www.atari-history.com

2.1 AS68 ASSEMBLER OPERATION

The GEM DOS Assembler, AS68. assembles an assembly language source
program for execution on the 68000 microprocessor. It produces a relocatable object
file and, optionally, a listing. You can find a summary of the ASES instruction set at

the end of this section. Exceptions and additions to the standard Motorola instruction
set appear in sections 2.6 and 2.7.

2.2 INITIALIZING ASGS

If the fite ASB68SYM.DAT s not on your disk, you must create this file to
initialize AS68 before you can use ASB8 1o assernble files. To initialize ASE8,
specify the AS68 command, the -| option, and the filename ASBE8INIT as shown
below.

{a}Aas68 -1 ASGSiNIT

ASB8 creates the output file ASB8SYMB.DAT, which ASE8 requires when it
assembies programs. After you create this file. you need not specify this command
line again unless you reconfigure your system to have different TPA boundaries.
2.3 INVOKING THE ASSEMBLER (AS68)

Invoke ASB8 by entering a command with the foillowing form:

AS68 [-F pathname] [-P] [-S pathname] [-U] [-L] [-N] [-1I]
(-0 object filename] source pathname {>listing pathname]

Table 2-1 lists and describes the AS68 command line options.

Table 2-1. Assembler Options
Option Meaning
-F pathname

Specifies the directory in which the temporary files are created. !f this option
is not specified. AS68 creates the temporary files in the current default directory.

Initializes the assembler. See Section 2.2 for detaiis.

ATARI CORPORATION Fage 7

Gem DOS FProgrammers’ Tools - AS68

*

-P

If specificed, AS68 produces and prints a listing on the standard output device.
which, by defauit, is the console. Redirect the listing. including error messages. to a
file with the >listing filename parameter. Note that error messages are produced
whether or not the -P option is specified. No listing is produced. however, unless you
specify the -P option.

-S pathname

indicates the directory that contains the assembler initialization file,
ASB68SYMB.DAT. This lile is created when you initialize AS68. ASE8 reads the file
ASBBSYMB.DAT before it assembles a source file. |f you do not specify this option.
AS68 assumes the initialization file is located in the current defauit directory.

-U

Causes all undefined symbols in the assembly 1o be treated as global
references.

-L

Ensures all address constants are generated as longwords. Use the -L option
for programs that require more than 64K for execution or if the TPA is not contained
in the first 64K bytes of memory. If -L is not specified, the program is assembled to
run in the first 64K bytes of memory. If an address in the assembly does not fit within
one word, an error occurs.,

-N

Disables optimization of branches on forward references. Normally, ASE8
uses the 2-byte form of the conditional branch and the 4-byte BSR instruction
wherever possible (instead of the 6-byte JSR instruction) to speed program execution
and reduce instruction size.
-T

Enables AS68 to accept the 68010 microprocessor opcodes.
source filename

Specifies the file to assemble; you must supply this parameter.
>listing filename

Sends a program listing to the standard output device. Use the greater-than
symbol. >, to direct the listing to a disk file. The listing includes assembler error

messages. Note that if you do not specify -P with a listing filename. only the error
messages are redirected to the listing file.

Fage 2 A TARI CORPORATION

Gem DOS Frogrammers’ Tools - AS68

2.4 ASSEMBLY LANGUAGE DIRECTIVES
Table 2-2 lists the AS68 directives.

Table 2-2. ASE8 Directives
Directive Meaning
.comm label, expression

The comm (common) directive specifies a label and the size of a common area
that programs assembled separately can share. The largest common area of a
group with the same label determines the final size of the program common area.

data

The data directive instructs AS68 to change the assembler base segment to
the data segment.

bss

The bss (block storage segment) directive instructs AS68 to change the
assembler base segment to the block storage segment. You cannot assemble
instructions and dala in the bss. However, you can define symbols and reserve
storage in the bss with the ds directive.

.dc operandl.operand...]

The dc (define constant) directive defines one or more constants in memory.
The operands can be symbols or expressions assigned numeric values by ASG68, or
explicit numeric constants in decimal or hexadecimal. or strings of ASCII characters.
You must separate operands with commas. You must enclose string constants in

singte quotation marks. Each ASCII character is assigned a full byte of memory. The
eighth bit is always 0.

You can specify the length of each constant with a singie ietter parameter (byte
= b, word = w. longword = 1). You must separate the letter from the dc with a perioad
as shown in the following explanations.

.de.b
The constanis are byte constants. |f you specify an odd number of bytes,
ASE8 fills the odd byte on the right with zeros uniess the next statement is another

dc.b directive. When the next statement is a dc.b directive, the dc.b uses the odd
byte. Byte constants are not relocatable.

A TARI CORPORATION Fage 3

Gem DOS FProgrammers’ Tools - AS68

.de.w

The constants are word constants. |f you specify an odd number of bytes,
ASBE8 fills the last word on the right with zeros to force an even byte count. The only
way to specify an odd number of bytes is with an ASCl! constant. Word constants
can be relocated.

.de.!

The constants are longword constants. If less than a muiltiple of four bytes is
entered. AS68 fills the last longword on the right with zeros to force a multiple of four
bytes. Longword constants can be relocated.

.ds operand

The define storage directive (ds) reserves memory locations. The contents of
the memory that it reserves is not initialized. The operand specifies the number of
bytes, words. or longwords that this directive reserves. The notation for these size
specifications is shown below.

ds.b reserves memaory locations in bytes
.ds.w reserves memaory locations in words
.ds.| reserves memaory locations in longwords

.end

The end directive informs AS68 that no more source code foliows this
directive. Code, comments, or multiple carriage returns cannot follow this directive.

.endc

The endc directive denotes the end of the code that is conditionally assembled.
it is used with other directives that conditionally assemble code.

.equ (or =} expression

The equate directive (equ or =) assigns the value of the expression in the
operand field to the symbol in the label field that precedes the directive. The syntax
for the equate directive are:

label .equ exprgssion
label = expression

The label and operand fields are required. The label must be unique; it cannot
be defined anywhere else in the program. The expression cannot include an
undefined symbol or one that is defined following the expression. Forward
references to symbols are not allowed for this directive.

Fage 4 ATARI CORFORATION

>

Gem DOS Frogrammers’ Tools - AS68

.even

The even directive increments the location counter to force an even boundary.
For example, if specified when the location counter is odd, the location counter is
incremented by one so that the next instruction or data field begins on an even
boundary in memory.

.globl iabeil label..]
.xdet labell label...]
.xref labeillabel..]

These directives make the label(s) external. !f the labels are defined in the
current assembly, this statement makes them available to other routines during a
load by ALN. If the labels are not defined in the current assembly, they become
unresolved externai ref..;ences, which ALN links to external values with the same
jabel in other routines. !f you specify the -u option. the assembler makes ali
undefined labels external.

.ifeq expression .ifne expression
.ifle expression iflt expression
.ifge expression .ifgt expression

These directives test an expréssion against zero for a specified condition. |If
the expression is true, the code following is assembied; if false, the code is ignored
until an end conditional directive (endc) is found. The directives and the conditions
they test are:

ieq equal to zero ifle less than or equal to zero
it less than zero ifne . not equal to zero
itgt greater than zero .ifge greater or equal to zero

.ife 'string1’, 'string?2’
.ifnc 'string ', 'string2’

The conditional string directive compares two strings. The ‘¢’ condition is true
if the strings are exactly the same. The 'nc’ condition is true if they do not match.

.offset expression

The offset directive creates a dummy storage section by defining a table of
offsets with the define storage directive {(ds). The storage definitions are not passed
io the linker. The offset tabie begins at the address specified in the expression.
Symbols defined in the offset table are internally maintained. No instructions or
code-generating directives, except the equate (equ) and register mask (reg)
directives, can be used in the table. The offset directive is terminated by one of the
following directives:

bss
data
end
section
text

ATARI CORFORATION Fage 5

Gem DOS FProgrammers’ Too/s - AS68

.org expression

The absoiute origin directive (org) sets the location counter to the value of the
expression. Subsequent statements are assigned absolute memory tocations with
the new value of the iocation counter. The expression cannot contain any forward,
undefined, or external references.

.page

The page directive causes a page break which forces text to print on the top of
the next page. It does not require an operand or a label and it does not generate
machine code.

The page direclive allows you to set the page length for a listing of code. |f
you use this directive and print the source code by specitying the -P option in the
ASB8 command line, pages break at predefined rather than random places. The
page direclive does not appear on the printed program listing.

.reg reglist

The register mask directive builds a register mask that can be used by a
movem instruction. {See Tabie 1-1.} One or more registers can be listed in
ascending order in the format: '

R?[-RI/R?[-R7...]..]]

Héplace the R in the above format with a register reference. Any of the following
mnemonics are valid .
AO-A7

DO-D7
RO-R15

The following example illustrates a sample register list.
A2-A4/A7/D1/D3-D5

You can also use commas (o separate registers as follows:
A1.A2.D5D7

.section ®

The section directive defines a base segment. The sections can be numbered
from 0 to 15 inclusive. Section 14 always maps to data. Section 15 is bss. All other
section numbers denote {ext sections.

.text
The text directive instructs AS68 to change the assembler base segment to the
text segment. Each assembly of a program begins with the first word in the text

segment.

FPage 6 ATARI CORPOARATION

Gem DOS Programmers’ Tools - AS68

a0 S L, *_’_‘_. e~

2.5 SAMPLE COMMANDS INVOKING AS68
{a}asb8 -u -1 test.s

This command assembiles the source file TEST.S and produces the object file
TEST.O. Error messages appear on the screen. Any undefined symbols are treated
as global

{a}as68 -p smpl.s > smpi.]
This command assembles the source file SMPL.S and produces the object file

SMPL.Q. The program must run in the first 64K of memory: that is. no address can
be iarger than 16 bits. Error messages and the listing are directed to the file SMPL.L.

2.6 ASSEMBLY LANGJAGE DIFFERENCES

The syntax differences between the AS68 assembly language and Motorola's
assembly language are described in the following list. :

« In ASB8. all assembler directives are optionally preceded by a period (). For
example,

.equ or equ
.ds or ds

. ASB8 does not support. but accepts and ignores the following Motorola directives:

comline
mask?2
idnt
opt
« The Motorola .set directive is implemented as the equate directive (equ).

+ ASB8 accepts upper- and lowercase characters. You can specify instructions and
directives in either case. However, labels and variables are case-sensitive. For
example, the label START and Start are not equivalent.

« For ASBS. all labels must terminate with a colon (:). For example,

A FOO.
However. if a label begins in column 1, it need not terminate with a colon. It a label is
placed as the last statement of your assembly, it must generate code, ie. conditional
staternents may cause problems but a no op (nop)} will be OK.

« For ASB8. ASCIl siring constants can be enciosed in etther single or double
guotes. For example,

‘ABCD’ "ac14”

ATARI CORPORATION Page 7

T

Gem DOS Programmers’ Tools - AS68

+ For ASES, registers can be referenced with the following mnemonics:

rO-r15
RO-R15
d0-d7
DO-D7
a0-a7
AD-A7

Upper- and lowercase references are equivalent. Registers R0-R7 are the same as
D0-D7 and R8-R15 are the same as AO-A7.

« Use caution when manipulating the location counter forward in AS68. An
expression can move the counter forward only. The unused space is filied with zeros
in the text or data segments.

« For AS68. comment lines can begin with an asterisk followed by an equals sign (*
=), but only if one or more spaces exist between the asterisk and the equals sign as
follows:

* = This command loads R1 with zeros.
* = Branch to subroutine XYZ.

Be sure to include a space after the asterisk, as the location counter s
manipulated with a statement of the form:

*=expr
« For ASB8, the syntax for short form branches is bxx.b rather than bxx.s

« The Motorola assembler supports a programming model in which a program
consists of a maximum of 16 separately relocatabte sections and an optional
absolute section. The ASS8 distributed with GEMDOS does not support this model.
Instead, AS68 supports a model in which a program contains three segments. text.
data. and bss as described in the Atari GEMDOS manual.

2.7 ASSEMBLY LANGUAGE EXTENSIONS

The foliowing enhancements have been added to AS68 to make the assembly
language more efficient:

« When the instructions add, sub, and cmp are used with an address register in the
source or destination, they generate adda. suba. and cmpa. When the cir instruction
is used with an address register (Ax).it generates sub Ax, Ax.

. add, and. cmp, eor, or, sub are allowed with immediate first operands and

generate addi, andi, cmpi, eori, ori, and subi instructions if the second operand is not
register-direct.

Fage & ATARI CORFPORATION

®

Germ DOS Frogrammers’ Tools - AS68

» All branch instructions generate short relative branches where possibie. including
forward references.

« Apy shift instruction with no shift count specified assumes a shift count of one.
For example. aslrlis equivalent to asl #1.1l.

« A jsr instruction is changed to a bsr instruction it the resulting bsr instruction is
shorter than the jsr instruction.

« The .text directive causes the assembler to begin assembling instructions in the
text segment. The .data directive causes the assembler to begin assembling
initialized data in the data segment.

. The .bss directive instructs the assembier to begin defining storage in the bss. No
instructions or constants can be placed in the bss because the bss is for uninitialized
data only. However, the .ds directives can be used to define storage locations, and
the location counter (*) can be incremented.

« The .giobl directive in the form:
globl label(label] ...

makes the labels exiernal. |f they are otherwise defined (by assignment or
appearance as a label), they act within the assembly exactly as if the .globt directive
were not given. However, when linking this program with other programs, these
symbols are available 1o other programs. Conversely, if the given symbols are not
defined within the current assembly, the linker can combine the output of this
assembly with that of others which define the symbols.

« The common directive {comm) defines a common region, which can be accessed
by programs that are assembled separately. The syntax for the common directive is:

comm label, expression

The expression specifies the number of bytes allocated in the common region. it
several programs specify the same {abel tor a common region, the size of the region
is determined by the value of the largest expression.

The common directive assumes the label is an undefined external symbol in the
current assembily.

« The .even directive causes the location counter (*), if positioned at an odd
address, to be advanced by one byte so the next statement is assembled at an even
address.

. The instructions move. add, and sub, specified with an immediate first operand

and a data (D) register as the destination, generate Quick instructions. where
possible.

ATAR/ CORPORATION Fage 9

Gem DOS Frogrammers' Tools - AS68

2.8. AS68 ERROR MESSAGES
The GEM DOS assembler, AS68, returns both nontatal, diagnostic error
messages and fatal error messages. Fatal errors stop the assembly of your program.

There are two types of fatal errors: user-recoverable fatal errors and fatal errors in
the internal logic of ASES.

2.8.1. AS68 Diagnostic Error Messages

Diagnostic messages report errors in the syntax and context of the program
being assembled without interrupting assembly. Refer to the Motorola 16-Bit
Microprocessor User's Manual for a full discussion of the assembly language syntax.
Diagnostic error messages appear in the following format:

& line no. error messége text

The ampersand (&) indicates that the message comes from AS68. The iine
no. indicates the line in the source code where the error occurred. The error message
text describes the error. Diagnostic error messages appear at the console after
assembly, followed by a message indicating the total number of errors. In a print-out,
they print on the line preceding the error. Table A-1 lists the ASB8 diagnostic error
messages in alphabetical order.

Table 2-3. AS68 Diagnostic Error Messages.
Message Meaning
& line no. backward assignment io *

The assignment statement in the line indicated illegally assigns the location
counter (*) backward. Change the location counter to a forward assignment and
reassemble the source file.

& line no. bad use of symbol

A symbol in the source line indicated has been defined as both global and
common. A symbol can be either global or common. but not both. Delete one of the
directives and reassemble the source file.

& line no. constant required

An expression on the line indicated requires a constant. Supply a constant
and reassemble the source file.

Fage 70 ATARI CORFORAT/ION

@

Gem DOS FProgrammers’ Tools - AS68

& line no. end statement not at end of source

The end statement must be at the end of the source code. The end statement
cannot be followed by a comment or more than one carriage return. Place the end
statement at the end of the source code. followed only by a single carriage return,
and reassemble the source file.
& line no. illegal addressing mode

~ The instruction on the line indicated has an invalid addressing mode. Provide a
valid addressing mode and reassembie the source file.

& line no. illegal constant

The line indicai.d contains an illegal constant. Supply a valid constant and
reassembie the source file.

& line no. Hlegal expr

The line indicated contains an illegal expression. Correct the expression and
reassembie the source file.

& line no. illegal external

The line indicated illegally contains an externai reference to an 8-bit quantity.
Rewrite the source code to define the reference locally or use a 16-bit reterence and
reassemble the source file.
& line no. illegal format

An expression or instruction in the line indicated is illegally formatted. Examine
the line. Reformat where necessary and reassemble the source file.

& line no. illegal index reqister

The line indicated contains an invalid index register. Supply a valid register and
reassembie the source file.

& line no. illegal relative address

An addressing mode specified is not valid for the instruction in the line
indicated. Refer to the Motorola 16-Bit Microprocessor. User's Manual for valid
register modes for the specified instruction. Rewrite the source code to use a valid
mode and reassemble the file.
& line no. illegal shift count

The instruction in the line indicated shifts a quantity more than 31 times. Modity
the source code to correct the error and reassembie the source file.

ATAR! CORPORA TION Fage 77

Gem DOS Programmers’ Tools - ASEE

& line no. illegal size

The instruction in the line indicated requires one of the foliowing three size
specifications: b (byte), w (word), or { (longword). Supply the correct size specification
and reassemble the source file.
& line no. ilegal string

The line indicated contains an illegal string. Examine the line. Carrect the string
and reassemble the source file.

& line no. illegal text delimiter

The text delimiter in the line indicated is in the wrong format. Use single
quotes (‘text’) or double quotes (“"text”) to delimit the text and reassemble the source
file.
& line no. illegal 8-bit displacement

The line indicated illegally contains a displacement larger than 8-bits. Modity
the code and reassemble the source file.

& line no. illegal 8-bit immediate

The line indicated illegally contains an immediate operand larger than 8-bits.
Use the 16- or 32-bit form of the instruction and reassemble the source file.

& line no. illegal 16-bit displacement

. The line indicated illegally contains a displacement larger than 16-bits. Modity
the code and reassemble the source file.

& line no. illegal 16-bit immediate

The line indicated illegally contains an immediate operand larger than 16-bits.
Use the 32-bit form of the instruction and reassemble the source file.

& line no. invalid data list

One or more entries in the data list in the line indicated is invalid. Examine the
line for the invalid entry. Replace it with a valid entry and reassemble the source file.

& line no. invalid first operand

The first operand in an expression in the line indicated is invalid. Supply a
valid operand and reassemble the source file.

Fage 12 ATARI CORFORA TION

&

Gem DOS FProgrammers’ Tools - AS68

& line no. invalid instruction length

The instruction in the line indicated requires one of the following three size
specifications: b (byte)., w (word), or | (longword). Supply the correct size
specification and reassemble the source file.
& line no. invalid label

A required operand is not present in the line indicated, or a label reference in
the line is not in the correct format. Supply a valid labei and reassemble the source
file.
& line no. invalid opcode

The opcode in the fine indicated is non-existent or invalid. Supply a valid
opcode and reassembie the source file.

& line no. invalid second operand

The second operand in an expression in the line indicated is invalid. Supply a
valid operand and reassemble the source file.

& line no. label redefined

This message indicates that a label has been defined twice, The second
definition occurs in the line indicated. Rewrite the source code to specify a unique
label for each definition and reassemble the source file. :
& line no. missing)"

An expression in the line indicated is missing a right parenthesis. Supply the
missing parenthesis and reassemble the source file.

& line no. no label for operand

An operand in the line indicated is missing a labei. Supply a label ana
reassemble the source file.

& line no. opcode redetined

A label in the line indicated has the same mnemonics as a previously specified
opcode. Respecily the label so that it does not have the same speiling as the
mnemonic for the opcode. Reassemble the source file.
& line no. register required

The instruction in the line indicated requires either a source or destination
register. Supply the appropriate register and reassemble the source file.

ATARI CORPORA TION Page 13

Gem DOS FProgrammers’ Tools - ASE8

& line no. relocation error

An expression in the line indicated contains more than one exiernally defined
global symbol. Rewrite the source code. Either make one of the externally defined
global symbols a local symbol. or evaluate the expression within the code.
Reassembie the source file.

& line no. symbol required

A statement in the line indicated requires a symbol. Supply a valid symbol and
reassemble the source file.

& line no. undefined symbol in equate

One of the symbols in the equate directive in the line indicated is undefined.
Detine the symbol and r. assemble the source file.

& line no. undefined symbol

The line indicated contains an undefined symbol that has not been deciared
global. Either define the symbol within the module or define it as a giobal symbol and
reassemble the source file. _

2.8.2. User-recoverable Fatal Error Messages

Tabie A-2 describes fatal efror messages for AS68. When an error occurs because
the disk is full, AS68 creates a partial file. Erase the partial file to ensure that you do
not try to iink it.

Table 2-4. AS68 User-recoverable Fatal Error Messages
& cannot create init: ASB8SYMB.DAT

ASGB8 cannot create the initialization file because the path name is incorrect or
the disk to which it was writing the file is full. If you used the -S switch to redirect the
symbol tabie to another disk, check the path name. If it is correct, the disk is full.
Erase unnecessary files. if any, or insert a new disk before you reinitialize ASE8.
Erase the partial file that was created on the iull disk to ensure that you do not try to
link it.

& expr opstk overfiow

An expression in the line indicated contains toc many operations for the
operations stack. Simplify the expression before you reassemble the source code.

& expr tree overflow
The expression tree does not have space for ihe number of terms in one of the

expressions in the indicated line of source code. Rewrite the expression to use fewer
terms before you reassemble the source file.

Fage 74 ATARI CORFORA TION

&

Gem DOS Frogrammers’ Tools - AS68

& /O error on toader output file

The disk to which AS68 was writing the loader output file is full. AS68 wrote a
partial fite. Erase unnecessary files, if any, or insert a new disk and reassemble the
source file. Erase the partial file that was created on the full disk to ensure that you
do not try to link it.

& /O write error on it file

The disk to which ASE8 was writing the intermediate text file is full. AS68 wrote
a partial file. Erase unnecessary files, if any, or insert a new disk and reassemble the
source file. Erase the partial file that was created on the full disk to ensure that you
do not try to link it.

& it read error itoffset= no.

The disk to which AS68 was writing the intermediate text file is full. ASE8
wrote a partial file. The variable itoffset= no. indicates the first zero-relative byte
number not read. FErase unnecessary filtes, if any, or insert a new disk and
reassemble the source file. Erase the partial file that was created on the full disk to
ensure that you do not try to link it.

& Obiject file write error

The disk to which ASE8 was writing the object file is full. AS68 wrote a partial
file. Erase unnecessary files, if any, or insert a new disk and reassemble the source
file. Erase the partial file that was created on the full disk to ensure that you do not try
to link it.

& overflow of external table

The source code uses too many externally defined global symbols for the size
of the external symbol table. Eliminate some externally defined giobal symbols and
reassemble the source tfile.

& Read Error On Intermediate File; ASXXXXn

The disk to which AS68 was writing the intermediate text file ASXXXX is full.
ASB8 wrote a partial fite. The variable n indicates the drive on which ASXXXX is
located. Erase unnecessary files, if any, or insert a new disk and reassemble the
source file. Erase the partial file that was created on the full disk to ensure that you
do not try to fink it.

& symbot table overflow

The program uses too many symbols for the symbol table. Eliminate some
symbols before you reassemble the source code.

ATARI CORPORA TION Fage 15

Gem DOS Programmers’ Tools - AS68

& Unable to open file filename

The source filename indicated by the variable filename is invalid or has an
invalid path name. Check the path name and the filename. Respecify the command
line before you reassemble the source file.

8 Unable to open input file

The filename in the command line indicated does not exist or has an invalid
path name. Check the path name and the filename. Respecify the command line
before you reassemble the source file.

& Unable to open temporary file

You used an inve “d path name or the disk to which AS68 was writing is fuli.
Check the path name. If it is correct, the disk is full. Erase unnecessary files, if any,
or insert a new disk before you reassembie the source file.

& Unabie to read init file;: AS68SYMB.DAT

The path name used to specify the initialization file is invalid or the assembler
has not been initialized. Check the path name. Respecify the command line before
you reassemble the source file. f the assembler has not been initialized, reter io
Section 5 for instructions. :

& Write error on init file;: AS68SYMB.DAT

The disk to which AS68 was writing the initialization file is full. AS68 wrote a
partial file. Erase unnecessary files. if any, or insert a new disk and reassemble the
source file. Erase the parfial file that was created on the full disk to ensure that you
do not try to link it.

& write error on it file

The disk to which AS68 was writing the intermediate text is full. AS68 wrote a
partial file. Erase unnecessary files. if any, or insert a new disk. Erase the partial file
that was creatled on the full disk to ensure that you do not try to link it. Reassemble
the source file.

2.8.3. AS68 Internal Logic Error Messages
The tollowing are messages indicating fatal errors in the internal logic of ASG8:

doitrd: bufter botch pitix=nnn itbuf=nnn end=nnn
doitwr: it buffer botch

invalid radix in oconst

i.l. overflow

it sync error itty=nnn

seek error on it file

outword: bad riflg

20 Qo @0 Qo go po RO

Fage 16 A TARI CORFPORATION

PV - N S

L RTIT

Gem DOS Frogrammers’ Tools - AS68

2.9 INSTRUCTION SET SUMMARY

This section contains two tables that describe the assembler instruction set
distributed with GEMDOS. Table 2-5 summarizes the assembler (AS68) instruction
set Table 2-6 lists variations on the instruction set listed in Table 2-5. For details on
specific instructions, refer to Motarola's 16-Bit Microprocessor User's Manual, third
edition, MCB8000UM(AD3)

Table 2-5. Instruction Set Summary

abcd Add Decimal with Extend
add Add

and Logical AND

asl Arithmetic Shift Leit

asr Arithmetic Shift Right
bece Branch Conditionally
bchg Bit Test and Change

beir Bit Test and Clear

bra Branch Always

bset Branch Test and Set

bsr Branch to Subroutine
btst Bit Test

chk Check Register Against Bounds
clr Clear Operand

cmp Compare

dbcc Test Condition, Decrement, and Branch
divs Signed Divide

divu Unsigned Divide

eor Exclusive OR

exg Exchange Registers

ext Sign Extend

iliegal Hlegal instruction

imp Jump

Isr Jump to Subroutine

lea Load Effective Address
link Link Stack

s} Logical Shift Left

lst Lagical Shift Right

A TAR!I CORFPORATION Fage 77

Gem DOS Programmers’ Tools - AS6E

move
movem
movep
muis
mulu
nbed
neg
nop

no

or
pea

reset
rol
ror
roxl
roxr
rte
rtr
ris

sbed
scc
stop
sub
swap

{as
frap
frapv
tst

unik

Fage 78

Move

Move Multipie Registers
Move Peripheral Data
Signed Multiply

Unsigned Muitiply

Negate Decimal with Extend
Negate

No Operation

One’s Compiement

Logical OR
Push Effective Address

Reset External Devices
Rotate Left without Extend
Rotate Right without Extend
Rotate Left with Extend
Rotate Right with Exiend
Return From Exception
Return and Resiore

Return from Subroutine

Subtract Decimal with Extend
Set Conditional

Stop

Subtract

Swap Data Reqgister Halves

Test and Set Operand
Trap

Trap on Overtlow
Test

Unlink

ATAFR CORFPORATION

Gem DOS Frogrammers’ Tools

Table 2-5. Variations of Instruction Types
Instruction Yariation
add add Add
adda Add Address
addqg Add Quick
addi Add immediate
addx Add with Extend
and and Logical AND
andi AND Immediate
andi to cer
andi to sr
cmp cmp Compare
cmpa Compare Address
cmpm Compare Memory
cmpi Compare Immediate
eor eor Exclusive OR
eori Exciusive OR Immediate
eori to ccr
eori to sr
move move Move
movea Move Address
moveq Move Quick
move to ccr
move o sr
move from sr
move {o usp
neg neg Negate
negx Negate with Extend
or or Logical OR
ori OR Immediate
on to ccr
ori to sr OR immediate to Status Register
sub sub Subtract
suba Subtract Address
subi Subtract immediate
subq Subtract Quick
subx Subtract with Extend
A TARI CORPORA TION

- AS68

Page 19

	www:
	atari-history:
	com:

