
COMPUTED
Technical Reference Guide

ATARLST
V O L U M E THREE

-- Sheldon Leemon
Your passport to TOS, the input/output and fast

graphics operating systems underlying GEM.
Includes fully commented C and machine language

programming examples. For the intermediate-to-
advanced-level Atari ST programmer.

COMPUTE! Books

COMPUTEDTechnical Reference GuideATART STVOLUME THREE

TOS
Sheldon Leemon

COMPUTE! Books
Greensboro, North Carolina Radnor, Pennsylvania

Editor: Robert Bixby
Copyright 1988, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted
by Sections 107 and 108 of the United States Copyright Act without the
permission of the copyright owner is unlawful.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data
(Revised for volume 3)
Leemon, Sheldon.

Computers technical reference guide, Atari ST.
Includes indexes.
Contents: v. 1. VDI — v. 2. GEM, AES — v. 3. TOS.
1. Atari ST computers. I. Title. II. Title:

Atari ST.
QA76.8.A824L44 1987 004.165 87-401655
ISBN 0-87455-149-8 (pbk. : v. 3)

The author and publisher have made every effort in the preparation of this book to
insure the accuracy of the information and programs. However, the information and
programs in this book are sold without warranty, either express or implied. Neither
the author nor COMPUTE! Publications, Inc. will be liable for any damages caused
or alleged to be caused directly, indirectly, incidentally, or consequentially by the
information or programs in this book.
The opinions expressed in this book are solely those of the author and are not nec
essarily those o f COMPUTE! Publications, Inc.

COMPUTE! Books, Post Office Box 5406, Greensboro, North Carolina
27403, (919) 275-9809, is a Capital Cities/ABC, Inc. company and is not as
sociated with any manufacturer of personal computers. Atari, ST, ST
BASIC, 520ST, 1040ST, and TOS are trademarks or registered trademarks
of Atari Corporation. GEM is a trademark of Digital Research, Inc.

Contents

Foreword .. v
Chapters
1. The ST Operating System: An Overview.......................... 1
2. BIOS ... 9
3. XBIOS Device and System Functions.............................. 27
4. XBIOS Graphics and Sound Functions............................ 61
5. GEMDOS Device I/O and Process Control 85
6. GEMDOS File System Functions 109
7. Line A Routines... 133
Appendices
A. BIOS Functions ... 171
B. XBIOS Functions... 187
C. GEMDOS Functions .. 235
D. Error Codes .. 291
E. VT-52 Console Escape Sequences 296
F. The MFP C h ip ... 299
G. System Characters... 309
H. The Line A Variable Table .. 317
I. The Intelligent Keyboard Controller 337
J . Keycodes .. 381
K. ST Memory Map ... 387
Function Index ... 403
Index ... 407

Foreword
C O M P U T E ! ’ S Technical Reference Guide, Atari
ST—Volume Three: TOS is the third information-packed ST
book from noted Atari ST author Sheldon Leemon. Inside
you'll find complete information on the Basic Input/Output
System (BIOS), the GEM Disk Operating System (GEMDOS),
extended Basic Input/Output System (XBIOS), and Low-level
(line A) graphics, as well as an exhaustive reference section
explaining each BIOS function, program examples in C and
machine language, and a complete memory map.

You may recall with what fanfare the ST was introduced.
It was widely called the "Jackintosh," a nickname combining
the name of the Macintosh (they have similar user interfaces)
with Jack, for Jack Trammiel, its creator. Despite its promise,
early applications for the machine were simply games and
programs ported over from lesser machines.

Over the years, however, programmers have come to
recognize that the ST is not only lightning fast and highly so
phisticated, but it is also programmable on several tiers of its
operating system.

At the heart of the ST is the same famed Motorola 68000
microprocessor that drives the Macintosh, and the Amiga.
Over the chip is BIOS, XBIOS, and TOS (collectively known
as TOS, or the Trammiel Operating System). Above these are
the AES and the VDI, the high-level interfaces that make up
the GEM interface from Digitial Research. The AES and VDI
were the subjects of the first two books in this series. Most
programmers prefer to program through GEM. It's fast and
friendly. With a minimum of fuss, it provides the maximum
of features, such as reading the mouse position and provid
ing menus and other services.

But faster still, and not lagging far behind in ease of use,
is TOS. You can use it to provide your own creative uses of
graphics, printer functions, and the disk operating system,

just as GEM does, but with true 68000 speed and with no
intermediary levels of operating systems.

If you're a serious ST programmer, you probably already
own highlighted, dogeared copies of the first two books in
this series. This book will complete your collection and lead
you into hitherto unsuspected levels of programming. If you
are only beginning to explore the world inside your ST, this
book is an excellent starting point.

\

Chapter 1

The ST Operating System: An Overview

A computer’s operating system is an orga
nized collection of small built-in programs that enables the
computer to communicate with external devices, such as the
keyboard, display screen, and disk drive, and to perform
fundamental tasks like loading and running an application
program. While most people regard GEM as the ST's operat
ing system, it's just a friendly user interface on top of a more
conventional operating system to make the computer easier
to program and to operate. While GEM provides higher level
functions like support for drop-down menus, dialogs, and
icons, it still must rely on a set of low-level operating system
routines for tasks such as reading a file from the disk drive.
It is this set of low-level routines that shall be referred to as
TOS.

TOS Organization
The ST operating system is contained in a set of TOS ROM
(Read-Only Memory) chips that contain a total of 192 kilob
ytes of program code and data. The name TOS may have at
one time stood for The Operating System, but is now more
commonly thought of as an acronym for Tramiel Operating
System, named after the Tramiel family that now owns Atari.
The TOS ROMs contain all of the ST's system software. This
includes:
GEM This software provides ST applications

with a consistent user interface, fea
turing drop-down menus, multiple
windows, icons, and dialog boxes.
GEM is divided into the VDI (which
provides low-level graphics calls), AES
(which provides user services like
menus), and the GEM Desktop pro-

CHAPTER 1

gram, (which provides the desktop
metaphor for working with the disk
filing system). The VDI and GEM AES
were subjects of earlier books in this
series by the same author. These
books are also available from COM
PUTE! Books.

BIOS The Basic Input/Output System (BIOS)
is a collection of low-level I/O routines
that are not necessarily specific to the
ST hardware. They include routines to
communicate with character-oriented
devices like the keyboard, screen, and
printer, and to communicate with disk
drives on the sector level. They also
include routines to check which disk
drives are available, if a disk has been
removed from the drive, and so on.

XBIOS XBIOS, the extended Basic Input/Out
put System is a set of hardware-spe
cific I/O-related routines. There are
routines for finding and changing the
address of screen display memory, for
setting the hardware color registers,
for waiting for the vertical blanking
interval, and for accessing the sound
chip. There are also routines for com
municating with the 68901 Multi-Func
tion Peripheral (MFP) chip.

GEMDOS (or BDOS) This is a set of functions used to im
plement the higher level disk filing
system, which closely follows the
model of MS-DOS. These routines al
low the user to access the disk device
on the file level, rather than directly
reading specific physical sectors on
the disk. They allow the user to per
form functions like reading the disk
directory, creating or deleting a subdi
rectory, deleting a file, renaming a
file, and so on. The GEMDOS also
contains miscellaneous routines for

4

The ST Operating System: An Overview

Line A routines

Exception Handlers

Startup Code

communicating with the character de
vices like the screen, keyboard,
printer, and serial port.
Line A routines are the low-level
graphics routines the GEM VDI calls
for basic graphics functions. These
functions include setting and reading
individual pixels, drawing lines and
filled polygons, and moving software
sprites, like the mouse pointer. Since
the ST screen is bitmapped, the line A
routines are also used for drawing all
text characters on the screen. Using
the line A routines for graphics and
text provides greater compatibility
than accessing the ST graphics hard
ware directly, because such programs
will continue to function correctly
even if the ST graphics hardware
changes. For example, programs that
use the line A routines can take ad
vantage of the blitter chip used by
later ST models, while programs that
write to screen memory directly can
not.
Many of the Operating System rou
tines are invoked by interrupts and
trap instructions, which in 68000 par
lance are referred to as exceptions. For
example, the BIOS routines are called
via the TRAP #13 instruction, GEM
DOS routines via the TRAP #1 in
struction, and GEM AES and VDI rou
tines are called via the TRAP #2
instruction. In addition to the han
dlers that route these calls, there are a
number of lower-level interrupt han
dlers, such as the vertical blank inter
rupt handler, which are of interest to
programmers.
The startup code is a short piece of
program code that is called when the

/

CHAPTER 1

computer is first turned on, or the re
set button is pushed. It checks for
ROM cartridges, configures the I/O
ports and the screen, tests memory
size, sets the exception handler vec
tors, executes the programs in the
AUTO folder, and jumps to the GEM
Desktop program.

Since all of the GEM code is included in the ROMs, it
will be considered as part of TOS. For purposes of this book,
however, TOS will be considered to be everything in the
ROMs except GEM.

Calling TOS from Machine Language
The various TOS routines are called via the exception vec
tors. When programming in machine language, the general
procedure is to push the function number and other function
parameters on the stack, issue a TRAP instruction, and then
remove the parameters from the stack. The specific TRAP in
struction depends on the type of TOS routine you're calling.
The BIOS routines are called with a TRAP #13 instruction,
the XBIOS with a TRAP #14, and the GEMDOS routines
with TRAP #1. A call to the BIOS routine Bconstat() would
look like this:
move.w # 2 , — (sp) * push device number for console device
move.w # 1 , — (sp) * push function number for Bconstat
trap #13 * call BIOS
addq.l #4 ,sp * pull the parameters off the stack

Note that if you plan to use GEM calls in your machine
language application, you'll need to do some preparatory
work at the beginning of the program. When GEMDOS
starts an application program (but not a desk accessory), it
allocates all of the system memory to that program. There
fore, if a program uses the system memory-management
calls, or any of the GEM AES calls that themselves allocate
memory, or runs another program using the Pexec() func
tion, at startup time it must deallocate all of the memory it
isn't actually using. This is done using the GEMDOS
Mshrink() function. Complete details and some sample code
can be found in Chapter 5 in the section dealing with

6

The ST Operating System: An Overview

Mshrink(). For now, it is sufficient to know that this step is
necessary for programs using GEM or memory-management
calls, and not for programs that only use TOS function calls.

Calling the TOS Routines from C
It's much simpler to call the TOS routines from C than from
machine language, since most C compilers for the ST include
library routines for the BIOS, XBIOS, and GEMDOS calls.
These library routines make calling TOS routines exactly like
calling any other kind of C routines. For example, the library
call bios() issues the TRAP #13 command after the parame
ters have been pushed on the stack. To call the BIOS routine
Bconin() to get a character from the console device (device
2), you need only use the statement:
bios(l,2);

Many C compilers include a header file called OS-
BIND.H. This header file contains C macro definitions for the
various BIOS, XBIOS, and GEMDOS commands. For exam
ple, the macro Bconstat(a) is defined as follows:
#define Bconstat(a) bios(l,a)

Therefore, if you've #included the OSBIND.H file in
your program, you could replace the bios(l,2); statement
with:
Bconstat(2);

Since this is more readable than the bios() call, the ma
cro format will be used wherever possible. Just remember
that in order for the compiler and linker to understand these
macros, you must use the #include directive to add the OS
BIND.H file first.

C programmers usually don't have to worry about re
leasing extra memory with the Mshrink() command, or set
ting the program stack, since this work is done for them by
the compiler's own startup code. This code is found in the
GEMSTART.O or APPSTART.O module linked in by Alcyon
C programmers, and in the INIT.O module of the SYSLIB li
brary of Megamax C. You should note, however, that in some
extreme cases, you may have to recompile the startup mod
ule to give back more or less memory than the default mod

7

CHAPTER 1

ule. Again, more details about the Mshrink() function are
provided in Chapter 5.

About the Examples
Because it's easy to make GEM calls from C, and because the
language produces programs that are relatively small in size
and quick in execution for a high-level language, it has be
come the language of choice for software development on
the ST. For this reason, most of the examples in this book
will be written in C. On occasion, however, machine lan
guage examples will be included as well, to show how the C
examples may be translated to that environment. The macro
names for the C functions will be used here as they appear
in the official Digital Research GEM header files, since they
have been adopted by the manufacturers of other C compi
lers as well.

The C programs in this book are designed to work specif
ically with the Alcyon C compiler, the compiler officially sup
ported by Atari, and with Megamax C, which also provides a
very complete development environment. For these compi
lers, the int data type refers to a 16-bit word of data. Some
other compilers, such as the Lattice C compiler, use a 32-bit
integer as the default data type. When compiling the pro
grams in this book with such compilers, substitute short for
each reference to int, and keep in mind that the default size
for function returns and constants may be 32 bits instead of
16.

For the sake of simplicity, the portability macros such as
WORD were not used. These macros use the C preprocessor
to define a 16-bit data type that will be valid for any compi
ler. The reader is free to use the macros if they are seen as
more convenient.

The machine language examples were all created with
the assembler included in the Atari development package,
but they should be so generic as to assemble unchanged with
almost any good 68000 assembler.

8

Chapter 2

BIOS

The lowest-level ST Input/Output routines
are in the section of the operation system known as the BIOS
(Basic Input/Output System). The BIOS contains three basic
types of I/O routines.

The first group of I/O routines contains routines for com
munication with character-oriented I/O devices like the
printer, the screen, the serial port, and MIDI port. The sec
ond group contains the basic functions used to communicate
with the disk drive at the hardware level. These allow you
determine how many drives are connected, whether a disk
has been changed in a drive, and where to find the BIOS pa
rameter block for a drive, which gives information about the
drive configuration. They also let you read or write to the
disk at the sector level, which is a lower level of organization
than the normal disk filing system. Finally, the BIOS con
tains some miscellaneous routines that perform various sys
tem functions, such as reading or setting the exception vec
tors and returning information about the memory
management system and the precision level of the system
clock.

The ST BIOS routines can be called from user mode, and
are reentrant to three levels. They use registers A0-A2 and
D0-D2 as scratch registers, which means if you're program
ming in machine language and using these registers to store
important information, you must save their contents before
making a BIOS call and restore them after the BIOS call.
Each of the BIOS routines has a command number associated
with it. It may also be associated with command parameters
that specify more precisely what the function should do.

For example, the BIOS function to output a character to
a device is command number 3. It requires two command pa
rameters: One tells the function which character to print and
the other specifies the output device to use.

11

CHAPTER 2

To call a BIOS function from machine language, you
must push the command parameters onto the stack, followed
by the command number, and execute a TRAP #13 state
ment. The TRAP #13 instruction puts the program into su
pervisor mode and begins executing the instructions found at
the address stored in exception vector 45, whose address is
180 ($B4). This exception vector contains the address of the
BIOS handler, which reads the command number on the top
of the stack and directs program execution to the appropriate
function. When the function terminates, the program returns
to user mode, and the results, if any, are returned in register
DO. When a BIOS function call is completed, the calling pro
gram is responsible for adjusting the stack to remove the
command parameters and command number. You should
note that the BIOS changes the command number and return
address on the stack.

The following program fragment demonstrates sending
the character X to the console device using BIOS command
number 3:
move.w # /X/, — (sp) * push character value on stack
move.w # 2 , —(sp) * push console device number on stack
move.w # 3 , — (sp) * push BIOS command number on stack
trap #13 * call BIOS handler
addq.l #6,sp * pop parameters (6 bytes) off stack

Calling the BIOS routines from C is much simpler. Most
C compilers come with a library routine called bios(), which
stacks the parameters and executes the TRAP #13 instruc
tion. For example, the sample call illustrated above could be
accomplished in C by the single statement
bios(3,2/X');

Since it's easier to remember a command name than a
command number, most C compilers include a header file
called OSBIND.H which defines macros for all of the BIOS
functions. For example, the macro definition for BIOS com
mand 3 is
#defme Bconout(a,b) bios(3,a,b)

Therefore, after you #include OSBINDS.H in your pro
gram, call your sample function like this:
Bconout(2,'X');

12

BIOS

This is a more readable than the other version. For this
reason, the macros will be used in the discussions of BIOS
routines and sample programs. To use BIOS functions in
your C programs, you must #include OSBIND.H if you use
the macros, and you must link your program with the library
that contains the bios() function.

Character Device I/O
This group of functions enables communication with certain
I/O devices at the character level. These character devices are
sequential in nature, which means they transfer information
as a stream of characters sent one after the other, and the
receiver has no control over the order in which the informa
tion is sent. Devices such as the printer, the serial port, and
the keyboard differ in this regard from storage devices like
disk drives, which allow random access to information stored
at a particular location within named files. The BIOS I/O
functions only allow you to send or receive a single character
at a time. There are, however, XBIOS functions that allow
you to send a string of characters to the MIDI or Intelligent
Keyboard device with a single call.

The five character devices on the ST are shown in Table
2- 1 .

The first three of these devices can be found on most
computers, while the last two are specific to the ST. Three of
the character devices can both send and receive information,
but the printer and intelligent keyboard devices can only re
ceive output (at least through the BIOS routines).

Do not confuse the intelligent keyboard device with the
console device. The console device consists of two physically
separate devices: the display screen and the keyboard. This
device receives ASCII characters from the keyboard and dis-

Table 2-1. The Five Character Devices
Device Device

Number Name Description
0 PRN: Parallel (Centronics) printer (output only)
1 AUX: RS-232 serial device (modem)
2 CON: The console device (keyboard and screen)
3 MIDI (Musical Instrument Digital Interface)
4 IKBD, the intelligent keyboard device (output

only)

13

CHAPTER 2

plays them on the monitor. The intelligent keyboard device,
on the other hand, permits communication with the ST key
board's own 8-bit microprocessor. This keyboard processor
controls the keyboard, mouse, joysticks, and time-of-day
clock. Since this device is complex and has a large set of
commands, it is treated separately in Appendix I.

The most basic input function is to wait for a single char
acter to be transferred from one of the devices. The BIOS call
that implements this function is called Bconin(). If a charac
ter is available from the input device when you call this func
tion, it will receive that character and return immediately. If
there is no character available at the time you call the func
tion, it won't return until the device has sent a character.
The C language macro defined for this function in the OS-
BIND.H file uses the following syntax:
int devnum;
long char;

char = B con in (devnum);

where devnum is the number of the device from which to re
ceive a character. Only numbers 1-3 are valid, since the
printer can't be used for input and the intelligent keyboard
doesn't return any information through its character device.
The character received from the device is returned in the low
byte of the variable char. Note that the Bconin() function re
turns an entire longword, instead of a single character. Only
the least significant byte of this longword is used for infor
mation received from the MIDI or serial device. The console
device, however, uses both words of the longword.

The ASCII code for the character that was received is re
turned in the least significant byte of the low word. The least
significant byte of the high word contains a special key code
that indicates the physical key that was struck. This allows
the program to differentiate between the number 1 on the
top row of the keyboard and the 1 on the numeric keypad.
Together, the ASCII value and the key code are known as
the scan code. This scan code is more commonly expressed
as a single word, with the keycode in the high byte and the
ASCII code in the low byte. Appendix J contains a complete
list of scan codes expressed in this format. To convert from
the longword char to the word scancode, use the following C
statement:
scancode = (in t)((ch ar»8) | char);

14

BIOS

This shifts the keycode into the high byte of the low
word, and discards the high word.

Although the scan code tells what key was pressed and
if it was pressed in combination with one of the shift keys, it
still can't give you complete information about the Shift, Al
ternate, and Control keys. For example, if you press the
Shift, Alternate, and A keys together, the scan code you re
ceive is the same one you would get from pressing Alternate
and A. The Control-cursor up combination yields the same
value as the cursor up key alone. To get complete informa
tion about the status of the shift keys, you must use another
BIOS routine called Kbshift. The C language macro for this
function takes the following form:
int shiftcode, mode;

shiftcode = Kbshift(mode);

where mode is a flag that indicates whether you wish to read
or to set the shift key status code. A nonnegative number in
mode sets the status code to the value indicated after reading
the current code value. A negative number in mode causes
the function to return the shift key status code in shiftcode.
Each of the eight least significant bits in shiftcode represents a
particular shift key. If a bit is set to 1, it indicates that the
corresponding key was pressed at the time the function call
was made. Otherwise, the key was not pressed. The bit as
signments for the shiftcode flag are shown in Table 2-2.

Since shiftcode is a bit flag, any or all of shift keys can be
detected at once. For example, a shiftcode value of 14
(8 + 4 + 2) would mean that the Alternate, Control, and left
Shift keys were all pressed at the same time.

Table 2-2. Bit Assignments for the shiftcode Flag
Bit Bit

Number Value Shift Key
0 1 Right shift key
1 2 Left shift key
2 4 Control key
3 8 Alternate key
4 16 Caps lock on
5 32 Altemate-Clr/Home key combination (Keyboard

equivalent for right mouse button)
6 64 Altemate-Insert key combination (Keyboard

equivalent for left mouse button)
7 128 Reserved (currently zero)

15

CHAPTER 2

There's one problem with relying on Kbshift() to supply
the information that Bconin() omits: The console device
saves incoming keystrokes in a memory buffer, which means
that it's possible that a character received via Bconin() may
actually be the result of a keypress that took place some time
ago. Therefore, testing the shift keys at the time the charac
ter is read may not tell you what their status was at the time
the user entered the character.

If your program is reading the console device frequently,
this will probably not present a real problem since a large
number of program statements can execute in the time it
takes the user to remove his fingers from the keyboard. If
there is a significant time delay between reads, such that
Kbshift may not reflect the actual shift key status, you may
wish to change the system variable conterm, a byte value
which is stored at location 1156 ($484). If you set bit 3 of this
variable to 1, the BIOS Bconin() function will return the key
board shift status code in the most significant byte of the
scancode. This eliminates calling Kbshift separately. Since con
term is in protected memory, shift into supervisor mode be
fore changing this value.

Shifting between supervisor and user modes will be dis
cussed in Chapters 2 and 5.

Having the keyboard shift codes in the high byte of the
scancode seems so handy that you may wonder why it isn't
the default state of affairs. The reason is compatibility. The
keycodes the ST uses are based on those used by the IBM
PC, so the format in which scan codes are returned is also
based on the PC format. Programs that rely on the fact that
the ST console keyboard system mirrors that of the PC may
not handle the scan codes correctly if there is unexpected
data in the high byte. Therefore, if you set the conterm bit in
your program, remember to set it back when your program
ends, so other programs will not receive unexpected data in
the high byte.

One of the problems with using Bconin() is that if no
character is available from the device; the function waits until
one is available. This leaves your program stuck until input
is received. If your program doesn't receive any input, it re
mains stuck forever, forcing the user to turn off the com
puter to regain control. To prevent this situation, the BIOS
includes a function that lets you determine whether a charac
ter is waiting to be received. This function is called Bconstat,
and its C macro uses this syntax:

BIOS

int devnum;
long status;

status = Bconstat(devnum);

where devnum is the number of the input device whose sta
tus you wish to check. Since only devices 1-3 provide input,
status checks should be limited to those devices. The value
returned in status is a 0 if there are no characters waiting,
and $FFFF (- 1) if there is at least one character ready to be
received. Thus, by calling Bconstat it's possible to determine
whether Bconin will return immediately. If the call to Bcon
stat shows there are no characters ready, your program may
omit the call to Bconin, go on to do something else, and then
check the input device again later.

The BIOS output functions are very similar to the input
functions. To output a character to one of the devices, use
the function Bconout(), whose C macro takes the following
form:

int devnum, char;
Bconout(devnum,char);

where devnum is the number of the device (0-4) to which the
character is sent. The variable char contains the ASCII value
of the character to send in its low byte. Note that like
Bconin, Bconout doesn't return until the character is actually
sent. To avoid sending a character to a device that isn't ready
to receive it, and thus hanging up your program, first test
the status of the output device with the Bcostat function. The
C macro for this function takes the following form:

int devnum;
long status;

status = Bcostat(devnum);

where devnum is the number (0-4) of the device to query.
Bcostat returns a 0 in status if the device is not ready to ac
cept a character, and $FFFF (— 1) if it is ready. It always
makes sense to check the output device to see if it's ready to
receive characters, particularly before you send the first one.

Unlike GEM graphics text functions, which output any
character for which there is image data, the console device
screen emulates a DEC VT-52 display terminal and treats the
ASCII characters from 0 to 31 as nonprinting control charac
ters. This means, for example, that it interprets the ASCII

CHAPTER 2

Table 2-3. VT-52 Codes to Which Bconout() Responds
Code Action

Esc A Cursor Up
Esc B Cursor Down
Esc C Cursor Right
Esc D Cursor Left
Esc E Clear Screen and Home Cursor
Esc H Home Cursor
Esc I Cursor Up (scrolls screen down if at top line)
Esc J Clear to End of Screen
Esc K Clear to End of Line
Esc L Insert Line
Esc M Delet j Line
Esc Y (row+ 32) Position Cursor at Row, Col (starts with 0)

(column+32)
Esc b (register) Select Foreground (Character) Color
Esc c (register) Select Background Color
Esc d Clear to Beginning of Screen
Esc e Cursor On
Esc f Cursor Off
Esc j Save Cursor Position
Esc k Move Cursor to Saved Position
Esc 1 Clear line
Esc o Clear from Beginning of Line
Esc p Reverse Video On
Esc q Reverse Video Off
Esc v Line Wrap On
Esc w Line Wrap Off

character 13 as a carriage return, an instruction to move the
cursor to the beginning of the line, rather than as a character
that should be printed. There are a number of VT-52 escape
codes to which the console device responds. These escape se
quences are strings of characters beginning with the ASCII
character 27 (Esc), followed by one or more text characters.
The VT-52 codes to which Bconout() responds are shown in
Table 2-3.

In addition to the Escape codes, the ST terminal emula
tion also responds to the follow ASCII control codes:

18

BIOS

ASCII
Control Code Action

07 Bell
08 Backspace
09 Tab

10-12 Line feed
13 Carriage Return

Though the console device will not print the nonprinting
ASCII characters (those whose values are below 32), it will
print the ST's extended ASCII set (characters whose value is
above 128). These include a number of Greek and Hebrew
characters as well as some math symbols. For a complete ta
ble of the system characters, see Appendix G. For more de
tailed information on the VT-52 Escape sequences, see Ap
pendix E.

The ST buffers character device I/O. This means that in
coming information from a character device and outgoing in
formation to a character device is first stored in a reserved
memory area before being read by your program or sent to
the external device. This is done so that if the device is send
ing information faster than your program is reading it, or if
your program is sending information faster than the device
can read it, none of the information will be lost. Though the
default buffers are sufficient for most purposes, they may not
be large enough to prevent data loss when transferring a lot
of information at very high speeds through the MIDI or se
rial ports. In those cases, you may need to substitute your
own, larger buffer areas by using the XBIOS Iorec() routine
(see Chapter 3).

The following C language sample program BCHAR-
DEV.C demonstrates the use of some of the BIOS character
device routines. It uses the Bconstat call to monitor the con
sole device (keyboard) input status and prints a dot every so
often if no key is struck, using Bconout. When a key is
pressed, the program reads it with Bconin and Kbshift and
prints the ASCII character, the ASCII code, and the shift and
key scan codes. The program ends when the unshifted q is
struck.

19

CHAPTER 2

Program 2-1. BCHARDEV.C

/* *//* BCHARDEV.C */
/* *//* Demonstrates some of the BIOS */
/* character device functions */
/* *//**/
#include <osbind.h> /* For BIOS macro definitions */
Idefine CON 2 /* alias for Console device number */
main()
{ long ch;

int sh, count = 4999;
while((char)ch != 'q') /* End program when 'q' is struck */
(while(!Bconstat(CON)) /* until then, wait for key */{if ((count++) == 5000) /* print a dot every so often */

{Bconout(CON,'.')?
count=0;

) /* When key is struck, */
ch = Bconin(CON); /* get the key value */
sh = Kbshift(-l); /* and shift status code. */

/* Print the ASCII character and value, */
printf (" \n%c%6x", (char)ch, (c h a r) ;

/* shift status and key scan codes */
printf (" %4x%8x\n",sh, (int) ((ch»8) |ch));
)

)
/******** end of BCHARDEV.C *****/

Machine language programmers should refer to the
XSCREEN.X program in Chapter 4 for examples on using the
BIOS functions Bconin() and Bconout() in machine lan
guage.

Disk Device I/O
The ST BIOS contains four disk I/O routines, three of which
merely return information about the drives. These routines
are included mainly for use by other, higher-level operating
system routines and may not be of much use to the average
programmer. The first function, Drvmap(), can be used to
determine which drives are available. The syntax for this call,
using the C macro, is
long drives;

drives = Drvmap();

where drives is a bitflag that indicates which drives are con
nected. Each bit of the drives variable corresponds to a differ
ent drive. Bit 0 is assigned to drive A, bit 1 to drive B, and

20

BIOS

so on up to bit 15, which corresponds to drive P (the current
version of the ST operating system only recognizes 16
drives). If the bit that corresponds to a drive is set to 1, that
drive is connected, otherwise, it is unavailable. The value re
turned by Drvmap is the same one stored in the system vari
able __drvbits, at memory location 1220 ($4C4). Note that if
even one floppy is connected, both bits 0 and 1 are always
set to 1. If drive A: is connected, the system will also use it
as a logical drive B:, if no physical drive B: is present.

Once you've found which drives are connected, you can
find more information about the layout of a particular disk
by reading the BIOS Parameter Block in its boot sector.
Getbpb() is the function used to find the address of the Pa
rameter Block and it's called like this:

int drivenum;
long blockaddr;

blockaddr = Getbpb(drivenum);

where drivenum is the number of the drive whose BIOS Pa
rameter Block you wish to find (0 = drive A:, 1 = drive B:,
and so on). The starting address of the BIOS Parameter Block
is returned in blockaddr. The data structure pointed to by
blockaddr consists of nine words of data. The structure ele
ments are as shown in Table 2-4.

Table 2-4. Parameter Block Structure Elements
Element

Description
Number of bytes per sector (must be 512 under
current GEMDOS)
Number of sectors per cluster (must be two
under current GEMDOS)
Number of bytes per cluster (must be 1024
under current GEMDOS)
Root directory length (in sectors)
File Allocation Table (FAT) size (in sectors)
Sector number of the start of second FAT
Sector number of the first data cluster
Number of data clusters on the disk
Bit flags*

* Currently only bit 0 is used. When set, it indicates 16-bit FAT entries instead of
the usual 12-bit entries.

mber Name
0 recsiz

1 clsiz

2 clsizb

3 rdlen
4 fsiz
5 fatrec
6 datrec
7 numcl
8 bflags

21

CHAPTER 2

This information tells you how much storage space is on
the disk and how it's allocated. GEMDOS performs a
Getbpb() operation when it first accesses a drive, or when it
accesses a drive after a media change. For more information.
on disk organization and the file system, see Chapter 6.

Perhaps the most important of the BIOS disk functions
allows you to read or write disk sectors. This function is
used mainly by the disk operating system. Since it operates
at a lower level than the filing system, you probably won't
use it unless you're writing a disk sector editor, or something
equally exotic. The macro for this function is called Rwabs
(for Read Write ABSolute), and it's called as follows:
int mode, sectors, start, drivenum;
long buffer, status;

status = Rwabs(mode, buffer, sectors, start, drivenum);

Mode is a flag that indicates whether you wish to read or
write sectors to the disk. The valid mode numbers are

Buffer is a pointer to the memory area where the trans
ferred data is stored. The size of this area depends on the
number of sectors to be transferred, which is stored in the
variable named sectors. Allocate 512 bytes for each sector.

Since the data transfer will proceed very slowly if the
buffer area starts at an odd address, you should ensure that
it starts at an even address by declaring the buffer variable as
an array of words (ints). The start variable is used to indicate
the starting sector from which to read or to which to write.
The drivenum parameter specifies the disk drive to use
(0 = drive A:, 1 = drive B:, and so on). When the function
call concludes, the status variable will be 0 if the operation
was successful. A negative number indicates an error has oc
curred. See Appendix D for the list of GEMDOS error mes
sages.

The last of the BIOS disk functions is used by the disk
operating system to determine whether a disk has been

Mode
Number Description

0
1
2
3

Read sectors
Write sectors
Read sectors without affecting media change status
Write sectors without affecting media change status

22

BIOS

changed. Its name is Mediach(), and its C macro call uses
the following syntax:
int drivenum;
long status;

status = Mediach(drivenum);

where once again the drivenum parameter specifies the disk
drive to check (0 = drive A:, 1 = drive B:, and so on). The
status returned by this call can be one of three values. A zero
value means the media definitely has not changed, while a
value of 2 means that it definitely has not changed. A status
value of 1 means that the media might have changed, but
the BIOS can't give a more definite answer until a read oper
ation is performed.

System Functions
The last three BIOS functions are miscellaneous system calls.
The first, Getmpb() (Get Memory Parameter Block), is used
by GEMDOS to initialize the memory management system.
The format for this call is

long mpbptr;
Getmpb(mpbptr);

where mpbptr is a pointer to the starting address of a Mem
ory Parameter Block. The definition for this data structure is
as follows:

struct mpb
{
struct md *mp__mfl; /* ptr to memory free list */
struct md *mp__mal; /* memory allocated list /*
struct md *mp__rover; I* roving pointer */
}

As you can see, this structure consists of three pointers
to other data structures, called memory descriptor structures.
These contain information about blocks of memory, primarily
the starting address of the memory block and its size:

struct md
{
struct md *m__ link; I* pointer to next MD [NULL]
long m__ start; /* start addr of mem block */

23

CHAPTER 2

long m__length; /* size of mem block (bytes) */
struct pd *m__own; /* ptr to MD owner's process-

descriptor [NULL] */
};

The Getmpb() function fills the designated Memory Pa
rameter Block with initial system values. At the beginning,
the memory allocated list pointer is 0, since no memory
blocks have been allocated by programs yet. The memory
free list pointer contains the address of a memory descriptor
that specifies the entire Transient Program Area from system
variables membot to memtop. For more information on these
system variables, see Appendix K, memory locations 1074
($432) and 1078 ($436).

The next system call reads or sets exception vectors. Ex
ception vectors are a collection of addresses stored in low
memory reserved for the use of the 68000 processor or the
Operating System. Whenever an exception occurs, the pro
cessor goes into supervisor mode and program execution is
diverted through the appropriate vector. For example, when
a program tries to execute an illegal instruction, an exception
occurs and program execution resumes at the address pointed
to by exception vector 4, which starts at memory location 16.

The 68000 processor supports many kinds of exceptions,
including interrupts, TRAP instructions, and several kinds of
error conditions. One error of particular interest is called a
bus error. On the ST, a bus error occurs when a program tries
to access memory locations below 2048 ($800), or the hard
ware registers above $FF8000 from user mode. That's why
this call is necessary: It allows you to change the exception
vectors located in protected memory without switching into
supervisor mode. The format for this call is
int vecnum;
long vecaddr, oldaddr;

oldaddr = Setexec(vecnum, vecaddr);

where vecnum is the vector number to read or change, and
vecaddr is the new address to be stored in that vector. If ve
caddr contains a - 1 (OxFFFF), it indicates that you want only
to read the current address stored in the vector, not change
it. In either case, the address stored in the vector before the
call was made is returned in the variable oldaddr. Your pro

24

BIOS

gram should always save this vector and restore it before ter
minating.

For more information on the exception vectors, see the
memory map in Appendix K, locations 0-1036 ($0-$40C).

The final BIOS system call pertains to the system timer
interrupt. This is a system interrupt routine that is called pe
riodically to update the GEMDOS date and time. The Tick-
cal() routine returns the number of milliseconds between
timer ticks. For the ST, this value is 20 milliseconds, since
the timer interrupt updates the system clock at the rate of
fifty times per second (even though the interrupt is actually
called 200 times per second). The format for Tickcal() is
long ticklen;

ticklen = Tickcal();

where ticklen is the length of time that passes between timer
ticks, in milliseconds. This call is unnecessary because the
number of milliseconds since the last timer interrupt is
passed on the stack when the timer interrupt handler is
called. This value is also stored in the system variable table
at location 1090 ($442). For more information on using the
timer interrupt vector, see the entry for address 1024 ($400)
in Appendix K.

25

Chapter 3

XBIOS Device and System Functions

Functions known as the XBIOS (extended Basic
input/Output System) are at the next level up from the BIOS.
Where the BIOS contains a small number of very low level
I/O routines used mainly by other system routines, the
XBIOS contains a larger number of functions that are more
specific to the ST environment, and of greater interest to the
applications programmer. These functions deal with the char
acter devices, the disk device, the screen display, the sound
chips, the MFP (Multi-Function Peripheral adapter) chip, and
miscellaneous system functions. This chapter covers the
XBIOS device and system functions. The next chapter will
cover the sound and graphics routines, which are of particu
lar interest to ST programmers.

Like the BIOS functions, the XBIOS routines can be
called from user mode. They use registers A0-A2 and D0-D2
as scratch registers, meaning that if you are programming in
machine language and your program uses these registers,
you must save their contents before making an XBIOS call,
and restore them after the XBIOS call terminates. Each of the
XBIOS routines is associated with a command number and,
optionally, command parameters that specify more precisely
what it should do. For example, the XBIOS function to set
one of the hardware color registers has a command number
of 7. It requires two command parameters: One tells the
function which register to set and the other specifies the new
color value (from 0 to 0x777).

To call an XBIOS function from machine language, you
must push the command parameters onto the stack, followed
by the command number, and execute a TRAP #14 state
ment. The TRAP #14 instruction puts the program into su
pervisor mode and begins executing the instructions found at
the address stored in exception vector 46, whose address is
184 ($B8). This exception vector contains the address of the

29

CHAPTER 3

XBIOS handler, which reads the command number on the
top of the stack, and directs program execution to the appro
priate function. When the function terminates, the program
returns to user mode, and the results, if any, are returned in
register dO. When an XBIOS function call is completed, the
calling program has the responsibility to adjust the stack in
order to remove the command parameters and command
number.

The following program fragment demonstrates how to
change the value of color register 0 (the background color) to
yellow ($770) using BIOS command number 7:

move.w #$770, -(sp) * push color value on stack
move.w # 0 , - (sp) * push color register number on stack
move.w # 7 , - (sp) * push XBIOS command number on

* stack
trap #14 * call XBIOS handler
addq.l #6,sp * P°P parameters (6 bytes) off stack

Calling the XBIOS routines from C is much simpler.
Most C compilers come with a library routine called xbios()
that stacks the parameters and executes the TRAP #14 in
struction. For example, the sample call illustrated above
could be accomplished in C by the single statement:
xbios(7,0,0x770);

Since it's easier to remember a command name than a
command number, most C compilers include a header file
called OBSIND.H that defines macros for all of the XBIOS
functions. For example, the macro definition for XBIOS com
mand 7 is:
#define Setcolor (a,b) xbios(7,a,b)

Therefore, after you #include OBSIND.H in your program,
call your sample function like this:
Setcolor(0,0x777);

As this format is more readable than the other, the ma
cros will be used in the discussion of XBIOS routines and
sample programs. Just remember that in order to use XBIOS
functions in your C programs, #include OSBIND.H if you
use the macros, and link your program with the compiler li
brary that contains the xbios() function.

30

XBIOS Device and System Functions

Character Device Configuration Functions
The XBIOS character functions are more device-specific than
those in the BIOS. One group of functions enables you to set
the configuration of specific devices. For example, there are
two functions that affect the performance of the console de
vice. They allow you to
• Control the screen display's cursor
• Configure the keyboard portion of the console device

First, the function that allows you to control the screen
display's cursor:
int rate, mode, newrate;

rate = Cursconf(mode, newrate);

where mode is a flag that indicates which cursor function you
wish to change. Possible choices are:

The first four settings should be self-explanatory.
They're used to either show or hide the cursor and to change
it from a blinking block to a solid block. In these modes, the
value of newrate is unimportant, and this parameter need not
be passed.

When the cursor is blinking, you can also change the
rate at which it blinks by the value you pass in newrate. This
is a number from 0-255, that determines the time for each
complete blink cycle (cursor on once, cursor off once) accord
ing to the following formula:
Duration of a single blink (in seconds) = 2 * rate / cycles

Cycles is a value that depends on the monitor and the video
system used. Its value is 70 for the monochrome monitor, 60
for the U.S. color monitor, and 50 for the European color
monitor. The default rate setting is 30. For the monochrome
monitor, this makes the cursor blink every (2 * 30 / 70) sec
onds, or every .86 seconds. For the U.S. color monitor, the

Mode
Number Cursor Setting

0
1
2
3
4
5

Turn cursor off
Turn cursor on
Turn cursor blink on
Turn cursor blink off
Change rate of cursor blink to newrate
Read cursor blink rate

31

CHAPTER 3

default setting works out to (2 * 30 / 60), or a blink every sec
ond. Settings lower than 30 make the cursor blink faster. At
a setting of 1, it's just a blur. Higher settings make it blink
more slowly. A setting of 0 is not the fastest setting, but the
slowest (it represents 256). When you used mode number 5,
the current blink-rate value is returned in the low byte of the
rate variable. None of the other modes return any useful val
ues in rate.

There is also a function that allows you to configure the
keyboard portion of the console device. The ST console key
board has a typeamatic feature that repeats the input if you hold
down one of the keys for a moment. The delay before a key
starts repeating, and the rate at which it repeats can be set
with a call to the Kbrate() function in the following format:
int oldvals, delay, rate;

oldvals = Kbrate(delay, rate);

where delay is the amount of time you must initially hold
down a key before it starts to repeat, and rate is the time that
elapses between each repetition. These times are measured
in ticks of the system clock (200 milliseconds). Although each
is a 16-bit value, only the low byte is used. As with the cur
sor speed setting, a rate of 0 represents the maximum delay
between repeats, not the minimum. The default values set by
the system are a delay of 17 and a repeat of 3. This means
that you must hold down a key for 0.34 seconds before it
starts to repeat; from then on the character will repeat every
0.12 seconds as long as you hold down the key.

A value of - 1 for either delay or rate means that you
wish that setting to remain as it is. For example, the call
Kbrate(30, -1) changes the delay to 30, but leaves the repeat
rate as it is. Note, however, that in the current (preblitter)
version of the Operating System, a — 1 in delay causes the
rate to stay the same also, so you must place a nonnegative
value in delay in order to change the rate.

Another character device configuration function allows
you to set the printer configuration. This is a code number
that contains information about the type of printer used. The
user usually sets this code from the Install Printer desk acces
sory, and application programs can then read it and deter
mine what type of printer is connected. ST Operating System
programs (like the screen dump and GEM Desktop file print-

32

XBIOS Device and System Functions

ing routines) also use these settings when determining what
kind of output to send to the printer. Note that the built-in
screen print feature does not support some possible printer
types (like Epson color printers, or color daisywheels). The
format for the Setprt() call is:
int code, newcode;

code = Setprt(newcode);

where newcode is a 16-bit flag used to describe various attri
butes of the printer. The meaning of each flag bit is shown in
the following table:
Table 3-1. newcode Flag Bits

Bit
Number Description Meaning of Value

0 Print type 0 = Dot-matrix
1 = Daisywheel

1 Color type 0 = Monochrome
1 = Color print

2 Control code type 0 = Atari
1 = Epson

3 Print quality 0 = Draft
1 = Final quality

4 Printer port 0 = Parallel
1 = RS-232 serial

5 Paper type 0 = Continuous
1 = Single Sheet

7 Reserved for future use
8 Reserved for future use
9 Reserved for future use

10 Reserved for future use
11 Reserved for future use
12 Reserved for future use
13 Reserved for future use
14 Reserved for future use
15 Must be 0

The old value of the printer configuration code is re
turned in the code variable. By setting newcode to - 1
(OxFFFF), it's possible to reaa the current code value without
changing it.

The next character device function allows you to confi
gure the RS-232 serial port.

int speed, handshake, ucr, rsr, tsr, scr;
Rsconf(speed, handshake, ucr, rsr, trs, scr);

33

CHAPTER 3

The speed parameter controls the communications speed,
which is sometimes called the baud rate. The ST XBIOS sup
ports 16 standard rates of communication, the most common
of which are 300, 1200, 2400, and 9600 bps (bits per second).
The rates represented by the various values of speed are:

Communication speed
Speed Value (in bits per second)

0 19200
1 9600
2 4800
3 3600
4 2400
5 2000
6 1800
7 1200
8 600
9 300

10 200
11 150
12 134
13 110
14 75
15 50

The handshake parameter is used to indicate which
method of flow control or handshaking is used. Flow control is
used to ensure that the sender isn't sending characters faster
than the receiver can handle them. When the receiver starts
to fall behind, it tells the sender to stop sending characters
until it can catch up. When it catches up, the receiver tells
the sender to start sending again. One method of handshak
ing is known as XON/XOFF, after the ASCII characters used.
Using this protocol, the receiver sends the XOFF character
(Ctrl-S, ASCII 19) when it wants the other side to stop, and
XON (Ctrl-Q, ASCII 17) when it wants it to start again. The
other major handshaking protocol is known as RTS/CTS.
This method involves the receiver and sender using the RS-
232 hardware lines Ready To Send (RTS) and Clear To Send
(CTS) to indicate when they are ready to send and receive
characters, respectively. The meaning of the various hand
shake parameters are as follows:

34

XBIOS Device and System Functions

Handshake
Values

0
1
2

Handshake Method
No handshaking
XON/XOFF
RTS/CTS (not implemented in preblitter ROMs)

Note that a setting of 3 turns on both XON/XOFF and
RTS/CTS, which is meaningless. Also note that in the first
(preblitter) TOS ROMs, the RTS/CTS handshake method was
not supported.

The other input parameters for the Rsconf() function,
ucr, rsr, trs, and scr are used to set various 8-bit registers on
the 68901 Multi-Function Peripheral interface chip (MFP).
The first, ucr, sets the USART (Universal Synchronous/Asyn
chronous Receiver/Transmitter) control register. This controls
various communications parameters such as parity, stop bits,
and data bits per word. The function of each of the register
bits are as follows:

Table 3-2. ucr Bits
Bit Function
0 Not used
1 Parity type

0 = Odd
1 = Even

2 Parity enable
0 = Off
2 = On

3-4 Async start and stop bits
Bit value
4 3 Number of Start and Stop Bits
0 0 No start or stop bits (synchronous)
0 1 One start bit, one stop bit
1 0 One start bit, V/2 stop bits
1 1 One start bit, two stop bits

5-6 Data bits per word
Bit value
6 5 Number of Data Bits
0 0 Eight bits
0 1 Seven bits
1 0 Six bits
1 1 Five bits

35

CHAPTER 3

Table 3-2. ucr Bits (continued)
Bit Function
7 Clock

0 = Use clock directly for transfer frequency (synchronous
transfer)

1 = Divide clock frequency by 16

The other input parameters control the Receive Status
Register (rsr), Transmit Status Register (tsr) and Synchronous
Character Register (scr). These need rarely be set by the user.
A value of — 1 in any of the input parameters will retain the
previous value for that parameter. For more complete infor
mation on the MFP chip, see Appendix F.

The final character device configuration function con
cerns the three input devices, the serial port, the MIDI port,
and the console keyboard. This function returns a pointer to
a data structure known as the I/O buffer record. The buffer
record contains a number of items of information about the
input buffer used by the device. The function, Iorec(), uses
the following syntax:
int dev;
long bufrec;

bufrec = Iorec(dev);

where dev specifies the devices whose buffer record will be
fetched. Possible device number include:
Device

Number Input Device
0 RS-232 serial port
1 Console (keyboard)
2 MIDI port

The address of the device's buffer record is returned in the
variable bufrec. The buffer record contains 14 bytes of data,
laid out as follows:
Table 3-3. bufrec Byte Values

Contents
Address of the input buffer
Size of the input buffer (in bytes)
Index to head (next write position)
Index to tail (next read position)
Low water mark *
High water mark *

Byte Element
Number Name

0-3 ibuf
4-5 ibufsize
6-7 ibufhd
8-9 ibuftl

10-11 ibuflow
12-13 ibufhi

* Explained below.

36

XBIOS Device and System Functions

An output buffer record immediately follows the input
buffer record for the RS-232 serial device only.

Each input device has an input buffer where incoming
characters are stored until retrieved by a call to Bconin(). As
characters are stored, the ST Operating System increments
the index to the buffer head, which is an offset from the be
ginning of the buffer that shows where the next character
will be stored. As characters are retrieved, the Operating
System increments the index to the buffer tail, which is an
offset from the beginning of the buffer that shows where the
next character will be read.

If the head and tail of the buffer are the same, the buffer
is empty. There are also offsets from the buffer tail which are
known as the high water mark and the low water mark. These
are used by devices that support handshaking. When the
buffer head is a certain number of characters ahead of the
buffer tail (the high water mark), the device signals the
sender that it can't receive any more data. When the buffer
head drops back to within a certain number of characters of
the tail (the low water mark), the device signals the sender to
resume transmission.

The ST Operating System sets up a default buffer for
each input device. The size of these buffers are 256 bytes
each for RS-232 input and output, and 128 bytes each for
keyboard and MIDI input. Under normal circumstances,
these buffer sizes are quite sufficient. When a continuous
stream of bytes is coming in faster than calls to Bconin() can
read them, however, it may be possible to push the head in
dex past the tail, overflowing the buffer, and causing incom
ing data to be lost. In circumstances where data is coming in
at a very rapid rate, the user may wish to replace the default
buffer with a larger one of his own. Do this by declaring a
block of variable storage and setting the buffer address
pointer to that address. The programmer should save the ad
dress of the default system buffer and restore that buffer be
fore the program terminates.

MIDI and IKBD I/O
Two of the ST's character output devices, the MIDI port and
Intelligent Keyboard controller (IKBD), don't come as stan
dard equipment on most personal computers. These devices
process commands that always consist of more than one byte

CHAPTER 3

of data. Therefore, the XBIOS contains functions for sending
an entire string of characters to either device. The Midiws()
function sends a string of characters out the MIDI port, and
Ikbdws() writes a string of characters to the IKBD. These
two functions are called like this:
int bytes;
long buffer;

Midiws(bytes, buffer);

int bytes;
long buffer;

Ikbdws(bytes, buffer);

where bytes is a value one less than the length of the charac
ter string in bytes, and buffer is the address of the memory
buffer that contains the string. More information on the com
mand set used by the intelligent keyboard device can be
found in Appendix I. The protocol used by MIDI devices is
too complex to include here. Complete details are contained
in the official MIDI specification, a 71-page book published
by the International MIDI Association. This book may be ob
tained directly from the IMA, 5316 West 57th Street, Los An
geles, CA 90056 (818)505-8964. Its price is currently $35.

Because initializing the mouse packet mode requires a
number of commands to be sent to the IKBD, the XBIOS pro
vides a function that lets you send all of them at once. This
function is called Initmous(), and it's called like this:
int mode;
long params, vector;

Initmous(mode, params, vector);

where mode specifies the type of mouse information packets
that the IKBD is to send. Possible values for mode include:

The params variable points to a data block that contains the
following parameters:

Mode
Number Mouse Mode

Mouse disabled0
1
2
3
4 Mouse enabled in keycode mode

Mouse enabled in relative mode
Mouse enabled in absolute mode
Unused

38

XBIOS Device and System Functions

Table 3-4. Data Block Pointed to by params
Byte

Offset
0

4*
6*
8*

10*

Label
topmode

1 buttons

2 xparam

3 yparam

xmax
ymax
xinitial
yinitial

Description
Specifies origin of y position
0 = y origin (0 point) at bottom
1 = y origin at top
The parameter for the IKBD set mouse buttons
command
In relative mode, x threshold
In absolute mode, x scale
In keycode mode, x delta
In relative mode, y threshold
In absolute mode, y scale
In keycode mode, y delta
Maximum x position of mouse
Maximum y position of mouse
Initial x position of mouse
Initial y position of mouse

Used only in mouse absolute mode.

The vector variable is used to pass the address of new
mouse packet interrupt handler. If you're changing the mouse
mode, chances are that the current handler will not work.

Both the MIDI and IKBD devices can send input to the
ST, as well as receive output. Receiving input is a little more
complex than sending output, however. Input from these de
vices is handled by a number of system interrupt routines
which store the characters received in buffers. Information
on the input buffers is provided in the section on the Iorec()
function, above. The XBIOS also provides a function called
Kbdvbase(), which returns pointers to several of the actual
interrupt routines that are used to handle the input func
tions. The syntax for this function is:
long vecbase;

vecbase = Kbdvbase();

where vecbase contains the address of a vector table. The
structure of this vector table is as follows:
Table 3-5. Vector Table Structure Pointed to by vecbase
Byte Vector

Offset Name Routine Called
0 midivec MIDI input routine
4 vkbderr IKBD ACIA overrun error routine
8 vmiderr MIDI ACIA overrun error routine

{ '

39

CHAPTER 3

Byte Vector
Offset Name

12 statvec
16 mousevec
20 clockvec
24 joyvec
28 midisys
32 ikbdsys

Table 3-5. Vector Table Structure Pointed to by vecbase (continued)

Routine Called
IKBD status packet handler
IKBD mouse packet handler
IKBD clock packet handler
IKBD joystick packet handler
System MIDI ACIA handler
System IKBD ACIA handler

The MIDI port and Intelligent Keyboard Controller
(IKBD) hardware are connected to the ST system through an
ACIA (Asynchronous Communications Interface Adapter)
chip. When a byte has been input from either the MIDI port
or the IKBD, the ACIA chip causes an interrupt to occur on
the 68901 MFP chip. The interrupt handler then determines
whether the interrupt was caused by the MIDI ACIA chip or
the IKBD ACIA chip. If it was the MIDI chip, the midisys
routine is called. This determines whether the interrupt oc
curred because a byte of data was received, or because of an
overrun error. If a byte of data was the cause, the midivec
routine is called to store the data (which is contained in the
low eight bits of DO) in the MIDI buffer. If an error occurred,
the vmiderr routine is called to handle the error.

If the source of the interrupt was the IKBD ACIA, the
ikbdsys routine is called. It checks to see if the interrupt was
caused by data received or by an error. If it was an error,
vkbderr is called to handle it. If a data byte was received, the
byte is checked to see if it was a keycode or an IKBD packet
header. If the former is true, the keypress is handled. If the
byte was a packet header, however, execution is directed
through statvec, mousevec, clockvec, or joyvec, depending
on what kind of packet is waiting. Of these four, the mous
evec and clockvec vectors are used by the system, and
should generally be left alone (particularly if you want sys
tem support for the mouse and clock functions to continue).

The statvec and joyvec vectors are not used by the sys
tem, however, and you may want to install you own han
dlers for these functions. For example, in order to use joys
ticks with your program, you must send a command to the
IKBD to begin sending joystick information packets, and in
stall your own joystick packet handler to process these pack
ets. If you do install your own handler, remember at the

40

XBIOS Device and System Functions

point that it is entered, the address of the packet buffer will
be on the stack, and in register AO.

It should not spend more than one millisecond handling
the interrupt (most of the time, it will just move the packet
information to your own buffer), and should end with an
RTS instruction. Your routine should begin by saving all reg
isters that you will use, and restore those registers before
ending. Remember also that if you replace one of the vectors
used by the system (mousevec, clockvec, or ikbdsys), you
must either duplicate its actions in your own handler, or lose
system-level functions (like mouse or keyboard support).
Whenever you replace one of these vectors, always save their
original contents, so that you can restore them before your
program ends.

For more information on the various Intelligent Key
board Controller packet types, see Appendix I.

One common type of I/O carried on with the IKBD is
getting and setting the keyboard's time and date clock. The
XBIOS provides functions that make it easy to get or set the
clock. These functions are Settime() and Gettime():
long datetime;

Settime(datetime);

long datetime;
datetime = GettimeO;

where datetime is a 32-bit value that specifies the date and
time in DOS format. The bit groupings for datetime are:

Table 3-6. datetime Bit Groupings
Bit Number Description Range

0-4 Seconds divided by 2 0-29
5-10 Minutes 0-59
11-15 Hour 0-23
16-20 Day 1-31
21-24 Month 1-12
25-31 Year 0-119*

* Year value is added to 1980 to arrive at current year.

For example, if Gettime() returns a value of $0F976723, you
could find the date and time by breaking the number down
into its binary equivalent:

41

CHAPTER 3

0000 1111 1001 0111 0110 0111 0010 0011
and grouping the bits as required:
0000111 1100 10111 01100 111001 00011

7 12 23 12 49 3
1987 December 23d 12:49:06 p.m.

This gives a year of 7 (1987), a month of 12 (December), a
day of 23, an hour of 12 (noon), a minute value of 49, and a
seconds value of 3. Thus, the date shown is December 23,
1987, and the time is 12:49:06 p.m. (The seconds value is the
quotient of seconds divided by two.)
XGETTIME.C (Program 3-1) shows how to use Gettime()
function to find the date and time.

Program 3-1. XGETTIME.C
/**/
/* *//* XGETTIME.C — Demonstrates reading */
/* the IKBD clock/calendar and */
/* interpreting the results. */
/* */ /ft***/
#include <osbind.h> /* For macro definitions */
main()
(unsigned long datetime, xbiosQ;

unsigned int date, time;
unsigned int second, minute, hour;
unsigned int day, month, year;
datetime = Gettime(); /* get time and date longword */
time = (int)datetime; /* time is low word */
date = (int) (datetime»16) ; /* date is high word */
second = (time & OxlF) *2; /* secs/2 in 1st 5 bits */
minute = (time»5) & 0x3F; /* minutes in next 6 */
hour = time » 11; /* hours in last 5 */
day = date & OxlF; /* day in 1st 5 bits */
month = (date » 5) & OxF; /* month in next 4 */
year = (date » 9) + 80; /* year-1980 in last 6 */
printf ("The date is %d/%d/%d and the time is %d:%d:%d \n",

month,day,year,hour,minute,second);
)
/********** end of XGETTIME.C ********/

Note that though this function returns the date and time
in the same format as the comparable GEMDOS functions, it
does not use the same clock. Gettime() uses the hardware
clock found in the IKBD device (or the Real-Time-Clock on
the Mega STs), while the GEMDOS functions use a software
clock maintained by GEMDOS. On 520 and 1040 STs, it is

42

XBIOS Device and System Functions

quite possible that these two clocks will not be set to the
same time. The new (blitter) ROMs, however, set the GEM
DOS clock from the hardware clock at the termination of
every process.

Keyboard Vector Tables
The console device uses three sets of tables to tell it what
ASCII character to return when it receives a certain key code
from the IKBD device. One table has the ASCII values for
unshifted keys, one has the ASCII values for keys pressed
while holding down either Shift key, and one has the ASCII
values for keys pressed while the CapsLock is in effect. Each
table is 128 bytes long. Since there are only 104 keys on the
ST keyboard, a number of the values in the tables are not
used. The tables are arranged by key scan code. Since no key
has a scan code value of 0, the first entry in the table is 0.
Next comes the Esc key, which has a value of 1, followed by
the 1 key which has a value of 2. The scan code for each key
can be found in Appendix J, which shows all of the extended
keyboard codes. The identifier is the first byte of the two-
byte keycode value. For easier reference, a map of scan code
values is given in Figure 3-1.

Figure 3-1. Map of Scan Code Values

$61 $82 883 SB4 $03 $66 887 $88 809 SBft 88B 8BC SBD 829 $8E 862 $61 $66

$4ft

S4E

BFj10|«ll|si2|613|$14[#15|$16]ei7j618jS19|$lft|SlB

SID $1E S1F $28 821 $22 $23 $24 $25 $26 $27 $28 $1£_
$2<* $2C $2D S2E $2F $38 $31 832 $33 $34 $35 _$36

$38 $39 $3A

$53

82B
S6F

$71

The TOS ROMs contain the default tables ordinarily
used to map keys to their ASCII values. It is possible, how
ever, to substitute a RAM table for one or more of these key
maps. This allows you to change your keyboard layout to an
alternate configuration, such as that used for Dvorak key
boards. An alternate key map may also be used to allow easy
access to certain foreign characters or math symbols. The

43

CHAPTER 3

function with which you may alter the console keyboard ta
bles is called Keytbl(), and takes the following format:
char unshift[128], shift[128], capslock[128];
long vectable;

vectable = KeytbHunshift, shift, capslock);

where unshift, shift, and capslock are pointers to your own
128-byte tables. A value of - 1 ($FFFFFFFF) in any of these
pointers will signal the function that you wish to leave that
table as it is. This function returns the pointer vectable, which
contains the address of a vector table. This vector table con
tains pointers to each of the three keyboard tables. Its format
is

Byte
Number Contents

0-3 Address of the unshifted table
4 -7 Address of shifted table

8-11 Address of CapsLock table

The brief sample program XKEYTBL.C (Program 3-2),
written in C, shows how to use the shift table for CapsLock
as well. This causes the punctuation marks located on the
number keys on top of the keyboard to be printed when
CapsLock is set, but still allows you to print numbers with
the numeric keypad.

Program 3-2. XKEYTBL.C
/**/
/* *//* XKEYTBL.C — demonstrates use of the */
/* XBIOS routine to change the keyboard */
/* mapping tables, so that CapsLock *//* keys have their Shifted value. */
/ * V/**/
if include <osbind.h> /* For XBIOS macro definitions */
main()
{ struct keytab /* Keytbl() returns a pointer */

{ /* to this kind of structure */
char *unshift;
char *shift?
char *capslock;
);

struct keytab *vt; /* Pointer to the vector table returned */
vt = (struct keytab *)Keytbl(-lL,-lL,-lL); /* get vector table */
Keytbl(-lL,-lL,vt->shift); /* put value of shift in CapsLock */

)
/******** end of XKEYTBL.C *****/

44

XBIOS Device and System Functions

Since the location of the default tables may change from ver
sion to version of the TOS ROMs, the XBIOS includes the
Bioskeys() function, which allows you restore the default ta
bles wherever they may be located. The syntax for this func
tion is:
Bioskeys();

Software developers should be aware that Atari has writ
ten a program called DEADKEYS.PRG, that allows the addi
tion of foreign characters to the keyboard without remapping
the current key assignments. This program adds itself to the
beginning of the BIOS trap handler and checks to see if cer
tain accent keys are struck. If they are, a flag is set so if the
next key pressed is a vowel, the vowel is printed with the
accent mark over it. The DEADKEYS.PRG program is avail
able from Atari to registered software developers.

Screen Printing
TOS provides a screen print function. Whenever you press
the Altemate-Help key combination, or choose the Print
Screen menu item from the Options menu of the Desktop,
the ST sends commands to the printer that cause it to print
a graphic representation of the screen display, providing it's
the right type of printer (Atari- or Epson-compatible) and it's
properly installed (see Setprt() function, above). This same
function can be performed under software control, by the
XBIOS routine Scrdmp(), which is called from C by the pro
gram statement
Scrdmp();

As stated above, the default screen print routine only
supports Atari and Epson-compatible dot-matrix printers.
The ST screen print function can, however, be made to work
with other printers by installing specialized printer drivers.
To accommodate this, the Scrdump() routine is vectored
through location 1282 ($502). This means that when
Scrdump() is called, or the Alt-Help keys are pressed, pro
gram execution is directed to the routine whose address is
found at that location. To install a printer driver for another
printer, therefore, simply load the new screen print program
as a Terminate-and-Stay-Resident program (see Ptermres(),

45

CHAPTER 3

Chapter 5) and store its address in location $502. Since that
location is in protected memory, first switch to Supervisor
mode (see the Supexec() function below). If you want to
keep the new driver installed after the program ends, use
GEMDOS function 49 ($31) to keep the program code resi
dent when it terminates.

The screen print vector at $502 can be diverted for other
purposes in addition to installing new printer drivers. Some
snapshot programs, for example, use this vector to install a
routine that saves the screen picture to a disk file when the
Alt-Help keys are pressed, rather than sending it to a
printer. It's also possible to install a short routine that tests
for shift-keys when Alt-Help is pressed, This allows addi
tional hot-key programs to be installed, rather than just re
placing the screen print function.

The default screen print code calls another XBIOS func
tion to do the actual printing. This function can be used to
print all of the screen or only a part of it. Its name is
Prtblk(), and it's called like this:

long prtable;
Prtblk(prtable);

where prtable contains the address of a 30-byte parameter ta
ble that determines how the screen block is printed. The
composition of this table is as follows:

Table 3-7. Structure of Table Pointed to by prtable
Byte Element

Number Name Description
0-3 blkprt Starting address of screen RAM
4-5 offset Offset from start address (in bits, 0-7)
6-7 width Screen width (in bytes)
8-9 height Screen height

10-11 left Left margin for screen dump
12-13 right Right margin for screen dump
14-15 scrres Screen resolution

0 = Low
1 = Medium
2 = High

16-17 dstres Printer resolution
0 = Draft (960 dpi)
1 = Final (1280 dpi)

18-21 colpal Starting address of the color palette

46

XBIOS Device and System Functions

Table 3-7. Structure of Table Pointed to by prtable (continued)
Byte

Number
22-23

Element
Name

type

24-25 port

26-29 masks

Description
Printer type

0 = Atari monochrome dot-matrix
1 = Atari monochrome daisywheel
2 = Atari color dot-matrix
4 = Epson monochrome dot-matrix

Printer port
0 = Parallel
1 = RS232 serial

Starting address of half-tone mask table (if 0,
use default ROM table)

The prtblk() routine uses a number of RAM vectors. Be
fore it sends a character to the printer, it jumps through a
vector to a subroutine that returns the status of the printer.
A return of — 1 means the printer is ready, while a return of
0 means that it's still busy. When the printer is ready,
prtblk() pushes the character to be printed onto the stack
and jumps through another vector to the subroutine that ac
tually outputs the character to the printer. The four RAM
vectors, two for serial printers and two for parallel printers,
are:

Table 3-8. RAM Vectors for Printers
Vector

Address Name
1286 ($506) prv__lsto

1290 ($50a) prv__1st

1294 ($50e) prv__auxo

1298 (512) prv__aux

Description
Pointer to lstostat(), the PRN: device
output status function
Pointer to lstout(), the PRN: device
output routine
Pointer to autostat(), the AUX: device
status function
Pointer to auxout(), the AUX: device
output routine

These vectors can be used to divert screen prints to
other devices such as a laser printer connected to the DMA
port. Note, however, that since prtblk() only supports the
default printers, changing these vectors will not have any ef
fect if a custom driver is installed at the vector at $502.

47

CHAPTER 3

Floppy Disk Functions
The XBIOS includes a few functions that deal specifically
with floppy disks as opposed to the more general BIOS disk
routines. Among other functions, they are used to format
and initialize a floppy disk. This operation requires several
steps. The first is to format all the tracks on the disk, using
the XBIOS routine Flopfmt(), which formats and verifies a
single track. The syntax for this call is:

long buffer, skewtabl, magic;
int status, devnum, spt, tracknum,
sidenum, intrlev, magic, initial;

status = Flopfmt(buffer, skewtabl, devnum, spt, tracknum,
sidenum, intrlev, magic, initial)

As you can see, you must supply quite a few parameters for
this call. Buffer is a pointer to a memory buffer used to hold
the data for the track image. For the normal layout (nine sec
tors per track), an 8K buffer is recommended. This buffer
must start at an even address (a word boundary). The next
parameter, skewtabl, is ignored in the first (preblitter) version
of the TOS ROMs, which always write each sector sequen
tially on the track. The new blitter ROMs, however, allow
sectors to be skewed within a track. While the first track has
its sectors in the regular order:

Track 1 :1 , 2, 3, 4, 5, 6, 7, 8, 9

the second track may have its sectors in a slightly different
order:

Track 2: 8, 9 ,1 , 2, 3, 4, 5, 6, 7

Skewing the tracks this way makes sequential tracks read
much faster. To use a skewed track format, place a — 1 in the
intrlev variable and have skewtabl point to a skew table that
contains a 16-bit sector number for each sector, in the order
in which sectors are to appear on successive tracks. If intrlev
is set to something other than - 1 , the skewtable variable is
ignored, but it must still be passed as a place holder.

The next parameter to pass is devnum,, the drive speci
fier. This value is 0 for drive A:, and 1 for drive B:. Next
comes spt, which is short for sectors per track. The normal

48

XBIOS Device and System Functions

Atari format calls for nine sectors per track. The Atari drives
may reliably read and write ten sectors per track, however,
and many users prefer format programs that use this value
to expand each floppy disk's storage from 360K (720K double
sided) to 400K (800K double sided).

The tracknum variable is used to specify the track number
to be formatted. The normal Atari format uses track 0-79,
though it's technically possible to use track 80 and sometimes
even track 81. The sidenum variable is used for the side of the
disk to format. Single-sided drives only use side 0, while
double-sided drives use both 0 and 1.

The next parameter, intrlev, is a sector interleave format.
In the old TOS ROMs, this is set to 1, but the new TOS for
mat routines use a - 1 to indicate sector skewing, as ex
plained above. The magic parameter must be set to the num
ber $87654321 for the format to work. Finally, initial is a 16-
bit value to which all of the data bytes in a sector are initially
set. Atari advises against the use of $0000 and recommends
an initial value of $E5E5. In any case, the high nibble of each
byte in this parameter must not equal $F.

On return from Flopfmt(), the status parameter holds a
status code. If there were no errors in formatting the track,
its value will be 0. Any other code represents an error num
ber, which indicates that the format operation failed. If the
format fails due to sectors that could not be verified, a list of
the bad sectors is returned in the buffer. This list consists of
a string of 16-bit numbers, each representing a sector number
(tracks start with sector 1) and terminated with a 0. This list
is not necessarily in consecutive sequence. When a format
operation fails, the format program may try to format the
track again. If the format still fails after a couple of retries,
the format program should note the bad sectors, and mark
them as used in the File Allocation Table so the file system
will not try to use these sectors. The exception to this is the
first two tracks, which are used for the File Allocation Table
and directory sectors. If any of the sectors in these tracks are
bad, the media is unusable and formatting should be termi
nated.

Next, fill the sectors in the first two tracks with zeros.
This initializes the File Allocation Table and directory. To
write one or more sectors to a disk track, use the Flopwr()
function:

49

CHAPTER 3

int status devnum, secnum, tracknum, sidenum, numsecs;
long buf, resvd;

status = Flopwr(buf, resvd, devnum, secnum tracknum,
sidenum, numsecs);

where buf contains the address of a buffer that contains the
data for one or more sequential sectors in a track. Resvd is a
longword reserved for future use, which is currently ignored,
but must be present. Devnum refers to the drive (0 = drive
A:, 1 = drive B:). Secnum is the sector number at which to
begin writing (ordinarily sectors are numbered 1-9). Track
num is the number of the disk track, and sidenum the side of
the disk to write to (0 or 1). Numsecs is the number of se
quential sectors of data to write.

An error code is returned in status. If the status is 0, the
operation was successful. Any other return represents a sys
tem error. For information on system errors codes, see Ap
pendix D.

The final step in formatting a disk is to create a boot sec
tor. This is a specially formatted block of information that is
stored on the first sector on the disk (side 0, track 0, sector 1).
It gives information about the disk storage format to the file
system. You can create the block of information to be written
to the boot sector using the Protobt() routine, which has the
following syntax:

int disktype, execflag;
long buffer, serialnum;

Protobt(buffer, serialnum, disktype, execflag);

where buffer contains the address of a 512-byte memory
buffer where the boot block information will be created. Ser
ialnum is a unique identifier code the file system uses to tell
whether disks have been changed in a particular drive. Since
each disk should have its own unique 24-bit number, pass a
random number here. If you don't want to bother to gener
ate a random number, the system will do it for you if you
just pass a number larger than 24 bits ($1000000 or greater).
The next parameter, disktype, is a code word that specifies
the storage capacity and format of the disk. Possible values
for disktype are:

50

XBIOS Device and System Functions

Disktype
Value Disk Format

0 40 tracks, single sided (180K)
1 40 tracks, double sided (360K)
2 80 tracks, single sided (360K)
3 80 tracks, double sided (720K)

Formats 2 and 3 are normally used for ST 3V2-inch
disks. Some 5VWnch drives for the ST are formatted as
type 1.

The last parameter, execflag, is used to indicate whether
the disk is used to execute some boot code at startup time.
This code consists of up to 480 bytes of machine language in
structions, starting at byte 30 ($1E) of the boot sector. Most
of the time, you'll place a 0 in this variable to show that the
boot sector is not executable. If you place machine language
instructions that you want executed at power up, indicate
this by placing a one in execflag.

Protobt() can be used not only to create a new boot sec
tor from scratch, but to modify an existing one as well. To
use it this way, you could read an existing boot sector into
the buffer with Floprd() (see below) and then call Protobt()
with one or more parameters set to - 1 . If serialnum, disktype,
or execflag are set to — 1, Protobt() will leave that value as it
currently exists is in the buffer and only change the other
specified values.

Once Protobt() has been used to create the boot sector,
all that remains is to write it to the first side 0, track 0, sector
one of the disk. The XBIOS call Flopwr() should be used for
this purpose and not the similar BIOS call Rwabs(). For
more information on the contents of a boot sector, see Ap
pendix H.

The two remaining XBIOS disk functions are used to
verify a floppy disk sector and to read one or more sectors
from a floppy disk. Both are almost identical to Flopwr() in
format. The verify function is called Flopver(), and it's called
as follows:
int status devnum, secnum, tracknum, sidenum, numsecs;
long buf, resvd;

status = Floprd(buf, resvd, devnum, secnum, tracknum,
sidenum, numsecs);

51

CHAPTER 3

The function used to read sectors is called Floprd(), and it's
called this way:
int status devnum, secnum, tracknum, sidenum, numsecs;
long buf, resvd;

status = Floprd(buf, resvd, devnum, secnum, tracknum,
sidenum, numsecs);

All of the parameters have the same meaning as in
Flopwr(), above. Buf contains the address for the memory
buffer where the data read from the sectors will be stored.
Resvd is a longword reserved for future use, which is cur
rently ignored, but must be present. Devnum refers to the
drive (0 = A, 1 = B). Secnum is the sector number at which
to begin reading. Tracknum is the number of the disk track,
and sidenum is the side of the disk from which to read (0 or
1). Numsecs is the number of sequential sectors of data to
read. In the case of Floprd(), the data will be read from the
sectors. Flopver() not only reads the data, but compares the
data that was read to the data still on the disk. Tracks are
automatically verified as part of the Flopfmt() function. Also,
sectors written with the BIOS function Rwabs() are automat
ically verified if the system variable fverify (at location 1092,
$444) is set to a nonzero value, which is the default condi
tion.

An error code is returned in status. If the status is 0, the
operation was successful. Any other return represents a sys
tem error. For information on system errors codes, see Ap
pendix D.

XFORMAT.C (Program 3-3) gives an example of how to
format a double-sided disk with the XBIOS disk functions.

Program 3-3. XFORMAT.C

/* XFORMAT.C— Simple double-sided */
/* floppy format using XBIOS routines */
/* *//* */ /**/
flinclude <osbind.h> /* For XBIOS macro definitions */
int buf[4096]; /* buffer for track formatting, etc. */
main()
{ int status, sector, track, side;
/* prompt for disk and wait for key press */

52

XBIOS Device and System Functions

printf("Insert disk to format in drive A and press Return\n\n");
Bconin(2); /* wait for a key press */

/* format tracks 0-79 on both sides */
for(track=0;track<80;track++) /* for 80 tracks.. */

(for(side=0;side<2;side++) /* on 2 sides */
(printf("\33A Track %d, Side %d\n",track,side);
/* format a track */status = Flopfmt(buf,0L,0,9,track,side,1,0X87654321L,0xE5E5);
if (status != 0) /* if there's an error, quit */

printf("Error %d at track %d, side %d\n",status, track,side);
exit(100);
) /* end of if */

) /* end of for side */
) /* end of for track */

/* Fill first two tracks on both sides with zeros */
for(track=0;track<4096;buf(track++]=0); /* fill buf w/o's */
for(track=0;track<2;track++) /* for 2 tracks... */

for(side=0;side<2;side++) /* two sides each */
{/* write zeros to track */
status = Flopwr(buf,0L,0,1,track,side,9);
if (status !=>0) /* if there's an error, quit */

(printf("Sector zero failed, error %d\n",status);
exit(100);
)))

/* prototype a boot sector, and write to side 0, track 0, sector 1 */
Protobt(buf,0X01000000L,3,0);
status = Flopwr(buf,0L,0,1,0,0,1);
if (status 1«=0) /* if there's an error, quit */

printf("Boot sector write failed, error %d\n",status);
exit(100);
)

/* if no errors, the disk is formatted! */
printf("Format successful\n");

/*********** End Of XFORMAT.C *********/

Though this program will format a disk, it is much sim
pler than the typical formatting program. It only formats a
double-sided disk in drive A, and it quits the format proce
dure at the first sign of an error. Typically, a format program
will retry formatting a track at least a couple of times before
giving up and will mark bad sectors as used in the File Allo
cation Table instead of giving up on the whole disk if a cou
ple of sectors are bad.

Accessing the I/O Chips
The ST uses a number of different I/O chips to perform its
various input/output chores. The XBIOS provides functions

53

CHAPTER 3

that can help control two of these chips. One of them is the
Programmable Sound Generator chip which will be discussed
more fully in Chapter 4. In addition to its sound functions,
this chip provides two 8-bit I/O ports. These are accessed
through register 14 (I/O port A) and register 15 (I/O port B)
of the sound chip. I/O port B is used for the 8 data bits that
are transmitted through the Centronics parallel port to the
printer. Port A, however, uses each bit for a different control
function. The bit assignments for this port are:

Bit
Number Function

0 Floppy disk side 0/side 1 select
1 Floppy drive A select
2 Floppy drive B select
3 RS-232 Ready To Send (RTS)
4 RS-232 Data Terminal Ready (DTR)
5 Centronics STROBE line
6 General purpose output, available for application use

(line connected to monitor port)
7 Reserved

Since these ports are located on the PSG chip, it's possi
ble to read and write to them via the Giaccess() function ex
plained in Chapter 4. In the case of port A, however, it isn't
a good idea to do so. Since each bit is significant, make sure
you change only the bits relevant to what you're doing. This
usually entails reading the port, changing the value that
you've read, and writing it back to the port.

TOS frequently changes the port A settings via inter
rupts, however. It uses this port to check the floppy disk
drives for media changes, for example. This means that the
port setting might change between the time you read it and
the time you write back the new value. If that happens, you
will unintentionally change the bits TOS has altered. The
only way around this is to make sure that no interrupts oc
cur between the time you read the port and the time you
store your new value. This is known as changing the value
atomically because it insures that the read and write opera
tions will never be split by an interrupt. The XBIOS provides
two functions to change individual bits on I/O port A. These
functions are called like this:

54

XBIOS Device and System Functions

int bitnum;
Offgibit(bitnum);

int bitnum;
Ongibit(bitnum);

where bitnum is the number of the bit (0-7) to change. Offgi-
bit changes the specified bit number to a 0, while Ongibit
changes the bit to a one.

The 68901 Multi-Function Peripheral (MFP) Chip is an
other important I/O chip on the ST. It contains an 8-bit paral
lel I/O port, a Universal Synchronous/Asynchronous Re
ceiver/Transmitter (USART) for serial I/O, and four general-
purpose timers. The serial port, the timers, and each bit of
the parallel I/O port are capable of generating an interrupt.
The MFP chip interrupts have an Interrupt Priority Level
(IPL) of 6, but they are not autovectored. This means that
when an MFP interrupt occurs, the IPL 6 interrupt handler is
not called. Instead, the MFP chip directs execution to one of
its own interrupt handlers. The 16 MFP interrupts (in order
of priority), and their functions on the ST, are

Table 3-9. The 16 MFP Interrupts
Bit

Number Interrupt Source ST Function
0* I/O Port Bit 0 Parallel port busy
1* I/O Port Bit 1 RS-232 Data Carrier Detect (DCD)
2 I/O Port Bit 2 RS-232 Clear To Send (CTS)
3* I/O Port Bit 3 Graphics blitter chip done
4* Timer D RS-232 baud rate generator
5 Timer C System Clock (200 Hz)
6 I/O Port Bit 4 Keyboard and MIDI ACIA data

request
7* I/O Port Bit 5 Floppy drive/DMA port data request
8* Timer B Horizontal blank counter
9 USART RS-232 transmit error

10 USART RS-232 transmit buffer empty
11 USART RS-232 receive error
12 USART RS-232 receive buffer full
13* Timer A User-defined timer interrupt
14* I/O Port Bit 6 RS-232 Ring Indicator (RI)
15* I/O Port Bit 7 Monochrome monitor detect

* See text below.

The interrupts that have an asterisk next to their bit
number are initially disabled, but the user may enable or dis-

55

CHAPTER 3

able any MFP interrupt with one of the following XBIOS calls:
int intnum;

Jdisint(intnum);
int intnum;

J enabint(intnum);

where intnum is the number of the interrupt (0-15), to enable
or disable. Jdisint() is used to disable the interrupt, and Jen-
abint() is used to enable it.

The MFP includes four timers. Associated with each of
these timers is
• A control register
• A data register
• A counter
• An interrupt vector
• A hardware output line

In addition, Timers A and B are connected to a hardware
input line. All four timers may operate in what is known as
delay mode. In this mode, the counter is decremented at
each clock pulse until it reaches 0. At that point, an interrupt
occurs, the hardware output line is pulsed, and the counter
is loaded with the contents of the data register. Then the
countdown process starts again.

Timers A and B can also operate in event count mode.
In this mode, the counter is decremented not by the clock,
but by pulses on the timer input line which come from an
external hardware device. Timers A and B can also operate in
pulse length mode. In this mode, the counter is decremented
by clock pulses, but it can be turned on and off by pulses
from the hardware input line.

TOS itself uses three of the four timers. Timer B is used
for the Horizontal Blank counter. Timer C is used for the 200
Hz system clock that updates the GEM AES timer as well as
executing the commands in the Dosound() queue. Timer D
supplies the timing signal for the MFP's USART, which con
trols the communications speed (Baud rate) for the serial
port. Thus, only Timer A is left free for use by applications.
The XBIOS provides a function that lets you set the timer
registers and interrupt vector. This function is called Xbti-
m er(), and is called like this:
int timemum, control, data;
long vector;

Xbtimer(timemum, control, data, vector);

XBIOS Device and System Functions

where timernum is number from 0-3 that represents an MFP
timer (0 = A, 1 = B, 2 = C, 3 = D). Control represents the
value to place in the timers control register. This is an 8-bit
register that controls the timer mode. For Timers A and B,
possible values for this register include:

Control
Value Timer Mode

0 Timer off
1 Delay mode, clock divided by 4 .
2 Delay mode, clock divided by 10
3 Delay mode, clock divided by 16
4 Delay mode, clock divided by 50
5 Delay mode, clock divided by 64
6 Delay mode, clock divided by 100
7 Delay mode, clock divided by 200
8 Event Count Mode
9 Pulse Length mode, clock divided by 4

10 Pulse Length mode, clock divided by 10
11 Pulse Length mode, clock divided by 16
12 Pulse Length mode, clock divided by 50
13 Pulse Length mode, clock divided by 64
14 Pulse Length mode, clock divided by 100
15 Pulse Length mode, clock divided by 200

Data represents the value stored in the timer data register. Fi
nally, vector is the address for the interrupt handler routine
associated with this timer. To install your own timer inter
rupt routine for Timer A, set this value to the address of
your interrupt code.

Miscellaneous System Routines
The remaining XBIOS functions perform a number of miscel
laneous functions. The first of these is used to execute a sub
routine in the 68000's supervisor mode. Normally, ST pro
grams operate in what's known as user mode. Some
privileged operations, however, can only be performed while
in supervisor mode. For example, the address space from
0-2048 ($0-$800), and the I/O space from 16,744,448
($FF80000) up is protected. If you attempt to access these
memory areas while in user mode, you'll cause a bus error.
Your program will display two bombs and it will crash.
Therefore, if you wish to access any of the system variables
in low memory, or any of the I/O registers, do so while in

CHAPTER 3

supervisor mode. The XBIOS function that runs a subroutine
in supervisor mode is called Supexec(), and its syntax looks
like this:
long sub;

Supexec(sub);

where sub is the address of the subroutine to execute in su
pervisor mode. An example of this function can be seen in
the XGIACCES.C program in Chapter 4, in which it is used
to change one of the low memory variables.

Another handy XBIOS function returns a 24-bit pseudor
andom number. This function is called Random(), and its
syntax is
long mdnum;

rndnum = Random()
where rndnum is a 24-bit pseudorandom number (bits 24-31
are 0). The algorithm used to generate the number is:
SEED = (SEED * 3141592621) + 1

The value returned is the new seed value, shifted eight
bits to the right. Since the initial seed value is taken from the
screen's vertical blank frame counter, the sequence should be
different each time the machine is turned on.

The lowest-level drawing routines are known as the line
A routines. These routines are discussed fully in Chapter 7.
In the first version of ST computers, these line A routines
used software blit routines to perform the bit block transfers
necessary to move images around on the screen. With the
Mega ST series, however, Atari introduced a hardware blitter
chip to speed up screen drawing. The line A routines in the
Mega machines use the blitter hardware rather than the soft
ware blit routines. To maintain software compatibility across
the entire ST lines, programmers are urged to use the line A
routines for low-level drawing rather than writing directly to
the screen, so their programs can take advantage of the blit
ter hardware if present. In some cases, however, a program
may need to know if the blitter chip is available, and even to
specify whether blit operations are to be performed by soft
ware or hardware means. The XBIOS routine used to get and
set the blitter configuration has the macro name of Blit-
mode(). Since many versions of the OSBIND.H file do not
have this macro defined, you may need to add the line:
#define Blitmode(a) xbios(64,a)

58

XBIOS Device and System Functions

to that file in order to use the Blitmode() macro for this
function. Once defined, Blitmode() is called like this:
int status, value;

status = Blitmode(value);

where value is used to set the blitter configuration. If value is
- 1 (OxFFFF), no new value is set, and the current blitter con
figuration is returned. If flag is not — 1, the blitter configura
tion is set using the following bit values:

Bit
Number Function

0 Set blit mode
0 = use software blit routines
1 = use blitter hardware

1-14 Undefined, reserved
15 Must be 0

The blitter configuration (as it stood prior to the set op
eration) is returned as a word value in status, each bit of
which may have a meaning. The bit values are:

Bit
Number Description

0 Current blit mode
0 = using software blit routines
1 = using blitter hardware

1 Blitter chip availability
0 = no blitter chip is available
1 = blitter chip is installed

2-14 Undefined, reserved
15 A 0 is always returned

TOS will not allow the user to set the blit mode to hard
ware on a system that doesn't contain a blitter chip.

59

Chapter 4

XBIOS Graphics and Sound Functions

Graphics
To understand the XBIOS graphics functions, you must first
understand how the ST display is arranged in memory. The
ST uses a bitmapped display. The bits in memory control the
dots (picture elements or pixels) on the screen. On a bit
mapped screen, everything, including text, is drawn using a
number of dots.

The system used for the monochrome display on the ST
is very simple. Each dot on the screen is represented by a
single binary digit (bit) of memory. Screen memory is orga
nized in such a way that the first byte represents the eight
dots in the top left comer of the screen, and each succeeding
byte represents the next eight dots to the right. Since each
line contains 640 dots across, the first 80 bytes fill up the top
line and the eighty-first byte is used to represent the first
eight dots on the second line. There are 400 lines of 80 bytes
each on the monochrome screen which means that 32,000
bytes of screen memory are used to represent the 256,000
dots on screen.

Figure 4-1. Monochrome Screen Memory

MSB=*LSB
0 1 1 1 0 1 0 1 = 117

63

CHAPTER 4

Each bit of screen memory can hold either the number 0
or 1. On a monochrome system, only one bit is needed to
represent a screen dot or pixel (picture element), because
each dot on the screen is either white (off) or black (on). But
with a color ST system, things are somewhat different. In
medium-resolution mode, any dot can be one of four colors.
Two binary digits are used to yield four possible combina
tions:

Bit
Pattern Value

00 0
01 1
10 2
11 3

Since each dot of color needs two bits of memory to de
scribe it, each 16-pixel group on the screen is represented by
two consecutive words in memory. The first word supplies
the low bits of color information and the second supplies the
high-color bits. In low-resolution mode, any dot can be one
of 16 colors, so four bits are required to describe a single
pixel. Each 16-pixel group on the screen is represented by
four consecutive words in screen memory. The first word
contains all of the low-color bits for the group, and each suc
cessive word holds the next higher bit (see Figure 4-2). In
low- and medium-resolution modes, each row of dots re
quires 160 bytes of display memory, as opposed to the 80
bytes required for each line in the high-resolution mode. But
since these modes use only 200 rows of dots, they each re
quire the same 32,000 bytes of display memory as used by
the high-resolution mode.

In monochrome mode, each bit can represent a specific
color because there are two bit states (1 and 0) and 2 colors
(black and white). But the ST color screen is capable of dis
playing 512 different colors. Clearly, in color mode, each set
of bits can't represent a different color, using a code where 0
represents white, 1 stands for black, and so on. Instead, the
number stored in the memory location that corresponds to a
screen dot location refers to a hardware color register.

The color registers may be thought of as a set of 16
pens, each of which may be filled with ink that is colored in
any of the 512 shades supported by the ST. Register 0 always

64

XBIOS Graphics and Sound Functions

Figure 4-2. Lo-res color screen memory
1 Color Registers

B 1 2 3 4 5 6 7 8 9 IB 11 12 13 14 15

I n==EE
---1101 = 7

llllllllllllllllllllllllllllllll lllllllllllllll lllllllllllllllliH

Bit B Bit 1
■

Bit 2
1

Bit 3

holds the color we think of as the background color (which
defaults to white on the ST). When you wish to use another
color to draw a line or a point, specify the pen (color regis
ter) that will be used to draw it. Whatever color "ink" it cur
rently contains is the color the pen will draw on screen.

Unlike ink, however, the color of a dot you have drawn
on screen can change after you have drawn it. When the dis
play memory for a screen dot holds the number of a particu
lar pen, that dot is displayed in whatever color is in the pen
at any given moment, not in the color that was in the pen at
the time the dot was drawn. This means that if you use pen
1 to draw a line, and that pen contains the default color
black, the line will be black. But if you change the color in
pen 1 to green after you've drawn the line, the line you drew
and everything else on the screen that was drawn with pen 1
will instantly become green.

The two factors that determine what colors are assigned
to the figures you draw on the screen, therefore, are the reg
ister number used for the drawing, and the color that is cur
rently contained in that register. Register colors are selected
by specifying various levels of the color red, green, and blue.
Each color register holds one of eight color levels for each of
these colors, which means that there are 512 (8 x 8 x 8)

65

CHAPTER 4

possible colors to choose from. The default values in the
color registers at power-up time are:
Table 4-1.
Register

Default Color Settings
Red Green Blue Color

0 7 7 7 White
1 7 0 0 Red
2 0 7 0 Green
3 7 7 0 Yellow
4 0 0 7 Blue
5 7 0 7 Magenta
6 0 7 7 Cyan
7 5 5 5 Light Gray
8 3 3 3 Dark Gray
9 7 3 3 Light Red

10 3 7 3 Light Green
11 7 7 3 Light Yellow
12 3 3 7 Light Blue
13 7 3 7 Light Magenta
14 3 7 7 Light Cyan
15 0 0 0 Black

You can change the color in an individual color register,
however, using the XBIOS function Setcolor(), whose syntax is
int oldcolor, register, newcolor;

oldcolor = Setcolor(register, newcolor);

where register is the number of the hardware color register to
change (0-15), and newcolor is a 16-bit color word, the low
three nybbles of which are used for the red, green, and blue
values respectively. For example, a value of 0x732 would in
dicate a red level of 7, a green level of 3, and a blue level of
2. The value contained in the color register prior to the call is
returned in oldcolor. If newcolor is negative, the contents of
the register are not changed; only the current color value is
returned.

Since there are 16 hardware registers, setting them one
at a time could be somewhat inconvenient, so the XBIOS
provides a function that allows you to set an entire color pal
ette at once. This function is called Setpalette(), and its syn
tax is:
int palette[16];

Setpalette(palette);

66

XBIOS Graphics and Sound Functions

where palette is a pointer to an array that holds 16 words of
data, each of which contains the color settings for one of the
registers.

Since there are 512 possible color combinations, it's im
possible to describe each one, or to explain exactly how to
find a particular shade. In general, however, the higher the
color level, the brighter the color will be, and the lower the
level, the darker it will be. Whether the color displayed by a
register tends toward red, green, or blue depends on which
value has the highest brightness level. If all three values are
equal, the color will be black, white, or a shade of gray.
Thus, if red, green, and blue contain all Os, the pen will be
set to black, while a setting of straight 7s will make the regis
ter color white. You can lighten a shade by increasing the
value of the two other colors in equal proportions. A setting
of $700 selects bright red as the pen color, while $733 sets a
much paler red. To darken the original red color, you could
lower the red setting to 5 while keeping the two others at 0.

When you're unsure of what colors to mix, it may help
to start with the nearest primary color mixture and experi
ment from there. The red, green, and blue values for these
mixtures are

Table 4-2. Primary Colors
Color Red Green Blue

Black 0 0 0
Blue 0 0 7
Green 0 7 0
Cyan 0 7 7
Red 7 0 0
Purple 7 0 7
Yellow 7 7 0
White 7 7 7

Unlike some computers, screen memory for the ST series
is not fixed in any one particular place. To find the starting
address of screen display memory, you may use the XBIOS
function physbase():
long scraddr;

scraddr = Physbase();
where scraddr is a pointer to the beginning of the 32K mem
ory block currently displayed. In addition to the physical dis
play address, TOS also keeps track of a logical screen ad-

67

CHAPTER 4

dress. Operating System functions write on the logical screen
when they output screen graphics. Normally, you'll want
graphics output to go to the same memory area that is being
displayed. There are some cases, however, where you'll
want to draw a number of graphics objects sequentially and
display them all at once so the user can't see you drawing
each one in turn. In such cases, a separate logical screen
comes in handy. To find the starting address of the logical
screen memory area, use the logbase() function:
long logscraddr;

logscraddr = Logbase();

where logscraddr is the starting address of the logical screen.
The screen resolution mode is another important piece of

information concerning the screen memory layout. Although
all three ST screen modes use the same amount of screen
memory (32K), different bits control different pixels in the
various screen modes. The Getrez() function can be used to
find the current screen resolution:
int rez;

rez = Getrez();

where rez is a code indicating the current screen resolution.
The three rez values are

Resolution
Number Resolution

0 Low resolution (320 x 200 pixels, 16 colors)
1 Medium resolution (640 x 200 pixels, 4 colors)
2 High resolution (640 x 400 pixels, 2 colors)

We stated above that the addresses of the physical and
logical screen memory block are not fixed. The user may
change these addresses along with the resolution mode, us
ing the function Setscreen(). The format for this call is

int rez;
long logaddr, physaddr;

Setscreen(logaddr, physaddr, rez);

where logaddr is the starting address for the logical screen,
physaddr is the starting address for the physical screen dis
play, and rez is the resolution mode (as shown above in the
Getrez() description). A negative number in any of the three
parameters will retain the current setting for that parameter.
Changing the address of the logical screen allows you to

XBIOS Graphics and Sound Functions

write graphics to a part of memory that is not being dis
played while changing the address, of the physical screen lets
you display another part of memory. In either case, the new
screen memory block must begin on an even page (256-byte)
boundary.

Changing the resolution mode only works if you're us
ing a color monitor since TOS won't let you select a color
mode if you're using a monochrome monitor, or vice versa.
Therefore, you can only switch from medium to low resolu
tion, or from low to medium. Even then, using Setscreen()
to switch resolution modes only works for TOS programs.
GEM cannot adjust to the switch. There is no known way to
change a GEM screen from low to medium, or medium to
low resolution modes, other than going back to the Desktop
and using the Set Preferences menu option. Note that when
you change resolution modes, the screen is cleared and cer
tain other screen parameters are reinitialized.

The graphics display is maintained by an electron beam
in the monitor that scans the screen from top to bottom.
Changes in display memory made in midscan may show up
as momentary glitches onscreen. To avoid this problem, dis
play memory should be changed only during the interval
that occurs when the scan reaches the bottom of the screen,
before it starts over again at the top of the screen. This pe
riod is known as the vertical blanking interval, or vblank. On
the ST, a priority level 4 interrupt occurs during each vblank.
The XBIOS function Vsync() simply waits until the vblank
interrupt is finished. When the function returns, it should be
safe to change the screen. The format for Vsync is

Vsync();

Vsync() can also be used in programs as a timed delay.
Note, however, that the length of the Vsync() delay varies
with the refresh rate of the monitor used. The monochrome
monitor refreshes the screen 70 times per second, while the
U.S. version of the color monitor refreshes the screen 60
times per second. The European (PAL) color monitor re
freshes 50 times per second.

Contrary to Atari's documentation, the Physbase() func
tion doesn't wait until the next vblank to return the physical
screen location, nor does Setscreen() wait for a vblank to
change the physical screen (at least not in the preblitter
ROMs). This means that glitches can occur when changing

CHAPTER 4

from one physical screen to another, unless you call Vsync()
before Setscreen(). Some users report that these glitches may
be eliminated by making sure the high-order word of the
start address is the same for both screens (both screens are in
the same, even 64K block of memory).

The following sample program (Program 4-1) gives a
simple demonstration of page flipping. It sets up a second
block of screen memory, writes a screenful of one character
to that memory block, and then writes a screenful of a sec
ond character to the default screen memory area. When the
user presses the space bar, the program toggles the display
between the two screen areas. The program terminates when
the user presses the q key.

Program 4-1. XSCREEN.C
/**/
/* *//* XSCREEN.C — Demonstrates use of the * /
/ * the XBIOS screen functions for "page */
/* flipping". */
/* */ /**/
#include <osbind.h> /* For macro definitions */
#define CON 2 /* device number of console keyboard */
main()
{ long block, altscr, oldscr, screen;

char ch=0 ;
block = Malloc(0x7E00L); /* allocate a second screen buffer * /
altscr = (block+256)SOxOOFFFFOO; / * align to page boundary */
oldscr = Physbase(); /* find 1st (default) screen addr */
Setscreen(altscr,-1L,-1L); /* set 2nd logical screen */
fill('X'); /* fill it with X's */
Setscreen(oldscr,-1L,-1L); /* change back to 1st logical screen */
fill('+'); /* fill it with +'s */
while(ch != 'q') /* until 'q' is pressed * /

(
ch = Bconin(CON); / * wait for a key */
if (ch==' ') /* if it's the space bar */

{
if (altscr == PhysbaseO) /* toggle physical screen */

screen - oldscr;
else screen = altscr;
Vsync();
Setscreen(-1L,screen,-1L);
))

Setscreen(oldscr,oldscr,-1L); /* at end, restore screens * /
Mfree(block); /* and de-allocate memory */

70

XBIOS Graphics and Sound Functions

fill(ch)
char ch;

{ int x;
Bconout(CON,27); /* home cursor */
Bconout(CON,'E ');
Bconout(CON,27); /* turn on 'line wrap' */
Bconout(CON,'v'); /* for console device output */
for (x=0;x<1999;x++) /* fill screen with character x * /

Bconout(CON,ch);

)
/******** end of XSCREEN.C *****/

In Program 4-1, the GEMDOS Malloc() function was
used to allocate memory for the second screen, and Mfree()
was used to free up that memory when we finished. These
functions will be explained more fully in Chapter 5. We also
used one of the VT-52 escape codes to turn on the console
screen's line wrap feature. This feature is explained in Appen
dix E.

Program 4-2 demonstrates how the preceding example
might be translated into machine language.

Program 4-2. XSCREEN.S

XSCREEN.S — Demonstrates the use of the XBIOS
Setscreen() function from assembly language, as
well as the BIOS Conin() and Conout() routines.

Register usage:
a4 = pointer to 1st screen
a5 = pointer to 2nd screen
d4 = fill parameter for conout:
d5 - fill loop counter
d6 = toggle flag
d7 = fill character

*** Program starts here
.text
*** Make room for a 2nd screen, put screen pointer in a5

sub.l #32260,sp * move stack down to make room for screen
move.l sp,d0 * copy stack pointer
add.l #258,do * round up to next page
and.l #$FFFFFF00,do * and down to even page boundary
move.l d0,a5 * place 2nd screen ptr in a5

71

CHAPTER 4

*** Get pointer to 1st (default) screen in a4
move.w #2 ,-(sp)
trap #14
addg.l #2 ,sp
move.l d0,a4

* push XBIOS function # for Physbase()
* call XBIOS
* clean stack
* store pointer to default screen in a4

*** Set logical screen base to 2nd screen, and fill with X's

ction # for Setscreen()
1 XBIOS
an stack

* fill screen with X's

base to 1st screen, and fill with + 's

move.w #-l,-(sp) *
move .1 #-l,-(sp) *
move .1 a5,-(sp) *
move.w #5,-(sp) *
trap #14 *
add. 1 #1 2 ,sp *
move.w #'X',d4 *
jsr fill

< Set logical screen base
move.w #-l,-(sp) *
move .1 #-l,-(sp) *
move .1 a4,-(sp) *
move.w #5,-(sp) *
trap #14 *
add.l #1 2,sp *
move.w #'+’,d4 *
jsr fill

*** use register d6 as
move.b #0 ,d6

*** wait for key press
mainloop:

move.w
move.w
trap
addq. 1

testspace:
cmp.b
beq

#2 ,— (sp)
#2 ,-(sp)
#13
#4,sp

#' ' ,d0 toggle

* fill screen with + 's

a flag to tell what screen you're on
* start on the default screen

r check if it's a space or 'q'

* device number for console keyboard
* function # for Bconin()
* call BIOS* clean stack

* was the space bar pressed?
* yes, toggle screen

testend:
cmp.b #'9 ',do *
bne mainloop *
move.b #$80,d6 *

*** if it's a space, wait ft
toggle:

move.w #36,-(sp) *
trap #14 *
addq. 1 #2 , sp *
move .1 a4 ,d0 *
cmp.b #0 ,d6 *
bne oldscreen *
move .1 a5,d0 *

oldscreen:
move.w #-l,-(sp) *
move. 1 d0 ,-(sp) *
move. 1 #-l,-(sp) *
move.w #5,-(sp) *
trap #14 *
add. 1 #1 2,sp *
eor.b #l,d6 *

bpl mainloop *

iiw f ueAb acjyes, now flag signals you're at end

call XBIOS
clean stack

no,change to screen 1
yes, change to screen 2

keep resolution the same
toggle the physical screen base
keep logical screen base the same
function # for Setscreen()
call XBIOSclean stacktoggle flag
and get next key (if not at end)

72

XBIOS Graphics and Sound Functions

endprog:
move.l #0,-(sp) * Push command number for terminate program
trap #1 * call GEMDOS. Bye bye!

******** Fill subroutine. Fills screen with a single character
fill:
*** First,, print Esc-E to clear screen & home cursor

move.w
move
jsr

#27,d7
#0,d5
conout

* output ESC character
* do only once
* do output

move.w
move
jsr

#‘E',d7
#0,d5
conout

* output 'E'
* do only once
* do output

*** Next, print ESC-v to turn on line-wrap
move.wmove
jsr

#27,d7
#0,d5
conout

* output ESC character
* do only once* do output

move.w
move
jsr

#'V ,d7
#0,d5
conout

* output 'v'
* do only once
* do output

*** Then, fill with parameter passed in d4
move
move

d4,d7
#1998,d5 * output the chosen character

* repeat 1999 times
conout: move.w

move.w
move.w
trap
addq.l
dbra
rts

d7,— (sp)
#2 ,-(sp)
#3,-(sp)
#13
#6, sp
d5,conout

* output character
* device number for console keyboard
* function # for Bconout()
* call BIOS
* clean stack
* do next letter
* until done, then return

.end

While the source code for the machine language version
of the program is over twice as long as that of the C version,
the executable program it produces can be as small as one
tenth the size of the C version of the program. Another in
teresting difference is that in the machine language version,
the Malloc() function wasn't used to allocate memory for the
second screen. As noted in Chapter 1, you can't allocate
memory using this function unless you first relinquish part
of the Transient Program Area (TPA) using the Mshrink()
command.

Since machine language programs deal with memory
more directly than C programs, it isn't necessary to use com
plex memory management techniques in such a simple exam
ple program. Since we know that the program sits at the bot
tom of free memory and the stack starts at the top of free
memory and works its way down, it's simple to move the
stack pointer down far enough to create a safe area at the top

73

CHAPTER 4

of memory and start the second screen on the even page
boundary above the stack. As an alternative, we could have
used the Declare Storage (.ds) directive to allocate 32K of
storage at the end of the program for the second screen, but
that would have increased the size of our program to over
32K. Using the method shown above, the entire program
takes just over 300 bytes. Of course, for more complex pro
grams, you will probably want to use more sophisticated
memory management techniques that require you to shrink
the size of the TP A with Mshrink(). This topic will be dis
cussed in more detail in Chapter 5 when the Mshrink() func
tion is explained.

Sound Functions
The ST series of computers use a Yamaha YM-2149, a version
of the General Instruments AY-3-8190 Programmable Sound
Generator (PSG) chip for music and sound effects. This chip
has three sound channels, that can produce continuous
tones, various envelope waveforms, or noise. It also has two
8-bit I/O ports, which are used on the ST for output func
tions related to the floppy disks, RS-232 serial port, and Cen
tronics parallel printer port.

The PSG chip has 16 internal registers, but it communi
cates to the processor through two external ports. The first
port (which in the current STs is addressed at $FFFF8800) is
used for selecting the internal register to read or write. To
select a register, write a register number (0-15) to this port.
After you have selected a register, read it through the first
port, or change it by writing a the new value to the second
port (which in the current STs is addressed at $FFFF8802).
This procedure is complex, so the XBIOS provides a function
that allows you to read or change any PSG register in a sin
gle step. This function is called Giaccess(), and its called like
this:
char regvalue, value;
int regnum;

regvalue = Giaccess(value, regnum);

where value is the new 8-bit number to go into the register
and regnum specifies the register number to use. If you are
using this function to read the register, the register number
(0-15) is used in regnum. If you're using the function to write
a new value to the register, add 128 ($80) to the register

74

XBIOS Graphics and Sound Functions

number. In either case, the function returns the value stored
in the register at the end of the call in the variable regvalue.
The functions of each of the 16 registers of the PSG chip are
shown in Table 4-3.

Table 4-3. The Functions of the 16 Registers of the PSG Chip
Description

Low byte of Channel A tone period
High nybble of Channel A tone period
Low byte of Channel B tone period
High nybble of Channel B tone period
Low byte of Channel C tone period
High nybble of Channel C tone period
Noise period

0 = Enable tone for Channel A
0 = Enable tone for Channel B
0 = Enable tone for Channel C
0 = Enable noise for Channel A
0 = Enable noise for Channel B
0 = Enable noise for Channel C
0 = Enable I/O Channel A for input
0 = Enable I/O Channel B for input

Channel A volume level (0-15) (for constant
amplitude mode)
Amplitude mode

0 = Keep volume constant
1 = Use waveform envelope to vary volume

Channel B volume level (0-15) (for constant
amplitude mode)
Amplitude mode

0 = Keep volume constant
1 = Use waveform envelope to vary volume

Channel C volume level (0-15) (for constant
amplitude mode)
Amplitude mode

0 = Keep volume constant
1 = Use waveform envelope to vary volume

Low byte of envelope period
High byte of envelope period
Waveform envelope (see Figure 3-4 for waveform
shapes)
I/O Port A (Used to control floppy disk drive, RS-
232, and Centronics parallel ports)
I/O Port B (Used for parallel port data)

To produce a continuous tone on one of the sound chan
nels on the PSG chips, you must enable the channel for tone,

gister Bits
0 0-7
1 0-3
2 0-7
3 0-3
4 0-7
5 0-3
6 0-5
7 0

1
2
3
4
5
6
7

8 0-3

4

9 0-3

4

10 0-3

4

11 0-7
12 0-7
13 0-3

14 0-7

15 0-7

75

CHAPTER 4

set the volume level, and set the tone period to determine
the pitch of the tone. Enable a channel to produce a tone by
setting the corresponding tone bit in register 7 to 0. Be very
careful when setting this register, however, since the upper
two bits are used to determine the direction of data flow for
the two onboard I/O ports. The correct procedure is to read
the register first and change only the bits of interest, using
logical AND or logical OR functions. Next, set the tone pe
riod registers. The tone period is a 12-bit number (0-4095)
that determines the pitch of the tone. To set tone period
place values in two registers, one for the low byte (bits 0-7),
and one for the high nybble (bits 8-11). The relationship of
this tone period to the pitch of the note is determined by the
formula

period = dock / frequency (Hz) * 16

where clock is the clock speed of the PSG (2,000,000 cycles
per second). This formula can be reduced to:

period = 125,000 / frequency (Hz)

or

frequency (Hz) = 125,000 / period

As the period value increases, the pitch becomes lower
in tone. The period settings for the notes of the chromatic
scale, beginning with middle C, are shown in Table 4-4.

Table 4-4. Relationship of Period, Note, and Frequency Across One
Octave
Period Note Frequency

478 C 261.6
451 c # 277.2
426 D 293.7
402 D # 311.1
379 E 329.66
358 F 349.2
338 F # 370.0
319 G 392.0
301 G # 415.3
284 A 440.0
268 A # 466.2
253 B 493.9

76

XBIOS Graphics and Sound Functions

To derive the period values for the next higher octave,
divide the period values in this table in half. For the next
lower octave, multiply each period value in the table by 2.

The final step in sounding a constant tone is to set the
volume level in register 8, 9, or 10, depending on which
channel you're using. The low four bits of this register are
used to set the volume from 0 (silent) to 15 (maximum vol
ume). Bit 4 should be set to 0 if you're trying to create a
sound that has a constant value. Once you have enabled a
tone channel, set the pitch and selected a volume, the sound
will continue to play until you disable the channel or set the
volume to 0.

It's also possible to create tones that use various wave
form envelopes instead of a constant volume. These tones
vary in volume level according to the waveform chosen. A
single waveform may be selected for all three voice channels
by setting register 13. A chart of the available waveforms is
shown in Figure 4-3.

When using the waveform envelopes, the rate at which
the volume level changes is determined by the waveform pe
riod, which is a 16-bit value placed in registers 11 and 12.
The higher the period, the more slowly the volume level
changes, and the lower the period value, the more quickly it
changes. At high period values, the tones created are bell
like, while at low period values, they are very raspy. To cre
ate a tone using one of the waveform envelopes, set the fre
quency and enable the tone channel as with a constant tone.
Then, set the waveform and waveform period in registers
11-13. Finally, set bit 4 of the proper volume register to one.
Note that tones whose waveforms end in a low, flat line only
sound once, while those that stay up or fluctuate up and
down sound continuously until stopped.

The third type of sound that can be created by the PSG
uses the noise generator. Noise channels vary in frequency,
at a rate determined by register 6, the noise period setting.
This is a 5-bit setting that varies from a thin, static-like sound
(low settings) to a sound like the rushing wind (high set
tings). Noise may be enabled by setting the noise enable bits
of register 7. Like tones, noise may have a constant volume
or a volume that varies according to a waveform envelope.
Noise whose volume is varied according to a waveform with
a large period sounds percussive, like gunshots, drums, or

77

CHAPTER 4

cymbals. Those whose volume is varied according to a small-
period waveform hum like a motor. Both noise and tones
may be enabled in a single channel, which then produces
both types of sound.

Figure 4-3. Waveform Shapes and the Sounds They Create

Register13
Haveforn Control Bits

Bit 3 Bit 2 Bit 1 Bit 8 Uaveforn
Dec inal Value Continue Attack Alternate Hold

0-3 B B - - X
4-7 B 1 - - A___________
8 1 B B 8
3 1 B B 1
IB 1 8 1 8 v v v w w
11 1 8 1 1 >4------------
12 1 1 8 B / W V V H / H 4 W
13 1 1 8 1 /
14 1 1 1 B / w w w \
IS 1 1 1 1 y|

II
V

Envelope Period (duration of one cycle!

Program 4-3 demonstrates the use of the XBIOS Giac-
cess() call to produce tones of a constant volume. It turns
the top row of the ST keyboard into a musical keyboard.

Program 4-3. XGIACCES.C

/* XGIACCES.C — Demonstrates use of
/* PSG registers to produce musical
/* tones. The program turns the top
/ * row of the keyboard into a 'piano'.
/* To quit, press "q".
/*/* ̂/a***************************************
#include <osbind.h> /* For macro definitions */
#define CON 2 /* console keyboard device no. */
unsigned notest 13) = /* the period setting for the notes */

/* of the chromatic scale */
{478, /* C = 261.6 Hz */
451, / * C# = 277.2 Hz * /
426, /* D = 293.7 Hz * /
402, /* D# = 311.1 Hz * /
379, /* E = 329.6 Hz */
358, /* F = 349.2 Hz */
338, /* F# = 370.0 Hz */
319, / * G = 392.0 HZ * /

***/*/*/*/*/*/*/*/“ */

78

XBIOS Graphics and Sound Functions

301, /* G# s 415.3 HZ */284,
268,

/* A = 440.0 HZ V/* A# s 466.2 HZ */253, / * B = 493.9 Hz */239
};main()

/* c 523.2 Hz */

t
int clickonQ, clickoff(); /* address of "super" functions */
unsigned period, x;
char regvalue, ch=0 ;
puts("Press keys on top row of keyboard to hear notes");
puts("Press 'q' to quit");
Supexec(clickoff); /* turn the keyboard click off * /

regvalue = Giaccess(ch,0x07); /* read current tone register * /
Giaccess(regvalue | 0x3E, 0x87); /* turn on channel A tone * /

while(ch!=16) /* until "q" key is pressed */
ch = (char)(Bconin(CON)»16); /* wait til key press */
if (ch <14) /* & get scan code */

(/* if on top row of keyboard */
period = notes[ch-l]; /* find period */
Giaccess(period & 255, 0x80); / * set period low byte*/
Giaccess(period » 8 , 0x81); /* set period high byte*/
Giaccess(15, 0x88); /* set channel A volume */
for (x=0;x<20;x++)Vsync(); /* let it play a while */
Giaccess(0, 0x88); /* turn note off */
)

Supexec(clickon); /* turn key click back on and quit */
)
clickoff()
{ char *conterm;

conterm = (char *)0x484L;
♦conterm &= OxFE; /* turn click bit off */

)
clickon()
(char *conterm;

conterm = (char *)0x484L;
♦conterm |= 0x0 1 ; /* turn click bit on */

)

/************* End of XGIACCES.C *************/

This program uses both the console keyboard and sound
channel A. TOS, however, also uses sound channel A to
produce a click sound when a console key is struck. To avoid
conflict between your program and the TOS routines, shut
off the key click sound at the beginning of the program and
turn it back on at the end. Do this by altering the system
variable conterm, which is stored at location 1156 ($484). Since

79

CHAPTER 4

all of the low-memory variables are protected from access by
programs running in user mode, switch into supervisor
mode to change this system variable. The XBIOS routine Su-
pexec() (explained more fully in Chapter 3) is used to exe
cute the clickoff() and clickon() routines in supervisor mode.

Making effective use of the ST sound capabilities often
calls for sounds or music to be playing at the same time that
other input/output events are occurring. For this reason, the
XBIOS provides a routine that can be used to play sounds in
the background, unattended. This function is called Do-
sound(), and its syntax is as follows:

long commandlist;
Dosound(commandlist);

where commandlist is a pointer to a data storage area that
contains a number of queued sound commands. Each com
mand is either two or four bytes in length. When Dosound()
is called, a flag is set that tells the timer interrupt handler
routine to start executing one sound command each time the
timer interrupt occurs. From then on, the timer interrupt
routine reads the next sound command on the list every 1/50
second and executes that command. This continues until the
command to stop is issued. In this way, music may be made
to play in the background while the rest of the program con
tinues.

The structure of the commands contained in the com
mand list is detailed in Table 4-5.

Although there are four separate commands, there are
only three distinct command sequences, since commands 128
and 129 work together. The first command, which starts with
a value ranging from 0 to 15, is very simple. It specifies that
the corresponding sound register be loaded with the byte
value that follows. The last command, which starts with any
number larger than 129, is also simple. It specifies that the
timer interrupt pause in its execution of sound commands for
the number of timer ticks indicated by the following byte.
This allows the user to start a note, let it play for a specified
period of time, and then stop it.

The middle commands are a bit trickier. They allow the
user to change a register from a beginning value to an end
ing value, using a specified increment value. This lets you
automatically change the frequency or volume of a tone for

80

CO
j i
ts
3
Oto

o>

£ T301
-g u
G «J 0> OJ

^ 13
5b c pO) (0 r—t
- 6 «

£ toc 5-g
n. U £

v
>■>pa

x> o

a s

M> G
a - a

2 >
to bo O 01a, c

•o
eS3
s
E©

U

T3
Set
s
s
©

U

o4-1
c

T3
^ O ^
>*> _ LT>B P in

^ V A
s => s ,Ow> 5 ua, > a»

« 0) M

^ £

•2.2H 6

<uu3
u3u.**C/3
i/i■Tf
M
3
«
H

h
a»

,£>
E

3

 0) +* z ►»PQ3 4->G (A

I *o
U

cu

b 0 ^ C G •3 «j.S -5
<u ,, b u iri i«M CU 2o 2t In |j. - «3 2 t m , , O

51 U
3 $ *
o> ^ . 2 ^

§ 2 2 - 1
g H >CU Oh •>

>“» G iTr qjx> 0) rn -*5 4-> “ i to

CO

O -G .*5 *-
c
a> _
3 T3
§ « > V

a>

a> Xi
^ e - g

« S |
tf> 'S •? s r7l § & sI R a> oO i—1 Jh u

“ j to
_r- o> i ‘5bo^ £ .g o a> <n4-» -— ' J-< rH

(0
c
o>

js
”(3
>
nj
o>

oo o(N .» t—I C/i

to a 3 2

I I
•fi>C

B ’S - s -

I ' l lis 5 13O C o
cl oG u C ^ 0J a to*J pU '—-

cu+Jto
‘5b01|H
01

A

a>

a

m
- § 7 £ p
3
G
0) 3
£ ° t~ 1 -M

aX4->
JS.ts <y % "Bu r* 0) .H4-1
.52 ̂ 3 Sb gJ
£ o^ 4-»«j «>

ON J3 J M O CBrH i_J >

c0)

t r s<U Jg*J HH
5boo

b ’2(Q G
CL 6
S £ § oaS U

V4-IO o
-i4 S bO.a ^ e^ P ‘to M > to <u <u
S ^ X •.5 O to
^ LT> m - f-
OJQm

X ^ s-9 '-"T3 SS a> G 83 2 1) c 2 -hH H (Ca cO Qh ̂ 3

i S S o 3
T3
£

.2bO'O 0) G
*- 3 .
a» vT3'G ’X %•<-* u X
. s 'f s
a> ^ 2i
J3 ^ .2m '"0 ",
> J5 3
^ *8 *5*J 0) >

V- .0) 01
E

'43 a(S Wh JQ
n ©itO ^ 13

"’ Cou aCO

a>
<u *2
§ £
I iCu, G 0
,vT!in

I C to <6 0) Mco cu.yrl 9) B

TJGeo
6
6ou

TJ
G
3Oco-m T3x a <u *i
G ^*-< cj 0) Ol
J3 «

81

CHAPTER 4

effects like wailing sirens. The structure of these commands
is like the FOR command in BASIC, which lets you run a
loop a certain number of times by specifying a starting vari
able value, an ending value, and the number added to the
variable each time through the loop. In BASIC, this com
mand would look like this:
FOR value = start TO finish STEP increment
POKE register, value
NEXT value

Since each sound command can only have a maximum
of four bytes, and there are five parameters to pass here (the
sound command, register number, starting value, ending
value, and increment value), two commands are used. Com
mand 128 is used to store the starting value in a temporary
register, while command 129 supplies the register number,
the increment, and the ending value. There are two impor
tant points to remember about these commands. First, twos-
complement addition is used when adding the increment to
the current register value, meaning that the numbers 128-255
are treated as negative numbers. Therefore, you can count a
value down as well as up. Secondly, the end value must be
matched exactly in order for the loop to end. If you specify 6
as your starting number and 25 as the ending number, with
an increment of 2, the loop will never end, since you'll go
from 24 to 26 without ever hitting 25. This feature can be
used to your advantage for repeating loops.

Program 4-4 demonstrates the use of the Dosound()
command to play a tune in the background while other pro
cessing continues. It plays the first few notes of Twinkle, Tin
kle, Little Star, while printing out the words at the same time.

Program 4-4. XDSOUND.C
/it***/
/* *//* XDSOUND.C — Demonstrates use of XBIOS */
/* Dosound() command for executing a series */
/* of sound events via the timer interrupt */
/* (plays Twinkle, Twinkle Little Star) */
/* *//* */ /**/
if include <osbind.h> /* For macro definitions */
unsigned commands[]= / * list of DosoundQ commands */
(0X73F, 0X080F,OxOODE,0x0101,0X073E,OxFFll,0x0800,0xFF05,0X080F,0XFF11,0x0800,0X003F,0x0101,0XFF03,0X080F,OxFFll,

82

XBIOS Graphics and Sound Functions

0X0800,0XFF05,0X080F,OxFFll,0x0800,0X001C,0x0101,0XFF03,
0X080F,OxFFll,0X0800,0XFF05,0X080F,OxFFll,0x0800,0X003F,
0x0101,0XFF03,0X080F,0XFF22,0x0800,OxFFOO
);
int scale; /* scaling factor for delay loop.*/

/* Timer interrupt is always l/50th of a second. */
/* Vsync() is l/60th of a second on color monitor,*/
/* l/70th of a second on monochrome */

mainQ
(int x;

scale = Getrez(); /* get monitor type, and set */
if (scale < 2) scale=6; /* scaling factor accordingly */
else scale = 7 ;
Dosound(commands);
puts("Twinkle,\n");
wait(48);
puts("Twinkle,\n");
wait(48);
puts("Little\n") ;
wait(48);
puts("Star.\n"); wait(2 0 0) ;

)
wait(y) /* Delay a set number of timer ticks */
int y;
(int x;

y = y*scale/5; /* convert timer ticks to vblanks */
for(x=0 ;x<y;x++)Vsync;

)
/****************** End of XDOSOUND.C ********/

To synchronize the music with the words, the Vsync()
function was utilized to wait a number of vertical blanking
intervals. But vblanks don't coincide exactly with timer ticks.
There are 70 vertical blank interrupts per second on the mon
ochrome monitor, 60 per second on the color monitor, and
only 50 timer interrupts per second with either kind of dis
play. Therefore, the timer ticks had to be scaled to match the
corresponding number of vblanks by multiplying them by 7/5
for the monochrome display and 6/5 for the color display.

/* play the song in the background */
/* print the words while it plays */
/* delay 48 timer ticks */

83

Chapter 5

GEMDOS Device I/O and Process Control

The functions that make up the GEMDOS
(GEM Disk Operating System) form the highest level of TOS.
These functions are also sometimes referred to as the BDOS
(using the old CP/M and MS-DOS operating system terminol
ogy). They include a wide variety of character device func
tions, several process control and memory management func
tions, and a large number of functions used to control file I/O
and the filing system. The character device and system
routines will be covered in this chapter, while the next chap
ter will be devoted to the filing system routines. In many
cases, GEMDOS functions are modeled after similar com
mands available under the MS-DOS operating system used
on the IBM PC. In fact, most of them share the same func
tion numbers as their DOS counterparts. That's why GEM
DOS functions are often referred to by a hexadecimal func
tion number, just like MS-DOS functions.

Like the BIOS and XBIOS functions, GEMDOS routines
can be called from user mode. As with those functions,
GEMDOS uses registers A0-A2 and D0-D2 as scratch regis
ters; assume that it changes their contents. If you are pro
gramming in machine language and your program uses these
registers, save their contents before making a GEMDOS call
and restore them after the call terminates. Each of the GEM
DOS routines is associated with a command number, and
some use command parameters that specify more precisely
what they should do. For example, the GEMDOS function to
write a character to the console screen has a command num
ber of 2. It requires a single command parameter that tells
the function which character to print.

To call a GEMDOS function from machine language,
push the command parameters onto the stack, followed by
the command number, and execute a TRAP #1 statement.
The TRAP #1 instruction puts the program into supervisor

87

CHAPTER 5

mode and begins executing the instructions found at the ad
dress stored in exception vector 33, whose address is 132
($84). This exception vector contains the address of the GEM
DOS handler which reads the command number on the top
of the stack and directs program execution to the appropriate
function. When the function terminates, the program returns
to user mode, and the results, if any, are returned in register
DO. In most cases, the value is returned as a longword, but
there are exceptions. Some error codes are returned as
words, so it's best to test only the low-order words when
checking for errors. Also be aware that sometimes a GEM-
DOS function will return a BIOS error number (between - 1
and -31). When a GEMDOS function call is completed, the
calling program is responsible for adjusting the stack to re
move the command parameters and command number.

The following program fragment demonstrates how to
print the character A on the console screen using GEMDOS
command 2:

move.w # 'A ', — (sp) * push the character value on stack
move.w # 2 , — (sp) * push GEMDOS command number on

* stack
trap # 1 * call GEMDOS handler
addq.l #4,sp * pop parameters (4 bytes) off stack

Calling the GEMDOS routines from C is much simpler.
Most C compilers come with a library routine called gem-
dos() that stacks the parameters and executes the TRAP #1
instruction. For example, the sample call illustrated above
could be accomplished in C by the single statement:

gemdos(2, "A');

Since it's easier to remember a command name than a com
mand number, most C compilers include a header file called
OSBIND.H that defines macros for all of the GEMDOS func
tions. For example, the macro definition for GEMDOS com
mand 2 is:

#define Cconout(a) gemdos(0x2,a)

Therefore, after you #include OSBIND.H in your pro
gram, you can call your sample function like this:

Cconout('A');

GEMDOS Device I/O and Process Control

Since this format is the more readable of the two, it will
be used in the macros in the discussion of GEMDOS routines
and sample programs. To use GEMDOS functions in your C
programs, link your program with the compiler library that
contains the gemdos() function, and #include OSBIND.H if
you use the macros.

Character Device I/O
Like the BIOS and XBIOS, GEMDOS includes a number of
functions that allow you to read characters from a character
device, write characters or strings to such devices, and check
their input and output status. Tliese functions aren't imple
mented in exactly the same way as the BIOS and XBIOS ver
sions, however. Where the BIOS and XBIOS tend to use one
function for many devices and require a device number as an
input parameter, GEMDOS provides a separate function for
each device. GEMDOS also throws in a number of variations.
Some keyboard input functions echo the character to the
screen, some don't. Some wait for a keypress to return, oth
ers return immediately.

There are three functions that wait for a character to be
entered at the console keyboard and return the value of the
character that was entered. The macro for the first of these
functions, Cconin(), is called like this:
long keycode;

keycode = Cconin();

When called, this function doesn't return until a key is
pressed, unless a keypress is already waiting in the queue.
The keycode the function returns is a longword containing
both the ASCII value of the key(s) pressed and the scan
code. The ASCII value is returned in the low byte of the low
word of keycode, while the scan code is returned in the low
byte of the high word. See Appendix J for a complete list of
keycodes. This call is much like the BIOS function Bconin(),
except that Cconin() sends a copy of the key that was
pressed out to the console screen.

The other two character input functions, Crawcin() and
Cnecin(), don't echo the key that is pressed. These functions
are called just like Cconin():
long keycode;

keycode = Crawcin();
long keycode;

keycode = Cnecin();

CHAPTER 5

Again, both functions wait until a key is pressed and
then return the ASCII character and scan code. Atari docu
mentation indicates there is slight difference between these
functions in that Crawcin() is supposed to pass all control
codes, and Cnecin() is supposed to act on control codes like
Control-S, Control-Q, and Control-C. This is meant to mirror
MS-DOS where DOS function 8 checks for the Control-Break
key combination. In the current version of TOS, however,
both of these functions pass all control codes without acting
on them.

The other character device input command is used to
read characters from the AUX: device, which is the RS-232
serial port. This function waits until a character is completely
received before it returns, but does not echo the character to
the screen. The function Cauxin() is called like this:

char ch;
ch = Cauxin();

where ch is the ASCII character received.
One of the problems with using these input functions is

that if no character is available from the device, the function
will not return until one is available. This leaves your program
stuck until the input is received, and if that input doesn't
come, it remains stuck forever, forcing you to turn off the
computer to regain control. To prevent this situation, the
GEMDOS includes status functions that let you determine
whether there's a character waiting to be received. These
functions are Cconis() and Cauxis(), and their syntax is

int status;
status = Cconis();

int status;
status = Cauxis();

where status is a flag that indicates whether there is a charac
ter waiting. The value returned in status is a 0 if there are no
characters waiting, and $FFFF (- 1) if there is at least one
character ready to be received. By calling the status func
tions, it's possible to determine whether the input functions
will return immediately. If the call to the status function
shows there are no characters ready, your program may omit
the input call, go on to do something else, and then check
the input device again later.

GEMDOS also contains a number of functions for writ-

GEMDOS Device I/O and Process Control

ing characters to the character devices. Each output device
has its own output function. The first, Cconout(), is used to
send characters to the console screen. Its syntax is
char ch;

Cconout(ch);
where ch is the ASCII character to write to the screen. Machine
language programmers should note that they will pass the
character to be printed as a word-length value, the low byte of
which contains the character to be printed, and the high byte
of which has been cleared to 0. As with the BIOS routine,
Bconout(), VT-52 control characters and escape sequences
are treated as commands rather than printed as characters. For
a complete list of VT-52 style escape code, see Appendix E.

The character output functions for the other two output
devices are very similar. The Cpmout() call is used to send
characters to the printer, while Cauxout is used to send out
put to the serial port. The syntax for these calls is:
char ch;
int status;

status = Cpmout(ch);
char ch;

Cauxout(ch);
where ch is the character to be sent. Both of these functions
will wait for the character to be sent before they return. In
the case of the printer, the status return will be - 1 if the
character has been sent correctly. If, for some reason, the
character cannot be sent, however (paper out, printer off
line, and so on), a value of 0 will be returned in status after
the time-out period. Note that like Bconin, Bconout doesn't
return until the character is actually sent. As with the input
functions, you can avoid sending a character to a device that
is not ready to receive it by first testing the device's output
status. The output status functions are Cconos(), Cauxos(),
and Cprnos(), and they all share the same syntax:
int status;

status = Cconos();
int status;

status = Cauxos();
int status;

status = Cprnos();
These functions all return a 0 in status if the device is not

ready to accept a character, and $FFFF (- 1) if it is ready.

CHAPTER 5

In addition to the normal character input and output
functions, GEMDOS provides an unusual function that al
lows you either to send characters to the console device or
receive them. The macro name for this function is Crawio(),
and it's called like this:

int chin, chout;
chin = Crawio(chout);

where chout is a word whose high byte is 0, and whose low
byte contains either a character to be printed, or a flag that
signals the function to check the console keyboard for input.
If a value from 0-254 is placed in the low byte of chout, that
character is printed on the console screen at the current cursor
position. Control codes and escape sequences are interpre
ted normally (see Appendix E for a complete description). If
the low byte of chout contains a value of 255 (OxFF), the func
tion tests the console keyboard for input. If no characters are
available for input, both the high and low bytes of chin are set
to 0. If a character can be read, however, the low byte of chin
contains the ASCII value of the character, while the high byte
contains its scan code (see Appendix J for a complete list
of key codes). Thus, the input portion of Crawio() combines
both status and input functions in a single call. Crawcio()
does not echo the character that it reads to the screen.

In addition to functions that input or output a single
character at a time, GEMDOS contains functions that let you
use the console device to input or print a whole string of
characters at once. The output function is called Cconws(),
and its syntax is as follows:

int length;
char *string;

length = Cconws(string);

where string is a pointer to a null-terminated string of text
characters of any length. Control characters and escape se
quences are interpreted as usual. Upon return, length con
tains the number of characters that were printed.

The read string function, Cconrs(), is a little more com
plex, and a little more peculiar. It not only reads in a whole
string, echoing each character out to the screen as it is read,
but provides some line-editing functions as well. A typical
call to this function might look like this:

92

GEMDOS Device I/O and Process Control

char buffer[82];
int length;

buffer[0] = 80;
length = Cconrs(buffer);
buffer[length + 2] = 0;

Before calling the function, first set up a buffer, into
which the function may read the characters. You must also
store the maximum number of characters that may be read in
the first byte of the buffer. Here, an 82-byte buffer was de
clared to hold a maximum of 80 input characters. The extra
two bytes are for the string formatting information that ap
pears at the beginning of the buffer. The first byte is the
maximum string length, which your program must set, and
the second byte is the actual length of the string returned by
Cconrs(). If you plan to output the string, using a function
such as Cconws(), terminate it with a 0 character. To print
the line, you could use the statement
Cconws(buffer + 2);

When your program calls Cconrs(), you may start enter
ing characters from the keyboard. These characters will ap
pear on the screen as you type them. The Cconrs() call does
not return until the user signals that the entire string has
been entered. He does this by pressing one of the terminat
ing key combinations such as Return (carriage return), Con-
trol-J (linefeed), or Control-M (carriage return). The function
also returns if the user enters the maximum number of char
acters, as stored in the first byte of the buffer.

While the user is entering characters, certain control
characters act as line-editing functions. These are similar to
the console device line-editing functions available under the
CP/M and MS-DOS operating systems. The table below
shows the line-editing characters and their functions:
Control Character Editing Function
Control-C End input and terminate program
Control-H Backspace
Control-I
Control-J
Control-M
Control-R
Control-U
Control-X

Tab
Linefeed, end input
Carriage return, end input
Skip to next line, reprint original line
Skip to next line, start new line
Erase to beginning of line

93

CHAPTER 5

The Control-C key combination not only causes the
Cconrs() function to return, but also terminates the entire
program. This feature makes Cconrs() extremely dangerous,
and suitable only for quick and dirty programs that you write
for your own use. Any program written for use by others
should implement its own input routine in a manner that
doesn't allow the user to exit the program easily by mistake.

Program 5-1 demonstrates some of the character I/O
functions discussed above.

Program 5-1. GCHARDEV.C
/**/
/* *//* GCHARDEV.C */
/* *//* Demonstrates some of the GEMDOS */
/* character device functions. */
/* */ /**/
flinclude <osbind.h> /* For GEMDOS macro definitions */
^define MAXLEN 80 /* maximum input line length */
main()
{ char buf[MAXLEN+3], ch;

int len=0 ;
/* first input a line a character at a time, using Cconin */

Cconws("Enter a line of text, and hit Return:\n\n\r");
do /* keep getting characters */
if ((ch=Cconin()) != 8) /* if this isn't a backspace, */

buf[len++]=ch; /* add the character to the buffer */
else

{ /* if it is a backspace, */
Cconws(" \010"); /* rub out last character...*/
if (len>0) /* and if there are any chars to delete */

len— ; /* delete one */
} while((ch!=13) && (len<MAXLEN)); /* do til CR or end of line */

buf[len]=0; /* terminate line with ASCII */
Cconws("\n\nYour line of text was:\n\r");
Cconws(buf);
printf("\nAnd it was %d characters long\n\n\n",len);

/* Now, input the whole line at a time */
Cconws("Enter another line of text, and hit Return:\n\n\r");
buf[0]=MAXLEN;
len =Cconrs(buf);
buf[len+2]=0 ;
Cconws("\n\nYour line of text was:\n\r");
Cconws(buf+2);
printf("\nAnd it was %d characters long\n",len);

/* if you're running this from the Desktop, you may want to
add a pause to give the user a chance to read the output */
Cconws("\n\n\rPress any key to end");
Cconin();

)
end of GCHARDEV.C *****/

94

GEMDOS Device I/O and Process Control

System Functions
In addition to character device functions, GEMDOS also con
tains a number of system control functions. These include
routines to manage system memory, to execute and termi
nate programs, and to get and set the DOS clock and calen
dar. The first of these allow you to change the 68000 proces
sor's privilege mode, or to find what the current mode is.
The 68000 allows certain operations to be performed in su
pervisor mode that cannot be performed from the normal
user mode. On the ST, these include reading or writing to
system variables stored in memory locations below 2048
($800), and reading or writing to hardware registers located
above 167444482 ($FF80000). The macro name of the function
used to switch modes is Super(), and its syntax is:
long stack, oldstack;

oldstack = Super(stack);

The meaning of stack will vary depending on what you want
the function to do. If you set stack to - 1L (OxFFFFFFFF), the
function returns a code in oldstack which specifies the current
privilege mode. If the value returned in oldstack is 0, the pro
cessor is user mode. If the value returned is 1, it's in supervi
sor mode.

If stack is set to any value other than - 1L, the function
will toggle the current privilege mode. If the processor is in
user mode, it will be set to supervisor mode, with the super
visor stack set to the address passed in stack. If you wish to
make the supervisor stack address the same as that of the
user stack, pass a value of 0L in stack. The address of the
previous supervisor stack is returned in oldstack. This value
should be saved, so you may restore the old supervisor stack
value when you switch back to user mode.

If the function is called when the processor is in supervi
sor mode, GEMDOS sets it to user mode and sets the super
visor stack value back to the address passed in stack. This ad
dress should be the same one returned in oldstack when you
first sent the processor into supervisor mode. It's important
that the supervisor stack exist in memory outside the control
of your program, so when your program terminates, the sys
tem still has a workable stack area. If you fail to set the su
pervisor stack back to its original value before your program
terminates, you may crash the system. An example of proper

95

CHAPTER 5

use of the Super() function may be found in the sample pro
gram TOGGLE. S, below.

Memory Management Functions
The management of free memory is another common system
function made easier by the DOS commands. When a GEM
or TOS application program is first loaded and run, it takes
control of the entire application RAM space. As you will see
below, however, it may want to give back some of that mem
ory so that other applications, desk accessories, or resident
programs may use it. Because an application can never know
how much free memory will be available, or where that free
memory is, the proper way to gain access to additional mem
ory space is through the system memory manager. When a
program wants a hunk of free memory in which to store data
the user has input, or that it has retrieved from a disk file, it
requests the memory manager to allocate a certain number of
bytes. If that amount of memory is available, the memory
manager removes it from the free list and passes its starting
address to the application. When the application is finished
with the memory, it tells the memory manager, which re
turns it to the free pool.

The GEMDOS function used to allocate free memory is
known by the macro name Malloc(). This function is called
as follows:
long address, bytes;

address = Malloc(bytes);

where bytes specifies the number of bytes of memory to allo
cate. If bytes is set to - 1L (OxFFFFFFFF), the function simply
returns the size of the largest block of free memory in ad
dress. Otherwise, the function tries to allocate the amount of
memory specified. If it is able to allocate the requested mem
ory block, it returns the starting address of the block in ad
dress. If there isn't sufficient free memory to allocate the
block that was requested, a value of 0 is returned instead.

When the program is finished using the memory it has
allocated, it should return it to the system by using the
Mfree() call
int status;
long address;

status = Mfree(address);

96

GEMDOS Device I/O and Process Control

where address is the starting address of a block of memory
allocated with Malloc(). If the memory is successfully re
turned to the system, a 0 is returned in status. A negative
value in status indicates that an error occurred. If a program
fails to release one or more blocks of memory, GEMDOS will
automatically return them to the free pool when the program
terminates.

Atari documentation states that if more than 20 blocks of
memory are allocated by Malloc() at one time, the memory
management system will fail. Since some library functions
like fopen() use Malloc() to allocate blocks for their own
use, your program should use Malloc() very sparingly. If
your program needs more than one memory area allocated, it
is best to get one big block of memory and divide it up your
self, rather than requesting many small areas from Malloc().

As stated above, when a program is loaded and run, it
takes control of the entire Transient Program Area (TPA),
which consists of all of the memory from the program's Base
Page Address on up to the top of free RAM. This area in
cludes the base page, which stores information about the
process, the program code, the program data, and program
variable storage areas. The composition of the TP A is de
tailed in Figure 5-1 below.

Figure 5-1. Composition of the Transient Program Area

High
Nenory

U)
Lon
Menory

Stack

Heap
BSS Segment

Data Segnent

Text Segnent

Basepage+128 Connand line inage
Basepage+44 Pointer to the environnent string
Basepage+40 Reserved
Basepage+36 Pointer to parent's basepage
Basepage+32 Disk Transfer Address (DTfl)
Basepage+28 Length of BSS Segnent
Basepage+24 Address of BSS Segnent
Basepage+2B Length of Data Segnent
Basepage+16 Address of Data Segnent
Basepage+12 Length of Text Segnent
Basepage+8 Address of Text Segnent
Basepage+4 Address of End of TPA+i
Basepage Base Address of TPA

o End of TPA
(stack
pointer)

$Start of TPA

97

CHAPTER 5

This diagram shows that the memory area not actually
used by the program is divided between the stack and the
heap. The stack is a temporary storage area used by pro
grams for passing parameters, saving register contents, and
saving subroutine return addresses. The heap is the free
memory pool from which Malloc() doles out memory blocks.
The stack starts at the top of free memory and works its way
down, while the heap starts at the bottom of free memory
and works its way up.

Most programs don't need to retain control of all free
memory. They only need enough heap space for the Mal-
loc() calls they make, and enough stack space to cover tem
porary storage needs. The rest may be returned to the sys
tem pool of free memory. Good programming practices
dictate that your program only retain control of the memory
it needs. In addition, there are a couple of specific reasons
for returning extra memory. If your program uses any of the
GEM library calls, it should return at least 8K of memory for
use by GEM. If your program uses the Pexec() function to
run another program (see below), there must be sufficient
free memory for that other program and its data.

The function used to shrink a program's memory block
is called Mshrink(), and it's called like this:

int status;
long address, size;

status = Mshrink(0, address, size);

where address is the starting address of the memory block to
retain, and size is the number of bytes to retain. Note that
you must pass a 0, 16 bits in length, as the first parameter. If
the operation is successful, a value of 0 is returned in status.
If it is unsuccessful, an error code of - 40 (invalid memory
block address) or - 67 (memory block growth failure) will be
returned.

To use Mshrink(), determine where the starting address
of program memory is, and how much memory the program
occupies. Finding the starting address of program memory
isn't too difficult—when you start a program, the second
word on the stack points to that location.

Finding the size of the program requires a little more
knowledge of how program storage space is allocated. As
mentioned above, the memory area in which a program re
sides is known as the Transient Program Area (TPA), and at

98

GEMDOS Device I/O and Process Control

the beginning of the TPA is a 256-byte segment known as
the basepage. As shown in Figure 5-1, the basepage contains
information about the size and address of each program seg
ment, as well as the command line that is passed to the pro
gram (these are the extra characters you type in when you
run a TOS Takes Parameters program whose name ends in
.TTP).

The actual program code comes after the basepage , fol
lowed by the data area, and the BSS (block storage segment)
which is used to store uninitialized data. To determine the
total size of the program area, look in the basepage to find
the size of the code and add to that the size of the data and
BSS segments, along with the size of the basepage itself.
Since you need a stack and heap area for the program, it
makes sense to add the sizes of these segments to the end of
the program and reserve the combined program, heap and
stack area together. Once you calculate the size of this area,
set the stack pointer to the top of program memory and
make the Mshrink() call. Once that's done, continue with
your program.

Program 5-2, a program fragment, shows how to start an
application program that needs to give back some of the TPA
memory, either because it uses GEM calls or uses Pexec() to
run another program.

Program 5-2. MSHRINK.S Program Fragment

MSHRINK.S — Shows how to begin a program by
shrinking the memory used for TPA.

*** Program equates
bpadr = 4 * Stack offset to base page address
codelen = 12 * Base page offset to Code segment length
datalen - 20 * Base page offset to Data segment length
bsslen = 28 * Base page offset to BSS segment length
stk - $4000 * size of our stack and heap area (16K)
bp = $100 * size of base page
* * * Program starts here. Get base page address in a5

.textmove.l a7,a5 * dupe a7 so you can get the base page address
move.l bpadr(a5),a5 * a5 now = basepage address

*** Calculate the total amount of memory used by
*** your program (including stack space) in do
* * total memory used =

move.l codelen(aS),d0 * length of code segment
add.l datalen(a5),d0 * + length of data segment

99

CHAPTER 5

add.l
add. 1

bsslen(a5),dO
#stk+bp,dO

* -i- length of uninitialized storage segment
* + (size of base page + stack/heap)

*** Calculate the address of your stack
*** and move it to the stack pointer (a7)

move .1
add.l
and. 1

dO,dl
a5,dl
#-2 ,dl

move.l dl,a7

new stack address =
size of program memory

+ program's base address,
pick off odd bit to make sure that the
stack starts on a word boundary (it must)
set stack pointer to your stack
which is stk bytes above end of BSS

*** Use the GEMDOS MshrinkQ call to reserve the area of memory
* * * actually used for the program and stack, and release the
*** rest back to the free memory pool.

move.l dO,-(sp) * push the size of program memory
* * (first MshrinkQ parameter) on the stack,

move.l a5,-(sp) * push the beginning address of the
* * program memory area (2nd Mshrink() parameter)

clr.w ~(sp) * clear a dummy place-holder word
move #$4a,-(sp) * finally, push the GEMDOS command number

* * for the Mshrink() function
trap #1 * call GEMDOSadd.l #1 2,sp * and clear your arguments off the stack.

Process Control
One of the Disk Operating System's major functions is to
load a program (also known as a process) and start it. After
the program finishes, GEMDOS also has the responsibility
for terminating the process, reclaiming its memory, and re
turning to the GEM Desktop (or whatever other application
happens to be operating as a command shell). GEMDOS in
cludes four process control functions, one for loading and ex
ecuting a process, and three for terminating one.

The function used to load a program file and execute it
is called Pexec(). The syntax for this function is
*char file, command, env;
int mode;
long status;

status = Pexec(mode, file, command, env);

The meaning of the function parameters varies according to
the value of mode. There are four different modes of opera
tion for the Pexec() function. These are:

Table 5-1. Four Modes for Pexec() Function
Mode

Number Function File Command Env
0 Load and Pointer to Pointer to Pointer to

execute filename command string environment
string string

100

GEMDOS Device I/O and Process Control

Table 5-1. Four Modes for Pexec() Function (continued)
Mode

Number Function File Command Env
3 Just load, Pointer to Pointer to Pointer to

do not filename command string environment
execute string string

4 Just Unused Basepage unused
execute address

5 Create Unused Pointer to Pointer to
basepage command string environment

string.

The mode used m ost often is 0, load and go. In this
mode, file is a pointer to a string containing the complete
path name of the program file to load and execute. This
string is a series of ASCII characters, ending with ASCII
character 0 (NUL). Example path names are PRO-
GRAM.PRG, C:\PROGRAMS\PRGl.TOS and B:\MYPROG.
Path names are discussed more fully in Chapter 6, which
deals with the GEMDOS file system. The command parameter
contains a pointer to a command tail string. This type of
string is used with a .TTP (TOS Takes Parameters) type pro
gram to specify more fully what the program should do. For
example, a program called COPY.TTP that copies one file to
another might be executed with the command tail ArFILEl B:
FILE2, which tells the program to copy a file named FILE1
on the A: drive to a file called FILE2 on the B: drive.

The command tail string is not the usual C language
string, that consists of a series of ASCII characters ending
in NUL. Instead, it is more like strings used in Pascal, where
the first character of the string is a binary number specifying
the length of the string and the rest of the string is com
posed of the actual ASCII characters. Such a string does not
normally end in an ASCII 0 character. The final parameter
for a mode 0 Pexec() call, env, is a pointer to the process'
environment string. This is a series of null-terminated ASCII
strings with an additional ASCII 0 character at the end of all
of the strings. The environment string is used by some pro
grams to get information about the program environment. A
typical environment string might be PATH = C:\, which lets
the program know the default directory to use to search for
data files. If a 0 is passed in the env parameter, the new pro

101

CHAPTER 5

cess receives as its environment string a copy of the environ
ment string used by the program that called it.

When mode 0 of Pexec() is used, the call loads the new
program, sets up its basepage, passes the arguments and en
vironment to it, and executes it. This child process, as it's
called, inherits the parent's standard file descriptors (handles
0-5; see Chapter 6 for more information on standard file han
dles). When the program ends, the call returns an exit code
from the program (if it passes one) in status. A negative
value in status indicates that the program could not be exe
cuted (because there wasn't enough memory to run it, or
some other reason). Error returns in status are negative long-
words, while return codes passed from the child process are
word length, with Os in the upper 16 bits of the longword.

Modes 3 and 4 split the functions of mode 0. Mode 3 of
Pexec() takes the same parameters as mode 0, but it just
loads the specified file, sets up its basepage, and returns a
pointer to the basepage in status. It does not execute the pro
cess. To run the program after it has been loaded with mode
3, you may use mode 4 of Pexec(). This mode uses the
pointer to the program's basepage that was returned by
mode 3 as its only parameter. This pointer is passed in com
mand. The last mode of Pexec(), mode 5, allocates the largest
free block of memory and creates most of a basepage for it.
Some basepage values, such as the size and address of text,
data, and BSS section, obviously can not be filled in.

Program 5-3 shows how to load and execute a separate
program from within the current one. It demonstrates the
basic principal used by command shell-type programs, which
provide an MS-DOS command-line environment for the ST.

Program 5-3. GPEXEC.C
*•*********«******«***************************/
* */
* GPEXEC.C */
* */

* Demonstrates use of the GEMDOS */
* Pexecf) function to run other programs. * /
* */

I include <osbind.h> / * For GEMDOS macro definitions * /

char file[81]; / * file name buffer */
char buffer[83]; /* input line buffer * /char ‘command; / * pointer to command tail string * /

102

GEMDOS Device I/O and Process Control

mainQ
{ int status;

int len, done=0 ;
int index^l;

/ * Get command line * /

Cconws("Enter command line [include filename extension]\n\r");
buffer[0]=80; / * prepare buffer for command string entry * /
buffer[82]=0;
Cconws("> "); /* prompt */
len = Cconrs(buffer); /* get command string */
Cconws("\n\n\r"); / * skip a couple of lines * /

/* Split it into command file and command tail */
while (Sdone) /* check for 1st space character */
{if (buffer[++index]==' ') /* if it's there, end * /

done = 2 ;
if (index == (len+1)) /* if you're at end of string, end */

(done=l;
index++; /* move index past last character */
))

buffer[index]=0; /* replace separator with ASCII zero */
strcpy(file,buffer+2); /* put filename in buffer */
if (done==l) /* if there wasn't a command tail */

command=OL; / * set command address to zero */
else / * if there was, put tail length — */

buffer[index] = len-strlen(buffer+2); / * at beginning of string */
command=buffer+index; /* and set pointer */
)

status = Pexec(0, file, command, OL); /* execute the program */
printf ("Command status = %lx\n",status);
} / * end of main * /

/******** end of GPEXEC.C * * * * * /

Again, note that the startup segment (GEMSTART.O on
the Alcyon compiler, or its equivalent on other compilers)
must return enough memory with Mshrink() to make room
for the program to be loaded.

The functions used to terminate a process are mostly of
interest to machine language programmers, since the startup
modules supplied with C language compilers automatically
call one of these functions when the C program terminates.
The first and simplest of the functions used to terminate a
process is called PtermO(). Its calling syntax is
PtermO();
This terminates the current process, closes all open files, re
leases any allocated memory, and exits with a return code of

103

CHAPTER 5

0. To pass a return code other than 0 to the calling process,
you must use the function Pterm():
int retcode;

Pterm(retcode);

where retcode is a binary number you wish to pass to the call
ing program. This code may be used to inform the calling
program of the results of the child process.

The last process termination function, Ptermres(), is
used for a special class of programs known as Terminate-
and-Stay-Resident programs (TSR). These programs remain
loaded in memory even after they terminate. TSR programs
can steal the vectors used by exception handlers, such as the
system timer, vertical blank interrupt, or the keyboard Alter-
nate-Help screen dump routine, to create pop-up or hot-key
applications. Ptermres() is called like this:
long keepsize;
int retcode;

Ptermres(keepsize, retcode);

where keepsize indicates the number of bytes of memory to
keep resident, starting at and including the 256-byte base
page. The retcode value is the exit code that the program
passes back to the parent process when it terminates. Mem
ory allocated by the program with Malloc() will not be re
turned when the process terminates, but open files are
closed upon termination of the process.

Program 5-4 is a machine-language program that shows
how to steal the screen-dump vector at location $502, and to
install your own program, which will execute every time you
press the Alternate-Help key combination. For the sake of
simplicity, this program toggles the key-click sound on and
off. The first use will turn off the clicking noise that you hear
when you press a key, and the next use will turn it back on.

Program 5-4. TOGGLE.S

TOGGLE•S — Demonstrates the use of the GEMDOS
PtermresQ function from machine language, to
install a RAM-resident utility. This short
example toggles the key-click sound when you
press Alternate-Help.

*

*

104

GEMDOS Device I/O and Process Control

*** Program equates
conterm ** $484
scr_dump = $502
*** Program starts here
.text
*** Branch to install code at end of program
start:

bra.w init
*** The ID here lets us check to see if the resident program was
*** already installed once, so you don't try to do it again if the
*** program is run more than once.
ID: .dc.b 'TOGGLE'
*** This code is executed only when Alternate-Help is pressed.
*** you're in supervisor mode here.
toggle:

movem.1
move
ori.w

eori.b
keyclr:

clr.w
move.w
trap
addg. 1
move
movem.1
rts

d0-d7/a0-a7,-(a7)
sr,-(a7)
#$700,sr

* save registers
* and status register
* bump the Interrupt Priority Level
* to 7 (so you don't get interrupted)

|l,conterm * bit 0 of conterm controls key click
* clear keyboard so you don't repeat
* clear all keyboard shift bits
* shift bits function
* call BIOS
* clean stack

-(37)
#$B,-(a7)
#$D
#4,a7
(a7)+,sr
(a7)+,d0-d7/a0-a7

* restore status register
* restore rest of registers
* and end toggle routine

**** Initialize and install routine— this is only done once
**** and then this code is thrown away
init:
*** Print sign-on message

pea msgl
move.w #$9,-(a7)
trap #$1
addg.l #6,a7

* push address of sign-on string
* Cconws
* call GEMDOS
* pop args from stack

*** Switch to Supervisor mode to read protected memory
clr.l -(a7)
move.w' #$20,-(a7)
trap #$1addg.l #6,a7
move.l dO,oldstack

* switch to super mode, same stack
* Super function
* call GEMDOS
* clean up stack
* save old stack address

*** Check to see if this program has been installed once.
*** If it hasn't, install it. If it has, end

movea.1
subg.1
lea
move.w

checkid:
cmpm.b
bne.b
dbf
move.l
move.w
trap addg.1

scr_dump,aO * get screen dump vector
#6,a0 * move back 6 characters
ID,al * check to see if you're already installed
#$5,do * 6 letters in ID

(a0)+,(al)+ * compare ID to resident program
install * if ID doesn't match, install toggle
do,checkid * if it does match, ...
oldstack,-(a7) * push old stack address
#$20,~(a7) * out of super mode
#$1 * call GEMDOS
#6,a7 * clean stack

105

CHAPTER 5

pea msg2 *
move.w #$9,-(a7) *
trap #$1 *
addq.l #6, a7 *

bsr.w delay *
clr.w -(a7) *
trap #$1

call GEMDOs
clean stack

end program

Install:
move.1 move.1 move.w
trap addg.1

peamove.w trap addq.1
bsr.w
clr.w move.1 sub.l add. 1 move. 1 move.w trap

#toggle,scr_dump
oldstack,-(a7)
#$20,-(a7)
#$1#6,a7

msg3
#$9,-(a7)
#$1#6,a7
delay

#init,d0
#start,d0
#$100,dO
d0,-(a7)
#$31,-(a7)
#$1

* install coggle in screendump vector
* push old stack
* out of super mode
* call GEMDOS
* clean stack
* print install message
* CCONWS
* call GEMDOS
* clean stack
* wait a bit to let them read it
* terminate and stay resident
* take address of end of resident part
* -start address of program
* plus 256 bytes for basepage
* push on stack
* ptermres
* call GEMDOS to end program

*** delay subroutine— just loop around a while

* loop about (32 * 65536) times
delay:

move.w #$20,dO
dloop:

dbf dl,dloopdbf dO,dloop
rts

*** Text data for messages
.data
msgl:

dc.b
dc.b
dc.b

msg2:
dc.b

msg3:
dc.b

$1B,'E'
1KEYCLICK TOGGLER..',$0D,$0A
'Replaces Alternate-Help screen dump',$0D,$0A,$00

$07,'Already

'Installed',$0D,$0A,$00,$00
*** Temporary storage for old user stack pointer
.bss
oldstack:

ds.l 1
end

Time and Date Functions
GEMDOS keeps track of the date and time to date stamp a
file, showing when it was created or last updated. The GEM
DOS functions used to get and set the DOS time and date
are very similar to those provided by the XBIOS to get and
set the IKBD controller's time and date. The main difference
is that separate functions are provided here to set the time

106

GEMDOS Device I/O and Process Control

and date, while the XBIOS functions get or set both at once.
The DOS dock and IKBD clock are not necessarily the same,
although in later versions of TOS (with ROMs that support
the blitter chip), the DOS clock is reset from IKBD clock at
the termination of each process.

The functions used to get and set the DOS time are
known as Tgettime() and Tsettime(), respectively. These
functions are called as follows:
int time;

time = Tgettime();
int time;

Tsettime(time);
where time is a 16-bit code that indicates the time to set with
Tsettime(), or the time returned by Tgettime(). In either
case, the meaning of this code is interpreted as follows:

Bit
Number Description Range

, 0 -4 Seconds divided by 2 0-29
5-10 Minutes 0-59
11-15 Hour 0-23

Likewise, the DOS functions used to get and set the date
are called Tgetdate() and Tsetdate():
int date;

date = Tgetdate();
int date;

Tsetdate(date);

where date is a 16-bit code that specifies the date to set with
Tsetdate(), or the date read with Tgetdate(). The meaning
of this code is:
Bit Number Description Range

0-4 Day 1-31
5-8 Month 1-12

9-15 Year 0-119*
* Year value is added to 1980 to get current year.

Since the format of the time and date information
stamped on disk files is the same as the above, you can use
the code provided in the program GDIR.C in Chapter 6 as an
example of how to extract the various fields of information
from their bit-packed storage format.

107

CHAPTER 5

GEMDOS also provides a function that returns the GEM
DOS version number. This number refers only to the version
of GEMDOS, not to the GEM or TOS version in general. The
function used to find the GEMDOS version number is Sver-
sion(), and it's called like this:

int version;
version = Sversion();

where version is a 16-bit code which indicates the GEMDOS
version number. This number is stored in the same format as
MS-DOS uses for its version number, with the major version
number in the low byte, and the minor revision number in
the high byte. The first version of the TOS ROMs all show
the GEMDOS version to be 0x1300, or version 0.19.

108

Chapter 6

GEMDOS File System Functions

In addition to the character device and system
functions, many of which are similar to calls found in the
BIOS and XBIOS, GEMDOS provides a number of unique
functions involved with the disk filing system. Disk drives
are unique among the I/O devices because they are random-
access devices. Each disk contains a fixed amount of storage
space and can retrieve information from anywhere on the
disk. Rather than reading the information as one continuous
stream, the disk starts at the beginning and works its way to
the end each time. Disk drives are also unique because they
are divided into both physical storage units (tracks and sec
tors) and logical storage units (such as directories and files).

A blank disk contains a magnetic medium with nothing
significant recorded on it. When you format the disk, the
drive controller encodes information on the disk that divides
it into tracks and sectors. On the ST, each sector holds 512
bytes of data. There are normally nine sectors per track, and
80 tracks per side of the disk. This means that single-sided
disks can hold 368,640 bytes (512 x 9 x 80) of data, and
double-sided drives can store twice that amount.

Although nine tracks per sector and 80 sectors per side
is the default format for disks, it is possible to format a disk
with ten or even eleven sectors per track, and 81 or 82 tracks
per side. Because of variations in manufacturing tolerances
from drive to drive, the default values are the safest ones to
use, particularly for disks that will be used on more than one
disk drive.

Dividing the disk into tracks and sectors in effect gives
you hundreds of thousands of little boxes, each of which
may hold one character of information. It would not be prac
tical, however, to expect the user to keep track of what infor
mation is in each box. Can you imagine having to tell the

111

CHAPTER 6

computer the letter you wrote with your word processing
program is stored at locations 40,658 to 41,949? To avoid this
problem, GEMDOS goes farther than merely dividing the
disk into tracks and sectors. It also divides it into logical
units known as files and directories. This filing system allows
you to give a name to a collection of storage locations on the
disk. Thereafter, whenever you wish to read or write to that
collection of data, you can refer to it by that name, and
GEMDOS takes care of keeping track of the actual physical
storage locations to which the name refers.

To implement this filing system, GEMDOS must store
several internal data structures on each disk, allowing it to
keep track of the disk organization, filenames, and locations
occupied by each file. These data structures are nearly identi
cal to those used by MS-DOS, and as a result, it is possible
to read MS-DOS format disks on the ST. The first of these
structures, known as the Boot Sector, is located on the first
sector on the disk (Track 0, Sector 1). The boot sector per
forms a couple of different functions. First, it lets GEMDOS
know how the disk is organized so it knows how to read the
data stored on it. The ST supports single-sided 3V2-inch
floppy drives, double-sided 3V2-inch floppy drives, 5y4-inch
floppies, and hard drives, and these drives can be formatted
with varying numbers of sectors per track, and tracks per
side. If it weren't for the boot sector, GEMDOS wouldn't
know where to begin looking for the data. Much of this in
formation is the same as that stored in the BIOS Parameter
Block, which may be retrieved with the BIOS Getbpb() com
mand. The second function of the boot sector is to allow
disks to be bootable—that is, to take control and run a certain
program as soon as the computer is turned on. It does this
with a program fragment called the boot code. The boot code
is usually just a tiny program that loads another larger pro
gram from disk into the computer memory and turns control
over to that program.

The organization of the Boot Sector is shown in Table 6-1.

112

GEMDOS File System Functions

Table 6-1. Organization of the Boot Sector
Byte

Number Description
0-1 If disk is bootable, a BRA.S instruction to boot code

starting at byte 31 is stored here. If disk is not bootable,
two 0 bytes are stored here.

2-7 Reserved for OEM use (unused on ST)
8-10 Volume serial number 24 bits long (used to determine is

a disk was changed)
11-12 Number of bytes per sector (must be 512 under current

GEMDOS)
13 Number of sectors per cluster (must be two under

current GEMDOS)
14-15 Number of reserved sectors at the start of media

(including the boot sector)
16 Number of File Allocation Tables (FATs) on disk

17-18 Number of entries in the root directory
19-20 Total number of sectors on disk

21 Media Descriptor (not used on ST)
22-23 Number of sectors used by each File Allocation Table

(FAT)
24-25 Number of sectors per track (normally 9)
26-27 Number of disk heads (one for single-sided, two for

double-sided)
28-29 Number of hidden sectors (not used on ST)
30-509 Boot code (if any)

510-511 Checksum

Directory Blocks
GEMDOS also requires the root directory to keep track of
named files. This directory contains a number of 32-byte di
rectory entries, each one having information about a specific
file, such as its name, its file attributes, the time and date of
its creation, its length, and the file's starting cluster number.
The starting cluster number helps GEMDOS find the first
sector used to store the file's data.

When GEMDOS allocates disk space for a file, it does so
in increments called clusters. The current cluster size is two
sectors, which means that even if a file is only 10 bytes long,
it still occupies 1024 bytes (two sectors) on disk. Once GEM
DOS knows the starting data cluster for a file, it can find the
rest of the file by using the File Allocation Table (FAT).

The root directory of a floppy disk has space for 112 di
rectory entries. The format of each 32-byte entry is shown in
Table 6-2.

113

CHAPTER 6

Table 6-2. Format for Directory Entry
Bytes Contents
0-7 Eight-character primary name (ASCII text) (if file is deleted,

first character is $E5)
8-10 Three-character extension (ASCII text)

11 Attribute byte, contains following bit flags
Bit 0 = read-only file (can't be deleted or written to)
Bit 1 = hidden file (excluded from normal directory

searches)
Bit 2 = system file (excluded from normal directory

searches)
Bit 3 = volume label (can only exist in root)
Bit 4 = subdirectory
Bit 5 = archive bit
Bit 6 = reserved
Bit 7 = reserved

12-21 Reserved for future use
22-23 Date of creation

Bits 0-4 = Day of month (1-31)
Bits 5-8 = Month (1-12)
Bits 9-15 = Year (-1980)

24-25 Time of creation
Bits 0-4 = Seconds divided by 2 (0-29)
Bits 5-10 = Minutes (0-59)
Bits 11-15 = Hours (0-23)

26-27 Starting cluster number (in 8088 order, low-byte first)
28-31 File length in bytes (in 8088 order, low-byte first)

Subdirectories are structured as files that contain direc
tory entries. Since these files may expand in size like any
other data files, there is no limit to the number of entries in a
subdirectory, as there is with the root directory. The first two
entries in a subdirectory are always dot (.), which stands
for the current directory and dot-dot (..), whose entry
points to the first cluster in the parent directory (or is 0 if the
parent is the root directory).

File Allocation Tables (FATs)
The last internal data structure used by GEMDOS is known
as the File Allocation Table, or FAT. The FAT is used to keep
track of which clusters belong to which file. The system
works like this: For each cluster on the disk, there's a corre
sponding FAT entry. The directory entry for each file con-

114

GEMDOS File System Functions

tains a pointer to the first file cluster. When you look up the
FAT entry for that first cluster, you get a pointer to the next
cluster. The FAT entry for that cluster contains a pointer to
the next one, and so on until you get to a FAT entry that ■
contains a last-cluster marker.

FAT entries come in two sizes. Floppy disks use FAT en
tries that are 12-bits in length, while hard disks use 16-bit en
tries. You can tell which kind of FAT entries are used for a
particular disk by looking at the bflag byte of the BIOS Pa
rameter Block (see the discussion of the Getbpb() function in
Chapter 2). The meaning of each type of FAT entry is shown
in Table 6-3.
Table 6-3. Meaning of FAT Entries
12-Bit Value 16rBit Value Description
$000 $0000 Free cluster (unused)
$001 $0001 Invalid value
$002-$FEF $0002-$7FFF Next cluster number

$8000-$FFEF Invalid value
$FF0-$FF7 $FFF0-$FFF7 Bad cluster
$FF8-$FFF $FFF8-$FFFF End of file

To convert cluster numbers to logical sector numbers,
subtract 2 and multiply by the number of sectors per cluster
(2). Thus, if the directory entry for the first file shows that it
starts at cluster 4, it tells you that the first data block for that
file starts at sector 4 of the data area (which starts with the
first sector of track 2). To find the next data block for the file,
look up the FAT entry for cluster 4, which gives you the
cluster number for that block. When you get a FAT entry of
$FF8 ($FFF8 for 16-bit FATs), you know you've reached the
last block of the file.

The FAT is an absolutely critical part of the disk. If the
sectors containing the FAT become unreadable, the file sys
tem will not be able to follow the directory chain, and will
not be able to read the files on the disk. As a security mea
sure, two FAT areas are maintained simultaneously, so if one
becomes unreadable, the other may be used to find the files.

Data Area
The last logical division of the disk is called the data area or
files area. The sectors in this area of the disk are viewed as
clusters of two sectors each. As a file is created (or ex

115

CHAPTER 6

tended), GEMDOS searches the FAT for free clusters and as
signs as many of them to the file as necessary.

The physical location of the various disk data structures
may be determined by values found in the BIOS Parameter
Block. The boot sector(s) occupy logical sectors 0 through (fa-
trec -fs iz -1). The first FAT starts at (fatree — fsiz). The sec
ond FAT starts at fa tree. The root directory starts at (fa-
trec + fsiz). For a nonbootable floppy, the first two tracks are
used for these data structures. Sector 1 of track 0 holds the
boot block. The first FAT occupies sectors 2-6 of track 0,
while the second FAT is split between sectors 7-9 of track 0,
and sector 1 and 2 of track 1. The root directory takes up sec
tors 3-9 of track 1. The rest of the disk, starting with track 2,
is made up of data clusters, with two sectors per cluster.

File I/O Functions
The most fundamental of the file system functions are those
used to create a file, write data to it, and read data back from
the file. The GEMDOS functions used for these purposes are
modeled after Unix-style file commands. In fact, if you pro
gram in C you'll probably notice that the macro names for
the GEMDOS file functions differ only in capitalization from
those of the C compiler's own library functions. Thus, the
GEMDOS function Fread() is roughly equivalent to, but not
exactly the same as, the C compiler's own fread() function.

The GEMDOS file functions identify the file upon which
they operate by a number known as a file handle. There are
three types of file handles (see table below). The first type
(handles - 3 through -1) belongs to the character devices.
The console device (consisting of the screen and keyboard),
the serial device, and the parallel printer device may all be
treated like disk files for I/O purposes. This makes it possible
to redirect file output to a device like the printer (see the sec
tion of Fdup() and Fforce(), below). The next type of handle
(0-5) is reserved for standard system files. These are
modeled after devices that MS-DOS makes available to any
program. MS-DOS initializes handles 0-4 to point to stan
dard devices that can be used for input, output, error re
ports, and listings. While GEMDOS reserves the same range
of handles for its own standard devices, it doesn't automati
cally initialize them. This is usually performed by the C com
piler, which at least assigns a standard input and output file

116

GEMDOS File System Functions

(sometimes an error and list device as well). When a pro
gram spawns a child process with Pexec(), that child inherits
the parent's standard files. The third type of file handle is as
signed to user files on a temporary basis. When a file is cre
ated or opened, a small positive number greater than five is
assigned to it as temporary ID number for the file. The file
handle is used to identify the file for the purposes of any
subsequent GEMDOS file operation. When the program has
no more operations to perform on a particular file, it can
close it, which relinquishes the handle and allows it to be
reassigned. All files are closed automatically when the pro
cess that opened them terminates, or when the media which
contained them is replaced.

Handle
Number Device or File Assignment

- 1 (OxFFFF) CON: (console device)
- 2 (OxFFFE) AUX: (RS-232 serial port)
- 3 (OxFFFD) PRN: (Centronics parallel port)

0 Standard input (usually CON:)
1 Standard output (usually CON:)
2 Standard error
3 Auxiliary
4 Standard list

6 and up User disk files

The first step in writing a file is to create it. The GEM
DOS call used for this function is Fcreate():
char *fname;
int handle, attr;

handle = Fcreate(fname, attr);

where fname is a pointer to a null-terminated ASCII string
containing the name of the file to create. The name can be a
simple file name (such as LETTER.DOC), or a complete path
name (like C:\WORDPROC\LETTERS\BILL.DOC). The attr
value is a flag that specifies the file's attributes. The meaning
of the flag bits is described in Table 6-4.

Table 6-4. Meaning of Flag Bits Used in File Creation
Bit Bit

Number Value Description
0 1 Read-only file (can't be deleted or written to)
1 2 Hidden file (excluded from normal directory

searches)

117

CHAPTER 6

Table 6-4. Meaning of Flag Bits Used in File Creation (continued)
Bit Bit

Number Value Description
2 4 System file (excluded from normal directory

searches)
3 8 Volume label (can only exist in root)

If the file didn't exist previously, Fcreate() both creates a
directory entry for the new file and opens it for writing only.
If the function succeeds, the file handle of the new file is re
turned in handle. If not, a negative GEMDOS error number is
returned, such as - 34 (Path Not Found), - 35 (No Handles
Available), or -3 6 (Access Denied). If the file existed pre
vious to the Fcreate() call, it will be truncated to a length of
0 before it is opened, which destroys its previous contents.

After the file has been created, it can be written to with
the command Fwrite():

long status, bytes;
int handle;
char *buffer;

status = Fwrite(handle, bytes, buffer);

where handle is the file handle returned when the file was
created or opened, buffer is a pointer to the buffer that holds
the data to write to the file, and bytes indicates the number of
bytes to transfer from the buffer to the file. If the write is suc
cessful, the number of bytes actually written is returned in status.
If unsuccessful, a GEMDOS error number is returned instead.

When all of the data is written to the file, the file must
be closed with the function Fclose():
int handle, status;

status = Fclose(handle);

where handle is the file handle of the file to close. If the oper
ation succeeds, 0 is returned in status. Otherwise, it contains
the appropriate GEMDOS error number. Close a file when
you are finished with it because it isn't possible to open the
file for reading or writing again until it's closed.

To read or write to an existing file, you must first open
it. The GEMDOS command used for this purpose is Fo-
pen(), and its calling syntax is as follows:
char *fname;
int handle, mode;

handle = Fopen(fname, mode);

GEMDOS File System Functions

where fname is a pointer to the null-terminated ASCII filen
ame of the file to open, and mode is a flag that specifies
which operations will be available once the file has been
opened. Possible values for mode include:

Mode
Number Operations

0 Read only
2 Write only
3 Read or write

If the file can be opened, a file handle is returned in han
dle. If it can't be opened (for instance, if GEMDOS can't find
some element of the path name), the appropriate GEMDOS
error number will be returned. For a complete list of GEM
DOS errors, see Appendix D.

Once a file has been opened for reading and/or writing,
it's possible to read the contents of that file by using the
Fread() function:

long status, count;
int handle;
char ^buffer;

status = Fread(handle, count, buffer);

This function reads count number of bytes from the file
whose file handle is stored in handle, and places that data
into the buffer whose address is stored in buffer. If the func
tion is successful, the actual number of bytes read is returned
in status. If the function attempts to read past the end of the
file, a 0 is returned. For any other error, a negative GEMDOS
error number is returned (see Appendix D).

Unless otherwise specified, file reads and writes start at
the beginning of the file and progress sequentially towards
the end of the file. Let's say, for example, that you open a
file that's 1000 bytes long for reading. The internal file
pointer of GEMDOS, which keeps track of where you are in
a file, is initially set at the beginning of the file, so the first
time you call Fread() to read 100 bytes, you'll get the first
100 bytes in the file. After you read that 100 bytes, the file
pointer is moved to the end of the block that you read. The
next time you read 100 bytes, therefore, you'll get the second
100, and so on until you reach the end of the file. Since disks
are basically random-access devices, however, you're not
confined to reading files in order. You can move the file

CHAPTER 6

pointer wherever you want in the file by using the Fseek()
function. Fseek() is called like this:
long position, offset;
int handle, seekmode;

position = Fseek(offset, handle, seekmode);

Fseek() moves the file pointer for the file referred to by han
dle by offset number of bytes, in a manner designated by seek
mode. The movement of the file pointer is made relative to
one of three points:
• The beginning of the file
• The end of the file
• The current file pointer position

The seekmode specifies where the move begins:

Seekmode File Pointer Movement
0 Relative to beginning of file
1 Relative to current position
2 Relative to end of file
The offset is a signed number that moves the pointer a

positive or negative number of bytes from its starting point.
If offset is positive, the pointer moves toward the end of the
file. If negative, it moves towards the beginning. For exam
ple, if seekmode is 0 and offset is 100, the file pointer is set to
byte 100 of the file, and the next read starts with byte 101. If
seekmode is 1 and offset is -100 , the file pointer moves back
100 bytes from its current position. After the Fseek() call, the
absolute current position of the file pointer (expressed as an
offset from the beginning of the file) is returned in position.
Therefore, when you call Fseek() with a seekmode of 2 and an
offset of 0, the length of the file is returned in position.

Program 6-1 demonstrates many of the file I/O functions
explained above. It writes out a short test file to the floppy
disk, reads it back, changes it, and reads it again.

Program 6-1. GFILEIO.C
/***
/*/* GFILEIO.C
/*/* Demonstrates the GEMDOS file-creation,
/* write, read, and close functions
/*/***

V*/*/
//*/*/

120

GEMDOS File System Functions

#include <osbind.h> /* For GEHDOS macro definitions */
#define F_ATTR 0 /* file attribute for FCreate() */
#define APPEND 3
#define READ o
Idefine WRITE 2

char fname[] = "A:\TEST.FIL";
char test[]= "This is a test file";
char add[)= "nice";
main()
{ int handle;

long status;
handle = Fcreate(fname, F_ATTR); /* create the file */
if(handle<0) /* if you can't, quit */

Cconws("Could not create file\n\r");
else

{ /* otherwise, write test string */
status = Fwrite(handle, 19L, test);
printf("\n%ld characters written\n\n",status);
Fclose(handle) ;
handle = Fopen(fname, READ); /* read it to be sure it's there */
status = Fread(handle, 19L, test);
test[status]=0 ;
Cconws(test); /* and print it out */
printf("\n\r%ld characters read\n\n",status);
Fclose(handle);
handle = Fopen(fname, APPEND); /* now change it */
status = Fseek(10L, handle, 0);
status = Fwrite(handle,4L,add);
status = Fseek(0L, handle, 0); /* and read the change */
status = Fread(handle, 19L, test);
test[status]=0 ;
Cconws(test); /* print it out */
printf("\n\r%ld characters read\n",status);
Fclose(handle);
)

/* if you're running this from the Desktop, you may want to
add a pause to give the user a chance to read the output * /

Cconws("\n\n\rPress any key to end");
Cconin();

)
/******** end of GFILEIO.C *****/

Notice how the count values for reads, writes, and seeks
were specified as 32-bit longwords by placing the character L
(as in 19L) next to them? It's very important to pass argu
ments of the correct size in these functions. If you pass an
integer as the count byte, it will be assumed to be the first
word of the longword, and you'll end up with a file length
in the millions of bytes. What was intended to be only a
short file can soon fill up a floppy disk if you aren't careful.

Disk and Directory Path Functions
Besides simple reading and writing of files, GEMDOS sup
ports a number of disk and directory path functions. These

121

CHAPTER 6

functions facilitate navigation through a system where there
may be several drives attached, each having several subdirec
tories. A common example is the function used to set the de
fault drive. This is the drive that GEMDOS assumes is re
ferred to when only a filename is used. For example, if you
ask to open a file called MYFILE, rather than using an entire
pathname like C:\FILES\MYFILE, GEMDOS will look for MY
FILE in the default directory of the default drive. The macro
name for the function used to set the default directory is
Dsetdrv(). This function also returns information about the
number of logical drives recognized by the system. To call
this function, use the following format:

long drives;
int default;

drives = Dsetdrv(default);

where default is the drive number of the drive you wish to
make the current default (drive A: = 0, drive B: = 1, and so
on). A list of known logical drives (those on which a direc
tory has been used) is returned as a bit flag in drives. Each bit
that corresponds to a known drive is set to 1. For example,
the number 7 has bits 0, 1, and 2 set, which indicates that
drives A:, B:, and C: are connected. Note that logical drives
do not have to be separate physical devices. For example, a
single floppy system will still have two logical drives, since
the floppy can be accessed as either drive A: or drive B:. It's
also possible to partition a single hard drive into several logi
cal units called C:, D:, E:, and so forth. Finally, portions of
memory may be partitioned into logical RAM drives as well.
On the current version of GEMDOS, up to 16 drives may be
connected, though future versions may support up to 32.

GEMDOS also allows you to find the drive number of
the default drive, with the function Dgetdrv:

int default;
default = Dgetdrv();

where default is the drive number (0-15) of the current de
fault drive. This function is useful for building a default path
string to remember where a program should look for data
files, for example.

A related function allows you to set the current default
directory on a drive. As stated above, this is the directory
where GEMDOS will first search for a named file. GEMDOS

GEMDOS File System Functions

keeps a default directory path for each drive in the system.
The Dsetpath() function is the one used to set a default di
rectory for the current drive:

int status;
char ’''path;

status = Dsetpath(path)

where path is a pointer to a null-terminated ASCII string
specifying the default directory path to set for the current de
fault drive (foe example, WORDPRO\FRED\LETTERS). If the
path name begins with a drive letter and a colon, the path is
set for that drive rather than the current default drive (for in
stance, C:\DATABASE\CLIENTS).

Once a default directory path has been set, you can use
the Dgetpath() function to find that path setting:

word drivenum;
char ^buffer;

Dgetpath(buffer, drivenum);

where drivenum is the drive number (0-15) of the disk whose
default directory path you wish to find. An ASCII string con
taining the path name is returned in buffer. Since GEMDOS
does not specify a maximum length for path names, make
sure to supply a buffer large enough to contain the whole
name. A buffer of about 128 bytes should be big enough, un
less the path goes down through more than ten levels of
subdirectories.

The last two directory path functions are those used to
create or delete a subdirectory. The Dcreate() function is
used to create a new subdirectory. The syntax used to call
this function is:

int status;
char "pathname;

status = Dcreate(pathname);

where pathname is a pointer to a null-terminated ASCII direc
tory path (for example, C:\NEWDIR). If GEMDOS is able to
create the directory, a 0 is returned in status, otherwise, a
negative GEMDOS error number is returned. This function
will fail if some part of the path name doesn't exist, the
named subdirectory already exists, or the parent directory is
the root directory of a disk, all of whose directory entries
have been used.

CHAPTER 6

The Ddelete() function is used to remove a subdirectory:
int status;
char ^pathname;

status = Ddelete(pathname);

where pathname points to a null-terminated ASCII string
which contains the path name of the directory to delete. If
GEMDOS is able to delete the directory, a 0 is returned in
status, otherwise, a negative GEMDOS error number is re
turned. Note that a subdirectory may only be deleted if it is
empty.

Program 6-2 below demonstrates the entire process for
obtaining a directory listing in C.

Program 6-2. GDIR.C
/**/
/* *//* GDIR.C— Demonstrates how to get a * /
/* directory listing using GEMDOS */
/* file functions. */
/* */ /**/
#include <osbind.h> /* For GEMDOS macro definitions */
struct diskbufr /* data structure for DTA * /

(char resvd[2 1];
char attr;
int ftime;
int fdate;
long fsize;
char fname[14];
} dta;

char blank[13]=" /* 12 spaces— for name padding */
main(argc,argv)

int argc; /* number of command arguments */
char *argv[]; /* array of pointers to command strings */

{ struct diskbufr *olddta;
char *temp;
if (argc>2) /* if more than one command argument */

{Cconws("Too many arguments\r\n");
exit(O); / * complain and quit */
}

if (argc==2)
temp=argv[1]; / * if only one argument, use it */

else temp = "*.*"? /* or default to * /

olddta = (struct diskbufr *)Fgetdta(); /* save old DTA */
Fsetdta (&dta); /* and use new DTA */
if (Fsfirstftemp,0x10)) /* get first file * /

puts ("File(s) not found");
else

(print_entry(); /* and print entries.. */
whilef!Fsnext()) /* until done */print_entry();

124

GEMDOS File System Functions

)Fsetdta (olddta); /* then restore DTA */
/* if you're running this f r o m the Desktop, you nay want to

add a pause to give the user a chance to read the output */
Cconws("\n\n\rPress any key to end");
Cconin();

) /* end of main */

print entry() / * format output for directory listings */
{ char temp[2 0];

Cconws(dta.fname); /* print file name * /
Cconws(blank+strlen(dta.fname)); /* pad to 12 spaces */

if(dta.attr==OxlO) /* if this is a directory */
{Cconws("<DIR>\r\n"); /* don't print size or date */
)

else
sprintf(temp,"%71d",dta.fsize); / * else print file size * /
Cconws(temp);
Cconws(" bytes ");
sprintf(temp,"%02d/%02d/%d", /* print file date */

dta.fdate&OxlF, (dta.fdate &0xlE0)»5,
(dta. fdate»9)+1980) ;

Cconws(temp);
Cconws(" ");
sprintf(temp,n%02d:%02d:%02d", /* print file time * /

(dta.ftime»ll)60xlF, (dta.ftime &0x7E0)»5,
(dta.ftime&OxlF)*2);

Cconws(temp);
Cconws("\r\n");
)

) /* end of print_entry() */

****************** end of GDIR.C ***********/

After compiling this program, you should rename it
GDIR.TTP to indicate that it may take parameters. To obtain
a specific directory listing, enter the directory name as the
parameter, including wildcard characters, like C:\PRO-
GRAMS*.PRG. You may also run this program from within
the GPEXEC.TOS program described in Chapter 5. Once
GPEXEC prompts you for a command, enter it in the format:
GDIR.TTP A:Y*

Directory Listings and Free Space Functions
One of the most common disk operations is obtaining a list
ing of the directory contents. Since a disk may have
hundreds of files and subdirectories, it might be difficult set

125

CHAPTER 6

ting up one big buffer to get all of the names at once. There
fore, GEMDOS uses a system by which you set up a buffer
large enough to hold only the information for a single file, and
then proceed to read the directory information a file at a time.

The first step is to set the Disk Transfer Address (DTA)
that points to the buffer used for disk read operations. This
buffer is used as a scratch area for directory searches. To set
the buffer, use the Fsetdta() function:

char dta[44];
Fsetdta(dta);

where dta is a pointer to the Disk Transfer Address buffer
that will be used from now on. You may wish to save the
default DTA, and restore it when you're finished. To find the
current DTA before setting your own, use the Fgetdta()
function

char *dta;
dta = Fgetdta();

which returns a pointer to the current Disk Transfer Address
buffer in dta.

The next step in obtaining a directory listing is to per
form a search for the first file on the list. When asking for a
directory listing, you may specify the file attributes of files to
be searched for, as well as names and/or extensions. The
Fsfirst() function used for this purpose is called in the fol
lowing manner:

int status, attributes;
char *filespec;

status = Fsfirst(filespec, attribs);

where filespec points to a null-terminated ASCII string con
taining the file specification to be searched for. Since wild
cards may be used in a file specification, it may refer to a sin
gle file (for example, C:\MYPROG.PRG), a class of files (for
example, *.BAS), or any file at all (for example, *.*). The attri
butes argument specifies the types of files for which to
search. As you've seen above, file types include read-only,
system, hidden, volume name, and directory. When a partic
ular bit of the attributes flag is set, the directory search only
includes files with that attribute. The various attribute bits
are shown in Table 6-5.

GEMDOS File System Functions

Table 6-5. Attribute Bits
Bit

Number Attribute
0 Read-only file (can't be deleted or written to)
1 Hidden file (excluded from normal directory searches)
2 System file (excluded from normal directory searches)
3 Volume label (can only exist in root)
4 Subdirectory
5 Archive bit

If the attributes argument is 0, the Fsfirst() function only
searches for normal files (no subdirectories, hidden files, or
volume labels). If attributes has the volume-label bit set, only
volume labels are searched for.

When Fsfirst() matches the file specification and attrib
ute type to an existing file, it returns a 0 byte in status. It also
writes a 44-byte data structure to the buffer pointed to by the
DTA. The contents of that data structure are shown below:

Byte Number Contents
0-20 Reserved for internal use (must not be altered)
21 File attributes

22-23 Time stamp
24-25 Date stamp
26-29 File size
30-43 Filename and extension

C programmers may find it helpful to declare the DTA
buffer as a data structure, in the following format:

struct diskbuf
{
char resvd[21];
char attr;
int ftime;
int fdate;
int fsize;
char fname[14];
};

/* reserved for internal user */
/* file attribute byte */
/* file time stamp */
/* file date stamp */
/* file size in bytes */
/* file name and extension*/

If no match for the file is found, EFILNF or some other
appropriate negative GEMDOS error number is returned. See
Appendix D for a complete list of GEMDOS errors.

Once the first file matching the filename and attributes

CHAPTER 6

set in Fsfirst() is found, you can obtain information about
additional files with the function Fsnext():

int status;
status = Fsnext();

where status indicates whether another file having the file
specification and attributes given in the Fsfirst() call was
found. If such a file was found, a 0 is returned in status, and
information about the file is stored in the buffer pointed to by
the DTA. If no matching file was found, a DOS error num
ber such as ENMFIL is returned (see Appendix D). Use of this
call assumes that the DTA points to a buffer that contains
information from a previous Fsfirst() call. The filename used
by the previous Fsfirst() call must also have contained one
or more wildcards (? or *) in order for Fsnext() to succeed.

The amount for free space is another useful bit of infor
mation you might wish to obtain about a disk. Find this with
the function whose macro name is Dfree(). The function is
called like this:

long buffer[4];
int drivenum;

Dfree(buffer, drivenum);

where drivenum specifies the drive to check (A = 0, B = 1,
and so on). The information about the drive is returned in
four longwords in the buffer array. The information contained
in this array is:

Element Number Contents
0 Number of free clusters
1 Total number of clusters on drive
2 Sector size (in bytes)
3 Cluster size (in sectors)

For large hard drives, this function is extremely slow,
and may take as much as several seconds to complete.

File Manipulation Functions
GEMDOS supports some common file manipulation opera
tions like deleting a file or renaming it, and some not-so-
common ones, like setting or getting the time and date-
stamp, or file attributes. The function Fdelete() is used to
delete a file. It's called like this:

GEMDOS File System Functions

int status;
char ’'‘filename;

status = Fdelete(filename);

where filename is a pointer to a null-terminated ASCII string
that contains the name of the file to be deleted. If the file is
successfully deleted, a 0 is returned in status. If the operation
fails, a negative error number is returned instead.

Renaming a file is the job of a function called Frename():
int status;
char *oldname;
char *newname;

status = Frename (0, oldname, newname);

where oldname is a pointer to a string containing the name of
the file to be changed, and newname is a pointer to the string
containing the new name. Wildcard characters may not be
present in either the source or destination filenames. The
destination filename may, however, be in another directory,
which effectively "moves" the file from one directory to the
other. Of course, you can't rename a file to another directory
if that directory already contains a file of the same name.
Note that a dummy 16-bit 0 argument must be used at the
beginning of the call as a place holder. If the rename opera
tion is successful, a 0 is returned in status. If the operation
fails, a negative error code is returned.

It is possible to read or change a file's attributes with the
Fattrib() function. The function is called like this:
int attributes, mode, newattr;
char ^filename;

attributes = Fattrib(filename, mode, newattr);

Fattrib() sets or gets the attributes of the file whose
name is contained in the string pointed to by filename, ac
cording to the setting of mode. If mode is set to one, the file
attributes are changed to those passed in newattr, and no
value is returned in attributes. If mode is set to 0, the current
file attributes are returned in attributes. Both newattr and attri
butes are bit flags, in which each bit corresponds to a particu
lar attribute, as shown in Table 6-5.

You may get or set a file's time and date stamp with the
function Fdatime(), which is called as follows:
int handle, mode;
long *timeptr;

Fdatime(timeptr, handle, mode);

CHAPTER 6

Fdatime() gets or sets the timestamp for the file referred to
by handle, according to the setting of mode. If mode is set to 1,
the file's time stamp is set according to the value stored in
the buffer pointed to by timeptr. If mode is set to 0, the file's
time stamp is read into that buffer. In either case, timeptr
contains the address of a 32-bit buffer that holds the time
and date stamp information. The first word of the buffer con
tains the date in the following format:

Bit Number Description Range
0-4 Day 1-31
5-8 Month 1-12

9-15 Year 0-119*
* Year value is added to 1980 to get current year.

The second word holds the time, as follows:

Bit Number Description Range
0-4 Seconds divided by 2 0-29

5-10 Minutes 0-59
11-15 Hour 0-23

File I/O Redirection
The standard file handles (standard input, standard output)
are commonly used for console-driven TOS applications.
Sometimes, however, you may want to redirect the output of
a TOS program to a device other than the screen. For exam
ple, if you're running a program to list a disk directory on
the screen, you may want to send that output to a printer.
This type of redirection is a common feature of command
line interface shell programs.

GEMDOS includes a couple of functions that make it
possible to do this kind of I/O redirection. This first is used
to create a user-designated file handle that duplicates one of
the standard file handles. In other words, it takes a file han
dle with a value of five or less, and returns a file handle with
a value of six or more, which points to the exact same de
vice. This is useful for two reasons.

The first reason is that if you change a standard device
handle, you want to have some way of changing it back.
Therefore, use the handle duplicate function to create a tem
porary copy of the original handle before you redirect the I/O

130

GEMDOS File System Functions

for that device. Then, after you finish the redirection, you
can change the handle back, using the temporary copy.

The second reason for duplicating a handle is that it
gives you a temporary copy that can be used to substitute for
another standard device. If you're going to replace the screen
output with output to the printer, for instance, you'll need
two handles for the printer, one for the standard list device,
and one for the standard output device.

To create a user-designated handle that duplicates one of
the standard file handles, use the Fdup() function:
int newhandle, handle;

newhandle = Fdup(handle);

where handle is one of the standard device handles (0-5). If
Fdup() is successful, it returns a user-designated file handle
(greater than five) that refers to the same file.

To redirect I/O from a standard device handle to a user-
designated one, use the function Fforce():
word status, standard, user;

status = Fforce(standard, user);

where standard is the file handle of the standard file, and user
is the handle of the user-designated file that replaces that
standard file. If the operation is successful, a 0 is returned in
status. Otherwise, a GEMDOS error code such as EIHNDL is
returned (see Appendix D).

131

Chapter 7

Line A Routines

All three screen display modes on the ST are bit
mapped, rather than character-oriented. This means that
everything the computer displays, including text, is com
posed of a series of dots or pixels (picture elements). To help
the programmer cope with the ST's heavy emphasis on
graphics, the Operating System offers the programmer a
wide range of graphics functions. High level support for
graphics operations on the ST is provided by the GEM VDI,
as described in COMPUTEl's Technical Reference Guide, Atari
ST Volume One: The VDI. TOS, however, includes a set of
graphics primitives known as the line A routines. These are
the low-level graphics routines called by the VDI.

The line A routines and the GEM VDI have advantages
and disadvantages. Using the VDI results in a more portable
code than using the line A routines, since the VDI routines
may be accessed from C language programs that can be com
piled and executed on either the ST or MS-DOS computers
running under GEM. The VDI is also a little easier to use be
cause C compilers for the ST include GEM bindings that al
low programmers to use VDI functions as if they were stan
dard C functions. This ease of use has a performance cost,
however, since the computer wastes time translating the
commands from a format that is convenient for the user into
a format more convenient for the Operating System.

While the line A routines require a little more effort to
use than the VDI, they offer slightly faster performance in re
turn. They also require less overhead, since it isn't necessary
to perform GEM initialization routines or open a VDI work
station in order to use them. They also offer a few options
not found in the VDI routines, such as a choice of 16 logic
operations for text printing. Though the line A routines are
specific to the ST, they provide full compatibility within the
ST family. This means that the same routines will work on

135

CHAPTER 7

future models of the ST, even if the graphics hardware
changes significantly. A good example of this is that software
using line A routines automatically benefits from the blitter
hardware in the Mega ST line, since the blitter ROMs use
that hardware to implement the line A routines.

The line A routines operate by taking advantage of a fea
ture of the 68000 microprocessor's exception handling. No
valid computer instruction (opcode) on the 68000 starts with
the binary digits 1010 (or the ASCII character A in hexadeci
mal notation). Therefore, when the processor encounters an
instruction that starts with that number, it triggers the Op
code 1010 Emulation exception. The processor is thrown into
Supervisor mode and program execution is routed through
exception vector 10, meaning that the processor starts execut
ing the program whose address is stored at location 40 ($28).
On the ST, this exception vector points to the line A handler,
which routes execution to the proper graphics primitive.
After the line A function is performed, program execution re
sumes at the instruction immediately following the line A op
code.

A IK section of RAM is set aside on the ST for the stor
age of graphics-related variables. Whenever you need to pass
information to one of the line A routines, such as where to
draw a line or what color to make the line, store that infor
mation directly in the line A variable table (see Appendix H
for a complete description of line A variables). Information
stored in the table generally remains intact from call to call,
which means that you don't have to store it in the table
again when you know it's already there. Note, however, that
GEM calls use the same variable table, so if you call GEM
routines between calls to line A, you may find that some of
the variables have changed in value.

When all of the information you need for a line A opera
tion is stored in the variable table, call the desired line A rou
tine by placing its opcode in your machine language pro
gram. Since there are no official opcode mnemonics for these
instructions, code them in the form

dc.w $A00x

where x is the opcode number from $0 to $F. For example, to
call function 0, the line A initialization function, you would
use the instruction

136

Line A Routines

dc.w $AOOO

It's technically possible to call the line A routines from
C, given the proper library'routines. At this time, however,
only the Mark Williams C compiler and Megamax Laser C pro
vide such library routines as a standard feature. There are a
number of reasons you might not want to use the line A rou
tines from C. First, the GEM VDI routines are easier to call
from C and provide adequate performance in most circum
stances. Second, there is no standard way to call these rou
tines from C, making your code less portable. Finally, in
cases where you wish to use the line A routines to improve
performance, you'll probably want to avoid the overhead
added by the C compiler and write directly in machine lan
guage instead. For these reasons, we'll confine our discus
sion of the line A routines to machine language program
ming.

Use of the line A routines requires a fair understanding
of the system used by the ST to produce graphics. An in-
depth examination of this subject could fill a book of its own,
and is therefore beyond the scope of this work. Since the line
A routines were written to support the GEM VDI functions,
however, much of the material that deals with VDI graphics
is applicable to the line A routines as well. The reader who
wishes to learn more about the line A functions should look
to the COMPUTEf's Technical Reference Guide, Atari ST Volume
One: The VDI, which covers the VDI graphics functions in de
tail.

Line A Initialization Command
Most line A commands require some input values to be
placed in the line A variable table. The location of this table
will vary depending on which version of TOS you're using,
so find the base address of the Line A variable table before
using line A calls. To do this, use the $A000 opcode, which
is referred to as the line A initialization function. When you
include the instruction

dc.w. $A000

in your program, it calls the line A handler, which returns
three useful pointers in some of the data and address regis

137

CHAPTER 7

ters. The registers used, and the values returned in them, are
listed below:

The first value, a pointer to the base address of the line
A variable table, is returned in both the DO and AO registers.
All addresses in the line A variable table are calculated as off
sets from this value. For example, the INTIN variable is lo
cated at base + 8. Therefore, after the $A000 call, you could
access INTIN by using the expression 8(A0). Since some of
the line A routines alter the contents of register AO, you may
wish to save the base address in memory, or in a “safe" reg
ister like A3-A5. That way, once you've made the $A000 call
and established the base address of the variable table, you
needn't call it again later in your program.

The second value the Init call returns is a pointer to the
system font header table in register Al. This information is
useful for setting the font used by the TextBlt function
($A008) to print text. The font header table is a list of ad
dresses of font headers for the various system fonts. Each
item in the list is a four-byte longword address and there's
an entry of OL to mark the end of the list. Currently, this ta
ble has three entries that point to the headers for the three
ST system fonts: The 6 x 6 font; the 8 x 8 font; and the
8 x 16 font. Each header is 87 bytes long and contains such
information as the name of the font, the font ID, the font
size, first character, last character, cell width and height, and
so on. Complete information about the font headers may be
found in Appendix C of COMPUTEI's Technical Reference
Guide, Atari ST Volume One: The VDL

The last item returned by the Init call is a function table
which is placed in register A2. This table contains 16 entries,
each of which is the longword address of one of the line A
routines. By indexing into this table, you may call the line A
subroutines directly, using the JSR instruction: For instance,
use JSR 4(A2) to call function $A001. This saves time nor-

Register Contents
DO
AO
Al

Pointer to base address of line A variable table
Pointer to base address of line A variable table
Pointer to a null-terminated table of pointers to the
system font headers
Pointer to a null-terminated table of pointers to the line
A routines

A2

138

Line A Routines

mally spent handling the line A exception. To call these sub
routines directly, however, you must first be in supervisor
mode.

Drawing Routines
The simplest of the line A functions are those used to draw
single points or straight lines on the screen. Function $A001,
Put Pixel, is used to color a single point. It requires that
three input values be set in the variable table. The first is the
horizontal (x) position of the dot, the second is the vertical
(y) position, and the third is the color register to use for the
drawing pen. The x and y positions are stored in an array of
16-bit words (in that order), and a pointer to the array is
placed in the variable PTSIN. Horizontal coordinate values
range from 0 to 639 in high- and medium-resolution modes,
and from 0 to 319 in low-resolution mode. Vertical coordi
nates range of 0 to 199 in low- and medium-resolution
modes, and from 0 to 399 in high resolution. The color regis
ter is stored as a 16-bit word, and a pointer to that word is
placed in the INTIN variable. Color register numbers range
from 0 to 15 in low resolution, 0 to 3 in medium resolution,
and 0 to 1 in high resolution mode.

Program 7-1 uses the Put Pixel opcode to cover a rectan
gular area with black dots.

Program 7-1. PUTPIX.S

PUTPIX.S — Demonstrates the use of the line A
Put Pixel ($A001) routine. Covers a rectangular
area with black dots.

*** Variable table offsets
INTIN = $08
PTSIN = $0C
*** Function Equates
Init = $a000
PutPixel = $a001
*** Program starts here
• textdc. w Init *

move.1 #color,INTIN(ao) *
move.1 #point,PTSIN(a0) *
move.w #49,d3 *
move.w d3,point *

to use

draw 50 dots across
starting at x of 51

139

CHAPTER 7

nextx:
addq.w #2,point * skip even columns
move.w #49,d4 * draw 50 dots vertically
move.w d4,point+2 * starting at y of 51

nexty:
addq.w #2,point+2 * skip even rows
dc.w PutPixel * draw a point
dbra d4,nexty * if the column's not done, do next
dbra d3,nextx * if the row's not done, do next

*** wait for key press, then end
move.w #l,-(sp) * call conin() to wait for key press
trap #1addq.l #2,sp
move.l #0,-(sp) * GEHOOS terminate command
trap #1 * call GEMDOS and exit

*** Data for input is stored here
.data
color: dc.w 1 * use color register 1 (black)
.bss
point: ds.w 2 * storage for x,y coordinates
.end

The inverse operation of Put Pixel is Get Pixel ($A002).
Given a set of x,y coordinates, Get Pixel finds the color regis
ter used to display the dot located at that point. As with Put
Pixel, the x and y coordinates are placed in an array of 16-bit
words and a pointer to that array is placed in the PTSIN vari
able. Upon return from the Get Pixel call, the color register
used for the specified pixel is returned in register DO.

The next step in complexity from drawing points is
drawing straight lines. The main routine for drawing lines is
called Arbitrary Line ($A003), because it can be used to draw
a straight line between any two points. This function re
quires a lot more input than Put Pixel. The variables used
(and their offsets from the base address of the table) are
shown below:
COLBITO = $18 * bit value (0 or 1) for color plane 0
COLBIT1 = $1A * bit value (0 or 1) for color plane 1
COLBIT2 = $1C * bit value (0 or 1) for color plane 2
COLBIT3 = $1E * bit value (0 or 1) for color plane 3
LSTLIN = $20 * draw last pixel of the line?

* (0 = yes, 1 = no)
LNMASK = $22 * line pattern mask
WMODE = $24 * writing mode (0 = replace,

* 1 = transparent, 2 = XOR, 3 = reverse
* transparent)

XI = $26 * starting x coordinate

140

Line A Routines

Y l
X2
Y2

= $28 * starting y coordinate
= $2A * ending x coordinate
= $2C * ending y coordinate

The last four variables hold the coordinates for the start
ing point and ending point on the line. The first four are
used to store the color register value. Instead of storing this
value as one word, for the purposes of this function, store it
as bit values in each of four words. For example, to select a
register value of 8, you would store a 1 in COLBIT3, and a 0
in each of the other three variables.

The other variables introduce some new features.
LNMASK is used to create a line pattern for dotted or
dashed lines. This is a 16-bit value which is logically ANDed
with the line. All the points on the line that correspond to 1
bits in the mask are drawn in the selected pen color, while
all of the points that correspond to 0 bits in the mask remain
in the background color. Therefore, a mask of $FFFF
produces a solid line, while $5555 produces a dotted line.
Note that the least significant bit of LNMASK is aligned with
the right-most endpoint of the line.

The WMODE variable is used to determine the drawing
mode is used. The four modes are replace, transparent,
XOR, and reverse transparent. In mode 0, replace mode, all
1 bits in the mask are drawn in the selected foreground
color, while all 0 bits are drawn in the background color. In
transparent mode (mode 1), 1 bits are drawn in the fore
ground color while the colors in areas corresponding to 0 bits
are left alone. In mode 3, reverse transparent, the reverse
happens. Areas corresponding to 1 bits in the mask are left
alone, while 0 bits are drawn in the foreground color.

The last mode, number 2, is called XOR mode. In this
mode, neither the foreground nor background colors are
used to draw the line. Instead, wherever there is a 1 bit in
the line pattern, the color that already exists on the screen at
that spot is logically complemented, using the XOR opera
tion. That means that the values in the color bit planes are all
reversed. A color value of 5 (0101), for example, becomes a
color value of 10 (1010).

The XOR mode has some unique properties. If you color
a green background with a green line, you won't see the
line. But if you use an XOR line, it will always show up,

141

CHAPTER 7

since it changes whatever color is there. Secondly, the XOR
operation cancels itself the second time it's used. When a
color is complemented, it changes to its opposite color, but
when it's complemented again, it changes back to the origi
nal.

To prevent this property from erasing a common end
point of two lines that are both drawn in XOR mode, there is
a variable called LSTLIN. This is a flag that lets you choose
whether the last pixel of the line will be drawn. If LSTLIN is
zero, the last pixel of the line will be drawn, but if it is non
zero, it will not be drawn. If you are drawing a series of con
nected lines in XOR mode, where the last point of one line
segment is used for the first point of the next line segment,
you'll want to place a 1 in LSTLIN.

Program 7-2 shows how to draw a series of dashed, con
nected lines using function $A003. Try changing the line pat
tern and the color planes (if you have a color monitor) to see
what the effect is.

Program 7-2. LINE.S

* LINE.S — Demonstrates the use of the line A
*
*

* Arbitrary line ($A005) function. Draws 6 *
* dashed, connected lines. *

*
*

*** Variable table offsets
COLBITO = $18
COLBIT1 = $1A
COLBIT2 = $1C
COLBIT3 = $1E
LSTLIN = $20LNMASK = $22
WMODE = $24
XI = $26
Y1 = $28
X2 = $2A
Y2 = $2C

*** Function Equates --
Init = $a000
Aline = $a003
*** Program starts here
.text

dc.w Init * get base address of variable
move.w #1,COLBITO(aO) * 1 is lsb
move.w #0,COLBITl(aO) * 0 in all other bits
move.w #0.COLBIT2(aO) * = 0001

142

Line A Routines

move.w #0,COLBIT3(a0) * or color 1
move.w 80,LSTLIN(aO) * draw last point on line
move.w 8$EEEE,LNMASK(aO) * dashed line
jnove.w #0,WMODE(aO) * replace mode

move.w #5,d3 * draw 6 lines
move. 1

nextline:
fpoints,a3 * get address of array

move. 1 (a3)+,Xl(aO) * starting x & y
move.1 (a3),X2(aO) * ending x & y
dc.w Aline * draw the line
dbra d3,nextline * if not at end, draw next line

*** wait for key press, then end
move.w #l,-(sp) * call conin() to wait for key press
trap #1
addq.l #2,sp
move.1 #0,-(sp) * GEMDOS terminate command
trap #1 * call GEMDOS and exit

*** Data for input is stored here
.data
points: dc.w 150,49,250,99,250,149,150,199

dc.w 50,149,50,99,150,49
.end

There is another line A routine ($A004) used only for
drawing horizontal lines. If you know that your line will be
horizontal, you may wish to choose that function, as it's
slightly faster for horizontal lines. Since that function uses
some of the filled shape drawing variables, however, it will
be discussed in the following section on drawing filled
shapes.

Drawing Filled Shapes
Line A provides a number of functions for drawing filled
shapes. These functions introduce some new concepts. The
first is the fill pattern. A fill pattern is an array of line patterns
that is repeated in two dimensions. A pattern is 16-bits wide
and as high as you wish to make it, though the pattern
should be a power of two in length (one line, two lines, four
lines, sixteen lines, and so on). It's also possible to create
multicolor fill patterns. In these patterns, there is a separate
array for each color bit plane.

Another concept used by the filled shape routines is the
clipping rectangle. When you set up a clipping rectangle, spec
ify that drawing operations will only be carried out within a
designated portion of the screen. If you set a clipping rectan
gle that extends from coordinates 0,0 to 150,150, and turn
clipping on, only the part of the filled shape that falls within
this area will actually be drawn.

143

CHAPTER 7

The first of the routines that use a fill pattern is the Hor
izontal Line function ($A004). This function is similar to Arbi
trary Line, except it is only used when Y1 and Y2 are the
same. It is a bit faster in execution than Arbitrary Line. The
input variables required for this function are shown in Table
7-1.
Table 7-1. Input Variables for Horizontal Line Function
Offset Name Offset Description
COLBITO $18 Bit value for color plane 0
COLBIT1 $1A Bit value for color plane 1
COLBIT2 $1C Bit value for color plane 2
COLBIT3 $1E Bit value for color plane 3
WMODE $24 Writing mode
XI $26 Starting x coordinate
Y1 $28 Starting (and ending) y coordinate
X2 $2A Ending x coordinate
PATPTR $2E Pointer to fill pattern array
PATMSK $32 Pattern index (length - 1)
MFILL $34 Multicolor fill pattern flag (zero = single

plane, nonzero = multi-plane)

The first seven of these variables should be familiar from
the Arbitrary Line function, above. The last three, however,
pertain to the fill pattern. PATPTR contains a pointer to the
array of line masks that form the fill pattern mask. PATMSK
is used as an index into the pattern array and should contain
the length of the array (in words), minus one. MFILL is a
flag that indicates whether the pattern contains a single color
plane, or multiple bit planes. A zero indicates a single bit
plane, in which case WMODE as well as the COLBIT vari
ables determine the pattern color. A nonzero value indicates
a multiplane fill, which replaces the destination bitplanes
without regard for WMODE.

The next filled shape function is Filled Rectangle
($A005). This function draws a series of filled horizontal lines
of equal length. The input values it requires are shown in Ta
ble 7-2.
Table 7-2. Input Values for Filled Rectangle Function
Offset Name Offset Description
COLBITO $18 Bit value for color plane 0
COLBIT1 $1A Bit value for color plane 1
COLBIT2 $1C Bit value for color plane 2
COLBIT3 $1E Bit value for color plane 3

144

Line A Routines

Table 7-2. Input Values for Filled Rectangle Function (continued)
Offset Name Offset Description
WMODE $24 Writing mode
XI $26 Starting x coordinate
Yl $28 Starting y coordinate
X2 $2A Ending x coordinate
Y2 $2C Ending y coordinate
PATPTR $2E Pointer to fill pattern array
PATMSK $32 Pattern index (length - 1)
MFILL $34 Multi-color fill pattern flag (zero = single

plane, nonzero = multiplane)
CLIP $36 Clipping flag (zero = off, nonzero = on)
XMINCL $38 Coordinate of left side of clip rectangle
YMINCL $3A Coordinate of top of clip rectangle
XMAXCL $3C Coordinate of right side of clip rectangle
YMAXCL $3E Coordinate of bottom of clip rectangle

These inputs are the same for Horizontal Line, with the
addition of the clipping rectangle variables. XMINCL,
YMINCL, XMAXCL, and YMAXCL are used to designate the
borders of the clipping rectangle. The CLIP variable is used
to indicate whether the clipping actually takes place. If CLIP
is set to 0, clipping is turned off, and the rectangle desig
nated by the other four variables is ignored. If CLIP is not 0,
clipping is turned on, and only the portion of the filled rec
tangle that lies within the clipping rectangle will be drawn.

A similar call to Filled Rectangle is Filled Polygon
($A006). Instead of drawing a filled box, this call draws a
filled shape with an arbitrary number of sides. It does this by
drawing a series of filled horizontal lines of unequal size.
The input values used by Filled Polygon are shown in Table
7-3.

Table 7-3. Input Values Used by Filled Polygon
Description

Pointer to a word array. The second
member of the array, CONTRL[l], contains
the number of polygon vertices
Pointer to a word array. This array
contains polygon vertex pairs in the format
(xl, yl), (x2, y2), and so on.
Bit value for color plane 0
Bit value for color plane 1
Bit value for color plane 2

Offset Name Offset
CONTRL $04

PTSIN $0C

COLBITO $18
COLBIT1 $1A
COLBIT2 $1C

145

CHAPTER 7

Table 7*3. Input Values Used by Filled Polygon (continued)
Offset Name Offset Description
COLBIT3 $1E Bit value for color plane 3
WMODE $24 Writing mode
Y1 $28 y coordinate of horizontal line segment(s)

to draw
PATPTR $2E Pointer to fill pattern array
PATMSK $32 Pattern index (length-1)
MFILL $34 Multicolor fill pattern flag (zero = single

plane, nonzero = multiplane)
CLIP $36 Clipping flag (0 = off, nonzero = on)
XMINCL $38 Coordinate of left side of clip rectangle
YMINCL $3A Coordinate of top of clip rectangle
XMAXCL $3C Coordinate of right side of clip rectangle
YMAXCL $3E Coordinate of bottom of clip rectangle *

This function draws a filled shape that can have any
number of vertices. The x and y coordinate pairs are placed
into an array and a pointer to that array is placed in the
PTSIN variable. Since these points must describe a closed fig
ure, the last point must be the same as the first one. The to
tal number of points in the figure must be placed in the sec
ond word of an array and a pointer to this array must be
placed in the CONTRL variable.

The Filled Polygon function only draws one horizontal
line of the figure at a time. The value in Y1 determines
which line is drawn. To draw the entire filled shape, place
the top line number of the shape in Y1 and call Filled Poly
gon repeatedly, incrementing the value of Y1 after each call
until the bottom line of the figure has been reached. Note
that each call to Filled Polygon changes the value in the line
A variable XI and X2 and destroys the AO register.

The final line A fill routine is called Seed Fill ($A00F).
This function is equivalent to the VDI's Contour Fill function,
which is used to fill an enclosed polygon with the current fill
pattern and color. A polygon can be filled in either of two
modes. In outline mode, the fill spreads from an initial point
in all directions until it comes to an outline of a given color.
In color mode, the fill spreads from the initial point until it
reaches a color other than that of the initial point. The func
tion uses the line A variables for input shown in Table 7-4.

146

Line A Routines

Table 7-4. Line A Variables Used by Seed Fill
Offset Name Offset
CUR__WORK -$64

INTIN

PTSIN

WMODE
PATPTR
PATMSK
MFILL

CLIP

XMINCL
YMINCL
XMAXCL
YMAXCL
SEEDABORT

$0C

$24
$2E
$32
$34

$36

$38
$3A
$3C
$3E
$76

Description
Pointer to the current virtual workstation
variable table. The VDI fill color index is
the 16th member of this word array.
Pointer to a word array that contains the
x and y coordinates of the initial fill point,
in that order
Pointer to a word value that represents
the VDI color index of the polygon
outline. If this value is negative, color
mode is used instead of outline mode.
Writing mode
Pointer to fill pattern array
Pattern index (length - 1)
Multicolor fill pattern flag (zero = single
plane, nonzero = multiplane)
Clipping flag is ignored by this function.
It always clips to the rectangle described
below, whether this variable is set on or
off.
Coordinate of left side of clip rectangle
Coordinate of top of clip rectangle
Coordinate of right side of clip rectangle
Coordinate of bottom of clip rectangle
Pointer to a routine which is called at the
end of each fill line. If this routine returns
a value of zero in register DO, Seed Fill
continues filling the next scan line. If this
routine return a nonzero value in DO,
Seed Fill aborts. At minimum, a pointer
to a routine that moves a zero to DO and
then executes an RTS instruction must be
placed in this variable, or Seed Fill will
crash.

The Seed Fill routine operates quite similarly to its VDI
counterpart. The coordinates for the initial fill point must be
placed in a word array, and a pointer to that array must be
stored in PTSIN. A pointer to a word flag must be placed in
INTIN. If this value is negative, the color fill mode is used. If
it is positive, outline mode is used, and this value is inter
preted as the VDI color index number of the polygon outline.
You should note that VDI color index numbers are not the

147

CHAPTER 7

same as the hardware color registers numbers. The corre
spondence between the two is shown in Table 7-5.

Table 7-5. Correspondence Between Hardware Color Registers and
VDI Color Indices
Color Color
Index Register Default Color

0 0 White
1 15* Black
2 1 Red
3 2 Green
4 4 Blue
5 6 Cyan
6 3 Yellow
7 5 Magenta
8 7 Low White
9 8 Gray

10 9 Light Red
11 10 Light Green
12 12 Light Blue
13 14 Light Cyan
14 11 Light Yellow
15 13 Light Magenta

* Color register 3 in medium resolution (4-color) mode

The fill pattern and writing mode used for fill are deter
mined by the same variables as the other line A fill routines.
The color of the filled object is not specified by the COLBIT
variables, however. The fill color is taken from the current
VDI virtual screen workstation. If you haven't opened a VDI
workstation, however, you can still use the Seed Fill function
by creating a dummy virtual workstation variable table. This
is just an array of 16 words, the last of which contains the
VDI color index of the fill color. A pointer to this array must
be stored in the CUR__WORK variable.

There are two final points to note about the Seed Fill
routine. This routine always evaluates the XMINCL,
YMINCL, XMAXCL and YMAXCL variables, whether or not
you've set CLIP on. Therefore, make sure your clipping rec
tangle is set correctly before making this call. Secondly, this
function calls a user-defined subroutine after each horizontal
line has been filled. Since a complex fill can be a lengthy pro
cess, this hook was added to allow the programmer to abort
the Seed Fill function before it finishes. If the subroutine re

148

Line A Routines

turns a zero in register DO, Seed Fill keeps going, but if it
returns a nonzero value, Seed Fill aborts. Since Seed Fill will
JSR through the SEED ABORT vector at the end of each scan
line, you must place a pointer to subroutine in this vector, or
Seed Fill will bomb after the first line. At a minimum, this
subroutine should clear register DO and execute an RTS in
struction.

Program 7-3 demonstrates all four of the line A filled
shape functions.

Program 7-3. FILLDRAW.S

* FILLDRAW.S — Demonstrates the use of the line A *
* filled shape functions. ** * **

*** variable table offsets
CUR_WORK = -464
CONTRL = $04
INTIN = $08
PTSIN = $0C
COLBITO = $18
COLBIT1 = $1A
C0LBIT2 = $1C
COLBIT3 = $1ELNMASK = $22
WMODE = $24
XI = $26
Y1 = $28
X2 = $2A
V5 s
PATPTR = $2E
PATMSK = $32
MFILL = $34
CLIP = $36
XMINCL = $38
YMINCL = $3A
XMAXCL = $3C
YMAXCL = $3E SEEDABORT = $76

*** Function Equates
Init = $a000
Aline = $a003
Hline = $a004
RectFill = $a005
PolyFill = $a006
SeedFill = $a00f
*** program starts here
.textdc.w Init *

move.1 a0,a5 *
*

move.w #0,COLBITO(a5) *
move.w #1,COLBIT1(a5) *
move.w #0,COLBIT2(a5) *
move.w #0,COLBIT3(a5) *
move.w #0,WMODE(a5) *
move.1 #love,PATPTR(a5) *
move.w #15,PATMSK(a5) *
move.w #0,MFILL(a5) *
move.w #l,CLIP(a5) *
move.w #0,XMINCL(a5) *

get base address of variable table
save base address...
because PolyFill destroys AO
color bits set to register 0010
or color 2 (green)
replace mode
set fill pattern
and length of fill pattern
multiplane fill off
clipping on
set clip rectangle..

149

CHAPTER 7

move.w #$d0,XMAXCL(a5)
move.w # 0,YMINCL (a5)
move.w #$bO,YMAXCL(a5)

* to (0,0)-($d0.$b0)

*** draw filled box with Horizontal line function
move.1 #$00800030,Xl(a5)
move.w #$0120,X2(a5)
move.w #31,d4

nextline:
dc.w Hline
addq.w #l,Yl(a5)
dbra d4,nextline

* xl=$80, yl=$30
* x2=$120
* draw 32 horiz. lines

* draw a line
* go down one line
* if not done, draw next

*** draw a box using Rectangle Fill function
move.w
move.w
move. w
move.w

#1,COLBITO(a5)
#l,COLBITl(a5)
#l,COLBIT2(a5)
#l,COLBIT3(a5)

move.w #3,WMODE(a5)
move.l #$00200020,XI(a5)
move.l #$00600060,X2(a5)
dc.w RectFill

*** Polygon fill
move.w #0,WMODE(a5)
move.l #pat2,PATPTR(a5)
move.w #0,PATMSK(a5)
move.l #points,PTSIN(a5)
move.l #length,CONTRL(a5)
move.w
move.w

fillnext:
dc.w
addq
dbra

#$70,Yl(a5)
#$50,d4
PolyFill
#l,Yl(a5)
d4, fillnext

1 in all color bits
= 1111
or color 15 (black)

reverse transparent mode
xl=$20, yl=$20
x2—$60, y2=$60
draw a filled box

draw with replace mode
set solid fill pattern
1 word long
addr of points array to PTSIN
number of line segments to CONTRL
1st (top) line to draw in Yl
draw 80 lines
fill one horizontal line
?o to next line f not done, fill it too

*** draw triangle outline with Arbitrary, line function
move.w #$FFFF,LNMASK(a5) * solid line
move.w #OfWMODE(a5) * replace mode
move.w #2,d3 * draw 6 lines
move.1 #pointsl,a3 * get address of array

drawnext:
move.1 (a3)+,Xl(a5) * starting x & y
move.1 (a3),X2(a5) * ending x & y
dc.w Aline * draw the line
dbra d3,drawnext * if not done, draw next line

*** do a contour fill of the triangle in outline mode
move.1 move.w
move.1 move.1 move.l move.1
dc.w

#love,PATPTR(a5)#15,PATMSK(a5)
#vwork,CUR_W0RK(a5) #fillpt,PTSIN(a5) #fillcol,INTIN(a5) #NoAbort,SEEDABORT(a5) SeedFill

set old fill pattern
and length of fill pattern
set pointer to fill color
set pointer to fill coordinate
set pointer to outline color
set pointer to abort routine
fill the triangle

*** do a contour fill of the filled polygon, in color mode
move.l #fillptl,PTSIN(a5)
move.l #fillcoll,INTIN(a5)
dc.w SeedFill

* set new fill coordinate
* set negative fill color
* fill 'er up

*** wait for key press, then end
* call conin() to wait for key pressmove.w

trap
addq.1

#l,-(sp)
#1#2, sp

150

Line A Routines

move.l #0,-(sp) * GEMDOS terminate commandtrap #1 * call GEMDOS and exit

*** SEEDABORT must point to this subroutine BEFORE *** you can use the SeedFill function
NoAbort:move.l #0,d0 * return FALSErts * and let SeedFill do the next line
*** Data for input is stored here ■ data
*** fill pattern in the shape of the word "LOVE"
love: dc.w $0000, $3078, $30CC, $30CC

dc.w $30CC, $30CC, $3E78, $0000dc.w $66FC, $66C0, $66C0, $32F8dc.w $1EC0, $0EC0, $06FC, $0000
*** Solid fill pattern
pat2: dc.w $FFFF
*** Vertices for polygon fill, and number of vertices
points: dc.w $70, $70, $F0, $C0, $10, $90, $70, $70length dc.w 0,3
*** Vertices for line draw
pointsl: dc.w $80, $60, $120, $60, $120, $C0, $80, $60
* * * Fill coordinates and color for outline mode fill *** Note that the color is VDI color index, not the *** color register number.
fillpt: dc.w $90, $64fillcol: dc.w 1
*** Fill coordinates and color for color mode fill
fillptl: dc.w $70, $72fillcoll: dc.w -1
* * * If you haven't opened a GEM Virtual Workstation,*** you must point CUR_W0RK here before using SeedFill.*** Since SeedFill takes the fill color from the current *** Virtual Workstation, you must supply a dummy one *** with the fill color in the 16th word.
vwork dc.w 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

.end

Bit Block Transfer Operations
Among the most complex and powerful of the line A func
tions are those that perform bit block transfer operations,
known more commonly as bit blitting. These functions allow
you to combine source bitplanes with destination bitplanes,
using a number of different logic operations. Their main use
is moving graphics objects around on the screen quickly.

The main line A bit blitting function is called BitBlt
($A007). This function requires so many input values that the
programmer must place them in their own 76-byte parameter

151

CHAPTER 7

Offset
00-01
02-03
04-05
06-07

14-15
16-17
18-21
22-23

28-29
30-31
32-35
36-37

Name
B_WD
B_HT
PLANE_CT
FG_COL

08-09 BG_COL

10-13 OP__TAB

S_XMIN
S_YMIN
S_FORM
S_NXWD

block and put the address of this block in the A6 register be
fore making the call. The format of the BitBlt parameter block
is shown in Table 7-6.
Table 7-6. The Format of the BitBlt Parameter Block

Description
Block width (in pixels)
Block height (in pixels)
Number of consecutive bit planes
Foreground color (bit 1 of logic op
index)
Background color (bit 1 of logic op
index)
Logic ops for all four combinations of
foreground and background
Left position of source rectangle
Top position of source rectangle
Base address of source image
Offset to next word in source line (in
bytes)
Offset to next line in source plane (in
bytes)
Offset from start of current source
plane to next source plane (in bytes)
(this value is 2 for ST screen images)
Left position of destination rectangle
Top position of destination rectangle
Base address of destination image
Offset to next word in destination line
(in bytes)
Offset to next line in destination plane
(in bytes)
Offset from start of current destination
plane to next destination plane (in
bytes) (this value is 2 for ST screen
images)
Address of pattern image data buffer (0
= no pattern)

Offset to next line in pattern (in bytes)
Offset to next plane in pattern (in
bytes)
Pattern index mask
A buffer the blit operations require for
temporary storage. This space must be
reserved, or the memory which follows
the parameter block will be mangled.

24-25 S_NXLN

26-27 S_NXPL

D_XMIN
D_YMIN
D__FORM
D_NXWD

38-39 D__ NXLN

40-41 D__ NXPL

42-45 P__ ADDR

46-47 P__ NXLN
48-49 P__ NXPL

50-51 P__ MASK
52-75 SPACE

152

Line A Routines

BitBlt takes a bit image from one memory area and com
bines it with a bit image in another memory area, according
to the logic operation selected. The source and destination
image rectangles are the same size. The width of this block
(in pixels) is stored in B__WD, and its height is stored in B__
HT, while the number of bit planes is passed in PLANE__CT
(this value may be changed by the BitBlt call). The starting
address of the source image block goes into S__FORM, while
the starting address of the destination image block is placed
in D__FORM. These image blocks must start on word boun
daries.

The x and y offsets of the source image are passed in S__
XMIN and S__YMIN, while the corresponding destination
offsets are stored in D__XMIN and D__YMIN. These images
may overlap one another without harm, but bear in mind
that there is no clipping or boundary checking performed;
it's up to you to make sure that the blit stays within the im
age memory block.

Two other values concerning the image block must also
be passed. The S__NXWD and D__NXWD variables should
contain the number of bytes between data words that belong
to the same bit plane. For image blocks in ST screen mem
ory, this value is 2 for the high resolution screen, 4 for me
dium resolution, and 8 for low resolution. S__NXLN and D__
NXLN should contain the width of each line in the image
block in bytes.

If the entire screen is used, this width is 80 bytes for the
monochrome screen and 160 bytes for each of the color
screens. S__NXPL and D__NXPL should contain byte offsets
from a word in one bit plane to a word in the next bit plane.
Because of the way the ST screen memory is interleaved, this
value is 2 for all ST screen resolution modes.

The way source and definition blocks are combined is
determined by the raster operation code (opcode) selected.
There are 16 possible logic operations. These are shown in
Table 7-7.
Table 7-7. The 16 Possible Logic Operations for Combining Source
and Definition Blocks
Opcode Logic Operation* Description

0 D1 = 0 Clear destination block
1 D1 = S AND D
2 D1 = S AND (NOT D)

153

CHAPTER 7

Table 7-7. The 16 Possible Logic Operations for Combining Source
and Definition Blocks (continued)
Opcode Logic Operation*

3 D1 = S
4 D1 = (NOT S) AND D
5 D1 = D
6 D1 = S XOR D
7 D1 = S OR D
8 D1 = NOT (S OR D)
9 D1 = NOT (S XOR D)

10 D1 = NOT D
11 D1 = S OR (NOT D)
12 D1 = NOT S
13 D1 = (NOT S) OR D
14 D1 = NOR (S AND D)
15 D1 = 1

S is the source image, D is the destination
after the operation.

Description
Replace mode
Erase mode
Destination unchanged
XOR mode
Transparent mode

Reverse transparent mode

Fill destination block
image, and D1 is the destination image

The BitBlt function allows you to choose a separate logic
operation for each bit plane. Up to four opcodes, one byte
each in length, may be stored in the OP__TAB variable. The
opcode to select for a particular plane is determined by the
bit value of FG__COL and BG__COL for that plane. BG__
COL holds bit 0 of the opcode selection, and FG__COL holds
bit 1. Let's say, for example, you've selected a FG__COL of 5
and a BG__COL of 6. The binary equivalents are
FG = 0101
BG = 0110

In this example, plane 0 will use the opcode stored in
byte 2 of OP_TAB, since bit 0 of FG is 1 and bit 0 of BG is 0
(10 binary = 2). Plane 1 will use the opcode stored in byte 1
of OP__TAB, plane 2 will use the opcode stored in byte 3,
and plane 3 will use the opcode stored in byte 0 of
OP__TAB.

Logic operations can be confusing, particularly when
they involve multiple bit planes. If you wish to transfer a sin
gle-plane source image to a multiplane destination, set
S__NXPL to 0, so the same source will be moved to all desti
nations. To use FG__COL and BG__COL to represent actual
foreground and background colors (replace mode), set OP__
TAB to $F740. If you want the destination to use FG__COL

154

Line A Routines

for the foreground color with a transparent background color
(transparent mode), set OP__TAB to $7744. Note that FG__
COL and BG__COL may be changed by the BitBlt call.

The BitBlt function also allows the use of fill patterns,
which are ANDed with the source prior to the logic opera
tion. Patterns are snapped to an imaginary grid that starts at
the upper left corner of the destination image block. They are
16 bits wide and repeat every 16 pixels, horizontally. Their
height must be an even power of 2, (1 line, 2 lines, 4 lines,
16 lines, and so on), and they repeat at a frequency equal to
their height. The variable P__ADDR points to the beginning
of the pattern image data block. If it is set to 0, no pattern is
used. P__NXLN is the distance between consecutive words
in the pattern (in bytes) and should be a power of 2. P__
NXPL is the distance (in bytes) between pattern bit planes. If
a single-plane pattern is used for a multiplane destination, it
should be set to 0, so the same pattern will be used for all bit
planes. Finally, P__MASK is used to specify the length of the
pattern. It is used in conjunction with the value in P_
NXLN, which must be an even power of 2. P__
MASK = (pattern length in words - 1) < < n, where P__
NXLN = Tn. Since P__NXLN will be 2 if the pattern data is
consecutive, n will equal 1, and P__MASK will just be the
pattern length in words - 1.

Program 7-4 shows how to blit a simple image on to the
screen:

Program 7-4. BITBLTS.S
**
* *

* BITBLT.S — Demonstrates the use of the line A ** BitBlt ($A007) function. *
* *
* *
* *

*** Function Equates Init = $a000 BitBlit = $a007
*** Program starts here
• text
*** find screen address

raove.w #2,-(sp)trap #14addq #2,sp
move.l d o ,screen

* use XBIOS call #2* to get screen address* clean stack* put screen address in blit block

155

CHAPTER 7

* * * adjust blit param<
dc.w Init
move.w (aO),d0
cmp. w #l,d0
bne skipmove.w #$50,nxln

skip:
lsl.w #l,d0
move.w do,nxwd

*** do the blit
lea blit,a6
dc.w BitBlit

init line A
?et number of bit planes s it monochrome?
no, leave screen width alone
yes, change screen width value
bit planes *2
= value to place in nxwd

* address of parameter table in a6
* do Bit Blit

*** wait for key press, then end
* call conin() to wait for key pressmove.w #l,-(sp)

trap #1
addg.l #2 ,sp
move .1
trap

#0 ,-(sp)
#1

GEMDOS terminate command
call GEMDOS and exit

*** Data for input is stored here
.data
blit:

screen:
nxwd:
nxln:

space:

alien:

dc.w
dc.w
dc.w
dc.w
dc.w
dc.l
dc.w
dc.w
dc.l
dc.w
dc.w
dc.w
dc.w
dc.w
dc.l
dc.w
dc.w
dc.w
dc. 1
dc.w
dc.w
dc.w

dc.w
dc.w
dc.w

dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.wdc.w

$0020
$0017
$0001
$0001
$0000
$07070707
$0000
$0000
alien
$0002
$0004
$0002

$0080
$0080
$00000000
$0008
$00a0
$0002
$00000000$0000
$0000
$0000

width of source image in pixels
height of source image in pixels
number of planes to blit
fg color (bit 1 of logic op index)
bg color (bit 0 of logic op index)
logic ops
source x
source y
base address of source image
byte offset to next word of source
source width = 4 bytes
source plane offset
destination x
destination y
screen address goes
byte offset to next
2 for hi, 4 for med,
byte offset to next
$50 for hi, $a0 for
byte offset to next
addr of pattern buf
byte offset to next
byte offset to next
pattern index mask

here
word in line

8 for lo
line in planes
med and lo
plane (always 2)
(0=no pattern)
line in pattern
plane in pattern

* you must reserve 24 bytes here
$0000 , $0000 , $ 0000 , $0000$0000 , $0000 , $0000 , $0000
$ 0000 , $ 0000 , $ 0000 , $0000

* image data for space creature
$0030, $0C00, $001C, $3800
$0006, $6000, $0006, $6000
$001F, $F800, $003F, $FC00
$C0FF, $FF03, $C0FF, $FF03
$E3E3, $C7C7, $7FEB, $D7FE
$3FE7, $CFFC, $03FF, $FFC0
$03FF, $FFC0, $00F8, $1F00
$00FC, $3F00, $00FF, $FF00
$0077, $EE00, $0030, $0C00
$0030, $0C00, $0030, $0C00
$0060, $0600, $00C0, $0300$0380, $01C0

.end

156

Line A Routines

The Copy Raster function ($A00E) does much the same
thing as BitBlt, but in a format compatible with the Copy
Raster Opaque and Copy Raster Transparent functions of the
VDI. Copy Opaque is used where the source and destination
have the same number of bit planes, while Copy Transparent
is used to combine a single-plane source with a multiplane
destination. The inputs for Copy Raster are the same ones
used by their VDI counterparts. For both modes, set up
word arrays known as a Memory Form Definition Blocks
(MFDBs), and place the addresses of these arrays in another
array, whose address is placed in CONTRL (offset 4 from the
line A variable table base address). Bytes 14-17 of the
CONTRL array hold the address of the source MFDB, while
bytes 18-21 of the array hold the address of the destination
MFDB. The composition of these 20-byte data blocks is
shown in Table 7-8.
Table 7-8. Composition of Memory Form Definition Blocks (MFDBs)
Byte Offset Contents

00-03 Pointer to image data storage block
04-05 Raster image width in pixels
06-07 Raster image height in lines
08-09 Raster image width in words
10-11 Image format flag

0 = ST specific format (must be used)
1 = Standard GEM format

12-13 Number of color bit planes
14-15 Reserved for future use
16-17 Reserved for future use
18-19 Reserved for future use

For both modes, you must also specify the top-left and
bottom-right coordinates of both the source and destination
rectangles. Do this by creating an array of eight words. The
first four words contain the x and y coordinates for the
source rectangle (SX1, SY1, SX2, SY2), while the last four
contain the coordinates for the destination rectangle (DX1,
DY1, DX2, DY2).

By storing a value in the line A variable COPYTRAN
(offset 116), you may select either the Copy Opaque or Copy
Transparent mode. A value of 0 selects the opaque mode and
any other value chooses transparent mode. For either mode,
you must set up a 16-bit word that contains a logic operation
value and put a pointer to that word in the line A variable

157

CHAPTER 7

INTIN. For opaque copies, the logic opcode is a number
from 0-15 which corresponds exactly to the BitBlt opcodes.
Transparent copies use a logic mode number from 0-3,
which corresponds to the writing modes available from the
VDI. In transparent mode, the foreground color for the copy
is taken from the second word in the INTIN array, and the
background color from the third word in that array. For more
information on the VDI bit-blit routines, see Chapter 6 of
COMPUTEl's Technical Reference Guide, Atari ST Volume One:
The VDI.

Mouse and Sprite Operations
The line A sprite and mouse pointer routines are specialized
cases of the bit blit functions. On the ST, the system must
frequently move small graphics objects such as the mouse
pointer around on the screen. To make this easier, without
getting involved in all of the complexities of the BitBlt func
tion, line A provides support for software sprites. These are
graphics objects that are 16 pixels wide by 16 lines high.

Each sprite has two components, the actual image data,
and a mask. The mask is blitted onto the destination screen
first, which allows you to “scoop out" a part of that destina
tion and change it to the background color before laying
down the sprite image. This allows you to decide whether
the 0 bits in the 16 x 16 image block are transparent (leave
the existing destination image intact) or opaque (replace the
existing destination image with the pointer background
color). Therefore, any portion of the pointer may be one of
three colors: foreground color, background color, or transpar
ent.

A sprite also has an attribute known as the hot spot. This
is the single point considered to be the sprite's location on
the screen, even though the sprite may be much larger than
a single point. This hot spot is expressed as an offset (in pix
els) from the top left corner of the sprite.

Before the sprite is drawn on the screen, the image that
occupies the space on the screen is moved to a buffer area
known as the sprite save block. When the sprite is undrawn,
the image is moved back from that buffer to the screen. If
you are using multiple sprites, you must remember to un
draw them in the reverse order of drawing, since any portion
of a sprite that is covered by another sprite ends up in the

158

Line A Routines

second sprites save block. It's also a good idea to use the
XBIOS Vsync() function before drawing sprites to avoid
drawing them in the middle of a screen refresh.

The Draw Sprite function ($A00D) is used to draw a soft
ware sprite on the screen. Its inputs are all passed directly in
address and data registers. These input parameters are
shown in Table 7-9.
Table 7-9. Input Parameters for Draw Sprite Function
Register Contents

DO Horizontal sprite position
D1 Vertical sprite position
AO Pointer to sprite definition block
A2 Pointer to sprite save block

The sprite save block is the buffer used to save the un
derlying screen image. Its size must be 64 bytes per bit
plane, plus 10 bytes. This means that for the high resolution
screen, the save block must be 74 bytes long, while the me
dium and low resolution screens require 138 and 266 bytes,
respectively. The sprite definition block contains 37 words of
data concerning the sprite. The layout of this array is shown
in Table 7-10.
Table 7-10. Layout of Sprite Definition Block
Byte Number Description

00-01 x offset of hot spot
02-03 y offset of hot spot
04-05 Drawing format flag (1 = VDI mode, -1 = XOR

mode) The different colors produce by various
combinations of image and mask bits for both
modes are shown below:

Image Mask VDI mode color
0 0 Transparent
0 1 Background
1 0 Foreground
1 1 Foreground

06-07 Color register for background color
08-09 Color register for foreground color
10-73 Thirty-two words of sprite image and mask data.

Sprites interleave this data, so that the first two
words contain the mask data and image data for
line 0 of the sprite, the next two words contain the
mask data and image data for line 1, and so on

To move a sprite, you must undraw it, and then draw it
in a new position. The Undraw Sprite function ($A00C) is

XOR mode color
Transparent
Background
XOR destination
Foreground

159

CHAPTER 7

used to remove the sprite and restore the background. The
only parameter it requires is a pointer to the save block,
which is passed in register A2.

The mouse pointer is a special type of sprite that the op
erating system automatically moves in response to movement
of the mouse. Line A routines allow you to hide the mouse
pointer (terminate its display), show the mouse pointer (dis
play it), or transform the pointer (change its shape). The
Hide Mouse function ($A00A) requires no inputs. When you
call Hide Mouse, the mouse pointer is turned off. To make it
reappear, you must call Show Mouse ($A009). If Hide Mouse
has been called more than once, you must call Show Mouse
an equal number of times before the mouse pointer is dis
played. The depth at which the mouse pointer is hidden is
stored in the line A variable HIDE__CNT (offset -598). This
variable holds the number of times the mouse has been hid
den, or a 0 if the mouse is currently being displayed. If you
wish to display the pointer regardless of how many times it
has been hidden, you may set a pointer to a 16-bit 0 value in
the INTIN variable (offset 8) before calling Show Mouse.

The final line A mouse function is Transform Mouse
($A00B). This function allows you to change the shape of the
mouse pointer. As input, it requires that the address of a
mouse pointer definition block be placed in INTIN. This
mouse pointer definition block is almost exactly the same as
the sprite definition block used for Draw Spite, above. The
mouse pointer must be drawn using VDI mode, however. In
addition, the image data and mask data are handled differ
ently. Instead of being interleaved as in the case of sprites,
these data planes are kept separate for the mouse pointer.
Bytes 10-41 of the data block contain 16 consecutive words of
mask data, while bytes 42-73 contain 16 consecutive words
of image data.

There are several line A variable locations which may as
sist in dealing with the mouse pointer. The current mouse
pointer definition is stored in sprite format starting at M__
POS__HX (offset -856). You may save this data before
changing the mouse shape, so you can restore it later. The
variable MOUSE__FLAG (offset —153) determines whether
the mouse interrupt processing is enabled. By changing this
value to 0, you may disable mouse cursor updates while
changing its shape (though you should restore it to its origi-

160

Line A Routines

nal value afterwards). The current x and y positions of the
mouse pointer are stored in GCURX (offset — 602) and
GCURY (offset —600). The mouse button status is contained
in MOUSE__BT (-596). Bit 0 covers the left button status,
while bit one covers the right button. A 1 bit indicates that
the button is currently pressed.

Program 7-5 demonstrates the use of both sprites and
the mouse pointer. It copies the pointer arrow shape to a
sprite, and bounces the sprite around the screen until you
press the right mouse button. It also changes the shape of
the mouse pointer to a cross and changes it back when you
press the button.
Program 7-5. MOUSPRIT.S

* *
* MOUSPRIT.S — Demonstrates use of the line A *
* mouse pointer and sprite calls. *
* *★ *

*** Variable table offsets
MOUSE_BT = -596 * offset for mouse button status variable
M_POS_HX = -856 * offset for start of mouse pointer sprite data
INTIN = $08
*** Function Equates
Init = $a000
MShow = $a009
MHide = $a00a
MTrans = $a00b
Undraw = $aOOc
Draw = $a00d
*** Program starts here
.text

dc.w Init * get base address of variable table
move.l a0,a5 * save base address,

* * in case other calls destroy AO
*** save old mouse pointer sprite data
*** both in sprite format, and pointer format
*** (pointers use separate data planes, sprites interleave them)

move.w #4,dO * save 5 words of mouse datalea M_POS_HX(a5),al * get starting address to savelea psave,a2 * start address of pointer save area
lea ssave,a4 * & start address of sprite save area

savhead:
move.w (al),(a4)+ * move 5 word header to both buffersmove.w (al)+,(a2)+ * (header is same for sprites & pointers)dbra do,savhead

move.w #15,dO

dbra

psave+42,a3lea
savdata:

move (al),(a4)+
move.w (al)+,(a2)+
move.w (al),(a4)+move.w (al)+,(a3)+

dO,savdata

* save 32 words of mouse data

* even words in sprite format
* even words in pointer format
* odd words in sprite format
* odd words in pointer format

161

CHAPTER 7

*** Change mouse pointer to cross shape
move.l #mdata,INTIN(a5)
dc.w MHide
dc.w MTrans
move.l #mdata+ 6,INTIN(a 5)
dc.w MShow

* address of mouse data block to INTIN
* hide the pointer
* change its shape
* make mouse show unconditional
* and show the mouse pointer

*** determine x and
move.w #304,d6
move.w #184,d7
move.w (a5),d0cmp.w #4,dobeg narrow
add d6,d6

narrow:
cmp #l,d0
bne short
add d7,d7

short:
*** set up sprite move

move.w d6 ,d0
asr.w #l,d0
move.w d0,a3
move.w #l,d4
move.w d4,d5
move.w d4,a4

sprite:
move.w a3 , do
move.w a4,dl
add.w d4, dO
beq xchange
cmp d6,d0
bcs no_xchange

xchange:
eori.w #$FFFE,d4

no_xchange:
add.w d5,dl
beq ychange
cmp d7,dl
bcs no_ychange

ychange:
eori.w #$FFFE,d5

no_ychange:
move.w d0,a3
move.w dl,a4
move.w #37,-(sp)
trap #14
addq . 1 #2 , sp
lea savebuf,a2
dc.w Undraw
lea savebuf,a2
lea ssave,aO
move.w a3 ,d0
move.w a4 ,dl
dc.w Draw

screen limits
* right edge - pointer width
* bottom edge - pointer height
* find number of bit planes in display* is it low-res?
* yes, keep right limit
* no, double screen width
* is it high res?
* no, keep bottom limit
* yes, double screen height

initial x position = right limit
divided by 2 .
save x position
initial x increment = l
initial y increment = l
initial y position = 1

get x position
get y position
increment x position
if at left, change directions
at right edge?
no, keep going
yes, change direction
increment y position
if at top, change directions
at bottom?
no, keep going
yes, change direction
save x position
save y position
wait for end of vertical blank

* use save buffer pointer,
* erase the current sprite
* use save buffer pointer,
* use the old mouse pointer shape
* get x position
* y position
* and draw sprite in new position

*** wait for mouse button press
move.w M0USE_BT(a5),d3
btst #1,d3
beg sprite

*** When right mouse button is pressed,*** restore mouse pointer to original shape

* check button status
* is right button down?
* no, move sprite

move.l #psave,INTIN(a5)
dc.w MHide
dc.w MTrans
dc.w MShow

* address of saved mouse data to INTIN

162

Line A Routines

*** And wait for mouse button release
wait:

move.w M0USE_BT(a5),d3
btst #l,d3
bne wait

*** end program
move.l #0,-(sp) * GEMDOS terminate command
trap #1 * call GEMDOS and exit

*** Data for input is stored here
.data
*** mouse pointer data

dc. w 8 ,8,1 ,0 , 2
dc.w $OFFO, $0FF0, $0FF0, $FFFE
dc.w $FFFE, $FFFE, $FEFE, $FC7E
dc.w $FEFE, $FFFE, $FFFE, $FFFE
dc.w $OFFO, $0FF0, $0FF0, $0000

dc.w $0 0 0 0, $0 0 0 0, $0380, $0380
dc.w $0380, $3FF8, $3EF8, $3C78
dc.w $3EF8, $3FF8, $0380, $0380
dc.w $0380, $0 0 0 0, $0 0 0 0, $0000

*** storage for old mouse data and sprite save area
.bss
psave:

ds.w 37
ssave: ds.w 37
savebuf: ds.w 133 * enough for 4 bit planes

.end

If you position the mouse pointer over the sprite while
it's moving, a bit of residue will be left on the screen. That's
because part of the pointer is saved to the sprite's save block,
and restored when the sprite moves on. To avoid this prob
lem, try hiding the mouse pointer before undrawing the
sprite, and showing it again after drawing the sprite.

Text
Since text characters on the ST are really drawn on the
graphic screen, dot by dot, text rendering turns out to be an
other special case of bit blitting. The function used to copy a
single text character to the screen is called TextBlt ($A008).
Because there are many variations on text printing on the ST,
TextBlt uses a lot of input variables. The primary line A vari
ables that influence text printing are shown in Table 7-11.

163

CHAPTER 7

Table 7-11.
Printing

Variable
Name

WMODE

CLIP
XMINCL
XMAXCL
YMINCL
YMAXCL
XDDA

DDAINC

The Primary Line A Variables That Influence Text

SCALDIR
MONO

SOURCEX

SOURCEY

DESTX
DESTY
DELX
DELY
FBASE
FWIDTH

STYLE

Offset
$24

$36
$38
$3A
$3C
$3E
$40

$42

$44
$46

$48

$4A

$4C
$4E
$50
$52
$54
$58

$5A

LITEMASK $5C

Description
Writing mode (0-3 = VDI modes,
4-19 = BitBlt modes)
Clipping flag (0 = off, 1 = on)
Left edge of clip rectangle
Right edge of clip rectangle
Top of clip rectangle
Bottom of clip rectangle
Accumulator for text scaling. Should be set
to $8000 each time you do a TextBlt that
requires scaling.
Scaling increment. For scaling up,
DDAINC = 256 * Size2 - Sizel) / Sizel.
For scaling down,
DDAINC, = 256 * (Size2) / Sizel, where
Size 1 is the actual character point size,
and Size 2 is the scaled character size.
Text scaling direction (0 = down, 1 = up)
Monospaced font flag.

0 = font is proportional, or size may
vary due to special effects

1 = font is monospaced, and uses no
special effects other than thickening
(boldface)

x coordinate of character to be printed
within font data table
y coordinate of character to be printed
within font data table
x coordinate of text character on screen
y coordinate of text character on screen
Width of character
Height of character
Pointer to font data table
Font form width (sum of the widths of all
of the characters in the font, in bytes)
Special effects

1 = bold
2 = light
4 = italics
8 = underline

16 = outline
(TextBlt does not do underlining)
Mask used to lighten text (usually $5555)

164

Line A Routines

Table 7-11. The Primary Line A Variables That Influence Text
Printing (continued)

Variable
Name Offset Description

SKEWMASK $5E Mask used to italicize (usually $5555)
WEIGHT $60 Width by which to thicken text for boldface
ROFF $62 Offset above baseline for italicizing
LOFF $64 Offset below baseline for italicizing
SCALE $66 Scaling flag (0 = no scaling)
CHUP $68 Character rotation (0 = no rotation,

900 = 90 degree rotation, and so on)
TEXTFG $6A Text foreground color
SCRTCHP $6C Pointer to first of two contiguous special

effects buffers
SCRPT2 $70 Offset from SCRTCHP to beginning of

second special effects buffer
TEXTBG $72 Text background color

The information you must pass to TextBlt can be broken
down into four general categories:
• Information about the font used to print the character (loca

tion, size, and so on)
• Information about the character to be printed (which char

acter, at what position, what color, and so on)
• Information about special effects
• Information about text scaling

The first thing needed to print text character is the ad
dress of a VDI-style text font. If you wish to use one of the
system fonts, get this information from the line A Initializa
tion call. As stated before, this call returns the address of a
pointer table. This table consists of pointers to the font head
ers for the system fonts.

Currently, there are three system fonts on the ST. The
first entry in the header table is the address of the 6 x 6 sys
tem font header, followed by the address of the headers for
the 8 x 8 system font and the 8 x 16 system font.

The font header is an 87-byte data block of information
about the font. Much of the information which must be
placed in the line A variables for TextBlt may be derived
from the font header. For example, the address of the font's
character image data block must be placed in the line A vari
able FBASE.

This address may be found at an offset of 76 bytes from

165

CHAPTER 7

the beginning of the font header. Likewise, you must place
the number of bytes required to hold the combined widths of
all characters in the font in the variable FWIDTH. This infor
mation may be found in the word that starts at an offset of
80 from the font header. You must also tell TextBlt if the font
is monospaced (all characters have the same width) by plac
ing a 1 in the variable MONO if it's monospaced, and a 0 if
it isn't. This information may be taken from bit 3 of the word
that starts at an offset of 66 from the beginning of the font
header.

If you're using a system font, however, you need not do
this, since all system fonts are normally monospaced. Note,
however, that the MONO flag should not be set if you are
using special effects that may vary the width of the charac
ters. Some of the more useful information found in the
header file is shown in Table 7-12 below. For complete infor
mation on VDI fonts and font headers, see Appendix C of
COMPUTEI's Technical Reference Guide, Atari ST Volume One:
The VDI.
Table 7-12. Information Found in the Font Header

Name Offset Description
first__ade 36 ASCII value of first displayable character in the font
left__offset 54 Number of pixels added to left by special effects
right__offset 56 Number of pixels added to right by special effects
thick__width 58 Number of pixels added to width by thickening (bold)

special effect
lite__mask 62 Mask used for lightening effect
skew__mask 64 Mask used for italicizing
off__table 72 Pointer to text data offset table
data__table 76 Pointer to font data table
form_width 80 Total width of font
form__height 82 Total height of font

When printing a character with TextBlt, you must supply
information about the character to be printed. As with any
blit operation, you must specify the top left corner of the
source and destination rectangles, and the width and height
of the rectangle to blit. The source x coordinate may be
found using the font header's character offset table, a pointer
to which is found at off_table, 72 bytes from the start of the
header.

This table contains each character's offset from the be
ginning of the font data table. By taking the ASCII value of

166

Line A Routines

the character to print, subtracting the ASCII value of the first
printable character in the font (which is also found in the
header), and multiplying by 2, you come up with the begin
ning x offset for the character. SOURCEY is usually set to 0,
indicating that you wish to print the character from the top
line. DESTX and DESTY are set to the x and y screen posi
tion at which you wish the character to be printed.

If you're using the system fonts, text printing will be sig
nificantly faster if characters are printed on byte boundaries,
since the pixels of the text characters won't have to be
shifted. The height of the blit rectangle goes in DELY and
can be taken from the text header offset form__height. To
find the width of the character, you may again use the off__
table value used to find the character's x position. By sub
tracting the x position of the next character from that of the
current character, you can determine the width of the current
character.

Once you've specified the size and position of the source
and destination rectangles, you're ready to specify the blit
mode. TextBlt allows you to use either the VDI blit modes or
the BitBlt modes. A value of 0-3 in WMODE indicates one of
the VDI modes, while a value of 4-19 specifies of the BitBlt
modes. If using the VDI modes, the foreground and back
ground colors for the text are stored in TEXTFG and
TEXTBG. The normal clipping variables may be used to set a
clipping rectangle for TextBlt.

Text characters may be printed out normally, or special
effects may be added to alter their appearance, making them
print out in boldface, italics, lightened, or outlined. Various
bits in the STYLE variable are used to select these effects (see
the input parameter table, above).

If you're using special effects, set aside a scratch buffer
that TextBlt can use to distort the character. This buffer
should be twice as large as the width of the distorted charac
ter. A pointer to the buffer should be placed in SCRTCHP
and the offset to the second half of the buffer placed in
SCRPT2.

Depending on the effect, you may need to set some
other variables as well. For skewing (italics), set SKEWMASK
to the value found in the font header variable SKEWMASK.
Also set LOFF and ROFF from the font header variables
left__offset and right__offset. For thickening (boldface), set

167

CHAPTER 7

WEIGHT from the font header variable thick__width. For
lightening, set LITEMASK to the value found in the font
header at lite__mask. Text can also be rotated in increments
of 90 degrees. If CHUP is set to 0, the text will be printed
normally, but if set to a multiple of 900, the text will be ro
tated 90, 180, or 270 degrees.

The normal appearance of text may also be altered
through font scaling. This allows you to print characters either
larger or smaller than normal. To use font scaling, place a
nonzero value in the SCALE variable. The scaling accumula
tor, XDDA, should be initialized to a value of $8000 before
each call to TextBlt when scaling.

The SCALDIR variable should be set to indicate whether
you are scaling the character up (1) or down (0). Finally, the
fractional amount to scale the character should be stored in
the DDAINC variable. When scaling down, DDAINC should
be set to a value equal to 256 times the scaled size divided by
the actual size of the character. When scaling up, set
DDAINC to 256 times the scaled size minus the actual size,
divided by the actual character size.

Program 7-6 shows how to print a text string with
TextBlt, using the skewing special effect.

Program 7-6. TEXTBLT.S
* *
* it
* TEXTBLT.S — Demonstrates use of the line A *
* text blit routine to print text. ** ** ***

*** line A variable table offsets
WMODE = $24 *
CLIP = $36 *
XMINCL = $38 *
XMAXCL = $3A
YMINCL = $3C
YMAXCL = $3EXDDA = $40 *
DDAINC = $42 *
SCALDIR — $44 *
MONO = $46 *
SOURCEX = $48 *
SOURCEY = $4A *
DESTX = $4C *
DESTY = $4E *
DELX = $50 *
DELY = $52 *
FBASE = $54 *
FWIDTH = $58 *
STYLE —$5A *
LITEMASK = $5C *

Clipping flag (0=off, l=on)

Accumulator for text scaling
Fractional scaling amount
Text scaling direction (0=down)
Monospaced font? (0=no, l=yes)
X coordinate of character within font data table
Y coordinate of character within font data table
X coordinate of text character on screen
Y coordinate of text character on screen Width of character
Height of character
Pointer to font data table
Font form width (width of all characters, in bytes)
Special effects flag (0=bold, 2=light, 4=italics)
Mask used to lighten text (usually $5555)

168

Line A Routines

SKEWMASK £3 $5E *
WEIGHT s $60 *
ROFF = $62 *
LOFF = $64 *
SCALE = $66 *
CHUP = $68 *
TEXTFG - $6A *
SCRTCHP s $6C *
SCRPT2 = $70 *
TEXTBG = $72 *

Mask used to italicize (usually $5555)
Width by which to thicken text for boldface
Offset above baseline for italicizing
Offset below baseline for italicizing
Scaling flag (0=no scaling)
Character rotation (0=no rotation)
Text foreground color
Ptr to 1st of 2 contiguous special effects buffers
Offset to beginning of second buffer
Text background color

*** Font Header offsets
first_ade
left offset
righ€_offset
thick_width
lite_mask
skew~mask
off_table
data_table
form_width
form_height

Init
Textblt

= 36 *
= 54 *
o 56 *
S3 58 *
S 62 *
O 64 *
= 72 *
= 76 *
ss 80 *
= 82 *
Equates

ASCII value of first displayable character
Number of pixels added to left by effects
Number of pixels added to right by effects
Number of pixels added to width by bold effect
Mask used for lightening effect
Mask used for italicizing
pointer to text data offset table
pointer to font data table
total width of font
total height of font

= $a000
= $a008

*** Program starts here
.text

dc.w
move .1

Init
aO, a5

*** Initialize text blit data
move.w #0,WMODE(a5)
move.w #0,CLIP(a5)
move.w #l,TEXTFG(a5)
move.w # 0,TEXTBG(a 5)
move.w #48,DESTX(a5)
move.w #80,DESTY(a5)
move.w #0,SCALE(a5)
move.w #4,STYLE(a5)
move.w #0,MONO(a5)
move.l #buffer,SCRTCHP(a5)
move.w #6,SCRPT2(a5)

*** Initialize font table info

get base address of variable table
save base address...
because Textblt destroys aO

use VDI mode 0 (replace)
Clipping off Foreground color = red
Background color = white
Print starts at 48 horizontal

1 and 80 vertical
No font scaling used
* use skew (italics) special effect
* not monospaced, 'cuz skewed
* ptr to effects scratch bufferl* offset to scratch buffer2

move.l 4(al),a4 * get font header base address
move.l data_table(a4),FBASE(a5) * get font data table address
move.w form_width(a4),FWIDTH(a5) * get font width total
move.w form_height(a4),DELY(a5) * get font height total
move.w left offset(a4),LOFF(a5) * width added to left by effects
move.w right_offset(a4),ROFF(a5) * width added to right by effects
move.w skew mask(a4),SKEWMASK(a5) * get skewing mask
move.w thiclc_width(a4),WEIGHT(a5) * width added by bold effect
move.w lite_mask(a4),LITEMASK(a5) * get lightening mask

*** Print the string
lea. 1 string,a6 *
move. 1 off table(a4),a3 *
clr.l do *
,t_one:
move.b (a6)+,d0 *
beq exit *
sub.w first ade(a4),d0 *
lsl .w #l,d0 *
move.w 0(a3,d0),SOURCEX(a5) *
move.w 2 (a3,d0),dO *
sub.w SOURCEX(a5),d0 *

get string address
and address of x offset table
initialize do
get character from string
if at end, exit
get offset of this letter in font
multiply by 2 for word offset
get x location of this character
x location of next character.,
minus x location of this character

169

CHAPTER 7

move.w dO,DELX(a5) * = width of this character
clr.w SOURCEY(a5) * start at top line of character
dc.w Textblt * print the character
bra blit_one * then do the next one

*** wait for key press, then end
exit:move.w #l,-(sp) * call conin() to wait for key press

trap #1addg.l #2,sp
move.l #0,-(sp) * GEMDOS terminate command
trap «l * call GEMDOS and exit

*** String data is stored here
.data
string: dc.b "I'm feeling a bit skewed today...",0
*** Temporary storage area for special effects buffer
.bss
buffer ds.w 6

.end

170

Appendix A

BIOS Functions

The ST BIOS routines can be called from user
mode, and are reentrant to three levels. They use registers
A0-A2 and D0-D2 as scratch registers, which means that if
you're programming in assembly language, and you're using
these registers to store important information, you must save
their contents before making a BIOS call, and restore them
after the BIOS call. Each of the BIOS routines is associated
with a command number (called an opcode), and, optionally,
command parameters that specify more precisely what it
should do. For example, the BIOS function to output a char
acter to a device is command number 3. It requires two com
mand parameters: One tells the function which character to
print and the other specifies the output device to use.

To call a BIOS function from machine language, you
must push the command parameters onto the stack, followed
by the command number, and execute a TRAP #13 state
ment. The TRAP #13 instruction puts the program into su
pervisor mode, and begins executing the instructions found
at the address stored in exception vector 45, whose address
is 180 ($B4). This exception vector contains the address of the
BIOS handler, which reads the command number on the top
of the stack, and directs program execution to the appropri
ate function. When the function terminates, the program re
turns to user mode, and the results, if any, are returned in
register DO. When a BIOS function call is completed, it's the
responsibility of the calling program to adjust the stack in or
der to remove the command parameters and command num
ber. You should note that the BIOS changes the command
number and return address on the stack.

The following program fragment demonstrates sending
the character X out to the console device using BIOS com
mand number 3:

173

APPENDIX A

move.w # 'X ', — (sp) * push character value on stack
move.w # 2 , — (sp) * push console device number on stack
move.w # 3 , — (sp) * push BIOS command number on stack
trap #13 * call BIOS handler
addq.l #6,sp * pop parameters (6 bytes) off stack

Calling the BIOS routines from C is much simpler. Most
C compilers come with a library routine called bios(), which
stacks the parameters and executes the TRAP #13 instruc
tion. For example, the sample call illustrated above could be
accomplished in C by the single statement
bios(3,2,'X');

Since it's easier to remember a command name than a
command number, most C compilers include a header file
called OSBIND.H that defines macros for all of the BIOS
functions. For example, the macro definition for BIOS com
mand 3 is
#define Bconout(a,b) bios(3,a,b)

Therefore, after you #include OSBINDS.H in your pro
gram, you can call the sample function like this:
Bconout(2,'X');

To use BIOS functions in your C programs, you must
#include OSBIND.H if you use the macros, and you must
link your program with the library that contains the bios()
function.

174

Getmpb

Get Memory Parameter Block
Getmpb() Opcode = 0
T h is ca ll is u s e d b y G E M D O S to in itia liz e th e m e m o r y m a n a g e m e n t s y s
te m . I t c r e a t e s a d a ta s t r u c tu r e th a t c o n t a in s m e m o r y m a n a g m e n t in f o r m a
tio n .

C macro format
lo n g b u ffe r[3 1 ;

g e tm p b (b u f f e r) ;

Machine language format
b u ff e r , - (s p)
0 , - (s p)
1 3

m o v e .l
m o v e .w
tr a p
a d d q .l

Inputs
b u ffe r

6 , s p

lo n g T h e a d d r e s s o f a 1 2 -b y te b u ffe r

Results
b u ffe r [0]
b u f f e r [l]
b u ffe r [2]

lo n g P o in te r to m e m o r y f re e lis t M D
lo n g P o in te r to m e m o r y a l lo c a te d lis t M D
lo n g P o in te r to r o v in g M D

A ll th r e e o f th e s e p o in te r s p o in t to m e m o r y d e s c r i p to r (M D) d a ta
s tr u c tu r e s . T h e c o m p o s it io n o f th e s e s t r u c tu r e s is

lin k lo n g P o in t e r to n e x t M D [N U L L]
s ta r t lo n g P o in t e r to s t a r t a d d r e s s o f th e b lo ck
le n g th lo n g L e n g t h o f th e b lo c k in b y te s
o w n lo n g P o in te r to M D o w n e r 's p r o c e s s d e s c r ip to r

[N U L L]

175

Bconstat

Get Input Device Status
Bconstat() Opcode = 1
T h is f u n c tio n a llo w s y o u to d e t e r m in e w h e t h e r th e r e is a c h a r a c t e r w a itin g
to b e r e c e iv e d f r o m a p a r t i c u la r in p u t d e v ic e . S in c e th e C o n i n () ca ll
d o e s n 't r e tu r n u n til a c h a r a c t e r h a s b e e n r e c e i v e d , B c o n s t a t () c a n b e u s e d
to in s u r e th a t a ca ll to C o n i n () w ill r e tu r n im m e d ia te ly .

C macro format
in t d e v n u m ;
lo n g s ta tu s ;

s ta tu s = B c o n s ta t (d e v n u m) ;

Machine language format
m o v e .w # d e v n u m , - (s p)
m o v e .w # 1 , - (s p)
tr a p # 1 3
a d d q .l # 4 , s p

Inputs
d e v n u m w o r d T h e d e v ic e n u m b e r o f th e in p u t d e v ic e to

c h e c k :
1 = A U X : (R S -2 3 2 p o r t)
2 = C O N : (C o n s o le k e y b o a r d)
3 = M ID I: (M ID I in p u t)

Results
DO s ta tu s lo n g I n p u t s ta tu s o f th e d e v ic e

0 = n o c h a r a c t e r s r e a d y
- 1 = o n e o r m o r e c h a r a c t e r s r e a d y

See also
B c o n i n () , B c o s t a t () , B c o n o u t ()

176

Bconin

Read a Character
Bconin() Opcode = 2
B c o n i n () w a i ts f o r a s in g le c h a r a c t e r to b e c o m e a v a ila b le f ro m o n e o f th e
in p u t d e v ic e s , a n d th e n r e a d s th a t c h a r a c t e r . If a c h a r a c t e r is a v a ila b le a t
th e tim e th e ca ll is m a d e , th is f u n c tio n r e a d s it a n d r e tu r n s im m e d ia te ly .
O t h e r w is e , it w a i ts u n til a c h a r a c t e r is r e c e i v e d .

C macro format
in t d e v n u m ;
lo n g c h a r ;

c h a r = B c o n in (d e v n u m) ;

Machine language format
m o v e .w # d e v n u m , - (s p)
m o v e .w # 2 , - (s p)
tr a p # 1 3
a d d q .l # 4 , s p

Inputs
d e v n u m

Results
DO c h a r

w o r d T h e d e v ic e n u m b e r o f th e in p u t d e v ic e
f ro m w h ic h to r e c e iv e th e c h a r a c t e r :

1 = A U X : (R S -2 3 2 p o r t)
2 = C O N : (C o n s o le k e y b o a r d)
3 = M ID I: (M ID I in p u t)

lo n g T h e A S C II c h a r a c t e r r e c e iv e d f ro m th e d e v ic e is r e
tu r n e d in th e le a s t s ig n if ic a n t b y te o f th e lo n g . F o r th e
c o n s o le d e v ic e , th e le a s t s ig n if ic a n t b y te o f th e h ig h
w o r d c o n ta in s a k e y c o d e th a t s p e c if ie s th e p h y s ic a l
k e y th a t w a s p r e s s e d . S e e A p p e n d ix J fo r a c o m p le te
l is t o f s c a n c o d e s .

See also
K b s h i f t () , B c o n s t a t () , B c o n o u t () , B c o s t a t ()

177

Bconout

Write a Character
Bconout() Opcode = 3
T h is f u n c tio n s e n d s a s in g le c h a r a c t e r to o n e o f th e o u tp u t d e v ic e s . I t
d o e s n 't r e tu r n u n til th e c h a r a c t e r is a c tu a l ly s e n t . T o a v o id s e n d in g a c h a r
a c te r to a d e v ic e th a t is n 't r e a d y to r e c e iv e i t , a n d th u s " h a n g i n g " y o u r
p r o g r a m , y o u c a n f irs t te s t th e s ta tu s o f th e o u tp u t d e v ic e w ith th e B c o s -
t a t () f u n c tio n .

C macro format
in t d e v n u m , c h a r ;

B c o n o u t (d e v n u m ,c h a r) ;

Machine language format
m o v e .w # c h a r , - (s p)
m o v e .w # d e v n u m , - (s p)
m o v e .w # 3 , - (s p)
tr a p # 1 3
a d d q .l # 6 , s p

Inputs
d e v n u m w o r d T h e d e v ic e n u m b e r o f th e o u tp u t d e v ic e

to w h ic h th e c h a r a c t e r is s e n t :
0 = P R N : (P r in te r p o r t)
1 = A U X : (R S -2 3 2 p o r t)
2 = C O N : (C o n s o le s c r e e n)
3 = M ID I: (M ID I o u tp u t)
4 = IK D B : (in te l lig e n t k e y b o a r d c o n

tro lle r)

Results
N o n e

See also
B c o s t a t () , B c o n i n () , B c o n s t a t ()

178

Rwabs

Read/Write Disk Sectors
Rwabs() Opcode = 4
T h is f u n c tio n a l lo w s y o u to r e a d o r w r i te to th e d isk , a s e c t o r a t a t im e .

C macro format
in t m o d e , s e c t o r s , s ta r t , d r iv e n u m ;
lo n g b u ff e r , s ta tu s ;

s ta tu s = R w a b s (m o d e , b u ff e r , s e c t o r s , s ta r t , d r iv e n u m);

Machine
m o v e .w
m o v e .w
m o v e .w
m o v e .l
m o v e .w
m o v e .w
tr a p
a d d q .l

Inputs
d r iv e n u m

s ta r t

s e c to r s
b u ffe r

m o d e

language format
d r i v e n u m , - (s p)
s t a r t , - (s p)
s e c t o r s , - (s p)
b u ff e r , - (s p)
m o d e , - (s p)
4 , - (s p)
1 3
1 4 , s p

w o r d T h e n u m b e r o f th e d r iv e to u s e fo r th e
r e a d o r w r i te o p e r a t io n (0 = d r iv e A : ,
1 = d r iv e B :, a n d s o o n) ,

w o r d T h e s ta r t in g s e c t o r n u m b e r fo r th e t r a n s
fe r

w o r d T h e n u m b e r o f s e c t o r s to b e tr a n s f e r r e d
lo n g A p o in t e r to th e m e m o r y a r e a u s e d a s a

d is k s e c t o r b u ffe r . T h is b u ffe r s h o u ld
s t a r t a t a n e v e n a d d r e s s , a n d s h o u ld h a v e
5 1 2 b y te s a llo c a te d to it f o r e a c h s e c t o r to
b e r e a d o r w r it te n ,

w o r d A f la g th a t in d ic a te s w h e th e r y o u w is h to
r e a d o r w r i te s e c to r s :

0 = R e a d s e c to r s
1 = W r ite s e c t o r s
2 = R e a d s e c t o r s w i th o u t a f fe c tin g m e

d ia c h a n g e s ta tu s
3 = W r ite s e c to r s w i th o u t a f fe c tin g m e

d ia c h a n g e s ta tu s

Results
DO s ta tu s lo n g A n e r r o r c o d e th a t in d ic a te s w h e th e r th e t r a n s f e r w a s

s u c c e s s f u l . A z e r o s ta tu s m e a n s n o e r r o r o c c u r r e d .
O t h e r w is e , a n e g a tiv e G E M D O S e r r o r n u m b e r is r e
tu r n e d . S e e A p p e n d ix D fo r a lis t o f G E M D O S e r r o r
c o d e s .

179

Setexec

Read/Change Exception Vector
Setexec() Opcode = 5
T h is f u n c tio n a llo w s y o u to r e a d o r c h a n g e o n e o f th e 6 8 0 0 0 e x c e p ti o n v e c
to rs .

C macro format
in t v e c n u m ;
lo n g v e c a d d r , o ld a d d r ;
o ld a d d r = S e t e x e c (v e c n u m , v e c a d d r) ;

Machine language format
m o v e .l
m o v e .w
m o v e .w
tr a p
a d d q .l

Inputs
v e c a d d r

v e c n u m

Results
DO o ld a d d r

v e c a d d r , - (s p)
v e c n u m , - (s p)
5 , - (s p)
1 3
8 , s p

lo n g

w o r d

T h e a d d r e s s o f th e n e w e x c e p tio n h a n d le r
r o u t in e to u s e fo r th is v e c to r . A v a lu e o f
- 1 in d ic a te s th a t y o u ju s t w is h to r e a d
th e c u r r e n t v e c to r a d d r e s s .
T h e n u m b e r o f th e v e c to r to r e a d o r
c h a n g e . S in c e e a c h v e c to r is f o u r b y te s
lo n g , th e a d d r e s s = 4 * v e c to r n u m b e r

lo n g T h e a d d r e s s s to r e d in th e v e c to r b e f o r e th e ca ll w a s
m a d e . T h is a d d r e s s s h o u ld b e s a v e d , s o y o u r p r o
g r a m c a n r e s t o r e it b e f o r e te r m in a tin g .

180

Tickcal

Get Timer Calibration
Tickcal() Opcode = 6
T h is ca ll r e tu r n s th e n u m b e r o f m illis e c o n d s b e t w e e n t im e r tick in te r r u p ts .
F o r th e c u r r e n t S T m o d e l s , th is v a lu e is 2 0 m illis e c o n d s .

C macro format
lo n g tick le n ;

tick le n = T i c k c a l ();

Machine language format
m o v e .w # 6 , - (s p)
t r a p # 1 3
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO tick le n lo n g T h e n u m b e r o f m ill is e c o n d s b e t w e e n s y s te m tim e r

u p d a t e s .

181

Getbpb

Get BIOS Parameter Block
Getbpb() Opcode = 7
T h is f u n c tio n r e tu r n s a p o in te r to th e B IO S P a r a m e te r B lo c k , a d a ta s t r u c
tu r e t h a t c o n ta in s in fo rm a tio n a b o u t a d is k 's s iz e a n d la y o u t .

C macro format
in t d r iv e n u m ;
lo n g b lo c k a d d r ;

b lo c k a d d r = G e tb p b (d r iv e n u m);

M a c h i n e l a n g u a g e f o r m a t

m o v e .w # d r i v e n u m , - (s p)
m o v e .w # 7 , - (s p)
tr a p # 1 3
a d d q .l # 4 , s p

I n p u t s

d r iv e n u m w o r d T
w is h to r e a d (0 = d r iv e A : , 1 = d r iv e B :,
a n d s o o n) .

Results
DO b lo c k a d d r lo n g T h e s ta r t in g a d d r e s s o f th e B IO P a r a m e te r B lo c k .

T h e P a r a m e te r B lo c k is a d a t a s t r u c tu r e th a t c o n ta in s n in e w o r d s :

Word Name Description
0 r e c s iz N u m b e r o f b y te s p e r s e c t o r (m u s t b e 5 1 2 u n d e r c u r r e n t

G E M D O S)
1 c ls iz N u m b e r o f s e c t o r s p e r c lu s te r (m u s t b e 2 u n d e r c u r r e n t

G E M D O S)
2 c ls iz b N u m b e r o f b y te s p e r c lu s te r (m u s t b e 1 0 2 4 u n d e r c u r r e n t

G E M D O S)
3 r d le n R o o t d i r e c to r y le n g th (in s e c t o r s)
4 fs iz F ile A llo c a tio n T a b le (F A T) s iz e (in s e c t o r s)
5 f a tr e c S e c to r n u m b e r o f th e s t a r t o f s e c o n d F A T
6 d a t r e c S e c to r n u m b e r o f th e f irs t d a ta c lu s te r
7 n u m c l N u m b e r o f d a ta c lu s te r s o n th e d isk
8 b f la g s B it f la g s . C u r r e n t ly o n ly b it 0 is u s e d . W h e n s e t , it

in d ic a te s 1 6 -b it F A T e n t r i e s in s te a d o f th e u s u a l 1 2 -b it
e n tr ie s .

182

Bcostat

Get Output Device Status
Bcostat() Opcode = 8
B c o s t a t () te lls y o u w h e t h e r a p a r t i c u la r o u t p u t d e v ic e is r e a d y to a c c e p t a
c h a r a c t e r . I t c a n b e u s e d to a v o id " h a n g i n g " y o u r p r o g r a m u p b y s e n d in g
a c h a r a c t e r to o n e o f th e o u tp u t r o u t in e s w h e n th e d e v ic e is n o t r e a d y .

C macro format
in t d e v n u m ;
lo n g s ta tu s ;

s ta tu s = B c o s ta t (d e v n u m) ;

Machine language format
m o v e , w # d e v n u m / - (s p)
m o v e .w # 8 , - (s p)
tr a p # 1 3
a d d q .l # 4 , s p

Inputs
d e v n u m w o r d T h e d e v ic e n u m b e r o f th e in p u t d e v ic e

w h o s e o u t p u t s ta tu s is te s te d :
0 = P R N : (P r i n te r p o r t)
1 = A U X : (R S -2 3 2 p o r t)
2 = C O N : (C o n s o le s c r e e n)
3 = M ID I: (M ID I o u tp u t)
5 = IK B D : (I n te llig e n t k e y b o a r d c o n

tro lle r)

Results
DO s ta tu s lo n g T h e o u t p u t s ta tu s o f th e d e v ic e :

0 = n o t r e a d y to r e c e iv e a c h a r a c t e r
- 1 = r e a d y to r e c e iv e a c h a r a c t e r

See also
B c o n o u t () , B c o n i n () , B c o n s t a t ()

183

Mediach

Get Media Change Status
Mediach() Opcode = 9
T h is f u n c tio n is u s e d b y th e d isk o p e r a t in g s y s te m to d e te r m in e w h e th e r a
d isk h a s b e e n c h a n g e d .

C macro format
in t d r iv e n u m ;
lo n g s ta tu s ;

s ta tu s = M e d ia c h (d r iv e n u m);

Machine language format
m o v e .w # d r i v e n u m , - (s p)
m o v e .w # 9 , - (s p)
tr a p # 1 3
a d d q .l # 4 , s p

Inputs
d r iv e n u m

Results
DO s ta tu s

w o r d T h e n u m b e r o f th e d r iv e to c h e c k
(0 = d r iv e A : , 1 = d r iv e B :, a n d s o o n) .

lo n g T h e m e d ia c h a n g e s ta tu s o f th e d r iv e .
0 = D isk w a s d e f in ite ly c h a n g e d .
1 = D isk m ig h t h a v e b e e n c h a n g e d .
2 = D is k d e f in ite ly w a s n o t c h a n g e d .

184

Drvmap

Find Valid Drive Numbers
Drvmap() Opcode = 10
D r v m a p () m a y b e u s e d to d i s c o v e r w h a t d isk d r iv e s a r e c u r r e n tly a t
ta c h e d .

C macro format
lo n g d r iv e s ;

d r iv e s = D r v m a p ();

Machine language format
m o v e .w # 1 0 , - (s p)
tr a p # 1 3
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO d r iv e s lo n g A b it f la g th a t in d ic a te s w h ic h d r iv e s a r e c o n n e c te d .

E a c h b it c o r r e s p o n d s to a d if f e re n t d r iv e s , w ith b it 0
s ta n d in g fo r d r iv e A : , b it 1 fo r d r iv e B :, a n d s o o n . A
1 in a b it p o s i t io n m e a n s th e d r iv e is c o n n e c te d ,
w h ile a 0 m e a n s it i s n 't . If d r iv e A : is p r e s e n t , d r iv e
B : is a lw a y s p r e s e n t a ls o , b e c a u s e if th e r e is n o p h y s
ica l B d r iv e , th e s y s te m u s e s d r iv e A : a s a lo g ic a l
d r iv e B :.

185

Kbshift

Read/Change Keyboard Shift Status
Kbshift() Opcode = 11
T h is f u n c tio n r e tu r n s in f o r m a tio n a b o u t th e s ta tu s o f th e s p e c ia l s h if t k e y s ,
in c lu d in g C o n tr o l a n d A lt e r n a te . I t c a n a ls o b e u s e d to c h a n g e th e s h if t
s ta tu s .

C macro format
in t s h if tc o d e , m o d e ;

s h if tc o d e = K b s h if t (m o d e) ;

Machine language format
m o v e .w # m o d e , - (s p)
m o v e .w # 1 1 , - (s p)
tr a p # 1 3
a d d q .l # 4 , s p

Inputs
m o d e w o r d Mode is a f la g th a t in d ic a te s w h e t h e r y o u

w is h to r e a d o r s e t th e s h if t s ta tu s . A
n e g a tiv e v a lu e in m o d e r e q u e s ts a s ta tu s
r e a d . A p o s i t iv e v a lu e c a u s e s th e f u n c tio n
to s e t th e s ta tu s c o d e to th e v a lu e in d i
c a t e d , a f te r r e a d in g th e c u r r e n t c o d e
v a lu e .

Results
DO s h if tc o d e lo n g A b it f la g th a t in d ic a te s w h ic h o f th e s h if t k e y s a r e

c u r r e n t ly p r e s s e d . A b it t h a t 's s e t to 1 in d ic a te s
t h a t th e k e y w a s p r e s s e d w h e n th e ca ll w a s m a d e .

N o te th a t s in c e k e y s r e a d w ith B c o n i n () a r e b u ff e r e d , th e s h if t s ta tu s
a t th e t im e K b s h i f t () is c a lle d is n o t n e c e s s a r i ly th e s a m e a s w h e n th e la s t
c h a r a c t e r w a s r e a d w ith B c o n i n () . T h e b it a s s i g n m e n t s a r e :

Bit Number Bit Value Shift Key
0 1 R ig h t s h if t k e y
1 2 L e f t s h if t k e y
2 4 C o n tr o l k e y
3 8 A l t e r n a te k e y
4 1 6 C a p s lo ck o n
5 3 2 A l t e r n a te -C lr /H o m e k e y c o m b in a tio n (k e y b o a rd

e q u iv a le n t fo r r ig h t m o u s e b u tto n)
6 6 4 A H e r n a te -I n s e r t k e y c o m b in a tio n (k e y b o a rd

e q u iv a le n t fo r le f t m o u s e b u tto n)
7 1 2 8 R e s e r v e d (c u r r e n tl y 0)

See also
B c o n i n ()

186

Appendix B

XBIOS Functions

Like the BIOS functions, the XBIOS routines
can be called from user mode. They use registers A0-A2 and
D0-D2 as scratch registers, which means if you're program
ming in machine language and your program uses these reg
isters, you must save their contents before making an XBIOS
call and restore them after the XBIOS call terminates. Each of
the XBIOS routines is associated with a command number
and, optionally, command parameters that specify more pre
cisely what it should do. For example, the XBIOS function to
set one of the hardware color registers has a command num
ber of 7. It requires two command parameters: One tells the
function which register to set and the other specifies the new
color value (from 0 to 0x777).

To call an XBIOS function from machine language, you
must push the command parameters onto the stack, followed
by the command number, and execute a TRAP #14 state
ment. The TRAP #14 instruction puts the program into su
pervisor mode, and begins executing the instructions found
at the address stored in exception vector 46, whose address
is 184 ($B8). This exception vector contains the address of the
XBIOS handler that reads the command number on the top
of the stack, and directs program execution to the appropri
ate function. When the function terminates, the program re
turns to user mode, and the results, if any, are returned in
register DO. When an XBIOS function call is completed, the
calling program has the responsibility to adjust the stack in
order to remove the command parameters and command
number.

The following program fragment demonstrates how you
would change the value of color register 0 (the background
color) to yellow ($770) using BIOS command number 7:
move.w #$770, — (sp) * push color value on stack
move.w # 0 , — (sp) * push color register number on stack

189

APPENDIX B

move.w # 7 , - (sp) * push XBIOS command number on
stack

trap #14 * call XBIOS handler
addq.l #6,sp * pop parameters (6 bytes) off stack

Calling the XBIOS routines from C is much simpler.
Most C compilers come with a library routine called xbios(),
that stacks the parameters and executes the TRAP #14 in
struction. For example, the sample call illustrated above
could be accomplished in C by the single statement
xbios(7,0,0x770);

Since it's easier to remember a command name than a
command number, most C compilers include a header file
called OSBIND.H.H that defines macros for all of the XBIOS
functions. For example, the macro definition for XBIOS com
mand 7 is:
#define Setcolor (a,b) xbios(7,a,b)

Therefore, after you #include OSBIND.H.H in your pro
gram, you can call the sample function like this:
Setcolor(0,0x777);

The C macro format is the one most commonly found in
discussions of XBIOS routines and sample programs. To use
XBIOS functions in your C programs, you must #include
OSBIND.H if you use the macros, and you must link your
program with the compiler library that contains the xbios()
function.

190

Initmous

Initialize Mouse
Initmous() Opcode = 0
T h is f u n c tio n le ts y o u s e n d th e in te ll ig e n t k e y b o a r d c o n tr o l le r all o f th e
c o m m a n d s r e q u ire d to in itia liz e th e m o u s e p a c k e t m o d e . T h is f u n c tio n is
m o r e fo r in te r n a l u s e b y T O S th a n fo r th e a p p lic a tio n p r o g r a m m e r 's b e n e
fit, s in c e in m o s t c a s e s , th e p r o g r a m m e r w ill le t th e s y s te m c o n tr o l th e
m o u s e .

C macro format
in t m o d e ;
lo n g p a r a m s , v e c to r ;

I n i t m o u s (m o d e , p a r a m s , v e c to r) ;

Machine language format
m o v e .l
m o v e .l
m o v e .w
m o v e .w
tr a p
a d d q .l

Inputs
v e c to r

p a r a m s

v e c to r , - (s p)
p a r a m s , - (s p)
m o d e , - (s p)
0 , - (s p)
1 4
1 2 , s p

lo n g

lo n g

P o in t to a n e w m o u s e p a c k e t in te r r u p t
h a n d le r to s u p p o r t th e n e w m o u s e p a c k e t
m o d e .
P o in te r to a 1 2 -b y te d a ta b lo c k c o n ta in in g
th e p a r a m e te r s n e e d e d fo r m o u s e p a c k e t
in itia liz a tio n .

C o n te n t s o f d a ta b lo c k p o in te d to b y params
Byte Offset Label

0 t o p m o d e
Description
S p e c if ie s o r ig in o f y p o s i tio n

0 = y o r ig in (0 p o in t) a t b o tto m
1 = y o r ig in a t to p

b u tto n s T h e p a r a m e te r fo r th e IK B D s e t m o u s e b u tto n s
c o m m a n d

x p a r a m In r e la tiv e m o d e , x th re s h o ld
In a b s o lu te m o d e , x s c a le
In k e y c o d e m o d e , x d e l ta

y p a r a m In r e la tiv e m o d e , y th r e s h o ld
In a b s o lu te m o d e , y s c a le
In k e y c o d e m o d e , y d e l ta

T h e f o llo w in g a r e u s e d o n ly in m o u s e -a b s o lu te m o d e :

M a x im u m x p o s i t io n o f m o u s e
M a x im u m y p o s i tio n o f m o u s e
In itia l x p o s i t io n o f m o u s e
In itia l y p o s i tio n o f m o u s e

4 x m a x
6 y m a x
8 xin itia l

10 y in itia l

191

Initmous

m o d e w o r d A f la g th a t s p e c if ie s th e ty p e o f m o u s e in f o r m a tio n p a c k
e ts th e IK B D c o n t r o l le r is to s e n d . T h e v a r io u s m o d e s a r e

Mode Number Mouse Mode
0 M o u s e d is a b le d
1 M o u s e e n a b le d in re la tiv e m o d e
2 M o u s e e n a b le d in a b s o lu te m o d e
3 U n u s e d
4 M o u s e e n a b le d in k e y c o d e m o d e

Results
N o n e

192

Physbase

Get Screen RAM Physical Base Address
Physbase() Opcode = 2
T h is f u n c tio n r e tu r n s th e s ta r t in g a d d r e s s o f s c r e e n d is p la y m e m o r y .

C macro format
lo n g s c r a d d r ;

s c r a d d r = P h y s b a s e () ;

Machine language format
m o v e .w # 2 , - (s p)
tr a p # 1 4
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO s c r a d d r lo n g A p o in t e r to th e b e g in n in g o f th e 3 2 K m e m o r y

b lo c k th a t is c u r r e n t ly d is p la y e d .

See also
L o g b a s e () , S e t s c r e e n ()

193

Logbase

Get Screen RAM Logical Base Address
Logbase() Opcode = 3
T h is f u n c tio n r e tu r n s th e b e g in n in g a d d r e s s o f lo g ic a l s c r e e n d is p la y m e m
o r y . T h e lo g ic a l s c r e e n is th e a r e a in m e m o r y th a t T O S g r a p h ic s f u n c tio n s
w r ite s to . T h is is u s u a lly th e s a m e a r e a a s th e p h y s ic a l d is p la y , b u t c a n b e
c h a n g e d to u p d a t e a g r a p h ic s d is p la y w i th o u t le t t in g th e u s e r s e e th e u p
d a te p r o c e s s .

C macro format
lo n g lo g s c r a d d r ;

lo g s c r a d d r = L o g b a s e ();

Machine language format
m o v e .w # 3 , - (s p)
tr a p # 1 4
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO lo g s c r a d d r lo n g T h e s ta r t in g a d d r e s s o f th e lo g ic a l s c r e e n (th e

3 2 K m e m o r y a r e a to w h ic h g r a p h ic s f u n c tio n s
w r ite) .

See also
P h y s b a s e () , S e t s c r e e n ()

194

Getrez

Get Screen Resolution Mode
Getrez() Opcode = 4
G e t r e z () c a n b e u s e d to d e t e r m in e th e c u r r e n t d is p la y m o d e . T h e th r e e
d is p la y m o d e s c u r r e n t ly s u p p o r te d b y th e S T a r e lo -r e s (3 2 0 x 2 0 0 , 1 6
c o lo r s) , m e d iu m - r e s (6 4 0 x 2 0 0 , 4 c o lo r s) a n d h i-r e s (6 4 0 x 4 0 0 , b la ck a n d
w h ite) .

C macro format
in t r e z ;

r e z = G e t r e z ();

Machine language format
m o v e .w # 4 , - (s p)
tr a p # 1 4
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO r e z w o r d A f la g th a t in d ic a te s th e c u r r e n t d is p la y r e s o lu tio n :

0 = L o w r e s o lu t io n
1 = M e d iu m r e s o lu t io n
2 = H ig h r e s o lu t io n

See also
S e t s c r e e n ()

195

Setscreen

Set Screen Parameters
Setscreen() Opcode = 5
T h e S e t s c r e e n () f u n c tio n a llo w s th e p r o g r a m m e r to c h a n g e th e p h y s ic a l
s c r e e n a d d r e s s , th e lo g ic a l s c r e e n a d d r e s s , a n d /o r th e d is p la y r e s o lu t io n
m o d e . T h e r e a r e s o m e c o n s tr a in ts o n th e s e c h a n g e s , h o w e v e r . B o th th e
p h y s ic a l a n d lo g ic a l s c r e e n a d d r e s s e s m u s t b e g in o n a n e v e n p a g e (2 5 6 -
b y te) b o u n d a r y . C h a n g in g th e r e s o lu t io n m o d e o n ly w o r k s if th e p r o g r a m
is r u n n in g o n a c o lo r m o n i to r , s in c e T O S w o n 't le t y o u s e le c t a c o lo r m o d e
o n a m o n o c h r o m e s c r e e n , o r v ic e v e r s a . A n d o n c o lo r m o n i to r s , r e s o lu t io n
s w itc h in g w ith S e t s c r e e n () o n ly w o rk s f o r T O S p r o g r a m s , s in c e th e r e is n o
w a y o f te llin g G E M to a d j u s t to a n e w s c r e e n m o d e , o t h e r th a n b y u s in g
th e S e t P r e f e r e n c e s m e n u o p tio n o f th e D e s k to p . N o te th a t w h e n y o u
c h a n g e r e s o lu t io n m o d e s , th e s c r e e n is c le a r e d a n d c e r ta in o t h e r s c r e e n p a
r a m e te r s a r e re in itia liz e d .

C macro format
in t r e z ;
lo n g lo g a d d r , p h y s a d d r ;

S e t s c r e e n (l o g a d d r , p h y s a d d r , r e z) ;

Machine language format
m o v e .l
m o v e .l
m o v e .l
m o v e .w
t r a p
a d d q .l

Inputs
r e z

p h y s a d d r

lo g a d d r

Results
N o n e

See also
P h y s b a s e () , L o g b a s e () , G e t r e z ()

r e s , - (s p)
p h y s a d d r , - (s p)
lo g a d d r , - (s p)
5 , - (s p)
1 4
1 2 , s p

w o r d T h e n e w d is p la y r e s o lu t io n m o d e
0 = L o w r e s o lu tio n
1 = M e d iu m r e s o lu tio n
2 = H ig h r e s o lu tio n

A n y n e g a t iv e n u m b e r m e a n s k e e p c u r
r e n t d is p la y r e s o lu t io n

lo n g T h e n e w s ta r t in g a d d r e s s fo r th e p h y s ic a l
s c r e e n . A n y n e g a tiv e n u m b e r m e a n s k e e p
c u r r e n t p h y s ic a l s c r e e n ,

lo n g T h e n e w s ta r t in g a d d r e s s fo r th e lo g ica l
s c r e e n . A n y n e g a tiv e n u m b e r m e a n s k e e p
c u r r e n t lo g ic a l s c r e e n .

196

Setpalette

Set Color Palette
Setpalette() Opcode = 6
T h is f u n c t io n a llo w s y o u to s e t a n e n tir e c o lo r p a le tte o f 1 6 h a r d w a r e c o lo r
r e g is te r s a t o n e t im e .

C macro format
in t p a le t te [1 6] ;

S e t p a le t te (p a le t te) ;

Machine language format
m o v e .l p a l e t te , - (s p)
m o v e .w # 6 , - (s p)
tr a p # 1 4
a d d q .l # 6 , s p

Inputs
p a le tte lo n g A p o in t e r to a n a r r a y th a t h o ld s 1 6 w o r d s

o f c o lo r d a t a , e a c h o f w h ic h c o n ta in s th e
c o lo r s e t t in g s fo r o n e o f th e c o lo r r e g is
te r s . B its 0 - 3 a r e u s e d f o r th e b lu e c o m
p o n e n t , b its 4 - 7 fo r g r e e n , a n d b its 8 - 1 1
fo r r e d .

Results
N o n e

See also
S e t c o l o r ()

197

Setcolor

Set Color Register
Setcolor() Opcode = 7
T h is f u n c tio n a llo w s y o u to c h a n g e th e c o lo r in a s in g le h a r d w a r e c o lo r
r e g is te r .

C macro format
in t o ld c o lo r , r e g is te r , n e w c o lo r ;

o ld c o lo r = S e tc o lo r (r e g is te r , n e w c o lo r) ;

Machine language format
m o v e .w # n e w c o l o r , - (s p)
m o v e .w # r e g i s t e r , - (s p)
m o v e .w # 7 , - (s p)
tr a p # 1 4
a d d q .l # 6 , s p

Inputs
n e w c o lo r w o r d

r e g is te r w o r d

A 1 6 -b it w o r d in d ic a tin g th e n e w c o lo r
f o r th e r e g is te r . B its 0 - 3 a r e u s e d fo r th e
b lu e c o m p o n e n t , b its 4 - 7 fo r g r e e n , a n d
b its 8 - 1 1 fo r r e d . A n e g a tiv e v a lu e in d i
c a te s th a t y o u d o n 't w is h to c h a n g e th is
r e g is te r , b u t o n ly to r e a d its c u r r e n t c o n
te n ts .
T h e n u m b e r o f th e h a r d w a r e c o lo r r e g is
te r to c h a n g e .

Results
DO o ld c o lo r lo n g T h e v a lu e c o n t a in e d in th e c o lo r r e g is te r p r io r to

th e c a ll.

See also
S e t p a l e t t e ()

198

Floprd

Read Floppy Disk Sector
Floprd() Opcode = 8
T h is f u n c tio n is u s e d to r e a d o n e o r m o r e s e c t o r s o f in fo rm a tio n f ro m a
f lo p p y d isk .

C macro format
in t s ta tu s d e v n u m , s e c n u m
t r a c k n u m , s id e n u m , n u m s e c s ;
lo n g b u f , r e s v d ;

s ta tu s = F lo p r d (b u f , r e s v d , d e v n u m , s e c n u m ,
tr a c k n u m , s id e n u m , n u m s e c s) ;

Machine
m o v e .w
m o v e .w
m o v e .w

m o v e .w
m o v e .w
c lr .l
m o v e .l
m o v e .w
tr a p
a d d .l

Inputs
n u m s e c s

s id e n u m
tr a c k n u m

s e c n u m

d e v n u m

r e s v d

b u f

Results
DO s ta tu s

language format
n u m s e c s , - (s p)
s i d e n u m , - (s p)
t r a c k -
n u m , - (s p)
s e c n u m , - (s p)
d e v n u m , - (s p)

-(sp)
b u f, - (s p)
8 , - (s p)
1 4
2 0 , s p

w o r d

w o r d
w o r d

w o r d

w o r d

lo n g

lo n g

w o r d

T h e n u m b e r o f c o n t ig u o u s s e c to r s to
r e a d .
T h e s id e o f th e d is k to r e a d f ro m (0 o r 1).
T h e n u m b e r o f th e d is k tr a c k a t w h ic h to
b e g in r e a d in g .
T h e s e c t o r n u m b e r a t w h ic h to b e g in
r e a d in g (s e c to r s a r e u s u a lly n u m b e r e d
f ro m 1 to 9) .
T h e n u m b e r o f th e d r iv e to r e a d
(0 = d r iv e A :, 1 = d r iv e B :) .
A lo n g w o r d w h o s e v a lu e is ig n o r e d , b u t
w h ic h m u s t b e p r e s e n t a s a p la c e h o ld e r .
T h e a d d r e s s o f a b u ffe r w h e r e th e d a ta
f r o m o n e o r m o r e s e q u e n tia l s e c to r s m a y
b e s to r e d .

A n e r r o r c o d e fo r th e f u n c tio n . A v a lu e o f 0 m e a n s
th e o p e r a t io n w a s s u c c e s s f u l . A n y n e g a tiv e v a lu e
r e p r e s e n ts a s y s te m e r r o r .

See also
Flopwr(), Flopver()

199

Flopwr

Flopwr()
Write Floppy Disk Sector

Opcode = 9
T h is f u n c tio n is u s e d to w r i te o n e o r m o r e s e c to r s o f in f o r m a tio n to a
f lo p p y d isk .

C macro format
in t s ta tu s d e v n u m , s e c n u m ,
tr a c k n u m , s id e n u m , n u m s e c s ;
lo n g b u f , r e s v d ;

s ta tu s = F lo p w r (b u f , r e s v d , d e v n u m , s e c n u m ,
t r a c k n u m , s id e n u m , n u m s e c s) ;

Machine
m o v e .w
m o v e .w
m o v e .w

m o v e .w
m o v e .w
c lr .l
m o v e .l
m o v e .w
tr a p
a d d .l

Inputs
n u m s e c s

s id e n u m
tr a c k n u m

s e c n u m

d e v n u m

r e s v d

b u f

Results
DO s ta tu s

language format
n u m s e c s , - (s p)
s i d e n u m , - (s p)
t r a c k -
n u m , - (s p)
s e c n u m , - (s p)
d e v n u m , - (s p)

-(sp)
b u f, - (s p)
9 , - (s p)
1 4
2 0 , s p

w o r d

w o r d
w o r d

w o r d

w o r d

lo n g

lo n g

w o r d

T h e n u m b e r o f c o n t ig u o u s s e c to r s to
w r ite .
T h e s id e o f th e d isk to w r ite to (0 o r 1) .
T h e n u m b e r o f th e d isk tr a c k a t w h ic h to
b e g in w r itin g .
T h e s e c t o r n u m b e r a t w h ic h to b e g in
w r it in g (s e c to r s a r e u s u a lly n u m b e r e d
f ro m 1 to 9) .
T h e n u m b e r o f th e d r iv e to w r ite to
(0 = d r iv e A : , 1 = d r iv e B :) .
A lo n g w o r d w h o s e v a lu e is ig n o r e d , b u t
vy h ich m u s t b e p r e s e n t a s a p la c e h o ld e r .
T h e a d d r e s s o f a b u ffe r w h e r e th e d a ta
fo r o n e o r m o r e s e q u e n tia l s e c t o r s is
s to r e d .

A n e r r o r c o d e f o r th e f u n c tio n . A v a lu e o f 0 m e a n s
th e o p e r a t io n w a s s u c c e s s f u l . A n y n e g a tiv e v a lu e
r e p r e s e n ts a s y s te m e r r o r .

See also
Floprd(), Flopver()

200

Flopfmt

Format Floppy Disk Track
Flopfmt() Opcode = 10
F l o p f m t () f o r m a ts a n d v e r if ie s a s in g le tr a c k o f a f lo p p y d isk . T o f o r m a t
a n d in itia liz e a d isk , y o u m u s t c r e a t e a b o o t s e c t o r a n d c le a r th e f irs t tw o
tr a c k s , in a d d it io n to f o r m a tt in g a ll th e tr a c k s .

C macro format
lo n g b u ffe r , s k e w ta b l , m a g ic ;
in t s ta tu s , d e v n u m , s p t , t r a c k n u m ,
s id e n u m , in tr le v , m a g ic , in itia l;

s ta tu s = F lo p f m t(b u f fe r , s k e w ta b l , d e v n u m , s p t ,
t r a c k n u m , s id e n u m , in tr le v , m a g ic , in itia l)

Machine language format
m o v e .w # i n i t i a l , - (s p)
m o v e .l # m a g i c , - (s p)
m o v e .w # i n t r l e v , - (s p)
m o v e .w # s i d e n u m , - (s p)
m o v e .w # t r a c k -

n u m , - (s p)
m o v e .w # s p t , - (s p)
m o v e .w # d e v n u m , - (s p)
m o v e .l s k e w ta b l , - (s p)
m o v e .l b u ff e r , - (s p)
m o v e .w # 1 0 , - (s p)
tr a p # 1 4
a d d .l # 2 6 , s p

Inputs
in itia l w o r d

m a g ic lo n g
in tr le v w o r d

s id e n u m w o r d
tr a c k n u m w o r d

s p t w o r d
d e v n u m w o r d

A 1 6 -b it v a lu e to w h ic h a ll o f th e d a ta
b y te s in a s e c t o r a r e in itia lly s e t (u s u a lly
$ E 5 E 5) .
M u s t b e s e t to $ 8 7 6 5 4 3 2 1 .
S e c to r in te r le a v e f la g 1 = n o r m a l,
- 1 = s k e w e d .
S id e o f th e d isk to f o r m a t (0 o r 1) .
T r a c k n u m b e r to b e f o r m a tte d (n o r m a lly
0 - 7 9) .
S e c to r s p e r t r a c k . N o r m a lly s e t to 9 .
T h e d r iv e n u m b e r (0 = d r iv e A :,
1 = d r iv e B :) .

201

Flopfmt

s k e w ta b l lo n g

b u ffe r lo n g

Results
DO s ta tu s w o r d

See also
P r o t o b t () , F l o p w r ()

T h is p a r a m e te r is ig n o r e d in th e e a r ly
(p re -b li t te r) v e r s io n o f T O S , b u t in th e
la te r v e r s io n s o f T O S , m a y b e u s e d to
c h a n g e th e s e c t o r interleave. W h e n interlev
is s e t to - 1 , th is p a r a m e te r s h o u ld p o in t
to a n a r r a y t h a t c o n t a in s a 1 6 -b it s e c t o r
n u m b e r fo r e a c h s e c t o r , in th e o r d e r in
w h ic h s e c t o r s a r e to a p p e a r o n s u c c e s s iv e
tr a c k s .
A p o in t e r to a m e m o r y a r e a u s e d to h o ld
th e d a t a to b e w r i t te n to th e n e w ly -f o r
m a t te d tr a c k . F o r a f lo p p y u s in g 9 s e c to r s
p e r t r a c k , a n 8 K b u ff e r is r e c o m m e n d e d .
T h e b u ff e r m u s t s ta r t o n a n e v e n a d d r e s s .

O p e r a t io n s ta tu s c o d e . Z e r o m e a n s n o e r r o r s , a n d
n o n z e r o c o d e r e p r e s e n ts a s y s te m e r r o r c o d e . If th e
f o r m a t fa ils d u e to n o n v e r if ie d s e c t o r s , a lis t o f b a d
s e c t o r s is r e tu r n e d in th e b u ffe r .

202

Midiws

Write String to MIDI Port
Midiws() Opcode
T h is f u n c tio n s e n d s a s t r in g o f c h a r a c t e r s o u t th e M ID I p o r t .

C macro format
in t b y te s ;
lo n g b u ffe r ;

M id iw s (b y te s , b u ff e r) ;

Machine language format

= 12

m o v e .l b u ff e r , - (s p)
m o v e .w # b y t e s , - (s p)
m o v e .w # 1 2 , - (s p)
tr a p # 1 4
a d d q .l # 8 , s p

Inputs
b u ffe r lo n g

b y te s w o r d

Results
N o n e

T h e a d d r e s s o f th e m e m o r y b u ffe r th a t
c o n t a in s th e c h a r a c t e r s t r in g to w r ite .
T h e le n g th o f th e c h a r a c t e r s tr in g to w r ite
(m in u s o n e) , in b y te s .

See also
I k b d w s ()

n e w p a g e

Mfpint

Change MFP Interrupt Vector
Mfpint() Opcode = 13
T h is f u n c tio n is u s e d to c h a n g e a n in te r r u p t v e c to r o n th e M F P c h ip .

C macro format
in t n u m b e r-
lo n g v e c to r ;

M f p in t(n u m b e r , v e c to r)

Machine language format
m o v e .l
m o v e .l
m o v e .w
tr a p
a d d q .l

Inputs
v e c to r

n u m b e r

Results
N o n e

See also
J d i s i n t () , J e n a b i n t ()

v e c to r , - (s p)
n u m b e r , - (s p)
1 3 , - (s p)
1 4
8 , s p

lo n g P o in t e r to th e n e w in te r r u p t h a n d le r r o u
tin e to u s e .

w o r d N u m b e r o f th e M F P in te r r u p t to c h a n g e .

204

Iorec

Get I/O Buffer Record
Iorec() Opcode = 14
I o r e c () r e tu r n s th e a d d r e s s o f a d a ta s t r u c tu r e k n o w n a s th e I /O b u ffe r r e
c o r d , c o n ta in s in fo rm a tio n a b o u t th e in p u t b u ffe r u s e d b y a s p e c if ie d d e
v ic e .

C macro format
in t d e v ;
lo n g b u fr e c ;

b u fr e c = I o r e c (d e v) ;

Machine language format
m o v e .w # d e v , - (s p)
m o v e .w # 1 4 , - (s p)
tr a p # 1 4
a d d q .l # 4 , s p

Inputs
d e v w o r d T h e in p u t d e v ic e w h o s e b u ffe r r e c o r d y o u

w is h to fin d :
0 = R S -2 3 2 s e ria l p o r t
1 = C o n s o le k e y b o a r d
2 = M ID I p o r t

Results
DO b u f r e c lo n g T h e a d d r e s s o f th e d e v ic e 's b u ffe r r e c o r d .

T h is r e c o r d c o n t a in s 1 4 b y te s o f d a t a , in th e f o rm a t.
T h e c o n t e n ts o f th e d e v ic e 's b u ffe r r e c o r d p o in te d to b y bufrec:
Byte Number Element Name Contents

0 - 3 ib u f A d d r e s s o f th e in p u t b u ffe r
4 - 5 ib u fsiz e S iz e o f th e in p u t b u ffe r (in b y te s)
6 - 7 ib u fh d I n d e x to h e a d (n e x t w r ite p o s i tio n)
8 - 9 ib u ftl I n d e x to ta il (n e x t r e a d p o s i tio n)

1 0 - 1 1 ib u flo w Low water m a r k
1 2 - 1 3 ib u fh i High water m a rk

F o r th e R S -2 3 2 d e v ic e o n ly , a n o u tp u t b u ff e r r e c o r d fo llo w s im m e d ia te ly
a f te r th e in p u t b u ffe r r e c o r d .

205

Rsconf

Rsconf()
Configure RS-232 Port

Opcode = 15
T h is f u n c tio n le ts y o u c h a n g e th e R S -2 3 2 s e r ia l p o r t p a r a m e te r s , s u c h a s
c o m m u n ic a t i o n s s p e e d , h a n d s h a k in g , p a r i ty , a n d s o o n .

C macro format
in t s p e e d , h a n d s h a k e , u c r , r s r , t s r , s c r ;

R s c o n f (s p e e d , h a n d s h a k e , u c r , r s r , t r s , s c r) ;

Machine language format
m o v e .w
m o v e .w
m o v e .w
m o v e .w
m o v e .w
m o v e .w
m o v e .w
tr a p
a d d .l

Inputs
s c r

ts r

r s r

u c r

s c r , - (s p)
t r s , - (s p)
r s r , - (s p)
u c r , - (s p)
h a n d s h a k e , - (s p)
s p e e d , - (s p)
1 5 , - (s p)
1 4
1 4 , s p

w o r d

w o r d

w o r d

w o r d

S e ts th e M F P S y n c h r o n o u s C h a r a c te r
R e g is te r (- 1 = k e e p c u r r e n t c o n t e n ts)
S e ts th e M F P T r a n s m it S ta tu s R e g is te r
(- 1 = k e e p c u r r e n t c o n t e n ts) .
S e ts th e M F P R e c e iv e S ta tu s R e g is te r
(- 1 = k e e p c u r r e n t c o n t e n ts) .
S e ts th e 8 -b it M F P U S A R T C o n tr o l R e g is
te r .

T h e 8 -b it M F P U S A R T C o n tr o l R e g is te r :

Bit Function
0 N o t u s e d
1 P a r ity ty p e

0 = O d d
1 = E v e n

2 P a r i ty e n a b le
0 = O ff
2 = O n

3 - 4 A s y n c s t a r t a n d s to p b its
B its 4 3 N u m b e r o f s t a r t a n d s to p b its

0 0 N o s t a r t o r s to p b its (s y n c h r o n o u s)
O i l s ta r t b it , 1 s to p b it
1 0 1 s ta r t b it , 1 1 /2 s to p b its
1 1 1 s ta r t b i t , 2 s to p b its

206

Rsconf

D a ta b itsI p e r w o r d
B its 6 5 N u m b e r o f d a ta b its

0 0 8 b its
0 1 7 b its
1 0 6 b its
1 1 5 b its

7 C lo c k
0 = U s e c lo c k d ire c tly f o r t r a n s f e r f r e q u e n c y (s y n c h r o n o u s

tr a n s f e r) .
1 = D iv id e c lo c k f r e q u e n c y b y 1 6 .

h a n d s h a k e w o r d A f la g th a t in d ic a te s th e m e th o d o f f lo w c o n tr o l o f
h a n d s h a k in g u s e d .

T h e m e th o d o f f lo w c o n t r o l o f h a n d s h a k in g u s e d :

Value Method
0 N o h a n d s h a k in g
1 X O N /X O F F
2 R T S /C T S (n o t im p l e m e n te d in p r e -b l i t te r R O M s)

s p e e d w o r d T h e c o m m u n ic a t i o n s s p e e d (b a u d r a te) .

C o m m u n ic a t io n in b its p e r s e c o n d f o r v a l u e s in s p e e d :

Speed Value Communication speed
0 1 9 2 0 0 b p s
1 9 6 0 0 b p s
2 4 8 0 0 b p s
3 3 6 0 0 b p s
4 2 4 0 0 b p s
5 2 0 0 0 b p s
6 1 8 0 0 b p s
7 1 2 0 0 b p s
8 6 0 0 b p s
9 3 0 0 b p s

1 0 2 0 0 b p s
11 1 5 0 b p s
1 2 1 3 4 b p s
1 3 1 1 0 b p s
1 4 7 5 b p s
15 5 0 b p s

Results
N o n e

207

Keytbl

Get/Set Keyboard Mapping Tables
Keytbl() Opcode = 16
T h is f u n c tio n a llo w s y o u to f in d a n d c h a n g e th e ta b le s th a t m a p k e y s to
th e ir A S C II v a l u e s . T h is le ts y o u c h a n g e y o u r k e y b o a r d la y o u t to a n a l te r
n a te c o n f ig u r a t io n , s u c h a s th a t u s e d f o r D v o r a k k e y b o a r d s , o r f o r fo re ig n
a lp h a b e ts .

C macro format
c h a r u n s h if t [1 2 8] , s h if t [1 2 8] , c a p s lo c k [1 2 8] ;
lo n g v e c ta b le ;

v e c ta b le = K e y tb l(u n s h if t , s h if t , c a p s lo c k) ;

Machine language format
m o v e . 1 c a p s lo c k , - (s p)
m o v e .l s h if t , - (s p)
m o v e .l u n s h if t , - (s p)
m o v e .w # 1 6 , - (s p)
tr a p # 1 4
a d d .l # 1 4 , s p

Inputs
c a p s lo c k lo n g A p o in t e r to y o u r o w n 1 2 8 -b y te k e y b o a r d

m a p p i n g ta b le fo r C a p s L o c k c h a r a c t e r s .
- 1 = u s e c u r r e n t ta b le

s h if t lo n g A p o in te r to y o u r o w n 1 2 8 -b y te k e y b o a r d
m a p p i n g ta b le f o r S h ift c h a r a c t e r s .
- 1 = u s e c u r r e n t ta b le

u n s h if t lo n g A p o in t e r to y o u r o w n 1 2 8 -b y te k e y b o a r d
m a p p i n g ta b le fo r u n s h if te d c h a r a c t e r s .
- 1 = u s e c u r r e n t ta b le

Results
DO v e c ta b le lo n g T h e a d d r e s s o f a v e c to r ta b le th a t c o n ta in s p o in te r s

to e a c h o f th e th r e e k e y b o a r d ta b le s :

Byte Number Contents
0 - 3 A d d r e s s o f u n s h if te d ta b le
4 - 7 A d d r e s s o f S h if t ta b le

8 - 1 1 A d d r e s s o f C a p s L o c k ta b le

See also
B i o s k e y s ()

208

Random

Get Pseudo-Random Number
Random() Opcode = 17
T h is fu n c tio n r e tu r n s th e n e x t 2 4 -b it p s e u d o - r a n d o m n u m b e r in th e s e r ie s
g e n e r a t e d b y th e a lg o r i th m :

SEED = (SEED * 3141592621) + 1
T h e v a lu e r e tu r n e d is th e n e w s e e d v a lu e , s h if te d e ig h t b its to th e r ig h t .
S in c e th e in itia l s e e d v a lu e is ta k e n f ro m th e s c r e e n 's v e r tic a l b la n k f ra m e
c o u n te r , th e s e q u e n c e s h o u ld b e d iff e re n t e a c h tim e th e m a c h in e is tu r n e d
o n .

C macro format
lo n g m d n u m ;

m d n u m = R a n d o m ()

Machine language format
m o v e .w # 1 7 , - (s p)
tr a p # 1 4
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO r n d n u m lo n g A 2 4 -b it p s e u d o - r a n d o m n u m b e r (b its 2 4 - 3 1 a r e 0)

209

Protobt

Produce Boot Sector Prototype
Protobt() Opcode = 18
T h is f u n c tio n is u s e d to c r e a t e a b o o t s e c t o r in m e m o r y . T h is is a s p e c ia lly
f o r m a tte d b lo ck o f in f o r m a tio n th a t m u s t b e s to r e d o n th e f irs t s e c t o r o f
e a c h f lo p p y d is k (s id e 0 , tr a c k 0 , s e c t o r 1) . T h e f in is h e d b o o t s e c t o r s h o u ld
b e w r i t te n to th e f lo p p y d is k , u s in g th e F l o p w r () f u n c tio n , n o t th e B IO S
f u n c tio n R w a b s ().

C macro format
in t d is k ty p e , e x e c f la g ;
lo n g b u ffe r , s e r ia ln u m ;

P r o to b t(b u ff e r , s e r ia ln u m , d is k ty p e , e x e c f la g) ;

Machine language format
m o v e .w
m o v e .w
m o v e .l
m o v e .l
m o v e .w
tr a p
a d d .l

Inputs
e x e c f la g

d is k ty p e

s e r ia ln u m

b u ffe r

Results
N o n e

e x e c f la g , - (s p)
d is k ty p e , - (s p)
s e r ia ln u m , - (s p)
b u ff e r , - (s p)
1 8 , - (s p)
1 4
1 4 , s p

w o r d

w o r d

lo n g

lo n g

A f la g th a t in d ic a te s w h e th e r to e x e c u te
s o m e b o o t c o d e a t s ta r tu p tim e . B o o t
c o d e is u p to 4 8 0 b y te s o f m a c h in e in
s tr u c t io n , s ta r t in g a t b y te 3 0 o f th e b o o t
s e c t o r .

0 = n o b o o t c o d e
1 = e x e c u t e b o o t c o d e

A c o d e w o r d th a t s p e c if ie s a d is k 's s t o r
a g e c a p a c i ty a n d f o rm a t:

0 = 4 0 t r a c k s , s in g le s id e d (1 8 0 K)
1 = 4 0 tr a c k s , d o u b le s id e d (3 6 0 K)
2 = 8 0 tr a c k s , s in g le s id e d (3 6 0 K)
3 = 8 0 tr a c k s , d o u b le s id e d (7 2 0 K)

A u n iq u e 2 4 -b i t id e n tif ie r c o d e u s e d b y
th e file s y s te m to te ll w h e th e r d is k s h a v e
b e e n c h a n g e d in a p a r t i c u la r d r iv e . T o
g e n e r a t e a r a n d o m s e ria l n u m b e r , p a s s a
v a lu e la r g e r th a n ($ 1 0 0 0 0 0 0) .
T h e a d d r e s s o f a 5 1 2 -b y te m e m o r y b u ffe r
w h e r e th e b o o t b lo c k in fo rm a tio n w ill b e
c r e a t e d .

See also
Flopfmt(), Flopwr()

210

Flopver

Verify Floppy Disk Sector
Flopver() Opcode = 19
T h is f u n c tio n is u s e d to v e r if y o n e o r m o r e s e c t o r s o f in fo rm a tio n o n a
f lo p p y d isk .

C m a c r o f o r m a t

in t s ta tu s d e v n u m , s e c n u m , t r a c k n u m , s id e n u m , n u m s e c s ;
lo n g b u f , r e s v d ;

s ta tu s = F lo p v e r (b u f , r e s v d , d e v n u m , s e c n u m , tr a c k n u m , s id e n u m ,
n u m s e c s) ;

M a c h i n e l a n g u a g e f o r m a t

m o v e .w # n u m s e c s , - (sp)
m o v e .w # s i d e n u m , - •(sp)
m o v e .w # t r a c k n u m , " (s p)
m o v e .w # s e c n u m , - (s p)
m o v e .w # d e v n u m , - (s p)
c lr .l “ (sp)
m o v e .l b u f , - (s p)
m o v e .w # 1 9 , - (s p)
tra p # 1 4
a d d .l # 1 6 , s p

I n p u t s

n u m s e c s w o r d T h e n u m b e r o f c o n t ig u o u s s e c to r s to v e r
ify .

s id e n u m w o r d T h e s id e o f th e d isk to v e r if y (0 o r 1) .
tr a c k n u m w o r d T h e n u m b e r o f th e d is k tr a c k a t w h ic h to

b e g in v e r if y in g .
s e c n u m w o r d T h e s e c t o r n u m b e r a t w h ic h to b e g in v e r

ify in g (s e c to r s a r e u s u a lly n u m b e r e d f ro m
1 to 9) .

d e v n u m w o r d T h e n u m b e r o f th e d r iv e to v e r ify
(0 = d r iv e A :, 1 = d r iv e B :) .

r e s v d lo n g A lo n g w o r d w h o s e v a lu e is ig n o r e d , b u t
w h ic h m u s t b e p r e s e n t a s a p la c e h o ld e r .

b u f lo n g T h e a d d r e s s o f a b u ffe r w h e r e th e d a ta
f ro m o n e o r m o r e s e q u e n tia l s e c to r s is
s to r e d .

R e s u l t s

DO s ta tu s w o r d A n e r r o r c o d e f o r th e f u n c tio n . A v a lu e o f 0 m e a n s
th a t th e o p e r a t io n w a s s u c c e s s f u l . A n y n e g a tiv e
v a lu e r e p r e s e n ts a s y s te m e r r o r .

See also
Floprd(), Flopver()

211

Scrdmp

Output Graphics Screen to Printer
Scrdmp() Opcode = 20
T h e S c r d m p () f u n c tio n p r in ts a g r a p h ic r e p r e s e n ta t i o n o f th e s c r e e n d is
p la y o n a n A ta r i o r E p s o n -c o m p a tib le p r in te r .

C macro format
S c r d m p ();

Machine language format
m o v e .w # 2 0 , - (s p)
tr a p # 1 4
a d d q .l # 2 , s p

Inputs
N o n e

Results
N o n e

See also
P r t b l k ()

212

Cursconf

Configure Text Cursor
Cursconf() Opcode = 21
T h e C u r s c o n f () f u n c tio n a llo w s y o u to c o n tr o l th e v isib ility a n d b lin k ra te
o f th e s y s t e m 's te x t c u r s o r .

C macro format
in t r a te , m o d e , n e w r a t e ;

r a te = C u r s c o n f (m o d e ,n e w r a te) ;

Machine language format
m o v e .w
m o v e .w
m o v e .w
tr a p
a d d q .l

Inputs
n e w r a t e

m o d e

Results
DO r a te

n e w r a t e , - (s p)
m o d e , - (s p)
2 1 , - (s p)
1 4
6 , s p

w o r d

w o r d

If m o d e = 5 , th is v a l u e (0 - 2 5 5) d e t e r
m in e s th e r a te a t w h ic h th e c u r s o r b lin k s ,
a c c o r d in g to th is f o rm u la : D u r a tio n o f a
s in g le b lin k (in s e c o n d s) = 2 * r a te /
c y c le s . In th is f o rm u la , c y c le s r e p r e s e n ts
th e m o n i to r f r e q u e n c y (m o n o c h
r o m e = 7 0 , U S c o lo r = 6 0 , E u r o p e a n
c o lo r = 5 0) .
A f la g th a t in d ic a te s th e c h a n g e in c u r s o r
f u n c tio n :

0 = T u r n c u r s o r o ff
1 = T u r n c u r s o r o n
2 = T u r n c u r s o r b lin k o n
3 = T u r n c u r s o r b lin k o ff
4 = C h a n g e b lin k r a te to v a lu e c o n

ta in e d in n e w r a t e
5 = R e a d c u r s o r b lin k r a te

w o r d W h e n m o d e is s e t to 5 , th e c u r r e n t b lin k r a te v a lu e (0 -
2 5 5) is r e tu r n e d h e r e .

213

Settime

Set System Time and Date
Settim e() Opcode = 22
T h e S e t t i m e () f u n c tio n is u s e d to s e t th e in te ll ig e n t k e y b o a r d 's t im e a n d
d a te c lo c k .

C macro format
lo n g d a te t im e ;

S e t t im e (d a te t im e) ;

Machine language format
m o v e .l # d a t e t i m e , - (s p)
m o v e .w # 2 2 , - (s p)
tr a p # 1 4
a d d q .l # 6 , s p

Inputs
d a te t im e lo n g A 3 2 -b it w o r d in d ic a tin g th e t im e a n d

d a t e to w h ic h th e c lo c k s h o u ld b e s e t .

V a lu e s c o n t a in e d in d a te t im e :

Bit Number Description
0 - 4 S e c o n d s d iv id e d b y 2

5 - 1 0 M in u te s
1 1 - 1 5 H o u r
1 6 - 2 0 D a y
2 1 - 2 4 M o n th
2 5 - 3 1 Y e a r - 1 9 8 0

Range
0 - 2 9
0 - 5 9
0 - 2 3
1 - 3 1
1-12
0 - 1 1 9)

Results
N o n e

See also
G e t t i m e ()

214

Gettime

Get System Time and Date
Gettime() Opcode = 23
T h is f u n c t io n a llo w s y o u to r e a d th e in te ll ig e n t k e y b o a r d s tim e a n d d a t e
c lo c k .

C macro format
lo n g d a te t im e ;

d a te t im e = G e t t i m e ();

Machine language format
m o v e .w # 2 3 , - (s p)
tr a p # 1 4
a d d q .l # 2 , s p

Results
DO d a te t im e lo n g A 3 2 -b it v a lu e t h a t in d ic a te s th e c u r r e n t tim e a n d

d a t e s e t t in g s .

V a lu e s f o r d a te tim e :

Inputs
N o n e

Bit Number Description
0 - 4 S e c o n d s d iv id e d b y 2

5 - 1 0 M in u te s
1 1 - 1 5 H o u r
1 6 - 2 0 D a y
2 1 - 2 4 M o n th
2 5 - 3 1 Y e a r - 1 9 8 0

Range
0 - 2 9
0 - 5 9
0 - 2 3
1 - 3 1
1-12
0 - 1 1 9)

See also
S e t t i m e ()

215

Bioskeys

Restore Default Keyboard Table
Bioskeys() Opcode = 24
T h is f u n c tio n r e p la c e s th e k e y b o a r d m a p p in g ta b le y o u h a v e in s ta lle d u s
in g th e K e y t b l () f u n c tio n w ith th e d e f a u lt s y s te m k e y m a p s .

C macro format
B i o s k e y s ()

Machine language format
m o v e .w # 2 4 , - (s p)
tr a p # 1 4
a d d q .l # 2 , s p

Inputs
N o n e

Results
N o n e

See also
K e y t b l ()

216

Ikbdws

Write String to Intelligent Keyboard
Ikbdws() Opcode = 25
T h is f u n c tio n s e n d s a s t r in g o f c h a r a c t e r s o u t to th e In te l l ig e n t K e y b o a r d
c o n tr o lle r .

C macro format
in t b y te s ;
lo n g b u ffe r ;

I k b d w s (b y te s , b u ff e r) ;

Machine language format
m o v e .l b u f f e r , - (s p)
m o v e .w # b y t e s , - (s p)
m o v e .w # 2 5 , - (s p)
tr a p # 1 4
a d d q .l # 8 , s p

Inputs
b u ffe r lo n g

b y te s w o r d

Results
N o n e

S e e a ls o

M i d i w s ()

T h e a d d r e s s o f th e m e m o r y b u ffe r th a t
c o n t a in s th e c h a r a c t e r s t r in g to w r ite .
T h e le n g th o f th e c h a r a c t e r s t r in g to w r ite
(in b y te s) - 1 .

217

Jdisint

Disable an MFP Interrupt
Jdisint() Opcode = 26
D is a b le s o n e o f th e 1 6 M F P in te r r u p ts .

C macro format
in t in tn u m ;

J d is in t (in tn u m);

Machine language format
m o v e .w # i n t n u m , - (s p)
m o v e .w # 2 6 , - (s p)
tr a p # 1 4
a d d q .l # 4 , s p

Inputs
in tn u m w o r d W h ic h o f th e 1 6 M F P in te r r u p ts (0 - 1 5) to

d isa b le .

Results
N o n e

See also
J e n a b i n t () , X b t i m e r () , M f p i n t ()

218

Jenabint

Enable an MFP Interrupt
Jenabint() Opcode = 27
E n a b le s o n e o f th e 1 6 M F P in te r r u p ts .

C macro format
in t in tn u m ;

J e n a b in t(in tn u m);

Machine language format
m o v e .w
m o v e .w
tr a p
a d d q .l

Inputs
in tn u m

Results
N o n e

See also
J d i s i n t () , X b t i m e r () , M f p i n t ()

i n t n u m , - (s p)
2 7 , - (s p)
1 4
4 , s p

w o r d W h ic h o f th e 1 6 M F P in te r r u p ts (0 - 1 5) to
e n a b le .

219

Giaccess

Read/Write Sound Chip
Giaccess() Opcode = 28
T h is f u n c tio n a llo w s y o u to r e a d o r c h a n g e a n y r e g is te r in th e P r o g r a m m a
b le S o u n d G e n e r a t o r (P S G) c h ip .

C macro format
c h a r r e g v a lu e , v a lu e ;
in t r e g n u m ;

r e g v a lu e = G ia c c e s s (v a lu e , r e g n u m) ;

Machine language format
m o v e .w # r e g n u m , - (s p)
m o v e .w # v a l u e , - (s p)
m o v e .w # 2 8 , - (s p)
t r a p # 1 4
a d d q .l # 6 , s p

Results
DO r e g v a lu e b y te T h e n u m b e r s to r e d in th e r e g is te r a t th e e n d o f th e

ca ll.

See also
O n g i b i t () , O f f g i b i t ()

Inputs
r e g n u m w o r d T h e n u m b e r o f th e r e g is te r to r e a d o r

c h a n g e . If y o u 'r e r e a d in g th e r e g is te r , u s e
th e r e g is te r n u m b e r (0 - 1 5) . T o c h a n g e th e
r e g is te r , u s e th e r e g is te r n u m b e r + 1 2 8
(1 2 8 - 1 4 3) .
T h e n e w 8 -b it n u m b e r to g o in to th e r e g
is te r .

v a lu e b y te

220

Offgibit

Clear a Bit on Sound Chip I/O Port
Offgibit() Opcode = 29
A to m ic a l ly c le a r s a s in g le b it o f th e P o r t A I /O r e g is te r o n th e P S G s o u n d
c h ip .

C macro format
in t b i tn u m ;

O ffg ib it(b itn u m);

Machine language format
m o v e .w # b i t n u m , — (s p)
m o v e .w # 2 9 , - (s p)
tr a p # 1 4
a d d q .l # 4 , s p

Inputs
b itn u m w o r d T h e n u m b e r o f th e b it (0 - 7) to c h a n g e .

Results
N o n e

See also
O n g i b i t ()

221

Ongibit

Set a Bit on Sound Chip I/O Port
Ongibit() Opcode = 30
A to m ic a l ly s e ts a s in g le b it o f th e P o r t A I /O r e g is te r o n th e P S G s o u n d
c h ip .

C macro format
in t b i tn u m ;

O n g ib it(b itn u m);

Machine language format
m o v e .w
m o v e .w
t r a p
a d d q .l

Inputs
b itn u m

Results
N o n e

See also
O ffg ib it(

b i t n u m , - (s p)
3 0 , - (s p)
1 4
4 , s p

w o r d T h e n u m b e r o f th e b it (0 - 7) to c h a n g e .

222

Xbtimer

Set an MFP Timer
Xbtimer() Opcode = 31
T h e X b t i m e r () f u n c tio n a llo w s y o u to s e t th e M F P tim e r r e g is te r s a n d a s
s ig n a n in te r r u p t v e c to r to a t im e r .

C macro format
in t t im e r n u m , c o n t r o l , d a ta ;
lo n g v e c to r ;

X b tim e r (t im e r n u m , c o n t r o l , d a t a , v e c to r) ;

Machine language format
m o v e .l v e c t o r , - (s p)
m o v e .w d a t a , - (s p)
m o v e , w c o n t r o l , - (s p)
m o v e .w t i m e m u m , - (s p)
m o v e .w # 3 1 , - (s p)
tr a p # 1 4
a d d .l # 1 2 , s p

Inputs
v e c to r lo n g T h e a d d r e s s o f th e in te r r u p t h a n d le r r o u

tin e a s s o c i a te d w ith th is t im e r ,
d a ta w o r d T h e v a lu e s to r e in th e t im e r d a ta r e g is te r ,
c o n tr o l w o r d T h e 8 -b it v a lu e to p la c e in th e t im e r 's

c o n tr o l r e g is te r .

F o r T im e r s A a n d B , th e v a lu e s a r e :

Control Value Timer Mode
0 T im e r o ff
1 D e la y m o d e , c lo c k d iv id e d b y 4
2 D e la y m o d e , c lo c k d iv id e d b y 1 0
3 D e la y m o d e , c lo c k d iv id e d b y 1 6
4 D e la y m o d e , c lo c k d iv id e d b y 5 0
5 D e la y m o d e , c lo c k d iv id e d b y 6 4
6 D e la y m o d e , c lo c k d iv id e d b y 1 0 0
7 D e la y m o d e , c lo c k d iv id e d b y 2 0 0
8 E v e n t C o u n t M o d e
9 P u ls e L e n g t h m o d e , c lo c k d iv id e d b y 4

1 0 P u ls e L e n g t h m o d e , c lo c k d iv id e d b y 1 0
11 P u ls e L e n g t h m o d e , c lo c k d iv id e d b y 1 6
1 2 P u ls e L e n g t h m o d e , c lo c k d iv id e d b y 5 0
1 3 P u ls e L e n g t h m o d e , c lo c k d iv id e d b y 6 4
1 4 P u ls e L e n g th m o d e , c lo c k d iv id e d b y 1 0 0
1 5 P u ls e L e n g t h m o d e , c lo c k d iv id e d b y 2 0 0

223

Xbtimer

tim e r n u m w o r d A n u m b e r f r o m 0 - 3 th a t r e p r e s e n ts th e M F P t im e r to
c h a n g e . (0 = t im e r A , 1 = t im e r B , 2 = t im e r C ,
3 = t im e r D).

Results
N o n e

See also
M f p i n t () , J d i s i n t () , J e n a b i n t ()

224

Dosound

Start Sound Interrupt Processing
Dosound() Opcode = 32
T h e D o s o u n d () f u n c tio n e n a b le s a n in te r r u p t-d r iv e n r o u t in e th a t c a n p la y
m u s ic o r s o u n d e f fe c ts in th e b a c k g r o u n d .

C macro format
lo n g c o m m a n d lis t ;

D o s o u n d (c o m m a n d lis t) ;

Machine language format
m o v e .l c o m m a n d li s t , - (s p)
m o v e , w # 3 2 , - (s p)
tr a p # 1 4
a d d q .l # 6 , s p

Inputs
c o m m a n d lis t lo n g A p o in t e r to a d a ta s to r a g e a r e a th a t c o n ta in s a

n u m b e r o f q u e u e d s o u n d c o m m a n d s , o n e o f w h ic h
is e x e c u te d e a c h 1 /5 0 o f a s e c o n d .

T h e c o m m a n d s t r u c tu r e is:

(Command Number)
First Byte Second Byte Third Byte Fourth Byte
0 - 1 5 L o a d a T h e b y te v a lu e
b y te v a lu e in to to lo a d in to th e
th e r e g is te r r e g is te r (0 - 2 5 5) .
s p e c if ie d b y th is
c o m m a n d b y te .
(0 - 1 5)
1 2 8 S to r e a T h e b y te v a lu e
v a lu e in a to s to r e in th e
te m p o r a r y t e m p o r a r y
r e g is te r f o r u s e r e g is te r (0 - 2 5 5) .
b y c o m m a n d T h is is th e
n u m b e r 1 2 9 (s e e s ta r t in g r e g is te r
b e lo w) . v a lu e fo r

c o m m a n d 1 2 9 .
1 2 9 L o a d a T h e n u m b e r o f I n c r e m e n t v a lu e F in a l r e g is te r
r e g is te r w ith th e th e r e g is te r to (0 - 2 5 5) . A d d e d v a lu e .
v a lu e s to r e d in u s e . (0 - 1 5) to r e g is te r v a lu e C o m m a n d e n d s
th e te m p o r a r y e a c h t im e r tick . w h e n th is v a lu e
r e g is te r (b y C a n b e p o s i tiv e is r e a c h e d .
c o m m a n d 1 2 8). (0 - 1 2 7) o r
I n c r e m e n t th e n e g a tiv e .
v a lu e in th e
r e g is te r e a c h
tim e r tick , u n til
a n e n d v a lu e is
r e a c h e d .

225

Dosound

First Byte
1 3 0 - 2 5 5 P a u s e
f o r a s p e c if ie d
n u m b e r o f t im e r
tick s (1 /5 0
s e c o n d) b e f o r e
th e n e x t s o u n d
c o m m a n d is
e x e c u te d .

Results
N o n e

See also
G i a c c e s s ()

(Command Number)
Second Byte Third Byte
T h e n u m b e r o f
t im e r tick s to
p a u s e (1 - 2 5 5) .
A v a lu e o f 0
h e r e w ill e n d
th e p r o c e s s in g
o f s o u n d
c o m m a n d s .

Fourth Byte

226

Setprt

Set Printer Configuration
Setprt() Opcode = 33
T h is f u n c tio n a llo w s y o u to s e t th e p r in te r c o n f ig u r a tio n , a c o d e n u m b e r
th a t c o n ta in s in fo rm a tio n a b o u t th e ty p e o f p r in te r th a t is a t ta c h e d . T h is
in fo rm a tio n is u s e d b y s o m e s y s te m r o u t in e s , lik e th e s c r e e n p r in tin g f u n c
tio n .

C macro format
in t c o d e , n e w c o d e ;

c o d e = S e t p r t (n e w c o d e) ;

Machine language format
m o v e .w n e w c o d e , - (s p)
m o v e .w # 3 3 , - (s p)
tr a p
a d d q .l

1 4
4 , s p

Inputs
n e w c o d e w o r d T h e 1 6 -b it p r in te r c o n f ig u r a tio n fla g y o u

w a n t to s e t .

T h e m e a n in g o f e a c h f la g b it is s h o w n in th is ta b le :

Bit Number Description
0 P r in t ty p e

0 = D o t-M a tr ix
1 = D a is y w h e e l

1 C o lo r ty p e
0 = M o n o c h r o m e
1 = C o lo r p r in t

2 C o n tr o l c o d e ty p e
0 = A ta r i
1 = E p s o n

3 P r in t q u a lity
0 = D r a ft
1 = F in a l q u a lity

4 P r in te r p o r t
0 = P a ra lle l
1 = R S 2 3 2 s e ria l

5 P a p e r ty p e
0 = C o n tin u o u s
1 = S in g le S h e e t

6 R e s e r v e d fo r f u tu re u s e
7 R e s e r v e d fo r f u tu r e u s e
8 R e s e r v e d fo r f u tu re u s e
9 R e s e r v e d fo r f u tu r e u s e

1 0 R e s e r v e d fo r f u tu re u s e
11 R e s e r v e d fo r f u tu r e u s e
1 2 R e s e r v e d fo r f u tu r e u s e

227

Setprt

1 3
1 4
1 5

Results
DO c o d e

R e s e r v e d fo r f u tu r e u s e
R e s e r v e d fo r f u tu r e u s e
M u s t b e 0

w o r d T h e o ld v a l u e o f th e p r in te r c o n f ig u r a tio n c o d e . B y
s e t t i n g n e w c o d e to - 1 , i t 's p o s s ib le to r e a d th e c u r
r e n t c o d e v a lu e w i th o u t c h a n g in g it.

228

Kbdvbase

Get Keyboard Vector Table Base Address
Kbdvbase() Opcode = 34
T h is f u n c tio n r e tu r n s p o in te r s to s e v e r a l o f th e in te r r u p t r o u t in e s th a t a r e
u s e d to h a n d le th e in p u t f u n c tio n s .

C macro format
lo n g v e c b a s e ;

v e c b a s e = K b d v b a s e () ;

Machine language format
m o v e .w # 3 4 , - (s p)
tr a p # 1 4
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO v e c b a s e lo n g A p o in t e r to a v e c to r ta b le .

V e c to r ta b le s t r u c tu r e :

Byte Offset Vector Name Routine called
0 m id iv e c M ID I in p u t r o u t in e
4 v k b d e r r IK B D A C I A o v e r - r u n e r r o r r o u tin e
8 v m id e r r M ID I A C I A o v e r - r u n e r r o r r o u t in e

1 2 s ta tv e c IK B D s ta tu s p a c k e t h a n d le r
1 6 m o u s e v e c IK B D m o u s e p a c k e t h a n d le r
2 0 c lo c k v e c IK B D c lo c k p a c k e t h a n d le r
2 4 jo y v e c IK B D jo y s tic k p a c k e t h a n d le r
2 8 m id is y s S y s t e m M ID I A C I A h a n d le r
3 2 ik b d sy s S y s t e m IK B D A C I A h a n d le r

229

Kbrate

Kbrate()
Set Keyboard Repeat Rate

Opcode = 35
T h e K b r a t e () f u n c tio n is u s e d to c o n tr o l th e r e p e a t r a te o f th e c o n s o le d e
v ic e k e y b o a r d .

C macro format
in t o ld v a ls , d e la y , r a te ;

o ld v a ls = K b r a te (d e la y , r a te) ;

Machine language format
r a te , - (s p)m o v e .w

m o v e .w
m o v e .w
tr a p
a d d q .l

Inputs
r a te

d e la y , - (s p)
3 5 , - (s p)
1 4
6 , s p

w o r d

d e la y

Results
DO o ld v a ls

T h e a m o u n t o f tim e th a t e la p s e s b e tw e e n
e a c h r e p e ti t io n o f a k e y . T h is t im e is
m e a s u r e d in s y s te m c lo c k tick s (1 /5 0 o f a
s e c o n d) . A v a lu e o f 0 - 2 5 5 is u s e d . Z e r o
r e p r e s e n ts th e m a x im u m d e la y o f 2 5 6
tick s .

w o r d T h e a m o u n t o f tim e y o u m u s t in itia lly
h o ld d o w n a k e y b e f o r e it s ta r ts to r e
p e a t .

w o r d T h e p r e v io u s r a te a n d d e la y v a lu e s a r e p a c k e d in to
a s in g le 1 6 -b it w o r d .

B its 0 - 7 c o n ta in th e r a te v a lu e
B its 8 - 1 5 th e d e la y v a lu e

230

Prtblk

Output Graphics Block to Printer
Prtblk() Opcode = 36
T h is f u n c tio n c a n b e u s e d to p r in t th e e n t ir e s c r e e n , o r a n y p o r t io n o f it , to
a g r a p h ic s p r in te r .

C macro format
lo n g p r ta b le ;

P r tb lk (p r ta b le) ;

Machine language format
m o v e .l p r ta b le , - (s p)
m o v e .w # 3 6 , - (s p)
tr a p # 1 4
a d d q .l # 6 , s p

Inputs
p r ta b le lo n g

Byte Number Element Name
Q—3 b lk p rt (Sw e)

4 - 5 o f fs e t (o)
6 - 7 i ^ / w i d t h l&Uo)

8 - 9 —J h e ig h t (qoo)
1 0 - 1 1 v_, J le f t (?)
1 2 - 1 3 b r ig h t (o)
1 4 - 1 5 v - ^ s c r r e s (?)

1 8 - 2 1 c o lp a l (trFMo)
2 2 - 2 3 w 4 ty p e (ij)

2 4 - 2 5 w - d p o r t

1
2 6 - 2 9 m a s k s

Results
N o n e

T h e a d d r e s s o f a 3 0 -b y te p a r a m e te r ta b le
th a t d e t e r m in e s h o w th e s c r e e n b lo c k is
p r in te d .

Description
S ta r t in g a d d r e s s o f s c r e e n R A M
O f fs e t f ro m s ta r t a d d r e s s in b its (0 - 7)
S c r e e n w id th (in b y te s)
S c r e e n h e ig h t
L e f t m a r g in fo r s c r e e n d u m p
R ig h t m a rg in f o r s c r e e n d u m p
S c r e e n r e s o lu t io n

0 = L o w
1 = M e d iu m
2 = H ig h

P r in te r r e s o lu tio n
0 = D ra ft : 9 6 0 d p i (d o ts p e r in ch)
1 = F in a l: 1 2 8 0 d p i

S ta r t in g a d d r e s s o f th e c o lo r p a le tte
P r in te r ty p e

0 = A ta r i m o n o c h r o m e d o t-m a tr ix
1 = A ta r i m o n o c h r o m e d a is y w h e e l
2 = A ta r i c o lo r d o t-m a tr ix
'4 = E p s o n m o n o c h r o m e d o t-m a tr ix

P r in te r p o r t
0 = P a ra lle l
1 = R S 2 3 2 se ria l

S ta r t in g a d d r e s s o f h a lf to n e m a s k ta b le (if 0 ,
u s e d e f a u lt R O M ta b le)

See also
S c r d m p ()

231

Vsync

Wait for Vertical Blank
Vsync() Opcode = 37
T h is f u n c tio n s im p ly w a its u n til th e v e r tic a l b la n k in te r r u p t is f in is h e d , a n d
r e tu r n s . I t c a n b e u s e d to s y n c h r o n iz e s c r e e n d r a w in g w ith th e v b la n k , o r
a s a s im p le d e la y m e c h a n is m .

C macro format
V s y n c ();

Machine language format
m o v e .w # 3 7 , - (s p)
tr a p # 1 4
a d d q .l # 2 , s p

Inputs
N o n e

Results
N o n e

232

Supexec

Execute Supervisor Mode Function
Supexec() Opcode = 38
R u n s a s u b r o u tin e in th e 6 8 0 0 0 p r o c e s s o r 's s u p e r v is o r m o d e .

C macro format
lo n g s u b ;

S u p e x e c (s u b) ;

Machine language format
m o v e .l s u b , - (s p)
m o v e , w # 3 8 , - (s p)
tr a p # 1 4
a d d q .l # 6 , s p

Inputs
s u b lo n g T h e a d d r e s s o f th e s u b ro u tin e to r u n in

s u p e r v is o r m o d e .

Results
N o n e

See also

233

Blitmode

Get/Set Blitter Configuration
Blitmode() Opcode = 64
T h is f u n c tio n is u s e d to f in d o u t if a b litte r c h ip is a v a ila b le , a n d w h e th e r it
is b e in g u s e d f o r d r a w in g r o u t in e s . If th e b litte r c h ip is p r e s e n t , th is f u n c
tio n m a y a ls o b e u s e d to c h o o s e b e t w e e n h a r d w a r e b litt in g o r s o f tw a r e
e m u la t io n m o d e .

C macro format
d e f m e B litm o d e (a) x b io s (6 4 ,a)
in t s ta tu s , v a lu e ;

s ta tu s = B l itm o d e (v a lu e) ;

Machine language format
m o v e .w v a lu e , - (s p)
m o v e .w # 6 4 , - (s p)
tr a p # 1 4
a d d q .l # 4 , s p

Inputs
v a lu e w o r d A b it f la g u s e d to s e t th e b litte r c o n f ig u

r a tio n . A v a lu e o f - 1 is u s e d to r e a d , n o t
c h a n g e , th e c o n f ig u r a tio n .

T h e b it v a lu e s fo r th e v a lu e f la g a r e :

Bit Number Function
0 S e t b lit m o d e

0 = U s e s o f tw a r e b lit r o u t in e s
1 = U s e b litte r h a r d w a r e

1 - 1 4 U n d e f in e d , r e s e r v e d
1 5 M u s t b e 0

Results
DO s ta tu s w o r d A b it flag th a t r e tu r n s th e b litte r c o n f ig u r a tio n a s it

s to o d p r io r to th e s e t o p e r a t io n .

T h e s ta tu s b it v a lu e s a r e :

Bit Number Description
0 C u r r e n t blit m o d e

0 = U s in g s o f tw a r e b lit r o u t in e s
1 = U s in g b litte r h a r d w a r e

1 B lit te r c h ip a v a ila b ility
0 = B lit te r c h ip n o t a v a ila b le
1 = B lit te r c h ip is in s ta lle d

2 - 1 4 U n d e f in e d , r e s e r v e d
1 5 A 0 is a lw a y s r e tu r n e d

234

Appendix C

GEMDOSFunctions

routines can be called from user mode.
They use registers A0-A2 and D0-D2 as scratch registers. If
you are programming in machine language and your pro
gram uses these registers, you must save their contents be
fore making a GEMDOS call and restore them after the call
terminates. Each of the GEMDOS routines is associated with
a command number, and some of the routines require com
mand parameters that specify more precisely what they
should do. For example, the GEMDOS function to write a
character to the console screen has a command number of 2.
It requires a single command parameter that tells the func
tion which character to print.

To call a GEMDOS function from machine language, you
must push the command parameters onto the stack, followed
by the command number, and execute a TRAP #1 statement.
The TRAP #1 instruction puts the program into supervisor
mode, and begins executing the instructions found at the ad
dress stored in exception vector 33, whose address is 132
($84). This exception vector contains the address of the GEM
DOS handler, which reads the command number on the top
of the stack, and directs program execution to the appropri
ate function. When the function terminates, the program re
turns to user mode, and the results, if any, are returned in
register DO. In most cases, the value is returned as a long-
word, but there are exceptions. Some error codes are re
turned as words, so it's best to test only the low-order words
when checking for errors. You should also be aware that
sometimes a GEMDOS function will return a BIOS error
number (between - 1 and -31). When a GEMDOS function
call is completed, the calling program has the responsibility
to adjust the stack in order to remove the command parame
ters and command number.

237

APPENDIX C

The following program fragment demonstrates how you
would print the character A on the console screen using
GEMDOS command 2:
move.w # 'A ', — (sp) * push the character value on stack
move.w # 2, — (sp) * push GEMDOS command number on

* stack
trap # 1 * call GEMDOS handler
addq.l #4,sp * pop parameters (4 bytes) off stack

Calling the GEMDOS routines from C is much simpler.
Most C compilers come with a library routine called gem-
dos(), which stacks the parameters and executes the TRAP
#1 instruction. For example, the sample call illustrated above
could be accomplished in C by the single statement:
gemdos(2, 'A');

Since it's easier to remember a command name than a
command number, most C compilers include a header file
called OSBIND.H that defines macros for all of the GEMDOS
functions. For example, the macro definition for GEMDOS
command 2 is
#define Cconout(a) gemdos(0x2,a)

Therefore, after you #include OSBIND.H in your pro
gram, you can call the sample function like this:
Cconout('A');

Since this format is the most readable, most reference
books and sample programs use the C macro notation. Re
member, however, that in order to use GEMDOS functions
in your C programs, you must link your program with the
compiler library that contains the gemdos() function, and
you must #include OSBIND.H if you use the macros.

238

PtermO

Terminate Process
PtermO() Opcode = 0 ($00)
T h is f u n c tio n te r m i n a te s th e c u r r e n t p r o c e s s , c lo s e s a ll o p e n files , c le a r s
th e m e m o r y s p a c e u s e d b y th e p r o c e s s , a n d r e tu r n s to th e p r o g r a m th a t
c a lle d it (n o r m a lly th e G E M D e s k to p) . T h is fu n c tio n is m a in ly o f in te r e s t to
m a c h in e la n g u a g e p r o g r a m m e r s , s in c e th e s ta r tu p m o d u le s s u p p lie d w ith
C la n g u a g e c o m p ile r s a u to m a tic a l ly ca ll o n e o f th e te r m in a te fu n c tio n s
w h e n th e m a i n () f u n c tio n e x its .

C macro format
P t e r m 0 ();

Machine language format
c l r .w - (s p)
tr a p # 1

Inputs
N o n e

Results
N o n e

See also
P t e r m () , P t e r m r e s ()

239

Cconin

Wait for Keyboard Character
Cconin() Opcode = 1 ($01)
T h is f u n c tio n w a i ts u n til a c h a r a c t e r is a v a ila b le f ro m th e c o n s o le k e y
b o a r d , e c h o e s it to th e s c r e e n , a n d r e tu r n s its A S C II v a lu e a n d s c a n c o d e .

C macro format
lo n g k e y c o d e ;

k e y c o d e = C c o n i n ();

Machine language format
m o v e .w # 1 , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO k e y c o d e lo n g A lo n g w o r d th a t c o n t a in s b o th th e A S C II v a lu e o f

th e k e y (s) p r e s s e d , a n d th e s c a n c o d e . T h e A S C II
v a lu e is r e tu r n e d in th e lo w b y te o f th e lo w w o r d
o f keycode, w h ile th e s c a n c o d e is r e tu r n e d in th e
lo w b y te o f th e h ig h w o r d . S e e A p p e n d ix J f o r a
c o m p le te lis t o f k e y c o d e s .

See also
C c o n i s () , C r a w c i n () , C n e c i n () , C r a w c i o ()

240

Cconout

Send Character to Screen
Cconout() Opcode = 2 ($02)
T h is f u n c tio n s e n d s a s in g le c h a r a c t e r to th e c o n s o le s c r e e n d e v ic e .

C macro format
c h a r c h ;

C c o n o u t(c h) ;

Machine language format
m o v e .w # c h a r , - (s p)
m o v e .w # 2 , - (s p)
tr a p # 1
a d d q .l # 4 , s p

Inputs
c h a r w o r d T h e lo w b y te c o n ta in s th e A S C II v a lu e o f

th e c h a r a c t e r to w r ite to th e s c r e e n , th e
h ig h b y te is 0 .

Results
N o n e

See also
C c o n o s () , C p m o u t () , C a u x o u t ()

241

Cauxin

Wait for RS-232 Character
Cauxin() Opcode = 3 ($03)
T h is f u n c tio n w a i ts u n til a c h a r a c t e r is a v a ila b le f ro m th e R S -2 3 2 s e ria l d e
v ic e , a n d r e tu r n s its A S C II v a lu e . I t d o e s n o t e c h o th e c h a r a c t e r to th e
s c r e e n .

C macro format
c h a r c h ;

c h = C a u x i n ();

Machine language format
m o v e .w # 3 , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO c h w o r d T h e lo w e r e ig h t b its c o n ta in th e A S C II c h a r a c t e r r e

c e iv e d .

See also
C a u x i s () , C c o n i n ()

242

Cauxout

Send Character to RS-232 Port
Cauxout() Opcode = 4 ($04)
T h is f u n c tio n s e n d s a s in g le c h a r a c t e r to th e R S -2 3 2 s e ria l d e v ic e . I t d o e s
n o t r e tu r n u n til th e c h a r a c t e r h a s b e e n s e n t .

C macro format
c h a r c h ;

C a u x o u t (c h) ;

Machine language format
m o v e .w
m o v e .w
tr a p
a d d q .l

Inputs
c h

Results
N o n e

See also
C a u x o s () , C p m o u t () , C c o n o u t ()

c h , — (s p)
4 / - (s p)
#1
4 , s p

w o r d T h e lo w b y te c o n t a in s th e A S C II v a lu e o f
th e c h a r a c t e r to w r ite to th e se ria l p o r t ,
th e h ig h b y te is 0 .

243

Cprnout

Send Character to Printer
Cprnout() Opcode = 5 ($05)
T h is f u n c tio n s e n d s a s in g le c h a r a c t e r to th e C e n tr o n ic s p a ra lle l p r in te r d e
v ic e . I t d o e s n o t r e tu r n u n til th e c h a r a c t e r h a s b e e n s e n t , o r th e p r in te r
tim e s o u t .

C macro format
c h a r c h ;
in t s ta tu s ;

s ta tu s = C p r n o u t (c h) ;

Machine language format
m o v e .w # c h , - (s p)
m o v e .w # 5 , - (s p)
tr a p # 1
a d d q .l # 4 , s p

Inputs
c h w o r d T h e lo w b y te c o n ta in s th e A S C II v a lu e o f

th e c h a r a c t e r to w r ite to th e p r in te r p o r t ,
th e h ig h b y te is 0 .

Results
s ta tu s w o r d A v a lu e o f - 1 is r e tu r n e d if th e c h a r a c t e r

h a s b e e n s e n t c o r r e c t ly , a 0 if th e c h a r a c
te r c a n 't b e s e n t w ith in th e time out p e
r io d (t im e o u t p e r io d r e fe r s to th e c o n d i
tio n w h e n th e p a p e r r u n s o u t , th e p r in te r
is o fflin e , a n d s o o n).

See also
C p m o s () , C p m o u t () , C c o n o u t ()

n e w p a g e

244

Crawio

Input/Output Console Character
Crawio() Opcode = 6 ($06)
T h is f u n c tio n a llo w s y o u e i t h e r to s e n d c h a r a c t e r s to th e c o n s o le d e v ic e , o r
to r e c e iv e th e m . T h e r e c e i v e c h a r a c t e r p o r t io n o f th e f u n c tio n d o e s n o t
w a it f o r a c h a r a c t e r to b e c o m e a v a i la b le , b u t r e tu r n s im m e d ia te ly w h e th e r
o r n o t o n e w a s r e c e i v e d .

C macro format
in t c h in , c h o u t ;

c h in = C r a w io (c h o u t) ;

Machine language format
m o v e .w c h o u t , - (s p)
m o v e .w # 6 , - (s p)
tr a p # 1
a d d q .l # 4 , s p

Inputs
c h o u t w o r d T h e lo w b y te o f th is w o r d e i th e r c o n ta in s

a n A S C II c h a r a c t e r 0 - 2 5 4 to s e n d to th e
s c r e e n , o r a v a lu e o f 2 5 5 , w h ic h in d ic a te s
th a t a c h a r a c t e r is to b e r e c e iv e d .

Results
DO c h in w o r d If chout w a s s e t to 2 5 5 , th e v a lu e o f th e c h a r a c t e r r e a d

f ro m th e k e y b o a r d is r e tu r n e d h e r e . If n o c h a r a c t e r
w a s a v a i la b le , a 0 is r e tu r n e d in b o th b y te s . If a c h a r
a c t e r c a n b e r e a d , th e lo w b y te c o n ta in s its A S C II
v a lu e , a n d th e h ig h b y te c o n ta in s its s c a n c o d e .

245

Crawcin

Raw Keyboard Input Without Echo
Crawcin() Opcode = 7 ($07)
T h is f u n c tio n w a i ts u n til a c h a r a c t e r is a v a ila b le f ro m th e c o n s o le k e y
b o a r d , a n d r e tu r n s its A S C II v a lu e a n d s c a n c o d e . U n lik e C c o n i n () , it d o e s
n o t e c h o th e c h a r a c t e r to th e s c r e e n .

C macro format
lo n g k e y c o d e ;

k e y c o d e = C r a w c i n ();

Machine language format
m o v e .w # 7 , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO k e y c o d e lo n g A lo n g w o r d th a t c o n ta in s b o th th e A S C II v a lu e o f

th e k e y (s) p r e s s e d , a n d th e s c a n c o d e . T h e A S C II
v a lu e is r e tu r n e d in th e lo w b y te o f th e lo w w o r d
o f k e y c o d e , w h ile th e s c a n c o d e is r e tu r n e d in th e
lo w b y te o f th e h ig h w o r d . S e e A p p e n d ix J fo r a
c o m p le te lis t o f k e y c o d e s .

See also
C c o n i n () , C n e c i n () , C r a w c i o ()

246

Cnecin

Keyboard Input Without Echo
Cnecin() Opcode = 8 ($08)
T h is f u n c t io n w a i ts u n til a c h a r a c t e r is a v a ila b le f ro m th e c o n s o le k e y
b o a r d , d o e s n o t e c h o th e c h a r a c t e r to th e s c r e e n , a n d r e tu r n s its A S C II
v a lu e a n d s c a n c o d e . T h is f u n c tio n is id e n tic a l to C r a w c i n () , th o u g h th e
d o c u m e n ta t i o n s ta te s th a t it d iff e rs f ro m th a t f u n c tio n in th a t C n e c i n () a c ts
o n c o n tr o l c o d e s lik e C o n tr o l-S , C o n tr o l -Q , a n d C o n tr o l -C , in s te a d o f p a s s
in g th e s e c o d e s o n , lik e C r a w c i n (). A t le a s t in c u r r e n t T O S v e r s io n s , h o w
e v e r , C n e c i n () p a s s e s th e s e c o d e s o n a ls o .

C macro format
lo n g k e y c o d e ;

k e y c o d e = C n e c i n ();

Machine language format
m o v e .w # 8 , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO k e y c o d e lo n g A lo n g w o r d th a t c o n t a in s b o th th e A S C II v a lu e o f

th e k e y (s) p r e s s e d , a n d th e s c a n c o d e . T h e A S C II
v a lu e is r e tu r n e d in th e lo w b y te o f th e lo w w o r d
o f keycode, w h ile th e s c a n c o d e is r e tu r n e d in th e
lo w b y te o f th e h ig h w o r d . S e e A p p e n d ix J fo r a
c o m p le t e lis t o f k e y c o d e s .

See also
C c o n i n () , C r a w c i n () , C r a w c i o ()

247

Cconws

Cconws()
Write String to Screen

Opcode = 9 ($09)
A llo w s y o u to p r in t a n e n t ir e s t r in g o f c h a r a c t e r s to th e c o n s o le d e v ic e
s c r e e n a t o n c e .

C macro format
in t le n g th ;
c h a r ^ s tr in g ;

le n g th = C c o n w s (s t r in g) ;

Machine language format
m o v e .l s t r in g , - (s p)
m o v e .w # 9 , - (s p)
tr a p # 1
a d d q .l # 6 , s p

Inputs
s tr in g

Results
DO le n g th

See also
C c o n o u t ()

lo n g A p o in t e r to a n u ll- te r m in a te d s tr in g o f
te x t c h a r a c t e r s to b e p r in te d . C o n tr o l
c h a r a c t e r a n d e s c a p e s e q u e n c e s a r e in te r
p r e te d a s u s u a l.

w o r d T h e n u m b e r o f c h a r a c t e r s th a t w e r e p r in te d .

248

Cconrs

Read String from Keyboard
Cconrs() Opcode = 10 ($0A)
T h is f u n c tio n r e a d s a n e n t ir e s t r in g o f c h a r a c t e r s f ro m th e c o n s o le k e y
b o a r d , e c h o i n g e a c h c h a r a c t e r to th e s c r e e n a s it is r e a d . I t p r o v id e s s o m e
lin e -e d itin g f u n c t io n s a s w e ll. T h e f u n c tio n w ill n o t r e tu r n u n til th e u s e r
s ig n a ls th a t th e e n t ir e s t r in g h a s b e e n e n t e r e d , b y p r e s s i n g th e R e tu r n k e y ,
o r b y e n t e r i n g a s t r in g o f th e m a x im u m le n g th . N o te th a t th e e n tir e p r o
g r a m (n o t j u s t th is f u n c tio n) te r m i n a te s if C o n tr o l -C is s t r u c k d u r in g c h a r
a c te r e n tr y .

C macro format
c h a r b u f f e r [M A X L E N];
in t le n g th ;

le n g th = C c o n r s (b u f f e r) ;

Machine language format
m o v e .l b u ff e r , - (s p)
m o v e .w # $ 0 A , - (s p)
tr a p # 1
a d d q .l # 6 , s p

Inputs
b u ff e r lo n g T h e a d d r e s s o f a b u ff e r in to w h ic h th e

c h a r a c t e r s w ill b e r e a d . T h e f irs t tw o
b y te s o f th is b u ffe r a r e r e s e r v e d . Y o u
s h o u ld p la c e th e m a x im u m n u m b e r o f
c h a r a c t e r s th a t c a n b e r e a d (b u ffe r le n g th
- 2) in th e f irs t b y te . T h e f u n c tio n w ill
te r m in a te a s s o o n a s th a t m a n y c h a r a c t e r s
h a v e b e e n r e a d . T h e le n g th o f th e s tr in g
th a t is r e a d w ill b e r e tu r n e d in th e s e c o n d
b y te o f th e b u ffe r .

Results
DO le n g th w o r d T h e le n g th o f th e s tr in g r e a d b y th e f u n c tio n .

249

Cconis

Get Keyboard Input Status
Cconis() Opcode = 11 ($0B)
A llo w s y o u to d e te r m in e w h e t h e r th e r e is a c h a r a c t e r w a i tin g to b e r e
c e iv e d f ro m th e c o n s o l e d e v ic e k e y b o a r d .

C macro format
in t s ta tu s ;

s ta tu s = C c o n i s ();

Machine language format
m o v e .w # $ 0 B , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO s ta tu s lo n g A v a lu e o f 0 m e a n s th e r e a r e n o c h a r a c t e r s w a itin g ,

w h ile - 1 m e a n s t h a t a t le a s t o n e c h a r a c t e r is w a itin g
to b e r e c e iv e d .

See also
C c o n i n ()

250

Dsetdrv

Dsetdrv()
Set Default Drive Number

Opcode = 14 ($0E)
T h e d e f a u l t d r iv e is th e o n e G E M D O S a s s u m e s is r e f e r r e d to w h e n o n ly a
f ile n a m e is u s e d . T h is f u n c tio n a llo w s y o u to s e t th e d e f a u lt d r iv e , a n d r e
tu r n s in fo rm a tio n a b o u t th e n u m b e r o f lo g ic a l d r iv e s r e c o g n iz e d b y th e
s y s te m .

C macro format
lo n g d r iv e s ;
in t d e f a u lt ;

d r iv e s = D s e td r v (d e f a u lt) ;

Machine language format
m o v e .w # d e f a u l t , - (s p)
m o v e .w # $ 0 E , - (s p)
tr a p # 1
a d d q .l # 4 , s p

Inputs
d e f a u lt

Results
DO d r iv e s

w o r d T h e n u m b e r o f th e d r iv e to s e t a s th e d e
f a u lt (d r iv e A : = 0 , d r iv e B : = 1 , a n d s o
o n) .

lo n g A b it f la g th a t in d ic a te s w h ic h d r iv e s a r e r e c o g n iz e d
b y th e s y s te m . E a c h b it th a t c o r r e s p o n d s to a k n o w n
d r iv e is s e t to 1 (b it 0 = d r iv e A : , b it 1 = d r iv e B :,
a n d s o f o r th) .

See also
D g e t d r v () , D s e t p a t h ()

251

Cconos

Get Screen Output Status
Cconos() Opcode=16 ($10)
T h is f u n c tio n a llo w s y o u to d e t e r m in e w h e t h e r th e c o n s o le d e v ic e s c r e e n is
r e a d y to a c c e p t a c h a r a c t e r . I t is p r o b a b ly in c lu d e d f o r p u r p o s e s o f s y m m e
tr y , s in c e th e s c r e e n is a lw a y s r e a d y to p r in t a c h a r a c t e r .

C macro format
in t s ta tu s ;

s ta tu s = C c o n o s ();

Machine language format
m o v e .w # $ 1 0 , - (s p)
t r a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO s ta tu s lo n g A 0 m e a n s th e d e v ic e is n o t r e a d y to a c c e p t a c h a r a c

te r , w h ile a - 1 m e a n s it is r e a d y .

See also
C c o n o u t ()

252

Cprnos

Get Printer Output Status
Cprnos() Opcode = 17 ($11)
T h is f u n c tio n a llo w s y o u to d e t e r m in e w h e t h e r th e C e n t r o n ic s p a ra lle l
p r in te r d e v ic e is r e a d y to a c c e p t a c h a r a c t e r .

C macro format
in t s ta tu s ;

s ta tu s = C p r n o s ();

Machine language format
m o v e .w # $ 1 1 , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO s ta tu s lo n g A 0 m e a n s th e d e v ic e is n o t r e a d y to a c c e p t a c h a r a c

te r , w h ile a - 1 m e a n s it is r e a d y .

See also
C p r n o u t ()

253

Cauxis

Get RS-232 Input Status
Cauxis() Opcode = 18 ($12)
T h is f u n c tio n a llo w s y o u to d e t e r m in e w h e t h e r th e r e is a c h a r a c t e r w a itin g
to b e r e c e iv e d f ro m th e R S -2 3 2 s e ria l d e v ic e .

C macro format
in t s ta tu s ;

s ta tu s = C a u x i s ();

Machine language format
m o v e .w # $ 1 2 , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO s ta tu s lo n g A v a lu e o f 0 m e a n s th e r e a r e n o c h a r a c t e r s w a itin g ,

w h ile - 1 m e a n s a t le a s t o n e c h a r a c t e r is w a i tin g to
b e r e c e iv e d .

See also
C a u x i n ()

254

Cauxos

Get RS-232 Output Status
Cauxos() Opcode = 19 ($13)
T h is f u n c tio n a llo w s y o u to d e t e r m in e w h e t h e r th e R S -2 3 2 se ria l d e v ic e is
r e a d y to a c c e p t a c h a r a c t e r .

C macro format
in t s ta tu s ;

s ta tu s = C a u x o s ();

Machine language format
m o v e .w # $ 1 3 , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO s ta tu s lo n g A 0 m e a n s th e d e v ic e is n o t r e a d y to a c c e p t a c h a r a c

te r , w h ile a - 1 m e a n s it is r e a d y .

See also
C a u x o u t ()

255

Dgetdrv

Get Default Drive Number
Dgetdrv() Opcode = 25 ($19)
T h is f u n c tio n a llo w s y o u to f in d th e d r iv e n u m b e r o f th e c u r r e n t d e f a u lt
d r iv e .

C macro format
in t d e f a u lt ;

d e f a u l t = D g e t d r v ();

Machine language format
m o v e .w # $ 1 9 , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e

Results
DO d e f a u lt w o r d T h e d r iv e n u m b e r o f th e c u r r e n t d e f a u lt d r iv e

(d r iv e A : = 0 , d r iv e B : = 1 , a n d s o o n) .

See also
D s e t d r v ()

256

Fsetdta

Set Disk Transfer Address
Fsetdta() Opcode = 26 ($1A)
This function allows you to change the Disk Transfer Address, which
points to the buffer used for disk read operations. This buffer is used as a
scratch area for directory searches.

C macro format
char dta[44];

Fsetdta(dta);

Machine language format
move.l
move.w
trap
addq.l

Inputs
dta

Results
None

See also
Fgetdta(), Fsfirst(), Fsnext()

dta, - (sp)
#$1 A, - (sp)
#1
#6,sp

long A pointer to the DTA buffer that will be
used from now on.

257

Super

Super()
Set User/Supervisor Mode

Opcode = 32 ($20)
This function is used to change between the 68000 processor's user and
supervisor modes. Though most programs operate in user mode, certain
operations on the ST can only be performed from supervisor mode. These
include reading or writing to system variables stored in memory locations
below 2048 ($800), and reading or writing to hardware registers located
above 167444482 ($FF80000).

C macro format
long stack, oldstack;

oldstack = Super(stack);

Machine language format
stack, - (sp)
#$20 ,-(sp)

move.l
move.w
trap
addq.l

Inputs
stack

#1
#6,sp

long

Results
DO oldstack long

The address of the stack area to use after
the mode change.

0 = Use same stack for supervisor and
user modes.
-1 L = read (don't change) current privi
lege mode.

If the mode was toggled, the address of the old su
pervisor stack is returned here. If stack was set to
- 1L, the value here is a flag indicating the current
privilege mode:

0 = User
1 = Supervisor

258

Tgetdate

Get GEMDOS Date
Tgetdate() Opcode = 42 ($2A)
Gets current date according to GEMDOS.

C macro format
int date;

date = Tgetdate();

Machine language format
move.w #$2A, - (sp)
trap #1
addq.l #2,sp

Inputs
None

Results
DO date word A 16-bit code that specifies the GEMDOS date.
Interpretation of GEMDOS date:

Bit Number Description Range
0-4 Day 1-31
5-8 Month 1-12

9-15 Year - 1980 0-119

See also
Tsetdate(), Tgettime(), Tsettime()

259

Tsetdate

Set GEMDOS Date
Tsetdate() Opcode = 43 ($2B)
Sets current date for GEMDOS.

C macro format
int date;

Tsetdate(date);

Machine language format
move.w #date, - (sp)
move.w #$2B, - (sp)
trap #1
addq.l #4,sp

Inputs
date word A 16-bit code that specifies the GEMDOS

date.
Interpretation of GEMDOS date:

Bit Number Description Range
0-4 Day 1-31
5-8 Month 1-12
9-15 Year - 1980 0-119

Results
None

See also
Tgetdate(), Tgettime(), Tsettime()

260

Tgettime

Get GEMDOS Time
Tgettime() Opcode = 44 ($2C)
This function is used to get the GEMDOS version of the current time.

C macro format
int time;

time = Tgettime();

Machine language format
move.w #$2C, - (sp)
trap #1
addq.l #2,sp

Inputs
None

Results
DO time word A 16-bit code that indicates the time.
Interpretation of GEMDOS time:

Bit Number Description
0-4 Seconds divided by 2
5-10 Minutes
11-15 Hours

Range
0-29
0-59
0-23

See also
Tsettime(), Tgetdate(), Tsetdate()

261

Tsettime

Set GEMDOS Time
Tsettime() Opcode = 45 ($2D)
Allows you to set the GEMDOS time.

C macro format
int time;

Tsettime(time);

Machine language format
move.w #time, - (sp)
move.w #$2D, - (sp)
trap #1
addq.l #4,sp

Inputs
time word A 16-bit code that indicates the time.
Interpretation of GEMDOS time:

Bit Number Description Range
0-4 Seconds divided by 2 0-29

5-10 Minutes 0-59
11-15 Hours 0-23

Results
None

See also
Tsettime(), Tgetdate(), Tsetdate()

262

Fgetdta

Get Disk Transfer Address
Fgetdta() Opcode = 47 ($2F)
This function finds the current Disk Transfer Address that points to the
buffer used for disk read operations. This buffer is used as a scratch area
for directory searches.

C macro format
char *dta;

dta = Fgetdta();

Machine language format
move. w #$2F, - (sp)
trap #1
addq.l #2,sp

Inputs
None

Results
DO dta long A pointer to the current DTA.

See also
Fsetdta(), Fsfirst(), Fsnext()

263

Sversion

Get GEMDOS Version Number
Sversion() Opcode = 48 ($30)
This function returns the GEMDOS version number. This number refers
only to the version of GEMDOS, not to the GEM or TOS version in gen
eral.

C macro format
int version;

version = Sversion();

Machine language format
move.w #$30 ,-(sp)
trap #1
addq.l #2,sp

Inputs
None

Results
DO version word A 16-bit code that indicates the GEMDOS version

number. The major version number is stored in the
low byte, and the minor revision number in the
high byte.

264

Ptermres

Terminate and Stay Resident
Ptermres() Opcode = 49 ($31)
Like the Pterm() and PtermO() functions, this one terminates the current
process, closes all open files, and exits to the calling program, usually the
GEM Desktop. It allows a return code to be passed to the calling program
as well. Unlike the others, however, Ptermres() doesn't automatically clear
the memory space used by the process. All or part of the program may
remain loaded in memory even after the process terminates. TSR programs
can "steal" the vectors used by exception handlers, such as the system
timer, vertical blank interrupt, or the keyboard Alternate-HELP screen
dump routine, to create hot-key applications. This function is mainly of in
terest to machine language programmers, since the startup modules sup
plied with C language compilers automatically call one of the terminate
functions when the main() function exits.

C macro format
long keepsize;
int retcode;

Ptermres(keepsize, retcode);

Machine language format
move.w
move.l
move.w
trap

Inputs
retcode

keepsize

Results
None

See also
PtermO(), Pterm()

#retcode, - (sp)
#keepsize, - (sp)
#$31 ,-(sp)
#1

word The exit code that is returned to the call
ing program.

long The number of bytes of memory to keep
resident, starting at and including the
256-byte basepage.

265

Dfree

Get Disk Free Space
Dfree() Opcode = 54 ($36)
The Dfree() function is used to find the amount of free space left on a
disk.

C macro format
long buffer[4];
int drivenum;

Dfree(buffer, drivenum);

Machine language format
move.w #drivenum, - (sp)
move.l buffer, - (sp)
move.w #$36, - (sp)
trap #1
addq.l #8,sp

Inputs
drivenum word The number of the drive to check

buffer long
(0 = drive A:, 1 = drive B:, and so on).
A pointer to a buffer that will store the
four longwords of data returned by this
call.

Contents of the buffer pointed to by buffer:

Longword Number Contents
01
2
3

Number of free clusters
Total number of clusters
Sector size (in bytes)
Cluster size (in sectors)

Results
None

266

Dcreate

Create Directory
Dcreate()
This function is used to create a new subdirectory.

C macro format
int status;
char ^pathname;

status = Dcreate(pathname);

Machine language format

Opcode = 57 ($39)

move.l
move.w
trap
addq.l

Inputs
pathname

Results
DO status

See also
Ddelete()

pathname, - (sp)
#$39, - (sp)
#1
#6,sp

long A pointer to a null-terminated ASCII di
rectory path string (for instance, C:\NEW-
DIR).

word A 0 means that the directory was created without
problem, otherwise a negative GEMDOS error num
ber is returned.

267

Ddelete

Delete Directory
Ddelete() Opcode = 58 ($3A)
Used to delete a subdirectory, provided that it contains no files.

C macro format
int status;
char ^pathname;

status = Ddelete(pathname);

Machine language format
move.l
move.w
trap
addq.l

Inputs
pathname

pathname, - (sp)
#$3A, - (sp)
#1
#6,sp

long A pointer to a null-terminated ASCII di
rectory path string (for instance, C:\NEW-
D1R).

Results
DO status word A 0 means that the directory was deleted without

problem, otherwise a negative GEMDOS error num
ber is returned.

See also
Dcreate()

268

Dsetpath

Set Default Directory Path
Dsetpath() Opcode = 59 ($3B)
This function is used to set a default directory on a drive, which is where
GEMDOS will search first for a named file.

C macro format
int status;
char *path;

status = Dsetpath(path)

Machine language format
move.l path, - (sp)
move.w #$3B, - (sp)
trap #1
addq.l #6,sp

Inputs
path long A pointer to a null-terminated ASCII di

rectory path string (for instance,
WORDPRC\LETTERS\FRED). If the path
name begins with a drive letter and a co
lon, the path is set for that drive rather
than the current default drive (for in
stance, C:\DATABASE\CLIENTS).

Results
DO status word A 0 means that the directory was selected without

problem, otherwise a negative GEMDOS error num
ber is returned.

See also
Dgetpath()

269

Fcreate

Create File
Fcreate() Opcode = 60 ($3C)
Creates a new file, or if the specified file already exists, truncates it to
length 0. The file is opened, and a 16-bit handle is returned that can be
used for further access to the file, f w-

C macro format
char *fname;
int handle, attr;

handle = Fcreate(fname, attr);

Machine language format
move.w attr, - (sp)

fname, - (sp)
#$3C, - (sp)
#1
#8,sp

A flag that specifies the file's attributes.

move.l
move.w
trap
addq.l

Inputs
attr word
Interpretation of attr flag:
Bit Number Bit Value Description

0 1 Read-only file (can't be deleted or written to)
1 2 Hidden file (excluded from normal directory

searches)
2 4 System file (excluded from normal directory

searches)
3 8 Volume label (can only exist in root)

fname long A pointer to a null-terminated ASCII
string containing the name of the file to
create.

Results
DO handle

See also
Fopen()

word If the function succeeds, a 16-bit handle value. If
not, a negative GEMDOS error number.

270

Fopen

Open File
Opcode = 61 ($3D)Fopen()

O p e n s a s p e c if ie d file , a n d r e tu r n s a 1 6 -b it h a n d le th a t c a n b e u s e d fo r
f u r th e r a c c e s s to th e file .

C macro format
c h a r * fn a m e ;
in t h a n d l e , m o d e ;

h a n d le = F o p e n (f n a m e , m o d e) ;

Machine language format
m o d e , - (s p)
f n a m e , - (s p)
$ 3 D , - (s p)
#1

m o v e .w
m o v e .l
m o v e .w
tr a p
a d d q .l

Inputs
m o d e

8 , s p

w o r d

f n a m e

Results
DO h a n d le

lo n g

w o r d

A fla g th a t s p e c if ie s w h ic h o p e r a t io n s w ill
b e a v a ila b le o n c e th e file h a s b e e n
o p e n e d .

0 = R e a d o n ly
2 = W r ite o n ly
3 = R e a d o r W r ite

A p o in te r to a n u ll- te r m in a te d A S C II
s tr in g c o n ta in in g th e n a m e o f th e file to
o p e n .

If th e f u n c tio n s u c c e e d s , a 1 6 -b it h a n d le v a lu e . If
n o t , a n e g a tiv e G E M D O S e r r o r n u m b e r .

See also
F c r e a t e () , F c l o s e ()

271

Fclose

Close File
Fclose() Opcode = 62 ($3E)
W h e n a p r o g r a m is f in is h e d w ith a file , i t m u s t u s e th is f u n c tio n to c lo s e
th e file .

C macro format
in t h a n d l e , s ta tu s ;

s ta tu s = F c lo s e (h a n d le) ;

Machine language format
m o v e .w h a n d le , - (s p)
m o v e , w # $ 3 E , - (s p)
tr a p # 1
a d d q .l # 4 , s p

Inputs
h a n d le w o r d T h e file h a n d le o f th e file to c lo s e .

Results
DO s ta tu s w o r d A 0 m e a n s s u c c e s s , f a ilu re is in d ic a te d b y th e a p p r o

p r ia te G E M D O S e r r o r n u m b e r .

See also
F c r e a t e () , F o p e n ()

272

Fread

Read File
Fread() Opcode = 63 ($3F)
T h is fu n c tio n r e a d s a s p e c if ie d n u m b e r o f b y te s f ro m a n o p e n file .

C macro format
lo n g s ta tu s , c o u n t ;
in t h a n d le ;
c h a r ^ b u ffer ;

s ta tu s = F r e a d (h a n d le , c o u n t , b u ffe r) ;

Machine language format
m o v e .l b u ffe r , - (s p)
m o v e .l # c o u n t , - (s p) i
m o v e .l # h a n d l e , - (s p)
m o v e .w # $ 3 F , - (s p)
tr a p # 1
a d d .l # 1 2 , s p

Inputs
b u ffe r lo n g A p o in t e r to th e b u ffe r w h e r e th e d a ta

th a t is r e a d in w ill b e s to r e d .
c o u n t lo n g T h e n u m b e r o f b y te s to r e a d . N o te : T h is

m u s t b e a lo n g v a lu e .
h a n d le w o r d T h e file h a n d le o f th e file to r e a d .

Results
DO s ta tu s w o r d If th e f u n c tio n s u c c e e d s , th e a c tu a l n u m b e r o f b y te s

r e a d is r e tu r n e d . If th e fu n c tio n a t t e m p ts to r e a d
p a s t th e e n d o f th e file , 0 is r e tu r n e d . F o r a n y o t h e r
e r r o r , a n e g a tiv e G E M D O S e r r o r n u m b e r is r e tu r n e d

See also
F o p e n () , F c l o s e ()

273

Fwrite

Write File
Fwrite() Opcode = 64 ($40)
T h is f u n c tio n w r i te s a s p e c if ie d n u m b e r o f b y te s to a n o p e n file .

C macro format
lo n g s ta tu s , b y te s ;
in t h a n d le ;
c h a r ^ b u ffe r ;

s ta tu s = F w r i te (h a n d le , b y te s , b u ffe r) ;

Machine language format
m o v e .l b u ffe r , - (s p)
m o v e .l # b y t e s , - (s p)
m o v e .l # h a n d l e , - (s p)
m o v e .w # $ 4 0 , - (s p)
tr a p # 1
a d d .l # 1 2 , s p

Inputs
b u ff e r lo n g A p o in t e r to th e b u ffe r w h e r e th e d a ta to

b e w r itte n is s to r e d .
b y te s lo n g T h e n u m b e r o f b y te s to w r ite . N o te : T h is

m u s t b e a lo n g v a lu e .
h a n d le w o r d T h e file h a n d le o f th e file to w r ite to .

Results
DO s ta tu s w o r d If th e f u n c tio n s u c c e e d s , th e a c tu a l n u m b e r o f b y te s

w r it te n is r e tu r n e d . If n o t , a n e g a tiv e G E M D O S e r
r o r n u m b e r is r e tu r n e d

See also
F o p e n () , F c l o s e ()

274

Fdelete

Delete File
Fdelete()
D e le te s a s p e c if ie d file f ro m its d i r e c to r y .

C macro format
in t s ta tu s ;
c h a r ’’’f ile n a m e ;

s ta tu s = F d e le te (f i le n a m e);

Machine language format
m o v e .l f i le n a m e , - (s p)
m o v e .w # $ 4 1 , - (s p)
tr a p # 1
a d d q .l # 6 , s p

Opcode = 65 ($41)

Inputs
f ile n a m e lo n g A p o in t e r to a n u ll- te r m in a te d A S C II

s tr in g th a t c o n ta in s th e n a m e o f th e file
to b e d e le te d

Results
DO s ta tu s

See also
F c r e a t e ()

w o r d If s u c c e s s f u l , 0 is r e tu r n e d , if n o t , a n e g a tiv e G E M
D O S e r r o r n u m b e r .

275

Fseek

Seek File
Fseek() Opcode = 66 ($42)
A llo w s y o u to m o v e th e file p o in t e r to c h a n g e th e p o s i tio n in th e file a t
w h ic h d a ta w ill b e r e a d o r w r i t te n .

C macro format
lo n g p o s i tio n , o f fs e t ;
in t h a n d le , s e e k m o d e ;

p o s i tio n = F s e e k (o f f s e t , h a n d le , s e e k m o d e) ;

Machine language format
m o v e .w
m o v e .w
m o v e .l
m o v e .w
tr a p
a d d .l

Inputs
s e e k m o d e

h a n d le

o f fs e t

s e e k m o d e , - (s p)
h a n d l e , - (s p)
o f f s e t , - (s p)
$ 4 2 , - (s p)
#1
1 0 , s p

w o r d

w o r d

lo n g

A fla g th a t in d ic a te s th e p o s i tio n r e la tiv e
to w h ic h th e file p o in t e r w ill m o v e :

0 = B e g in n in g o f file
1 = C u r r e n t p o s itio n
2 = E n d o f file

T h e h a n d le fo r th e file w h o s e p o in te r w ill
b e m o v e d .
T h e n u m b e r o f b y te s to m o v e th e file
p o in te r . A p o s i tiv e n u m b e r m o v e s to w a r d
th e e n d o f th e file , a n e g a tiv e n u m b e r
m o v e s to w a r d th e b e g in n in g .

Results
DO p o s i tio n lo n g T h e a b s o lu te c u r r e n t p o s i tio n o f th e file p o in te r

a f te r th e F s e e k () ca ll , e x p r e s s e d a s a n o f fs e t f ro m
th e s t a r t o f th e file.

276

Fattrib

Get/Set File Attributes
Fattrib() Opcode = 67 ($43)
T h is f u n c t io n c a n b e u s e d to r e a d o r c h a n g e f ile 's a tt r ib u te s .

C macro format
in t a t t r ib u te s , m o d e , n e w a ttr ;
c h a r ^ f ile n a m e ;

a t t r ib u te s = F a t tr ib (f i le n a m e , m o d e , n e w a t t r) ;

Machine language format
m o v e .w
m o v e .w
m o v e .l
m o v e .w
tr a p
a d d q .l

Inputs
n e w a t t r

n e w a t t r , - (s p)
m o d e , — (s p)
f i le n a m e , - (s p)
0 , - (s p)
#1
6 , s p

w o r d A b it f la g th a t in d ic a te s th e f ile 's n e w a t
tr ib u te s .

I n te r p r e ta t i o n o f newattr f lag :

Bit Number Attribute
0 R e a d -o n ly file (c a n 't b e d e le te d o r w r i t te n to)
1 H i d d e n file (e x c lu d e d f ro m n o r m a l d i r e c to r y s e a r c h e s)
2 S y s t e m file (e x c lu d e d f ro m n o r m a l d i r e c to r y s e a r c h e s)
3 V o lu m e la b e l (c a n o n ly e x is t in r o o t)
4 S u b d ir e c to r y
5 A r c h iv e b it

m o d e w o r d A f la g th a t d e t e r m in e s w h e th e r th e a t t r i
b u te s a r e r e a d o r c h a n g e d :

0 = R e a d
1 = C h a n g e

f ile n a m e lo n g A p o in t e r to a n u ll- te r m in a te d A S C II
s tr in g th a t c o n ta in s th e n a m e o f th e files
w h o s e a tt r ib u te s w ill b e r e a d o r c h a n g e d .

Results
DO a tt r ib u te s

See also
F c r e a t e ()

w o r d If mode is s e t to 0 , th e c u r r e n t file a tt r ib u te s a r e
r e tu r n e d h e r e , in th e s a m e f o r m a t a s d e s c r ib e d
fo r newattr, a b o v e .

277

Fdup

Duplicate Standard File Handle
Fdup() Opcode = 69 ($45)
T h is f u n c tio n is u s e d a s p a r t o f th e file r e d ir e c t io n p r o c e s s . I t c r e a t e s a
u s e r -d e s ig n a te d file h a n d le th a t d u p l ic a te s th e fu n c tio n o f o n e o f th e s ta n
d a r d file h a n d le s . T h is a llo w s y o u to u s e F f o r c e () (t h a t o n ly w o rk s w ith
u s e r -d e s ig n a te d file h a n d le s) w ith s ta n d a r d d e v ic e s .

C macro format
in t n e w h a n d le , h a n d le ;

n e w h a n d le = F d u p (h a n d l e) ;

Machine language format
m o v e .w h a n d le , - (s p)
m o v e .w # $ 4 5 - (s p)
t r a p # 1
a d d q .l # 4 , s p

Inputs
h a n d le w o r d O n e o f th e s ta n d a r d d e v ic e h a n d le s (0 - 5) .

Results
DO n e w h a n d le w o r d If s u c c e s s f u l , a u s e r -d e s ig n a te d file h a n d le

(g r e a te r th a n 5) . If n o t , a G E M D O S e r r o r n u m
b e r .

See also
F f o r c e ()

278

Fforce

Replace Standard File Handle
Fforce() Opcode = 70 ($46)
P e r m its y o u to r e d ir e c t I /O f ro m a s ta n d a r d d e v ic e h a n d le to a u s e r -d e s ig
n a t e d o n e .

C macro format
w o r d s ta tu s , s ta n d a r d , u s e r ;

s ta tu s = F f o r c e (s ta n d a r d , u s e r) ;

Machine language format
m o v e .w
m o v e .w
m o v e .w
tr a p
a d d q .l

Inputs
u s e r

s ta n d a r d

Results
DO s ta tu s

See also
F d u p ()

u s e r , - (s p)
s ta n d a r d , - (s p)
$ 4 6 , - (s p)
#1
6 , s p

w o r d T h e h a n d le o f th e u s e r -d e s ig n a te d file
t h a t r e p la c e s th e s ta n d a r d file ,

w o r d T h e h a n d le o f th e s ta n d a r d file to b e r e
p la c e d .

w o r d A 0 in d ic a te s s u c c e s s , o th e r w is e a n e g a tiv e G E M
D O S e r r o r n u m b e r is r e tu r n e d .

279

Dgetpath

Get Default Directory Path
Dgetpath() Opcode = 71 ($47)
T h is f u n c tio n is u s e d to fin d th e d e f a u lt d i r e c to r y o n a d r iv e , w h ic h is
w h e r e G E M D O S s e a r c h e s f irs t fo r a n a m e d file .

C macro format
w o r d d r iv e n u m ;
c h a r ^ b u ffe r ;

D g e tp a th (b u f f e r , d r iv e n u m);

Machine language format
m o v e .w # d r i v e n u m , — (s p)
m o v e .l b u ffe r , - (s p)
m o v e .w # 0 , - (s p)
t r a p # 1
a d d q .l # 8 , s p

Inputs
d r iv e n u m w o r d

b u ffe r

Results
N o n e

See also
D s e t p a t h ()

lo n g

T h e n u m b e r o f th e d r iv e (0 - 1 5) w h o s e
d e f a u lt p a th y o u w a n t to f in d (0 = d r iv e
A :, 1 = d r iv e B :, a n d s o fo r th) .
A p o in te r to th e b u ffe r w h e r e th e f u n c
tio n r e tu r n s th e p a th n a m e (a l lo c a te a t
le a s t 1 2 8 b y te s) .

280

Malloc

Allocate Memory Block
Malloc() Opcode = 72 ($48)
U s e d to a llo c a te s o m e o f th e s y s t e m 's f re e m e m o r y , a n d r e s e r v e it fo r u s e
b y th e p r o g r a m . A f te r th e p r o g r a m is f in is h e d u s in g th e m e m o r y , it s h o u ld
r e tu r n it w i th M f r e e () . M a l l o c () c a n a ls o b e u s e d to d e t e r m in e th e s iz e o f
th e la r g e s t b lo c k o f m e m o r y in th e f re e m e m o r y p o o l . B e c a u s e o f a b u g in
M a l l o c () , p r o g r a m s s h o u ld t r y to g e t all th e m e m o r y th e y n e e d w ith o n e
b ig M a l l o c () ca ll , in s t e a d o f s e v e r a l little o n e s .

C macro format
lo n g a d d r e s s , b y te s ;

a d d r e s s = M a llo c (b y te s) ;

Machine language format
m o v e . 1 # b y t e s , - (s p)
m o v e , w # $ 4 8 , - (s p)
tr a p # 1
a d d q .l # 6 , s p

Inputs
b y te s lo n g T h e n u m b e r o f b y te s o f m e m o r y to a llo

c a te . If s e t to - 1 , th e f u n c tio n r e tu r n s
th e s iz e o f th e la r g e s t b lo c k o f f re e m e m
o r y in address.

Results
DO a d d r e s s lo n g If th e f u n c tio n is a b le to a llo c a te bytes a m o u n t o f

m e m o r y , th e s ta r t in g a d d r e s s o f th e m e m o r y b lo c k
is r e tu r n e d h e r e . I f th e r e i s n 't s u f fic ie n t f re e m e m
o r y to a llo c a te th e b lo c k th a t w a s r e q u e s te d , a v a lu e
o f 0 is r e tu r n e d .

See also
M f r e e ()

281

Mfree

Mfree()
Free Memory Block

Opcode = 73 ($49)
T h is f u n c tio n is u s e d to r e tu r n m e m o r y th a t w a s a llo c a te d w ith M a l l o c ()
b a c k to th e s y s te m .

C macro format
in t s ta tu s ;
lo n g a d d r e s s ;

s ta tu s = M f r e e (a d d r e s s) ;

Machine language format
a d d r e s s , - (s p)
$ 4 9 , - (s p)
#1
6 , s p

m o v e .l
m o v e .w
tr a p
a d d q .l

Inputs
a d d r e s s

Results
DO s ta tu s

See also
M a l l o c ()

lo n g T h e a d d r e s s o f th e m e m o r y b lo c k to b e
r e tu r n e d .

w o r d A 0 in d ic a te s s u c c e s s f u l r e tu r n o f th e m e m o r y . A
n e g a tiv e n u m b e r in d ic a te s a n e r r o r .

282

Mshrink

Shrink Memory Block
Mshrink() Opcode = 74 ($4A)
W h e n a p r o g r a m is r u n , it is a llo c a te d all th e s y s te m 's f re e m e m o r y . T h is
fu n c tio n is u s e d to r e tu r n a n y e x c e s s m e m o r y b a c k to th e s y s te m .

C macro format
in t s ta tu s ;
lo n g a d d r e s s , s iz e ;

s ta tu s = M s h r in k (0 , a d d r e s s , s iz e) ;

Machine language format
m o v e .l s iz e , - (s p)
m o v e .l a d d r e s s , - (s p)
m o v e .w # $ 4 A , - (s p)
tr a p # 1
a d d .l # 1 0 , s p

N o te th a t a z e r o w o r d m u s t a ls o b e p a s s e d , a s a p la c e h o ld e r .

Results
DO s ta tu s w o r d A 0 s ig n a ls s u c c e s s , f a ilu re r e s u lts in a n e g a tiv e

G E M D O S e r r o r n u m b e r .

See also
M a l l o c ()

Inputs
s iz e
a d d r e s s

lo n g
lo n g

T h e n u m b e r o f b y te s to re ta in .
T h e s ta r t in g a d d r e s s o f th e m e m o r y b lo c k
to r e ta in .

283

Pexec

Execute Process
Pexec() Opcode = 75 ($4B)
T h is f u n c tio n is u s e d to lo a d a p r o g r a m file a n d e x e c u te it.

C macro format
* c h a r file , c o m m a n d , e n v ;
in t m o d e ;
lo n g s ta tu s ;

s ta tu s = P e x e c (m o d e , f ile , c o m m a n d , e n v) ;

Machine language format
m o v e .l e n v , - (s p)
m o v e .l c o m m a n d , — (s p)
m o v e .l f i l e , - (s p)
m o v e . w # m o d e , - (s p)
m o v e .w # $ 4 B , - (s p)
tr a p # 1
a d d .l # 1 4 , s p

Inputs
T h e m e a n in g o f th e in p u t p a r a m e te r s v a r y a c c o r d in g to th e v a lu e o f mode.
T h e r e a r e f o u r d iff e re n t m o d e s o f o p e r a t io n f o r th e P e x e c () f u n c tio n .
T h e s e a r e :

Mode
Number Function file command env

0 L o a d a n d P o in te r to P o in te r to P o in te r to
e x e c u te f ile n a m e c o m m a n d e n v ir o n m e n t

s tr in g s tr in g s tr in g
3 J u s t lo a d , P o in te r to P o in te r to P o in te r to

d o n 't f ile n a m e c o m m a n d e n v ir o n m e n t
e x e c u te s tr in g s tr in g s tr in g

4 J u s t e x e c u te U n u s e d B a s e p a g e
a d d r e s s

U n u s e d

5 C r e a t e U n u s e d P o in te r to P o in te r to
b a s e p a g e c o m m a n d

s tr in g
e n v ir o n m e n t
s tr in g

Results
DO s ta tu s lo n g T h e a d d r e s s o f th e b a s e p a g e , o r a n e r r o r n u m b e r .

284

Pterm

Terminate Process with Return Code
Pterm() Opcode = 76 ($4C)
L ik e P t e r m O () , P t e r m () te r m in a te s th e c u r r e n t p r o c e s s , c lo s e s a ll o p e n
f iles , c le a r s th e m e m o r y s p a c e u s e d b y th e p r o c e s s , a n d e x i ts to th e ca llin g
p r o g r a m , u s u a lly th e G E M D e s k to p . I n a d d it io n , it a l lo w s a r e tu r n c o d e to
b e p a s s e d to th e c a llin g p r o g r a m . T h is f u n c tio n is m a in ly o f in te r e s t to m a
c h in e la n g u a g e p r o g r a m m e r s , s in c e th e s ta r tu p m o d u le s s u p p lie d w ith C
la n g u a g e c o m p ile r s a u to m a tic a l ly ca ll o n e o f th e te r m in a te fu n c tio n s w h e n
th e m a i n () f u n c tio n e x its .

C macro format
in t r e tc o d e ;

P t e r m (r e tc o d e) ;

Machine language format
m o v e .w
m o v e .w
t r a p

Inputs
r e tc o d e

Results
N o n e

See also
P t e r m O () , P t e r m r e s ()

r e t c o d e , - (s p)
$ 4 C , - (s p)
#1

w o r d T h e e x it c o d e th a t is r e tu r n e d to th e ca ll
in g p r o g r a m .

285

Fsfirst

Find First File in Directory Chain
Fsfirst() Opcode = 78 ($4E)
T h is f u n c tio n is u s e d to fin d th e f irs t file in a d i r e c to r y t h a t m a tc h e s a p a r
t ic u la r d e s c r ip t io n . I t is u s e d in o b ta in in g a d i r e c to r y lis tin g .

C macro format
in t s ta tu s , a tt r ib u te s ;
c h a r * f i le s p e c ;

s ta tu s = F s f ir s t (f i le s p e c , a t t r ib s) ;

Machine language format
m o v e .w a ttr ib s , - (s p)
m o v e .l f ile s p e c , - (s p)
m o v e .w # $ 4 E , - (s p)
tr a p # 1
a d d q .l # 8 , s p

Inputs
a ttr ib s w o r d T h e a tt r ib u te s o f th e file to s e a r c h fo r .

I n te r p r e ta t io n o f v a lu e in attribs:
Bit Number Attribute

0 R e a d -o n ly file (c a n 't b e d e le te d o r w r it te n to)
1 H id d e n file (e x c lu d e d f ro m n o r m a l d i r e c to r y s e a r c h e s)
2 S y s te m file (e x c lu d e d f ro m n o r m a l d i r e c to r y s e a r c h e s)
3 V o lu m e lab el (c a n o n ly e x is t in r o o t)
4 S u b d ir e c to ry
5 A r c h iv e b it

f i le s p e c lo n g P o in te r to a n u ll- te r m in a te d A S C II s tr in g
c o n ta in in g th e file s p e c if ic a tio n to b e
s e a r c h e d f o r . If w i ld c a r d s a r e u s e d , it
m a y m a tc h m o r e th a n o n e file .

Results
DO s ta tu s w o r d If a m a tc h is f o u n d , a v a lu e o f 0 is r e tu r n e d h e r e ,
a n d a 4 4 -b y te d a ta s t r u c tu r e is w r i t te n to th e a d d r e s s p o in te d to b y th e
D T A . If a m a tc h i s n 't f o u n d , th e a p p r o p r ia te n e g a tiv e G E M D O S e r r o r
n u m b e r is r e tu r n e d .

I n f o r m a tio n in d a t a s t r u c tu r e r e tu r n e d if m a tc h is s u c c e s s f u l :

Byte Number Contents
0 - 2 0 R e s e r v e d fo r in te r n a l u s e (m u s t n o t b e a lte r e d)

2 1 F ile a tt r ib u te s
2 2 - 2 3 T im e s ta m p
2 4 - 2 5 D a te s ta m p
2 6 - 2 9 F ile s iz e
3 0 - 4 3 F i le n a m e a n d e x te n s io n

See also
Fsnext()

Fsnext

Find Next File in Directory Chain
Fsnext() Opcode = 79 ($4F)
T h is f u n c tio n is u s e d to fin d a d d itio n a l files in a d i r e c to r y c h a in th a t m e e t
th e c r i te r ia s e t fo r th in a p r e v io u s F s f i r s t () c a ll. T h is f u n c tio n w ill o n ly
w o r k if th e file s p e c if ic a tio n u s e d fo r F s f i r s t () in c lu d e d a w ild c a r d c h a r a c
te r .

C macro format
in t s ta tu s ;

s ta tu s = F s n e x t () ;

Machine language format
m o v e .w # $ 4 F , - (s p)
tr a p # 1
a d d q .l # 2 , s p

Inputs
N o n e — s e a r c h c r i te r ia a r e s e t b y p r e v io u s F s f i r s t () ca ll.

Results
DO s ta tu s w o r d If a m a tc h is f o u n d , a v a lu e o f 0 is r e tu r n e d h e r e ,

a n d a 4 4 -b y te d a ta s t r u c tu r e is w r i t te n to th e a d d r e s s
p o in te d to b y th e D T A . If n o m a tc h is f o u n d , th e
a p p r o p r ia te n e g a t iv e G E M D O S e r r o r n u m b e r is r e
tu r n e d .

I n f o r m a tio n in d a ta s t r u c tu r e r e tu r n e d if m a tc h is s u c c e s s f u l :

Byte Number Contents
0 - 2 0 R e s e r v e d fo r in te r n a l u s e (m u s t n o t b e a l te re d)

2 1 F ile a t t r ib u te s
2 2 - 2 3 T im e s ta m p
2 4 - 2 5 D a te s ta m p
2 6 - 2 9 F ile s iz e
3 0 - 4 3 F i le n a m e a n d e x te n s io n

See also
F s f i r s t ()

287

Frename

Rename File
Frename() Opcode = 86 ($56)
C h a n g e s th e n a m e o f a file .

C macro format
in t s ta tu s ;
c h a r * o ld n a m e ;
c h a r * n e w n a m e ;

s ta tu s = F r e n a m e (0 , o l d n a m e , n e w n a m e) ;

Machine language format
m o v e .l n e w n a m e , - (s p)
m o v e .l o l d n a m e , - (s p)
c l r .w - (s p)
m o v e .w # $ 5 6 , - (s p)
tr a p # 1
a d d .l # 1 2 , s p

Inputs
n e w n a m e

o l d n a m e

N o te th a t a

Results
DO s ta tu s w o r d If s u c c e s s f u l , a 0 is r e tu r n e d . If n o t , a n e g a tiv e

G E M D O S e r r o r c o d e .

lo n g A p o in te r to th e s tr in g c o n ta in in g th e fi
le n a m e to c h a n g e to . T h is f ile n a m e m a y
b e in a n e w d ir e c to r y p a th ,

lo n g A p o in te r to a s tr in g c o n ta in in g th e n a m e
o f th e file to b e c h a n g e d .

z e r o w o r d m u s t a ls o b e p a s s e d a s a p la c e h o ld e r .

288

Fdatime

Get/Set File Date/Time Stamp
Fdatime() Opcode = 87 ($57)
T h is f u n c tio n is u s e d to r e a d o r c h a n g e th e tim e a n d d a t e s ta m p o f a n
o p e n file .

C macro format
in t h a n d l e , m o d e ;
lo n g * tim e p tr ;

F d a tim e (t im e p tr , h a n d le , m o d e) ;

Machine language format
m o v e .w m o d e , - (s p)
m o v e .w h a n d le , - (s p)
m o v e .l t im e p tr , - (s p)
m o v e .w # $ 5 7 , - (s p)
tr a p # 1
a d d q . # 1 0 , s p

Inputs
m o d e w o r d R e a d o r c h a n g e flag :

0 = R e a d
1 = C h a n g e

h a n d le w o r d T h e h a n d le o f th e file
tim e p tr lo n g T h e a d d r e s s o f a 3 2 -b it b u ffe r th a t h o ld s

th e tim e a n d d a te s ta m p in fo rm a tio n . T h e
d a t e in fo rm a tio n is s to r e d in th e f irs t
w o rd .

C o n te n t s o f f irs t w o r d o f b u ffe r p o in te d to b y timeptr:

Bit Number Description Range
0 - 4 D a y 1 - 3 1
5 - 8 M o n th 1 - 1 2

9 - 1 5 Y e a r - 1 9 8 0 0 - 1 1 9

T h e s e c o n d w o r d h o ld s th e t im e , in th e fo llo w in g f o rm a t:

Bit Number Description Range
0 - 4 S e c o n d s d iv id e d b y 2 0 - 2 9

5 - 1 0 M in u te s 0 - 5 9
1 1 - 1 5 H o u r 0 - 2 3

Results
N o n e

See also
Tgettime(), Tsettime()

289

Appendix D

Error Codes

BIOS Errors

Error
Number Macro Name

0 OK
- 1 ERROR
- 2 DRIVE__NOT_READY

- 3 UNKNOWN__CMD

- 4 CRC_ERROR

- 5 BAD_REQUEST

- 6 SEEK_ERROR

- 7 UNKNOWN_MEDIA

- 8 SECTOR__ NOT_FOUND
- 9 NO__ PAPER

-10 WRITE__ FAULT
-11 READ__ FAULT
-12 GENERAL__ MISHAP
-13 WRITE__ PROTECT

-1 4 MEDIA_CHANGE

-15 UNKNOWN_DEVICE

Description
Action successful (no error)
General error
Device not ready, not
connected, or busy
The device doesn't know
how to respond to this
command
A soft error occured while
reading a sector
Device can't handle this
command, possibly because
of bad parameters
Drive could not seek to that
track
The boot sector of this disk
doesn't follow the ST
format
Sector couldn't be located
Printer out of paper
Write operation failed
Read operation failed
Reserved for future use
Write operation failed
because media was write-
only or write-protected
Write operation failed
because disk was changed
since last write operation
Operation requested for a
device that is unkown to
the BIOS

293

APPENDIX D

—16 BAD_SECTORS Format operation resulted
in one or more bad sectors

-1 7 INSERT_DISK Ask user to insert disk

GEMDOS Errors
MS-
DOS GEMDOS
Error Error Macro

Number Number Name
1 -32 EINVFN
2 -33 EFILNF
3 -34 EPTHNF
4 -35 ENHNDL
5 -36 EACCON
6 -37 EIHNDL
8 -39 ENSMEM
9 -40 EIMBA

15 -46 EDRIVE
18 -47 ENMFIL

-64 ERANGE
-65 EINTRN
-66 EPLFMT
-67 EGSBF

Description
Invalid function number
File not found
Path not found
No file handles available
Access denied
Invalid handle
Insufficient memory
Invalid memory block address
Invalid drive specification
No more files
Range error
GEMDOS internal error
Not an executable file
Memory block growth failure

294

Appendix E

VT-52 Console Escape Sequences

Unlike GEM graphics text functions, which
output any character for which there is image data, the con
sole device screen emulates a DEC VT-52 display terminal,
and treats the ASCII characters from 0 to 31 as nonprinting
control characters. This means that it interprets the ASCII
character 13 as a carriage return, an instruction to move the
cursor to the beginning of the line, rather than as a character
that should be printed. There are a number of VT-52 escape
codes to which the console device responds. These escape
sequences are strings of characters beginning with the ASCII
character 27 (Esc), followed by one or more text characters.
The VT-52 codes to which BconoutQ responds are:
Esc A
Esc B
Esc C
Esc D
Esc E
Esc H
Esc I
Esc J
Esc K
Esc L
Esc M
Esc Y

(row + 32)
(column + 32)

Esc b (register)
Esc c (register)
Esc d
Esc e
Esc f
Esc j
Esc k
Esc 1

Cursor Up
Cursor Down
Cursor Right
Cursor Left
Clear Screen and Home Cursor
Home Cursor
Cursor Up (scrolls screen down if at top line)
Clear to End of Screen
Clear to End of Line
Insert Line
Delete Line
Position Cursor at Row, Col (starts with 0)

Select Foreground (Character) Color
Select Background Color
Clear to Beginning of Screen
Cursor On
Cursor Off
Save Cursor Position
Move Cursor to Saved Position
Clear line

297

APPENDIX E

Esc o Clear from Beginning of Line
Esc p Reverse Video On
Esc q Reverse Video Off
Esc v Line Wrap On
Esc w Line Wrap Off
In addition to the escape codes, the ST terminal emulation
also responds to the following ASCII control codes:
08 Backspace
09 Tab
10-12 Linefeed
13 Carriage Return

298

Appendix F

The MFP Chip

The 68901 Multi-Function Peripheral (MFP) chip
handles a variety of input/output chores on the ST. It con
tains an 8-bit parallel I/O port, each bit of which is used for a
different purpose. The port is used for monochrome monitor
detection, RS-232 carrier detect, ring detect, and clear to send
(CTS), parallel port and blitter-busy detection a unit, and
data requests from the floppy drives, DMA port, intelligent
keyboard controller, and MIDI ports. The MFP chip's on
board Universal Synchronous/Asynchronous Receiver/Trans
mitter (USART) provides the hardware interface for the ST's
serial port. The chip also has four general-purpose timers.
They're used for the RS-232 baud rate generator, the 200 Hz
system clock, and as a horizontal blanking counter.

The serial port, the timers, and each bit of the parallel I/O
port are capable of generating an interrupt. The MFP chip
interrupts have an Interrupt Priority Level (IPL) of six, but
they are not auto vectored. This means that when an MFP in
terrupt occurs, the IPL 6 interrupt handler is not called. In
stead, the MFP chip directs exception processing through
one of its 16 exception vectors. These are vectors 64-80,
which are located at addresses 256 - 323 ($100 —$143). Al
though all MFP interrupts have an overall 68000 IPL of 6,
there are subpriorities that are handled by the MFP chip.

MFP Registers
The ST system communicates with the MFP chip through its
24 8-bit registers. On the current ST models, these registers
are found at the 24 odd addresses, starting at address
$FFFFFA01. Since this may change with future models, pro
grammers should, whenever possible, communicate with the
MFP chip through XBIOS routines like Xbtimer(), Rsconf(),

301

APPENDIX F

Jdisint(), Jenabint() and Mfpint(). The MFP registers, and
their functions, are:

Register 1. General Purpose I/O Interrupt Port (GPIP).
This is the data register for the 8-bit parallel I/O port, where
the data is read and written.

Register 2. Active Edge Register (AER). For parallel port
input bits. This register specifies whether the interrupt will
occur on low-to-high transitions (1), or high-to-low transi
tions (0).

Register 3. Data Direction Register (DDR). This register
specifies whether each bit of the parallel I/O port will be
used for input (0), or output (1).

Register 4. Interrupt Enable Register A (IERA). Each bit
of this register is used to determine whether the correspond
ing interrupt will be enabled (1), or disabled (0). These are
detailed in Table F-l. The interrupts that have an asterisk
next to their priority level are initially disabled.

Table F -l. Interrupt Disable Register A (IERA)

Bit
Internal
Priority Interrupt

imber Level Source Function
7 15* I/O Port Bit 7 Monochrome monitor detect
6 14* I/O Port Bit 6 RS-232 Ring Indicator (RI)
5 13* Timer A User-defined timer interrupt
4 12 USART RS-232 receive buffer full
3 11 USART RS-232 receive error
2 10 USART RS-232 transmit buffer empty
1 9 USART RS-232 transmit error
0 8* Timer B Horizontal blank counter
Register 5. Interrupt Enable Register B (IERB). Each bit

of this register is used to determine whether the correspond
ing interrupt will be enabled (1), or disabled (0). The inter
rupts that have an asterisk next to their priority level are ini
tially disabled.

Table F-2. Interrupt Enable Register B (IERB)
Internal

Bit Priority Interrupt
Number Level Source Function

7 7* I/O Port Bit 5 Floppy drive/DMA port
data request

6 6 I/O Port Bit 4 Keyboard and MIDI
ACIA data request

The MFP Chip

Bit
Internal
Priority Interrupt

Number Level Source Function
5 5 Timer C System Clock (200 Hz)
4 4* Timer D RS-232 baud rate

3 3* I/O Port Bit 3
generator
Graphics blitter chip

2 2 I/O Port Bit 2
done
RS-232 Clear To Send

1 1* I/O Port Bit 1
(CTS)
RS-232 Data Carrier

0 0* I/O Port Bit 0
Detect (DCD)
Parallel port busy

Registers 6 and 7. Interrupt Pending Register A (IPRA)
and Interrupt Pending Register B (IPRB), respectively. When
an interrupt is triggered by one of the A or B group of
events, the appropriate bit in the IPRA or IPRB is set to 1. In
AEI mode, this bit is cleared automatically when execution is
vectored to the interrupt handler. In SEI mode (used on the
ST), it must be cleared by the software.

Registers 8 and 9. Interrupt In-Service Register A (ISRA)
and Interrupt In-Service Register B (ISRB), respectively.
When an interrupt has been triggered by one of the A or B
group of events, the corresponding bit in the ISRA or ISRA
is set to one. This prevents a second, lower-priority interrupt
from occurring while the first is still being processed. In AEI
mode, this bit is cleared automatically when execution is vec
tored to the interrupt handler. In SEI mode (used on the ST),
it must be cleared by the software.

Registers 10 and 11. Interrupt Mask Register A (IMRA)
and Interrupt Mask Register B (IMRB), respectively. These
mask registers can be used to stop one of the A or B groups
of events from triggering automatic exception processing. A
masked interrupt will still cause the appropriate bit of IPRA
or IPRB to be set, however.

Register 12. Vector Register (VR). The vector register
helps specify the vectors used for the 16 interrupts. The top
four bits of this register hold the high nibble for the vector
number used by each of the interrupts. Of the low nibble,
only bit 3 is used. This bit determines whether the MFP op
erates in Automatic End-of-Interrupt mode (AEI), or Software
End-of-Interrupt mode (SEI), like the ST.

Registers 13 and 14. Timer A Control Register (TACR)
and Timer B Control Register (TBCR), respectively. Timers A
and B function identically. Each has a data register, a control

APPENDIX F

register, and an 8-bit interval counter, whose value decre
ments by one at every impulse. When the interval counter
timer reaches 0, the value of the data register is loaded into
the counter, and an interrupt will be generated if enabled.

The source of the impulse that causes the counter to dec
rement may be a clock pulse (Delay mode), or an external
signal (Event Count mode). There is also a combined mode
(Pulse Length mode), in which the clock is turned on and off
by the external signal.

The control registers use bits 0-3 to determine the mode
in which the timers will function. The possible combinations
are detailed in Table F-3.
Table F-3. Timer A and B Register Values and Timer Modes
Register Value Timer Mode

0 Timer off
1 Delay mode, clock divided by 4
2 Delay mode, clock divided by 10
3 Delay mode, clock divided by 16
4 Delay mode, clock divided by 50
5 Delay mode, clock divided by 64
6 Delay mode, clock divided by 100
7 Delay mode, dock divided by 200
8 Event Count Mode
9 Pulse Length mode, clock divided by 4

10 Pulse Length mode, clock divided by 10
11 Pulse Length mode, clock divided by 16
12 Pulse Length mode, clock divided by 50
13 Pulse Length mode, clock divided by 64
14 Pulse Length mode, clock divided by 100
15 Pulse Length mode, clock divided by 200

Bit four (value of 16) can be used to force a timer reset.

Register 15. Timers C and D Control Register (TCDCR).
Since Timers C and D only run in Delay mode, only one byte
is needed for their control register. The upper nibble controls
Timers C, while the lower nibble controls timer D, as shown
in Table F-4.
Table F-4. Control Register Values for Timers C and D
Timer C Timer D
Value Value Timer Mode

0 0 Timer off
16 1 Delay mode, clock divided by 4
32 2 Delay mode, clock divided by 10

304

The MFP Chip

Table F-4. Control Register Values for Timers C and D
Timer C Timer D
Value Value Timer Mode

48 3 Delay mode, clock divided by 16
64 4 Delay mode, clock divided by 50
80 5 Delay mode, clock divided by 64
96 6 Delay mode, clock divided by 100

112 7 Delay mode, clock divided by 200

Registers 16-19. Timers A-D Data Registers (TADR,
TBDR, TCDR, and TDDR). The four timer data registers are
used to store the countdown value for the interval counter.

Register 20. Synchronous Character Register (SCR). In
synchronous transfer mode, all data characters received are
stored in the SCR as well as the receive buffer, which signals
the application when a character has been received.

Register 21. US ART Control Register (UCR). This regis
ter is used to set the serial interface communications parame
ters as shown in Table F-5.

Table F-5. USART Control Register (UCR)
Bit Function
0 Not used.
1 Parity type.

0 = Odd.
1 = Even.

2 Parity enable.
0 = Off.
2 = On.

3-4 Async start and stop bits.
Bits
4 3 Number of Start and Stop Bits
0 0 No start or stop bits (synchronous).
0 1 1 start bit, 1 stop bit.
1 0 1 start bit, IV2 stop bits.
I l l start bit, 2 stop bits.

5-6 Data bits per word.
Bits
5 6 Number of data bits
0 0 8 bits.
0 1 7 bits.
1 0 6 bits.
1 1 5 bits.

305

APPENDIX F

Table F-5. USART Control Register (UCR)
Bit Function
7 Clock.

0 = Use clock directly for transfer frequency (synchronous
transfer).

1 = Divide clock frequency by 16.

Register 22. Receiver Status Register (RSR). This register
contains information about serial port reception as shown in
Table F-6.

Table F-6. Receiver Status Register (RSR)
Bit Function
0 Receiver Enable Bit.

0 = Receipt disabled.
1 = Receipt enabled.

1 Synchronous Strip Enable. In synchronous mode, this bit
enables checking of whether the character in the SCR is
identical to a character in the receive buffer.

2 Match/Character in Progress. In synchronous mode, this bit
signals that a character matching the SCR byte would be
received. In asynchronous mode, this bit is set when the start
bit is detected, and cleared when the stop bit is detected.

3 Search/Break Detected. In synchronous mode, this bit signals
that a character was received that matches the SCR byte. In
asynchronous mode, this bit is set when a BREAK is received.

4 Frame Error. This bit is set when the byte received is not a
null, but the stop bit is a null.

5 Parity Error. This bit is set when the parity bit of the last
received character was incorrect.

6 Overrun Error. This bit is set when a character can't be read
into the receive buffer.

7 Buffer Full. This bit is set when a character is transferred into
the receive buffer, and cleared when it's read.

Register 23. Transmitter Status Register (TSR). This reg
ister contains information about serial port transmission (Ta
ble F-7).

Table F-7. Transmitter Status Register (TSR)
Bit Function
0 Transmit Enable.

0 = Transmission disabled.
1 = Transmission enabled.

306

The MFP Chip

Table F-7. Transmitter Status Register (TSR)
Bit Function
1-2 High/Low Output.

0 = High output.
1 = Low output.
2 = High output.
3 = Loop-back mode.

3 Break. In asynchronous mode, a break is sent when this bit
is set.

4 End of Transmission.
5 Auto Turnaround.
6 Underrun Error.
7 Buffer Empty. This bit is set when a character is transferred

from the transmit buffer, and cleared when new data is
written to it.

Register 24. USART Date Register (UDR). Serial data is
sent and received through this register. Writing a value
places data in the send buffer, while reading this register re
turns the next character in the receive buffer.

307

Appendix G

System Characters

This appendix includes all the system font.
The font supports all characters from 0 through 255.

0 1 3 c
R

2 6 3 3 9 1

1 0 1 4 2 7 S 4 0 (

2 0 1 5 |V 2 8 e 4 1)

3 « > 1 6 Q 2 9 3 4 2 «

4 < • 1 7 J 3 0 * 4 3 +

5 1 8 J 3 1 ^
4 4 1

6 R 1 9 3 3 2 S p a c e 4 5 -

7 g 2 0 H 3 3 1 • 4 6 ,

8 ^ 5 3 4 » 4 7 /
9 © 2 2 g 3 5 f t 4 8 0

1 0 * 2 3 T 3 6 £| 4 9 1

11 J ' 2 4 8 3 7 7 . 5 0 2

1 2 F 2 5 9 3 8 & 51 3

APPENDIX G

52 4 66 B 80 P 94 A

53 5 67 (J 81 Q 95 _

54 g 68 P 82 R 96 ^

55 7 69 E 83 S 97 a

56 8 70 F 84 J 98 b

57 9 71 G 85 U 99 £

58 ! 72 H 86 V 100 d

59 ; 73 I 87 H 101 0

60 < 74 J 88 X 102 f

61 = 75 R 89 Y 103 9

62 > 76 L 90 Z 104 h

63 ? ■
77 H 91 [105 i

64 @ 78 N 92 \ 106 j

65 0 79 0 93] 107 k

312

System Characters

108 1

1 0 9 n

no n

i n o

112 p

113 q

114 p

115 S

116 t

117 U

118 V

119 H

120 X

1 2 1 y

122 Z

123 {

124 |

1 2 5 y

126 "

127 A

128 (J

129 ij

130 e

A
131 a

• ■132 a

133 a

134 a

135 Q

136 g

137 Q

138 C

139 |

140 1

141 I

142 K

143 g

144 E

145 £

146 |E

147 0

148 0

149 0

150 jj

151 U

152 y

153 0

154 |j

155 (

156 £

157 y

158 0

159 f

160 a

161 1

162 0

163 |J

313

APPENDIX G

1 6 4
w
n 1 7 8 0 1 9 2

m my 2 0 6
n

1 6 5 N 1 7 9 0 1 9 3 II 2 0 7 j

1 6 6 a 1 8 0 G 1 9 4 X 2 0 8 0

1 6 7 0 1 8 1 IE 1 9 5 3 2 0 9 u

1 6 8
•

1 8 2 R 1 9 6 JL 2 1 0 9

1 6 9 r 1 8 3 R 1 9 7 1 2 1 1 S

1 7 0 T 1 8 4 0 1 9 8 i l 2 1 2 P
1 7 1 % 1 8 5

■ ■
1 9 9 1 2 1 3 1

1 7 2 1 8 6 2 0 0 T 2 1 4 Kl
1 7 3

■1 1 8 7
t

2 0 1 n 2 1 5 J1
1 7 4 1 8 8 qi 2 0 2 U 2 1 6 1
1 7 5 1 8 9 0 2 0 3

1
2 1 7 1

1 7 6 a 1 9 0 @ 2 0 4 3 2 1 8 n

7 7 0 1 9 1 t h 2 0 5 2 1 9 *|

314

System Characters

220 1

221 §

222 A

2 2 3 M

2 2 4 OC

2 2 5 P

226 r
2 2 7 IT

2 2 8 J

2 2 9 <5

2 3 0 JJL

2 3 1 T

2 3 2 §

2 3 3 G

2 3 4 S J

2 3 5 5

2 3 6 (J)

2 3 7 $

2 3 8 £

2 3 9 n

2 4 0 S

2 4 1 +

2 4 2 >

2 4 3 <

2 4 4 p

2 4 5 J
2 4 6 T

2 4 7

2 4 8 °

2 4 9 #

2 5 0 #

2 5 1

2 5 2 n

2 5 3 2

2 5 4 3

2 5 5 —

315

Appendix H

The Line A Variable Table

The line A routines use about IK of variable
space, in which much of the system's graphics data is stored.
The location of this variable table may vary from machine to
machine, and from one version of TOS to another, but it can
always be found by calling the Line A Initialization function
(see Chapter 7 for more details). When this function is called,
the base address of the line A variable table is returned both
in register AO and DO. Starting at this base address, you can
locate the variables in the table by using their offset from the
base address. The following chart shows the offset of each
line A variable in decimal and hexadecimal format, its name,
and a description of its contents. Those variables whose
names start with V__are used by the ST BIOS character out
put routines.

-9 1 0 to -9 0 5 (— $38E to -$389)
RESERVED

This area is reserved for internal use.

-9 0 6 to -9 0 1 (-$388 to -$387)
CUR__FONT

A pointer to the current font header is stored here.

-9 0 2 to -855 (-$386 to -$355)
RESERVED

This area is reserved for internal use.

The Following 37 Words Hold the Sprite Definition Block for the Mouse Pointer
-8 5 6 to -8 5 5 (-$356 to -$355)

M__POS__HX

319

APPENDIX H

The x offset of the mouse hot spot within the 16 x 16 image
area.

-8 5 4 to -851 (-$354 to -$353)
M__POS__HY

The y offset of the mouse hot spot within the 16 x 16 image
area.

-8 5 2 to -8 4 9 (-$352 to -$351)
M__PLANES

The writing mode for the mouse pointer (usually 1). 1 = VDI
mode, - 1 = XOR mode. The different colors produced by
various combinations of image and mask bits for both modes
are shown in the table below:

Image
Mask VDI mode color XOR mode color
0 0 Transparent Transparent
0 1 Background Background
1 0 Foreground NOT destination
1 1 Foreground Foreground

-8 5 0 to -8 4 7 (-$350 to -$34F)
M__CDB__BG

Mouse pointer background color.

-8 4 8 to -845 (— $34E to -$34D)
M__CDB__FG

Mouse pointer foreground color.

- 846 to - 782 (- $34C to - $30F)
MASK__FORM

Mask and image data for the mouse pointer sprite. This data
is stored in interleaved sprite format. The first two words
contain the mask data and the image data for line 0 of the
sprite, the next two words the mask data and image data for
line 1, and so on.

- 782 to - 693 (- $30E to - $2B5)
INQ__TAB

This table, 45 words long, contains the information returned
by the VDI function vq__extnd(). See COMPUTEl's Technical

320

The Line A Variable Table

Reference Guide, Atari ST Volume One: The VDI for more infor
mation.

-6 9 2 to -6 0 3 (— $2B4 to -$25B)
DEV_TAB

This table contains the first 45 words of information returned
by the VDI function v__opnwk(). See COMPUTEl's Technical
Reference Guide, Atari ST Volume One: The VDI for more infor
mation.

-6 0 2 to -601
GCURX

The current mouse pointer x position.

-6 0 0 to -599
GCURY

The current mouse pointer y position.

-5 9 8 to -5 9 7
M__HID__CT

Number of times the mouse pointer has been hidden. The
application must use the Show Mouse function this many
times to actually display the mouse pointer (or it may just
force display using that option the of Show Mouse function).
If this value is set to 0, the pointer is currently being dis
played.

-5 9 6 to -5 9 5 (-$254 to -$253)
MOUSE__BT

Current mouse button status. Bit 0 gives the left button sta
tus, bit 1 the right button status. A bit value of 0 means that
the button is up, while a bit value of 1 means that it is cur
rently pressed. See also CUR__MS__ST AT, -348.

-5 9 4 to -4 9 9 (-$252 to -$1F3)
REQ__COL

This table contains 48 words of RGB color values for the 16
VDI color indices, as returned by the VDI function vq__
color(). See COMPUTEl's Technical Reference Guide, Atari ST
Volume One: The VDI for more information.

-4 9 8 to -4 6 9 (— $1F2 to -$1D 5)

(-$ 2 5 A to -$259)

(-$258 to -$257)

(-$256 to -$255)

321

APPENDIX H

SIZ__TAB
This table contains the final 12 words of information returned
by the VDI function v__opnwk(). Three words of storage are
reserved at the end of the table, making it 15 words in
length. See COMPUTEI's Technical Reference Guide, Atari ST
Volume One: The VDI to read more about the information re
turned by v__opnwk().

- 468 to - 467 (- $1D4 to - $1D3)
RESERVED

This area is reserved for internal use.

- 466 to - 466 (- $1D2 to - $1D1)
RESERVED

This area is reserved for internal use.

-464 to -461 (— $1D0 to -$1CD)
CUR__WORK

This variable contains the address of the current VDI virtual
workstation attribute table.

-4 6 0 to -4 5 7 (-$1C C to - $1C9)
DEF__FONT

A pointer to the default font header is stored here.

-4 5 6 to -441 (— $1C8 to -$1B9)
FONT__RING

This is a longword array containing four pointers to font
headers, the last is which is a null (0) entry. Each of these
headers is a actually a linked list, since the last field in a font
header is a pointer to the next font header in the list. When
the VDI searches for a font, it starts with the header pointed
to by FONT__RING[0], and searches through that linked list.
When it comes to the end of that list, it continues with the
linked list pointed to by FONT__RING[1], and then the
linked list pointed to by FONT__RING[2]. The first two en
tries in FONT__RING are reserved for pointers to system
font headers, while FONT__RING[2] is used for a linked list
of disk-loaded GDOS fonts.

322

The Line A Variable Table

-4 4 0 to -4 3 7 (— $1B8 to -$1B7)
FONT__COUNT

The number of fonts in the FONT__RING lists.

-438 to -349 (— $1B6 to -$15D)
RESERVED

This area is reserved for internal use.

-348 (-$15C)
CUR__MS__ST AT

Current Mouse Status. This byte contains flag bits indicating
whether the mouse buttons are up or down, and whether
the mouse has moved or buttons have changed since the last
mouse interrupt. The meaning of each bit in the flag is as fol
lows:

Bit
Number Description

0 Left mouse button status (0 = up, 1 = down)
1 Right mouse button status (0 = up, 1 = down)
2 Reserved
3 Reserved
4 Reserved
5 Mouse move flag (0 = didn't move, 1 = did move)
6 Right mouse button status change flag

0 = status didn't change
1 = status changed

7 Left mouse button status change flag
0 = status didn't change
1 = status changed

-3 4 7 (— $15B)
RESERVED

This area is reserved for internal use.

- 346 to - 345 (- $15A to - $159)
V__HID__CNT

The depth at which the text cursor is hidden.

-3 4 4 to -343 (-$158 to -$157)
CUR__X

Horizontal position at which mouse pointer is to be drawn.
CUR__X, CUR__Y, and CUR__FLAG are used by the vertical

323

APPENDIX H

blank interrupt handler, which draws the mouse pointer, to
determine where and whether to redraw the mouse pointer
during the next vertical blank.

- 342 to - 341 (- $156 to - $155)
UR__Y

Vertical position at which the mouse pointer is to be drawn.

-3 4 0 (-$154)
CUR__FLAG

Mouse pointer draw flag. If nonzero, the mouse pointer will
be redrawn during the vertical blanking interval.

-3 3 9 (-$153)
MOU SE__FLAG

Mouse interrupt processing flag. A zero means mouse inter
rupt processing is disabled, while a nonzero value means it
is enabled.

- 338 to - 335 (- $152 to - $14F)
RESERVED

This area is reserved for internal use.

- 334 to - 331 (- $14E to - $14B)
V__SAV__XY

The first word contains the horizontal position of the saved
text cursor, while the second word contains its vertical posi
tion.

- 330 to - 329 (- $14A to - $149)
SAVE__LEN

The height (in vertical lines) of the form saved in SAVE__
AREA. This value, along with SAVE__ADDR, SAVE—STAT,
and SAVE__AREA, are used by the system to save the por
tion of the screen covered by the mouse pointer.

-3 2 8 to -325 (-$148 to -$145)
SAVE__ADDR

The address of the first word of screen data saved in SAVE—
AREA.

324

The Line A Variable Table

- 324 to - 321 (- $144 to - $143)
SAVE__STAT

Save area status flag.

Bit
Number Description

0 Information in save buffer valid? (1 = yes, 0 = no)
1 Width of area save (0 = 16 bits, 1 = 32 bits)

2-15 Reserved

-3 2 2 to -0 6 7 (-$142 to -$043)
SAVE__AREA

Save buffer for the mouse pointer sprite.

-0 6 6 to -0 6 3 (-$042 to -$03F)
USER__TIM

This vector can be used to install a routine that executes dur
ing each system timer-tick interrupt. The user's routine
should end by jumping to the address stored in NEXT__TIM,
below. For more information, see the description of the VDI
function vex__timv() in COMPUTERS Technical Reference
Guide, Atari ST Volume One: The VDI.

- 062 to - 059 (- $03E to - $03B)
NEXT_TIM

See above.

- 058 to - 055 (- $03A to - $037)
USER__BUT

The Button Change vector. For more information, see the de
scription of the VDI function vex__butv() in COMPUTE!'s
Technical Reference Guide, Atari ST Volume One: The VDI.

- 054 to - 050 (- $036 to - $033)
USER__CUR

The Cursor Change vector. For more information, see the de
scription of the VDI function vex__curv() in COMPUTE!'s
Technical Reference Guide, Atari ST Volume One: The VDI.

-0 5 0 to -0 4 7 (-$032 to -$02F)
USER__MOT

The Mouse Movement vector. For more information, see the
description of the VDI function vex__motv() in COMPUTE!'s
Technical Reference Guide, Atari ST Volume One: The VDI.

325

APPENDIX H

- 046 to - 045 (- $02E to - $02D)
_____ V CEL__ HT

Text cell height (in pixels).

- 044 to - 043 (- $02C to - $02B)
_____ V CEL__ MX

Maximum horizontal text position (in characters). This equals
the maximum number of characters on a line, minus one.

- 042 to - 041 (- $02A to - $029)
 V CEL_MY

Maximum vertical text position (in characters). This equals
the maximum number of screen rows, minus one.

- 040 to - 039 (- $028 to - $027)
_____ V CEL__ WR

Number of bytes to the next vertical character cell.

-0 3 8 to -0 3 7 (-$026 to -$025)
_____ V COL__BG

Color register of text background color.

- 036 to - 035 (- $024 to - $023)
______V COL__FG

Color register of text foreground color.

- 034 to - 031 (- $022 to - $01F)
 V CUR__AD

Current text cursor address.

- 030 to - 029 (- $01E to - $01D)
 V CUR__OF

Byte offset from screen base address to the top of the first
text character.

- 028 to - 025 (- $01C to - $019)
______V CUR__XY

The character position of the text cursor. The first word con
tains the column number, while the second word contains
the row number.

326

The Line A Variable Table

-0 2 4 (-$018)
 V PERIOD

Text cursor blink rate (in vertical blanking intervals).

-0 2 3 (-$017)
 V CUR__CT

Text cursor countdown timer to next blink toggle.

- 022 to - 019 (- $016 to - $013)
______V FNT__ AD

Address of monospaced font data.

- 018 to - 017 (- $012 to - $011)
______V FNT__ ND

Last ASCII character in font.

- 016 to - 015 (- $010 to - $00F)
______V FNT__ ST

First ASCII character in font.

- 014 to - 013 (- $00E to - $00D)
 V FNT__WD

Width of font form in bytes (sum of the widths of all of the
characters in the font, divided by 8).

-0 1 2 to -011 (-$00C to — $00B)
_____ V REZ__ HZ

Horizontal pixel resolution (width in pixels).

-010 to -0 0 7 (— $00A to -$007)
_____ V OFF__ AD

Address of font offset table (from font header).

- 006 to - 005 (- $006 to - $005)
RESERVED

This area reserved for internal use.

- 004 to - 003 (- $004 to - $003)
V REZ VT

Vertical pixel resolution (height in pixels).

327

APPENDIX H

-0 0 2 to -001 (-$002 to -$001)
BYTES__LIN

Width of the destination memory form; set to the save value
as WIDTH.

+ 000 to +001 (+ $000 to +$001)
PLANES

Number of color bit planes for current screen resolution.

+ 003 to +003 (+ $002 to +$003)
WIDTH

The width of the destination memory form in bytes. When
the destination is the screen (as is usually the case), the
value stored here should be 160 ($A0) for the low- and me
dium-resolution modes, and 80 ($50) for high resolution.

+ 004 to +007
CONTRL

Pointer to the CONTRL array.

INTIN

PTSIN

+ 008 to +011

Pointer to the INTIN array.

+ 012 to +015

Pointer to the PTSIN array.

+ 016 to +019
INTOUT

Pointer to the INTOUT array.

+ 020 to +023
PTSOUT

Pointer to the PTSOUT array.

(+ $004 to +$007)

(+ $008 to +$00B)

(+ $00C to + $00F)

(+ $010 to +$013)

(+ $014 to +$017)

(+ $018 to +$019)+ 024 to +025
COLBITO

The color bit plane value for plane 0 of the display. This vari
able, and the three that follow, are used to determine the
color drawn by several of the line A functions.

328

The Line A Variable Table

+ 026 to +027 (+ $01A to + $01B)
COLBIT1

for plane 1 of the display.

(+ $01C to +$01D)
COLBIT2

for plane 2 of the display.

(+ $01E to +$01F)
COLBIT3

for plane 3 of the display.

(+ $020 to +$021)
LSTLIN

This is a flag which indicates whether the last pixel of a line
should be drawn. A zero value means that the pixel is
drawn, while a nonzero value means that it is not drawn.
This flag is used for drawing a series of connected lines us
ing the XOR writing mode, so that the common endpoint
doesn't disappear when the second line is drawn.

+ 034 to +035 (+ $022 to +$023)
LNMASK

The line-draw pattern mask.

+ 036 to +037 (+ $024 to +$025)
WMODE

The VDI Writing mode to use for drawing.

Mode Meaning
0 Replace
1 Transparent,
2 XOR
3 Reverse transparent

For TextBlt, the BitBlt logic modes may be stored here i
well:

Mode Logic Operation Description
4 D1 = 0 Clear destination block
5 D1 = S AND D
6 D1 = S AND (NOT D)
7 D1 = S Replace mode
8 D1 = (NOT S) AND D Erase mode

The color bit plane value

+ 028 to +029

The color bit plane value

+ 030 to +031

The color bit plane value

+ 032 to +033

329

APPENDIX H

Mode Logic Operation Description
9 D1 = D Destination unchanged

10 D1 = S XOR D XOR mode
11 D1 = S OR D Transparent mode
12 D1 = NOT (S OR D)‘
13 D1 = NOT (S XOR D)
14 D1 = NOT D
15 D1 = S OR (NOT D)
16 D1 = NOT S
17 D1 = (NOT S) OR D Reverse transparent mode
18 D1 = NOR (S AND D)
19 D1 = 1 Fill destination block

+ 038 to +039 (+ $026 to +$027)
XI

This location, and the three following, are often used to hold
x and y coordinates for drawing.

+ 040 to +041

See above.

+ 042 to +043

See above.

+ 044 to +045

See above.

+ 046 to +049
PATPTR

Pointer to the current fill pattern.

Y1

X2

Y2

(+ $028 to +$029)

(+ $02A to + $02B)

(+ 02C to + $02D)

(+ $02E to +$031)

(+ $032 to +$033)+ 050 to +051
PATMSK

This value is ANDed with Yl, and used as an index into the
fill pattern. In most cases, the correct value will be the length
of the pattern (in lines) minus one.

+ 052 to +053 (+ 034 to + $035)
MFILL

Multiplane fill pattern flag. A zero indicates a single plane fill

330

The Line A Variable Table

pattern, while a nonzero value indicates a multiplane fill pat
tern.

+ 054 to +055 (+ $036 to + $037)
CLIP

Clipping flag. A 0 here turns clipping off, while any other
value turns it on.

+ 056 to +057 (+ $038 to +$039)
XINCL

Left edge of clip rectangle.

+ 058 to +059 (+ $03A to +$03B)
XMAXCL

Right edge of clip rectangle.

+ 060 to +061 (+$03C to + $03D)
YMINCL

Top of clip rectangle.

+ 062 to +063 (+ $03E to +$03F)
YMAXCL

Bottom of clip rectangle.

+ 064 to +065 (+ $040 to + $041)
XDDA

Accumulator for text scaling. Should be set to $8000 before
each TextBlt that requires scaling.

+ 066 to +067 (+ $042 to + $043)
DDAINC

Scaling increment. For scaling up, DDAINC = 256 * (Size2
- Sizel) / Sizel. For scaling down, DDAINC = 256 * (Size2)
/ Sizel, where Sizel is the actual character point size, and
Size2 is the scaled character size.

+ 068 to +069 (+ $044 to +$045)
SCALDIR

Text scaling direction (0 = down, 1 = up)

+ 070 to +071 (+ $046 to +$047)
MONO

Monospaced font flag.

331

APPENDIX H

Value Meaning
0 Font is not monospaced, or size may vary due to special

effects.
1 Font is monospaced, and uses no special effects other than

thickening (boldface).

+ 072 to +073 (+ $048 to + $049)
SOURCEX

The x coordinate of character to be printed in font form.
SOURCEX can usually be computed from information in the
font header:

ch = character to be printed - first_ade
SOURCEX = off_table[ch]

+ 074 to +075 (+ $04A to + $04B)
SOURCEY

The y coordinate of the character to be printed (usually 0).

+ 076 to +077 (+ $04C to + $04D)
DESTX

Horizontal screen position where character will be printed.

+ 078 to +079 (+ $04E to + $04F)
DESTY

Vertical screen position where character will be printed.

+ 080 to +081 (+ $050 to +$051)
DELX

Width of character. Can be computed from information in
the font header as follows:
ch = character to be printed - first__ade
SOURCEX = off_table[ch]
DELX = off_table[ch + 1] - SOURCEX

+082 to +083 (+ $052 to +$053)
DELY

Height of the character. Can be taken from the variable
form_height in the font header.

+ 084 to +087 (+ $054 to + $057)
FBASE

The address of the font's character image data block. This ad-

332

The Line A Variable Table

dress may be at an offset of 76 bytes from the beginning of
the font header, in the dat__table variable.

+ 088 to +089 (+ $058 to +$059)
FWDITH

Width the font form in bytes (the sum of the pixel width of
all of the characters in the font, divided by 8).

+ 090 to +091 (+ $05A to +$05B)
STYLE

TextBlt special effects flag:

Bit
Number Effect*

0 Thickening (boldface)
1 Lightening
2 Skewing (italics)
3 Underline (not performed by TextBlt)
4 Outline

* Note that it is up to the application itself (or the VDI) to perform underlining.

+ 092 to +093 (+ $05C to +$05D)
LITEMASK

Mask used to lighten text (usually $5555). Can be obtained
from the skewmask variable of the font header.

+ 094 to +095 (+ $05E to + $05F)
SKEWMASK

Mask used to italicize (usually $5555). Can be obtained from
the skewmask variable of the font header.

+ 096 to +097 (+ $060 to + $061)
WEIGHT

Width by which to thicken text for boldface. Can be obtained
from the skewmask variable of the font header.

+ 098 to +099 (+$062 to +$063)
ROFF

Offset above baseline for italicizing (offset of 0, if skewing is
not used). Can be obtained from the skewmask variable of
the font header.

333

APPENDIX H

+100 to +101 (+ $064 to + $065)
LOFF

Offset below baseline for italicizing (0 if skewing is not
used). Can be obtained from the skewmask variable of the
font header.

+ 102 to +103
SCALE

Text scaling flag (0 = no scaling used).

(+ $066 to +$067)

+ 104 to +105

Character rotation angle.
CHUP

Value Rotation
0 No rotation

900 90 degree clockwise rotation
1800 180 degree clockwise rotation
2700 270 degree clockwise rotation

(+$068 to +$069)

+ 106 to +107

Text foreground color.
TEXTFG

(+ $06A to +$06B)

+108 to +111 (+ $06C to + $06D)
SCRTCHP

Pointer to two contiguous scratch buffers used for special
text effects. Each buffer must be large enough to contain the
widest character created by text effects. Calculate the number
of bytes required for such a character, and double it. Declare
a buffer of that size, place its address in SCRTCHP, and its
length divided by 2 in SCRPT2

+112 to +113 (+ $070 to + $071)
SCRPT2

Offset from first text effects scratch buffer to second.

+ 114 to +115

Text background color

(+ $072 to +$073)
TEXTBG

334

The Line A Variable Table

+ 116 to +117 (+$074 to +$075)
COPYTRAN

line A Copy Raster mode:

Value Meaning
Zero Copy Raster Opaque
Nonzero Copy Raster Transparent

+ 118 to +121 (+ $076 to +$079)
SEEDABORT

Pointer to a routine called by the SeedFill function after each
horizontal line is filled. If this routine returns a value of zero
in register DO, Seed Fill continues filling the next scan line. If
this routine returns a nonzero value in DO, Seed Fill aborts.
At minimum, this vector should point to the routine:
seedabort: sub.l d0,d0 rts
If this vector is not set before calling Seed Fill, it will proba
bly point to an illegal address, and Seed Fill will bomb.

335

Appendix I

The Intelligent Keyboard Controller

On the ST 9 there are two ways of receiving input
from the keyboard. The normal method is to use the GEM
DOS console device. You can, however, communicate di
rectly with the keyboard itself. That's because on the ST, the
keyboard isn't just a dumb, passive hardware device. It's a
separate controller, with its own microprocessor, memory,
and I/O port. This level of sophistication allows the controller
to be used for tasks other than just fetching keystrokes. The
ST Intelligent Keyboard device (IKBD) is responsible for
tracking input from the mouse and joysticks, and it main
tains a time-of-day clock with one-second accuracy.

Keyboard Functions
The IKBD sends the ST a keycode each time a key is pressed
or released. A one-byte code is sent when the key is pressed
(make), which is the same as the first byte of the extended
keyboard codes shown in Appendix J. The one-byte code
that is sent when the key is released (break) is the same as
the make code plus 128. Thus, if the a key has an extended
code of $1E61, the make code sent by the IKBD when the a is
pressed is $1E, and the break code sent when it is released is
$9E.

Although there are 128 possible make codes, and 128
break codes, the ST does not use all of these codes for keys.
Codes $74 and $75 are sometimes used to translate mouse
button presses into keycodes. Codes $F6 through $FF are
used for the packet headers which signal that the next few
bytes of information will not be keycodes, but rather will
contain information about the mouse, joystick, clock, or
IKBD status. These packet headers are:

339

APPENDIX I

Header Information Packet Type
$F6 IKBD status record
$F7 Absolute mouse position record

$F8-$FB Relative mouse position record (bits 0 and 1 indicate
button status)

$FC Time-of-day record
$FD Joystick report (both sticks)
$FE Joystick 0 event record
$FF Joystick 1 event record

Mouse Functions
The IKBD enables the ST mouse to operate in one of three
modes. In relative position mode (the default mode used by
TOS), the IKBD sends mouse position packets whenever a
mouse button is pressed or released, or moves more than a
prescribed threshold distance (which the user may set) in
any direction. The movement report is sent at full resolution,
not scaled to even multiples of the threshold distance. You
may designate whether you want to place the y origin at the
bottom (the ST default) or the top of the coordinate scheme.
If you place it at the top, downward motion is shown as pos
itive, and upward motion as negative. If you place it at the
bottom, downward movement is negative, and upward
movement is positive.

The relative position may change by a value much
greater than the threshold distance if mouse reports have
been paused, or if the motion occurs while the IKBD is busy
reporting other events. If the accumulated motion exceeds
the +127 to -1 2 8 range of a single report, multiple reports
are sent.

The second mouse mode is absolute position mode. In
this mode, position reports are not sent until the user asks
for them, via an interrogate command. If the user so desig
nates, position reports may also be sent when one of the
mouse buttons is pressed or released. The position reports
that are sent give the mouse position as absolute x,y coordi
nates. These coordinates are tracked internally by the IKBD,
according to a user-designated scale factor which determines
how far the mouse has to move before an x or y value
changes. There is also a command for resetting the x,y posi
tion.

The mode can also operate in keycode mode. In this

340

The Intelligent Keyboard Controller

mode, mouse position changes are translated into the equiva
lent cursor key strokes (up arrow, right arrow, and so on).
The user may set a scale factor that determines how far the
mouse must move before a cursor keycode is generated. A
right mouse button press is reported as keycode $74, while a
left mouse button press is reported as keycode $75. For both
mouse movement and button events, break codes are sent
immediately after the make codes.

Joystick Functions
The IKBD provides support for four separate modes of oper
ating the joystick. TOS, however, does not provide any sup
port for reading joysticks. One possible reason for this is a
partial conflict between use of the joysticks and the mouse.
The mouse and joystick 0 share a single port, and the right
mouse button and the fire button on joystick 1 have to share
one hardware line, making it impossible to read both at
once.

After any joystick command, the IKBD reads both ports
as if they have joysticks attached, with one of the buttons as
signed to each. After any mouse command (except mouse
disable, command $12), the IKBD scans port 0 as if a mouse
were attached, and "steals" the joystick 1 fire button line for
use in reading the right mouse button. In this condition, the
only way to read the fire button on joystick 1 is to temporar
ily disable the mouse with command $12. Then, the fire but
ton on joystick 1 can be read until the mouse is enabled
again.

Without direct TOS support, using joysticks in your pro
gram can be a little complicated. In order to enable the joys
ticks, you must give the IKBD the proper command to set
the mode. In order to read the data packets that the IKBD
returns, you must install your own interrupt handler routine.
Details on this procedure are supplied in the section on com
munications between the IKBD and ST, below.

Three of the joystick modes that the IKBD supports cor
respond roughly to the three mouse modes. The first is event
reporting mode, in which the IKBD sends a joystick informa
tion packet whenever the stick position or button status
changes. Information is only sent for the stick that changes.
Another mode of joystick operation is interrogation mode.

341

APPENDIX I

When this mode is in effect, joystick information is only sent
after a joystick interrogation command ($16).

In keycode mode, stick position changes are translated
into the equivalent cursor key strokes (up arrow, right arrow,
and so on). The user may set a time factor that determines
how long the stick must be held in one position before the
cursor keycode is repeated. A velocity stick feature is imple
mented, which means that if the user holds the stick in one
position for a certain amount of time, the cursor keycodes
are repeated faster. In this mode, a button press on joystick 0
is reported as keycode $74, while a button press on joystick 1
is reported as keycode $75. For both mouse movement and
button events, break codes are sent immediately after the
make codes.

The IKBD also supports joystick monitoring mode, and
fire button monitoring mode. In these modes, the IKBD does
nothing but constantly monitor the joysticks and/or the fire
buttons, and send out status reports as fast as possible. This
mode is of questionable value for ST programmers. It dis
ables the keyboard, returns information at a rate that forces
the system to do nothing but watch the information coming
in from the IKBD, and is hard to use under TOS. These con
ditions make this mode effectively useless.

Clock Functions
The IKBD maintains a time-of-day clock that keeps track of
the time and date, to a resolution of one second. This hard
ware clock is used for the XBIOS functions Settime() and
Gettime(), but not for the GEMDOS time and date func
tions. In the new (blitter) ROMs, however, the GEMDOS
clock is set from the IKBD clock at the end of every process.

Status Functions
The IKBD provides a number of functions that allow you to
query the joystick and mouse modes, along with other pa
rameter settings. These functions even allow you to read and
set the 6301 processor's memory, as well as execute subrou
tines within that memory space.

342

The Intelligent Keyboard Controller

Communicating with the IKBD on the ST
As you have seen, the IKBD supports several different func
tions, each with several modes of operation. To select a func
tion and mode, merely send a message to the controller, us
ing the BIOS function Bconout(), or the XBIOS functions
Ikbdws() or Initmous(). Receiving input from the device is a
little more complex than sending output, however. That's be
cause the IKBD device connects to the system via an ACIA
serial interface chip, and the system must be ready to receive
information from this device at any time.

When the ACIA chip receives information from the
IKBD, it causes an interrupt to occur on the 68901 MFP chip.
If the interrupt handler determines that the source of the in
terrupt was the IKBD ACIA, it calls the main IKBD interrupt
routine, ikbdsys. The location of the ikbdsys routine can be
found via the XBIOS function Kbdvbase(), which returns a
pointer to all of the IKBD interrupt routines, including
ikbdsys.

The ikbdsys routine checks to see if the interrupt was
caused by the receipt of data, or by an error. If it was an er
ror, a routine called vkbderr is called to handle it. If a data
byte was received, the byte is checked to see if it was a key
code, or an IKBD packet header. If it's a keycode, ikdbsys
processes the code, and places the character information into
an input buffer, the location of which can be found with the
XBIOS Iorec() call. If the byte was a header from a mouse,
clock, status, or joystick packet, however, the main interrupt
routine routes execution through one of the four vectors set
up to handle these packet types (mousevec, clockvec, stat-
vec, or joyvec).

Of these four, the mousevec and clockvec vectors are
used by the system, and should generally be left alone (par
ticularly if you want your mouse and clock functions to con
tinue). The statvec and joyvec vectors are not used by the
system, however, and you may want to install you own han
dlers for these functions. For example, in order to use joys
ticks with your program, you must send a command to the
IKBD to return joystick information packets, then install your
joystick packet handler to process these packets. If you do
install your own handler, remember at the point that it is en-

343

APPENDIX I
v

tered, the address of the packet buffer will be on the stack
and in register AO.

Your routine should begin by saving all registers that
you will use, and restoring those registers before ending. It
should not spend more than one millisecond handling the in
terrupt (most of the time, just moving the packet information
to your own buffer), and should end with an RTS instruc
tion. Remember also that if you replace one of the vectors
used by the system (like mousevec, for instance), you must
either duplicate its actions in your own handler, or lose sys
tem-level functions (like Line A and GEM mouse support).
And always save the default vectors, so you can replace
them before your program ends.

IKBD Mode and Parameter Setting Commands
The IKBD supports a number of commands for using the
mouse, clock, and joystick in various modes. These settings
can changed by sending command strings to the IKBD with
the Bconin(), Ikbdws(), or Initmous() functions. A sum
mary of the command strings and their functions can be
found below.

344

The Intelligent Keyboard Controller

$07 Set Mouse Button Action
D e te r m in e s w h e th e r th e IK B D tr e a ts th e m o u s e b u tto n s a s k e y b o a r d k e y s .
In a b s o lu te p o s i tio n in g m o d e , th is f u n c tio n c a n a ls o b e u s e d to c a u s e a
m o u s e b u tto n p r e s s o r r e le a s e to r e tu r n th e a b s o lu te m o u s e p o s i tio n .

Byte Number
Byte

Number Description
1 T h e lo w e r th r e e b its o f th is b y te a r e u s e d a s a f la g . P o ss ib le

v a lu e s a r e :
1 = In a b s o lu te p o s i tio n in g m o d e , m o u s e b u tto n p r e s s

c a u s e s m o u s e p o s i tio n r e p o r t (s e e m o u s e in te r r o g a te
c o m m a n d $ 0 D).

2 = In a b s o lu te p o s i t io n in g m o d e , m o u s e b u tto n r e le a s e
c a u s e s m o u s e p o s i t io n r e p o r t .

4 = M o u s e b u tto n s a r e t r e a te d lik e k e y b o a r d k e y s (le ft
b u tto n r e tu r n s k e y c o d e $ 7 4 , r ig h t b u tto n r e tu r n s k e y c o d e
$ 7 5) . P r e s u m e d to b e th e c a s e w h e n in m o u s e k e y c o d e
m o d e .

345

APPENDIX I

$08 Set Relative Mouse Position Reporting
T h is c o m m a n d p u ts th e m o u s e in to re la tiv e p o s i t io n m o d e . In th is m o d e ,
th e IK B D s e n d s m o u s e p o s i tio n p a c k e ts w h e n e v e r th e m o u s e is m o v e d
m o r e th a n th e th r e s h o ld d is ta n c e in th e x o r y d ire c tio n . T h e th r e s h o ld d is
t a n c e is s e t w ith c o m m a n d $ 0 B .

Input parameters
N o n e

346

The Intelligent Keyboard Controller

Packet returned
Byte

Number Description
1 $ F 8 - $ F B (m o u s e re la tiv e p o s i tio n p a c k e t h e a d e r) . B its 0 a n d 1

r e c o r d th e r ig h t a n d le ft m o u s e b u tto n s ta te :
$ F 8 = n e i th e r b u tto n p r e s s e d
$ F 9 = le f t b u tto n o n ly p r e s s e d
$ F A = r ig h t b u tto n o n ly p r e s s e d
$ F B = b o th b u tto n s p r e s s e d

2 C h a n g e in h o r iz o n ta l p o s i t io n e x p r e s s e d a s s ig n e d in te g e r
3 C h a n g e in v e r tic a l p o s i tio n e x p r e s s e d a s s ig n e d in te g e r

347

APPENDIX I

$09 Set Absolute Mouse Positioning
T h is c o m m a n d p u ts th e m o u s e in to a b s o lu te p o s i tio n m o d e . In th is m o d e ,
a m o u s e p o s i t io n p a c k e t th a t r e tu r n s th e c u r r e n t m o u s e p o s i t io n a s a n a b
s o lu te x,y c o o r d i n a te is g e n e r a t e d w h e n e v e r c o m m a n d $ 0 D is is s u e d . D e
p e n d in g o n th e m o u s e b u tto n a c t io n s e t t i n g (c o m m a n d $ 0 7) , th is p a c k e t
m a y a ls o b e g e n e r a t e d b y a p r e s s o r r e le a s e o f e i th e r m o u s e b u tto n . In a b
s o lu te p o s i tio n m o d e , s e t a m a x im u m x a n d y p o s i t io n . M o v e m e n t b e y o n d
th e m a x im u m p o s i t io n , o r b e lo w 0 , is ig n o r e d .

S e t tin g a b s o lu te p o s i tio n m o d e r e s e t s th e c u r r e n t x,y m o u s e p o s i t io n
to 0 ,0 . A n o th e r x,y p o s i t io n c a n b e s e t u s in g c o m m a n d $ 0 E . In th is m o d e ,
y o u m a y s e t a s c a l in g f a c to r th a t d e t e r m in e s h o w m a n y m o u s e u n its m u s t
b e tr a v e r s e d b e f o r e th e x o r y p o s i t io n c h a n g e s . T h is s c a l in g f a c to r is s e t
w ith c o m m a n d $ 0 C .

Input parameters
Byte

Number Description
1 H ig h b y te , m a x im u m x p o s i t io n (in s c a le d u n its) .
2 . L o w b y te , m a x im u m x p o s i t io n .
3 H ig h b y te , m a x im u m y p o s i t io n (in s c a le d u n its) .
4 L o w b y te , m a x im u m y p o s i t io n .

348

The Intelligent Keyboard Controller

$0A Set Mouse Keycode Mode
T h is c o m m a n d p u ts th e m o u s e in to k e y c o d e m o d e . In th is m o d e , th e IK B D
s e n d s c u r s o r a r r o w k e y c o d e s w h e n e v e r th e m o u s e is m o v e d m o r e th a n th e
th r e s h o ld d is ta n c e in th e x o r y d i r e c t io n . T h e m a k e c o d e is fo llo w e d im
m e d ia te ly b y th e b r e a k c o d e . T h e m o u s e b u tto n s a r e a ls o tr e a te d lik e k e y
b o a r d k e y s . T h e le ft b u tto n g e n e r a t e s a k e y c o d e o f $ 7 4 , a n d th e r ig h t b u t
to n g e n e r a t e s a k e y c o d e o f $ 7 5 .

Input parameters
Byte

Number Description
1 H o r iz o n ta l d is ta n c e (in m o u s e u n its) th a t m u s t b e t r a v e le d b e f o r e

th e c u r s o r le f t o r c u r s o r r ig h t c o d e is s e n t .
2 V e r tic a l d is ta n c e (in m o u s e u n its) th a t m u s t b e tr a v e le d b e f o r e

th e c u r s o r u p o r c u r s o r d o w n c o d e is s e n t .

349

APPENDIX I

$0B Set Mouse Threshold
T h is c o m m a n d s e ts th e m o v e m e n t th r e s h o ld n e c e s s a r y b e f o r e a m o u s e p o
s itio n r e p o r t is s e n t in r e la tiv e p o s i t io n m o d e . N o te th a t th is c o m m a n d
o n ly a f fe c ts re la tiv e p o s i tio n m o d e , a n d th a t th e p o s i tio n d a ta w ill n o t b e
r o u n d e d to th e n e a r e s t m u ltip le o f th e th r e s h o ld .

Input parameters
Byte

Number Description
1 H o r iz o n ta l d is ta n c e (in m o u s e u n its) th a t m u s t b e tr a v e le d

b e f o r e th e m o u s e p o s i t io n p a c k e t is s e n t .
2 V e r tic a l d is ta n c e (in m o u s e u n its) th a t m u s t b e tr a v e le d b e f o r e

th e m ou se* p o s i tio n p a c k e t is s e n t .

350

The Intelligent Keyboard Controller

$0C Set Mouse Scale
T h is c o m m a n d s e ts th e s c a le f a c t o r f o r a b s o lu te p o s i t io n m o d e . T h is is th e
n u m b e r o f m o u s e u n its y o u m u s t m o v e b e f o r e th e in te r n a l x o r y p o s i t io n
s e t t in g s c h a n g e .

Input parameters
Byte

Number Description
1 H o r iz o n ta l d i s t a n c e (in m o u s e u n its) th a t m u s t b e tr a v e le d

b e f o r e th e m o u s e x p o s i t io n c h a n g e s .
2 V e r tic a l d i s t a n c e (in m o u s e u n its) th a t m u s t b e tr a v e le d b e f o r e

th e m o u s e y p o s i t io n c h a n g e s .

351

APPENDIX I

$0D Interrogate Mouse Position
T h is f u n c tio n is u s e d to r e a d th e m o u s e p o s i tio n w h e n in a b s o lu te p o s itio n
m o d e . T h e o n ly o t h e r w a y to g e t th e m o u s e p o s i tio n f ro m th a t m o d e is to
s e t th e m o u s e b u tto n s to r e p o r t o n a p r e s s o r r e le a s e , u s in g c o m m a n d $ 0 7 .

Input parameters
N o n e

Packet returned
Byte

Number Description
1 $ F 7 (m o u s e a b s o lu te p o s i tio n p a c k e t h e a d e r)
2 B u t to n c h a n g e s ta tu s :

B it 0 = 1 R ig h t b u tto n p r e s s e d s in c e la s t r e a d
B it 1 = 1 R ig h t b u tto n r e le a s e d s in c e la s t r e a d
B it 2 = 1 L e f t b u tto n p r e s s e d s in c e la s t r e a d
B it 3 = 1 L e f t b u tto n r e le a s e d s in c e la s t r e a d

3 H ig h b y te o f h o r iz o n ta l p o s i t io n
4 L o w b y te o f h o r iz o n ta l p o s i tio n
5 H ig h b y te o f v e r tic a l p o s i tio n
7 L o w b y te o f v e r tic a l p o s i tio n

352

The Intelligent Keyboard Controller

$0E Load Mouse Position
In a b s o lu te p o s i tio n m o d e , th is c o m m a n d is u s e d to r e s e t th e a b s o lu te x
a n d y p o s i t io n v a lu e s .

Input parameters
Byte

Number Description
1 A f ille r b y te , m u s t b e 0 .
2 H ig h b y te , x p o s i t io n (in s c a le d c o o r d i n a te u n its) .
3 L o w b y te , x p o s i t io n .
4 H ig h b y te , y p o s i t io n (in s c a le d c o o r d i n a te u n its) .
5 L o w b y te , y p o s i t io n .

353

APPENDIX I

$0F Set y Origin at Bottom
T h is c o m m a n d s e ts th e o r ig in o f th e y c o o r d i n a te s y s te m a t th e b o tto m ,
w h ic h m e a n s th a t d o w n w a r d m o v e m e n t (t o w a r d s th e u s e r) is t r e a te d a s
n e g a tiv e , a n d u p w a r d m o v e m e n t (a w a y f ro m th e u s e r) is tr e a te d a s p o s i
tiv e .

Input parameters
N o n e

354

The Intelligent Keyboard Controller

$10 Set y Origin at Top
T h is c o m m a n d s e ts th e o r ig in o f th e y c o o r d i n a te s y s te m a t th e b o tto m ,
w h ic h m e a n s t h a t d o w n w a r d m o v e m e n t (t o w a r d s th e u s e r) is tr e a te d a s
p o s i tiv e , a n d u p w a r d m o v e m e n t (a w a y f r o m th e u s e r) is t r e a te d a s n e g a
tiv e .

Input parameters
N o n e

355

APPENDIX I

$11 Resume
T h is c o m m a n d c a u s e s th e IK B D to r e s u m e s e n d in g d a ta p a c k e ts a f te r it h a s
b e e n p a u s e d w ith c o m m a n d $ 1 3 . S in c e e v e r y o t h e r c o m m a n d a ls o c a u s e s
th e IK B D to r e s u m e , a n d s in c e th is c o m m a n d is ig n o r e d if th e IK B D is n 't
p a u s e d , i t c a n b e r e g a r d e d a s a N o O p e r a t io n (N O P) c o m m a n d .

Input parameters
N o n e

356

The Intelligent Keyboard Controller

$12 Disable Mouse
T h is c o m m a n d d is a b le s a ll m o u s e m o v e m e n t a n d m o u s e b u tto n s c a n n in g
a n d r e p o r t in g . T h e m o u s e m a y b e r e e n a b le d b y s e tt in g th e m o u s e r e p o r t
in g m o d e w ith c o m m a n d $ 0 8 , $ 0 9 , o r $ 0 A .

Input parameters
N o n e

357

APPENDIX I

$13 Pause Output
T h is c o m m a n d s to p s a ll t r a n s f e r o f d a t a to th e m a in p r o c e s s o r . S c a n n in g
c o n t in u e s in te r n a lly , a n d k e y s t r o k e s , m o u s e m o v e m e n ts , a n d jo y s tic k
e v e n ts (if e n a b le d) w ill b e q u e u e d u p to c a p a c i ty o f th e 6 3 0 1 m ic r o p r o c e s
s o r 's s m a ll b u ffe r . In p r a c tic a l te r m s , if r e p o r t in g is p a u s e d fo r m o r e th a n a
v e r y s m a ll tim e p e r io d , th e s e in p u t e v e n ts w ill b e lo s t .

Input parameters
N o n e

358

The Intelligent Keyboard Controller

$14 Set Joystick Event Reporting
T h is c o m m a n d p u t s th e jo y s tic k p o r ts in to e v e n t r e p o r t in g m o d e . In th is
m o d e , e a c h m o v e m e n t o f th e s tic k o r b u tto n c a u s e s a jo y s tic k e v e n t p a c k e t
to b e s e n t .

Input parameters
N o n e

Packet returned
Byte

Number Description
1 $ F E - $ F F (J o y s tic k e v e n t p a c k e t h e a d e r)

$ F E = J o y s tic k 0
$ F F = J o y s t ic k 1

2 S tic k a n d b u tto n s ta tu s b y te (B x x x R L D U)
B it 0 = 1 J o y s tic k p r e s s e d in u p d ire c tio n
B it 1 = 1 J o y s t ic k p r e s s e d in d o w n d ire c tio n
B it 2 = 1 J o y s t ic k p r e s s e d in le f t d ire c tio n
B it 3 = 1 J o y s t ic k p r e s s e d in r ig h t d ire c tio n
B it 7 = 1 F ire b u tto n p r e s s e d

359

APPENDIX I

$15 Set Joystick Interrogation Mode
T h is c o m m a n d p u ts th e jo y s tic k p o r ts in to in te r r o g a tio n m o d e . In th is
m o d e , jo y s tic k e v e n ts w ill o n ly b e r e p o r te d w h e n th e in te r r o g a te jo y s tic k
c o m m a n d ($ 1 6) is s e n t to th e IK B D .

Input parameters
N o n e

360

The Intelligent Keyboard Controller

$16 Interrogate Joystick
T h is f u n c tio n c a n b e u s e d to r e a d th e c u r r e n t s ta tu s o f th e jo y s tic k s w h e n
in e v e n t r e p o r t in g m o d e o r in te r r o g a tio n m o d e . I t is th e o n ly w a y to r e a d
th e jo y s tic k s w h e n in in te r r o g a tio n m o d e .

Input parameters
N o n e

Packet returned
Byte

Number Description
1 $ F D (J o y s tic k r e p o r t p a c k e t h e a d e r)
2 J o y s tic k 0 s tic k a n d b u tto n s ta tu s b y te (B x x x R L D U)

B it 0 = 1 J o y s tic k p r e s s e d in u p d ire c tio n
B it 1 = 1 J o y s t ic k p r e s s e d in d o w n d ir e c tio n
B it 2 = 1 J o y s tic k p r e s s e d in le f t d ire c tio n
B it 3 = 1 J o y s t ic k p r e s s e d in r ig h t d ire c tio n
B it 7 = 1 F ire b u tto n p r e s s e d

3 J o y s tic k 1 s tic k a n d b u tto n s ta tu s b y te (B x x x R L D U)
B it 0 = 1 J o y s tic k p r e s s e d in u p d ire c tio n
B it 1 = 1 J o y s t ic k p r e s s e d in d o w n d ire c tio n
B it 2 = 1 J o y s tic k p r e s s e d in le f t d ire c tio n
B it 3 = 1 J o y s t ic k p r e s s e d in r ig h t d ire c tio n
B it 7 = 1 F ire b u t to n p r e s s e d

361

APPENDIX I

$17 Set Joystick Monitoring
T h is c o m m a n d s e ts th e IK B D in to jo y s tic k m o n i to r in g m o d e . W h e n in th is
m o d e , th e IK B D d o e s n o th i n g b u t m o n i to r th e jo y s tic k , c o m m u n ic a te o v e r
th e s e ria l lin e , a n d m a in ta in th e t im e -o f -d a y c lo c k . T h e r a t e a t w h ic h th e
jo y s tic k is s a m p le d m a y b e c o n tr o l le d d o w n to 1 /1 0 0 o f a s e c o n d .

Input parameters
Byte

Number Description
1 T im e b e t w e e n jo y s tic k s a m p le s (in u n its o f 1 /1 0 0 o f a s e c o n d) .

Packet returned
Byte

Number Description
1 F ire b u t to n s ta tu s f o r jo y s tic k 0 a n d l (x x x x x x B B)

B it 0 = 1 F i r e b u tto n p r e s s e d o n jo y s tic k 1
B it 1 = 1 F i r e b u tto n p r e s s e d o n jo y s tic k 0

3 J o y s tic k s ta tu s fo r jo y s tic k 0 a n d 1 (R L D U R L D U)
B it 0 = 1 J o y s t ic k 1 p r e s s e d in u p d ire c tio n
B it 1 = 1 J o y s t ic k 1 p r e s s e d in d o w n d ire c tio n
B it 2 = 1 J o y s t ic k 1 p r e s s e d in le ft d ire c tio n
B it 3 = 1 J o y s t ic k 1 p r e s s e d in r ig h t d ire c tio n
B it 4 = 1 J o y s t ic k 0 p r e s s e d in u p d ire c tio n
B it 5 = 1 J o y s t ic k 0 p r e s s e d in d o w n d ire c tio n
B it 6 = 1 J o y s t ic k 0 p r e s s e d in le ft d ire c tio n
B it 7 = 1 J o y s t ic k 0 p r e s s e d in r ig h t d ire c tio n

362

The Intelligent Keyboard Controller

$18 Set Fire Button Monitoring
T h is c o m m a n d s e ts th e IK B D in to fire b u tto n m o n ito r in g m o d e . W h e n in
th is m o d e , th e IK B D d o e s n o th i n g b u t m o n i to r th e f ire b u tto n o n jo y s tic k
1 , c o m m u n ic a te o v e r th e s e ria l lin e , a n d m a in ta in th e tim e -o f -d a y c lo c k .
E ig h t s a m p le s a r e ta k e n in th e t im e it ta k e s to s e n d a s in g le b y te o f d a ta
o v e r th e s e ria l lin e . T h e r e s u lts o f th e e ig h t s a m p le s a r e p a c k e d in to a s in
g le b y te , w i th b it 7 h o ld in g th e r e s u l t o f th e m o s t r e c e n t s a m p le .

Input parameters
N o n e

Packet returned
Byte

Number1 Description
F ire b u tto n s ta tu s f o r la s t e ig h t r e a d s o f jo y s tic k 1

B itO
B it 1
B it 2
B it 3
B it 4
B it 5
B it 6
B it 7

F ire b u tto n p r e s s e d d u r i n g f irs t s a m p le
F ir e b u t to n p r e s s e d d u r in g s e c o n d s a m p le
F ire b u tto n p r e s s e d d u r i n g th ir d s a m p le
F ire b u tto n p r e s s e d d u r in g f o u r th s a m p le
F ir e b u t to n p r e s s e d d u r in g fifth s a m p le
F ire b u t to n p r e s s e d d u r i n g s ix th s a m p le
F ir e b u tto n p r e s s e d d u r in g s e v e n t h s a m p le
F ir e b u t to n p r e s s e d d u r in g la s t s a m p le

363

APPENDIX I

$19 Set Joystick Keycode Mode
T h is c o m m a n d p u ts th e jo y s tic k p o r ts in to k e y c o d e m o d e . In th is m o d e ,
th e IK B D s e n d s c u r s o r a r r o w k e y c o d e s w h e n e v e r jo y s tic k 0 is m o v e d f ro m
th e c e n t e r p o s i tio n . T h e m a k e c o d e is fo llo w e d im m e d ia te ly b y th e b r e a k
c o d e . T h is m o d e h a s a v e lo c i ty f e a tu r e th a t a llo w s y o u s e n d th e k e y c o d e s
m u c h f a s te r if th e s tic k h a s b e e n h e ld in o n e d ire c tio n f o r lo n g e r th a n th e
b r e a k p o in t tim e d u r a t io n . U n til th e b r e a k p o in t is r e a c h e d , th e k e y c o d e s r e
p e a t a t a s lo w e r r a t e , b u t a f te r th e b r e a k p o in t is r e a c h e d , th e y r e p e a t a t a
f a s te r r a te .

Input parameters
Byte

Number Description
1 R X : T h e le n g th o f t im e u n til th e h o r iz o n ta l v e lo c ity b r e a k p o in t

is r e a c h e d , a n d th e k e y r e p e a ts b e c o m e f a s te r (in te n th s o f a
s e c o n d) . B y s e tt in g th is to 0 , th e h o r iz o n ta l v e lo c ity f e a tu r e is
d is a b le d , a n d V X is a lw a y s u s e d a s th e tim e b e t w e e n r e p e a ts .

2 R Y : T h e le n g th o f t im e u n til th e v e r tic a l v e lo c ity b r e a k p o in t is
r e a c h e d , a n d th e k e y r e p e a ts b e c o m e f a s te r (in te n th s o f a
s e c o n d) . B y s e t t i n g th is to 0 , th e v e r tic a l v e lo c ity f e a tu r e is
d is a b le d , a n d V Y is a lw a y s u s e d a s th e t im e b e t w e e n r e p e a ts .

3 T X : T h e le n g th o f t im e b e t w e e n h o r iz o n ta l k e y r e p e a ts b e f o r e
th e h o r iz o n ta l b r e a k p o in t is r e a c h e d (in te n th s o f a s e c o n d) .

4 T Y : T h e le n g th o f t im e b e t w e e n v e r tic a l k e y r e p e a ts b e f o r e th e
v e r tic a l b r e a k p o in t is r e a c h e d (in te n th s o f a s e c o n d) .

3 V X : T h e le n g th o f t im e b e t w e e n h o r iz o n ta l k e y r e p e a ts a f te r th e
h o r iz o n ta l b r e a k p o in t is r e a c h e d (in te n th s o f a s e c o n d) .

3 V X : T h e le n g th o f t im e b e t w e e n v e r tic a l k e y r e p e a ts a f te r th e
h o r iz o n ta l b r e a k p o in t is r e a c h e d (in te n th s o f a s e c o n d) .

364

The Intelligent Keyboard Controller

$1A Disable Joysticks
T h is c o m m a n d d is a b le s a ll jo y s tic k m o v e m e n t a n d jo y s tic k b u tto n s c a n n in g
a n d r e p o r t in g . T h e m o u s e m a y b e r e e n a b le d b y s e tt in g th e jo y s tic k r e p o r t
in g m o d e w ith c o m m a n d $ 1 4 , $ 1 5 , $ 1 7 , $ 1 8 , o r $ 1 9 .

Input parameters
N o n e

365

APPENDIX I

$1B Set Time-of-Day Clock
T h is c o m m a n d s e t s th e d a t e a n d tim e fo r th e in te r n a l t im e -o f -d a y c lo c k .
T h e v a lu e s a r e p a s s e d in p a c k e d B in a ry C o d e d D e c im a l (B C D) f o r m a t . T h is
m e a n s th a t e a c h n ib b le c o n ta in s a n u m b e r f r o m 0 - 9 , s o th a t e a c h b y te
y ie ld s a tw o -d ig it d e c im a l n u m b e r . A n y d ig it th a t i s n 't in B C D f o r m a t is
t r e a te d a s a f la g in d ic a tin g th a t th e c u r r e n t v a lu e s h o u ld n 't b e c h a n g e d .

Input parameters
Byte

Number Description
1 Y e a r (la s t tw o d ig its o n ly)
2 M o n th
3 D a y
4 H o u r s (0 - 2 4)
5 M in u te s
6 S e c o n d s

366

The Intelligent Keyboard Controller

$1C Interrogate Time-of-Day Clock
T h is c o m m a n d c a u s e s th e IK B D to s e n d a p a c k e t w h ic h g iv e s in f o r m a tio n
a b o u t th e c u r r e n t t im e -o f -d a y c lo c k s e t t i n g s . T h e in f o r m a tio n th a t 's r e
tu r n e d is s to r e d in p a c k e d B C D f o r m a t.

Input parameters
N o n e

Packet returned
Byte

Number Description
1 $ F C (t im e o f d a y p a c k e t h e a d e r)
2 Y e a r (la s t tw o d ig its o n ly)
3 M o n th
4 D a y
5 H o u r s (0 - 2 4)
6 M in u te s
7 S e c o n d s

367

APPENDIX I

$20 Memory Load
T h is c o m m a n d a llo w s y o u to lo a d a r b it r a r y v a lu e s in to th e 1 2 8 b y te s o f
p r o c e s s o r R A M w h ic h is f o u n d a t lo c a t io n s $ 8 0 - $ F F o n th e 6 3 0 1 p r o c e s s o r
c h ip . T h e r e 's n o t m u c h y o u c a n a c c o m p lis h b y d o in g it , h o w e v e r , s in c e th e
p r o c e s s o r u s e s a ll o f th e R A M f o r its o w n f u n c tio n s .

Input parameters
Byte

Number Description
1 H ig h b y te o f a d d r e s s in c o n tr o l le r m e m o r y to lo a d (0)
2 L o w b y te o f a d d r e s s in c o n tr o l le r m e m o r y to lo a d
3 N u m b e r o f b y te s to lo a d (0 - 1 2 8)

4 -n D a ta b y te s to lo a d

368

The Intelligent Keyboard Controller

$21 Memory Read
T h is c o m m a n d a llo w s y o u to r e a d th e 6 3 0 1 p r o c e s s o r R O M o r R A M , s ix
b y te s a t a tim e .

Input parameters
Byte

Number Description
1 H ig h b y te o f a d d r e s s in c o n tr o l le r m e m o r y to r e a d
2 L o w b y te o f a d d r e s s in c o n tr o l le r m e m o r y to r e a d

Packet returned
Byte

Number Description
1 $ F 6 (s ta t u s p a c k e t h e a d e r)
2 $ 2 0 T h e n u m b e r o f th e c o r r e s p o n d i n g s e t c o m m a n d

3 - 8 S ix b y te s o f 6 3 0 1 m e m o r y , s ta r t in g a t th e a d d r e s s s p e c if ie d in
th e c o m m a n d

369

APPENDIX I

$22 Controller Execute
T h is c o m m a n d a llo w s y o u to e x e c u te a 6 3 0 1 p r o c e s s o r s u b r o u tin e f r o m a
c e r ta in p o in t in p r o c e s s o r m e m o r y .

Input parameters
Byte

Number Description
1 H ig h b y te o f s u b r o u tin e a d d r e s s in c o n tr o l le r m e m o r y
2 L o w b y te o f s u b r o u tin e a d d r e s s in c o n tr o l le r m e m o r y

370

The Intelligent Keyboard Controller

$80 Reset
T h is c o m m a n d p e r f o r m s a s im p le s e lf - te s t , a n d r e tu r n s th e k e y b o a r d c o n
tr o lle r to its d e f a u lt m o d e a n d p a r a m e t e r s e t t i n g s . I t d o e s n o t a f fe c t th e
c lo c k s e t t in g s .

Input parameters
Byte

Number Description
1 A v a lu e o f 1 . A n y o t h e r v a lu e c a u s e s th e r e s e t c o m m a n d to b e

ig n o r e d .

IKBD Status Commands
M a n y o f th e IK B D s e t t i n g c o m m a n d s h a v e c o r r e s p o n d i n g s ta tu s in q u iry
c o m m a n d s . T h e s e c o m m a n d s c a u s e th e IK B D to s e n d a n in fo rm a tio n
p a c k e t th a t te lls a b o u t th e c u r r e n t s e t t i n g , r a t h e r th a n c h a n g in g it. T h e ir
c o m m a n d n u m b e r s a r e f o r m e d b y a d d in g $ 8 0 to th e o r ig in a l s e tt in g c o m
m a n d n u m b e r . T h e r e tu r n e d r e s p o n s e s a r e d e s ig n e d to im ita te th e f o r m a t
o f th e o r ig in a l s e t t i n g c o m m a n d s , s o if th e s ta tu s p a c k e t h e a d e r b y te ($ F 6)
a t th e b e g in n in g is s t r ip p e d a w a y , th e r e s t o f th e p a c k e t m a y b e s e n t b a c k
to th e IK B D a s a c o m m a n d w h ic h r e s t o r e s th e o r ig in a l s e t t in g . A ll s ta tu s
r e p o r ts a r e p a d d e d to e ig h t b y te s in le n g th , b u t th e 0 v a lu e th a t is u s e d f o r
p a d d i n g is ig n o r e d b y th e IK B D w h e n s e n t a s a c o m m a n d . In o r d e r to r e
c e iv e IK B D s ta tu s p a c k e ts o n th e S T , y o u m u s t r e p la c e th e s ta tv e c v e c to r
w ith a r o u t in e o f y o u r o w n th a t tr a n s f e r s th e p a c k e ts to y o u r o w n b u ffe r .
A s u m m a r y o f th e IK B D s ta tu s c o m m a n d s a r e s h o w n b e lo w .

371

APPENDIX I

$87 Inquire Mouse Button Action
T h is c o m m a n d c a u s e s th e IK B D to s e n d a p a c k e t w h ic h g iv e s in f o r m a tio n
a b o u t w h e t h e r th e m o u s e b u tto n s a r e t r e a te d lik e k e y b o a r d k e y s , a n d if, in
a b s o lu te p o s i t io n m o d e , a b u tto n p r e s s o r r e le a s e w ill c a u s e a m o u s e e v e n t
p a c k e t to b e s e n t .

Packet returned
Byte

Number Description
1 $ F 6 (s ta t u s p a c k e t h e a d e r) .
2 $ 0 7 T h e n u m b e r o f th e c o r r e s p o n d i n g s e t c o m m a n d .
3 T h e lo w e r th r e e b its o f th is b y te a r e u s e d a s a f la g . P o ss ib le

v a lu e s a r e :
1 = In a b s o lu te p o s i t io n in g m o d e , m o u s e b u tto n p r e s s

c a u s e s m o u s e p o s i tio n r e p o r t .
2 = In a b s o lu te p o s i tio n in g m o d e , m o u s e b u tto n r e le a s e

c a u s e s m o u s e p o s i tio n r e p o r t .
4 = M o u s e b u tto n s a r e t r e a te d lik e k e y b o a r d k e y s (le ft

b u tto n r e tu r n s k e y c o d e $ 7 4 , r ig h t b u tto n r e tu r n s k e y c o d e
$ 7 5) . P r e s u m e d to b e th e c a s e w h e n in m o u s e k e y c o d e
m o d e .

4 - 8 P a d b y te s (all z e r o s) .

372

The Intelligent Keyboard Controller

$88, $89, $8A Inquire Mouse Mode
T h is c o m m a n d c a u s e s th e IK B D to s e n d a p a c k e t w h ic h c o n ta in s in f o r m a
tio n a b o u t th e m o u s e m o d e , a n d s e t t in g s r e le v a n t to th a t m o d e .

Packet returned
Byte

Number Description
1 $ F 6 (s ta t u s p a c k e t h e a d e r)
2 M o d e n u m b e r (c o r r e s p o n d s to m o d e s e t c o m m a n d)

$ 0 8 = R e la tiv e m o d e
$ 0 9 = A b s o lu te m o d e
$ 0 A = K e y c o d e m o d e

3 R e la tiv e m o d e = 0
A b s o lu te m o d e = H ig h b y te , m a x im u m x p o s i t io n (in s c a le d

u n its)
K e y c o d e m o d e = H o r iz o n ta l d i s t a n c e (in m o u s e u n its) th a t

m u s t b e t r a v e le d b e f o r e th e c u r s o r le f t o r c u r s o r r ig h t c o d e
is s e n t .

4 R e la tiv e m o d e = 0
A b s o lu te m o d e = L o w b y te , m a x im u m x p o s i t io n
K e y c o d e m o d e = V e r tic a l d i s t a n c e (in m o u s e u n its) th a t m u s t

b e tr a v e le d b e f o r e th e c u r s o r u p o r c u r s o r d o w n c o d e is
s e n t .

5 R e la tiv e m o d e = 0
A b s o lu te m o d e = H ig h b y te , m a x im u m y p o s i t io n (in s c a le d

u n its)
K e y c o d e m o d e = 0

6 R e la tiv e m o d e = 0
A b s o lu te m o d e = L o w b y te , m a x im u m y p o s i t io n
K e y c o d e m o d e = 0

7 - 8 P a d b y te s (0)

373

APPENDIX I

$8B Inquire Mouse Threshold
T h is c o m m a n d c a u s e s th e IK B D to s e n d a p a c k e t w h ic h c o n ta in s in f o r m a
tio n a b o u t th e th r e s h o ld v a l u e s u s e d f o r r e la tiv e p o s i t io n m o d e .

Packet returned
Byte
Number Description

1 $ F 6 (s ta t u s p a c k e t h e a d e r)
2 $ 0 B T h e n u m b e r o f th e c o r r e s p o n d i n g s e t c o m m a n d
3 H o r iz o n ta l d is ta n c e (in m o u s e u n its) th a t m u s t b e t r a v e le d

b e f o r e th e m o u s e p o s i tio n p a c k e t is s e n t
4 V e r tic a l d i s t a n c e (in m o u s e u n its) th a t m u s t b e tr a v e le d b e f o r e

th e m o u s e p o s i t io n p a c k e t is s e n t .
5 - 8 P a d b y te s (0)

374

The Intelligent Keyboard Controller

$8C Inquire Mouse Scale
T h is c o m m a n d c a u s e s th e IK B D to s e n d a p a c k e t w h ic h c o n ta in s in fo rm a
tio n a b o u t th e s c a le f a c t o r u s e d f o r a b s o lu tio n p o s i tio n m o d e .

Packet returned
Byte

Number Description
1 $ F 6 (s ta t u s p a c k e t h e a d e r)
2 $ 0 C T h e n u m b e r o f th e c o r r e s p o n d i n g s e t c o m m a n d
3 H o r iz o n ta l d i s t a n c e (in m o u s e u n its) th a t m u s t b e tr a v e le d

b e f o r e th e m o u s e x p o s i t io n c h a n g e s .
4 V e r tic a l d is ta n c e (in m o u s e u n its) th a t m u s t b e t r a v e le d b e f o r e

th e m o u s e y p o s i t io n c h a n g e s .
5 - 8 P a d b y te s (0)

375

APPENDIX I

$8F, $90 Inquire Mouse y Origin
T h is c o m m a n d c a u s e s th e IK B D to s e n d a p a c k e t w h ic h c o n ta in s in fo rm a
tio n a b o u t w h e t h e r th e y o r ig in is s e t a t th e b o tto m p o s i t io n (in w h ic h th e
m o u s e is c lo s e s t to th e u s e r) o r th e to p p o s i tio n (in w h ic h th e m o u s e is
f a r th e s t a w a y f ro m th e u s e r) .

Packet returned
Byte

Number Description
1 $ F 6 (s ta t u s p a c k e t h e a d e r)
2 T h e n u m b e r o f th e c o r r e s p o n d i n g s e t y o r ig in c o m m a n d

$ 0 F = O r ig in a t b o tto m
$ 1 0 = O r ig in a t to p

3 - 8 P a d b y te s (0)

376

The Intelligent Keyboard Controller

$92 Inquire Mouse Enabled/Disabled
T h is c o m m a n d c a u s e s th e IK B D to s e n d a p a c k e t w h ic h c o n t a in s in f o r m a
tio n a b o u t w h e t h e r m o u s e s c a n n i n g a n d r e p o r t in g is e n a b le d o r d is a b le d .

Packet returned
Byte

Number Description
1 $ F 6 (s ta t u s p a c k e t h e a d e r)
2 N u m b e r o f th e c o r r e s p o n d i n g m o u s e s ta tu s c o m m a n d

$ 0 0 = E n a b le d
$ 1 2 = D is a b le d

3 - 8 P a d b y te s (0)

377

APPENDIX I

$94, $95, $99 Inquire Joystick Mode
T h is c o m m a n d c a u s e s th e IK B D to s e n d a p a c k e t th a t c o n ta in s in fo rm a tio n
a b o u t th e c u r r e n t jo y s tic k m o d e . If k e y c o d e m o d e is b e in g u s e d , it a ls o
r e tu r n s in f o r m a tio n a b o u t th e v e lo c ity c u r s o r s e t t in g s .

Packet returned
Byte

Number Description
1 $ F 6 (s ta t u s p a c k e t h e a d e r)
2 T h e n u m b e r o f th e c o r r e s p o n d i n g s e t m o d e c o m m a n d

$ 1 4 = E v e n t r e p o r t in g m o d e
$ 1 5 = I n te r r o g a ti o n m o d e
$ 1 9 = K e y c o d e m o d e

3 - 8 F o r e v e n t r e p o r t in g a n d in te r r o g a tio n m o d e s th e s e a r e p a d
b y te s (a ll Os). F o r k e y c o d e m o d e , th e y a r e :

3 R X : T h e le n g th o f tim e u n til th e h o r iz o n ta l v e lo c ity b r e a k p o in t
is r e a c h e d , a n d th e k e y r e p e a ts b e c o m e f a s te r (in te n th s o f a
s e c o n d) .

4 R Y : T h e le n g th o f t im e u n til th e v e r tic a l v e lo c ity b r e a k p o in t is
r e a c h e d , a n d th e k e y r e p e a ts b e c o m e f a s te r (in te n th s o f a
s e c o n d) .

5 T X : T h e le n g th o f t im e b e t w e e n h o r iz o n ta l k e y r e p e a ts b e f o r e
th e h o r iz o n ta l b r e a k p o in t is r e a c h e d (in te n th s o f a s e c o n d) .

6 T Y : T h e le n g th o f t im e b e t w e e n v e r tic a l k e y r e p e a ts b e f o r e th e
v e r tic a l b r e a k p o in t is r e a c h e d (in te n th s o f a s e c o n d) .

7 V X : T h e le n g th o f t im e b e t w e e n h o r iz o n ta l k e y r e p e a ts a f te r th e
h o r iz o n ta l b r e a k p o in t is r e a c h e d (in te n th s o f a s e c o n d) .

8 V X : T h e le n g th o f tim e b e t w e e n v e r tic a l k e y r e p e a ts a f te r th e
h o r iz o n ta l b r e a k p o in t is r e a c h e d (in te n th s o f a s e c o n d) .

378

The Intelligent Keyboard Controller

$9A Inquire Joystick Enabled/Disabled
Input parameters
T h is c o m m a n d c a u s e s th e IK B D to s e n d a p a c k e t th a t c o n ta in s in fo rm a tio n
a b o u t w h e th e r m o u s e s c a n n i n g a n d r e p o r t in g is e n a b le d o r d isa b le d .

Packet returned
Byte

Number Description
1 $ F 6 (s ta t u s p a c k e t h e a d e r)
2 N u m b e r o f th e c o r r e s p o n d i n g jo y s tic k e n a b le c o m m a n d

$ 0 0 = E n a b le d
$ 1 A = D is a b le d

3 - 8 P a d b y te s (0)

379

Appendix J

Keycodes

The GEMDOS function Cconin(), and the
BIOS function Bconin() (when used to read the console de
vice keyboard), both return a two-byte keycode, which is ex
tended into a longword. The first byte of the keycode, which
is found in the second byte of the longword, is usually a
unique key identifier that refers to the physical key that was
struck, regardless of shift-key combinations. The second
byte, which is found in the last byte of the longword, is usu
ally the ASCII value of the key combination, which does de
pend on the state of the shift keys (Shift, Control, and Alter
nate). The following table shows the keycodes, as four-digit
hexadecimal numbers, for all key and shift combinations.

Unshifted Shift CTRL ALT
a 1E61 A 1E41 1E01 1E00
b 3062 B 3042 3002 3000
c 2E63 C 2E43 2E03 2E00
d 2064 D 2044 2004 2000
e 1265 E 1245 1205 1200
f 2166 F 2146 2106 2100
g 2267 G 2247 2207 2200
h 2368 H 2348 2308 2300
i 1769 I 1749 1709 1700
j 246A J 244A 240A 2400
k 256B K 254B 250B 2500
1 266C L 264C 260C 2600
m 326D M 324D 320D 3200
n 316E N 314E 310E 3100
0 186F O 184F 180F 1800
P 1970 P 1950 1910 1900
q 1071 Q 1051 1011 1000
r 1372 R 1352 1312 1300
s 1F73 S 1F53 1F13 1F00
t 1474 T 1454 1414 1400

383

APPENDIX J

Unshifted Shift CTRL ALT
u 1675 U 1655 1615 1600
V 2F76 V 2F56 2F16 2F00
w 1177 W 1157 1117 1 1 0 0

X 2D78 X 2D58 2D18 2D00
y 1579 Y 1559 1519 1500
z 2C7A Z 2C5A 2C1A 2C00

1 0231 t 0 2 2 1 0 2 1 1 7800
2 0332 @ 0340 0300 7900
3 0433 # 0423 0413 7A00
4 0534 $ 0524 0514 7B00
5 0635 % 0625 0615 7C00
6 0736 A 075E 071E 7D00
7 0837 & 0826 0817 7E00
8 0938 * 092A 0918 7F00
9 0A39 (0A28 0A19 8000
0 0B30) 0B29 0B10 8100

_ 0C2D 0C5F 0C1F 8200
= 0D3D + 0D2B 0D1D 8300
/ 2960 297E 2900 2960
\ 2B5C 2B7C 2B1C 2B5C
[1A5B { 1A7B 1A1B 1A5B
] 1B5D } 1B7D IBID 1B5D
/ 273B 273A 271B 273B
/ 2827 // 2822 2807 2827
/ 332C < 333C 330C 332C

342E > 343E 340E 342E
/ 352F ? 353F 350F 352F

Space 3920 3920 3900 3920
Esc 011B 011B 011B 011B
Backspace 0E08 0E08 0E08 0E08
Delete 537F 537F 531F 537F
Return 1C0D 1C0D 1C0A 1C0D
Tab 0F09 0F09 0F09 0F09

Cursor Pad
Unshifted Shift CTRL ALT
Help 6200 6200 6200 (screen print)
Undo 6100 6100 6100 6100
Insert 5200 5230 5200 (left mouse button)
Clr/Home 4700 4737 7700 (right mouse button)

384

Keycodes

Unshifted Shift
Up-Arrow 4800
Dn-Arrow 5000
Lft-Arrow 4B00
Rt-Arrow 4D00

CTRL ALT
4838 4800
5032 5000
4B34 7300
4D36 7400

(move mouse up)
(move mouse down)
(move mouse left)
(move mouse right)

Numeric Pad
Unshifted Shift CTRL ALT
(6328 6328 6308 6328
) 6429 6429 6409 6429
/ 652F 652F 650F 652F* 662A 662A 660A 662A
— 4A2D 4A2D 4A1F 4A2D
+ 4E2B 4E2B 4E0B 4E2B

712E 712E 710E 712E
Enter 720D 720D 720A 720D
0 7030 7030 7010 7030
1 6D31 6D31 6 D11 6D31
2 6E32 6E32 6E00 6E32
3 6F33 6F33 6F13 6F33
4 6A34 6A34 6A14 6A34
5 6B35 6B35 6B15 6B35
6 6C36 6C36 6C1E 6C36
7 6737 6737 6717 6737
8 6838 6838 6818 6838
9 6939 6939 6919 6939

Function Keys
Unshifted Shift CTRL ALT
FI 3B00 5400 3B00 3B00
F2 3C00 5500 3C00 3C00
F3 3D00 5600 3D00 3D00
F4 3E00 5700 3E00 3E00
F5 3F00 5800 3F00 3F00
F6 4000 5900 4000 4000
F7 4100 5A00 4100 4100
F8 4200 5B00 4200 4200
F9 4300 5C00 4300 4300
F10 4400 5D00 4400 4400

385

Appendix K

ST Memory Map

1

In order to maintain upward compatibility, pro
grammers are cautioned to use only documented system
variables, and to avoid writing directly to the hardware. All
RAM below location 2048 ($800) is reserved for use by the
system. This is protected memory, and may only be accessed
from supervisor mode. Attempts to read or write to these lo
cations from user mode will cause a bus error (two mush
rooms).

Table K-l. 68000 Exception Vectors
Vector

Number Address Vector
0 $000 Initial Supervisor Stack Pointer on Reset
1 $004 Initial Program Counter on Reset
2 $008 Bus Error
3 $00C Address Error
4 $010 Illegal Instruction Error
5 $014 Divide by 0
6 $018 CHK Instruction
7 $01C TRAPV Instruction
8 $020 Privilege Violation
9 $024 Trace

10 $028 Opcode 1010 emulation (Line A routines
11 $02C Opcode 1111 emulation (Line F-used by AES)

12-23 $030-$05C Reserved by Motorola
24 $060 Spurious Interrupt

Table K-2. Auto-Vector Interrupts
Vector

Number Address Vector
25 $064 Level 1 Interrupt: (used if Hblank enabled)
26 $068 Level 2 Interrupt: Horizontal blank sync

(Hblank)
27 $06C Level 3 Interrupt: Normal processor interrupt

level

389

APPENDIX K

Table K-2. Auto-Vector Interrupts
Vector

Number Address Vector
28 $070 Level 4 Interrupt: Vertical blanking sync

(Vblank)
29 $074 Level 5 Interrupt
30 $078 Level 6 Interrupt: MK68901 MFP chip interrupts
31 $07C Level 7 Interrupt: Nonmaskable interrupt

Table K-3. TRAP Instruction Vectors
Vector

Number Address Vector
32 $080 TRAP #0 (unused by system)
33 $084 TRAP #1 (GEMDOS calls)
34 $088 TRAP #2 (used by GEMDOS)

35-44 $08C-$0B0 TRAPs #3-12 (unused by system)
45 $0B4 TRAP #13 (BIOS calls)
46 $0B8 TRAP #14 (XBIOS calls)
47 $0BC TRAP #15 (unused by system)

48-63 $0C0-$0FC Reserved by Motorola
Table K-4. User Interrupt Vectors (MFP 68901)
Vector

Number Address Vector
64 $ 1 0 0 Parallel Port (int 0)
65 $104 RS-232 Carrier Detect (int 1)
6 6 $108 RS-232 Clear to Send (int 2)
67 $10C Graphics blit done (int 3)
6 8 $ 1 1 0 RS-232 baud rate generator (Timer D)
69 $114 200 Hz system clock (Timer C)
70 $118 Keyboard/MIDI (6850 processor) (int 4)
71 $11C Polled Floppy Disk Controller/Hard Disk

Controller (int 5)
72 $ 1 2 0 Horizontal Blank counter (Timer B)
73 $124 RS-232 transmit error interrupt
74 $128 RS-232 transmit buffer empty interrupt
75 $12C RS-232 receive error interrupt
76 $130 RS-232 receive buffer full interrupt
77 $134 User/application (Timer A)
78 $138 RS-232 ring indicator (int 6)
79 $13C Polled monochrome monitor detect (int 7)

Processor State Save Area
Exception vectors 2, 3, 4, 6, 7, and 8 all point to a handler that saves infor
mation about the processor state, and displays a number of mushroom

390

ST Memory Map

clouds equal to the exception number. TOS uses the following portion of
the User Interrupt Vector space to save the processor state information
when a crash occurs. This memory area is not cleared by a system reset,
but may be overwritten by subsequent crashes.

proc__lives
896-899 ($380-$383)
If the system was able to save the processor state, it sets this variable to
$12345678 as a flag that the following information is valid.

proc__dregs
900-931 ($384-$3A3)
The contents of the eight data registers are saved here, starting with DO
and ending with D7.

proc__aregs
932-963 ($3A4-$3C3)
The contents of the eight address registers are saved here, starting with AO
and ending with A7. Note that A7 represents the Supervisor Stack Pointer,
not the User Stack Pointer, which is saved in proc__usp, below.

proc__pc
964-967 ($3C4-$3C7)
The first byte of this longword is the exception number that caused the
crash.

proc__usp
968-967 ($3C8-$3CB)
The User Stack Pointer is saved here.

proc__stk
972-1003 ($3CC-$3DB)
The top 16 words of the supervisor stack are saved here.

Logical Vectors
These vectors are not guaranteed to appear at this location, so to change
them, use the BIOS function Setexec(), with an exception number of
$100-$107.

391

APPENDIX K

etv_timer
1 0 2 4 - 1 0 2 7 ($ 4 0 0 - $ 4 0 3)

T im e r tick h a n d o f f v e c to r (lo g ic a l v e c to r $ 1 0 0) . T h e s y s te m tim e r in te r r u p t
h a n d le r (c a lle d e v e r y 2 0 m illis e c o n d s) is u s e d to m a in ta in th e G E M D O S
t im e -o f -d a y c lo c k , d r iv e th e X B IO S b a c k g r o u n d s o u n d r o u t in e , h a n d le k e y
r e p e a t , a n d p e r f o r m o t h e r h o u s e k e e p in g c h o r e s . A t th e e n d o f e v e r y t im e r
tick , th e in te r r u p t h a n d le r a ls o p e r f o r m s a JS R th r o u g h th is v e c to r . T o in
s ta ll a n e w h a n d le r r o u t in e , u s e S e t e x e c () , a n d s a v e th e o ld v e c to r a d
d r e s s . W h e n th e h a n d l e r is e n t e r e d , th e t im e r tick r a te (in m illis e c o n d s) is
o n th e s ta c k . T h e h a n d le r s h o u ld e x e c u te its o w n c o d e f irs t , a n d e x i t b y
ju m p in g th r o u g h th e o ld v e c to r . S in ce th e T O S p o r t io n o f th e in te r r u p t
h a n d le r s a v e s a ll r e g is te r s b e f o r e c a llin g th is r o u t in e , a n d r e s t o r e s th e m a f
te r w a r d s , th e r e is n o n e e d f o r th e u s e r -in s ta lle d r o u t in e to s a v e th e m a s
w e ll.

etv_critic
1 0 2 8 - 1 0 3 1 ($ 4 0 4 - $ 4 0 7)

C ritic a l e r r o r h a n d l e r (lo g ic a l v e c t o r $ 1 0 1) . T h is v e c to r is c a lle d b y th e B IO S
w h e n c e r ta in e r r o r s (s u c h a s R w a b s () d isk e r r o r s o r m e d ia c h a n g e s) o c c u r .
T h is a llo w s a n a p p lic a tio n to ta k e c a r e o f its o w n e r r o r h a n d l in g . W h e n
e x e c u tio n p a s s e s to th e h a n d l e r a t th is a d d r e s s , th e f irs t w o r d o n th e s ta c k ,
4 (s p) , is a n e r r o r n u m b e r , a n d o t h e r p a r a m e te r s m a y fo llo w it , d e p e n d in g
o n th e e r r o r . T h e h a n d l e r s h o u ld p r e s e r v e r e g is te r s D 3 - D 7 / A 3 - A 6 , a n d
w h e n i t r e tu r n s , it s h o u ld p la c e a lo n g w o r d e r r o r c o d e in DO:

E r r o r C o d e A c tio n
0 x 0 0 0 1 0 0 0 0 R e tr y
0 x 0 0 0 0 0 0 0 0 I g n o r e th e e r r o r
O x F F F F F F x x A b o r t w ith e r r o r

T h e d e f a u lt h a n d le r m e r e ly r e tu r n s a - 1 L .

etv_term
1 0 3 2 - 1 0 3 5 ($ 4 0 8 - $ 4 0 B)

P r o c e s s te r m in a te h a n d l e r (lo g ic a l v e c t o r $ 1 0 2) . G E M D O S c a lls th is v e c to r
r ig h t b e f o r e it te r m in a te s a p r o c e s s . N o r m a lly , th is v e c t o r p o in ts to a n R T S
in s t r u c t io n , w h ic h a llo w s th e p r o c e s s to te r m in a te . If th e a p p lic a tio n
d o e s n 't w a n t to b e te r m i n a te d (b e c a u s e o f a n a c c id e n ta l C T R L -C d u r in g
C c o n r s () , f o r e x a m p le) , it c a n r e g a in c o n tr o l h e r e . S e e a ls o th e c r i t ic r e t
v e c to r (1 1 6 2 , $ 4 8 A) .

etv__xtra
1 0 3 6 - 1 0 5 5 ($ 4 0 C - $ 4 1 F)

R e s e r v e d fo r u p to fiv e f u tu r e lo g ic a l v e c to r s ($ 1 0 3 - $ 1 0 7) .

392

ST Memory Map

System Variables
T h e fo llo w in g s y s te m v a r ia b le lo c a t io n s a r e th e o n ly o n e s th a t A ta r i g u a r
a n t e e s n o t to c h a n g e b e t w e e n T O S v e r s io n s . A n y u n d o c u m e n te d v a r ia b le s ,
R O M r o u t in e s o r e x c e p tio n v e c to r s a r e a lm o s t c e r ta in to c h a n g e , a n d
s h o u ld n o t b e r e lie d u p o n .

memvalid
1 0 5 6 - 1 0 5 9 ($ 4 2 0 - $ 4 2 3)

If th is lo c a t io n c o n t a in s th e m a g ic n u m b e r $ 7 5 2 0 1 9 F 3 , a n d th e m a g ic n u m
b e r in m e m v a l2 (1 0 8 2 , $ 4 3 A) is a ls o c o r r e c t , th e n th e c o ld s t a r t w a s s u c c e s s
fu l, a n d th e m e m o r y c o n f ig u r a tio n in m e m c n t l r (b e lo w) is c o r r e c t .

memcntlr
1 0 6 0 - 1 0 6 1 ($ 4 2 4 - $ 4 2 5)

T h e s e c o n d n y b b le o f th is w o r d c o n ta in s th e c o n f ig u r a tio n v a lu e fo r th e
m e m o r y c o n tr o lle r . S o m e p o s s ib le v a lu e s in c lu d e :

V a lu e o f
N y b b l e M e m o r y C o n f ig u r a t io n

0 1 2 8 K (o r 2 5 6 K , 2 b a n k s)
4 5 1 2 K
5 1 M b (2 b a n k s)

resvalid
1 0 6 2 - 1 0 6 5 ($ 4 2 6 - $ 4 2 9)

If th is lo c a t io n c o n t a in s th e m a g ic n u m b e r $ 3 1 4 1 5 9 2 6 , th e n o n s y s te m r e
s e t , e x e c u ti o n w ill b e d i r e c te d th r o u g h r e s v e c t o r b e lo w .

resvector
1 0 6 6 - 1 0 6 9 ($ 4 2 A - $ 4 2 D)

T h e s y s te m w ill ju m p th r o u g h th is v e c t o r v e r y e a r ly in th e r e s e t p r o c e s s if
r e s v a lid is s e t to its m a g ic n u m b e r .

phystop
1 0 7 0 - 1 0 7 3 ($ 4 2 E - $ 4 3 1)

T h is lo c a t io n p o in t to th e p h y s ic a l to p o f R A M , th e f irs t u n u s a b le b y te a t
th e h ig h e n d o f th e m e m o r y s p a c e (f o r in s t a n c e , $ 8 0 0 0 0 f o r a 5 1 2 K m a
c h in e) .

393

APPENDIX K

__membot
1 0 7 4 - 1 0 7 7 ($ 4 3 2 - $ 4 3 5)

A p o in t e r to th e lo w e s t a v a ila b le m e m o r y lo c a t io n . T h e B IO S G e t m p b ()
f u n c tio n u s e s th is v a lu e a s th e s t a r t o f th e G E M D O S T r a n s ie n t P r o g r a m
A r e a (T P A) .

__memtop
1 0 7 8 - 1 0 8 1 ($ 4 3 6 - $ 4 3 9)

A p o in te r to th e h i g h e s t a v a ila b le m e m o r y lo c a t io n . T h e B IO S G e t m p b ()
fu n c tio n u s e s th is v a lu e a s th e e n d o f th e G E M D O S T r a n s i e n t P r o g r a m
A r e a (T P A) .

memval2
1 0 8 2 - 1 0 8 5 ($ 4 3 A - $ 4 3 D)

If th is lo c a t io n c o n t a in s th e m a g ic n u m b e r $ 2 3 7 6 9 8 A A , a n d th e m a g ic
n u m b e r in m e m v a l id (1 0 5 6 , $ 4 2 0) is a ls o c o r r e c t , th e n th e c o ld s t a r t w a s
s u c c e s s f u l , a n d th e m e m o r y c o n f ig u r a t io n in m e m c n t lr (b e lo w) is c o r r e c t .

flock
1 0 8 6 - 1 0 8 7 ($ 4 3 E - $ 4 3 F)

F lo p p y lo ck v a r ia b le . If it c o n t a in s a v a lu e o t h e r th a n z e r o , th e v e r tic a l
b la n k d is k r o u t in e is d is a b le d , w h ic h g u a r a n te e s th a t it d o e s n 't to u c h th e
D M A c h ip r e g is te r s . T h is v a r ia b le m u s t b e n o n z e r o w h e n th e D M A b u s is
b e in g u s e d .

seekrate
1 0 8 8 - 1 0 8 9 ($ 4 4 0 - $ 4 4 1)

B its 0 a n d 1 o f th is w o r d c o n ta in th e d e f a u lt s e e k r a te (th e tim e it ta k e s fo r
th e h e a d to m o v e to th e n e x t tr a c k) fo r b o th f lo p p y d r iv e s :

Value in
Bits 0 and 1 Seek Rate (in Milliseconds)

0 6
1 12
2 2
3 3 (d e fa u lt)

__timr_ms
1 0 9 0 - 1 0 9 1 ($ 4 4 2 - $ 4 4 3)

T h e t im e b e t w e e n s y s te m t im e r tick s in m illis e c o n d s . F o r c u r r e n t S T s , th is
v a lu e is 2 0 m ill is e c o n d s , w h ic h c o r r e s p o n d s to 5 0 t im e r u p d a t e s p e r s e c

394

ST Memory Map

o n d . T h is is th e v a lu e th a t is r e tu r n e d b y th e B IO S f u n c tio n T i c k c a l () . T h is
v a lu e is a ls o p la c e d o n th e s ta c k b e f o r e th e t im e r in te r r u p t h a n d le r c a lls
th e t im e r h a n d o f f v e c to r .

__fverify
1092-1093 ($444-$445)
F lo p p y d is k w r ite v e r if y f la g . W h e n th e v a lu e s to r e d h e r e is n o n z e r o (th e
d e f a u lt) , a ll w r i te s a r e v e r if ie d . W h e n z e r o , w r i te v e r if y is tu r n e d o ff.

__bootdev
1094-1095 ($446-$447)
T h is lo c a t io n c o n ta in s th e n u m b e r o f th e d e v ic e f ro m w h ic h th e s y s te m
w a s b o o te d .

almode
1096-1097 ($448-$449)
A 0 in d ic a te s t h a t N T S C (6 0 H z , U .S .) v i d e o o u tp u t is u s e d . A n o n z e r o
v a lu e in d ic a te s th a t th e v i d e o o u t p u t is P A L (5 0 H z , E u r o p e a n) .

defshftmd
1098-1099 ($44A-$44B)
T h e d e f a u l t v id e o r e s o lu t io n . If th e s y s te m is s h if te d f r o m m o n o c h r o m e to
c o lo r , th e v a lu e h e r e d e t e r m in e s w h e t h e r th e c o lo r s c r e e n is b r o u g h t u p in
lo w r e s o lu t io n (0) , o r m e d iu m r e s o lu t io n (1) .

sshiftmd
1100-1101 ($44C-$44D)
C o n ta in s a s h a d o w c o p y o f th e s h if tm d h a r d w a r e r e g is te r , w h ic h d e t e r
m in e s th e s c r e e n d is p la y m o d e :

V a lu e S c r e e n D i s p l a y M o d e
0 3 2 0 x 2 0 0 , 1 6 c o lo r s (lo w r e s o lu t io n)
1 6 4 0 x 2 0 0 , 4 c o lo r s (m e d iu m r e s o lu t io n)
2 6 4 0 x 4 0 0 , 2 c o lo r s (h ig h r e s o lu t io n)

__v__bas__ad
1102-1105 ($44E-$451)
T h is lo c a t io n c o n t a in s th e s ta r t in g a d d r e s s o f s c r e e n R A M , a 3 2 K m e m o r y
a r e a th a t a lw a y s s ta r ts o n a 5 1 2 -b y te b o u n d a r y .

395

APPENDIX K

vblsem
1 1 0 6 - 1 1 0 7 < $ 4 5 2 - $ 4 5 3)

A s e m a p h o r e fo r v e r tic a l b la n k in te r r u p t p r o c e s s in g . A v a lu e o f 0 h e r e d is
a b le s v b la n k p r o c e s s i n g , w h ile a v a lu e o f 1 e n a b le s p r o c e s s i n g .

nvbls
1 1 0 8 - 1 1 0 9 ($ 4 5 4 - $ 4 5 5)

T h e n u m b e r o f d e f e r r e d v e r tic a l b la n k in te r r u p t h a n d le r v e c to r s in th e ta
b le p o in te d to b y __ v b lq u e u e (s e e b e lo w) . T h e s e a r e s lo ts w h e r e a p p lic a
tio n s c a n ta c k o n th e ir o w n v e r tic a l b la n k in te r r u p t h a n d le r s . T h e d e f a u lt
n u m b e r o f s lo ts th a t T O S a llo c a te s is 8 .

__vblqueue
1 1 1 0 - 1 1 1 3 ($ 4 5 6 - $ 4 5 9)

T h e v e r tic a l b la n k in te r r u p t (V B I) q u e u e . V B I p r o c e s s in g s ta r ts a t th e p o in t
w h e n th e v id e o d is p la y 's e le c tr o n b e a m h a s f in ish e d u p d a t in g th e la s t lin e
o f th e s c r e e n d is p la y , a n d f in is h e s b e f o r e it s ta r ts u p d a t in g th e f irs t lin e o f
th e n e x t s c r e e n f r a m e . D e p e n d in g o n w h a t k in d o f s c r e e n is u s e d , th is in
t e r r u p t w ill o c c u r e v e r y 1 /5 0 s e c o n d (E u r o p e a n c o lo r m o n i to r) , e v e r y 1 /6 0
s e c o n d (U .S . c o lo r m o n i to r) , o r e v e r y 1 /7 0 s e c o n d (m o n o c h r o m e m o n i to r) .
A n u m b e r o f r o u t in e s y s te m f u n c tio n s a r e c a r r ie d o u t b y th e d e f a u lt v e r t i
ca l b la n k in te r r u p t h a n d le r . T h e s e in c lu d e b lin k in g th e c u r s o r , c h e c k in g fo r
a s h if t b e t w e e n m o n o c h r o m e a n d c o lo r m o n i to r s , a n d o t h e r v id e o -r e la te d
ta s k s w h ic h a r e b e s t p e r f o r m e d w h e n th e s c r e e n is n o t b e in g u p d a t e d .

B e c a u s e th e v e r tic a l b la n k in g in te r v a l is th e p e r f e c t tim e fo r m a k in g
g r a p h ic s c h a n g e s , it is o f te n d e s ir a b le fo r a p p lic a tio n s to in s e r t th e ir h a n
d le rs in to th e v e r t ic a l b la n k in te r r u p t h a n d l e r c h a in . T o th is e n d , T O S s u p
p o r ts th e in s ta lla t io n o f deferred V B I h a n d le r s . T O S in itia lly a llo c a te s a ta b le
th a t c a n h o ld th e a d d r e s s e s o f u p to e ig h t d e f e r r e d V B I s lo ts (th e n u m b e r
is s to r e d in n v b ls , a b o v e) . T h e a d d r e s s o f th is ta b le is s to r e d in th is lo c a
tio n , v b lq u e u e . J u s t b e f o r e th e s y s te m in te r r u p t h a n d le r r o u t in e r e tu r n s , it
c h e c k s th e c o n t e n ts o f e a c h o f th e s e e ig h t a d d r e s s e s in tu r n . If it f in d s a
n o n z e r o v a lu e in th e f irs t o n e , it a s s u m e s it to b e th e a d d r e s s o f a d e f e r r e d
V B I h a n d l e r , a n d p e r f o r m s a J S R to th a t a d d r e s s . W h e n th e f irs t s u b r o u
tin e is c o m p le t e d , th e s y s te m in te r r u p t h a n d l e r c h e c k s th e n e x t s lo t , a n d
s o o n , u n til i t e n c o u n t e r s a v a lu e o f z e r o in th e v b lq u e u e ta b le .

In o r d e r to in s ta ll y o u r o w n in te r r u p t h a n d l e r , y o u m u s t e x a m in e th e
e n tr ie s in th e ta b le p o in te d to b y v b lq u e u e . Y o u m a y in sta ll y o u r V B I h a n
d le r a t th e f irs t ta b le e n t r y th a t c o n ta in s a 0 . Y o u r h a n d le r m a y u s e a n y
r e g is te r s e x c e p t th e u s e r s ta c k p o in te r . I t s h o u ld r e tu r n w ith a n R T S in
s tr u c t io n , n o t a n R T E . B e s u r e to c le a r th e a d d r e s s o f y o u r h a n d l e r f ro m
th e v b lq u e u e ta b le b e f o r e y o u r a p p lic a tio n c lo s e s .

T h e S T s y s te m is n o t lim ite d to e ig h t d e f e r r e d V B I h a n d le r s . If th e ta
b le p o in te d to b y v b lq u e u e is fu ll, y o u m a y w is h to a llo c a te a la r g e r ta b le ,
c o p y th e c o n t e n ts o f th e v b lq u e u e ta b le to it , a n d th e n u p d a t e n v b ls a n d
v b lq u e u e to r e f le c t th e n e w ta b le s iz e a n d lo c a t io n . B e s u r e to r e s t o r e th e
o ld ta b le b e f o r e y o u r a p p lic a tio n e x its .

396

ST Memory Map

colorptr
1 1 1 4 - 1 1 1 7 ($ 4 5 A - $ 4 5 D)

If th is v a lu e is n o n z e r o , th e n a t th e n e x t v e r t ic a l b la n k in te r r u p t , th e ta b le
o f 1 6 c o lo r v a lu e s t h a t s t a r t a t th e a d d r e s s s to r e d h e r e a r e lo a d e d in to th e
1 6 c o lo r r e g is te r s . I f th is v a lu e is z e r o , th e c o lo r p a le tte is n o t c h a n g e d .

screenpt
1 1 1 8 - 1 1 2 1 ($ 4 5 E - $ 4 6 1)

If th is v a lu e is n o n z e r o , it is a s s u m e d to b e th e s ta r t in g a d d r e s s f o r a n e w
3 2 K b lo c k o f d is p la y m e m o r y , a n d th e p h y s ic a l s c r e e n b a s e a d d r e s s w ill b e
c h a n g e d a c c o r d in g ly , d u r i n g th e n e x t v e r t ic a l b la n k in te r r u p t .

__vbclock
1 1 2 2 - 1 1 2 5 ($ 4 6 2 - $ 4 6 5)

C o u n te r f o r th e n u m b e r o f v e r t ic a l b la n k in te r r u p ts th a t h a v e a c tu a l ly b e e n
p r o c e s s e d (n o t b lo c k e d b y v b ls e m) .

__frclock
1 1 2 6 - 1 1 2 9 ($ 4 6 6 - $ 4 6 9)

T o ta l c o u n t o f v e r t ic a l b la n k in te r r u p ts . T h is c o u n t is u p d a t e d r e g a r d le s s o f
th e s ta tu s o f v b ls e m .

hdv_init
1 1 3 0 - 1 1 3 3 ($ 4 6 A - $ 4 6 D)

V e c to r to th e h a r d d isk in itia liz a tio n r o u t in e . A 0 in d ic a te s th a t n o h a r d
d isk is in s ta lle d .

swv_vec
1 1 3 4 - 1 1 3 7 ($ 4 6 E - $ 4 7 1)

V e c to r to th e r o u t in e t h a t th e s y s te m u s e s w h e n it d e t e c t s a m o n i to r
c h a n g e (f ro m m o n o c h r o m e to c o lo r , o r v ic e v e r s a) . T h is v e c t o r in itia lly
p o in ts to th e r e s e t h a n d l e r , s o th e s y s te m r e s e t s if th e u s e r c h a n g e s th e
m o n ito r .

hdv__bpb
1 1 3 8 - 1 1 4 1 ($ 4 7 2 - $ 4 7 5)

T h e v e c to r to th e r o u t in e to u s e w h e n th e G e t b p b () r o u t in e r e q u e s ts in fo r
m a tio n a b o u t a h a r d d isk . T h is r o u t in e is in s ta lle d w h e n th e h a r d d isk is
in itia liz e d , a n d s h o u ld fo llo w th e c a llin g s e q u e n c e o f th e n o rm a l B IO S
G e t b p b () f u n c tio n . A v a l u e o f 0 is s to r e d h e r e if n o h a r d d is k is a t t a c h e d .

397

APPENDIX K

hdv_rw
1142-1145 ($476-$479)
T h e v e c to r to th e r o u t in e to u s e w h e n T O S f u n c tio n s w is h to r e a d o r w r ite
to th e h a r d d isk . T h is r o u t in e is in s ta lle d w h e n th e h a r d d is k is in itia liz e d ,
a n d s h o u ld fo llo w th e c a llin g s e q u e n c e o f th e n o r m a l B IO S R w a b s () f u n c
tio n . A v a lu e o f 0 is s to r e d h e r e if n o h a r d d is k is a t t a c h e d .

hdv__boot
1146-1149 ($47A-$47D)
V e c to r to th e r o u t in e u s e d to b o o t f ro m th e h a r d d isk . A v a lu e o f 0 is
s to r e d h e r e if n o h a r d d isk is a t t a c h e d .

hdv__mediach
1150-1153 ($47E-$481)
T h e v e c t o r to th e r o u t in e to u s e w h e n th e M e d i a c h b () r o u t in e r e q u e s ts in
f o r m a tio n a b o u t a h a r d d is k 's m e d ia c h a n g e s ta tu s . T h is r o u t in e is in s ta lle d
w h e n th e h a r d d is k is in itia liz e d , a n d s h o u ld fo llo w th e c a llin g s e q u e n c e o f
th e n o r m a l B IO S M e d i a c h () f u n c tio n . A v a lu e o f 0 is s to r e d h e r e if n o
h a r d d isk is a t t a c h e d .

__cmdload
1154-1155 ($482-$483)
W h e n th is lo c a t io n c o n t a in s a n o n z e r o v a lu e , th e s y s te m a t t e m p ts to lo a d
a n d e x e c u te a p r o g r a m c a lle d C O M M A N D .P R G f ro m th e b o o t d e v ic e . T h is
m a k e s it p o s s ib le to lo a d a n a p p lic a tio n o t h e r th a n th e G E M D e s k to p a t
b o o t tim e . S to r e a n o n z e r o v a lu e h e r e f ro m th e d is k 's b o o t c o d e .

conterm
1156 ($484)
T h is b y te c o n ta in s a n u m b e r o f f la g b its th a t c o n tr o l v a r io u s a s p e c ts o f th e
c o n s o le d e v ic e 's f u n c tio n in g :

B i t S e t A c t io n
0 E n a b le k e y -c lic k s o u n d w h e n k e y is p r e s s e d
1 E n a b le k e y r e p e a t
2 E n a b le b e ll s o u n d w h e n a C T R L -G c h a r a c t e r (A S C II 7) is w r i t te n

to C O N :
3 C a u s e th e B IO S B c o n i n () f u n c tio n to r e tu r n in fo rm a tio n a b o u t

th e s h if t k e y s ta tu s f ro m k b s h if t in b its 2 4 - 3 1

reserved
1157 ($485)

398

ST Memory Map

trpl4ret
1 1 5 8 - 1 1 6 1 ($ 4 8 6 - $ 4 8 9)

S a v e d t r a p 1 4 r e tu r n a d d r e s s .

criticret
1 1 6 2 - 1 1 6 5 ($ 4 8 A - $ 4 8 D)

S a v e d r e tu r n a d d r e s s f o r e tv __ c ri tic v e c to r .

themd
1 1 6 6 - 1 1 8 1 ($ 4 8 E - $ 4 9 D)

T h e th e M D (m e m o r y d e s c r i p to r) s t r u c tu r e th a t is in itia liz e d b y th e
G e t m p b () c a ll. T h is s t r u c tu r e m a y n o t b e c h a n g e d o n c e G E M D O S is in i
tia liz e d .

__md
1 1 8 2 - 1 1 8 5 ($ 4 9 E - $ 4 A 1)

P o in t e r to a d d itio n a l m e m o r y d e s c r i p to r s .

savptr
1 1 8 6 - 1 1 8 9 < $ 4 A 2 - $ 4 A 5)

P o in te r to th e b u ff e r th e B IO S u s e s to s a v e r e g is te r v a lu e s .

__nflops
1 1 9 0 - 1 1 9 1 ($ 4 A 6 - $ 4 A 7)

N u m b e r o f f lo p p y d r iv e s c o n n e c te d to th e s y s te m (0 , 1 , o r 2) .

con__state
1 1 9 2 - 1 1 9 5 ($ 4 A 8 - $ 4 A B)

V e c to r f o r c o n s o le o u t p u t r o u t in e s , w h ic h c a n b e s e t to p o in t to v a r io u s
E s c f u n c tio n s .

save_row
1 1 9 6 - 1 1 9 7 ($ 4 A C - $ 4 A D)

T h e r o w n u m b e r is s a v e d te m p o r a r i ly in th is b u ffe r w h e n p o s i tio n in g th e
c u r s o r w ith th e V T -5 2 E s c -Y c o m m a n d .

399

APPENDIX K

sav__contxt
1198-1201 ($4AE-$4B1)
P o in t e r to a te m p o r a r y b u ff e r w h e r e th e p r o c e s s o r c o n t e x t is s a v e d .

__bufl
1202-1209 ($4B2-$4B9)
T w o p o in te r s to G E M D O S b u ffe r lis t h e a d e r s . E a c h p o in ts to a B u ffe r C o n
tro l B lo ck (B C B), w h ic h is la id o u t a s fo llo w s :

struct BCB
{

BCB *b_link; f* ptr to next BCB *1
int b_bufdrv; /* drive number, or -1 *1
int b_buftyp; /* buffer type */
int b_bufrec; /* record number in this buffer *1
int b__dirty /* dirty (buffer changed) flag *1
DMD *b__dm I* ptr to Drive Media Descriptor *1
char *b__bufr /* ptr to buffer */

T h e f irs t b u ffe r is u s e d to s to r e d a ta s e c t o r s , th e s e c o n d is u s e d to s to r e
F A T a n d d i r e c to r y s e c t o r s .

__hz__200
1210-1213 ($4BA-$4BD)
C o u n te r f o r 2 0 0 H z t im e r . D iv id e d b y 4 fo r th e 5 0 H z s y s te m c lo c k . T h is
v a lu e is u s e d a s th e s ta r t in g s e e d th e f irs t tim e R a n d o m () is ca lle d .

the_env
1214-1217 ($4BE-$4C1)
T h e d e f a u lt e n v ir o n m e n t s tr in g , w h ic h c o n s is ts o f f o u r 0 b y te s .

__drvbits
1218-1221 ($4C2-$4C5)
I n d ic a te s w h ic h d r iv e s a r e c o n n e c te d . E a c h o f th e 3 2 b its o f t h e __ d r v b its
v a r ia b le c o r r e s p o n d s to a d if f e re n t d r iv e . B it 0 is a s s ig n e d to d r iv e A : , b it 1
to d r iv e B :, a n d s o o n u p to b it 1 5 , w h ic h c o r r e s p o n d s to d r iv e P : (th e
c u r r e n t v e r s io n o f th e S T o p e r a t in g s y s te m o n ly r e c o g n iz e s 1 6 d r iv e s) . If
th e b it w h ic h c o r r e s p o n d s to a d r iv e is s e t to 1 , th a t d r iv e is c o n n e c te d ,
o th e r w is e , it is u n a v a ila b le . T h e v a lu e s to r e d h e r e is th e s a m e o n e r e
tu r n e d b y th e B IO S f u n c tio n D r v m a p (). N o te th a t if e v e n o n e f lo p p y is
c o n n e c te d , b its 0 a n d 1 a r e b o th a lw a y s s e t to o n e . T h a t 's b e c a u s e if d r iv e
A : is c o n n e c te d , th e s y s te m w ill u s e it a s a lo g ic a l d r iv e B : if n o p h y s ic a l
d r iv e B : is p r e s e n t .

400

ST Memory Map

__dskbufp
1 2 2 2 - 1 2 2 5 ($ 4 C 6 - $ 4 C 9)

P o in te r to a I K d isk b u ffe r . T h is b u ff e r is a ls o u s e d b y s o m e g r a p h ic s o p e r
a t io n s , a n d s h o u ld n o t b e u s e d b y in te r r u p t r o u t in e s .

utopath
1 2 2 6 - 1 2 2 9 ($ 4 C A - $ 4 C D)

P o in t e r to a u t o e x e c p a t h (o r n u ll) .

__vbl__list
1 2 3 0 - 1 2 6 1 ($ 4 C E - $ 4 E D)

T h is a r e a is u s e d f o r th e d e f a u lt d e f e r r e d V B I ta b le , w h ic h is p o in te d to b y
v b lq u e u e (1 1 1 0 , $ 4 5 6) .

__prt_cnt
1 2 6 2 - 1 2 6 3 ($ 4 E E - $ 4 E F)

T h is f la g is u s e d to le t th e s y s te m k n o w w h e n to s t a r t a s c r e e n d u m p , a n d
w h e n to a b o r t it . I t 's in itia lly s e t to - 1 , a n d in c r e m e n te d w h e n th e A lte r -
n a te -H e lp k e y is p r e s s e d . T h e s c r e e n d u m p c o d e s ta r ts s e n d in g in fo rm a
tio n to th e p r in te r w h e n it s e e s a v a lu e o f z e r o h e r e , a n d a b o r ts th e s c r e e n
p r in t w h e n i t s e e s a n o n z e r o v a lu e .

__prtabt
1 2 6 4 - 1 2 6 5 ($ 4 F 0 - $ 4 F 1)

F la g to a b o r t p r in t o p e r a t io n d u e to t im e -o u t .

__sysbase
1 2 6 6 - 1 2 6 9 ($ 4 F 2 - $ 4 F 5)

P o in te r to th e s t a r t o f th e T O S R O M s . T h is v a lu e is n e e d e d b e c a u s e th e r e
is n o g u a r a n te e th a t th e c u r r e n t s ta r t in g a d d r e s s w ill n o t c h a n g e (f o r in
s ta n c e , th e R O M s m ig h t g e t b ig g e r) .

__shell__p
1 2 7 0 - 1 2 7 3 ($ 4 F 6 - $ 4 F 9)

P o in te r to s h e ll -s p e c if ic c o n t e x t .

401

APPENDIX K

end__os
1274-1275 ($4FA-$4FD)
P o in ts to th e f irs t b y te p a s t th e lo w R A M a r e a u s e d b y T O S . T h is is u s e d
f o r th e s ta r t in g a d d r e s s o f th e T P A (e n d __ o s is c o p i e d i n t o __ m e m b o t) .

exec__os
1278-1281 ($4FE-$501)
T h is p o in ts to th e o p e r a t in g s y s te m c o m m a n d s h e ll w h ic h is e x e c u te d
w h e n s y s te m in itia liz a tio n is c o m p le t e . N o r m a lly , th is p o in ts to th e f irs t
b y te o f th e A E S te x t s e g m e n t .

scr_dump
1282-1285 ($502-$505)
T h e S c r d u m p () r o u t in e is v e c to r e d th r o u g h th is lo c a t io n , s o th a t w h e n
S c r d u m p () is c a lle d , o r th e A lte r n a te -H e lp k e y s a r e p r e s s e d , p r o g r a m e x e
c u tio n is d i r e c te d to th e r o u t in e w h o s e a d d r e s s is f o u n d h e r e . T o in s ta ll a
p r in te r d r iv e r fo r a n o t h e r p r in te r , th e r e f o r e , a ll y o u h a v e to d o is to lo a d
th e n e w s c r e e n p r in t p r o g r a m a s a te r m i n a te - a n d -s ta y -r e s id e n t p r o g r a m
(s e e P t e r m r e s () , C h a p te r 5) , a n d s to r e its a d d r e s s h e r e .

T h is v e c to r c a n a ls o b e d i v e r te d f o r o t h e r p u r p o s e s . S o m e " s n a p s h o t "
p r o g r a m s , fo r e x a m p le , u s e th is v e c t o r to in s ta ll a r o u t in e th a t s a v e s th e
s c r e e n p ic tu r e to a a is k file w h e n th e A l t e m a t e -H e lp k e y s a r e p r e s s e d ,
r a th e r th a n s e n d in g it to a p r in te r . I t 's a ls o p o s s ib le to in s ta ll a s h o r t r o u
tin e th a t te s ts fo r s n if t k e y s w h e n A l t e m a t e -H e lp is p r e s s e d , th u s a llo w in g
a d d itio n a l h o t-k e y p r o g r a m s to b e in s ta lle d , r a th e r th a n j u s t r e p la c in g th e
s c r e e n p r in t f u n c tio n .

prv__Isto
1286-1289 ($506-$509)
T h is v e c to r is u s e d b y P r t b l k () to ca ll th e P R N : d e v ic e o u tp u t s ta tu s r o u
tin e .

prv__1st
1290-1293 ($50A-$50D)
T h is v e c to r is u s e d b y P r t b l k () to ca ll th e P R N : d e v ic e o u tp u t r o u t in e .

prv__auxo
1294-1297 ($50E-$511)
T h is v e c t o r is u s e d b y P r t b l k () to ca ll th e A U X : d e v ic e o u tp u t s ta tu s r o u
tin e .

prv__aux
1298-1301 ($512-$515)
T h is v e c t o r is u s e d b y P r t b l k () to ca ll th e A U X : d e v ic e o u tp u t r o u t in e .

402

Index by Function Name
T e rm C o d e P a g e

B c o n i n () O p c o d e = 2 1 7 7
B c o n o u t () O p c o d e = 3 1 7 8
B c o n s t a t () O p c o d e = 1 1 7 6
B c o s t a t () O p c o d e = 8 1 8 3
B i o s k e y s () O p c o d e = 2 4 2 1 6
B l i t m o d e () O p c o d e = 6 4 2 3 4

C a u x i n () O p c o d e = 3 2 4 2
C a u x i s () O p c o d e = 18 2 5 4
C a u x o s () O p c o d e = 19 2 5 5
C a u x o u t () O p c o d e = 4 2 4 3
C c o n i n () O p c o d e = 1 2 4 0
C c o n i s () O p c o d e = 11 2 5 0
C c o n o s () O p c o d e = 1 6 2 5 2
C c o n o u t () O p c o d e = 2 2 4 1
C c o n r s () O p c o d e = 1 0 2 4 9
C c o n w s () O p c o d e = 9 2 4 8
C n e c i n () O p c o d e = 8 2 4 7
C p r n o s () O p c o d e = 1 7 2 5 3
C p r n o u t () O p c o d e = 5 2 4 4
C r a w c i n () O p c o d e = 7 2 4 6
C r a w i o () O p c o d e = 6 2 4 5
C u r s c o n f () O p c o d e = 2 1 2 1 3

D c r e a t e () O p c o d e = 5 7 2 6 7
D d e l e t e () O p c o d e = 5 8 2 6 8
D f r e e () O p c o d e = 5 4 2 6 6
D g e t d r v () O p c o d e = 2 5 2 5 6
D g e t p a t h () O p c o d e = 71 2 8 0
D o s o u n d () O p c o d e = 3 2 2 2 5
D r v m a p () O p c o d e = 1 0 1 8 5
D s e t d r v () O p c o d e = 1 4 2 5 1
D s e t p a t h () O p c o d e = 5 9 2 6 9

F a t t r i b () O p c o d e = 6 7 2 7 7
F c l o s e () O p c o d e = 6 2 2 7 2
F c r e a t e () O p c o d e = 6 0 2 7 0
F d a t i m e () O p c o d e = 8 7 2 8 9
F d e l e t e () O p c o d e = 6 5 2 7 5

403

Index by Function Name

T e rm C o d e P a g e

F d u p () O p c o d e = 6 9 2 7 8
F f o r c e () O p c o d e = 7 0 2 7 9
F g e t d t a () O p c o d e = 4 7 2 6 3
F l o p f m t () O p c o d e = 1 0 2 0 1
F l o p r d () O p c o d e = 8 1 9 9
F l o p v e r () O p c o d e = 1 9 2 1 1
F l o p w r () O p c o d e = 9 2 0 0
F o p e n () O p c o d e = 61 2 7 1
F r e a d () O p c o d e = 6 3 2 7 3
F r e n a m e () O p c o d e = 8 6 2 8 8
F s e e k () O p c o d e = 6 6 2 7 6
F s e t d t a () O p c o d e = 2 6 2 5 7
F s f i r s t () O p c o d e = 7 8 2 8 6
F s n e x t () O p c o d e = 7 9 2 8 7
F w r i t e () O p c o d e = 6 4 2 7 4

G e t b p b () O p c o d e = 7 1 8 2
G e t m p b () O p c o d e = 0 1 7 5
G e t r e z () O p c o d e = 4 1 9 5
G e t t i m e () O p c o d e = 2 3 2 1 5
G i a c c e s s () O p c o d e = 2 8 2 2 0

I k b d w s () O p c o d e = 2 5 2 1 7
I n i t m o u s () O p c o d e = 0 19 1
I o r e c () O p c o d e = 1 4 2 0 5

J d i s i n t () O p c o d e = 2 6 2 1 8
J e n a b i n t () O p c o d e = 2 7 2 1 9

K b d v b a s e () O p c o d e = 3 4 2 2 9
K b r a t e () O p c o d e = 3 5 2 3 0
K b s h i f t () O p c o d e = 11 1 8 6
K e y t b l () O p c o d e = 1 6 2 0 8

L o g b a s e () O p c o d e = 3 1 9 4

M a l l o c () O p c o d e = 7 2 2 8 1
M e d i a c h () O p c o d e = 9 1 8 4
M f p i n t () O p c o d e = 1 3 2 0 4
M f r e e () O p c o d e = 7 3 2 8 2
M i d i w s () O p c o d e = 1 2 2 0 3
M s h r i n k () O p c o d e = 7 4 2 8 3

O f f g i b i t () O p c o d e = 2 9 2 2 1
O n g i b i t () O p c o d e = 3 0 2 2 2

P e x e c () O p c o d e = 7 5 2 8 4
P h y s b a s e () O p c o d e = 2 1 9 3
P r o t o b t () O p c o d e = 1 8 2 1 0
P r t b l k () O p c o d e = 3 6 2 3 1
P t e r m 0 () O p c o d e = 0 2 3 9
P t e r m () O p c o d e = 7 6 2 8 5

404

Index by Function Name

Term Code Page
P t e r m r e s () O p c o d e = 4 9 2 6 5

R a n d o m () O p c o d e = 1 7 2 0 9
R s c o n f () O p c o d e = 1 5 2 0 6
R w a b s () O p c o d e = 4 1 7 9

S c r d m p () O p c o d e = 2 0 2 1 2
S e t c o l o r () O p c o d e = 7 1 9 8
S e t e x e c () O p c o d e = 5 1 8 0
S e t p a l e t t e () O p c o d e = 6 1 9 7
S e t p r t () O p c o d e = 3 3 2 2 7
S e t s c r e e n () O p c o d e = 5 1 9 6
S e t t i m e () O p c o d e = 2 2 2 1 4
S u p e r () O p c o d e = 3 2 2 5 8
S u p e x e c () O p c o d e = 3 8 2 3 3
S v e r s i o n () O p c o d e = 4 8 2 6 4

T g e t d a t e () O p c o d e = 4 2 2 5 9
T g e t t i m e () O p c o d e = 4 4 2 6 1
T i c k c a l () O p c o d e = 6 1 81
T s e t d a t e () O p c o d e = 4 3 2 6 0
T s e t t i m e () O p c o d e = 4 5 2 6 2

V s y n c () O p c o d e = 3 7 2 3 2

X b t i m e r () O p c o d e = 31 2 2 3

405

Index
68901 Multi-Function Peripheral chip.

See MFP
ACIA 40, 343
AES 3
Alqfon C compiler 8
Arbitrary Line routine 140
ASCII control codes 18-19, 298
Asynchronous Communications Inter

face Adapter. See ACIA
attributes 126-27, 129
auto-vector interrupts 389-90

basepage 99
Basic Input/Output System. See BIOS
baud rate 34
Bconin() 14 ,16
Bconout() 17-18
Bconstat 17
BDOS. See GEMDOS
BIOS 4 ,1 1 -2 5

calling from C 12
calling from machine language 12
character devices 13-17
disk I/O routines 20-23
error codes 293-94
input functions 13-17
output functions 17-20
system functions 23-25

BIOS Parameter Block 21
bit blitting 151, 163
BitBlt 151-55
"BITBLTS.S" program listing 155
bitmapped screen 63
blitter hardware 58-59
boot code 112
boot sector 112-13

creating 50-51
buffer 19, 22, 37, 126
buffer array 128
buffer tail 37
bus error 24

Cauxin() 90
Cauxis() 90
Cauxos() 91

Cauxout() 91
C compilers 7 ,1 2 , 30, 88
Cconin() 89
Cconis() 90
Cconos() 91
Cconout() 91
Cconrs() 92-94
Cconw s() 92
Cconws() 93
C language 8
clipping rectangle 143, 145
dock, getting and setting 41-43
clusters 113,115
Cnecin() 89-90
color 64-67

values 67
color registers 64-66, 141, 148
command list 81
command number 11-12
command parameters 11
console device 13 ,16-19 , 43
control codes 90
Copy Raster 157

Opaque 157
Transparent 157

Cprnos() 91
Cprnout() 91
C programs 73
Crawcin() 89-90
Crawio() 92
C routines 7
cursor 31
cycles 31

data area 115-16
Dcreate() 123
Ddelete() 123-24
definition blocks 153-54
Dfree() 128
Dgetdrv() 122
Dgetpath() 123
directories 111-14

listings 125-28
root 113

/

Index

disk drives 20-23
Disk Transfer Address. See DTA
disk, XBIOS functions 48-53
Dosound() 80
drawing

filled shapes 143-51
horizontal lines 143-44
routines 139-43

D rvm ap() 20
Dsetdrv() 122
D setpath() 123
DTA 126

environment string 101-102
error codes 293-94
escape codes 18
exception handlers 5 ,1 0 4
exception vectors 24, 389
extended Basic Input/Output System.

See XBIOS

FAT 113,114-15
Fattrib() 129
Fd ose() 118
Fcreate() 117
Fdatim e() 129-30
Fdelete() 128
Fdup() 131
Fforce() 131
Fgetdta() 126
File Allocation Table. See FAT
file handle 116-17,130
file pointer 120
files 111-12

area 115-16
I/O functions 116-21
manipulation of 128-30
redirection of 130-31

fill pattern 143,155
Flopfmt() 48
Floprd() 52
Flopver() 51
Flopw r() 49-50
flow control 34
font header 165-66

table 138
font scaling 168
Fopen() 118
formatting 48-53, 111
Fread() 119
free space 128
Fseek() 120
Fsetdta() 126
Fsfirst() 126-27
Fsnext() 128
function table 138
Fw rite() 118

GEM 3
Desktop program 3-4

GEM Disk Operating System. See
GEMDOS

GEMDOS 4, 22, 86-108
calling from C 88
calling from machine language 87-88
character device functions 89-94
directory listings 125-28
disk and directory path functions

121-25
error codes 294
file manipulation functions 128-30
file system functions 111-31
free space functions 125-28
memory management functions 96
process control 100-106
system functions 95
time and date functions 106-108

Getbpb() 21
Getmpb() 23-24
Getrez() 68
Gettime() 41
Giaccess() 54, 74
graphics functions 5 ,135

handlers 40-41
handshake parameter 34
handshaking 34-35, 37
high water mark 37
hot-key program 46
hot spot 158

I/O buffer record 36
I/O port A 54
IKBD 13-14, 37-43, 339-79

changing layout 43-45
clock functions 342
joystick functions 341-42
keyboard functions 339-40
mode and parameter setting com

mands 344-79
mouse functions 340-41
status functions 342

ikbdsys routine 40, 343
Install Printer desk accessory 32
intelligent keyboard device. Sec IKBD
interrupt handlers 5
Iorec() 36

Kbrate() 32
Kbshift 15-16
keycodes 89, 383-85

Lattice C compiler 8
library routines 7

408

v

Index

line A functions, bit block transfer oper
ations 151-58

line A initialization command 137-39
line A routines 5, 58, 135-70

calling from C 137
line A variable table 136-38, 319-35
line-editing functions 93
line wrap feature 71
LNMASK 141
logbase() 68
logical vectors 391-92
logic operations 154-55
low water mark 37
LSTLIN 142

machine language 8, 73
Malloc() 96-97
Mediach() 23
Megamax C 8
memory 6-7 , 23-24

display 69
management techniques 74, 96-98
map of 389-402
protected 389
screen 63-64, 67-68

memory descriptor structures 23
Memory Form Definition Blocks. See

MFDB
memory manager 96
MFDB 157
MFP 4, 301

interrupts 55
registers 301-307
setting registers 35
timers 56

M free() 96-97
MIDI 13, 37-43
midisys routine 40
mode 22
monochrome 64
mouse 38-39, 158, 160-63
mouse pointer 163
MS-DOS 4, 112
MShrink () 6, 73, 98-99
Musical Instrument Digital Interface. Sec

MIDI

newrate 31

operating system 3-8

page flipping 70
Pexec() 100-102
Physbase() 67, 69
pixel 63, 135
printer drivers, installing 45-46

printer, setting the configuration 32
printing

and line A variables 164-65
from screen 45
special effects 167-68
text 163-68

process 100
processor state save area 390-91
program

BCHARDEV.C 20
FILLDRAW.S 149-51
GCHARDEV.C 94
GDIR.C 124-25
GFILEIO.C 120-21
GPEXEC.C 102-103
LINE.S 142-43
MOUSPRIT.S 161-63
PUTPIX.S 139-40
TEXTBLT.S 168-70
TOGGLE.S 104-106
XDSOUND.C 82-83
XFORMAT.C 52-53
XGETTIME.C 42
XGIACCES.C 78-79
XKEYTBL.C 44
XSCREEN.C 70-71
XSCREEN.S 71-73

Programmable Sound Generator chip.
See PSG

Protobt() 50-51
Prtblk() 46-47
PSG 54, 74-76

registers 74-76
Pterm 0() 103-104
Ptermres() 104

Random() 58
raster operation code 153
rate 32
registers 11
RS-232 serial port 37, 90

configuration 33
Rwabs 22

scan code 14-16
values 43

Scrdm p() 45
screen, logical 68
screen resolution mode 68-69

switching 69
sectors 22 ,1 1 1 -1 2 ,1 1 5
Seed Fill 146-49
Setcolor() 66
Setpalette() 66
Setprt() 33
Setscreen() 68-69

Index

Settime() 41
shiftcode, bit assignments 15
skewing 167
snapshot program 46
software blit routines 58
software sprites 5
source blocks 153-54
speed parameter 34
sprite operations 158-60
startup code 5-6
status functions 90-91
subdirectories 114

creation of 123
deletion of 123

Super() 95
supervisor mode 57
Supexec() 58
Sversion() 108
system characters 311-15
system fonts 165-67
system variables 393-402

text 163-70
Tgettime() 107
Tickcal() 25
timer interrupt vector 25
TOS 3

calling from C 7
calling from machine language 6-7
ROMs 3, 6, 43

TPA 73/ 97-99
tracks 111-12

skewing 48

Transient Program Area. Sec TPA
TRAP instruction vectors 390
Tsettime() 107
TSR programs 104

user interrupt vectors 390
user mode 29, 57

VDI 3, 5 ,1 3 5
Contour Fill function 146
routines 135

vectors 40-41
keyboard 43-45
RAM 47

vertical blanking interval 69
V sync() 69
VT-52 escape codes 297-98

WMODE 141

XBIOS 4, 29-59
and controlling I/O chips 53-57
calling from C 30
calling from machine language 29-30
character device configuration func

tions 31-37
floppy disk functions 48-53
graphics functions 63-74
sound functions 74-83
system routines 57-59

XBIOS handler 30
Xbtimer() 56-57
XOR 141

__________ j U M L ___________
Highenn Canada

The Complete TOS Reference
COMPUTEI’s Technical Reference Guide, Atari ST-Volume
Three: TOS includes all the information you’ll need to work with
GEMDOS, the BIOS, and the XBIOS. In addition, this book fea
tures a complete Atari ST memory map detailing hardware
registers and important operating system variables.

With this book, noted author and programmer Sheldon
Leemon completes COMPUTEI’s series of comprehensive ref
erence guides to the inner workings of the Atari ST.

Here's a list of just some of the topics covered inside:
• The Basic Input/Output System (BIOS)
• The extended Basic Input/Output System (XBIOS)
• The GEM Disk Operating System (GEMDOS)
• Low-level graphics (Line A)
• Reference section explaining each TOS function
• Program examples in C and machine language
• Complete memory map

If you are an ST programmer, this is the reference you've
been looking for. COMPUTE! Books remains the leading pub
lisher of programs and information for the Atari ST. COMPUTEI’s
Technical Reference Guide —Atari ST, Volume Three: TOS is yet
another example of the high quality you've come to expect
in any guide to personal computing from COMPUTE!.

COMPUTE! Books
Greensboro, North Carolina

Radnor, Pennsylvania

ISBN 0 - 5 7 4 5 5 - 1 4 ^ - 6
9 00 00

9 780 74 551495

	Front Cover
	Contents
	Foreword
	1: The ST Operating System: An Overview
	Introduction
	TOS Organization
	Calling TOS from Machine Language
	Calling the TOS Routines from C
	About the Examples

	2: BIOS
	Introduction
	Character Device I/O
	Disk Device I/O

	3: XBIOS Device and System Functions
	Introduction
	Character Device Configuration Functions
	MIDI and IKBD I/O
	Keyboard Vector Tables
	Screen Printing
	Floppy Disk Functions
	Accessing the I/O Chips
	Miscellaneous System Routines

	4: XBIOS Graphics and Sound Functions
	Graphics
	Sound Functions

	5: GEMDOS Device I/O and Process Control
	Introduction
	Character Device I/O
	System Functions
	Memory Management Functions
	Process Control
	Time and Date Functions

	6: GEMDOS File System Functions
	Introduction
	Directory Blocks
	File Allocation Tables (FATs)
	Data Area
	File I/O Functions
	Disk and Directory Path Functions
	Directory Listings and Free Space Functions
	File Manipulation Functions
	File I/O Redirection

	7: Line A Routines
	Introduction
	Line A Initialization Command
	Drawing Routines
	Drawing Filled Shapes
	Bit Block Transfer Operations
	Mouse and Sprite Operations
	Text

	A: BIOS Functions
	Introduction
	Getmpb : Get Memory Parameter Block
	Bconstat : Get Input Device Status
	Bconin : Read a Character
	Bconout : Write a Character
	Rwabs : Read/Write Disk Sectors
	Setexec : Read/Change Exception Vector
	Tickcal : Get Timer Calibration
	Getbpb : Get BIOS Parameter Block
	Bcostat : Get Output Device Status
	Mediach : Get Media Change Status
	Drvmap : Find Valid Drive Numbers
	Kbshift : Read/Change Keyboard Shift Status

	B: XBIOS Functions
	Introduction
	Initmous : Initialize Mouse
	Physbase : Get Screen RAM Physical Base Address
	Logbase : Get Screen RAM Logical Base Address
	Getrez : Get Screen Resolution Mode
	Setscreen : Set Screen Parameters
	Setpalette : Set Color Palette
	Setcolor : Set Color Register
	Floprd : Read Floppy Disk Sector
	Flopwr : Write Floppy Disk Sector
	Flopfmt : Format Floppy Disk Track
	Midiws : Write String to MIDI Port
	Mfpint : Change MFP Interrupt Vector
	Iorec : Get I/O Buffer Record
	Rsconf : Configure RS-232 Port
	Keytbl : Get/Set Keyboard Mapping Tables
	Random : Get Pseudo-Random Number
	Protobt : Produce Boot Sector Prototype
	Flopver : Verify Floppy Disk Sector
	Scrdmp : Output Graphics Screen to Printer
	Cursconf : Configure Text Cursor
	Settime : Set System Time and Date
	Gettime : Get System Time and Date
	Bioskeys : Restore Default Keyboard Table
	Ikbdws : Write String to Intelligent Keyboard
	Jdisint : Disable an MFP Interrupt
	Jenabint : Enable an MFP Interrupt
	Giaccess : Read/Write Sound Chip
	Offgibit : Clear a Bit on Sound Chip I/O Port
	Ongibit : Set a Bit on Sound Chip I/O Port
	Xbtimer : Set an MFP Timer
	Dosound : Start Sound Interrupt Processing
	Setprt : Set Printer Configuration
	Kbdvbase : Get Keyboard Vector Table Base Address
	Kbrate : Set Keyboard Repeat Rate
	Prtblk : Output Graphics Block to Printer
	Vsync : Wait for Vertical Blank
	Supexec : Execute Supervisor Mode Function
	Blitmode : Get/Set Blitter Configuration

	C: GEMDOS Functions
	Introduction
	Pterm0 : Terminate Process
	Cconin : Wait for Keyboard Character
	Cconout : Send Character to Screen
	Cauxin : Wait for RS-232 Character
	Cauxout : Send Character to RS-232 Port
	Cprnout : Send Character to Printer
	Crawio : Input/Output Console Character
	Crawcin : Raw Keyboard Input Without Echo
	Cnecin : Keyboard Input Without Echo
	Cconws : Write String to Screen
	Cconrs : Read String from Keyboard
	Cconis : Get Keyboard Input Status
	Dsetdrv : Set Default Drive Number
	Cconos : Get Screen Output Status
	Cprnos : Get Printer Output Status
	Cauxis : Get RS-232 Input Status
	Cauxos : Get RS-232 Output Status
	Dgetdrv : Get Default Drive Number
	Fsetdta : Set Disk Transfer Address
	Super : Set User/Supervisor Mode
	Tgetdate : Get GEMDOS Date
	Tsetdate : Set GEMDOS Date
	Tgettime : Get GEMDOS Time
	Tsettime : Set GEMDOS Time
	Fgetdta : Get Disk Transfer Address
	Sversion : Get GEMDOS Version Number
	Ptermres : Terminate and Stay Resident
	Dfree : Get Disk Free Space
	Dcreate : Create Directory
	Ddelete : Delete Directory
	Dsetpath : Set Default Directory Path
	Fcreate : Create File
	Fopen : Open File
	Fclose : Close File
	Fread : Read File
	Fwrite : Write File
	Fdelete : Delete File
	Fseek : Seek File
	Fattrib : Get/Set File Attributes
	Fdup : Duplicate Standard File Handle
	Fforce : Replace Standard File Handle
	Dgetpath : Get Default Directory Path
	Malloc : Allocate Memory Block
	Mfree : Free Memory Block
	Mshrink : Shrink Memory Block
	Pexec : Execute Process
	Pterm : Terminate Process with Return Code
	Fsfirst : Find First File in Directory Chain
	Fsnext : Find Next File in Directory Chain
	Frename : Rename File
	Fdatime : Get/Set File Date/Time Stamp

	D: Error Codes
	E: VT-52 Console Escape Sequences
	F: The MFP Chip
	G: System Characters
	H: The Line A Variable Table
	I: The Intelligent Keyboard Controller
	Introduction
	Keyboard Functions
	Mouse Functions
	Joystick Functions
	Clock Functions
	Status Functions
	Communicating with the IKBD on the ST
	IKBD Mode and Parameter Setting Commands
	$07 : Set Mouse Button Action
	$08 : Set Relative Mouse Position Reporting
	$09 : Set Absolute Mouse Positioning
	$0A : Set Mouse Keycode Mode
	$0B : Set Mouse Threshold
	$0c : Set Mouse Scale
	$0D : Interrogate Mouse Position
	$0E : Load Mouse Position
	$0F : Set y Origin at Bottom
	$10 : Set y Origin at Top
	$11 : Resume
	$12 : Disable Mouse
	$13 : Pause Output
	$14 : Set Joystick Event Reporting
	$15 : Set Joystick Interrogation Mode
	$16 : Interrogate Joystick
	$17 : Set Joystick Monitoring
	$18 : Set Fire Button Monitoring
	$19 : Set Joystick Keycode Mode
	$1A : Disable Joysticks
	$1B : Set Time-of-Day Clock
	$1C : Interrogate Time-of-Day Clock
	$20 : Memory Load
	$21 : Memory Read
	$22 : Controller Execute
	$80 : Reset

	IKBD Status Commands
	$87 : Inquire Mouse Button Action
	$88, $89, $8A : Inquire Mouse Mode
	$8B : Inquire Mouse Threshold
	$8C : Inquire Mouse Scale
	$8F, $90 : Inquire Mouse y Origin
	$92 : Inquire Mouse Enabled/Disabled
	$94, $95, $99 : Inquire Joystick Mode
	$9A : Inquire Joystick Enabled/Disabled

	J: Keycodes
	K: ST Memory Map
	Index by Function Name
	Index
	Back Cover

