—_-

———

ORIGINAL ARCHIVER OPERATING
INSTRUCTIONS

These instructions describe the
operational procedures for the
original ARCHIVER only.
Installation instructions have been

deleted. :
|3

ApPennING (oDE FoR SuPER RRINIVER,

s

/5 THE
iF DESIRED,

{3 AuTomnTic . “Aaco'
MANURLLY ENTERED CoDE

2.1.2 Normal Backup Procedure

1. Follow the boot procedure given above (with a copy
of the ARCHIYER/EDITOR ondy).

is displayed (scrcen
(lor

2. When the ARCHIVER page
changes to a brownish-yellow) then press C

Copy).

3. The ARCHIYER will respond by asking you to insert
source diskette. Now insert the program you wish to
backup and then press the START button

4. After a short time, you will be requested to insert
destination diskette, At this time, you should insert
the diskette you wish to put the copy on. When you
have done this, press the START button.

2. In the ARCHIVER/EDITOR program pressing the
ESC key will bring you back to the command mode
of the program you ere currently in. The only ex-
_eeption ls during actual disk [/0, (R/W) in which case
holding down the OPTION button will stop the disk
I/O at the end of the track read/write operation
which then allows you to abort the operation by
pressing the ESC key or to press START to
continue the IO operation..

3. Whenever disk 1/0 nceds 1o be performed or contin-
ued you must press the START bution to proceed.

4. At anytime during the use of the EDITOR program
(except during disk [/O' a CRTL-P will ercate
printout of what is currently on the screen on your
printer.

5. The CTRL and SHIFT keys nced never be used
except for printing as deseribed in 4. (However you
may press CTRL or SHIFT if you like, bul these
key functions are disregarded and unnecessary.)

6. Whenever any writing is to be performed Lhe border

color will change to red. Whenever any reading i3 to
be performed the border color will change to white.

-4

IRNNNN AR

v
|
[

RERRED

KOTE

The destination disketie does not have to be
previowsly formatted. The ARCHIVER/
EDITOR progrem formats each track as it is
written if the F+ parameter is selected.

5. If the ARCHIVER asks you lo insert the source
diskette again and repeat steps 3 and 4.

6. Depending on the length of the program, from 1 to]
passes may be required on a 48K computer. The
larger the computer memory ia, the fewer the
number of passes required. The ARCHIVER will
indicate on the sereen when the copy is done.

7. We suggest that you put the original disketle away in
a safe place and use the backup copy from this time
on.

If you got a Read Format Error, most likely you did not follow
steps 3 and 4 of the boot procedure carefully. Otherwise the
command opiion parameters may Fequire some changes 1o
enable you to custom modify the diskette copying technique
{refer to sections 4.1 and 4.2).

2.2 SOME CONYENTIONS USED

1. AU numbers used in the ARCHIVER/EDITOR program
are in Hexadecimal (HEX) which It a base 16 number—
ing system. 1l you do not understand hexadecimal
numberlng, then refer to the table in Appendix A In
this manual all HEX numbers are preceded by a §
symbol.

1<

CHAFPTER 3
SCREEN CORVENTIONS

This chapter deals with the various command lines and
prompts used by the ARCHIVER/EDITOR program. You
should read the following chapters to become aware of all the
many capabillties provided by this program.

3.1 ON THE SURFACE

Figure 3-1 shows the screen for the ARCHIVER. However, the
EDITOR, the FORMATTER, MAPPER, and the DIGAS-
SEMBLER screens all have simllar Option, Status, and Com-
mand lines. The Option and the Status lines provide 16 unique
paramcters for disk sector/track format changing. The
following paragraphs explain how to use each parameter.

goic EEE VEE MRCKIWEE 1.6 W -
OFTION L|NE7—-_=:;¢ miee. 27 o9 19 & =-_"-'-:.:
STATUS LINE l'!!!!!!!!!lll|.||l"‘!
;Flllllllllllllllll'!
mAEXEXENSR
[Fll!llllllllllllll
AEEXEAREENNESR m
iisiaiannn;
LABRRRBEBRRNNENNTT
PR EWEENRERST
!!!llllllllllllllll
E X I ARERE
COMMAND LINE 337 (£}

Figure 3-1, Sereen Program Lines

3.2 THE OPTION LINE

The option line contains parameters used by the ARCHIVER
(and EDITOR), Al of these parametiers can be changed at any

time when you are In the command mode.

To modify these

parameters type P . You will see a cursor on the option line.

To move the cursor right and leflt press the =
{without pressing the
selects that parameter to be changed.

or + key
Preasing RETURN
After the parameler

CTRL keyl

has been changed the cursor will be on the option line ready to
select another parameter to change. Pressing the ESC key
returns control back to the command leveL A description of
each parameter follows

3.2.1 Source Drive

This Is the drive number from which all reading is
done. Pressing & RETURN when on this
perameter will increment the drive number and
wrap around al four (4) to one (1}. NOTZ: This
drive must be opened prior to rewding lrom it,
otherwise an error will occur (this drive must also
have a CHIP installed).

3.2.2 Destination Drive

3.2.3 Track Range

Raxx,yy

This is the range of tracks that will be copicd
using the ARCHIVER (or tracks
read/written/formatted.. when using the
EDITOR). The xx [s the start track and the
vy is the end track. When pressing RETURN
wilh the cursor positioned on this parameter a
prompt will appesr on the command line
requesting a new range of tracis. There are three
allowable syntaxes:

same as typing 00,27 {tracks 00 to
27 HEX).

: set start tox and end track to ¥y,

: set both start and end tracks to x.

RETORN 1
L.y
x

ESC will exil this option without modifying the
range of tracks. RETURN enters the range you
entered and updates the option line accordingly.
If you maka an Llegal entry a Wrack range error
occurs.

3.2.4 Verify

-
-

BERRRRRRRRRRRN

This is the write with verify flag. Pressing a
RETURN simply toggles this parametert

Sectors

reads the data and reports back to the EDITOR that the sectof
1s to be compacted, thus saving time on reading a diskette.

Dx This Is the drive number to which all writing Is + Yerify on
done. Selecting the drive is accomplished the -t Verify off.
same way a3 deseribed in section 3.2.1 above.
il the verily is on, a verification will be done on
the track after It is written. NOTE: Because the
verify pass is separate from the write pass, it is
faster than the standard DOS write with verily.
3-2 3-3
1.2.5 Logie Seeking Read/Write } 3.2.6 Compaction
essin,
L+ This Is the read/write logie sceking flag. Hitting C+ Thni.;rgn;lhe toc:':;:::lll:mp.s'l:g;atef:mply pressing
a RETURN simply toggles this parameter:
+ 1 Logie seeking on. * : gmg::ﬂx ‘;}‘r
-1 Logic seeking off.
ARCH-
— When reading or writing multiple seclors with the ll{lg?iu :::esee:t':ffl'l.llo:e?:h:rh;: :ernl:re written
same number (i.e. two scclor $09) you must be v
able to read or write the correct sector, there= :IY EMVSRC(?I:E&/UESZ?RH';L‘ a:-se ::'u:hde "{‘_"
fore, there are logic seeking read/write com= "E' Ou:ho-l.l.l‘d have co.mpactlon off
mands in the CHIP that automatically synchronize ;?.Il : ¥ lilth the values $01-808 wil.l ot be
fo the format on the track and read/write the e ‘:ed us :hm N format control bytes.
correct sector. Since synchronizing to a track _‘i'_?":;’:‘-'.mr botes ere placed In the sector
takes a little more than one revolution, these tomaticall w,;\en the trask 13 formatted.
commands are slower than the standard read/ aulom Y
- write commands. The only time you would want T DITOR
i - he C +/- parameter has the same funetion in the E
o e ired (see et e fo e Togic as it doss in the ARCHIVER, however, in the EDITOR the
leeI:i:mc I;o off, it is mgge.;te;:l-..that you turn results are more readily apparent. Compaction only works on
eom nsc“on 0“' {refer to section 3.2.6). Note: sectors which are not bad and that have single byte filling the
Thep.:RCHIVER/EDITOR programs only use the entire sector. Aiso, sectors fllled with the values of $01-$08
logic seeking commands (if enabled) when a non- wil not be compacted. 1f the se{ctor was eom-[?:ﬂgegf'rg:
0 ; EDITOR will NCOT display Lhe data In the sector. The
— -unique numbered seclor is to be read or written. F will only display sectors it actually read. The CHIP actuslly

-4

1-H

-5

3.2,7 Format Read Type

AG+

This Is the type of track reading that the ARCH-
IVER/EDITOR program will use to determine the
format on the tracks. Either 4 or & bytes of
in{formation about the sector can be selected (Ad
or A6). The + or - is the loggle to turn on
(*) or off {-) the format verification logic.
Normally the A6+ will be desired. To change this
paremeter, simply press RETURN with the
control ecursor positioned on the AS . The
meaning of each of the codes is as follows:

8 1 Six bytes are returned to the ARCH-

IVER/EDITOR for cach sector, thus
the ARCHIVER/EDITOR will be able
to rotate the sequence 5o that the
end-of-track gaps will be identical
{ A6+ only) This is mainly
cosmelic, but does have signiflicance
on fast formats,
Beeause € bylics are returned, a maz-
imum of 21 sectors per track can be
fetiched. If there are more than 21
sectors, then a 4 mode should be
used.

.4 Four bytes are returned to the
ARCHIVER/EDITOR for each sector,
thus sotne information aboul each
sector is missing. This is intended
for 22 Lo 24 sector formats.

L | The track is cyeled through twice
comparing the first seclor sequence
to what the CHIP finds the second
time. This is an internal function of
the CHIP.

3-6

3.2.% Sereen Code Conversion

S+

This I3 used In the CDITOHR only. It reflers to the
conversion of characters dizplayed on the normal
EDITOR page to the right of the sector dispiay.
A BETURN toggies this parameter,

+ 1 Convert data to ATASCI
characters.
-1 No conversion. Dispiay dala as Atarl

sereen codes.

3.2.10 Bad Sector (CRC)

B+

Thla flag refers 1o the method of writing CRC bad
sectors. Pressing RETURN toggles fing on (+)
or off (). This flag should always be set to +
when In the ARCHIVER.

+ 1 Write a full bad CRC sector.

-1 Only write a partial sector (CRC
bad). The number of bytes written
depends on the last byte of the sector
data. That byte refers to the number
of bytes that will be written, This
allows for the capability of increas-
Ing the number of sectors on a track
to above 20 (i.e. two hall seclors
take nbout the same amount of room
as a full sector).

a0

-t This mode is slightly faster than the
+ mode, however, no verily is done on
reading the format. This Is generally
used for speed and also il the track is
badly garbled. (Unformatted tracks
can return strange sector headers on
some diskettes.)

For more information on the difference on the 8/4
byte read distinction, see section 5.15.

1.2.8 Format Flag

AR RN

"
-

This is the format before write flag. Normally
you will want & F+ mode. Simply pressing

RETUBRN will toggle this flag when the eursor
is positioned on the F+ .

+ 1 Format track before doing the write
pass.
- 3 Do not format. This option ks select-

ed If you already have an Identieal
tormat on the track or If you are
simply trying to put sectors on the
destination track. If there are mul-
tiple neetors with the same number
and the track formats are not identi-
cal the logic seeking reed/write
commands will not work correctly.
Alsc, the verify may not work cor-
rectly if 1t tries to verify the wrong
seclor. This flag elso allows you to
convert slow formats by first
formatting the destination track with
a fast format and then write out the
aectors that were read from a alow
formatted diskette.

3-7

3.3 THE STATUS LINE

The status line Is the third line on the screen. it will display
the eurrent track, sector, composite sector number, the
amount of free buffer memory, current copy number and the.
number of copies to make {In the ARCHIVER or the sector
data address in the EDITOR). The only directly adjustable
perameters are the CO:xx which refers to the number of
copies to make and the LOC:xxxx which is the sector start
eddress, The atatus line parameters are as follows:

TR:xx This Is the current track number the
ARCHIVER/EDITOR s processing. (Tracks
range from $00-$27.)

BE=xx This s the current sector number the
ARCHIVER/EDITOR I3 processing. (Sectors
range from $01-$1%, & =~ means that the
seetor number is lnvalid.}

PM:xxx This Is the composite sector number used by
Atart DOS. These numbers are arrived at by
the formula FM = TR*$12+3E. Where TR is
the track number and SE is the sector
number. The FM ranges from $001 to $2D0.
A = indicates that the sector number is
Invalld, '

This Is the eurrent free memory for storage
of the sector datas and track information.
When data is being read into the buffers, the
memory counter will decrement $80 for
each sector read and also for each track
read. NOTE: If ecompaction is on,
tompacted sectors do not take up memory
space, however, there is a $80 byte over-
head to store sector layouts and various
other information for each track. On a 48K
;nnc)hine this field will read $9900 (about
8K).

This is the number of the copy being made.
A $00 indicates it is on a read pass. A $01
to 3FF is the number of the current copy
being written,

. NUxx

This is the number of copies to be made per
each read pass. This is defauited to one
($01) whenever the ARCHIVER program
mode is entered. This value can range from

$01 to $FF.

CO:xx

This parameter is used with the EDITOR and
is the address location in which all
disassembly or displays of sector data will
start. This is [or purely comestic reasons
and does not affect the data (refer to
aection 5.12).

3.4 THE COMMAND LINE

The command line I8 at the bottom of the dispiay. This line
will contain all necessary screen prompls, iPput commands and
error messages. When using one Kecy coin aand entries no

RETURN is necessary to ensble that command. Simply
press the desired key for the desired command input.
However, on numeric input pressing RETUEN is necessary
to enter the numeric information.

Also, pressing the space bar will erase an error message or

copy donefaborted message immediotely. Otherwise the
message will disappear after approximately 4 seconds,

10

[

=
i
D

1.5 OPENING/CLOSING THE CHIP

Normally the CHIP will already be open if the Disk Drive is
booted correctly (refer to section 2.1). However, there mny
be some cases In which you will need to open a drive.
(Opening a second drive for example or it the drive was not
booted correctly.) To open the CHIP, type an O when In the
command mode (In elther the ARCHIVER or EDITOR). You
will be prompted to enter the open eode and drive number.
Enter your code, and the drive number (optlonal—the delault i3
onel. If you enter a wrong code or fust press RETUEN , the
CHIP will close. Pressing BSC aborts this option

3-11

3.6 BECTOER DESPLAY FORMAT

" The ARCHIVER/EDITOR's sector Inyout displayed on Lhe
screen s somewhat unique, Field (a) {shown in ligure 3.2) is
the track number (HEX) fram where the sector sequence
came. The numbers in field {b} represent the actual sector
numbers on the track and are in the scquence as found on that
track. The numbers are read vertically {i.e, figure 3.2 showa
track = $01, sectors = $12, $01,...). Generally there will be
$12 sectors {18 decimal) on a track. However, this can vary
from one soltware protection scheme la mnother. Field (e}
repeesents the status of the scctor. If there is a symbel under
the sector number, the sector [s considered ‘bad' and will
return & bad sector status if read (a protection technique).
Refer to table 5.1 in section 5.10 and to xection 6.11 [or each
wymbol's meaning. The sector numbers can be in any order and
need not be unique. Two {or more) reads of the same sector
number need not return the same data.

ne’ee

E:18

1
5 CO:81 MU:81
0 x N < -

I3

Al » ()

Figure 1.2 Track/Sector Display Format

For detailed information on the source of these seetor num-
bers, refer to the section on the track layout (section 6.3} and

the following paragraph

:m’ THE ARCHIVER v1.® m::
H R:03,87 V+ L+ C+ A6+ F+ 5% B+

AT I A AN

1

These track and seclor numbers are not used internally by the
Atari computer. Instead, the operating sysiem reflers to each
sector as 8 number fram $001-$2D0 {1-720 decimal). The
computer’s disk operating system (or DOS) will access the Disk
Drive using this composite sector number. Then, within the
Disk Drive, the composite sector number is broken down into n
track and sector number using the relationship:

composite = (track) ® ($12) + {sector)

Thus, the first sector In figure 3.2 {$12) wauld be called $24
{36 In decimal) within the computer. Notice in the figure that
there are two sectors with the number $09. 1f the Atari
ecomputer were to read sector $28 {composite remember), it
would get one of the two possible sectora. This Is called a
‘double sector',

4.2 NUMBRR OF COPIES

This command will allow you to select the number of coples
that will be made on each read pass. To enter the number of
eoples you wish to make, type an N . You will be prompted
to enter the number of copies to make. Type the number (in
HEX) followed by a RETURN . The number selected will be
reflected after the CO . When making copies on a single
drive, screen prompts will signal when to_insert the source
diskette and when to insert the destination diskette. On a two
drive system (both with a CHIP), the first copy will be made
aulomatically and subsequent copies will be prompted. The
number after the NU ({ndicates which copy is currently
belng processed A $00 means you are on the read pass.

4.3 AUTOMATIC COPY

The command to start making copies i3 initiated by pressing

the C key. When actlvated, screen prompts will be
displayed for Inserting the source (original) and destinatlon
(backup copy} diskettes throughout the process. Remember to
press START to acknowledge to the prompt that you are
ready. The copy command C makes the number of copies
specliied by the COmx field and does its functions according
to the parameters on the option line (if applicable). The
memory buffer containing the previously read data will be
elsared prior to each read pass

EEERERRUNERRRRRERERRRERNaRINY

CHAFTER 4
THE ARCHIVER

The ARCHIVER |s an automatie copler designed to copy your
protected (or unprotected) soltware for backup purposes. The
ARCHIVER Is easy to use and will backup virtually all

protected software.

4.1 AN OYERYIEW

In general, diskettes can be copied by simply typing a C .
For some special disk formats [t may be desirable to ehange
several] of the ARCHIVER opersting parameters, The
ARCHIVER wlill allow the making of muitiple copies per each
read pasi. On a 48K system a disk will take up to } passes to
copy. However, most diskettes can be copled in one or two
passes depending on the amount of data on the diskette,

As a safety (esture the ARCHIVER/EDITOR requires that you
press the START button before amy disk reading or writing
will take place. If you wish to abort the reading or writing
durlng disk 1/O prexs the OFPTION button and hold It down
until the track is completely read or written. To continve
press the STAERT button and to exit the operation press the

ESC key. The ESC key will always return control to the
previous eommand mode while disk L/O is nonactlve.

if you have problems copying, check the following:

1. Change to a dif(erent destination diskette.

2. Ab+ to Ab-.

3. AB,L,andC to-.

4. It the diskette has 20 or more sectors on a track, then
read each sector/track using the Editer and write it onto
the destination diskette, Refler to sections 6.11 and 5.2,

$. Be sure you have a data separator board and that the
disk drive is running at the right speed.

4.4 ENTER EDITOR

To enter the EDITOR type E . All data eurrenily in the
memory buffcrs will transfer.

A=

- —vmr v g

3.1 AN OYERYIEW

The EDITOR is designed to be easy to use yet it doesn't lack In
sophistication. One key commands allow you to browse through
the many parts of the EDITOR. Unlike the ARCHIVER, only
one track'a sector list will be displayed at a time. The
EDITOR ullows you to move between sectors by simply
pressing the left and right arrow keys{ = and +). You will
notice the dual purpose of the track format lnes as both a
sector selection ald and as a sector lnyout display. This will
be discussed In more detefl later. The normal EDITOR display
wlll be of the actual sector data of the sector that the cursor
Is on (on the sector layout lines). [f there is no track In
memory, the sector [ayout lines will be blank.

The maln sector data display will contain data only If there Is

at least one track in the memory buffer and the sector that
the cursor Is on contalns data.

5.1 READING TRACKS

To read in a range of tracks first be sure that the Rmxxt,yy
parameter iz correct, then type an R f{ollowed by pressing
the START button to start the read process. As a safety
feature, f & track is currently in memory that was specified in
a read operation, the reading of that partieular track will not
oceur. That track wlll be skipped and the read process will
continue with the next track.

SRR R RN RRRRRREREY

CHAFPTER 5
THE BDITOR

The EDITOR will allow you to actuslly edit the scctor data
and do many manipulations with it. Custom formatting can
also be done, thus enabling you to make protection schemes of
modify protection schemes as desired. Because formata can
now have over 18 sectors, the EDITOR is neceasary In order to
duplicate these sophisticated formats. (Formats greater than
19 sectors have never been used to protect diskettes designed
for use on the Atari computers before the introduction of the

CHIP.)

‘

Figure 5.1. EDITOR Sereen

5.1 WIITING TRACKS

To write a range of tracks flrst set the track range {as in the
read). Press W along with START to initiate the writing
process. Only the tracks and seclors actually {n memory
within the range selected will be written, If formatting is to
occur before the write, the fill bytes will be written during the
format on compacted sectors. If s aector was deleted thnt
sector will not be written If formatting is on then zerod will

fill that sector.

5.4 ENTER BDIT MODE

Prior lo entering the Edit Mode, the sector data must first be
displayed. If 20, press E to enter the Edit Mode.
Otherwise, read in the track you want to edit, then press E .
The cursor appears within the sector data and you may start
editing the code. The commands available for use while in the

Edit Mode are as follows:
Move cursor one byta toward the beginning

-
of the buffer (left).

+ t Move cursor one byte toward the end of
the buffer (right).

4 1t Move cursor elght bytes toward the begin-
ning of the buffer (one Line up).

4 1 Move cursor eight bytes toward the end of

the buffer (down one line).

5-3

pros—

RETUHN Move the cursor to the beginning of the

nexl data line.
DELETE ; Delete the byte the eursor is on. All data
beyond the cursor moves up one byte and a
tero is placed in the last byte of the
sector.
INSERT : Insert a byle st the cursor position. Al
data moves down one byte from the data
that the cursor wos on. The last byte of
the buffer is lost.

Fill the entire huffer with the character
currently under the cursor.

CLEAR 1

Move the cursor to the first byte in the
buffer.

Typlng HEX numbers changes the data to
exactly what you see. The cursor will
automaticallv move to the next byte when
a byte has been entered. All spaces are
automatically skipped between sach byte.

Exit the edit mode. All changes will be
saved to a memory buffer {not the disk)
and are permanent unless changed later.
This will also update the characters on the
right to their new value. (This is not done
automatically during the Edit Mode.)

The address at the left is arbitrary and is used strietly for
reference. The address can be changed by the L command
({see section 5.12).

5-4

5.7 CLEAR TRACK FROM BUFFER

The CLEAR key will delete an entire track from memory.
The next track will then be displayed. The memory Indicator
will automatically be incremented reflecting the deletion. If
you wish to deleta all tracks from memory, simply holding
down the CLEAR key will do the job, Pressing RESET
alsc clears tracks from memory, but it sets all parameters to
their default valies,

5.8 CLEAN SECTOBR FROM BUFFPER

The DELETE key will delete the sector currently displayed
If no sector is being displayed, a beep will scund to indicate
that there s nothing to delete. If a write occurs, that sector's
data will not be written, however, the sector header will be
put on the diskette {if formatting is on). Deleting a sector
simply erases the data and does not modily the track layout.

5-6

!H!

5.5 DISASSEMBLY

The EDITCR has a built in disassembler, First enter the Edit
mode and then move Lhe edil cursor to the byte at which you
wish to begin the dismssembly. Exit the Fdit mode (press

ESC) and then prexss D to begin the disassembly. The
disassembled listing will Instantly be displayed on the screem.
To scroll up or down the listing press the up (¢ } or down (¢)
arrows. The disassembly will not scroll above the hyte that
the edit cursor was on end the disassembly will not proceed
beyond the end of the sector. Seroling will occur in
increments of eight linex To exit the disassembler, press the

ESC key. Premsing CTRLF will dump the sereen to »
printer if desired.

5.6 MOYEMENT BETWEEN SECTORS

When In the command mode the eursor movement keys allow
you to move from one sector o the next. The right (=+) and
left { =) arruw keys will move the sector cursor right and .
left. This allows vou to display any sector in that track. The
up{ #)} eand down (+) keys moves the Edit display screen
between tracks. If the track is In memory that track will be
displayed, otherwise, that track will be skipped and the next
track present wlll be displayed. If-the eursor happens to rest
upon a sector which Is not In memory the sector data window
will be blank. Sectors which have an x under them cannot
be viewed. This Is because these sectors are inaccessable to a
normal 810 Disk Drive. As you move from sector to seetor,
the track, sector, and composite numbers are ayutomatically

updated

5%

5.9 TRANSFERRING SECTORS

Typing an H will copy the seetor being displayed Into a hotd
buffer. Pressing the INSERT key will copy the buffer to the
sector the cursor is currently on If a sector Is being displayed
the new data wlill simply replace the old. If the sector was
originally empty the new data will simply be inserted. NOTE:
All disk [/O uses the same buffer so the data held will be lost.

5.10 CREATING BAD SECTORS

When a sector {s belng displayed you can cause that sector to
be bad by pressing the B . When you de this, only & flag is
changed so you must write the entire track In order for the
sectors to be written as bad. If there is no data In the sector
the sector will not be written. Thus that sector will not be
bad on the track. ONLY SECTCORS ACTUALLY WRITTEN
WILL BE BAD Uf they were seleeted to be bed), There are
seven types of bad sectors possible using this method {see
table 5.1). There are three flags that can flag a bad sector.
Any combinetion of these three flags ean be set by pressing

B . The symbol under the sector mimber will eyele through
all combinations of bad aectors plus one of good sector. The
reason for having several types of bad sectors is Lthat the three
flags mentioned above ean each be read and examined on an
unmodified 810 Disk Drive.

5-7T

SYMBOL | BITs | BITS | BIT3
BIT 3: CRC
r CLR | SET CLR errar bit
A SET CLR CLR BIT 5 : Data
type flag #1.
T SET SET CLR
BIT & : Data
| CLR | CLR | SET type flag #2.
- CLE | SeET | SET
- SET | CLR | SET
-+ SET SET SET
{(blank) CLR | CLR | CLR

Table 5.1. Types of Bad Sector Symbols

When you press the B key the symbols cycle tivough In the
ordet as shown above, Only the last entry is a good sector.

NOTE

These bit numbers refer to the status byte
returned when executing & STATUS COM-
MAND (not the 1/O status returned after the
read).

-8

The BE row contalns the sector numbers which will be
placed In the headers of the track (refer to figure 5-2}. The

LN row contains the number of bytes that will be in the
sector data and the FL row contains the data fill byte that
will go Into that particular sector, NOTE: Fillbytesof I to 8
must not be used as these bytes have special signficance to the
disk drive FDC cireuit during formatting. Sector $03, for
example, will only contain $40 bytes (64 decimat) and if reed
will return a bad status. Sector 305 will rontain the normal
number of bytes, $80 {128 decimal} hut will be filled with all
$1A. There are two tables of twelve sectors each in the
formatter screen layout page. They should be considered
sequential (there wasn't enough room to fit 24 sectors on one
row!) The table below the sector tables contairs the gap

length bytes,

Because a track is only a0 long oniy a limited number of bytea
ean be placed on a track. Alter the # i3 the current number
of bytes the formatter has calculated your format will use on
the track. Thls number must remain betwe=r 229C0 and $CBO
far your format to be reliable,

All editing changes in the formatter will remain intact until
you reboot the ARCHIVER/EDITOR diskette. No defsults are
stored back in thia table, Therefore, you can go back and
forth between the edit page and the formet page without loas
of the new [armat.

l!!!!!!!!!!!!!;!!!!!!!!!!!!!l!

5.11 CUSTOM FOEMATTER

The Custom Pormatter aliows you to create your own sector
layouts and format & cange of tracks using your own layout.
You can ereate amy sequence of seetor numbers you deaire.
The only cestriction ia that only sectors with numbers between

1 and 18 ean be read.

To enter the Pormatter type F . The Formatter has its own
screen layout which aliows you to set the formatting
parametery (except for the range) In which you would like to
formal. Tmm, before entering the formatter, you should
select the range of tracks to farmat [rom the EDITOR.

so|so|so|salsbfso]splad

nue solsv|eo]|se !
oo|oa|oce|ee

Figure 5-3. Formatter Track Layout

-9

The commands used in the Formatter are:

Move cursor left one sector (or gap size
value).
Move cursor right one sector (or gap size
value).

Move cursor up one parameter fleld (i.e.
FL - LN -8E - gap values-FL .. .)

* 1

Move cursor down one parameter field

Delete sector cursor Is on or Il the eursof
is past the last seector, delete the [last
sector.

Insert & sector before the seclor that the
eurver s on

1 Clear entire farmat (start [rom scratch).

DELETE

INSEET

Hex entry overwrites what s eurrently
dislayed.

1 Exit; go beck to the Edit screen.

,.h_%

+ Format the range of tracka { Rx,y) using
the format crealed

$-11

5.12 Address Changing

The address at which the sector bepins may be changed by
pressing the L key. Answer the prompt by entering the new
address In hexadecimal. This nddress iz used only as a
reference and does not physically reiocate the buffer contents.

5.1} INSERTING CUSTOM FOEMAT

Pressing the 1 key allows the insertion of custom formats
from the Formatter page into a range of tracks { Rxx,yy).

The old tracis (if any} will be replaced. No sector data will
transfer. To Insert data In the new sectors, you must use the
H and INSERT keys.

$.14 MOVING TRACES

Tracla ecan be moved (but not duplicated) by pressing the N

key. The track currently displayed will be renumbered to a
hew track number that you enter. The track currently at the
destination spot will be deleted and the track you are on will
be deleted from Its current place and be moved to the new
location.

5-12

The ST is the status ol the scctor hender read.

accessed, Also, any Ad
the TI wmnd 8T values. This is because the A4

for quallty of information per scctor,
NOTE

{time) value will only

The last sector's TI
read format mode,

be correct on an A6+

$.16 RNTER THE ARCHIVER

Anything

other than a zero means that Lhc sector can nol ever be
rend [ormat mode will not return
mode

goes for quantity as far as scelors go, while the AS modes

5.15 TRACK MAFPFPER

Pressing an M I3 uSed for entering the Mapper page. This
function will allow you to examine the format of individual
tracks. The most signlficant function of thls command is to
sllow you to determine the gap size between successive

seclors.

The SE s the sector number that originates [rom the sector
header. (Refer to figure 5-1.) The TR Is the track number
as found in the mector header, and the LN s the sector
length byte, For more information on these vslues, refer o
section 6.3, The T1 Is the amount of time between that

sector and the succeeding sector In units of 2048 (decimal}
microseconds. There are about 100 (decimal} units of time on
& track, 80 the sum of thase numbers should be about 100.

s gt THE EDITOR V1.0 swm
(R103)07 U+ L+ Ct n6+ F+ St B
3 3 1048 H7E00 LOCI0000

[6dd7[o4[02]es]o7]0n]er|8d[07]bd[u7]

3
plasjbs|es|es ag g: gg gg ga gg 25
R

I3 () 22 0 CE2) 3 100 O D P

BEEEREFREEREE,

To enter the ARCHIVER from the EDITOR you must type nn
A . CAUTION: all data currently in the data buffers will be ”

ioat as soon as the ARCHIYER command C

EDITOR.

is used. How-

ever, the data will not be lost if you immediately return to the

TXRE

i i II.I
eglonjeelon]ea|es
1jes|os|esles|es|es
sT|eejee|0e|Bo 00|00

L ==) ENTER TRACK WUMBER ==> N]

Figure 5-3. Track Map Layout

5-13

CHAPTER 8
DISK FORMATTING THEORY

By far the most powerful [eature of the CHIP over the Atnri

C ROM s its ability to create custom formats and
successfully write (and read) sectors of these [ormats. By no
means do we expecl you to [ully understand the peculiaritices
of disk formatting and general /O with one reading.
Remember, It took a couple of years for software houses to
devise even the simplist of protection schemes, so don't expeet
to learn it all in sn hour. However, we [eel that to use the
ARCHIVER/EDITOR to its fullest, at least some basics should
be understood. In this chapter, the very basics will be
presented, and gradually the specifics of the treck layout and
protection schemes will be dealt with

6.1 AN OYERYIEW

The Atari 810 Disk Drive is an Intelligent drive which mcans it
is just another computer, capable of reading and writing
diskettes and relaying the information to and from the main
computer. The CHIP is fust a program much like the A tarl OS
that adds a wide variety of functions 10 the 810 Disk Drive. A
description of the commands understood by the old ROM C
and the operation of the 510 is given in the Atari OS5 manuat so
it will not be repeated here. For the remainder of this
chapter, only the workings of the disk drive and the CHIP will
be econsidered, so it Is assumed that you know the theory of
communication between Lthe computer and the disk drive.

6.2 DISKETTE STRUCTURE

A diskette Is composed of a thin mapnetie disk covered by an I I A sector has two parts to ity the head

outer rigid black cover. The outcr eover (or jacket) has an
oval open area on both sides exposing the disk surface to the
drive read/write head. As the disketic spins about its central
hub while Inside the drive, the read/write head hovers over the
jacket oval opening and reads the disk surfage much like a
caspette recorder would

The diskctte i3 electromagneticnlly divided into 40 tracks. A
track Is m ring about the center of the diskette, The disk
drive'n head can be positioned precizely over any one of the 40
tracka, thus data can be sequenlially read {n ms the disk
surface spins underneath the head as in a cassetle recorder.

The track data magnetic ficlils are converted into eleetrie
pulses which are fed to the FDC (floppy disk controller). The
FDC is the interface between the read/write head and the
drive's microprocessor. The FDC is responsible for
interpretting and procescing commands from the
mleroprocessor. The FDC perform< nll sector <earches and is
an Intermediary on all sector dntn transfers belween Lhe
microprocessor and the physical disk surface.

Because each track contmins too much data that must be
handled for each revolution of the diskette a suhdivision of the
track is necessary. Thus, the track is normally divided into 18
sequential sectors of $80 (128) hylee of dnta cach. Hesides
belng easier to deal with, errar ehecking and relinhility are not
much of a problem. As you may be aware, all the proteetion
schemes deal with the seetor in one form or another, so the
rest of this chapter will deal explicitly with the sector,

6.4 TRACEK LAYOUT/FORMAT

Disk formatting Is aceomplished by the write track command
Eech byte for the entire track must be provided for proper
formatting including the gaps as well

The FDC requests each byte in turn and places it directly onto
the surface of the diskette, However, there are exceptions to
the rule. If data bytes $F5 through $FFE are fed to the FDC, It
recognizes these as special control bytes and take appropriate
actlon. The byte sequence is illustrated in figure 6-1.

Gap size restrictions:

GAP 1 1 This ls always 255 ($FF) bytes and may be over-
weitten by the last sector on the track. This is
to ensure that no garbage remains between the
Inst sector and the [irst.

GAFP 2 1 (Post Index AM gnp) This gap should be at least
one (1) byte.

GAP 3 1 (Pre 1D AM gap) This gap should be at least one
byte.

GAP 4 1 (Post ID CRC gap) This gap must be $11 (17)
bytes In length. (See Read/Write sections.)

GAPS t+ (Posl DATA CRC gap! This gap should be at

least one, however, in practice, it should be
over ¥ bytes tong. This is to protect the next
sector header from being overwritien.

-4

6.3 THE BASICS OF A SECTOR

beginning of a track from the middle, thus,

er and the data. Because

the trmek s elrcular, there ls no way lo distlnguish the
a scctor needs to

be able to Identify itself to the controller. This is the purpose

=
=
-
pd
e
=
el

a1 11

of the sector header, These sector headers are written during
formatting, so the pector can be identlfled upon subsequent

reading and writing to and (rom the sector.

Figure #-1 shows the typlcal 810 sector/track layout format
gnd the folowing paragraphs describa the various contenls
that make up the aectors.

e CorLaTY pCTOR
’ w |oar]| pars |oar il
DATA |GAF | BAF DATA
Gf'l" a:'l':’lmfnr rd muu| v |3 l--lun s | s |n Hrriv
L

Fmmn I~
scTon [ome | Cne | e DatA pata |CAC |CRC QAR
Tl [l] e [|75

TRACK mAMEAS | E
1RYTE CRE
- - 8IT TN
01 USED Ol FORA T
[L]

o
O - EIGN LANETY
acr CRMATE -
- :_:
o1
e

Figure 6-1. Sector/Track Format

8-3

§.5 THE READ COMMAND

When the processor lssues the read command lo the FDC, a
search for the sector header begims. The FDC reads the
headers of the sectors It finds and compares the sector number
and the track number to those given by the processor. It the
test fails, the search continues. Next, the CRC Is checked for
validity; if not correct, the search continues. if all is gor!-ect,
the FDC begins searching for the data AM. If found within 28
bytes, the sector Is read byte by byte and is transferred to the
processor. Finally, the CRC Is checked for validity at the end.
The CRC status error bit is set nceordingly. Also, the type of

f data AM byte will determine the status' of bits 5 and § of the

status register. If the sector Is never found je. ID fields don't
mateh, bit 4 of the status is set, and the processor (CHIP) will
reposition the head in hope that somehow the head had gotten
over the wrong Leack (grind!l), and try again.

t 6.6 THE WRITE COMMAND

1 This works ldentically to the read command excepl that once

the sector has been located, n write occurs, NOTE: The wrile
requires that $11 (t7) gap bytes be belween the sector hesder
and the data. Also, the data AM byle's value depends upon the
Jast two bits of the write command byte. Cn three of the four
possibilities, the processor will interpret the seclor as ‘bad

(see section 6.11).

£.1 THE CHIP'S LOGIC SEEKING READ/WRITE COMMANDS

These are the read and write commands thal are used for
double sectors. The CHIF will first compare the sector
sequence It contains to what It finds on the diskette. When it
syncronizes itself to the sequence, the wrlte or read [unction
described in seclion 6.5 and 6.6 will take place. The CHIP is
able to get the sector headers through a read address
eommand (of the FDC) which returns the six bytes contained
in the sector header (track,...,CRC byles).

L=

6.8 EREAD FORMAT COMMANIS

Using the method described above, the sector sequence can be
fetched On the A+ modes, the headers are continuously
read for slightly more than one revolution. After this, the
sector numbers are compared on the next revolution and the
first sequencte s cropped to agrece with what it finds the
second time through, The A- modes read for aboul one
revolution but no double cheek is made.

4.9 BIO SPERED RESTRICTIONS

The disk drive's processor {(and thereflore the FDC) receives a
full sector of data every 1/18 of a disk revolution. This is
about .0115 second, however, the scrinl transfer between the
eomputer and the disk drive is considerably slower, {about .09
second). Now, since the diskette is turning at 288 RPM (or 4.8
rpms), If you do a little math, you will find that only two
sectlors can be read In one disk revolution. This is the concept
behind fast formats,

REASERAAABBRAR

Above is the standard format used in the CHIP as well as the
Atari ROM C. Notlee that eonscquetive numbered sectors are
nine apart within the sequence and ten apart when erossing the
end of track gap (which is about half a sector in lengthl. If
you are thinking ahead you msy realize that even this format
c¢an be improved upon.

6-6

The actual phyysical sectors would be a3 follows:
k b L &4 o L

You will notice that the two reads of sector 9 did not yield the
same result, thus this becomes a valid protection scheme.
This is a rather new protection method (mid 1982), yet it Is
simpla to understand and to duplicate {with the CHIP). This
type of protection ean ONLY bec created with a drive
modification {which is exactly how thcy are created in the
flrat place).

This idea can easlly be expanded upon to inelude triple or
quadrouple sectors. HOWEVYER, the ability to consistantly and
reliably get the same results gets harder with the more
duplicate mumbered sectors you have. Another application is
to ¢reate more than 18 sectors and number two with the same
number, Previowusly, this was difficult to grasp and realize the
feasibllity of such a scheme, however, now with the EDITOR,
you may create a3 many a3 24 sectors on a track, but because
there |s only so much room, many sectors must be cut short
{and thus be bad sectors). A word of warning: the data in
short sectors is not always reliable and timing between sectors
is not the same. Timing becomes eritical in Importance and
slight variations In speed may have adverse effects on
protections

=
-
i)
1)
TC
1]
~g
AQ
L]
-0
A -
b=
"o
5T}
DQ
ET-]
fal -]
Y-
1]

In the above format, the sequentlal sectors are nine apart

except for the end of track gap, In which case they nre eight
spart. Here, that gap Is large enough such that the eighth can
just be resd before the head passes It by (or rlther it passes
mf the head by). This format s the fastest format possible on the

; 910 disk.

6.10 DOUBLE SECTOBRS

I] u

” Now suppose that two aectors had the same number. If you
just randomly went and read that numbered sector, you could

get two different sets of data This process can be preeiscly

controlled by first reading the sector nine (9) places before the

one you really wish to read, and then read the one you wanL

100000¢0
29213242
k

" a
-3
@ S
w S
-3

| mnopgqr

The above sector sequence contains 1B unique sectors but 8
numbers are duplicated (This Is actually a format used in the
protection of one software house.) HNow suppose you read
sectors In the following order:

12, 4, 9, 5 & 9.

7

FERERFEERRTETS

5.11 BADSECTORS

The abillty to write bad sectors has been around for guite a
while now. It was the first type of true protection, but s now
becoming not so Impoctant. It Is possible to create two lypes
of bad sectors with a standard 810 Disk Drive. The first (s a
CRC error and the second Is a missing sector. The CRC error
bad sectors were created by one of two methods; the first
belng slowing down the drive, and the second being the Lape
method. The missing sector was created l_:y writing to the
preceeding sector at a high RPM, thus causing the end of the
first sector to overwrite the header of the nexL

Now, creating bad sectors ls an easy and valunble function of
the CHIP. To create a missing sector, simply format the track
without that sector number. To create CRC bad sectors,
special operations must be performed by the CHIP While
writing the sectce, These functioms are all automatic and essy
using the ARCHIVER/EDITOR, however, a brief deseription of
each type will be given below.

6.11.1 CRC Error Sectors

The CRC bytes are a sophisticated checksum of the
preceeding data in a sector. [If these bytes do not agree with
the data read from the sector, a CIIC error will occur. This
type of bad sector Is simply ercated by stopping the write
process in midstream, thereby kceping the old CRC yet
allowing new data. The status CRC error bit {bit 3 of the
status) will reflect the error afler a read. The CillP ailso
carries this process a step further. You can specily the
number of bytes actually written when crcating a bad scctor
by putting the number of bytes to be written in the last hyte
of the sector data. After the last hyte is written, the process
stops, and on subsequent reads of that sector, the status will
reflect # CRC error (on the B- mode only).

8.11.2 Data Type Flags

Another way to create periectly good sectors with a bad
status is by setting data type flags in the write (FDC write)
command. When this is done, the data AM mark bits 0 and 1
are changed to reflect the type of data. Although these
sectors are perlectly good, the CilIP {and the ROM C } will
take these sectors as being bad and return an error, Bits 5 and
8 of the status will reflect the results of the read of these
types of sectors. With two bits, four combinations can be
made; only one of which ls a perfectly good sector.

In all there are nine types of scetors: Only one of which is
good. The missing sector is another type and the remaining
seven are creeted by combinations of the data type [lags and
the CRC error bit.

TR

~10
BIT READ WRITE NOTES
T |Not ready Not ready always CLR
8 |Data type Write protecet
$ |Data type {a) Write lault
4 [Record not found Record not found (sector missing)
3 |CRC error CRC error
2 |Lost data Lost data shouldn't happen
1 |DRQ DRQ always CLR
0 |BUSY BUSY always CLR
(a) : can be reliably used.

NOTE:All bits are returned in low-truc form (i.e., 8 good sector

returns ¢ $FF status).

Figure 8-2. Hardware Status Bits

6.12 STATUS

The bits referred to as belng status bits 3-6 are not
automatically had after reading e sector. The meaning of the

SIO status is as follows:

$30 1 A bad sector of ANY type was encountered upon
the read.

$8A : Timeout The sector was mlasing and the drive did
not respond In time.

$88 : Device NAK. related to sbove. If the drive doesn't
respond in time, the 510 tries aguin, however.

$8C : Serial tum. Related to above.

$01 : A good read/write

The $30 should usually be returned on bad sectors, however,
the timeout value of the disk Interface routine ls borderline
thus causing the errors $8A-$BC. A $30 ean be insured by
setting the timeout valua higher and using the SIO Instead

The status bits of the FDC are received by executing an S
(status) command after reading the sector in question. The
8 command will return 4 bytes of which only two are really
mesningful and only the second is described here. For
reference to the others, aee chapter § (Diskette Handler
Commands) of the Atari OS manual After e read, the
hardware status bits are reflected as in flgure 8-2.

CHAPTER 7
SPECIAL CHIP FEATURES

This chapter desls strietly with the CHIP itscll and illustrales
several features of the CHIP which ara not fully supported in
the ARCRIVER/EDITOR ptogram,

7.1 THE BOOT BECTOR

When the 810 Disk Drlve Is turned on with the CHIP
Modification installed, the head will first align itsell on track
0, end then will immediately return to track $27 and read
sector $2DO (if present). The CHIP checks the last two bytes
of the sector and compares them to $4A, $25 (or J% In ASCID.
If the last two bytes sre a $4A end $25 then the progrom
eontrol will be transferred to the sector data for execution.
On the ARCHIVER/EDITOR diskette, the boot sector will
store a $80 in $195 which will open the drive. It elso stores a
$02 in $191 which will make the drive shut off one second
after It was last accessed A feturn is then exeeuted which
brings the CHIP's program back to fts warm entry.

7.2 MOTOR OFF DELAY

There are two ways to change the motor turn of[delay when
using the CHIP, The first Is to boot a boot sector when you
turn on the drive. The other method is to use a built in
command which does this automatically. Appendix D is a
basic program which [irst opens the CHIP and then adjusts its
motor shutdown delay time.

7.3 LOCEKING FORMAT/WRITE/OPEN

The CHIP contains n variable within its memory which allows
the opening of the CHIP and ol varions write type comands,
This feature will probably NEVER NEED TO BE USED!
However, just In case, location $19D contains the nceded
information that will TOTALLY lock the CHIP from oulside
mischief, The modifying of $190 would normally be done In
the boot sector, which you would need to write.

7.4 MACHINE LANGUAGE INTERFACE

The CHIP can allow user programs 1o be trensferred to and
executed within the data buffer inside of the 810 Disk Drive.
This allows for even more flexibilitv to denl with unforeseen
situations, thus the CHIP truly is expandable. For more
information on the Inner workings of the CHIP, please contact
Sparten Sof tware of MN Inc.

1.5 TRACING

The CHIP also supporis two types ol tracing. One of which
keeps track of how many times a particular track Is accessed.
The other type keeps a listing of the sector numbers read,
given some starting sector. These features will be supported
by an ARCHIVER 2.0 when released.

8.2 20 OR MORE SECTORS

The ARCHIYER ecan only hendle rending and writing a
maximum of 19 sectors, however, the EDITOR ean handle 24,
If a diskette does contain more than 20 sectors, the custom
formatter must be used and some sectors must be shortened.
Notlee that 20 full sectors can be written if you set all gaps
(except the POST ID CRC) to one {1). However, if more than
20 sectors are being used, you must do some intelligent
guessing on which sectors are shortcned and go from there.
Once you made the format, writing the sectors is easy. The
sector sequences must match snd the formatting flag should
be tyrned OFF. Also the bad sector flag must be turned to a
B~ apd CRC error bad aector symbols must be created under
the sector number {the B command, in the EDITOR of
course). Next the sector data must be modified so that the
last byte In the bad sectors is the actual number of bytes to be
written to the sector. Finally, you write the track and hope it
works, otherwise try again. At the time of this writing, NO
software company had ever used 20 or more sectors in &
format (nor did they have the ability to).

8.3 GARBAGE TRACKS

Occasionally, you may run into tracks that return a read
format ercor. (This has only happened onee to my knowledge.)
This Is because the tracks' are barly garbled and Lhe seeond
pass does not return the same results as the first pass. This
wlll only happen on unformatted tracks, in which case random
numbers appear a3 the sector numbers. To solve this problem,
simply switch to a A6~ read format mode, :

SRR ESANEANENRRERRRERRERENEEEN

CHAPTER 8
OSEFUL HINTS

This chapter will deal with tracks and useful things you may do
using your ARCHIVER/EDITOR program. This chopter is
specifically designed to help the user backup a program that
wouidn't work when the defaults were used.

8.1 CYCLIC FORMATS

Consider the following formula:

-
[N =]
-
-
L]
& a
~o
oo
w o
-
o
-0
- o
;o
;oo
-
-, o
wo

If you write out data using this format you may find that you
get a verify ecror, why? The answer Is really quite steaight
forward. Since all the sectors are doubles, the logic seeking
commands will be used, but now how does the logic seeking
command locate the sector? It can't because it has no way of
distinguishing the first half from the second. The solution to
this problem is to turn the logic seeking commands OFF{ L-)
and the compaction OFF { C-). Also, you should turn the
=erity oft { ¥-). This will cause each sector to be read in
eorrectly because two Sectors will be fetched per revolution
an | the sectors will automatically ba written correctly.

3.4 GETTING RID OF LOUD SECTORS

Many software companles Insist on ehecking missing sectors,
thus the loud noises as the program boots. Recause most
soltware companies do hot check the status after such a rend,
you may replace their format with a new one that cont‘nlns the
required sectors and the ones that made the noise. When the
new format has been created, you must insert bad sectors.
The easiest way to do thls Is to position over the new sector
and press the B (flrst you must get data into that sector).
When you have selected all sectors that need to be bad, then
write the sectors out, and usually the program will work.

\ppendix B ARCHIVER Command Summary

v §| 21001
-

- >

opy
START 1 atart reading/writing

OPTION : halt

Enter EDITOR

Number of copies
: entry (HEX)

Open the CHIP
1 wxyz ls the code, d is the drive

Parameters
1 cursor left
1 eursor right

RET 1 select parameter

—

ESC t anytime will abort

B-1

Appendix C EDITOR Command Summary {Continued)

L — Address change
M - Enter mapper
xy t track number
N — Renumber current Lrack
xy 1 new number
a - Qpen CHIP
wxyz, d 1 CHIP code=wxyz, drive=d
P - Parameter
- t cursor right
- : cursor left
RET 1 select parameter
R — Read tracks
OPTION : halt
START 1 begin/continue
w - Write tracks
OPTION : halt
START 1 begin/continue
CLR - Delete track
DEL - Delete sector
INS - Insert sector

ESC t return to command mode

Appendix C BDITOR Command Summary

A — ARCHIVER
- Pad sector select
D - Disassemble
t seroll up
t scroll down

Enter edit mode
cursor up one Line
¢t cursor down one line
cursor left
eursor right
delete byte cursor on
Insert at cursor
fitl
home cursor

=)

m

[
e es ee e ve dm ve e

RET beginning of line
F — Formatter
4 t cursor up
+ t cursor down
- t curser right
- 1 eursor left
DEL 1 delete sector
INS 1 lnsert sector
CLR : delete ali sectors
w : write format
H — Hold sector
I - Insert format

Appendix D CHANGING DRIVE MOTOR SHUTDOWN DELAY

It b 2414)
707 VAT ORIVE DO TOU WNT 10 OPEN";

38 INPUT DRIVELIF DRIVE(] OR DRIVE) THEN 20

407 WAT 15 TMAT DRIVE’S CHIP 1D CODE";

3 INPUT Ad:IF LBN(AS) (4 THEN % *PLEASE USE & DIGITS. *:60T0 40

o C=IEOR Ae| 1O 4 (DeASCEAS AN 40 IR (CDITI2) CRCO B INEXT A
™ POKE 748,47

B PINE 747, DRIVE

" PRE 70,7

100 POXE 7710

118 PONE 774,19

129 CHI=INT(C/2756) :EL0=C-CHE 0284

138 POXE 778, CLO:PORE 779, CHL

140 RESTORE :FOR Am] TO 41READ B:ASCAAJCIRYIB) DT A

1% X=USR{ADA(M))

168 IF PEEXCI7DIO THEN 7 "ERROR, TRY AGAIN,*:5070 20

170 7 *THE THIP MRS DPENED SUCCESSFLLLY."

M ME T — — .

14 PugE N0 :

20 ? 12 “HOJ Y INITS OF 1/2 SECONS DO TOU WAHT TO SET THE BRIVE
SHUTOON T0:

270 INPUT TIME:DF TIMEH OR THMEITSS THEN 24

0 PORE 77O, TUE

™ opwE IYLE

20 XaUSROADA LAk))

200 IF PEERCITING] THEN *THE CNIP 1§ MOT OPEN FOR CNANGE.
PLEASE OPEN 17 A0 TIY AGAIN.* :RiM

TN 7 17 *THE CRIVE MRS SUCCESSFULLY MODIFIED.”

190 BATA [04,76,00,218

[KRN NN NN NN ENA NN ANEENNENNENE

ot bw S et e

e — T R =

-

FORMAT ERRCR

READ FORMAT EBRROR

READ/WRITE ERROR (STD)

READ/WRITE ERROR (POS)

TOO MANY SECTORS

E-1

A\PPENDIX E: ERROR MESSAGES

After formatting a track,
the verily found the track
to be bad. Try again, and
Il it persists, the diskette
Is likely bad.

The CHIP was unsuccessful
at getting the sector
sequence from the disk-
ette. I you suspeet more
than 21 sectors, use a
A4 mode., otherwise use
a Ax- mode.

sector could not be resd
{or written). This is a
standard read/write com-
mand and should never
happen, unless you have an
unreliable drive,

A logic seeking read/write
command (sector) [(ailed.
Could be a [format mis-
match problem or an error
as in above.

More than 25 sectors was
encountered on the read
format. Trv piecing the
track together by using
A6- read mode repeat-
edly.

APPENDIX E: ERROR MESSAGES (Continued)

INPUT ERBOR

VERIFY EREOR

OPENING ERROR

MEMORY FULL

Invalid entryv, try again, of
consult appropriate sec~
tions regarding the partic-
ular function you tried.

The wverily pass failed to
yield the same rtesuils as
the dnim written. Retry
the write process.

You entered thc wrong
code or drive of your CHIP
when using the O com-
mand. Retry the open.

No more room to store the
dnta on reads, inserts, elc.
Write some of whal you
have back out to the disk
and delete what Is not
needer).

SERREEEREEREEEE

