag;
vis_set = vsf_perimeter(handle, vis_flag);

<

n
i \

n

Inputs

handle
vis_flag

Results

vis_set

contrl[0] = 104 Opcode
contrlfl] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] Visibility flag

0 = no outline drawn
1 = outline is visible

contrl[2] = 0 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout
intout[0] Visibility mode selected

286

ni i

n
i i

n
n

u
v—get—pixel

U

Get Pixel
v_get_pixel() Opcode=105
This function returns the VDI color index and the ST color register number
for a particular point on the screen.

Devices required for
None

C Binding
int handle, x, y, register, pen;
v_get_pixel(handle, x, y, register, pen);

Inputs

handle
x
y
Results

register

pen

See also
vs_color()

contrl[0] =105 Opcode
contrl[lj = 1 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
ptsin[0] Horizontal coordinate of point
ptsinflj Vertical coordinate of point

contrl[2] = 0 Number of points in ptsout
contrl[4] = 2 Number of output integers in intout
intout[0] • Actual hardware color register used to

color the point.
intout[l] VDI drawing pen (color index) used to

color the point

i i

u
LJ

U

287

n
vst_effects

Set Graphics Text Set Special Effects
vst_effects() Opcode=106
This function is used to designate which special effects will be used for printing
graphics text. Text can be rendered as thickened (bold), light intensity (grayed
or ghosted), skewed (italics), underlined, outlined, or any combination of these
effects.

Devices required for
All

C Binding
int handle, effects, effects_set;
effects_set = vst_effects(handle, effects);

n
n

n
n

Inputs

handle
effects

contrl[0]
contrlfl]
contrl[3]
contrl[6]
intin[0]

106
0

= 1
= n

Results

effects_set

contrl[2]
contrl[4]
intout[0]

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
Special effects setting. Each effect is de
scribed in a different bit of this word. Pos
sible effects are:
Bit Value Effect
0 1 Thickened (bold)
1 2 Light intensity (ghosted/grayed)
2 4 Skewed (italics)
3 8 Underlined
4 16 Outlined
5 32 Shadow (not supported on ST)

To combine effects, add the value of the
desired effects together (for example, a
value of 10 indicates Underline (8) and
light intensity (2) will be used together).

Number of points in ptsout
Number of output integers in intout
Effects actually selected

288

n
n
n
n
n

vst_point

Set Character Cell Height, Points Mode
vst_point() Opcode=107
This command is used to set the character size of graphics text using points,
a printing measurement equal to 1/72 inch. The character height requested
encompasses the entire character cell, which may include some blank space
at the top and bottom of the character. Since all point sizes will not be avail
able for any given font, the VDI tries to match the requested size with the
next smallest available font size. The function returns information about the
point size selected and the character size and cell size in pixels.

Devices required for
All

C Binding
int handle, point, charw, charh, cellw, cellh, point_set;
point_set = vst_point(handle, point, &charw, &charh, &cellw, &cellh);

Inputs
contrl[0] = 107 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
points intin[0] Character cell height (in points)

Results
contrl[2] = 2 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout

point_set intout[0] Cell height selected (in points)
charw ptsout[0] Character width selected (in pixels)
charh ptsout[l] Character height selected (in pixels)
cellw ptsout[2] Cell width selected (in pixels)
cellh ptsout[3] Cell height selected (in pixels)

See also
vst_height()

289

vsL-ends

vsl_ends()
Set Polyline End Styles

Opcode=108
This function is used to specify how the ends of lines produced by the line-
drawing functions will appear. Either end of a line—or both ends—may be
squared off (the default), rounded, or have an arrowhead attached. Note that
rounding off the end of line really only affects lines that are more than a few
pixels wide. If the style requested by this call is not available, the squared end
style (0) is selected.

Devices required for
All

C Binding
int handle, begin, end;
vsl_ends(handle, begin, end);

n
n
n
n

Inputs

handle
begin
end

Results

contrl[0] = 108 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3j = 2 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] End style for the beginning point
intin[l] End style for the endpoint of the line

0 = Squared (default)
1 = Arrow
2 = Rounded

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

290

n
n

n
n

vro—cpyfm

vro_cpyfm()
Copy Raster, Opaque

Opcode=109
This function is used to copy a rectangular image from one area of memory
to another. The source area, the destination area, or both may in display
memory. The source area may overlap the destination area; this function
will copy in the correct direction for preserving the source image. The image
may be copied exactly, or it may be combined in various ways with existing
image data in the destination area.

The VDI uses a data structure called a Memory Form Definition Block
(MFDB) to describe the source and destination memory areas. This data
structure contains information about the memory location of image data, the
size of the image in pixels and memory words, the number of color planes,
and format of the image, either standard (each color bit plane separate), or
ST-specific (color planes interleaved into one large bit plane). For the pur
poses of this function, the source and destination forms must both be in ST-
spedfic format.

Devices required for
Screen

C Binding
int handle, mode, points[8];
struct fdbstr {

int *fd_addr; /*
int fd_w; /*
int fd_h; /*
int fd_wdwidth; /*
int fd_stand; /*
int fd—nplanes; /*
int fd_rl, fd_r2, fd_r3; /*

}source, destination;
vro_cpyfm (handle, mode, points, &source, &destination);

pointer to image data area */
image width in pixels */
image height in pixels */
image width in words */
standard format flag */
number of color bit planes */
reserved for future use * /

Inputs

handle
&source
&destination
mode

contrl[0] = 109 Opcode
contrljlj = 4 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
contrl[7-8] Long-word address of source MFDB
contrl[9-10] Long-word address of destination MFDB
intin[0] Logic operation used to combine the

source image with the desination. The
logic operations are described below,
using the symbol S to refer to the source
image, D to refer to the starting destina
tion image, and Dl to refer to the result
ing destination image:

291

n
vro_cpyfm n

ude No. Logic Operation Description
0 Dl = 0 Clear destination block (all 0's)
1 Dl = S AND D
2 Dl = S AND (NOT D)
3 Dl = S Replace mode
4 Dl = (NOT S) AND D Erase mode
5 Dl = D Destination unchanged
6 Dl = S XOR D XOR mode
7 Dl - S OR D Transparent mode
8 Dl = NOT (S OR D)
9 Dl = NOT (S XOR D)

10 Dl = NOT D
11 Dl = S OR (NOT D)
12 Dl = NOT S
13 Dl = (NOT S) OR D Reverse transparent mode
14 Dl = NOR (S AND D)
15 Dl = 1 Fill destination block (all l's)

points[0]
points[l]
points[2]
points[3]
points[4]
points[5]
points[6]
points[7]

Results

n

n
n

ptsin[0] Left edge of source rectangle
ptsin[l] Top edge of source rectangle
ptsin[2] Right edge of source rectangle
ptsin[3] Bottom edge of source rectangle
ptsin[4] Left edge of destination rectangle
ptsin[5] Top edge of destination rectangle
ptsin[6] Right edge of destination rectangle
ptsin[7] Bottom edge of destination rectangle

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

n
n

n
n

292

vr_trn__fm

u Transform Form

i i

vr_trn_fm() Opcode=110
This function is used to change a Memory Form Definition Block whose im
age data is in standard format (each color bit plane separate) to ST-specific
format (all color bit planes interleaved), or vice versa.

The function converts the number of bit planes specified in the source
form to the opposite format of that specified in the source form. It changes
the format flag in the destination form, but does not change any other fields
of the destination form. Note that the source and destination forms may be
the same (known as an in-place transformation). Transforming a large form
in place may be significantly slower than using two separate forms.

Devices required for
Screen

C Binding
int handle;
struct fdbstr {

int *fd addr;
int fd_w;
int fd_h;
int fd_wdwidth;
int fd—stand;
int fd_nplanes;
int fd_rl, fd_r2, fd_r3;

} source, destination;

/* pointer to image data area */
/* image width in pixels */
/* image height in pixels */
/* image width in words */
/* standard format flag */
/* number of color bit planes * /
/* reserved for future use */

vr_tmfm(handle, &source, &destination)

Inputs

handle
&source
&destination

Results

contrl[0] = 110
contrlfl] = 0
contrl[3] = 0
contrl[6] = n
contrl[7-8]
contrl[9-10]

contrl[2] = 0
contrl[4] = 0

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
Long-word address of source MFDB
Long-word address of destination MFDB

Number of points in ptsout
Number of output integers in intout

Li

1 I

293

vsc—form

Set Mouse Form
vsc_form() Opcode=lll
This function is used to change the shape of the mouse pointer that appears
on screen. It lets you to define the portion of the 16 X 16 pixel area to be
drawn in the foreground color, the background color, and a transparent area
through which the existing background may be seen.

You must supply two arrays of image data. The first, called the mask,
defines the opaque area of the the pointer without regard to color infor
mation. The second is the image data itself. Bit positions within the mask
that contain a 1 are considered to be inside the pointer. If the corresponding
image data bit also contains a 1, that pixel will be colored in using the fore
ground color. If the corresponding image data bit contains a 0, that pixel will
be color in using the background color. Mask bit positions that contain a 0
are considered to the outside the pointer image, or transparent, and if the
corresponding image data bit contains a 0, these pixies will be represented
on screen by whatever background data happens to be there.

You must also define a hot spot for the pointer. Although the mouse
pointer may be up to 16 X 16 pixels in size, the VDI always considers it to
be located at a single point on screen. The hot spot is the one pixel within
the mouse pointer which is considered to be its true location. For example,
the tip of the arrow-shaped mouse pointer is its hot spot, so, to activate an
icon, you must position the tip of the arrow on it when you press the mouse
button.

Devices required for
Screen

C Binding
int handle, pt_data[37];
vsc_form(handle, pt_data);

Inputs
Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
X coordinate of hot spot
Y coordinate of hot spot
Reserved for future use (must be 1)
Background pen (usually 0)
Foreground pen (usually 1)
16 words of mask data
16 words of image data. Each word repre
sents a line of 16 pixels, with the first
word being the top line, the second being
the second, and so on. The least-signifi-
cant bit in each word represents the
rightmost pixel, and the most-signficant
bit in each word, the leftmost.

contrl[0] = 111
contrl[l] = 0
contrl[3] = 37

handle contrl[6] = n
pt_data[0] intin[0]
pt_data[l] intin[l]
pt_data[2] intin[2]
pt_data[3] intin[3]
pt_data[4] intin[4]
pt_data[5-20] intin[5-20]
pt_data[21-36] intin[21-36]

i i

n
n

n
n

n
n

294

vsc—form

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

vsfLudpat

Set User-Defined Fill Pattern
vsf_udpat() Opcode=112
This function is used to supply the image data for the user-defined fill pat
tern, style 4 of vsf_Jnterior(). This fill pattern is a 16 X 16 pixel image,
either monochrome or multicolor. For a monochrome fill pattern, 16 words
of image data are used to describe the image on 16 lines. Each bit represents
either a pixel of foreground color (1) or background color (0). The fore
ground color used is the current fill color.

To describe a multicolor fill pattern, you must use 16 words of image
data for each color bit plane. Each plane contains a single bit of color infor
mation for each pixel, and in order to obtain complete color information for
a single pixel, you must combine the values for each corresponding bit in all
of the planes. For example, to find the color of the top, left pixel, you must
combine the first bit of each bit plane. The first bit plane contains all of the
least-significant bits, and each subsequent plane holds the next most signifi
cant bit.

Devices required for
Screen, Printer, Metafile

C Binding
int handle, planes, pat_dat[16*PLANES];
vsf_udpat(handle, pat_dat, planes);

Inputs

handle
planes

contrl[0] = 112 Opcode
control] = 0 Number of points in ptsin
contrl[3] = 16 X Number of input integers in intin

(16 * number of planes)
contrl[6] = n The (virtual) workstation device handle

The number of color bit planes
(contrl[3]/16)

pat_dat[0]
to

pat—dat[15]

intin[0]
to

intin[15] First bit plane of fill pattern

pat_dat[n—15] intin[n—15]
to to

pat_dat[n] intin[n] Last bit plane of fill pattern

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
vsf_interior()

296

vsl_udsty

Set User-Defined Line Style
vsl_udsty() Opcode=113
This function is used to supply the image data for the user-defined line pat
tern, pattern 7 of vsl_type(). The line pattern data takes the form of a single
16-bit word, each bit of which represents a pixel drawn in either the fore
ground color (1) or background color (0).

Devices required for
Screen, Metafile

C Binding
int handle, pattern;
vsl_udsty(handle, pattern);

Inputs

handle
pattern

Results

See also
vsl_type()

contrl[0] = 113 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] The line drawing pattern, expressed as a

16-bit word of image data

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

297

vr__recfl

Fill Rectangle
vr—recfl() Opcode=114
This function draws a rectangle filled with the current fill pattern and color.
The rendering of the filled figure is affected by the general graphics settings
and the fill settings, except for perimeter outlining (the rectangle created by
vr__recfl() is never outlined):
Writing mode (vswr_mode)
Clipping rectangle (vs_clip)
Fill color (vsf_color)
Fill interior style (vsf—interior)
Fill style index (vsf_style)

This command is most often used to clear large rectangular areas on the
screen quickly.

Devices required for
Screen, Metafile

C Binding
int handle, points[4];
vr_recfl(handle, points);

Inputs
contrl[0] = 114
contrl[lj = 2
contrl[3] = 1

handle contrl[6] = n
points[0] ptsin[0]
pointsflj ptsin[l]
points[2] ptsin[2]
points[3] ptsin[3]

Results
contrl[2]
contrl[4]

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
Left coordinate of the rectangle
Top coordinate of the rectangle
Right coordinate of the rectangle
Bottom coordinate of the rectangle

Number of points in ptsout
Number of output integers in intout

See also
vswr_mode(), vs_clip(), vsf_color(), vsf_interior(), vsf_style()

vqin_mode

Inquire Input Mode
vqin__mode() Opcode=115
This function is used to determine the input mode used by one of the logical
input devices (locator, string, valuator, or choice).

Devices required for
Screen

C Binding
int handle, device, mode;
vqin_mode(handle, device, &mode);

Inputs
contrl[0] = 115
contrl[l] = 0
contrl[3] = 1

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
Logical device to check

handle
device

contrl[6]
intin[0]

= n

1 = Locator
2 = Valuator
3 = Choice
4 = String

Results

mode

contrl[2] = 0
contrl[4] = 1
intout[0]

contrl[2] Number of points in ptsout
Number of output integers in intout
Input mode of device

1 = Request
2 = Sample

See also
vsin_mode()

299

vqt_extent

vqt_extent()
Inquire Text Extent

Opcode=116

Devices required for
Screen, Printer, Plotter

C Binding
int handle, points[8];
char string;
vqt_extent(handle, &string, points);

Inputs

handle
string[0]

contrl[0] = 116 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = s Number of characters in text string
contrl[6] = n The (virtual) workstation device handle
intin[0] First character of text string. Text is for

matted with one character per memory
word, with each character occupying the
low byte of the word.

string[s] intin[s] Last character of text string

Results
contrl[2] = 4 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

points[0] ptsout[0] Horizontal offset of point 1
points[l] ptsout[l] Vertical offset of point 1
points[2] ptsout[2] Horizontal offset of point 2
points[3] ptsout[3] Vertical offset of point 2
points[4] ptsout[4] Horizontal offset of point 3
points[5] ptsout[5] Vertical offset of point 3
points[6] ptsout[6] Horizontal offset of point 4
points[7] ptsout[7] Vertical offset of point 4

Points 1, 2, 3, and 4 refer to the bottom left, bottom right, top right, and
top left comers of the text string, respectively. Point 1 is located at the origin
for text strings that are rotated 0 degrees, point 2 is located at the origin for
strings that are rotated 270 degrees, point 3 is located at the origin for
strings that are rotated 180 degrees, and point 4 is at the origin when the
string is rotated 90 degrees. (See Figure 7-2.)

vqt_width

Inquire Character Cell Width
vqt_width() Opcode=117
This function can be used to learn the character cell width of a particular
character in the current text font (without making allowance for special ef
fects or baseline rotation). The character cell may include some of the blank
space surrounding the character.

Devices required for
All

C Binding
int handle, char, cellw, left-offset, right-offset, status;
status = vqt_width(handle, char, &cellw, &left_offset, &right_offset);

Inputs
contrl[0] = 117 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin

handle contrl[6] = n The (virtual) workstation device handle
char intin[0] Character whose width is inquired, for

matted so ASCII value is in the low byte
of the word.

Results

status

cellw

left-offset

right-offset

contrl[2] = 3
contrl[4] = 1
intout[0]

ptsout[0]
ptsoutfl]
ptsout[2]

ptsout[3]
ptsout[4]

ptsout[5]

Number of points in ptsout
Number of output integers in intout
Character about which information is re
turned (—1 if character requested was not
available)
Width of the character cell (in pixels)
0
Offset of the left side of the character
from the left edge of the character cell
0
Offset of the right side of the character
from the right edge of the character cell
0

301

vex_timv

Exchange Tinier Interrupt Vector
vex_timv() Opcode=118
This function allows you to add your own machine-language program to the
ST timer interrupt handler that executes every fixed period known as a timer
tick. Your routine should preserve all registers, should not call any non
reentrant ROM routines, and should end with an RTS instruction. The func
tion returns the address of the normal entry point of the system timer
routine, so that your routine may call that routine when it is finished.

Devices required for
Screen

C Binding
int handle, tick-length;
int *new_addr, *old_addr
vex_timv(handle, new_addr, old—addr, &tick_length);

Inputs

handle

new_addr

contrl[0] = 118 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6j = The physical screen device handle (ob

tained from graf—handle() call)
contrl[7-8] Long-word address of the user's timer

routine

Results

old—addr

tick_length

contrl[2] = 0 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout
contrl[9-10] Long-word address of the normal system

timer routine
intout[0] Length of time between timer ticks

(in milliseconds)

302

vst_load_fonts

Load Fonts
vst_load_fonts() Opcode=119
This function is used to load disk-based text fonts. In order to load disk-
based fonts on the ST, the GDOS extension (GDOS.PRG) must be loaded,
usually by placing the program in the AUTO folder of the disk with which
the system is started. Furthermore, the filenames of the fonts that available
for each device driver must be listed in a file called ASSIGN.SYS, located in
the top directory of the boot disk. Fonts cannot be loaded selectively; all
available fonts will be loaded at the same time.

Devices required for
Screen

C Binding
int handle, select, fonts_loaded;
fonts_loaded = vst_load_fonts(handle, select);

Inputs

handle
select

Results

fonts—loaded

contrl[0] = 119 Opcode
contrl[lj = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] = 0 Reserved for future use, set to 0

(may be used to selectively load fonts in a
future version of GEM)

contrl[2]
contrl[4]
intout[0]

0 Number of points in ptsout
1 Number of output integers in intout

Number of new fonts made available

See also
vst_unload_fonts()

303

n
vst_unload_fonts

Unload Fonts n
vst_unload_fonts() Opcode=120
This function is used to terminate the availability of disk-loaded fonts to a
particular device. If no other workstation is using those fonts, this function
also frees up the memory taken up by those fonts. You should unload disk-
based fonts whenever you are through using them.

Devices required for
Screen

C Binding
int handle, select;
vst_unload_fonts(handle, select);

Inputs

handle
select

Results

contrl[0] = 120 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 1 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle
intin[0] = 0 Reserved for future use, set to 0

(may be used to selectively load fonts in a
future version of GEM)

contrl[2] = 0 Number of points in ptsout

See also
vst_load_fonts()

n
n
n
n

304

vrt—cpyfm

Copy Raster, Transparent
vrt_cpyfm() Opcode=121
This function is used to copy a single-plane rectangular bit image to a des
tination memory area (usually in screen memory) that can be made up of
several color bit planes. The VDI uses a data structure called a Memory
Form Definition Block (MFDB) to describe the source and destination mem
ory areas. This data structure contains information about the memory loca
tion of image data, the size of the image in pixels and memory words, the
number of color planes, and format of the image, either standard (each color
bit plane separate), or ST-spedfic (color planes interleaved into one large bit
plane). For the purposes of this function, the source and destination forms
must both be in ST-spedfic format.

The call lets you specify the pen color that will be used to draw both
the foreground (one bits) and the background (zero bits), so the image can
be drawn in any color combination that you wish. The image may be copied
directly, or combined in various ways with the existing image data in the
destination area. Note that the writing modes used to combine the image are
not the same ones used by vro_cpyfm(), but rather the more limited set of
fered by vswr_mode().

Devices required for
Screen

C Binding
int handle, mode, points[8], pens[2];
struct fdbstr {

int *fd_addr;
int fd_w;
int fd_h;
int fd—wdwidth;
int fd—stand;
int fd_nplanes;
int fd_rl, fd_r2, fd_r3;

/* pointer to image data area */
/* image width in pixels */
/* image height in pixels */
/* image width in words */
/* standard format flag */
/* number of color bit planes */
/* reserved for future use */

} source, destination;
vrt_copyfm(handle, mode, points, source, destination, pens);

Inputs

handle
source

destination

mode

contrl[0] = 121
contrl[l] = 4
contrl[3] = 3
contrl[6] = n
contrl[7-8]

contrl[9-10]

intin[0]

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
Long-word address of the source Memory
Form Definition Block (MFDB)
Long-word address of the destination
Memory
Form Definition Block (MFDB)
The mode that determines how the source
combines with the destination:

305

vrt—cpyfm

n
n

pen[0] intin[l]

pen[l] intin[2]

points[0] ptsin[0]
points[l] ptsin[l]
points[2] ptsin[2]
points[3] ptsin[3]
points[4] ptsin[4]
points[5] • ptsin[5]
points[6] ptsin[6]
points[7] ptsin[7]

Results
contrl[2] = 0
contrl[4] = 0

1 = Replace
2 = Transparent
3 = XOR
4 = Reverse Transparent

The VDI pen color (index) for the 1 bits in
the image data (foreground).
The VDI pen color (index) for the 0 bits in
the image data (background)
Left edge of source rectangle
Top edge of source rectangle
Right edge of source rectangle
Bottom edge of source rectangle
Left edge of destination rectangle
Top edge of destination rectangle
Right edge of destination rectangle
Bottom edge of destination rectangle

Number of points in ptsout
Number of output integers in intout

n

0

See also
vro_cprfm()

306

v__show__c

Show Mouse Pointer
v_show_c() Opcode=122
This function is used to display the mouse pointer, which tracks the move
ment of the mouse on screen. Whether or not a call to this function actually
displays the pointer depends on how many times Hide Mouse Pointer
(v_hide_c) has been called previously. Each time v_hide_c() is called,
pointer visibility is pushed down one level further. Therefore, if v_hide_c()
is called twice, v__show_c() must also be called twice before the pointer be
comes visible. This function provides a reset flag, however, which resets the
counter that keeps track of how many times the pointer has been hidden. By
using this flag, you may specify that the pointer become visible regardless of
the level at which it was hidden.

Devices required for
Screen

C Binding
int handle, reset;
v_show_c(han<He, reset);

Inputs
122 Opcode
0 Number of points in ptsin
1 Number of input integers in intin
n The (virtual) workstation device handle

Reset flag
0 = Reset counter, and display

pointer regardless of number of
times hidden

<> 0 = Move pointer visibility up one
level, and display if only hidden
once.

contrl[0]
contrl[l]
contrl[3]

handle contrl[6]
reset intin[0]

Results

See also
v_hide_c()

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

307

v_hide_c

Hide Mouse Pointer
v_hide_c() Opcode=123
This function removes the mouse pointer that tracks the mouse movements
on the screen. Each time this function is called, a counter increments the
level at which the pointer is hidden, so that an equal number of v_show__c()
calls must be made before the pointer becomes visible again.

Devices required for
Screen

C Binding
int handle;
v_hide_c(handle);

Inputs

handle

contrl[0] = 123 Opcode
contrlfl] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle

Results
contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout

See also
v_show_c()

vq_mouse

Sample Mouse Button State
vq_mouse() Opcode=124
This function is used to discover if either or both mouse buttons are cur
rently being pressed. It also returns the current screen position of the mouse
pointer.

Devices required for
Screen, Plotter

C Binding
int handle, button, x, y;
vq_mouse(handle, &button, &x, &y);

Inputs

handle

contrl[0] = 124 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6] = n The (virtual) workstation device handle

Results

button

contrl[2] = 1 Number of points in ptsout
contrl[4] = 1 Number of output integers in intout
intout[0] Mouse button status:

0 = No buttons pressed
1 = Left button pressed
2 = Right button pressed
3 = Both buttons pressed

y
x ptsout[0] Horizontal position of the mouse pointer

ptsout[l] Vertical position of the mouse pointer

309

n
vex_butv n

Exchange Button Change Vector
vex_butv() Opcode=125
This function allows you to add your own machine language program to the
ST mouse button interrupt handler that executes every time that a mouse
button is pressed. Your routine should preserve all registers, should not call
any non-reentrant ROM routines, and should end with an RTS instruction.
At the point that your program executes, the mouse button status is con
tained in register DO, represented in the same manner as in vq_mouse().
The function returns the address of the normal entry point of the system
timer routine, so that your routine may call that routine when it is finished.

Devices required for
Screen

C Binding
int handle;
int *new_addr, *old_addr
vex_timv(handle, new_addr, old_addr);

Inputs

handle

new_addr

Results

old—addr

contrl[0] = 125 Opcode
contrl[l] = 0 Number of points in ptsin
contrl[3] = 0 Number of input integers in intin
contrl[6] = n The physical screen device handle

(obtained from graf_handle() call)
contrl[7-8] Long-word address of the user's mouse

button routine.

contrl[2] = 0 Number of points in ptsout
contrl[4] = 0 Number of output integers in intout
contrl[9-10] Long-word address of the normal system

mouse button routine.

n
n
n

310

n

n
n

vex_motv

Exchange Mouse Movement Vector
vex—motv() Opcode=126
This function allows you to add your own machine language program to the
ST mouse movement interrupt handler that executes every time that the
mouse changes position. At the time your program executes, register DO
contains the horizontal position of the mouse, and the Dl contains the verti
cal position. Your routine should preserve all registers, should not call any
non-reentrant ROM routines, and should end with an RTS instruction. The
function returns the address of the normal entry point of the system timer
routine, so that your routine may call that routine when it is finished.

Devices required for
Screen

C Binding
int handle;
int *new_addr, *old_addr
vex_motv(handle, new_addr, old—addr);

Inputs

handle

new_addr

Results

old_addr

contrl[0] = 126
contrlfl] = 0
contrl[3] = 0
contrl[6] = n

contrl[7-8]

contrl[2] = 0
contrl[4] = 0
contrl[9-10]

Opcode
Number of points in ptsin
Number of input integers in intin
The physical screen device handle
(obtained from graf—handle() call)
Long-word address of the user's mouse
movement routine.

Number of points in ptsout
Number of output integers in intout
Long-word address of the normal system
mouse movement routine.

311

n
vex_curv

Exchange Cursor Change Vector
vex_curv() Opcode=127
This function allows you to add your own machine language program to the
ST mouse pointer interrupt handler that executes every time that the mouse
pointer is to be redrawn. At the point at which your code executes, the hori
zontal position of the mouse pointer is stored in register DO, and its vertical
poisiton in register Dl. Your routine should preserve all registers, should not
call any non-reentrant ROM routines, and should end with an RTS instruc
tion. The function returns the address of the normal entry point of the sys
tem timer routine, so that your routine may call that routine when it is
finished.

Devices required for
Screen

C Binding
int handle;
int *new_addr, *old_addr
vex_curv(handle, new_addr, old—addr);

Inputs

handle

contrl[0] = 127
contrl[l] = 0
contrl[3] = 0
contrl[6] = n

new_addr contrl[7-8]

Results

old—addr

contrl[2] = 0
contrl[4] = 0
contrl[9-10]

Opcode
Number of points in ptsin
Number of input integers in intin
The physical screen device handle
(obtained from graf—handle() call)
Long-word address of the user's mouse
pointer routine.

Number of points in ptsout
Number of output integers in intout
Long-word address of the normal system
mouse pointer redraw routine.

0

n
n
f V

n

312

n
n
n
n

vq—key—s

Sample Keyboard State Information
vq_key_s() Opcode=128
This function is used to learn whether or not the Control, Left Shift, Right
Shift, and/or Alt keys are currently being pressed.

Devices required for
Screen

C Binding
int handle, key;
vq_key_s(handle, &key);

Inputs

handle

Results

contrl[0]
contrl[l]
contrl[3]
contrl[6]

128
0
0

= n

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle

key

contrl[2]
contrl[4]
intout[0]

Number of points in ptsout
Number of output integers in intout
Keypress status
The status for each key is returned in one
of the four low bits of this word. Bits are
assigned as follows:
Bit Value Key
0 1 Right Shift
1 2 Left Shift
2 4 Control
3 8 Alt

A one bit in any of these places means the
key is pressed. For example, a value of 10
means that both the Alt key (8) and the
Left Shift (2) are pressed.

313

n

vs_clip()

vs_clip

Set Clipping Rectangle
Opcode=129

This function is used to turn clipping on and off. When clipping is on, out
put of all of the VDI graphics functions is restricted to a particular rectangu
lar area. Output directed to areas outside of that rectangle is ignored.
Clipping is particularly useful for confining output to the within the bound
aries of a window.

Devices required for
Screen, Printer, Metafile

C Binding
int handle, dip_flag, points[4];
vs_dip (handle, clip_Jflag, points);

n
n
n
n

Inputs
contrl[0] = 129
contrl[l] = 2
contrl[3] = 1

handle contrl[6] = n
dip_flag intin[0]

points[0] ptsin[0]
pointsfl] ptsin[lj
points[2] ptsin[2]
points[3] ptsin[3]

Results
contrl[2] = 0
contrl[4] = 0

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
Clipping Flag
0 = clipping off
<> 0 = dipping on
Left edge of clipping rectangle
Top edge of clipping rectangle
Right edge of dipping rectangle
Bottom edge of clipping rectangle

Number of points in ptsout
Number of output integers in intout

! i

314

n
n
n

n

vqt—name

Inquire Face Name and Index
vqt_name() Opcode=130
This function returns a character string containing the name and style infor
mation about a text font. It also returns the font ID number, which is needed
to set this font as the current graphics text font (with a call to vst_font).

Devices required for
Screen, Printer, Plotter

C Binding
int handle, number, id;
char name[32];
id = vqt_name (handle, number, name);

Inputs

handle
number

contrl[0]
contrl[l]
contrl[3]
contrl[6]
intin[0]

130
0

= 1
= n

Results

id

contrl[2] = 0
contrl[4] = 33
intout[0]

name[0-31] intout[l-32]

See also
vst_font()

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle
Font number. Font numbers are arbitrary
numbers that range from 1 (the system
font) to the maximum number of fonts.
They are assigned in numeric order of ID
numbers, so if there are three fonts with
ID numbers of 1, 50, and 12, the font with
ID number 1 will have a font number of
1, ID 12 will be font 2, and ID 50 will be
font 3.

Number of points in ptsout
Number of output integers in intout
Font ID number. This number is actually
part of the font information itself, and is
assigned when the font is created. It is
needed to set this font as the current
graphics text font when calling vst_font().
The text name string. This string is for
matted so that each character is set into a
separate 16-bit member of the intout ar
ray, with the ASCII value of the character
in the low byte, and a zero in the high
byte. The first 16 characters of the string
contain the name of the fonts, and the last
16 describe its thickness and style (such as
whether this is a bold or italic variation).

315

Hi i

_____________________ vqt—font-info_____________________

Inquire Current Face Information
vqt-Jont—info() Opcode=131
This function returns information about the size of the current graphics text
font, including information about the size changes brought about by special
effects.

Devices required for
All

C Binding
int handle, minchar, maxchar, maxwidth, distances[5], effects[3];
vqt_font_info(handle, &minchar, &maxchar, distanches, &maxwidth,
effects);
Note: Some versions of the Alcyon and Megamax bindings assign this func
tion the name vqt—fontinfo(), instead of vqt_font_info().

Inputs

handle

contrl[0] =
contrl[l] =
contrl[3] =
contrl[6] =

131
0
0
n

Results

minchar

contrl[2] =
contrl[4] =
intout[0]

5
2

maxchar intoutfl]

maxwidth ptsout[0]

distances[0] ptsout[l]

effects[0] ptsout[2]

distances[l] ptsout[3]

effects[l] ptsout[4]

distances[2] ptsout[5]

effects[2] ptsout[6]

distances[3] ptsout[7]

distances[4]
ptsout[8]
ptsout[9]

Opcode
Number of points in ptsin
Number of input integers in intin
The (virtual) workstation device handle

Number of points in ptsout
Number of output integers in intout
The ASCII character number of the first
character in this type face.
The ASCII character number of the last
character in this type face.
The maximum character cell width in this
type face, not including special effects.
The distance from the baseline to the bot
tom line.
The total increase in character width due
to current special effects.
The distance from the baseline to the de
scent line.
The increase in character width on the left
due to current special effects.
The distance from the baseline to the half
line.
The increase in character width on the
right due to current special effects.
The distance from the baseline to the as
cent line.
0
The distance from the baseline to the top
line.

n

n

n
n

316

n

n
n
n

□

n
n

n

n

m

n

n
n
0

I I

Li

The VDI string input functions (vrq_string and
vsm_string) may return a two-byte value for every key
pressed, rather than a simple one-byte ASCII code. The first
byte of this keycode is generally a unique key identifier that
refers to the physical key struck, regardless of shift key com
binations. The second byte is usually the ASCII value of the
key combination, which does depend on the state of the shift
keys (Shift, Control, and Alt). The following table shows the
keycodes, as 4-digit hexadecimal numbers, for all key and shift
combinations..

Main Keyboard
Unshifted Shift CTRL ALT
a 1E61 A 1E41 1E01 1E00
b 3062 B 3042 3002 3000
c 2E63 C 2E43 2E03 2E00
d 2064 D 2044 2004 2000
e 1265 E 1245 1205 1200
f 2166 F 2146 2106 2100
g 2267 G 2247 2207 2200
h 2368 H 2348 2308 2300
i 1769 I 1749 1709 1700
j 246A J 244A 240A 2400
k 256B K 254B 250B 2500
1 266C L 264C 260C 2600
m 326D M 324D 320D 3200
n 316E N 314E 310E 3100
o 186F O 184F 180F 1800
P 1970 P 1950 1910 1900
q 1071 Q 1051 1011 1000
r 1372 R 1352 1312 1300
s 1F73 S 1F53 1F13 1F00
t 1474 T 1454 1414 1400
u 1675 U 1655 1615 1600
V 2F76 V 2F56 2F16 2F00
w 1177 W 1157 1117 1100
X 2D78 X 2D58 2D18 2D00
y 1579 Y 1559 1519 1500
z 2C7A Z 2C5A 2C1A 2C00

319

Appendix B

1 0231 j 0221 0211 7800
2 0332 @ 0340 0300 7900
3 0433 # 0423 0413 7A00
4 0534 $ 0524 0514 7B00
5 0635 % 0625 0615 7C00
6 0736 A 075E 071E 7D00
7 0837 & 0826 0817 7E00
8 0938 * 092A 0918 7F00
9 0A39 (0A28 0A19 8000
0 0B30) 0B29 0B10 8100
— 0C2D 0C5F 0C1F 8200
= 0D3D + 0D2B 0D1D 8300/ 2960 297E 2900 2960
\ 2B5C 1 2B7C 2B1C 2B5C

[1A5B { 1A7B 1A1B 1A5B
] 1B5D } 1B7D IBID 1B5D
/ 273B 273A 271B 273B
/ 273B * 273A 271B 273B/ 2827 // 2822 2807 2827
/ 332C < 333C 330C 332C

342E > 343E 340E 342E
/ 352F ? 353F 350F 352F
Space 3920 3920 3900 3920
Esc 011B 011B 011B 011B
Backspace 0E08 0E08 0E08 0E08
Delete 537F 537F 531F 537F
Return 1C0D 1C0D ICO A 1C0D
Tab 0F09 0F09 0F09 0F09

Cursor Pad
Unshifted Shift CTRL ALT
Help 6200 6200 6200 (screen print)
Undo 6100 6100 6100 6100
Insert 5200 5230 5200 (left mouse button)
Clr/Home 4700 4737 7700 (right mouse button)
Up-Arrow 4800 4838 4800 (move mouse up)
Dn-Arrow 5000 5032 5000 (move mouse dn)
Rt-Arrow 4B00 4B34 7300 (move mouse rt)
Lft-Arrow 4D00 4D36 7400 (move mouse 1ft)

320

Extended Keyboard Codes

Numeric Pad
Unshifted Shift CTRL ALT
(6328 6328 6308 6328
) 6429 6429 6409 6429
/ 652F 652F 650F 652F
* 662A 662A 660A 662A
- 4A2D 4A2D 4A1F 4A2D
+ 4E2B 4E2B 4E0B 4E2B
712E 712E 710E 712E
Enter 720D 720D 720A 720D
0 7030 7030 7010 7030
1 6D31 6D31 6D11 6D31
2 6E32 6E32 6E00 6E32
3 6F33 6F33 6F13 6F33
4 6A34 6A34 6A14 6A34
5 6B35 6B35 6B15 6B35
6 6C36 6C36 6C1E 6C36
7 6737 6737 6717 6737
8 6838 6838 6818 6838
9 6939 6939 6919 6939

Function Keys
Unshifted Shift CTRL ALT
FI 3B00 5400 3B00 3B00
F2 3C00 5500 3C00 3C00
F3 3D00 5600 3D00 3D00
F4 3E00 5700 3E00 3E00
F5 3F00 5800 3F00 3F00
F6 4000 5900 4000 4000
F7 4100 5A00 4100 4100
F8 4200 5B00 4200 4200
F9 4300 5C00 4300 4300
F10 4400 5D00 4400 4400

Appendix C

n

n
n

n
n

n

n
n

n
D

Li

u Font files for VDI disk-based fonts are divided into
four sections. The first, called the font header, contains infor-

 ̂ I mation about the font such as first and last character in the
d font, font size, font name, and so on. The font header is 87

bytes long, and is laid out in the following format:
I f Byte

Number Description
0-1 Font ID. This value is used by the vst_font() function to

make this the current graphics text font. It's one of the
values returned by the vqt__name() function.

2-3 Font size (in points).
4-35 Font name and style information. This is a 32-character

text string, with each character occupying the low byte of
its own 16-bit word. The first 16 characters give the name
of the font, while the last 16 describe special characteris
tics, such as thickness and style. This text string is one of
the values returned by vqt_name().

36-37 First character. The ASCII value of the first character in
the font. This value is returned by vqt_fonL_info().

38-39 Last character. The ASCII value of the last character in the
font. This value is returned by vqt_font_info().

40-41 Top line distance. The distance in pixels from the baseline
to the top line. This value is returned by vqt_font_info().

42-43 Ascent line distance. The distance in pixels from the base
line to the ascent line. This value is returned by
vqt_font_info().

44-45 Half line distance. The distance in pixels from the baseline
to the half line. This value is returned by vqt_font_info().

46-47 Descent line distance. The distance in pixels from the
baseline to the descent line. This value is returned by
vqt_font_info().

j | 48-49 • Bottom Distance. The distance from the baseline to the
1 bottom line. This value is returned by vqt_font_info().

50-51 Character Width. The width of the widest character in the
font.

52-53 Cell Width. The width of the widest character cell in the
font. This value is returned by vqt_font_info().

54-55 Left offset. The number of pixels added to left side of
character by special effects. This value is returned by
vqt_font_info().

56-57 Right Offset. The number of pixels added to right side of
character by special effects. This value is returned by
vqt_font_info().

58-59 Thickening width. The number of pixels added to the
width of a character by the thickening special effect.

325

U

U

Li

U

Appendix C

60-61 Underline size. The width in pixels of the line used to un
derline a character.

62-63 Lightening mask. The 16-bit mask used to remove pixels
from the character for the lightening special effect. The
pattern 0 X 5555, which removes every other pixel, is the
one most commonly used for this purpose.

64-65 Skewing mask. A 16-bit mask used to determine how to
shift the character's image data for skewing (italics). The
pattern 0 X 5555 is the one most commonly used for this
purpose.

66-67 Font flags. Each flag occupies one bit:
Bit Value Description
0 1 Set to 1 if this is the default system font
1 2 Set to 1 if there's a horizontal offset table
2 4 Byte-orientation flag. Set to 1 if data is in

high-byte, low-byte order used by 6800
processor

3 8 Set to 1 if this is a mono-spaced font.
68-71 Horizontal offset table pointer. The number of bytes from

the beginning of the file to the horizontal offset table.
72-75 Character offset table pointer. The number of bytes from

the beginning of the file to the character offset table.
76-79 Font data pointer. The number of bytes from the begin

ning the file to the start of font image data.
80-81 Form width. The number of bytes required to hold the

combined widths of all of the characters in the font (total
character widths divided by 8).

82-83 Form height. Same as the font height in pixels.
84-87 Pointer to the next font. These four bytes are place

holders for a pointer to the next font which is set by the
device driver.

Character table offset. The next section is called the char
acter offset table. This table contains the offset for the charac
ters' image data from the beginning of the image data table.
This offset is equal to the sum of the widths of all of the pre
ceding characters. For example, let's say the first character in
the font has an ASCII value of 32. Its offset is the first entry in
the offset table, which always has a value of zero. If that char
acter is 4 pixels wide, the second entry, for character 33, will
be four. The width of character 33 will be added to four to ob
tain the value for the third entry, which covers character 34.
You can find the width of any individual character by sub
tracting its offset from that of the following character. That

326

means that there will have to be one more entry in the table
than there are characters, since you need to subtract the offset
for the last character from that of the following one. Note that
this table is necessary even for fonts whose characters all have
the same widths (called mono-spaced fonts).

Horizontal offset table. The third section is an optional
horizontal offset table. This table contains one entry per char
acter, showing the additional number of pixel spaces (positive
or negative) that should be added before the character is out
put. A bit in the flag word of the header table indicates
whether or not there is a horizontal offset table.

Actual image data. The final section is the actual image
data for the characters in the font. Character data is formatted
with all of the data for each scan line of all of the characters
following one after the other. The data for the first line of the
first character is followed by the data for the first line of the
second character, and so on. Each scan line starts on a word
boundary, but within a scan line the characters are not byte-
or word-aligned. That means that if each character is six bits
wide, the first character uses the first six bits in the first byte,
and the second character uses the last two bits of the first byte
and the first four bits of the next byte. Only at the end of the
scan line is padding added to make the next scan line start on
a word boundary.
Important Note
The few disk-based fonts that were available for examination
at the time of this writing were arranged in the Intel format
used by the IBM version of GEM. This means that 16-bit val
ues are formatted with the low byte first and the high byte
second, and 32-bit values are stored with the least significant
byte first, followed by increasingly significant bytes. For ex
ample, in the font header, if the 16-bit font ID has a value of
2, the number appears in the header with the two-byte fol
lowed by the-zero byte.

Appendix D

System Characters

This appendix includes all the system font.
The font supports all characters from 0 through 255.

0 13 c R 26 a 39 1

1 0 14 J 27 S 40 (

2 O’ 15 28 (C 41)

3 16 0 29 5 42 *

4 <i 17 j 30 X 43 +

5 0 18 J 31 * 44 1

6 R 19 3 32 Space 45 -

7 K 20 ^ 33 1 • 46 ,

8 'Z 21 5 34 » 47 /

9 0 22 g 35 ft 48 B

10 |L 23 T 36 £ 49 1

11 J* 24 8 37 7. 50 2

12 F 25 3 38 & 51 3
331

Appendix D

52 4

53 5

54 £

55 7

56 8

57 9

58 !

59 ;

60 <

61 =

62 >

63 ? ■

64 @

65 fl

332

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

K

L

H

78 N

79 0

75

76

77

80 p
81 Q

82 R

83 S

84 T

85 U

86 V

87 H

88 X

89 V

90 Z

91 [

92 \

93]

94

95

96

97 8

98 b

99 Q

100 (|

101 0

102 f

103 g

104 h

105 i

106 j

107 k

J 1

n
n
n
n

n

n

n
n
n

I /

System Characters

u
108 1 122 z 136

A
e 150

Au

u
109 n 123 { 137

■ ■
e 151

X
u

u
110 n 124 1 138 e 152

• •
y

111 0 125 > 139
u m

i 153
■ ■
0

112 P 126 140
A
1 154

■ ■
u

113 q 127 A 141
X
1 155 c

114 r 128 C
142 if 156 £

115 s 129
■ ■
u 143 157 ¥

116 t 130
*

e 144 t 158 P

117 u 131
A
a 145 s 159 f

u
118 V 132

■ ■
a 146 IE 160 a

u 119 M 133
%
a 147

A
0 161

*

i

Li 120 X 134
o
a 148

■ m

0 162 0

\ i

o 121 y 135 c 149
X
0 163

*

u

1—J 333

Appendix D

164
w

n 178 0 192
■ ■

y 206 n

i *

n
165

tv
N 179 e 193 II 207 j n

166 a 180 <E 194 N 208 0 n
167 0 181 IE 195 1 209 ii

168
■

182
X

R 196 A 210 g

169 r 183 R 197 1 211 s

170 i 184
w

0 198 n 212 i>

171 185
■ ■

199 l 213

172 k 186
*

200 T 214 El

173 m
I 187 T 201 n 215 n

174 <£ 188 SI 202 u 216 1 n

175 189 0 203 n 217 1 <— >) i

176
tv
a 190 ® 204 3 218 n H

177 0 191 1M 205 219 n n

System Characters

\ f

248

249

250

g 220 1 234 8

i , 221 § 235 S

1 I 222 A 236 d)

223 w 237 0 251 V

224 K 238 £ 252 n

225 P 239 f | 253 2

226 r 240 S 254 3

227 tf 241 + 255 -

228 2 242 >

229 0 243 <

J J 230 JJl 244 p

I J 231 f 245 J

U 232 § 246 T

233 G 247 S

335

n
n
D

n
n

n
n
n

n
n

Index by Function
Function Opcode Function

Number
Pages

v_arc() 11 2 22, 54-55, 231-32
v_bar() 11 1 22, 107, 230
v_bit_image() 5 23 224
v_cirde() 11 4 22, 108, 235
v_clear_disp_list 5 22 223
v_clrwk() 3 6, 7-8, 9, 30, 200
v_clsvwk() 101 30, 281
v_clswk() 2 30, 199
v_contourfill 103 112, 285
v_curdown() 5 5 164, 206
v_curhome() 5 8 164, 209
v_curleft() 5 7 164, 208
v_curright() 5 6 164, 207
v_curtext 5 12 163-64, 165, 213
v_curup() 5 4 164, 205
v_dspcur() 5 18 219
v_eeol() 5 10 165, 211
v_eeos() 5 9 165, 210
v_ellarc() 11 6 22, 56, 237
v_ellipse() 11 5 22, 108, 236
v_ellpie() 11 7 22, 109, 238
v_enter_cur() 5 3 163, 204
vex_butv() 125 188, 189, 310
vex_curv() 127 188, 312
vex_motv() 126 188, 311
vex_timv() 118 188, 302
v_fillarea() 9 110, 229
v_form_adv() 5 20 221
v_get_pixel() 105 75, 287
v_gtext() 8 144, 168, 227-28
v_hardcopy() 5 17 218
v_hide_c() 123 178, 308
v_justified() 11 10 22, 148, 241-42
v_opnvwk() 100 16, 20, 21, 42, 276-80
v_opnwk() 1 13, 15, 21, 195-98
v_output_window() 5 21 222
v -p ie () 11 3 233-34
v_pline() 6 46, 225
v_pmarker() 7 41, 226
vq_chcells() 5 1 165, 202
vq_color() 26 75, 258
vq_curaddress 5 15 164, 216
vq_exit_cur() 5 2 163, 203
vq_extnd() 102 27, 282-84
vqf_attributes() 37 105, 273
vqin_mode() 115 180, 299
vq_key_s() 128 179, 313
vql_attributes() 35 53, 271
vqm__attributes() 36 45, 272
vq_mouse() 124 32, 176, 309

337

Function Opcode Functi
Numt

vq_tabstatus() 5 16
vqt_attributes() 38
vqt_extent() 116

vqt_fontinfo() 131
vqt_name() 130
vqt_width() 117
v_rbox() 11 8
v_rfbox() 11 9
v_rmcur() 5 19
vro_cpyfm() 109
vrq_choice() 30
vrq_Jocator() 28
vrq_string() 31
vrq_valuator() 29
vr_recfl() 114
vrt_cpyfm() 121
vr_tmfm() 110
v_rvoff() 5 14
v_rvon() 5 13
vsc_form() 111
vs_dip() 129
vs_color() 14
vs_curaddress 5 11
vsf_color() 25
vsf_interior() 23
vsf_perimeter() 104
vsf_style() 24
vsf—udpat() 112
v_show—c() 122
vsin_mode() 33
vsl_color() 17
vsL.ends() 108
vsl_type() 15
vsl—udsty() 113
vsL_width() 16
vsm_choice() 30
vsm_color() 20
vsm_height() 19
vsm_locator() 28
vsm_string() 31
vsm_type() 18
vsm_valuator() 29
vst—alignment 39
vst_color() 22
vst_effects() 106
vst_font() 21
vst_height() 12
vst—load—fonts() 119
vst_point() 107
vst_rotation() 13
vst—unload—fonts() 120
vswr_mode() 32
v_updwk() 4

Pages

217
162, 274
149, 300
149, 160-62, 316
157, 315
149, 301
22, 56, 239
22, 107, 240
220
123-28, 132, 291-92
185, 263
181, 259
182, 265-66
186, 261
93, 124, 298
128, 131-33, 305-06
125, 129, 293
165, 215
165, 214
177, 294-95
85, 314
72, 245-46
164, 212
16, 105, 257
16, 94, 255
105, 286
16, 95, 256
100, 103, 296
178, 307
180, 270
16, 50, 71, 249
52, 290
16, 48, 247
49, 297
51, 248
185, 264
43, 71, 252
43, 251
181, 260
182-83, 267-68
16, 42, 250
186, 262
145-46, 275
16, 152, 168, 254
153, 288
16, 58, 253
155, 243
157, 303
156, 289
151, 244
158, 304
79, 123, 131, 269
30, 210

338

Index by Opcode
Function Opcode Function

Number
Pages

v_opnwk() 1 13, 15, 21, 195-98
v_clswk() 2 30, 199
v_clrwk() 3 6, 7-8, 9, 30, 200
v_updwk() 4 30, 210
vq_chcells() 5 1 165, 202
vq_exit_cur() 5 2 163, 203
v_enter_cur() 5 3 163, 204
v_curup() 5 4 164, 205
v_curdown() 5 5 164, 206
v_curright() 5 6 164, 207
v_curleft() 5 7 164, 208
v_curhome() 5 8 164, 209
v_eeos() 5 9 165, 210
v_eeol() 5 10 165, 211
vs_curaddress 5 11 164, 212
v_curtext 5 12 163-64, 165, 213
v_rvon() 5 13 165, 214
v__rvoff() 5 14 165, 215
vq_curaddress 5 15 164, 216
vq_tabstatus() 5 16 217
v_lhardcopy() 5 17 218
v_dspcur() 5 18 219
v_rmcur() 5 19 220
v_form_adv() 5 20 221
v_output_window() 5 21 222
v_dear_disp_list 5 22 223
v_bit_image() 5 23 224
v_pline() 6 46, 225
v_pmarker() 7 41, 226
v_gtext() 8 144, 168, 227-28
v_fillarea() 9 110, 229
v_bar() 11 1 22, 107, 230
v_arc() 11 2 22, 54-55, 231-32
v -p ie () 11 3 233-34
v _ d rd e() 11 4 22, 108, 235
v_ellipse() 11 5 22, 108, 236
v_ellarc() 11 6 22, 56, 237
v_ellpie() 11 7 22, 109, 238
v_rbox() 11 8 22, 56, 239
v_rfbox() 11 9 22, 107, 240
v_justified() 11 10 22, 148, 241-42
vst_height() 12 155, 243
vst_rotation() 13 151, 244
vs_color() 14 72, 245-46
vsl_type() 15 16, 48, 247
vsl_width() 16 51, 248
vsl_color() 17 16, 50, 71, 249
vsm_type() 18 16, 42, 250
vsm_height() 19 43, 251
vsm_color() 20 43, 71, 252

339

Function Opcode Function Pages
Number

vst_font() 21 16, 58, 253
vst_color() 22 16, 152, 168, 254
vsf_interior() 23 16, 94, 255
vsf_style() 24 16, 95, 256
vsf_color() 25 16, 105, 257
vq_color() 26 75, 258
vrq_locator() 28 181, 259
vsm_locator() 28 181, 260
vrq_valuator() 29 186, 261
vsm_valuator() 29 186, 262
vrq_choice() 30 185, 263
vsm_choice() 30 185, 264
vrq_string() 31 182, 265-66
vsm_string() 31 182-83, 267-68
vswr_mode() 32 79, 123, 131, 269
vsin__mode() 33 180, 270
vqL_attributes() 35 53, 271
vqm_attributes() 36 45, 272
vqL_attributes() 37 105, 273
vqt_attributes() 38 162, 274
vst_alignment 39 145-46, 275
v_opnvwk() 100 16, 20, 21, 42, 276-80
v_clsvwk() 101 30, 281
vq_extnd() 102 27, 282-84
v_contourfill 103 112, 285
vsf_perimeter() 104 105, 286
v_get_pixel() 105 75, 287
vst_effects() 106 153, 288
vst_point() 107 156, 289
vsl_ends() 108 52, 290
vro__cpyfm() 109 123-28, 132, 291-92
vr_tm _fm () 110 125, 129, 293
vsc_form() 111 177, 294-95
vsf_udpat() 112 100, 103, 296
vsL_udsty() 113 49, 297
vr_recfl() 114 93, 124, 298
vqin_mode() 115 180, 299
vqt_extent() 116 149, 300
vqt_width() 117 149, 301
vex_timv() 118 188, 302
vst_load_fonts() 119 157, 303
vst_unload_fonts() 120 158, 304
vrt_cpyfm() 121 128, 131-33, 305-06
v_show_c() 122 178, 307
v_hide_c() 123 178, 308
vq_mouse() 124 32, 176, 309
vex_butv() 125 188, 189, 310
vex_motv() 126 188, 311
vex_curv() 127 188, 312
vq_key_s() 128 179, 313
vs_dip() 129 85, 314
vqt_name() 130 157, 315
vqt__font_info() 131 149, 160-62, 316

340

Index
absolute pixel height 155
action point of the pointer 176
actual image data 327
AES 4
Alcyon C 9
"align.c" program listing 146-47
alphanumeric mode 144, 162-67
"alphmode.c" program listing 167
alt key 179
application environment services. See

AES
AREA 114
area fill 110-11
"areafill.c" program listing 111
ascent line 145
ASK MOUSE 189
ASK RGB 89
aspect ratio 24
assembly language program shell 32-38
ASSIGN.SYS 4, 13
"assign.sys" program listing 17
attribute settings 3
AUTO folder 4
baseline 145
basepage 37
bindings, GEM 9
bit bUt 119
bit block transfer 119
bit image 119
bit planes 101-03
blitter chip 119
block storage segment. See BSS
bottom lines 145
BOX 114
BSS 37
C program shell 30-32
cell 44, 145
character height 155-56
character rotation 150-52
character table offset 326-27
choice device 180, 185-86
circle 54
CIRCLE 63
"dip.c" program listing 86
clipping 85-86
COLOR 63, 113, 168
"colorl.c" program listing 76-77
color bit planes 101-02
color information, locating 74-77
color mask 77, 78
color monitor 16
color pens, default values table 74

color register and color values table 73
color registers 71-73
color settings 69-77
color value and register values table 73
"colorpat.c" program listing 104
colors, mixing 73-74
contrl array 5-6
control key 179
copy raster opaque 123-28
copy raster transparent 131-37
"copymode.c" program listing 126-27
"copytran.c" program listing 133-37
cursor movement functions 164
DEC VT-52 terminal 165
descent line 145
device 4 189
device driver file 13-14
device identification number 5, 13-14
Digital Research GEM bindings 9
"diskfont.c" program listing 159-60
display device 15
display device numbers 17-18
drawing modes 77-85
drawing operation 26
DRAWMODE 89, 138-39
"drawmode.bas" program listing 90
"drawmode.c" program listing 81-82
"drawmode.s" program listing 82-85
"dummy.c" program listing 31
"dummy.s" program listing 38
"effects.c" program listing 154
ellipse 54
ELLIPSE 63
escape function 162-66
extended basic input/output system.

See XBIOS
extended inquire 27-29
extended keyboard codes 319-21
FILL 113
fill color 105-15
fill commands, BASIC 113-15
fill settings inquiry 105-06
"fill.bas" program listing 114-15
filled shape generalized drawing

primitives (GDPs) 106-10
"fillmode.c" program listing 109-10
"fillpatc" program listing 95-96
"fillpat.s" program listing 96-99
flood fill 111-13
"flood.c" program listing 112-13
font file, VDI 325-27
font header 325-26

341

fonts, text
setting 158
unloading 158-59
using disk-based 156-58

fringe 121
function reference, VDI 195-316
GDOS 4,13, 87
GDOS extensions 156
GDOS.PRG 4,13
GDP 22, 25, 54
"gdplinel.c" program listing 57-58
"gdplines.s" program listing 59-63
GDPs 106
GEM 3
GEM standard format 122
GEM workstation 13

opening 13
generalized drawing primitives. See

GDP
GET 138
getrez 18
GOTOXY 158
graphics device operating system.

See GDOS
graphics environment manager operat

ing system. See GEM
graphics object 77, 78
graphics settings, BASIC 89-90
graphics text 143-62
graphics text from assembly language

169-71
GSHAPE 138
half line 145
handle 15, 20
hatch pattern fill 94
hollow fill pattern 94, 106
horizontal offset table 327
hot spot 176
INP 189
INPUT 189
input array 16-21
input functions, BASIC 189
input functions, VDI 3, 175-89
inquiry commands 3
interleaved bit-map 122
interrupt basis 186
intin 5
intout 5
inverse video 78
keyboard 189
keyboard codes, extended 319-21
Lattice C 10
line-drawing, assembly language 58
line-drawing GDPs 54
line-drawing, ST BASIC 63-64
LINEF 64

LINEPAT 64
lines 46-58

color 50-51
end styles 52-54
patterned 47-49
width 51

"lines.bas" program listing 64-65
locator device 180, 181-82
logical input device 180-86
machine-specific format 122
marker 41-46
marker types 42
MAT DRAW 64
MAT LINEF 64
MCC BASIC 8
Megamax C 9
memory form definition block. See

MFDB
MFDB 119-21
micron 24
microspace justification 147-48
monochrome screen 16
mono-spaced fonts 327
mouse 176
mouse button press 187
mouse movement routine 187
mouse ponter 176-79
mouse pointer redraw 187
"mousebox.bas" program listing

190-91
"mousebox.c" program listing 183-85
multicolor pattern fill 101-05
NDC 18, 87-89
"ndc.c" program listing 88-89

■ normalized device coordinate. See NDC
nybble 122
opcode 5
outlining 105-15
output 15
output array 21-27
PATTERN 114
pattern fills 93-104
pattern type fill 94
PCIRCLE 113
PELLIPSE 113
physical screen device handle 189
physical workstation 29
pixel 48
"plinel.c" program listing 46-47
"pline2.c" program listing 50-51
"pline3.c" program listing 52-53
"pmarkl.c" program listing 41-42
"pmark2.c" program listing 44
point 155
primitives 3
PRINT 168

342

printer points 155
proportionally spaced fonts 148
pseudo-devices 15
ptsin 5
ptsout 5
PUT 138
raster coordinate system. See RC system
raster form 119
raster functions 119-37
raster operations in BASIC 138-39
RC system 18-20
rectangle, filled 93
request mode 78, 180
reverse transparent mode 78
rotating text figure 150
rotext.c program listing 151-52
sample mode 180
set writing mode 79-80
SETBLOCK 37
shell 30
"shell.c" program listing 31
"shell.s" program listing 33-36
shift key 179
solid pattern fill 94
SSHAPE 138
"stdform.c" program listing 130-31
string device 180, 182-83
sub-function ID number 5
system characters 331-35
system clock 187
terminal emulation 165-66
text 143
text alignment 144-47
text color 152
text functions, BASIC 168
text string, sizing 148-50

text types 152-54
"text.bas" program listing 16-69
“texts" program listing 170-71
timer tick routine 187
top lines 145
TOS 4
TOS takes parameters. See TTP
TPA37
Tramiel operating system (TOS) 4
transform form 128-31
transient program area. See TPA
transparent mode 78, 106
transparent opaque 177
TTP 37
user-defined pattern fill 94, 99-101
"userfill.c" program listing 107-08
valuator device 180, 185-86
VDI 3

arrays 4-7
using 4-6

VDI calls
assembly language 6-7
ST BASIC 7-8

VDI function reference 195-316
VDI routines, calling from C 8-10
VDISYS 8, 189
vector exchange routines 188-89
virtual device interface. See VDI
virtual screen workstations 15-27
Vsync 133
VT-52 escape codes 165-66
workstation settings 16
workstation ID number 20
writing modes 131-32
XBIOS 18
XOR mode 78-79, 128

343

n
n

n
n

n

n

n

COMPUTE! Books
Ask your retailer for these COMPUTEI Books or order directly from
COMPUTEI.
Call toll free (in US) 1-800-346-6767 (in NY 212-887-8525) or write COM
PUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
Quantity Title Price* Total

_____ COMPUTE!'s ST Artist (070-X) $18.95 _____
_____ COMPUTEI's First Book of the Atari ST (020-3) $16.95 _____
_____ COMPUTEI's Kids and the Atari ST (038-6) S 14.95 _____
_____ COMPUTEI's ST Applications Guide: $19.95 _____

Programming in C (078-5)
_____ COMPUTEI's St Applications (067-X) $16.95 _____
_____ COMPUTEI's ST Programmer's Guide (023-8) $17.95 _____
_____ The Elementary Atari ST (024-6) $18.95 _____
_____ Elementary St BASIC (034-3) §14.95 _____
_____ Introduction to Sound and Graphics $16.95 _____

on the Atari ST (035-1)
_____ Learning C: Programming Graphics on the $18.95 _____

Amiga and Atari ST (064-5)
•Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 5% sales tax. __________
NY residents add 8.25% sales tax __________
Shipping 8r handling: $2.00/book __________

Total payment __________
All orders must be prepaid (check, charge, or money order).
All payments must be in US funds.
□ Payment enclosed.
Charge □ Visa □ MasterCard □ American Express
Acct. No______________________________ Exp. Date _
Nam©___
Address___
City____________________________ S ta te________ Zip
•Allow 4-6 weeks for delivery.
Prices and availability subject to change.
Current catalog available upon request.

(Required)

n

n

n
n

m

CHARTER SUBSCRIPTION FORM

□YES!
□ P aym en t en c lo sed □ C harge my V ISA /M asterC ard

Credit Card #_Sign me up for six
issues (a full year’s
subscription) at the
special introductory
price of just $59.95.
I save more than $17 Address
off the newsstand

Exp. Date,

Signature.

Name____

pnce. City_ -S ta te________ Zip.

Outside (J.S.A.. please add $6 (CJ.S.) per year for postage.

AND SAVEW
Here’s your chance to cash in with big
savings on COMPUTERS Atari ST Disk &
Magazine—the exciting new publication
devoted exclusively to the special needs
and interests of Atari ST users like you.

COMPUTERS

Dl S K & MA(ZJ N E
• Sam Tramirl Spraki O ut \ t >n •

tnr*nc%\ lurnai.Mirwl vm v 1
iCffott Ihi

p im l 1

• Sam m rr C E S Rep'trt \ |4. • ■. -
hvdwair jnd vfUjr*- *iwHNin,vil 1.* \ l
<’.»o*u*ncT {Jodroftk* SKh.

.*««*>» lau-H
.11 ih»-

• .ST V o o .(\ n / n V I »•
SI mmmwMh

rw m IK-

• I'rogramminx In < \ u'.n »•'
Mkiif’r. 1 trtr-.T

h. n.itn!

Every other month, COMPUTERS
Atari ST Disk & Magazine brings you ex
citing new action-packed programs
already on disk! Just load and you’re
ready to run.

You can depend on getting at least
five new programs in each issue— high-
quality applications, educational, home fi
nance, utility, and game programs you
and the entire family will use, enjoy, and
profit from all year long.

And here’s even more good news.
Subscribe now to COMPUTERS Atari ST
Disk & Magazine and take advantage of
big Charter Subscription savings. Get a
full year’s subscription for just $59.95.
You save over $17 off the newsstand
price.

No other publication gives you more
for your Atari ST than COMPUTERS Atari
ST Disk & Magazine. So sign up now by
using the coupon above—or call 1-800-
247-5470 (in Iowa 1-800-532-1272).

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 7551 DES MOINES, IA

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

COMPUTED Atari ST
Disk & Magazine
RO. Box 10775
Des Moines, IA 50347-0775

NEW FOR ATARI ST USERS

COMPUTERS ATARI ST
DISK & MAGAZINE

Only COMPUTEI’s Atari ST Disk &
Magazine g iv es you all th is and m ore
in each b ig issu e:

TOP QUALITY PROGRAMS: Applica
tion programs for home and business.
Utilities. Games. Educational programs for
the youngsters. A ll are already on an
enclosed disk and ready to run. For exam
ple: a typical disk m ight contain an elabo
rate adventure game written in BASIC, a
program m ing u tility w ritten in machine
language, a dazzling graphics
demo in compiled Pascal, and a
useful home or business ap
plication written in Forth or C.

N EO C H R O M E O F THE
MONTH: What are computer
artists doing with the Atari ST?
Each issue conta ins a Neo
chrome picture file— ready to
load and admire.

REGULAR COLUM NS: If
you’re a programmer— or would
like to be— you’ll love our col

umns on ST programming techniques and
the C language. Or check out our column
on the la test events and happenings
throughout the ST community. O r send
your questions and helpful hints to our
Reader’s Feedback column.
REVIEWS: Honest evaluations of the
latest, best software and hardware for the
Atari ST.
NEWS & PRODUCTS: A comprehen
sive listing of all the new software and

peripherals for your ST.
AND MORE: Interviews with
ST newsmakers, reports on the
latest industry trade shows, and
overviews of s ign ifican t new
product introductions.
Don’t miss a single big issue. Sub
scribe to COMPUTED Atari ST
Disk & Magazine now through
this special money-saving offer.
Return coupon above or call
1 -8 0 0 -2 4 7 -5 4 7 0 (in Iowa
1-800-532-1272).

C O M P U T E ! Publications, Inc.

RETURN COUPON ABOVE TO ENJOY
CHARTER SUBSCRIPTION PRIVILEGES

The Complete VDI Reference
If you're going to design and write software for the Atari ST in
BASIC, machine language, or C— and take advantage of all
the advanced features the computer has to offer—you need
COMPUTEI's Technical Reference Guide, Atari ST Volume
One: The VDI.

The first in a series of three reference guides for the Atari
ST personal computer, this book has everything you need to
create sophisticated, professional-looking graphics. Here's
just a sample of what you'll find inside:
• A complete easy-to-use VDI (Virtual Design Interface) func

tion reference section.
• Numerous sample programs which demonstrate exactly

how to implement VDI function calls from C, machine lan
guage, and BASIC.

• Drawing and manipulating image blocks.
• How to fill shapes and draw points and lines.
• How font files are organized.
• Three indices that make finding the right information easy

and quick.
• A complete listing of extended keyboard codes.

Written in a clear and concise style by the noted ST
author Sheldon Leemon, COMPUTEI's Technical Reference
Guide, Atari ST Volume One: The VDI is for every intermedi-
ate-to-advanced-level BASIC, C, and machine language
programmer who wants to tap the true potential of this pow
erful computer,

COMPUTEI's Technical Reference Guide, Atari ST Volume
One: The VDI is the complete tutorial and reference guide to
a vital part of all ST software development.

*£1 9 - 9 5

ISBN 0-87455-093-9

	Front Cover
	Contents
	Foreword
	1: VDI and the GEM Graphics Environment
	Introduction
	Using the VDI
	Assembly Language VDI Calls
	ST Basic VDI Calls
	Calling the VDI Routines from C

	2: Setting Up the Graphics Environment
	Introduction
	Virtual Workstations
	Extended Inquire
	Open Workstation Functions
	A C Program Shell
	An Assembly Language Program Shell

	3: Drawing Points and Lines
	Introduction
	Lines
	Patterned Lines
	Line Color
	Line Width
	Line End Styles
	Line-Drawing GDPs
	Assembly Language Example
	Line-Drawing VDI Calls and Basic

	4: Color and Other Graphics Settings
	Introduction
	Color Settings
	Color Registers
	Mixing Colors
	Locating Color Information
	Drawing Modes
	Drawmode Demonstration
	Clipping
	NDC Example
	BASIC Graphics Settings

	5: Filled Shapes
	Introduction
	Filled Rectangle
	Pattern Fills
	User-Defined Pattern Fill
	Multicolor Pattern Fill
	Fill Color and Outlining
	Settings Inquiry
	Filled Shape Generalized Drawing Primitives (GDPs)
	Area Fill
	Flood Fill
	BASIC Fill Commands

	6: Drawing and Manipulating Image Blocks
	Introduction
	Copy Raster Opaque
	Transform Form
	Copy Raster Transparent
	Raster Operations in BASIC

	7: Text
	Introduction
	Graphics Text and Text Alignment
	Microspace Justification
	Sizing a Text String
	Character Rotation
	Text Color
	Special Effects
	Setting Character Height
	Using Disk-Based Fonts
	Set Text Face
	Unload Fonts
	Text Face Information and Text Setting
	Escapes and Alphanumeric Mode
	Cursor Movement Functions
	Other Alphanumeric Text Functions
	Terminal Emulation Functions
	BASIC Text Functions
	Using Graphic Text from Assembly Language

	8: Input Functions
	Introduction
	Physical Devices
	The Pointer
	Special Keys
	Logical Devices
	Locator Device
	String Device
	Choice and Valuator Devices
	Vector Exchange Routines
	BASIC Input Functions

	A: VDI Function Reference
	v_opnwk : Open Workstation
	v_clswk : Close Workstation
	v_clrwk : Clear Workstation
	v_updwk : Update Workstation
	vq_chcells : ESC 1: Inquire Addressable Alpha Cells
	vq_exit_cur : ESC 2: Exit Alpha Mode
	v_enter_cur : ESC 3: Enter Alpha Mode
	v_curup : ESC 4: Alpha Cursor Up
	v_curdown : ESC 5: Alpha Cursor Down
	v_curright : ESC 6: Alpha Cursor Right
	v_curleft : ESC 7: Alpha Cursor Left
	v_curhome : ESC 8: Home Alpha Cursor
	v_eeos : ESC 9: Erase To End of Screen
	v_eeol : ESC 10: Erase To End of Line
	vs_curaddress : ESC 11: Direct Cursor Address
	v_curtext : ESC 12: Output Alpha Text
	v_rvon : ESC 13:Reverse Video On
	v_rvoff : ESC 14: Reverse Video Off
	vq_curaddress : ESC 15: Inquire Cursor Address
	vq_tabstatus : ESC 16: Inquire Tablet Status
	v_hardcopy : ESC 17: Hard Copy
	v_dspcur : ESC 18: Place Graphic Cursor
	v_rmcur : ESC 19: Remove Graphics Cursor
	v_form_adv : ESC 20: Form Advance
	v_output_window : ESC 21: Output Window
	v_clear_disp_list : ESC 22: Clear Display List
	v_bit_image : ESC 23: Output Bit Image File
	v_pline : Polyline
	v_pmarker : Polymarker
	v_gtext : Text
	v_fillarea : Filled Area
	v_bar : GDP 1: Bar
	v_arc : GDP 2: Arc
	v_pie : GDP 3: Pie
	v_circle : GDP 4: Circle
	v_ellipse : GDP 5: Ellipse
	v_ellarc : GDP 6: Elliptical Arc
	v_ellpie : GDP 7: Elliptical Pie
	v_rbox : GDP 8: Rounded Rectangle
	v_rfbox : GDP 9: Filled Rounded Rectangle
	v_justified : GDP 10: Justified Graphics Text
	vst_height : Set Character Height, Absolute Mode
	vst_rotation : Set Character Baseline Vector
	vs_color : Set Color Representation
	vsl_type : Set Polyline Linetype
	vsl_width : Set Polyline Line Width
	vsl_color : Set Polyline Color Index
	vsm_type : Set Polymarker Type
	vsm_height : Set Polymarker Height
	vsm_color : Set Polymarker Color Index
	vst_font : Set Text Face
	vst_color : Set Graphics Text Color Index
	vsf_interior : Set Fill Interior Style
	vsf_style : Set Fill Style Index
	vsf_color : Set Fill Color Index
	vq_color : Inquire Color Representation
	vrq_locator : Input Locator, Request Mode
	vsm_locator : Input Locator, Sample Mode
	vrq_valuator : Input Valuator, Request Mode
	vsm_valuator : Input Valuator, Sample Mode
	vrq_choice : Input Choice, Request Mode
	vsm_choice : Input Choice, Sample Mode
	vrq_string : Input String, Request Mode
	vsm_string : Input String, Sample Mode
	vswr_mode : Set Writing Mode
	vsin_mode : Set Input Mode
	vql_attributes : Inquire Current Polyline Attributes
	vqm_attributes : Inquire Current Polymarker Attributes
	vqf_attributes : Inquire Current Fill Area Attributes
	vqt_attributes : Inquire Current Graphics Text Attributes
	vst_alignment : Set Graphics Text Alignment
	v_openwk : Open Virtual Workstation
	v_clswk : Close Virtual Workstation
	vq_extnd : Extended Inquire
	v_contourfill : Contour Fill
	csf_perimeter : Set Perimeter Fill Visibility
	v_get_pixel : Get Pixel
	vst_effects : Set Graphics Text Set Special Effects
	vst_point : Set Character Cell Height, Points Mode
	vsl_ends : Set Polyline End Styles
	vro_cpyfm : Copy Raster, Opaque
	vr_trn_fm : Transform Form
	vsc_form : Set Mouse Form
	vsf_udpat : Set User-Defined Fill Pattern
	vsl_udsty : Set User-Defined Line Style
	vr_recfl : Filled Rectangle
	vqin_mode : Inquire Input Mode
	vqt_extent : Inquire Text Extent
	vqt_width : Inquire Character Cell Width
	vex_timv : Exchange Timer Interrupt Vector
	vst_load_fonts : Load Fonts
	vst_unload_fonts : Unload Fonts
	vrt_cpyfm : Copy Raster, Transparent
	v_show_c : Show Mouse Pointer
	v_hide_c : Hide Mouse Pointer
	vq_mouse : Sample Mouse Button State
	vex_butv : Exchange Button Change Vector
	vex_motv : Exchange Mouse Movement Vector
	vex_curv : Exchange Cursor Change Vector
	vq_key_s : Sample Keyboard State Information
	vs_clip : Set Clipping Rectangle
	vqt_name : Inquire Face Name and Index
	vqt_font_info : Inquire Current Face Information

	B: Extended Keyboard Codes
	C: VDI Font Files
	D: System Characters
	Index by Function Name
	Index by Opcode
	Index
	Adverts
	Back Cover

