
--.- - -~ ~ .. - - _-.. ..

- -... - ...-- -.,. ~.,
The Game Creator
USER GUIDE

. -. _.- -_.- -
---.-~-~ -_ .. -

The Game Creator
© MA~IDARIN/JAWX 1988

~
STOS Basic was developed by:

Franc;ois Lionet
Constantin Sotiropoulos
Frederic Pinlet
Jacques Fleurance

STOS Programmer
STOS Programmer
Software Development
Head of Marketing

~
UK design and marketing:

Chris Payne
Stephen Hill
Alan McLachlan
Richard Vanner
David McLachlan

Marketing Manager
Manual Author
Manual Editor
Project Coordinator
Programming/Graphics

STOS packaging by Ellis, Ives and Sprowell Partnership, Wakefield

If you have any difficulty with this product, please write to:

Mandarin Software
Europa House, Adlington Park
Adlington, Macclesfield SK1 0 4NP

No material may be reproduced in whole or in part without written permission. While every care has
been taken, the publishers cannot be held legally responsible for any errors or omissions in the
manual or the software.

First edition: August 1988. Revised: September ~ 988.

ISBN 0 948104 99 6

Contents
Introduction

a back-up
programs

this manual

o Guided tour
The sprites ... 3
Moving a sprite .. 4
Animation .. 4
Manipulating the screen
General graphics

mouse

and music
effects .. .

Displaying text on the screen - windows, fonts, icons 12
Pull-down menus ... 14

o The Editor
The Editor window ... 17

function keys .. .
control keys,

Customising the editor .. .
Loading/saving Basic

a program
Entering a STOS Basic
Debugging a program .. 29
Multiple programs .. 30
Splitting programs in the Editor ... 32
System commands .. 33
Naming conventions for variables ... 35
Types of variables ... 35
Arithmetic operations

operations
Common string functions .. .

operations.............
MAmnrv banks .. .
Types memory banks
Copying banks ... 47
Deleting banks ... 47
Bank parameter functions ... 48
Saving and loading .. 48

- Run-only programs .. 50
- Basic programs .. 51

- Variables .. 53
-Images ... 53
- Machine code programs .. 54

Loading an accessory ... 55
Calling an accessory ... 55
Creating an accessory ... 57

G Sprite commands
The Sprite Definer 59
Creating an Animation sequence 66
Grabbing sprites from the disc 68
The multipl-mode sprite definer ... 78
The SPRITE command ... 81
Moving a sprite .. 82
Combining horizontal and vertical movements 84
Animation .. 87
Using the mouse ... 89
Reading the joystick .. 92
Detecting collisions .. 94

- with sprites ... 94
- with rectangular blocks .. 96
- irregular shapes ... 97

Exceeding the 15 sprite limit ... 97
Sprite priority ... 99
The background .. 100
Miscellaneous sprite commands ... 101

~ Music and sound
Voices and tones ... 1 03
The MUSIC command 105
The Music definer .. 108
The music instructions ... 109
Envelopes and tremolos .. 111
The Envelope editor .. 111
Creating a piece of music .. 114
Predefined sound effects 117
Defining you own effects 117

~ Graphics functions
Clearing the screen ... 121
Colours .. 121
Drawing lines 123
Fill shapes ... 127
Filled types .. 130

Special effects ... 132
The writing modes ... 133
Polymarkers .. 134
Multi-mode graphics .. 136

o The Screen
Multiple screens .. 139
Reserving a screen ... 141
Loading a screen ... 142
The screen as a string ... 148
Scrolling the screen ... 149
Screen synchronisation ... 151
Compacting the screen ... 153
Special screen effects ... 154

[!] Text and windows
Text attributes .. 157
Cursor functions .. 159
Conversion functions ... 160
Text input/output .. 163
Windows .. 164
Character sets ... 169

- saving space .. 170
- using a set from a window ... 171
- changing the default set ... 172

Icons .. 173
- the icon definer .. 173

o Menu commands
Creating a menu .. 175
Making a selection ... 176
Icons .. 180
Troubleshooting ... 181

~ Other commands
Control structures .. 183
The keyboard .. 191
Input/output ... 194
AcceSSing the disc ... 198

- sequential ... 198
- random ... 199

The printer ... 205
Directories ... 206
Trigonometric functions ... 209
Mathematical functions .. 211
Machine level instructions ... 219
Miscellaneous instructions .. 225

o Writing a game
Planning .. 229
Programming ... 229
Adding graphics ... 231
Techniques .. 231

Appendices

Appendix A Error messages and codes 233
Appendix B Runtime creation ... 239
Appendix C The STOS Basic floppy discs 241

- STOS Basic system disc 241
- Accessories disc ... 242
- Games disc ... 244

Appendix D Using Assembly language from STOS Basic 247
- CALL, AREG, DREG and TRAP instructions 247
- Assembly language interface 249
- TRAP #4 .. 249

Appendix E The STOS Basic traps .. 257
- TRAP #3 (Window functions) 257
- TRAP #5 (Sprite functions) 259
- TRAP #6 (Floating point functions) 263
- TRAP #7 (Music generator) 265
- The PSG function .. 266

Appendix F Structure of memory banks 267
- sprite bank ... 267
- icon bank ... 268
- music bank .. 268
- screen bank ... 270

I 1 Iintroduction

CONGRATULATIONS on buying STOS - The Game Creator. This exciting package
hits a new high in software standards, giving you the ability to design and create arcade
style games faster and easier than ever before.

The package is based around STOS Basic, an incredibly powerful new language
with a staggering 340 commands - many of which have more than one use.

A feature that makes STOS Basic stand out is that it is not a Gem-based lang,uage.
This allows it to run much faster than any other Basic on the ST and also takes 'away
many of the restraints caused by the use of Gem, such as only being able to use one
resolution.

STOS Basic replaces these Gem functions with ones of its own. There are powerful
windowing facilities and easy-to-use file selectors - and drop down menus are simple
to create.

Supplied with the STOS Basic disc are two other discs containing the accessories
and games. The accessories are what makes STOS really come to life, including
specially-designed programs which work alongsid,e your own program to help speed
up development. The list of accessories include a Sprite Definer, Music Editor,
Character Editor, Icon Editor and many more.

The games disc contains three written in STOS Basic - Bullet Train incorporating
fast horizontal-scrolling, Zollar, a Galaxian-style shoot-'em-up which was written in just
three days, and Orbit, a feature-packed bat-and-ball game.

As you can see, STOS is not just another Basic - it's a full-blown dev,~lqpers' kit
which can be used by people of any age and experience. STOS also has an exciting
future and there are plans for a number of extension discs containing new commands.

Whatever your knowledge of progamming, STOS has something to offer you . If you
have never written a game before, the prospect of creating your first game may be quite
daunting. But do bear in mind that many of the all-time classics like Confuzion, Zenji ,
Tetris and Split Personalities - to name but a few are - uncomplicated programs with
one or two features which have entertaired computer owners in their thousands. The
strength of your game will mainly be based on your ideas, and not just your program
ming skill .

Making a back-up
The STOS discs are not protected, which means that you can make back- ups or upload
the discs on to a hard drive if you have one. But please don't give copies to other people.
STOS took two years of intense programming to reach its current state, so the higher
the sales, the greater will be our incentive to develop new extension discs and
accessory programs.

The three discs supplied are your STOS master discs and must be looked after. You
should copy each one on to a new; formatted disc and place the original master discs
safely out of hanm's way. So if your discs get damaged, corrupted or even have files
deleted from them, you can go back to the master disc to produce new working copies.

The procedure for making back-ups .s as follows:

Boot up the Gem Desktop.

2 Place a blank disc into drive A and format it using the menu command.

3 Now place the master disc into drive A and drag the drive A icon on to the drive B
icon.

4 Follow the instructions displayed in the dialogue boxes.
5 Repeat actions 2 to 4 for the other two discs. Refer to your Atari 8T manuals if you

have trouble copying the discs.
6 Once the copy is complete, store the master discs in a safe place.

Run-time programs
When you have written a program in 8T08 Basic you may wish to get it published
as a commercial game. This is no problem in 8T08 - all you have to do is
save your program with a .PRG extension to create a copy which can be booted from
the Gem Desktop, but please ensure that you mention that you have used 8TOS on the
loading screen. For more technical information about this subject see Chapter 3 and
Appendix B.

We at Mandarin 80ftware are very keen to publish games written using STOS.
Address your correspondence for the attention of the Software Manager, Mandarin
80ftware, Adlington Park, Adlington, Macclesfield 8K10 4NP. If you decide to protect
your game may we suggest that you allow other 8T08 users to examine and modify
your sprite and music banks? This way your game will be of greater interest to STOS
owners and could ensure higher sales.

We want to build up a vast database of ST08 users so that you can benefit from
the input of people all around the country. To help us do this we would urge you to fill
in the registration form enclosed in the STOS packaging so we can find out what users
want. You also stand to win a prize in our monthly draw.

Using this manual
We have dedicated most of the manual around the special functions offered by 8T08
Basic. If you have no prior knowledge of Basic, you will need to purchase an introductory
text such as Alcock's Illustrating Basic (Cambridge University Press). In our opinion,
this book gives you an excellent insight into programming Basic. We still feel you can
easily pick up Basic from this manual, but various techniques would not seem apparent
if you learnt it this way.

The 8T08 manual is set out in a tutorial fashion, giving you many examples of how
to use each instruction. Programs have been included to emphasise how certain
instructions can be used to their full effect. There is also a comprehensive appendix
which will explain various technical information to experienced programmers.

When you enter the example programs listed in the manual you must remember that
most of them are designed to work in the low resolution mode on colour monitors, as
most commercial games use this mode. However 8T08 Basic can operate in all three
modes, which means that owners with monochrome monitors can use the language.

One last point. Try to get into the habit of booting 8T08 directly from disc rather than
from Gem. This will free 32k of extra memory for you to use in your programs.

2

I 2 I Guided Tour
STOS Basic has to be one of the most powerful versions of Basic which has ever
been written for the Atari ST. It includes a wide range of facilities for sprite
manipulation, screen flipping, and the generation of high quality music. It is also
easily expandable, so you won't be left behind by any future developments.

The quality of STOS Basic as a development system has to be determined
by the quality of the programs which can be produced with it. To provide an
example of what you can achieve with this package, we have supplied you with
three games written entirely using STOS Basic. These can be found on the games
disc, and can be listed and amended like any other Basic program. Although
STOS Basic may seem very games oriented, there are a number of other possible
applications - such as educational software - for which it would also be ideally
suited.

In this chapter we'll be giving you a guided tour of just some of STOS Basic's
exceptional features. But first, a plea from the heart. If you have not already made
a backup of this package, jump immediately to the section on MAKING A
BACKUP. Although we at Mandarin will be happy to replace your disc for a nominal
handling charge if something goes wrong, you will be deprived of STOS Basic
while it's being re-duplicated.

The sprites
We'll start our tour with a brief look at the STOS Basic sprite commands. These
allow you to move and animate a sprite using simple, easy-to-understand Basic
instructions. There is no poking around in the S1's memory, and you don't need
to know anything about the S1's internal workings in order to use them.

Furthermore, STOS Basic comes complete with an excellent Sprite Editor
which can be installed permanently in your S1's memory, and then entered at any
time by pressing just two keys. This enables you to design, test, and modify your
sprites in one smooth operation.

Let's have a look at the sprite commands in action. Before we can use these
instructions, we will first need to load some example sprites from the Accessory
disc. Place the disc into your drive and type in the lines:

mode 0
load "snimals1.mbk"

We can now display one of these sprites on the screen using the SPRITE
command:

sprite 1.100.100.1

Similarly we can examine the rest of the sprites by typing in the following and
pressing any key to view each sprite in turn:

for A=1 to 5O:sprite 1.1oo.1oo.A:wait key:next A

Up to 15 of these sprites can be placed on the screen at anyone time. As an
example, enter the line:

for A=1 to 15:sprite A.1.A-10.A:wait kay:next A

3

Moving a sprite
Now for some movement!

We first draw sprite number 1 on the screen with:

sprite 1.10.100.1

This displays a sprite looking rather like an octopus. This was generated in a
matter of minutes using the STOS Basic Sprite Editor.

Let's add a little movement to this sprite :

move x 1 :'0(1.1.o)l.32OH

move on

The octopus is now moving smoothly across the screen in the X direction. Since
these sprite movements are performed using interrupts, they are therefore able
to execute completely independently of your Basic program. We can prove this by
typing in the following line:

for A=1 to 10000:P=P+ 1 :next A:print P

As you can see, the octopus continued onwards, at the same time STOS Basic
was busy executing the FOR ... NEXT loop.

So far, we have only moved our sprite in a simple straight line. We can however,
easily specify a whole list of these movements in exactly the same way.

move oft. sprite 1.0.100.1
move x 1.H (1.3.100){1.-3.100)L"
move on

When you type in the above commands, the octopus now walks slowly back and
forth along the screen.

The last few examples were restricted to horizontal motions. But there's also
a separate MOVE Y instruction to move the sprite up and down as well. To see
how this works, enter the lines:

move V 1."(1.3.30)(1.-3.30)L"
move on

Finally, we can combine any sequence of horizontal and vertical motions like so:

move oft. sprite 1.D.o.2
move x 1."(1.2.150)(1.-10.301L
move V 1."(3.1.100)(3.-1.100)L H

move on

This technique can be used to rush all 15 sprites across the screen in any direction.
Look at the game Zoltar for an impressive demonstration of the speed of these
commands.

Animation
Each of these sprites can be animated automatically with a special ANIM

4

instruction. ANIM displays a list of sprite images on the screen, one after another.
As this feature is performed using interrupts, it can be combined with MOVE to
produce some very effective animation.

Type in the following small example:

sprite 1,100,100,1
box 100,100 to 132,132
anim 1."(1.101(2.101(3,10)(4,10IL n

anim on

The octopus is now waving its arms about frantically. This is probably because it's
trapped in the box. Let's put it out of its misery and release it, using the MOVE
commands like so:

move x 1,"(1,4,751(1,-4,75)L"
move y 1,"(1,424)(1,-4,24IL"
move on

Freedom at last! Our octopus has escaped.
It is important to realise that, like all the sprite commands, ANIM causes no

delay to your current program. For a further example of animation, see the
program on page 7.

The STOS Basic sprite commands

SPRITE Draw a sprite
MOVE Start/stop movements
MOVE X Move sprites left and right using interrupts
MOVE Y Move sprites up and down
ANIM Animate a sprite
PUT SPRITE Copy a sprite to the screen
GET SPRITE Make a rectangular section of the screen into

a sprite
UPDATE Update sprites
AUTOBACK Switch off link between sprite background

and real screen
X SPRITE Get X coordinate of a sprite
Y SPRITE Get Y coordinate of a sprite
MOVON Check if sprite currently in motion
COLLIDE Test of sprite collisions
;"IMIT SPRITE Limit sprite movements to only part of a

screen
ZONE Test if sprite enters a rectangular section on

the screen
SET ZONE Define one of 128 rectangular zones
RESET ZONE Clear current zones
PRIORITY Change sprite priority
REDRAW Redraw sprite
DETECT Detect pixel under sprite
SYNCHRO Synchronise sprite with scrolling background

A complete description of these instructions can be found in Chapter 4

5

Manipulating the screen
If you thought the sprite commands were impressive, wait until you see the screen
manipulation routines! STOS Basic has the ability to scroll, move and copy parts
of the screen. Put the system disc into the drive and type:

load "\stos\pic.pi1"

This loads the title picture from the STOS Basic folder into the current screen. One
minor snag with these screens is that they each take up over 32k of space on the
disc. Fortunately STOS Basic includes a powerful Screen Compactor accessory
which can cram any screen down to as little as 7k. An example screen in this format
has been placed on the accessory disc in the file BACKGRD.MBK. Let's load it into
the ST's memory:

load "backgrnd.mbk"

The above command loaded the screen into one of STOS Basics 16 memory
banks (See Chapter 3). We can now unpack it using the UNPACK command like
this:

unpack 11,physic

The effect of the above instruction was to expand the picture into the current
screen. If you now move the mouse, the picture will be steadily erased. This is
because STOS uses a separate background screen for the sprites. Also note that
the image seems to be flashing. When STOS Basic is first loaded, colour number
2 is initially started flashing. See FLASH for more details. You can turn off this
feature using:

flash off

Let's see what happens when we copy the picture into the sprite background
instead.

flash off
unpack 11.back

If you move the mouse around on the screen as before, the picture will now be
progressively drawn.

We can incorporate these instructions into a small STOS Basic program.

Example:

10 mod eO: lIash off:unpack 11,back
20 appear back,rndl781+1
30 wait key:goto 10

In this example we've introduced an interesting new instruction called APPEAR.
This command fades between two screens using one of 79 possible effects.

Here's another example, using the FADE instruction:

10 mode 0
20 fade 3

6

30 reserve as scraen 15
40 load "\stos\pic.pi1",15
50 fade 25 to 15
60 appear 15

Now for something rather different. One of the most impressive features of STOS
Basic is its ability to change the size of any image displayed on the screen. To that
end it provides you with the two instructions REDUCE and ZOOM.

We can demonstrate the REDUCE command by adding the following line to
the program above.

70 red uce physic to 200.50.280.100

This reduced the entire screen to a quarter of its normal size and copied it to the
rectangle starting at 200.50.

As you might expect. the ZOOM command has the opposite effect. and
magnifies a section of the screen. We can see the effect of one of these
instructions by entering the lines:

mode O:locate 0.0 : print "STOS Basic"
zoom physic,O.32.8B.4O to 0.40.319.198

This prints the string STOS Basic. and then expands to fill the screen.
An equally important capability of STOS Basic is to enable you to copy large

sections of the screen from one place to another at high speed. This can be
achieved using a powerful SCREEN COPY function. We can incorporate an
example of this instruction into our program simply by inserting a new line at 80:

80 screen copy physic.200.50.1.BD.l00 to physic.l00,50

This places a copy of the miniature screen generated with REDUCE at the
coordinates 100.50

Finally. a few words about the screen scrolling commands. These allow you
to scroll any part of the screen either vertically or horizontally. We can demonstrate
these instructions by inserting the lines below:

80 de. scroll 1.50.90 to 250.110.1.0
90 de' scroll 2.140.10 to 160,1911,0.1
100 scroll 1 : scroll 2 : goto 100

Now for an example which combines sprites and screens into a single program.
Put the accessory disc into the drive and type:

load "backgrnd.mbk",ll
load "animals1.mbk":rem Loads the sprites

10 mode 0 : flash off
20 unpack 11.back : appear back.30
30 reduce physic to 200.50.280,100
40 sprite 1,130,811.111
50 move x l."320(2,-a,OIL"
60 anim 1."(5.5)(6,5)(7,5)(B.5)(9.!i)(10.5)L"
70 move on : anim on : wait kev

7

The screen manipulation commands

APPEAR Fade between two screens using a pattern
FADE Fade the present colour palette in single

steps to a new setting
BACK Return the address of the sprite background
PHYSIC Return the address of the physical screen
LOGIC Return the address of the logical screen
DEFAULT Return default addresses
REDUCE Reduce the screen in size
ZOOM Expand the screen in size
SCREEN COPY Copy a section of the screen from place to

place
SCREEN SWAP Swap physical screen with logical screen
SCREEN$ Assign part or all of a screen to a string
DEF SCROLL Define a scrolling zone
SCROLL Scroll part of the screen
GET PALETTE Load the colours of a screen in memory into

physical screen
CLS Clear part or all of screen
WAIT VBL Wait for next vertical blank
UNPACK Unpack a screen in compressed format
PACK Compact a screen to save memory

See Chapter 7 for a full explanation of the screen instructions.

General graphic!;

STOS Basic supports a number of the more normal graphics operations such as
CIRCLE, BOX, and POLYGON. One major difference between STOS and other
Basics however, is its ability to change the graphics resolution at any time during
a program, using just a single ST08 Basic instruction.

Example:

10 mode O:print "Low resolution"
20 print "Press a key to change graphics modes"
30 wait key:mode 1
40 print "Medium resolution"

Note that for obvious reasons the MODE command has no effect whatsoever on
monochrome only systems.

Another interesting command is SHIFT which rotates the screen pallete
through every possible colour combination. To demonstrate the effect of the
SHIFT instruction type:

shift 100

As you can see, the screen colours are continuosly changed every few seconds.
We can turn SHIFT off with a simple:

shift off

8

We've saved the best till last. This is the FLASH instruction which allows you to
animate any colour through a sequence of up to 16 different colour changes. Since
FLASH uses interrupts, it will occur simultaneously with the rest of your program
without affecting it in the slightest. Let's animate colour number 0 with the line:

flash 1,"(000.5)(333,5)(666,5)(777,5)(555,5)(222,5)"

This produces a startling set of multicoloured characters.

The GRAPHICS instructions

POLYMARK Print marker
ARC Draw a circular arc
EARC Draw an elliptical arc
PLOT Plot a point
POINT Determine the colour of a point
DRAW Draw a straight line
BOX Draw a hollow box
RBOX Draw rounded hollow box
POLYLINE Draw a hollow polygon
PIE Draw a pie chart
EPIE Draw an elliptical pie chart
CIRCLE Draw a filled circle
ELLIPSE Draw a filled ellipse
BAR Draw a filled bar
RBAR Draw rounded filled bar
POLYGON Draw a filled polygon
PAINT Contour fill
MODE Change graphics mode
FLASH Set flash sequence
SHIFT Rotate colours
INK Set ink colour
PALETTE Set all colour assignments
COLOUR Read/write one colour value
GR WRITING Set writing mode
SET LINE Set line type
SET MARK Set marker type
SET PAINT Set fill Type
SET PATTERN Set user-defined fill pattern
CLIP Set Clipping rectangle
DIVX Width of mono screen/width of current screen
DIVY Height of mono screen/height of current

screen
CLS Clear entire screen

See Chapter 6 for a complete explanation of these instructions.

The mouse
In many respects the STOS Basic mouse pointer is rather unusual. The most
obvious difference is that it is much more colourful than the one you are used to.
This is largely because this pointer is really just a specialised version of a sprite.
The major advantage of this approach is that you can easily set the shape of the
mouse pointer to anything else you like using the CHANGE MOUSE command.

9

Examples:

changa mouse 2:rem Change mouse to hand
change mouse 3:rem Change mouse to clock

You can also use the instruction to change the mouse into anyone of the sprite
images currently held in the S1's memory. We'll now demonstrate this process.

Place the accessories disc in the drive and load some sprites with:

load "sprdemo.mbk"

Now change the mouse to the first of these sprites with:

change mouse 4

and to the second with:

chenge mouse 5

As you can see, the number used in the above instruction is just the image number
plus four.

Detecting collisions between a sprite and the mouse is easy. You can also test
a specific area to the screen to see if the user has entered it with the mouse.

Reading the mouse is equally straightforward, as the position of the pointer is
instantly returned by the X MOUSE and Y MOUSE functions.

Example:

10 locate O,O:print x mouse,y mouse:goto 10

If you run this program and move the mouse across the screen, its location will be
continually displayed.

The mouse commands

x MOUSE Return X coordinate of mouse
Y MOUSE Return Y coordinate of mouse
MOUSE KEY Test mouse buttons
ZONE See if mouse is in a rectangular zone
SET ZONE Define zone to be tested
RESET ZONE Clear zone definitions
CHANGE MOUSE Change mouse picture
HIDE Remove mouse from screen
SHOW Return mouse to normal

More details of these instructions can be found in Chapter 4.

The joystick
STOS Basic includes a number of simple commands which enable you to test the
movements of a joystick. Place a joystick into the right socket and type:

10 if jleft then print "LEFT"
20 if jright then print "RIGHT"

10

30 if jup then print "UP"
40 if jdown then print "DOWN"
50 if fire then boom: goto 10

JDOWN
FIRE

The

See Chapter 4 for more information.

and test all functions
moved left
moved right
moved up
moved down

pressed

Sound and music
old days of computing, you lucky to find the inclusion

instruction. The STOS Basic has a much easier
you produce high for your games,

nn,~nr""n vast range of Furthermore, if
the subject, STOS gives control over the

a piece of music easier, as a superb
included for your use as part of the STOS Basic package. Like the Sprite Editor,
this can be loaded into memory, and called at any time straight from the keyboard.
As an example, we've placed a piece of music for you on the accessory disc. Load
this with the line:

load "music.mbk"

now play the music

music 2

plays independenlly
commands.

the STOS system

Let's change the speed of the music with TEMPO:

tempo 10

which slows the tune down to a crawl. Now type:

tempo 100

pitch of the music.

tempo 40

transpose 3O:rem Increases the pitch

and

transpose -2D:rem Lowers the pitch

Finally, turn the music off using:

music off

Further examples of music can be found in Bullet Train .

Sound effects
STOS Basic also supports a number of useful functions for the production of more
basic noises. The simplest of these are the SHOOT, BOOM and BELL commands.
Here are a few examples for you to type in.

for A=1 to 10:boom:wait 5: next A
shoot
bell

In addition to the pre-defined effects, you can utilise the noise generator in
conjuction with the ENVEL command to produce a range of more exotic sounds.

Examples:

click off
volume 16
noise 1
envel 10.100:Rem Aeroplane
enveI10.1000:Rem Helicopter

envel 1.1 :rem Reset envelope
enveI14.80:play 14.80

envelB.40
play 37.40

5105 Basic sound commands

MUSIC Play music defined using
accessory

music

VOICE Activate/Deactivate individual voice
TEMPO Change speed of music
TRANSPOSE Change pitch of music
VOLUME Set volume of noise
ENVEL Choose shape of note/noise

editor

PLAY Playa single note on one of three voices
NOISE Generate some noise
BOOM Make a BOOM sound
BELL Make a BELL sound
SHOOT Make a SHOOT sound
PSG Access sound chip. Warning: Handle with

care!

See Chapter 5 for more details of these commands.

Displaying text on the screen
If you've used Gem, you'll probably already be familiar with the idea of windows.
Although STOS Basic is not Gem-based, it does incorporate a range of impressive

12

windowing operations. These allow you to create a window with one of 16 different
borders anywhere on the ST's screen. Each window can have its own unique
character set which can be stored in a special memory bank along with your
program. Here's a simple example of a STOS Basic window:

windopen 1.3.3.30.10.12

We can delete this window with the line:

windell

Now for a larger example which displays 10 windows on the screen at once.

for i=l to lD:windopen i.J*i.i.1D.1D.i:next i

After this line has executed, the text cursor will be placed in the last window we
have defined. We can switch the cursor to another window using the WINDOW
command like so:

window 1
window 4
window 7
window 1D

Since we don't need these windows any more, we can delete them from the
system using the DEFAULT command:

default

We'll now create a small program which displays four different character sets on
the screen at one time.

First insert the accessory disc into the drive and load the fonts into memory
with the lines:

load "fontl.mbk"
load "font2.mbk"
load "font3.mbk"

You should then type in the following small program.

10 windopen l'o.D.9.4.4.J:rem One of 3 system sets
20 windopen 2.1D.D.9.4.4.4:rom First new set
30 windopen 3.2D.D.9.4.4.5:rem Second new set
40 windopen 4.JD.D.9.4.4.6:rem Third new set
50 input "Window ";W
60 window w:goto 50

Any of these sets can be used to replace the three system fonts stored o.n the
STOS system disc. Just to make things simple, STOS Basic also supplies you with
a useful Font Definer accessory which can be used to generate any new character
sets you require.

In addition to the normal characters, STOS Basic includes support for special
16x16 characters called Icons. These can be displayed on the screen using the
ICON$ command, or incorporated directly into menus. We have provided you with
a useful set of examples in the file ICON.MBK on the accessory disc. These can
be printed out using the program below.

new

13

load "ICON.MBK"
10 for X=O to 19
20 for V=O to 4
30 locate X*2, V*2
40 print iconS (X*5+V+l1
50 next Y
60 next X

Note that just as with the character sets, there's also a Icon definer to allow you
to create your icons.

STOS Basic t.~xt commands

BORDER Change window border
CDOWN Move cursor down
CUP Move cursor up
CLEFT Move cursor left
CRIGHT Move cursor right
CLW Clear window
CURS Hide/show text cursor
SET CURS Set cursor type
DEFAULT Reset windows
HOME Cursor home
ICON$ Print an icon at current cursor postion
INVERSE Inverse text
UNDER Underlined text
SHADE Shaded text
LOCATE Set printing position
PAPER Set text background colour
PEN Set text colour
PRINT Print text
USING Formatted text
CENTRE Print centred text
QWINDOW Quick window activation
WINDOW Activate a window
WINDON Test a window to see if it's active
WINDMOVE Move a window
WINDCOPY Copy a window
WINDEL Delete a window
SCRN Get character under cursor
TITLE Set Window title
SQUARE Print square- using text coords
XCURS Return X coordinate of cursor)
YCURS Return Y coordinate of cursor)
XTEXT Convert graphiC coord to text coord
YTEXT Convert graphic coord to text coord
XGRAPHIC Convert text coord to graphic coord
YGRAPHIC Convert text coord to graphic coord

More details of these instructions can be found in Chapter 8.

Pull-down menus
As we near the end of our tour, we'll give you a brief glimpse at the incredibly useful
STOS Basic menu commands. These enable you to effortlessly create menus

14

which will then work automatically using interrupts. STOS menus may be
composed of either text or icons. Here is a simple example.

10 menu$(1)="Menu "
menu$(1.1)="ltem1"
menu$(1.2)="ltem2"
menu$(1.3)="ltem3"
menu on
A=mnselect: if A<>O
goto 60

chose Item number"

STOS Basic menu commands

MENU ON
MENU OFF
MENU FREEZE
MENU$(X)
MFNU$(X,Y)

MENU GOTO
MENU ON/OFF

MNSELECT

Start menu
Halt menu
Temporarily stop menu

title

selection
AC!IVZllel'OeaC!IVale automatic selection

More details of these instructions can be found in Chapter 9.

So far we've only demonstrated a fraction of STOS Basic's capabilities. As you can
see, STOS Basic provides you with everything you need to create superb games
and effective educational software. The following chapters include a full explanation
of all the various commands. The rest is up to you.

3 IThe Editor

On loading the STOS Basic package you are initially presented with a display
consisting of two separate windows.

The Editor windc)w
The Editor window is the part of the screen reserved for creating and manipulating
your programs. STOS Basic supports a powerful screen editor which allows you
to alter your program listings directly from the screen. The heart of this system is
the text cursor which indicates the position of the next character to be input. It also
marks the current line. This line can be entered into the editor by pressing the
Return key.

Try typing the line below followed by Return:

print "Hello"

As you type the line, each successive character is printed directly underneath the
text cursor, and this cursor is moved one step to the right. You can now edit this
line by moving the cursor back to the PRINT statement with the Up arrow key. If
you press Return at this point, the line will be re-executed. Notice how the left and
right arrow keys move the cursor back and forth along the line. Use these keys to
place the cursor over the H, and type:

HELP!

When you press Return this message will be printed on the screen. The current
line can be edited on a character by character basis using the Backspace and
Delete keys. In addition, you can delete the entire line with Shift+Delete and join
two lines together with Control+J.

The STOS Basic editor provides you with two editing modes: Insert mode and
Replace mode. Replace mode is used as the default. In this mode, anything you
enter from the keyboard will completely replace the existing text on the screen.

Insert mode is rather different. Instead of overwriting the text, a space for the
new character is automatically inserted into the line at the current cursor position.
Insert mode is indicated by a thicker cursor and can be toggled on or off using the
I nsert key. Note that the Replace mode is re-entered whenever the system is reset
by the RUN command. Now for an example showing you how this works in
practice. Type in the following lines of code.

new
10 print "This is a Simple Program"
20 input "What is your name ',";N$
30 print "Hello ";N$

This program can be edited using the arrow keys. Incidently you can also place
the cursor at the current mouse position by clicking on the left mouse button.

As an example, try changing line 20 to:

20 input "What is your Christian name";N$

17

Don't forget to press the Return key after you've edited the line, otherwise it will
remain unchanged.

To run your new program type in RUN

The function keys
The upper window contains a I:lrief list of the current function key assignments.
Whenever you press one of these keys, the string associated with it will be entered
on the screen, just as if you had typed it in yourself. You can also assign a separate
set of strings to the shifted versions of these keys, which can be displayed by
pressing Shift.

Try entering the following ~nes:

f2 List
f7
f4
Shift+f7

Prints out the current directory
Loads a file from the disc
Loads all the accessories stored on the current disc

If you play around with these function keys, you may find that the string linked to
key number 1 is continually changing. This is because the f1 key is used to hold
a copy of your last editor command.

Example:

print "Hello"
f1
f1
f1

If all this wasn't enough. you can change the function key assigments at any time
with the KEY function (See Chapter 10 for more details).

Example:

key(3)="boom'"
f3

Note that the' character is used to denote Return.

A list of the current function key assignments is available using the KEYLIST
instruction:

KEVLlST (List the current function key assignments)

KEYLIST prints out a full list of the strings associated with each of the function
keys. The shifted versions of these keys are given numbers from 11-20. Stop
listing using either the spacebar, Esc, or Control+C.

f1: KEY LIST'
f2: list
f3: listbank'
f4: fload .. ·.bas··
f5: fsave .. ·.bas'"
f6: run'
f7: dir'

Last line entered into the system.
Lists all or part of a program.
Lists banks used by the program.
Load a Basic program with the file selector.
Saves a file using the file selector.
Runs the Basic program.
Prints out directory of the current disc

18

f12:multi 2'
f13:multi 3'
f14:multi 4'
f15:mode 0'
f16:mode l'
f17:accnew:accload "."

Control

window to the full
Installs two editor windows.
Installs three editor windows.
Installs four editor windows.
Enter low resolution mode.
Enter medium resolution mode.
Deletes the current accessories and loads a
new set off the disc.

editor screen.
colours used by editor.

keys.

The Control keys are a set of commands to the STOS Basic editor which are
executed directly from the ST's keyboard. Here is a list of the various control keys
and their effects.

Help

This displays the complex looking dialogue box as seen below. There are three
parts of this box.

r"
I

f 1-
f2-
f3-
f4-

ously.

Basic accessories
f5-

loaded
f9-

f10-
f11-
f12-

f6-
f7-
f8-

707566 b!=jtes,

currently stored in the
programs in memory

The current program is highlighed using a horizontal bar. This bar can be
moved up or down with the arrow keys. As you move this bar, the top line changes
to indicate the program number which is to be edited. See the section on multiple
programs for more information.

The second part of the Help menu displays a list of the accessories installed
in the system. These accessories can be executed directly from the menu by

of the function keys. accessories, along
on page 55.

line of the help menu
of STOS Basic

standard 520
may well be considerably

19

amount of memory
this will be several

all the accessories

Control+C

When these two keys are pressed at the same time, any STOS Basic program you
are running will be immediately terminated and the control will return back to the
editor.

Undo

Clr

Pressing this key twice redraws the screen and reinitialises the editor. It is normally
used to enable you to edit a program which has corrupted the editor screen, or
used to view a line from which an error has occured and forced the program to stop.

Clears the editor window. Same as CLW.

Up Arrow

Moves the cursor up one line.

Down Arrow

Moves the cursor down one line.

Left Arrow

Moves the cursor one character to the left.

Right Arrow

Moves the cursor one character to the right.

Return

Enters a line at the current cursor position. Exactly the same effect can be
achieved by double clicking the left mouse button.

Delete
Deletes the character underneath the cursor.

Shift+Delete

Deletes the line under the cursor.

Backspace
Deletes the character to the left of the cursor, and then moves the cursor one
space to the left.

Home

Moves the cursor to the top left hand corner of the screen.

Esc
Enter multi-mode display. See section on multiple programs for more information.

Spacebar
Suspends a listing. Press spacebar again to resume.

20

Customising the editor
As a default, STOS Basic outputs white text on a black background. You can ,
however, use any combination of colours you like forthe text and background. The
easiest way of changing these colours is with the ENV instruction which pages you
through 14 different colour schemes. This command is assigned to the shifted f9
key.(Shift+f9)

These colours are retained when you reset the editor using Undo or Default.
One major snag with this approach, is that these settings are lost every time you
exit from the STOS Basic system. Furthermore, although 14 different options may
sound quite a lot, it's really rather restrictive when you realise that both the text and
the background can be chosen from a palette of 512 colours. This gives you over
260,000 possible combinations.

Fortunately. the STOS Basic package comes complete with a special configu
ration program which enables you to customise the system to your own individual
requirements. This program can be found on the STOS basic language disc and
is called "CONFIG.BAS". It can be loaded and executed by the line:

run "CONFIG.BAS"

On loading, CONFIG presents you with the following screen:
I-----------r~~~~~~~~~-~_rl-----------~ I Stas baSIC editor para"eters - Page I I

Default resolution (in colour]:

Default language:

Black and White environneRent:

R-6-B Colour environneRent: ffi!El
rnm:J 717

(:EEl EEEl

" []!!IJ I NEXt PAGE I

You can select anyone of the various alternatives by simply moving the mouse
over the appropriate item, and clicking on the left mouse button. If, for example,
you wished STOS Basic to enter medium resolution instead of low resolution on
loading, you would place the pointer over the MEDIUM option and press the left
mouse key. This button would now be highlighted and the LOW option deselected.

You can also use this dialogue to select the colours of the text (PEN), and the
background (PAPER). These are specified using a standard RGB format. Each
digit in the box corresponds to the strength of either the red, green, or blue
components of the colour. These components can take intensities ranging from
0-7. An intensity of zero indicates that none of this component is to be used in the
final colour, and a value of 7 denotes the maximum intensity. These numbers can
be changed by clicking on the + or - boxes.

Supposing you wanted to set the text colour to yellow, and the background
colour to red. In this case, you would set the paper colour to a value of 700, and
the pen to 770. (yellow=red+green).

After you have finished with these colour settings, you now need to save them
to the disc. Before you can do this, you must first enter the second menu by clicking
on the Next Page option. This displays the following dialogue box.

21

, Stos BasIc e~ltor Dara~eters - Pase 2 ,

11 : Last direct cOMMand
11 :listbank'
15 : Isaue"*, bas'"
f7 :dir'
f9 : preu ious
IJ1:full'
f1l:~ulti l'
m:~ode 0'
117: accne~ :acc load"f'"
119:enu'

:-FunCtion keys I
12 : list
f4 :fload"J,bas'"
16 :run'
f8 :dir$: dir$! "\
118:off'
f12:~ulti 2'
1 i4:Hul ti 4'
f16:Hode l'
f18:default'
f28: key Ii st'

Med accessories

u:
a5 :
.0 ' ., '

a2 :
a6 :
UO:

a1 :
a7 :
a11:

a4 :
a8 :
a12:

,
I PREUIOUS PAGE ! DUIT I I SAUE oN DIsK I

The secondary menu allows you define the default function key assignments, and
choose a set of accessories which will be loaded automatically along with STOS
Basic. As you move the mouse pointer around on the screen, any function key
definitions you pass over are highlighted. These keys can be changed by simply
clicking on the left mouse button, and then typing in the new definition.

One interesting possibility is to set the function keys to a list of the 20 most
commonly used Basic instructions. This would enable you to type in even the
longest STOS Basic programs extremely quickly.

You can also change the accessory list in exactly the same manner. In this
case you should enter in the name of the file containing each accessory you wish
to be loaded.

Finally these assignments can be saved to the disc by clicking on the Save on
Disk option. They will now be automatically set every time you load STOS Basic.

Loading/Saving Basic programs
There are two possible ways you can load a Basic program into STOS Basic.
Firstly you can use the normal LOAD option like so:

load "CONFIG.BAS"

(For a fuller explanation of this command see SAVING and LOADING)

This command works fine if you know the name of the program you wish to load,
but often this is not the case. In these circumstances you can use the FLOAD
instruction to choose a file using a special file selector.

FLOAD (Load a file using the file selector)

FLOAD path$

path$ is a string containing the search path. (See DIR)

Example:

fload "·.bas"

Choose a Basic file to load. Assigned to f4

22

When you type the above line, a dialogue box will be displayed on the screen, If
you are already familiar with the GEM file selector, this should prove fairly self
explanatory, If not, then the following diagram should make things a little clearer.

LOAD file.

~AUTO
~STOS

UP

PROTECT .BAS
SETUP . BAS

DOWN
A: '\.iof.bas

I PREUIOUS I ~ @]
DIR. I@]~

QUIT I [I]
RETURN I

As with the equivalent Gem system, you can choose a file by either clicking on one
of the filenames, or typing the name of a file directly into the choice box, This file
can then be loaded by either double clicking on the file itself with the left mouse
button, clicking on the Return box, or pressing Return,

The most obvious difference between this file selector and the Gem version,
is the lack of a scroll bar. Instead, you can page through the directory listing by
simply clicking on the Up and Down buttons, Also, you can now get a directory
listing of the current disc at any time, by clicking on the Dirbutton , This allows you
update the directory after you 've changed discs,

Note that the * at the front of an item is equivalent to Gem's symbol in that it
denotes the existance of a folder. You can enter this folder by clicking on the name,
In order to exit back to the outer directory, click on the Previous button.

As an example, try loading the CONFIG.8AS file using this file selector.

FSA VE (Save a Basic file chosen with the file selector)

FSAVE path$

FSAVE allows you to save a program chosen from a file selector box. As before,
path$ denotes the type of program you wish to save,

Type in the following small program :

new
10 print "Executing Line 10"
20 print "Executing Line 20"
30 print "Executing Line 30"

Now enter the line:

fsave "*.bas"

or press function key f5

You will now be presented with the standard file selector. Enter the name of your
new file, As you type, the filename is displayed in the current file box. This text can

23

be
diSC,

normal way, If you now your file will be saved

You can test this procedure by erasing the program from memory with,

new

You should now hit f4 to execute the FLOAD command, and double click on the
file with your new name, This will then be loaded,

a prO!Jram
RUN current STOS Basic nrrlnr;7m j

The method of executing program is using
command, There are three versions of this instruction,

RUN

RUN no

RUN file$

Run the program starting from the first line,

Run the program starting from line number no

Load and run the Basic program stored in file$

saved the example file

"TEST.BAS"
run
Executing line 10
Executing line 2D
Executing Line 30

Ok

Line 2D
Line 30

"TEST.BAS"
Executing Line 10
Executing Line ZO
Executing Line 30

under the filename TEST BAS,

Incidentally, you can also use the RUN command from inside a program. This
allows you to chain a number of programs together.

"Executing Test"
"TEST. BAS"

"This line iSJUlver

24

Any program executed in this way can be terminated using Control+C. You can
restart such a program with the CO NT command.

CO NT (Restart a program exited by STOP or Contro/+C)

CONT re-enters an interrupted program starting from the next instruction. In order
for the program to be continued, it must not have been changed in the interval
between executing the STOP and the CONT.

Example:

new
10 for i=l to 100000
20 print i;
30 next i

run
Control+C
cant

Interrupt the program after a few seconds.
Restart program in the middle of the FOR ... NEXT loop.

Entering a STOS Basic program
STOS Basic supports two different types of instructions, direct and interpreted. A
direct instruction is a command to the editor to perform an action such as listing
or saving a program. Most of these direct commands cannot however, be used
within a Basic program. Only interpreted instructions such as IF or GOSUB are
allowed.

STOS Basic distinguishes between the two sets of operations by checking the
first few characters of the current line. If these characters form a line number then
you are in interpreted mode, and any direct instructions will cause an error.
Otherwise you are in direct mode. Of course, some instructions such as RUN and
LOAD can be used in either mode.

In this section, we will be covering the direct mode instructions which allow you
to create and modify your STOS Basic programs.

AUTO (Automatic line numbering)

The AUTO command is a direct instruction which automatically prints out a new
line number every time you press Return. This enables you to enter long Basic
programs, without having to continually type in the line numbers. As a default,
AUTO starts off at line 10 and increments the line in units of 10.

Look at the example below:

auto
10 print "Test of AUTO"
20 !ll!N.1!!
30 <Return>
run

In order to distinguish between the text generated by the computer, and the text
entered directly from the keyboard, we've underlined any text which has been
typed in by the user. Note how the Return in line 30 was used to exit from this AUTO
statement.

Now type the lines:

25

i.I!.!D.
30 print "This line in never reached"
40 <Return>

As you can see, the AUTO command automatically started again from line 30. This
enables you to jump back into direct mode whenever you wish, and then resume
at the point you left off.

It is important to realise that AUTO places you in interpret mode. This means
that any direct mode instructions you try to use will cause an error. These
instructions include all the normal screen editing operations. Therefore, if you
discover a mistake in a line you have just entered, you must exit back to the editor
in order to correct it.

Also note that there are a couple of other possible formats to this instruction:

AUTO start

AUTO start,inc

Examples:

i.iill!...5!!

Starts automatic line numbering from line number
start.

Starts from line start and increments each succes
sive line by the number inc.

50 print "Test of AUTO"
60

ll!to...1.!L1
10 rem First line
11 rem Second line
12

RENUM (Renumber al/ or part of a program)

When you're writing a large program, you often end up having to insert many extra
lines at various points in your routine. Inevitably, this tends to make your program
increasingly messy and hard to read. The RENUM command tidies things up for
you by neatly renumbering any or all the lines of your program. The destinations
of any GOSUBs or GOTO instructions in the program are automatically amended
to take these new line numbers into account.

There are four different ways of using this RENUM command:

RENUM

RENUM number

RENUM number, inc

RENUM number, inc, start-end

26

Starts by setting the first line in your pro
gram to 10, and then renumbers each
succeeding line in units of 10.

Sets the first program line to number,
and renumbers all the other lines in
increments of 10.

Starts at line number and increments
each successive line by inc.

Renumbers lines from start to end,
beginning with line number, and incre
menting each proceeding line by inc.

Note that STOS Basic will not allow RENUM to overwrite any existing parts of the
current program.

Example:

new
10 print "Example of renumber"
20 goto 50
30 gosub 70
40 stop
50 print" Destination of goto"
60 goto 30
70 print" Destination of gosub"
80 return

renum
list

LIST (List the lines of a Basic program to the screen)

The LIST command is used to list part or all of the current program to the ST's
screen. The format of the instruction is:

LIST Lists the entire program.

LIST first- Lists all the lines in the program starting from the line first.

LIST -last Lists the lines from the start of the program to line last.

LIST first-last Lists lines from first to last.

Note that you can temporarily halt the listing at any time by pressing the spacebar.
You can also stop the listing completely using either Esc or Control+C. At the end
of the listing, a list of the banks used by the Basic program is appended. The most
common use of the list command, is to list a section of the program on the screen
for subsequent editing. See LLiST

SEARCH (Searches for a string in a Basic program)

SEARCH s$

SEARCH has to be one of the most useful of all the direct instructions, because
it allows you to find the position of a string contained within a Basic program. This
search string can include any STOS Basic instructions.

Example:

load "CONFIG.BAS"
search "print"
3100 paper 1:pen O:windopen 1.20,6.40.6.10:cu~ off:printcentre "Please
insert a disc including":printcentre"the stos folder.":print

In order to find the next occurrence of the string, you simply type the SEARCH
command on its own:

search

27

You can also restrict your search to a specific part of the program by adding an
optional starting and ending point to the instruction:

SEARCH a$,start-end

start is the line at which the search should begin, and end is the line at which it
should finish.

The reason why this command is so useful is that you can use it to search
through any of the example programs supplied on the STOS Basic disc. Suppos
ing, for instance, you wanted to see how the sprite editor animated its sprites. All
you need to do, is type the following lines:

load "SPRITE.ACB"
search "anim"
1050 M=O : gosub 10100 : anim off : sprite off : update: gosub 7325 : loke
start(1)+4,$12: erase 8 : updllte off

You can repeat this process to find out the precise locations of all the anim
instructions in the program by just typing

search

Another trick is to start any important sections of your program with a line like:

999 rem Oefine sprite

This allows you to find the exact position of your routine at any time without having
to list through the entire program.

CHANGE (Change all occurrences of a string in a program)

CHANGE a$ TO b$ [,start-endj

The CHANGE command searches through a program and replaces any occur
rences of the first string with the second. The optional start and end points define
the section of the program which should be changed.

Example:

10 AX15B=1
20 for 1=1 to 10
30 AX15B=AX15B+AX15B
40 print "The value of variable AX15B is ";AX15B
50 next i

Since we've used a rather horrible variable name in this program, we can now
change all occurrences of AX15B into COUNT using the line:

change "AX15B" to "COUNT"

Listing the program now gives:

10 COUNT=1
20 for 1=1 to 10
30 COUNT =COUNT +COUNT
40 print "The value of variable COUNT is ";COUNT

28

50 naxt I

See also SEARCH.

DELETE (Delete some or all lines of a program)

DELETE first-last

The DELETE command is used to selectively erase sections of your Basic
programs. If lines first and last do not exist then this delete operation is not
performed.

Example:

new
10 rem Line 10
20 rem Line 20
30 rem Line 30
40 rem Line 40

delete 20-30
list
10 rem Line 10
40 rem Line 40

Typing a line like:

delete 11-31

has no effect.

MERGE (Merge a file into the current program)

MERGE file$

The MERGE command combines a program stored in the file file$with the current
program. Existing lines will be overwritten by any new lines with the same number.
This instruction is often used to merge a set of subroutines into one complete
program.

Debugging a program
Many Basics include a special TRACE command which enables you to step
through a program one instruction at a time. The STOS Basic version of this
instruction is rather more powerful as it also allows you to track the contents of a
list of variables.

FOLLOW (Track through a STOS Basic program)

There are five possible formats for the FOLLOW command.

FOLLOW If the FOLLOW statement is used on its
own, the program will halt after every in
struction and list the number of the current
line. The next line in the program can be
stepped through by pressing any key.

29

FOLLOW first-last

FOLLOW variable list

FOLLOW variable list, first-last

FOLLOW OFF

This version of the instruction only follows
the program when the lines between first
and last are being executed.

This takes a list of variables separated by
commas and prints them out after every
instruction has executed. As before, you
can step through the program by pressing
any key.

Identical to the instruction above, but the
variables are only followed when the lines
between firstand last are being interpreted.

Turns off the action of the FOLLOW com
mand.

The FOLLOW instruction has a minimal effect on the current screen, and does not
change the position of the text cursor.

Examples:

new
10 for X::O to 10
20 for V::O to 10
30 next V
40 next X
follow X.V
run

Page through the program by pressing any key. To abort the program simply press
Control+C

Multiple programs
STOS Basic allows you to have up to four programs in memory at anyone time.
These may be completely independent of each other. If you suddenly decided to
change the configuration of the editor for instance, you could easily load the
CONFIG.BAS program into a separate segment of the ST's memory without
interfering with your current program.

Example:

new
10 print "This is program number ONE"
run
This is program number ONE

If you now press the Help key you are presented with a complex looking menu. The
top line of this menu has the text Editing program: 1. Also, one of the menu lines
is inverted. This line indicates the current program segment and is highlighted by
the program cursor. Try pressing the Up and Down arrow keys. As the program
cursor moves up and down, the program number changes between 1 and 4. Move
the program cursor to the second line. The title should now read Editing program
: 2. You can enter this program segment by pressing the Help key.

Now type:

30

list

As you can see, the second program space is empty.

Type the following program:

10 print ''This is now the second program"
run

This is now the second program.

You can now re-enter the first program again using the Help menu. First press the
Help key, and then press theUp arrow key once. The title line will now indicate that
you are editing program number 1. Exit to this program by pressing Help, and type:

run

This is program number ONE

So far, we've only used two programs in memory. You can however readily
access any of the four programs in exactly the same manner.

MULTI (Display a number of programs simultaneously.)

The MULTI command simplifies the process of using multiple programs by
dividing the editor window into separate segments, one per program. These
programs can be entered with the Help key as before.

Example:

MULTI 2

MULTI 3

MULTI 4

Splits the editor window in two.
Top section = Window 1 = Program 1
Bottom section = Window 2 = Program 2
This instruction is assigned to Shift+f2

Splits the editor into three sections.
Top section = Window 1 = Program 1
Bottom left section = Winaow 2 = Program 3
Bottom right section = Window 3 = Program 4
MULTI 3 is assigned to Shift+f3

Divides the editor into four quarters. Each window has its own
program. Also assigned to Shift+f4

Note that n can only take values between 2-4.

As a further example, select segment number 1 with Help and type in:

Now type:

load "CONFIG.BAS"
list

multi 2

31

which splits the window into two and redraws the listing.
You can continue this experiment by typing in the lines:

multi 3

and

multi 4

Now type in the command:

full

which expands the current window to the full screen.

FULL (Expand current window into the full screen area)

In expanding the current edit window. Full does not effect the status of any of the
other programs.

Splitting prograrns in the Editor
You can also use the MULTI command to split a single program into a number of
separate sections. This can be done using the Help menu. Position the program
cursor over program 1 and press the left and right arrow keys. As you can see, the
text cursor is moved between four different boxes on the program line. Move the
cursor to the first box and type in 1000 followed by Return. This sets the end point
of the first part of the program to line 1000.

I! you now exit back to the editor and type MULTI 2, the program will be split
into two windows. You can choose between these two windows using the mouse
pOinter. To see how this works, position the mouse in the top window and click on
the left mouse button. The cursor in this window will immediately start flashing, and
the window will be activated.

Enter the following line:

list

This lists all the lines of the program until the line 1000. I! you repeat this process
in the second window, you will generate a listing of the lines 1000 onwards.

Each box on the program line represents a different section of the listing. You
can therefore use this technique to split a program into four separate parts. It is
important to note that this has no effect on any existing segments, and you can
page through each of the programs stored in memory using the Help menu as
usual. All four of these programs can be split in exactly the same way without
interferring with each other.

GRAB (Copy all or part of a program segment into the current program)

The GRAB command allows you to combine a number of subroutines stored in
separate program segments into one complete program. This enables you to test
each subroutine in your program independently. The syntax of the GRAB
instruction is:

GRAB n Copy program number n into the current program,
where n ranges from 1 to 4. Any attempt to use the

32

GRAB n, first-last

See MERGE.

number of the current program in this instruction will
naturally generate an error message.

Only copies the lines between first and last into the
current program.

System commands
SYSTEM (Exit back to Gem)

The SYSTEM instruction is used to quit from STOS Basic. Note that any programs
loaded in STOS Basic which have not been saved to disc will be LOST! You should
therefore think carefully before confirming this option with Y.

RESET (Reset the editor)

RESET simply reinitialises the editor and redraws the current screen.

DEFAULT (Reset the editor and redraw current windows)

DEFAULT redraws any currently defined windows on the screen, and resets the
STOS Basic editor. Unlike RESET, DEFAULT can be used either in direct or
interpreted mode. This allows it to be utilised at the end of a Basic program to jump
back to the editor. The effect of this instruction can also be achieved from the editor
by pressing the Undo key twice. Do not confuse this with the DEFAULT function.

NEW (Erase the current program)

This command deletes the current program from the ST's memory. It has no effect
on any other programs stored in different program segments.

See UNNEW.

lINNEW (Recover from a NEW and restore the current program)

UNNEW attempts to recover from the effects of a NEW command, and restore
your current program back from the dead. It will only work providing you have not
entered any further Basic program lines since the original NEW.

Example:

10 rem This line is dead
new
list
unnew
list

CLEAR (Clear all the program variables)

The CLEAR instruction erases all the variables and ali the memory banks defined
by the current program. It also repositions the READ pointer to the first DATA
statement in the program.

33

FREE (Return the amount of free memory)

FREE returns the number of bytes of memory which is currently available for use
by your Basic program. In addition it reorganises the memory space used to hold
your string variables. The technical term for this process is garbage collection.
Unfortunately, the time taken by this procedure varies exponentially with the
number of strings you have defined. This may range from mere milliseconds for
small numbers of strings, to several minutes for large string arrays with several
thousand elements.

It is important to note that this garbage collection will also occur automatically
while your program is running. This is potentially a fairly serious problem as it could
lead to your program unexpectedly halting for several minutes. The solution is to
call FREE and force this reorganisation when it will cause the least amount of
harm.

Example:

print free
7075:Ii
1l1li print "Thinking":x=free

Note that FREE is equivalent to the FRE(O) function found in many other Basics.

ENGLISH/FRANCAIS (Choose the language to be used)

Since STOS Basic originates from France, all system messages are provided in
both French and English.

FRANCAIS Uses French for all subsequent dialogue.

ENGLISH Uses English for any messages (Default)

FREQUENCY (Change scan rate from 50 to 60 Hertz)

This function is only useful is you have a medium resolution monitor capable of
scan rates higher than the normal 50 frames per second. If you have a mUlti-sync
monitor, you can use FREQUENCY to improve the quality of the screen display
considerably. Note that FREQUENCY also changes the frequency of any inter
rupts used by STOS Basic to 60 times a second. DO NOT USE THIS FUNCTION
WITH A NORMAL TV SET.

UPPER (Change listing mode to uppercase)

Normally, any instructions you type into a STOS Basic program are listed in lower
case, and any variables in upper case. The UPPER directive reverses this format.

Example:

new
10 n=10
20 PRINT "The Value of N is ",n

list
10 N=10
20 print "The Value of N is ",N

34

upper
list
10 n=10
20 PRINT "The Value of N is .. ,n

LOWER (Change Editor mode to lower case)

LOWER returns the listing format back to the default case. Any variables will now
be listed to the screen or printer in upper case, and instructions will be output in
lower case.

l!\Iaming conventic)ns for variables
The names of STOS Basic variables need to conform with a number of rules.
Firstly, each variable name must begin with a letter. Also, the names must not
contain any of the following Basic keywords.

TO,STEP,THEN,ELSE,XOR,OR,AND,GOTO, GOSUB,MOD,AS

All other keywords such as RUN or POKE are, however, perfectly legal.

Examples of legal variable names:

A, RUNE$, IPOKE, TEST, ZZ99, C5#

Here are a few examples of illegal names. We've underlined the illegal bits to make
things clearer.

CAST, 5,C, SOOT, BANQ$, MODERN#, TOAD

The maximum length of these variable names is 31 characters. Note that the # and
$ suffixes denote the type of variable.

Types of variables
STOS Basic allows you to use three different types of variables in your programs.

Integers

Unlike most other Basics, integers are used by default. Since integer arithmetic
is generally much faster than the more normal floating point operations, this
strategy can often improve the speed of Basic programs considerably. Each
integer is stored in four bytes, and can range from:

-2147483648 to + 2147483648

Examples of integer variables:

A, NUMBER, HELLO

Real numbers

These are suffixed with a # character. They correspond directly to the double
precision floating point variables used in other versions of Basic. Each real
variable is stored in eight bytes, and can range between:

35

-1 .797692 E+308 and + 1. 797693 E+307

These real numbers are accurate to a precision of 16 decimal digits.

Examples of floating point variables:

P#, NUMBER#, TEST#

String variables

String variables are always suffixed with the $ character, and can range from 0-
65500 characters long. They are not terminated with a chr$(O).

Examples of string variables:

NAME$, TEST$, TEL$

Arrays

Any of the above variable types can be incorporated into a table known as an array.
These arrays can be created using the DIM instruction.

DIM (Dimension an array)

DIM is used to set up a table of variables. These tables may consist of any number
of dimensions you like, but each dimension is limited to a maximum of 65535
elements.

Example:

10 dim A$(10),B(1O,10),C#(10,10,10)

In order to access an individual element in this array, you simply type the array
name followed by the index number enclosed between round brackets O. The
following small example should make this a little clearer:

new
10 dim NAME$(10),AGE(10)
20 for 1::0 to 10
3D input "What is your Name";NAME$(1)
40 input "What is your Age";AGE(1)
50 next 1
60 print "NAME AGE"
70 print" ======--=======:======="
80 for 1::0 tD 10
90 print NAME$(I),AGE(I)
100 next 1

It is important to note that the element numbers of these arrays always start from
zero.

See MATCH and SORT.

Constants

As a default, all numeric constants are treated as integers. Any floating point

36

assignments to an integer variable are automatically converted to a whole number
before use.

Examples:

A=3.1411:print A
3

print 19/2
9

In addition to the usual decimal notation, you can also use either binary or
hexadecimal expressions.

Binary numbers are signified by preceeding them with a % character, and
hexadecimal numbers are denoted by a $ sign. Here are a few examples of the
various different ways the number 255 could be expressed.

Decimal:
Hexadecimal:
Binary:

255
$FF
%11111111

Note that any numbers you type into STOS Basic are converted into a special
internal format. When you list your program, these numbers are expanded back
into their original form. Since STOS Basic prints all numbers in a standard way,
this will often lead to minor discrepances between the number you entered, and
the number which is displayed in the listing. The VALUE of the number will
however, remain completely unchangeo.

Floating point constants are distinguished from integers by a decimal point. If
this point is not used, then the number will always be assumed to be an integer,
even if this number occurs inside a floating point expression. Take the following
example:

new
10 for i=1 to 101lDD
20 A#=A#+1
3D next i

In this program, the "1" in line 20 is stored as an integer. Since the conversion
between integer and floating point numbers takes place each time the line
executes, this program will be inherently slower than the equivalent routine below.

new
10 for i=1 to 101lDD
20 A#=A#+ 1.0
3D next I

This program executes over 25% faster than the original one because the
constant in line 20 is now stored in floating point format. You should therefore
always remember to place a decimal point after a floating point constant even if
it is a whole number.

Incidentally, if you mix floating point numbers and integers in an expression,
the result will always be returned as a floating point number.

Example:

print 19.0/2
9.5

37

print 3.141+10
13.141

Arithmetic operations
The following arithmetic operations can be used in a numeric expression.

A

/ and *
MOD
+ and
AND
OR
XOR

Power
Divide and multiply
Modulo operator (Produces remainder of a division)
Plus and minus
Logical AND
Logical OR
Logical XOR

We've listed these operations in ascending order of their priority. This priority
refers to the sequence in which the various sections of an arithmetic expression
are evaluated. Operations with the highest priority are always calculated first.
Here is an example of how this works in practice.

This evaluates in the following order:

5A2 = 5*5 =25
2*5 = 10
8/4 = 2
10+10 = 20
20-2 = 18
18+25 = 43

If you wanted this to evaluate differently, you would simply enclose the parts of the
expression you wished to execute first in round brackets:

print (10+2)*(5-8/4+5)A2

This gives the result 12*(8A2) or 12*64 or 768. As you can see, the addition of just
two pairs of brackets has changed the sense of the expression entirely.

While on the subject of arithmetical operations, it's worth mentioning two useful
functions: INC and DEC.

INC (Add 1 to an integer variable)

INC var

INC adds one to an integer variable using a single 68000 instruction. It is logically
equivalent to the expression var=vaH 1, but is much faster.

Example:

new
10 timer::O
20 print "Increment A with A=A+'"
30 for 1=1 to 10000
4DA=A+1

38

50 naxt I
60 print "Took ";timer/SO.O;" Seconds"
70 timer=D
80 print "Increment A with INC instruction"
90 for 1=1 to 10000
100 inc A
110 next I
120 print "Took ";timer/SO.O;" Seconds";

run

It should be apparent that the second version of the FOR ... NEXT loop executes
considerably faster.

DEC (Subtract 1 from an integer variable)

DEC var

This instruction subtracts one from the integer variable var.

Example:

A=2
dec A
print A
1

String operations
Most modern Basics allow you to add two strings together like this:

AS="STOS"+" Basic"
print AS
STOS BASIC

In addition STOS Basic also lets you perform subtraction with string variables as
well. This operation works by removing all occurrences of the second string from
the first.

Examples:

print "STOS BASIC" _"S"
TO BAIC
print "STOS BASIC" -"STOS"
BASIC

print" A String of Char acters" -" "
AStringofCharacters

Comparisons between two strings are performed on a character by character
basis using the Ascii codes of the characters.

Examples:

"AA" < "BB"
"Filename"="Filename"
"X&" > "X#"
"HElLO" < "hello"

39

Common string functions

LEFT$ (Return the leftmost characters of a string)

LEFT$(v$,n)

Examples:

There are two distinct forms of this command. The
first version of LEFT$ is configured as a function
and returns the first n characters in the string
expression v$.

print left$("STOS Basic".41
STOS
a$::left$("0123456789ABCDEF",101
print AS
0123456789

10 input "Input a string";V$
20 input "Number of characters";N
3D print left$(VS,NI
4D goto 10

There's also a different variant of LEFT$ implemented as an instruction.

LEFT$(v$,n)=t$

Example:

10 A$::"** Basic"
20 left$(AS,41="STOS"
3D print AS
run
STOS Basic

This instruction sets the leftmost n characters in v$
to t$. If t$ is longer than n, it is truncated to the
appropriate length. Note that unlike the LEFT$
function v$ must be a string variable rather than an
expression.

RIGHT$ (Return the rightmost character of a string)

RIGHT(v$,n)

Examples:

Return the rightmost character in v$. RIGHT$ is a
function which reads n characters from the string
expression v$ starting from the right.

print rightS("STOS BasicD ,51
Basic

A$=right$("0123456789ABCDEF" ,10)
print AS
6789ABCDEF

new
10 input "Input a string";V$
2D input "Number of charllcters";N

40

30 print rightS(VS.N)
40 goto 10

As with LEFT$ there's also another version of RIGHT$ set up as a Basic
instruction.

RIGHT$(v$,n)=t$

Example:

new
10 AS="STOS **"

Set rightmost n characters of v$to t$. Note that v$
should always be a string variable, and that excess
characters in t$ are omitted.

20 rightS(AS.5)="Basic"
30 print AS

run
STOS Basic

See LEFT$, MID$

MID$ (Return a string of characters from within a string expression)

MID$(v$,s,n)

Examples:

The MID$ function returns the middle section of
the string v$. s denotes the number of character at
the start of this substring, and n holds the number
of characters to be fetched. If a value of n is not
specified in the instruction then the characters are
read up to the end of the string v$.

print mid$("STOS Basic".6)
Basic
print mid$("STOS Basic".6.3)
Bas

new
10 input "Input a string";VS
20 input "Starting Position. Number of characters";S.N
30 print midS(VS.S.N)
40 goto 10

There's also a MID$ instruction.

MID$(v$,s,n)=t$

Examples:

AS="STOS **"
mid$(AS.6)="Magic"
print AS
STOS Magic

This version of MID$ sets n characters in v$
starting from s in the string t$. If a value of n is not
included in this instruction, then the characters are
replaced up to the end of v$.

41

midS(AS.6.3)="Bas"
print AS
S10S Basic

new
10 input "Input a target string";VS
20 input "Input a substring";T$
30 input "Starting Position. Number of characters";S.N
40 midS(V$.S.N)=T$
50 print V$
60 goto 10

INSTR (Search for occurences of a string within another string)

INSTR allows you to search for all occurrences of one string inside another. It is
especially useful for adventure games as it enables you to split a line of text into
its individual words. There are two forms of the INSTR function.

INSTR(d$,s$)

Examples:

This searches for the first occurrence of s$ in d$.
If the string is found, then the position of this
substring is returned by the function, otherwise a
value of 0 is returned.

print instr("STOS Basic" ."STOS)
6
print instr("STOS Basic"."S")
1
print instrrSTOS Basic" ."FAST")
o

new
10 input "String to be searched";O$
20 input "String to be found";S$
30 X=instr(D$.SS)
40 if X=D then print S$;" not found"
50 if X<>O then print S$;" found at position ";X
60 goto 10

INSTR(d$,s$,p)

Examples:

This version of INSTR finds the first occurrence of
s$ in d$ starting from character number p.

print instr(S10S BASIC S··.2)
4

You can change the above example to this new form of INSTR by typing the lines:

25 input "Starting position";P
30 X=instr(DS.SS.P)

Here is an example which splits a line of text separated by spaces, into its
component words.

10 print "Please type a string of characters" : input PS

42

201=11
30 repeat
40 P1=instr(P$," ",P)
50 if P1<>0 then l=P1-P else l=len(P$)-P+1
60 print "Word number ",I;" = ";midS(PS,P,L): P=P1+1 : inc I
70 until P1=11

Array Operations

SORT (Sorts all elements in an array)

SORT a$(O)

The SORT instruction allows you to sort all the elements in an array into ascending
order amazingly quickly. This array can be composed of either strings, integers,
or floating point numbers. The a$(O) indicates the starting point of the table to be
sorted. This starting point must always be set to the first item in the array (item
zero).

Example:

10 dim A(25)
2OP=O
30 repeat
40 input "Input a number (D to stop)";A(P)
50 inc P
60 until A(P-11=O or P>25
7D sort A(O)
80 for 1=11 to P-1
9D print AU)
100 next I

SORT is often used in conjunction with the MATCH instruction to perform complex
string searches.

MATCH (Find the closest match to a value in an array)

MATCH (t(O),s)

The MATCH function searches through a sorted table, and returns the item
number in which the value s was found. If s is not found, then MATCH returns a
negative number. The absolute value of this number contains the index of the first
item which was greater than s. Providing the array is of only one dimension, it can
be of type string, integer or real. Before MATCH can be used the array should
always be sorted using the SORT command.

Example:

new
1D read N
20 dim O$(N)
30 for 1=1 to N
40 read 0$(1)
50 next I
60 sort 0$(0)

43

70 inputA$
80 if A$::"I" then for 1=1 to N : print D$(ll : next 1 : goto 70
90 POS=match(D$(OI.ASI
100 if POS>O than print "found".D$(POSI;" in record ";POS
110 if POS<O and abs(POSI<=N then print AS."not found. Closest to
".D$(abs(POSII
120 if POS<O and abs(POSI>N then print AS."not found. Closest to";D$(NI
130 goto 70
140 data
10 ... adams ... "asimov shaw ... "heinlien zelazny ... nfoster"."nivenH

150 data .. harrison pratchet'· ... dickson ..

Note that the MATCH instruction could be used in conjunction with INSTR to
provide a powerful PARSER routine which could form the basis of an Adventure
game.

Memory banks
STOS Basic includes a number of poweliul facilities for the manipulation of
sprites. screens and music. The data required by these functions needs to be
stored along with the Basic program. STOS Basic uses a special set of 15 sections
of memory for this purpose called Banks. Each Bank is referred to by a unique
number ranging from 1-15. Many of these banks can be used for all types of data,
but some are dedicated solely to one sort of information such as sprite definitions.
Every program stored in the ST's memory has its. own separate set of Banks.

There are two different forms of memory bank: Permanent and temporary.
Permanent banks only need to be defined once. and are subsequently saved
along with your program automatically. Temporary Banks however, are much
more volatile and are reinitialised every time a program is run. Furthermore, unlike
permanent banks, temporary banks are erased from memory by the CLEAR
command.

Types of memory bank
Each memory bank can be one of following different types.

Class Stores Restrictions Type

Sprites Sprite definitions Only bank 1 (1) Permanent
Icons Icon definitions Only bank 2 (1) Permanent
Music Music Only bank 3 (1) Permanent
3D Future 3D extension Only bank 4 (4) Permanent
Set Holds new character sets Banks 1-15 Permanent
Screen Stores a complete screen Banks 1-15 Temporary
Datascreen Stores a screen Banks 1-15 Permanent
Work Temporary workspace Banks 1-15 Temporary
Data Permanent workspace Banks 1-15 Permanent
Menu Menu lines Bank 15 (2) Temporary
Program Machine-code program Banks 1-15 (3) Varies

Footnotes:

(1) Bank is not really general purpose. It is allocated automatically by the
appropriate accessory. or when a bank of this type is loaded.

44

(2) Reserved automatically by MENU commands. Usable by programs which
don't use menus.

(3) Reserved as either Work or Data. Renamed when program loaded into bank.
See LOAD.

(4) Reserved for future expansion.

You can get a list of the status of the Banks which are currently being used by a
program with the LlSTBANK command.

LlSTBANK (List the banks in use)

LlSTBANK lists the numbers of the banks currently reserved by a program, along
with their location and size.

Example:

load "BULLET.BAS"

listbanks
Reserved memory banks:
1 sprites S:$055000
3 music S:$066500
7 data S:$067300
8 program S:$069300
9 data S:$069BOO
10 data S:$06A200
11 data S:$06A900
12 data S:$06AFOO
13 data S:$06COOO

E:$066500
E:$067300
E:$069300
E:$069BOO
E:$06A200
E:$06A900
E:$06AFOO
E:$06COOO
E:$06FFOO

S' - The start address of the bank.
E: = The end address of the bank.
L: = The length of the bank.

L:$011500
L:$OOOEOO
L:$O02000
L:$OOO800
L:$OOO700
L:$OOO700
L:$OOO600
L:$001100
L:$003FOO

As a default all these values are printed out in hexadecimal notation. You can,
however, change the format of the listings into decimal using the command HEXA
OFF

HEXA ON/OFF (Toggle hexadecimal listing)

HEXA OFF Sets bank listings to decimal notation.

HEX ON Sets bank listings to hexadecimal format.

Example:

load "BULLET.BAS"
hexa off
listbanks
Reserved memory banks:
1 sprites S:348160 E:419072 L:7091
3 music S:419072 E:422656 L:3584
7 data S:422656 E:430848 L:8192
8 program S:430848 E:432896 L:2048
9 data S:432896 E:434688 L:1792

45

10 data
11 data
12 data
13 data

5:434688 E:4..':J6480 L:1792
5:436480 E:438016 L:1536
5:438016 E:442368 L:4352
5:442368 E:458496 L:16128

RESERVE (Reserve a bank)

Any banks used by the sprites, music, icons, 3D extensions, and the menus are
allocated automatically by the system. The RESERVE command allows you to
allocate any other banks which you require. Each different type of bank has its own
individual form of the RESERVE instruction.

RESERVE AS SCREEN bank

RESERVE AS DATASCREEN bank

RESERVE AS SET bank,length

RESERVE AS WORK bank,length

RESERVE AS DATA bank,length

Reserves a temporary bank of memory
for a screen. This bank is always 32k
long.

Reserves a permanent bank of memory
32k long for use as a screen. This screen
is saved along with your program, so it's
great for title screens. See Chapter 7 for
examples of this instruction in action.

Reserves a permanent bank of memory
length bytes long for use as a character
set. See Chapter 8.

Reserves a temporary bank for use as a
workspace length bytes long.

Reserves a permanent bank of memory
length bytes long for use as a work
space.

Note that bank may be any number between t - t 5. Since banks t to 4 are normally
reserved by the system, it's wisest to leave these banks alone. Length is
automatically rounded up to the nearest 256 byte page. The only other limit to the
length of a bank is the amount of available memory.

Type the following lines:

new
hexa off
reserve as screen,5
listbank
Reserved memory banks:
5 screen S: 950016 E: 982784 L: 32768

This reserves bank number 5 as a temporary screen. Now type:

clear
listbank

As you can see, bank 5 has now been completly erased. In order to create a more
permanent bank, enter:

reserve as datascreen 5

46

listbank
clear
listbank
Reserved memory banks:
5 dscreen S: 950016 E: 982784 L: 32768

Bank 5 is totally unaffected by the clear command. We'll now demonstrate how this
screen can be loaded with real data.

screen copy logic to 5
cis
screen copy 5 to logic

Copies the current screen to bank 5.
Erase screen
Copies bank 5 back to current screen, and
restores it.

For more information about SCREEN COPY see Chapter 7.

Copying banks
When using these memory banks, it's often useful to be able to transfer the
contents of one bank to another. This can be done with a special BCOPY
command.

BCOPY (Copy the contents of a bank to another bank)

BCOPY #source TO #dest

BCOPY copies the entire contents of bank number source into bank number dest.
As usual source and dest can range from 1-15

Example:

BCOPY 5 TO 6 Copies bank !i into bank 6

BGRAB (Copy some or all banks from a program to the current program)

BGRAB prgno [,b]

BGRAB copies one or more banks stored at program number prgno into the
current program. Program numbers between 1-4 denote one of the four programs
which can be stored in memory at anyone time. Numbers from 5-16 represent an
accessory.

If the optional bank Aumber b is not included, then all the banks attached to
program number prgno are copied into the current program, and any other banks
of memory which are linked to this program are erased. Otherwise, the bank
number specifies one bank which is to be transferred into the current program. All
other banks remain unaffected.

This instruction is used to great effect by many of the accessories on the disc.

Deleting banks

ERASE (Delete a bank)

ERASE b

47

ERASE deletes the contents of a memory bank b. As usual b can range from 1-
15. Any memory used by this bank is freed for use by your program.

Bank parameter functions
=ST ART (Get the start address of a bank)

bs=START(b)

This function returns the start address of bank number b in the ST's memory.

START(b)

START(prgno,b)

Returns the start of bank b in the current program

Returns the start of the bank number b in program
prgno.

Note that b can range from 1-15, and prgno from 1-16. Program numbers greater
than 4 refer to accessories.

Example:

reserve as screen 10
print start(1D)

=LENGTH (Get the length of a bank)

bl=LENGTH(b)

This function returns the length in bytes of bank number b. If a value of zero is
returned by LENGTH, then bank b does not exist.

LENGTH(b)

LENGTH(prgno,b)

Example:

new
reserve as screen 5
print length(5)
32768
erase 5
print length(5)
o

Gets the length of bank b in the current program.

Gets the length of bank b in program number
prgno.

Saving and loading
SAVE (Save part or all of a STOS Basic program)

The SAVE instruction provides a general and straightforward way of saving a
STOS Basic program on to the disc. Unlike the equivalent instruction found in most
other versions of Basic, STOS also allows you to save a variety of other types of
information. This is determined by the extension of the filename used in the SAVE
command. Here is a summary of the various data types, along with their
extensions.

48

Type of Information Extension Comments

Basic programs .BAS Normal Basic program
Accessories .ACB Load using ACCLOAD
Images .PI1, PI2 or PI3 Degas format screen shot.

.NEO Neochrome format. Only in low
resolution.

Memory banks .MBK One memory bank.
. MBS All current banks .

Basic variables .VAR All currently defined variables
Listings .ASC In Ascii format
RUN-ONLY programs . PRG Executable directly from desktop .

If none of these extensions are used, then STOS adds .BAS to the Filename
automatically, and saves the current Basic program on to the disc. Any existing
program of the same name will be renamed with the extension .BAK.

We'll now discuss each of the possible options in a little more detail.

SAVE "Filename.BAS"
I

This saves the program with any current memory banks on to the disc under the
name Filename.BAS. If a file with the same name already exists, this is over
written.

SAVE "Filename!.ACB"

Saves the Basic program as an accessory. This program can be loaded using
ACCLOAD, and accessed from the HELP menu at any time.

SAVE "Filenamel.PI1 "[,address of screen]
SAVE "Filename.PI2"Laddress of screen]
SAVE "Filename.PI3"[,address of screen]

This instruction saves a Icopy of the screen to the disc in Degas format. The
different extensions indicate the resolution of the image .

. PI1 = Low resolution

.P12 = Medium resolution

.P13 = High resolution

The Screen address is optional. If it is omitted from the statement, then the current
screen will be saved to the disc.

Example:

save "screen.PI1"
cis
load "screen.PI1"

See LOAD.

Any screen saved in this manner can be subsequently edited directly from Degas.

SAVE "Filename.NEO"

Saves a low resolution screen in Neochrome format. This file can be either loaded
into a Basic program, or modified from within Neochrome.

49

save "Filename.MBK",b

This version of SAVE stores the memory bank with number b on to the disc. It can
be loaded back again using LOAD. An example of this function can be found in the
section on LOAD.

save "Filename.MBS"

Saves all the banks allotted to the current program in one large file. See LOAD
".MBK" for more details.

save "Filename.VAR"

SAVE "Filename.VAR" provides you with the ability to save all the currently
defined variables directly on to the disc. Again see LOAD for an example of this
function.

:;ave "Filename.ASC"

Lists the Basic program to a file in Ascii format. This file can now be edited outside
STOS Basic by a wordprocessor or a text editor. Note that the Banks of memory
are not output by this function. We've used this instruction extensively in the
creation of this manual. Most of the included listings are derived directly from the
original programs.

BSAVE (Save a block of memory in binary format)

BSAVE file$, start to end

The memory stored between start and end is saved to the file fiJe$. The data is
saved out as it is in memory with no special formatting. You can use this function
for various tasks one of which would be to save out a character set from bank 5.

bsave ''\STOS'lllX8.CRO", start (5) to start (5)+length (5)

See BLOAD

Run-only programls

save "Filename.PRG"

This option saves a version of your program in a special format which allows it to
be loaded and executed straight from the Gem desktop. In order to use this
function, you should first prepare a disc using the STOSCOPY.ACB accessory.
This makes a copy of the entire \STOS\ directory on the disc. This disc can now
be used to hold your run-only program. NEVER SAVE A RUN-ONLY PROGRAM
ON THE ORIGINAL SYSTEM DISC!

When you save one of these programs, two files with the same name are
created on the disc. One file has the extension .BAS and is stored in the \STOS\
folder. The second file lies outside the folder, and has the .PRG extension. It is this
file which can be executed from the GEM desktop. When a run-only program
terminates or an error occurs, it immediately retums to Gem.

As an example, generate a disc with the correct files using a freshly formatted disc
in conjunction with STOSCOPY.ACB accessory. Now load the sprite editor into
memory using the line:

50

load "sprites.aeb"

Place the save disc into the drive, and type:

save "sprites.prg"

At this pOint STOS Basic will ask you to confirm that you really wish to save this
program. Enter Y or y at this prompt.

You have now installed a run only version of the sprite generator, which can
be executed directly fmm the Gem desktop. To test this, quit from STOS Basic
using the SYSTEM command. and double click on the file sprites.prg. This file is
now loaded, and the sprite editor is run, just as if you were executing it directly from
STOS Basic. This program can be terminated using the menu option QUIT or
Control+C.

Notes:

1. Any attempt to execute the STOS Basic editor from a run-only program will
crash the ST completely.

2. The files PIC.PI1 and PIC.PI3 in the STOS folder contain low and high
resolution pictures which will be displayed automatically during loading. If you
like, you can omit these files from the disc to save space.

3. The default colours used by your program will be the standard ones used by
the Gem Desktop, and not the normal STOS Basic colours.

4. Any of your own programs installed as RUN ONLY may be freely distributed
or sold providing you acknowledge that they were written in STOS Basic and
use the protect accessory when giving the disc to anyone who has not bought
a copy of STOS Basic.

5. If you place the run-only program in the \AUTO\ folder it will load and run
automatically, whenever the disc is booted up.

6. For more information see Appendix B.

LOAD (Load part or al/ of a STOS Basic program)

The LOAD instruction complements SAVE by allowing you to enter either a
program or data file from the disc. Here is a list of the various types of files which
may be loaded using this command.

Type

Basic programs
Images
Memory banks
Variables
Machine-code programs

Extensions allowed

.BAS, .BAK, .ACB, .ASC

.NEO .. PI1, .PI2, .P13

.MBK .. MBS

.VAR

.PRG

See SAVE for a fuller discussion of these extensions.

Basic Programs
LOAD "Filename"

51

Loads a Basic program. Assumes the extension ".BAS"

LOAD "Filename. BAS"

Loads a Basic program with the extension ".BAS". Identical to LOAD "filename"

Example:

load "config.bas"
run

LOAD "Filename.BAK"

Loads a backup of a Basic program created using the SAVE "Filename" instruc
tion.

LOAD "Filename.ACB"

This loads an accessory as a normal Basic program. It can now be edited and
debugged in the usual way.

Example:

load "type.acb"
list

LOAD "Filename.ASC"

This option lets you load an Ascii version of a Basic program, created using either
a text editor, or another version of Basic. Note that this program must have line
numbers, and be in plain Ascii. First Word users should turn the WP option off
before exporting a program into STOS Basic. It is important to realize that this
instruction does not erase the current program. Instead the new file is merged with
this program.

The ability to load a Basic program in this format can be used to allow you to
generate new STOS Basic listings within a Basic program. This has been used by
the sprite editor to dump the contents of a sprite bank onto the disc in the form of
a list of DATA statements.

LOAD "Filename.MBK"[,b]

This loads a single data file into a memory bank. If the optional destination of this
data is included, then the file is loaded directly into Bank number b, where b can
range from 1-15. Otherwise the file is loaded back into the bank from which it was
saved. Note that any existing data in this bank is erased during this loading
process. Furthermore, the LOAD instruction automatically reserves a bank of the
appropriate type if it has not already been defined.

Examples:

new
load "sprdemo.mbk
load "musdemo.mbk
load "icondemo.mbk
listbank

LOAD "Filename.MBS"

52

Loads a series of banks stored in a single file. These banks are loaded directly into
their original bank numbers. If these banks already exist, the old versions are
erased.

Place a fresh disc into the drive, and type:

save "BANKS.MBS"
new
listbank
load "BANKS.MBS"
listbank

As you can see, all three banks have been loaded in one operation.

Variables
LOAD "Filename.VAR"

This loads a list of variables stored on the disc using SAVE "filename.VAR". Any
currently existing variables are replaced. Note that this instruction affects ALL the
variables in the program.

Example:

new
10 dim A(100)
20 for X=l to 100
30 A(X)=X
40 next X
50 save "numbers.VAR"

Run this program with a disc in the drive. Now type in:

new
load "numbers.VAR"
for X=1 to 100:print A(X):next x

See how the array A has been automatically defined by the load operation.

Images
LOAO "Filename.PI1"['uddress of screen]
LOAD "Filename.PI2"[.addross of screen]
LOAD "Filename.PI3"[.addmss of screen]

The above commands load a Degas format picture file from the disc. If the address
of the screen is not included in the statement, then this image will be loaded into
the current screen. Otherwise it will be loaded into the screen at address. Normally
this address will point to the start of a memory bank defined as either a SCREEN
or DATASCREEN.

Remember that Pit denotes a low resolution screen, PI2 medium resolution,
and PI3 high resolution.

Example:

Place the disc containing the \STOS folder into your disc drive and type in:

53

cis

If you have a colour monitor you can now type:

mode 0
load "\sTOS\PIC.PI1

and for a monochrome monitor:

load "\STOS\PIC.PI3"

These commands load the STOS title screen into the ST's memory.

BLOAD (Load binary information into a specified address or bank)

This function load in binary data without altering the incoming information. There
are two forms of this function.

BLOAD file$,addr

BLOAD file$, #bank

bkaddr = start (bank)

The file fiJe$ will be loaded into the address addr.

fiJe$ is loaded into bank, thus the address from
which the data resides once it has been loaded is
the start address of bank. This start value can be
found with the command:

To see an example of this command insert the accessory disc and type in the line:

bload "mouse.acb", physic

which loads in the mouse accessory at the memory address of the physical
screen.

See BSAVE.

Machine-code programs
LOAD "Filename.PRG",b

This instruction allows you to load a machine-code program into a memory bank
number b. Any program you wish to use in this manner should be stored in TOS
relocatable format, and must be placed in a file ending with the ".PRG" extension.
DO NOT TRY TO USE GEM-BASED PROGRAMS FOR THIS PURPOSE! You
should also avoid accessing any of the memory management functions from
Gemdos. All other functions may be used, providing you take care.

You can call one of these functions using the CALL instruction like so:

CALL START (Bank number)

See Appendix C for more details.

Note that when you copy a bank containing a program into another bank, this is
automatically relocated for you.

54

The accessories
The STOS Basic accessories are special programs which lie dormant in the ST's
memory until you call them up using the Help key.

ACCLOAD (Load an accessory)

Before you can use one of these accessories you must first load it into memory
using the ACCLOAD command.

accload "name"

ACCLOAD loads the accessory from the file name into memory. Any normal Basic
programs you have entered will be completely unaffected.

Example:

acclolld "sprites.ACB"

You can use this function to load all the accessories stored on a disc into memory
at once. In order to do this, simply specify a name of •.

Example:

accload "."

Note that you can also use CONFIG.BAS to install a list of these accessories
permanently. This is very wasteful of memory and should be used with caution by
users restricted to a standard 520ST.

ACCNEW (Remove all currently installed accessories)

ACCNEW erases all the accessories from memory. It is often used in conjunction
with ACCLOAD to remove any unwanted accessories before loading a new one.

Example:

accnew:accload "."

See also ACCNB.

Calling an accessory

A list of the accessories currently available can be found by pressing the Help key
at any time. This displays a list of function keys alongside the accessories. In order
to call the accessory, simply press the appropriate key. Note that these keys only
call up the accessory from the HELP menu.

The sprite definer

This accessory is stored in the file SPRITES.ACB and provides a quick and
convenient method of creating or editing lists of sprites. A full explanation of this
program can be found in Chapter 4.

The character definer

The character definer in FONTS.ACB is used to create one of 13 user-defined

55

character sets. These sets can be accessed within a STOS Basic window, or can
directly replace the existing character set. See Chapter 8 for more details.

The icon definer

ICONS are special 16x16 characters which can be displayed in maps, or
incorporated into menus. The ICON definer in ICONS.ACB allows you to create
up to the 255 of these objects.

The music creation utility

MUSIC.ACB holds a powerful and effective tool for composing music or sound
effects that can be used within any STOS Basic program. Any music created with
this utility can operate independently of the rest of the program. See Chapter 5 for
a thorough examination of this accessory.

Compact

The screen compactor is a simple way of compressing a screen into a small space.
Typical compaction ratios vary from 30 per cent to up to 75 per cent. The
COMPACT.ACB accessory provides an effective method of performing these
compressions, and saving the results on to the disc. These files can then be
expanded with the UNPACK instruction. See Chapter 7.

Scan

Opens a window in the centre of the screen and prompts you for a keypress. The
Scancode and the Ascii code of this key are then displayed.

Ascii

Displays an Ascii table on the screen. Note that the row and column numbers are
in hexadecimal. Convert to decimal using $.

Example:

print $FF

Mouse

As you move the mouse pointer arollnd on the screen, the current X and Y
coordinates are displayed in the Mouse window. To exit from this accessory click
once on either of the mouse keys.

Type

Prints an Ascii file on the disc to either the screen or the printer.

Stoscopy

This accessory copies the \STOS\ folder along with its contents on to a new disc.
Since this function requires you to input the system disc into the current drive, it's
a good idea to set the write protect tab on your copy of the system disc before
executing STOSCOPY. Full instructions are included along with this program.

56

Dump

This accessory allows you to edit the contents of any part of the ST's memory.
Each byte of memory is displayed in both Ascii and hexadecimal formats. To edit
a memory location move the cursor over the appropriate point and input your new
data. When you have finished, press Return to enter the changes into memory.
These changes can be reversed by pressing Undo.

Arrow keys
Insert
Home
Enter
Undo

Move the cursor around the current screen.
Displays the last page of data.
Displays the next page of data.
Enters any changes into memory.
Reverses the changes.

Note that the MENUS allow you to examine and change any of 16 possible
memory banks associated with each of the four editible programs in memory.

Creating an aCCE!SSory
The only major difference between a STOS Basic accessory and a normal
program is in its ability to be called up using the Help menu. In fact, these
accessories are really just a specialised form of the multiple programs I mentioned
earlier. It's often useful for an accessory to be able to tell whether it is executing
as an accessory or directly as a Basic program. This can be done with the ACCNB
function.

ACCNB (Get accessory number)

ACCNB returns a value of zero if a program is not installed as an accessory, and
a number between 4 and 15 if it is. This number represents the program number
of the accessory.

Example:

new
101 accnb
2D wait key

Save this program as an accessory Jsing the line:

save "acctest.acb"

Now type:

accnew
accload "acctest.acb"

If you run the program directly from the editor then the number zero will be printed.
But if you call up the accessory named acctestfrom the Help menu, the number
which is displayed will be equal to the function key you pressed + 4.

Now for a simple example of an accessory.

new
10 windopen 1,22,5.18.4.5
2D curs off

57

Save this

30clw
40 print "DATE:";date$;
50 locate 0.1
60 print "TIME;";timeS;

if tllen 50

CLOCK.ACB and

This prints lime and date on

If you do not have a clockcard fitted, the time and date must be set using a line like:

time$::"16:01 :00":date$="28:06:88"

A number of rather more extensive examples of these accessories can be found
on the program disc. Feel free to play around with them as much as you like.

58

4 I Sprite commands
STOS Basic allows you to move and animate up to 15 sprites at anyone time.
These sprites can represent anything from space ships to monsters, and can be
created using a powerful sprite definer included as part of the 8TOS package. All
sprite movements and animations occur completely independently of the rest of
the system. This means that your program can be doing something totally different
whilst the sprites are whizzing around on the screen regardless.

The Sprite Definer
8TOS incorporates an extremely impressive sprite definition utility which allows
you to quickly create large sets of sprites for use by your Basic programs. You can
load this designer from the accessory disc with either:

or
load "sprite.acb":rem Load as a normal Basic program (Execute with RUN)

accnew:accload"sprite":rem Lllad as an accessory (Execute from HELP
menu)

Because of the memory constraints on a standard 520 ST you should always
remove all other STOS Basic accessories from the system before using ACCLOAD.
Furthermore, it would also be a good idea to boot STOS Basic directly from the
AUTO folder, as this will save you an additional 32k of memory.

It is important to note that designer runs in LOW resolution only. Don't panic
if you're restricted to a mono monitor! A separate version of the package has been
especially provided for you on the accessory disc - this will happily work in all three
resolutions. Although this may seem a little less powerful than designer, it is still
capable of generating some stunning effects, and indeed many of the example
sprites on the disc were created using ."ust this utility.

If you have enough available memory it's best to install the sprite editor as an
accessory, as this enables you to access it instantly from within your STOS Basic
program by pressing the <HELP><F1> keys.

On startup, designer automatically grabs any sprites which are currently
employed by your program. You then simply remove the tille screen with the left
mouse button, and the sprite editor is ready for business.

59

··00··· ···4··· ••• • •• ••• • •• RIG~T

At first glance the sprite designer may seem rather daunting. Once you have
mastered the basic principles however, using it will quickly become second
nature.

The screen can roughly be divided into six separate sections. These have
been 1-6 in the above

Here "r""I<I~f\I!Jn of their various

1 The li::\I'U13,m

The contains nine icons the main features
designer. Typical options available from this section are load/save, change size,
and a clever facilty to allow you to design an animation sequence. These
commands can be accessed directly from the screen by moving the mouse pointer
over the appropriate icon and pressing the left button. A full list of the system icons
can be found on page &4, along with a detailed explanation of each function.

2 The drawing area

3 The scroll zone

the screen in which
cursor position by
the right key is set

can change these

be drawn. Points can
the left or the right

and the left key
you like using a

The scroll zone allows you to see the relative size of your sprite, and scroll it in all
four directions. This scrolling can be activated at any time by clicking on one of four
different icons which border the zone:

... sprite one pixel up)

... sprite one pixel down)

~ (Scrolls the sprite to the left)

~ (Scrolls the sprite to the right)

4 The colour window

these colours is
a a new colour

mouse, you simply move the mouse pointer over the new colour and press the left
button. Your current choice will now be highlighted on the screen.

5 The tools section

The tools area contains 18 different drawing icons. These include facilities to

60

create circles, ellipses and bars as easily as a single point. There's also an
extretnely useful undo feature which immediately reverses the effects of your last
command.

You can choose one of these functions by simply clicking on the appropriate
icon. The shape of the mouse pointer will now be changed accordingly to indicate
the option you have selected. Most functions require you to first set the dimensions
of an object before it can be drawn on the screen.

You normally specify the size of an item by keeping the left button pressed
while moving the mouse. When you release this button, the object can be moved
about with the mouse. You can now draw as many copies of the design on the
screen as you wish by pressing the left button at any point in the drawing area.
Incidentally, if you want to draw another object you can immediately reset the size
back to zero with the right mouse button.

6 The Selection window

The selection window is used to display all the sprites which are currently installed
in the ST's memory. Several of the system options use this window to allow you
to choose one of a number of images which are currently held in the ST's memory.
You can scroll through these sprites using the following icons:

(Smoothly moves the list back one place)

(Smoothly moves the list forward one place)

(Quickly moves the sprites backwards)

(Quickly moves the sprites forwards)

(Moves to the first sprite in the list)

I_I (Moves to the last sprite in the list)

The tools icons
The tool icons provide you with a comprehensive set of drawing operations which
make it extremely easy for you to design your own sprites.

61

(Plot a point)

In order to plot a point at the current mouse position, simply click on either the left
or right mouse buttons. The colour of these points can be independently set from
the colour window. lfol (Drawaline)

This draws a straight line in the drawing area using the colour assigned to the left
mouse key. You first stretch the line to the length desired by pressing on the left
button while moving the mouse. When you release this button, the line will be
assigned directly to the pointer, and you can now draw any number of copies on
the screen.

Incidentally, if you move the mouse outside the drawing area, the pointer
reverts to an arrow, and can be used to access any of the other commands without
interferring with the current setting. This enables you to change the colour of the
line you are defining directly from the colour window. When you move back to the
drawing area, the cursor is immediately replaced by a line in the new colour.

As a general rule, all the drawing options can be employed using the following
technique.

1.

2.

3.

4.

Set the size and shape of the object by pressing the left button at the same
time as you move the mouse.

Release this button to assign the currently defined object to the mouse
pointer.

Move the mouse to the position in the sprite where you wish your object to
be placed and click on the left mouse button. You can now repeat this step
several times to draw a number of copies of the object on the screen.

Remove the object from the mouse by pressing the right button.

(Draw a hollow box)

This draws a hollow box which can be expanded and contracted using the left
mouse button as explained above. 101 (Dmwahollow,_J

Draws a hollow circle whose radius can be specified by holding on the left mouse
button whilst moving the mouse. 101 (Draw a hollOW ellipse)

62

Draws a hollow ellipse. The width of the ellipse can be specified by pressing the
left button while the mouse is moved either left or right. Similarly, the height can
be set by moving the mouse up or down.

I CL I (E,os. de/;nHion)

The clear option erases the current drawing completely. As the effect of this
command is permanent, you are always asked for confirmation before the sprite
is erased. Note that this has no effect on any sprites which have been previously
installed in the ST's memory.

I tS>1 (FUI an a_)

Fill paints any hollow section of your sprite with the colour assigned to the left
mouse button. To use this function, move the mouse inside the part of the drawing
you wish to paint and press the left button. I I and II I (C'"",e f#I pattem)

These options allow you to choose which of the many possible fill patterns will be
used by any subsequent drawing operation. The current pattern is displayed in a
small box positioned immediately below the TOOL icons.

(Choose the previous fill pattern from the box)

(Choose the next fill pattern from the box)

III (Draw a fil/ed bar)

Similar to box but draws a filled bar rather than a hollow box.

lei (Draw a fil/ed circle)

This draws a filled circle which is defined in a similar manner to that used by circle.

I_I (D,.wa t;/kd elN!"e)

Draws a filled ellipse. See ellipse for more details.

63

I II "I (Undo/he/as/cha,.e)

DO
Undo is a very useful function indeed! This is because it enables you to instantly
reverse the effect of your last drawing operation from the screen whenever
necessary. Undo can be accessed either from the tools area, or directly from the
keyboard using the <UNDO> key.

I~I (Reduce sprite)

This function allows you to reduce the entire sprite into the top left hand corner of
the screen. The magnitude of the reduction can be set using the left mouse button.
Warning! Reduce is not the same as Change size. Instead of simply changing the
definition of the sprite, reduce compresses the actual image. Some of the picture
quality is therefore lost every time you perform this operation. Note that if you
reduce a sprite and don't like the results you can easily return the sprite to its
original size with <UNDO>.

I~ .. I (Zoom sprite)

Zoom expands the sprite up to twice its initial proportions. As with reduce the size
of the zoom can be easily specified with the mouse. After the sprite has been
expanded, you must always confirm the zoom by pressing the left button. Also
note that you can use this option several times in sucession to enlarge the sprite
to any size you wish. Do not confuse with change size. I_I (Reverse sprite)

Reverse mirrors the sprite from left to right. II'I (Invert sprite)

The invert icon flips the sprite from top to bottom 1.1 (Rotate sprite)

This rotates the sprite in 90 degree steps. Note that rotate will only work if the width
of your sprite is exactly the same as its height.

The system icons

The system icons control all the major features of the system, and allow you to
specify a number of important attributes which define the appearance of your
sprites.

64

I'll deal with these options in turn, starting from the top of the menu line and
continuing to the bottom.

Cut and Paste

(Block menu)

The block icon gives you access to an impressive array of cut and paste
operations. Here is a list of the powerful features supported by this command.

I ~ e ,Ii) I (Return to the main screen)

You can also click on the right mouse button to achieve the same effect.

~ (Block defined)

This option is highlighted if a section of the screen has been previously cut.

~ (Define a block)

You use this option to copy a section of the screen from one place to another. You
first choose the area you wish to cut from the image by enclosing it with a
rectangular box. Press the left button on the corner of this section and move the
mouse cursor to specify its size. When you now release this button the block will
be cut, and a copy stored in the 51's memory. If the erase option has been
previously set, the original contents of the zone will be cleared from the screen
using the background colour. You can then copy this block to any point on the
screen with the mouse.

II .. I (Opaque toggle)

If this option is OFF then the background of the block will be transparent.
Otherwise it will be OPAQUE.

c.§§:] (Cut and erase)

Erase informs the system that the source image will subsequently be erased from
the screen immediately after a CUT operation is performed.

II lit I (Grab bottom right)

Grabs the block by its bottom right corner._

11' I I (Grab the upper left)

65

Grabs the block using its upper left corner

II .,..1 (Grab upper right)

Grabs the block using its upper right corner I ~ I I (Grab bottom left)

Grabs the block using its bottom left corner.

Note that all the usual features of the system such as Undo and Scroll also remain
available within this mode.

Creating an Animlation sequence

I ~ I (Animate menu)

This option enables you to animate a sprite, and then play around with it until you
are happy with the results . Just to make things easier, it automatically displays the
exact string which would be used to achieve the same effect from the ANIM
instruction.

When you enter this mode, the following screen is displayed:

~
Iu:::~
IW
IW
1m
1m
1m
~

RniMution st.-illg

1]£2 m :----.-
<

M i
> ~~~~~

« » -;.1 ailv
c 'jj) ~r.fl~ I ~t8ID~()G'}.()S

The first thing you notice about this screen is that the original systems icons have
been completely replaced by the following list:

II" ,1Ilij I (Return to main menu)

Reverts back to main menu. Also executed by pressing the right mouse button.

66

I ~ 3. ~ I (Animate 1)

Choose the First of six separate animation sequences.

I ~ 2 ~ I (Animate 2)

Choose the Second animation (... and so on up to six)

I ~ I (Erase film)

Erases the whole of the current animation.

I § ~ I (Delete frame) e
Deletes a single frame from the animation.

In order to create your animation sequence, you first need to select the number
of frames to be animated. This can be done by simply clicking on the appropriate
sprite in the Selection window with the left mouse button. Your sprite will now be
added to the current progression, and the string associated with it will be displayed
on the screen. As a default the animation takes place at the centre of the drawing
area. You can however move this display anywhere else you like on the screen
using the mouse.

Controlling the Animation
The effect of the animation is controlled from a special dialogue box positioned to
the immediate right of the selection window. At the top of the box is a line
comprising of four arrows and a number. The number in the centre indicates the
delay in 50ths of a second between the last image in the sequence and the next
one you select. You can change this number up or down by clicking on the inner
arrows.

You can also highlight any single animation string using the mouse cursor. The
speed setting of this string will now be altered whenever you press the inner
arrows, allowing you total control overthe speed of each individual animation step.

The second set of arrows on the control panel change the speed of the
animation as a whole. They do this by adding or subtracting one unit of time from
all the animation strings you have defined. It is important to note that this option
retains any differences between each of the separate stages.

Changing the direction
The second line of the dialogue box lets you change the direction of the animation,
and also provides you with the ability to step through your animation a single frame
at a time. There are three different options available from this section.

I r I (Forward animation)

67

Executes the animation string from left to right.

I '==:::It I (Reverse animation)

Executes the animation string from right to left.

I ,,""'"'9 I (Step-by-step animation)

When this is set to ON, clicking on the mouse (while the pointer is outside the
control panel) executes a single animation step.

Displaying a background screen
The final set of options enable you to load a screen in either Degas or Neochrome
format into the background. This can now be displayed along with your animation
using the BACKGRND icon. Warning! These screens overwrite any pictures you
have loaded with the Grab image option.

Grabbing sprites from the disc

I Ai 81 (Grab image)

This command enables you to grab sprites directly from a file in either Degas or
Neochrome format.

There are seven possible options.

I ~ e ,1IiJ I (Return to main menu)

Returns you back to the main menu i n I (G~b 1m ...)

Displays the current picture on the ST's screen. In order to grab a sprite from this
picture you always need to follow the steps outlined below.

1. Define the size of your sprite by enclosing it with a hollow rectangular box.
As you move the mouse with the left button held down, the dimensions of this
box will expand and contract. When you release the button the dimensions
of the sprite are set to the current size.

2. Move the box over the part of the image you wish to grab.

3. Grab the contents of this box into the sprite bank by pressing the left button.

68

1.'.'.'1 (Grid on/off toggle) .,., ,

When this toggle is ON the grab can only start on word boundaries. This helps
when grabbing sprites that are snapped onto a boundary.

I CI"'-= I (Auto insert toggle)

If this option is ON the grabbed sprite will be transfered directly into the store.

liiii.'1 (Grab from Neochrome picture)

Reads a Neochrome file off the disc. If the Get Palette option has been selected
then the palette is loaded automatically along with the picture.

I ,,!did I (Grab from Degas picture)

Loads a Degas file off the disc. If the Get Palette option has been selected then
the palette is loaded automatically along with the picture. 1-' (Get palette during grab)

Loads the current palette of colours with the settings used by the new picture.

To exit from this mode click once on the right mouse button.

Grabbing a sprite from a program

'F\II (Grab from the program file)

This enables you to grab a sprite out of an program stored in a disc file. Unlike Grab
image, this file doesn't have to be in any particular screen format at all. It can in
fact, be anything from your favourite commercial game to a sprite file generated
by a different editor. I n I (Glab Image)

Select this to grab a sprite from the loaded file.

I C"'I (Select aM g",b Imm a t;~)

This erases the current screen and loads part of the file into the ST's memory. The
contents of this file is now displayed in the form of a screen image.

69

P:

W:

At the bottom of the screen lies the main control panel.

I~

As you can see, two numbers are displayed directly underneath the name of your
file.

This number indicates your position in the file. Note that since the designer loads
each file in 16k chunks, there is no real limit to the size of the file you can inspect
with this function.

W denotes the current screen width, and can vary from 1 (very thin) to 20 (Full
screen). The width can easily be changed by clicking on the icons situated just
beneath the W. You can also redisplay the full screen with the Full icon. The width
option is needed because different games store sprites in different formats. As a
general rule, if the screen you are currently displaying looks like garbage, try
altering its width - you could well be astonished at the results.

Searching through the file
On the right of the screen lies two sets of direction arrows which enable you to
scroll through the file in search of some useful images.

The single arrows move the display through the file either a line (for the up/down),
or a single byte (left/right) at a time. The four double arrows work in units of either
10 lines or B WORDS, depending on the direction of the motion.

Once you've found something interesting, you can save the entire screen using
the Save Neochrome or Save Degas options.

You can also grab any individual sprite from this image. First press the right button
to remove the control panel. Now select the sprite with the left button in the same
way as with the grab image command.

Finally there is the Quit option. This returns you to the main menu without erasing
the file you are inspecting. The next time you enter Grab programs, your current
screen will be waiting for you at exactly the same point.

70

The FILE menu
~ (Disc file menu)

ffi!J
This is the menu which is used to save and load your sprites to the disc. These
sprites are always stored in memory bank number 1. See RESERVE for more
details.

I_I (Use palette)

When this option is ON all files saved will have the current colour palette saved
with them. Files loaded into the editor will change the current palette.

I '·'~"I (Load a sprite file)

This loads a set of sprites from the disc. These are placed in bank 1 and replace
any other sprites which were previously occupying this bank. Note that if you have
selected the Palette option, then the palette used by the sprites will be loaded
automatically by this function.

11:''', I (Merge a sprite file)

This command appends a sprite bank held on the disc to the one which is stored
in memory. Warning: Merge only combines the sprites stored in LOW resolution.
Like Load, the palette will be amended if you have set the Palette option to ON.

I ~!~ I (Save)

SAVE saves the current contents of sprite bank 1 to the disc. Warning: Any sprites
you wish to save must first be placed in the sprite bank with the Put Sprite option
before this function is called - otherwise your data will be lost.

I~"~ I (Save as)

Saves your sprites under a new filename.

~ (Quit)

~
Leaves the sprite designer, losing any sprites you have defined.

!QUIT
E.

GRAB

(Quit & grab)

71

This option only makes sense if the designer has been executed as an accessory.
Quit & Grab then leaves the definer, and copies the sprites you have defined
straight into the current program.

Changi the Hot
menu)

Each sprite is manipulated on the screen using a special point called the Hot Spot.
This can be changed to anywhere inside the sprite using the Hot Spot Menu. To
see the current setting, move the mouse into the drawing area. The hot spot will
now flash continually on the screen.

In order to make life easier for you, a number of commonly-used settings have
been icons.

Set ho! upper left hand corner

(Upper middle)

Set hot spot to the middle of the upper line of the sprite.

Set hot right corner.

Bottom left corner.

(Bottom middle)

Middle

Bottom right corner.

II • I I (Centre)

72

This positions the Hot Spot to the centre. One useful side effect of this is to indicate
the precise centre of the sprite. By scrolling the sprite uSing the scroll window, you
can therefore use this feature to neatly arrange your sprite on the screen.

Changing the palette
This can be achieved with the RGB option will allows you to specify one of 512
possible shades for each of the 16 available colours.

I mel (Alter palette)

To use this feature, first click on the colour you wish to change in the LEFT colour
window. You can also select the colour by clicking on any individual point in the
drawing area. Now move the Red/Green/Blue sliders to set this colour to a specific
value. If you wish to reverse the last colour setting you can as usual, click on the
UNDO option. Finally press the right mouse key to return back to the main menu.

Changing the size of the sprite

I,,"~,~!III (Set X and Y menu)

STOS Basic allows you to use sprites ranging from 16x2 to 64x64 pixels in size.
As a default the size is set to 32x32 but this can be changed at any time from the
SET X and Y me('lu. When you call this option the current size is displayed on the
screen. You can now alter this setting using the scroll window. Note that the width
of the sprite can only be altered in 16 pixel steps. You should also remember that
the Hot spot of the sprite is always reset back to the top left corner of the screen,
whenever the SET X and Y function is called.

II~~ III (~ueeze '~He)
If you press on this menu selection the sprite in the edit window will be moved into
the top left-hand corner. This frees the surrounding space and allows you to
shorten the width and height of the spite, thus achieving the smallest size possible.

Placing a sprite into the bank
After you created one of your sprites you must always remember to place it into
the sprite bank. This can be done using the store sprite menu.

I ~ ~ I (Store menu)

Here is a list of the various options.

73

I BPijl (Erase bank)

Erases the entire Bank. Since erase is very dangerous indeed, you are always
asked for confirmation before this function is executed.

I iii I (Delete sprite)

Deletes the sprite picked from the selection window. Note this option is permanent
and cannot be undone! lie I (In,""'pri")

INS inserts the sprite at the current slot by shifting all the sprites one place to the
right. This makes a space for the new definition in the the memory bank. rriI.l (Pul 'WIle)

~
This copies the sprite you are currently editing into the sprite displayed in the
centre of the selection window. In order to avoid overwriting your existing sprites,
you should position the first empty slot at the middle of the window before use.
Warning! This option erases any data already stored in the destination sprite. III (Get 'Wlte)

~
Edits the sprite you have chosen with the selection window.

To save a great deal of menu switching we have included some functions that
allow you to put and get sprites with super speed. When editing a sprite you can
place it into the store by pressing the down arrow key twice. This is the same as
using the put sprite option from the store menu. To get a sprite from the store just
press the up arrow key twice.

For real speed you can put the sprite in the editor and then get the next sprite
from the store just by pressing the right arrow key. If you press the left arrow key
then the edit sprite will be stored and the previous sprite will be loaded into the
drawing area.

Using the Sprite designer
So far, we've only concentrated on theory. In this section, I'll be showing you how
the sprite designer can be utilized to draw an actual set of sprites for use in one
of your own programs.

74

Before we can do anything, we first need to load the sprite editor into memory.
Type the line:

accnew:accload "SPRITE"

Now enter the designer using <HEU'><F1>

As an example, we'll be creating a sprite representing a certain well-known
spaceship. Here is a picture of the type of effect we will be aiming for:

Drawing an image

.. I •••• ••••
i ••• ".'1 • •• 11 ... ,,.

RIGf'T

We'll start off by selecting the colour of our new sprite. Move the mouse over the
left colour window and choose a nice bright shade for the sprite by pressing the
left button over one of the colours.

We will now draw the large disc which forms a major part of the ship. Click on the
disc option from the tools menu to set the pen to a filled circle. Move the pointer
into the drawing area and press the left button as you pull the mouse to the right.
This generates an expanding disc on the screen. When the disc is about a third
of the size of the drawing area, release the button to assign it to the mouse. We
can now place this circle in the centre right of the sprite and fix it into position with
the left mouse button.

Now for the so-called primary hull. For this section we'll need to draw a filled bar
from the middle of the disc to the edge of the screen. Select the bar option and
move the mouse to the centre of the disc. Now expand the bar by holding onto the
left button while you move the mouse to the left. Release the button when the bar
has reached a reasonable size. We can then push the hull into position and click
on the mouse to set it in place.

Finally, we will produce the two outriggers which are so distinctive of this type of
space ship. First erase the last bar with the RIGHT mouse button. Now shift the
pointer to the top of the sprite and draw a thin bar passing straight through the
primary hull. This forms a strut which will connect the two outriggers to the main
part of the ship. We can then move the mouse to the top left of the sprite and
generate a thin horizontal bar. Position this in the centre of the strut and click the
left button, and repeat this process at the equivalent point at the bottom of the
sprite. You should now be looking at a picture similar to the one I showed you
earlier.

75

Installing a sprite into the bank
Before we can save our spaceship to the disc, we need to install it into the memory
bank. This can be done with the store sprite option. Select this icon with the mouse
and then call put sprite to copy the ship into the first free position. Click on the right
mouse button to exit back to the main menu.

Now let's play around with our new sprite a little. We can rotate the ship to a new
orientation using the rotate option from the tools menu. As before we must then
save the sprite into memory with the store sprite icon. This time we'll insert the
sprite into the bank with insert. By repeating this process twice more we can
generate an image of the ship pointing in all four directions.

Saving your sprites
After we have finished designing our sprites, we can save them to the disc using
the file icon. Place a fresh disc into your drive and call the SAVE command. This
then displays a STOS file selector which can be used in the normal way.

Alternatively, we can incorporate our new sprites directly into the current STOS
Basic program with QUIT and GRAB. Whenever we subsequently enter the
designer, these sprites will be loaded back into memory automatically.

Using the Animator
I'll now show you how you can produce a simple animation sequence from the
sprite designer. First load this utility from the accessory disc like so:

accnew:accload "SPRITE"

Now enter the designer with <HELP><F1 >. Before we can animate our sprites, we
first need to create the images which make up each individual frame. As an
example of this process we'll generate a simple expanding disc.

To create the first of these frames, we select the disc option from the tools menu
and then paint a small disc in the centre of the drawing area. Remember that we
can control the size of this disc by holding onto the left mouse button while we
move the mouse. We now install our disc into memory with the store sprite
command. The easiest option to use at this point is insert sprite.

If we repeat this process for successively larger discs, we will quickly generate the
sequence we require.

After we have created a reasonable set of images we can then enter the animation
editor using the animate option.

We are now in a position to animate our group of sprites. We start off by choosing
the smallest disc in our sequence from the selection window by simply clicking on
it with the left mouse button. This places the disc in the centre of the animation
area, and the appropriate animation string is printed directly underneath. If we
then click on the second disc in our series, the two images are displayed on the
screen one after another. We can continue selecting images in this way, until we
have incorporated all our images into the animation sequence.

76

~ w
W
ttl • ttl m
N An i .. nt. i on §~"~n
~ ~(

2, 5)(.. , 51

m
<

i I •) ~~.Le~~~
'« • • » ~Iciillr
~ »> ~~~~ I LJ,t8 ID1:°CiAfs

Now try moving the mouse pointer around on the display area and clicking on the
left button. As you can see, the entire animation moves immediately to the new
position.

We will manipulate our animation by moving the mouse to the control window and
clicking on the left and right "A" arrows. These change the speed of the entire
sequence. We can also alter the speed of just one of the images. Let's choose an
animation to be affected by moving the pointer over an appropriate string. We can
then change the speed of this step by selecting any of the inner most arrows.

Let's invert the animation sequence. If we select the reverse icon with the left
mouse button, the images will now be displayed in revese order and the circle will
appear to contract into nothing.

We can also display the animation against a background screen stored on the
disc. This can be done using the load Degas icon from the control panel.

If we place the STOS system disc in the drive we can now load the title screen (in
PIC.Plt) from the STOS folder. To display the new screen alongside our
animation sequence we then click on the BACKGRND icon. We can then return
to the command screen by pressing the right mouse button.

Finally, we should always end our session by making a note of the animation string
on a scrap of paper. This will be needed when we wish to recreate our sequence
using the STOS Basic ANIM instruction. We can now press the right mouse button
to return to the main menu, and save our sequence to the disc using the save
option from the file menu.

The multiple-mode sprite definer
For the users who wish to design sprites in medium and high resolutions, we have
included a breakdown of the sprite editor which can operate in all three modes.

This can be found in the file SPRITE2.ACB on the accessory disc.

In many respects SPRITE2.ACB is just a simpler version of SPRITE, and indeed
many of the basic techniques I discussed earlier will also apply equally well to
either of these two programs. One minor advantage of SPRITE2.ACB is that is
uses considerably less memory than the more powerful SPRITE program.

77

Another benefit is that the accessory will happily allow you to create files
containing sprites in each of the three resolutions simultaneously. This is especially
useful when designing new pointers for the mouse.

You can load SPRITE2.ACB at any time with the line:

accnew:accload "SPRITE2.ACB

On startup the screen is split into six separate windows

• The information line: This is placed at the top of the screen, just underneath
the menus. It is used to display any relevant information such as the colour
of the current pen or the size of the sprite.

• The RGB Window: Click on one of the letters R/G/B to change the colour
setting used by the mouse for all future drawing operations.

• The scroll window: This is utilised by the SCROLL option to scroll the sprite
in all four directions.

• The pattern window: Holds a copy of the current fill pattern. You can change
it by repeatedly clicking on this window with the left and right mouse buttons
to page through the various possibilities.

• The sprite display: This displays a full-sized copy of the sprite you are
editing.

• The drawing window: The drawing window is used to edit your sprite. To
plot a point at the current pointer position simply click on the left button. The
right mouse button can also be used in a similar fashion to delete a point from
the sprite

Here is a breakdown of the various menu options available from this program.

STOS
Sprites

Displays a title screen. Click the mouse to remove.

Quit

Exits from the sprite definer, losing all of your current sprite definitions.

Quit and Grab

Exits from the definer and incorporates any new definitions into your current
program. This option only works if the definer has been executed as an accessory.

File
Load Sprite Bank

Loads a file containing a list of sprites into bank number one. These can be edited
using the get sprite option.

78

Save Sprite Bank

Saves all the sprites you have defined into a new file on the disc.

Save as ...

Saves the bank using a different filename than the one it was originally loaded
from.

BANK
Grab from program

Grabs any sprites used by your curren·; program from subsequent editing by the
definer. Obviously this option only applies if you have loaded the definer as an
accessory.

SPRITE

Put Sprite

Puts the current sprite into a particular slot and replaces any of the original
contents.

Insert Sprite

Inserts the sprite you are editing into bank 1, without overwriting any of the existing
images.

Get Sprite

Gets a sprite out of the memory bank to be edited.

Erase Sprite

Erases one of the sprites from the bank.

You can select the sprite used by these functions by clicking the left button over
the appropriate image in the drawing window. These sprites are displayed in
groups of nine. To page through the entire set, simply click on the NEXT and
previous boxes below this window.

Move Sprite

This allows you to assign one of the sprites to the mouse and then see how it looks
when you move it around on the screen

Cinema

The Cinema option enables you to animate your sprites from within the definer.
To choose the sprites which will make up your animation sequence, simply click
on the appropriate images in the drawing area. Then click on the left mouse
anywhere outside this window to start the animation running. You can now change
the speed of the animation with the + or - keys.

79

Previous cinema

Restarts the last animation sequence you defined from the pOint you left off.

Get from DEGAS
Get from NEO

Grab a sprite from a screen stored on the disc in DEGAS or NEOCHROME format.
After you have chosen the file with the file selector, you are then presented with
a list of the currently defined sprites in the bank. Select the one you wish to load
using the left mouse button. Note that the dimensions of this sprite determine the
final size of the image which will be grabbed.

The new screen is now displayed and you can grab the image which is
underneath the mouse cursor by pressing the left mouse button. After you have
finished you can return to the editor by clicking on the right mouse button.

FIX mask

This allows you to select the mask colour used as the transparent index.

Fix Hot Point

Click the left button on the appropriate point to set the hot spot of the sprite. The
current spot can be seen flashing on the screen.

Fix X and V Size

This allows you to change the dimensions of the sprite. Click on the scroll arrows
to alter the size.

TOOLS
Erase

Erases the currently edited sprite. Does not affect any sprites stored in the bank.

Mirror

Reverses the sprite from lellto right.

Flip

Reverses the sprite from top to bottom.

Scroll

Scrolls the sprite. Click on the arrow keys to scroll the sprite in any direction.

Paint

Whenever you subsquently click the mouse in an enclosed area in the sprite, this
will be filled with the current fill colour using the pattern you have selected from the
FILL window. Click on DRAW to revert the editor back to normal.

80

Palette
This provides you with a list of the colours available for your use. Click on a colour
to assign it to the current pen.

The SPRITE command
After we have drawn our sprites with the sprite definer, we will obviously need
some way of displaying them on the screen. This can be done using the SPRITE
instruction.

SPRITE (Displays a sprite on the screen)

SPRITE n,x,y,p

This displays sprite number n on the screen at coordinates x and y.

n is the number of the sprite, which can range from 1 to 15. It is this number which
will be used to identify the sprite in any subsequent calls to the MOVE and ANIM
instructions.

x and yare the coordinates of the point on the screen where the sprite is to be
drawn. Unlike normal screen coordinates, these can take NEGATIVE values. The
x coordinate can vary from -640 to + 1280, and the ycoordinate from -400 to +800.
This allows you to move the sprite off screen without causing an error.

p specifies which of the images in bank 1 is to be used for a particular sprite. The
only limit to the number of these images is the amount of available memory.

Each sprite has an invisible handle through which it can be manipulated, called
a Hot Spot. Whenever we draw a sprite, we always specify its coordinates in terms
of the position of this point on the screen. As a default, the hot spot is always set
to the top left hand corner of the image, but this can readily be changed using a
special option from the Sprite definer accessory.

Examples:

A number of example sprites have been placed on the accessory disc for your use.
You can load one of these sets using the LOAD instruction like so:

load "fontset.mbk"

This loads a collection of sprites which depict the various letters of the alphabet.

Now let's display some of these sprites on the screen.

mode O:rem These sprites are designed for low resolution flash off
palette 0,$777,$444

sprite l,l00,l00,6:rem Displays a 1 character at 100,100 as sprite 1
sprite 2,10,50,6:rem Displays another sprite with the same image
sprite l,l00,100,7:rem Chang!! sprite 1 from a 1 to a 2
sprite 3,-10,l00,5:rem Demonstrates the use of negative coordinates

It is important to realise that the sprite command effectively does two separate

81

things: Not only does it draw a sprite on the screen, but it also determines which
image will be associated with each of the 15 sprite numbers. You must therefore
always use this instruction BEFORE moving or animating a sprite.

Moving a sprite
Any of the STOS Basic sprites can be moved across the screen using interrupts.
without affecting the execution of your Basic program in the slightest. The
command which enables you to do this is very powerful indeed and is called, quite
simply, MOVE. The MOVE instruction

This allows you to assign a complicated series of movements to a sprite, which
will then be executed automatically by STOS Basic every 50th of a second (70th
for high resolution). There are two main versions of this command, one for
horizontal motions, and another for vertical movements. These can be combined
to produce intricate patterns on the screen. Since the two instructions are
otherwise identical, we will concentrate on the MOVE X command first, and then
explain any significant differences between it and MOVE V.

MOVE X (Move a sprite horizontally)

MOVE X n,m$

This defines a list of horizontal movements which will be subsequently performed
by sprite number n. n can range from 1-15 and refers to the number of a sprite you
have previously installed using SPRITE.

m$ contains a sequence of commands which together determine both the speed
and direction of the sprite.

Each of these instructions is split into three separate components.

SPEED
This stipulates the delay in 50ths of a second between each successive sprite
movement. The speed can vary from 1 (very fast) to 32767 (incredibly slow)

STEP
The STEP size specifies how many pixels the sprite will be moved in each
operation. If this step is positive the sprite will move to the right, and if it is negative
to the left. The apparent speed of the sprite depends on a combination of the speed
and step. Large displacements coupled with a moderate speed will move the
sprite quickly but jerkily across the screen. Similarly, a small step size combined
with a high speed will also move the sprite very fast, but the motion will be much
smoother. The fastest speeds can be obtained with a displacements of about 10
(or -10).

COUNT

This designates the number of steps which will be completed in a single
movement. Possible values range from 0 to 32767. If you use a COUNT of 0, the
motion will be repeated indefinitely.

These three elements are placed into the movement string using the following
format: (speed,step,count)

Here is a simple example which should make this a little clearer. Load a set
of sprites from the accessory disc with:

82

load "fontset.mbk"

Now define sprite 1 using the SPRITE instruction like so:

sprite 1.10.100.1

We can move this sprite with MOVE X:

move x 1."(1.3.50)"

When we execute the above command. we find to our surprise that nothing
happens. This is because we need to first initiate the motion using a special MOVE
ON instruction.

move on

The sprite now progresses steadily across the screen. We can combine any
number of these individual movements into a single MOVE command. They will
then be executed in turn. one after another.

Example:

move x 1."(1.1.100)(1.-1.100)"
move on

This moves the sprite from left to right, and back again.

There are also a couple of other directives available for our use. The most
important of these extensions is the instruction (for loop). which jumps back to
the start of the list and reruns the entire sequence again from the beginning.

Example:

sprite 1.10.100.5:rem Define Sprite 5
move x 1."(1.5.60)(1.-5.60)L"
move on

Another useful option is the E command which stops the sprite whenever it
reaches a specific position on the screen.

Example:

sprite 1.10.100.5
move x 1."(1.5.30)E100"
move on

The most common use of this instruction is to halt a sprite which has been defined
with a count of zero at a particular point. The following example illustrates this
technique.

sprite 1.10.100.5
move x 1."(1.5.0)E200"
move on

Note that these endpoints will only work if the x coordinate of the sprite exactly
reaches the value you originally desi!~nated in the instruction. If this increment is
badly chosen. the sprite will leap past the endpoint in a single step, and the test
will therefore always fail.

83

Incidentally, you can also use an endpoint in conjunction with the L command.
This has the effect of stopping the sprite and then executing the series of
movements again from the start.

Example:

sprite 1,10,100,5
move x l,"(l,5,30lLl00"
move on

In the example above, the ending condition was pretty useless, because the
motion immediately resumes from the point it had reached when the sequence
was terminated. But you can also add an optional starting position to the
movement. This returns the sprite back to its original location, and therefore allows
you to loop the sprite repeatedly through a precise section of the screen. Here is
an example of this function in action:

sprite l,100,l00,l:rem Defines sprite 1 off screen
move x l,ft l00(l,l,OlL200"
move on

The sprite now starts from 1 0, 1 00, and slowly progresses to location 200,100
before looping back to 10,100.

See MOVE ON, MOVE Y, MOVE FREEZE, MOVON, ANIM, SPRITE, UPDATE

MOVE V (Move a sprite vertically)

MOVE Y n,m$

This instruction complements the MOVE X command by enabling you to move a
sprite through a complex series of vertical manoeuvers. As before, n refers to the
number of a sprite you have installed using SPRITE, and ranges between 1-15.

m$ holds the movement string. This uses an identical format to MOVE X, except
that positive displacements now correspond to a downward motion, and negative
steps to an upward movement.

Examples:

load "Iontset.mbk":rem Load sprites from accessory disc
sprite 1.100,10,5:rem Install sprite
move y 1:10(l,l,l80)L":rem loop sprite frDm 10,10 to 190,10 continually

sprite 1.100,100,1
move y l,"(1,4,25)(l,-4,25),,:Rem mDves spritB up and down

See MOVE X, MOVE ON, ANIM. SPRITE

Combining horizontal and vertical
movements
Any list of horizontal and vertical movements may be combined with ease. All you
need to do is to split the movement into separate horizontal and vertical

84

components, and then assign these to individual MOVE X and MOVE Y instructions.
Here are a couple of simple examples which illustrate this process.

new
load "fontset.mbk":rem From accessory disc
sprite 1,0.0.22
move x 1,"(1,4,79j(1.-4,79)L"
move y 1."(1,4,49)(1,-4,49)L"
move on

Now for a slightly larger example:

new
load "fontset.mbk"
5 rem Exploding Title
10 cis: click off
20 for 1=1 to 10
30 read C : sprite 1,1*16+80,100,C:rem Install sprites in centre of screen
35 rem Set alternate characters moving in different vertical directions
40 if I mod 2=0 then VS="(1,-2,0)" else VS="(1.2.0)"
45 rem Set left half moving left and right half moving right
50 if k6 then HS="(1.-2,0)" else H$="(1,2,0)H
55 rem Set up Vertical and Horizontal components
60 move x I.HS: move y I,V$
70 next I
80 wait key: boom: move on: Rem Wait for a keypress and move sprites
85 rem Image Numbers of Sprites which make up title
90 data 4O,41,36,4O,18,23,22,4O,3D,24

MOVE ON/OFF (Start/stop sprite movements)

MOVE ON/OFF [n)

Before any sprite movements you have defined by the MOVE X and MOVE Y
commands will be performed, they need to be initiated with this instruction. The
optional expression n, refers to a number from 1-15 which indicates a single sprite
you wish to move. If it is omitted ther all the movement sequences you have
currently aSSigned will be activated simultaneously.

Similarly, MOVE OFF kills the movements of the sprites in exactly the same
way. Do not confuse MOVE ON with the MOVON function.

See MOVE X, MOVE Y, OFF

MOVE FREEZE (Temporarily suspend sprite movements)

MOVE FREEZE [n]

This command can be used to temporarily halt some or all of the sprites which are
currently moving. These can be restarted again using MOVE ON. The value n is
optional and specifies the number of a single sprite you wish to freeze.

Example:

load "fonlset.mbk":rem From accessory disc
sprite 1 ,0,0.1
move x 1."(1,4.64)(1,-4,64)L"

85

mova on
move freeze
move on

=MOVON (Return sprite state)

x=MOVON(n)

This function returns a non zero number if sprite number n is currently in motion
and 0 (FALSE) if it is stationary.

Example:

load "fontset.mbk":rem From accessory disc
move x 1,"(1,4,Or:menu on
print movon(1)
move off
print movon(1)

Do not confuse with the MOVE ON command.

=X SPRITE (Get X coordinate of sprite)

x1=X SPRITE(n)

Returns the current X coordinate of spr:te n. This command is frequently used as
a way of detecting whether a sprite has collided with the edge of the ST's screen.

Example:

load "fontset.mbk"
sprite 1,0,40,1
move x 1,"10(1.1,OI132O"
move on
for i=1 to 100:locate O,O:print x spritell):next i

See also Y SPRITE, X MOUSE, Y MOUSE

=Y SPRITE (Get Y coordinate of sprite)

y1 =YSPRITE(n)

This is very similar to the X SPRITE instruction, except for the fact that it returns
its Y coordinate rather than the X coordinate. As usual, n refers to the number of
the sprite and can range from 1-15. This command is often utilised to check
whether a missile has passed off the top or bottom of the screen.

Example:

load "fontset.mbk"
sprite 2,0,0,35
move y 2,"0(1,1.D)L200"
move on
for i=1 to 1DD:locate D,D:print y .sprite(2):next i

A further example of this function can be found in the section on collision,

86

See also X SPRITE, X MOUSE, Y MOUSE

LIMIT SPRITE (Limits sprite to a specific area)

LIMIT SPRITE xl ,yl TO x2,y2

Defines the area of the screen on which the sprites will be displayed. Whenever
they move outside this area, they will dissapear from the screen. Note that unlike
LIMIT MOUSE, this command does NOT limit the actual movements of the sprites,
only their visibility.

x1 and y1 denote the top left corner of the zone, and x2,y2 indicate the point
diagonally opposite. All the X coordinates used in this command are automatically
rounded down to their nearest multiple of 16.

Example:

load "Iontset.mbk"
sprite 1 ,0,0.1
move x 1."0(1.1.0)L320"
move y 1."0(1.1.0)L.200"
move on
limit sprite 100.50 TO 200.150

In order to return the sprites to normal, simply enter a LIMIT SPRITE command
with no parameters like so:

limit sprite

See LIMIT MOUSE, CLIP

Animation
STOS Basic supplies you with a simple command called ANIM which can be
readily used to animate your sprites. This can be used to produce a wide range
of effects from a walking gorilla to an impressive explosion.

ANIM (Animate a sprite)

ANIM n,a$

This enables you to page through a chain of sprite images one after another. This
sequence will be executed at the same time as your sprite is being displayed, even
if it is also being moved using MOVE.

n refers to the number of the sprite to be animated, and a$ to a list of animation
commands to be carried out.

The string a$ contains the set of instructions to the ANIM command. Each
operation is split into two separate components enclosed between brackets.

IMAGE

This is the image number of the sprite to be displayed during each step of the
animation.

87

DELAY

Specifies the amount of time the image will be held on the screen before the next
image is displayed. This delay is input in units of a 50th of a second (70th for
monochrome

Here example of how this

"\1,101(2,10)"

practice.

This display image number 1 for 1 second, and then
to image number 2.

Just as with the MOVE instruction, there's also an L directive which enables
you to repeat these animations.

So we could repeat the above animation continually with:

anim 1,"(1,10)(2,10)l"

of the ANIM instruction.
purpose. Before

them out of the game
separate steps. We

load "\Zoltar\zoltar.bas"

some of the sequences
around with these sprites.

way we can achieve
Zoltar from the Game

We then place a fresh disc in the drive, and save the sprite bank in a separate file
like so:

save "zsprites.mbk",1

Finally.

These
list the

Note
Zoltar

If you
explosion.

erase Zoltar from memory

"lspriles.mbk"

10 mode 0 : cis: flash off

the sprites with:

example programs.
following small routine:

20 pa lette $O.$222.$333,$444,~55,$777.$7.$47 .$770.$350,$300,$500,
$700,$515,$770,$777
30 for i=1 to 3O:sprite 1,100,10D,i:print i:wait key:next i

command in line 20

$"

program you will see thai
animate this by replacing

120 sprite 3,100,100,14:anim 3,"U4,2)
(15,2)(16,2)(17,2)(18,2)'" : anim on

111<:r:fl\IA",11 by searching through

18 form a rather

We can observe this sequence more clearly if we add an L instruction to repeat
the animation like so:

88

120 sprite 3,100,100,14:anim 3,"(14,2) (15,2)(16,2)(17,2)(18,2)L" : anim on

Note this large line number! This is to allow us to expand our program later.
Another interesting arrangement can be created using the images 2 and 3

which combine to produce one of Zoltar's wiggling missiles.

Animate this with:

30 sprite 1.160,198,2:anim 1."(2,1)(3,1)L":anim on

and move it up the screen using:

40 move y 1:'196(1,-4,50)1" : move on

We'll now have a brief look at the sprites used to make up the spaceships. These
are composed of groups of three sprites starting from image 19.

Let's add one of these ships to our current program. Type the lines:

50 sprite 2,0,40,9: anim 2,"(19.4)(2D,4)(21,4)L"
60 move x 2,"(1,4,80)(1,-4,80)1" : move on 2:anim on

When you run this program, the missile fires and the ship moves from left to right.
We'll be modifying this program later in the section on collision, so it's a good idea
to save it on a separate disc with a line like:

save "ship.bas"

ANIM ON/OFF (Start an animation)

ANIM ON/OFF[n]

Used to activate a series of animations defined using the ANIM command. n
denotes the number of an individual sprite to be animated. If it is omitted then all
the animation sequences you have created will be initiated at the same time.

ANIM OFF [n] stops one or all of the animations begun by ANIM ON.

ANIM FREEZE (Freeze an animation)

ANIM FREEZE [n]

This command temporarily pauses the current animations on the screen. If the
optional n is included, only a single animation sequence will be suspended.
Otherwise all the animations will be frozen. These can be restarted again with the
ANIM ON instruction.

Controlling the sprite using the
mouse
The easiest way to give the user control of a sprite is to assign the sprite to the
mouse pointer with the CHANGE MOUSE command. We can then determine both
the position and status of this mouse from within our program using the X MOUSE,
Y MOUSE, and MOUSE KEY instructions.

89

CHANGE MOUSE (Change the shape of the mouse pointer)

CHANGE MOUSE m

This completely redesign the
installed into the system

list of the various

(Default)
Pointing Hand

3 Clock

mouse at any time.
are given the numbers

If you specify a value of m greater than 3, this is assumed to refer to an image
stored in the sprite bank. The number of this image is determined using the
expression l=m-3. So image number one would be installed by a value of four, and
image two would be signified by a five.

examples. Load the file fontset on

"fclltsllt.mbk"

and the mouse with:

change mouse 8

Similarly we can set the mouse to a capital S with the line:

change mDuse 43

is to change the
These can be found
replace these with

for the mouse which
/STOS/MOUSE.SPR on

this:

• of sprites, forEACH onlywanttoaffec!
bost to modify the SPRDEMO.MBK (from

accessory as this already contains sprites in the correct
format.

• Load these sprites into bank 1 using either LOAD or the QUIT and GRAB
options from the SPRITE definer.

• Place a copy of the STOS Basic system disc in the drive. DO NOT USE THE
ORIGINAL SYSTEMS DISC FOR THIS PURPOSE!

Now

"\stos\mouse.spr",startI11

mouse pointers will

See also HIDE, SHOW, X MOUSE, Y MOUSE, MOUSEKEY, LIMIT MOUSE

=X MOUSE (Get the X coordinate of the mouse pointer)

x1=X MOUSE

90

This function returns the current X coordinate of the mouse pOinter.

Example:

new
10 home
20 print x mouse
30 wait vbl:rem Stop print interfering with mouse pointer
40 if inkey$= then 20:rem Wait for keypress from keyboard

=YIMOUSE (Gets the Y coordinate of the mouse pointer)

y1=Y MOUSE

This function simply returns the current Y coordinate of the mouse pointer.

Example:

new
10 home
20 print y mouse
30 wait vbl:rem Stop print interfering with mouse pointer
40 if inkey$="" then 20:rem Wait for keypress from keyboard

=MOUSE KEY (Get status of mouse keys)

k=MOUSE KEY

Enables you to quickly test whether one or both of the mouse buttons have been
pressed. It returns one of the following four numbers depending on the current
state of the keys.

Value Meaning

o

2
3

If no button has been pressed
left button pressed
right button pressed
both buttons pressed

Example:

10 if mouse key = 1 then print "left bullon"
20 if mouse key = 2 then print "Right bullon"
30 if mouse key = 3 then print "Left and Right bullon"
40 goto 10

See X MOUSE, Y MOUSE

LIMIT MOUSE (Limit mouse to a section of the screen)
i

I LIMIT MOUSE xl ,yl TO x2,y2

Restricts the mouse to the rectangular area defined by the coordinates (x1 ,yl) and
l(x2,y2). x1,y1 denotes the top left hand corner of this box and x2,y2to the pOint
diagonally opposite. Note that LIMIT MOUSE always repositions the mouse

91

pointer at the centre of the box. Also, unlike LIMIT SPRITE, the mouse is
completely trapped inside this zone and cannot be moved anywhere else in the
screen.

Example:

limit mouse 50.50 to 250.150

In order to restore the mouse to normal, simply use the instruction with no
parameters like this:

limit mouse

HIDE (Remove mouse pointer from the .screen)

This command permits you to remove the mouse pointer from the screen at any
time: A count of the number of occasions you have called this function is
automatically kept by the system. This number needs to be matched by an equal
number of SHOW instructions before the mouse will be returned for your use.

There's another version of this instruction which can be accessed with HIDE
ON. This ignores the count completelY and ALWAYS hides the mouse. Note that
HIDE only makes the mouse pointer invisible. It does NOT deactivate it fully. You
can therefore readily use the X MOUSE and Y MOUSE functions to read position
of the mouse, even if it is totally hidden from view!

Examples:

hide
hide
show
show
show
show
hide on

See SHOW

SHOW (Activate the mouse painter)

This redisplays the mouse hidden with the HIDE instruction. As with HIDE there's
also a version of SHOW which shows the mouse, no matter how many HIDE
commands have been executed. This is called using:

show on

See HIDE for more details.

Reading the joysticlk

STOS Basic includes six functions which make it very easy for you to detect the
movements of a joystick placed in the right joystick socket.

=JOY (Read joystick)

d=JOY

92

This function returns a binary number which represents the current status of the
joystick. Each of these bits are set to 1 if the test proves positive and otherwise
zero. Here is a list of the various bits and their meanings:

Bit number Significance

o

2
3
4

Joystick moved up
Joystick moved down
Joystick moved left
Joystick moved right
Fire button pressed

Don't worry if you are not familiar with this binary notation as you can also access
each of the directions individually with the functions JLEFT, JRIGHT, JUP,
JDOWN, and FIRE.

Here is a simple example to get you started.

load "fontsel.mbk":rem From accessory disc
10 rem Move a sprite with a joystick
20 rem Set direction arrays
30 dim DX(15),DY(15)
40 S=2 : X1=160 : Y1=100
50 for 1=1 to 15 : read X,Y : DX(I)=X*S : DY(I)=Y·S : next I
60 sprite 1,X1,Y1.4O: J=joy and 15: X1=X1+DX(J): Y1=Y1+DY(J): if joy>15 then
X1=160 : Y1=100 : goto 60 else 60
70 data 0,-1,0,1,0,0,-1,0,-1,-1.-1,1
80 data 0,0,1,0,1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0

Note that we've used the variable s to set the sensitivity of the joystick. Reasonable
values range from 1 (low) to 5(incredibly high).

=JLEFT (Test joystick movement left)

x=JLEFT

JLEFT returns a value of TRUE (-1) if the joystick has been moved left, otherwise
FALSE (0). It can be used in an IF .. .THEN statement like this:

if jleft then print "LEFT"

=JRIGHT (Test joystick movement right)

x=JRIGHT

JRIGHT tests the joystick and returns TRUE (-1) if has been moved right,
otherwise it returns a value of FALSE (0).

See JLEFT, JUP, JDOWN

=JUP (Test joy/sick movement up)

x=JUP

JUP returns TRUE (-1) if joystick has been moved up, otherwise FALSE (0).

93

See JRIGHT, JLEFT, JDOWN

=JDOWN (Test joystick movement down)

x=JDOWN

The

See

returns the value
returns FALSE (0).

JUP

=FIRE (Test fire button state)

x=FIRE

joystick has been

This function only returns a value of TRUE (-1) if the fire button on the joystick has
been

See JLEFT, JRIGHT, JOY

collisic)ns sprite

COLLIDE (Detect collisions between two sprites)

t=COLLlDE(n,w,h)

This provides you with an easy way of testing to see whether two or more sprites
have collided on the screen. n refers to the sprite you wish to check and can range
from 0-15, with 0 denoting the mouse pointer. wand h determine the sensitivity
of tile think of wand h defining and height of a rectangular
box Hot Spot of the another sprite enters
box, be detected.

t is binary format which holds sprites which have
with sprile n. Each bit in this represents the status
equivalent sprite. So bit 1 indicates sprite 1, bit 5 denotes sprite 5 and so on. If a
collision occurs between sprite n and another sprite, the bit at the appropriate point
is set to 1. You can test for these bits using the BTST function. If you're not
technically minded, you can save yourself some trouble by adding a statement
like:

print collide(1.1D,1D)

important point in your
printed whenever a

collille(2,1D,10)=6 then boom

can now make a note
place. This can be tested

Here's an example of this function in action. If you've saved the program we used
in the section on ANIM, you can load this with the line:

load "ship.bas"

Otherwise you will first need to create the file zsprites.mbk in the following way:

94

• Load "\Zoltar\Zoltar.bas":rem From the games disc
• Place a fresh disc into the drive and type: save "zsprites.mbk"
• Erase the program in memory. with: new
• Load the example sprites back with load "zsprites.mbk"

You can now enter the program below:

5 rem Initialize screen
10 mode 0 : cis: flash off
15 rem Set colours
20 pa lette $0,$222.$333,$444,$555,$777,$7,$47,$770,$350,$300,$500,
$700,$515,$770,$717
25 rem Move and Animate Ship
30 sprite 2,0,40,19 : anim 2,"(19,4112O,41(21,4IL" : anim on 2
40 move x 2,"(1.6,l1li111,-6.8011" : move on 2
45 rem Wait for a key press
50 wait key
55 rem Fire Missile
60 sprite 1,160,198.2: anim 1,"(2,1113,1IL" : anim on
70 move y 1,"196(1,-4.&01" : movo on
75 rem Test for collision
l1li if collide(1,10,101=6 then boom: goto 110
85 rem Test Missile to see if it flies off the top of the screen
9D if Y sprite(lI<O then 50
95 rem Jump Back to test
100 goto l1li
105 rem Explosion
110 sprite 3,x sprite(2l,4O,14
120 anim 3,"[14.21115.21116,21117.21118,2r : anim on : move off : sprite 1.-
100,100.2: sprite 2,-100,100,9: sprite 3,-100,100,14

Let's now incorporate a user-controlled ship in this scenario with the CHANGE
MOUSE command.

Add the following lines to the program above:

21 limit mouse 0,150 to 319,198:rem Limit mouse to lower part of screen
41 change mouse 10 : rem Change mouse to picture of a ship
50 repeat: until mouse key: MX=:x mouse: MY=y mouse: rem Wait for mouse
button
60 sprite l.MX,MY+4,2: anim 1."(2,1)(3,1Il": snim on
130 move off: sprite 1,-100,100.2: sprite 2,-100,100,9
140 sprite 3,-100,100,14: goto 30

This gives you a ship which can be moved around with the mouse, which can fire
a missile when you press on the mouse key. You could easily detect collisions with
this ship in a similar way, just by adding a line such as

81 if collide(O,10,101<>1 then bOllm

Obviously you would also need to add some sort of attack capability to the
defending ships as well!

You should now be in a position to understand the some of the programming
techniques used in Zoltar. Although it may look rather more complicated, the

95

theory behind it is identical. Feel free to load Zoltar from the games disc and play
around with it as much as you like.

Detecting collisions with
rectangular blocks

SET ZONE (Set a zone for testing)

SET ZONE z,x1 ,y1 TO x2,y2

Defines one of 128 rectangular zones which can then be tested using the ZONE
command for the presence of either the mouse or a sprite. z specifies a number
from 1-128 which represents the zone to be created. x1,y1 and x2,y2 denote the
coordinates of the top left and bottom right hand corners of the rectangle you wish
to check.

See ZONE, RESET ZONE

=ZONE (Tests a sprite to see if it is in a zone)

t=ZONE(n)

This searches for the presence of sprite n in the list of the zones defined using SET
ZONE. n can range from 0 to 15, with the mouse being indicated by sprite number
zero as usual.

After the function has been called, t will hold either the number of the zone
where the sprite was detected or a value of zero. Note that ZONE only returns the
FIRST zone which the sprite was found. If two or more zones overlap, it is not
possible to determine any other zones the sprite is also inside.

Example:

5 rem Muzak
6 rem Reset zones and clear screen
10 reset zone: cis back: cIs physic : mo~e 0
15 rem Set note type
20 volume 16 : envel 9,5000
25 rem Set fill style to hollow
30 set paint 0,1,0
40 for 1:::0 to 7 : lor J=II to 7
45 rem Draw box
50 box 1*39,J*24 to (1+ 11*39,(J+ 1)*24 55 rem Define zones
60 set zone 1*8+J+ 1,I*39,J*24 to (1+ 1I*39,(J+ 11*24
70 next J : next I
75 rem Test zone and play note
80 if zone(O) then play zone(n)+2O,3O
90 goto 80

See SET ZONE, RESET ZONE

RESET ZONE (Erase a zone)

RESET ZONE [z)

This command erases any of the zones created by SET ZONE. If the optional z

96

is included, then only this zone will be reset. Otherwise all the zones will be
deleted.

Detecting collisions with an
irregular shape

=DETECT (Find colour of pixel underneath sprite)

c=DETECT(n)

This is a very useful command which allows you to ascertain the colour of the
background pixel underneath sprite n. As usual, n can range from 0 to 15, with a
value of 0 representing the mouse pointer.

After the function has executed, c is returned containing the colour of the point
on the background screen underneath the Hot Spot of the sprite. By bordering an
object with a specific colour, and then testing for this with DETECT, you can easily
spot any collisions between an irregular area and the sprite.

Here is a simple example of this process.

load "zsprites.mbk":rem See COLLIDE for full details of how to create this

10 rem Detect demo
20 key off : mode 0 : set line $F.FFF,6.0.0
30 ink 2 : arc 160.198,150,0,1800 : ink 0
40 sprite 1,md(314)+2.0.2 : wait vbl
50 move y 1,"(1.4,1)L": move on
60 C=detact(1)
65 if C=2 then wait vbl : XS=x sprite(1): YS=y sprite(1): box XS,YS-6 to
XS+2. YS-2 : boom: goto 40
10 if Y sprite(1)<2DD then 60 else 40

Another possible application would be to detect the collision of a laser beam with
a sprite. This beam could be easily created using the normal DRAW or POLYLINE
commands.

Exceeding the 15 !.prite limit
If you've ever seen games like Galaxians or Space Invaders you will probably
consider the 15 sprite limit to be pretty restrictive. Fortunately, although you are
confined to 15 moving sprites, it's easy enough to produce the illusion of dozens
of actual sprites on the screen.

You can do this with judicious use of a pair of STOS Basic commands called
PUT SPRITE and GET SPRITE. These allow you to create a number of copies of
a sprite at once, and then just grab the ones you wish to actually move around, as
and when you need them. You can add animation to these fake sprites using the
SCREEN COpy and SCREEN SWAP instructions.

PUT SPRITE (Put a copy of a sprite on the screen)

PUT SPRITE n

Simply places a copy of sprite number n at its current position on the screen. Note

97

that the sprite you have copied is completely unaffected by this instruction.
Here is an example of how this works in practice: Load the sprites in the file

ZSPRITES.MBK (See COLLIDE for details)

load "zsprites.mbk"

Now type in the following small program:

1 0 palette $0.$222.$333.$444.$555.$177 .fI.$47 .fl70.$350.$300.$500.
flOO.$515.$170.$177
20 1=8 : mode 0 : cis: flash off: hide
30 wait vbl : sprite 1.0.1,22.1: rem Drew ship on the screen
40 move x 1."0(1.8.0)e32O" : move on : wait vbl
50 X=x sprite(1) : if X mod 16-...a then put sprite1: wait vbl
60 if X=32O then 1=1+16 else !iO
70 if 1<192 then 30 else 90
110 goto 50
90 limit mouse: sprite 1.-100.0,22 : wait key

This fills the screen with dozens of copies of a single spaceship. You can now turn
these ships back into movable sprites a few at a time. using GET SPRITE.

See WAIT VBl, MOVE

GET SPRITE (Load a section of the screen into the sprite bank)

GET SPRITE x,y,i [,mask]

This instruction enables you to grab any images off the screen and turn them into
sprites. The parameters x and y refer to the start of the rectangular area to be
captured.

idenotes the number of the image to be loaded, and MUST referto an image which
already exists in the sprite bank. The size of the new image is taken from the
original dimensions you specified using the sprite editor. Also note that the Hot
Spot of the sprite is automatically set to the point x,y. WARNING! This command
will only work if the rectangle you are attempting to grab is completely inside the
borders of the screen.

The optional mask specifies which colour in the new sprite is to be treated as
transparent. If this mask is omitted, it will be set to zero. By changing the mask to
a different colour you can generate a number of interesting effects. This is because
the mask colour is effectively ORed with the background. A mask of zero will
therefore simply display the area underneath the sprite in the normal way.
Otherwise the OR operation will invariably change the colour of any of the
background which shows through the sprite.

Incidentally, the mask has a rather different action in monochrome mode. All
monochrome sprites are given a special border on the screen. The thickness of
this outline is usually set to a width of one pixel, but you can increase it by including
a higher value as part of the mask.

Examples:

Place the accessory disc in the drive and type:

load "sprdemo.mbk"

98

Now enter the following small program :

10 Rem Big Mouse
20 repeatuntil mouse key
30 hide
40 get sprite X mouse,Y mouse,2: changelmouse 8:show

This borrows one of the images in the SPRDEM<D file and loads it with the section
of the screen underneath the mouse. It then as~igns this sprite to the mouse.

We'll now look at a slightly more interesting lexample involving some sprites
which have been placed on the screen with PUr SPRITE.

Load the file ZSPRITES.MBK from your disc. (See COLLIDE for details of how
this data can be created)

load "zsprites.mbk"

Then enter the program:

10 rem Set colours
2D palette sum $333.$444.$555.$777.$7 :$47 .$770.$350.$3DD.$!iOO,
$700,$515,S770.$777
25 rem Define Array P
30 dim P(201
35 rem Reset Screen
40 hide: off : cis physic: cis back: ink 0
50 rem Copy 20 sprites on the screen
60 sprite 1,8,10,22: rem Draw ship on the ~creen

70 move x 1."8(1,4,Ole32O" : move on I
80 X~ sprite(11 : if X mod 16=4 then put sprite1: wait vbl
90 if X=32D then move off : goto 100 else 80
100 sprite 1,400,10,23 : wait I[ey I

105 rem Choose a sprite which hasn't mOf ed
110 S=rnd(181+ 1 : if P(SI=1 then 110 else ~(SI=1
120 rem Get sprite
130 get sprite S·16+4,10,21
135 rem Move sprite down
140 sprite 1,S·16+4,10,21 : move y 1,"(1.4,501" : move on
145 rem Erase sprites I

150 bar S*16-4,2 to S·16+12,18
155 rem Test if sprite still falling
160 if movon(11=D then 110 else 160

This program places 20 copies of a spaceship o~ the screen and then animates
each one in turn in an apparent violation of the 16 sprite limit. With a little more work
you could easily expand the above technique to \nove up to 15 sprites at a time.

Sprite priority

PRIORITY ON/OFF (Change between priority modes)
I

The priority of a sprite determines how sprites are displayed when they overlap on
the screen. Sprites with the higher priority alwaysl appear to have been placed in
front of sprites with a lower one. Normally, the p~iority of the sprites is assumed

99

to be in REVERSE order to the sprite numbers.
You should always remember this fact when assigning numbers to your

sprites. The mouse is effectively sprite number zero and therefore has the highest
priority of all. This explains why the mouse always passes in front of any other
sprites on the screen.

There is however, also a different priority system which can be activated with
the PRIORITY ON command. This gives the highest priority to the sprites with the
largest Y coordinate. So a sprite at 100 would pass above a sprite at 99 and behind
a sprite at 101. In practice this option allows you to create an useful illusion of
perspective. Look at the example below.

load "zsprites.mbk":rem See COLLIDE for details
1 rem Test of priority
5 mode 0 : cis: flash off : hide
10 priority off:rem Set normal Mode
20 sprite 1,160,100,22 : sprite 2.100,94,2
30 sprite 3,100,108,19
40 move x 2,"0(1.2,160IL" : move x 3,"32O(1.-2,160IL" : move on
50 wait key
60 priority on:rem Set V mode

In the normal mode both of the moving sprites pass below the ship in the centre.
When you select the Y priority with PRIORITY ON, the sprites are now ranked in
order of their increasing Y coordinates. So sprite 3 moves above sprite 1 and sprite
2 passes behind it.

Note that if you want to create the most effective results, it's usually best to
position the Hot Spot of the sprite at its base. This is because the Y coordinates
used by this command relate to the position of the Hot Spot on the screen. Also
notice that the PRIORITY OFF instruction can be utilised to reset the priority back
to normal.

The background
Whenever a sprite is moved across the screen, it obscures some sections of the
graphics and reveals others. In order to use this technique, it requires a copy of
the area underneath the sprite to be held somewhere in the ST's memory. Rather
than allocating a separate chunk of memory for each sprite, STOS Basic keeps
a copy of the entire screen to serve as a background for the sprites.

One important consequence of this approach is that the background screen
and the normal screen must always contain exactly the same image. If they don't,
the sprite will tend to corrupt the area of the screen underneath when it it is moved.
Therefore all STOS Basics graphics commands usually operate on both screens
simultaneously. You can change this state of affairs at any time using a special
AUTO BACK command.

AUTOBACK ON/OFF (Set screen for graphics operation)

The AUTOBACK command toggles between two different drawing modes. As a
default, all graphics are sent to both the sprite background and the physical
screen. The autoback feature can be turned off using the AUTO BACK OFF
instruction, which leads to a substantial speed improvement in most of the
graphics commands. Similarly the original mode can be reactivated with a call to
AUTO BACK ON.

Example:

cis

100

autoback on:rem Set automatic background
circle 100.100.100:rem Draws a filled circle on both screens

Now move the mouse around on the circle. As you can see, the circle remains
unchanged.

Let's try drawing the circle with AUTOBACK tur'led off.

cis
autoback off
circle 100.100.100:rem Draws a filled circle only on PHYSICAL screen.

If you now move the mouse on the circle, the circle will be steadily erased. This
is because the sections underneath the mouse are being copied from a background
screen in which the circle does not exist. By Ichoosing the contents of the
background and physical screen carefully, you can produce a number of interesting
effects.

Furthermore, if your program doesn't use either the mouse pointer or the
sprites, you can speed up all the graphics operations a great deal by just switching
off the autoback feature using AUTO BACK OF~.

See BACK, PHYSIC, LOGIC

Miscellaneous sprite commands
I

U PDA TE (Change automatic sprite updates)

Usually any sprites you draw on the screen will be automatically redisplayed
whenever they are animated or moved. This feature can be temporarily halted
using the UPDATE OFF command. When the upd~tes are not active, the SPRITE,
MOVE and ANIM commands apparently have no effect. In reality, they are still
being operated on by the sprite instructions, but the results are simply not being
displayed on the screen. You can force any sphtes which have moved to be
redrawn at their current positions using the UPDATE command like this:

update

Here is a summary of the three different forms of, the UPDATE instruction:

UPDATE OFF

UPDATE

UPDATE ON

Turns off the autom,atic updating of the sprites. Any
movements or animations appear to be suspended.

Redraws any sprites which have changed at their
new positions. This command can occassionally
be substituted for the normal WAIT VBL after a
PUT SPRITE instruction, as it is much faster.

Returns the sprite updating to normal.

For an example, place the accessory disc in the <tIrive and type:

new
load "sprdemo.mbk":rem Load some spritek
sprite 1.100.100.1:rem Install sprite at 100.1r

101

move x 1"{1.1.100){1.-1.100)l":rem Move the sprite to and fro
move on

update oH:rem Stop updates

Remember that whilst the sprite in not being updated, it is still moving. We can
demonstrate this by updating the position with :

update

To see how the sprite is progressing across the screen. type in this instruction
several more times.

We can now return the sprite movements to normal with:

update

REDRAW (Redraw the sprites)

Redraws all the sprites at their current positions on the screen. Unlike UPDATE
it takes no account of whether the sprite has been changed since the last update.

OFF (Turn off sprites)

This turns off all the sprite movements and animations. and removes the sprites
from the screen. It is often used to reset the editor after you have broken out of a
program with Control+C. As a default it is assigned to function key f10 .

FREEZE (Pause sprite and music operations)

Temporarily halts the actions of all the sprite commands and stops any music
which is currently being played. To restart these activities again simply type in the
line:

unfreeze

UNFREEZE (Restart sprite and music operations)

Resumes any sprite movements and music halted by FREEZE.

102
," .' .

5 I Music and ~ound
The Atari 8T has a special sound generator which allows you to create a wide
range of different effects. 8T08 Basic gives you complete control over this
feature, and includes a variety of instructions to ~roduce anything from a simple
beep to a complex sequence of music. I

Voices and tones
The 8T's sound chip can play up to three notes simultaneously each performed
on a separate Voice. By combining these voic~s, you can generate attractive
harmonics. The most fundamental of the 8T08 Basic sound commands is PLAY.

I

PLAY (Playa note)

PLAY [voice,jpitch,duration

Plays a pure note through the loudspeaker of yo ili r TV or monitor. Pitch sets the
tone of this sound, ranging from O(low) to 96(hi~h). Rather than just being an
arbitrary number, each of these pitches is asspciated with one of the notes
(A,B,C,D,E,F,G) . 8ee the following table for more details. If you specify a value of
zero for the pitch, the note will not be produced, knd PLAY will simply wait for a
time specified by the duration.

Octave
I

0 1 2 3 4 5 6 7

Note Pitc~

C 1 13 25 37
1
49 61 73 85

C# 2 14 26 38 50 62 74 86
D 3 15 27 39

1
51

63 75 87
D# 4 16 28 40 52 64 76 88
E 5 17 29 41

1
53 65 77 89

F 6 18 30 42 54 66 78 90
F# 7 19 31 43 55 67 79 91
G 8 20 32 44 156 68 80 92 ,

G# 9 21 33 45 57 69 81 93
A 10 22 34 46 '58 70 82 94
A# 11 23 35 47 ~9 71 83 95
B 12 24 36 48 60 72 84 96

Duration holds the length of time the note is to be blayed in 50ths of a second. A
duration of zero indicates that the sound will not be generated.

The optional voice designates which of the thre~ voices the note is to be played
on. Voice can range from 1-3. If it is not included then the note will be sounded on
all three voices at once. 1

As you can see the notes go up in a cycle of 12. This cycle is known as an octave.
Here are a couple of simple examples of this l unction in action.

new I
10 rem Random Music on a single voice

103

20 click off:rem Turn off keyboard click
30 T =rnd(96) : P=rnd(321 : play T,P : goto 30

new
10 rem Random Music on all three voices
20 click off:rem Turn off Keyboard click
30 volume 1,14: volume 2,14 : volume 3,14
40 V=rnd(2)+ 1 : T =rnd(96) : P=rnd(4O) : play V.T,P : goto 40

new
10 rem Example of Play
20 rem Define note arrays
30 dim A(7),A#{7),B(7),C(7),C#(7)
40 dim D(7),D#{7),E(7),F(7).F#(7)
50 dim G(7),G#{7)
60 for 1=0 to 7
70 P=I*12 : C(I)=P+ 1 : C#{I)=P+2 : D(I)=P+3 : D#{I)=P+4
SO E(I)=P+S: F(I)=P+6: F#(1)=P+7: G(I)=P+S: G#{I)=P+9
90 A(I)=P+10: A#{I)=P+11 : B(I)=P+12
100 next I
110 rem Define time variables
120 WN=32 : HN=16 : QN=8 : EN=4 : SN=2 : TN=1
130 rem Turn off key click
140 click off
150 rem Set volume
160 volume 15
170 rem Read note
180 read N,T : if N<O then 230
190 rem Play note
200 play N,T
210 golo 180
220 rem Turn off sound
230 volume 0
240 click off
250 end
260 rem Music
270 data D(3),WN,E(3),WN,C(3I,WN,C(2),WN,G(2I,WN,-1-1

See CLICK OFF and VOLUME.

VOLUME (Change the sound volume)

VOLUME [v,]intensity

Allows you to change the volume of any subsequently generated sounds.

Intensity refers to the loudness of this sound. It can normally range from O(silent)
to 1S(very loud). There's also a special setting of 16 for the envelope generator.
See the ENVEL command for more details.

v indicates which of the three voices is to be regulated by the command. This
number can take any value from 1 to 3. As with PLAY, if no voice is specified then
all three voices are affected.

Examples:

click off

104

volume 15
play 40.10
volume 5
play 40.10

new
10 for i=D to 15
20 volume i
30 print "VOLUME";i
40 play 60.10
50 next i

See ENVEL, PLAY

CLICK OFF/ON (Turn off keyboard click)

One minor problem you may encounter when using PLAY, is that the keyboard
beeps tend to interfere with the note. Try typing the following line:

I
volume 10: play 4O.1000:rem lienerate 8 to~e 20 seconds long

If you now hit one of the keys while the note is pl~Ying, the note will immediately
stop. Since this could be very inconvenient, STOS Basic allows you to turn off the
keyboard click at any time with the instruction: I

click off I

As you might expect, the click can be reactivated 'by CLICK ON. Incidentally, it is
important to note that this problem does not occur when using music created by
the MUSIC accessory. I

The MUSIC command
Although the PLAY command is very useful for thJ generation of single tones, it's
not really suitable for the creation of real music. The most serious problem with
PLAY is that it delays the entire program for the duration of the note. What is really
required is an instruction which would playa piece of music while a program was
doing something else. This would allow you to add a soundtrack to a game, without
spoiling any of the action. Fortunately, STOS Basic incorporates a powerful series
of commands which enable you to do preCisely t~at.

MUSIC (Playa piece of music using interrupts)

Plays some music which has been previously co~posed using the MUSIC.ACB
accessory. This music is always placed by the system into bank number three.

There are four different forms of the MUSIC statement.
I

MUSIC N (Play tune number n) The standard MUSIQ instruction plays a tune
in bank 3, sp~cified by the number n. Note
that unlike FfLAY, the music is played
automatically by the system, without slowing
down your prbgram in the slightest. n can
range from 1 td the number of tunes which are
currently installed (up to a maximum of 32).
Here's a small example to demonstrate this
process. I

First load a melody from the accessory disc with t~e line:

105

load "music.mbk"

You can play this with the MUSIC instruction like so:

music 1

This music will now play in the background independently of the rest of STOS
Basic. You can run, list, or even load a program without interfering with it in any
way. The MUSIC command can therefore be used to add an attractive soundtrack
to any of your programs. Examples of this technique can be found in the games
Zoltar and Bullet Train.

MUSIC OFF (Turn off music)

MUSIC FREEZE (Temporarily
stop a piece of music)

MUSIC ON (Restart a
piece of music)

Example:

The MUSIC OFF command stops a piece of
music which is currently being played. You
can restart this music from the beginning with
MUSIC ON.

Unlike MUSIC OFF, this instruction only halts
the music temporarily. If it is re-entered using
MUSIC ON, the music is continued from the
point it was frozen. The most common use of
MUSIC FREEZE is to stop a piece of music
before you generate another sound effect
such as an explosion. (See BANG, SHOOT,
BELL, NOISE, ENVELOPE)

MUSIC ON resumes the current music halted
by either the MUSIC OFF or the MUSIC
FREEZE commands.

load "music.mbk":rem If it has already been loaded, omit this step
music 1:rem Play music
music off
music on:rem Restart music ffllm the begining
music freeze
music on

See TEMPO, TRANSPOSE,ENVEL

TEMPO (Change the speed of a sample of music)

TEMPO s

Allows you to modify the speed of any tune played with the MUSIC command. s
is the new speed, and can range from 1 (very slow) to 100 (very fast).

Place the accessory disc in the current drive and type:

new
load "music.mbk":rem Load music
music 1 :rem Play music
tempo 111O:rem Set music playing very fast
tempo 10:ram Start music playing very slow

See MUSIC, TRANSPOSE.

106

TRANSPOSE (Change the pitch of a piece of muSic)

TRANSPOSE df

Alters the pitch of a piece of music by adding the, value of dfto each note before
it is played. df can range from -90 to +90. Negative numbers lower the note and
positive numbers increase it. A df increment of 1, by the way, corresponds to a
single semi-tone.

Load the music demo with the lines:

load "music.mbk"

Now play the music and use TRANSPOSE:

music 1
transpose 1:rem Increase the pitch by one semi-tone
transpose 10:rem Increase pitch by 10 semi-tones
transpose -20:rem Lower the pitch by 20 semi-tones

See MUSIC, TEMPO

PVOICE (Return position in music)

p=PVOICE(v)

PVOICE is a special command which allows you to find your position in some
music you are playing. v refers to the voice you w,ish to test, and p to the position .
It is important to understand that p is set to a number representing the address of
the note. and not to the note itself .. II a number of z~ro is returned by PVOICE, then
no mUSK: IS being played on vOice v. The PVOICE Instruction enables you to
determine when the music reaches a particular ~oint and stop it if required.

Example:

Put the accessory disc into the drive and type:

new
10 load "music.mbk"
20 music 2
30 tempo 5
40 home: print pvoice(1),pvoice(2),pvoice(3)
50 if inkey$="" then 40 .
60 music off

This displays a number denoting the note which is peing currently played. See how
we used the TEMPO command to slow things down.

You can now amend the program to stop the music at a specific stage like this: ,

30 tempo 40
45 if pvoice(1)=118 then 60

If you run this program, the music is halted when PVOICE(1) reaches position 118.

VOICE (Turn on/off a voice)

VOICE OFF [v)

107

Lets you turn off one or more voices of a tune played by MUSIC. The optional voice
vcan take the numbers from 1·3 and specifies that only a single component of the
music will be suspended. If it is not included then all three voices will be
deactivated.

VOICE ON [v]

Restarts some music halted by the VOICE ON instruction. As before, v indicates
which of the three voices is to be set in motion. If it is not specified then all three
voices are set in motion.

Examples:

Place the accessory disc into the drive and type:

new
load "music.mbk"
music 1
voice off 1
voice off 2
voice off 3
voice on 2
voice on 1
voice on 3

The Music de'finer

STOS Basic includes a powerful accessory in the file MUSIC.ACB. This can be
used to compose a piece of music to be subsequently played with the MUSIC
commands. As this is a rather large program, users of the 520ST should always
remove all other accessories from memory before loading.

accnew:accload "music.8cb"

You can now enter the accessory by pressing HELP+F1.

SIOS BANK HUSIC BLOr.K lOOp

[> Current ftusic <J ~

c> Block <~ I~=::::::::::
I> Under cursor <l ,:
I PA 8 TM

-Uoice2- -Uoice3-
I' , - I: I:

,
This screen consists of three windows which correspond to the three voices.

Each of these windows can hold a separate component of the music. You can
move between the windows using either the mouse, or the left and right cursor
keys.

108

Above these windows is a set of menus and a graphical display of the current
tune in a standard musical notation. Don't worry lif you can't read music, as this
window is only there as a convenient aid for those who can. The following diagram
should make the format of the main screen a littlb clearer.

Musical notes can be entered in any of the three windows just by moving the
cursor to the appropriate point and typing them directly from the keyboard. These
notes are split into three distinct parts. The first section consists of the name of the
note, which is input using standard musical notation, and can be one of the
following 12 possibilities:

C.C#.D.D#.E,F,F#,G,G#,A,A#,B

We've listed these notes in order of increasing pitch.
The second part of a note is the octave, which can range from 0 (very low) to

7 (very high). The higher the octave, the higher the note.
Finally, each tone has a duration specified in units of a single note. This is set

by the instructions in the table below.

Duration of note Meaning

WN Whole Note
HN Half Note
ON Ouarter Note
EN Eighth Note
SN Sixteenth Note
TN Thirtysecondth Note

You can also add an additional half note to each of these durations except the SN,
by using the "." character. So ON. is a duration of a quarter of a note plus a half
- three quarters of a note. Each of these sections are combined into a single string
such as:

F#3TN

You enter these notes by moving the cursor over the voice window using either
the up and down arrow keys or the mouse, and then typing a command followed
by a Return. You can also use the function keys to move the cursor as follows.

f2 Displays the next page of your music
f1 Displays the previous page
f3 Jumps to the start of the music
f4 Jumps to the end

When you require to enter rests into the stave you only have to enter PA followed
by the note's length.

The music instructions
In addition to simple notes, the Music definer also supports a range of other
instructions which can be executed at any point in your music. Here is a list of the
various options.

VOLUME V (Set volume)

Sets the volume olthe current voice to v, where vcan vary from 0 (silent) to 15 (very
loud). If this instruction is not used, then a volume of 15 is set as a default.

109

ENVEL e (Set envelope)

Allows you to choose one of a number of different waveforms for your music.
These waveforms determine the shape of the note by changing the volume over
a period of time. e refers to the envelope number. As a default eight of these
envelopes are already defined, although these can be readily changed using the
built-in Envelope editor. See the section on this utility for more details. Each piece
of music must contain one of these instructions at the beginning, or the tune will
not be played.

Tremolo t (Set tremolo)

Identical to an envelope except that, instead of the volume being changed, it is the
pitch of the note that is progressively altered. This adds a pleasant waver to the
note. t is the number of the tremolo to be used. As with the envelopes, eight of
these tremolos are automatically defined. Existing tremolos can be modified and
new ones created with the Tremolo definer utility.

STOP TREMOLO

Deactivates the current tremolo if one is being used.

NOISE n (Start noise)

Generates a hiss of pitch n at the same time as the notes are being played by the
current voice. The frequency of this sound ranges between 0 and 31. See the
STOS Basic NOISE command for more details.

STOP NOISE (Stop the noise effect)

Turns off a noise created with NOISE.

NOISE ONLY (Plug each note as noise rather than a pure tone)

Plays each note as a noise rather than a pure tone. This can be used to create a
number of interesting percussion effects.

MUSIC (Reset to music)

If the voice has been defined as NOISE ONLY, this returns the voice back to
normal. Do not confuse with the MUSIC command from STOS Basic!

REPEAT n,p (Repeat a section of music)

Repeats the notes starting from the instruction number p to the end of the current
voice. n refers to the number of times the music will be repeated. If a value of 0
is used for n, the music will be played indefinitely. Warning: This instruction must
always be placed before the music to be repeated. If it is placed inside the loop,
then the music will never end, as the repeat is reinitialised every time it is executed.

NTREMOLO t (Set noise tremolo)

Uses the Noise generator rather than a pure tone to create tremolo number t. The
result is very odd indeed, but might occasionally be useful when used as part of
a soundtrack.

110

NTREMOLO OFF (Noise tremolo off)

Turns the NTREMOLO function off.

Envelopes and tremolos
Envelopes control the evolution of the volume of a note over time. These
envelopes can be created using a powerful utility built into the music definer. You
can use this facility to mimic the sound of a range of different musical instruments.

Tremolos are really very similar to envelopes except that the pitch of the
sound rather than the volume changes during the note. Tremolos can used to
produce a number of interesting vibratto effects. Like envelopes they can also be
edited using a special utility.

The Envelope editor
The Envelope and Tremolo editors are effectively one and the same. They can be
accessed at any time using the FIX ENVELOPE or FIX TREMOLO options from
the tools menu.

Since the two routines are otherwise identical, we'll concentrate on the
Envelope editor. When you enter this, the following screen is displayed.

EDITING ENUHOPE NUnBER 1

L-~~
8 ~8 ---1 ---2-----3 ----'=-4----.11 5 seconds

PHASE \ SPEED (1-1881 \ STEP (-[6 to 161 \ NUHBER (8-2551
1 \ 188 _ \ 16 \ 1
2 \ 18 \ -1 \ 3
3 \ 5 \ 0 \ 3
4 \ 18 \ -1 \ 15
5 \ END \8 \8
6 \ 8 \ 8 \ 8
1\8 \8 \0'
8 \.8 \ 8 \ 8
9\8 \8 \8

Fl: . - - F2: next - - (ESC) iuit - - (SPACE> to hear
fype' ~o o~·!mp~hl~e s~e;/m~"~) t~O e:~l ~:I~~m:~~r

A 'NUHBER' 01 zero stands lor infinite phase.

The top of the screen contains a graphical representation of the current
envelope. Below this there are three windows. You can move between these using
the cursor keys.

The nature of an envelope is determined by up to eight different phases. These
phases are specified using the information you have entered into the windows.

The Speed window sets the speed of the phase. Possible speeds range from
1 (slow) to 100 (fast). This number indicates the delay between each step of the
waveform. A speed of 100 signifies that the steps will be performed every 50th of
a second, while a speed of 1 denotes an interval of 100/50 or 2 seconds between
successive stages. In addition, you can also input the commands END or LOOP.
END simply terminates the envelope at the current point. LOOP is rather more
interesting and repeats the entire envelope, which now overlays a continuous
rhythmn on any music you subsequently play.

The Step window inputs the change in the volume to be produced in each

111

stage. Positive numbers increase the volume, while negative numbers decrease
it.

Finally there is the Number setting which determines the number of times each
phase will be executed. This can range from 0 to 255.

At the start of the session you are presented with waveform number one. You
can move to the next envelope by pressing f2 and to the previous one with f1.

Now for a simple example. In this we will be defining a new waveform for
envelope 9. Press f2 until the number 9 is displayed at the top of the screen. Move
the cursor to the first row of the Speed window and type in the following lines,
terminated by Return.

40
3D
15

As you can see, an END instruction is placed automatically at the end of your
envelope. You should now add the steps of these phases by moving the cursor
to the top of the step window and entering:

2
o
-1

Similarly you can input the number of times each stage should be performed into
the Number window.

10
10
15

The envelope will now be displayed on the screen. This consists of a sharp
increase in volume (attack), followed by a brief period when the volume stays the
same (sustain), and a slow drop (decay). Press the spacebar to hear how this
envelope actually sounds. Now move the cursor to the END statement and
change it to a LOOP. This will repeat the waveform continuously.

The pull-down menus
STOS

ACKNOWLEDGMENTS

QUIT

QUIT and GRAB

BANK

LOAD MUSIC BANK

SAVE MUSIC BANK

Exit to STOS Basic Editor.

Exit to STOS Basic Editor, and load the current
music into bank 3.

Load a memory bank containing a sample of music
from the disc. Note that this command does not
affect the music currently being edited. This allows
you to merge two sections of music together.

Save the music on to the disc. The name of the file
must end with the extension .MBK.

1'12

GRAB

ERASE MUSIC BANK

MUSIC

NEW MUSIC

RENAME MUSIC

PUT MUSIC

GET MUSIC

ERASE MUSIC

PLAY MUSIC

PUT and PLAY

PRINT MUSIC

BLOCK

START BLOCK

END BLOCK

Grab some music from the current 8T08 Basic
program.

Deletes any MUSIC currently stored by the definer.

Deletes the music currently being edited, and asks
for the name of the new tune you wish to create.
Does not affect any of the music held in bank 3.

Changes the name of the current piece of music.

Copies the currently edited tune into one of the 32
different slots in bank 3. Bank 3 is used by 8TOS
Basicto hold your music and is limitedtoa maximum
of 32k. This should easily be sufficient for all
practical purposes. Since the definer only saves
the data which has been previously installed in the
bank, you must always remember to use the PUT
instruction prior to saving your music to the disc.
OTHEFIWISE YOUR MUSIC WILL BE LOST
FOREVER!

This option loads a sequence of music stored in
bank 3 into the music editor. If you change this
music, don't forget to place it into the memory bank
with PUT, otherwise all your amendments will be
lost. Incidentally, GET MUSIC automatically
appends any envelopes or tremolos used by your
composition into the existing set. You are, however,
restricted to a maximum of 25 envelopes and
tremolos at a time.

Allows you to delete one of the sections of music
from the bank.

Enables you to playa piece of music you have
stored in the memory bank. If you wish to play the
music you are currently editing, you need to load it
into the bank first using PUT MUSIC.

Permits you to put the current music into bank 3
and then play it using just one operation.

Outputs a listing of the music you are editing to a
printer. All three voices are printed out.

Sets the start of a block at the current cursor
position. All text below this line is subsequently
displayed in inverse.

Sets the end of the block. The section of the music
making up this block is inverted. This block can
now be manipulated with COpy BLOCK and
TRANSPOSE BLOCK.

773

CANCEL BLOCK

COPY BLOCK

ERASE BLOCK

TRANSPOSE BLOCK

TOOLS

FIX ENVELOPE

FIX TREMOLO

ERASE ENVfTREM

Aborts current block and redisplays the section of
music in normal type.

Places a copy of the currently defined block at the
cursor position. This feature can be used to copy
music from one voice to another.

Erases the part of the music selected using the
START and END BLOCK commands.

Allows you to add or subtract a specific number of
semitones from the music in the current block. The
editor expects you to input a number from -90 to
+90. As with TRANSPOSE from Basic, negative
values lower the pitch and positive values increase
it.

Enter ENVELOPE Editor.

Edit Tremolos.

Delete all envelopes and tremolos from memory.

Creating a piece of music

In order to create some music, first enter the Music Definer using Help+f1. Now
move the cursor to the first voice and type:

ENVEL 1

As you press Return, you will be prompted for an eight character name for your
music. In this example you can call the music anything you like. The ENVEL
instruction sets the waveform of the notes which will be played. Up to 16 of these
waveforms are available at any time, and these can be defined using a built-in
envelope editor. Each piece of music needs to have its own envelope setting. If
you omit this instruction the music will not be produced.

Move the cursor to the line below the ENVEL command and type:

D3WN
E3WN
C3WN
C2WN
G2WN

When you enter each line the cursor moves down one place, and the appropriate
note appears on the screen. The Insert key inserts a space at the current cursor
position and moves the rest of the music down a line. Similarly the Delete key can
be used to erase the note under the cursor.

You can now register your music into the memory bank using the PUT option
from the Music menu. This puts the tune into one of 32 different slots. These slots
have numbers ranging from 1-32 and referto the numbers used by any subsequent
MUSIC command in your program. Move the mouse to slot number 1 and press
the left button to install your music into the bank.

In order to listen to this music, you must select the PLAY option. As before you

114

need to choose the name of the music with the mouse.
Press the S key to play the music. If you're a science fiction fan, you may

recognise it as part of the theme from Close Encounters of the Third Kind.
The speed of this piece can be changed while the music is playing by hitting

the + and - keys, and you can alter the pitch with I and *. While the music plays,
each note is displayed on the screen.

After you have finished listening to the music, you can exit back to the main
menu by pressing the Escape key.

SIOS BAn! "USIC PlOCK TOOLS

urrent "USIC .., ,
Playing: CUO"O

-

~
([sO to luit I (.) & (-) s.t t."~O I (I) & (w) sot transposition --

S) r.starts "US ie I (SP CEl: st.p by st.p "ode -
-One. in st.p by st.p "od., any othor k.y r.turns to nor"a I. ---

r"'[,"'! -
1: UO

T.opo: 14 I Transposition: 8 I nor"at
2

3: RE
(F HN) (9 1 Hn) (c 3 "n) ~n 4 4: A 3

5: C 9n
G: F Hn
7: G En , 8: A 50n

UJ
40" 8: E lEN

9: AI SEn 9: G un 9: 0 lEn
18: A 5 an 18: ~ 40" 18' 9 1En
l1:G SEn WE HN 11' 0 lEn
12:9 SEN Wf HN WE lEn

One minor problem with this tune was that it stopped playing after the last note.
STOS Basic includes a useful REPEAT instruction which can be used in this
situation. Move the cursor to the line containing the first note, and press Insert.
Now enter the instruction:

REPEAT 0,3

The REPEAT command takes two parameters. The first number specifies how
many times the music should be repeated. A value of zero indicates that the music
should be played continuously. The second number holds the starting position of
the notes to be repeated. This figure includes any instructions such as REPEAT
or ENVEL.

Now go to the Music menu and choose the Put and Play option, which
combines the actions of the separate Put and Play menus into a single operation.
When you play the tune, it will be repeated when it reaches the end.

Try adding each of the following instructions into the music in turn. Place them
just after the REPEAT command, and test the effect with Put and Play.

NOISE ONLY
\

Produces a literally off-beat effect.

ENVEL 5

Plays the five tones using envelope number 5.

TREMOLO 2

Adds a nice waver to the tone.
You can then save the music using the Save Music option from the Bank menu,
or incorporate it directly into your current program with the QUIT and GRAB option.
If you select the latter option you will be returned to the Basic Editor, and your

115

music will be automatically loaded into bank 3. You can now play this sequence
by typing:

music 1

When you've heard enough, turn the music off with:

music off

We'll now provide you with another example which demonstrates how several
different voices can be combined to produce a pleasent harmonic effect. Enter the
Music definer with Help+f1 as before.

Move the cursor to the voice 1 window and enter the following. You don't
actually have to type every entry as the last instruction is entered automatically if
you press Return.

VOLUME 15
ENVEL 1
C4QN
C4QN
C4QN
D4QN
E4HN
D 4HN
C4QN
E4QN
D4QN
D4QN
C4WN

Now move the cursor to the second window with the Right arrow and enter the next
voice.

VOLUME 12
ENVEL2
C3QN
G3QN
E3QN
G3QN
C3QN
G3QN
F3QN
G3QN
D3QN
G3QN
F3QN
G3QN
C3WN

You can now play this music using the Put and Play option.
Finally, we'll have a brief look at the Music example on the accessory disc.

Place this disc into your current drive, and load the file MUSIC.MBK using the Load
Music option.

If you call up the PLAY command, you will find that a piece of music has been
loaded into slot 1 with the name Cuomo. Access this by selecting the music with
the mouse. As usual you can change the tempo and the pitch of the music with the
+- and *' keys respectively.

116

We'll now show you how you can modify the music. Jump back to the main
screen with Escape and load the music into the editor with the Get Music option.
Now move the cursor to the start of the first voice and hit the Insert key.

A space will be inserted into the music, and you should type in the following
command:

TREMOLO 2

Select the Put and PLAY option and place the new music into the second slot. This
music will be played using tremolo number 2. The difference should be obvious!

Predefined sound effects
In addition to the music commands detailed above, STOS Basic also provides you
with a number of instructions which allow you to generate special sound effects
for your games.

BOOM (Generate a noise sounding like an explosion)

As the keyboard click interferes with this sound, it's a good idea to turn it off with
CLICK OFF. You should also halt any music which is currently being played,
because this will be distorted by the boom. Use the command MUSIC FREEZE
for this purpose.

Example:

new
10 click off
2D boom
30 print "You're DEAD!"
40 click on

SHOOT (Create a noise like a gun firing)

SHOOT simply produces a sound of a shot being fired.

Example:

new
10 click off
2D shoot
JO print "You're DEAD!"
40 click off

BELL (Simple bell sound)

Example:

bell

Defining your own effects

So far we've only looked at the pre-defined effects, but you can also use the NOI$E
command and the ENVELOPE instruction to generate a vast range of other useful
sounds.

117

NOISE

NOISE v,p

Example:

new

sound like a rushing
is a number from 1

is to be played on.
simultaneously. Note

continually while

10 click off

ENVEL

20 for i=1 to 32
30 noise I

really comes into its

ENVEL type,speed

of this noise is
(very low). vspecifies

included the noise is
generated with

running - just like

in conjuction with

ENVEL activates one of the ST's 16 different envelopes. These periodically alter
the volume of a sound created with either NOISE or PLAY. type specifies the type
of envelope to be used and can take any value from 1 to 15. speed ranges from
1 (very fast) to 66535 (very slow) and determines the length of the sound. Before
you can lealure, you must first sel 10 16 with VOLUME.

Example:

Set volume
Create a noise of pitcl!

envel10,1oo:rem Shape the sound using envelope 10
envel10,1oo0:rem Helicopter sound

As you can see, it is possible to utilise ENVEL to produce a number of interesting
effects.

Here is a small program to help you to explore the various possibilities of this
instruction.

to experiment witll
ENVEL instructions

locate 0,0 : input "Input
. print "Press a key to

70 envel J.T
80 for 1=1 to 31
90 noise I
100 locate 10,10 : print "Envelope";J;" ";
110 locate 10,11: print "pitch ";1;" ";
120 wait key

118

from 1-10000";T
sounds "

130 next I
140 next J
150 input "Continue Y or N":J~ 160 if A$::"Y" Dr A$::"y" then 35

These envelopes can also be used to shape the pure tones generated by a PLAY
command.

Example:

click off
volume 16
enveI8.100
play 37.30

You can explore these effects using the program above by typing the following
lines:

35 locate 0.0: input "Input length of sound from 1-100";1
36 input "Starting envelope 1-15";S
37 if S<1 or S>15 then print "Bad Envelope number": goto 36
60 for J=S to 15
80 for 1=1 to 96 step 3
90 play I.T

Note that the variable t refers to the time the note will be played in 50ths of a
second. When using the above routine, it's always a good idea to keep a pen and
paper handy to write down any sounds you want to keep. You will be amazed at
some of the noises which can be achieved with these commands.

As a general rule, NOISE is best suited for the creation of mechanical sounds
such as engines and machine guns. PLAY can generate more unusual effects
like laser beams and alarms.

See NOISE, PLAY and VOLUME.

119

120

I 6 I Graphics functions
Although STOS Basic isn't Gem based, it still supports a wide range of powerful
graphical functions similar to those provided by the Gem VDI. These include
facilities for drawing rectangles, circlElS and polygons. In addition, there's also a
special set of commands which mal<e it particularly easy to create programs
capable of running equally well in all three resolutions. To that end STOS Basic
effortlessly allows you to change between low and medium resolution at any time
within your program.

Clearing the screen
CLS (Clear the whole screen)

This instruction clears the entire screen at high speed. It is usually used to initialise
the screen at the start of a program. CLS has a number of useful extensions which
enable you to erase all or part of a screen stored anywhere in the ST's memory.
A full explanation of these options can be found in Chapter 7.

Colours
The ST allows you to display up to 16 colours on the screen at anyone time. These
colours are chosen from a possible palette of 512. As you might expect, the
number of colours which are available depends on the graphics mode the ST is
currently running in. Each of the 16 colours is referred to by a number called an
index. Here is a list of the various alternatives.

Resolution Mode Maximum no Colour
of colours Indices

Low 0 16 from 512 o to 15
Medium 1 4 from 512 o to 3
High 2 2 from 2 o to 1

Before you can draw something on the ST's screen you first need to specify which
colour you wish to use. This colour can be set using the INK instruction.

INK (Set colour of graphic drawing operations)

INK index
Index is the number of the colour to be used for all subsequent drawing operations.

Note that index number 2 is slightly unusual, in that it flashes on and off several
times a second. You can produce a !;imilar effect using the FLASH instruction
covered in section 6.7.

COLOUR (Assign a colour to an index)

There is also a special COLOUR instruction which allows you to choose which of
the 512 colours is to be used for any particular index.

121

COLOUR index,$RGB
Index is the number of the colour to be changed.

$RGB is usually a hexadecimal expression which determines the exact shade of
the new colour.

This expression consists of three digits ranging from 0 to 7, each of which sets the
strength of one of the primary colours, RED (R), GREEN (G) or BLUE (B) in the
final result. Here are a few examples of this notation:

Components Hexadecimal form Final Colour

R=O G=O B=O $000 BLACK
R=7 G=O B=O $700 BRIGHT RED
R=7 G=7 B=O $770 YELLOW
R=O G=7 B=O $070 GREEN
R=4 G=O B=7 $407 VIOLET
R=7 G=7 B=7 $777 WHITE
R=3 G=3 B=3 $333 GREY

So if, you want to make colour number 5 yellow, you would type:

COLOUR 5,$770

When this statement is executed, any graphics displayed on the screen which
already use colour number 5, will be immediately changed to the new colour
(yellow).

=COLOUR (Read the colour assignment)

There's also a function with the same name, which takes an index number, and
finds the colour value which has been assigned to it. This is used in the following
manner:

c=COLOUR(index)
c is any variable and index is the colour number whose shade you want to
determine.

You can use this function to produce a list of the current colour settings of your ST,
like this:

new
10 meol=16:rem set meal to 4 in medium res
20 for 1=0 to meol-1
JO print HEX$(eolourUI,31
40 next I

PALETrE (Set the current screen colours)

The PALETTE instruction is really just a rather more powerful version of COLOUR.
Instead of loading the colour values one at a time, the PALETTE command allows
you to install a whole new palette of c()lours in a single line.

PALETTE list of colours
This list can contain anything up to the maximum number of colours available in
the current graphics mode.

122

To see PALETTE in action, type one of the lines below:

Invert the screen in high res:

PALETTE $777,$000

Use this line for medium res:

PALmE $000,$700,$746.$534

Use this line for low res:

PALmE $000,$700,$070,$007 ,S170.$017 ,$707 ,$777,
$300.$030,$003,$330,$033, $303,$333,$345

Drawing lines

PLOT (Plot a single point)

The simplest of the drawing functions provided by STOS Basic, is the plot
command, which sets any pOint on thE! screen to a specific colour. The format of
the PLOT instruction is just:
PLOT x,y [,index]
Plots a point at the coordinates x,y.

If value of index isn't included, then PLOT will use the colour which was chosen
using INK.

In order to test this function on a colour monitor type:

new
10 mode 0
20 plot rnd(319),rndI199),rnd(15)
30 goto 20

POINT (Get the colour of a point)

As with COLOUR, there is also a function to perform the reverse of this.

c=POINT(x1 ,y1)
POINT returns the colour of the point at the coordinates x1,y1 in the variable c.

DRAW (Draw a line)

DRAW is another very basic instruction which allows you to draw a straight line
on the ST's screen. There are two forms of the DRAW statement:

DRAW x1 ,y1 TO x2,y2 Draws a line between the coordinates x1,y1 and x2,y2

DRAW TO x3,y3 Draws a line from the last line drawn, to x3,y3

Example:

new
5 colour 3.$707:ink 3

10 draw O,SO to ZOO,SO

123

20 draw to 100.100
30 draw to 0,50

It is important to note that, in order to make DRAW operate at the maximum
possible speed, this instruction has been restricted to a single line type. Because
of this, any attempt to alter the line style using SET LINE will have no effect
whatsoever.

See also POLYLINE, INK.

BOX (Draw a hollow rectangle on the screen)

BOX x1,y1 TO x2,y2
x1,y1 are the coordinates of the top left hand corner of the box.
x2,y2 are the coordinates of the point diagonally opposite.

Example:

box 10,10 to 200,100

See also SET LINE, INK, and BAR

RBOX (Draw a rounded hollow box)

This is almost identical to BOX, except that the edges of the rectangle are rounded.
As before the format is:

RBOX x1,y1 TO x2,y2
x1,y1 is the top right corner of box and x2,y2 is the bottom left corner.

RBOX is very useful for producing Macintosh-like borders around a piece of text.

Example:

new
5 colour 3,$7:ink 3

10 rbox 156,100 to 245.130
20 locate 20.10: print "testing ... "

See SET LINE, INK and RBAR.

POL YLiNE (Multiple line drawing)

POLYLINE is a very powerful instruction indeed as it enables you to generate
complex hollow polygons using just a single line of code.

POLYLINE x1,y1 TO x2,y2 TO x3,y3 ...
Where x1,y1 = coordinates of point 1, x2,y2 = point 2 and x3,y3 = point 3

POLYLINE first draws a line from point 1 to point 2, and then another line from point
2 to point 3. It then repeats this procedure, and draws a line between each
successive pair of points until it reaches the end of the list. This means that
POLYLINE is roughly equivalent to the lines.

DRAW x1,y1 TD x2,y2
DRAW TO x3.y3

124

Now type in the following line, which draws a triangle on the ST's screen:

polvline 0,20 to 200,20 to 100,100 to 0,20

Notice how I've used four pairs of coordinates to draw three lines. As a general
rule, in order to create a closed polygon, the last group of coordinates should
always be the same as the first.

Also see SET LINE, INK and POL VGON.

ARC (Draw a circular arc)

ARC draws a segment of a circle on the screen. It is specified by:

ARC x1 ,y1 ,r,startangle,endangle
xl,yl are the coordinates of the centre of the circle, r is its radius.

Startangle is the angle the arc should be started from, and endangle is the angle
at which it should finish.

Angles are measured in units of a tenth of a degree, and can therefore range from
o to 3600. Think of a clockface - an angle of 0 would now correspond to the
direction pointed at by the short hand at three o'clock. Also, since STOS measures
all the angles in an anti-clockwise direction, an angle of 900 would be represented
by a time of twelve o'clock, and the maximum angle (3599) would be at
approximately 3:01.

The following program should make this a little clearer:

new
10 draw 100,120 to 190.120
20 for a=O to 3600 step 10
30 arc 100,12O,9II,o,a
40 next a

Notice that this function is also able to produce a unfilled circle:

ARC x1,y1,r.0,3600

Try:

arc 100,100.100,0.3600

See SET LINE, INK, PIE and CIRCLE

EARC (Draw an elliptical arc)

The EARC instruction is very similar to ARC, but produces an elliptical arc rather
than a circular one.

EARC x1 ,y1 ,r1 ,r2,startangle,endangle
x 1,y1 are coordinates of the centre of the arc, startangle and endangle the angles
of the start and the end of the arc r1 and r2 specify the size of the two radii of the
ellipse.

If you're not mathematically minded, it may help to consider r2 to be the vertical
part of the radius, and rl the horizontal. When rl and r2 are the same, the ellipse

125

will be almost identical to a circle. If r2 is much greater than r1 then the ellipse will
be tall and thin, and if the reverse is true, it will be short and wide.

You can use this function to draw a complete ellipse using:

eare xl.v1.r1.r2,0.3600

Example:

eare 1110,100.30.50,0,3600

Example:

new
10 els:eolour 1.$47:ink 1
2D draw 120.11910 160.119
30 for R1=40 to 80 step 4D
4D for R2=4D to 80 step 4D
50 for A=o to 3600 step 2110
60 earc 12D.119.Rt.R2.o.A
70 next A
80 nexl R2
go next R1

Line Types

So far in our examples, we have restricted ourselves to using solid lines. But STOS
Basic also allows you to use a wide variety of other line styles. These can be used
to great effect, in anything from the creation of simple diagrams to complex
drawing routines.

SET LINE (Set the line styles)

SET LINE mask,thickness,startpoint,endpoint

Mask is the bitmap for the line, and thickness can range from 1 (very thin) to 40
(extremely wide). Startpoint and endpoint specify one of three styles to be used
at the beginning and the end of every line: O=SQUARED, 1 =ARROWED,
2=ROUNDED.

Mask is a 16-bit binary number which holds a so-called bitmap of the line. In this
system, any points in the line which are to be displayed in the ink colour are
represented by the binary digit 1, and any points which are to be set to the
background colour are represented by a zero.

So a normal line is denoted by the binary number %1111111111111111 and will
be displayed as: :-:--__
and a dotted line like: ____ will be produced by a mask of % 1111000011110000
By setting the line mask to numbers between 0 and 65535 it is possible to generate
an almost infinite variety of different line types.

The program below contains a number of examples of this function in action.

new
10 cis: colour 3.$170 : ink 3
2D set line %1111111111111111.10.0.1

126

25 rem A lerge arrow
30 arc 100,199,90,0,1800
35 rem A dotted diagonal line
40 set line %1111000011110000,1,0,0
50 polyline 200,60 to 300,100
55 rem A single large point
60 set line %1111111111111111,20,0,0
70 polyline 100,150 to 100,160

Notice how we've used POLYLINE instead of DRAW and POINT. This is because
neither of these instructions are capable of using the line styles installed by SET
LINE.

See INK, POLYLINE, BOX, RBOX, ARC and EARC.

Filled Shapes
STOS Basic includes a number of useful instructions to enable you to create a
wide range of filled shapes.

PAINT (Contour fill)

The PAINT command allows you to jill any existing hollow surfaces on the ST's
screen with colour. As you might expect, this colour can be set with the INK
instruction. In addition, you can also use SET PAINT to specify one of a number
of different fill patterns.

PAINT x1,y1
x1,y1 are the coordinates of a point inside the object to be filled.

Look at the following example:

new
10 colour 3.$604:ink 3 ink 3
20 box 0,10 to 100,100
30 box 50,60 to 150,150
40 ink 1
50 paint 70,70

PAINT will happily fill any surface you like providing it is completely enclosed by
lines. If however, there is a gap in one of these lines, the fill colour will leak out into
the rest of the screen. The effect of this can be seen by adding line 15 to the above
example:

15 set line %1111000011110000,1.0.0

Incidentally, PAINT corresponds directly to the FILL instruction found in other
versions of Basic. Take care not to confuse the two ·as the STOS Basic FILL
command has a very different effect!

BAR (Draw a filled rectangle)

This draws a filled bar using the current ink colour.

BAR x1 ,y1 TO x2,y2
x1,y1 hold the coordinates of the top IElft corner of the bar, x2,y2 the coordinates
of the corner diagonally opposite.

727

new
10 mode 0
20 Xl=rnd(200):V1=rnd(100):W.,rnd(100):
H=rnd(80)
30 ink rnd(1S)
40 bar X1,V1 to X1+W,V1+H
50 goto 20

See also RBAR, BOX, SET PAINT and INK

RBAR (Draw a filled rounded rectangle)

RBAR draws a filled and rounded rectangle on the screen.

RBAR x1 ,y1 TO x2,y2
x 1,y1 hold the starting corner of the bar.
x2,y2 hold the coordinates of the corner diagonally opposite.

If you've already typed the BAR example above, you can see how this works by
changing line 40 to:

40 rbar XU1 to X1+W,V1+H

Refer also to RBAR, BOX ,SET PAINT and INK

POLYGON (Draw a filled polygon)

The POLYGON instruction is identical to POLYLINE except for the fact that it
generates a filled shape rather than a hollow one. As usual the fill colour is set
using INK, and the fill pattern with SET PAINT.
POLYGON x1 ,y1 TO x2,y2 TO x3,y3 ...
Where x1,y1 are the coordinates of paint 1
x2,y2 those for point 2 and x3,y3 those for point 3

Example:

polygon 0.20 to 200,20 to 100,100 to 0,20

Now type in lines 10 to 50:

new
10 mode 0
20 ink rnd(1S)
3D X1=rnd(2DD):V1=rnd(100):H •• rnd(1DD):
W=rnd(90)
40 polygon XUl to Xl+W,Vl to X1+W/2.
V1+H to XU1
50 goto 20

This program fills the screen with pretty coloured triangles.

Also see POLYLINE, INK, SET PAINT.

CIRCLE (Draw a filled circle)

CIRCLE x1 ,y1 ,r
x1,y1 are the centre of the circle and r is its radius.

128

Example:

10 mode 0
20 ink rnd(15)
30 X=rnd(200):Y=rnd(100):R=rnd(90)
40 circle X.Y.R
50 goto 20

See ARC. INK and SET PAINT.

PIE (Produce a pie chart)

PIE is used to draw a segment of a circle in the current fill colour. In practice it can
be considered to be a solid version of ARC. Like ARC it needs two angles. which
denote the starting and the ending pOints of the pie chart respectively.

PIE x1 ,y1 ,r,startangle,endangle
x1,y1 are the coordinates of the centre of the chart and r is its radius.
Startangle and endangle range from 0 to 3600, where 0 is 3 o'clock, and angles
increase in an anticlockwise direction.

Example:

10 rem Get frae space on single density disc
20 rem Divide by 100 to convert into the range 0-3600 (approx)
30 rem Changa to 200 for double sided drives
40 cis: colour 1.$700 : ink 1 : colour 3.$70
50 O=dfree
60 0=0/100
70 pen 3 : locate 20.2 : print "Of. Disk space frae"
80 pen 1 : locate 20,3 : print "Of. Disk space used"
90 ink 3
100 pie 100.110.60.0.0
110 ink 1
120 pie 100.110.60.0.3600

This program displays the free space on the disc as a pie chart.

See also ARC, INK and SET PAINT.

ELLIPSE (Draw a filled ellipse)

The ELLIPSE instruction is used to draw a filled ellipse in much the same way that
CIRCLE produces a filled circle.

ELLIPSE x1 ,y1 ,r1 ,r2
x1.y1 are the coordinates of the centre of the ellipse.
r1 and r2 are the two radii.

You can now type in the following program:

new
10 mode 0
20 ink rnd(15)
30 X1=rnd(200):Y1=rnd(100):R1=rnd(90):R2=rnd(90)
40 ellipse XU1.R1.R2
50 goto 20

See EARC, EPIE, INK and SET PAINT.

129

EPIE (Draw an elliptical pie)

This function corresponds directly to the EARC instruction and draws a solid
elliptical pie chart.

EPIE x1 ,y1 ,r1 ,r2,startangle,endangle
x1,y1 are the coordinates of the centre of the segment and r1 and r2 its two radii.
Startangle and endangle range from 0 to 3600, and rotate in an anticlockwise
direction.
If the very idea of an elliptical pie chart seems ridiculous, we've included a couple
of simple examples which may make you change your mind.

epie 100,100,100,20,0.2225
epie 110,110,100,20,2225,3600

As you can see, the use of ellipses lends useful impression of depth to any pie
chart.

If you've already typed in the pie chart example, try adding the following lines:

100 epic 200,110.90,10,O,D
120 epic 2oo,110.90,10,D,3600

Fill types

STOS Basic allows you to use up to 36 different fill styles. These patterns can be
grouped intofourdistincttypes: Solid, dotted, lined, and user-defined. Furthermore,
if you don't find the pattern you like, you can easily create one of your own.

SET PAINT (Select fill pattern)

The SET PAINT instruction has the format:

SET PAINT type, pattern, border

Type can range from 0 to 4.

The effect of the various types can be found by inspecting the table below.

Fill Type

o
1
2
3
4

Effect

Surface is not filled at all
Surface is filled with the current INK colour (solid)
Surface is filled with one of 24 dotted patterns
Surface is filled with one of 12 lined patterns
Surface is filled with a user-defined line pattern
(See SET PATIERN)

The fill pattern is specified using a number, which can range between 1 and 24 or
1 and 12 depending on whether DOTIED or LINED type has been selected. If
neither of these types have been chosen, pattern should be set to 1.

Border has just two possible values: 0 and 1. A border of 1 is used to indicate that
the filled surface should be enclosed in a line of the current INK colour.

The following program prints out the fill types associated with each of the different
styles:

130

new
10 rem Print out a list of dotted patterns
15 mode 0
20 for TYPE::2 to 3
30 if TYPE::2 then LlM::24 else LlM=12
40 for STYLE=1 to LIM
50 rem Set fill pattern with style number style and a border of 1
60 set paint TYPE,STYLE,1
10 rbar 0,0 to 310,180
80 locate O,4:centre "Type "+strS(TVPE)+'~ Style" + strSISTYLE)
!Ill locate O,6:centre "Press any key to continue"
100 wait key
110 next STYLE
120 next TYPE

Warning: Do not confuse SET PAINT with SET PATIERN!

See CIRCLE, ELLIPSE, BAR, RBAR, PIE, EPIE and POLYGON.

SET PATTERN (Set a user-defined fill pattern)

SET PATIERN is used to install the user-defined fill pattern specified with the
instruction SET PAINT.

SET PATIERN address of pattern

Address of pattern refers to the address in the ST's memory where the new pattern
is to be found.

Patterns can be stored in either a memory bank, a string or an array of integers.
If you decide to store your pattern in a variable array, then you must always use
the VARPTR Instruction to calculate the address of this data, before you call SET
PATIERN.

So if the pattern was held in the string P$, you would use the instruction SET
PATIERN VARPTR(P$)

Each pattern is 16 points high by 16 points wide and takes up 16 two byte
words of memory for each colour plane.

But how do you create this pattern in the first place? One particularly easy
solution is to treat your fill pattern as just a 16 by 16 sprite. This allows you to draw
any of your patterns using the sprite definer, and then load this sprite data into your
program in the normal way.

LOAD "PATIERN.MBK"
(Pattern can be any set of 16x16 sprites)

Then all you need to do is work out the address of this data for use by SET
PATIERN. This can be done with the following program:

10 rem Work out size of data
20 if mode=O then PLANES=4
30 if mode=1 then PLANES::2
40 if mode::2 then PLANES=1
50 rem Get start of sprite information block
60 S=1 : rem Use image number 1. S can be any number up to the current
number of sprites
10 rem Get start of sprite parameter block for image 1
!Ill SP=leeklstartl1)+4*lmode+ 1)l+startI1)+4

131

1110 rem Get start of sprite parmeter block for image S
110 SPB=SP+(S-1)"B : POS=leek(SPB)+SP+32"PLANES
120 rem Get location of sprite 'image
130 POS=leek(SPB)+SP+32"PLANES
140 rem Choose user-defined fill pattern
150 set paint 4.1.1
160 rem Set user pattern to image in pos
170 set pattern POS
1110 rem Test new fill pattern
190 circle 100.100.100

If you want to know how all this actually works, please refer to the technical
reference section in Chapter 12.

Special effects

FLASH (Set flashing colour sequence)

This command gives you the ability to periodically change the colour assigned to
any colour index. It does this with an interrupt similar to that used by the sprite and
the music instructions. The format of the flash instruction is:

FLASH index,"(colour, delay)(colour, delay)(colour, delay) ... "

Index is the number of the colour which is to be animated.

Delay is set in units of a 50th of second.

Colour is stored in the standard RGB format (See COLOUR for more details)
The action of FLASH is to take each new colour from the list in turn, and then load
it into the index for a length of time specified by the delay. When the end of this
list is reached, the entire sequence of colours is repeated from the start.

Note that you are only allowed to use a maximum of 16 colour changes in any
one FLASH instruction. Here is a small example:

flash 1."(007.10)(000.10)"

This alternates colour number 1 between blue and black every 10/50 (1/5th) of a
second.

Now for something more complex:

flash 0."(111.2)(333.2)(555.2)(777.2)(555.4)
(333.4)"

If this gives you a headache, you will be glad to learn that you can turn the flashing
off using the instruction:

flash off

Also note that on startup, colour number 2 is a flashing colour. It's therefore a good
idea to turn this off before loading any pictures from the disc.

See SHIFT and INK

132

SHIFT (C%ur rotation)

SHIFT allows you to produce startling effects such as the famous Neochrome
waterfall. It does this by rotating the entire palette, of 512 colours into the 16 colour
indeces using interrupts.

SHIFT Delay [,Start]

De/ay is the delay between each rotation in 50ths of a second.
Start enables you to change only the colours with indeces greater than an initial
value.

If a starting value is not included in the instruction, then the rotation will begin from
colour number 1.

Here is a small example of SHIFT:

shift 10

See also FLASH, PALETrE and COLOUR.

The writing modes
Whenever you draw some graphics on the ST's screen, you normally assume that
any1hing underneath it will be overwritten. Sometimes this can be inconvenient,
and in this case it's useful to have the ability to choose a slightly different method
of drawing. STOS Basic provides you with a special instruction called GR
WRITING for just this purpose. The format of the statement is:

GR WRITING MODE
Where MODE can take the values from 1 to 4.

Replacement mode (MODE~ 1)

This is the default condition. Any existing graphics on the screen will be completely
replaced by anything you draw over them.

Transparent mode (MODE=2)

Transparent mode informs STOS that only the parts of the drawing which are
actually set to a specific colour are to be plotted. This means that any points in the
new drawing which have a colour of zero, are assumed to be transparent and are
therefore omitted.

XOR mode (MODE=3)

XOR combines your new graphics with those already on the screen, using a logical
operation known as eXclusive OR. The net result of this mode is to change the
colour of the areas of a drawing which overlap an existing picture. One interesting
side effect of XOR mode is that you can erase any object from the screen by simply
setting XOR mode and drawing your object again at exactly the same place. This
technique can be used to wipe complex polygons from the screen amazingly
quickly.

Example:

circle 100,100.100

133

gr writing 3
circle 1l1li,1l1li,100

Inverse transparent (MODE=4).

As you might expect, this mode has the opposite effect of transparent mode, and
only plots points with a colour of zero. All other points in the new picture are
completely ignored.

Now type in the following small example:

5 mode 0
10 for 1=1 to 4
20 cis
3D centre "Mode number" +strS(i)
4D gr writing I
SO set paint 1.1.1
60 bar 100,SO to 200,150
70 set pa i nt 3,6,1
80 circle 150,100,SO
90 locate O,4:centre "Press Return to continue"
1l1li wait key
110 next t

This demonstrates the action of all four writing modes. InCidentally, the reason for
the GR part of the instruction is to distinguish it from a similiar procedure called
WRITING, which is used for the text operations. You should therefore take care
not to confuse the two instructions.

See also AUTOBACK and WRITING

Polymarkers
What are Polymarkers?

Polymarkers are useful facilities normally provided by the Gem VDI, which enable
you to plot lists of objects such as crosses, diamonds and squares as easily as a
single point.

POLVMARK (Plot a list of polymarkers)

This instruction has the form:
POLYMARK x1 ,y1 ;x2,y2;x3,y3;
(x1,y1),(x2,y2),{x3,y3) are the coordinates of a list of markers to be printed on the
screen.

Note that all polymarkers are drawn in the current INK colour. The marker type is
assumed to be a "." by default, and can be changed using SET MARK.

Example:

polymark 1l1li,1l1li;300,120

This draws two markers at 100,100 and 300,120

See SET MARK and INK.

134

SET MARK (Set the marker used by polymark)

This allows you to choose the marker used by POL YMARK from a selection of six
different marker types. Each polymarker can be drawn in eight sizes, ranging in
11 point increments from 6 to 83 pixels wide.

SET MARK type, size

Here is a table which illustrates the various possibilities:

Type Number Marker Used.

Example:

2
3
4
5
6

Point "." Note this marker is only
available in one size.
Plus sign "+"
Star "."
Square
Diagonal cross
Diamond

set mark 4,83
polymark 100,100;200,100;300,100

This produces three squares on the screen.

Here is a much larger example which generates all the possible marker types in
each of the eight sizes.

10 rem Displays all six polymarkers
20 rem in each of their sizes
40 mode 0
50 rem Opens a window
60 windopen 5,0,0,40,12,2.3
70 centre "POLVMARKS" : locate 0,1 : centre "Press a key"
80 rem Turn off cursor and mlluse pointer
90 curs off : hide
100 for 1=0 to 7
110 restore 240
120 for J=1 to 6
130 rem Change marker sizes in 11 point increments
140 set mark J,I*11 +6
150 rem Get coordinates of mark
160 read X,V
170 rem Draw a marker at X,V
180 polymark X,V
190 next J
200 wait key
210 next I
220 wait key
230 curs on : show
240 data 50,80,160,80,270.80
250 data 50,145,160,145,270,145

The square poly markers are especially useful as they allow you to quickly create
large grids on the ST's screen with just a few lines of code.

135

See also POL YMARK and INK.

Multi-mode graphics

In order to write programs capable of working in all three of the ST's graphics
modes it's essential to be able to determine precisely which mode the ST is
running in at anyone time. Also, since some programs need to use a screen with
the maximum possible size, it would be useful to have the ability to change
between low and medium resolution when required. This feature is impossible
using GEM, but in STOS Basic it's easy. To change from a low resolution screen
to medium resolution you simply type:

mode 1

You are now in medium resolution. This instruction can also be placed in a STOS
Basic program.

Example:

10 mode 1

MODE (Change the graphics mode)

MODE n
n can be either 0 or 1 .

Note that since mode 2 requires a special high resolution screen, a value of 2
simply doesn't make sense. Additionally, MODE will generate an error message
if you try to use it on a monochrome monitor.

There is also a MODE function which can be used to read the current graphics
mode at any time.

Example:

10 if mode=2 then stop:rem This program will not work in high resolution
20 if mode=O then mode=1: rem Enter medium resolution
30 centre "Medium Resolution"
40 locate 0.4:centre "Press a key"
50 wait key
60 locate 0.4:centre "Press a key"
70 centre "Low resolution"
80 wait key

DIVX and DIVY

Supposing you want to write a single program capable of working in all three
resolutions. There are two problems you will encounter in this situation: The
different number of available colours and the incompatible screen sizes. It's easy
enough to solve the first difficulty just by limiting the number of colours to 2. But
how do you beat the second problem? STOS Basic provides you with an answer
in the variables DIVX and DIVY which hold two numbers denoting the current width
and height of the display area, expressed as a fraction of those used in mono
mode. Here is a small table showing the values these variables will take in all three
graphics mode.

136

MODE Resolution DIVX DIVY

0 Low 2 2
1 Medium 1 2
2 High 1 1

To draw graphics which look equally good in any resolution, all you now need to
do is to assume the screen is 640 by 400, and divide all your X coordinates by DIVX
and your Y coordinates by DIVY.

Type the following line:

rbox 0,0 to 639/divx,399/divy

This fills the screen with a rounded box whatever graphics mode your 5T is
running under.

Now for a rather larger example:

1 rem Simple graphics demo
10 cis
20 COLS=15: rem Assume low rIlS at the start
3D rem Now test for medium res
40 if mode=1 then COLS=3
50 rem And for high res
55 if mode=2 then COLS=1
60 X1=rnd(319):Y1=rnd(199):W=rnd(319):H=rnd(199):C=rnd(cols):TYPE=rnd(2)
70 ink C
80 if TYPE=1 then X2=X1+W:Y2=Y1+H:box X1/divx,Y1/divy to X2/divx, Y2/divy
90 if TYPE=2 then X2=X1+W:Y2=Y1+H:rbox X1/divx,Y1/divy to X2/divx,Y2/divy
100 goto 60

CLIP (Restrict all graphics to part of the screen)

The CLIP instruction is used to restrict the actions of all the graphics commands
to a rectangular region of the screen. if you attempt to draw anything outside this
area, your object will be clipped to fit in this rectangle.

CLIP x1 ,y1 TO x2,y2
x1,y1 are the top left hand corner of the rectangle and x2,y2 are the coordinates
of the corner diagonally opposite this point.

Example:

new
10 cis
2D clip 50,50 to 150,150
3D box 50,50 to 150,150
40 circle 100,1l1li,1l1li

As you can see, any parts of the circle outside the clipping rectangle haven't been
drawn.

This instruction is often used in conjunction with the 5T05 windows.

In order to turn the clipping off, simply type:

CLIP OFF

137

138

i 7 i The screen
STOS Basic includes a powerful set of instructions which allow you to effortlessly
manipulate the size and shape of the ST's screen. These commands can be
utilised to produce some quite stunning effects. In this chapter we will be
examining the various techniques which make this possible.

Multiple screens
STOS Basic holds two screens in memory at anyone time. The first is called the
Physical screen, and is the screen which is actually displayed on your televison
set. There is however, also a separate Background screen which is used by the
sprite commands. Normally the only difference between the two screens are the
sprites, which are only drawn on the physical screen. STOS Basic uses this
background to redraw any areas of the screen which are revealed underneath the
sprites when they are moved. See AUTO BACK for more details.

BACK (Address of the background screen)

This variable holds the location of the screen used as the sprite background.

Example:

print back:rem Address of background is 983040 for 1040ST users

458752

PHYSIC (Address of the physical screen)

PHYSIC is a reserved variable which contains the location of the screen currently
being displayed. If you load a different address into this variable, the screen will
be immediately redrawn using the screen stored at the new address.

Example:

print physic
491520 (or 1015808 on a 1040ST)
10 reserve as screen 5
20 physic=5
30 cis

The above example reserves a memory bank as a screen and then assigns the
address of this bank to the physical screen. Notice how you are able to use the
number of the bank instead of an address.

When you run this program, the new screen will be cleared. If you now press
the Undo key twice, the screen address will be returned to normal and the original
picture will be restored. Incidentally, the ST's hardware will only let you display a
screen stored at an address which is a multiple of 256 bytes. The RESERVE
instruction automatically takes this into account when allocating memory for a
screen.

139

LOGIC (Address of logical screen)

The Logical screen is the screen which is operated on by any of the text or graphics
instructions. Normally this will be the same as the physical screen, but occasionally
it's useful to use a separate screen to hold an image while it is being drawn. This
allows you to draw one picture while displaying another, and then instantly switch
between them using a special SCREEN SWAP instruction. A similar technique is
used by games such as Starglider to generate impressive flicker free graphics.
See SCREEN SWAP for a simple example of this process.

Example:

back=logic:rem Move the mouse around and see what happens.
print back

SCREEN SWAP (Swaps the address of the logical and physical screens)

Swaps the addresses of the physical and logical screens. This enables you to
instantaneously switch the display between the two screens. Look at the example
below.

10 cis
20 X1=50 : V1=50 : X2=75 : V2=100 : X3=25 : V3=100
40 for 1=0 to 244 step 8
50 ink 0
60 polygon X1+1-8.V1 to X2+1-8.V2 to X3+1-8.V3 to X1+I-B.V1
70 ink 1
80 polygon X1+I.V1 to X2+I.V2 to X3+I.V3 to X1+I.V1
100 next I

Thi.s program moves a triangle across the screen. As the triangle proceeds.
it generates an intense and annoying flicker. You can solve this problem by
displaying the triangle on the screen. only after it has been completely redrawn.
Add the following lines to the program above:

30 logic=back
90 screen swap: wait vbl

You should also change:

60 polygon X1+1-16.V1 to X2+1-16.V2 to X3+I-16.V3 to X1+1-16.V1

Line 30 places the address of the sprite background into the logical screen.
The triangle is now drawn on this screen without effecting the current image. The
SCREEN SWAP instruction at line 90 then swaps the logical and physical screens
around. This causes the finished version of the triangle to appear on the screen
immediately.

The program now erases the old triangle from the invisible logical screen and
redraws it at the next position. The whole process is subsequently repeated and
the triangle apparently smoothly progresses from one side of the screen to the
other. The reason for the change at line 60 incidentally, is simply to take into
account the fact that each screen is used on alternate executions of the loop. This
means that the triangle to be erased will be twice the distance from the current
position as you would normally expect.

Note that we've intentionally exaggerated the flicker of the above example to
illustrate the screen switching technique. In practice it would be very easy to
reduce this problem considerably even without the use of the SCREEN SWAP

140

instruction. Also notice that as we've used the background screen for our own
purposes, any of the sprite commands-will interfere with the animation. Try moving
the mouse while the program runs to observe this effect. Another example of
screen switching can be found in the section on SCREEN COPY.

DEFAULT (Return initial value of one of three screens)

DEFAULT BACK

DEFAULT PHYSIC

DEFAULT LOGIC

Returns initial value of back

Returns initial value of physic

Returns initial value of logic

When you are using multiple screens, it's easy to lose track of the original screen
addresses. The initial contents of the variables BACK, PHYSIC and LOGIC can
be found at any time using the DEFAULT function. This function is often used at
the end of a program to set the scmen back to normal.

Examples:

physic=default physic
back=default back
logic=default logic

Do NOT confuse with the DEFAULT instruction.

Reserving a screen
As you have seen, any STOS Basic program can have a number of different
screens in memory simultaneously. The following instructions allow you to
allocate a memory bank to hold one of these screens.

RESERVE AS SCREEN (Reserve a bank as a temporary screen)

RESERVE AS SCREEN n

Reserves bank number n as a screen. The size of this bank is automatically set
by RESERVE to 32768 bytes. After you have created a screen in this way, you can
load it with data using either the LOAD instruction or SCREEN COPY.

Ex:ample:

10 reserve as screen 5
2D load ''\stos\pic.pi1".5

Note that this screen is only intended for temporary storage and is reinitialised
every time your program is run.

See RESERVE and LOAD.

RESERVE AS DATASCREEN (Reserve a permanent screen)

RESERVE AS A DATASCREEN n

The above command is identical to tt-e RESERVE AS SCREEN instruction except
for the fact that it is installed permanently into the ST's memory. Any screen you
define as a DATASCREEN will be subsequently saved along with your program.

141

Example:

reserve as datascreen 5
clear
listbanks

See RESERVE (Chapter 3).

Loading a screen

STOS Basic lets you load a screen stored on the disc into either a memory bank
or an address.

LOAD "IMAGE.NEO",scrn
LOAD "IMAGE.PI1 ",scrn
LOAD "IMAGE.PI2",scrn
LOAD "IMAGE.PI3",scrn

The LOAD command loads a screen into memory from the disc file IMAGE. An
extension of NEO specifies that the file is stored in Neochrome format. Similarly,
extensions of PI1 ,PI2,PI3 are used to signify a screen in Degas format. Note that
scm can be either a screen address, or the number of a memory bank.

Example:

10 load "\sTOS\PIC.PI1",PHYSIC
20 wait key
30 default

Here is a larger example which converts screen files from Neochrome format to
Degas format.

10 rem Neochrome to OEGAS converter
20 F$::file select$("*.NEO"}
30 if F$:: then stop
40 reserve as screen 5
50 load F$,5
70 print "Press Return to save picture"
80 input "in DEGAS format";A$
90 right$(F$.3}="PI1"
100 save F$,5
110 input "Continue Y, or N";A$
120 if A$::"y" or A$::"Y" then 10

GET PALETTE (Set the palette from a screen bank)

GET PALETTE(n)

Loads the colour settings of a screen stored in bank n, and display them to the
present screen.

Example:

10 reserve as screen 5
20 load '\sTOS\PIC.PI1",5
30 physic=5

142

40 wait key
50 get palette(S)
60 wait key

CLS (Clear the screen)

In addition to the normal CLS instruction there is also an expanded version which
enables you to erase sections of a screen stored anywhere in the ST's memory.
There are three possible formats of this statement.

CLS scr Clears the screen at scr

CLS scr,col Fills the screen at scrwith colour col

CLS scr,col,xl ,yl to x2,y2 Replaces the rectangle at ser at coordinates
x1,y1,x2,y2with a block of colour col.

scr refers to either the address of a screen or the number of a memory bank. col
can take any value from 0 to the maximum number of available colours. x1,y,x2,y2
hold the coordinates of the top left and bottom right corners of the rectangle
accordingly. This instruction provides a very fast and effective way of erasing parts
of the screen.

Examples:

cis back:rem Erases the bacl(ground screen

cis physic.6:rem Clears the physical screen with a block of colour 6

cis back.6.0,O to 319.50:rem Erases the function key window from back

ZOOM (Magnify a section of the screen)

ZOOM scrl ,xl,yl ,x2,y2 TO [scr2,J x3,y3,x4,y4

Magnifies any rectangular section of the screen stored at scrl. scrl and scr2can
be either an address, or the number of a memory bank. The coordinates
x1,y1,x2,y2 refer to the size of the rectangular area which is to be enlarged.

x1,y1 denote the top left hand corner of this rectangle and x2,y2specifies the
location of the corner diagonally opposite.

Similarly x3,y3 and x4,y4 hold the dimensions of the rectangle into which the
screen segment will be expanded.

scr2 is an optional destination screen for the enlarged image. If it is not
specified then the screen will be enlarged into the background held in BACK, and
will then be copied into the current screen. This avoids any problems with the
mouse or the sprites, and also displays the object in one smooth operation.

ZOOM is best suited to enlarging pictures with relatively large expanses of
a single colour. This is because each individual point in the picture is magnified
independently, which produces a noticable grain for large size increases.

An especially useful application of this instruction is in the creation of large
banners on the screen.

Type in the example below:

10 rem ZOOM1
2D rem Set screen attributes
30 cis: mode 0 : pen 10 : curs off
40 Z$="Zooming!"

143

50 rem Find position of text
60 locate 0,4 : centre Z$
70 V1=ygraphic(4) : X2=xgraphic(xcurs) : X1=X2-B*len(Z$) : V2=V1+B
BO for 1=1 to 7
90 rem Calculate Zoom coordinates
100 X3=X1-16*1 : V3=V1-16*1 : X4=X2+16*1 : V4=V2+16*1
110 rem Enlarge Text
120 zoom physic,X1,V1,X2,V2 to X3,V2,X4,V4
130 next I
140 wait key: curs on

This repeatedly enlarges the centred text starting at coordinates 0,4. We've kept
the routine as general as possible to allow you to incorporate parts of it into your
own programs.

We'll now expand this program slightly to demonstrate the page flipping
mentioned earlier.

Add the following lines to the above program.

11 rem Reserve 6 screens
15 for 1=5 to 11:reserve as screen I : cis I: next I
121 rem Enlarge text to screen no I
125 zoom physic,X1,Y1,X2, Y2 to 1+5.X3,Y2.X4,Y4
140 rem Flip between all 6 screens
150 for 1::6 to 11:physic=l:wait vbl : wait 5:next I
160 wait 30 : goto 140

You should also alter line 80 to

BO for 1=1 to 6

Note that this program reserves six screens 32k long. It will work fine on a standard
5208T, providing you remove all 8T08 Basic accessories from memory using a
line like:

accnew

In addition, you may also need to load 8T08 Basic directly on startup, rather than
executing it from within Gem, as this saves you over 32k of memory.

Another common use of ZOOM is to magnify a specific part of an image for
subsequent editing. The program below shows how this might be achieved in
practice.

10 rem Zoom Example 2
20 mode 0
30 reserve as screen 5:rem Reserve a bank for the screen
50 F$::file select$("*.neo"):rem Choose a neochrome picture
60 if F$:: then stop
BO flash off:rem Turn off flashing
90 rem Load screen into Bank 5
100 load F$.5 : get palette (5)
110 rem Copy screen into Physical screen and Background
130 screen copy 5 to physic: screen copy 5 to back
140 rem Draw an expanding Box
150 gr writing 3
160 rem Click on the mouse to position Box
170 repeat: until mouse key: X1=x mouse: Y1=y mouse: X2=X1 : V2=V1
190 wait 4O:rem Wait for Mouse key to be released

744

200 repeat
210 box X1.V1 to X2,V2
220 X2=x mouse: V2=y mouse
230 box X1.V1 to X2.V2: M=mouse key
250 until M<>O:rem click on a mouse button to exit
260 rem Meke X1.V1 into the top corner
270 if X1>X2 then swap X1,X2
280 if V1>V2 then swap V1,V2
290 rem If Right Mouse button pressed
300 rem Zoom Contents of Box to full
310 rem Screen.
320 if M=1 then zoom X1.V1.X2.V2 to 0.0.319.199 else box X1.V1 to X2.V2 :
M=D : wait 40 : goto 170
330 wait key
340 goto 130

Much of this program should be self explanatory. Note the lines 140-250. These
use the XOR writing mode to generate a simple expanding box. Feel free to use
this routine in any of your own programs. After this box has been defined, the line
at 320 uses the ZOOM command to expand its contents into the entire screen.
Incidently, the test for M=l is merely to allow you to abort the current expansion
by pressing the right mouse button.

REDUCE (The inverse of zoom)

REDUCE scr1 TO [scr2,]x1 ,y1 ,x2,y2

Compresses the entire screen stored at sert into the box specified by the
coordinates xt,yt,x2,y2. xl and x2 hold the position of the top left corner of this
box, and X2,Y2 the bottom right. serl and ser2 refer to either a screen address or
the number of a memory bank. As with ZOOM, if the optional destination screen
is omitted, the drawing is first placed in the background and then moved into the
physical screen.

Example:

10 rem Reduce Example 1
20 FS=file select$("*.NEO")
30 rem Choose a picture
40 if F$::"· then stop
50 mode 0 : flash off : curs off
60 rem Reserve screen and load Picture
70 erase 5:reserve as screen 5
80 load FS.s : get palette (5)
90 rem display 4 copies of picture
100 for V=D to 1
110 for X=D to 1
120 reduce 5 to X*160.V*95.(X+1)*159+1,(V+1)*!16
130 next X
140 next V
150 wait key
160 gala 20

This loads a Neochrome screen into a memory bank and then generates four
smaller copies of it using the REDUCE at line 120.

If you've got the second example of ZOOM handy, you can change it to use
the REDUCE instruction instead, with the line:

145

320 if M=1 than reduce 5 to X1.Y1.X2.Y2 else box XU1 to X2,Y2: M=II: wait
40: goto 110

REDUCE has many possible uses. One idea would be to generate a list of large
icons similar to those utilised in the game STAR TREK. These could be assigned
to a screen zone using SET ZONE, and then selected with the ZONE command.
By storing a full-sized version in a compacted format (see PACK). you could then
effectively expand these pictures into the entire screen.

SCREEN COPY (Copy sections of the screen)

SCREEN COPY scrl TO scr2 (Copies scrl to scr2)

SCREEN COpy scrl,xl,yl,x2,y2 TO scr2,x3,y3

SCREEN COPY is undoubtably one of the most powerful of all the STOS Basic
instructions. This is because it allows you to copy large sections of a screen from
one place to another. As usual scrl and scr2 can refer to either a screen address
like LOGIC and PHYSIC, or the number of a memory bank. xl,yl and x2,y2 hold
the dimensions of the rectangular area which should be copied, and x3,y3contain
the coordinates of the destination of this block. Note that the x coordinates used
in this instruction are automatically rounded down to the nearest multiple of 16.
Also the values taken by these numbers can be negative as well as positive. Look
at the table below.

Graphics Mode X Range V Range

Low -320 to 320 -200 to 200
Medium -640 to 640 -200 to 200
High -640 to 640 -400 to 400

Any points in the destination outside the normal screen are simply not copied on
the screen. This is in marked contrast with the BLiT statement supported by other
versions of Basic which crash the ST completely if an illegal screen coordinate is
used.

The best way to see how the various options work is by example. Before you
can enter these examples you first need to do a little preparation. Start off by
reserving a bank for the STOS Basic title screen with the line:

reserve as data screen 10

Now place the STOS system disc into your drive and type:

load "'STOS\PIC.PI1",10 (for low resolution monitors)

or

load "'stos\pic.pi3",10 (for high resolution monitors)

Since you will be using the SCREEN COPY instruction rather a lot in this section,
you can save yourself some typing by assigning it to one of the function keys like
this:

KEY(10)="screen copy"

This allows you to abreviate any SCREEN COPY statements in subsequent
listings to just flO.

146

Now copy the title in bank 10 into the logical screen using the lines:

cis: mode 0
screen copy 10 to logic

As you move the mouse around on the screen, you will find that the picture will be
steadily eaten away. This can be avoided by loading the picture into sprite
background as well.

Example:

10 cis: mode 0
20 screen copy 10 to logic
30 screen copy 10 to back
40 wait key

If you move the mouse when this program is being run, the screen will no longer
be erased, because the sprite background now contains exactly the same picture
as the logical screen.

By loading a picture into the background alone you can produce another
interesting effect. Try typing:

cis
screen copy 10 to back

Now the title picture is steadily drawn as you move the mouse. Instant artwork!
Now enter the lines:

delete 10-40: rem Do not type in NEW 85 this will erase bank 10
load "sprdemo.mbk"

10 cis: hide
20 screen copy 10 to logic
30 sprite 1,130,0,1
40 move y 1,"(1,1,1)L"
50 move on
60 wait key

Now for some more complicated examples. Type in the following lines:

screen copy 10.0,0,100,100 to 10gic,D,D

This copies the top left hand corner of the title on to the screen.

You can also use the SCREEN COPY statement with negative coordinates.

screen copy 10,0,0,100,100 to logic,-50,-50

As you can see, only the lower section of the block has been copied to the
screen.

Here's one final example of the SCREEN COPY command which enables
you to move a large coloured grid around on the screen using the mouse.

Example:

new
10 mode 0:1=14

147

15 rem Initialise screen and set square markers
20 cis physic: cis back:set mark 4.28
25 rem Draw a grid on the screen
3D for X=1 to 10: for Y=1 to 9: ink rnd(i)+1: polymark X*28,Y*20
40 next Y : next X
45 rem Reserve a screen and copy the grid to it
50 reserve as screen 10 : screen copy logic to 10
60 hide: curs off:rem Kill mouse and cursor
65 logic=back:rem Set Logical screen to sprite background
70 rem Move the grid
75 repeat
80 cis logic
85 rem Get mouse coords
90 X=32O-x mouse*3 : Y::200-y mouse*3:rem Use different values for high
res
95 rem Copy the grid to the current screen
1110 screen copy 1o,X,Y,X+320,Y+200 to logic,o,o
110 screen swap:rem Swap physical and logical screens
120 wait vbl:rem Synchronise screen
130 until mouse key
140 defaultrem Reset Editor window

The screen as a string
STOS Basic includes two special instructions which enable you to load a section
of a screen into a string, and then manipulate it using the normal string commands.
This data can then be copied anywhere on the screen using a single string
assignment.

SCREEN$ (Load an area of a screen into a string)

There are two different forms of this statement.

s$=SCREEN$(scrn,x1,y1 TO x2,y2)

The SCREEN$ function is used to load an area of the screen bounded by the
rectangle x1,y1,x2,y2 into the string s$. x1,y1 refer to the coordinates of the top
left corner of this box, and x2,y2to the point diagonally opposite. Just as with the
SCREEN COPY instruction, the X coordinates are automatically rounded down
to the nearest multiple of 16. The expression SCRN can be either the address of
a screen or the number of one of the memory banks.

Example:

A$=screen$(physic,O,D to 319,199):rem Assigns the entire screen to as

S$=screenS(back,50,50 to 100,100):rem AS=area from 50,50 to 100,100

reserve as screen 10
screen copy physic to 10
b$=screen$(1o,o,D to 160,100):rem Loads BS with top of screen in bank 10

SCREEN$(scrn,x,y)=a$

This instruction copies a screen area from the string a$to the screen scm, starting
at the coordinates x,y. As usual scm can refer to either a screen address or a bank

148

number. Also note that the x coordinates used by SCREEN$ are always rounded
down to the nearest multiple of 16.

Warning I This command will only work with strings which have been previously
loaded by the SCREEN$ function. The SCREEN$ statement provides you with a
fast and efficient way of moving large objects around on the ST's screen.

Examples:

10 SS=screen$(physic,O,O to 100,100)
20 for y=ll to 3:for x=ll to 6
30 screen$(physic,50*x,50*y)=SS
40 next x:next y

This example fills the screen with copies of the top corner of the display.

The classic application of SCREEN$ is in the creation of complex backgrounds for
your games. By building your picture out of a number of previously defined blocks,
you can combine these into a wide range of different screens. Furthermore, after
you have stored your blocks into memory, you can hold each screen as a simple
list of numbers. In practice this simple technique can save you an immense
amount of space.

Example:

5 rem SCREEN$ example
6 rem Requires Disc containing complete \sTOs\ folder in order to run.
10 dim P$(10,6)
15 rem Use extension PI3 for MONO MODE.
20 mode 0 : curs off : hide :Ioad "\STOS\PIC.PI1",back
30 for X=II to 9
40 for Y=II to 5
45 rem Copy screen segments into array
50 P$(X,Y)=screen$(back,X*32,Y"32 to (X+l)*32,(X+1)*32)
60 next Y
70 next X
80 for X=II to 9
90 for Y=II to 5
100 Xl=rnd(9):Y1=rndI5)
105 rem Copy segments back onto screen
110 screen$(physic,X*32, Y*32)=P$IX1,Yl)
120 next Y
130 next X
140 wait key
150 goto 80

In order to make it as easy as possible to draw one of these screens we have
provided you with a special MAP DEFINER program.

Scrolling the screen
DEF SCROLL (Define a scrolling zone)

DEF SCROLL n,x1 ,y1 to x2,y2,dx,dy

DEF SCROLL allows you to define up to 16 different scrolling zones. Each of these
is associated with a specific scrolling operation determined by the variables dxand

149

dy. n denotes the number of the zone and can range from 1-16. x1,y1 refer to the
coordinates of the top left hand corner of the area to be scrolled, and x2,y2 to the
point diagonally opposite.

dx signifies the number of pixels the zone will be shifted to the right in each
operation. Negative numbers indicate that the scrolling will be from right to left, and
positive numbers from left to right.

Similarly, dy holds the number of paints the zone will be advanced up or down
during the scroll. In this case negative values of dyare used to indicate an upward
movement and positive values a downward one.

SCROLL (Scroll the screen)

SCROLL n

The SCROLL command scrolls the screen in the direction you have previously
specified with the DEF SCROLL instruction. n refers to the number of the zone you
wish to scroll.

Example:

10 def scroll 1,0,0 to 320,200,1,0
20 scroll 1:goto 20

Do NOT confuse with the SCROLL instruction used by the window commands.

Now for a larger example:

5 rem Vertical Scrolls
10 input "Step Size?";S:rem Choose scroll increment
11 rem Initialise screen and load background from system disc
20 mode 0: curs off: hide: load "\STOS\PIC.PI1",back
3D def scroll 1,80.0 to 240,20o.o,-S:rem Define scrolling zone 1
40 for V::O to 199 step S:rem Scroll section of the screen
45 rem copy top of screen to bottom
50 screen copy back,80,V,24O,V+S to logic,80,200-S
60 scroll 1:rem scroll zone 1
70 next V
80 goto 40

This loads an image from the STOS system disc and rotates it around on the
screen. The variable S holds the number of points the picture will be moved when
each SCROLL instruction is executed. The larger the value of S, the faster and
jerkier the scrolling. Note line 50. This copies the top section of the screen into the
bottom before it disappears.

Here is another example which demonstrates how horizontal scrolling can be
achieved.

5 input "Speed";S
7 rem Initialise screen and load background from system disc
10 mode 0: curs off: hide: load "\STOS\PIC.PI1",back
2D def scroll 1.0,80 to 32O,120.-16,0:rem Define
scrolling zone 1
30 for V::O to 319 step 16:rem Scroll section of the screen
35 rem Copy left section of the screen ba.ck to the right
40 screen copy back,V.BD.V+16.120 to logic,320-16.BD : for W=1 to S : next W
: scroll 1
50 next V
60 goto 30

150

This uses a very similar technique to the last example except for the fact that
SCREEN COPY rounds all X coordinates down to the nearest multiple of 16. The
example is therefore forced to scroll in units of 16. Despite this the scrolling is still
reasonably smooth, especially at the slower speeds.

Now for a final example which combines a complex series of scrolling zones
to produce a fascinating effect on the screen.

1 rem ScreBn Scrolling demo
5 rem Needs Stos system disc in drive
10 mode 0 : curs off : hide: load "\stos\pic.pi1" .back
15 rem Deline scrolls
20 def scroll 1.0.171 to 320.200,0.-6
3D def scroll 2.0.146 to 320.175.0.-4
40 def scroll 3.0.122 to 320.150.0.-2
50 del scroll 4.0.72 to 320.125.0.-1
60 def scroll 5.0.46 to 320,75.0.-2
70 def scroll 6.0.21 to 320.50.0.-4
80 def scroll 7.0.0 to 320.25.0.-4
90 rem scroll screen
100 for V=II to 199
110 screen copy back.o.V,320.V-Hi to logic.0.194
130 scroll 1 : scroll 2 : scroll 3 : scroll 4 : scroll 5 : scroll 6 : scroll 7
140 next V
150 goto 100

Screen synchronisation
Like most microcomputer systems, the Atari ST uses a memory-mapped display.
This is a technical term for a concept you are almost certainly already familiar with.
Put simply. a memory-mapped display is one which uses special hardware to
convert an image stored in memory into a signal which can be displayed on your
television screen. Whenever STOS Basic accesses the screen it does so through
the medium 01 this screen memory.

The screen display is updated by the hardware every 50th of a second (70th
in Monochrome mode). Once a screen has been drawn the electron beam turns
off and returns to the top left of the screen, this process is called the vertical blank
or VBL for short. At the same time, STOS Basic performs a number of important
tasks, such as moving the sprites and switching the physical screen address if it
has changed. The actions of instructions such as PUT SPRITE, or SCREEN
SWAP will therefore only be fully completed when the screen is next drawn. Since
a 50th of a second is quite a long time for STOS Basic, this can lead to a serious
lack of coordination between your program and the screen, which is especially
noticable when the next instruction also manipulates the screen in some way. The
only effective method of avoiding this difficulty is to wait until the screen has been
updated before you execute the next Basic command.

WAIT VBl (Wait for a vertical blank)

The WAIT VBL instruction halts the ST until the next vertical blank is performed.
It is commonly used after either a PUT SPRITE instruction, or a SCREEN SWAP.
As a general rule, if your program uses sprites or screens and it only works
intermittantly, it's always worth checking to see whether you have omitted the
WAIT VBL.

SYNCHRO (Synchronise scrolling with sprites)

STOS Basic performs all sprite movements every 50th of a second. This generally

151

works fine, but occassionally it leads to an irritating synchronisation problem.
Supposing you want to place a sprite at a fixed point on a scrolling background.

Whenever this background moves, the sprite will move along with it. It would be
easy enough to produce a set of MOVE X and MOVE Y instructions which
precisely followed the movement of the background. Unfortunately, this wouldn't
quite work as the SCROLL instructions would not be executing at the same time
as the sprite movements. The sprite would therefore tend to drift jerkily around on
the screen.

Luckily, STOS Basic includes a useful SYNCHRO instruction which allows
you to move all the sprites on the screen at the exact moment you require. This
enables you to effortlessly synchronise the sprites with a scrolling background.

There are three forms of this instruction:

SYNCHRO OFF

SYNCHRO

SYNCHRO ON

Turns off the normal sprite interrupt which moves
the sprites every 50th of a second.

Executes all the sprite movements exactly once.

Reverts the sprite movements to normal. The
sprites will now be moved in the normal way every
50th of a second.

We'll demonstrate how all this actually works with a small example.
First you need to load some sprites into your micro. Place the accessory disc

into the drive and type:

load "sprdemo.mbk"

You can now type in the program itself:

new
10 rem Demonstration of SYNCHRD
20 mode 0 : curs off : hide: key off
3D rem load picture from disc
40 load "\STDS\PIC.PI1",back: screen copy back to logic
50 rem Place sprite on the screen
60 rem Start it moving up.
70 sprite 1,144,199,1 : move y 1,"(1,-2,1)l"
80 rem Turn off sprite interrupt
90 synchro off : move on
100 rem Define Scrolls
110 def scroll 1,80,0 to 240200,0,-2
120 rem Scroll section of the screen
130 wait 100 : rem Wait for drive to stop
140 for Y:::O to 199 step 2
150 screen copy back,8O,Y.24O,Y+2 to logic.80,198
160 scroll 1 : wait vbl : synchro
170 next Y
180 rem Restart from bottom of screen
190 sprite 1,144.199,1 : move y 1,"(1,-2.1)l"
2DD synchro off : move on
210 goto 140

Notice line 160 which moves the sprite up one unit and then scrolls the screen
along with it. The WAITVBL instruction is essential as itcompletes the syncronization
process. Try removing it and see what happens.

I've chosen this specific sprite to illustrate an interesting side effect. As the

152

moved, this specific sprite
could use this technique

peeps through it,
range of usefu I

Compacting the screen

1.

STOS Basic comes complete with a useful accessory which allows you to
compact any screen files stored in either Neochrome or Degas format into just a
fraction of their normal size. You can load this program from the accessory disc
using the line:

ilccllew:accload "compactaell"

compactor is simplicity
This presents you

a file in the normal
ST's memory and

the left mouse button once.

by clicking on one
STOS file selector

screen you have selected
relurn to the main menu

If you wish to compact the whole screen, choose the PACK WHOLE SCREEN
option from the Picture menu. The compactor will now attempt to compress the
screen using a number of different strategies. As soon as it finds the one which
uses the smallest amount of space, it will compact the file. This file can be saved
either as a memory bank or a raw binary file. The easiest option to use is the
memory bank, as this lets you subsequently load the screen directly into STOS

You also use the Quit and Grab aptian incorporate the screen
current Basic program.

compact only par!
nn,'nnn"t'" option from the Picture

set of instructions,

mouse button to display picture.

2. You start by choosing the left hand corner of the area to be compacted by clicking
on the left button. If you now press the right button and move the mouse, an
expanding box will be drawn. This box encloses the section of the screen you have
currently chosen, Similarly, by pressing the left hand button again, you can change
the position of the top corner of this rectangle.

3. selected part of the
image, You can

"n''nn",,,',nn utility would be
screen to its full

compressed, press
picture on the disc

was not some
be done using the

UNPACK (Unpack a screen compacted with the accessory)

UNPACK bnk,scr

The UNPACK command restores a compacted screen stored in bank number bnk
scr. As usual scrcan reler a bank defined as

DATASCREEN, or a screen

"backgrnd,mbk:rem screen saved in

753

unpack 5,back:rem Unpack bank five and load into sprite background
physic=back:rem Set physical screen to sprite background

PACK (Function to pack a screen)

I=PACK scr,bnk

This is just the reverse of the UNPACK command. It's normally easier to use the
SCREEN COMPACTOR accessory, but if you do need to compact a screen within
a program, you can use the PACK function. scrrefers to either a screen address
or a bank number containing a screen to be compressed. bnk denotes the bank
which is to be used as a destination. After the pack function has been executed,
I is loaded with the length of the compressed screen.

Example:

reserve as screen 5:rem Reserve space for source
reserve as screen 6:rem Reserve space for destination
load "\stos\pic.pi1",5:rem Load Title screen from
system disc in 5
L=pack(5,6):rem Pack screen
reserve as data 7,L:rem Reserve space for new screen
copy start(6).st&rt(6)+1 to start(7)
save "title.mbk":rem Save compacted screen

Special screen effects

APPEAR (Fade between two pictures)

APPEAR x [,y]

The APPEAR command enables you to produce fancy fades between a picture
stored in address x or in bank x, and the current screen. The y value is optional
and refers to the type of fade you wish to use. y can range from 1 to 79. Fades
between 1-72 always result in a COMPLETE image being copied from x to the
screen. Fades from 73-79 leave the final screen slightly different from the original
in bank x.

Type in the example below placing your backup of the STOS system disc into the
current drive.

Example:

10 hide
20 reserve as screen 15
30 if mode=1 then mode::O
40 if mode=O then load ''\stos\pic.pi1'',15 else load ''\stos\pic.pi3"",15
50 cis
60 input ·screen effecf';X
70 curs off
80 if X=D then default: end
90 get palette (15)
100 appear 15,X
110 wait key
120 curs on
1311 goto 50

154

FADE (Blend one or more colours to new colour values)

This function allows you to produce stunning effects in one simple command.
There are three formats of the FADE command:

FADE speed

FADE speed TO sbank

FADE speed,col1,col2,

Fade all colours to black
This version of FADE reduces each colours RBG
vaues by 1 until they reach zero. speed is the
amount of vertical blanks that must occur before
another change to the palete is made.

Fade the present colours to those of the specified
screen

The current colours are blended into the palette of
the screen stored in bank sbank.

FADE separate colours to a new value

This is the most powerful of the three formats and
allows any colour to be blended into another. Enter
the line:

10 mode D:print "bye bye :fade 3:wait 7*3

The WAIT command is used after the FADE because the fading changes are done
during interrupt. Thus the program carries on. Because our next line will reset the
colours, it's best to wait until the original fade has been completed. The pause
value for the WAIT command can be calculated by the formula:

wait value = fade speed • 7

Once the above line has been run, the screen is left in total darkness. To bring back
some colour you would enter a line like:

20 cls:print "here I am again!":fade 3,.$777,$700

Notice that there are two commas after the speed parameter. This tells STOS
Basic that you don't wish to change the value of colour 0 and this can be applied
to any colour in the palette. Colours 1 and 2 are now faded up to reveal the new
message.

Fade adds flare to your programs and gives them a professional touch similar
to credit screens from films.

Examples:

fada 3:rem press undo twice to see again

reserve as datascreen 15
load ''\STOS\PIC,PI1'',15
fade 10 to 15

fade 5$177.$777.$777.$777.$777.$777.$777.$777.$777.$777,
$777,$777,$777,$777.$777.$777

155

Pattern Setting
SET PATTERN (Set up the fill pattern)

SET PATTERN a$

You can set up a user defined fill pattern with this command. a$ must contain the
fill definition which must be a 16x16 block.

The two versions of set pattern will only work in medium and high resolution.

Exsmple:

A$=screen$(physic.1.1 to 16.16)
set pattern AS

This is in addition to the other SET PATTERN format.

See PAINT, SCREEN$

The function key window
KEY ON/OFF (Set or clear function key window)

KEY ON

KEY OFF

Turns on the function key window allowing you to select the
various options with the mouse pointer.

This removes the function key window and frees the space for
further use.

You can still select the functions when the window is off by pressing the function
keys

See KEY

156

8 Text and windows

allows you to print
windows can be displayed

set of characters.

Text attributes

Every STOS Basic window has a separate set of attributes, such as the character
and background colours of the enclosed text.

PEN of text)

colour of any text
be displayed in the This colour can be

one up 10 6 different colours. As you might expect, the number
available varies between the different graphics modes.

Mode

o (Low)
1 (Medium)
2 (High)

modeO
lor 1=0 to 15
pen I

Allowable index numbers

0-15
0-3
0-1

40 print "Pen number ";I;space$(10)
50 next I
60 pen 1

As a default, the pen colour is set to index number 1.

See COLOUR, PALETTE, PAPER

PAPER colour of background

designates a colour to background for the
PEN, index denotes a colour number from 0-15 (0-3 in medium res).

Example:

new
10 mode 0

20 for 1=0 to 15
3D paper I
4D print "Paper numbar ";I;spacaS(10)
50 next I
60 wait key
70 default

On startup the background of a window is set to colour O.

See PEN, COLOUR, PALETTE.

INVERSE ON/OFF (Enter inverse mode)

INVERSE ON swaps the text and background colours specified by PEN and
PAPER. The effect of this is to invert any new text which is printed on the current
window.

Example:

new
10 print "This is some text in nonnal mode"
2D inverse on
30 print "This is some inverted text"
4D inverse off

See SHADE, UNDER, WRITING.

SHADE ON/OFF (Shade aJl subsequent text)

SHADE highlights any new text on a window by reducing the brightness of the
characters with a mask.

Example:

new
10 mode 1
20 print "Nonnal Text"
3D shade on
4D print "Shaded Text"
50 shade off

See UNDER, INVERSE, WRITING.

UNDER ON/OFF (Set underline mode)

This instruction causes the text in the current window to be underlined.

Example:

UNDER ON
? "UNDERLINED"
UNDERLINED
UNDER OFF
? "NORMAL"
NORMAL

See SHADE, INVERT, WRITING.

158

WRITING (Change text writing mode)

WRITING effect

The WRITING command allows you to change the writing mode used for all future
text output.

Writing mode effecl:
1 Replacement mode (Default)
2 OR mode. All characters are merged on the screen with a logical OR.
3 XOR mode. Characters combined with background using XOR.

Example:

new
5 mode 0
10 bar 0.0 to 319.199
20 print "Normal text"
30 writing 2
40 print "OR mode"
50 writing 3
60 print "XOR mode"
70 wait key
80 default

Do NOT confuse with GR WRITING.

Cursor functions
Any text you output to the screen using the PRINT instruction is always printed at
the current cursor position. STOS Basic includes a range of facilities which allow
you to move this cursor around, and print text practically anywhere on the screen.

LOCATE (Position the cursor)

LOCATE x,y

LOCATE sets the current cursor position to the coordinates x and y. This sets the
starting point for all future text operations on the screen. LOCATE uses a special
type of coordinates known as text coordinates. These are measured in units of a
single character, relative to the top left hand corner of the current window. So the
coordinates 10,10 refer to a point 10 characters down from the top of the window,
and 10 characters across from the left.

Example:

locate 10.10:print "Hi"

The possible range of these coordinates varies depending on the dimensions of
the window you are using, and the size of the character set.

Here is a small table showing the size of the screen in text coordinates in each
of the three graphics modes.

Mode

o
1
2

X range

0-39
0-79
0-79

159

Y range

0-24
0-24
0-24

Conversion functions
8T08 Basic provides you with a useful set of four functions which readily enable
you to convert between these text and graphic coordinates.

=XTEXT (Convert an x coordinate from graphic format to text)

t=XTEXT(x)

This function takes a normal X coordinate ranging from 0-639 (0-319) in low res)
and converts it to a text coordinate relative to the current window. If the screen
coordinate lies outside the window then a negative value is returned. The following
example should make this a little clearer:

new
10 cls:print "Move the mouse about'"
20 repeat
30 X=xtext(x mouse) : if X<O then 60
40 V=ytext(y mouse) : if V<D then 60
50 locate X.V : print "*":rem Print * at current mouse pointer.
60 until mouse key:rem Exit when a mouse button is clicked.
70 default

See YTEXT. LOCATE, WINDOPEN, XGRAPHIC, YGRAPHIC

=VTEXT (Convert a y coordinate from a graphic format to text)

t=YTEXT(y)

YTEXT converts a coordinate ranging from 0-199 (0-399 in high res) into a text
coordinate relative to the current window.

See XTEXT for more details. Also YGRAPHIC, XGRAPHIC, LOCATE.

=XGRAPHIC (Convert an x coordinate from text format to graphic)

g=XGRAPHIC(x)

The XGRAPHIC function is effectively the inverse of XTEXT, in that it takes a text
coordinate ranging from 0 to the width of the current window and converts it into
an absolute screen coordinate.

Example:

new
5 mode 0 :ink 1
10 windopen 1.3.3.30.10
20 print xgraphic(O).ygraphic(O)
30 draw xgraphic(O).ygraphic(O) to xgraphic(27).ygraphic(7)
40 wait key
5Owindel1

Note that there's also an equivalent function for Y coordinates called YGRAPHIC.

See XTEXT, YTEXT, YGRAPHIC.

160

=YGRAPHIC (Convert a y coordinate from text format to graphic coordinate)

g=VGRAPHIC(y)

This function converts a coordinate in text format relative to the current window into
an absolute screen coordinate.

See XGRAPHIC, XTEXT, ¥TEXT.

SQUARE (Draw a rectangle at the current cursor position)

SQUARE wX,hy,border

SQUARE draws a rectangle wxcharacters wide by hycharacters high at the cursor
position. border can be any of the 16 possible border types used by the windows.
See BORDER for more details. wx and hy can range from 3 to the size of the
current window. After this instruction has been executed, the text cursor is placed
at the top left corner of the new box.

Example:

10 square 10,10.3
20 print "Square"

Now for a slightly larger example, which shows off all the 15 different border types:

10 cis
20 for 1=1 to 15
30 locate 1*2,20-1
40 square 1+3,1+3,1
50 next I
60 goto 60

See BORDER, XTEXT, YTEXT

HOME (Cursor home)

HOME moves the text cursor to the top left hand corner of the current window
(coordinates 0,0).

Example:

10 cis
20 locate 10,10
30 print "Demonstration of "
40 home
50 print "HOME"

See LOCATE, XCURS, VCURS.

CDOWN (Cursor down)

CDOWN pushes the text cursor down one line. The same effect can also be
achieved using the line:

print chr$(10)

161

Example:

print "Example" :cdown:cdown:print "of cd own"

See CUP, CLEFT, CRIGHT.

CUP (Cursor up)

CUP moves the text cursor up by a line, in thJ same way that CDOWN shifts it
down. This instruction is logically identical to t~e line:

print chr$(11);

Example:

print "Example":cup:cup:print "of cup" I

See CLEFT, CDOWN, CRIGHT.

CLEFT (Cursor left)

The CLEFT instruction displaces the text curso~ one character to the left. Note that
CLEFT is equivalent to PRINT CHR$(3).

Example:

print "Example":cleft:cleft:print "of cle~"

See CUP, CRIGHT, CDOWN.

CRIGHT (Cursor right)

CRIGHT has the opposite effect as CLEFT and moves the cursor one place to the
right. An identical effect can be achieved using the line:

I

Example:

print chr$(9) I
print "Example":cright:cright:print "of cright"

XCURS (Variable holding the X coordinate of th~ text cursor)

XCURS is a variable which returns the X coordinate of the text cursor (in text
fum~. I

Example:

locate 10,o:print XCURS
10

YCURS (Variable holding the Y coordinate of th~ cursor)

YCURS returns the Y coordinate of the text c~ rsor (in text format) .

Example:

locate 0.10:print ycurs
10

162

SET CURS (Set text cursor size)

SET CURS top,base

The SET CURS instruction allows you to change the size of the text cursor. top
refers to the topmost point of the cursor, and base to the bottom. These values can
range from 1 to the maximum height of a character (normally 8 in medium and low
resolution).

Example:

set curs 1,8

CURS ON/OFF (Enable/disable text cursor)

This function removes the flashing cursor from the current window. In order to stop
the cursor flashing, CURS OFF deactivates colour number 2. Since the action of
colour 2 is not restricted to a single window, any pictures drawn in this colour will
immediately cease flashing. Similarly, the flashing cursors in every other window
will also be frozen.

Text input/output
CENTRE (Print a line of text centred on the screen)

CENTRE a$

CENTRE takes the string in a$ and prints it in the centre of the screen. This text
is printed on the line currently occupied by the text cursor.

Example:

new
10 locate 0,1
20 centre "This is a centered TinE"
30 locate 0.3
40 cantre "And this is another one"

TAB (Move the cursor to the right)

TAB(n)

TAB is often used in conjunction with the PRINT instruction to space out a line of
text on the screen. The action of the TAB is to move the text cursor n places to the
right before the next print operation. It does this by generating a string of CHR$(9)
characters.

Example:

print tab(10);"Example: of TAB"

Example of TAB

Also:

X$=tab(15)
print XS;"15 spaces to the right"

163

15 spaces to the right

See PRINT, CRIGHT.

SCRN character on the screen coordinate)

SCRN(x,y)

which returns an
relative to the currenl

Example:

See

new
10 locate 0,0
20 print "Hello"
3D locata 0,10

Windows
WINDOPEN (Create a window)

be found at the

The WINDOPEN instruction enables you to create a window on the ST's screen.
There are three possible formats to this statement.

WINDOPEN
WINDOPEN
WINDOPEN

nis
1-13.

,w,h
,w,h,border
,w,h,border,set

window to be opened. PA,'mi<:<:ihl values for n range

x1,y1 are the text coordinates to the top left hand corner of the new window.

w,h specify the size in characters of the new window. Note that the minimum size
of these windows is 3 by 3.

Border chooses one of 16 possible border styles for the new window. See
BORDER delails.

Set Size

1 8x8
2 8x8
3 8x16

character set is to be
to 16 depending

values for the sets

Notes.

pixels default set for low resolution
pixels default set for medium resolution
pixels default set for high resolution

You can happily use all of these sets in each of the three resolutions. Set three in

164

particular can be especially effective on a colour monitor as it provides you with
a useful set of large characters.

Note: the text coordinates x1,y1 and the window size w,h use the new character
sizes! You can also use the font definition accessory to create your own character
sets. These sets are given numbers ranging from 4-16. See the separate section
on character sets for more details.

Example:

new
10 wind open 1.1.1.39.20: rem Open a large window
20 windopen 2,10,10.20.5,10: rem Small window with border 10
30 windopen 3.20.15.20,4,0.1 : rem Open a window using character set one
40 windopen 4.3.10.30.5.3.2: rem Window with set 2 and border 3
50 windopen 5.10.3,20,5,5.3: rem Window with set 3 and border 5

In order to test these windows you can use the WINDOW function like so:

window 2
window 4
window 1
window 3
window 5

Here's another example which opens five windows on the screen, each with its
own separate set of attributes.

5 mode 0
10 for 1=1 to 5
20 windopen 1.1.1+(1-1)*5.39,4.1
30 paper I : ink 1+10
40 print "Window ";1;" "
50 next I

As before, you can flick between these windows using window:

window 3

See WIN DEL, WINDOW, QWINDOW, WINDCOPY, WINDON, WINDMOVE,
Character sets.

TITLE (Define a title for the current window)

TITLE a$

The TITLE instruction sets the top line of the current window to the title string in
a$. If the length of this string is less than the width of the window, then it is centred.
This title will now be displayed along with the window, until it is deleted by using
the BORDER command with no parameter.

Example:

new
5 mode 0
10 windopen 5.1.1.20,10

165

20 title "Window number 5"
30 wait key
40 border
50 wait key

See BORDER, WINDOPEN, IAIiMnU'

BORDER of the current window)

BORDER

WINDOW,

This instruction allows you to choose from one of 16 possible borders for the
current window. The variable n can take values ranging from 1 to 16. These
borders are made up from the Ascii characters 192 to 255 and can be readily
changed using the FONTS.ACB accessory.

Example:

40 for 1=1 to 16:border I:wait 5:next I
50 windel5

Note that if you use the BORDER command on its own, the current border is
redrawn, and any title associated with the current window is erased.

WINDOW IAC1IVare window)

WINDOW

current window to window It then redraws
window of its contents. This should normally only
used when windows overlap this is not the case then
it makes rather more sense to use the QWINDOW statement which activates the
window without redrawing it as this command is much faster than WINDOW.

Example:

new
10 for 1=1 to 13

WlIlllOllen 1,1+5.1+2.20.8

Now type

window 10

Press undo twice to revert the screen to normal.

See QWINDOW, WIN DEL, WINDOPEN, WINDON, WINCOPY

166

QWINDOW (Activate window without redrawing it)

aWINDOW n

This function sets the current window to window number n, but does not redraw
the window. It should therefore only be used if you're absolutely sure that the
window has not been overwritten by something else.

Example:

new
10 for 1=1 to 5
20 wind open 1,1,1*4,15,4: windopen 1+5,20,1*4,15,4
3D next I
run
qwindow 1
qwindow 5
qwindow8

Note that because aWINDOW does not have to redraw the contents of the
window, it is considerably faster than the equivalent WINDOW command. Further
examples of this instruction can be found in the accessories supplied with the
package. These can be examined using SEARCH:

load "FONTS.ACB"
search "qwindow"

WINDON (Variable containing number of the current window)

WINDON returns the number of the currently active window.

Example:

new
10 windopen rnd(12)+1.10,10,10,10
2D print "Window number ";windon," Activated"

See WINDOW, aWINDOW, WINDOPEN.

WINDMOVE (Move a window)

WINDMOVE xl,yl

WINDMOVE moves both the current window and its contents to a new part of the
screen specified by the text coordinates x1,y1. These coordinates are based on
the character size of the window which is to be moved.

Example:

WINDOPEN 1.0,2,30,10
WINDMOVE 5.3

See WINDOW, aWINDOW, WINDON, WINDOPEN.

WIN DEL (Delete a window)

WINDEL n

167

This function deletes the window number n, and erases it from the screen. If the
window to be deleted is the current window, then the current window will be set to
the window with the next lowest number, and this will be redrawn automatically.

Example:

new
10 for 1=1 to 13
20 windopen 1,1+5,1+2,10.10
30 next I
40 for 1=1 to 13
50 wait key
60windell
70 next I

See WINDOPEN. WINDMOVE, WINDOW, QWINDOW, WINDON. WINDCOPY.

CLW (Clear the current window)

CLW erases the contents of the current window and replaces it with a block of the
current PAPER colour. Note that you can perform a CLW instruction from the editor
by pressing the Clr key (or Shift+Home).

Example:

clw:rem Clears window O.

SCROLL ON/OFF (Switch window scrolling on and off)

The SCROLL instruction is used to control the scrolling of the current window.

SCROLL OFF turns off the scrolling. Whenever the cursor reaches past the bottom
of the screen it will now reappear from the top.

SCROLL ON restarts the scrolling. A new line is now automatically inserted when
the cursor attempts to reach past the bottom of the screen.

Example:

scroll off

Do NOT confuse this function with DEF SCROLL!

See SCROLL UP, SCROLL DOWN.

SCROLL UP (Scroll the current window up)

This instruction moves a section of the current window above the text cursor, one
line up. Anything on the top line of the window is erased.

Example:

scroll up:scroll up:scroll up

Not to be confused with DEF SCROLL.

168

See SCROLL DOWN, SCROLL.

SCROLL DOWN (Scroll the current window down one line)

SCROLL DOWN scrolls the area below the text cursor one line down. As a natural
consequence of this instruction, the bottom line of the window will be overwritten.

Example:

scroll down:scroll down:scroll down

See SCROLL UP, SCROLL.

Character sets
Each STOS Basic window can have its own individual character set. Three of
these sets are provided on the disc as standard, and these can be edited or
changed using the character definer FONTS.ACB.

In order to build your own character set, you should first load the font accessory
FONTS.ACB. Load this by inserting the STOS accessory disk and typing in the line

accnew: ace load "FONTS.ACB"

You can access this at any time by pressing the keys Help+f1. When this utility is
executed, the screen consists of a drop-down menu, along with two windows. The
leftmost of these windows is used to edit a character, and the rightmost window
is used to select the character to be redefined.

Start off by moving the mouse pointer to the selection window. Notice how the
character underneath the mouse pointer is inverted, and its Ascii code is displayed
at the bottom of the screen. This character can be chosen by clicking the left mouse
button.

You can now edit your character by moving the mouse cursor into the edit
window, and clicking on either the left or the right mouse buttons. The left button
sets a point at the current cursor position, and the right button erases it.

In addition, you can also manipulate your character using one of the many
options from the tool and draw menus.

After you have finished drawing your new character you can install it into the
current set by moving the mouse back to the selection window, and positioning the
pointer onto the character you wish to change. This character can now be
overwritten with the new data by clicking on the right mouse button.

The final step in the creation of the character set is to save it. There are two
possible alternatives. Firstly you can save the set to the disc in a file with the
extension .MBK. This file can then be loaded at a later date. You can also load your
set directly into your current program using the Quit & Grab option. This places the
new character set into bank five, and then exits back to the STOS Basic editor.

Here is a summary of the entire process:

1. Choose a character from the Selection window using the left button.
2. Edit the character in the Edit window. The left button sets a point. The right

button deletes a point. The Tool and Draw menus manipulate the character.
3. Install the character in the Selection window with the right mouse button.
4. Repeat stages one to three until you have completed your new character set.
5. Save the set using either the Save or the Quit & Grab options from the Disc

menu.
The System menu allows you to select one of four possible sizes for your

characters. Unfortunately, not all of these options are available in all three graphics

769

modes. Look at the following table.

Size Modes allowed

All. 8x8
8x16
16x8
16x16

High and medium resolutions
High resolution only
High resolution only

Before you can call a user-defined character set, you first need to reserve
some space and load this set into memory. This is done automatically by the Quit
& Grab option from the font definer. If you intend to install a number of sets, it's
easiest to save the sets to the disc, and then incorporate them into your program
by hand.

Saving space

RESERVE AS SET (Reserve a bank of memory for a character set)

RESERVE AS SET n,len

This reserves len bytes of space in bank number n for a character set. This set can
now be loaded into the bank using a line like:

LOAD "FONT1.MBK",n

Example:

reserve as set 5,4000
load "FONT1.MBK",5

Note that the bank defined using this command is permanent and will be
automatically included with your current program when you save it to the disc. The
file FONT1. MBK is one of three example character sets supplied with the package.
Each additional set is given a unique number ranging between four and nine. The
first character set you defined is denoted by the number four, the second by five
and so on.

Supposing, for example, you reserve some space for three character sets like so:

RESERVE AS SET 6,4000
RESERVE AS SET 8,4000
RESERVE AS SET 5,4000

These sets would be accessed using the numbers: 4 for bank 6,5 for bank 8,6 for
bank 5. The size of these banks has been set to 4,000 bytes.

You can calculate how large a character set is using the CHARLEN function.

CHARLEN (Get the length of a character set)

CHARLEN (n)

This function returns the length of a character set specified by the number n.
Numbers one to three represent the system sets, and numbers 4 to 16 represent
supplementary sets created using FONTS.ACB.

170

Example:

? charlenlll

See RESERVE.

CHARCOPY (Copy a character set into a particular bank)

CHARCOPY s TO b

The CHARCOPY instruction copies character set s to bank number b. Values of
1 to 3 correspond to the system sets, and numbers 4 to 16 denote user-defined
sets.

Example:

reserve as set 5,charlen(11

Reserve bank 5 as set of the same length as system set 1.

charcopy 1 to 5

Copy system set 1 into bank 5.

See CHARLEN, RESERVE.

Using a character set from a window

1. Find the size of the new set using DIR " •. mbk". Round this up to the nearest
1 ,000 bytes just to be on the safe side.

2. Reserve some space for the set using RESERVE AS SET.
3. Load your file into this bank with a line like LOAD "filename.mbk",n where n

is the number of the bank you are using to hold the set.
4. Repeat phases 1 to 3 for each new set.
5. Open a window using WINDOPEN. Set the character set number value to 3

plus the number of your set. Note you can avoid stages 1 to 3 when installing
a single character set by choosing the Quit & Grab option from the font
definer.

Example:

reserve as 5,4000: rem Assumes set is BxB
load "FONTtMBK",5: rem Load example font into bank 5

Type in the following program. It creates a window, and outputs the entire
character set on to it.

new
10 windopan 1.1,1.3B.23,1.4
20 for 1=32 to 255
30 print chr$(i);
40 next I
50 wait key

Simple isn't it.

If you like, you can edit this set using the FONTS.ACB accessory. Now for a

171

somewhat larger example which displays five different character sets on the
screen at once.

new

Mllitiple character set example,
20 rem Displays 5 character sets on the screen at once
30 rem Mode 1 looks rather better then mode O.
40 rem Remove line 50 for mono monitors
50 mode 1 : cis
60 for 1=1 to 5
70 rem Define windows using WINDOPEN
80 if k4 then windopen 1,(1-1)*26+1,0.26,12,1.1 else windopen 1,(1-

Changing the default sets
When STOS Basic is loaded, it automatically installs three system sets into the
S1's memory. These sets are stored in the STOS folder under the following
names:

If you
for your
character set.

lor low resolution}
lor medium resolution)
lor high resolution)

default character
your own customised

In order to do this you need to follow the following procedure:

• Create your new set using the FONTS.ACB accessory.
• Load your set into bank 5 of the current program using the Quit & Grab option.
• Place disc into the drive, one of the three lines

below, resolution

Low ',\STOS\8X8.CRO"
Medium .""'"" .. ,,,," bsave "\STOS\S)(S.CR1"
High ',\STOS\8X16.CR2"

slart(5)+length(5}
start(5}+length(5}

start(5}+length(5}

As a demonstration of this technique, load the file FONT1.MBK into the FONT
accessory using the Load File option from the Disc menu. Now use the QUIT &
GRAB option to return to the editor. Insert your copy of the 8T08 Basic system
disc into the drive. DO NOT USE YOUR ORIGINAL SYSTEM DISC FOR THIS
PURPOSE! Type in one of the three lines above to set the default set for any of

172

the three possible resolutions.
When you reboot the copy of the STOS Basic disc, STOS will now load and

use the new font.
Note that STOS Basic can also load up to six supplementary sets as well.

These should have the extensions .CR4 to .CH9, and can be accessed using the
character set numbers four to nine respectively. Otherwise the method used to
save them is identical to that explained above. If some of these extra sets have
been loaded, the numbers of any new sets you define need to be incremented
accordingly.

Note that the size of these sets is determined when you created them with
FONT.ACB. This means you can readily use any of these six supplementary sets
for all three graphics modes.

Icons
The STOS Basic Icons are a group of useful 16 by 16 characters, stored in bank
number 2. These icons can be output to the screen at the current cursor position
using PRINT. This allows you to use them to create complicated backgrounds for
your games. You can also incorporate icons directly into a menu. See Chapter 9
for more details. We've provided a special set of icons especially for your use in
the file ICONDEMO.MBK.

ICON$ (Generate an icon at the current cursor position)

ICONS(n)

In order to output an icon to the screen you simply print a string containing a
CHR$(27) character followed by CHR$(n), where n is the number of the icon you
wish to draw. This string can be generated directly using the ICON$ function.

Example:

Also:

new
load "ICON.MBK"
10 forX=O to 19
20 for Y=O TO 4
30 locate X*2, Y*2
40 print icon$(X*S+Y+1)
50 next Y
60 next X

print chr$(21)+chr$(S)
This is equivalent to print iconS(S)

The icon definer
This is very similar to the font definer accessory, but rather less involved. It can be
loaded using the line:

accnew:accload "ICONS.ACB"

You can now access this accessory from the editor at any time using Help+fl. On
startup you are presented with menu and two windows. The bottom window
occupies the entire width of the screen and is used to select an icon to be edited.

173

If you are starting from scratch with a new set of icons, then this window will initially
be empty.

You begin by choosing an icon from the selection window by moving the
pointer over the icon to be changed, and pressing the left mouse button. You now
move the mouse pointer into the Edit window. As with the font definer, the left
button sets a pixel in the icon at the current pointer position, and the right button
clears it. After you have finished drawing the icon you will need to update the old
definition. This involves simply moving the mouse pointer over the appropriate
icon in the selection window, and then clicking once on the right mouse button.
When you have completed this process, you can then either save them to disc
using the save option, or load them intoBank two of your current program with Quit
& Grab.

Summary

1 . Choose the icon to be edited from the selection window using the left mouse
button.

2. Edit the Icon in the Edit window. The left button sets a point. The right button
clears a point and the icon menu manipulates the icons.

3. Install the icon in the Selection window with the right mouse button.
4. Repeat stages one to three until you have completed your set of icons.
5. Save the Icons using either the Save or the Quit & Grab options from the Disc

menu.

174

I 9 I Menu commands

STOS Basic provides you with a number of clever facilities for creating and
manipulating on-screen menus. Although these menus may look rather different
to their Gem equivalents, they are considerably more powerful. They are also a
great deal easier to use. The best way to explain the commands is by writing a
complete program which is developed in this chapter.

Creating a menu
Before you can incorporate one of these menus into a program, you first need to
define the menu titles which will be displayed on the screen. This is done with the
MENU$ command.

MENU$ (Set a menu title)

MENU$(x)=title$ [,paper,pen]

Title$ holds the title of your menu, and paper and pen are the colours of each
heading and background respectively. The value of x denotes the number of the
menu whose tille you wish to create.

These menus are given numbers from ito 10 starting from the left hand corner
of the screen. Here is a simple example which constructs a menu consisting of just
two titles: ACTION and MOUSE.

new
10 menuS (1)="ACTION "
20 menuS (2)="MOUSE"

You can now specify a list of options to be associated with each of these titles using
a second form of the MENU$ command.

MENU$(x,Y) (Set a menu option)

MENU$(x,y)=OPTION$ [paper,pen]

The variables X and Y in this instruction refer to the title number, and the option
number of the menu line. The string option$ represents the menu text. You can,
however, use any string you like for this purpose.

Type the following lines into your program:

25 rem Action menu
30 menuS (1,1)="Quit"
35 rem Mouse menu
40 menuS (2,11=HArrow"
50 menuS (2.2I="Hand"
60 menuS (2.3)="Clock"

This will determine the various alternatives for the ACTION and the MOUSE
menus. If you try to run this program as it stands, nothing happens. The reason

175

for this is that STOS Basic first requires you to use a special command to start your
new menu running.

MENU ON (Turn on menu interrupt)

Add the following line to make the program work properly:

70 menu on

MENU ON has a number of possible extensions. These allow you to choose any
one of 16 different borders for your menus. You can also use this function to
change the current menu style.

STOS Basic supports two distinct types of menu: Drop-down menus and pull
down menus. Drop-down menus are selected whenever the mouse touches the
menu line, whereas pull-down menus also require you to press the left mouse
button as well. The full definition of the MENU ON statement is therefore:

MENU ON [border][,mode]

border can range from 1 to 16.

mode is either 1 for a drop-down menu or 2 for a pull-down menu.

If you want to use pull-down menus in your program, you can replace line 70 with:

70 MENU ON 5,2

This generates a pull-down menu with border type 5. There's also a number of
other useful options:

MENU OFF (Stop menu interrupt)

Permanently switches off the entire menu and clears the menu from the ST's
memory.

MENU FREEZE (Freeze menu interrupt)

Temporarily freezes the action of the menu. The menu can be restarted with
MENU ON.

MENU$(title,option) OFF (Disable a menu option)

This instruction disables one of the list of menu items under title. Any further
attempts to call this entry are completely ignored.

MENU$(title,option) ON (Enable a menu option)

Reverses the effect of the above instruction.

STOS stores all your menus in bank number 15. This bank should therefore only
be reserved when these menus are not required in your program.

Making a selection
The menu you have prepared is now ready for use. It can be read using the two
reserved variables: MNBAR and MNSELECT.

176

MNBAR and MNSELECT

MNBAR holds a number denoting the menu title you have chosen, while
MNSELECT contains the number of the specific option you have highlighted with
the mouse. You can see how this works by entering lines 90-110:

911 OPTlON=mnbar : CHOICE=mnselect
100 print "Title Number ";OPTlON; " Selection Number";
CHOICE
110 goto 911

If you run this program, the title number and the option number you have selected
will be displayed to the screen.

This code can be expanded into a real program, by replacing the lines 100
onwards with:

100 if OPTION=1 and CHOICE=1 then menu off : stop
110 if OPTION=2 and CHOICE<>O then change mouse CHOICE
120 goto !III

Line 100 tests the menu to see if you have decided to exit from the program. The
action of line 110 is to check whether you wish to swap the mouse pointer. It can
then use this information to alter the pointer type with a CHANGE MOUSE
instruction.

ON MENU (Conditional menu jump)

The last example was fairly simple. But supposing you wanted to write a routine
with a larger and more complicated series of menus. In this case, your program
would need to use a long list of IF .. .THEN statements to deal with each and every
possibility. Inevitably this would make your program both unwieldy and hard to
change. It would therefore be better if there was an easier way of handling these
menus.

Fortunately STOS Basic includes a special ON MENU statement which
provides you with a painless method of managing even the largest menus. It does
this by automatically jumping to one of a list of line numbers, depending on the title
you have chosen.

ON MENU GOTO line1 [,line2] ...
is broadly equivalent to the line:
ON MNBAR GOTO line1 [,line2] ...

One major difference between the above instruction and ON MENU is that ON
MENU is performed using interrupts. This allows your program to execute another
task at the same time as your menus are being tested.

Example:

new
10T=O
20 menuS (1)=" ACTION"
30 menuS (1,11="COLlNT'
40 menuS (1.2I="QUIT"
50 menu on
60 on mnbar goto !III
80 T=T+1 : goto 80
!III if mnselect=1 then 10cBte 0,1 : print T : goto 60

177

100 if mnselect=2 then stop

When you run this program, it first creates a menu, and then checks whether this
menu has been accessed. It now reaches line 80 and repeatedly adds 1 to the
variable 60 is never executed around with the
has no whatsoever. Try replacing

!loto 90
on

In this case the menu will function pei1ectly, despite the fact that the program is
still stuck at line 80. Furthermore, every time you choose COUNT, you will find that
the value of the variable T has increased.

This appears to prove that line 80 is running at the same time as line 60. What
is really happening is that the menus are being tested by 8T08 Basic 50 times a
second using an interrupt similar to that utilised by the sprite commands.

The entire process is set in motion by the ON MENU ON instruction. As you
might there's also a ON MENU OFF which turns the menus
You menu routine in any sequence of
instructions providing they make input or output information
to the

Up
describe
end,
that

will therefore go
a real program. To

small, but useful directly comparable
on the 8T startup disc. As before, we will begin by defining the menu:

new
3 mode 0
5 rem Action menu
10 menuS (1)=" ACTION"
20 menuS (l,l)="DRAW"

\1 ,2)=" QUIT"
menu

PENS"
12,1)="Small"
(2,2)="Medium"
(2,3)="Large"

75 rem Colour menu
80 menuS (3)=" COLOUR"
90 for 1=1 to 16
100 menuS (3,1)="<six spaces>",I-l,O
110 next I

lines 90 to 110 seem to produce amenu consisting of nothing more
if you look more see Ihat we're actually

each line to the value turns our spaces
nnrnnn>l"., colour - a technique great effect by

act~essor'les Ihe disc.
to keep things as

of colours available
Iho,rot.".o delete line 3 and alter

90 for 1=1 to 2

IJU:,,,IIJ'''', we've assumed
with mono monilors

You must now activate the menu using the MENU ON command.

120 menu on

178

Before you can continue, you need to decide precisely where the program should
go when each of the menu titles are selected. In this example we've placed the
routines starting at 200, 400 and 600 respectively.

150 on menu goto 200,400,600
160 on menu on
170 goto 170

When a menu item is chosen, line 150 will automatically execute the routines at
either 200, 400 or 600 depending on whether the titles ACTION, PEN or COLOUR
were picked. Incidentally the reason for the line at 170 is to give 8T08 Basic
something to do while the program is waiting for the menu to be used.

We'll now examine the ACTION routine at lines 200-400 which effectively
forms the heart of the Doodle program. ACTION gives you a choice between two
different alternatives; Exit or Draw. If you select the Exit option then the program
should simply return to the editor.

199 rem Actions
240 M=mnselect
250 if M=2 then menu off : stop

The second possibility is that you might wish to actually do some drawing on the
screen. It's easy enough to detect whether this feature has been chosen using a
Simple IF ... THEN statement.

260 rem If item 1 not picked go back to menu loop
270 if M<>1 then 150

Now comes the drawing routine itself which is rather more complicated. We will
begin by specifying precisely what we want the program to do and then see how
this effect will be achieved. What we require is a small routine to input the position
of the mouse, and then draw a filled circle at the appropriate coordinates whenever
the left mouse button is pressed. In order to enable the user to draw continuous
lines, this process should be repeated until the drawing routine is terminated with
the right button.

280 rem Draw until right mouse button clicked
290 repeat
300 rem Wait until a mouse button has been pressed
310 repeat M=mouse key: until M<>o
320 rem If left button then draw a circle of radius SIZE*5
330 if M=1 then X=x mouse: V=y mouse: circle X.V,SIZE*5
340 until mouse key=2: rem I:heck for right mouse
390 goto 150

The code to deal with the other two menu items is very simple indeed since it only
has to read the menu using mnselect and then use this to set either the size or the
colour of the pen.

399 rem SIZE = size of pen
400 SIZE=mnselect : goto 150
599 rem C = Colour of pen
600 C=mnselect : if C>O then ink C-1
610 goto 150

The initial value for SIZE needs to be set to one. There also needs to be another
line to prevent a flashing text cursor in the top left hand corner of the screen.

179

85 size='
'30 curs off: clw : rem Get rid of the flashing cursor and clear screen

Another problem is that the drawing operations can occasionally clash with the
menu. In extreme cases this can lead to almost total destruction of the menu line
itself. There are two things that can be done to avoid this difficulty. Firstly you can
turn off the menus during the drawing operations using MENU FREEZE.

As an additional safeguard, it's also a good idea to restrict the mouse to the
part of the screen below the menus with the LIMIT MOUSE command. This stops
you from accidentally obliterating large sections of the menu line with part of your
drawing.

200 menu freeze: rem Switch off menu
210 rem Limit mouse to below menu. Modify for use in high or medium res
220 limit mouse 0.22 to 300,180
350 menu on : rem Restart menu
360 limit mouse: rem Remove mouse limit

Finally, the mouse pointer has a completely different effect depending on whether
you are drawing a circle or calling one of the menus. We therefore changed the
mouse pointer to a hand within the drawing routine, to avoid any possibility of
confusion.

230 change mouse 2 : rem Change mouse to hand
370 change mouse 1 : rem Change mouse back to arrow

Icons
So far, all the menus we have created have been composed of text. However you
can also incorporate icons into a menu:

MENU$(1)=ICON$(2) Loads the title number with icon two.

MENU$(2,1)=ICON$(3) Associates icon 3 with option 1 of title 2.

To demonstrate how this works, there are some icons for the Doodle program in
the file ICON.MBK. This should first be loaded from the editor using LOAD
"ICON.MBK".

You should now replace lines 50 to 70 with:

50 manuS (2.1)=icon$(3):rem Small circle
60 menuS (2.2)=icon$(2):rem Medium-sized circle
70 menuS (2.3)=icon$(1):rem Large circle

These lines substitute the original PEN menu with a set of three icons representing
the various possible pen sizes. When you execute this program, these icons can
be accessed with the mouse in exactly the same way as a normal menu.

Possible ideas for expansion
The previous example could form the basis of quite a powerful drawing utility. Here
are a few of the possible ways you could expand it.
1. Add a Disc menu to allow the loading and saving of pictures via the disc. (Use

something like LOAD F$+".NEO" or SAVE F$+".NEO" where F$ is the name
of your file).

180

2. Improve the resolution of your picture by using points instead of circles.
3. Add an eraser.
4. Replace the hand pointer with cross-hairs. This can be achieved by using the

Sprite Editor program to generate a sprite of the appropriate shape, and then
calling change mouse using the image number plus 4.

5. Add routines to draw other objects such as boxes or ellipses.
6. Implement a cut and paste feature using SCREEN COPY.
7. Change the size of parts of the picture using ZOOM or REDUCE.

Trc)ubleshooting

As you have seen, using menus from STOS Basic is normally very easy indeed.
Even the best of us however, can occasionally make a mistake, and when this
happens it may help to check the following list of common problems.

Problem:

Solution:

Problem:
Solution:

Problem:
Solution:

The Menu flickers and dies every time you try to call it with the
mouse.
You have ordered a menu out of sequence. Check the menu
definitions.

The menu doesn't appear in your program.
You may have forgotten to use the MENU ON command.

ON MENU doesn't work.
Check whether there is an ON MENU ON statement. Also make
sure the program isn't attempting to perform Input or Output to
the screen while ON MENU is active.

181

182

110 I Other commands
now we have concerned many of the more

Basic. But like all versions language, STOS
more mundane facililies you to do a range

such as accessing the ST's screen, keyboard or disc.
The aim of this chapter is therefore to provide you with all the information you

need to familiarise yourself with the nuts and bolts of the STOS Basic system.
Whenever possible. We have included any major differences between STOS and
standard Basic. This should make it fairly easy to convert programs written in most
other dialects of Basic for use with this package. Since the scope of this manual
cannot extend to providing an in-depth tutorial on Basic itself, we have provided

of worked examples which prove useful even

Structures
to a new line number)

GOTO is probably the most commonly used of all the Basic instructions. The action
of a GOTO is to transfer the control of the program from the current line number,
to a new one.

GOTO line number

expression

new
10 goto 30

Where line number can be any line in your Basic
program.

be any allowable
involving either variables

is known as a

20 print "This line is never printed"
30 print "Now executing line 30"

Now for an example of a computed GOTO.

lIew
10 JUMP=10

goto JUMP*2+20 :
print "This line is
print "Jumped to

40

This example is really a rather bad piece of programming, because any mistake
you make in line 10 or 20, could lead to your program jumping somewhere totally
unforseen. Furthermore, these computed gotos are invariably far slower than
normal ones, and make it almost impossible to renumber your program. They
should therefore be used with extreme caution.

Users of other Basics should note that STOS Basic does not support any form

of labels. This means that you should remember to place a number at the start of
each and every line. See AUTO

If you absolutely have to use labels in your program, you can simulate them
with a computed goto like so:

reached"

should NEVER be used
this will lead to a NEXT WITHOUT FOR error.

See also ON GOTO

GOSUB (Jump to a Subroutine)

instruction.

GOSUB

GOTO, but has the ",";cliliCl.n::l1

with a RETURN
to split a program
As with GOTO, there

Jump to the

FOR ... NEXT loop,

of enabling you to
most common use
manageable chunks,

different forms of the GOSUB

line.

GOSUB expression Jump to the subroutine at the number given by the
result of expression

Example:

new
101=1

lIave called this gosilil

This demonstration was trivial, but if you some of the programs
the disc, you will find many real examples of just this sort of subroutine.

RETURN (Return from a GOSUB to the next instruction)

RETURN exits from a subroutine, and jumps back to the statement after the initial
GOSUB.

Example:

"Returned"

"Illside Gosub":return

POP (Remove the RETURN information after a GOSUB)

The POP instruction removes the return address generated by a GOSUB and
allows you to leave the subroutine without having to execute the final RETURN
statement.

184

Here is an example of this instruction in action:

new
101=1
20 gosub 40
30 goto 20
40 print "You have called this gosub ";I;"times"
50 inc 1 : if 1>100 then pop:goto 70
60 return
70 print "Gosub terminated after ";1-1;" Times"

See ON GOSUB

FOR ... NEXT (Repeat a section of code a specific number of times)

This is the classic way of repeating parts of a Basic program. The format of the
instruction is:

FOR var=start TO finish [STEP inc]

list of instructions

NEXT [var]

When this loop is first entered, varis loaded with the value of start. The instructions
between the FOR and the NEXT are now performed until the NEXT is reached.
The NEXT instruction increments var by either inc, or 1, depending on whether the
optional STEP has been included. The loop counter is now tested. If var is either
greater than finish (for positive increments), or less than finish (for negative steps),
the loop is terminated, and the instruction after the NEXT is executed. Otherwise
the loop is restarted from the top.

Here are a couple of examples of FOR ... NEXT loops.

for 9=1 to 100 step 10:print 9:next 9

new
10 for a=32 to 255
20 print chr$(a);
3D next a

new
10 for R1=20 to 100 step 20
20 for R2=20 to 100 step 20
30 for a=O to 3
40 ink a
50 ellipse 160,100,Rl,R2
60 next a
70 next R2
80 next R1

See how we've placed a number of FOR ... NEXT loops inside each other. This is
known as nesting. STOS Basic will permit you to nest anything up to a maximum
of 10 FOR ... NEXTs in this way. Unlike some other Basics, STOS Basic does not
allow you to replace lines 50-70 with "NEXT I, R 1, R2". All NEXT instructions should
be placed directly at the correct point in the program.

185

WHILE ... WEND (Repeat a section of code while a condition is true)

This instruction enables you to repeat a series of instructions until a specific
condition has been satisfied.

WHILE condition

list of statements

WEND

The condition can be any set of tests you like, and can include the constructions
AND and OR. This check is always performed at the start of the WHILE loop. The
list of statements between the WHILE and the WEND will be only be executed if
this condition is true.

Type the following example:

new
10 input "Type in a number";X
20 print "Counting to 11"
30 while X<11
40 inc X
50 print X
60 wend
70 print "Loop terminated"

The number of times the WHILE loop in this program will be executed-depends on
the value you input to the routine. If you type in a number larger than 10, you will
find that the loop is not entered at all.

As a rule, these WHILE loops should therefore only be used when a list of
statements needs to be repeated 0 or more times. The program above is
effectively equivalent to the following routine written in standard Basic:

new
10 input "Type in a number";X
20 print "Counting to 11 8

30 if X>=11 then 70
40 inc X
50 print X
60 goto 30
70 print "Loop terminated"

It should be readily apparent that the program with the WHILE statement is much
easier to read than the one which used GOTO. Each WHILE instruction in your
program should be matched by exactly one WEND statement. See
REPEAT...UNTIL

REPEAT ... lINTIL (Repeat a section of code until a condition is satisfied)

This pair of statements is similar to WHILE ... WEND except that the tost for
completion is made at the end of the loop rather than the beginning. Furthermore,
the action of the UNTIL statement is to continue executing the loop until the
condition is FALSE. The format of this instruction is:

REPEAT

186

list of statements

UNTIL condition

where condition is a list of conditions, and the list of statements can be any set of
Basic instructions you like.

Here is a small example, taken from the. Doodle program in Chapter 9:

10 repeat
20 M=mouse key: rem test to see if mouse button pressed
30 until M<>O
40 print "You clicked on the mouse button"

we could have used a WHILE .. .wEND construct in this program instead. This
would have changed the routine to:

10 M=mouse key
20 while M=D
30 M=mouse key
40 wend
50 print "You clicked on the mouse button"

In this case, we would have had to use an extra instruction to test for the mouse
key at the start of the loop.

Since a REPEAT...UNTIL loop always executes at least once, this was not
needed in the first example. As with WHILE .. .wEND, you should always remember
to match each REPEAT with an UNTIL.

STOP (Stop running the program and return to the Editor)

This command stops the current program running and returns to the editor. It can
be used at any point in your program.

Example:

new
10 input "Input a number between 1 and 100 (0 to stop)";N
20 if N=D then stop
30 for 1=1 to N
40 print 1*1
50 next I
60 goto 10

Note that unlike END, a program terminated with STOP can be restarted with
CaNT, providing it has not been altered in the meantime using the editor.

END (Exit from the program)

This instruction exits from a program and returns to the editor. Programs which
have been terminated using END cannot be subsequently restarted using CaNT.

See STOP.

IF ... THEN [ELSE] (Choose between alternative actions)

The IF .. .THEN instructions allow you to make decisions within a Basic program.
The format is:

187

IF conditions THEN statements1 [ELSE statements2]

conditions can be any list of tests including AND and OR.

Statements 1 and statements2 can be either lists of STOS Basic instructions, or
line numbers.

The action of the IF ... THEN instruction is to execute the instructions in
statements 1 if the conditions are true. If the optional ELSE statement is included,
then statements2will be performed when the condition is false. Otherwise control
will pass to the line after the IF ... THEN instruction. The following example program
demonstrates most of the various possibilities.

10 input "Input a number";N
20 print "Number ";N;" is :';
30 if N>O then print "Positive"; else print "Negative";
40 if (N/2)*2=N then print" and Even" : goto 60
50 if (N/2)*2<>N then print" and Odd"
60 input "Continue Y or N";AS
70 if AS<>"Y" and AS<>"y" then 90 else 10
80 print "Never executed"
90 stop

Note that STOS Basic restricts these IF ... THEN statements to a single line. See
NOT.TRUE,FALSE

ON ... GOTO (Jump to one of a list of lines depending on a variable)

ON var GOTO line1 ,line2,line3 ...

The ON GOTO instruction allows your program to jump to one of a number of lines
depending on the value of the variable var. If vartakes a value of 1, for instance,
the instruction is identical to a simple GOTO Iine1 Similarly, if var holds a 2 then
the program will branch to line2, and so on. In order to have an effect, the
ON ... GOTO statement requires varto hold a figure between 1 and the number of
possible destinations. Look at the following small example:

new
10 input "Input B number ";N
20 on N goto 50,60,70,80
30 print "You input a number either less than 0 or greater than 4"
40 goto 10
50 print "You input the number ONE" : goto 10
60 print "You input the number TWO" : goto 10
70 print "You input the number THREE" : goto 10
80 print "You input the number FOUR" : goto 10

Note that the variable used for N must always be an integer.

See GOTO, GOSUB, ON GOSUB

ON ... GOSUB (GOSUB one of a list of routines depending on a var)

ON var GOSUB line1,line2,line3 ...

This is identical to ON ... GOTO except that it uses a gosub rather than a goto to
jump to the line. When the subroutine has finished executing, it should use a
RETURN to jump back to the next instruction after the ON ... GOSUB statement.

188

Example:

new
10 input "Input a number ";N
20 on N gosub 50,60,70
40 goto 10
50 print "Subroutine ONE" : return
60 print "Subroutine TWO" : return
70 print "Subroutine THREE" : return

See also GOSUB and ON GOTO

ON ERROR GOTO (Trap an ERROR within a Basic program)

This command is used to allow the detection and correction of errors which occur
within a STOS Basic program. Take, for instance, the following routine:

10 input "Input a positive number";N
20 print "The Square Root of ";N;" is ";SQR(n)
30 goto 10

This program works fine until you try to type in a negative number. When this
happens an error is generated, as you are not allowed to calculate the square root
of any number less than 1. STOS Basic therefore returns you to the editor, and
prints out the error message ILLEGAL NEGA TlVE OPERAND in line 20.

You can avoid this problem by trapping the error with an ON ERROR GOTO
instruction. The format is:

ON ERROR GOTO line

Where line is the location of your new error correction routine.

line refers to the location of a routine which will be executed whenever an error
occurs. You can also use an expression forthis purpose, but this is generally rather
a bad idea as the expression is only evaluated once, when the ON ERROR GOTO
instruction is first initialised.

Example:

10 on error goto 50
20 input "Input a positive number";N
30 print 'The square root of H;N;" is ";sqr(N)
40 goto 10
50 print
60 print ''I'm afraid you can only take the square root of a
positive number"
70 N=abs(N)
80 resume 10

In order to turn the action of ON ERROR GOTO off, you simply type the line: ON
ERROR GOTO 0

See RESUME, ERRN, ERRL, ERROR

RESUME (Resume execution of the program after an error)

This instruction is used from within an error trap created by ON ERROR GOTO.

189

The action of RESUME is to jump back to the part of the program which caused
the problem, after the error has been corrected by your routine. You should
NEVER attempt to use GOTO in this context.

RESUME has three possible formats:

RESUME

RESUME NEXT

RESUME line

Jump back to the statement which caused the
error and try again.

Jump to statement following the one which
generated the error.

Jump to line number.

See ON ERROR GOTO, ERROR, ERRL, ERRN

ERRN (Reserved variable containing the number of the last error)

When an error occurs, ERRN is automatically loaded with the error number. This
can be printed out using a line such as:

PRINT ERRN

ERRL (Reserved variable holding the location of last error)

ERRL contains the line number of the last error which occurred.

Here is a small example.

10 rem Error test routine
20 on error goto 50
30 rim I appear to have made H slight mistake!
40 stop
50 print "ERROR NUMBER ";errn;" at line ";errl
60 resume next

See also ERRN, ERROR and ON ERROR GOTO

ERROR (Generate an ERROR and return to the STOS Editor)

The action of the ERROR command is to actually generate an error. This may
sound rather crazy, but it's often quite useful. Supposing you have created a nice
little error handling routine which is able to cope with any possible disc errors.

error 2

Quits the program and prints out an out of memory error.

The most common form of this instruction is:

error errn

This uses the ERRN function to print the current error condition.
By testing the ERRN for the errors your program can correct, you only need

to revert back to the editor when absolutely necessary.

190

BREAK (Turn on or off the Contro/+C Break key)

Normally you can interrupt a program and return to the editor at any time by
pressing the two keys Control and C. Although this is useful when you're
debugging a program, it would be very dangerous to allow this function to operate
in a commercial games program, as it would make it extremely easy for an
unscrupulous person to steal some of your code. You can therefore turn this
function off using a special BREAK OFF command.

As you might expect, you can also reactivate the Break keys using:

break on

But be warned: NEVER run a protected program unless you have made a backup
copy on the disc first. Otherwise if the program gets stuck in a loop, you could easily
end up losing several hours of your work.

The keyboard
KEY (Function to assign a string to a function key)

Any of the 10 function keys can be assigned a string of up to 64 characters long
using the KEY command.

KEY(x)=a$

Assigns string a$ to key number X.

a$ is the string which will be returned whenever key X is pressed. X is a number
from 1 to 20, where the numbers between 11-20 represent a shifted version of the
normal function keys.

Example:

1 rem Reassign function keys. Warning! In order to gel the
2 rem default assignments back. you will need to reboot 8T08 Basic!
10 for 1=1 to 20
20 read AS
30 key (I)=A$.t
40 next I
50 input "Press a function key";F$
60 print "Function key number ";FS
70 goto 50
80 data .. one two three four five six seven eight·."nine"
90 data .. ten eleven twelve thirteen fourteen fifteen sixteen"
100 data .. seventeen eighteen nineteen twenty ..

If you now run this program, and press a function key, the number of the key you
pressed will be printed on the screen.

See also KEY LIST and FKEY

INKEY$ (Function to get a keypress)

The INKEY$ function allows you to test whether a key has been pressed at any
time, without having to interrupt the action of the program. INKEY$ is used in the

191

following way.

K$=INKEY$

where K$ is the string variable which will be used to hold the key which has been
pressed.

If the user presses a key, then K$ will contain the Ascii character which has
been input, otherwise K$will be set to the empty string " •. Ascii values range from
0-255 and represent a standard code used to hold all alphanumeric characters.
It is important to note that some keys, such as the cursor keys, and the function
keys, use a rather different format. These must therefore be read using a separate
SCANCODE function.

Example:

new
10 while K$=""
20 KS=inkey$
30 wend
40 print "You prassed the ";K$;" Key with an
Ascii code of ";asc(KS)
50 K$="" : goto 10

See CLEAR KEY and SCAN CODE

SCANCODE (Input the SCAN CODE of the last key input with INKEY$)

SCANCODE is used in conjunction with INKEV$ to test whether the user has
pressed a key which does not return an Ascii code. If INKEY$ detects that such
a key has been input, it returns a character with the value O. When this happens
you should use the SCANCODE function to determine the internal code associated
with this key.

Try typing in the following small example:

new
10 while K$=""
20 KS=inkey$
30 wend
40 if asc(KS)=O then print ·You Pressed a key with no ASCII code."
50 prinl 'The scancode is";scancode
60 KS="" : gOlD 10

CLEAR KEY (Initialise keyboard buffer)

Whenever you type a character on the ST's keyboard, its Ascii code is placed in
an area of memory known as the keyboard buffer. It is this buffer that is read by
the INKEY$ function. At the start of a program the buffer may well be full of
unwanted information. It's therefore generally a good idea to remove all this
garbage first using CLEAR KEY.

Add line 5 to the program in the previous example.

5 clear key

See PUT KEY.INKEY$

192

INPUT$(n) (Function to input n characters into a string)

INPUT$ reads n characters from the keyboard, waiting for each one, and then
loads them into a string. As with INKEY$. these characters are not echoed back
on the screen.

X$=INPUT$(n)

X$ represents any string variable and n is a number denoting the length of the
string to be input.

Example:

new
10 clear kay
20 print "Type in ten charactarsft

30 CS=inputS(10)
40 print Nyou typed in the string N;C$

It is important not to confuse INPUT$ with INPUT, as the two instructions are
completely different.

Also note that there is a special version of INPUT$ which is used to access the disc.

FKEY (Read the function keys directly)

FKEY is a special form of the INKEY$ function which can be used to test the
function keys directly without having to tediously use SCANCODE. Whenever a
function key is pressed, FKEY returns a number between 1 and 20. Numbers
greater than 10 indicate that the key has been shifted, and a value of zero means
that no key has been pressed.

FKEY is often used in conjunction with ON ... GOSUB to jump to one of a
number of subroutines depending a function key chosen by the user.

ON FKEY GOSUB line1,line2,line3 ...

See KEY, KEY LIST

WAIT KEY (Wait for a keypress)

The action of WAIT KEY is simply to halt the program until the user hits a key.

Example:

naw
10 print NPralS a ke~
20 wail key
30 print -Key praISed-

KEY SPEED (Change key repeat speed)

KEYSPEED repeats peed, delay

This instruction allows you to tailor the speed of the keyboard to your own particular
taste. repeatspeed is the delay in 50ths of second between each repeated

193

character. De/ay is the time in 50ths of a second between pressing a key, and the
start of the repeat sequence.

PUT KEY (Put a string into the keyboard buffer)

This function is used to load a string of characters into the keyboard buffer.
Carriage returns can be included in this string using the' character. The most
common use of PUT KEY is to call up a direct mode command after a program has
terminated.

Example:

10 put key "new'"

When this line is executed, the program erases itself from the ST's memory. It does
this by placing a "new" into the keyboard buffer, which is then performed directly
from the editor when the program ends.

Input/output
INPUT (Input a number or some text into a string variable)

INPUT provides you with a standard way of inputting information into a variable.
There are two possible formats for the instruction:

INPUT variable list

INPUT "Prompt";variable list

variable list can be any list of variables separated
by commas.

Prompt may be any string of characters you
like.

When you execute an INPUT instruction, the ST displays a ? and waits for you to
enter the required information from the keyboard. "an optional prompt has been
included, then this will be printed out instead of the "?".

Example:

new
10 input A
20 print A

"you now run this program and type in the number 1 0, the following dialogue will
ensue. In order to distinguish between your input, and the computers output,
We've underlined anything entered from the keyboard .

.om
?1.Q
10

If more than one variable has been specified in the list, these should be entered
as in the example below.

new
10 input A.B.CS
20 print A.B.CS

We'lI now show you some sample dialogue of this program in action .

.om
? 15.40,string of characters
15 40 string of characters

194

Notice how we've separated the three values typed in with a comma. Any commas
input as part of a string will therefore effectively split the string in two. In some
circumstances this might be a major inconvenience, so STOS Basic includes a
useful LINE INPUT instruction which allows you to use a Return instead of a
comma as the separator.

Here's another example, showing the action of the prompt:

new
10 input "Enter your age:";A
20 input "Enter the month, and the year of your birth:";MS.V
30 input "Enter your christian name and surname:";C$,SS
40 print "Age = ";A
50 print "Month = ";MS;" Year = ";V
60 print "Name = ";Cs.sS

Il.!D.
Enter your age:2.6
Enter the month, and the year of your birth:July 1961
Enter your christian name and surname:Stephen Hill
Age = 26
Month = July Year = 1961
Name = Stephen Hill

Incidentally, if you're used to another version of Basic, you should note that the;
between the prompt and the variables, cannot be replaced by a ,. See INPUT# and
LINE INPUT

LINE INPUT (Input a list of variables separated by a Return)

Line input is exactly the same as INPUT, except that it uses a Return instead of
a comma to separate each variable you type in.

Example:

new
10 line input A.B,C$
20 print A.B,CS

nm
110
??~
?? Hello
1020 Hello

See INPUT, LINE INPUT#

PRINT and? (Print a list of variables of the screen)

The PRINT instruction has precisely the opposite effect as INPUT, and prints the
contents of a list of variables at the current cursor p,osition on the ST's screen.

PRINT list of variables

The list of variables can include any mixture of strings or numbers. These variables
are separated by either a ; or a ,. If a semi-colon; is used, then the data will be
printed immediately after the last variable you output using print. If, however, a

195

comma is used, the cursor will be positioned a number of spaces ahead. Normally
the cursor is moved downwards one line every time a print instruction is executed.
This line can be suppressed by placing either of the separators at the end of the
PRINT. Note that PRINT can be abbreviated to a ? This will be expanded in full
in any program listings.

Example:

new
10 print 'This is the story of the Hitchikers Guide to the Galaxy"
20 A=10 : S=2D : C$=-Thirty-
30 print A.B;CS
40 print 10,20*10,"Hel";
50 print "10"

See also USING, LPRINT and PRINT#

USING (FormaNed output)

The USING statement is used in conjunction with PRINT to provide fine control
over the format of any printed output.

USING takes a special format string. Any normal alphanumeric characters in
this format string will be simply printed out, but if you include one of the characters
-#+-.;A then one of several useful formatting operations will be performed.

PRINT USING format$;variable list

Note the semi-colon between the format string format$ and the list of variables.

- (Shift+#) This is used to format strings. Any occurrences of the - are replaced
by a character from the following string.

Example:

new
10 print uling ~il is a --- demonstration of USING";"SmaU"
20 print using "1st Letter:- 2nd Letter:- 3rd Letter:--tSalic"

If you now type:

run

these lines will be displayed on the screen.
This is a small demonstration of USING 1 st Letter:B 2nd Letter:a 3rd Letter:s

Specifies the number of digits to be printed out from a numeric variable. If this
nUmber is greater than the size of the variable then excess # characters will be
replaced by spaces.

Example:

new
10 print using "1IW;314211
20 print uling """'11";123456
30 print using ""-;5&

When you run this program it will print out the following lines on the ST's screen.

196

4211
12345

5&

+ This adds a plus sign to a number if it is positive, and a minus sign if it is negative.

Example:

displays:

new
10 print using" +1/#";10
20 print using" +##";-10
run

+10
-10

- This only includes a sign if the number is negative. Positive numbers are
preceded by a space.

Example:

displays:

new
10 print using" -##";10
20 print using "-##";-10
run

10
-10

. Places a decimal point in the number, and centres it.

Example:

print using "PI is # .• ";3.1415926
PI is 3.141

; Centres a number but doesn't output a decimal point.

Example:

print using "PI is #;###";3.1415926
PI is 3141

A (Shift+6) Prints out a number in exponential form.

Example:

PRINT USING" Here is a number 1\";12345.618

Here is a number 1.23345678E5

See also FIX

197

Disc access: sequential files

The Atari ST supports two different types of disc files: Sequential files and random
access files.

Sequential files are designed to be used for accessing long lists of information
at a time. These files only allow you to read information back from the disc in the
precise order it was written. This means that if you want to change just one piece
of the data in the middle of the file, you would need to read in the whole file up to
and including this value, and then write the entire file back to the disc. STOS Basic
allows you to access sequenfial files for either writing, or reading, but never for both
at the same time.

Before you can use one of these files, you first need to open a channel to the
file, using OPEN IN or OPEN OUT. You can think of one of these channels as a
pipe running from the ST's memory to the file. This pipe is created whenever you
open the channel, and can be used to transfer information to and from a disc file,
using the INPUT#, or PRINT# instructions respectively. Look at the following small
example.

new
10 open out #1,"'ile:seq"
20 input "What is your name";NS
3D print #1,N$
40 close #1

This creates a file called FILE.SEQ containing your name. In order to read this
information back from the file, type in the lines:

new
1 open in #1,"file.seq"
2 input #tNS
3 print "I remember your name. It is ";N$
4 close #1

Notice how both these programs perform three separate operations.

• Open the file using either OPE"J IN or OPEN OUT
• Access the file with INPUT#, or PRINT#
• Close the file with CLOSE. Note that if you forget to do this, any changes

to the file will be lost!

These three steps need to be completed in exactly this order, every time you
access a sequential file. Now for a somewhat larger example.

new
10 rem Choose between reading and writing routines
20 input"Do you wantto read a file <R>, write a file <W> orstop <RETURN>";A$
30 if A$="R" or A$="r" then 190
40 rem If the user simply press Return then exit
50 if A$="" then stop
60 rem OPEN file "BIRTHDAY.SEQ" for output
70 open out #1:birthday.seq"
SO rem Input a name and a birthday
90 input "Input the name of your friend or to stop";F$
100 rem if name = close file and jump to main routine
110 if F$= then close #1 : g010 20
120 print F$;"'s Binhday is" : input B$
130 Rem Separate items by B comma for use with INPUT#

198

140 print #1.F$; ;B$
150 rem Gat anothar birthday
160 goto 80
170 rem Reading routine
180 rem Dimension strings 10rWHDLE lile. Assumes maximum 01 100 bithdays
190 open in #1."birthday.seq"
200 rem open file for reading
210 dim F$(100).B$(100)
220 rem set item number to zero
230 1=11
240 rem read file until end
250 print "List of birthdays"
260 print "======================="
270 repeat
280 rem read birthdays
290 input #1,F$(I).B$l1)
300 inc I
310 until eol(l)
320 rem print birthdays
330 for J=II to 1-1
340 print FS(J).B$lJ)
350 next J
360 rem close file and go back to start
370 close #1
380 goto 20

This program creates a small database consisting of a list of the names and
birthdays of your friends. The first half of the routine loads the information into the
file BIRTHDAY.SEQ. If this file already exists on the disc, it is erased. You are then
prompted tei input a list of names and birthdays which are stored on the disc.

The second part of the program opens this file, reads its contents, and displays
them on the screen. For more information on sequential files see OPEN IN, OPEN
OUT, CLOSE, INPUT#, PRINT#, LINE INPUT#, INPUT$(#Channel,n), LOF,
POF, EOF

Disc access: random access files
Random access files are so called because you can access the information stored
on the disc in any random order you like. In order to use these files you first need
to understand a little bit of theory.

All random access files are composed of units called records, each with their
own unique number. These records are in turn split up into a number of separate
fields. Every field contains one individual piece of information. When you use
sequential files, these fields can be any length you wish, as the file will only be read
in one direction. Random access files, however, always require you to specify the
maximum size of each of these fields in advance.

Supposing you wanted to produce a file containing a list of names and
telephone numbers. In this case you could use the fields:

Field

SURNAME$
NAME$
CODE$
TEL$

Maximum length

15
15
10
10

You could now define these fields using a line like:

199

field #1.15 as SURNAME$,15 as NAMES.l0
as COOES.10 as TELS

It's important to realise that the strings specified by the FIELD instruction can also
be used variables. This allows and write information

example:

:rem loads the lield SURNAME$.

TESTS=SURNAMES:PRINT TESTS

After you've loaded your record with information. you can write it onto the disc
using the PUT command.

Example:

put #1.10

Loads data of file opened on

Similarly. record using the GET

Example:

10 rem Open file "NAMES.RAN" for random access
20 open #1 ... R names.ran ..
30 rem Assign field strings
40 field #1.15 as SURNAMES.1S as NAMES.l0 as
AREAS.l0 as TELS

Clloose between reading and
want to read a number !lumber <W>. or exit

if <RETURN> entered. liret!
close #1 : end

AS<>"w" and AS<>"R"

100 rem Get number of record
110 input "Record Number ?";N
120 rem Exit if negative number entered
130 if N<O then 60
140 if AS="R" or AS="r" then 270
150 rem Routine to write telephone numbers
160 rem load fields into new record

240 goto 60

tile surname";SUIINAMES
the Christian name";NAMES
Ille area code ?";AREAS
tile telephone number

record at position N on

routine

250 rem Reading routine
260 rem Read record at N into fields
270 get #1.N
280 rem Print fields

200

290 print "Record number ";!II
300 print "====================
==================
310 print "Name:";NAMES,5URNAMES
320 print "Telephone number:";AREAS,TEL$
330 golo 60

For more information see FIELD, PUT#, GET#, OPEN and CLOSE.

OPEN OUT # (Open a file for output)

OPEN OUT #channel.file$[,attributeJ

The OPEN OUT instruction is used to open a sequential file for writing using
PRINT#. If this file already exists on the disc it will be erased. Channel is a number
between 1 and 10 by which the file will be referred to in all subsequent operations.
File$ can be any string holding the name of the new1ile to be opened. The optional
attribute allows you to specify the file type to be used. See DIR FIRST$ for more
details. Note that any attempt to read a file opened by OPEN OUT will cause an
error.

See CLOSE, OPEN IN, POF,LOF,EOF and PRINT#

OPEN IN # (Open a file for input)

OPEN IN #channel,file$

OPEN IN is used to open a file for reading. This file is only available for reading,
so if you try to write to a file open using OPEN IN, an error will occur. Channel
denotes a number ranging from 1 to 10 which is used by the instructions
INPUT#,LlNE INPUT# and INPUT$ (#channel,count) to specify which file is to be
read.

See OPEN,CLOSE INPUT# LINE INPUT#,INPUT$(#channel,n), EOF, POF and
LOF

OPEN # (Open a channel to a random file or a device)

There are four forms of this instruction:

OPEN #Channel,"R",file$ (Opens a random access file)
OPEN #Channel,"MIDI" (Opens a channel to the MIDI interface)
OPEN #Channel,"AUX" (Open a channel to the RS232 port)
OPEN #Channel,"PRT" (Open a channel for the printer) (assumes it's plugged in
the parallel port)

Example:

10 open #1,"AUX"
20 for 1=0 to 10
30 print #1,05TOS BASIC"
40 next X
50 close #1

This program prints out ten lines of text on the device connected to the RS232 port.
If your printer uses the parallel port change line IOta:

201

10 open #1,"PRT"

Similarly you can input information from a device such as a modem with a line like:

30 input #1,A$:print A$

When accessing these external devices, all the normal input statements are
available for your use, including INPUT$ and LINE INPUT.

See PORT, CLOSE, PUT, GET, FIELD$

CLOSE # (Close a file)

CLOSE #channel

This function closes the file associated with a channel. If you forget to close a file
after you have finished with it, any changes you have made to the file will be
completely ignored.

Example:

close #1

PRINT # (Print a list of variables to a file or device)

PRINT#Channel,variable list

This command is identical to the normal print instruction, but instead of displaying
the information to the screen, it outputs it to a file or output device specified by the
channel.

Example:

print #l,"Hello·

As with PRINT you can abbreviate PRINT# to ?#.

Example:

? #l,"Hello Again"

See also OPEN IN, OPEN OUT, OPEN, PRINT, USING

INPUT # (Input a list of variables from a file or device)

INPUT #Channel,variable list

INPUT# reads information from either a sequential file, or a device such as the
MIDI interface. The format of the instruction is identical to its screen equivalent. As
before it expects each piece of data in the file to be separated by a comma. INPUT
can only read up to a maximum of 500 characters worth of data at anyone time.
If your data is larger than this, you should always use the INPUT$ instruction
instead.

LINE INPUT # (Input a list of variables not separated by a ", 'J

LINE INPUT # has two possible formats:

202

LINE INPUT #Channel,variable list

or

LINE INPUT #Channel,separator$,variable list.

This function is identical to INPUT#, but it allows you to use another character
instead of a comma to separate the individual items of data on the disc. If no
separatorS character is included, then <Return> is assumed.

INPUT$ (Inputs a number of characters from a device)

INPUT$ (#Channel,count)

This reads count characters from the device or file connected to channel.

EOF # (Test for end of file)

EOF (#Channel)

EOF is a useful STOS Basic function which tests to see the end of a file has been
reached at the current reading position. If it has, EOF returns a result of true,
otherwise false.

LOF # (Length of open file)

LOF(#Channel)

This simply returns the length of an open file. It makes no sense to use this function
in conjuction with devices other than the disc.

POF # (Variable holding current position of file pointer)

POF(#Channel)

The POF function changes the current reading or writing position of an open file,
for example:

pof(#1)=1 000

This sets the read/write position to 1,000 characters past the start of the file. Oddly
enough POF can be used in this way to provide a crude form of random access
when using sequential files! The reason this works is simply that disc drives are
inherently random, and all sequential operations are effectively simulated using
random access.

FIELD # (Define record structure)

FIELD #channel, length1 AS field1 $,
length2 AS field2$

FIELD allows you to define a record which will be used for a random access file
created using the OPEN #channel,"R" command. This record can consist of up to
16 alphanumeric fields and be up to 65535 bytes in length.

Example:

FIELD #1.15 8S SURNAMES.15 as NAMES.10 8S CODES.10 as TEL.$

203

See OPEN, GET, PUT, CLOSE

PUT # (Output record R to a random access file)

PUT#channel, R

PUT moves
access file.
field strings

SURNAME$="HILL"

the ST's memory
contents of the new

FIELD, using a statement

number R of a random
IIrst be placed in the

Although you can write existing records in any order you like, you are not allowed
to scatter records on the disc totally at random. This means that if you have just
created a file, you can't type in something like:

put #1,1
put #1,5

In this case,
in the file

See also

GET # (Input

GET #Channel,R

instruction will generate
between 1 and 5.

FIELD$

random access

there are no records

GET reads record number R stored in a random access file opened using OPEN.
It then loads this record into the field strings created by FIELD. These strings can
now be manipulated in the normal way.

Example:

Note that
If you try

PORT#

60 put #1.1
70 inc 1
80 goto 40

,"lestH

NAMES

90 input "Record number?";R
100 if R<O then close #1 : end
110 get #1,R
120 print NAMES

GET to retrieve
number which does

channel waiting)

PORT(#Channel)

actually on the disc.
will be generated.

The PORT function tests tosee if an input device connected to a channel is waiting
for you to INPUT some information from it.

204

X=PORT(#channel)

If channel is ready to output some information, then X will be set to -1 (true), and
otherwise it will be zero (false).

The printer
There is also a separate set of instructions for use with the printer.

LLiST (Print part or all of a program on a printer)

This just lists your program to the printer. The syntax of the LLiST instruction is
exactly the same as that of LIST.

Example:

LUST 10 Outputs line 10 to the printer.

LUST 10-100 Lists the lines from 10 to 100 to the printer.

LLISTLists your entire program.

See LIST

LPRINT (Output a list of variables to the printer)

As PRINT but sends your data to the printer instead of the screen.

Example:

Iprint "Hello·

See PRINT, USING, PRINT#

LDIR (List a directory to the printer)

Lists the directory of the current disc to the printer. See DIR, for more details.

LlSTBANK (Print a list of the banks used by your program on the printer)

Lists the status of all the banks used by the current program using the printer. See
LlSTBANK

HARDCOPY (Screen dump)

This instruction dumps a copy of all the graphics on the screen to the printer.
Identical to pressing the Alt+Help keys from the editor. Note that people with Epson
compatible printers should first set the correct printer type. Since this requires you
to access the ST's inner workings directly, we've included an example routine for
this purpose in the technical reference section as an example of the TRAP
instruction.

WINDCOPY (Window dump)

Unlike HARDCOPY this command prints out the tex1 in the currently open window.
As you would expect, it is much faster than the graphics dump produced by
HARDCOPY.

205

Directories
DIR (Print out the directory of the current disc)

DIR [PATH$I [/WI

This function lists ali the files on the current disc. If the optional path$ is specified,
only the files which satisfy a certain set of conditions will be displayed. This path
string can contain anyone of the following six parts:

• The Name of a drive terminated by a":"
• The name of a folder to be listed. (Enclosed between two ''\" characters)
• A string of characters which will be matched in every filename to be displayed.
• A "*,, denoting that any string of up to eight characters will do.
• A "?" which automatically matches with any single character in the filename.
• A "." which separates a filename from an extension.

If the optional/W is added then the files will be listed across the page.

Examples:

DlR "A:*.BAS":rem Lists ... lists all Basic programs
on the disc.
DlR ''\STOS*.·'':rem Lists ... lists all files in the folder STOS
DlR ''\STOS*.CR?'':rem Lists list all the available
character sets.

DIR$ (Set the current directory)

This reserved variable can be used to find or change the default directory used for
all disc operations, such as loading and saving.

Example:

DIR$=''\STOS''
DIR (Displays the files in folder STOS)

DIR FIRST$ (Get first file in directory satisifying path name)

DIR FIRST$(path$,flag)

This function returns a string containing the name and parameters of the first file
on the disc which satisfies the conditions in the pathname path$. The f/agcontains
a number of binary bits which indicate the type of files to be searched for. The
format of this flag is:

Bit 0 Normal Read/Write files
Bit 1 Read only files
Bit 2 Hidden files
Bit 3 Hidden system files
Bit 4 Volume labels (The name of the disc)
Bit 5 Folders
Bit 6 Files which have been written to and closed

If you aren't sure which type of files you want to list, you can find ali the files on the
disc by setting the flag to -1.

If no file exists on the disc matching your specifications, then DIR FIRST$ will
return a null string. Otherwise it will hold the following 45 character parameter
block.

206

Characters
0-12

Usage
Filename
Length of file
Date file saved
Time file saved
File type

13-21
22-32
33-41
42-45

See DIR NEXT$ for an example of this function in action.

DIR NEXT (Get the next file satisfying current path)

DIR NEXT$ returns the next file found using the path specified by DIR FIRST$. It
can only be used after a DIR FIRST$ instruction has been executed. The string
returned by this function is in exactly the same format as the one generated by DIR
FIRST$. As before, if the string returned by the function is empty, then there are
no more files in the current path.

Example:

new
10 input "Input pathS";PS
20 N$=dir first$(PS,-1) : if N$= then end
30 print "Files matching the path string ";P$
33 print
35 print "Names";space$(8);"Size";space$(5);"Oate";
space$(7);"Time";spaceS(5);"Type"
40 print "============================
===========
50 print NS
60 repeat
70 NS=dir next$
80 print NS
90 until N$=

In order to print a list of the all the files on the disc, simply run this program with
a path of " ,

Also see DIR FIRST$, PREVIOUS, DIR, DIR$

PREVIOUS (Sets the current path up one directory)

This function can be used to move the search path up to the next outer
subdirectory.

Example:

dirS="\sTOS
dir
previous
dir

See DIR$

DRIVE (Variable containing the number of the current drive)

DRIVE is a variable containing a number representing the drive you are currently
using, with 0 denoting drive A, 1 indicating drive B etc.

207

Example:

print "Currant DRIVE is ";driva
drive=1
print "Current DRIVE is ";driva

See DRIVE$,

DRIVE$ holding current drive)

This function leiter representin~1 the

Example:

print "Currant driva is ";drive$
driva$="B"
print "Current drive is ";driva$

DRVMAP (Variable holding a list of the drives connected)

Bit = Drive
Bit 1 = Driva B
Bit 2 = Driva C

Example:

number denoting the
number holds the status

position is set
So:

print bin$(drvmap.261

assumes a minimum
using a ,,,,,",n:>rn

DFREE (Variable Onf1'1P1lfllnn the free space on

DFREE

print dfra8

MKDIR (Create a folder)

MKDIR folder$

This function

Example:

RMDIR (Delete a folder)

RMDIR folder$

of free space remaining

folder with the name

RMDIR deletes an empty folder from the disc"

208

drives connected"
drives, starting with
appropriate drive

even if you're only

Example:

rmdlr "TEST
dir

KILL (Erase a file from the disc)

KILL file$

This function deletes a file with the name file$from the current disc. If file$contains
the characters "0" or "?" a series of files will be erased. You should be very careful
when you use this function as anything you kill is wiped from the disc permanently.

RENAME (Rename a file)

RENAME old$ TO newS

The RENAME function allows you to change the name of a file. old$ refers to the
existing name, and new$ to the new name. If a file already exists with the new
name you have chosen, an error will be generated.

Example:

rename MDUMP.ACBM to "EXAMINE.ACB"

This renames the DUMP.ACB accessory.

Trigonometric functions
DEG (Convert an angle expressed in radians to degrees)

DEG converts angles expressed in radians into the form of degrees. A degree is
approximately equal to 57 radians.

~xample:

See RAD

print DEG(!IO)
5156.62015618

RAD (Convert a radian expressed in degrees to radians)

RAD converts angles expressed in degrees into radians. A radian is approximately
equal to 57 degrees.

Example:

See DEG

print RAD(5156.62015618)
90

These functions all use so called radian measure. One radian is equal to 360/20 PI
or approximately 57 degrees.

SIN (Sine)

SIN(angle)

209

Calculates the sine of the angle. Note that this function always returns a floating
point number, so if you wish to assign the return value to a variable, this must
always be of the type double precision.

Examples:

P#=sin(pi/2)
print sin(pi/4)

See ASIN,HSIN and PI

COS (Cosine)

COS (angle)

Returns the Cosine of the number in angle as a floating point number. All angles
are measured in radians.

Q#=cDs(pi/2)
print cDs{pi/4)

See ACOS, HCOS and PI

TAN (Tangent)

TAN(angle)

Generates the Tangent of the angle.

Examples:

R#=tan(pi/3)
print tan(pi/4)

See ATAN, HTAN and PI.

ASIN (Arc sine)

ASIN(number)

This function takes a number between -1 and +1 and calculates the angle in
radians which would be needed to generate this value with SIN.

So if X#=SIN(ANGLE) then ANGLE=ASIN(X#).

Examples:

A#=asin(1)
print asin{O.5)

See SIN, HSINO, PIO

ACOS (Arc cosine)

ACOS(number)

ACOS reverses the action of COS in the same way that ASIN inverts the SIN
function.

210

Example:

B#=acos(1)
print aCDs(O.5)

See COS, HCOSO, PIO

AT AN (Arc tangent)

ATAN(number)

Generates the arctan of number. See TAN ,HTAN, PI

Example:

C#=atan(O.5)
print atan(O)

HSIN (Hyperbolic sine)

HSIN(angle)

Returns a double precision number denoting the hyperbolic sine of an angle.

See SIN, ASIN

HCOS (Hyperbolic cosine)

HCOS(angle)

Returns a double precision number denoting the hyperbolic cosine of angle.

See also COS, ACOS

HT AN (Hyperbolic tangent)

HTAN(angle)

Returns a double precision number denoting the hyperbolic tangent of angle.

See also TAN, ATAN

PI (A constant1t)

This function returns the number called PI which represents the result of the
division of the diameter of a circle by the circumference. PI is used by most of the
trigonometric functions to calculate angles.

Mathematical functions

LOG (Logarithm)

LOG(y#)

This function returns the logarithm in base 10 (log1 0) of Y# as a double precision
number.

211

Examples:

print log(10)
V#=log(100)

LN (NaturalA.ogarithm)

LN(V#)

LN calculates the natural or naperian logarithm of V#.

Examples:

print In(10)
R#=ln(100)

The action of LN is exactly opposite to that of EXP

EXP (Exponential function)

EXP(V#)

Returns the exponential of V# as a double precision number.

Examples:

print exp(1)
TEST#=exp(ln(100))

=SQR (Square root)

X=SOR(V)

SOR calculates the number which must be multiplied by itself to get the value of
Y.

X=sqr(4)

Returns a value of 2 in X.

Example:

10 input -input a positive number M;N
20 print "The square root of M;N;- is M;sqI1N)
311 gota 10

ABS (Absolute value)

ABS(y)

ABS returns the absolute value of y, taking no account of the sign of the number.

Example:

print abs(-1).abs(1)
11

212

INT (Convert floating point number to an integer)

INT(y#)

This rounds down the decimal value of yand converts it into a whole number.

Examples:

print int{1.251
1
print int(-1.251
- 2

SGN (Find the sign of a number)

SGN(y)

This allows you to find the sign of the number or expression in y. The function
returns one of three possible values:

-1 if Y is negative
o if Y is zero
1 if Y is positive

10 input X
20 if sgn(XI=-1 then print "Number is nagative"
30 if sgn(XI=D then print "Number is zero"
40 if sgn(X}=1then print "Number is positive"
50 goto 10

MAX (Get the maximum of two values)

MAX(x,y)

The MAX function compares two expressions and returns the largest. These
expressions can be composed of numbers or strings of characters, providing you
don't try to mix different types of expressions in one instruction.

So

and

print max(10,4)
is ok returning10

print max("Hello" ,"Hn
is also legal returning Hi

But you can't however use something like:

print max(10:HI"}

See MIN

MIN (Return the minimum of two values)

MIN(X,Y)

MIN returns the smallest of the two expressions you specified. These expressions

213

can consist of strings, integers or real numbers. However you must only compare
values of the same type.

Examples:

See MAX

print min(10,4)
4
print min("Hello","Hi")
Hello

SWAP (Swap the contents of two variables)

SWAP(X.Y)

This swaps the data between any two variables of the same type. For instance:

new
10 A=1 : B=100
20 CS="Left" : O$::"Right"
30 print A,B,CS,OS
40 swap A,B
50 swap CS,OS
60 print A,B,CS,OS

DEF FN (Create a user-defined function)

DEF FN is a useful function which enables you to create your own user-defined
functions for use within a STOS Basic program.

The syntax of this function is:

DEF FN name [(variable list)]=expression

name is the name of the function you wish to define.
variable listcan be any list of variables separated by commas. These variables are
local to the function. Any variables you use in the function will be automatically
substituted for the appropriate local variables whenever necessary. Also note that
variables of different types can be mixed within a single function.

FN (Call a user defined function)

FN name [(variable list)]

FN is used to execute a function defined by DEF FN.

Examples:

new
10 def fn SO (X)=X*X
20 input "Input a number";1
30 print "The square of ";1;" is ";fn SO (I)
40 goto 20

new
10 def fn DEG (Rl=R*pi/180

214

20 print sin(fn DEG (45U

new
10 def fn SEGMENT (AS,X,V)=mid$(AS,X,V)
20 print fn SEGMENT ("Hello" ..2,3)

See how we've always placed the DEF FN statement in the program before it is
used.

RND (Random number generator)

RND(y)

RND is used to generate a random integer between 0 and y inclusive. If y is less
than zero, RND will return the last value it produced. This is very useful when
debugging a program.

Examples:

10 plot rnd(640/divx-1),rnd(400/divy-1) 20 goto 10

print "Dice throw is a ";rnd(6)

LET (Load some information into a variable)

Used to assign a variable to a specific value. The use of LET is always optional and
can be omitted whenever you like.

Examples:

let A=1
let AS="Hello"+" "+"there"

FIX (Set precision)

FIX(n)

This procedure fixes the precision of any real numbers which are to be printed on
the screen. There are three possibilities.

If O<n<16 then ndenotes the numberof figures to be output after the decimal point.

If fJ> 16 the printout will be proportional and any trailing zeros will be removed.

If n<O then all floating point numbers will be displayed in exponential format, and
the absolute value of n (ABS(n)) will determine the number of digits after the
decimal point.

Examples:

fix (2):print PI

fix(-4):print PI

fix(16):print PI

String Functions

limits the number to two digits after the point.

Forces exponential mode with four figures
after the point.

Reverts to the normal mode.

215

UPPERS (Convert to upper case)

UPPER$(n$)

This function converts the string in n$ into upper case (capitals).

Example:

print upperSrStoS BaSic")
STOS BASIC

Do not confuse this with the editor command UPPER.

LOWER$ (Convert to lower case)

LOWER$(n$)

LOWER$ translates all the characters in n$ into lower case.

print lower$("Stos Basic")
stos basic

This function should not be confused with the editor directive LOWER.

FLlP$ (Invert String)

FLIP$(n$)

FLlP$ reverses the order of the characters in the string n$.

Example:

print 'lip$("STOS Basic")
cisaB SOTS

SPACES (Create a string full of spaces)

SPACE$(n)

SPACE$ generates a string containing n spaces.

Example:

print space$(20)" : Spaces"
: Spaces

STRING$ (Create a string full of a$)

STRING$(a$.n)

STRING$ creates a string of N characters using the first character of the string a$.

Example:

print STRING$("The cet sat on the mat",101
1111111111

216

Note that STRING$(" ",X) is identical to SPACE$(X)

CHR$ (Return Ascii character)

CHR$(n)

Creates a string conlaining the character with the Ascii code N.

Example:

print ehrS(66)
B

ASC (Get Ascii code)

ASC(a$)

ThiS returns the Ascii code of the first character of the string in a$.

Example:

print ase("8")
66

LEN (Get length of string)

LEN(a$)

LEN calculates the current length of a string of characters held in a$. All the
characters of a string are counted, even if they are not visible on the screen. So
LEN(CHR$(27)+CHR$(27)) will give the number 2.

Example:

print len("12345678")
8

Do not confuse with LENGTH.

V AL (Convert a sIring to a number)

VAL(x$)

VAL returns the value of a number stored in the string x$, If x$ does not contain
a number then VAL will be zero.

Example:

10 input "Input a number";AS
20 A#::vaI(AS)
30 if A#::O then print A$;" is NOT a number" : goto 10
40 print "The square root of ";A#;" is ";sqr(A#)

STR$ (Convert number to string)

STR$(n)

277

This function converts a number in a string of characters. STR$ can be very useful
since some functions, such as CENTRE, do not allow you to use numbers as an
parameter.

Example:

centre "Memory left is "+str$(free\+" bytes"
Do not confuse STR$ with STRINGS

TIME$ (Get time)

TIME$ holds a string containing the current time in hours, minutes and seconds
using the format "HH:MM:SS"

10 time$:"10:50:00"
20 print timeS
30 gotD 20

This string is updated by STOS once every 50th of a second. See also TIMER,
DATE$

DATE$ (Get Date)

This stores the current date as a string of characters in the format "DD/MMIYYVV"
where DD represents the day, MM the month and YYYY the year.

Example:

print dateS

Note that if you don't have a clock card fitted, this date must be set directly using
a statement like:

DATE$: "09/06/1988"

See also TIMER and TIME$

FILESELECT$ (Select a file)

This is a very powerful feature which enables you to call up a fancy dialogue box
to select one the files on the disc.

The syntax of this function is:

f$=FILE SELECT$(path$ [,title$ [,border]])

path$can be any string containing the search pattern which will be used to display
the possible files.

title$ is a string containing the title of the dialogue box.

border is a number from 1 to 16 denoting the border style which is to be used.

After completion of the dialogue, FILE SELECT$ returns either the name of the file
or an empty string if the QUIT option was chosen.

218

Examples:

new
10 X$::file select$("*.*")
2D print X$

print file select$("*.BAS")

See also FSAVE and FLOAD.

Machine level instructions

HEX$ (Convert number to hexadecimal)

HEX$(n)

HEX$ converts a number into a string of characters in hexdecimal notation. There
are two possible formats of this instruction.

X$=HEX$(x)
Loads x$ with number x expressed in base 16

X$=HEX$(x,n)
Loads x$ with the first n digits of x, where n can range from 1 to 8.

Examples:

print hexS(colour(Oll
print hex$(65536)
$10000
print hex$(65536.8)
SDDD10000

BIN$ (Convert number to binary string)

BIN$(x)

BIN$ generates the string of binary digits equivalent to the number x. As with
HEX$, you can choose whether to generate all the digits or only a few.

Example:

print bin$(255)
%11111111
print bin$(255,16)
%0000000011111111

The precise syntax of the BIN$ function is:

x$=BIN$(x) Where x is the number to be converted to binary.

or

x$=BIN$(x,y) When x is the number to be used, and y the number of digits in the
string which will be loaded into x$. y can range between 1 and 31

279

ROL X, Y (Rotate left)

ROL is a Basic version of the ROL instruction from 68000 assembly language. The
effect to to take the binary representation of a number in y, and rotate it left by x
places.

Example:

The

%10001000

Type in:

This will

X=136
rol.b 1,X

represented in binary

number 17 or binary %0001

enlire number has been
lowest position. The
an a-bit byte. You can

procedure expects the
variable and not an expression.

Examples:

A=1
rol1,A
print A
2

left, with the highest
H.b", is to instruct STOS

sizes ".W' (word)

shifted to be held in

If ROL is used without ".B",".w",or".L" then ".L" is assumed. Providing you use
reasonably sized numbers ROL can be effectively considered as a very fast way
of multiplying a number by a power of 2.

ROR (Rotate right)

ROR

This is

Example:

ror 1,A
print A
4

but rotates the number opposite direction.

Note that ROR can be used as a very fast way of dividing a number by a power
of two.

220

BTST (Test a bit)

BTST(X,Y)

allows you to tesl
lunctions ROR and

"''''''0'"''''111 If the bit at x is set
false.

new
10 input "Enter a number";N
20 input "Enter a bit to be tested";B
3D if B<O or B>31 then end
40 print "Bit Number ";B

at position x in the
be a single variable

value of BTST will be

50 if btst(B,N) then print" is 8 one" else print "is 8 zero"
60 print bin$(N.32)

goto 10

BCHG,BCLR,BSET

to 1)

BSET(x,Y)

BSET sets the bit at position yto 1 in the variable x. As before x must be a simple
variable rather than an expression.

Example:

A=O
bset B,A

A

a bit)

BCHG(x,Y)

This procedure changes bit number yin the variable x. If this bit is currently a 1 then
the new value will be a zero, and vice versa.

Example:

A=O
bchg 1,A

A

bchg l.A
print A
o

BCLR (Clear a bit)

BCLR(x,Y)

BelR sets bit number y in variable x to a zero.

Example:

A=128
belr 7,A
print A
o

PEEK (Get byte at address)

PEEK(address)

This function returns the 8 bit byte stored at address. Technically-minded readers
will be interested to note that PEEK gets information from the STs memory while
in supervisor mode. This means that you can happily type in something like:

print peek(O)

POKE (Change byte at address)

POKE address,x

loads address with the number from 0-255 stored in x. You may use this function
to change the contents of any part of the STs memory. But be warned that this
function is dangerous. If you poke around indiscrimantly you will almost certainly
crash the ST completely.

Example:

poke physie+1000,255
Pokes a blob on the S1's screen

DEEK (Get word at address)

DEEK(address)

This function reads the two-byte word at address. This address MUST be even
or an address error will occur.

As with PEEK, you can use DEEK to access any part of the STs memory including
the sections that are normally inaccessable.

Example:

print deek(O)

DOKE (Change word at address)

DOKE address,value

DOKE loads a two byte number between 0 and 65535 into address. In
knowledgeable hands this function can be very useful, but since even the best of
us make mistakes, you should always remember to save a copy of your programs
to the disc before attempting to use this function in a new routine.

222

Example:

doke physic+100o.65535

LEEK (Get long word at address)

LEEK(address)

The LEEK function returns the four-byte long word stored at address. Like DEEK,
the address used with this function must always be even. Note that if bit 31 of the
contents of address is set, the number returned by LEEK will be negative.

Example:

print leek(o)

LOKE (Change long word at address)

LOKE address, number

LOKE loads address with a four-byte long word specified by number.

Example:

loke physic+10110o,$FFFFFFFF

Indiscriminate use of this function can lead to the ST crashing completely, so take
care.

VARPTR (Get address of a variable)

VARPTR(variable)

This function returns the location in the ST's memory of a variable. Each of the
different types of variables are stored in a different way.

Integers: VARPTR returns the location of the value of the variable.

Example:

A=D
loke varptr(A),10110
print A
1000

Real numbers: VARPTR returns the location of two long words which contain the
value of the variable in the IEEE double precision format.
Strings: VARPTR points to the first character of the string. Since STOS Basic
does not end its strings with a character 0, you must obtain the length of the string
using something like: DEEK(VARPTR(A$)-2), where A$ is the name of your
variable. You could also use LEN(A$) of course.

COpy (Copy a memory block)

COpy start,finish TO destination

This command is used to rapidly move large sections of the ST's memory from one

223

place to another. Start is the address of the start of the block of memory to be
moved, and finish is the address of the end. Destination points to the first memory
location of the destination.

Note that all these addresses MUST be even.

Example:

copy logic,logic+101lOO to logic+10000

This copies one part of the screen to another.

FILL (Fill memory block with a longword)

FILL start TO finish,longword

FILL copies a specific long word into a section of memory.

start is the beginning of the block and finish the end. longword is the data which
will be copied into each set of four memory locations between start and finish. Note
that it's also possible to use the number of memory BANK as the start or finish
location.

Example:

fill logic to 10gic+32000.$22334455 Displays a series of lines on the screen.

fill 1 to 2.0 Fills bank 1 with O.

Incidentally, if start and finish are specified as an address, these values MUST be
even.

=HUNT (Find a string in memory)

X:HUNT(start TO end, A$)

This command is used to allow you to search through the ST's memory for a
specific character string.

start is the position in the ST's memory of the start of the search, and end is the
address of the end. On completion of this routine X will hold either 0 (if the string
in A$ was not found) or the location of A$.

WAIT (Wait in SOths of a second)

WAIT x

This function suspends a STOS Basic program for x 50ths of a second. Any
functions which use interrupts, such as MOVE and MUSIC will continue to work
during this period, with the sale exception of ON MENU GOTO.

Example:

wait SO

This waits for one second.

224

TIMER (Count in 50ths o(a second)

TIMER is a reserved variable which is incremented by one every 50th of a second.
Here is a small example showing how this is used.

Example:

new
10 print "Started"
20 timer=ll
30 if timer<SOO then goto 30
40 print "Finished"

NOT (Logical NOT operation)

NOT(x)

This function changes every binary digit in a number from a 1 to a 0 and vice versa.
Since True =-1 and False=O, NOT(True)=False.

Examples:

print nol(-1)

new
10 if not(true)::false then print "Falsen

Miscellaneous instructions
REM (Remark)

Any text typed in after a REM statement will be completely ignored by STOS Basic.
You can therefore use this instruction to place comments at appropriate points in
your programs. Note the apostrophy character; " is an abbreviation for rem.

Example:

10 rem This program does absolutely nothing

OAT A (Place a list o(data items in a STOS Basic program)

The DATA statement allows you to incorporate lists of useful data directly inside
a Basic program. This data can be loaded into a variable using the READ
instruction. The format of the DATA statement is:

DATA variable list.

Each variable in the list is separated by a comma.

Example:

10 data l.2.3,"Hello"

Unlike many other Basics, the STOS version of this instruction also allows you to
use expressions involving variables. So the following lines of code are perfectly
acceptable

225

10000 data SFF50.$890
10010 data %1111111111111,%1101D10101
10020 data A
10030 data A+3/2.0-sin(B)
10040 data "Hello"+'There"

Note that the A in line 1 0020 will be input as the contents of variable A, and not the
Ascii character A. Similarly the expression at line 10030 will be evaluated during
the READ operation using the current values of A and B.

Incidently, DATA must always be the only instruction on a line.

See READ, RESTORE.

READ (READ some data from a DATA statement into a variable)

READ list of variables

READ allows you to input some data stored in a DATA statement into a list of
variables. It starts off with the first data statement in the program, and then reads
each subsequent item of data in turn. As you might expect, the variable used in
each READ instruction must always be of the same type as the information stored
in the current DATA statement.

Example:

new
10 for 1=1 to 10
20 read A
30 next 1
40 data 1
50 data 2,3
60 rem
70 data 4.5,6,7.s
80 data 9,10

Note that STOS Basic also lets you use complex expressions in a DATA
statement.

Example:

new
10 T=10
20 read AS,B,C,DS
30 print AS,B,C,DS
40 data nString" ,2,T*20+rnd(100),"STDS" +"Basicn

READ uses a special pointer to determine the location)f the next piece of data to
be input. This pOinter can be changed at any time in the program using the
RESTORE instruction.

See RESTORE, DATA.

RESTORE (Set the current READ pointer)

RESTORE line

This instruction changes the line number at which a subsequent READ operation

226

will expect to find the next DATA statement. There are two forms of this instruction.

RESTORE line

RESTORE expression

Set start of DATA statements from line

Calculate line number and set read pointer to this
line.

If a data statement does not exist at the line specified by RESTORE, an
appropriate error message will generated.

Example:

new
10 restore 1OOO+language*10
20 read AS
30 print AS
40 end
1000 data "English"
1010 data "Francais"

francais
run
Francais
english
run
English

See also READ, DATA

TRUE (Logical TRUE)

This function returns a value of -1, which is used by all the conditional operations
such as IF ... THEN and REPEAT...UNTIL to denote true.

10 if -1 then print "Minus 1 is TRUE"
20 if TRUE then print "and TRUE is ";TRUE

See FALSE, NOT

FALSE (Logical FALSE)

Whenever a test is made such as X> 10, a value is produced. If the condition is true
then this number is -1, otherwise it is zero. The FALSE function therefore
corresponds to a value of O.

Print FALSE
o

See TRUE.

227

228

111 1 Writing a game
There are no real rules on how you should go about programming a game, but
there are many pOints which can help in its design and development.

Planning
The most important part of game writing is the initial specification and its planning.
First decide what you want the game to do then layout every detail so that you have
a complete picture of your desired end product. If you don't plan the game it will
take much longer to write than if you had. Remember: Fools rush in where angels
fear to tread.

Planning techniques
The initial idea may come fairly quickly - but the more interesting features may
take a while to come. Use a thesaurus to help you find more references to your
game idea. We used one while trying to think up a name for Orbit. Starting with the
word ball we soon found an apt and original name.

Say you wanted to create a game to be called Haunted House. You could start
by looking up ghost or ghoul, and then move from section to section gathering
together useful ideas which you may be able to incorporate into your games.

Once the ideas for the game have been laid out on paper, you can then start
modularising sections. This means looking at your game idea and deciding which
parts are independent areas that don't rely on other sections of the game to work.
Take for example the game Orbit: The ball that bounces around the screen would
be one module, the player's bat another and the bricks a further one.

Another aspect of planning are the screen designs. Screens in the game must
be accurate and designed to use STOS Basic's commands to their best benefit.
A badly laid-out screen will cause numerous problems during programming and
a screen re-vamp will probably be necessary wasting valuable time.

Programming
This section of the game development will take most of the time and is a very
critical stage. Programming is an art, requiring patience and logical thinking. You
will find that your skill will improve as you write more and more programs. The
emphasis with game programming is speed - a super animated space game is no
use if the response to the player is too slow.

The key word in programming is structure. All structured programs should be:

• Readable Easy to follow logic

• Reliable They do what was intended

• Adaptable For possible later modifications

Write the modules from the planning section as subroutines, thus creating a

229

structure, but also split the modules into sections. This creates building blocks to
work with. For example, if you write a routine that clears a section of the screen,
keep it as a subroutine and make sure it uses variables rather than constants. This
routine used for clearing other the screen.

Example:

a triangle at Xl,Vl
50 plot xl,yl
60 draw to xl+TRISIZE,Vl+TRIS1ZE
70 draw to xl-TRISIZE,Vl+TRISIZE
80 draw to xl,yl
90 return

contains a subroutine
1 0 calls it with the

X1, Yl and TRISIZE.
Iriangle will start and

have given the
produce a bigger triangle

example:

20 Xl=lO:Vl=lOD:TRISIZE=80:gosub 50

long *

50 which draws
GOSUB 50, this line also

the coordinates from
length of each side.
scope. We could call

location just by changing

Line 49 includes a comment line which tells us what the routine does and what
parameters (variables) are required by the subroutine. With this line we have
added readability and adaptability. The line can also be removed if memory is
running line 50 which is

a step further with
lines should be generaled

splitting. It's best
are grouped together.

be difficult when and complex but if
don't try possibilities, problems may laler which cause
programming headaches. Send dummy data into a module and examine the
results. Most modules will be small and easy to test but larger ones will require a
good deal of attention. It's the quality not the quantity that makes a good game!

The main percentage of all programs have three programming sections:

1 The
2 The
3 The

In the various defaults such
screen arrays and so on. is set up it may now
operate. Section two - the main loop - should consist of a list of GOSUB
instructions which call all the modules of the game. When all these have been
called the program should either re-start the main loop or falllhrough into seclion
three.

In most games the program never stops so there is no need for section three,
but if you do have a quit section then your program should reset the screen and
return control back to the user.

230

Adding graphics
Computer graphics can transform simple game ideas into professional, well
presented products. The graphics help to create a new world of reality and thus
complement the programmer's skill. The major problem with adding graphics to
a game is usually the fact that the programmer cannot draw very well. This has
therefore produced a new wave of jobs in the games industry for graphic artists.
Get help from a friend who is good at art if your own talents don't stretch very far.

Graphics can be split into sections:

Pictures

STOS Basic can load in files saved from Neochrome and Degas. Both these
programs are widely used and are exceptionally well-designed.

Geometry

This is more a mathematical form of graphics and you really don't need any artistic
qualities. Using STOS Basic's drawing commands you can create images on a
coordinate based system.

Sprites

These are very important in the production of a game and can give great animation
effects that will bring your game to life. The size and number of sprites are
important factors to consider when writing a game.

Techniques
You will find that there are various ways to program a single situation. In this
section we will list various techniques that explain how to get the very best
performance from STOS.

Speedy sprites

Most games require a lot of speed so that numerous sprites can be whizzed
around the screen. The sprites in STOS Basic are software sprites - which means
that the computer has to do all the work of calculating where on the screen they
must go and also position them. The main thing to remember is that small sprites
can be moved around faster than large ones.

So when you're deciding what size sprites to have in your game, ponder on the
following points:

Numbers

Size

If you only have a couple they can be large. But if
you intend using all 15 they will have to be small.
If you need many sprites in a game then use the
copy techniques discussed in Chapter 4.

As we said above, the bigger the sprites are the
slower they move. If a game has missiles in it these
would be small narrow sprites which take up little
of the computer's time.

231

Scrolling the screen

When using the SCROLL command you must be aware of the limitations caused
by horizontal scrolling. Because of the vast number of calculations that the
computer has to make while scrolling the screen horizontally, it leaves little time
for anything else. The fastest way to scroll the screen left or right is to scroll it on
16 bit (word) boundaries by steps of 16 pixels.

Another point to emphasise is that the larger the area to scroll, the slower the
scroll speed.

Collisions

When a game is running in full swing it is imperative that your program is checking
collisions as often as possible. If you check only once a second in a shoot-'em-up
style game then missiles will fly past aliens without killing them. Using the SET
ZONE command you can set up various areas of the screen and then ask the
computer which zones your sprites are in. This saves a lot of work and is a very
powerful feature.

Examining code

If you feel that you cannot understand the best way to link together commands,
it's a good idea to follow through the games listings supplied with STOS. All three
games were written by the author of STOS Basic so they are prime examples of
well written code. Use the SEARCH command to find examples of commands. By
reading and examining this code you will learn various short cuts and techniques.

Optimising your programs

When your program is near to completion you may wish to save memory and
increase speed. Here are a couple of examples to show you how to optimise your
code.

10 lor A=l to 10
20 print A
3D next A

This can be optimised to:

10 for A=l to lo:print A:next A

The new line will save memory because lines 20-30 are not required and the loop
speeds up. The commands are all related, being enclosed as a loop, so it makes
sense to group them on to a single line.

The line:

10 A=A+l

can be optimised to:

10 inc A

Here we see the use of the INC command rather than the standard Basic A=A+ 1
expression. It saves memory and increases speed.

232

Appendix A

Error messages
An error occurs when STOS Basic cannot continue with the program and thus
reports this fact to you with a brief statement describing what is causing the
problem. Errors can also be generated when commands are typed in direct mode.

Many of the errors are obvious and the statement does its job informing you, but
some are slightly more cryptic and need a little more explanation - hence the need
for an error appendix.

The errors are listed in alphabetical order so that you can find your entry easily and
each errors corresponding code is listed with it. This code is created and stored
in ERRN.

Error name Error code

Address error 32
An odd memory address or invalid address has been accessed using the peek and
poke commands.

Animation declaration error 58
The ANIM string command has not been properly set.

Array already dimensioned 28
An array has been re-dimensioned at the error line.

Bad date 55
The user has tried to set the date with illegal values using the DATE$ function.

Bad file format 1
A file to be loaded cannot be recognised by STOS as it is not of the correct format.

Bad filename 53
A 1ilename has been used in an input/output procedure which is not legal. An
example of this would be LOAD"".

Bad screen address 43
A screen address has been used which is invalid for a proper screen start address.
The address must be on a 256 byte boundary.

Bad time 54
The user has attempted to set an illegal time using the TIME$ function.

Bank 15 already reserved 80
This bank is already reserved and must be erased if you wish to rese,rve it for
another purpose.

233

Bank 15 is reserved for menus 81
Menus are used in the current prograrr and thus you cannot use this bank for
anything else.

Break 17
You have pressed Control +C. If you were in a program then STOS returns you
to the editor mode.

Bus error 31
An internal error has occurred possibly due to incorrect addressing using the peek
and poke commands.

Can't continue 7
STOS cannot continue from the previous break. This mainly happens when a
program is stopped and a line is altered thus resetting all variables.

Can't renum 11
ST05 has attempted to renumber a section of your program and this action would
result in a conflict of line numbers.

Character set not defined 73
A character set has been referenced which does not exist.

Character set not found 78
You have tried to access a character set which does not yet exist.

Direct command used 15
A command which is only available from direct mode has been used within the
program.

Disc error 52
The Atari ST returns TOS disc errors back to 5TOS and when it's not too sure
exactly what error has occurred it will produce this error.

It's best to make sure your drive is connected, the disc is valid and the command
you processed was legal.

Disc full 51
The disc has run out of space.

Disc is write protected 50
5T05 cannot write out information to the current disc because it is physically write
protected. Move the tab on the disc, or use another disc.

Division by zero 46
A number has been divided by zero and cannot be handled by STOS Basic.

Drive not connected 83
The current drive is not available. Check your leads and power.

Drive not ready 49
A disc drive is not ready for use.

End of file 64
The end of a file on a disc has been reached.

Extension not present 84
This occurs when you try to run a program which incorporates a new STOS Basic
command without loading the relevant extension file first.

234

Field too long 66
The size of the record you have created with FIELD is greater than 65535 bytes.
It's also possible that you have used more than the maximum of 16 fields.

File already closed 63
An attempt to close a file is aborted because it is already closed.

File already open 62
An attempt to open a file is aborted because it is already open.

File not found 48
You have tried to load or open a file for reading and it is not on the current disc.

File not open 59
The program is trying to transfer data to or from a file but the file has not been
opened.

File type mismatch 60
A file command has been used which does not correspond with the correct filing
system. The error would occur when you try and use the GET and PUT statements
on a sequential file.

Flash declaration error 67
The FLASH command has been called incorrectly.

Follow too long 9
STOS has been told to trace too many parameters.

For without next 22
A FOR command does not have its mandatory NEXT instruction listed later in the
program.

Illegal direct mode 14
A command input in direct mode is not recognised by STOS.

Illegal function call 13
You have tried to use a function with an illegal set of parameters.

Illegal Instruction 82
When STOS is running a machine-code program this error will occur if it finds that
the code is invalid.

Illegal negative operand 47
Some functions cannot process negative numbers, for example SQR(-1).

Illegal user-function call 40
The list of parameters you input does not match the list you specified in the DEF
FN command.

Inlout error 16
An error has occurred during an input/output operation.

Input string too long 61 + 65
An incoming string is too long for a dimensioned variable. Or you may have tried
to INPUT # a line more than 500 characters long.

235

Llnetoolong 6
You have attempted to enter a line more than 700 characters long. STOS can
cope with many things but a line this size is rather excessive and poor programming
style.

Memory bank already reserved 41
An attempt to reserve a memory bank has failed because it has already been
reserved.

Memory bank not defined as screen 42
A command has accessed a memory bank which must be reserved as screen and
thus cannot find the information required.

Memory bank not reserved 44
A memory bank has been accessed and is not reserved for any use.

Menu not defined 79
The MENU ON command has been called but no menu has yet been set up.

Movement declaration error 57
The MOVE instruction has not been set correctly.

Music not defined 75
Music cannot be played because there isn't a tune in memory.

Next without for 23
STOS has come across a NEXT instruction which has no FOR. Thus STOS does
not know where to loop back to.

No data on this line 33
The RESTORE instruction has tried to restore a line of data. In this case the line
did not include a data command.

No more data 34
The READ statement cannot get any more data because all of the DATA lines
have been read. In other words, you're out of data.

No more text buffer space 74
If you open over 10 windows the size of a full screen in either mode 1 or mode 2
then the space reserved for the data in each window gets used up and causes this
error.

Non declared array 18
An array has been referenced which has not been set up with the DIM instruction.

Not done 0
A procedure has been attempted but due to some condition the job was not carried
out. Quitting the file selector and returning to the editor is an example of this error.

Out of memory 2 + 8
STOS has no more memory left for allocation. Take out all accessories and excess
programs to free more memory.

Overflow error 21
A calcultion has exceeded the size of a variable.

Pop without gosub 37
The POP instruction cannot be executed outside of a subroutine.

236

Printer not ready 10
The printer is not on line so STOS cannot output any data. Check all connections
and the power switch of the printer.

Repeat without until 26
A REPEAT instruction exists but has no corresponding UNTIL.

Resolution not allowed 45
This occurs on high-resolution monitors when the MODE instruction is used. It
happens on colour monitors when you try to enter high resolution.

Resume without error 38
A RESUME instruction cannot be executed unless an error has occurred.

Return without gosub 36
The program has reached a RETURN instruction but no GOSUB has been used.

Scrolling not defined 86
The SCROLL command has been used but STOS does not have the information
necessary to scroll the screen. See DEF SCROLL.

Search failed 5
A string has been searched for in the current program but STOS found no
reference to it.

Sprite error 56
Parameters for a SPRITE command have been set which do not fall inside the
required limits.

String is not a screen block 87
A string has been used in' the SCREEN$ command which has not been designed
as a sprite block string.

String too long 30
A string has exceeded the limit of 65000 characters.

Subscript out of range 85
A subscript has been accessed which is not dimensioned to the called size. Here
is an example: DIM A$(10):A$(12)="HELLO"

Syntax error 1 2
The syntax (grammar) of the error line or statement is not correct. You must look
up the correct syntax in the manual or in the reference card.

System character set called 77
You have attempted to replace a system character set with a custom character set.

System window called 76
The system windows have been used in one of the window commands. These
windows are 0, 14 and 15.

This line already exists 4
The Auto function reports this error when it comes across a line which is already
in your program.

This line does not exist 3
This error occurs when you have tried to delete a line which does not exist so the
delete operation is aborted.

237

Too many gosubs 35
STOS cannot store any more RETURN addresses.

Type mismatch 19
An illegal value has been assigned to a variable. For example: A$=12 should read
A$="12".

Undefined line number 29
This error will happen when you try to GOTO, GOSUB or RESTORE a line which
does not exist in the program.

Until without repeat 27
The UNTIL instruction has no repeat command listed later in the program.

User function not defined 39
A user function has been accessed which has not been set up using DEF FN.

Wend without while 25
A WEND instruction has been encountered without a matching WHILE command.

While without wend 24
The WHILE instruction has no mandatory WEND instruction listed later in the
program.

Window already opened 69
An attempt to open a window has failed because it is already open.

Window not opened 70
You have referenced a window which does not exist.

Window parameter out of range 68
One of the window's parameters is not valid and must be set to a legal value.

Window too large 72
A window cannot be opened because it is too big.

Window too small 71
An attempt to open a window has failed because it is too small. The minimum size
is 3x3.

238

Appendix B

Creating a runtime disc
The following procedure will allow you to create a disc from which you can boot
any STOS Basic program without having to load STOS Basic first.

The first thing to do is format a blank disc and then load up STOS Basic.

2 Load in the accessory STOSCOPY.ACB with the command
accload "STOSCOPV.ACB"

Press the HELP key and select the STOSCOPY accessory by pressing the
appropriate function key. This accessory will now copy the required files from
your STOS Basic master disc onto the newly formatted disc.

3 Now load in your Basic program.

Type:

save "myprog.prg"

The name myprog can be changed to any eight character string for the
filename but the extension of .prg must be included. STOS will now ask you
to insert a disc containing the STOS folder, into drive A. This, of course, is
the disc which has the system files copied onto it by STOSCOPY.

4 STOS saves out your program in a special format so that it now becomes a
proper .PRG file, executable from Gem.

5 If you want your file to auto boot - in other words load when you switch on
the computer - you must create a folder called AUTO. You then copy your
file into the AUTO folder and whenever you insert this disc into drive A and
turn on the ST, your program will automatically load and run.

Commercial STOS Programs
When a runtime file has been generated, it still requires protecting if it is to be
released commercially - otherwise you'll be giving away a complete copy of STOS
Basic at the same time. On the STOS Basic disc is a file called PROTECT. BAS.
This is used to save out a special version of the Basic which does not include the
editors commands - which means that other ST owners cannot change your
program or write their own STOS Basic programs by typing NEW.

The three main rules for STOS programs which are to be commercially released
are:

• You must protect all programs using the PROTECT. BAS program.

• The program must state that it was written in STOS Basic. A specially
designed sprite with the STOS logo can be found in the SPRDEMO.MBK file

239

and a STOS icon logo is available in the ICONS.MBK file. You could also use
the picture files from within the STOS folder.

• The program must be your own work and not copied in part or whole from the
Basic files enclosed on the Accessories and Games discs. No royalty is
payable to Mandarin Software - so you are free to do what you like with any
games you write.

Adding a title SCrE!en
A runtime file searches the STOS folder for a Degas picture file - called pic.pi1 or
pic.pi3 when it boots up. If it finds the required file it will spin it onto the screen in
the same fashion that STOS Basic does when it loads its own title page. This gives
your program a professional look and something to display while it loads up all the
system files.

Running other files
ONCE the runtime copy of your program has loaded it can run any other Basic
program with the command:

run "demo.bas"

The file demo.bas will then be loaded into memory and run.

THE following file would set MODE 0 and then load up the Sprite editor.

10 fade 3 : wait 21: mode 0 : run "sprite.bas"

Of course you must save sprite.bas onto the same disc and make sure it's a .bas
file. Using this technique you can generate integrated suites of programs.

Send it to Mandarin

Mandarin Software are always looking out for new and exciting programs, so if you
develop an original, top quality product - or have any interesting ideas - we will
be pleased to hear from you. Send your disc with a stamped addressed envelope
to:

The Software Manager, Mandarin Software, Europa House, Adlington Park,
Adlington, Macclesfield SK10 4NP.

240

Appendix C

Disc 1 (STOS Basic language disc)
This is the most important of all the three discs and must be backed-up (see
Chapter 1). On this disc lies all the system files that STOS loads up, and if various
files get deleted then your STOS Basic won't be able to function. The list below
explains what each file is for and informs you if files can be changed to your liking.

BASIC.PRG: Double clicking on this file will take you into STOS Basic from the
Gem Desktop.

PROTECT. BAS: This program protects run-time programs for commercial release
by removing the editor from the copy of STOS Basic it saves to disc. (see Appendix
B).

CONFIG.BAS: Use this program to set up the system defaults which dictates the
environment that STOS Basic boots-up into.

FOLDER 1 : AUTO (Runs sms on boot up)

START.PRG: This file loads up STOS when the system is booted from a complete
reset.

FOLDER 2 : STOS (Holds all the system files)

There are various files included in this folder, many of which are vital to STOS. It's
best if you don't store any files in the folder - just keep it as it is.

The files in the STOS folder can be split into categories. The main belt of files
are the .BIN files which contain the code that the functions from STOS call.

BASIC. BIN: Contains all the control code that makes STOS operate.

FLOAT.BIN: The floating point maths functions. This file can actually be deleted
or simply stored in another folder if you only want to use integer values. Doing so
releases 15K of memory. See Chapter 3 on variables.

SPRITES.BIN: Code to control the sprites

MUSIC.BIN: Code for the music instructions.

WINDOW.BIN: Code for the window manager routines.

RUN. BIN: The data in this file supplies STOS with the necessary code to allow
runtime files to be saved. If you remove this file from the STOS folder you will be
unable to save .PRG files.

COMPACT.EXA: This is not a .BIN file but something very similar - an extension
file. Extension files are picked up by STOS and the new commands in the file are
added to the existing list. This file holds the commands for compacting and
uncompacting screens.

241

The next files are environment files whic;, can be altered to suit your needs.

8X16.CR2, 8X8.CRO and 8X8.CR1: These three files are the system character
sets that are used by STOS when it boots up. All three files can be altered (see
Chapter 8).

MOUSE.SPR: The mouse pointer sprites are held in this file and can also be
altered.

PIC.PI1 + PIC.PI3: These are two DEGAS pictures which STOS picks up
depending which resolution you are in. The picture is then spun into view and the
rest of the STOS system files are loaded in. You can customise your copy of STOS
Basic by changing these pictures to whatever you like (See Appendix B for more
details).

Disc 2 (Accessories disc)
When you do a directory of the files on this disc, you will find that most of them have
an .ARC extension. This type of file consists of one or more compacted files and
is called an archive. The reason that the accessories have been archived is so that
they could all fit onto a single density disc.

The following procedure shows you how to expand the files inside the EXTRA.ARC
archive file.

1 Format a blank disc
2 Copy EXTRA.ARC and ARC. TIP onto the blank formatted disc
3 Double click on the ARC.TIP file from the Gem desktop.
4 Enter the following line into the resulting dialogue box

x extra.arc * . *

The above line starts the process of un-archiving all the files inside the file
EXTRA.ARC.

It's very important that you type in the line correctly. The 'x' must be present at the
start of the line and then followed by a space. the filename. another space and the
.: characters.

5 Delete the ARC.TIP and EXTRA.ARC files from the disc and you will have a
complete set of un-archived files.

6 Now repeat the procedure for all .ARC files.

Here is a list of the archive files with a SUb-list showing which files are within each
one.

EXTRA.ARC (Small accessory files)

ASCII.ACB: A table of the Ascii characters are listed with this accessory file,
enabling you to determine codes quickly.

ASM.ACB: This file loads up and runs the ASM.PRG file.

ASM.PRG: This is the line assembler .PRG file.

242

ASM.DOC: The documentation for using the line assembler is contained within
this file. Double click on the filename from within the Gem desktop to read it.

COMPACT.ACB: Compact whole or parts of a screen into a special format.

DUMP.ACB: List out the contents of program's memory banks in hexadecimal
notation or as Ascii characters.

MOUSE.ACB: Show the x.y coordinates of the mouse pointer. Find out, for
example, various positions of certain elements within a Neochrome or Degas
screen.

SCANASCI.ACB: Determine keycodes and key scan codes using this small but
useful utility.

INPDATA.ACB: Input data into a bank. Such data might be sprite data listed in
a magazine.

OUTDATA.ACB: List out a memory bank in a form which can be printed in a
magazine.

STOSCOPY.ACB: All the files from the STOS folder on the language disc can be
copied to a new disc.

TYPE.ACB: Load a file in and printtothe screen or printer with this accessory. The
incoming data is not formatted in any way.

BACKGRND.MBK: An example of a compacted screen. See UNPACK for more
details on how to use this file.

FONT.ARC (Font accessory and font files)

FONTS.ACB: Create your own character sets.

FONT1.MBK, FONT2.MBK and FONT3.MBK: These three files are fonts which
have been created using the font accessory.

ICON.ARC (Icon accessory and an icon data file)

ICON.ACB: An accessory which allows you to create icon images.

ICON.MBK: This is an example data file created from ICON.ACB.

MUSIC.ARC (Music accessory and data files)

MUSIC.ACB: Develop tunes that you can incorporate within your own programs.

MUSIC.MBK, FUNFARES.MBK and TUNES.MBK: These are music data files
ready for you to use or modify.

SPRITE.ARC (Multi-mode sprite accessory and sprite files)

SPRITE2.ACB: This is a simple sprite editor which allows you to design sprites
in any of the three resolutions. You can only load three of the example data files
into this editor: SPRDEMO.MBK, FONTSET.MBK and BACK.MBK.

243

ANIMALS1.MBK - ANIMALS2.MBK: Included in these two files are frames that
make up three animated creatures: An octopus, monkey and a dog.

DROID.MBK: This data file contains animation frames for a superbly designed
android.

FONTSET.MBK: Ihis file there is a fonl characters that can be prinled
out using the sprite commands.

SPRDEMO.MBK: This file includes a STOS which we would like
to include page of your programs.

SPEXTRA.ARC (Low resolution sprite editor accessory)

SPRITE.ACB: This is the low resolution sprite definer program which allows you
to draw graphic sprites for your games. See Chapter four for full instructions.

MAP.ARC (Room designer program and documentation)

MAP.ACB:

MAP.DOC:

sprites

the map accessory

this file for full details on

data file that has been
this data are in the file

map accessory program.

the map accessory.

MAP.MBK: The sprites in this file are supplied to show you what type of sprites
are best used with the map accessory.

Disc 3 (Games di!tC)
contains three folders, contain a Basic

BULLET

In this game a train along a series avoiding dead end junctions
and blasting rail trucks out of your path. The game shows off just how fast STOS
Basic can be made to run with the super-fast horizontal scrolling, coordinated
animation and fantastic sound.

ORBIT

Another example which displays STOS in all its true colours. Quick reactions are
required highly skilled game. you have 20 challenging
levels can also design screens.

ZOLTAR

The STOS is really demonstrated game. From the user-friendly
menu system the powerful designer which allows you to create new waves of
alien attack patterns.

To run the above games go into STOS Basic and load one in and then type the
RUN command. You can also list and edit the programs.

244

Here is a list of the files on the games disc and a description of what each one is
for.

FOLDER 1 : BULLET

BULLET. BAS: This is the BULLET TRAIN Basic file which you must load from
STOS Basic if you wish to play it.

BULEDIT.BAS: With this file you can design and edit tracks for playing later in
BULLET TRAIN.

TRACK01.BUL - TRACK03.BUL: These are the three tracks used in BULLET
TRAIN and they can be edited by the BULEDIT program.

FOLDER 2 : ORBIT

ORBIT. BAS: This file is the one you load into STOS when you want to play the
Orbit game.

LEVEL 1.0RB - LEVEL20.0RB: These are the 20 screens that have been
designed for the ORBIT game and you can edit anyone of them or even add new
screens by running the ORBIT. BAS program and using the built-in editor.

FOLDER 3: ZOLTAR

ZOLTAR.BAS: Load this file and type RUN to play the ZOLTAR game.

PHASE1.Z0L - PHASE5.Z0L:These files are the five pre-defined levels which
can be altered and many more levels can also be added.

All the accessories and games on the three discs are written in STOS Basic - and
you will learn a great deal by examining the listings with the help of commands like
SEARCH.

Please feel free to modify any of these programs to suit your needs - and either
send us or tell us about the finished results. You never know - we may want to
incorporate your program in a future release of STOS.

245

246

Appendix D

Using Assembly Language
STOS Basic includes many facilities which allow you to combine assembly
language routines with your Basic programs. Usually this isn't really necessary,
but sometimes a little machine-code can work wonders even in a language as
powerful as STOS Basic.

CALL (Calls a machine-code program)

CALL address

CALL allows you to execute any assembly language program held in the ST's
memory. address can be either the absolute location of your code or the number
of one of STOS Basic's 16 memory banks.

Calling a machine-code program
Reserve some memory for your routine using RESERVE AS DATA

Example:

RESERVE AS DATA 7,10Il00

The above command reserves 10,000 bytes in bank 7 for your routine. Note
that this only needs to be done once as these DATA banks are always saved
along with your Basic program. Alternatively, you can also place your code
in a previously defined string variable, provided it is completely relocatable.

2 Load the program using a line like:

load "file.prg",7

This program must be in TOS relocatable format in order to be usable from
STOS. Also note that the extension used for the file should always be PRG
and that any other extensions will generate an error message. Never try to
call a Gem program from STOS Basic or the system will crash completely!

3 Pass any input parameters using the pseudo variables DREG(O)- DREG(7)
and AREG(0)-AREG(6)

4 Call your program using a line like:

call 7

Your assembly language program may subsequently change any 68000 registers
it likes with the sale exception of A7, and must always be terminated with an RTS
instruction. It must never call the Gemdos traps SET BLOCK, MALLOC, MFREE,
KEEP PROCESS or any other memory management function.

247

Machine code control instructions

AREG (Variable used to pass information to the 68000's address registers)

AREG(r)

AREG is an array of six PSEUDO variables which are used to hold a copy of the
first six of the 68000's address registers. This enables you to pass information to
and from a machine code function executed by either the CALL or the TRAP
instructions.

r may range from 0-6 and indicates the number of the address register which is
stored in the variable.

Whenever the CALL or the TRAP commands are executed, the contents of this
array are loaded automatically into address registers AO-A6. At the end of the
function call they are loaded back with any new information which has been placed
in these registers.

See DREG, TRAP and CALL

DREG (Variable used to pass information to the 68000's data registers)

DREG(r)

This is an array of seven elements which hold a copy of the contents of the 68000
data registers. The number r refers to the register number and can range from 0-
7 for registers 00-07. See TRAP for an example of this function in action.

TRAP (Calls a 68000 trap function)

TRAP n [.parametersj

TRAP allows you to call one of the numerous 68000 TRAP functions. These traps
are really just large libraries of assembly language functions which are available
from a single machine-code instruction. You can utilise the TRAP command to
give you complete control over the inner workings of your STOS Basic programs.
However you should remember that you are effectively programming in machine
code. This means that if you play around with the TRAP instruction indiscriminately,
you will almost certainly CRASH the ST.

n refers to the number of the TRAP and may range from 0 to 15. Not all of the16
possible TRAPs have been currently installed into the STOS system. Here is a list
of the available numbers:

0,1,13,14 (The Gemdos functions)

3,5,6,7 (The STOS functions)

A list of the various Gemdos functions can be found in any good book of machine
code programming on the ST.

The optional parameters specify the data which is to be placed on the 68000's
stack before the TRAP function is executed. As a default these are assumed to
be of size WORD.

248

You can set the size directly from the TRAP instruction using a statement such as:

W,expression (Sets the size to WORD)

(Sets the size to

be any list of WORDS
when the function

WORDS which need

bonus is that you can string variable in the
this case only the Ihe string is placed

and a chr$(O) is automatically added to the end of the variable to convert it into the
correct format. Another way of passing information to the TRAP is using the
PSEUDO registers AREG and DREG. See the appropriate section on these
functions for more details.

Here are a few simple examples of the TRAP function in action.

14,33,4:rem Set prillter

IIreg(0)=44:dreg(1)=100:lIreg!2l=100: !i:rem Move mouse to

Assembly Interface
STOS provides a wide variety of powerful facilities for the assembly language
programmer. These allow assembly language routines to be directly incorporated
into STOS Basic programs. Two sets of STOS functions are included. The first of
these is basically an expanded version of Gemdos and uses system TRAP
number 4. Unlike Gemdos, any parameters are passed to the TRAP using
registers. The function number is placed in register DO and any other data in
registers and AD. After the rouline executed, these registers

of the call. All the unchanged. Here
4 routines

Parameters

Output Parameters

$01 SCONIN with ECHO

Input Parameters

Parameters

Parameters

Output Parameters

Example:

MOVE #2,00

from the keyboard.

Bottom byte of DO.W holds Ascii code of key, Top
byte contains SCANCODE

Get a character from the keyboard and print it on
the screen.

DO = $1

DOW holds Ascii code
SCANCODE

contained in Dl onto

D 1 = Ascii code of the character to be printed

NONE

,01

This the screen

$03 READLINE

Input Parameters

Output

Example:

MOVE #3,00
LEA LEN(PC),AO
MOVE.B #2O,d1
TRAP #4
RTS
LEN: DC.wO

20,0

Reads a a string from the keyboard

DO = $3
01 = Maximum number of characters to be input
AO = Address of Buffer to hold string

AO = Pointer

function of Gemdos. Like

On centains the number of string.

$04

Input fJ",r·"mpjpr"

Output Parameters

$05 SPRINT LINE

Input Parameters

Prints oul DO to the printer.

DO = $4
01 = ASCII character

DO = 0 if an error has occurred.

Prints a line of text on the screen.
Can use standard escape codes.

DO = $5
AO = Address be printed

NONE Output

Note that be terminated by a

Example:

LEA ADR(PC),AO
MOVE #5,00
TRAP #4
ADR: DC.B 27,"STOS",0

$06 SPRINT VID Print a line of text of the screen. This is identical to
SPRINT the fact that
codes are

Input DO = $6
AO = Address be printed

250

Output Parameters

$07 BINHEX

Input Parameters

Output Parameters

Example:

MOVE #7.DO
MOVE #$FFFFA304.D1
TRAP #4
MOVE #5.00
TRAP #4
RTS

$08 HEXBIN

Input Parameters

Output Parameters

$09 BINDEC

Input Parameters

Output Parameters

$OA DEC BIN

Input Parameters

Output Parameters

$OB UPPER

Input Parameters

Output Parameters

$OC EXIST

Input Parameters

Output Parameters

NONE

Converts a binary number in DO to an Hexadecimal
string pointed to by AO.

DO = $7
01 = number to be converted

AO = Address of hexadecimal string

Converts a Hexadecimal string pointed to by AD
into a binary number returned in DO

DO = $8
AO = Address of hexadecimal string

DO = Binary result

Converts a Binary number in 01 into a Decimal
string pointed to by AD

DO = $9
01 = number to be converted

AD = Address of decimal string

Converts a decimal string pointed to by AD into a
binary number returned in DO

DO =$A
AD = Address of decimal string

DO = Binary result

Converts a string of characters pointed to by AD
into upper case

DO = $B
AD = Address of string

AD = Address of upper case string

Searches the current drive to see if the file name
pointed to by AD is on the disc.

DO = $C
AD = Address of filename (terminated by 0).

DO = Contains the length of the file, or -1 if file not
found

251

$OF CLS

Input Parameters

Output Parameters

$10 LOCATE

Input Parameters

Output Parameters

Example:

MOVE #$10.00
MOVE #$OOOAOO06.01
TRAP #4
RTS

Clears the ST's screen

00 = $F

NONE

Moves the cursor to desired postion on the screen.

00 = $10
01 = Top half of 01 holds X coord, and bottom half
holds Y coord

00 = None

This positions the cursor at 10,6

$11 BREAK

Input Parameters

Output Parameters

This function prints out the contents of registers
00-07 and AO-A6 in hexadecimal

DO = $11

00 = None

Note DO is printed out as 00*4 by this function.

Example:

MOVE #$11.00
TRAP #4
MOVE #0.00
TRAP #4

$12 READ

Input Parameters

Output Parameters

Example:

MOVE #$12.00
LEA ADR(PC).AO
TRAP #4
RTS
ADR: DC.l STOCK
DC.B "FILE.DAT".O
STOCK: BOF 1000.0

Reads a file from the disk

DO = $12
AO = Pointer to Parameter Block
Parameter Block = Pointer to input BUFFER
filename

DO = -1 if the file does not exist

252

$13 WRITE

Input Parameters

Output Parameters

Example:

MOVE #$13,DO
MOVE.L #10,D1
LEA ADR(PC),AO
TRAP #4
RTS
ADR: DC.L BUFF
DC.B "TEST.DAT",O

Writes a file to the disc

DO = $13
D1 = No of bytes to be written
AO = Pointer to Parameter Block
Parameter Block = Pointer to input BUFFER
filename

DO = -1 if the file does not exist

BUFF: DC.B "ABCDE1234S"

$14 CHORIVE

Input Parameters

Output Parameters

$15 CHOIR

Input Parameters

Output Parameters

$16 MKOIR

Input Parameters

Output Parameters

$17 RMOIR

Input Parameters

Output Parameters

$18 KILL

Input Parameters

Output Parameters

Change the current drive

DO = $14
D1 = Drive no (0 .. 3)

DO = NONE

Change the current directory

DO = $15
AO = pointer to string containing the path name

DO = NONE

Install a new subdirectory on the disc

DO = $16
AO = pointer to string containing the new directory
name

DO = NONE

Delete a subdirectory

DO = $17
AO = pointer to string containing the name of the
directory to be erased.

DO = NONE

Erases a file or group of files from the disc

DO = $18
AO = pointer to string containing the name or the
pathname of the file(s) to be erased.

DO = NONE

253

$19 ASCII

Input Parameters

Output Parameters

Example:

MOVE #$19,00
MOVE #512.01
LEA BUF(PCI.AO
TRAP #4
RTS
BUF: BUFFER

$1A FLOPR

Input Parameters

Output Parameters

Example:

Dumps a buffer containing ASCII text to the printer.
Only bytes between $20 and $7F are printed out.
Any other characters are replaced by a"."

DO = $1901 = number of bytes to be printed
AO = Address of print buffer

DO = NONE

Reads one or more sectors from the disc

DO = $19
D1 = Read parameters. ~owest word contains the
starting sector, the next byte holds the number of
sectors to be read, and the top byte of 01 is set to
the drive number (0,1,2)
AO = Data Buffer

DO = NONE

MOVE #$lA,OO
MOVE.L #$Oool000B,Ol
LEA BUF(PC),AO
TRAP #4
RTS BUF:
BOF 1000,0

$18 FLOPW

$1C MUL32

Input Parameters

Output Parameters

Example:

MOVE #$lC,OO
LEA R(PC),AO
TRAP #4
RTS

R: OC.LO
OC.L SAOOOO,$FF

Writes one or more sectors to the disc. parameters
identical to the above call, except that DO contains
function no $18.

Multiply two 32 bit numbers together

DO = $1C
AO = Address of a buffer area containing 1 long
word for the result, and 2 long words holding the 2
numbers to be multiplied.

DO = Result of calculation.

254

On return both DO and R contain the result. ($09F60000 in the example above)

$1001V32

Input Parameters

LONG WORD
LONG WORD
LONG WORD
LONG WORD
LONG WORD

Output Parameters

Example:

MOVE #$10,00
LEA BLlF(PC),AO
TRAP #4
RTS
BUF: DC.LO
DC.L SFFFFFFFE,2.0,O

$1E 0lV64
Input Parameters

LONG WORD
LONG WORD
LONG WORD
LONG WORD
LONG WORD

Output Parameters

$FFFF SET USER

Input Parameters

Output Parameters

Example:

MOVE #-1.00
LEA USR,AD
TRAP #4
RTS

32 by 32 bit division.

DO = $10
AD = pointer to a buffer containing 5 long words.

1 = 0
2 = DIVIDEND
3 = DIVISOR
4=0
5=0

DO = 0 if an error has occurred, non zero if no error.
D1 = Result
AO = pointer to 210ng words containing the quotient
and the remainder of the division.

Performs a 64/32 bit division
DO = $1E
AO = pointer to a buffer containing 5 long words.

1 = Bottom half of DIVIDEND
2 = Top Half of DIVIDEND
3 = DIVISOR
4=0
5=0

DO = 0 if an error has occurred, non zero if no error.
D1 = Result
AO = pointerto 210ng words containing the quotient,
and one long word holding the remainder of the
division.

Install a user defined function.

DO = $FFFF
AD = Address of the start of the new routine

DO = NONE.

255

USR: MOVE #O .. (SP)
User function
MOVE DO.D3
RTS

$1F USER

Input Parameters

Output Parameters

Calls the user function defined by SET USER

DO = $1F

Up to you.

256

Appendix E

The STOS Basic Traps
STOS Basic was written in a very modular way. Each separate group of Basic
functions was implemented using a special set of 68000 TRAPs, placed on the
STOS system disc. The Traps can be found in the files:

WINDOWS.BIN (TRAP #3)

SPRITES.BIN (TRAP #5)

FLOAT.BIN (TRAP #6)

MUSIC.BIN (TRAP #7)

These files are installed by STOS Basic into memory whenever it is loaded. The
advantage of this approach is to allow the machine code programmer unprecedent
access to the heart of the STOS Basic system. You can call up most of the more
interesting features of the package such as sprites or music directly from
assembly language. You should be very careful when using these functions as it's
quite easy to make a serious mistake and crash the system. Also note that it's good
practice to avoid accessing a function from machine code at the same time as it
is being utilised by the Basic as this can lead to unforseen errors.

The window functions (Trap 3)
TRAP 3 supports a list of TRAP functions which make it very easy to create and
manipulate STOS windows from within an assembly language program. Instead
of using the stack, these routines require all their information to be placed in one
or other of the 68000's registers. The function number is stored in register D7 and
any additional data is loaded into DO-D1 and AD. If the function returns any results,
these will be passed to your program in either AD and DO. Warning I Some of these
functions automatically redraw all the sprites on the ST's screen! You can avoid
this by using the UPDATE OFF command from Basic.

Here is a list of the various functions:

No. Name

o CHROUT

Action

Print a character
in current window

PRINT STRING Prints a string of
characters in window

2 LOCATE Move text cursor

3 SET PAPER Set paper colour

4 SET PEN Set text colour

257

Parameters

DO=Character to be output

AO=Pointer to string
String is terminated by 0

DO=X coordinate (TEXT)
D1 =Y coordinate. See LOCATE

DO=Colour index of paper

DO=Colour number of pen

5 TEST SCREEN Find character Returns with character in DO
under cursor

6 INIT WINDOW Initialize a window

7 STOP INTER Stop interrupts
used by windows DO NOT CALL

8 WINDON Activate window DO=Window number

9 DEL WINDOW Delete window DO=Window number

10 INIT MODE Initialise a screen
in a new resolution

11 GET BUFFER Get address of DO=Length
keyboard buffer AO=Address

12 WINDCOPY Print current window
on printer

13 GET CURRENT Get current window no Returned in DO

14 FIX CURSOR Change size of cursor DO= Top D1 =Bottom D2=0

15 START INTER Start window interrupts DO NOT USE

16 QWINDOW Activate window DO=Window number
quickly

17 GET CURSOR Get position of text Retu'rns

18 CENTRE

19 SET BACK

20 AUTO INS

21 JOIN

22 SMALL
CURSOR

cursor Top byte of DO=X coordinate
Bottom byte of DO=Y

Prints centred text AO=Address of string
string on the screen to be printed

Change address of AO=Address of new Background
sprite Background

Opens a space in the DO=Character to be output
current line and places
a character in it

Joins current line with
following line

Displays a small cursor

23 TALL CURSOR Displays a thick cursor

24 MOVE
WINDOW

26 SET ICON
ADR

Move a window to new DO=Window number
position D1 =X coord, D2=Y coord (Text)

Set address of ICONS AO=Address of ICON BANK

258

28 GET CHARSETGet address of DO=Set number
character set Returns address in DO

29 SET CHARSET Set new address of DO=Set number
character set AO=Address of new set

30 BORDER Change the border of DO=New Border (0-16)
the current window

31 TITLE Add a title to the AO=Address of a string
current window for title (terminated with 0)

32 AUTOBACK Identical to Basic
ON version.

33 AUTO BACK See Basic version
OFF

35 XGRAPHIC Convert X coord DO= Text coord
from text to graphic Returns converted coord in DO

36 YGRAPHIC Convert Y coord 00= Text coord
from text to graphic Returns converted coord in DO

37 XTEXT Converts X coord DO=Graphic coord
from graphic to text Returns converted coord in DO

38 YTEXT Converts Y coord DO=Graphic coord
from graphic to text Returns converted coord in DO

39 SQUARE Draws a square at DO=Border (0-16)
current cursor D1 =Width (Minimum 3)
position D2=Height (Minimum 3)

The sprite functions (Trap 5)
The STOS Basic sprite commands are performed using a special section of the
STOS system called the SPRITE MANAGER. This handles all the interrupt-driven
movements and animations which make STOS Basic so amazingly powerful. You
can communicate with this process from machine code by using a simple set of
TRAP 5 instructions. These take the function number in register DO, and read the
various parameters in the other registers. Note that only registers 00-01 and AO
are modified by this TRAP.

No Name

INIT MODE

2 CHANGE

3

BANK

CHANGE
LIMITS

Action

Initialise the sprite
generator to a new
resolution

Parameters

Change the address of AO=.Address of new sprite
the sprite bank. See bank
Pn for more details

Change limits of the
display area used by
the sprites. (Called
by LIMIT SPRITE)

259

D1=X Coord of Leftmost limit
D2=X Coord of Right limit
D3=Y Coord of Top limit
D4=Y Coord of Bottom limit

4 SYNCHRO Turns on/off synchro- D1=1 for SYNCHRO ON
nisation of sprites and D1=0 fro SYNCHRO OFF
background (See
SYNCHRO from Basic)

5 PRIORITY Switch between normal D1=1 for PRIORITY ON
& Y coordinate priority D1=0 for PRIORITY OFF
(See PRIORITY from
Basic)

6 POS SPRITE Get position of sprite D1=Sprite number
Returns X coord in DO
and Y coord in D1

7 SPRITES Redraws or remove all D2=1 for Redraw
ON/OFF sprites on screen D2=0 for erase

8 SPRITE Redraws or removes D2=1 for Redraw
ON/OFF one sprite on screen D2=0 for erase

D1=Number of Sprite

9 SPRITE Draws a sprite D1=Number of sprite
D2=X coordinate of sprite
D3=Y coordinate of sprite
D4=lmage number of sprite

10 MOVES Starts or stops all D2=0 for STOP
ON/OFF sprite movements D2=1 for FREEZE

D2=2 for START

11 MOVE ON/ Starts or stops one D2=0 for STOP
OFF sprite movement D2=1 for FREEZE

D2=2 for START
D1 =No of sprite

12 MOVE INIT Defines a sprite AO=Address of movement
movement Eqivalent string terminated by a zero
to MOVE X and (in same format as Basic)
MOVE Y D 1 =No of sprite

D2=0 for MOVE X
D2=1 for MOVE Y

13 ANIMS Same as function 10
ON/OFF for animations

14 ANIM ON/OFF Same as function 11
but for animations

15 INIT ANIM Define an animation AO=Address of animation
sequence. string terminated by 0

(in same format as Basic)
D1 =Number of sprite

16 UPDATE Redraw any sprites
which have changed
since last update

260

17 SHOW Show mouse Dl=O for SHOW ON
D1=1 for SHOW

18 HIDE Hide mouse D1=O for HIDE ON
D1 =1 for HIDE

19 CHANGE Changes mouse image 01 =No of new image
MOUSE

20 MOUSE Get mouse coordinates Returns X coord in DO
Y coord in D1

21 MOUSEKEY Get mouse button Returns status in DO
returns

22 SCREEN TO Copies physical screen
BACK to sprite background

23 BACK TO Copies sprite background
SCREEN to physical screen

24 DRAW MOUSE Redraw mouse on screen

25 SET ZONE

26 ZONE

27 CHANGE
BACK

Set test zone

Test zone

Change address of
sprite background

D1 =No of zone
02=Leftmost limit in X
D3=Rightmost limit in X
04= Top limit in Y
05=Bottom limit in Y

01 =Sprite to be tested
Returns zone number it was
found in or 0 in DO

AO=New address

28 STOP MOUSE Stop the mouse moving
on the screen

29 DRAW
SPRITES

Redraws all the sprites
on the screen

30 START INTER Starts sprite interrupts DO NOT USE!

31 STOP INTER Stops sprite interrupts NEVER USE THIS FUNCTION!

32 LIMIT MOUSE Limit mouse to area on D1 =X coord of Left corner

33 SCREEN
COPY

screen D2=Y coord of Left corner
D3=X coord of Right corner
D4=Y coord of Right corner

As STOS Basic

261

AO=Address of source screen
AI =Address of dest screen
01/02=(X,Y) of rectangle to be
copied
03/D4 (X,Y) of destination
05/06 (W,H) of zone to be copied.

34 ICON Put Sprite

35 PUT SPRITE Puts Sprite in
background screen,
providing it is
already displayed

36 INIT ZONE Initialise test zones

D1=X coord of sprite
D2= Y coord of sprite
D3=No of Icon
address of sprite data

D1 =Number of sprite

37 GET SPRITE Equivalent to the Basic D1=X coordinate of new sprite

38 REDUCE

39 INIT FLASH

40 FLASH

42 ZOOM

43 APPEAR

instruction D2=Y coordinate

Reduce a screen

Initialise colour flashes

Set up a flash
sequence

Enlarges a section of
the screen

Fades between two
screens

D3=Pointer to sprite to be copied.
D4=Mask

AO=Address of source screen
Ai =Address of destination
D 1 =X coord of reduced screen
D2=Y coord of reduced screen
D3=Width of reduced screen
D4=Height of reduced screen

Dl=No of colour to be flashed
AO=Flash string terminated by
a zero. See FLASH from Basic

AO=Address of source screen
AI =Address of destination
Dl =X coord of top left corner
D2=Y coord of top left corner
D3=Width of the section
D4=Length of the section
D5/D6=Coordinates of dest
A2IA3=Size in X and Y of dest

AO=Address of source screen
AI =Address of dest screen
D1=Type of fade (1-80)

44 MOVE MOUSE Changes the
coordinatesof
the mouse

D1=New X coordinate
D2=New Y coordinate

45 MOVON

46 SHIFT

47 REDRAW

Checks whether sprite Dl=No of sprite
is in motion Returns 0 in Dl if sprite is not

moving and 1 if the opposite is true

Shifts the palette of
colours.

Identical to the Basic
function.

262

D 1 =Speed in 50ths of a second
D2=Colour the rotation is to
be started at.

Floating point extension library
This gives the programmer access to a wide variety of floating point operations
and uses numbers in the IEEE 64-bitformat between 10 E-307 to 10 E+30B. These
routines corrupt registers 00-04 and AO-A 1. As before, the function number is
loaded into 00 before calling the appropriate routine.

The first parameter should always be placed in registers 01-02, (with 01
containing the bottom half of the number, and 01 holding the top half. If a second
parameter is required, this should be put into registers 03-04 using the same
format. You can now execute the function using a TRAP #6 instruction.

$00 ADFL Adds two floating point numbers together

Example:

MOVE #0,00
MOVE.L #$3FF19GGG,01
MOVE.L #$99GGGGGA,02
MOVE.L 01.03

; First no in 01-02

; Copy 1st no into
; 2nd no MOVE.L 03,04

TRAP #6
RTS

On return OO.L and 01.L contain the result.

$01 SBFL

$02 MLFL

$03 DVFL

$04 SINFL

$05 COSFL

$06 TANFL

$07 EXPFL

$08 LOGFL

$09 LOG10FL

$OA SQRFL

$OB ATOFL

$OC FLTOA

Subtract one floating point number from another
Parameters used identical to AOFL

Multiply two floating point numbers

Oivide two floating point numbers

Takes the SIN of the number in 01-02 and places
it in 00-01.

Takes the COS of the number in 01-02 and places
it in 00-01.

Takes the TAN of the number in D1-02 and places
it in 00-01.

Takes the Exponential of the number in 01-02 and
places it in 00-01.

Calculates the naperien log of the number in 01-
02 and returns the result in 00-01

Calculates the base 10 log of the number in 01-02
and returns the result in 00-D1

Takes a number in 01-02 and returns the square
of it in 00,01

Takes an Ascii string pointed to by AO and converts
it into a number in floating point format in 00-01

Takes an FP number in 01-02 and converts it into
an Ascii string

263

Input Parameters

Output Parameters

Example:

00 = $OC
01-02 = The FP number to be converted.
03 = A digit representing the number of digits after
the decimal point in Ascii.
AD = The pointer to a buffer for the string

. The length of the Ascii string (not including the final
0)
AD = A pointer to the string of Ascii characters
terminated by a o.

MOVE.L #$3FF19999.01; Load 1.1 into 01-02
MOVE.L #99999999A.02
MOVE #SC.OD
LEA BUF(PC).AD
MOVE.W #$0031.03 ; 1 Digit after the OP
TRAP #6
MOVE #5.00 ; Print the number on the
TRAP #4 ; screen.
RTS
BUF: BOF 1DDD.0

$00 FLTOIN

$OE INTOFL

$09 EQFL

$10 NEFL

$11 GTFL

$12 GEFL

$13 LTFL

$14 LEFL

$15 ASINFL

$16 ACOSFL

$17 ATANFL

$18 SINHFL

$19 COSFL

$1A TANFL

$1BINTFL

Convert a FP number in 01-02 into an integer in
00

Convert an integer in 01 into an FP no in 00-01

Compares the two numbers in 01-02 and 03-04.
If they are equal then 00 contains a 1, otherwise it
contains a zero.

Compares the two numbers in 01-02 and 03-04.
If they are not equal then 00 contains a 1 ,otherwise
it contains a zero.

Compare two numbers and return a 1 in 00 if the
first is greater than the second.

Test if greater than or equal

Test if less than

Test if less than or equal

Calculate the Arc Sin of no in 01-02 and return it
in 00-01

Calculate the arc cos

Calculate the arc tan

Calculate the hyperbolic sin

Calculate the hyperbolic cos

Calculate the hyperbolic tan

Get the integer part of 01-02 and place the result
in 00-01

264

$1C POWFL Calculate XAy where X is in 01-02 and Y is in 03-
04. As usual the result is in 00-01

The music generator
Like the sprite definer, there is also a special music generator which functions
completely independently of the rest of STOS Basic. This can be called from any
of your machine code programs by using a TRAP 7 instruction. To access these
routines, place the function number in 00. Note that only registers 00 and AO are
modified by these commands.

The music Traps (Trap #7)
No. Name Action

o INIT SOUNO Resets sound generator
and kills music

Parameters

START MUSIC Starts playing some AO=Address of music
music

2 STOP VOICE Stops the music 01 =Number of voice
played on a single voice

3 RESTART Resumes playing a 01 =Number of voice voice
VOICE single voice stopped

by STOP VOICE

4 FREEZE Freezes some music

5 UNFREEZE Resumes some music
frozen with FREEZE

6 CHANGE Change speed of music01=New speed (0-100)
TEMPO

7 START INTER Start music interrupts

8 STOP INTER Stop music interrupts

9 TRANSPOSE Change pitch of music
by a number of
semi tones

10 GET VOICE Get position of in a
voicwe

PSG (Access Programmable sound generator)

PSG(r)

00 NOT USE

00 NOT USE

01=Number of semi tones

01 =Number of voice Returns
position in 00

The Atari ST incorporates a special piece of circuitry which it uses to generate the
wide range of different sounds which can be played through your monitor or
television set. This circuit is built around a single microchip known as the YAMAHA
YM 2149. It possesses the following general characteristics.

265

• 3 separate frequency generators (One for each VOICE)

• 1 noise generator (Used by STOS Basic's NOISE command)

• 15 different volume levels (See VOLUME)

• 16 preprogrammed envelopes (Accessed by ENVEL)

The precise sound produced by the circuit is determined by the contents of 14
different SOUND REGISTERS numbered from 0-13. You can access these
registers directly using the PSG command. PSG is effectively an array which holds
a copy of the current contents of the sound registers. Whenever you assign a value
to one of the elements in the PSG array, this will be automatically loaded into the
appropriate register.

Example:

print psg(1)

WARNING: This function is DANGEROUS! Incorrect usage can cause serious
damage to any disc in the current drive. This is because part of the sound chip is
also utilised by the STs disc system. You should therefore take extreme care
when attempting to use this command.

Here is a brief list of the various sound registers and their uses.

Register

o
1
2
3
4
5
6

7

8

9
10
11
12
13

Function

Bits 0-7 set the pitch in units of a single step for voice 1.
Bits 0-3 set the size of each frequency step.
Fine control for voice 2. Format as Register 0
Coarse control for voice 2. As register 1
Controls pitch of voice 3 in the same fashion as register 0
Coarse control of the pitch of voice 3
Bits 0-4 control the pitch of the noise generator. The higher the value
the lower the tone.
Control register for sound chip.
Bit 0: Play pure note on voice 1 ON/OFF (1 for ON, 0 for OFF)
Bit 1: Voice 2 tone ON/OFF
Bit 2: Voice 3 tone ON/OFF
Bit 3: Play NOISE on voice 1 (1 for ON, 0 for OFF)
Bit 4: Voice 2 noise ON/OFF
Bit 5: Voice 3 noise ON/OFF
Bits 0-3 control volume of voice 1. If bit 4 is set to one then the
envelope generator is being used, and the volume bits are ignored.
Since this corresponds to a volume of 16, this explains why you
need to set VOLUME to 16 before you can use the ENVEL
command.
As Register 8 but for Voice 2
As Register 9 but for Voice 3
Bits 0-8 provide fine control of the length of the envelope
This register provides coarse control of the length of the envelope
Bits 0-3 choose which of the 16 possible envelope types is to be
used.

266

Appendix F

Structure of the sprite bank
All of the STOS Basic sprites are stored in bank number 1. It begins with a block
of general information about the sprites. This designates the number of sprites in
each resolution and their position in memory relative to the start of bank 1.

Offset from start
of sprite bank

o

4

8

12

16

18

20

Meaning

Sprite identification code $19861987

4-byte offset to address of sprite parameter block in low
resolution

4-byte offset to address of sprite parameter block in
medium resolution

4-byte offset to address of sprite parameter block in high
resolution

Number of sprites in low resolution

Number of sprites in medium resolution

Number of sprites in high resolution

After this section comes a list of special SPRITE PARAMETER BLOCKS. These
hold specific information about each individual sprite and are 8 bytes in length.

Typical sprite parameter block
Offset from start
of sprite bank

22

26

27

28

29

30

Sprite 1 parameter block

4-byte offset to sprite 1 data

Width of sprite 1 (in units of 16)

Height of sprite 1

X Coordinate of hotspot

Y Coordinate of hotspot

Sprite 2 parameter block ...

Finally comes the data which makes up the actual design of the sprites.

267

Here is a diagram which illustrates its structure.

The Sprite Data Block

Data for Mask (one bit plane)

Sprite Data (organised in Bit Planes)

Although these sprites may look rather complicated, remember that you can
design and manipulate STOS Basic sprites without ever needing to know anything
about how they are really stored in memory.

Structure of the icon bank
All STOS Basic icons are stored in bank number 2 using the following format:

Offset from start
of bank 2

o

4

6

92

166

Meaning

$28091960 This is the icon bank 10 number

Number of icons in bank

Start of data for icon 1. This is 84 bytes long, and uses
the same format as the LINEA sprites.

Start of data for icon 2

Start of data for icon 3

Structure of the music bank
STOS Basic places all its music data in Bank number 3. Here are full details of how
this information is stored in the ST's memory.

Offset from start
of Music Bank

o

4

8

124

128

132

140

380

Meaning

$13490157 This is the identification code used to
indicate a Music bank

Offset from start of the bank to music number 1 Set
to zero if no music with this number

Offset to music number 2

Offset to music number 32.
(Maximum of 32 pieces of music)

Length of this memory bank.

Name of Music 1 (8 letters)

Name of Music 2 (8 letters)

Name of Music 32

268

388 Start of Music 1

388+Length Music 1 Start of Music 2

etc

Inside the music de·finitions
Each piece of music starts off with its own individual header block. This contains
the definitions of all the envelopes and tremolos you have used, along with
information about the position of the various voices which make up the music.

Music Header

Byte Number

o

6

8

10

12

48

Start of voice 1 .

Contents

$19631969 This is the Identification code used to indicate
that the data is music.

Offset to Music in voice 1

Offset to Music in voice 2

Offset to Music in voice 3

Definition of first tremolo/envelope (36 bytes
long)

Definition of second tremolo/envelope

The Music commands

Each note is stored as a two-byte word ranging from 0-32767. The lower half of
this word contains the pitch of the note (0-96). See PLAY for more details. The
upper byte holds the length of the note in 50ths of a second. The Music commands
are held in either two or four bytes. In order to distinguish them from normal notes,
the highest bit of these commands is set to 1. Here is a list of the various
commands and the numbers used to represent them in the music.

Number Size Command Meaning

$8000 2 bytes END Signifies end of music for this voice

$AOOO 2 bytes MUSIC Uses pure tones for music

$A100 2 bytes NOISE ONLY Uses noise for music

$A200 2 bytes STOP NOISE Turns off noise

$A3xx 2 bytes NOISE xx Plays noise with pitch xx

$A400 2 bytes STOP Stop Mixing Tremulo with noise
NTREMULO

269

$A500 2 bytes STOP ENVEL Stop using current Envelope

$A600 2 bytes STOP Stop using current tremolo
TREMOLO

$A7xx 2 bytes VOLUME xx Set volume of sound to xx

$COOO 4 bytes NTREMULO Mix TREMULO with noise. Bytes 23
hold offset to tremulo definition

$C100 4 bytes ENVEL xx Use ENVEL xx. Bytes 23 hold offset
to envelope definition.

$C200 4 bytes TREMULO xx Use TREMULO xx. Bytes 2-3 hold
offset to tremulo definition

$C3nn 4 bytes REPEAT nn,note Repeat music starting from note, nn
times. Note held in bytes 2-3.

Screen banks
The format of the screen banks is very straightforward indeed. The first 32000
bytes of this memory hold the actual screen data, and the next 16 words from
number 32000 to 32032 contain a copy of the colour settings for this screen. Note
that the bytes from 32032 onwards are free, and can be used for your own
purposes.

270

STOS Basic Commands

Command Page Command Page
ABS 212 COPY 223
ACCLOAD 55 COS 210
ACCNB 57 CRIGHT 162
ACCNEW 55 CUP 162
ACOS 210 DATA 225
ANIM 87 DATE$ 218
ANIM FREEZE 89 DEC 39
ANIM ON/OFF 89 DEEK 222
APPEAR 154 DEFFN 214
ARC 125 DEF SCROLL 149
AREG 248 DEFAULT 33, 141
ASC 217 Dffi 200
ASIN 210 DELETE 29
ATAN 211 DETECT 97
AUTO 25 DFREE 208
AUTO BACK ON/OFF 100 DIM 36
BACK 139 DIR 206
BAR 127 DIR FIRST$ 206
BCHG 221 DIR NEXT 207
BCLR 221 DIR$ 206
BCOPY 1.7 DNX 1~
BELL l17 DIVY 136
BGRAB 47 DOKE 222
BIN$ 219 DRAW 123
BLOAD 54 DREG 248
BOOM117 DRIVE 207
BORDER 166 DRVMAP 208
BOX 124 EARC 1~
BREAK 191 ELLIPSE 129
BSAVE 50 END 187
BSET 221 ENGLISH 34
BTST 221 ENVEL 118
CALL 247 EOF # 203
CDOWN j~ EPIE 130
CENTRE 163 ERASE 1.7
CHANGE 28 ERRL 190
CHANGE MOUSE 90 ERRN 190
CHARCOPY 171 ERROR 190
CHARLEN 170 EXP 212
CHR$ 217 FADE 155
CIRCLE 128 FALSE 227
CLEAR 33 FIELD # 203
CLEAR KEY 192 FILESELECT$ 218
CLEFT 162 FILL 224
CLICK ON/OFF 105 FIRE 94
CLIP 137 FIX 215
CLOSE # 202 FKEY 193
CLS 121,143 FLASH 132
C~ 1M FLlP$ 216
COLLIDE 94 FLOAD 22
COLOUR 121 FN 214
CONT 25 FOLLOW 29

271

Command Page
FOR ... NEXT... ... '" 185
FRANCAIS 34
FREE 34
FREEZE '" j02
FREQUENCY 34
FSAVE ... '" 23
FULL 32
GET # ... '" 204
GET PALLETTE, 142
GET SPRITE " ... 98
GOSUB '" 184
GroO... j~
GRWRmNG 1~
GMB ~
HARDCOPY 205
HCOS ... '" 211
HEX$... " 219
HEXA ON/OFF45
HIDE ' .. 92
HOME ... ". 161
HSIN ... '" 211
HTAN ... '" ... 211
HUNT 224
ICON$... '" 173
IF ... THEN 187
INC 38
INK '" 121
INKEY$ '" 191
INPUT # '" 202
INPUT ... " 194
INPUT$ '" 203
INPUT$(n) 193
INSTR 112
INT '" 213
INVERSE ON/OFF 158
JDOWN 94
JLEFT 93
JOY... 92
JRIGHT 93
JUP 93
KEY 191
KEY ON/OFF 156
KEY SPEED 193
KEYLIST '" 18
KILL ... '" 209
LDIR ... '" 205
LEEK 223
LEFT$ 110
LEN '" 217
LENGTH '" 48
LET '" 215
LIMIT MOUSE 91
LIMIT SPRITE 87
LINE INPUT # 202
LlNEINPUT j95
LI~ u
LlSTBANK 45. 205
LLiST ... '" 205
LN '" 212

272

Command Page
LOAD 51
LOCATE,.159
LOF # 203

MAX
MENU FREEZE
MENU ON/OFF
MENU$
MENU$(title,option)OFF
MENU$(title,option)ON .
MENU$(x,y)

..213
... 176
. .. 176

. ... 175
..... 176
. .,.176

. 175

MOVE FREEZE '" ... 85
MOVE ON/OFF.
MOVE X
MOVE Y
MOVEON
MULTI
MUSIC

ON ... GOTO
OPEN #
OPEN IN #
OPEN OUT #
PACK
PAINT
PALETTE

PLOT

..85
.. B2

. ... '" .. B4
. B6
.., .. 31

.......... 105

... 188
., ... 201
. 201

. .. 201
. .. 154

. 127
.... 122

POF # 203
POINT 123
POKE 222
POLYGON j 28
POLYLINE 124

Command Page Command Page
POLYMARK 134 SHOOT 117
POP 184 SHOW 92
PORT # 204 SIN 209
PREVIOUS 207 SORT 113
PRINT # 202 SPACE$ 216
PRINT and? 195 SPRITE Bl
PRIORITY ON/OFF 99 SQR 212
PSG 265 SQUARE j 61
PUT # 204 START 118
p~~Y j~ STOP 187
PUT SPRITE 97 STR$ 217
PVOICE 107 STRING$ 216
QWINDOW 167 SWAP 214
RAD 209 SYNCHRO j51
RBAR 128 SYSTEM 33
RBOX 124 TAB 163
READ 226 TAN 210
REDRAW 102 TEMPO j06
REDUCE 145 TIME$............218
REM 225 TIMER 225
RENAME 209 TITLE165
RENUM 26 TRANSPOSE 107
REPEAT...UNTIL 186 TRAP 248
RESERVE AS DATA 46 TRUE 227
RESERVE AS DATASCREEN 46 UNDER ON/OFF 158
RESERVE AS SCREEN 46, 141 UNFREEZE j02
RESERVE AS SET 46, 170 UNNEW 33
RESERVE AS WORK 46 UNPACK 153
RESET 33 UPDATE 101
RESET ZONE 96 UPPER 34
RESTORE 226 UPPER$ 216
RESUME 189 USING 196
RETUijN j84 VAL 217
RIGHT(G ~O VARPTR 223
RMDIR 208 VOICE 107
RND 215 VOLUME 104
ROL 220 WAIT 224
ROR 220 WAIT KEY 193
R~ U WAITVBL 151
SAVE ~8 WHILE ... WEND 186
SCANCODE 192 WINDCOPY 205
SCREEN COPY 146 WINDEL 167
SCREEN SWAP 140 WINDMOVE 167
SCREEN$ 148 WINDON 167
SCRN 164 WINDOPEN 164
SCROLL 150 WiNDOW 166
SCROLL DOWN 169 WRmNG j~
SCROLL ON/OFF 168 x MOUSE ~O
SCROLL UP 168 X SPRITE 86
SEARCH 27 ~U~ j§

SET CURS 163 XGRAPHIC 160
SET LINE 126 XTEXT 160
SET MARK 135 YMOUSE ~1
SET PAINT 130 Y SPRITE 86
SET PATTERN 131, 156 ~U~ j§

SET ZONE96 YGRAPHIC 161
SGN 213 YTEXT 160
SHADE ON/OFF 15B ZONE 96
SHIFT 133 ZOOM 143

273

274

Index

... 248
............................... 195

................................... 198,

Sound chip .. 218
Accessories 1, 52, 55, 242

Calling ... 55
Clearing ... 55
Loading ... 55
Font Definer 55, 169
Icon Definer 56, 173
Music Definer 56, 108

memory 55
(:ornn""Inr 56,

........................... 55, 59,

.. 231
Icons to a menu 180
Soundtrack 1 08, 114
Sprite to the bank 76
Title screen to your games 240
Two strings .. 39

Address of
Memory bank48
Variable ... 223

.................................... 248
....................................... 12

memory bank46
........................... 4,

... 76
.. 89

.. 89
String ... 87
Sequences .. 66
Starting .. 85, 89

Arc ... 125
Arcade games ... 1
Arithmetic operations 38
Arrays ... 43

Searching of .. 43
01 ... 43

.. 20

.. 126

... 50.
Table ... 56

Assembly language 246
Assembly language interface 249
Assign

Colour to an index 121

275

to the mouse "",,",, 90

Automatic
Backups """ .. ".,,52

numbering " "" 25
Menu selection " """,, 177
Sprite updates : "." 101

Background ." " 100
Colour " ... "." " ... " 157
Screen " 147

Backing up
Automatic " ""." ... 52
Programs ... " .. 32
Run-only programs " .. "."
STOS Basic

Backspace
parameter functions

.............................. " "".44
............................... " " ,,44

Screen" 44
Set ... 44
Sprite ... 44
Listing of45
Memory " 44, 50
~~ ... «

Bar ... 127
Binary

Files """""" ... 50.
Notation "" .. "" ,,219
Numbers " """"."" 37
rotation

operations
numbers """ 227

styles
Break """" ",, .. 20, 234
Bullet train "45, 244, 245
Calling

Accessory .. 19, 55
Assembly language 246
Direct instructions from a program 194
Machine-code program 54

Centred text .. 163
Cel1t1ing the sprite definition

programs together

of a memory localion
Colours of a sprite
Cursor size "
Default character sets
Delault mouse shapes 90
Drive .. 207, 208
Graphics modes 136, 237
Hot Spot .. 72, 80
Language .. 34

Mouse pointer 78
Pitch of the music 107
RGB sprite colours 73
Shape of the mouse 90
Size of a sprite 73. 80
Speed of music 106
Sprite mask ... 80
String ... 28
Text writing mode 159
Volume .. 104

Character set 164. 169. 170. 171. 172
Examples of .. 172
Length ... 170
Reserving .. 46

Characters: Large 143
Choose

Colour index .. 121
Colours .. 122
Fill type .. 130
Polymarker .. 135

Circular arc .. 125
Clearing

Accessories ... 55
Editor window .. 20
Keyboard buffer 192
Screen ... 121. 143
Sprite from screen 102
Window ... 168

Click .. 105
Clipping graphics 137
Clock pointer ... 90
Closing a file ... 202
Code examining 232
Collision .. 94

Detection ... 94
Example of .. 95
Irregular shapes 97
Sprites ... 232
Zones .. 96

Colour
Function .. 122
Text ... 157
Text background 157
Rotation ... 133
Sequences .. 132
Underneath sprite 97

Combining
Horizontal and vertical motion 84
Sets of sprites 71

Commercially releasing your programs .. 239
Communications with external

devices 201.202.204
Compacting the screen 6, 153
Complex

Filled shape ... 128
Sprite movements 84

Composing music 1 08, 114
Compressing a screen 153
Computed Goto 183
Concatenation of strings 39
Confusion .. 1
Constants: Floating point 37
Contents of disc 241
Contour fill ... 127

276

Control keys .. 19
Control structure 183. 184. 185.

186. 187. 188
Control+C .. 20. 234
Control+J .. 17
Controlling

Animation .. 67.89
Menu ... 176
Music ... 106
Sprite motion ... 85
Sprite with the joystick 93

Conversion functions 160
Convert

Number to a string 217
String to a number 217

Copying
Character set 171
Banks between programs 47
Memory banks47
Program .. 32
Screen 7. 146. 148
Sections of memory 223
Sprites to the screen 97

Copyright ... 2
Copyright distribution terms 240
Correspondance address 2
Creating

Accessory .. 57
Basic program 17
Menu ... 175
Music 1 OB. 109. 114
Run-only program 50.239
Sprite ... 66
User-defined functions 214
User-defined pattern 131
Window ... 164

Current program 19.30
Cursor

Control ... 161
Down ... 161
Functions ... 159
Home ... 161
Left .. 162
Off ... 163
On ... 163
Position ... 162
Size ... 163
Up .. 162

Customising the editor 21
Data registers .. 248
Deactivate cursor 163
Debugging aids 29.190
Decision making 1 B7. 18B
Decrementing a variable 39
Default

Character set 172. 242
Screen resetting 141

Definer menus ... 60
Defining sprites in all three modes 77
Degas screens 49. 53. 69.142.153
Deleting .. 17.20

Files ... 209
Memory banks47
Program .. 29.33

Window ... 167
Demonstrations

Expanded box 145
Fonts ... 243

"" .. "" ... 97
.... " 242

................................... 97

sprites 94
irregular shapes 97

Sprites ... 96
Different sereen sizes 136
Dimensioning an array 36
Direct

Commands .. 234
Mode ... 25

Directories ... 206
Directory listings 205. 206

.. 1~
... ~1

ODe,nlllOfiS " 198. 199.
sequence of sprite images

"" """ .. 239
Doodle
Dottod
Dotted lines ... 126
Draw

Box .. 124
Image .. 75
Line ... 123
Rounded box 124
Sprite ... 59. 81

Drives connected 208

..................................... 20
... 57

... 1~
Pie ... 130

End of file .. 203
Endpoints .. 84
Enlarging the sereen 143
Entering

Music ... 109
STOS Basic program 25

Editor

Erasing
... 209

... 121.
Error

Line ... 190
Messages .. 233
Number ... 190
Trapping .. 189

Examining memory 57. 222
Exceeding the 15 sprite limi!... 97

Executing a program 24
Expanded box: Demonstration 01... 145
Expanded version of CLS 143
Explosion sound 117
Extensions

.............. 242
................ .48

.. 203
Length ... 203
Pointer ... 203
Position ... 203
Selector 22. 23. 218

Fill pattern ... 130
Filled

Box .. 127

box
Segment of a circle

Character on the screen 164
Colour underneath sprite 97
Memory bank48
Position in music 1 07
String ... 27.237
Word in a string 41

Fire ... 94
Fix marker type 135

colours

.............. 130

.. 1~

Floating point .. 37
Extension library 263

Folders 206. 207. 208
Font

Accessory .. 169
Demonstration 243
Examples of .. 170

Forcing a sprite to be updated 101
Formatted text

memory........................... 34
memory
a menu
a sprite 85
keys
assignments

Removing of
Functions of strings40
Game

Planning .. 229
Writing ... 229

Games disc ... 244
Gem .. 1. 121.175

Desktop ... 2 Sprite ... 81
Gemdos traps ... 248 Sprite into the memory bank 76
General graphics .. 8 User·defined pattern 131
Generate Instant artwork .. 147

Error .. 190 Intensity of sound 1 04
Strings ... 216 Interpreted mode 25

GoomM~ .. ~1 Interrupting a program 20
Get a specific number of characters 193 Inverse
Get and Put sprite: Example of 99 Text ... 158
Get cursor position 162 Transport writing mode 134
Get palette from the screen 142 Invert string ... 216
Get the address of a variable 223 Joystick ... 92
Get the colour of a point 123 Commands .. 1 0
Get the length of a character set 170 Controlling a sprite 93
Getting a keypress 191 Rm .. ~
Glossa~ of standard Basic 183 Reading 92.93.94
Garf demonstration 97 Reading the fire button 94
Grabbing Testing 92.93. 94

Sprites from the screen 98 Testing fire button 94
Sprites from a program 69 Key speed ... 193
Sprites from the disc 68 Keyboard

Graphics BuHer ... 192. 194
Adding of ... 231 Click ... 105
Commands. List of 9 Language changing 34
Coordinates 160, 161 Large characters 143
General ... 8 Last error ... 190
~~~~ ........................................... 1~ Leaving 
Set colour of ........................................ 121 STOS Basic .......................................... 33 
Techniques .......................................... 231 Subroutine .......................................... 184 

Halting an animation ................................. 89 Length 
Hand pointer ............................................. 90 Of a bank .............................................. .48 
Helicopter sound ....................................... 12 Of a character set ................................ 170 
Help menu ..................................... 19, 30, 55 Of file ................................................... 203 
Hexadecimal ........................................... 219 Of string ............................................... 217 

Listings .................................................. 45 Limiting 
Notation ................................................. 45 Mouse cursor ........................................ 91 
Numbers ................................................ 37 Sprite vis ability ...................................... 87 

Hiding the mouse pointer .......................... 92 Line ......................................................... 123 
Hollow Editing ................................................... 20 

Box ........................................................ 124 Styles ................................................... 126 
Polygons ............................................... 124 Lined fill pattern ....................................... 130 

Home ...................................................... 161 Linking programs together ........................ 24 
Horizontal List of Polymarkers ................................. 135 

Scrolling .............................................. 150 Listing ...................................................... 45 
Sprite movements ................................. 82 Hexadecimal ......................................... 45 

Hot Point ......................... 72. 80, 81,98, 100 Lowercase ............................................. 35 
Hot Spot .......................... 72, 80, 81,98, 100 Program ................................................ 27 
Icons ................................................. 13. 173 Program to the printer ......................... 205 
Accesso~ ............................................ 173 Uppercase ............................................. 34 
Bank ...................................................... 44 Loading 
Bank: The structure of ......................... 268 Accessory.... ...... .. ..... 55 
Definer ................................................... 56 Basic program ................................. 22. 51 

Incorporating icons into a menu .............. 180 Memory. sections of ............................ 224 
Incrementing a variable ............................. 38 Screen ........................................... 53. 142 
Ink colour ................................................ 121 Screen: Example of ............................. 146 
INS ........................................................... 17 Variables ............................................... 51 
Insert mode ............................................... 17 Logical screen ................................. 140. 146 

Inside Loops .............................................. 185, 186 
Music definitions .................................. 269 Movement .............................................. 83 
Rectangular zone .................................. 96 Lowercase listings ..................................... 35 

Inspecting memory ............................ 57.222 
Installing 

Machine code 
Calling of program ................................. 54 

Menu ................................................... 175 Programs ............................................... 54 
New mouse pointers .............................. 90 Running of ............................................. 54 

278 



Magnifying the screen ............................. 143 Changing ................................................. 9 
Makers .................................................... 134 Changing the shape of .......................... 90 
Making a backup ..................................... 1 • 3 Commands. list of .................................... 9 

Run-only programs ................................ 56 Cursor: The limiting of ........................... 91 
Making decisions ............................ 187. 188 Finding its position ........................... 90. 91 
Manipulating Pointer: Changing ................................. 78 

Animation sequence .............................. 77 Pointer: Hiding of ................................... 92 
Screen ................................. 6. 8. 139. 146 Pointer: Removing from the screen ....... 92 
Screen as a string ............................... 148 Pointer: Replacing on the screen .......... 92 
Section of music ................•................. 113 Pointer: Restricting of ............................ 91 

Map definer ..................................... 149. 244 Pointer: The showing of ........................ 92 
Masks ....................................................... 80 Position of ....................................... 90.91 
Maths functions ....................................... 211 Setting limits .......................................... 91 

Absolute value ..................................... 212 Use of .................................................... 89 
Floating point to integer ....................... 213 Move sprite: A test .................................... 86 
Logarithms .......................................... 211 Move until .................................................. 83 
Maximum value ................................... 213 Movement string ....................................... 82 
Minimum value .................................... 213 Moving 
Square root ......................................... 212 Screen ................................................. 149 

Memory banks .............................. 44.50.52 Sprite ................................................ .4.82 
Copying of ............................................ .47 Text control ......................................... 159 
Deleting of ............................................ .47 Window ............................................... 167 
Reserving .............................................. 46 Multi-mode graphics ................................ 136 
Address of ............................................ .48 Multi-sync monitors ................................... 34 
Finding of ............................................. .48 Multiple 

Memory Character sets ..... 164. 169. 170. 171. 172 
Copying sections of ............................. 223 Line drawing ........................................ 124 
Editing ................................................... 57 Programs ................................... 20.30.32 
Examining ..................................... 57.222 Screens ....................................... 139. 140 
Filling sections of ................................. 224 Music ................................................. 11 • 105 
Freeing of .............................................. 59 Bank .............................................. 44. 112 
Inspecting ...................................... 57. 222 Bank: The structure of ......................... 268 
Left ........................................................ 34 Changing the pitch ................................ 11 
Loading sections of ............................. 224 Changing the speed .............................. 11 
Reading ............................................... 222 Control of ............................................. 1 06 
Releasing .............................................. 59 Creating ............................... 10B. 109. 114 
Saving of ............................................... 59 Definer ................................................. 108 
Searching ............................................ 224 Definer menu ....................................... 112 

Menu ......................................................... 14 Entering ............................................... 109 
Banks .................................................... 44 Instructions .......................................... 109 
Commands ............................................ 14 Repeating a section ............................ 11 0 
Commands: Ust of ................................ 15 Speed change ..................................... 106 
Control ................................................. 176 Traps ................................................... 265 
Creation ............................................... 175 Tutorial ................................................ 114 
Example of .......................................... 178 Naming of variables .................................. 35 
Icons .................................................... 180 Neochrome screens ............ 50. 69.142.153 
Music Definer ...................................... 112 Note ........................................................ 103 
Options ................................................ 175 Vatues: A table of ................................ 103 
Reading ............................................... 177 Number bases ................................... 37. 219 
Selection ............................................. 177 Opening 
Title ...................................................... 175 Random file ......................................... 201 
Trouble shooting ................................. 180 Sequential file .............................. 19B. 201 

Merging Window ............................................... 164 
Program ................................................ 29 Optimising your program ......................... 232 
Sprite files ............................................. 71 OR mode (text) ....................................... 159 

Modifying an animation sequence ............ 67 Orbit ........................................ 229. 244. 245 
Modular programming ............................. 229 Outputting information 
Monitors To the printer ....................................... 205 

Monochrome ......................................... 77 To the screen ...................................... 195 
MUlti-sync .............................................. 34 Packing a screen .................................... 154 

Monochrome monitors .............................. 77 Page flipping ................................... 140. 144 
Mouse ......................................................... 9 Palette ............................................. 122. 142 

Buttons: Testing of ............................. 91 Searching .............................................. 88 
Buttons: The reading of ......................... 91 Pause sprites .......................................... 1 02 

279 



Perspective " ....... , .......... , ........ , .... , .......... 100 Fire button ............................................. 94 
Physical screen ....................................... 139 Information from the keyboard ............ 194 
Pictures .......... " ................ , ...................... 231 Joystick ..................................... 92, 93, 94 
Pie chart .................................................. 129 Keyboard ............................. 191, 192, 193 
Pitch: The .................... l07 .................................... 222 
Planning 

Game .................... . .. ................ 229 
Techniques .. .. . ................... 229 

Playing 
Notes ......... .. ............... 103 
Tunes ...... , ... " .............. 1 05 

Plot a point .................... .. ...................... 123 Sprite ................................ 86 
Polygons ................................................. 124 Sequential file .................................... 202 
Polymarker ............................................. , 134 Records ................................................... 199 

Example of .......................................... 135 Rectangle """"""."''''''''''''''''''''''''''''' .... 124 
Types ................................................... 135 Rectangular zone: Inside of ...................... 96 

Position Redrawing the sprites ............................. 102 
In file .................................................... 203 Reduce ......................... , .... , ..... , ... ,", ............ 7 
In music ............................................... 107 Example of .......................................... 145 
Of a sprite .... ...... .. ......................... 86 Screen ............................................... 145 
Of the mouse ................ 90,91 ........................................... 2 

Positioning 159 memory .................. 59, 
Print at cursor ........................ 159 
Printer ................................................... 205 memory ............ ,., ....... 55 

Listing a ............................. 205 from the screen 
Printing 

Ascii file ...... .. ...................... 56 Renaming ...................................... 209 
Sequential files ........................... , ........ 202 Renumbering a program .. , .. ,',., ....... "." ..... 26 

Priority .. " ............................ , ..... , ...... ,., .. " ... 99 Repeat 
Program Section of music .................................. 11 0 

Backing up of ........................................ 32 Section of a Basic program ......... 185, 186 
Copying of ............................................. 32 Speed .................................................. 193 
Creating ........................................... 17, 25 Replacement 
Editing ................................................... 17 Mode ...... ,.,.,., ... ,.,', ................ ,",."., ....... 17 
Executing .............................................. 24 Mode {text} .......................................... 159 
Interrupting.. .. ........................ 20 mode ..................................... .. 
Listing ...... .. ...................... 27 mouse pointer on the 
Loading ........ .. .................. 51 ......................................... , ..... 92 
Machine ........................ 54 
Optimising ...................... 232 , .. , ............. , ............... 46, 
Protecting . .. ................ 191 , ................................... , ... 46 
Renumbering.. .. ................... 26 ......................... .46, 141, 
Resuming. .. ...................... 189 ....................................... , ... 46 
Running ...................... ,', ........ , ............. ,,24 Resetting 
Saving of .............................................. .48 Data pointer ......................................... 226 
Splitting in the editor .............................. 32 Default screen ..................................... 141 
Tracing ......................... ,', ...................... 29 Editor ............................................... 20, 33 

Programming ................ ,', ....................... 229 Restarting a menu ................................... 176 
Modularising ................................ ,., ..... 229 Restoring a compacted screen ............... 153 
Sound generator ................................. 265 Restricting 
Structure.. .. ..................... 229 Graphics to ... 137 

.. , ................. 191 ...................................... 91 
........................... 33 mm/em,Bnls ........................... " ... 8? 

Radians .............................. ,", ................. 209 error .......................... 189 
Random file ................ .. ............. 199, 201 ......................................... 21 , 

Example ............................. 200 
Reading ................ , ................... 204 .................................. 124, 
Writing ................ .. ..................... 204 Run-only ....................... 2, 50, 

Random numbers ................................... 215 Creating .. " ...... " ........... "., ....... ,', ........ 50 
Read a screen point ................................ 123 Running a machine code program ............ 54 
Read and Data ........................................ 225 Running a program ................................... 24 
Read colour assignment ......................... 122 Saving 
Reading Basic programs ..................................... 23 

Directory ...................................... 206, 207 Extensions ......................... , ... " .............. 48 

280 



Memory ......................................... 59, 241 Banks ................................................... 44 
Program ................................................ 48 Colour index ........................................ 121 
Screen ................................................... 49 Colour of graphiCS ............................... 121 
Screen with your program ................... 141 
Sprites ................................................... 76 

Colour of screen .............. .. ..... 122 
Colour of a sprite. .. ....... 73, 78 

Variables ............................................... 50 Colour of text ....................................... 157 
Scancodes ........................................ 56, 192 Current window..................... ...166 

Screen Cursor size .......................................... 163 
Background ......................................... 147 Flashing colour sequence .... ............132 
Bank reserving .................................... 141 Hot Spot ........................... .. ...... 72,80 
Bank ...................................................... 44 Limits for mouse ................... .. ...... 91 
Banks: The structure of ....................... 270 Lirnits for sprite ..................................... 87 
Clearing ............................................... 121 Mouse pointer to a sprite image ............ 90 
Clearing ............................................... 143 Point ................................................. 123 
Compactor ................................. 6, 56,153 Polymarker ........................................ 135 
Copy, example of ................................ 147 Precision of real numbers in printouts. 215 
Copying ................................... 7, 146, 148 Size of a sprite ............................... 73,80 
Copying sprites to ................................. 97 Text background .............. . ............ 157 
Degas ........................ 49, 53, 69, 153, 142 Window border .................................. 166 
Dumps ................................................. 205 Window title .... .......................... ....... 165 
Effects, special .................................... 154 Shaded tex!................ ............ .. ....... 158 
Enlarging ............................................. 143 Shift+delete ......................................... 17, 20 
Erasing ........................................ 121, 143 Shifting the colour ................................... 133 
Flipping ................................................ 140 Showing the mouse pointer ...................... 92 
Flipping, example of ............................ 144 Solid fill pattern ....................................... 130 
Loading ......................................... 53, 142 Sorting 
Magnifying ........................................... 143 Array ..................................................... 43 
Manipulating ................................ 139, 146 List of words ......................................... 43 
Manipulation commands, list of ............... 8 Sound ....................................................... 11 
Moving ................................................. 149 Adding a soundtrack ............................. 11 
Multiple ................................................ 139 C~ ..................................................... ~5 
Neochrome ...................... 50, 69,142,153 Commands: List of ................................ 12 
Packing ............................................... 154 Intensity ............................................... 104 
Reserving .............................................. 46 Sound effects .................................... 12, 117 
Saving ................................................... 49 Aeroplane .............................................. 12 
Scrolling ....................................... 149, 232 Defining your own ............................... 117 
Size, different ...................................... 136 Envelopes ........................................... 111 
Swapping ............................................ 140 ExplOSions ........................................... 117 
Synchronization ................................... 151 Helicopter .............................................. 12 
Unpacking ........................................... 153 Shooting .............................................. 117 
Zooming .............................................. 143 Soundtrack ...................................... 108, 114 

Screen$: Example of ............................... 148 Adding ................................................. 108 
Scrolling Example 01 .......................................... 1 06 

Example of .......................................... 151 Special effects ......................... 132, 154, 155 
Screen ......................................... 149, 232 Split Personalities ....................................... 1 
Sprite ............................................... 60, 78 Splitting 

Search and replace ..................... 27, 28, 237 String ........................................ .40, 41,42 
Searching Programs in the editor ........................... 32 

Array ...................................................... 43 Sprite ............................................. 3, 81, 231 
For a palette .......................................... 88 Adding to the bank ................................ 76 
Memory ............................................... 224 Animation ............................. .4, 66, 76, 87 

Section Background ................................. 100, 139 
01 a hollow circle ................................. 125 Bank .......................................... 44, 73, 78 
01 a hollow elipse ................................ 125 Changing the colours ............................ 78 

Select fill pattern ..................................... 130 Changing the mask ............................... 80 
Selecting files .............................. 22, 23, 218 Changing the RGB colours ................... 73 
Selling Changing the size ............................ 73,80 

Games ..................................................... 2 Clearing frorn screen ........................... 102 
Programs ............................................. 239 Collisions ............................................. 232 

Sequential lile ......................................... 198 Combining sets 01 ................................. 71 
Disc operations ................................... 201 Commands, list 01 .................................... 5 
Example of .......................................... 198 Copying to screen ................................. 97 
Opening of ........................................... 201 Creation ................................................. 66 

Set Definer ............................................. 55, 73 

281 



Definer tools .......................................... 60 Of the icon bank ...................... ........... 268 
Defining in all three modes .................... 77 Of the music bank ... 268 
Demonstrations ............. ... ................... 242 Of the sprite bank ................................ 267 
Designer: The use of ................... ... ... .... 73 Structured programming ......................... 229 
Drawing of .... ....... ............................... ... 59 Subdirectories .............. .. .. 206, 207, 208 
Finding its position ......... .. ...... ........... .. .. 86 Subroutines .... ...... ...... ....... .. ........... 184 
From monochrome and medium Subtracting two strings ....................... 39 

resolution ...... .. ................................... 77 Suites of programs ........ 24 
Grabbing from the disc .......................... 68 Swapping 
Grabbing from the program ........... .. ...... 69 Screens .... ...... ..... .. ...... 140 
Grabbing from the screen ...................... 98 Variables .... ....... .. ............. 214 
Images. updating of ............................. 1 01 Synchronise scrolling with sprites ... 151 
Installing into the memory bank ............. 76 System 
Limiting visability ................................... 87 Commands ... .. ...... .... 33 
Masks ................... ........................ ... 80. 98 Disc .......................... ...... .................... 241 
Mono monitors. use on .......................... 77 Table of note values ...... .. .......... 103 
Movement ....................................... ....... 82 Tabulation ...................................... .. 163 
Movement: Combining horizontal and Techniques 

vertical motion ................................... 84 Graphics ......... ..231 
Movement: Complex ............................. 84 Planning ............................................ 229 
Movement: Horizontal .... 82 Terminat ing a program ...... ... . ................. 187 
Movement: Restriction 01.. ......... ............ 87 Testing 
Movement: Vertical .......................... .. ... 84 Fire button .... ............ .. ................ .. .... 94 
Moving of ..... .. ... ...................................... .4 Joystick ..................................... 92. 93. 94 
Number of ............................................ 231 Mouse buttons ........ .. .. .... ....................... 91 
Pausing ............................................... 1 02 Sprite movement ................................... 86 
Priority ....... .. ... .................... ......... ...... .... 99 Tetris ................ ........... ............ . ..... 1 
Redrawing of ................... .. .............. .... 1 02 Text 
Saving .... ..... .. .... ........................... ...... ... 76 Attributes .................................. ...... .. ... .. 157 
Scrolling ............ ........ ...................... 60. 78 Colour ............. .............. ...... .. .... 157 
Selection window .................................. 60 Commands: List of .... .. .......................... 14 
Setting limits .......................................... 87 Coordinates ................................. 159. 1 60 
Setting the colour ............................ 73. 78 Cursor ........... .... ............. ...................... 159 
Setting the size ................................ 73. 80 Parsers .................................. .. .............. 44 
Sizes ............... ..................................... 231 Thick lines.......... .. ......................... 126 
Speed ...................... .. .................... ...... 231 Time and date ........... .............................. 218 
Structure of .......... ................................ 267 Timing a program.... .. ........... .. ... 225 
Traps ............ ..... .............................. .... 259 Title .... .............................. ....................... 165 

Standard Basic ........................................ 183 Screens ...................... ......................... 240 
Star Trek ............................................... .. 146 Toggle Hexadecimal ................................. 45 
Starglider ................................................. 140 Tracing a program ..................................... 29 
Start points .... ........ ................... ......... .... .... 84 Transparent writing mode ....................... 133 
Starting an animation .......................... 85. 89 Trap #3 ......................... .. ......................... 257 
Stop flash ........ .... .. ................................ 6 Trap #4 .. .. ................... .... ......................... 249 
Stopping Trap #5 .................. .. .. .... ........................ 259 

Program .... .......................................... 187 Trap #6 ............................ ...... .................. 263 
Sprite ................ ..................................... 85 Trap #7 .................................................... 263 

STOS Basic Trap command .................. ... ................... 248 
Title screens ........................................ 242 Trapping errors ....................................... 189 
Traps .......... .... ............................. 248. 257 Traps 68000 ............................................ 248 
Screen ....................................... .. .... 6. 146 Tremolos ................................................. 111 

Strings ................ ................ .. ........ ....... ...... 39 Trigonometric functions .... ...... ....... .. .. 209 
Adding two strings ................................. 39 Troubleshooting ...................... .. 51. 151. 180 
Animation .............................................. 87 Tunes ...................................................... 105 
Convert to lower case ........................ .. 216 Types of variables ..................................... 35 
Convert to upper case ......................... 216 Typing an Ascii file ........... ......................... 56 
Finding a word within ............................ 41 
~OO~M ............................................. ~ 

Underlined text ........................................ 158 
Unformatted input .... ...... ......................... 195 

Searching ...... ....... ............................ .. ... 41 
Splitting .... .... .............. .. .. ..... 40.42 
Concatenation ............................ .... .... ... 39 

Unpacking the screen ................ .. ....... 6. 153 
Updating sprite images ...... .. .. 101 
Uppercase listings ...................... .. ............. 34 

Subtracting two strings .......................... 39 
Structure 

User·defined 
Fill pattern ............. .. ...... .. ..................... 131 

Of screen banks .... ........................ .... .. 270 Functions ...................................... ....... 214 

282 



Fill pattern .. .. .. ....... .............................. 131 For a keypress .................................... 193 
Functions ............................................. 214 For a vertical blank .............................. 151 
Character sets ..... 164, 169, 170, 171, 172 For a time ............................................ 224 

Using Waveforms .............................................. 111 
Animator ................................................ 76 Window .......... ........................ ... 12, 164, 166 
Assembly language ............................. 246 Border ................................................. 166 
Icons .................................................... 17 4 Clear .................................................... 168 
Mouse ......................................... .......... 89 Deleting ............................................... 167 
Sprite designer ...................................... 73 Move ................................................... 167 
Sprites on a mono monitor .................... 77 On ............................ ........................ ... 166 

Variable ............................................... 35, 53 Scrolling .............................................. 168 
Arrays .. .. ................................................ 36 Title ............................ .......................... 165 
Constants .............................................. 36 Traps ................................................... 257 
Decrementing ........................................ 39 Workspace ................................................ 46 
Floating point ......................................... 35 Writing 
Incrementing .. .............. ............ ............. 38 Game!: ................................. .............. .. 229 
Integers ................................................. 35 Graphics mode: .................................. 133 
loading of ............................................. 51 Text mode: ...................... .................... 159 
Naming conventions ................ .............. 35 To a random file .... ............................ .. 204 
Real numbers .. .. .................................... 35 To a sequential file ................ .. ......... ... 202 
Saving ................................................... 50 XOR 
Strings ................................................... 36 Text mode ......................................... .. 159 
Types of ................................................ 35 Writing mode .................. .......... .. .... .. .. . 133 

VBI ...................... ................................... 151 Zenji ............................................................ 1 
Vertical Zollar ................ ............ ....... 88, 95, 244, 245 

Scrolling .......... .................................... 150 Sprites ....... ............ .............. .......... .. 88, 95 
Sprite movements ................................. 84 Zones ..................................... ............... .... 96 

Voices ............................................. 103, 107 Examples of ...................... ............. ....... 96 
And tones ............................................ 103 Zoom ..... .. .................... ................... ..... ... ..... 7 

Volume, the changing of ......................... 104 Example of ........................................ .. 144 
Wait Screen ................................................. 143 

283 



eep rig up 0 a e WI 

the world of :TOS 
Join the hundreds of STOS owners who are already 
active members of the STOS Club. 

Six times a year you will receive a professional-looking 
newsletter that's packed with hints and tips, short 
listings, contact addresses, an extensive public domain 
library and the latest news and reviews of STOS 
products. 

In addition you'll receive a remarkable free gift: a disc 
containing STOS Word - a powerful word processor 
written in STOS. This has all the features you'll need 
(see below) and is currently on sale for £14.95 - but 
you'll get it free of charge! 

With STOS Word you can: 
• Left, centre or right justify 
• CLlt, copy alld paste 
• Search alld replace 
• Word wrap 
• Underlille, inverse or shade text 
• Count the works in your document 
• Jump to any 4 locations in your text 
• Go directly to a page 
• Define keyboard shortcuts 
• Work in allY resolution (unlike any other STword processor) 
• Load and edit First Word files 

~--o-~I ~~ 
NeWSletter 
.taa..'4i & ST'()s VSft"e'tlb 

I 

• Add icons at any point ill your text (perfect for letterhead designs, digitised signatures, and 
so on) 

• Print out fast using the 390-byte printer driver routine on almost any printer (source code 
included) 

• Print on single sheets or use sprocket-fed paper 
• Modify the program to your heart's content - and learn more about STOS at the same time 
• Create README files to document your programs 

... and much more besides! 

STOS Word is fully documented on the disc -with support eaSily available if you need it . 

The disc will be crammed with many other useful programs and mini-games to appeal to beginners and 
experts alike - it's not to be missed. 

Whether you're a newcomer to games programming or a competent coder, the STOS Club will 
help you make the most of your purchase. 

Send a cheque, postal order or intem~tjonal money order (£10 for UK, £12 for Europe,' £15 
Overseas Airmail) together with your name, address and telephone number to: 

The STOS ClUb. Aaron Fothergill. 1 Lower Moor. 
Whiddon Valley. Barnstaple.North Devon. EX32 SNW. England 



I Speed up your STOS I Add dramatic sampled I Tnc1udes a preCiSion-I More than 600 
games by up to 100% sound to your made sampling ready-made sprites 

programs cartridge fpr you to use 
£19.95 £24.95 £69.95 £14.95 
Code: 9423 Code 9424 Code: 9425 Code: 9426 

Available from computer retailers nationwide 

In case of difficulty, you can order direct. Ring 051-375 2961, or send your name, address, 
postcode, product code number (see above) together with a cheque payable to Mandarin 
Software or your Access/Visa number and its expiry date. Postage free in the UK (Add £2 
per program for Europe and £5 for overseas). 
Send to: Database Direct, FREEPOST, Ellesmere Port, South Wirral L65 3EB. 

Your order will be despatched within 48 hours together with a free disc containing STOS 
Paint (a feature-packed art program) and Pukadu (a new game from the author of 
Mouthtrap on Games Galore) plus a sample STOS Club Newsletter crammed with useful 
information. 

IrJ~~mw~ 
SOFTWARE 




	Binder1
	part1
	part1 (2)
	part1 (3)
	part1 (4)
	part1 (5)
	part1 (6)
	part1 (7)
	part1 (8)
	part1 (9)
	part1 (10)
	part1 (11)
	part1 (12)
	part1 (13)
	part1 (14)
	part1 (15)
	part1 (16)
	part1 (17)
	part1 (18)
	part1 (19)
	part1 (20)
	part1 (21)
	part1 (22)
	part1 (23)
	part1 (24)
	part1 (25)
	part1 (26)
	part1 (27)
	part1 (28)
	part1 (29)
	part1 (30)
	part1 (31)
	part1 (32)
	part1 (33)
	part1 (34)
	part1 (35)
	part1 (36)
	part1 (37)
	part1 (38)
	part1 (39)
	part1 (40)
	part1 (41)
	part1 (42)
	part1 (43)
	part1 (44)
	part1 (45)
	part1 (46)
	part1 (47)
	part1 (48)
	part1 (49)
	part1 (50)
	part1 (51)
	part1 (52)
	part1 (53)
	part1 (54)
	part1 (55)
	part1 (56)
	part1 (57)
	part1 (58)
	part1 (59)
	part1 (60)
	part1 (61)
	part1 (62)
	part1 (63)
	part1 (64)
	part1 (65)
	part1 (66)
	part1 (67)
	part1 (68)
	part1 (69)
	part1 (70)
	part1 (71)
	part1 (72)
	part1 (73)
	part1 (74)
	part1 (75)
	part1 (76)
	part1 (77)
	part1 (78)
	part1 (79)
	part1 (80)
	part1 (81)
	part1 (82)
	part1 (83)
	part1 (84)
	part1 (85)
	part1 (86)
	part1 (87)
	part1 (88)
	part1 (89)
	part1 (90)
	part1 (91)
	part1 (92)
	part1 (93)
	part1 (94)
	part1 (95)
	part1 (96)
	part1 (97)
	part1 (98)
	part1 (99)
	part1 (100)
	part1 (101)
	part1 (102)
	part1 (103)
	part1 (104)
	part1 (105)
	part1 (106)
	part1 (107)
	part1 (108)
	part1 (109)
	part1 (110)
	part1 (111)
	part1 (112)
	part1 (113)
	part1 (114)
	part1 (115)
	part1 (116)
	part1 (117)
	part1 (118)
	part1 (119)
	part1 (120)
	part1 (121)
	part1 (122)
	part1 (123)
	part1 (124)
	part1 (125)
	part1 (126)
	part1 (127)
	part1 (128)
	part1 (129)
	part1 (130)
	part1 (131)
	part1 (132)
	part1 (133)
	part1 (134)
	part1 (135)
	part1 (136)
	part1 (137)
	part1 (138)
	part1 (139)
	part1 (140)
	part1 (141)
	part1 (142)
	part1 (143)
	part1 (144)
	part1 (145)
	part1 (146)
	part1 (147)
	part1 (148)
	part1 (149)

	Binder2.pdf
	part2
	part2 (2)
	part2 (3)
	part2 (4)
	part2 (5)
	part2 (6)
	part2 (7)
	part2 (8)
	part2 (9)
	part2 (10)
	part2 (11)
	part2 (12)
	part2 (13)
	part2 (14)
	part2 (15)
	part2 (16)
	part2 (17)
	part2 (18)
	part2 (19)
	part2 (20)
	part2 (21)
	part2 (22)
	part2 (23)
	part2 (24)
	part2 (25)
	part2 (26)
	part2 (27)
	part2 (28)
	part2 (29)
	part2 (30)
	part2 (31)
	part2 (32)
	part2 (33)
	part2 (34)
	part2 (35)
	part2 (36)
	part2 (37)
	part2 (38)
	part2 (39)
	part2 (40)
	part2 (41)
	part2 (42)
	part2 (43)
	part2 (44)
	part2 (45)
	part2 (46)
	part2 (47)
	part2 (48)
	part2 (49)
	part2 (50)
	part2 (51)
	part2 (52)
	part2 (53)
	part2 (54)
	part2 (55)
	part2 (56)
	part2 (57)
	part2 (58)
	part2 (59)
	part2 (60)
	part2 (61)
	part2 (62)
	part2 (63)
	part2 (64)
	part2 (65)
	part2 (66)
	part2 (67)
	part2 (68)
	part2 (69)
	part2 (70)
	part2 (71)
	part2 (72)
	part2 (73)
	part2 (74)
	part2 (75)
	part2 (76)
	part2 (77)
	part2 (78)
	part2 (79)
	part2 (80)
	part2 (81)
	part2 (82)
	part2 (83)
	part2 (84)
	part2 (85)
	part2 (86)
	part2 (87)
	part2 (88)
	part2 (89)
	part2 (90)
	part2 (91)
	part2 (92)
	part2 (93)
	part2 (94)
	part2 (95)
	part2 (96)
	part2 (97)
	part2 (98)
	part2 (99)
	part2 (100)
	part2 (101)
	part2 (102)
	part2 (103)
	part2 (104)
	part2 (105)
	part2 (106)
	part2 (107)
	part2 (108)
	part2 (109)
	part2 (110)
	part2 (111)
	part2 (112)
	part2 (113)
	part2 (114)
	part2 (115)
	part2 (116)
	part2 (117)
	part2 (118)
	part2 (119)
	part2 (120)
	part2 (121)
	part2 (122)
	part2 (123)
	part2 (124)
	part2 (125)
	part2 (126)
	part2 (127)
	part2 (128)
	part2 (129)
	part2 (130)
	part2 (131)
	part2 (132)
	part2 (133)
	part2 (134)
	part2 (135)
	part2 (136)
	part2 (137)
	part2 (138)
	part2 (139)
	part2 (140)
	part2 (141)
	part2 (142)
	part2 (143)
	part2 (144)


